
Res. Lett. Inf. Math. Sci., (2000) 1, 37-64
Available online at http://www.massey.ac.nz/~wwiims/rlims/

C/C++ Implementation of Functions of the Class LT0.

Elena Calude
I.I.M.S., Massey University Albany Campus, Auckland, N.Z.
E.Calude@massey.ac.nz

Peter Kay
I.I.M.S., Massey University Albany Campus, Auckland, N.Z.
P.Kay@massey.ac.nz

Weiwei Luo
NASA Huntsville, USA
Weiwei_Luo@hotmail.com

Abstract
This report describes an on-going implementation, in C/C++, of the functions and schemes of the formal
system LT0, presented in the paper Caporaso, Pani and Covino [1]. The final aim is to be able to
effectively construct a "small manageable" Exponential Diophantine Equation which represents (in the
sense of Chaitin [2]) an algorithmical random binary sequence.

Introduction
At the beginning of the century mathematicians (led by David Hilbert) attempted to give mathematics a
solid, rigorous base. They started with a few basic axioms and attempted to derive all mathematical
theorems.

"Hilbert's idea is the culmination of two thousand years of mathematical tradition going
back to Euclid's axiomatic treatment of geometry, going back to Leibniz's dream of a
symbolic logic and Russell and Whitehead's monumental Principia Mathematica.
Hilbert's dream was to once and for all clarify the methods of mathematical reasoning.
Hilbert wanted to formulate a formal axiomatic system which would encompass all of
mathematics.

Hilbert emphasised a number of key properties that such a formal axiomatic system
should have. It's like a computer programming language. It's a precise statement about
the methods of reasoning, the postulates and the methods of inference that we accept as
mathematicians. Furthermore, Hilbert stipulated that the formal axiomatic system
encompassing all of mathematics that he wanted to construct should be "consistent" and
it should be "complete".

Consistent means that you shouldn't be able to prove an assertion and the contrary of the
assertion. You shouldn't be able to prove A and not A…

Complete means that if you make a meaningful assertion you should be able to settle it
one way or the other. It means that either A or not A should be a theorem, should be
provable from the axioms using the rules of inference in the formal axiomatic system.

…

Consistent and complete means only truth and all the truth. They seem like reasonable
requirements. There's a funny consequence, though, having to do with something called
the decision problem. In German it's the Entscheidungsproblem.

Hilbert ascribed a great deal of importance to the decision problem.

38 R.L.I.M.S. Vol. 1, Sept. 2000

Solving the decision problem for a formal axiomatic system means finding an algorithm
that enables you to decide whether any given meaningful assertion is a theorem or not. A
solution of the decision problem is called a decision procedure.

…The formal axiomatic system that Hilbert wanted to construct would have included all
of mathematics: elementary arithmetic, calculus, algebra, everything. If there's a decision
procedure, then mathematicians are out of work. This algorithm, this mechanical
procedure, can check whether something is a theorem or not, can check whether it's true
or not. " [3]

In the 1930s, Kurt Gödel [4] showed that a consistent formal axiomatic system with integers and
addition/multiplication could not be complete, i.e. there exist "true" but unprovable statements. Hilbert's
dream was never going to work.

To this aim Alan Turing [5], also in the 1930s, presented an argument that once again destroyed Hilbert's
dream. Turing invented a machine on paper, that is now called a "Turing Machine".

A Turing Machine consists of a paper tape which contains a series of numbers, either 0 or 1. One
particular number, the observed symbol is under a 'read/write' head.

Each machine instruction can move the tape either one square to the left or right, write either a 0 or a 1
into the current square, or decide which instruction to execute, depending on the value of the observed
symbol. Eventually (perhaps) the sequence of instructions will finish (or halt).

Turing showed the following:

"…That there is no algorithm, no mechanical procedure, which will decide… if a
computer program ever halts. …what Hilbert wanted was a formal axiomatic system
from which all mathematical truth should follow, only mathematical truth, and all
mathematical truth. If Hilbert could do that, it would give us a mechanical procedure to
decide if a computer program will ever halt.

Why? You just run through all possible proofs until you either find a proof that the
program halts or you find a proof that it never halts. So if Hilbert's dream of a finite set
of axioms from which all of mathematical truth should follow were possible, then by
running through all possible proofs checking which ones are correct, you would be able
to decide if any computer program halts. In principle you could. But you can't by
Turing's very simple argument…" [3]

Formal systems cannot live up to Hilbert's dream. They have, however, other interesting properties. One
is that it is possible to create a machine (a computer program) that, given a detailed (step by step) proof of
a theorem, the machine is able to verify the correctness of the proof.

The paper [1] constructs a formal system LT0, rich enough to be incomplete, but which scales linearly
with proof complexity.

The intention of this paper is to produce an annotation of the original paper [1], together with an
implementation in C/C++. Sections 2 and 3 are covered in this first report. (The numbering of the original
paper is referred to in parentheses.)

0 0 0 0 1 0 1 1 1 0 1 0 0 0 0

1

l r (e) ... sequence of instructions

read/write head

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 39

Functions, schemes and a paper tape example.

In this section we introduce the basic building blocks of the system. Data is represented by lists , to which
we can apply functions and schemes . Functions are built from 3 'basic functions' that can extract parts of
a list. Schemes are built from 'basic schemes', equality, negation and disjunction.

(Definition 1.1) All objects in our system can be written in terms of a 'list'.

0 is a ternary list, all other lists are in the form:
[]ZYX ,, where X, Y and Z are themselves lists

Examples of lists are:
0
[0, 0, 0]
[[0, 0, 0], 0, 0]
[0, [0, [0, 0, 0], 0], 0]

In C we represent 0 by a pointer with the value NULL.

A list in the form []ZYX ,, is represented by a pointer that points to an array of 3 more pointers.

