Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A SULY O WHE CONOMLES OF SIZE

onesis presented in parial fulfulment of the requirements for the degree of A.. Ser of Acricultural Science in Fars Management at
Massey Uriversity

R. G. JACKSON

A GKNOHLEDGEMENTS

I ain particularly grateful to Professor A. R. Frampton of the Agricultural Economics and Farm Management Department Mas:aey University, for his guidan... and interest in this stindy.

I would also like to thank Mnessrs. J. N. Hodesson, iv. G. Payne and A. H. Hughes of the Agricultural Economics and F'arm Management Department for helpful discussions with the author.

For assistance in the compilation of the cost data, I an inaleted to Mr. J. G. Hoce of iofee and vardirf, quantity Surveyors, Palmerston North anci to Messrs. J. Luxton and (d. L. :loane, Department of Ȧgriculture, Palmerston North.

Sjeciai thanks are due to ir . A. Weber and Nisis R. Noway their advice in the writing and testing of the computer prozranmes.
the ready and willing co-operation of all survey farmers is Eratefully acknowledged an I thank the Extension Officers of the New 'Lealand Dairy Board for the assistance and time they ceave to the farm survey.

Particular appreciation is extended to Mrs. R. Donovan for her careful and patient typing of the thesis, and to Miss M. van Hove who was responsible for the figures.

Financial assistance from the New Zealand Jairy Board and from the Bank of New South Wales is acknowledged with gratitude.

CONDENTS

VOLUNE I

CTATPMER PAGE
ONE INTRODUCTION AND THESIS OUTLINE 1
TWO ECONCMIES OF SIZE THWNPY AND POSSIBILIIIES FOR INCRZASING AND DECREASING RLIURNS TO SIZE 3
THREE ANALVTICAL PROCEDURE'S AND REVIMN OF PUBLISHED SIUDIES 17
FOUR TNE FARM SURVEY 27
FIVE REJUZR'S OF THE FARM SURVEY 36
SIX BASIC A:jSTRPLIUNS OP THE SlUDY AND DETAILS OF RHE ANALYTICAL PROCEDURE 104
GEVEN PNTR UNII COST AND INCOME DATA 131
ZIGUT1 'MHE COS゚'-SIZE AND PROFIT-SIZE RELATIONSHIPS 167
NINE IMPLICAIIONS OF THE STUDY AND CONCLUSIONS 203

- BIBLIOGRAPHY 214

VULUSE II
APPENDICES PAGE
A FAPM SURVEY DATA 1
B BASIC ASSUMPI'IONS OF THE S'TUDY AND COST DA'PA 24
C PER UNIT COSI AND INCOME CURVES 70
D SHOFI RUN AND LONG RUN AVERAGE COST AND NEI INCOME CURVES - BREAKEVEN ANALYSIS CURVES 106

CHAPTER ONE

IN'RRUDUCIIION AND THESIS UUTLINE

1.1 INRRUIUCHITON

Uver the last decade, the dairy industry in New Zealand has undergone a number of notable changes. Uf particular interest is the trend towards fewer dairy farmers, a larger average herd size and greater milkfat production per farm. For example, in the 1958/59 dairying season, the number of dairy factory suppliers in New Zealand was 39,900 and the average herd size was 58 cows (1, pp. 18-19). In the 1968/69 dairying season, however, the number of suppliers had declined to 25,000 and the average herd size had risen to 92 cows (2, p.23). Over the period in question, the total milkfat processed increased by 99 million pounds from 489 million pounds in the $1958 / 59$ season ($1, \mathrm{p} .22$) to 588 million pounds in the $1968 / 69$ season ($2, \mathrm{p} .24$). Consequently in the 1958/59 season, the averase quantity of milkfat supplied to dairy factories per supplier was 15,800 pounds (1, p.19), while in the 1968/69 season, the quantity had risen to 25,400 pounds (2, p.24).

Although there is a paucity of data on the subject, it seems likely that the average area of dairy farms also increased over this period. For example, data is available which indicates that over the seasons 1960/61 to 1967/68, the average area of all farms in New Zealand increased from 414 acres (3, p.32) to 448 acres (4, p.35). It is not possible to determine from such data the change in the average area of dairy farms. However when an examination is made of the data relating to the main dairyine districts, a similar trend to that noted above is discernible. From this, it may be inferred that over the period in question, there has been an increase in the average area of dairy farms.
'The period has also been marked by the evolution of a number of dairy farms on which relatively large dairy herds (i.e. 300 cows or more) were run in a single herd. A major factor contributing to the evolution of such farms was the development of large herringbone farm dairies. The appearance of these farms, in a period which has been characterised by a decline in the dairy farmers' terms of trade, plus the formation of a public farming company, has led a number of agricultural commentators to
suggest that the future of dairy farming in New Zealand lies in taking advantage of economies of size. Farmer interest is directed towards economies of size because of the possibilities of lowering cost (and hence increasing profit) margins. The community should be interested because of a desire to make effective use of the nation's resources. Consequently tnis study is concerned with testing the hypothesis that economies of size exist in New Zealand dairy farming.

1.2 UU1LLINE OF TH H THESIS

The thesis consists of nine chapters and three appendices, and is presented in two volumes. The text (of nine chapters) is presented in Volume I, while Volume II contains the appendices. Chapter Two consists of two sections. In the first, certain aspects of economic theory which are relevant are discussed and the terms "economies of size" and "diseconomies of size" carefully defined. In the second section, a brief description is given of the various sources from which economies and diseconomies of size may arise. In the third chapter, first the various analytical procedures which can be adopted to study economies of size are discussed. Second, the analytical procedure adopted (in this study) is briefly discussed and the reasons for its adoption noted. Finally, two previous economies of size studies conducted in New Zealand are briefly reviewed. Various aspects of the farm survey (the data from which forms a basis for the assumptions made in the analysis), are discussed in Uhapter Four. Included in this chapter is a discussion of the method of selecting the survey farms, the design of the questionnaire and the conduct of the farm survey. The results of the farm survey are presented in Chapter Five. The physical information is presented, (detailed physical data is presented in Appendix A), the attitudes of the respondents to various aspects of farm size are discussed, and possible sources of economies and diseconomies of size noted. In Chapter Six, the analytical procedure is discussed in detail and the basic assumptions of the analysis presented. (Details of the assumptions made are given in Appendix B.) The results of the analysis are presented in Chapters Seven and tivit. The sources of economies and diseconomies of size are described in Chapter Seven. In Ghapter Fight, the nature of the cost-size and profit-size relationships are noted and discussed in detail, and a breakeven analysis of the results given. (A series of diagrams which illustrate the results of the analysis are shown in Appendix C.)

ECONOMIES OF SIZE THOORY AND POSSIBILIYIES

FOR INCREASING AND UECREASING RHTURNS TO SIZE

2.1 INLRUDUCHION

'This chapter consists of two sections. The first section discusses certain aspects of economic theory which are relevant to the study. The second section discusses the various sources from which economies and diseconomies of size may arise.

2.2 ECONOMIES UF SIZE THECRY

Economies of size analysis typically is based upon the theory of the firm under conditions of perfect competition. Two time periods are recognised, the short run and the long run.

1) I'he Short Kun

The short run is viewed as a period of time in which at least one factor of production cannot be varied. I'he factor or factor(s) which cainot be varied are termed the fixed plant. The production function is therefore of the form:

$$
\begin{aligned}
& y=f\left(x_{1} / x_{2} \ldots \ldots . \ldots x_{n}\right) \\
& \text { where } y \text { is the output of product } \\
& x_{1} \text { is the variable resource } \\
& x_{2} \ldots \ldots x_{n} \text { are the fixed resources (i.e. fixed plant) }
\end{aligned}
$$

In the short run, averare total cost curves can be drawn for each level of fixed resources (i.e. fixed plant). the curves $\mathrm{SAC}_{1}, \mathrm{SAC}_{2}$, $S_{3} C_{3}$, and $S A C_{4}$ in Figure 2.2 represent such curves for four levels of fixed resources (i.e. fixed plants). For a particular fixed plant, for any given level of output, the average total cost is obtained by summing the average fixed and the average variable costs. Typically, average total cost curves are "u" shaped. I'he reasons for such a shape are: (5, pp 106-172)
a). Initially as output is increased, the average total cost of output falls because of declines in both the average fixed and averare variable costs. (i.e. over range of output OA, in Figure 2.1.).

FIG. 2.1 AVERAGE AND MARGINAL COST CURVES FOR A GIVEN PLANT SIZE

THEORETICAL ILLUSTRATION OF SHORT RUN AVERAGE COST CURVES AND LONG RUN AVERAGE COST CURVE
FIG.2.2 (FIXED RESOURCES CONTINUOUSLY DIVISIBLE)

FIG.2.3 (FIXED RESOURCES NOT CONTINUOUSLY DIVISIBLE)

Output
NOIES: $A R \quad=$ Average Revenue Curve
MR = Marginal Revenue Curve
$S A C_{i}=$ Short Run Average Cost Curve $i=1 \ldots 4$
SMC $=$ Short Run Marginal Cost Curve
LAC = Long Run Average Cost Curve
LRMC = Long Kun Marginal Cost Curve
b) Further increases in output are accompanied by further decreases in the average total cost due to the decline in the averafe fixed costs being greater than the increase in the average variable costs. (i.e. Over the range of output in Figure 2.1, which is Ereater than A, but less than B.)
c) Eventually a level of output is reached, at which the decline in the averisye fixed costs, is exactly l offset by the increase in the average variable costs. At this level of output, the avera§e total cost is a minimum. (i.e. At output B in Figure 2.1.)
d) Further increases in output are accompanied by increases in the averare total cost, due to the increase in the average variable costs, being छreater than the decline in the averace fixed costs. (i.e. For outputs £reater than B, in Figure 2.1.)

2) The Long Run

The long run is viewed as an interval of sufficient duration to allow all f'actors of production to be varied. The production function is therefore of the form:

$$
\begin{aligned}
& y=f\left(x_{1} x_{2} \ldots \ldots \ldots . \ldots . . x_{n}\right) \\
& \text { where } y \text { is the output of product } \\
& x_{1} \ldots \ldots \ldots x_{n} \text { are the variable resources }
\end{aligned}
$$

An averace cost curve can also be constructed for the long run situation. Such a curve is known as a Long Run Averafee Cost Curve, and is defined as a curve which shows for any given level of output the least cost way of producing that outgut. 2/ The long run average cost curve is constructed from the short run average cost curves. In some literature ($6, \mathrm{p} .367$), the long run average cost curve is described as an "envelope curve" which is plotted as the tangency of the short run average cost curves. Others (7, p.235) prefer not to view the long. run average cost curve as a separate construction from the short run average cost curves, but describe it as being constructed from segments of the short run average cost curves.

1. This assumes the variable resources are continuously divisible.
2. The long run average cost curve shows for each level of output what plant size should be utilised to produce the level of output in question at the lowest cost.

- If the resource which is fixed in the short run (i.e. the fixed plant) can be employed in quantities that are continuously divisible, the lone run average cost curves produced by the two methods of construction discussed do not differ. In this case, the long run averafy cost curve takes on a smooth shape. This is shown in Figure 2.2 by the curve LAC. In this case for every point on the long run average cost curve, there is conceptually a correspondine point of tangency with a short run average cost curve. ('The long run average cost curve can therefore be described as consistine of the minimum cost points for particular outputs of an infinite number of short run averaye cost curves.)

If the resource which is fixed in the short run cannot be varied continuously, the lon run average cost curves produced by the two methods of construction differ. 'The curve produced by constructing an envelope curve tangent to the short run averaye cost curves is similar to the curve LAU shown in Figure 2.2. However, the curve constructed by the second method takes on a scalloped effect. This is shown by the curve LAC in Figure 2.3. In this case, instead of each short run average cost curve (each fixed plant) contributing only a point to the long run average cost curve, each short run averaje cost curve contributes a segment to the lons run averase cost curve.

The long run average cost curve is used to indicate the existence OI' economies and diseconomies of size. A long run average cost curve which fall:s as output increases indicates that over the range of output in question, economies of size exist. Conversely a long run averace cost curve which rises as output increases indicates that over the range of output in cuestion, diseconomies of size exist. It follows that if the lons run average cost curve remains horizontal over a range of output, then constant returns to size exist.

3) Profit Maximisation

In the short run, the output at which profits are maximised (for a particular plant size) is found by equating marginal costs with marginal revenue. In the short run, under the conditions of perfect competition, with one exception, the output at which profits are maximised is greater than the output at which the (short run) average total costs are a minimum. (Such profits are termed "super normal profits" (8, p.129).) The exception occurs when the average revenue curve (and hence marginal revenue curve) is tangent to the low point of an average total cost curve.

In this case (for a particular plant size) the output at which profits are maximised coincides with the output at which the average total costs are a minimum. (In this case, such a firm is said to be earning "normal profits" (8, p.129).

Similarly in the long run, the point of profit maximisation is found by equatine marginal costs with marginal revenue. Under the assumptions of perfect competition, this will occur at output $Q \in$ Figure 2.2 where $A R=\mathbb{R}=S M G_{3}=S A C_{3}=L A C=L R M C$. In this case, the output at which (long run) profits are maximised, coincides with the output at which (long run) averaçe total costs are a minimum. (Firms are said to be earning "normal profits".) If the assumptions of perfect competition are relaxed and it is assumed the average revenue curve is not forced down to the low point of the long run averafe total cost curve, profit maximisation occurs at an output which is greater than the output at which the long run average total costs are a minimun, ($5, \mathrm{p} .209$) and ($9, \mathrm{p} .18$). (In this case, firms are earning "super normal profits".) Profits are maximised if the plant corresponding to this point $\frac{3}{0}$ the long run average cost curve is constructed and operated at this capacity.

The long run average cost curve is sometimes called a planning curve. An entrepreneur misht decide to enter an industry and produce a given level of output. From the long run averase cost curve, the least cost (and consequently the most profitable) way of producing this output can be determined. The entrepreneur would construct the relevant plant, and operate the plant at the level of utilisation indicated by the long run averafe cost curve. Unce the plant is constructed, the planning curve is of no further interest. Output may be further profitably increased by addinç variable resources to the fixed plant, up to the output at which marginal costs equal marginal revenue. It should be noted, however, that although such increases in output may be profitable to the particular firm, the same output can be produced at less cost (and hence hisher profits) by the use of another plant.

In general, it is not possible from the long run average cost curve to make inter-firm comparisons of profits, where various firms are represented by different plant sizes. 'Ihis can be achieved only when one has information on the short run marginal cost curves corresponding to each plant size, (10 , pp. 37 - 38)
3. i.e. 'l'he output at which long run marginal costs equals marginal revenue.

4) Economies of Size and Economies of Scale

Some confusion has arisen in the past because of the interchangeable use in the literature of the terms "size" and "scale". Investigations into the relationship between output and unit costs of production are sometimes called Economies of iize S'tudies, and sometimes E'conomies of Scale :Studies.

Scale relationships refer to situations where all the resources (includinc manasement) involved in a production process are varied in constant proportions. In this case the production function of interest is:

$$
y=f^{\prime}\left(x_{1}, x_{2} \ldots \ldots \ldots x_{n}\right)
$$

where y is the output of product,
$x_{1} \ldots \ldots x_{n}$ are resources combined in certain fixed proportions.
If the quantity of each resource is varied by some constant ϕ, one can write:
$\mathrm{Ky}=f\left(\phi \mathrm{x}_{1}, \phi \mathrm{x}_{2} \ldots \ldots \ldots . \phi \mathrm{x}_{\mathrm{n}}\right)$
where K represents the change in output,
if represents the change in the level of resource use.
In scale relationships, one is interested in the relationship between K and ϕ. I'hree outcomes are possible:
a) $\mathrm{K}<\phi$ In this case, decreasing returns to scale are said to exist. The change in output is proportionately less than the change in the level of resource use.
b) $\mathrm{K}=\varnothing$ In this case, constant returns to scale are said to exist, as the change in output is the same as the change in the level of resource use.
c) $K>\varnothing$ In this case, increasing returns to scale are said to exist, as the change in output is proportionately greater than the change in the level of resource use.

The concept of Economies of Scale has little relevance to the real world situation. There is general agreement amongst economists that firms do not in fact vary resources in constant proportions as output is increased. ($9, \mathrm{p} .1$)

Size relationships involve a broader concept and include relationships where:
i) Where some resources are fixed and others variable. $4 /$ (The short run production function concept.)
ii) Where the resources are varied in constant proportions. (The economies of scale concept.)
iii) innere the levels of some resources are increased, while others are decreased.
iv) Where the levels of some or all resources are varied at differint rates.

Maddern ($y, p . l$) defines economies of size as:
"Reductions in the total cost per unit of production resulting from chaneres in the quantity of resources employed by the firm or in the firm's output."

A more lucid definition would be:
Reductions in the total sost per unit of production, resulting from chances in the size of a firm's plant (plus the associated varicible resources), or from changes in the output of a firm from a Eiven plant.
Conversely diseconomies of size are increases in the total cost per unit of production resulting from the two types of changes. Constant returns to size exist when the two types of chanées do not affect the total cost per unit of production.

2.3 POSBIBILI'IIM: FOR INCREAAING AND DECREASING RENURNS TO SIZE

IN AGRICULTNRE
Heady (6, pp. 361 - 362) divides cost economies and diseconomies, (i.e. phenomena which cause unit costs to increase or decrease, as plant size or output from a plant are increased), into two classes; internal and external.

Internal economies result from adjustments made within the individual firm, while external economies are those which are concerned with changes within the industry to which the firm belongs. (Extermal economies are ignored in this study, as in the author's opinion, they are laryely outside the control of the individual farm manager.)
4. Varied or variable in this context means resources are increased or decreased.

Chariberlin (7, pp. 235 - 236) notes that one of the main reasons for the L.R.A.C. curve $\check{5}$ to slope downward is because increased specialisation is made possible because the aggregate of resources of larger firms is greater. If for example, the quantities of all resources required in a production process are increased by the same proportion, (the returns to scale concept), the increased number of workers, (assuming labour is a factor of production), should allow workers to specialise in particular tasks for which they have a natural aptitude. This, it is argued, leads to greater labour productivity and so results in a cost economy.

Certain farming tasks are considered to be extremely difficult for one labour unit to perform alone, (ll, p.14), (e.g. haymaking, silage making). Cost economies may therefore accrue to multi-labour unit farms as such tasks on these farms can be performed more quickly and effectively by a larger labour force. Uonsequently an increase in labour productivity may result.

Because of the larger quantity of resources of large firms, there are some advantaces in meetinc contingencies. Maddern ($9, \mathrm{p} .11$) notes that in the case of harvesting operations, it is reasonable to suppose that the proportion of back-up machines needed to provide a given probability of always being able to avoid delays due to breakdowns, would decrease as the size of firm and hence the number of machines is increased.

Cost diseconomies may also be realised because of the greater aggregate of resources employed by larger firms. Such diseconomies are due to managerial difficulties and are discussed on pages $14-16$.
2) Economies due to Superior Techniques and Superior Resources

Large machines, which are utilised by larger firms, may be able to perform some operations more effectively than smaller machines. (i.e. ' from a given quantity of resources, produce a higher output of product.) Further a larger machine may be able to perform some operations which a smaller machine, (employed by a smaller firm), is unable to do. (7, p.236)

[^0]Both effects eive rise to cost economies. The resources used by the two firms in question in both cases differ. In the first case, the cost econony results from the larger firm possessing superior resources, while in the latter, the cost economy arises from the larger firm being able to utilise a superior technique.

3) Scononies and Diseconomies due to Proportionality Relationships

In the short run, (i.e. within a plant size), cost economies result from the fuller utilisation of the fixed plant by the addition of variable resources to it, with a consequent increase in output. Such cost reductions result, however, only if the decrease in the average fixed costs is greater than the increase in the average variable costs. 6/ In this case, the proportions in which the fixed and variable resources are combined vary as the degree of plant utilisation increases.

Within a plant size (i.e. in the short run), cost economies and diseconomies result from changes in the proportions in which the variable resources are combined, as the degree of plant utilisation increases. For example, consider a simple production process in which three resources are employed, land, labour and capital. 'The fixed resoure in such a production process is taken to be labour and the variable resources, land and capital. In the short run, therefore, output is increased by adding varying quantities of land and capital to a fixed quantity of labour. For simplicity, imasine that land can only be added in discrete units 7/ and as the quantity of land used in the production process increases, the output of product per acre remains constant, and the quantity of capital which must be employed increases. The total quantity of capital required can increase either continuously or discretely with increases in the quantity of land. In the case where the quantity of capital increases continuously with increases in farm area, (i.e. a different (total) quantity of capital is associated with each farm area), such increases can occur:
a) At a decreasing rate. That is, as farm area increases, the quantity of capital which must be employed with each acre of land declines. Relationships of this nature give rise to cost economies.
6. Such reductions occur over the range of output $O B$ in Figure 2.1
7. i.e. Land can only be added in increments of one acre.
b) At an increasing rate. That is, as farm area increases, the quantity of capital which must be employed with each acre of land increases. Relationships of this nature give rise to cost diseconomies. - $/$
c) The third possibility is for there to be no alteration in the per acre requirements of capital as farm area increases (i.e. The proportions in which the two variable resources are combined remains constant. - $/$)

In the situation where the total quantity of capital required varies discretely with increases in farm area, a riven quantity of capital remains constant over a specific range of farm nreas, and assumes a new vaiue at a specific farm area. Thus over the range of farm areas to which a given quantity of capital applies, the per acre requirement of land for capital declines steacily. (i.e. The proportions in wich the variable resources are combined varies). Consequently cost economies resuit.

Between plant sizes (i.e. in the iong run), cost econories may also result from the proportions in which rerources are combined. For example, consider the simple production mocess riscussed earlior again. Let there be two fixms, one with a fixed plant of one Iajcur unit, (this will vo referred to as the plant size one farm), and another with a fixed plant of two lajour units (i.e. the plant size two farra). If the por acre capital requirement decines continuousiy as farm anea increases, (and further if for a fixiven area, the per acre capital requemerts and product cutput per acre are similar irrespective of the piant size used), then it follows that cost econories will accrue to a 200 acre plant size two farm, relative to a 100 acre plant size one farm, because of a more favourable combination of resources.
8. Typically such diseconomies arise from engineering phenomena. Commonly quoted examples in agriculture are: (6, p.355)
i) The relationship between horsepower requirements and size of plough.
ii) The relationship between the quantities of materials required and volume, when the capacity of a silo is increased in a vertical manner.
9. One can also postulate that cost economies micht result, if the quantity of a particular resource deceeased continuously with increases in another. Such decreases could occur at an increasing or a decreasing rate.
4) Pecuniary Economies

In some fields of agricultural production, advantages accrue to larger farms because they are able to purchase resources and sell products in larger quantities. I'his means the cost per unit of resources decreases, and the return per unit of product increases, as size of . plant and output from a plant are increased. (6, p.362)

5) Technical Diseconomies

Commoniy quoted examples in agriculture are disease hazards, social problems associated with large numbers of animals, and problems due to distance and travel where acreages are extended contiguously. (6, p.363)

6) Manacerial Economies and Diseconomies

The term management as a factor of production has a number of connotations. Traditionally, it is defined as consisting of three components, entrepreneurship, co-ordination and supervision. (12, p.14) (In some literature, management is defined as consisting of co-ordination and supervision and entrepreneurship is identified as a separate entity.)

Entrepreneurship is concerned with the major decisions of the firm. For example, what enterprises are to be engaged in, what resources are to be used, and what technology will be employed. Further it involves bearinc the responsibility for the financial outcome of such decisions.

Heady $(6, p .466)$ considers that manajement in the co-ordinationsense is being performed when the manager:
a) Recognises problems and opportunities;
b) Ubtains information and analyses alternative lines of action;
c) Makes decisions;
d) Takes actions and accepts the responsibility of these actions.

In some literature, the above four steps are described as the components of the decision making process (13, pp. 5-6). Supervision according to Heady ($6, \mathrm{p} .465$) is a human activity of a lower order. It is concerned with the overseeing of day to day operations and ensuring that each operation is correctly performed.

The author, while agreeing that the managerial function can be divided into the three components discussed above, finds it extremely
difficult, in some cases, to distinguish between entrepreneurship and co-ordination, and between co-ordination and supervision. In the author's opinion, all three components require the use of the decision making process and any activity which involves the use of the decision making process should be regarded as a managerial activity.

Heady (6, pp.53 - 538) notes that manasement in the co-ordination sense would not be needed if it were not for the combination of time and chançe, and the inability of being able to predict the future with certainty. If firms existed in a state of perfect knowledge of the future, management (co-ordination and entrepreneurship) would be needed only once, when the initial plan was formulated. After this, there would be no further need for decision making and the managerial function becomes one of routine supervision. It is not chance alone, which requires that co-ordination continually function but it is the unpredictability of the nature of the change. In a state of perfect knowledge, one would be able to foresee all contingencies and a uitable course of action for each could be laid down. Where a state of imperfect knowledge exists, management must function continuously. By addinê more plants, increasine plant size, and increasine the output of each plant, uncertainty increases and so the number of decisions which must be made by management increases. I'he rreater the number of decisions which must be made by an individual, less time is available to that individual to devote to each decision and consequently the outcome of such decisions becomes less and less satisfactory. As Kaldor (14, p.68) claims, that it is the essence of co-ordination that it must pass through a single brain, it follows that the supply of co-ordinating ability cannot be increased alongside an increase in the supply of all factors. It follows from this that the costs of the individual firm must rise eventually, (i.e. the L.R.A.C. curve must rise) owing to the diminishing productivity of the other factors applied in increasine quantities to the fixed unit of co-ordinating ability. Maddern (9, pp.ll - 12) considers that in farming, two factors greatly increase the difficulty of management, as plant size and.output from a plant increase. First, as plant size and output from a plant increase, it seems likely that the resources used by a farm will become less uniform. A large farm with several different soil types is said to be more difficult to manage than a smajler farm with a uniform soil type. Second, on farms of large areas, where a number of farm operations are proceeding simultaneously, supervision may be hampered by distances. Co-ordination is also hampered because of a lack of knowledgre of what is happening in different places.

The author, while arreeing in principle with the comments of both Heady and Maddern, (discussed earlier), does not believe that all managerial tasks (in the co-ordination sense) must be performed by a single person. In the author's view, most farming activities involve. the use of the decision making process and as the work load on a large farm is divided between the members of the labour force, it follows that all members of the labour force are engaced in managerial activities. Some (15, p.452) are of the opinion that in such circumstances, cost economies will result because the members of the labour force can specialise ir. particular (nanagerial) activities for which they have a naturai aptitude. The author, however, is of the opinion that it is - more likely that cost aiseconomies will arise in these conditions, because some members of the labour force, due to a lack of experience, are unable to perform their (managerial) activities as competently as more experiencea staff members.

2.4 SURATARY

In this chapter, the underlying economic theory of economies of size studies has been presented. A most important point which must te borme in mind when considerine economies of size studies, is that under conditions of persect competition, both in the short run and lonj run, with one exception, the output at which profits are maximised is greater than the outprat at which averase total costs are a minimur. Both in the short run and the lone run, the exception occurs when the average revenue curve coincides with the low point of the average total cost curve. In such circumstaices, the output at which profits are maximised correspords with the output at which average total costs are a minimum. A careful distinction is made between the terms "economies of size" and "economies of scale". The concept of economies of scale has no relevance in the real world. Finally, the possible ways in which economies and diseconomies of size may arise in dairy farmincr are discussed.

CHAPPFRR THREE

ANALYTICAL PRUCEDURES AND KEVIEN OF PUBLISHED SIUDIES

3.1 INRRO UUC?IUN

In this chapter, first the various analytical procedures which may be used for studying cost-size relationships are discussed. Second the analytical procedure adopted in this study is briefly discussed and the reasons for its adoption given. Finally a brief review is made of two published studies concerning the nature of cost-size relationships in New Zealand dairy farming.

3.2 ANALYYIƯAL PROUEDURES FOM S'IUDYING OOS'T-SIZE RELANIONSHIPS

Procedures that have been used for analysing cost-size relationships can be divided into four classes.
a) Vobb-Douglas Production Function analyses;
b) Survivorship Techniques;
c) Farm Record Analyses;
d) Economic-Engineering or Synthetic Firm l'echniques;

1) Cobb-Douglas Production Function Analyses

A iobi-Douglas Production Function (16, pp.585-593) can be fitted to input-output data and the sum of the exponents of the individual factors in the production function, (which in this particular production function are also the elasticities of the individual factors), can be taken as an indication of the nature of the returns to scale. If this sum equals 1.0 , constant returns to scale can be said to exist. If this sum is less than 1.0 , this can be taken as evidence of decreasing returns to scale, and conversely if this sum is greater than 1.0 , increasing returns to scale are indicated. The technique is fraught with difficulties:
a). 'Ihe underlying assumption upon which the analysis is based, is that resources are varied in constant proportions (i.e. the economies of scale concept). This, as discussed earlier, seldom occurs (if at all) in the real world situation.
b) Olsen (17, p.60) notes that because of computational difficulties, it is necessary to aggregate the factors into relatively few categories. A category such as
machinery may include various combinations of combines, tractors, ploughs and other machinery. It is possible, therefore, for two farms which have identical investment in machinery to have in fact, very dissimilar types and combinations of machines. I'his could lead to wide differences in the productivity of apparently similar levels of machinery investment.
c) A further difficulty discussed by Maddern (9, p.24) is that it is assumed that all resources and all products are infinitely divisible. It is not possible to accomodate within the analysis, discontinuities such as those resulting from discrete increments of particular resources.
d) The fitted Lobb-Douglas Production Function applies only at the geometric means of the inputs and so represents only the "average" of the sampled farms. It provides no indication of the relative efficiency $1 /$ of larger or smaller farms.

2) Survivorship Technique

This method is based on the assumption that competition among firms will over time identify the most efficient size ${ }^{2 /}$ of firms. Size of firm is measured by the firm's capacity as a percentare of the industry's capacity. Tabulations are prepared showing the number of firms in each class and also the percentage of the industry's capacity represented by each class for two points in time. Size classes that exhibit a declining proportion of the industry's capacity over time are said to be inefficient and conversely, an increasing proportion of the industry's capacity in a class is taken as evidence of efficiency.

This type of analysis is of little use in describing cost-size relationships. It provides little (if any) information about the shape of the long run average cost curve. Criticisms of the technique include:

1. Efficiency in this context means the per unit cost of production.
2. Most efficient size of firm means the firm with the lowest per unit cost of production.
a) It is not clear from such an analysis that the reason the smaller firms disappear is because they are inefficient. (Assuming that the smaller size classes exhibit a declining proportion of the industry's capacity). It is only inferred that the very small firms leave the industry. It is possible that the small firms in the first period are in one size class, and in the second period, appear in another size class because of the process of growth. In circumstances where the L.R.A.U. curve reaches its minimum point at a relatively low output and where the average revenue curve is not forced down to the low point of the L.K.A.C. curve, firms can increase profits by:
i) Increasing the output from the plant size, (the short run average cost curve of which coincides with the low point on the L.R.A.C. curve), beyond the output indicated by the minimum point of the L.R.A.C. curve.
ii) Increasine the plant size and increasing the output from such a plant beyond the output indicated by the minimum point of the L.R.A.C. curve.

This does not mean that such adjustments make the firm more efficient as the per unit cosits of production could be hiçher than those of a smaller firm. Firms ma: make such adjustments which leau them to larger and more profitable, but not necessarily more efficient operations.
b) Cost-size relationships can also be masked by other factors. No consideration is given to factors which might be responsible for the decline in the relative importance of a siven size firm other than the inherent inefficiency of that size of operation. Such factors as the quality of management, labour productivity, degree of utilisation of the plant capacity and access to resources and markets are ignored.

