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ABSTRACT 
The electrochemical oxidation of hydrogen peroxide was studied at nickel electrodes in 

phosphate buffer solutions. This reaction is of interest because of its possible use in the 

construction of devices for the electrochemical detection of hydrogen peroxide. The devices 

developed could be advantageous in many industrial and medical processes. 

Using the electrochemical technique, staircase potentiometry, the activity of the nickel 

electrode in catalysing hydrogen peroxide oxidation was evaluated over a range of bulk 

hydrogen peroxide concentrations, rotation rates, electrode potentials, temperatures, buffer 

concentrations and pH. 

A mechanism was developed to account for the observed activity. This was based on a 

previous model developed for the electrochemical oxidation of hydrogen peroxide at 

platinum electrodes [ 1-6]. The mechanism involved H20 2 interaction with binding sites on 

the surface of the electrode. These were initially identified as a nickel phase oxide, 

Ni(OH)i . Later, the involvement of buffer phosphate species HP04- was identified. 

Hydrogen peroxide is adsorbed onto the binding site to form the complex Ni8 s·H202. This 

complex then undergoes an internal charge transfer to form a reduced nickel site, liberating 

the products water and oxygen. The binding site regenerates electrochemically to give rise 

to an amperometric signal with the release of protons. A side reaction was proposed which 

involved an interaction between the binding sites and dioxygen. This interaction 

competitively inhibited the binding ofH202. 

A rate equation was derived to account for all the surface sites involved in the proposed 

reaction mechanism. The kinetic, equilibrium and thermodynamic constants of the resulting 

model were optimised by a SIMPLEX procedure. These constants were in tum used in 

conjunction with the rate equation to produce synthetic responses, which were then 

compared to the observed steady-state response. A satisfactory fit was found over the entire 

range of conditions studied. This supported the proposition that the mechanism was 

appropriate. 

The equilibrium constants were found to be potential invariant, with K1 = 4.43 x 10-3 and 

K4 = 0.360 m3 moi-1 at 20°C. The former, K1, was exothermic, with Ml = -28.32 kJ K-1 

between 5 and 25°C, and became significantly more exothermic, with Ml= -198.33 kJ K-1 
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between 25 and 35°C. In contrast, K4 was slightly endothermic, with Ml= -16.5 kJ K-1 

over the temperature range. One rate constant could be approximated to be potential 

invariant, k3'V = 7.99 x 10-4 mol m-2 s-1 at 20°C. Whereas, the other, ki.N, varied with 

potential. Both rate constants were endothermic with pseudo-activation energies for 

k3'Vbeing 24.3 kJ mol-1 and for ki.N ranging between 130-80 kJ mor1 (depending on 

electrode potential). 

An optimum pH region for the study of H20 2 oxidation at nickel was found to be between 

pH 4 and 9. Above and below these bounds competitive reactions occurred that were not 

attributable to hydrogen peroxide and insignificant rates of reaction for electrochemical 

measurement were found. 

The phosphate species HP04-
2 was identified as being involved in the oxidative 

mechanism. The nature of this involvement was complex, with HP04-
2 both inhibiting and 

facilitating H20 2 oxidation, depending on surface concentration. To accommodate this, the 

proposed mechanism was further modified to include this involvement. It was proposed 

that HP04-
2 was required to form the H202 binding site from a nickel precursor site on the 

electrode surface. However, the complexation of a second HP04 -2 to this site would inhibit 

H202 binding. 

The work presented in this thesis represents a fundamental study into the electrochemical 

behaviour of hydrogen peroxide at nickel electrodes. This behaviour has been clearly 

identified over a range of temperatures, hydrodynamic conditions, buffer compositions and 

concentrations. This enabled a new and comprehensive mechanism, for the oxidation of 

hydrogen peroxide at nickel electrode, to be developed. 
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