The examples above are represented by:

0 à

[0, 0, 0] à

[[0, 0, 0], 0, 0] à

[0, [0, [0, 0, 0], 0], 0] à

Arbitrary memory locations have been chosen to illustrate addresses and values.

NULL
100

204
200

NULL

NULL

NULL

204

208

212

304
300

316

NULL

NULL

304

308

312

NULL

NULL

NULL

316

320

324

400
404 NULL

416

NULL

404

408

412

NULL

428

NULL

416

420

424

NULL

NULL

NULL

428

432

436

40 R.L.I.M.S. Vol. 1, Sept. 2000

In C, these ternary lists can be represented by pointers. In fact the only variable type we use is a pointer.
Either a pointer points to another pointer, or it has the value NULL. A list can be represented by a pointer
of type void ** (a pointer to a pointer of no particular type), or by a void ***, or a void ****, etc
depending on the depth of the list. We define a list to be of type void **.

Strict type checking is enabled, and to ensure that pointer types for lists are compatible (e.g. void * and
void ** are not, but they both represent lists) we frequently use the cast (list) to convert a void *
pointer into a void ** pointer.

typedef void ** list; // a list is a pointer to a list
 // The depth depends on list itself
 // so void **, void ***, void **** etc are all valid
 // descriptions of a list
 // choose void ** as the list description
 // We will often use the cast: (list)
list x; // x and y are list variables
list y = NULL;

(Definition 1.2) Individual elements of a list can be reached with the help of destructors . Destructors
return the head, body or tail of a list.

)3,2,1(00 == idfi (=df à 'by definition')

[] XZYX df=1,,

[] YZYX df=2,,

[] ZZYX df=3,,

The original list is not altered. No deep copying is done. The value returned is the address of that part of
the list. We use subscripts 1, 2 or 3 to denote which destructor to return.

list destructor(list X, int i) { // i is 1, 2 or 3
 if (X == NULL) return NULL;
 else return (list) X[i-1]; // one of the 3 pointers
}

Multiple subscripts to lists are always meaningful.

jiij xx)(= is coded as:

 y = destructor(destructor(x, i), j);

Three macros HEAD, BODY and TAIL are defined to make our C programs more readable.

#define HEAD(x) destructor(x,1)
#define BODY(x) destructor(x,2)
#define TAIL(x) destructor(x,3)

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 41

The function new_list(list X, list Y, list Z) is one way to create a list in the form
[]ZYX ,, . If X, Y and Z are lists that already exist, new_list allocates memory and makes a copy
of each of the lists. This is a 'deep' copy – the created list does not contain any of the original pointers.

If X = 0, Y = [0, 0, 0] and Z = 0

X = Y = Z =

then x = new_list(list X, list Y, list Z); creates the following structure:

x = [0, [0, 0, 0], 0]

x =

list new_list(list X = NULL, list Y = NULL, list Z = NULL) {
 list *M; // a list pointer
 M = (list *)calloc(3,sizeof(list)); // point it to 3 lists all set to NULL
 // recurse if necessary
 if (X) M[0] = new_list(HEAD(X), BODY(X), TAIL(X));
 if (Y) M[1] = new_list(HEAD(Y), BODY(Y), TAIL(Y));
 if (Z) M[2] = new_list(HEAD(Z), BODY(Z), TAIL(Z));
 return (list)M; // we need the cast
}

(Definition 1.3) Lists are referred to by using upper-case characters normally in the range U – Z.
ZU ,..., are generic lists

x is a list 'variable'

These can be declared in C by:
 list U, V, Z;
 list x;

Trailing 0s in a list can be omitted.
[]YX , is short for []0,, YX
[]X is short for []0,0,X

Default arguments are applied to new_list() so trailing NULL's can be omitted.

list new_list(list X = NULL, list Y = NULL, list Z = NULL); //default args
list x = new_list(X, Y);

NULL
100

204
200

NULL

NULL

NULL

204

208

212

NULL
300

404
400

NULL

416

NULL

404

408

412

NULL

NULL

NULL

416

420

424

42 R.L.I.M.S. Vol. 1, Sept. 2000

(Definition 1.4) Numbers in LT0 are defined to be particular lists:
0df=0

[]0,0,0df=1

[][] [] []112 ,00,,00,0,0,0,0 ===df

[][][] []23 ,00,0,0,0,0,0,0 ==df

…and in general
[]n1n ,0df=+

Boolean values are defined as:
Truedf=0

[] Falsedfdf == 0,0,01

The numbers 0 … 7 and the Boolean values True and False, are used a lot in our programs. It is not space
efficient if we have to create a completely new copy of these numbers every time they are used. We
create 'constants' when our program starts, and copy only the pointer to a constant, rather than performing
a deep copy.

A function insert_list(list X, int i, list Y) creates a list using a shallow copy of the
list Y into the list X at either the head, body or tail, depending on the value of i.
Only the pointer is copied, not the complete list that it points to.

list one = new_list();

[]0,0,0df=1 à

list two = insert_list(new_list(), 2, one);

[]0,,0 12 df= à

At the beginning of the program, we initialise the constants zero to seven, TRUE and FALSE.

list insert_list(list X, int i, list Y) { // i is 1, 2 or 3
 X[i-1] = Y; // Shallow copy
 return X;
}

insert_list, like most of our functions, alters the value of its arguments (they are pointers).
However, it is useful to also return a value. Most functions return the value of the list that is passed as the
first argument.