3) Farm Record Analysis

Many attempts have been made by researchers to study cost-size relationships directly from a sample of farm records. In most cases,
the records have been designed and collected for other purposes than research into cost-size relationships. I'ypically, farms are divided into size groups and the average cost per unit of production is calculated for each of the size groups. From this cost-size relationships are inferred. (17, pp. 53 - 56) There are a number of methodological difficulties associated with the method including:
a) Farms selected vary widely in the combination of enterprises and in the nature of the resources.
b) Different farms employ different technologies and practices.
c) Differences exist between size classes in the degree of utilisation of fixed plant.
d) Cost accounting procedures vary widely between farms making comparison difficult.
e) Ihe class averages are dependent on the arbitrarily determined class intervals. Alteration of the class intervals will alter the cost-size relationships. Further, the "typical" farms produced within each class by averaging the data, have an agicregation bias $3 /$ making them inaccurate replicas of the farms they represtnt.

Maddern (9, $\operatorname{Pp} .26$ - 27) identifies a slightly modified approach to the procedure discussed above. 'There is fundamentally no difference except that the emphasis is on developind composite farm budgets from the data. . The records are divided into classes and a composite farm for each class is developed using the averages of the various recorded parameters. 'lhe cost per unit of production is then calculated for each of the composite farms using the observed or assumed prices. Some workers have attempted to improve the method by making corrections to the data from individual farms. These usually involve making adjustments to take account of such problems as variations in the degree of plant utilisation and various accounting adjustments such as corrections to the cost of resources and product prices, and standardisation of interest rates and depreciation procedures.

In other cases regression equations have been fitted to the data from individual farms. In this procedure, the cost figures and output
3. i.e. 'The resource and product combinations of the "average" farm may be such that it is not a realistic working proposition.
quantities for each farm represent a single observation. The same problems as discussed earlier still exist. The figures to which the regression is fitted are complex fictures and do not represent valid points on a long run averace cost curve. Different farms represent different short run plants, because different quantities and types of resources are used. Farm operators will for varying reasons, operate at various points alone the short run average cost curve, and not necessarily at the point (or range of points) where the short run average cost curve becomes part of the long run average cost curve.

A regression analysis of this sort provides an estimate, not of the long run averace cost curve but of a curve which Heady calls the "Regression Estimated Cost Curve" (17, p.80). This curve will probably lie above the "true" lons run averaジe cost curve because the regression analysis will not necessarily indicate the least cost way of producing any fiven level of output.

Bressler (19, p.j29) has suggested that it would be possible to approximate the lone run averase cost curve by fitting an "envelope curve" to the bottom of the scatter of such points, or that a resression line could be fitted to the data from only those plants which were well designed, efficiently managed, and operated to capacity.
4) The Economic-Engineering or Synthetic Firm Approach

According to Maddern (9, p.21), this procedure should be used when the objectives of the research are to:
a) Determine the total cost per unit of output or profit that farms of various sizes could achieve using modern or advanced technologies.
b) Determine differences in the average cost per unit of output which are attributable solely to differences in the size of farms and not due to other factors such as obsolete techniques, substandard management practices, differences in the degree of plant utilisation, etc.

The method involves developing budgets for hypothetical farms using the best available estimates of the relevant parameters. Specific plant sizes are identified and represented by different levels of fixed factors. Short run averace cost curves are then produced by constructing budgets representing varying degrees of plant utilisation, and calculating from these budgets a series of cost per unit of
production figures. The long run averafe cost curve is produced from the short run average cost curves.

In situations where there are a larye number of enterprises, of technologies and resource levels, linear proframming can be employed. A similar procedure to the budgetary analysis described above is adopted. Specific plant sizes are identified represented by specific levels of fixed resources. Various degrees of plant utilisation are obtained by specifyine various levels of gross income, and then in a cost minimising linear programming model obtaining the least cost combination of products and variable resources, for the relevant gross income. By calculating the cost revenue 4 ratio, points on the short run average cost curve can be derived. This is repeated for the other fixed plants, producing other S.R.A.c. 5/ curves. The L.R.A.C. curve is constructed from the short run average cost curves. Linear programming has distinct advantages over the budectary procedure where the number of enterprises, alternative technologies and levels of resources are numerous in that it arrives systematically and quickly at an optimum solution (i.e. the least cost way of producine any oiven level of eross income). With the budetine procedure, in such circumstances, the least cost method of prourines a given level of gross iricome can only be found by tiresome trial and error procedures.

Some (20, p.272) have criticised the economic-engineering approach on the grounds that in the synthesis of hypothetical firms, subtle sources of economies and diseconomies such as specialisation or diseconomies in labour use are ignored.

French (21, p. 543) who has had considerable experience in applying the technirques to manufacturing studies, notes that it is extremely time consuming in terms of man hours. If the objectives of the study are to determine a L.R.A.C. curve for an industry, rather than to compare the costs of alternative methods of performing a specific operation or devising improved methods of production, he feels a less costly approach involving a combination of total cost data and entineering observations would be more suitable.
4. When dealing with multiple product firms, cost-size relationships are expressed in terms of cost per dollar of gross income rather than cost per unit of production or output, as is the case with single product firms.
5. S.R.A.C. is an abbreviation for short run average cost curve.

3.3 THE ANALYTICAL PROCEJURE ADUP'IED IN THIS STU:Y

The purpose of this study is to test the hypothesis that economies of size exist in New 'Zealand dairy farming. Such a hypothesis (in the author's opinion) requires that:
a) 'The researcher analyses the cost-size relationships in terms of short run and long run average cost curves. (That is determine the least cost and hence most profitable way of producing any given level of gross income.)
b) Any differences so determined in the least cost (and hence most profitable), ways of producing any given levels of gross income must be solely attributable to differences in the size of farm.

In the author's opinion, the only analytical procedure which meets these requirements is the Economic-Engineering or Synthetic Firm approach. Consequently, the Economic-ingineerine procedure is used in this study. In this study, fifteen short run averaçe cost curves are constructed. The resources which are considered fixed in the short run are labour, certain buildings, and certain items of machinery and equipment. The short run averace cost curves are produced by varying the number of cows milked (i) (i.e. varying the level of plant utilisation) and determining the total cost per dollar of gross farm income.

3.4 REVIEM OF PUBLISHED ECONOMIES OF SIZE SHUDIES

'Two studies have been conducted in New Zealand which are worthy of discussion. In both cases, the analytical procedure adopted was an analysis of farm records.

1) Parker and Turnbull (22, pp. 6 - 14) conducted an analysis of the farm accounts of approximately ten per cent of the dairy farms in New Zealand in the ly67/68 dairying season. The technique employed was to divide the farm accounts into nine $]$ size groups based upon herd size. For each of the nine size groups, the following indices were calculated:
6. 'The construction of the short run averave cost curves is discussed in detail in Chapter Six.
7. The nine size groups were:
i) 40-59 cows ii
iv) 100-119 cows v) 120-149 cows
iii) 80-99 cows
vii) 200-249 cows viii). 250-299 cows ix) 300 or more cows
vi) 150 - 199 cows
a) Ihe average total cost 8 (per pound of milkfat;
b) The average total farm income per cow;
c) The averace cost per cow, of a number of items of farm expenaiture.

From such an analysis, they noted that the per cow costs of all items of expenditure (except labour) decreased as herd size increased. However such decreases were more than offset by the increases in (per cow) labour costs winich accompanied increases in herd size. Further they noted that as herd size increased, there was a trend towards a decline in both the total farm income per cow and in the milkfat production per cow. Consequently, the average cost of production (i.e. the cost of producing one pound of milkfat) rose as herd size increased. (When an allowance was made for the owner operator's labour, the trend towards increasing costs of production being associated with increasing herd size was still evident.) The analysis also showed that the capital requirements (per cow) tende to fall as herd size increased. For example, the average total net assets (i.e. total assets less current liabilities) dropped from 590 dollars per cow in the case of the $40-59$ cow group, to 370 dollars per cow in the case of the largest herd size group. 'The authors noted that it was likely that the farm accounts of the larger herds included proportionately more development expenditure than did those of the smaller herd sizes. This they added was due to the rapid rise in herd numbers on many of the farms of the larger herd size groups.

They concluded that in time, one would expect the production per cow in the larger herds to increase, the expenditure to drop to a maintenance level and "real economies of size will operate on larger farms".
2) Bradford (23, pp.3-53) conducted a study in the Bay of Plenty district in which physical and financial data relating to two groups of farms were collected and compared. 'The first group comprised twelve farms on which herds of 300 cows or more were milked in the 1967/68 dairying season. The second group comprised twelve farms, on which one permanent labour unit was employed in the 1967/68 season and the herd size
8) The total cost used in this calculation included all cash costs (except interest and rent) and depreciation. (Special depreciation was excluded.) No allowances were made for the owner operator's labour, management or interest on investment.
9) e.g. Animal health, dairy shed, electricity, etc.
approximated 90 cows. 10/. The sample of "small farms" (i.e. the second group) was purposively selected. For each of the twelve "large farms" Bradford selected a "small farm" which was in the same locality, had the same soil type and topography and in Bradford's opinion, the managerial ability of the two farm operators was similar.

The analytical procedure adopted was an analysis of farm records (i.e. farm accounts). Bradford made a detailed study of the farm accounts and made a number of modifications $\frac{11 /}{}$ in order to facilitate valid comparisons. In this study, an allowance was made for the owner operator's labour and management and for interest on total farm capital. For both groups of farms, the following indices were calculated:
a) Average income per cow;
b) Average cost per cow of seventeen individual items of farm expenditure;
c) Averafe "surplus" per cow;
d) Averače "profit" per acre;
e) Total expenses per l,000 pounts of milkfat;
10. Farms of a herd size of aiproximately yo cows were selected for the second Eroup of farms as in the 1967/68 season, the national average herd size was 86 cows. Bradford therefore wished to compare a sample of farms where the herd size exceeded 300 cows, with another sample of farms where the herd size approximated the national average.
11. Such moaifications included:
i) Milkfat price was standardised for all farms;
ii) Increases or decreases in stock numbers were valued at market values rather than standard or nil standard values;
iii) Abnormalities in the stock accounts caused by excessive culling for tuberculosis were adjusted for;
iv) Un farms where a run-off was farmed in conjunction with the home farm, an allowance was made for any feedstuffs supplied by the run-ot'f;
v) Repairs and maintenance was adjusted to exclude expenditure of a capital nature;
vi) Abnormal legal expenses were excluded from the administration costs.
vii) Special depreciation was excluded;

On a per cow basis, Bradford noted that with three exceptions, for each of the seventeen individual items of expenditurs, a lower fisure was recorded by the 'large farm' group. The three exceptions were feed and drazing cosis, feneral expenses and fertiliser and spreadins costs. However, the increases in these three items of expenditure were not of surficient majritude to offset the cost reductions of the other fourteen Etems of expenditure, ana consequently the total expenses per cow of the 'lares fami eroup were lower than those of the 'small farm' group. the average Encome per cow was however hieher in the case of the 'small farm' croup and was of sufficient magnitude to offset the higher total costs (per cow). Consequertly the averaje 'shryius' per cow vas greater in the case of the 'small farm' croup. Howev", because the average stocking; rave of the 'laree farm' uroup was ereater than that of the 'small farm' broup, the average 'proftt' per acre whe oreater in the case of the 'large farmi group. Pinally, in terms oi the nverseg totel costs per pound of
 Braçiforu therefore concluded thet "real economic advantages exist in larce hena ownerinip".

Whe results of the wo reviewed surdies are therefore sonerhat contrainctory. Pariser and humbull concluad that the averabe cost per pouna of milkfat increased as heri :ijze increased anả hence aisecoromies of size existeu. In Bradforu's study, the averace cost per pound of milkfat was silightly lower in the case of the lange farm' eroup and hence it car be inierweu that nconomies an size exist. In the author's view, a major factor coritwibutinc to this difference of opinion is the cietinition of total cost. In brafora's study, total cost is defined as including ail caish coots, depreciation, interest on capital, and the cpportunity cost of the operator's labour and management. In Paiker and Turribull's studj, however, total cost is defired as irciuding only all cash costs and depreciation.

3.5 SUTEARY

The various analytical procedures with can be used for economies of size stuaies are discussed in this chapter. In the author's view, the only satisfactory arianjotionl procedure is the Economic- Disineering or Synthetic-Firm technique. ©́nsequently, this technique is used in this study. 'I'ne results of the two reviewed ecoromies of size studies are somewhat contradictory. Whis, the author believes, is due to the differing definition of the term 'total costs'.

CHAPCER FOUR

THE FARM SURVEY

4.1 INTRUDUCTION

The objective of the farm survey was to provide some of the basic information which would enable the hypothesis that economies of size exist in New Lealand dairy farming to be tested.

4.2 SELECTION OF THE SURVEY FARMS

In order to obtain the basic data necessary for the construction of the short run average cost curves, for each fixed plant, a number of farms representing a range of plant utilisations, (i.e. cow numbers) were selected for study. Although a number of resources have been used to represent the fixed plants for the construction of the short run average cost curves in the analysis, $1 /$ in order to simplify the selection of the survey farms only one resource, labour, was used to denote the fixed plant. For the selection of the survey farms, therefore, five labour classes were chosen to represent five plant sizes. The labour classes were expressed in terms of the number of permanent $2 /$ adult male labour units. 3/

The selection of the farms for the study was made from the records of all North Island Dairy Board Consulting Officers. Consulting Officers were asked to name farmers within their districts whanthey considered to be of above average managerial ability, and whose farms could be classified into one of the five labour classes. In the case

1. This is discussed in detail in Chapter Six.
2. Permanent labour units are considered to be those labour units who are employed for a complete dairying season (i.e. 12 months).
3. The five plant sizes therefore were: one man farms, two man farms, three man farms, four man farms, and five man farms. It should be noted that three short run average cost curves are produced for each of the above five labour classes. Hence fifteen short run average cost curves are. produced.
of the one, two and three man farms, each plant size was divided into six subclasses. 4/ These divisions resulted from preliminary discussions in November 1969 with Dairy Board mxtension Officers prior to conducting the survey. For each of the six subclasses within each of the three plant sizes, Consulting Officers named farmers, within their districts, whomthey considered to be of above average managerial ability. In cases where a Consulting Officer had difficulty in choosing among a number of farmers for a particular subclass, the Consulting Officer was asked to name the farmer(s) with the highest milkfat production per labour unit. Each Consulting Officer was asked to provide at least one name, if possible, for each subclass. In the case of the four and five man farms, no such stratification was necessary. Consulting Officers named farmers within their districts whose farms could be classified as four or five man farms, arranging them in order of total milkfat production, and listing also the number 5 of cows milked.

It was extrenely difficult, however, for Consulting Officers to classify the farms from their records precisely into the five labour classes given. 6/ For this reason, farms where the wife and/or family 7 contributed to the labour force were classified as one man farms. Other
4. The subclasses were:
One man farms
i) Less than 70 cows
ii) $70-89$ cows iii) 90-109 cows iv) 110 - 129 cows
v) 130-149 cows
vi) 150 or more cows

Two man farms Three man farms
i) Less thair 150 cows i) Less than 250 cows
ii) 150-169 cows ii) 250-269 cows
iii) 170-189 cows iii) 270-289 cows
iv) 190-209 cows iv) 290-309 cows
v) 210-229 cows v) 310-329 cows
vi) 230 or more cows vi) 330 or more cows
5. The number of cows used to define the subclasses in the first three plant.sizes and listed in the case of the two other plant sizes was based on the number of cows in milk in December 1968.
6. Initial discussions with Consulting Officers in November 1969 had indicated that if the selection was to be based only on those farms where the labour force consisted entirely of adult male workers, very few of the farms with which the Consulting Officers were familiar would be selected.
7. The term 'family' in this context refers only to children of school age.
types of labour units employed on farms such as youths, land girls and married couples, were classified as equivalent to an equal number of adult male labour units. 8/ Individuals, who on some farms were primarily concerned with the managerial function and were not part of the normal milking staff, but were involved with some of the physical work on the farm, were classified as permanent labour units. Individuals, who were however concerned only with the entrepreneurial function, were not classified as permanent labour units. 9/

Consulting Officers were asked to select farmers on the basis of their records pertaining to the 1968/69 dairying season. Selection on the 1908/69 season was necessary for three reasons. First, as the survey was conducted in the autumn of 1970, farm accounts for the 1968/69 season only were available. Second, in some cases, Consulting Officers' records for the 1969/70 season were incomplete, and finally, it was considered that selection of farms on part production records of the 1969/70 season would be difficult and unsatisfactory. 'The farms nominated by Consulting Officers were dairy farms engaged in seasonal production. Town milk farms were therefore excluded. It seemed prudent at the time of selection not to restrict the sample solely to farms on which milk production and meat products (i.e. bobby calves and cull cows) were the only products, but to extend the sample so that farms on which various forms of diversification were practised could be included. Preliminary discussions with Extension Officers, prior to conducting the survey, had indicated that in some cases on multi labour unit farms, other enterprises
8. The classification adopted was:

One youth	$=$ One adult male labour unit
One land girl	$=$ One adult male labour unit
One married couple	$=$ Two adult male labour units

(It should be noted that a married couple was classified as two permanent labour units, even if the wife only assisted with the milking.)
9. Included in this category were:
i) Absentee owners;
ii) Persons who although living on the farm in question managed other farms and other business activities.
were also involved to ensure that the labour force was continually employed on productive work. Further, at the time the farms were selected, dairy farmers were being offered special incentives to produce beef.

In addition, Consulting Officers were asked to name examples in their districts of:
a) A number of separate herds being milked through the one milking shed. (This will be referred to as Organisation l.)
b) Shift milking. This in comparison with normal seasonal dairying means that in order to milk a given number of cows, a smaller farm dairy is used for longer periods each day. 10/ The labour units employed on such farms tend to become specialist milkers. (This will be referred to as Organisation 2.)
c) Contract milking. This occurs where one farm dairy . is used to milk a number of herds. One farmer supplies the farm dairy and the milkinf labour and milks other herds on a contract basis at an arreed rate per pound of milkfat. (This will be referred to as Organisation 3.)
d) One farm consisting of a number of separate dairying units, where the managerial task of all the separate units is performed by one person. 11 (This will be referred to as Urganisation 4.)
e) Joint ownership of machinery between two or more farmers. 12/ (This will be referred to as Organisation 5.)

From the lists of names submitted by each Consulting Officer, a catalogue of names was prepared for each of the five labour classes. In the case of the one, two and three man farms, catalogues were prepared for each of the six subclasses. Initially in the case of each of the three lower plant sizes, a minimum of six farmers was selected. Each of the six farmers selected for a particular plant size represented a different subclass. The basis of selection was farmers with the highest
10. Shift milking may also require that a given herd be divided into a number of smaller herds.
11. The organisation discussed in d) represents an increase in business size resulting from increasing the number of plants, rather than increasing the size of plant.
12. The organisations discussed in b), c) and e) all represent ways in which
output of milkfat per labour unit. To these six farmers, additional farmers who had adopted unusual management practices were added. Typically these involved management systems which enabled the output per labour unit to be extremely high. All farmers nominated by Consulting Officers in the last two plart sizes were selccted. A total of forty seven farmers were selected from the names submitted by all Consulting Officers. Of these:
i) Forty-three were selected to represent the five plant sizes. 13/
ii) Two were selected because two separate herds were milked through one dairy. (i.e. Organisation l)
iii) One farmer who was engaged in a contract milking agreement was selected. (i.e. Organisation 3)
iv) One farmer who was responsible for the management of a farm which consisted of a number of distinct units was selected. (i.e. Organisation 4)

No examples of shift milking and joint ownership of machinery were known to Consulting Officers.

4.3 SURVEY NETHOD

Prior to carrying out the survey, five farms representing in total four labour classes (fixed plants) were visited in May 1969. 14/ These initial interviews together with discussions with Dairy Board Extension Officers, plus a review of overseas literature familiarised the author with the subject sufficiently to formulate a number of hypotheses which the survey was required to test.

Cartwright (24, p.28) divided the various types of farm surveys into two classes: descriptive and interview surveys. Descriptive surveys are concerned with obtaining facts about farmers, and interview surveys are concerned with obtaining facts from farmers. Cartwright noted further that interview surveys are concerned with obtaining both objective and subjective information from the farmer. Accordingly the surveys conducted in this study were of the interview type.
13. The numbers of farms selected for each of the five plant sizes were as follows:

| One man farms : 12 | Four man farms : 5 |
| :--- | :--- | :--- |
| Two man farms : 11 | Five man farms : 3 |

Three man farms : 12
14. Two one man, one two man, one three man and one five man farms were visited. The five man farm in question was later included in the survey.

In contrast to some other Ferm Management Research studies (25, p.36)
and $(26, p .48)$, a questionnaire in conjunction with a check list was used in this study rather than a check list alone. The author is not in agreement with Cartwright (21, p.28) who, when discussing the use of questionnaires in surveys, states that each interview is restricted to the questions appearing on a prepared questionnaire. A question whether it be an open ended or a restricted type can serve exactly the same function as an item from a check list - that is it introduces a particular subject to the respondent. After allowing the respondent to answer the uuestion, further information can be obtained by the use of probe questions. (27, pp. 359-366) The use of such probes can be extended to allow additional information obtained from earlier interviews to be introduced into the discussion and so new aspects of the original hypothesis can be considered.

Wright (28, p.23) has noted that it is either unwise or not possible to desisn a questionnaire prior to an interview survey. While agreeing with these conments in the context in which they are made, the author considers that whether a questionnaire can or should be designed prior to a survey depends on the researcher's prior knowledge of the subject. In the case of a check list, the researciner only defines fields in which information is required, whereas the use of a questionnaire may imply that the researcher has a greater knowledge of the subject and is able to specify more precisely what information is required. 15/

As noted earlier prior to conducting the survey, the author visited five farms and conducted a "free form" interview survey using a check list. Un the basis of these interviews, plus discussions with Extension Officers and a review of overseas literature, sufficient hypotheses were formulate for a questionnaire to be constructed. While accepting the coment made by Cronin ($26, \mathrm{p} .48$) that a danger in using a fixed questionnaire is that many intangible and unforeseen factors which may be brought out by permitting the farmer to talk freely about the farm and its problems may be overlooked, this can be countered to some extent by the use of probes, and also by devoting the initial part of the interview to a free form discussion with the farmer in which he is encouraged to talk freely about the farm. Further the author considers that a
15. The author is indebted to Mr. D. B. Gibbs for this point.
questionnaire may have advantages over a check list, in that as the same definite question is put to each respondent, difficulties associated with interviewer bias and question bias (29, p.55) are less than when using a check list, where the researcher reformulates.the question for each respondent. 15/ A questionnaire also means that each respondent starts from the same point with each hypothesis, thus facilitating a more valid and thorough comparison of roplies. $16 /$

Four interviews in this study were conducted on a free form basis usine a check list alone (e.g. The two farms where more than one herd was milked through the one farm dairy, the farm where the contract milking agreement was in operation, and the farm consisting of a number of separate units, the overall management of which was retained by one man.) A check list was used primarily because the author had little prior knowledge of the farms in question.

4.4 PRE-TESTING TFE RUESTIONNAIRE

The questionnaire was pre-tested on three farms in the Manawatu. This allowed the questionnaire to be amended and improved, familiarised the author with interviewing technique and gave some indication of the time necessary to conduct an interview.

4.5 INIERVIEWING PROCEDURE

The interview consisted of two parts. An initial inspection of the farm property in which no attempt was made to record any infomnation, and the farmer was encouraged to talk freely about the farm. This was
followed by a period at the farm house where the relevant information was obtained. (In three cases where the farmer was unable or unwilling to be interviewed durine the day, the survey was conducted at night. In such cases no initial inspection of the property was carried out.)

4.6 REJECTION OF SELECTED FARMS

Of the forty-three farms selected for the main study, three have not been included in the results for the following reasons:
16. In this study, subjective information concerning farmers' attitudes to various aspects of farm size was obtained from the farmers by the use of a questionnaire. Objective information however was obtained from the farmers by the use of a check list.
a) A misunderstanding between a Consulting Officer and the author resulted in the author visiting and interviewing the namesake of a selected farmer.
b) On two occasions unsatisfactory interviews were obtained. (In both cases the unsatisfactory interviews were the result of the farmers being unable to make sufficient time available.)

In only one case where one of the rejected farms had been selected to represent a particular subclass was selection of another necessary. The replacement farm for the subclass in question, was selected from the catalogue of farmers, compiled from names submitted by Consulting Officers. The basis of selection was the farmer with the highest milkfat production per labour unit, in districts which remained to be surveyed.

It should also be noted that names of farmers were accepted from Consulting Ufficers for the compilation of the catalogues, although the Consulting Officers were not able to specify precisely the physical details of the farm. This applied particularly to farms in the last three labour classes (i.e. three, four and five man farms). As a result, some farins which were selected to represent particular labour classes, were found to be representative of other labour classes when the survey was carried out. Similarly in the case of the two man farms, the herd numbers of two farms selected to represent a particular subclass, proved to be sligntly inaccurate causing the farms in ruestion to be representative of the neighbouring subclasses.

Since the purpose of the survey was to obtain some of the basic data for the construction of the short run average cost curves, and because of limitations in the author's resources, and time available for the completion of the study, no farms were excluded from the survey because of the selection difficulties just discussed. 17/ The effect of these difficulties has been to cause the numbers of farms actually surveyed for each plant size, and in some cases for the subclasses within a plant
17. i.e. Because some farms which were selected to represent particular labour classes were in fact representative of other labour classes, and because some farms which were selected to represent particular subclasses were representative of other subclasses.
size, to differ from the numbers originally selected. 18/

Abstract

4.7 SUMMARY

In this chapter, a description has been 氏iven of the metrod of selecting the survey farms and the conduct of the farm survey. The survey farms were selected from the records of all North Island Jairy Board Consultine Ufficers and Consulting Officers named for selection only those farmers whom thej considered to be of above average manasferial ability. In total, 47 farms were selected for the survey of these 43 were selected to represent the five labour classes and four were selected to represent other farm organisiations which were considered relevant to the study. 'l'he farm survey was of the interview tirpe and consisted of two parts. First an initial inspection of the farm property in which the farmer was encouraged to talk freely about the farm and second, a period at the farm house where all the relevant data were obtained. In contrast to some other Farm Management studies, a questionnaire was used in conjunction with a check list, rather than a check list alone.

18. It should be appreciated that the data obtained from the farm survey serves only as a guide to the assumptions which should be made for the synthesis of the short run average cost curves. Because the short run average cost curves are synthesised, rather than being produced entirely from an analysis of the survey results, the author considers that differences in the number of farms actually surveyed for each plant size (and subclasses within a plant size) from the numbers originally selected, are of little importance.

5.1 IN'RRODUCQIIUN

In this chapter, the results of the farm survey are presented. In the first section, the forty-one farms selected to represent the five labour classes are discussed, while in the second, the four additional farms which were selected to represent the other farm organisations are discussed.

5.2 GEUGRAPHICAL DISTRIBU'1IIN OF RHM SURVEY FARMS

Figure 5.1 shows the geographical distribution of the survey farms. From Figure 5.1, it is ayparent that the survey farms were widely distributed throughout the dairying districts of the North Island.

5.3 CLASSIFICA'PIUN OF THP SURVEY FARMS

As noted earlier, it was not possible for Consulting Officers to classify farms for selection precisely into the five labour classes given. Consequently a number of modifications l were necessary so that farms, upon which other types of labour units were employed, could be classified into one of the five labour classes. The survey results are presented in accordance with this system of classification. For ease of reference, the survey farms have been divided into four groups.

a) Group I

This includes farms where the labour force normally consists of only one permanent labour unit. Additional labour in the form of family labour 3/ may be used for milking and some other farm operations.

1. The modifications referred to are discussed in detail in section 4.2.
2. Because of the small number of f'arms available for selection in the upper two labour classes (i.e. four and five man farms), results from farms representing these two classes have been considered collectively in Group IV.
3. Any work performed by the wives, children or parents of any of the permanent labour units of a survey farm is described as work involving the use of family labour. 'This is further discussed in section 5.6, 6.

FIG. 5.1 LOCATION OF THE SURVEY FARMS

b) Group II

This group includes farms on which two permanent labour units are normally employed. On such farms, very little use is made of family labour.
c) Group III

This Eroup includes farms where three permanent labour units are normally employed and cases where two permanent labour units and three permanent milking units are employed. (This latter situation represents farms on which a married couple is employed.) Very little use of family labour is made on these farms.
d) Group IV

I'his group includes farms where four or more permanent labour units are employed. Again very little use is made of family labour.

5.4 FANM AKRA AND IHMRD SIZE

Table 5.1 shows the farm area, run-off area, and herd sizes of the survey farms. 4/ As shown in trable 5.1, the home farm areas ranged from 60 to 747 acres, and herd sizes from 60 to 650 cows in the 1968/69 season and from 67 to 760 cows in the 1909/70 season. Seventeen of the farms used additional areas in the form of run-offs or other farms.

5.5 FARM ORGANISATIUN

Table 5.2 shows the form of ownership of the survey farms (at the time of the survey). From 'rable 5.2, of the 41 farms surveyed:

10 were described as owner operator organisations;
4 were described as family partnerships. These are indicated by the abbreviation (f);

3 were described as partnerships;
4. Group I includes Farm Nos. 1-12.

Group II includes Farm Nos. 13-21.
Group III includes Farm Nos. 22 - 30.
Group IV includes Farm Nos. 31 - 41.
5. It should be noted that in the case of Farm No. ll, the run-off was acquired at the beginning of the 1969/70 season.

Farm. No. (1)	Area (acres) (2)	Runoff (acres) (3)	Herd Size 68/69 (4)	Herd Size 69/70 (5)	Farm No. (1)	Area (acres) (2)	$\begin{array}{\|c\|} \text { Run- } \\ \text { off } \\ (\text { acres }) \\ (3) \end{array}$	Herd Size 68/69 (4)	Herd Size 69/70 (5)
1	60	12	60	67	22	238		225	266
2	69		90	96	23	209	other farm	232	262
3	90		89	88	24	284		250	280
4	103		101	108	25	350		335	270
5	112		116	120	26	335	other	406	345
6	160		130	143	27	246		308	305
7	215		138	130	28	240	11	310	315
8	279		142	152	29	258	40	289	293
9	230		220	215	30	320	90	380	340
10	223		184	267	31	372	other	350	370
11	200	65	224	210	32	247		274	278
12	429	500	366	333	33	310		320	340
13	107		150	162	34	225	80	284	284
14	125	80	138	140	35	253	66	280	280
15	151		161	169	36	300	40	298	325
16	127		154	158	37	300		350	350
17	173		208	212	38	347		390	398
18	272		226	226	39	325	110	458	462
19	180	other	242	235	40	747	138	650	760
20	147		205	211	41	330	60	496	464
21	278		330	340					

NOTES: i) The farm area shown in column (2) refers to the surveyed acreage of the "home" farm.
ii) The third column shows the surveyed acreage of any additional land employed as a run-off. In some cases, other farms were farmed in conjunction with the farm in question, providing grazing and hay for the home farm. This is shown in the third column by the words 'other farm(s)'.
iii) Columns (4) and (5) refer to the number of cows in milk in December for the two dairying seasons, 1968/69 (Column (4)) and 1969/70 (Column (5)).

Table 5.2 Ownership of the Survey Farms

Farm No.	Form of Ownership	Farm No.	Form of Ownership
1	Owner Uperator	22	Company
2	Partnership (f)	23	50\% Sharemilker
3	Owner Operator	24	Partnership
4	Owner Operator	25	Combination (Trust -
5	50\% Sharemilker		Company - Partnership (f))
6	50\% Sharemilker	26	Company
7	25\% Sharemilker	27	Combination (Trust - Company
8	Uwner Operator		- Owner Operator)
9	Owner Operator	28	Owner Uperator
10	50\%\% Sharemilker	29	Partnership
11	Company	30	50\% Sharemilker
12	Company	31	Company
13	Partnership (f)	32	Partnership (f)
14	Owner Uperator	33	Combination (Company -
15	50\%\% Sharemilker		39\% Sharemilker)
16	Uwner Operator	34	Partnership (f)
17	Uwner Operator	35	Uwner Operator
18	Combination (50% Sharemilker - Partnership)	36	Combination (Owner Operator - Trust)
19	Combination (39% Share-	37	Company
	milker - Partnership (f))	38	Company
20	Combination (Owner	39	Trust
	Uperator - Trust)	40	Partnership
21	Company	41	Trust

7 were described as sharemilking arrangements;
8 were described as companies;
2 were described as trusts;
7 were described as combinations.
(Details of the various combinations are shown in Table 5.2 in brackets.)

5.6 LABUUR ON THE SURVIEY FARMS

Detailed information was collected on the numbers and types of labour units employed on the survey farms and on various other aspects of labour use.

1) Numbers of Labour Units Employed on the Survev Famns

Table 5.3 shows the numbers of permanent labour units employed on the survey farms in the 1968/69 and 1969/70 dairying seasons.

From 'rable 5.3, it is apparent that the largest farm in terms of the number of labour units was Farm No. 40 where six labour units were employed in the $1909 / 70$ season. It is important to note, however, that Farm No. 40 differed from all other survey farms in the utilisation of the labour force. Of the six labour units who were employed on Farm No. 40, on any normal working day, only five worked on the farm, the sixth being allowed a free day. (On this farm, free days were worked on a roster system which gave each member of the staff a free day every six days.)

It should also be noted that Farms Nos. 27, 29 and 38 in the 1969/70 season employed students for a period of ló weeks over the summer months, in addition to the permanent labour force shown in the table. On Farms Nos. 27 and 29, a student was also employed for a similar period in the 1968/69 season. Farm No. 12 up until the 1969/70 season employed three permanent labour units. Because of the reorganisation of a family company and difficulties in obtaining suitable labour, the farmer in question decided to attempt to continue the farming enterprise singlehanded. ('The farmer's wife, however, assisted with milking.) The farmer was, however, after his experience in the 1969/70 season, confident that one labour unit was sufficient and proposed to continue in the 1970/71 season without employing any additional labour. 6/ Conversely on Farm No. 26, where two labour units were employed in the $1969 / 70$ season, it was

[^1]proposed to revert back to three in the 1970/71 season $\sqrt{ }$ as the work load was considered to be too great for two labour units.

It should be noted that on four of the Group IV farms, one 8/ of the labour units was not employed full time on the particular farm surveyed being involved with other farms and activities. On two of these farms, the contribution made by such labour units was extremely low. Both estimated they spent only a quarter of their total working time on the farms in question.
2) Types of Labour Units Employed on the Survey Farms

The types of permanent labour units employed on the survey farms in the 1968/69 and 1969/70 seasons are show in Tables A.l - A. 4 of Appendix A.

There were no marked differences between the three groups of farms which employed labour (i.e. Groups II, III and IV) in the type of labour employed. In all groups, there were examples of farms on which either single or married male labour was employed, and in the case of the latter two groups, examples of farms on which both were employed. On only one farm (Farm No. 38) was a land firl employed but as indicated earlier, the period of employment was for 16 weeks in the suramer of the 1969/70 season.

3) Numbers and Types of Milking Units Employed on the Survey Farms

'Ihe number of milking units eraployed on the survey farms in the 1968/69 and 1969/70 dairying seasons is shown in Table 5.4. Details of the types of milking units employed on the survey farms in the 1968/69 and $1900 y / 70$ seasons are shown in T'ables A. 5 - A. 8 of Appendix A.

On six of the Group I farms, wives were utilised as milking units. 9/ On a further two farms of Group I, wives assisted with the milking in the spring months only. The only other examples of women making a substantial contribution to the milking force were:
a) Un Farm No. 16, where the owner operator was replaced in the milking shea from October to February, in the both seasons, by the wife of the employed man.
7. As three labour units were employed in the $1968 / 69$ season and a similar number was to be employed in the 1970/71 season, the farm has been classified as a Group III farm.
8. On all such farms the labour unit in question was concerned with the managerial function.
9. In the $1968 / 69$ season, on one of these farms (Farm No. 9), the farmer's wife did not milk.

Table 5.3 Numbers of Permanent Labour Units Employed on the Survey Farms

$1968 / 69$ Season		$1969 / 70$ Season	
No. of Perinanent Labour Units	Farm Numbers	No. of Permanent Labour Units	Farm Numbers
1	$1-11$	1	$1-12$
2	$13-22$	2	$13-22,24,26$
3	$12,23-31,36$	3	$23,25,27-30$
4	$32,34,35,38$	4	$31,32,34-36,38$
5	$33,37,39-41$	5	$33,37,39,41$

NOITE:
Permanent labour units are considered to be those who are employed for a complete season, and who contribute to the physical work of the farm or perform the managerial function. 'Ihose performing the entrepreneurial function only have been excluded. Un some farms, particular labour units were involved with other farms and activities. In such cases, no attempt has been made to apportion such a labour unit's time between the various farms and activities. The labour unit has been classified as one permanent labour unit for the farm in question.

Table 5.4 Numbers of Milking Units Employed on the Survey Farms

1968/69 Sjeason		1969/70 Season	
No. of Milking Units	Farm Numbers	No. of Milking Units	Farm Numbers
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1,2,5,6,9,11 \\ & 3,4,7,8,10, \\ & 13-21 \\ & 22-31,34-36 \\ & 12,32,33, \\ & 37-39,41 \\ & 40 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 1,2,5-7,11 \\ & 3,4,8-10, \\ & 12-21,26 \\ & 22-25,27-30, \\ & 34-36 \\ & 31-33,37-39,41 \end{aligned}$ 40

NOTE: Milking units are considered to be only those who are normally ençaged with milking for the entire duration of the milking season. Additional labour may be utilised for milking, on the various survey farms, for varying periods of time during the season. This has not been included in the data shown in Table 5.4. It is discussed however later in the text.
b) On Farm No. 38, where the manager who milked during the spring and autumn months was replaced over the sunmer months by the wife of an employed labour unit (1968/69) and by a land girl (1969/70).
c) Un Farms Nos. 22 and 24, where married couples were employed.10/ The employment of such labour typically provides one labour and two milkine units.
On nine farms in Group IV, a labour unit 11 was not employed as a full time milking unit but acted as a relief milker only. On four of these Group IV farms, however, the labour unit in question milked during - the spring months.

4) Ratio of Cows per Labour Unit

The ratio of cows per labour unit for the survey farms in the 1968/69 and $1909 / 70$ seasons is shown in l'able 5.5. The ratio of cows per labour unit was extremely hish in the uppermost subclass of Group I. On four farms (e.g. Farm Nos. y, 10, 11, 12), in the 1969/70 season, the ratio was above 200. Some high ratios of cows per labour unit were also recorded in the corresponding subclasses of the other three groups, but they were not as high as those of Group I. The maximum figures for each Eroup being: Group I - 333; Group II - 170; Group III - 140; and Group IV - 120்.6. 12/
5) Ratio of Cows per Milking Unit

Table 5.6 shows the ratio of cows per milking unit for the survey farms in the two seasons 1968/69 and 1969/70.

In terms of cows per milking unit, the differences between the groups tend to be less marked than comparable figures relating to cows per laoour unit. For exampie, the maximum $12 /$ ratio for each of the four groups is: Group I - 210; Group II - 170; Group III - 113.3; Group IV - 126.6.

- 10. A married couple was employed on Farm No. 24 only in the 1969/70 season.
ll. On all such farms, the labour unit in question was concerned with the managerial function.

12. It should be noted that Farm No. 26 has been excluded from this comparison as in the 1969/70 season, only two labour units were employed. As discussed earlier, the normal complement of labour for this farm is considered to be three labour units.

Table 5.5 Ratio of Cows per Labour Unit.

Farm Number	Cows per Labour Unit 1968/69	Cows per Labour Unit 1969/70	Farm Number	Cows per Labour Unit 1968/69	Cows per Labour Unit 1969/70
1	60.00	67.00	22	112.50	133.00
2	90.00	96.00	23	77.30	87.30
3	89.00	88.00	24	83.30	140.00
4	101.00	108.00	25	111.60	90.00
5	116.00	120.00	26	135.30	172.50
6	130.00	143.00	27	102.60	101.60
7	138.00	130.00	28	103.30	105.00
8	142.00	152.00	29	96.30	97.60
9	220.00	215.00	30	126.60	113.30
10	184.00	267.00	31	116.60	92.50
11	224.00	210.00	32	68.50	69.50
12	122.00	333.00	33	64.00	68.00
13	75.00	81.00	34	71.00	71.00
14	69.00	70.00	35	70.00	70.00
15	80.50	84.50	36	99.33	81.20
16	77.00	79.00	37	70.00	70.00
17	104.00	106.00	38	97.50	99.50
18	113.00	113.00	39	91.60	92.40
19	121.00	117.50	40	130.00	126.60
20	102.50	105.50	41	99.20	92.80
21	165.00	170			

NO'TE: The ratio of cows per labour unit has been derived by dividing the herd size as shown in t'able 5.1 by the number of labour units shown in Table 5.3.

Table 5.6 Ratio of Cows per Milking Unit.

Farm Number	Cows per Milking Unit l968/69	Cows per Milking Unit $1969 / 70$	Farm Number	Cows per Milking Unit l968/69	Cows per Milking Unit 1969/70
1	60.00	67.00	22	75.00	88.60
2	90.00	96.00	23	77.30	87.30
3	44.50	44.00	24	83.30	93.30
4	50.50	54.00	25	111.60	90.00
5	116.00	120.00	26	135.30	172.50
6	130.00	143.00	27	102.60	101.60
7	69.00	130.00	28	103.30	105.00
8	71.00	76.00	29	96.30	97.60
9	220.00	107.50	30	126.60	113.30
10	92.00	133.50	31	116.60	92.50
11	224.00	210.00	32	68.50	69.50
12	91.50	166.50	33	80.00	85.00
13	75.00	81.00	34	94.60	94.60
14	69.00	70.00	35	93.30	93.30
15	80.50	84.50	36	99.30	108.30
16	$7 \% .00$	79.00	37	87.50	87.50
17	104.00	106.00	38	97.50	99.50
18	113.00	113.00	39	114.50	115.50
19	121.00	117.50	40	130.00	126.60
20	102.50	105.50	41	124.00	116.00
21	165.00	170.00			

NOIE: The ratio of cows per milking unit has been derived by dividing the herd size as shown in 'lable $j .1$ by the number of milking units shown in Table 5.4.

6) Dependence of the Survey Farms on Family and Casual Labour and Contractors

Table A. 9 of Appendix A shows the use made by the survey farms of family labour, casual labour and contractors.

Dependence on Family Labour in the 1969/70 Season
There was a tendency for the farms of Group I to make a greater use of family labour for milking than the farms of the other three groups. For example, on six of the Group I farms, wives milked full time. On two other farms in Group I, wives assisted with the milking in the spring time only. The only other examples of wives milking full time were the two farms in Group III on which married couples were employed. Farm No. ló, as noted earlier, was the only other example of a wife contributing substantially to the milking labour force. Un some other farms, wives contributed to the milking force as relief milkers allowing some or all of the milking units time off during the milking season.

Similarly, there was a greater tendency for family labour to assist with other farm work on the Group I farms. The other main farming operation which utilised family labour was calf rearing. On six of the Group I farms, family labour was used for calf rearine. Comparable figures for the other three íroups are two in Group II, two in Group III and one in Group IV. The range of farm operations in which fanily labour was involved was on some farms much wider than that discussed above. Iypically this occurred on farms where there were children of secondary school age and included such tasks as haymaking, stock work and tractor work. On three farmis, family labour in the form of parents 13 was used for various farm operations.

Dependence on L'asual Labour and ''ontractors in the 1969/70 Season
The extent to which casual labour and contractors were used on the survey farms varied considerably. Table 5.7 shows a number of farm operations for which casual labour or contractors could be employed and the proportion of farms within each froup which employed casual labour or contractors for these particular operations.
13. On Farm Nos. 7 and 29, the fathers of the farm operators assisted with some farm operations, while in the case of Farm No. 10, the farm operator's father-in-law assisted.

Table 5.7 Proportion of Farms within each Group which Employed Casual or Contract Labour for a Number of Farm Operations

Operation	Group I	Group II	Group III	Group IV
1) Hay Loading	$11 / 12$	$8 / 8$	$4 / 8$	$6 / 11$
2)Casual Labour for Silace Making	$2 / 4$	$2 / 4$	$0 / 4$	$1 / 9$
3)Kepairs and Maintenance	$3 / 12$	$2 / 9$	$0 / 9$	$1 / 11$
4)Relief Milkers (for time-off)	$2 / 3$	$3 / 6$	$3 / 8$	$0 / 11$
5) Hay Baling	$11 / 12$	$7 / 8$	$4 / 8$	$5 / 11$
6) Silage Making	$4 / 4$	$2 / 4$	$1 / 4$	$1 / 9$
7) Topdressing	$8 / 12$	$9 / 9$	$8 / 9$	$4 / 11$

NOTES: i) The proportion of farms in each of the four groups on which hay was made and contractors and casual labour were employed for hay loadine is shown in Kow l). (i.e. In Group I, 12 farmers made hay and 11 employed contractors or casual labour for hay loadine.)
ii) The proportion of the farms on which silace was made, where casual labour was employed for this operation, is shown in Row 2). (i.e. In Group I, four farmers made silaie and two employed casual labour.)
iii) T'he proportion of farms on which casual labour was employed for repairs and maintenance work is shown in Row 3).
iv) The proportion of farms on which time-off was taken by the milking units during the season, and where such time-off was obtained by employine relief milkers is shown in Row 4). (i.e. On three Group I farms, time-off was taken, on two of these farms, the time-off was obtained by employing relief milkers.)
v) The proportion of farms, on which hay was made and where contract balers were employed is shown in Row 5).
vi) The proportion of farms on which silage was made and where contractors were employed is shown in Row 6).
vii) The proportion of farms where topdressing contractors were employed is shown in Row 7).

Therew was a trend towards a greater input of casual labour on the Group I farms, particularly for work which is difficult to perform alone. For instance, on eleven farms in Group I, some casual labour (or contract labour) was employed to assist with the loading of hay. Similarly on two of the four farms in Group I which made silage, casual labour was employed to assist in the harvest field. Further on three of the Group I farms, casual labour was employed for the normal repairs and maintenance work. Comparable figures for the other three groups are shown in Table 5.7.

The number of farms on which the milking units took, or were allowed, time-off during the milking season increased from Group I to Group IV. (This will be discussed in more detail later on page 51. It was particularly noticeable that the provision of such time-off on Group IV farms did not entail the employment of any casual labour. On these farms, a reduced milking staff was able for a short period to easily handle the increased ratio of cows per milking unit, and further most of these farms had unused capacity for milking in the form of a labour unit who was not a regular milker. The provision of time-off on farms in the other three groups was in most cases accomplished by utilising either family or casual labour.

Similarly, there was a trend for the farms of Groups III and IV to make less use of contractors and so engage the farm staff in a greater range of farm operations. For example $11 / 12$ and $7 / 8$ of the farmers who made hay in Groups I and II used contract balers. For Groups III and IV the corresponding figures were $4 / 8$ and $5 / 11$. A similar trend is discernible from the table in the case of silage making. In the case of topdressing, however, there was a trend towards the Group IV farms only making less use of contractors and consequently a greater use of the farm staff.

It should be noted that on Farms Nos. 9, 10, 11, 12, 21 and 40 where the ratio of cows per labour unit was extremely high, extensive use was made of casual labour and contractors.

7) Working Times, Milking Times, 'lime-off and Holidays

Table A. 10 of Appendix A presents data on the hours of work 14/ of the permanent labour units, milking tines, time-off and holidays available to the permanent labour units of the various survey farms. 'I'he data shown in the table indicates:
a) That on some of the farms (e.g. Farm Nos. 10, 11, 12, 26) where the ratio of cows per labour unit was extremely high, the working hours of the labour units in the spring tended to be extremely high.

It is interesting to note that on two of the farms where the ratio of cows per labour unit was high (e.g. Farm Nos. 9 and ll), the labour input during the winter months moved to the other extreme, becoming extremely low. In both cases, winter grazing was obtained for the herd which did not involve the permanent labour units in question in any work.
14. Two estimates of the hours worked by the labour units of the survey farms in a normal working day and week at two periods of the year are shown in Table A. 10 of Appendix A. Detailed estimates of the hours worked for a complete season were not collected, as it was felt that this would prove to be too time consuming.
b) The labour units on the farms of Group III and IV in general tended to work shorter hours in the spring time than their counterparts in Groups I and II; no such trend was discernible in the data relating to the second period, the winter.

As would be expected, the milking times varied considerably within each group. It is interesting to observe that on six of the Group I farmsiz the spring morning milking took $2 \frac{1}{2}$ hours or more. In the other three groups, there were fewer examples of the spring morning milking time being of such length. Comparable figures for the other groups are four in Group II, two in Group III and one in Group IV.

As noted earlier, on all Group IV farms some provision was made for the milking units to take time off durlng the milking season. Comparable figures for the other three groups are three in Group I, six in Group II, and eight in Group III.

The provision of time off, plus the shorter spring working hours discussed earlier, suggests that in general the total labour input over the season (in terms of hours) of each of the permanent labour units on the Group III and IV farms, was likely to be less than those of the Group I and II farms.
8) Specialisation and Division of Labour on the Survey Farms

The following question was put to all farmers in Groups II, III and IV. "Do you and any of your employees specialise in particular jobs? Who and what jobs?" (A work sheet was used to assist in the collection of data on the specialisation and division of labour.)

Un all farms, there was to some extent some division and specialisation of labour. At one extreme was one farm on which all except two tasks (repairs and maintenance to machinery and calf rearing) were shared between all members of the staff. At the other extreme were two farms on which there was a most noticeable division of labour between stock and machinery work and nine farms on which the most senior member of the staff specialised in four or five specific tasks.

From the replies to the question, work on the survey farms in relation to division and specialisation of labour can be divided into three classes.
a) Jobs which were regarded as being extremely vital to the profitable organisation of the farm. This includes the
various components of stock work such as bringing and taking the herd to and from the farm dairy mating management, bloat control, calf rearing and various animal health activities.
b) Jobs requiring special skills or experience, such as machinery work (e.g. haymowing, haybaling, ploughing, off-farm contracting), repairs and maintenance to machinery and buildings and fencing.
c) Jobs which were regarded as being less vital to the profitable organisation of the farm, or which require no (or little) special skills or experience, (e.g. tedding hay, topdressing, weed control, cleaning farm dairies and yards, general repairs and maintenance. 15/)

Discussion

Classt T

Eighteen of the twenty-nine farmers questioned emphasised that in their view it was most important for management to bring the cows to (and in some cases from) the milking shed. Une difficulty encountered in milking a large number of cows, it was stated, is that management does not see every cow each milking and so has to rely on the staff to detect and re_{j} ort any abnormalities in the herd. By driving the cows to (and from) the milking shed, management has an opportunity to see each cow at least two (or four) times per day. Three managers stressed the importance of this, particularly during the artificial breeding season.

Eighteen of the twenty-eight farmers who used A.B. 16/ indicated that orie labour unit specialised in the detection of in-season cows for mating. In all cases, this was performed by a senior member of the staff.

Calf rearing, on eighteen of the twenty-nine farms was a specialist task, although this did not necessarily involve the most senior member(s) of the staff. On fourteen farms, bloat prevention was the responsibility of one person.
15. Tedding hay and topdressing were regarded by a number of farmers as being jobs which required little skill or experience. Cleaning milking yards, general repàirs and maintenance work, and weed control were cited as three jobs which were not vital to the profitable organisation of the farm.
16. A.B. is an abbreviation for Artificial Breeding.

Class II

Of the twenty-nine farmers questioned, nineteen indicated that one labour unit tended to specialise in the repairs and maintenance work done on the farm.

Hay cutting was performed by the senior member(s) of the staff in fifteen cases. Uf the twelve farms using their own balers, in eight cases, the baler was operated by the most senior staff member(s). The same was true of all six farmers who undertook some form of outside contracting with machinery.

Class III

These jobs tended to be the responsibility of the more junior and inexperienced members of the staff. On three of the farms, where Farm Cadets were employed, any division and specialisation of labour was not markedly pronounced as the cadets were being instructed in all basic farming skills.

5.7 MACHINERY USED ON 'PHE SURVEY FARMS

Farmers were asked to name the items of machinery they used $17 /$ on the farm and to indicate whether the machinery was:
a) Owned; 18/
b) Shared;
17. Data on machinery usage were collected only for the 1969/70 dairying season. Items of machinery which were not used on an annual basis however, such as hedgecutters, drain cleaners, etc. were included in the list of machinery.
18. The term 'owned' is used in this context to indicate that in the case of farms where the organisation is described as:
i) An owner operator organisation;
ii) Family partnership;
iii) Partnership;
iv) Company;
v) Trust;
the machine can be viewed as an asset of the organisation in question. Similarly, where the organisation is described as a combination, the machine can be regarded. as an asset of one of the components of the combination. Where the organisation is described as a sharemilking agreement, the term 'owned' is used to denote machinery which can be viewed either as an asset of the sharemilker or the other party to the sharemilking agreement.
c) Borrowed;
d) Rented or hired;
e) Supplied by contractors;

There were no marked differences in the range 19 of machinery used on the four groups of survey farms. Variations did occur on particular farms within each group mainly because of the growing of forage crops, the conservation of different forms of supplementary feed, and the presence on some farms of drains and hedges.

On some farms in Groups III and IV various items of machinery were used which were not found on the farms of the other two groups. Typically these items of machinery were such that if they were to be used on most of the farms in Groups I and II, the cost of such items per unit of output would be extremely high. For example, on one farm an irrigation plant was used, on another the machinery complement included a self unloading hay trailer, "while on another a self unloading silage trailer was used.

There was a trend towards the numbers of tractors and of particular items of machinery which were used on the survey farms, to increase from Group I to Group IV. However in terms of the ratio of cows per tractor, there did appear to be some advantage to some of the Group II, III and IV farms. ('The lowest ratios were found in Group I where four were under 100. 'The highest (two) were recorded in Group III and IV, being 345 and 380 respectively.) Similarly, advantages seemed likely to accrue to some of the farms of Groups II, III and IV because of a high ratio of cows to particular items of machinery.

The numbers of tractors and of particular items of machinery which the survey farms used, tended to increase from Group I to Group IV for the following reasons:
i) There was a general trend for the farms of Group III and IV to make less use of contractors and so to own more of the machinery used on the farm, particularly for harvesting operations. In order to complete such work as quickly and effectively as possible, a number of tractors (and of particular types of machines) were considered necessary.
σ
19. i.e. Types of machine.
ii) The late winter and early spring, because of the need to feed large quantities of supplementary feed and to perform a great deal of stock work, was a further period when the requirements for tractors and associated implements on some of the Group III and IV farms was relatively high.
iii) It was noticeable that as farm size (in terms of acres) increased, there was a trend towards the use of a tractor as a means of transport about the farm. 20/

There would appear to be, therefore, two periods of the year when the requirements for tractors on some of these farms was extremely high. As it is usually not possible to borrow or hire tractors for these periods, the farmers tended to own that number of tractors which satisfied the "peak demand" accepting that for the rest of the year one or more of the tractors was not required. Similarly, farmers tended to own that number of other items of machïnery which were required to meet the "peak demand". However, as detailed information was not collected on the size of the various items of machinery, the data on the numbers of particular items of machinery used on the survey farms should be interpreted carefully.
'There was a considerable variation in the size of the tractors (in terms horsepower) used on a particular farm and between farms. There was a tendency for those farmers in Group III and IV who owned such items of machinery as hay balers, forage harvesters, draincleaners and frontend loaders to have a large tractor to power such implements. It was also noticeable that in Groups III and IV the additional tractors used were usuaily smailer tractors and further they were often old models. Further, the tractors used on the farms where contractors were employed extensively, were either small or extremely old tractors.

There was a tendency for the farms of Groups III and IV to own 21/ a greater range of the machinery used on the farm and so to make less use of contractors. Table 5.8 shows the proportion of farms in each of the four groups where various items of machinery were owned by the farm in question.
20. This is discussed later in section 5.17. .
21. The phrase "owned by the farm" means the machine(s) in question can be regarded as an asset of the appropriate farm organisation (e. g. Trust, Company, Owner Operator, etc.).

Table 5.8 Proportion of Farms in Each Group Owning Various Items of Machinery

| Item of Machinery | Group I | Group II | Group III | Group IV |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1) Irucks | $2 / 12$ | $1 / 9$ | $0 / 9$ | $5 / 11$ |
| 2) Hay Balers | $1 / 12$ | $1 / 8$ | $4 / 8$ | $6 / 11$ |
| 3) Hay Loaders | $1 / 12$ | $0 / 8$ | $5 / 8$ | $6 / 11$ |
| 4) Flail or Forage | $0 / 4$ | $2 / 4$ | $3 / 4$ | $8 / 9$ |
| 5) Tarvesters | $4 / 12$ | $0 / 9$ | $1 / 9$ | $7 / 11$ |

NOTES: i) The proportion of farms in each of the four groups owning trucks is shown in Kow l).
ii) The proportion of farms making hay in each of the four groups where the farm owned the baler used is shown in kow 2).
iii) The proportion of farms making hay in each of the four groups where the farm owned the hay loader used is shown in Row 3).
iv). The proportion of farms making silage in each of the four groups where the farm owned the flail or forage harvester used is shown in Row 4).
v) 'The proportion of farms in each of the four groups where fertiliser was applied entirely with machinery owned by the farm is shown in Row 3).

An examination of Table 5.8 reveals that for all items of machinery listed, the proportion of farms owning such items of machinery was greatest in Group IV.

Most of the machinery used on the survey farms was either owned (by the farms) or supplied by contractors. There were some instances of

- machinery being rented or hired and borrowed but these were of minor significance. Farm No. 8 provided the only example of a machinery sharing agreement in which most of the major items of machinery were shared between three farms.

On only six farms was off-farm contracting undertaken. Of the six, two were Group II farms, two Group III farms, and two Group IV farms. In all cases, the work in question was hay contracting (i.e. hay mowing or hay baling).

5.8 BUILDINGS ON THE SURVEY FARMS

A check list was used to obtain a list of the buildings on each of the survey farms. Farmers were then asked the question "What buildings do you consider you could not do without?" This question allowed the author to formulate some ideas as to what the farmers considered to be the minimum building investment necessary for their respective farms. Buildings which farmers considered they could do without included:
a) Particular types of buildings which for various reasons had in the past been duplicated, but with changes in circumstances one (or more) of these buildings was considered to be unnecessary for the effective running of the farm, (e.g. houses, barns, implement sheds, etc.)
b) Buildings which because of changes in farming systems, were now considered to be obsolete (e.g. calf sheds, manure sheds, etc.)

On some farms the building complement did not include certain types of buildings. In such cases, the farmer was asked if he would like the particular building in question to be erected. Where the reply was in the affirmative, the particular building was added to the list of buildings denoting the minimum building investment necessary.

All farmers felt tractor sheds, implement sheds, farm dairies, some form of workshop, barns $\frac{22 / \text { and dwellings were buildings they could not }}{2}$ do without.

The number of houses the farmers considered their respective farms required in general tended to increase as one moves from Group I to Group IV. However extremely high ratios (i.e. cows per house) were achieved by the following Group I farins, Farm Nos. 9, 10, 11 and 12. (On all these farms, the ratio was in excess of 200.23 As mentioned earlier, with the exception of Farm No. ll, on all these farms, wives were employed as full time milking units, thereby allowing one house to accommodate two milking units. The ratio of cows per house was extremely low in Groups II, III and IV where the staff consisted entirely of married men. (Each married man employed required one house.)
22. There was one exception. Ori Farm No. 16, no hay was made, silage being the only form of supplementary feed. Consequently a barn was not considered necessary on this farm.
23. The ratio is based upon the data of the 1969/70 season.

Certain farms in Groups II, III and IV were able to achieve extremely high ratios because of the employment of single labour. This is most noticeable in the case of Farms Nos. 17, 30, 37 and 40. (The ratios were Farm No. 17, 212, Farm No. 30, 170, Farm No. 37, 175 and Farm No. 40, 253.) In the case of Farms Nos. 37 and 40, although five and six permanent labour units were employed on the two farms respectively, only two houses were needed for Farm No. 37 and three for Farm No. 40. In the case of Farm No. 37, the managrer was paid to board all three single boys, while in the case of Farm No. 40, all four single boys occupied one house. The employment of married couples also tended to give rise to an extremely high ratio as two milking units were accommodated in one house.

Table 3.9 shows the type and size of the farm dairies on the survey farms. (Size of farm dairy is measured in terms of the number of sets of cups.) Table 5.9 indicates that with the exception of Farms Nos. 4, 5 and 19, on all farms a type of herringbone farm dairy was used.
'There were some differences between the farms in the range of other buildings the farmers considered they required. Un six of the farms, it was felt some form of wintering device was required. There was some disagreement as to the place of calf sheds and manure sheds. l'ypically those who reared calves on nurse cows or employed bulk topdressing contractors felt these two types of buildings could be dispensed with. Further it was noted that other types of buildings could substitute for them if the need should arise. On one farm a slaughter house was provided enabling the farm staff to obtain a regular supply of perquisite meat.

There were some variations in the types and sizes of buildings used on the survey farms but with the exception of farm dairies, detailed information was not collected.

5.9 EQUIPMENT, SUBDIVISION, FARM RACES AND WATER RETICULATION SYSTEMS

1) Equipment used on the Survey Farms

Information was collected on the usage of a number of selected items of equipment, most of which were considered to be of a labour saving nature. Farmers were also asked to name any other items of equipment they used which they considered to be important labour saving devices.

Table 5.9 Size and Type of Farm Dairies on the Survey Farme.

Farm No.	Type of Farm Dairy	$\begin{gathered} \text { Size } \\ \text { (No. of } \\ \text { sets of cups) } \end{gathered}$	Farm No.	T.vpe of Farm Jairy	$\begin{gathered} \text { Size } \\ \text { (No. of } \\ \text { sets of cups) } \end{gathered}$
1	HB/HLS	8	22	HB/HLDU	20
2	HB/HLS	8	23	HB/LLDU	24
3	HB/HLS	6	24	HB/HLS	16
4	W1/DU	8	25	HB/HLS	20
5	WP/S	5	26	HB/HLS	24
6	HB/HLS	9	27	HB/HLS	20
7	HB/HLS	8	28	HB/HLS	18
8	HB/HLS	8	29	HB/HLS	20
9	HB/HLS	18	30	HB/HLS	24(2 pits)
10	HB/HLS	10	31	HB/HLS	33
11	HB/HLS	12	32	HB/HLS	20
12	HB/HLS	20	33	HB/HLS	24
13	HB/HLS	12	34	HB/HLDU	24
14	HB/HLS	8	35	HB/HLDU	24
15	HB/HLS	11	36	HB/HLS	20
16	HB/HLS	10	37	HB/HLDU	48(2 pits)
17	HB/HLS	11	38	HB/HLS	24
18	HB/LLDU	20	39	HB/HLDU	48(2 pits)
19	A/P	16	40	HB/HLS	50
20	HB/HLDU	20	41	HB/HLS	28(2 pits)
21	HB/HLS	14			

NOTE: The following abbreviations are used to denote the various types of farm dairy.

WI/DU : Doubled up walk through.
WT/S : Single walk through.
$\mathrm{HB} / \mathrm{HLS}$: Highline single herringbone.
$\mathrm{HB} /$ LLDU : Lowline doubled-up herringbone.
$\mathrm{HB} / \mathrm{HLDU}$: Highline doubled-up herringbone.
A/P : Angle ipark.

Motorbikes were used on some farms in all four groups. (Motorbikes were used on five Group I farms, two Group II farms, five Group III farms and two Group IV farms.)

Items of equipment such as welders and bloat applicators were used on farms of all four groups. Welders appeared to be equally distributed between the four groups, while bloat applicators were used most frequently on Group I farms. (6/15 were found on Group I farms.)