Finally, here are some useful functions for dealing with lists:

204
200

NULL

NULL

NULL

204

208

212

one

304
300

NULL

204 (one)

NULL

304

308

312

two

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 43

list delete_list(list X) { // release allocated memory
 if (X == NULL) return NULL; // don't delete our constants!
 if ((X == zero) || (X == one) || (X == two) || (X == three)) return NULL;
 if ((X == four) || (X == five) || (X == six) || (X == seven)) return NULL;
 delete_list(HEAD(X));
 delete_list(BODY(X));
 delete_list(TAIL(X));
 free(X);
 return NULL;
}

list copy_list(list X) { // deep copy of an existing list
 if (X == NULL) return NULL;
 return new_list(HEAD(X), BODY(X), TAIL(X));
}
int ltoi(list X) { // convert a list into an integer
 int i; // for printing. If it is not a number
 // return -1
 if (X == NULL) return 0;
 if ((HEAD(X) == NULL) && (TAIL(X) == NULL)) {
 i = ltoi(BODY(X)); // recurse
 if (i == -1) return -1; // always check for 'non-numbers'
 else return 1+i;
 }
 return -1;
}

void print_list(list X) { // print a list in numeric form if
 int i; // possible e.g. 4
 // or in list form e.g. [0,0,[0]]
 if ((i=ltoi(X)) != -1) printf("%d",i);
 else {
 printf("[");
 print_list(HEAD(X));
 if (BODY(X) || TAIL(X)) { // ignore trailing 0's
 printf(",");
 print_list(BODY(X));
 if (TAIL(X)) {
 printf(",");
 print_list(TAIL(X));
 }
 }
 printf("]");
 }
}
void print_listln(list X) { // print list and then a new line
 print_list(X);
 printf("\n");
}

list itol(int n) { // convert an integer into a list
 switch (n) { // use our constants if possible
 case 0:return NULL; // this function will be used
 case 1:return one; // in input routines
 case 2:return two;
 case 3:return three;
 case 4:return four;
 case 5:return five;
 case 6:return six;
 case 7:return seven;
 }
 return insert_list(new_list(), 2, itol(n-1));
}

44 R.L.I.M.S. Vol. 1, Sept. 2000

(Definition 2) Creating functions that can be applied to lists.

31211 xxx are basic functions

E.g.
[][]
[][]

[]

[]0,0,0

0,0,

0,0,0,,0
0,0,0,,0

1

2121

=
=

=

=
=

1

1

1
1

x
thenxif

The basic functions implemented in C are:

list x1(list X) {
 return HEAD(X);
}

list x21(list X) {
 return HEAD(BODY(X));
}

list x31(list X) {
 return HEAD(TAIL(X));
}

The closure of the basic functions under the destructors are the initial functions.

E.g. 1212321x is an initial function

or formally: ππ ,x ∈ {1,2,3}+

The C implementation of the initial functions is xnnn(list X, char *s):

list xnnn(list X, char *s) { // s is a string of the form "1212321"
 int i = 0;
 while (s[i] != '\0') {
 X = destructor(X, s[i]-'0');
 i++;
 }
 return X;
}

(Definition 4) Creating schemes that can be applied to lists.

Complex functions are built from schemes .
Schemes are either basic or compiled.

The basic schemes are:

assignment: given)(xf then substitute Y for x ,)(Yf

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 45

equality: xxgxfxgxf df particular somefor)()(iff0)(~)(==−

xxgxfxgxf df particular somefor)()(iff)(~)(≠=− 1

list eq(list X, list Y) { // deep test of each list
 int i;

 if ((X == NULL) && (Y == NULL)) return TRUE;
 if ((X == NULL) || (Y == NULL)) return FALSE;
 for (i=0;i<3;i++) {
 if ((X[i] == NULL) && (Y[i] != NULL)) return FALSE;
 if ((X[i] != NULL) && (Y[i] == NULL)) return FALSE;
 if ((X[i] != NULL) && (Y[i] != NULL) &&
 (eq((list) X[i], (list) Y[i]) != TRUE)) return FALSE;
 }
 return TRUE;
}

negation: xxfxfnot df particular somefor 0)(iff0)(≠=

xxfxfnot df particular somefor 0)(iff)(== 1

list not(list X) {
 if (X == TRUE) return FALSE;
 else return TRUE;
}

disjunction: xxgxfxgorxf df particular somefor 0)(or0)(iff0)()(===

xxgxfxgorxf df particular somefor 0)(and0)(iff)()(≠≠= 1

list or(list X, list Y) {
 if ((X == TRUE) || (Y == TRUE)) return TRUE;
 else return FALSE;
}

Schemes or functions can be thought of as "computer programs" It is important to realise that a particular
function)(xf may not produce an answer (is undefined) – i.e. the program never halts . These functions
are called "Partial Functions".

(Definition 5) Creating compiled schemes .

For each Y, the constant function Y(x) is defined to be []()0,0,1 Yx .

When we write Y we refer to a function that produces Y as its result.

Compiled schemes are created from basic schemes:

)()()()(xgorxfnotxgimplxf df=

list impl(list X, list Y) {
 return or(not(X), Y);
}

46 R.L.I.M.S. Vol. 1, Sept. 2000

())()()()(xgnotorxfnotnotxgandxf df=

list and(list X, list Y) {
 return not(or(not(X), not(Y)));
}

() ())()()()()()(xforxgnotandxgorxfnotxgiffxf df=

list iff(list X, list Y){
 return and(or(not(X), Y), or(not(Y), X));
}

(Definition 6) Creating recursive schemes , schemes that are applied recursively to each element of a list.

If we are given a function)(xg and an initial function)(xh (so)(xh = ππ ,x ∈ {1,2,3}+),

we can create a function))(,()(xhgRxf = .

R is a 'Boolean recursion scheme' in the 'step function' g and the 'substituted function' h.

R is given in terms of another function)(* xf .

0)()()()(

0)0(

3
*

2
**

*

≠=

=

xxfandxfandxgxf

f
where 2x and 3x are the destructors

))(()(* xhfxf = (slight change to the original paper)

So if)(xh is 1x then

)()()()()(13
*

12
*

11
* xfandxfandxgxfxf ==

list R(list X, list g(list Y)) {
 if (X == NULL) return NULL;
 else return and(g(X), and(R(g, BODY(X)), R(g, TAIL(X))));
}

The substituted function h is often set to be the identity function xxh =)((although the identity function
does not itself belong to LT0)

The above recursive scheme then simplifies to:

0)()()()(

0)0(

32 ≠=

=

xxfandxfandxgxf

f

This version of the recursive scheme is used in later sections.

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 47

(Example 1) The goal of this paper is to implement a complete (structured) Turing Machine. A Turing
Machine needs a 'list representation' for both its paper tape and its sequence of instructions. This first
example shows how to represent the sequence of binary numbers on the tape as a list.

Suppose we have a paper tape T, which contains binary numbers e.g. 011010111.
The binary code on the tape is represented as a list T in the following way:

[]T,T df 1=0

[]TT df ,1 2=

If the tape is absent then T is 0.
E.g. the tape 0 is coded as: 0 = []1

the tape 101 is coded as: 101 = [][][]212 ,,

A recursive scheme can be used to show whether a list is a valid representation of a tape.
Given an arbitrary list []321 ,, xxxx = , is it valid?

E.g. is [][][]2112 ,,, a valid tape? (no).

is [][][]112 ,, a valid tape? (yes).

A code is valid if:
the first element of the list is either 1 or 2 (remember these are lists)
the head of the second element of the list is either 1 or 2 or 0
and the head of the third element is 0

and then apply the above conditions recursively to the second and third elements of the list.

)(xtp is a (simplified) recursive scheme that returns TRUE if T is valid and FALSE otherwise.

)()()()(32 xtpandxtpandxgxtp =

For tapes the step function)(xg is:

))~~()~~(()(3121212111 xandxorxorxandxorxxg 2121 −−−−=

Hence the recursive scheme)(xtp is:

)()())~~()~~(()(323121212111 xtpandxtpandxandxorxorxandxorxxtp 2121 −−−−=

For the list [][][]212 ,, :

[][][]() [][]() ()
()

()

TRUE

andand
tpandand

tpandandororandorand
tpandtpandandororandortp

=
=
=
=

−−−−=
−−−−=

0
000

000
0))~~()~~((0

0,)0)~~()~~((,,
0222122111

21121112212212

48 R.L.I.M.S. Vol. 1, Sept. 2000

list tp(list X) { // recursive scheme to validate tapes
 list t1,t2,t3;

 if (X == NULL) return NULL;
 t1 = or(eq(x1(X),one), eq(x1(X),two));
 t2 = or(eq(x21(X),one), or(eq(x21(X),two),x21(X)));
 t3 = and(t1, and(t2,x31(X)));
 return and(t3, and(tp(BODY(X)), tp(TAIL(X))));
}

The following function read_tape allows a description of a tape to be input by the user.

The user types in a sequence of 0's and 1's. This sequence either ends with a #, in which case the #
character is discarded, or it ends with another character (neither 0 or 1), in which case the character is put
back into the input stream and can be read by another input function. All white spaces are ignored.

list read_tape(void) {
 int c;

 while (isspace(c = getchar())); //skip white space
 switch (c) {
 case '0':return insert_list(insert_list(new_list(),1,one),2,read_tape());
 case '1':return insert_list(insert_list(new_list(),1,two),2,read_tape());
 default:if ((c != '#') && (c != EOF)) ungetc(c, stdin);return NULL;
 }
}

(Definition 8)
[]ZxYxcons dfZY ,,)(, = . This is implemented by the function new_list().

(Definition 9)
The height of a list:

[]))(),(),(max(1),,(

0)0(

ZhtYhtXhtZYXht

ht

df

df

+=

=

int ht(list X) {
 int a,b,c,m;

 if (X == NULL) return 0;
 a = ht(HEAD(X));
 b = ht(BODY(X));
 c = ht(TAIL(X));
 m = a;
 if (b > m) m = b;
 if (c > m) m = c;
 return m;
}

The length of a list:

[] ZYXZYX df

df

+++=

=

1,,

10

int length(list X) {
 if (X == NULL) return 1;
 return 1 + length(HEAD(X)) + length(BODY(X)) + length(TAIL(X));
}

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 49

Turing Machines
In this section the description of a Turing Machine is completed, by representing the sequence of
instructions as a list. 'Structured Turing Machines' [1] are used.

Elementary Turing Machines have as instructions:

l move left
r move right
w write a 1
e erase – write a 0

A general Turing Machine is expressed with the following grammar:
<TM> := l | r | w | e | <TM><TM> | (<TM>)

where <TM><TM> is the 'sequence composition' of two Turing Machines, that is if M is a
Turing Machine and M = M1M2, then M1 is executed before M2

If M is a Turing Machine then (M) is the repetition of M while the observed symbol is a 1. This
is represented by (<TM>).

Examples of Turing Machines are:
l
lw
llw
(lw)
(lw)rr

A Turing Machine M is coded by M .

For elementary Turing Machines:
M = l then M =df [l] =df [2]
M = r then M =df [r] =df [3]
M = w then M =df [w] =df [4]
M = e then M =df [e] =df [5]

For sequence composition:
M = M1M2 then M =df [o , 1M , 2M] =df [7, 1M , 2M]

e.g.
if M = lr then M =df [o , [l], [r]] =df [7, [2], [3]]

if M = lrr then M =df [o , [l], [o , [r], [r]]] =df [7, [2], [7, [3], [3]]]

For repetition:
M = (M1) then M =df [while , 1M] =df [6, 1M]

e.g.
if M = (l) then M =df [while , [l]] =df [6, [2]]

if M = (lr) then M =df [while , [o , [l], [r]]] =df [6, [7, [2], [3]]]

50 R.L.I.M.S. Vol. 1, Sept. 2000

 (Notation 11)
1. Tapes consist of a sequence of 1's and 0's. Example 1 represents a tape as a list.

2. A Tape T consists of two parts T1T2. The observed symbol is the left-most bit of T2.
All other bits on the tape, outside of T1T2, will be 0.

3. The action of the Turing Machine is to perform the left-most instruction in the sequence of
instructions M.

We say that M is placed over T1T2.