Telephone systems from the farm dairy to the house(s) were used on twelve farms, tending to occur more frequently on farms of the latter three groups. For example, telephone systems were used on one Group I farm, five Group II farms, three Group III farms and four Group IV farms.

Cattle sprayers were used on farms of all four groups, being used most frequently however on the farms of Group IV where they were used on seven farms. Comparable fiyures for the other groups were, three on Group III farms, one on Group II farms and one on Group I farms.

Various other items of equipment were used on the survey farms. Of particular interest was a set of cattle scales found on one Group III

- farm. This, according to the farmer, had proved to be a most useful aid for such tasks as drenching young stock and wintering cows. 24/

ए
24. The farmer in question weighed all young stock prior to each drenching. .Knowledge of each animal's weight allowed the farmer to administer the correct quaritity of drench. Similarly a. periodic check was made of each animal's live weight during winter. Any animal, for which excessive live weight losses were recorded was given preferential wintering treatment.

In all four groups, the highline single herringbone milking plant was used most frequently. Of the four farmers using a double pit herringbone dairy, three indicated that because of difficulties in the supervision and organisation of milkers, single pit herringbone dairies would be preferred.

Unly five farmers indicated that they had encountered problems with the operation of the milking machines. 'Iwo farmers in Group IV felt the problem had not yet been rectified and had given rise to poor milkfat production per cow and a high incidence of mastitis in the herd. A further three (one in Group III and two in Group IV) stated that although they were now satisfied with the performance of the milking machines, the bringing of the milking plants to a satisfactory standard of performance had been a time consuming and expensive task.

Shed wash-down units were found on all farms, while on only twelve of the farms surveyed were effluent disposal units installed. (Again there was no marked tendency for such disposal units to occur more frequently in any particular group.)

Fourteen farms had in place cleaning devices installed in the milk vats. These devices which were built-in, to only the extremely large milk vats, were described by all fourteen farmers as being extremely effective labour saving devices.
2) Subdivision on the Survey Farms
'The number of permanent paddocks into which the farms were subdivided (for grazing by the herd during the milking season) varied considerably, there being a trend towards a larger number of permanent paddocks on the farms where the larger herds were run. 'Twenty four farms had 55 or more permanent paddocks which were used for grazing the herd over the milking season. (Un twenty of these farms, the herd size exceeded 250 cows.)

3) Farm Races

Data were first collected on the width of races on the various farms and second, farmers were asked to indicate whether they felt the width of races on their particular farms was satisfactory for their particular herds. The actual width of races found on the survey farms varied considerably both within an individual farm and between farms, there being examples of wide races on farms where small herd sizes were run and vice versa.

From the replies to the second question, it was apparent that in general, it was considered that larger herds necessitated wider races. However, a race width of twenty five feet (fence to fence) would appear to be of sufficient width to handle the largest herd size encountered (i.e. 760 cows). Ihere were no marked differences between the farms in the construction of races.

4) Water Reticulation Systems

Only on four farms was a supply of water not available to the herd in every paddock. Pipe sizes used tended to increase as herd sizes increased. (The main pipeline increasing from $\frac{3}{4}$ " diameter on seven Group I farms to $2^{\prime \prime}$ diamter on two Group IV farms.)

5.10 G'OUKING RA'IES

Actual stocking rates are difficult to determine exactly because of differences between farms in such things as the grazing out of young stock, the raising of other livestock products such as beef and lamb, and varying degrees of utilisation by stock of so called waste areas.

Table A.ll of Appendix A consists of seven columns which if studied collectively give an indication of the actual stocking rates on the survey farms.

It can be seen that the stocking rates on the survey farms were reasonably high. 'Thirty-four of the forty-one survey farms were stocked at a rate of one milking cow per effective acre or above (based on the $1969 / 70$ season). Of the remaining seven, which were stocked at below one milking cow per effective acre, six were completely self-contained. $25 /$ Further, four of the above six also farmed other livestock such as beef steers and dairy heifers for sale. Four farmers fed meal. In all cases the quantity was small, its use being confined to the early spring. Two farmers fed mother liquor, $\frac{26 / \text { one feeding substantial quantities }}{}$ throughout the dairying season. Nine farmers bought hay, but in all nine cases, at least fifty per cent of the hay used was made on the home farm. On twenty-eight farms, young stock were grazed away from the home farm. In all cases, this involved the rising two year heifers (usually for a period of twelve months) and in ten cases, calves were involved as
25. No feedstuffs were bought and no livestock were grazed out.
26. Mother liquor is a by-product of lactose production.
well. 27/ Un three farms the herd was grazed away from the home farm for a period during the winter. In two cases as noted earlier (Farms Nos. 9 and ll), this was done to relieve the labour force rather than as a means of acquiring extra feed.

It is interesting to observe that the stocking rate as expressed in column 4 of 'lable A.ll of Appendix A was for all Group IV farms one milking cow per effective acre or greater. However, on only one farm in Group IV, was no frazing out of stock practised. The highest stocking rates as indicated in column 4 were on Farms Nos. 13, 20, 39 and 41, all being above 1.4 milking cows per effective acre.

5.11 MILKFFA'I PRUDUCTIUN ON T'H:' SURVEY F'ARMS

1) Kilkfat Production per Cow and per Acre

The milkfat production per cow and per acre of the survey farms for the 1968/6y and 1969/70 seasons is shown in 'lables 5.10 and 5.11.

It should be realised that the method of calculatine the milkfat per cow and per acre statistics shown in Tables 3.10 and 5.11 differs from that adopted by official sources of such statistics, such as the New Zealand Dairy Board. The New Zealand Dairy Board in their Annual Farm Proauction Keport publish whict is known as the effective averase production per cow. This figure is derived by dividing the total amount of milkfat sent from a farm to the factory by the number of cows in milk in December. This method has not been adopted in 'lables 5.10 and 5.11 because it was apparent to the author, that the numbers and percentages of calves reared either for dairying or beef production on the various survey farms varied considerably. (Percentage of calves reared refers to the total number of calves reared expressed as a percentage of the total number of cows wintered.) Consequently, the milkfat per cow figures shown in Table 5.10 * will be greater than the "effective average production" figures because of the addition to the total milkfat supplied to the factory of an estimate of the milkfat used for calf rearing.

Similarly, the numerator used in the calculation of the milkfat per acre figures shown in Table 5.11 is the total milkfat supplied to the
27. e.g. Un 9 farms the grazing period for calves (i.e. the time the calves were away from the "home" farm) extended over approximately 18 months. The calves were sent out to graze immediately after weaning and were rnturned n as rising two year old heifers. Un one farm, the calves were grazed away from the home farm for two months to relieve grazing pressure on the home farm in the autumn.

Farm No.	Milkfat per cow $1968 / 69$	Milkfat per cow $1969 / 70$	Farm No.	Milkfat per cow 1968/69	Milkfat per cow l969/70
1	392	367	22	324	307
2	327	291	23	318	238
3	365	293	24	317	240
4	375	357	25	242	243
5	349	239	26	212	208
6	325	254	27	306	283
7	331	366	28	308	298
8	328	323	29	346	308
9	234	243	30	266	205
10	286	254	31	246	227
11	281	248	32	320	303
12	203	216	33	274	235
13	296	272	34	320	267
14	329	273	35	332	291
15	335	283	36	318	244
16	387	317	37	306	233
17	321	297	38	300	294
18	302	243	39	296	260
19	286	277	40	228	198
20	337	276	41	309	296
21	265	224			

NOTE: Milkfat per cow has been obtained by dividing the total milkfat production by the number of cows in milk in. December.

Table 5.11 Production per Acre of the Survey Farms

Farm No.	Milkfat per acre 1968/69	Milkfat per acre 1969/70	Farm No.	Milkfat per acre 1968/69	Milkfat per acre 1969/70
1	413	432	22	311	349
2	426	405	23	359	304
3	361	287	24	283	240
4	399	406	25	238	193
5	369	261	26	269	224
6	325	280	27	388	355
7	228	238	28	401	395
8	173	- 182	29	403	364
9	228	231	30	326	225
10	263	340	31	234	229
11	318	264	32	370	3155
12	212	206	33	303	275
13	423	420	34	421	345
14	378	318	35	379	333
15	382	340	36	544	288
16	480	405	37	369	281
17	398	375	38	340	340
18	263	211	39	424	375
19	394	370	40	203	206
20	494	407	41	472	423
21	339	395			

NU'TE: Milkfat per acre has been calculated by dividing the total milkfat production by the effective area of the farm.
factory plus an estimate of the milkfat used for calf rearing. The denominator is the effective number of acres, which is defined as the area in any form of pasture, crop, races and buildings. (Surveyed acreage and effective acreage differ because of waste areas which are not utilised by stock.)

For comparative purposes, the milkfat production per cow of the survey farms has been recalculated using the method adopted by the New Zealand Dairy Board. (That is the "effective average production" per cow has been calculated.) This is shown in Table 5.12.

Tables 5.10, 5.11 and 5.12 indicate that there is a trend towards a decline in both milkfat per cow 28 and milkfat per acre on the farms. where the ratio of cows per labour unit is high, (e.g. Farm Nos. 9, 10, ll, 12,21 and 40). The highest milkfat per cow figures (as shown in both tables) were achieved on Farm Nos. 1, 3, 4, and 16-all being above 350 pounds of milkfat per cow. Some farms in all four groups proauced at a level above 400 pounds of milkfat per acre. It is interesting to note that Farm No. 41 (which produced the greatest total quantity of milkfat in the 1968/69 season) produced at a level per acre which was only surpassed by Farm Nos. 16 and 20. Such information, however, should be considered carefully along with the data given in Table A.ll of Appendix A.

It was interesting to note that thirteen of the survey farms had in previous seasons supplied a greater total quantity of milkfat to the factory. As detailed information was not collected on the number of calves reared, estimates of the quantities of milkfat used for calf rearing in previous seasons could not be made. Similarly as detailed information was not coilected on farm areas in use in those seasons, no calculations of milkfat production per acre for previous seasons could be made. Of particular interest, however, are the "effective average production" per cow figures. Table 5.13 shows the "effective average production" per cow achieved and the corresponding herd size of the thirteen farms, in the season the maximum total milkfat production was sent to the factory.
28. It should be realised that in the $1969 / 70$ season, many dairying districts experienced a severe drought. Consequently the discussion that follows is confined to the data of the $1968 / 69$ season.

Table 5.12 "Ef'fective Average Milkfat Production" per Cow on the Survey Farm

Farm No.	"Effective Average Production" 1968/69	"Effective Average Production" 1969/70	Farm No.	"Effective Average Production" 1968/69	"Effective Average Production" 1969/70
1	392	367	22	317	
2	321	286	23	309	300
3	357	286	24	310	231
4	366	353	25	219	233
5	341	232	26	206	232
6	318	248	27	299	200
7	325	359	28	302	278
8	318	315	29	339	293
9	227	239	30	258	302
10	278	246	31	230	196
11	273	243	32	313	219
12	199	205	33	271	296
13	296	264	34	320	230
14	312	261	35	325	255
-15	319	276	36	311	283
16	384	314	37	284	235
17	315	292	38	293	210
18	296	235	39	290	287
19	282	272	40	222	254
20	330	268	41	301	192
21	256	216		289	

Table 5.13 "Effective Average Production" per Cow in the Seasons of Maximum Milkfat Production

Yarm No.	Milkfat per cow	Herd Size	Farm No.	Milkfat per cow	Herd Size
4	389	98	25	233	335
9	286	205	31	280	320
11	326	193	33	263	345
12	237	352	37	320	380
13	289	163	39	292	458
14	314	150	40	271	576
19	331	235			

2) Milkfat Output per Labour Unit

The output of the survey farms in terms of milkfat production per labour unit in the 1968/69 and 1969/70 seasons is shown in Table 5.14. It can be seen that the output per labour unit of some of the Group I farms was extremely high. For example, Farm Nos. 5, 6, 7, 8, 9, 10 and 1l. Un only one other farm (Farm No. 21) were comparable figures achieved. The output per labour unit was relatively low however on the following Group IV farms. Farm Nos. 32, 33, 34, 35 and 37. This was due either to a low ratio of cows per labour unit or a poor level of production per cow, or both.

3) Milkfat Output per Milking Unit

Table 5.15 shows the milkfat production per labour unit of the survey farms in the 1968/69 and 1969/70 seasons. 'Ihe data shown indicates that the following Group I farms, 5, 6, 9 and 11 also achieved a relatively high output per milking unit. Again only Farm No. 21 achieved comparable figures in the other three groups. If these five farms are ignored, differences between the groups in terms of the maximum output of milkfat per milking unit become less marked. In such circumstances, the maximum output per milking unit was achieved by Farm No. 41. (The farm which produced the greatest total amount of milkfat.)

Such data however should be interpreted carefully along with the information presented earlier on various aspects of labour usage.

T'able 5.14 Milkfat Production per Labour Unit

Farm No.	Milkfat per Labour Unit $1968 / 69$	Milkfat per Labour Unit $1969 / 70$	Farm No.	Milkfat per Labour Unit $1968 / 69$	Milkfat per Labour Unit $1969 / 70$
1	23,528	24,591	22	36,401	40,822
2	29,404	27,976	23	24,556	20,763
3	32,480	25,797	24	26,388	33,536
4	37,910	38,569	25	27,001	21,876
5	40,559	28,694	26	28,743	35,896
6	42,300	36,455	27	31,442	28,735
7	45,677	47,554	28	31,785	31,338
8	46,613	49,135	29	33,369	30,090
9	51,567	52,218	30	33,734	23,217
10	52,543	67,987	31	28,652	21,031
11	02,880	52,236	32	21,910	21,032
12	24,753	71,940	33	17,565	15,952
13	22,211	22,039	34	23,137	18,987
14	22,698	19,081	35	23,207	20,391
15	26,957	23,939	36	31,565	19,787
16	29,769	25,080	37	21,392	16,301
17	33,409	31,501	38	29,285	29,266
18	34,175	27,442	39	27,125	24,018
19	34,660	32,547	40	29,676	25,127
20	34,571	29,089	41	30,680	27,533
21	43,784	38,048			

NOTE: The output per labour unit figures shown in Table 5.14 have been derived by dividing the total milkfat production (as defined on page 63) by the numbers of labour units shown in Table 5.3.

Table 5.15 Milkfat Production per Milking Unit

Farm No.	Milkfat per Milking Unit $1968 / 69$	Milkfat per Milking Unit $1969 / 70$	Farm No.	Milkfat per Milking Unit $1968 / 69$	Milkfat per Minking Unit lit
1	23,528	24,591	22	24,267	27,215
2	29,404	27,976	23	24,556	20,763
3	16,240	12,898	24	26,388	22,357
4	18,955	19,294	25	27,001	21,876
5	40,559	28,694	26	28,743	35,896
6	42,300	36,455	27	31,442	28,735
7	22,838	47,154	28	31,785	31,338
8	23,307	24,567	29	33,369	30,090
9	51,567	26,109	30	33,734	23,217
10	26,272	33,993	31	28,652	21,031
11	62,880	52,236	32	21,910	21,032
12	18,164	35,970	33	21,956	19,941
13	22,211	22,039	34	30,850	25,316
14	22,698	19,081	33	30,943	27,188
15	26,957	23,939	36	31,565	26,383
16	29,769	25,080	37	26,740	20,377
17	33,409	31,501	38	29,285	29,266
18	34,175	27,442	39	33,906	30,002
19	34,660	32,547	40	29,676	25,127
20	34,571	29,089	41	38,350	34,441
21	43,784	38,048			

NOTE: The data shown in Table 5.15 has been derived by dividing the total milkfat production (as defined on page 63) by the numbers of milking units shown in Table 5.4.

5. 12 STOCK LOSSES AND HERD WASTAGE

1) Stock Losses

Tables $5.16,5.17,5.18$ and 5.19 present data concerning the various sources of stock losses on the survey farms in the 1968/69 and 1969/70 seasons.

There were no marke differences between the four groups of farms in terms of cow losses. The highest figures recorded were those of Farms Nos. 21 and 33 in the 1968/69 season. Both farms were located in the same district and the high losses were put down to a severe outbreak of facial eczema durine the autunn of 1968. Early spring losses consequently were extremely high.

Similarly there appeared to be no marked difference between the four groups of farms in terms of the percentage of heifers lost. There were two farms on which the losses however appeared to be relatively high (i.e. Farm No. 18 (1968/69) and Farm No. 25 (1969/70)). In both cases, the high losses were said to have resulted from the young stock being used to ""tock" newly developed areas.
dalf losses (both bulls and heifers) varied considerably within each croup. In both seasons, within each group, there were farms where there were no losises. The highest losses recorded were those of Farms Nos. 2, 25, 31 and 40 in the 19068/69 season and of Farm No. 31 in the 1969/70 season. Un Farms Nos. 23 and 40, serious difficulties were encountered in the 1968/69 season resulting in serious outbreaks of scours. The apparently high losses on Farm No. 2 were due to the death of only two calves out of a total of twenty-two, while the relatively high losses recorded on Farm No. 31 in both seasons, were due to an ill thrift problem.

Finally there appeared to be no great differences between the four groups of farms in terms of the availability of live calves.
2) Herd Wastage

Table 5.20 presents information on herd wastage on the survey farms in the 1968/69 and 1969/70 seasons. The wastage figures as presented in Table 5.20 should be carefully interpreted. In some cases, such figures may be high because of factors which are to some extent outside the

Table 5.16 Percentage Losses of Cows on the Survey Farms

Farm No.	Losses $1968 / 69$	Losses $1969 / 70$	Farm No.	Losses $1968 / 69$	Losses $1969 / 70$
1	1.6	0.0	22	2.5	1.8
2	4.1	3.0	23	4.3	3.0
3	4.4	6.6	24	3.0	3.1
4	0.0	1.0	25	6.3	2.3
5	0.0	N.A	26	2.0	1.3
.6	5.6	3.2	27	3.1	0.9
7	3.6	2.1	28	1.5	2.7
8	1.4	3.8	29	2.8	3.0
9	2.6	1.3	30	3.9	3.2
10	5.2	2.8	31	1.4	3.5
11	1.8	N.A	32	2.7	2.0
12	3.2	1.1	33	10.8	N.A
13	1.9	1.2	34	3.8	1.3
14	1.4	1.4	35	5.3	4.3
15	6.3	N.A	36	0.7	1.2
16	1.9	1.7	37	1.3	3.4
17	2.3	4.5	38	2.4	1.9
18	4.8	1.6	39	3.3	5.5
19	3.6	2.0	40	N.A	4.4
20	2.3	2.7	41	1.9	3.5
21	10.8	5.9			

NOTES: i) The figures shown in 'rable 5.16 have been calculated by expressing the number of cows which died on each of the survey farms, in the two seasons, as a percentage of the maximum numbers of cows wintered, plus any additional cows bought during the season.
ii) N.A. denotes 'Not available'.

Table 5.17 Percentage Losses of Heifers on the Survey Farms

Farm No.	Losses $1968 / 69$	Losses $1969 / 70$	Farm No.	Losses $1968 / 69$	Losses $1969 / 70$
1	0.0	0.0	22	3.2	3.5
2	4.3	5.0	23	0.0	1.8
3	0.0	0.0	24	1.5	1.5
4	4.4	0.0	25	0.0	17.1
5	0.0	N.A	26	0.0	2.1
6	0.0	2.9	27	0.0	2.5
7	0.0	0.0	28	1.5	3.0
8	0.0	0.0	29	0.0	0.0
9	0.0	1.7	30	2.7	0.0
10	4.4	1.8	31	1.8	4.9
11	0.0	N.A	32	1.5	0.0
12	0.0	0.0	33	N.A	N.A
13	0.0	2.1	34	4.3	1.6
14	0.0	3.1	35	0.0	0.0
15	0.0	N.A	36	0.0	0.0
16	0.0	0.0	37	2.9	2.7
17	6.4	2.3	38	0.0	1.9
18	11.5	1.6	39	0.0	6.1
19	0.0	N.A	40	1.5	1.5
20	5.7	8.6	41	0.0	1.3
21	1.4	0.0			
1					

NOTES: i) The figures shown in 'Pable 5.17 have been calculated by expressing the number of heifers which died on each of the survey farms, in each of the two seasons, as a percentage of the total number of (yearling) heifers wintered.
ii) N.A. denotes 'Not available'.

Farm No.	Losses $1968 / 69$	Losses $1969 / 70$	Farm No.	Losses $1968 / 69$	Losses $1969 / 70$
17	0.0	0.0	22	1.7	0.0
2	11.0	0.0	23	12.5	2.8
3	0.0	0.0	24	1.4	4.1
4	0.0	0.0	25	2.0	0.0
5	2.5	N.A	26	1.9	2.6
6	0.0	2.6	27	0.0	1.6
7	0.0	0.0	28	0.0	3.0
8	5.4	2.1	29	5.9	4.2
9	5.8	4.7	30	0.0	2.1
10	6.3	2.1	31	11.3	17.6
11	5.8	N.A	32	0.0	0.0
12	3.3	0.0	33	4.0	N.A
13	0.0	0.0	34	1.4	3.3
14	0.0	1.5	35	7.7	3.1
15	4.3	N.A	36	0.0	0.0
16	0.0	0.0	37	6.3	6.3
17	6.6	2.4	38	0.0	0.0
18	1.5	2.8	39	3.7	0.0
19	0.0	N.A	40	12.3	7.4
20	3.2	3.2	41	0.6	4.1
21	1.4	0.0			

NOTES: i) The figures shown in Table 5.18 have been derived by expressing the number of calves which died (both pre and post weaning losses) as a percentage of the total number of calves reared, intended for replacement purposes.
ii) N.A. denotes 'Not available'.
'lable 5.19 Calving Percentages on the Survey Farms

NOYES:
i) I'he figures shown in l'able 5.19 have been derived by expressing the number of live calves as a percentage of the maximum number of cows wintered. ii) N.A. denotes 'Not available'.

Table 5.20 Herd Wastage on the Survey Farms

Farm No.	Wastage $1968 / 69$	Wastage $1969 / 70$	Farm No.	Wastage $1968 / 69$	Wastage $1969 / 70$
1	17.6	14.5	22	24.7	15.3
2	19.4	19.8	23	21.5	18.9
3	16.5	36.3	24	27.3	23.8
4	12.8	14.4	25	14.9	34.3
5	19.4	N.A	26	24.2	41.3
6	33.8	21.1	27	24.1	25.8
7	34.6	27.6	28	15.1	18.9
8	18.3	20.0	29	24.4	28.0
9	22.2	13.9	30	34.2	37.3
10	24.9	33.4	31	25.6	26.0
11	47.4	N.A	32	20.1	22.0
12	30.2	13.4	33.	N.A	N.A
13	32.9	21.9	34	24.4	21.3
14	17.6	13.9	35	21.8	25.0
15	26.1	N.A	36	12.7	16.4
16	23.7	29.8	37	14.5	19.1
17	14.0	12.6	38	28.2	26.7
18	25.0	13.5	39	16.3	23.8
19	4.8	13.4	40	N.A	26.4
20	34.1	28.0	41	21.2	31.6
21	21.6	33.2			1

NOTES: i) The figures shown in Table 5.20 have been calculated for each farm by summing the culling percentage and the percentage of cows which died. The culling percentage has been calculated by expressing the number of cows culled, as a percentage of the maximum number of cows. wintered plus any additional cows bought during the season. The percentage of cows which died in each herd is shown in Table 5.16.
ii) N.A. denotes 'Not available'.
farmers' control or are such that they are unlikely to occur each season. For example, the apparently hiwh wastage figures of Farm No. 11 (1968/69 season) wire due to excessive culling in order to reduce cow numbers. (A decision which because of a later change in circumstances, which led to a decision to maintain cow numbers in the next season, necessitated the purchasing of additional stock.) Similarly in the case of Farm No. 3, the apparently hish wastage rate in the 1969/70 season was due to a severe outbreak of facial eczema in the autumn of 1970, while in the case of Farm No. 26, the high wastage rate was due to a desire to replace a large number of animals with animals of higher genetic merit.

Further such figures alone give very little information about the incidence of disease or the general state of the herd as it was apparent that different farmers base their culling upon different criteria. In this context, five farms (Farm Nos. 20, 25, 30, 38 and 40) indicated that an important factor influencing their culling policies was the relative price of replacement and boner cows. Similarly, low wastarge fiçures may result from a desire to increase cow numbers and are not necessarily indicative of low disease incidence ora favourable state of the herd. ('l'his explains the extremely low figure of Farm No. 19 recorded in the 1yö/69 season.)

A recent study conducted by the New Zealand Dairy Board (30, p.52) . indicated that the average wastage in New Zealand herds in the 1968/69 season was 20.71 per cent. The proportion of farms in each of the four groups where the wastage rate was greater than 20.71 per cent in the $1968 / 69$ and $1969 / 70$ seasons is shown below:
a) Group I $6 / 12(1968 / 69) \quad 4 / 10 \quad(1969 / 70)$
b) Group II $6 / 9$ " . $4 / 8$
c) Group III

7/9
d) Group IV

6/9
"
8/10 "

5.13 HERD IMYROVEMENV' PRACTICES

1) Herd Testing

Of the forty-one farmers, twenty-two farmers herd tested during the 1969/70 dairying season. Of these:

7 used the Monthly system;

13 used the Alternate monthly system;
2 used the Production ranking test.

- (For a description of the various herd testing systems, see ($31, \mathrm{pp.5}-8$)

2) Artificial Breeding

Of the forty-one farms surveyed, all but one (Farm No. 19) did not use the Standard Artificial Breeding service. The length of the Artificial Breeding service period adopted on the survey farms varied considerably between farms. 'The distribution is shown in 'Table 5.21.

Table 5.21 Distribution of the Length of the Artificial Breeding Service Period According to Group Size

Group	Length of Artificial Breeding Service Period		
	$0-21$ days	$22-42$ days	43 days or more
Group I	2	4	6
Group II	1	4	3
Group III	1	4	4
Group IV	1	5	5

3) Breed of Herd

Although detailed information was not collected, the overall impression grained was that the herds were predominantly of the Jersey breed. (Only on Farm No. 11 was the herd entirely Friesian.) There did however $a_{1} p$ pear to be a trend towards the Friesian breed. Of the forty farmers using A.B., twenty-seven indicated that they were either using or intended to use some Friesian semen.

4) Artificial Breeding Procedures

All farmers were asked to describe in detail what procedures they normally adopted in order to select in-season cows for artificial breeding. Although procedures adopted varied widely, it was possible to identify nine separate procedures which were used either alone or in combination. The nine procedures were:
a) The use of records of pre-mating heats.
b) In-season cows were detected while the herd was being driven to (and from) the farm dairy night and morning.
c) The herd was observed in the paddock for some time before going to the farm dairy, and any in-season cows noted.
d) Uther members of the farm staff watched the herd enter the milking yards prior to milking, noted any in-season cows, and compared their observations with those made by the farm staf'f member driving the herd.
e) Some time was spent by one or more members of the farm staff before milking, looking at the whole herd in the milking yard.
f) Before each batch of cows was released from the herringbone, one milker moved along the edge of the milking platform looking for marks.on the cows' backs. (Such marks were taken as evidence that a cow was likely to be in-season.)
g) 'ihe herd was held in a small holding paddock, after milking, close to the milking shed and checked for in-season cows prior to returning to pasture.
h) Special visits were made to the padaocks where the herd was grazing, during the day to check for in-season cows (and bloat).
i) The herd was observed for a period immediately after being returned to pasture from the milking shed.

The use of such procedures on the various survey farms is shown in Table A.l2 of Appendix A. It is hoped that the table does not convey the impression that those procedures marked were the only ones used by the farmers in question and the others were entirely excluded. Those marked are those which the farmer in question felt important and used regularly, (i.e. on most days during the Artificial Breeding service period). 'l'he other procedures, not marked, may be used by such farmers to a greater or lesser extent. It is apparent from l'able A.l2 that the range of procedures adopted on the various survey farms varied considerably. As would be expected, the most popular procedure was Procedure b). As data was not collected on the time devoted to each procedure, it is difficult to make any factual comments on the total time the labour force on the various survey farms spent performing the task. The overall impression gained by the author was that increasing herd sizes requires
the labour force to devote a proportionately greater amount of time to this activity. The reasons being:
i) As size of herd increases, it becomes increasingly difficult for one person to notice all the in-season cows within a herd.
ii) 'The use of herringbone farm dairies (rather than walk through dairies)to milk large herds, which because the milkers work in a pit at a lower level than the cows, means that it is more difficult to notice in-season cows during milking.
iii) As it apparently becomes increasingly difficult to know every cow individually within a herd, as herd size increases, 29 it is less likely that in-season cows can be recognised from a distance. Instead labour must get within close proximity to the animal, to identify her, or in cases where animals are not identified, (i.e. not numbered), to mark her.
5) Percentages of Empty 30/ Cows and Empty Heifers

Table $5 .<̈ 2$ and Table 5.23 show the percentages of empty cows and empty heifers respectively on the survey farms. The data relates to the 1908/69 and 1909/70 seasons.

In terms of the percentage of empty cows, there appeared to be little difference between the four groups of farms. The highest figures recorded were those of Farm No. 6 and Farm No. 37 (1968/69 season). In the case of Farm No. 6, the relatively high percentage of empty cows was attributed to an outbreak of vibrio. The relatively high percentage of empty cows recorded on Farm No. 37 however, was attributed to a severe outbreak of facial eczema in the autumn of 1968, resulting in the herd being in poor condition when mated in the spring of 1968.

Similarly, there appeared to be little difference between the four Eroups of farms in terms of the percentage of empty heifers. The relatively high percentage of empty heifers recorded on Farm No. 6 in the 1968/69 season was also attributed to the outbreak of vibrio. In the case of
29. I'his is discussed in more detail in section 5.13, 6).
30. The term 'empty' is synonymous with the phrase 'not in calf'.

$\begin{aligned} & \text { - Farm } \\ & \text { No. } \end{aligned}$	Percentage of empty cows 1908/69	```Percentage of empty cows 1969/70```	Farm No.	```Percentage of empty cows 1968/69```	```Percentage of empty cows 1969/70```
1	10.0	7.5	22	6.2	7.1
2	8.8	7.3	23	7.7	11.4
3	2.2	3.4	24	8.8	5.7
4	6.9	2.8	25	9.0	5.6
5	10.3	N.A	26	6.1	5.8
6	32.8	8.4	27	3.9	9.5
7	10.1	13.8	28	4.9	6.0
8	2.9	7.9	29	10.4	7.8
9	6.8	10.7	30	9.2	5.3
10	4.9	4.1	31	7.2	4.3
11	5.3	N.A	32	8.0	6.5
12	5.5	3.0	33	9.1	N.A
13	1.3	2.5	34	10.6	9.2
14	5.3	7.9	35	4.3	2.9
15	5.6	N.A	36	6.1	15.4
16	7.7	6.3	37	20.0	10.9
17	2.9	5.7	38	5.1	5.0
18	3.1	6.2	39	6.6	13.2
19	1.2	4.3	40	4.9	8.2
20	6.9	4.7	41	10.0	8.6
21	10.6	3.2			

NUTES:
i) The percentages of empty cows shown in Table 5.22 have been calculated by expressing the number of empty cows (at the end of the season) as a percentage of the number of cows in milk in December.
ii) N.A. denotes 'Not available'.

I'able 5.23 Percentage of Empty Heifers on the Survey Farms

Farm No.	Percentage of empty heifers 1968/69	```Percentage of empty heifers 1969/70```	Farm No.	Percentage of empty heifers 1968/69	Percentage of empty heifers 1969/70
1	8.3	0.0	22	1.6	1.8
2	8.7	0.0	23	4.8	3.6
3	0.0	6.5	24	7.4	4.4
4	0.0	0.0	25	1.7	15.3
5	3.3	N.A	26	2.1	3.1
6	28.6	20.0	27	2.4	0.0
7	2.5	6.3	28	0.0	1.5
8	2.7	13.0	29	1.3	1.3
9	8.9	23.3	30	7.1	5.6
10	4.4	3.6	31	2.4	9.1
11	N.A	N.A	32	4.4	1.4
12	5.7	6.9	33	N.A	N.A
13	2.0	0.0	34	4.3	4.7
14	0.0	6.3	35	2.6	0.0
15	N.A	N.A	36	5.7	8.1
16	2.6	5.3	37	5.7	5.3
17	4.3	9.3	38	2.7	1.9
18	4.9	4.8	39	0.0	0.0
19	0.0	N.A	40	7.4	7.6
20	3.8	1.7	41	2.0	0.0
21	0.0	1.4			

NOTES: i) The percentages of empty heifers shown in Table 5.23 have been calculated by expressing the number of empty heifers (at the end of the season) as a percentage of the number of heifers wintered.
ii) N.A. denotes 'Not available'.

Farm No. 25, in the 1969/70 season, the relatively high percentage of empty heifers was attributed to the heifers being in poor condition, due to being grazed on recently developed areas of the farm.

6) Means of Identification

Uf the forty-one farmers surveyed, only one did not have any permanent means of herd identification (Farm No. 19). Of the forty with permanent herd identification:

Twenty-one used a form of acid branding;
Fifteen used eartags;
I'wo used both eartags and a form of acid branding;
One used fire branding;
Une used freeze branding.
As it was considered initially 31 that it was extremely unlikely that the managers (or any of the farm staff) of large herds knew each cow individually, and further as some considered this to be a technical diseconomy, all farmers were asked:
,a) "Do you know every cow in the herd individually? (i.e. If a list of names or numbers of cows was read out, could you visualise each cow?)".
b) 'lo those who answered "Yes", a further question was asked, "Do you think it is an advantage? (i.e. knowing every cow individually)".

To those who answered "No", the corresponding question was, "Do you think it is a disadvantage? (i.e. not knowing every cow individually)".

The results are shown in Column 10 of Table Ad2 of Appendix A. Of the forty-one farmers, sixteen indicated that they did know every cow individually. Of these, eight were in Group I, three in Group II, one in Group III and four in Group IV. (On one farm, Farm No. 19, there was no permanent means of herd identification, i.e. neither names nor numbers. 'The question discussed above in a) could not therefore be asked. However, the farmer claimed he knew them all, meaning that when confronted with a particular animal, he would be able to describe some
31. 'lhe author obtained this impression from discussions with Extension Officers prior to carrying out the survey.
of the cow's characteristics.) The remaining twenty-four farmers indicated that they knew varying percentages of their herds. (lihirteen indicated that they knew ninety per cent or more while two believed the staff collectively knew all cows.)

Ihe sixteen who replied that they knew all cows individually all considered it was an advantage. Of the twenty-four who did not, seven felt it put them at no disadvantage, while the remaining seventeen considered they were at a disadvantage because of it. Fourteen farmers claimed that selecting in-season cows required less effort when one knew all cows individually because of the reasons discussed earlier. 32/ 'I'welve claimed such knowledge was advantageous as milking techniques could be modified according to the individual requirements of each cow. Eleven noted that it was extremely useful from a stock health point of view. They considered that a knowledere of each cow's habits meant that any abnormalities due to poor health could be quickly detected and remedied. In this context, six farmers stated that they, because of being able to remember a particular animal's susceptibility to metabolic and calving disorders, were able to give such animals the necessary prefereniial treatment. Similarly two farmers used particular cows as marker cows for bloat. Uther advantages mentioned were first, general stock work. Such tasks as separating individual cows from the herd for such things as preferential wintering treatment, or for cullins, are more easily done if one knows each individual animal. Second, herd testing. In a herringbone farm dairy, herd testing is made easier and quicker if one is able to recognise individual cows without having to resort to reading each number. (This can be time consuming if the animals are branded on the rump, or ear tags are used as a means of identification.) I'hird, interest. On two farms, where there was a large number of cows per milker, some knowledye of individual cows was cited as a means of overcoming the boredom which was felt to be inherent in milking a large number of cows per milking unit.

Six of the seven farmers who felt not knowing every cow individually put them at no disadvantage explained that in their herds they knew only the cows which required individual attention. This they added was likely to be a very small percentage of their herds.

The data from Column 10 of Table A. 12 has been reorganised into Table 5.24. Table 5.24 divides the survey farms into six classes based

[^2]on herd size. The proportion of farmers in each of the six classes who indicated they knew each cow individually is shown in Column (2). As the proportion shown in Column (2) tends to decline as one moves down the table (i.e. as herd size increases) this supports the contention made earlier 33 that as herd size increases, it becomes increasingly difficult to know each cow individually.

Table 5.24. Proportion of Farmers Knowing Every Cow in the Herd Individually According to Size

Kange of Herd Size (1)	Proportion Answering Yes (2)
$0-99$	$3 / 3$
$100-149$	$3 / 5$
$150-199$	$2 / 4$
$200-249$	$3 / 6$
$250-299$	$2 / 9$
$300+$	$3 / 14$

5.14 STOCK REALIH

1) All farmers were asked to describe the preventive and treatment methods they used for a number of animal health problems, and further were asked to discuss any other animal health problem which concerned them. It was hoped this question would make apparent any major differences between the survey farms in the incidence of the various animal health problems and in the preventive methods adopted.
a) Bloat

Unly one farmer did not undertake some method of bloat "prevention (in the 1969/70 season). There appeared to • be little to suggest that bioat differed in severity between the four groups of farms. There was however a considerable variation between farms in the preventive methods employed and in the quantities of materials used.
33. This contention was made in Section 5.13, 4).
b) Metabolics

In the absence of a detailed study on the incidence of the various metabolic disorders in the herds concerned, little can be said about the incidence of such disorders. The impression gained by the author however was that the incidence of metabolic disorders did not vary greatly between the four groups of farms. For example, on six of the Group I farms, some form of preventive for grass stacgers and acidosis was fed in the 1969/70 season. Such a procedure was also adopted on four farms of each of the other three groups.
c) Mastitis

All farmers stated that they had some cases of mastitis each year. Again, in the absence of a detailed study, it is difficult to reach any valid conclusions on the severity of the problem in the various herds.
d) Facial Eczema

This appeared to be related more to locality than to herd size per se. Only eleven farmers surveyed had, or intended to, take preventive measures during the $1969 / 70$ season.
e) Internal Parasites 34/

All farmers indicated that they normally undertook some drenching programme for calves. The frequency of drenching and the material used varied considerably. The highest frequency of drenching was recorded on fifteen farms where calves were drenched at three to four weekly intervals from weaning until twelve months of age. Of these two were Group I farms, three were Group II farms, five were Group III farms and five Group IV farms.

f) External Parasites $35 /$

On all but one farm; calves were sprayed for lice. On nineteen farms, calves were treated more than once. On twenty-
34. Haemonchus placei, Uestestagia ostertgi, Trichostrongylus axei (i.e. stomach worms), Dictyocoulus viviperus (i.e. lungworm).
35. Damalima bovis, Linognathus vituli (i.e. lice).
one farms, adult stock were sprayed as well.
g) Other Animal Health Problems

Problems discussed here appeared to be mainly district problems and not related to herd size per se. Twentytwo farmers had no conments to make on this subject.
2) In order to obtain some indication of the farmers' opinions of the effect of animal numbers on stock health problems, on all farms in Groups II, III and IV, and on five farms in Group I, where the cows numbers exceeded 150 cows, the following question was asked. "Do you feel you have to pay more attention to stock health than say a one man farm (milking $80-100$ cows) would?"

Twelve replied that calf rearing was more difficult with larger mobs of calves. A greater incidence of scours, worms and ill thrift was thought to result. Two qualified their statements by saying calf rearing was a problem only when Jersey calves were reared. In their opinion, there was little trouble with Friesian calves.

- Eight replied that herd size had some effect on animal condition. I'his particularly applied to the two year old heifers, a relatively high proportion of which, it was said, ended their first lactation in comparatively poor condition.

Five farmers indicated that it was more difficult to notice an animal suffering from a disorder in a larcer herd compared with a small herd, and consequently an animal suffering from a disorder could remain undetected and untreated for a lonfer time. (This it was said necessitates the management on such farms spending more time observing the stock.) In this context, two farmers noted that they, on multi-labour unit farms, were dependent on the labour to detect, treat, and take steps to prevent the various disorders which could arise. If the labour adopted a lackadaisical attitude, serious animal health problems could arise. The problem it was said was accentuated in a double pit herringbone farm dairy. In such cases, there are in effect two herds as it is thought that the individual cows tend to prefer a particular pit. A manager, if a full time milking unit, in such circumstances normally would only see half the cows per milking. Disorders such as mastitis, it was considered could easily arise on multi-labour unit farms in such circumstances.

Mr. D. C. Anderson, the Senior Veterinarian of the Rangitaiki Plains Dairy Company, was also asked to give his impressions of the effect of animal numbers on stock health problems. As he personally visits four of the Group IV farms and one of the Group III farms and since the district is characterised by a wide range of herd sizes, it was felt that the veterinarian in question should be in a position to provide some authoritative answers. A summary of the interview follows.
a) There $a_{i j}$ pears to be little relationship between the incidence and severity of bloat and herd size.
b) 'There is little to suggest there is any relationship between herd size and the incidence of metabolic disorders. (Metabolics however are not a great problem in this district.)
c) It is more likely that larger herds (i.e. herds of 300 cows or more) will have mastitis proulems. The reason being that management is unlikely to embark upon the same procedures as those adopted by farmers with smaller herds because of the seemingly vastness of the task.
d) In the Kangitaiki Plains District, the larger herds appear to be less severely affected by facial eczema than the smaller herds.
e) I'he larger the number of calves being reared the more difficult the task. Initially, losses are likely to be high but as calf rearers gain experience and their stockmanship improves, the losses tend to drop. A variety of methods are being used successfully to rear large numbers of calves.
f) Lice could be more of a problem in larger herd because if one animal is missed, (which could occur more easily with a large number of animals), such an animal could act as a reservoir and reinfect the remainder.
g) Infertility (empty cows) would be the main animal health problem in larger herds. This is due mainly to difficulties in the detection of in-season animals.
h) 'There appears to be little problem from "population diseases". Population diseases include a wide range of conditions including:
i) Infectious respiratory conditions (e.g. catarrh and enteritis);
ii) Stress conditions;
iii) Infectious abortion conditions (e.g. leptospirosis and brucellosis).

5.15 DIsTANCE'S OF TRAVEL AND TIME AWAY FRUM PASTURES

Data were collected, for all survey farms, on the longest distances the herd had to walk from a grazing paddock to the milking shed, the time the herd normally took to walk such a distance and from this, in conjunction with milking times and any other relevant data, 36 an estimate made of the longest time a cow would be away from pasture to be milked in any twenty-four hour period.
'rable 5.25 shows the longest distances and the estimates of time \because away from pasture for ail survey farms. The figures (shown in column (1)) indicate that the walking distances, although in general being sreater on the farms where larger herds were run, could, on specific farms because of a favourable layout, be relatively low. (e.g. Farm Nos. 12, 25, 26 and 34.)

No attempt was made to obtain information which would enable the average time the cows in each of the survey herds were away from pasture per day over the whole season, or any parts of the season, to be calculated. The collection of such information, it was felt, would be too timeconsuming. Further it should be noted that the figures shown in Column (2) of Table 5.25 will relate only to a small number of days during the season, because of seasonal changes in the total milking times and the adoption on all survey farms of rotational grazing practices.

From the table, it is apparent that with the exceptions of Farms Nos. $1,2,3,4,11,18,2137$ there were no marked differences between the
36. In some cases, during the spring, the herd was held in a holding paddock close to the shed for some time after milking in order to detect in-season cows for artificial breeding.
37. On Farm Nos. 1, 2 and 3, the longest time cows were away from pasture was less than 240 minutes. On Farm Nos. 4, 11, 18 and 21 , the longest time cows were away from pasture was greater than 400 minutes.

Pasture

Farm No.	Longest Distance Chains (1)	Time Away from Pasture Minutes (2)	Farm No.	Longest Distance Chains (1)	Tlime Away from Pasture Minutes (2)
1	30	210	22	45	310
2	30	240	23	75	350
3	50	230	24	60	320
4	64	450	25	40	270
5	60	360	26	40	370
6	25	360	27	60	320
7	60	360	28	80	345
8	80	320	29	80	390
9	80	315	30	80	320
10	50	355	31	100	330
11	68	485	32	80	335
12	56	360	33	100	360
13	32	280	34	40	315
14	70	300	35	60	375
15	100	360	36	70	350
16	60	270	37	80	395
17	00	360	38	80	330
18	40	415	39	80	380
19	20	375	40	80	340
20	60	390	41	80	350
21	100	450			

NOTES: i) The figures shown in Column (1) are in some cases estimates rather than exact measurements.

- ii) The figures shown in Column (2) refer in all but two cases to the last cow or group of cows. (Two farmers indicated that all cows were held in a holding paddock after milking before being allowed to return to erazing.)
survey farms in terms of figures shown in Column (2). The relatively short : times recorded on Farms Nos. 1, 2 and 3 were the result of relatively short milking times and the short distances the herd had to travel. "The comparatively long times observed in the case of Farm Nos. 4, 11,18 and 21 appear to be due to:
a) An extremely long milking time (Farm Nos. 4, 11, 18 and 21). (It should be noted that the ratio of cows per milking unit was extremely high on Farm Nos 11 and 21.)
b) A rigid twenty-four hour grazing rotation (Farm Nos. 4 and 18).
c) A relatively slow droving time (Farm Nos. 4, 18 and 21).
d) A relatively long walking distance (Farm Nos. 11 and 21).

5.16 PECUNIAMY EVONOMIEN

Un all farms in Groups II, III and IV and on the five farms in Group I where the herd numbers exceeded 150 cows, three questions concerning pecuniary economies were asked.
1)

Contract Services
The first question was concerned with contract services. The question was " 10 you feel you get preferential service from contractors over a one man farm (of $80-100$ cows) in:
a) Getting the job done;
b) The rates you pay;

Of the thirty-four farmers who were asked the question, only three indicated that the rates they paid for contractural services differed from those they felt applied to a one man farm. Of the three, one (Farm No. 30) had been able to negotiate a ten per cent reduction in fertiliser spreading rates. Another (Farm No. 31) regularly called tenders for haymaking (i.e. mowing, raking, baling and carting) and by accepting the lowest tender, believed there was a price reduction of five cents per bale. Ihe third (Farm No. 8) indicated that he, with two other farms, was able to collectively bargain for reductions in certain contractural services. Five farmers while answering the question commented that a more likely source of cost reductions for contractural services was from prompt payment. Thirteen of the thirty-four farmers indicated that they believed contractors gave them some preferential treatment, particularly topdressing and haybaling contractors. One farmer, who was
also a haybaling contractor himself, indicated that he preferred to deal with larger clients.

It should be noted that the use made by contractors in general tended to decline from Group I to Group IV. In this context, seven farmers indicatei that they seldom used contractors, and the work for which they employed contractors was usually of a non-urgent nature, such as hedジe-cutting and drain cleaning and so preferential treatment from contractors was of little importance. Further, because a given farm is of a sreater acreage, and carries a freater number of stock than a second fara, it does not necessarily follow that the amount of work for which contractors can be employed is freater on the first farm. The volume of work for which contractors can be employed will be influenced by additional factors such as the numbers of labour units and the farn's complement of machinery.
2) Stock

The second nuestion was concerned with the purchasine and selling of stock. 'I'he question was "Do you f'eel size gives you any special barçaining powers over a one man farmer (milking 80 - l00 cows) with stock buyers or are there no special bargaininer powers?".

Of the thirty-four farmers answerinc the question, sixteen indicated that there was some advantarje due to size, four were unsure, while fourteen thought there was none. All sixteen who felt size gave them special bargaining powers indicated that such powers took the form of being able to dispose of cull stock when ther wanted, rather than being able to buy cattle nore cheaply or sell cattle at a higher price. Two of the sixteen farmers indicated that they bargained actively with stock firms in order to dispose of cull stock when they wished.

The overall impression obtained was that cost economies from this source are likely to be of little importance.

3) Acquisition of Inputs

I'he final question was concerned with the acquisition of all other farm inputs. The question was "Some people think that farms such as.
\because this are able to obtain discounts on some of the other farm inputs which are not available to a one man farmer (milking $80-100$ cows). Do you

- think this is true or false?"

Of the thirty four farmers asked the question, two did not feel they could express an opinion, ten thourht it was false and the remaining twenty-two inaicated that it was true. (In the case of Farm No. 8, three farms collectiveiy purchased inputs.)

Further questioning revealed that there appeared to be three main ways in which the latter group of farmers were able to obtain cost reductions from this source.
a) For certain inputs, they were able, because of the large quantity required, to deal directly with either manufacturers or wholesalers.
b) 'Ne retail cost per unit of some inputs declines as the quantity of these inputs purchased increases.
c) I'hey were able to bargain with the sellers of certain inputs for cost reductions because of the large quantity required.

Unly four of the twenty-two indicated that the cost reductions which could be obtained from this source were substantial. Of these, one claimed to have had success dealino with wholesalers and manufacturers and estimateu that he had been able to reduce the cost of most of his farm injuts by twenty five per cent of the current retail prices. 'Iwo indicated that they were able to barcain on almost every input, one estimating that by such bargaining, he had been able to reauce the price of most inputs by ten per cent. 'The fourth, whose dairy farm was farmed in conjunction with two sheep farms, stated that a ten per cent reauction in price was obtained on most produce. All four farmers indicated they spent a considerable amount of their time engaged in obtaining such discounts. It was interesting to observe that two farmers described such bargaining as being unethical.

5.17 MANAGETVENT

1) General Comments

All farmers in Groups II, III and IV were asked the following question. "As the manager of a "x" man farm, how does your job differ if at all from that of a one man farm?" The procedure adopted was to initially ask the question, allow the farmers to answer, and if the farmers did not discuss the implications of employing labour and herd
size, they were asked to do so by the use of prompts. (Preliminary discussions with Extension Officers had led the author to believe that these two subjects were likely to be of importance to the question.)

Un fourteen farms, the managerial function 38 appeared to be the responsibility of two people. (The fourteen farms were numbers 18, 21 , $20,29,31,33,34,35,36,37,38,39,40,41$.$) On five of these$ farms (i.e Nos. 18, 2l, 26, 29, 31), the two people in question, were also concerned with both the entrepreneurial decisions and with decisions concerning the day to day running of the farm. (That is managerial decisions in the co-ordination and supervision sense.) On the remaining nine, there appeared to be some division between the two functions. 'Srpicaily, one person was concerned with the entrepreneurial decisions, while the other was concerned with the day to day running of the farm. (In oniy two cases, the person to whom the question was put was not concerned with the entrepreneurial function, the farms being Nos. 39 and 41.)

Uf the twenty-six 39 farmers to whom the question on the employment of labour was relevant, twenty-three indicatea that this was a factor winch causeu their role as a manager to differ from that of a one man farmer. seventeen stated that the employment of labour necessitated some effort by management to evolve and apply strategies which gave rise to high labour productivity. 'Ihree farmers noted that the managerial function extended also to the maintenance of grood relations between all employees. Extreme difficulties were encountered, it was stated, if illfeeling existec between the various staff members. Five considered that in order to make the best use of employed labour it was necessary for the manager to spend some time deciding what jobs were to be done, when they were to be done, and by whom. Further this also meant some time had to be spent ensuring that the necessary resources for such work were available. Highteen farmers while discussing labour commented on the supervision of labour. 'l'welve felt the time they devoted to supervising the labour was quite smail. 'lhe other six expressed the opposite view. Further discussion led the author to the conclusion that the supervisory input is likely to depend on the number and type of labour units employed. Where a large number of inexperienced youths are employed, it seems likely \longrightarrow
38. I'he term managerial function as used in this context includes entrepreneurship co-ordination and supervision.
39. Farms Nos. 18, 2l, and 26 were excluded as in all cases both labour units employed on such farms were concerned with the entrepreneurial decisions and decisions concerning the day to day running of the farm.
that a considerable amount of the manager's time will be spent supervising the labour force. Where one experienced man is employed, it seems likely that the supervisory input will be negligible.

Eleven farmers indicated that management differed because of herd size. The reasons given were:-
a) Detection of in-season cows for artificial breeding is more diff'icult in lareer herds (seven farmers).
b) Large mobs of calves are more difficult to rear than small mobs (sixteen farmers).
c) 'Ihere ajpears to be some effect of herd size on cow condition. Trpically younger animals suffer (five farmers).
d) Judgine whether a given area has sufficient feed for drazing, in any given time period, by a particular herd is more difficult with a larger herd (five farmers).

Three farmers felt thit hijin stockin rates led to greater managerial problems than did herd size. It was interesting to note that the manager of Farm No. 39, who was also responsible for the manarement of a neighbourin ${ }_{i}$ farm of 13() surveyen acres stocked at 1.7 milking cows per surveyed acre, felt that this latter farn renuired a Ěreater managerial input than Farm No. 39.

Six farmers believed that considerably more of a manager's time was involved in clerical work of some kind. 40/ In the case of stock records, this was due to:
i) Having a greater number of animals about which information had to be recorded.
ii) Recording more information about each animal because of the difficulty with larce herd numbers in remembering detailed information about each animal.

The employment of labour also necessitated some clerical work which was not required on one man farms.
40. It is interesting to note that nine of the Group IV farmers prepared budgets each year while in the other groups, the corresponding figures were Group III, seven, Group II, four and Group I, four.

Wwo farmers answering the question indicated that they spent a considerable amount of time pricing inputs from various sources and bargaininE to obtain economies in the acquisition of such inputs. Both had enjoyed considerable success at this.
2) Kecords

All farmers but one (Farm No. 19) kept records of service dates and consequently of calving dates. (Nineteen recorded pre-mating heats. See Table A. l2 of Appendix A.)

All farmers but one kept some form of production records. In most cases these took the form of a cumulative total of the season's production basei on the ten day period slips from the factory. Twenty-two farmers had aidditional information because of herd testing records.

Uther records kept included stock parentage records, animal health records, paadock records, weather records. Diaries also contained, in some cases, a great deal of information but in most cases this was not in a readily ${ }_{j}^{r}$ available form.

The overall impression gained by the author was that the manajers OI the larger herds spent more time on record keeping than those of the smaller herds, but this was a reflection of the increasing number of entries needer for particular records rather than the keeping of a ereater $\mathrm{i}_{九}$ imber of records.

3) Problems Due to Distance

As some authorities ($9, \mathrm{p} .12$) consider that the increasing distances normally associated with increasing farm size give rise to manayerial problems, all farmers were asked: "Do you feel the sheer distances involved in your travellins about a farm of this size are a problem?"

None of the forty-one farmers answering this question felt distances were a problem. However, thirty-four regularly used some means of transport. Of the thirty-four:

15 used a tractor;
14 used a motorbike;
5 used a bicycle;
4 used a car;
3 used a truck;
('ihe discrepancy between the total of the figures shown, and 34 is due to some farmers using more than one source of transport.) Four of the seven who indicated they normally used no means of transport were in Group I, two were in Group II and one in Group III.

5.18 RESULI'S OF ATjMIIIONAL FARM SURVEYS

Additional surveys were conducted on four other farms in order to ailow the author to study three further management systems which were considered to be pertinent to the study.

1) Farms where I'wo Separate Herds are Milked through the One Farm Dairy

One example of the above was visited where two farmers, although individually ormin their own herds and farms and employing their own labour, milked their herds in the one farm dairy. The two farmers owred 180 and $2(\%$ acres respectively and in addition they both leased additional farms close by. In the 1969/70 milking season, the two farmers had collectively wintered approximately 530 cows to milk a maximum of approximately j00 cows. The farm dairy was a 32 aside hichline sinEle herringbone operated by four milkers. (Two milking units beine supplied from both farms.) the procedure adopted was to milk one particular herd (the smallest) first. The milking machines and yards were then cleaned, and the second herd (the larger) was milked. 'l'wo reasons for adopting such an arrangement were given. First, the farm dairies on both farms were old and in need of replacement at the time the two farmers purchased their farms and it was felt cost economies could be achieved by building and utilising one new farm dairy. Second, both farmers had differine farming views and such an arrangement gave each farmer complete freedom in the adoption of the various f'arming practices he preferred. Such freedom it was considered was not available in a partnership agreement.

A farmer was also interviewed who in the 1969/70 milking season, had divided his 360 cow herd (run on a 250 acre property, plus a run-off) into two herds of approximately 180 cows each. One herd was made up mainly of older cows, while the other comprised younger cows and any other cows, which for various reasons appeared to be in poor condition or health. The herd in question, it was said, had in previous seasons been characterised by younger animals which produced disappointingly and of ten ended the lactation in poor condition. The reasons for this were
not known exactly but as it had been suggested that this might be due to herd size per se, the herd had accordingly been divided into two.

Such a division, however, involved the labour force in additional work. For example, two labour units were required to bring the herd to the farm dairy for milking. Further, in order to prevent the length of the grazing rotation (and hence grazing pressure) from being halved, - a(iditional subdivision in the form of temporary electric fencing was required. 41)
'The effect of such a system is extremely hard to evaluate, particularly as in the 1909/70 season (the first season it was adopted) the farm was seriously affected by a drought. However, despite the disadvantages earlier discussed the farmer in question intended to continue the system in the 1970/71 dairying season.

As a result of the sucgestion noted above, that herd size per se has some effect on the productivity of the animals within a herd, the author interviewed Mr. R. Kilgour, a scientist conductinc animal behaviour studies at the Ruakura Agriculture Research Centre. According to Mir. Kilfour (32, pp.102-104), the splitting of large herds into smaller ones may be justifiable because of social factors. Domestic animals (including cows), it is believed, tend to have a social orçanisation within their jroup, herd or flock. That is, a social hierarchy is established within a group of animals. A stable social group exists when every cow can recognise and maintain a known relationship with every other cow. The important point here being that socially subordinant cows can recofnise and avoid socially dominant cows. If a herd becomes too big, it is felt that such recognition is no longer possible and stress within the herd, particularly on the subordinant cows, greatly increases with a consequent loss of production and disease resistance. Further research however is needed to establish what herd size constitutes a stable social Eroup.

2) Contract Milking

One farm was visited where a contract milking agreement was in operation. In the 1969/70 season, the farmer in question $42 /$ milked approximately 175 cows upon 150 surveyed acres. In addition, he under-

```
41 i.e. Each permanent paddock was divided into two with an electric fence.
```

42. The farmer will be referred to as the contract milker for the remainder of the discussion.
took to milk on a contract basis two neighbours' herds of approximately 110 and 140 cows respectively. A 20 aside highline single herringbone was used, operated by three milkers.

I'he agreement stipulates that the neighbours must guarantee for a seven year period to provite not less than a specified minimum number of cows each milking. 'The contract milker is required to provide all the necessary milking facilities, as well as the labour required for milking. Payment to the contract milker for his services is at a specified rate per pound of milkfat. Provision is made for the rates to be reviewed each year after taking into account such factors as the basic milkfat price, and the dairy farmers' index of costs. The contract milker is expected to meet all shed expenses, expenditure on antibiotics för mastitis control is however shared. 'ihe neichbours are entitled to remove from their respective milk vats for calf rearing, fifty-five sailons of milk per calf, up to a maximum number of calves which represents a twenty per cent replacement rate. 43/
'The three herds are milked in a given order and immediately a milking is complete, they become again the responsibility of the two neiëhous F. Facilities are made available at the farm dairy, however, by the contract milker for bloat prevention and control and artificial breeding.
3) Fiarms Consisting of a Number of Distinct Units

One farm was visited which comprised four distinct dairying units. 'I'he farm consisted of 890 surveyed acres (865 effective acres) and in the $1904 / 6 y$ season produced from a total of 935 cows, 305,000 pounds of milkfat $\hat{\hat{A} / /(t h e ~ f ' i s u r e ~ h a s ~ b e e n ~ r o u n d e d ~ t o ~ t h e ~ n e a r e s t ~ t h o u s a n d ~ p o u n d s ~}$ of milkfat). This represents 353 pounds of milkfat per acre and 326 pounds of milkfat per cow.

The area and cow numbers of each of the four farms is shown in 'l'able 5.26.

The labour complements on each of the four farms was two permanent labour units. (A third labour unit was employed, however, on each farm
43. i.e. For a herd of 100 cows, fifty-five gallons per calf could be removed for a maximum of 20 calves.
44. The total shown includes an estimate of the milkfat used for calf rearing.
over the sprine months.) The four farms were not completely self contained as young stock from each farm were for varying periods grazed away from the farms. Ail hay and silage for each farm, however, was made upon the farm in question. 'l'he machinery complement of each farm comprised one tractor, one forage harvester, one trailer and one bloat spray outfit. A mower was shared between all four farms. Contractors were employed for topdressing and haymaking.

Table 5.26 Areas and Herd Sizes of the Four Farms

	Area (acres)	Effective Area (acres)	Cow Numbers
Farm 1	220	220	235
Farm 2	220	210	220
Farm 3	220	210	240
Farm 4	230	225	240

'The day to day decisions concernind the running of each of the four farms' as made by the senior stalf member of each farm, in compliance with a farmine policy formulated by the farm supervisor. (The farm supervisor was also the senior staff member of Farm 3.) Major decisions (of an entrepreneurial nature) were made by the farm manaçer after consultation with a manazement committee.

Increasing farm size by increasing the number of plantis, rather than the size of an individual plant, according to the farm manager, has the followint advantages:
a) Difficulties arising because of a large number of cows in one herd are avoided. (Such difficulties have been discussed earlier and include the detection of in-season cows and the detection of animal health problems.)
b) A spirit of competition exists between the staff of the four farms which induces the farm staff of each farm to make efforts to increase productivity.

5.19 SUMMARY

Une of the most striking features of the farm survey was the extremely hich ratio of cows per labour unit recorded by the farms of the upper subclasses of Group I and II. Such high ratios of cows per labour unit were achieved by the labour units making extensive ase of contractors and casual labour and working extremely long hours, particularly in the spring. In terms of the ratio of cows per milking unit however, the dil'ferences between the four groups of farms were Jess marked. I'his was due to the Group I farns makine extensive use of family labour (i.e. wives) for milking. Similarly, there was also a greater tendency for family labour to assist with other farm work on the Group I farms. Contractors and ciasual labour were used lesi extensively on the farms of Group III and IV and concequently, the labour unitis of guch farmsi were encrage in a sreater rance of farm operations. A most noteable feature was that, with one exception, on all the Group III and IV farns, some provision was made "fur the milkine units to have time of during the milking season. 'Ihis contrasteu with the situation on the Group I farns where such a provision was made on only one third of the farms.

Specialisation and aivision of labour was apparent to some extent on ail the milti-labour unit farms. It appeared that work on the survey farns could be dividied into three classes; first, jobs which were resarded as being extremely vital to the profitable orcanisation of the farm; secord, joos requiring special skills or experience; finally, jobs which were reéarded as being less vital to the profitable organisation of the farn.

There were no marked differences between the four groups of survey farms in terms of the range of machinery used. There was a trend towards the number of tractors and of particular items of machinery which were used on the survey farms to increase from Group I to Group IV. As contractors were used less extensively on the farms of Group III and IV, there was a tendency for the farms of Group III and IV to own a greater rance of the machinery used on the farm.

All farmers considered tractor sheds, implement sheds, farm dairies, some form of workshop and dwellings were buildings they could not do without. I'the ratio of cows to the number of houses required was extremely high on those farms of Group I where the ratio of cows per labour unit was high. Certain of the multi-labour unit farms were able to achieve hicg ratios
because of the employment of married couples and single labour. With three exceptions, on all survey farms, a type of herringbone farm dairy was used. The most popular type of herringbone was the highline single.
'The stockire rates on the survey farms were relistively high. The stockine rate of all the Group IV farms was greater than one milking cow per effective acre.