The current instruction is then removed from the sequence, and the action repeated.

At any point in the execution of the Turing Machine, we can say that it is in a certain state. We
call this an instantaneous description or ID.
An ID is a triple T1, M, T2.

If M is absent the ID is said to be terminal, i.e. the Turing Machine has halted.

4. An atom is in the form *
2

**
121 | TMTTMT =

M over the input T1T2 yields the same output as M* over the input *
2

*
1 TT

if M* is absent then M over the input T1T2 yields *
2

*
1 TT .

We progress from one instance (ID) to another by executing an instruction.

The actions of the Turing Machine are fixed, and obey the following rules:

Rules:
1a: T1blMT2 |= T1MbT2
1b: blMT2 |= 0MbT2
2a: T1rMbT2 |= T1bMT2

2b: T1rMb |= T1bM0
3: T1wMbT2 |= T1M1T2
4: T1eMbT2 |= T1M0T2

5a: T1(M1)M1T2 |= T1M1(M1)M1T2
5b: T1(M1)M0T2 |= T1M0T2

Examples:
1a: 11lr00 |= 1r100
1b: 1lr00 |= 0r100
2a: 11rl10 |= 111l0
2b: 11rl1 |= 111l0
3: 11wr000 |= 11r100
4: 11er100 |= 11r000
5a: 11(l)r100 |= 11l(l)r100
5b: 11(l)r000 |= 11r000

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 51

An ID, T1MT2 is coded by 21MTT =df [1T , M , 2T]

Where 2T is the code for a tape (See Example 1).

1T is the code for a tape read in reverse order. (The right-most bit is the first element in the list).

list reverse_tape(list X) {
 list p=NULL;
 while (X != NULL) {
 p = insert_list(new_list(HEAD(X)),2,p);
 X = BODY(X);
 }
 return p;
}

Examples of ID's are:

01l01 1x = [[1 , [0]], [l], [0 , [1]]] =df [[2, [1]], [2], [1, [2]]]

T1blMT2 1x = [[b , 1T], [o , [l], M], 2T] =df [[b , 1T], [7, [2], M], 2T]

T1MbT2 21x = [1T , M , [b , 2T]] =df [1T , M , [b , 2T]]

The definition of the function)(xid that recognises ID's is:

)(xid =df)(2xtm and)(1xtp and)(2xtp

list id(list X) {
 return and(tm(BODY(X)), and(tp(HEAD(X)), tp(TAIL(X))));
}

The rules 1a-5b in the form I |= J will be coded by [I , [J , U], W]

The function)(xnx defined below recognises atoms:

)(xnx =)(1xid and)(21xid and ()(1 xst a or)(1 xst b or)(2 xst a … or)(5 xst b)

list nx(list X) {
 list t1;

 t1 = or(st1a(X), or(st1b(X), or(st2a(X), or(st2b(X), or(st3(X), or(st4(X),
 or(st5a(X), st5b(X))))))));

 return and(id(x1(X)), and(id(x21(X)), t1));
}

Finally functions st1a(X) etc can be defined that recognise each of the rules:

52 R.L.I.M.S. Vol. 1, Sept. 2000

Rule 1a: T1blMT2 |= T1MbT2

)(1 xst a is given by:

x = [[[b , 1T], [o , [l], M], 2T], [[1T , M , [b , 2T]], U], W]

extracting terms:

1x = [[b , 1T], [o , [l], M], 2T]

11x = [b , 1T]

111x = b

112x = 1T

12x = [o , [l], M]

121x = o

122x = [l]

1221x = l

123x = M

13x = 2T

2x = [[1T , M , [b , 2T]], U]

21x = [1T , M , [b , 2T]]

211x = 1T

212x = M

213x = [b , 2T]

2131x = b

2132x = 2T

22x = U

3x = W

To recognise this expression we have to ensure that each of the terms in 1x and 21x are equivalent:

)(1 xst a = 111x −~ 2131x and (equality of b)

112x −~ 211x and (equality of 1T)

123x −~ 212x and (equality of M)

13x −~ 2132x and (equality of 2T)

121x −~ o and

1221x −~ l

(which is slightly different than the formula in the paper).

However, this is not the complete recogniser for rule 1a. It may be the case that M is absent .

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 53

Rule 1a (revised): when M is absent:

x = [[[b , 1T], [l], 2T], [[1T , NULL , [b , 2T]], U], W]

à 111x = b 211x = 1T

112x = 1T 212x = NULL

121x = l 213x = [b , 2T]

13x = 2T 2131x = b

2132x = 2T
The final recogniser for rule 1a is:

)(1 xst a = 111x −~ 2131x and (equality of b)

112x −~ 211x and (equality of 1T)

13x −~ 2132x and (equality of 2T)

(123x −~ 212x and (equality of M)

121x −~ o and

1221x −~ l)

or

(121x −~ l and 212x)

list st1a(list X) {
 list t1,t2,t3,t4,t5,t6;

 t1 = eq(xnnn(X,"111"),xnnn(X,"2131"));
 t2 = eq(xnnn(X,"112"),xnnn(X,"211"));
 t3 = eq(xnnn(X,"13"),xnnn(X,"2132"));
 t4 = and(t1, and(t2, t3));

 t1 = eq(xnnn(X,"123"),xnnn(X,"212"));
 t2 = eq(xnnn(X,"121"),seq);
 t3 = eq(xnnn(X,"1221"),left);
 t5 = and(t1, and(t2, t3));

 t1 = eq(xnnn(X,"121"),left);
 t2 = xnnn(X,"212");
 t6 = and(t1, t2);

 return and(t4, or(t5,t6));
}

54 R.L.I.M.S. Vol. 1, Sept. 2000

Rule 1b: blMT2 |= 0MbT2

x = [[[b], [o , [l], M], 2T], [[[0], M , [b , 2T]], U], W]

à 11x = [b] 211x = [0]