Milkfat production per cow and per acre varied considerably between and within the sour groups of survey farins. 'rhere was a trend towards a desline in both the milkfeit per cow and milkfat per acre on those farms oi each Eroup where the ratio of cows per labour unit was high. The outplit of milkfat per labour unit was extremely high on some of the Group I farms. In termi of output per milking unit, however, the differences between the four groups were less marked.
'Hhere were no obvious differences between the four groups of survey farms in terms of percentacres of stock losses, and herd wastage, calving percentases and percentages of empty cows and heifers.

Of the forty-one farmers surveyed, tiventy-two were in the 1969/70 weasor, herd testing, and forty were using artificial breedirg. 'I'he predominant breed of dairy cattle was Jerseyr, althouch the Friesian breed appeared to be increasing in importance. Unly sixteen of the forty-one farmers knew every animal in their herd individually and it appeared that it became increasingly difficult to know every cow indiviaually as herd size increases.

Little can be said about the effect of herd size on animal health, in the absence of a careful study. The impression erained by the author was that the manager of a larger herd would have to pay more attention to calf rearing and the condition of stock (particularly the two year old heifers).

The data concerning the maximum distances of travel and time away from pasture indicated that althourh in freneral, the maximum distances the herds had to walk were greater on the farms of the larger herd sizes, the distances could on specific farms be relatively low due to a favourable farm layout. There was no trend towards the maximum time the herds were away from pasture being greater on the farms of the larger herd sizes.

Thirty-four farmers were asked to discuss the ways in which pecuniary ecoromies could arise. ' 'hree indicated that they were able to obtain reductions in the rates for contractural services, sixteen considered that size gave them advantaces in the disposal of cull stock and twenty-two believed that cost reductions could be obtained in the purchasing of some of the other farm inputs.

On fourteen of the multi-labour unit farms, the managerial function appeared to be the responsibility of two people, and on five of these farms, the two people in ruestion were concerned with both the entrepreneurial decisions and with decisions concerning the day to day running of the farm. 'Pwenty-three farmers indicated that the employment of labour was a factor which caused their role as a manaser to differ from that of a one man farmer. Eleven farmers indicated that management differed becauje of herd size.

I'wo examples of farms where two herds were milked through the one farm dairy were visited. In the case of the first example, two reasons were siven for the aaoption of such an arran\&ement. First, the farmers in question consi(iered that cost economies could be obtained by the building of one larie farm dairy rather than two smaller ones, and second, the arrangement grave each farmer freedom in the adoption of those farming practises he preferred. In the case of the second example, the farmer divided his herd into two, as it had been suegested that the poor production of his herd (particularly the production of the younger stock) was due to herd size per se.

A farm where a contract milking agreement was in operation was also visited. 'r'he farmer in question undertook to milk in addition to his own herd, the herds of two neighbours.

One example of a farm consisting of a number of distinct units was visited. The advantages of increasing farm size by increasing the number of plants, rather than the output of a given plant were given as, first, the difficulties associated with a large number of animals in one herd are avoided, and second, a spirit of competition exists between the staff members of each of the individual units.

BASIC ASSURPTIONS OF THE STUDY AND

DEI＇AILS UF THE ANALYTICAL PROCEDURE

6．1 INPRU JUCTION

In this chapter，the basic assumptions of the analysis are presented and discussed and a description given of the analytical procedure．The chapter should be read in conjunction with Appendix B in which details of the assumptions made and cost data used are giver．

The analytical procedure adopted in this study is the Economic－出话ineerin汾 or Synthetic－Firm technique．Consequently the initial part of the chapter is concerned with a brief description of the method of constructing the short run average cost curves．The resources which constitute the fixed plant are indicated and the range of plant utilisations（herd sizes）relevant to each short run average cost curve are given．

The second part of the chapter is concerned with the assumptions made in order to attempt to eliminate all the sources of between farm variation，other than those due solely to farm size．For example， the district to which the results are applicable is indicated，the technology employed on the representative farms -1 is discussed and information concerming some of the assumed levels of prices and costs given．

The final part of the chapter is concerned with a detailed
\because description of the assumptions made and the operations required for the development of the budgets（from which the cost revenue ratios are derived）of the representative farms．All possible sources of economies and diseconomies of size revealed by the farm survey，and by the com－ pilation of the cost data are incorporated into these assumptions． This description is of considerable importance，in the author＇s opinion， because it does allow the reader to gain an insight into the ways in which economies and diseconomies of size arise．

1．The meaning of the term＂representative farm＂is indicated later in the text．（See footnote 4．）
6.2 GENERAL DESCRIPPION OF THE CONSTRUCTION OF THE SHORT RUN AVFRAGE COST CURVES

The procedure used to analyse economies of size in this study is tine Economic-Engineering or Synthetic-Firm technique. This technique analyses economies of size in terms of short run and loner run average cost curves.
. \therefore... initial requirement of the Economic- Engineering technique, is that a resource (or eroup of resources) be identified as an item (or items) of fixed plant. In this study, labour 2/ is initially recognised as the resource which is fixed in the short run. Five plant sizes are recognised, based upon multiples of adult male labour units. t'he five plant sizes are:

F'arms with one permanent adult male labour unit Plant size one
Farms with two permanent adult male labour units : Plant size two Farmis with three permanent adult male labour units : Plant size three Farms with four permanent adult male labour units : Plant size four Farms with five permanent adult male labour units : Plant size five

Wach plant size is divided into three subclasses according to the size (i.e. number of sets of cups) of farm dairy (herringbone) 3/ employed. Details of the three subclasses associated with each plant size are shown in Table ól.

Fifteen short run average cost.curves are produced by computing cost revenue ratios representing different degrees of plant utilisation. In this study, the variable degrees of plant utilisation, for each plant size, are represented by a series of varying ratios of cows per labour unit.
2. Uther resources besides labour are also regarded as items of fixed plant. I'hese other resources are indicated later in the text.
3. 'The two terms 'farm dairy' and 'herringbone' are not synonymous in this discussion. The term 'herringbone' refers only to that part of the farm dairy where the actual milking process takes place The term 'farm dairy', however, is a collective term and includes such items as the milkroom, herringbone, circular yard, entry/exit draughting area etc.

Plant Size	Subclass (a)	Subclass (b)	Subclass (c)
Plant size one	6 aside	8 aside	10 aside
Plant size two	12 aside	14 aside	16 aside
Plant size three	18 aside	21 aside	24 aside
Plant size four	24 aside	28 aside	32 aside
Plant size five	30 aside	35 aside	40 aside

The procedure adopted for the construction of a short run average cost curve is to:
a) Set the herd size at the initial degree of plant utilisation for the plant size in cquestion. In the case of plant size one farms, the initial derree of plant utilisation is represented by a herd size of sixty cows. (i.e. The ratio of cows per labour unit is sixty.)
b) For the initial degree of plant utilisation, construct a budget 4 and from such a budget determine a cost revenue ratio. The cost revenue ratio so determined represents the initial point on the short run averare cost curve in question.
c) Increase the herd size by a factor 5 (i.e. increase the degree of plant utilisation), construct another budget and derive a new cost revenue ratio. This second cost revenue ratio represents a second point on the short run average
4. Each buḑet can be viewed as representing a farm of a different 'size'. Such farms will be referred to in the discussion as 'representative farms'.
5. 'I'he factor by which herd size is increased varies between plant sizes. In the case of: i) Plant size one farms, the factor is 10 cows;
ii) Plant size two farms, " " " 15 cows;
iii) Plant size three farms," " " 20 cows;
iv) Plant size four farms " " " 30 cows;
v) Plant size five farms " " " 30 cows;
cost curve. In the case of plant size one farms, the factor by which herd size is increased is 10 cows. (A new budget and cost revenue ratio is therefore derived for a herd size of seventy cows - the ratio of cows per labour unit has increased to seventy.)
d) The procedure discussed above in c) is repeateci up to and including the herd size representing the maximum degree of plant utilisation, for the particular subclass of the plant size in question. For plant size one farms utilising a six aside farm dairy (i.e. subclaiss (a)), this maximum degree of plant utilisation corresponds to a herd size of 105 cows. 'L'ine cost revenue ratio derived from a budget for 105 cows represents the final point on this particular short run averace cost curve.

The range of plant utilisations (herd sizes) over which cost revenue ratios are determined for each of the three subclasses, of each of the five plant sizes, is shown in Table 6. 2.

An examination of Column (l) of Table 6.2 indicates that in all cases, the herd sizes representing the iritial degrees of plant utilisation correspond to a ratio of sixty cows per labour unit. The data shown in Column (2) however, have been derived by determinind for all subclasses, the naximum number of cows which can be milked $6 /$ in each of the associated farm dairies, if the average milkine time (over the whole season) is assumed to be 1.75 hours. I/ (An average milkingr time of 1.75 hours over the whole milking season is therefore considered to be the limit of the fixed resource, labour. The figure is based upon impressions obtained by the author from the farm survey.)
6. On any given representative farm, the assumption is made that all milking cows are milked in a single herd. Consequently other organisations such as shift milking, and dividing a given herd into a number of smaller herds are ienored.
7. 'The figure of 1.75 hours does not include other chores such as cleaning the farm dairy and yards, etc. It refers only to the length of time the milking machines operate. The data upon which Column (2) of Table 6.2 is based are discussed on page 51 of Appendix B.

Taole 6.2 Range of Plant Utilisations (Herd Sizes) According to
Plant Size

Subolass (Size of Herringbone)	Plant Size One (cows)		Plant Size I'wo (cows)		Plant .jize Ihree (cows)		Plant Size four (cows)		Plant Size Five (cows)	
	$\operatorname{Min}_{(1)}$	(2)		$\begin{aligned} & \text { Max. } \\ & (2) \end{aligned}$		Max (2)	$\operatorname{Min}_{(1)}$	Max. (2)	$\operatorname{Min}_{(1)}$	
(a)	60	105	120	210	180	315	240	420	300	525
(b)	60	120	120	226	180	339	240	452	300	365
(c)	60	136	120	240	180	360	240	480	300	600

25012 S
i) Column (1) shows for each of the five plant sizes, the herd size corresponding to the initial (minimum) degree of plant utilisation.
ii) Column (2)"shows for each of the fifteen subclasses, the herd size corresponding to the maximum degree of plant utilisation.

The total number of cost revenue ratios derived (or representative farms constructed) for each plant size is:

Plant size one	: 22
Plant size two	: 25
Plant size three	: 27
Plant size four	: 25
Plant size five	: 30

Consequently in total, 129 cost revenue ratios (or representative farms) are involved in the derivation of a lone run averare cost curve.

6.3 BASIC REQUIRLMENPS OF THIE ECONOMIO-FNGINGERING TECHNIQUE

One important requirement of the Economic-Engineering technique is that all sources of between farm variation, other than those due solely to differences in farm size, be eliminated if possible. In order to comply with this requirement, a number of assumptions have been made; these are discussed in detail below.

The representative farms are located in the Awahuri district, eight miles west of Palmerston North. The soils of the district are described as gleyed and organic river flat soils, (33, p.19). Natural drainage
is good, although with intensive winter stocking, pugging problems can arise. Natural soil fertility is high and consequently the fertiliser requirements of pastures are relatively low. Rainfall averages $37 . j$ to 40 inches per year and the rainfall is evenly distributed throughout the jear, (33, p.5).

All the representative farms are seasonal supply dairy farms, are of the same shape (that is rectangular, the length being twice the width of the farms) and are stocked at 1.1 milking cows per survejed acre. A stocking rate of 1.1 cows per surveyed acre is considered by local Extension Officers to be typical of the higher producing farms in the district.

The technology employed on the farms is that which is currently being recormendeu by local Extension Officers. A brief description of the technolofy employed follows. Pasture is the main feedstuff used. No foraje crops are urown and no silage is made. The supplenentary feed reserves consist entirely of hay. The farms are self-contained except for the re_{i} lacement heifers (and replacement bulls), which are frazed away from the farm for a period of twelve months. Calves however, are retained on the farms. Kotational grazine is practised throughout the year and the farms are subdivided into arproximately thirty padtocks. In winter the block Erazing winteriné system is used. During excessively wet periods in the winter, however, the stock are removed from the pastures and held on the farm race, in order to minimise pasture puefiny. The predominant dairy breed is Jersey, although the Friesian breed is increasins in importance. Herd improvement practices include the use of artificial breeding and herd testing. Pertiliser requirements are relatively low, the annual appiication of fertiliser (to pastures) being four hundred weight of superphosphate. The major pasture pests are Wiscana cervinata (Porina moth) and Costelytra zealandia (grass grub). Annual applications of pesticides are made to eradicate the former. Weeds are of minor importance, the only weed requiring treatment with herbicides being Hordeum murinum (barley grass).

Une important feature of the Economic-Engineering technique is that it provides opportunities for the researcher to standardise the management factor. Accordingly in this study, the assumption is made that all representative farms are farmed by operators of similar managerial ability, and all operators are considered to be of above average managerial ability.

All farm improvements 8 are new. The investment costs $9 /$ of such improvements includes tradesmens' labour. 'The input prices are those pertainine to August 1970. Although a number of survey farmers inuicated the existence of pecuniary economies in the acquisition of inputs, compilation of the cost data revealed only one (annual) input (electricity), where such an economy was considered to be significant. Consequently, with the exception of electricity, pecuniary economies in the acquisition of (annual) inputs have been ignored.

The prices of cull stock (i.e. cull cows, empty heifers, cull bulls and bobby calves) used, were decided upon after discussions with the representatives of a number of Manawatu stock firms. The prices are those which it is thought would be paid in the 1970/71 season. Milkfat price however is treated as a variable.

6.4 MiP Kinoj up ANALYSIS

A single computer"programne was written (by the author) to prepare for each of the five plant sizes, a series of budgets representiner dif'ferent degrees of plant utilisation. From these budgets, the cost revenue ratios are derived, from which the short run average cost curves are constructed. 'i'he preparation of each budget consists of the followine five steps:

The calculation of a livestock reconciliation schedule;
The calculation of the farm investment requirements;
8. 'The term 'farm improvements' refers to: fencing, farm races, water reticulation systems, farm dairies, dwellings, implement sheds, barns, pump sheds, milking equipment, effluent disposal systems, and electric power installation.
9. Aंs such resources are of a capital nature (i.e. they are not exhausted over a single production time period) a number of different cost concepts can be associated with these resources. For example:
i) 'The initial sum which must be outlayed to obtain the resource (e.g. the cost of a new dwelling is $\$ 8,000$).
ii) The annual cash costs which are associated with such resources (e.g. repairs and maintenance and insurance).
iii) the annual non-cash costs associated with such resources (e.g. interest and depreciation.
The term investment cost is used to indicate that the relevant cost concept in this case is i).

The calbulation of the gross farm income;
The calculation of a series of cost figures;
The derivation of a series of net income figures;

- The general procedure adopted by the author when writing the computer proeramme was to divide the data into tivo groups. 'lhe first group comprises data which are incorporated into the programme deck (of cards)
- of the computer programme, while the second group comprises data which are made available to the programme as data (input) cards. Details of the data of each group are as follows:

Group One consists of:

a) Resource data 10 which within each subclass of each plant size, vary either continuously or discretely 11 as herd size varies. For example, the investment costs of barns, water reticulation systems, effluent disposal units etc.
b) Kesource data which over the complete range of plant sizes and herd sizes studied (i.e. from plant size one 60 cows, to plant size five, 600 cows), remain constant. For example, the investment cost of the pump shed.
c) Stock performance data and product prices, which are assumed to remain constant both between and within plant sizes. For example, stock losses, herd wastage, cull stock prices, etc.

Group 'I'wo consists of:

a) Kesource data which within each subclass of each plant size remains constant as herd size varies. Data of this nature
10. 'Ine term 'resource data' is a collective term and refers to the type, quantity and cost of resources.
11. 'l'he phrase 'varies continuously' means in this context, that a different value is associated with each herd size.

The phrase 'varies discretely' is taken to mean that a given value remains constant over a range of herd sizes, and a change from one value to another is made at a particular herd size.
are therefore concerned with the resources which (within each subclass) are fixed in the short run. Such data includes:
i) The number of labour units and the wages of the employed labour units.
ii) I'he size and length of the herringone.
iii) Building investment costs of certain buildings. For example, the investment cost of dwelling(s) and an 'initial' $\frac{12}{}$ value of the implement shed.
iv) I'he length of "drop-offs" from the main electrical service line to the various buildings;
v) 'I'he investment costs of certain items of machinery. For example, the investment, costs of tractor(s), transport tray(s), trailer(s), haymower(s), hayrake, Erader blade, hayloader and spray equipment.
vi) I'he investment costs of various items of equipment. For exarnple, the investment costs of milking equipment, general farm equipment, and hand tools.
vii) I'he estimated economic lives of ail assets which are to be depreciated:
viii) sundry data required for the calculation of a number of expenciture items. For example, dairy shed expenses, electricity, insurance and repairs and maintenance.
b) 'Ihe ranee of herd sizes over which cost revenue ratios are to be derived for the particular subclasis in question, and the factor by which herd size is to be increased.
c) Certain parameters, the values of which it was considered might have a considerable influence on the results of the
12. 'The meaning of the term 'initial' is indicated later in the text.
study. For example, milkfat price, rates of interest, and milkfat production per cow. 13/

6.5 OPERAMIONG PARNUIRNE BY IHE CONPUTNER

After the second group of data have been made available to the prosramme by way of data input cards, the following operations are performed by the computer for the preparation of each budget.

1) Calculation of the Livestock Reconciliation Schedule, and Gross Frarm Income

Initially a livestock reconciliation schedule for the herd size in question is computed. Such a schequle determines, first the number of replacement stock which must be saved annually to maintain stock numbers, and second, the number of cull stock which are available for sale each year.

From the data concerning the numbers of replacement stock recuired and the numbers of cull stock available, the income from cull stock sales and bobby calf sales is derived. 'lhis is added to the milkfat income to obtain the gross farm income.
2) 'alculation of the rarm Investment Requirements Land Investinent
\therefore '山itia $1 l_{v}$, the area of the farm, the dimensions of the farm, the price per acre of the "bare" land (i.e. land exclusive of all improvements except pasture), and the total land investment are determined.

Farm Race Investrient

Data concerning the dimensions of the farm are used to calculate the length of the farm race. The appropriate width and the appropriate cost per chain of the f'arm race are determined from data incorporated into the proframme deck. I'his data, together with the data concerning
13. Long run average cost curves are derived for two sets of assumptions concerning the level of milkfat production per cow attained by the representative farms.
i) Long run average cost curves have been produced, for the assumption that the level of milkfat production per cow remains constant over the complete range of plant sizes and herd sizes studied.
ii) Long run average cost curves have been produced, for the assumption that the level of milkfat production per cow is a function of both plant and herd size. For a fuller discussion, see page. 25. of Ammendix R.
the length of the farm race, allows the total cost of the farm race to be determined. Finally, the total race investment is derived by adding to the cost of the farm race, the cost of certain factors (e.g. tanker track, gate filiings and cattlestop), which remain constant over all pIant sizes and herd sizes studied.

Fencing Investment

From the dimensions of the farm and farm race, the length of fencing required is calculated. 'ihis together with the cost data incorporated into the programe allows the total cost of fencing to be calculated. 'The total fence investment is obtained by adding to the total cost of fencinE , the costs of those components which, either vary discretely with herd size, or remain constant over the complete range of plant and herd size:; studied (e.c゙・ the costs of the various gates).

Investment Costs of Farm Dairies

The only data concerning the farm dairy which is made available to the programne by way of input data cards, are the size and length of the herringbone. ('ine remainins data required to calculate cost of the farm dairy are incorporated into the proframme.) The farm dairy has been viewed as consisting of a number of components. The components are:
a) Herrincibone;
b) Milk Koom and vat stand;
c) Lircular yard; 14/
d) Drenching race;
e) Entry/exit/drauchting area;
f) Entry area;

The individual components of the farm dairy are shown in Figure 6.1. Within each subclass, all but one of these six components, the herringbone, varies as tine herd size varies. 15/
14. 'The circular yard can be further divided into:
i) Concrete ground slab;
ii) Backing gate and power unit;
iii) Yard pipe work and kerbing;
15. 'lhe circular yard (and its components) vary continuously as herd size varies. The remaining components vary discretely with variations in herd size.

FIG. 6.1 COMPONENTS OF THE FARM DAIRY

Initially, the cost of the herringbone is determined; from the data concerning the herringbone lenoth and the programmed cost data. The appropriate milk room and vat stand, and entry/exit/draughting area is then selected. From the selection of entry/exit/draughting area, the width of the entry area is specified. 'The physical dimensions and costs of the circular yard are then determined, includinf the dimensions and costs of the backing gate, circular yard pipe work and kerbing. A comparison between the length of the herringbone and the length of the backing eqate allows the length of the drenchine race and entry area to be calculated. The cost of these two components is then determined. Finally, the total cost of the farm dairy is found by summing the costs of the six individual components.

Barn and Implement :Hhed Investment Cost

The investment in barns varies discretely with variations in herd size. From the data incorporated into the proframme, the appropriate barn investment is determined.

As discussed in section 6.4, an 'initial' value for the implement shed and data concernins the machinery investment are nade available to the programme as input data. Provision is made in the prograime, however, for sucn information to be modified in three situations. First, on all plant size one farms, where the herd size exceeds 120 cows, the assumption is made that contractors are employed for hay raking. Consequently, on such farms the cost of the hay rake is set to zero, and the value of the implement shed reduced by the value of the housing area reluired by the hay rake. In the case of jlant sizes two, three, four and five, the total ownership $10 /$ costs of a hay baler are computed and compared with the costs of employing a baling contractor. When the total owmership costs are less than total contract costs, a baler is added to the complement of machinery, and the value of the implement shed increased by the value of the housing area renuired by the baler. A similar procedure is adopted in the case of a fertiliser distributor. $17 /$
ló. The total ownership costs of a baler include:
i) Baler costs: Interest, depreciation, repairs and maintenance, insurance and balinc twine.
ii) 'I'ractor costs: Fuel and oil consumption and repairs and maintenance.
iii) Housing costs: -Interest, depreciation, insurance and repairs and maintenance.
17. The addition of a fertiliser distributor to the machinery complement is - "aiso accompanied by the addition of a front end loader to facilitate ease of handling of bulk fertiliser.

Machinery Investment Costs

The total machinery investment, is obtained by the summation of the costs of the individual items of machinery. Such a sumation includes those items of machinery orifinally supplied as input data, plus those caued (e.tr. hay balers and fertiliser distributors), and those excluded (e.g. hay rakes) by the procedures discusisea previously.

Irvestment Costs of Water Reticulation and Fffluent Disposal Systems
I'he investment costs of both the water reticulation systems and effluent disposal systems are derived by the use of reణression enuations, which express the investment costs as a function of herd size.

Investment Uosts of Électric Power Installiation

From the dimensions of the farm, the length of the main electrical service line is calculated. This information, torether with the cost data incorporated into the prosrame, allows the cost of the service line to be calculateu. The total cost of electric power installation is ootained b_{i} auciang to the cost of the main service line, the cost of the "drop-offs" to the various farm buildings.

Milking Equipment and General Bquipment

'ine total cost of the milking equipnent is derived as being the sum of the followine five components:
a) Milkine machines;
b) Fa m Dairy buckets;
c) Herd testing̈ (milk meter) brackets;
d) 'l'eat washers;
e) Hot water cylinders;

In the case of plant sizes three, and four, however, the value of the hot water cylinder initiaily supplied as input data, is only relevant up to and including herd sizes of 265 cows. 18/ Thereafter, a new value is required. Provision is made in the programme for such a modification to be made.

From the dimensions of the farm, the length of electric fence wire required is calculated. The cost of such an item is calculated and
18. The reason for this modification is discussed on page 42 of Appendix B.
added to the value of the general equipment and handtools, to obtain the total value of the equipment.

Working Caijital Requirements and stock Investment

- 'The workine capital requirements are expressed as a function of herd size. The investment in stock, however, is determined from the data of tine livestock reconciliation schedule and from data concerning the values
- of various clasies of livestock, which is incorporated into the procramme.

Hotal Famm Investment and "Market Value" of the Representative Farms

The total farm investment is determined by the summation of the individua?, investment costs of the components of two groups of resources.

Group One : a) Land;
b) Buildings;
c) Fencing;
d) F'arm race;
e) Water reticulation system;
f) Effluent disposal unit;
E) Milkinç equipment; *-
h) Blectric power installation; *

Group T'wo : a) Stock;
b) Workine capital
c) Machinery;
d) Equipment;

An estimate of the "market value" of the farm is also made by reducing the value of those resources marked above by an asterisk by forty per cent. 19/ The f'igure of forty per cent was chosen because preliminary investigrations indicated that the total investment requirements of the representative farms were in excess of those expected to be required by f'arms of comparable plant sizes and herd sizes in the Awahuri district. It was felt that much of the discrepancy could be explained by the fact that all resources marked by an asterisk, were - assumed to be new on the representative farms and further, the costs of such resources included tradesmen's labour. As it was considered that - one could expect the resources marked by an asterisk to be forty per cent exhausted on farms of comparable plant and herd size in the Awahuri district, the values of such resources.in the calculation of the "market value" of the farms are reduced by forty per cent.
19. 'The figure of forty per cent was decided upon by the author, after discussions with Mr. J. N. Hodgson, Reader in Farm Management, Massey University.

3) Calculation of the Cost Data

Qasual and Contract Labour Costs
Provision is made in the prosranme for the calculation of casual and contract labour costs wherever relevant. Such calculations include:
a) On ail farms of plant size one, a charge for hay baling and hayloading;
b) Un all plant size one farms where the herd size exceeds 120 covs, a charge for casual labour for repairs and maintenance work;
c) Un ail farms of plant size one where the herd size lies between 121 and 130 cows, a charge for contract hay raking;
d) Un ail plant size one farms where the herd size exceeds 1S() cows, a charge for contract hay rakinç and hay mowing;
e) Un all farms of plant sizes two to five, where a hay baler has not been added to the complement of machinery, a charge for contract hay baling;
f) On all farins of plant sizes two and three, a charge for contract hay loading; $20 /$
g) Un all plant size one farms and on all farms of plant sizes two to five where a fertiliser distributor has not been aaded to the complement of machinery, a charge for contract fertiliser application.

Animal Health Costs

Animal health costs consist of three components:
a) General herd costs; (including bloat costs)
b) Calf rearing costs;
c) Drench costs;
20. The cost (per bale) for contractors is assumed to vary between the three plant sizes where contractors are employed. Un farms of plant size one, it is assumed three contract labour units are employed. Un plant size two farms, two contract labour units are employed. (The additional labour unit being supplied by the farm staff.) Similarly, on plant size three farms, one contract labour unit and two farm labour units are employed.

General herd costs are expressed as a function of herd size. Data from the livestock reconciliation schedule, together with cost data incorporated into the progranne are used to derive the calf rearing and drench costs.

Breeding Expenses

The prowaume determines, for each herd size, the number of cows which must be artificiaily inseminated, in oruer that all herd replacements be artificially bred. the cost of inseminatinc the required number of cows is then calculated. Similarly for each herd size, the number of coins to be herd tested and the cost of herd testine is determined.

Dairy Shed Fxpenses

Dairy shed expenses consist of the following items:
a) Rubberware;
b) Kotary purn oil;
c) Vetergent;
d) Dairy shed brushes;
e) sirmal milkine machine check;
f) Bartajus (for stock iaentification);

From the data incorporated into the procreame, the quantities and annual costs of iteris a), b), c) and f) are valculated. (Data from the livestock reconciliation schedule are also used in the calculation of itera f).) I'he arnual cost of dairy shed brushes is supplied to the programine as input data. As the cost of item e) remains constant over the complete rance of herd and plant sizes studied, this cost has been incorporated into the programe.

Feed Costs

Feed costs include only grazing costs for the replacement yearling heifers and associated bulls. Data from the livestock reconciliation schedule are used in the calculation of such costs. No charge is made for feed for calf rearing purposes. It is assumed that calves are reared entirely on whole milk (i.e. nurse cows).

Fertiliser

The fertiliser cost per acre (and hence per cow) is assumed to remain canstant over the complete ranye of plant and herd sizes studied. Such a cost therefore is expressed as a function of farm area (i.e. the number of acres).

Yecu and Pest Control

Rxpenditure on weed and pest control consists of two components. First, pesticide for the control of porina moth and second, herbicide for the control of barley erass. Both components are expressed as a function of farm area and are assumed to remain constant over the complete range of illant and herd sizes studied.

Administration

This item of expenditure consists of two parts - accountancy fee and sumdry itens. The accountancy fee is derived by the use of a linear relationship, which expresses the accountancy fee as a function of herd size. The total administration cost is obtained by addinc to the ascountancy fee, the cost of a number of items (i.e. sundry items), which are assumed not to vary with chances in plant and herd size.

Pates

Rates are charced at a given rate per dollar of total unimproved value. The assumption is made that the unimproved value per acre declines continuously with increases in farm size. Such a value is obtained by the use of a linear expreswion, which describes the unimproved value (per acre) as a proportion of the oricinal purchase price (per acre) of the bare land. 'Potal unimproved value therefore is the product of the number of acres and the unimproved value per acre.

Freight

Provision is made in the programme for the calculation of freight on the following:
a) Livestock;
b) Fertiliser;
c) Sundry farm requisites;

Data from the livestock reconciliation schedule are used in the calculation of the cost of transporting the replacement heifers and associated bulls, to and from the place of outside grazing. The fertiliser freight costs are expressed as a function of farm area. Over the range of plant and herd sizes studied, this item of expenditure can assume two values, depending on whether or not, a contractor is used for the application of fertiliser. Two items are included in the category of sundry farm requisites, the two items are paraffin for bloat prevention
and calcined magnesite for the prevention of metabolic disorders. In botn cases, the prosrame calculates the quantities of these items required and the cost of their transportation.

Pinally, freiout charges on cull stock have been deducted from the price received for the products and freight on materials for repairs and maintenance purposes have been included in the cost of the materials.

Insurance

Insurance expenditure consists of two components; the first of which consists of those premiums which within a subclass, vary (either continuously or discretely) as herd size varies. Assets on which such premiums are charged include: buildings, machinery, equipment, milking equipment, supplementary feed reserves, 21 effluent disposal pump and water pump, $2 ? /$ Premiums of this nature are computed from the data incorporated into the mrogranme. The second component consists of those premiums which rithin a subclass are fixed for all degrees of plant utilisation. Such premiums include those for: workers' compensation, personal accident and sickness, Farmers' Public Liability and tractor insurance. I'he annual costs of these premiums are supplied to the progranme as input data.

Vehicle hxxenses

Inciuded in this item of expenditure are: $23 /$
a) Irractor fuel and oil costs;
b) Tractor and trailer reristration costs;
c) Baline twine on those farms where the complement of machinery includes a hay baler;
21. Within each subclass, for each herd size, the total value of the required supplementary feed reserves is calculated.
22. Insurance, in the case of the water reticulation system and effluent disposal unit, is changed only on the value of the pumps. (Discussions with the representative of an insurance company indicated that the company was unwilling to insure the accessories such as pipelines, troughs and sprinklers.) From the programme instructions, the programme determines for each herd size, the appropriate values of the two pumps.
23. Unfortunately a charge for car expenses was overlooked during the compilation of the cost data. The consequences of this omission are
" aiscuised in section 7.4.

The procedure adopted to calculate the tractor fuel and oil consumption is to calculate the number of hours each of the implements. operate. Irailers and transport trays are, however, excluded from this calculation. The hours of operation oł each implement are then totalled and multiplied by a factor $24 /$ to obtain an estimate of the total hours of tractor operation. From data incorporated into the programme, which specify the hourly consumption and costs per gallon of fuel and oil, the annual cost of these two items is obtained. 'lractor and trailer registration costs are made available to the programme as input data. The cost of baling twine is incorporate into the programme expressed as a function of herd size.
.•

Electricity

Electricity expenditure includes charges for the following:
a) Waterpumps;
b) Milking machines;
c) farm dairy electric lights;
d) In place (bulk milk vat) cleaning devices;
e) Effluent aisposal units;
f) Hot water cylinders;
§) ''eat washers;
h) Refrigenation units;
\dot{A} description of the derivation of the costs of the electrical comsumption of the above items follows.

I'he daily requirements of electrical energy for water pumping are obtained by the use of a regression equation which expresses the required input of electrical units $\frac{25}{}$ as a function of herd size. Significant pecuniary economies were found to exist in the purchase of electricity. The procedure adopted by the authorities is to total the number of units

24. For a full discussion of this factor, see page 65 of Appendix B. 25. 'lhe terms 'electrical units', 'units' and 'kilowatt-hours' (kwh) are synonymous. They are used interchangeably in this discussion.
26. A period in this context means two months.
27. The assumption is made that two switchboards are included in the electrical installations of the representative farms. One is concerned solely with the water pump, the other with the farm dairy electrical equipment.
at one rate and the remainder at a lower rate. 28/ Consequently, a calculation is made in the programme of the number of units used per period for water pumping and the differential system of costing applied.

Four electrical devices (e.E. milking machines, farm dairy electric lights, in place cleaning devices and effluent disposal systems), are assumed to be connected to one switchboard. The electrical costs of these four devices are obtained by summing the number of units used by each device per period and applying the differential system of charging discuissed earlier.

A description of the procedures used for determining the number of units used by each of the above four devices per period follows. The hourly input oir electrical enery required to power the milking machines is made available to the prowrame as input data. I'his, together with data \dot{d} etailing the number of hours the milkiné machines operate per period allows the number of units consumed by the milking machines per period to be deterrined.

From data incorporated into the procramine, the number of electric lights in each size of herringbone ard the number of hours per period, the electric lichts operate are calculated. Such information, together with data specifying the voltage of the electric lights, gives the total number of units used by the lights per period.

Provision is made in the progranme for in place cleanine devices to ke added to the complement of electrical equipment, when herd sizes exceed 176 cows. 29/ For herds of 176 cows or less, no charge is made for such a device. For herds in excess of 176 cows, the daily input of units required by such a device is incorporated into the programe. The total number of units used per period is obtained by multiplying the number of days (in any given period), by the daily requirement of units.

The daily input of electrical energy required by the effluent disposal system is obtained by the use of a regression equation, which expresses the input of units as a function of herd size. The number of units used per period is obtained by a procedure similar to that used for the in place cleaning device.
28. Such a system of charging is not adopted for all electrical appliances. The systems of charging are discussed in detail on pages 55-62 of Appendix B.
29. Data obtained from the manufacturers indicated that such devices are

- at present only fitted to the larger bulk milk vats.

The total number of units required annually for hot water heating is suiplied as input data at the time the prosramme is executed. It should be realised, however, that in the case of plant sizes three and four, such a quantity varies discretely with herd size. Provision is therefore mad in the programme for the quantity to be altered at the appropriate herd size. In the case of hot water heatiné, the system of charging aidopted by the authorities is such that no pecuniary economies can be realised. The appropriate rate of chirging (per unit) is incorporated into the moyrame.

The annual requirement of units by the teat washers is considered to consist of two components. First, the total number of units required to initially heat the contents of the teat washer cylinder at the commencement of each milking. Second, the total number of units required to heat the necessary volume of water durine the milking for the herd size.':n question.

I'he first component is defined as input data at the time of prosrame execution, while the second component which varies continuously with herd size, is computed. The total annual cost is obtained b.r auding the two components toyether and a_{i} jlyine to this total the $a_{j p r o p r i a t e ~ c o s i t ~ f a c t o r . ~}^{\text {pin }}$

Provision is made in the prosramme for refriceration units to be audeu to the complement of electrical equijment when herd size exceeds 170° cows. $30 /$ The derivation of the total number of units required annuaily for refrigeration purposes is obtained by the use of an expression which expresses the refuired number of units as a function of:
i) The average volume of milk per milking;
ii) The averase reduction in temperature;
iii) Ihe dimensions of the appropriate bulk milk vat;
30. 'The present policy of the Manawatu Lo-operative Dairy Company is to install refrigeration units on bulk milk vats which are of a capacity of 720 gallons or more. A bulk milk vat of 720 gallons is required when herd size exceeds 176 cows. Further it should be noted that although the investment and installation costs of the refriceration units and the in place cleaning devices are met by the Dairy Company, the farmer is expected to meet the electricity costs of such devices.

Consequently, for each herd size (above 170́ cows), the averase volume of milk produced per milking is determined and the appropriate culk milk vat selected. jJata concerning the average reduction in milk temperature anu the dimensions of the various bulk milk vats are incorporateu into the procrarme. The total annual electrical costs of the refrigeration units are then obtained by multiplyine the total annual requirement of units by the appropriate cost factor.

Repairs and Maintenance

Repairs and maintenance expenditure includes expenditure on the followine itens:
a) Buildiness;
b) Pences;
c) Races;
d) Wilking equipment;
e) Water reticulation systems;
f) Eifluent uisposal systems;
f) Machinery;
h) General equipment;

In the case of buildings, milkincequipment, water reticulation syrstems, eiffluent disfosal systems and yeneral equipment, the repairs and miaintenance cost is aissessed as a percentage of the oricinal investment cost.

A slishtly modified procedure is adopted, however, in the derivation of the sum required for repairs and maintenance to fencing and the farm race. In the case of fencing, the expenditure required for the fence lines is assessed as a given sum per chain of fence length, while that required for sates is assessed as a percentage of the original cost of the materials. In the case of the farm race, however, initial calculations indicated that as herd size increases (both between and within plant sizes), the length of race per cow decreases. As the width of the race varies discretely with herd size, it follows that within farms of the same race width, the race stockine rate 21 must increase as herd. size increases. Such an increase in race stocking rate, should, in the author's opinion, be accompanied by an increase in the repairs and maintenance expenditure per chain of race. To facilitate such an increase, the repairs and maintenance cost per chain is set as five per cent of the
31. Race stockiner rate is expressed in terms of cows per square chain of race.
original material costs (including freight) on the farms of minimum race stocking rate. 32 For all other herd sizes, the race stocking rate is calculated and divided by the minimum stocking rate. (i.e. The stocking rate at which the cost factor is set as five per cent of the orisinal material costs.) The product of the resulting quotient and five per cent, (i.e. the value on the 60 cow farm) sives for the herd size in question, the appropriate repairs and maintenance cost factor. The repairs and maintenance costs for eate fillings is similarly determined. The sum required for the tanker track, however, is assessed as a percentage of the orisinal investment costs of the materials.

Machinery repairs and inaintenance costs are assessed on an hourly basis. The total hours of operation of each machine are calculated and the appropriate cost factors (i.e. costs per hour), applied to obtain the costs for each machine. The total machinery repairs and maintenance cost is obtained by surming the expenditures of the individual machines. I'he hourly repaifs and maintenance cost factors are with three exceptions, incorporated into the programme. Ihe three exceptions are those relating to tractor (is), trailer(s) and transport tray (s). The reason for this is that in plant sizes three to five, multiples of these machines are incluaed in the complements of machinery. In such cases where the machinery complement incluues a number of a particular trpe of machine, the individual machines making up such a number are not necessarily similar. The individual machines (makinç up a number) differ in size $33 /$ and ansociated with each machine of a particular size, is a particular repairs and maintenance cost factor. Consequently the cost factor which is used in the pro framme, for that type of machine, differs from plant size to plant size, depending on the combination of individual machine sizes chosen.

Depreciation

Depreciation is calculated by using the sinking fund method. 34/
32. i.e. H'arms with a herd size of 60 cows.
33. For example, the machinery complement of plant size five includes three tractors. They are not of the same size as they are of different rated horse power capacities. Similarly the machinery complement of plant size five includes two trailers. These are not of the same size as the physical dimensions of the trays differ.
34. After studying a number of discourses on depreciation, the author deci-ded to use the sinking fund method, primarily because it recognises the time value of money.

For a particular asset, the annual payment to the depreciation fund is eiven by the expression:

$$
L P P=(P-S) \frac{i}{(1+i)^{n-1}}
$$

where: SFP is the annual payment to the depreciation fund;
P is the initial investment cost of the asset in question;
S is the salvare value of the asset;
i is the rate of interest;
n is the estimatea economic life of the asset;
r'he resources of a capital nature are divided into two groups. From Group Ore, depreciation is charged on the following:
a) Ail ouildings;
b) Nilking equipment;
c) 'Ihe punps of the water reticulation and effluent disposal systems;

Purther, such resources are considiered to have a zero salvage value.

In the sase of Group Two, depreciation is chared on all the individual items of machincry. A salvare value of ten per cent is allowed for such resources. 'i'he mrograrmine procedure adorted is to supply as input data, only the estimated econoric lives of the assets to be depreciated. All other relevant data (including the derivation of the appropriate sinking fund factors and salvage values) are computed from data incorporated into the progranne.

Interest

As a consequence of the method of depreciation (34, p.35) used, interest is chared on the total value of the resources of Group One and Group 'l'wo. Two rates of interest are used; one for the Group one resources and another for those of Group IWo.

Operator's Labour Reward
The opportunity cost of the operator's labour in all cases is assumed to be 3,000 dollars per annum. A sum of 3,000 dollars per annum is assessed as the opportunity cost of the farm operator's labour, as discussions with local lixtension Officers indicated that such a sum was being earned by experienced farm employees in the Manawatu district.

The orportunity cost of the operator's managerial input is assessed as six jer cent of the gross farm income in all cases. A rate of six per cent on fross farm income is used for assessine the opportunity cost of the farin operator's managerial input as this sum, when added to 3,000 dollars (for the operator's labour), arproximated the salary beine paid to employed managers on some of the Group IV survey farms.
4) Derivation of the Net Income Figures

Five total cost concepts are derived, the details of which are:

```
Total cost A = Total cash costs;
I'otal cost B = '''otal cost A + depreciation;
lotal cost 心 = 'lotal cost B + interest on investment;
''otal cost D = 'rotal cost \hat{v}+\mathrm{ opportunity cost of}
    operator's labour;
'lotal cost E = 'Total cost D + opjortunity cost of
    operator's manayerial input.
```

Five net income figures are derived by subtracting each of the five cust concepts from the gross farm income. The five net income figures so derived are therefore:

Net casn income	$=$ Gross farm income - Total cont A
Net farm income	$=$ Gross farm income - Total cost B
Uperator labour and management incone	$=$ Gross farm income - Total cost C
Uperator management income	$=$ Grosis farm income - Total cost D
Untrepreneurial income	$=$ Gross farm income - Total cost E

6.6 DURIVATION OF THE COST REVFRNE RATIOS AND SUNDRY DATA

For each representative farm, five cost revenue ratios are derived by dividing each of the five cost concepts discussed earlier by the gross farm income. The five cost revenue ratios are therefore:

```
Cost Revenue Ratio 1 = Trotal Cost A
Cost Revenue Ratio 2 = 'Total Cost B
Uost Revenue Ratio 3 = 'Potal Cost C
                                    Gross Farm Income
```

```
Cost Revenue Ratio \(4=\frac{\text { T'otal Cost }]}{\text { Gross Farm Income }}\)
Cost Revenue Katio \(5=\frac{\text { 'lotal Cost E }}{\text { Gross Farm Income }}\)
```

Finally for each representative farm, the output of milkfat per lavour unit and the averase (seasonal) milkine time is calculated.

6.7 TRXATIUN CUNSIDRRAIIONS

The effect of taxation is not considered in this study. As taxation is a coirplex matter and is dependent on a number of factors, other than the incone generating capacity of a farm, taxation is considered to be outside the scope of the study.

6.8 SURARY

In this chapter, a detailed account is given of the basic assumptions of the analysis and a careful and thorough description given of the operations recuired for the construction of the short run averase cost curves.

A careflil study of this chapter plus the information contained in A_{1} perdix B (Volume II) will enable the reader to crain an understanding of the factors which (in this study) give rise to economies and diseconomies of size. Further a detailed knowleage of the assumptions made ard of the cost data is required if the results of the analysis are to be assessed critically.
35. \therefore 'ume of the factors which influence the taxation liability of a farmer are:
i) The personal situation of the farm operator (e.g. marital status, number of dependents, etc.).
ii) Form of owmership of the farm.
iii) The level of equity.
iv) The extent to which the various farming taxation exemptions are taken advantage of.

CHAPL'M SEVINN

PNR UNI'1 \mathcal{B} OST AND INOOML DATA

In this chapter, a detailed account is fiven of the way in which the cost and fross form income data varies accordine to plant and herd size.

The first part of the chapter is concerned with the way in which the per unit l'investmert costs of the various capital resources vary vith plant and herd size. 'ihe total investment requirements and estimated 'market values" of the representative farms are then presented. In the third part of the chapter, the relationship between plant and herd size ara the per mit costs of the various arinual cash and non cash costs are discussed. Finally the manner in which each of the five total cost concepts and mross farm income varies with plant and herd size is indicated.
'lnis chapter is not essential to the thesis but has been included as, in the author's opinion, it does enable the reader to gain a clear understandinc of the factors which ere responsible for economies and discconomiei of size. the chapter should be read in conjunction with the series of per mit cost (and income) curves 2/ presentea in Appendix ơ of Volume II.

7.2 OTAR UNLY CO:SM OF CAPITAL RESOURCTS

Larid
The ner unit investment cost of land falls continuously over the complete rance of herd sizes studied. The per unit inrestment cost, therefore, falls from a maximum of 478.51 dollars in the ase of the 60 cow farms, to 259.91 dollars in the case of farms with a herd size of 6()0 cows.

1. The phrase "per unit cost" is synonymous with the phrase "per cow cost".
2. A per unit cost curve shows the relationship between a given item of cost data and herd and plant size.

Curve AA' of Fisure 7.1 shows the relationship between herd size and the per unit investment cost of land. From Figure 7.1, it can be seen that the curve is made up of two straight line semments which intersect at B. $3 /$ It is important to note that the (negative) griadient of the initial secment of the curve (i.e. secment $A B$) is less than that of the second secment (i.e. segment BA'). Consequently relatively larce cost reductions are obtained over the initial secment of the curve. For example, increasine herd size from 60 to $l l 0$ cows results in a per unit cost reduction of 157.61 dollars. At the other extreme, however, a fifty cow increase from $j 50$ to 600 cows results in a per unit cost reduction of only 9.27 dollars. Land can, therefore, be recopnised as one resource which mizht cive rise to pecuniary economies. $\frac{1 /}{}$

Frarm Race

The relationship between herd size and per unit race investment costs - is shown in ficure 7.2 by the curve AA'. 'rne secmented nature of the curve is due to the assumption that race width varies discretely with herd size. Figure 7.2 shows that within farms of a civen race width, the per unit investment cost decreases as herd size increases. The reasons for suci decreases in the per unit investment costs are:
a) Certain components of the total race cost are fixed over the complete rance of herd sizes studied, (e.g. the costs of the cattle stop, gate fillincs and tanker track).
b) Within farms of a given race width, the cost of the race to the farm dairy is fixed.
3. 'the two segments have been derived from the use of two linear functions.
4. The data upon which Figure 7.1 is based refers to the price per acre which would have to be paid if the area in question was purchased as a single "parcel of land". In practice, however, it may not be possible to purchase the required area in a single "parcel". . Consequently pecuniary economies may not be realised. For example, in order to acquire 300 acres, it may be necessary to purchase three "parcels" of 100 acres each. The purchase price per acre of the 300 acres will therefore not differ from that of a sincle "parcel" of 100 acres and consequently no pecuniary economies are realised.
c) Over the complete range of herd sizes studied, although the length of the farm race increases continuously with increases in herd size, such increases occur at a decreasing rate, (i.e. the per unit lencth of race required declines continuously as herd size increases).

All three sources of cost reductions noted above can be described as arisine from proportionality relationships. The relationships discussed in a), b) and c) also, between farms of different race widths, tend to Jive cost advantaçes to farms of the largest herd size (i.e. 600 cow farms). 'Ihese advantages, however, are reduced by the increased cost per chain of the races required by the larger herd sizes. Consequently the lowest per unit investment cost is not associated with the largest herd size studied but is recorded at a herd size of 399 cows.

Fencing

The relationship between herd size and the per unit investment cost of fencine $i s$ shown by the curve AA' of Fieure 7.3. Curve AA' shows that over the complete range of herd sizes studied, the per unit costs of fencinc decline continuously as herd size increases. Such cost reductions are due to:
a) The continuous decline in the per unit length of fencinc ..! (and hence coit of fences), which is associated with increases in herd size.
b) Any minor disturbances $)^{5}$ in the overall trend towards a continuous decline in the per unit cost of gates with increases in herd size being offset by the continuous decline in the per unit cost of fences noted above.

Agrain such cost reductions can be described as arising from proportionality relationships. Consequently, the maximum per unit cost is
5. As the total cost of egates varies discretely with herd size, the trend towards a continuous decline in the per unit cost of gates, with increases in herd size, is interrupted over specific ranges of herd sizes. For example, the per unit cost of gates decline continuously up to and including a herd size of 199 cows. Over the rance of 200 -. 202 cows, the per unit cost is greater than the per unit cost associated with 199 cows. A minor disturbance is therefore said to occur over the range of 200-202 cows.
recorded on the 60 cow farms (i.e. 58.21 dollars) and the minimum (i.e. ló. 75 dollars), is recorded on the 600 cow farms.

Nater Reticulation Systems

The per unit investment costs of the water reticulation systems for the representative farms are shown in Figure 7.4 by the curve AA'. Figure 7.4 shows the curve AA' as consisting of two segments. The first segment (i.e. AB is constructed from the first regression equation; 6/ the second segment (i.e. B'A') from the second recression equation. 6 Within the first secment, the investment costs fall from 32.19 dollars per cow in the case of 60 cow farms to 8.17 dollars per cow in the case of f'arms with a herd size of $39 y$ cows. Investment costs then rise slichtly to 8.6() dollars per cow for a herd size of 100 cows (due to the nurber of trourths being increased to forty-five), and thereafter decline steadily to reach a minimum of 7.50 dollars per cow at a herd size of 600 cows.
'I'he relationships shown in Figure 7.4 are due to:
a) The continuous decline in the per unit length of the main pipeline which is associated with increases in herd sizes. (Such an advantace is to some extent offset by the necessity to increase the diameter of the pipeline for the larger herd sizes).
b) Certain components of the cost of the water reticulation systems remaining fixed over the complete rance of herd sizes studied (e.c. the installation costs of the water bore).
c) Certain components of the cost of the water reticulation sijstens remaining constant over specific ranges of herd sizes (e.E. the cost of pumps, trough leads, troughs, trough fittings and pipe fittinfs).

As in the case of fencine and race investmert costs, proportionali.ty relationships $\mathfrak{G i v e}$ rise to the three sources of cost reductions just noted.
6. The two refression equations are discussed fully on page 37 of Apperaix B.

Electric Power Installations

Ticure 7.5 shows tine electric power installation costs, accorane to plant size and herd size. Ir the case of plant sizes one to three, the reiationship is represented by the curves AA', BB' and ('心' respectively. $]$ Curves $D_{1} D_{1}^{\prime}$ and $D_{2} D_{2}{ }^{\prime}$ represent the relationship ir the case of plant size fur, while the relevant curves for plant size
 of plont sizes futir and five, each subclass), the per unit installation costa decrease as herd size increases. The reasons for such decreases are:
a) Ithe vontimanis decline in the per unit lenetin of the mair serviée line which is as uociated with increases in herc size.
-) Tre cost of "drop-oi's" from the main service line to the various farm builcings, remaining constant over all degrees of plant utilisation.

Asain proportionality reletionships are responsible for such cost reductions. A thina fiactor is also of interest hovever. No charce is made b_{y} the authorities for the initial sixty feet of service line. Such a concession, soavours farms of the srailest herd size, as the effect of the
7. For the rerainc or of this discusuion, the symbols Ain', BIB', w', D' and $E E^{\prime}$ are used to denote the per unit cost curves of plant sizes ore to five respectiveiy. In the case where three per unit cost chrves are ausociated with each plant size (i.e. each per unit cost curve corresponds to whe of the three subclasses), the per unit cost curves corresponding to the three subclasses are derioted by the subscripts $1,2,3$. Hence in the case of plant size ore, the per unit cost curve of:
i) Subclas: (a) is denoted by $A_{1} A_{1}{ }^{\prime}$
ii) Suoclass (c) is denoted by $A_{2} A_{2}{ }^{\prime}$
iii) Subclass (c) is denoted by $\mathrm{A}_{3} \mathrm{~A}_{3}$ '
8. Two curves are required in the case of plant sizes four and five as within both plant sizes, depending on the size of herringbone used, two expressions are used to calculate the length of the main service line. See pa氏e 36 of Appendix B.
corcession is diluted, as the length of main service line increases. However, within each plant size (and in the case of plant sizes four and five, cach suoclass) such an ef iect is not of sufficient masnitude to offeet the cost reductions discussed in a) and b) and the per unit cost declines continuously as herd size increases.

In the case of resources of this nature, 9/ the per unit investrient costs are a functiori of both plant size and herd size. Altnough contimuous cost reducticns occur within a plant size as herd sizes increase, continucus cost reductions do not occur betwcen plent sizes as herd sice increases. For example, in the case of plant size one farms, the per urit cost diecliries continously as herd size ircreases fromi $60-1 \geqslant 6 \mathrm{ccws}$. (At the cut-off 10 point of plant size one subiclass (c) the per unit cosit is z. 75 dollars.) Movine to a hera size of 137 cows (which necessitates usinc plart size two), results in the per unit cost increasine to 4.20 dcllars. The reasons for such an ircrease are as followe. Aithouitr the increase in herd size (i.e. from 136 to 137 cows) is accomjaried by a decline in the per unit cost of the main service linc, this is more than offset by the increased jer tinit coit of the "drop-offs". As herd size is increased still furtreer, the per unit investrent cost declines, but does not become equal to or less than 3.75 dollars until a hewd size of 163 cows is reacheri. Thereafter the per unit cost. declines steadily to a herd size of 240 cows (i.e. the cut-off point Of plant size two subcilass (c)).
'Therefore if a horizontal line is constructed from point A ' to curve $B b^{\prime}$, the line A'P results. Such a line can be used to indicate the range of herd sizes, over which (in the case of plant size one and two farms), continuous cost reductions occur, that is over the range of $60-136$ cows (curve A') ard 163 - 240 cows (segment PiB' of curve Bi'). Alternatively the line can we used to show that cost advantages accrue to the plant size two farms (relative to the cut-off point of plant size one subclass c)), only over specific ranges of herd sizes. In this case, cost advantages accrlie to the plant size two farms, only over the range of 163 to 240 cows, (i.e. secment PB').
9. Other resources of this nature are farm dairies, milking equipment, implement sheds, machinery and equipment.
10. 'The term "cut-off point," is synonymous with the term "maxisum degree of plant utilisation." The cut-off points of each of the fifteen subclasses are shown in Column (2) of Table 6.2.

Similar lines can be constructed through the cut-off points of the other plant sizes (and subclasses), enabling the interplant cost advantadee to ce determined. An examiration of Fievure 7.5 indicates that relative to the represertative fams of plant iize one, cost advantages accrue to all representative forms of plarit sizes three to five. In the case of Rlant size two farmi, however, as noted earlier, cost advantaçes accrue cnly over specific ranues of herd sizes.

Pigure 7.5 shows that between plant sizes two to five, for coryarable subclasses and aefrees of plart utilisation 11 the per unit cost declines as one moves from plant size two to plant size five. Consequertly the lowest per urit cost is recorded at the cut-off point of plant size five subclass (c). It should be realised that at this herd size, the per unit cost of the "urop-offs" is not at a minimua. (The per unit costs of the "(irop-offs" is a rinimum at the cut-ofi point of plant size ore subclass (心) The minimum total per urit cost on this plant size five farn results from the continucus reduction in the per unit cost of the main service line, whin accompanies increases in herd size beinc of sufficient mainitude to offset the sliently hiziner per unit cost of the "drop-offs".

Parm Dairy Coste

Finure 7.6 shows the per unit farm dairy costs, accordinco to plant size and herd size.

Fisure 7.6 shows that within each of the three subclaises of each pluint size, the overall trend $\frac{12 / \text { is for the per unit investment costs to }}{}$ is declire as hord size increases. This decrease in per unit investment cosit is explained by:
11. i.e. Representative farms with the same number of cows per labour unit, and utilisine a herringbone with the same number of sețs of cups per milker.
12. In the case of the three subclasses associated with plant size one, the per unit costs of the farm dairies decline continuously as herd size increases. In the case of each of the three subclasses associated with each of the other four plant sizes, such a decline is interrupted over specific ranges of herd sizes because of chanfes in the costs of entry/exit/draughting area and chances in the cost of the milk room and vat stand.
a) The cost of the herrinebone portion of the farm dairy, remains constant over the complete range of herd sizes relevant to the subclass in question.
b) "'ertain components of the cost of the farm dairy vary continuously with herd size, the increases hovever occur at a decreasing rate, (e.E. the cost of the circular yard backinç fate and the cost of the circular yard pipe work and kerbing.)
c) Certain components of the cost of the farm dairy are assumed to be fixed over the complete rance of herd sizes studied (e.e. the cost of electrical instailations to the backine cate and the entry and exit çates to the drenchine race.)
d) Certain components of the cost of the farm dairy vary disorotely with herd sire (e.e.e the cost of the entriv/exit./ drauchtin σ area, the milk room and vat stand and the entry gate.)

All four sources of cost reductions noted aoove can be described a arisine from proportionality relationships. Hence it seems likely that pecuniary economies will be realised in the construction of farm dairies.

It shouid be noted that within each plant size, the per unit investrent cost at the three cut-off points conforms to one of two patterns.
i) In the case of plant sizo one, the por unit cost decreases from the first to the third cut-off point.
ii) In the case of plarit sizes two to five, the per unit, cost increases from the first to the third cut-off point. $13 /$

If the procedure discussed on pase 136 is adopted, and a series of horizontal lines drawn through the various cut-off points, the nature of the between ilant, cost reductions can be examined. Relative to the plant size one (i.e. the cut-off point of subclass (c) - the plant size one farm with the lowest per unit cost), with the exception of plant size five, cost reauctions accrue over specific ranges of herd sizes to all subclasses of the other four plant sizes. In the case of plant size five the per unit cost of all representative farms of subclass (a) is less than that at the cut-off point of plant size one subclass (c).
13. For plant sizes two to five when moving from the first to the third cut-off points, increases in the per unit cost of the herringwone outweight the per unit cost decreases from all other sources. For plant size one, however, the opposite applies.

It should be noted that within plant sizes two to five, the lowest per unit cost in each case is recorded at the cut-off point of suisiass (a). Further as one noves from plant size two to plant size five, (for comparable subclasses and degrees on plant utilisation), the micinitude of the cost reductions increases. Consequently, the lowest ier urit cost is obtained at the cut-off point of plant size five, subclass (a), (i.e. $52 j$ cows, 30 aside herrinemone).

Barri Investmort Costs

Curve AA' of Figure 7.7 shows the per urit investment cost of bams according to rerd size. Whe segmented nature of the curve is due to the fact that bam costs vary discretely with kerd size. Consenuently, a series of cost reductions are obtained over the lencth of the curve, by tine fuller utilisation of the capacity of each barn. Per unit investnerit costs decline from a maximun of 7.55 dollars in the case of the 6 ? cow farms to a mirimum of 3.81 dollars in the case of farms with a herd size of 533 cows.
is the barms in question are kitset barns, $\frac{24 /}{}$ the cost reaductions shown in Figure 7.7 from a farm opereitor's point of view can be recourded os of a pecumiary nature. Howeven, in the first instance, it is linely that such reductions arise from proportionality relationships (i.e. the pir usiti quantity of materials required derilines as herd size increases).

Pump Shed Costs.

As the pump shed cost remains constant over the complete ranje of herd sizes studied, the per unit investment cost declines continuously as herd size increases. The maximan value of 2.41 dollars per cow is recorded on the farms with a herd size of 60 cows and the minimum value of 0.24 dollars per cow on the farms of 600 cows.

Dwellings
Withir each subclass dwellings are reçarded as items of fixed plant. Consequently, cost reductions are obtained as the degree of plant utilisation increases. Between plant sizes, however, a cost advantage accrues to those farms of plant size one, where the ratio of cows per labour unit exceeds 120.
14. The costs which are incorporated into the programme include all the costs which are associated with a barm (e.g. materials, cartage, painting and erection costs).

Implement Sheds

Fiuure 7.8 shows the per unit investment costs of implement sheds, accoraine to plant size and herd size. I'he vertical lines FF', GG' and MA' of Figure 7.8 indicate the herd sizes a.t which, for particular plant sizes, the complement of machinery is altered, necessitatinc a chane in the total cost of the implement shed. Line FF' applies only to plant size one farms and indicates the herd size at which the hay rake is excluded from the complement of machinery, and the total cost of the implement sheu decreased. Line GG' indicates the herd size at which a fertiliser distributor is added to the complement of riachinery and the total cost of the implement shed increased, in order to accomodate the fertiliser distributur. Similarly, line Hif indicates the herd size at which a hay raler is added to the complement of machinery, necessitating an increase in the total cost of the implement shed.

Witrin each plant size, if minor variations 15 which occur in some plant sizes over a small rance of herd sizes are ichorel, the overall trend is for cost reauctions to be realised as the decree of plant utilisation increases. Relative to the cut-off point of plant siac one, cost reductions accrue to the other four plant sizes over specific ranges of herd sizes. the minitiun per unit cost occurs at the cut-off point oí plant size five, subclass (c).

Milking Equiment

Fisure 7.9 depicts the mamer in which the per unit cost of milkine equipment varies accordine to plant and herd size.

Within each of the three subclasses associated with each plant size, cost reductions result as the defree of plant utilisation increases. 16/ Within a plant size, the cut-off points of the three subclasses conform to one of two patterns. In the case of plant size cne farms, the lowest per unit cost is recordeu at the cut-off point of subclass (b), while in the case of plant sizes two to five, the per unit costs increase as one moves from the first to the third cut-off point.
15. Such variations occur in plant sizes two to five and are due to the increase in the area of the implement shed, in order to accomodate a fertiliser distributor and/or a hay baler.
16. Minor disturbances due to alterations in the cost of hot water cylinders do, in some cases, interrupt this trend. See Table B. 15 of. Appendix B.

Kelative to plant size one (i.e. the cut-off point of subclass
(b)) over specific ranges of herd sizes, cost reductions accmue to all subclasies of the lareer plait sizes. The marrituaie of such cost 2eviuctions, for comparable subclasses and degrees of plant utilisation, increases as one moves from plant size two to plant size five. rintin cacia of thesefoun plant sizes, the lowest per wit costs are recorded at the cut-off point of subclais (a). Phus over the complete rane of plart and herd sizes stuaied, the per unit cost declines from 34.31 dollars at the start noint 17 of plant size one subclass (c) to 9.86 dollars a.t the cut-ot'f poirt of blant size five subclass (c).

Withir Eacn eubclass, the cost reductions noted in Figure 7.9, arise from proportionality relationships due to the fuller utilisation of the iteras of íixed plant. 18/ For comparable suvclasses, and degrees of plant utilisation, the between plant differences may from a farm operator's view be regarded as of a pecuniary nature. Nowever in the first instance, it seems likely that such cost reductions arise for froportionality relationships. 19/

Effluent Disposal Systems

Curve Ar' of Fiture 7.10 shows the relationship between herd size and the per unit investment cost of the effluent disposal sirstems. Curve AA' consists of three segments, each segment being derived from a regression equation. If minor variations such as those which occur over the range of 121 to 145 cows and 351 to 437 cows are ignored, $20 /$ the overall trend is for the per unit cost to decline as herd sizes increase.
17. The term 'start point' is synonymous with the term 'the initial degree of plant utilisation'. 'The start points of each of the 15 subclasses are show in solumn (1) of Table 6.2.
18. e.t. I'he costs of milking machines and teat washers and in some cases costs of hot water cylinders (for a particular subclass) remain constant over all degrees of plant utilisation.
19. e.f. vertain components of the cost of the milking machines remain constant over a range of milking nachine sizes. For example, the costs of electric motors, vacuum pumps, teat washer cylinders. In addition, certain components of the cost remain constant over the complete range of milking machine sizes studied, e.g. fittings for the water supply to cooler.
20. These variations are due to the introduction of different effluent aisposal systems (and hence the use of different regression equations), when herd sizes reach 121 and 351 cows. The regression equations are discussed fully on page 38 of Appendix B.