121x = o 212x = M

121x = [l] 2131x = b

123x = M 2132x = 2T

13x = 2T
when M is absent:

x = [[[b], [l], 2T], [[[0], NULL , [b , 2T]], U], W]

à 11x = [b] 211x = [0]

12x = [l] 212x = NULL

13x = 2T 2131x = b

2132x = 2T

)(1 xst b = 111x −~ 2131x and [b , 0]

112x and

2111x −~ 1 and (0 =d f 1)

13x −~ 2132x and (2T)

(123x −~ 212x and (M)

121x −~ o and

1221x −~ l)

or

(121x −~ l and 212x)

list st1b(list X) {
 list t1,t2,t3,t4,t5,t6,t7;
 t1 = eq(xnnn(X,"111"),xnnn(X,"2131"));
 t2 = eq(xnnn(X,"2111"),one);
 t3 = eq(xnnn(X,"13"),xnnn(X,"2132"));
 t4 = xnnn(X,"112");
 t5 = and(t1, and(t2, and(t3, t4)));

 t1 = eq(xnnn(X,"123"),xnnn(X,"212"));
 t2 = eq(xnnn(X,"121"),seq);
 t3 = eq(xnnn(X,"1221"),left);
 t6 = and(t1, and(t2, t3));

 t1 = eq(xnnn(X,"121"),left);
 t2 = xnnn(X,"212");
 t7 = and(t1, t2);

 return and(t5, or(t6,t7));
}

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 55

Rule 2a: T1rMbT2 |= T1bMT2

x = [[1T , [o , [r], M], [b , 2T]], [[[b , 1T], M , 2T], U], W]

à 11x = 1T 2111x = b

121x = o 2112x = 1T

122x = [r] 212x = M

123x = M 213x = 2T

131x = b

132x = 2T
when M is absent:

x = [[1T , [r], [b , 2T]], [[[b , 1T], NULL , 2T], U], W]

à 11x = 1T 2111x = b

12x = [r] 2112x = 1T

131x = b 212x = NULL

132x = 2T 213x = 2T

)(2 xst a = 131x −~ 2111x and (equality of b)

11x −~ 2112x and (equality of 1T)

132x −~ 213x and (equality of 2T)

(123x −~ 212x and (equality of M)

121x −~ o and

1221x −~ r)

or

(121x −~ r and 212x)

list st2a(list X) {
 list t1,t2,t3,t4,t5,t6;

 t1 = eq(xnnn(X,"131"),xnnn(X,"2111"));
 t2 = eq(xnnn(X,"11"),xnnn(X,"2112"));
 t3 = eq(xnnn(X,"132"),xnnn(X,"213"));
 t4 = and(t1, and(t2, t3));

 t1 = eq(xnnn(X,"123"),xnnn(X,"212"));
 t2 = eq(xnnn(X,"121"),seq);
 t3 = eq(xnnn(X,"1221"),right);
 t5 = and(t1, and(t2, t3));

 t1 = eq(xnnn(X,"121"),right);
 t2 = xnnn(X,"212");
 t6 = and(t1, t2);

 return and(t4, or(t5,t6));
}

56 R.L.I.M.S. Vol. 1, Sept. 2000

Rule 2b: T1rMb |= T1bM0

x = [[1T , [o , [r], M], [b]], [[[b , 1T], M , [0]], U], W]

à 11x = 1T 2111x = b

121x = o 2112x = 1T

122x = [r] 212x = M

123x = M 213x = [0]

13x = [b]

when M is absent:
x = [[1T , r , [b]], [[[b , 1T], NULL , [0]], U], W]

à 11x = 1T 2111x = b

12x = [r] 2112x = 1T

13x = [b] 212x = NULL

213x = [0]

)(2 xst b = 131x −~ 2111x and (equality of [b , 0])

132x and

11x −~ 2112x and (equality of 1T)

2131x −~ 1 and (0 =d f 1)

(123x −~ 212x and (equality of M)

121x −~ o and

1221x −~ r)

or

(121x −~ r and 212x)

list st2b(list X) {
 list t1,t2,t3,t4,t5,t6,t7;

 t1 = eq(xnnn(X,"131"),xnnn(X,"2111"));
 t2 = xnnn(X,"132");
 t3 = eq(xnnn(X,"11"),xnnn(X,"2112"));
 t4 = eq(xnnn(X,"2131"),one);
 t5 = and(t1, and(t2, t3));

 t1 = eq(xnnn(X,"123"),xnnn(X,"212"));
 t2 = eq(xnnn(X,"121"), seq);
 t3 = eq(xnnn(X,"1221"),right);
 t6 = and(t1, and(t2, t3));

 t1 = eq(xnnn(X,"121"),right);
 t2 = xnnn(X,"212");
 t7 = and(t1, t2);

 return and(t5, or(t6,t7));
}

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 57

Rule 3: T1wMbT2 |= T1M1T2

x = [[1T , [o , [w], M], [b , 2T]], [1T , M , [1 , 2T]], U], W]

à 11x = 1T 211x = 1T

121x = o 212x = M

122x = [w] 2131x = 1

123x = M 2132x = 2T

131x = b

132x = 2T
when M is absent:

x = [[1T , [w], [b , 2T]], [1T , NULL , [1 , 2T]], U], W]

à 11x = 1T 2112x = 1T

12x = [w] 212x = NULL

131x = b 2131x = 1

132x = 2T 2132x = 2T

)(3 xst = 11x −~ 211x and (equality of 1T)

132x −~ 2132x and (equality of 2T)

2131x −~ 2 and (1 =d f 2)

(123x −~ 212x and (equality of M)

121x −~ o and

1221x −~ w)

or

(121x −~ w and 212x)

list st3(list X) {
 list t1,t2,t3,t4,t5,t6;

 t1 = eq(xnnn(X,"11"),xnnn(X,"211"));
 t2 = eq(xnnn(X,"132"),xnnn(X,"2132"));
 t3 = eq(xnnn(X,"2131"),two);
 t4 = and(t1, and(t2, t3));

 t1 = eq(xnnn(X,"123"),xnnn(X,"212"));
 t2 = eq(xnnn(X,"121"),seq);
 t3 = eq(xnnn(X,"1221"),write);
 t5 = and(t1, and(t2, t3));

 t1 = eq(xnnn(X,"121"),write);
 t2 = xnnn(X,"212");
 t6 = and(t1, t2);

 return and(t4, or(t5,t6));
}

58 R.L.I.M.S. Vol. 1, Sept. 2000

Rule 4: T1eMbT2 |= T1M0T2

x = [[1T , [o , [e], M], [b , 2T]], [[1T , M , [0 , 2T]], U], W]

à 11x = 1T 211x = 1T

121x = o 212x = M

122x = [e] 2131x = 0

123x = M 2132x = 2T

131x = b

132x = 2T
when M is absent:

x = [[1T , [e], [b , 2T]], [[1T , NULL , [0 , 2T]], U], W]

à 11x = 1T 211x = 1T

12x = [e] 212x = NULL

131x = b 2131x = 0

132x = 2T 2132x = 2T

)(4 xst = 11x −~ 211x and (equality of 1T)

132x −~ 2132x and (equality of 2T)

2131x −~ 1 and (0 =d f 1)

(123x −~ 212x and (equality of M)

121x −~ o and

1221x −~ e)

or

(121x −~ e and 212x)

list st4(list X) {
 list t1,t2,t3,t4,t5,t6;

 t1 = eq(xnnn(X,"11"),xnnn(X,"211"));
 t2 = eq(xnnn(X,"132"),xnnn(X,"2132"));
 t3 = eq(xnnn(X,"2131"),one);
 t4 = and(t1, and(t2, t3));

 t1 = eq(xnnn(X,"123"),xnnn(X,"212"));
 t2 = eq(xnnn(X,"121"),seq);
 t3 = eq(xnnn(X,"1221"),erase);
 t5 = and(t1, and(t2, t3));

 t1 = eq(xnnn(X,"121"),erase);
 t2 = xnnn(X,"212");
 t6 = and(t1, t2);

 return and(t4, or(t5,t6));
}

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 59

Rule 5a: T1(M1)M1T2 |= T1M1(M1)M1T2

x = [[1T , [o , [while , 1M], M], [1 , 2T]], [[1T , [o , 1M , [o , [while , 1M], M]], [1 , 2T]], U], W]

à 11x = 1T 211x = 1T

121x = o 2121x = o

1221x = while 2122x = 1M

1222x = 1M 21231x = o

123x = M 212321x = while

131x = 1 212322x = 1M

132x = 2T 21233x = M

2131x = 1

2132x = 2T
when M is absent:

x = [[1T , [while , 1M], [1 , 2T]], [[1T , [o , 1M , [while , 1M]], [1 , 2T]], U], W]

à 11x = 1T 211x = 1T

121x = while 2121x = o

122x = 1M 2122x = 1M

131x = 1 21231x = while

132x = 2T 21232x = 1M

2131x = 1

2132x = 2T

)(5 xst a = 131x −~ 2131x −~ 2 and (1 =d f 2)

11x −~ 211x and (equality of 1T)

132x −~ 2132x and (equality of 2T)

(123x −~ 21233x and (equality of M)

1222x −~ 2122x −~ 212322x (equality of 1M)

121x −~ 2121x −~ 21231x −~ o and

1221x −~ 212321x −~ while)

or

(122x −~ 2122x −~ 21232x and (equality of 1M)

121x −~ 21231x −~ while and

2121x −~ o

212x)

60 R.L.I.M.S. Vol. 1, Sept. 2000

list st5a(list X) {
 list t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11;

 t1 = eq(xnnn(X,"131"),xnnn(X,"2131"));
 t2 = eq(xnnn(X,"131"),two);
 t3 = eq(xnnn(X,"11"),xnnn(X,"211"));
 t4 = eq(xnnn(X,"132"),xnnn(X,"2132"));
 t9 = and(t1, and(t2, and(t3, t4)));

 t1 = eq(xnnn(X,"123"),xnnn(X,"21233"));
 t2 = eq(xnnn(X,"1222"),xnnn(X,"2122"));
 t3 = eq(xnnn(X,"1222"),xnnn(X,"212322"));
 t4 = eq(xnnn(X,"121"),xnnn(X,"2121"));
 t5 = eq(xnnn(X,"121"),xnnn(X,"21231"));
 t6 = eq(xnnn(X,"121"),seq);
 t7 = eq(xnnn(X,"1221"),xnnn(X,"212321"));
 t8 = eq(xnnn(X,"1221"),repeat);
 t10 = and(t1, and(t2, and(t3, and(t4, and(t5, and(t6, and(t7, t8)))))));

 t1 = eq(xnnn(X,"122"),xnnn(X,"2122"));
 t2 = eq(xnnn(X,"122"),xnnn(X,"21232"));
 t3 = eq(xnnn(X,"121"),xnnn(X,"21231"));
 t4 = eq(xnnn(X,"121"),repeat);
 t5 = eq(xnnn(X,"2121"),seq);
 t11 = and(t1, and(t2, and(t3, and(t4,t5))));

 return and(t9, or(t10,t11));
}

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 61

Rule 5b: T1(M1)M0T2 |= T1M0T2

x = [[1T , [o , [while , 1M], M], [0 , 2T]], [[1T , M , [0 , 2T]], U], W]

à 11x = 1T 211x = 1T

121x = o 212x = M

1221x = while 2131x = 0

1222x = 1M 2132x = 2T

123x = M

131x = 0

132x = 2T
when M is absent:

x = [[1T , [while , 1M], [0 , 2T]], [[1T , NULL, [0 , 2T]], U], W]

à 11x = 1T 211x = 1T

121x = while 212x = NULL

122x = 1M 2131x = 0

131x = 0 2132x = 2T

132x = 2T

)(5 xst b = 131x −~ 2131x −~ 1 and (0 =d f 1)

11x −~ 211x and (equality of 1T)

132x −~ 2132x and (equality of 2T)

(123x −~ 212x and (equality of M)

121x −~ o and

1221x −~ while)

or

(121x −~ while and 212x)

list st5b(list X) {
 list t1,t2,t3,t4,t5,t6,t7;

 t1 = eq(xnnn(X,"131"),xnnn(X,"2131"));
 t2 = eq(xnnn(X,"131"),one);
 t3 = eq(xnnn(X,"11"),xnnn(X,"211"));
 t4 = eq(xnnn(X,"132"),xnnn(X,"2132"));
 t5 = and(t1, and(t2, and(t3, t4)));

 t1 = eq(xnnn(X,"123"),xnnn(X,"212"));
 t2 = eq(xnnn(X,"121"),seq);
 t3 = eq(xnnn(X,"1221"),repeat);
 t6 = and(t1, and(t2, t3));

 t1 = eq(xnnn(X,"121"),repeat);
 t2 = xnnn(X,"212");
 t7 = and(t1, t2);

 return and(t5, or(t6,t7));
}

62 R.L.I.M.S. Vol. 1, Sept. 2000

list read_tm(void) { //function to read a TM input by the user
 int c,d;
 static int parenthesis_count = 0;
 list tm = NULL;

 while (isspace(c = getchar())); //skip white space
 if (strchr("lrwe()",c) == NULL) {
 if ((c != '#') && (c != EOF)) ungetc(c,stdin);
 return NULL; // no tape at all!
 }
 while (isspace(d = getchar())); //see what the next character is
 if (c == '(') {
 ungetc(d,stdin);
 parenthesis_count++;
 tm = insert_list(insert_list(new_list(), 1, repeat), 2, read_tm());
 c = getchar(); // get the trailing ')'
 while (isspace(d = getchar()));
 }
 if (c == ')') {
 parenthesis_count--;
 }
 if (strchr("lrwe(",d) == NULL) {
 if ((d != '#') && (d != -1)) ungetc(d,stdin); // gobble up a #
 if (d == ')') {
 if (parenthesis_count <= 0) {
 printf("Error mis-matched parentheses\n");
 exit(1);
 }
 } else if (parenthesis_count != 0) {
 printf("Error mis-matched parentheses\n");
 exit(1);
 }
 switch (c) {
 case 'l':return insert_list(new_list(),1,left);
 case 'r':return insert_list(new_list(),1,right);
 case 'w':return insert_list(new_list(),1,write);
 case 'e':return insert_list(new_list(),1,erase);
 case ')':return tm;
 default:
 printf("Error in input tm format(1) c=%c(%d)\n",c,c);
 exit(1);
 }
 } else {
 list t = insert_list(new_list(), 1, seq);
 ungetc(d,stdin);
 switch (c) {
 case 'l':insert_list(t, 2, insert_list(new_list(),1,left));break;
 case 'r':insert_list(t, 2, insert_list(new_list(),1,right));break;
 case 'w':insert_list(t, 2, insert_list(new_list(),1,write));break;
 case 'e':insert_list(t, 2, insert_list(new_list(),1,erase));break;
 case ')':insert_list(t, 2, tm);break;
 default:
 printf("Error in input tm format(2) c=%c(%d)\n",c,c);
 exit(1);
 }
 return insert_list(t, 3, read_tm());
 }
}

list read_id(void) { //function to read an ID input by the user
 list ID = new_list();

 ID = insert_list(ID, 1, reverse_tape(read_tape()));
 ID = insert_list(ID, 2, read_tm());
 ID = insert_list(ID, 3, read_tape());
 print_listln(ID);
 print_listln(id(ID));
 return ID;
}

Calude et al.,, C/C++ Implementation of Functions of the Class LT0. 63

Lists of the form [B1, [B2], [B3]] can represent binary trees.

[root node, [left sub-tree node], [right sub-tree node]]

(which is one reason for choosing x1, x21, x31 as the basic functions).

Tapes and Turing Machines can be displayed in this binary tree form e.g.

Tapes:

10 -> 11x = [1 , [0]]

Turing Machines:

l -> 12x = [l]

lr -> 12x = [o , [l], [r]]

(l) -> 12x = [while , [l]]

(lr) -> 12x = [while , [o , [l], [r]]]

B1

B2 B3

x1

x21 x31

121x l

111x 1

01121x

l r

o121x

1221x 1231x

l

while121x

1221x

l

while

o

r

121x

1221x

12221x 12231x

64 R.L.I.M.S. Vol. 1, Sept. 2000

Conclusion
This report covers the C/C++ implementation of the first two sections of the paper [1]. The
implementation is at a stage where, Turing Machines and Tapes may be input and verified, and
Instantaneous Descriptions of the execution history of a Turing Machine checked for correctness.

Future reports will detail the implementation of the later sections of the paper, and further applications of
this system.

References
 [1] Caparosa, A., Pani, G. and Covino, E. Incompleteness in Linear Time, Private communication.

[2] Chaitin, G. J. Algorithmic Information Theory, Cambridge University Press, 1987

[3] Chaitin, G. J. Randomness in arithmetic and the decline and fall of reductionism in pure
mathematics, Bulletin of the European Association for Theoretical Computer Science, No 50, pp.
314-328, 1993

[4] Gödel, K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme, Monatshefte für Mathematik und Physik 38, 1931
Gödel, K. On formally undecidable propositions of Principia Mathematica and related systems,
Trans. B. Meltzer. New York: Basic Books Inc., 1962.

[5] Turing, A. M. On computable numbers, with an application to the Entscheidungs problem, Proc.
Lond. Math. Soc. (ser. 2), 42, pp. 230-265, 1937