Machinery

The relationships between the per unit costs of machinery and plant and herly size are shown in Figure 7.11. 'The vertical line FF' in Figure 7.11 indicates the herd size at which a hay rake is excluded from the complement of machinery of plant size one farms. Line G'G' applies to plant sizes two to five and shows the herd size at which a fertiliser distributcr is added to the machinery complements. Similarly line HH ' applies to plant sizes three to five and shows the herd size at which a hay baler is adued to the machinery complements.

In the case of plant size one, continuous cost reductions occur as the deyree of plant utilisation increases. For plarit sizes two to five, hoivever, this trend is interrupted (over specific ranges of herd sizes) by the adidion of fertiliser distributors and hay balers to the machinery complements.

Between plant sizes, however, relative to the plant size one farms, with the exception of plant size three, cost advantages accrue over specilic ranges of herd sizes to the other plant sizes. It is interesting to note that the lowest ficure is recorded at the cut-off point of plant size two subclass (c), beint 20.64 dollars per cow. Comparable figures for the other plant sizes are:

Plant size one	$: 27.38$ dollars
Plant size three	$: 27.65$ dollars
Dlant size four	$: 26.86$ dollars
Mant size five	$: 21.40$ dollars

This can be explained by:
a) 'The relatively high ratio of cows to certain items of machinery on the plant size two farins (e.g. tractors, trailers and transport trays).
b) The absence of certain items of machinery from the machinery complement of the plant size two farms, (e.g. hay balers and hay loaders).

Equipment
The per unit costs of equipment according to plant and herd size are shown in Figure 7.12.
'Iithin a plant size, cost reductions are obtained as the decree of plent utilisation increases. Between plant sizes, relative to plant sirc one, cost advantaiees accrue to all rejresentative farms of plant sizes three to five. In the case of plant size two, however, cost advarıtages are realised only over a specific rance of herd sizes. Agrain the minimum per unit coit is obtained at the cut-off point of plant size five, subclass (c).

Within a plant size, the cost reductions result from:
a) ' Whe fuller utilisation of those components of the equipment cost, which remain fixed over all degrees of plant utilisation, (e.ci. the coist of hand tools and feneral equinnent).
b) The decrease in the per unit cost of electric fenciner wire which is associated with increases in herd size.

Between Dlant sizes, the cost reductions arise from:
i) The costs of certain items of equipment, mich do not vary over the complete range of herd sizes studied, (e. crescent spanneris, frease sun, hydraulic jack, diesel tank).
ii) A more favourable ratio of cowi to certain items of equipment which characterises the lareer plant sizes (e. \cdot •
... certain tools including axes, sawis, hayforks, drench e̛uns, etc.).
iii) The decline in the per unit electric fence wire requirement, noted above.

Wherefore both between and within plant sizes, proportionality relationships are responsible for the cost reductions.

7.3 PIR UNTIL' TOOTAL INNESTMENT REQUIRFMENTS AND ESYIMATED "MAPKEY' VALUE"

OY ITH H RFTPRESENTATIVE FARMS
Figures 7.13 and 7.14 show the per unit total investment requirements and the per unit estimated "market values" of the representative farms.

Within each subclass, the per unit investment requirements and estimated "market values" decline continuously as the degree of plant utilisation increases.

In both cases, relative to plant si:io one, cost advantages accrue to all other plant sizes, over specific panes of herd sizes. Further, (in both cases), for plant sizes two to live, for comparable subclasses and degrees of Ha ant utilisation, the witule of the cost reductions increase as one noves from plant size tw to plant size five. The maximum per unit investment requirement is threfore recorded at the start joint of plant size one suoclass (c), wing l,094 dollars and the minimum per unit investment requirement cormonds to the cut-off point of plant size five subclass (c), beine 54\% Nollars. Similarly, the maximum per unit estimated "murket valun" is ouserved at the start pojnt. of plant size one, subclass (c), being mo dollars, and the minimum, 471 dolliars, is recorded at the cut-off point of plant size five subclass (c).

7.4 PirR UNITP AiFNUAL CAGH: COSMS

The per unit annual cash costs are lliviajed into three categories:
a) Category I : Uash costs whirh remain constant over the complete rance up herd sizes studied.
b) Uategory II : Ciash costs whin are a function of herd size.
c) Cateyory III : vaish costs winh are a function of both plart and herd size.

Category I

Included in Categry I are the following items of expenditure:
a) Animal health;
b) Feed;
c) Weed and pest control;
d) Fertiliser;

In the case of animal health costs and feed costs, minor variations do occur (between herd sizes), because of silicht variations in the proportions of jrount stock required for replacement purposes. These variations arise because the numbers of rounc stock required (as calculeted in the livestock reconciliation schedule) are expressed as integers. In the case of weed and pest control costs and fertiliser costs, no such variations are evidenced, as the expendilure is expressed as a function of the number of acres. 'The per unit costs of animal health and feed therefore $a_{1, p r o x i m a t e} 4.25$ and 5.50 dollars respectively. The per unit
costs of weed and pest control and fertiliser are 0.18 dollars and 3.66 dollars respectively.

Category II

Included in Category II are the followins items of expenditure:
a) Breeding expenses;
b) Administration;
c) Rates;

Breeding Expenses

Corve AA' and Gurve Bb' of Figure 7.15 show the per unit costs of artificial breeding and herd testing respectively according to herd size. 'Ihe per unit costs of artificial breeding decline as herd size increases from 1.17 dollars per cow when the herd size is 60 cows to 0.96 dollars per cow when a herd size of 600 cows is reached. The decline, however, is not continuous $\frac{21 /}{}$ as particular values apply to specific ranges of herd sizes. 'Ihe cost reductions indicated by ciurve AA' are a consequence of the graduated system of charging employed. Similarly, the per unit costs of herd testing decline by 0.20 dollars over the complete range of herd sizes studied. Such a cost reduction results because of the charging of a herd fee which remains constant irrespective of herd size.

Administration

The reldtionship between the per unit costs of administration and herd size are shown by the Lurve AA' of Figure 7.16. Curve AA' shows that over the complete range of herd sizes studied, the per unit cost declines continuously as herd size increases from a maximum value of 3.05 dollars (60 cows) to a minimum of 0.47 dollars (600 cows). Such a continuous decline in the per unit cost is due to:
a) The decrease in the per unit accountancy fee which is
21. 'The per unit costs do not decline continuously:
i) Because of slight variations in the proportion of cows artificially inseminated, due to the number of cows to be inseminated being expressed as integers.
ii) Ihe per unit costs are only taken to two decimal places.
associated with increases in hord size. 22/
b) Certain components of the administration cost remain constant over the complete ran:- of herd sizes studied (e.e. rurill delivery fee, journal subscriptions, postarres and tolls).

Kates
The relationship betiveen herd size and the per unit expenditure on rates is chom by the curve $A A^{\prime}$ of Figur \%.17. Over the range of herd sizes studied, the per unit cosit declines continuously fron 2.62 dollera to 0.93 dollars. Such a decline is dun $10:$
a) 'ine continuous decline in the por unit price of land, which :iscompanies increases in herd sima.
b) 'ithe continuous decline in thr ratio of the unimproved value per acre, to the purchase price of land, which accompanies increases in herd sizo.

Sategory III

Included in じatarory III are the followine items of expenditure:
ii) Sasual asid contract labour:
o) pemmanort, labour (i, fres);
c) Venicle expenses;
d) Freibint;
e) Insurance;

1) Dair, shed expenses;
E) Electricity;
h) Kepairs and maintenance;

Casual and Contract Labour

Whe per unit costs of casual and contract labour, according to plant sind herd size are shown in Figure 7.18.

From Curve AA' it can be seen that in the case of plant size one, over the initial range of herd sizes (i.1. $60-120$ cows), the per unit cost remains constant at 3.13 dollars per cow. Over this range of herd
22. Such decreases in per unit costs are due to accountancy fees being expressed by a linear function, $y=n x+b$, where $y=$ accountancy fee, $x=$ herd size and a and b are constants.
sizes, charges are made for hay baling, hay loading and contract fertiliser alplication. For herd sizes in oxcess of 120 cows, the per unit costs increase because of the employment. of additional hay contractors 23 and casual labour for remairs and maintenance work. The secmented nature of i curve AA' over the range of $120-136$ cows, results fron the (total) cost of casual labour, varyine discretely with herd size.

Lurve BB' representinč plant size t.on consists of two straight line segments. Up to and includiric a herd :ain of 188 cows, the per unit cost is 2.97 dollars. For herds of 18 ? cows or more, the per unit cosit is 2.36 aollars. The difference in the per unit costs of the two segments is due to the inclusion in the cosin of the first segment, of the cost of contract fertiliser application. (Both segments include the costs of hay baline anci hay loadine.)

Surve '心' representing plant size three, consists of three straight, line secments. Mie initiai segment (i... 180-188 cows) includes the costs of hay haling, hay loading ana conl "itct fertiliser appication. T'ne secona segment (i.e. iby - 300 cows) includes the costs of hay baling and hay loaine, while the third secment. includes the cost of hay loadjing only. Plant sizes four and five are represented by the ourves DJJ and A.B' respectiveiy. In both cases, the only cost oir reievance is the cost of hay baling. Such a cost is relevant, iniy up to and including a herd size of $30($ cori.

Perminent Thibour (Hages)

ricure 7.19 shows the relatinnship butwen the per unit costs of wayes and plant and herd size. 2d rigum 7.19 shows that between plant sizes for comparable deerees of ilint utilisation, cost advantajes accme to the smallest plant, size (i.e. plant sjz, two).

Por example, when the ratio of cow: per labour unit is 60 , the per unit costs of wares for the four plant simos are:

$$
\begin{array}{ll}
\text { Plant size tiro } & : \\
\text { Plant sige three } & : \\
\hline
\end{array} \quad 33.00 \text { dillars }
$$

23. i.e. For herd sizes of l2l cows or more, hay raking is performed by contractors and for herds of 131 covs or more, contractors are employed for hay mowing.
24. It should be noted that such an expense is not relevant to plant size one.

Plant size four : 37.50 dollars
Plant size five : 40.00 dollars
Similarly when the ratio of cows Prr labour unit is l20, the per unit cost of wases are:
Plant size two $: 12.50$ dollars
Plant size three $: 16.06$ dollars
Plant size four $: 18.75$ dollars
Plant size five $: 20.00$ dollars

The increasing per unit cost of warns, for comparable degrees of plant utilisatjon, as one moves from plont, size tiro to plant size five, is a reflection of the fact that the ier urit opportunity cost of the farm operator's liabour declines from plant size two to plant size five. The per unit iotal laboun most $\frac{25}{}$ is for somparabie deyrees of plant utilisation constant between the four phnt sizes. Consequentiy, for any given degree of plant utilisation, hin per unit cost of wares increases from plant size two to plant :i i, five.

Vehicle Bxpenses

I'he per unit costs of vehicle expenses according to plant size and herd size are shown in ricure 7.20. Por all plant sizes, the curve deucrioine the relationship consisits of two or more seements. Within each of the sejments comprising a curve, the per unit cost declines as herd size increases.

In the case of plarit size one, the prer unit cost declines steadily until a herd size of 120 cows is reachen. 'ihereafter it declines rapidly, reaching a minimum at a herd $\mathfrak{s i}$; of 136 cows. The rapid decline i is due to contractors beinf employed for certain haymaking operations.

The per unit costs of the plant si:n two farms decline from an initial 0.79 dollars per cow (120 cows) to 0.75 dollars at a herd size of 188 cows. At a herd size of 189 cons, the cost increases to 0.80 dollars per cow due to the introduction of a fertiliser distributor, and thereafter declines slightly to 0.7 dollars per cow when a herd size of 240 cows is reached.
25. 'The term 'total labour cost' in this context means that the total cash cost for wages be considered in conjunction with the imputed opportunity cost of the farm operator's labour.

Gurve 心' which representa plant size three consists of three segments. The initial segment (180-188 cows) applies to those farins, the machinery complement of which does mot include a fertiliser distributor, nor a hay baler. The secuna sermert (189-300 cows) applies to those farms, the nachinery complement of which includes a fertiliser distributor but does not include a hay wher. Whe thiri seznent (301 360 cows) applies to those farms, the innhinery complements of which, contain both a fertiliser distributor ant a hay baler. 'The lowest per unit cost of the plant size thres farns is recorde at a herd size of 188 cows. The effect of adidig adaitional implements to the complements of machinery is to cause the per unit co:strs of herd sizes of 189 cows or more to be ereater than those pertaininf to herd sizes of 180 cows 188 cows.

Similarly curves $D D^{\prime}$ and $E E$ ' reprecontinc plant sizes four and five respectively, consist of two secmients. Tii both cases, the initial sesment applies to those farms, the iachinery complement of which, does not include a hay baler and the second :"ipent applies to those fams, the machinery complement of which does inllude a hay buler. In both cases, the lowest per unit costis rere rewried y those farms with a herk size of 300 cows. 20/

Witian each segrent of each curve, $1:$ decline in the per unit cost with ircreabes in herd sizc, is due to the resistration cosis of the venioles (for the plant size in cquestion' renairire constant over the rance of herd sizes relevant to suement in question. Between plant sizes, Fikure 7.20 shows that relative to ali other representative farms, cost advantages accmue to those plant si"n one fams, where the numier of cows exceec 120. Further, for comarahle desrees of plant utilisation, the per unit costs are hieher on the plant, size four and five farms, than on farms of the three smaller plant sizec. The reasons for the hicher ner unit costs or the plant size four and five farms are:
a) The per unit hours of tractor nperation, increase on the
26. The author omitted a charge for car expenses. If it is assumed that 100 dollars per annur is allowed fur car expenses on each of the representative farms, then the relstionships shown in Figure 7.20 are markedly altered. In this casn, the highest per unit cost occurs at the start point of the plant siz" one farms (2.53 dollars per cow) and the lowest on the plant size three farms with a herd size of 300 cows (1.14 dollars per cow). .
farms of the larcer plant sizes, because the farm tractors are used for spreading fertilimr, haj loadinc and hay baling.
b) The addition of a hay biiler to the machinery complement, not only ircreases the per unit hours of tractor operation but also increases the hourly cost. of tractor operation. This is because the hourly fuel and nil consumption of a tractor when operatine a baler is grealur than that required when operatireg all other irplement:. Funther the per unit costs also increase vecause if the ataition of the cost of balinte twine.
c) Whe increase in per unit hours of tractor operation due to the introduction of hay bulers, ferliliser distributors and hay loaders is ajso accompanied $b_{j} ; r_{1}$ increase in the per unit hours tractors are used for tranjortation purposes (i.e. "hackine"

Preicht

Whe jer ianit cost of freight takes in tho vailues over the ranje of plent anu hurd sizes studied. Wp to al including fams of hera size of 183 co:s, the freicht cort approximation $\frac{27}{} 0.72$ rioliars per 00 w , wile on farac with a herá size of 189% on more, une freight cost is doout, 0.67 dollars fur cow. The variation is: due to a slight difference in the cost (iver ton) oi transortine frutiliser. (The charce made for
 ereater than the charife riade by transjiort contractors.)

Jrinance

The per unit insurance costs according to plant and herd size are shown in Figure 7.21.

Within each of the three subclasses associated with each plant size, the per unit cost of insurance decrease: ns the decree of plant utilisation increases. Although the decreases in fer unit costs are shown in Figure 7.21 as occurrine continuously, in fact, such a trend is interrupted over specific rances of herd sizes, due to alterations in those premiums which
27. Slicht variations do occur between herd sizes in the per unit costs of transjorting stock to and from the place of grazing. This as noted earlier is due to slicht variations between herd sizes in the proportions of yource stock required, rosulting from expressing the numbers of young stock required as integers.
vary discretely with herd size. Data concerning such variations was not obtained due to the excessive anount of computine time required to obt:rin it. Such decreases arise from proportionality relationships. For example:
a) 'he insurarce preminms raid for certain resources, remain constant over the complete rani, $?$ of herd sizes pertaining to each subclass (e.g. preminn of drellirg(s), tractor(s), pump shed).
b) Certain premiums inoreage contimously as hord size increases but such increases cocur at a horeasins rate, (e.e. premiums for लeneral equiment and in rome cases, farm dairies.)
c) tree premiums paid for certain msourses vary discretely with herd size. Althourin minor virriatiors do occur over specific rances of herd sizer, the overall trenk 三s fon the se per innt insurance costs to foll as herd sice increases, (e.ç. premiuns for bams and inflemtat sheds) .

Between plant sizes over the eomplun rance of herd sizes stuãied, the maximut per wit cost is recorded al the atart point of plant size one, subclass (c), where the per unt cr t, is 2.23 Gollains. Tre minimin value is recorued it the cutost f poll oi plent size five, subclass (o), where the per unit cost is 0.85 dollars. It shoillu be roted that rejativo do the mu-cfi noint of rlant firie cne subolass (u), with che
 oniy to particulur subclasies of each of tre four (larger) plant sizes. $2 \bar{y}$ thrther the medritude of such coet rodur!ions is minall. For example, the peri unit cost at the cut-off point of plant, size five slioclass (() is $0.8 j$ dollars, while at the cut-off point of plant size one, subclass (c), the per unit cost is 0.19 dollars, a difference of 0.14 doliars per cow. In tris context, it should be realised that al thoush the proportionality relationships previously discusised tend to give cost advantaces to the larerer plant and herd sizes, these ase offset to some extent, by the necessity for the farms of plart sizes two to five to pay a workers' compensation insurance premium. For comparable degrees of plant utilisation, between plant sizes two to five, the per unit cost of this premium
28. The exception is plant size five.
29. i.e. Subclasses (b) and (c) of plant; sizes two, three and four.

Subclasses (a), (b) and (c) of plant size five.
increases as one moves from plant size two to plant size five due to the per unit increase in the cost of waces.

Dairy Shed Expenses

Figure 7.22 shows the way in which the per unit dairy shed expenses vary accoraine to plant size and herd sizn.

Figure 7.22 snows that within each of the three subclasses associated with each plant size, the trend is for fine ner unit costs of dairy shed expenses to decrease as herd size incren:es. In only four cases do the per unit wsts aecline continuously as hord size increases. 30/ In the case of the other per unit cost curves, the trend towards a continuous decline in tine per linit cost with increanso in herd size, is interrupted over specific ranges of herd sizes for following reasors. First, in the case of the five suoclass (a) per mit cost curves, and the four subcla.ss (o) per unit cost curves, (i.e. of plant sizes two to five), the total cost of inflations varies discretaly with herd size. Second, the "interruption" in the trena towards a cmbinuous decline in per unit costs with increases in herd size, of all the per unit cost curves of plant Bizes three and four is die to the total cost of detercent vanyine discreteiy with herd size.

The nature of the per unit wost curres is due to:
a) Yithin each subclasi of each phant size, the costs of claw rubiers, milk and air droppers, and dairy shed brushes remains constant over all decros of mant utilisation.
b) Within certair subclassses, tho costs of detercent and inflations remains constant ovor all deçrees of plant utilisation. In the other allolasses where the costs of detercent and inflations v:ry discretely with herd size, the per unit costs of detergent and inflations are lower at the cut-off point, than at the start point despite the discrete variation.
30. The four cases are the per unit cosst curves of:
i) Plant size one subclass (b);
ii) Plant size one subclass (c);

- iii) Plant size two subclass (o);
iv) Plant size five subclass (c);
c) The cost of an armual milkincr machine check remains constant over the complete rance of hern? sizes studied.
d) As it is assumed within each rabolass, that the time the milking rachines are operated lor cleaning purposes, does not vary accordinu to herd sizr, the quantity (and hence cost) of the rotary pump oil constinn:i for this purpose remains constant over all decrees of plant utilisation.

AII four solirces of cost reciuctions can he described as arising from proportionality relationships. Further, within each plant size, the per mit costs at the cut-off points in roase as one moves from subclass (a) to subclans (c). Relative to the plint size one farms, cost reductions accrue over specific ramzes of herl sizes, to all three subclasses of each of the four lareer plant sizes. In the case of plant sizes two to five, for comparivle subclasses and drerees of plant utilisation, the Eeneral trend is for the magritude of thm per unit cost reduction to increase from nlant size two to plant si:in five. Corsequently the lowest rer unit cost is recorded at the cut-off joint of plant size five subcla:s (a).

Mectricity

The per urit costs of electricity ancorainc to plant size and herd size are Ghown in ricire 7.?3.

Within each of the three suioclasanos associcited with each nlant size, the overall trend is for the per unit colt, to jecline dis the degree of plant utilisation increases. Minor distmruances over specific rances of herd sizes do occur in some per unit rost curves, due to the introduction of rofriferation units, in place sleaning devices and an increase in the quantity of hot water recuired for cleanine the bulk milk vats.

Within each subclass, the followine mroportionality relationships contribute to the trend towards a declin in the per unit cost with increases in herd size.
a) In the case of plant sizes one, two and five, the number (and hence cost) of units requirea for hot water heating remains constant over the complete range of herd sizes. The number (and hence cost) of units required for hot water / heating for plint sizes three nnd four, varies discretely with herd size. The effect of this discrete variation is
to interrupt the continuous doline in the per unit kwh requirements over a small ranke of herd sizes. Advantages arising from proportionality rolationships still accrue to the lareer herd sizes of each nuoclass, however.
b) Similarly, the number of and (\%ist of inits, required to initially heat the contents of the teat washer cylinders, remains constant over all degroes of plant utilisation.
c) For plant sizes three to five, the number of units required annually to operate the in pla:e cleaninr devices, remains constant over all desrees of Hlant utilisation. In place oleaning devices are added to the complement of electrical equipment of plant size two farins when the herd size exceeds 176 cows. Over the range of $177-240$ cows, cost reductions arise from proportionality rel:tionships besause the annual requirement of units by the in place cleaninc devices is assurred to remain constant.
d) The expression which is lised th derive the number of units roguired by the refireeration mits expresses the required rumber of units as a function $n f$ the volume of milk produced per milking, the reguired reuduction in temperature, and the dimensions of the bulk milk vat. As the size of bulk milk vat varies discretol: with herd size, it follows thiit within herd sizes of a fiven vat size, cost reductions will result as herd size incronses.
e) Fithin each subclass, the numbor of units required annually to operate the milking machinns for cleanins purposes, remains constant over all deçrnes of plant utilisation.

Within each subclasis, pecuniary economies are also responsible for the trend towards a decline in the per umit cost of electricity as herd size increases. As herd size increases within a subclass, proportionately more 31 of the total units used for water pumping, lighting, operating milking machines, effluent dinosal units and in place cleaning devices are charged at the lower rate. It should also be realised that proportionality relationships exist which give rise to per unit cost increases within a subclass, as herd sizo increases. Regression
31. This assumes of course that the totial number of units used per period by these appliances initially (i.e. at the start point of the subclass in question), is such that the differential system of charging can be employed.
equations are used to determine the numbry of units required for water pumpine and for the disposal of farm dinir effluent. The regression equations are such $32 /$ that the per wit. requirements of kwh for water puniping and for the cisposal of effluent', increase continuousiy with increases in herd size. However, the manitude of such increases is smail and $i: a$ outweiched by the cost redu-ions arising from the proportionality relationships and the pecuniary ernomies discussed earlier.

Between plant sizes relative to plont, size one, with two exception:3, cost reciurtions accme to all the suoc]:", ons of trie otrer plant sizes over sperific rames of herd sizes desibil ho fict that the electrioily costs ul l.he farms of plant sizes two 1.1 i ive include additional crialros: for raliri, eration mitas and in place c! minie devices. the two exceptinns are plant siaes four and five subolan: (o) where cost reductions acorud over the complete ranize of hera sizajir levant lo each sumblass. fithin each plant size, the lowest per unit ad ti: recorded at the cut-off point of subclass (a). For comparable $\cdot \ln$.-off points $\frac{23}{}$ the per unit cost declines as one moves fron nlant sifo ne to nlant siae five. Consequently the lowest per unit cost is raraed at the cut-orf point of Mhant size five succlass (a). Proportinnality relationships are also responsible for the trenk towarus lower fur unit costs in the lareer mant sizes. For example:
i) The cuaditity of hot water mecuired per wilkirict for the milk ruon is 20 gallons, irre:: ective of form dairy (and milkirs machine) size. The jur urit quantity of hot water (for the milk roon) is threfore a minimum at a hera size of 6ill cows.
ii) Whe daily recuiremert of the in place cleaning devices, is set at 0.0465 kwh per day jrrespective of herd size. Such an assumption also favours the farms with a herd size of 6 CO cows.
iii) The quantity of hot water required for cleaning the bulk milk vat varies discretely with herd size. This aşain favours farms of the largest herd size, as at this herd size, the per unit quantity of hot water required for vat cleanine is a minimum.
32. The regression equations are of the lorm: $y=a x-b$, where $y=$ number of units (i.e. kwh), $x=$ herl size and a and b are constanti.
33. There are three series of comparable cut-off points. They are the five subclass (a) cut-off points, the five subclass (b) cut-off points and the five subclass (c) cut-off points.
iv) Cost reductions accrue to the larger plant sizes in certain circunstances 34 because as the size of milking machines is increased, the number of mitis require to operate the milking machine per set of cupr:, falls.
v) The number of units required tin initially heat the contents of the teat washer cylinder virries discretely with the size of farm dairy (i.e. subclass). Therefore within farms of the same teat washer cylinder size, cost reductions accrue to the farms of largest herd ::ize.
vi) As the size of farm dairy incraases, the ratio of the number of electric lierhts to the numbre of sets of cups falls. This relationship arises because thr number of lisints installed in the milk room and vat starni, entry/exit/arauchting area and circular yard remain const, int irrespective of farm dairy size.
vii) Ihe expression for deriving tim number of kwh required by the refriexeration units expres:ns the rumber of kwh as a fiunction oi the volume of milk produceu per milkiné, the requiré decline in temperaturn ant the dimensions of the buik milk vat. Furtrex as val size varies discretely With hera size, that part of lirs expression wich is a furction of tre dimensioms of the vat, also varies discretely with heru size. Cost acivantaies do accrue, because of a eneral trend for that part of expression which is a function of the dimonsions of the milk vat, when expresseu on a per Cow basis, 10 decline as herd size increases.
viii) In the case of water pumping and the disposal of effluent wastes, the per unit requirements of kwh increase continuously as herd size increasos. Whis, as discussed earlier is due to the use of recression equations.

Finally pecuniary economies are also realised which give cost advantages to the larrest plant sizes and herd sizes.

Repairs and Maintenance

The per unit repairs and maintenanen costs according to plant and herd size are shown in Fifure 7.24.
34. Advantages accrue up to and including a 30 aside herringbone.

Within each of the three subclasser of each plant size, the per unit repairs and maintenance cost decreases as herd size increases. Although the per unit cost curves shown in Fisure 7.2 .4 show the per unit costs as decreasine continuously wilh increases in plant utilisation, in fact, the continuous cost reauctions are interrupted over specific rances of herd sizes due to the introullion of fertiliser distributors and hay balers, and chanyes in such faclars such as the width of famm races, the area of implement shedi and tine cost of certain components of the fiarn dairy, at suecilicherd sious. Data concerning such intermptions were not obtained, however, due to the excessive amount of computiné time required to obsain it.

Uthin each subclars, the decline in the per unit cost is due to the repairs and maintenance cosit of a number of resources 35 veinč assessed as a percentace of the oriéinal investmont cost. Conseguently for these resources, the per unit repairs ami maintenanse cost, parallels the original per wit investment costs shown in pigure ?.13.

The per unit machinery repairs and miintenance costs, however, vary discretely witin nerd size. Over the rane of herd sizes appropriate to plarit size one, three values are relevanl. Comparable ficures for the otrer plant sizes are: plant sizes two, four and five - two values, plant size threc - three values. Only in the case os plant size one do the per wit costs decline iu hera size increases. Th the care of plant sizes two to five, the increases in the jer unit costs are small ard are outweished by the decreases fron those roscurces, the repairs and mainterance cost of which, parallels the oririnal per unit investment coist.

The effect of compensating for the increased race stocking rate, which accompanies increases in herd sizn, is to cause the per wit repairs and maintenance cost (of farm races) to remain constinnt over the complete range of herd sizes studied.

Relative to plant size one, cost reductions accrue to all subclasses of the other plant sizes over specific ranes of herd sizes. Between plant sizes two to five for comparable suivclasises and degrees of plant utilisation, the per unit cost decreases from plant size two to plant size five. Z'ne lowest per unit cost is recorded at the cutoff point of plant size five subclass (o).
35. e.g. Buildings, water reticulation systems, effluent disposal systems.

7.5 YLR UNIL AMUULL NON-CAGH COSTS

Depreciation Costs

Fiture 7.25 shows the per unit derociation costs according to plant and herd size.

Within each suoclaiss, the ceneral l, rend is for the per unit costs to decline as herd size increases. Goweve, the declines in the per unit cost do not occur continiously as herd rize increases. "Ninor variations" occur aue to:
a) 'Ihe initial investment cost of certain resources varies discretely with herd si»e, (e.f. barns, implement sheus, milkin¢ equiprient, effluent disposal pumps, water pumps, etc.)
b) wine introduction at specifje hord sizes of fertiliser distributors and hay balers.
c) - The tread towarits the per unit cost of farn dairies declining continuously with herd size boning intermupted over specific herd sizes.

His in the cace of rejuirs and naintonance and insuance costa, data concerning the herd sizes and ranges of herd sizes over which variations ciue to the reasons notod above cocur, were not collected due to the excessive amount of computing tine recuired to obtain it. It is interestine to note that the per unit cont curve of plant size five, subclass (a) lies below that of plant sire four subclass (c), over the entire range of herd sizes common to both subclasses. For a siven herd size, this is due to the decrease in the per unit costs of the farm dairy and milkine equiment of plant size five subclass (a), being of sufficient magnitude to offset the slichtly lower per unit costs of machinery, implement shed and dwellines of plant size four subclass (c).
36. e.f. At a herd size of $3 \mathbf{0 0}^{\circ}$ cows, the per unit depreciation cost for dweilings is:
i) Plant size four suoclass (c) : 0.30 dollars;
ii) Plant size five subclass (a) : 0.35 dollars;

The per unit depreciation costs for farm dairies and milking equipment are
i) Plant size four subclass (c) : 1.29 dollars;
ii) Plant size five subclass (a) : 1.22 dollars;

The per unit machinery depreciation cost of plant size five subclass (a)
is 0.14 cents greater than that of plant size four subclass (c).
Similarly, the per unit implement shed depreciation cost for plant size
five is 0.11 cents greater than that of plant size four.

Relative to the plant size one farins, cost advantages are realised over specific ranges of herk sizes by all other subclasses. The minimum value is recorded at the cut-off point of plant size five subclass (c).

Interest

rigure 7.26 shove he per unit interest costs $\frac{37 / \text { according to plant }}{}$ size and herd size. As the interest co:l has been assessed as a percentage of the totai investment costs of the two groups of resources, 3/3/ Figure 7.26 parallels ingure 7.13. From Figure 7.26, it can be seen that:
a) Relative to the farms of plant size one, cost advantases accme to all other subclasses over specific ranges of hera sizes.
b) In the case of plant sizes two to five, for comparable subviasses ant degrees of viant utilisation, the magriturte of the cost reduction increases from plant size two to plant size five.
c) Nhe maximuin per unit cost, is rocorden at the start point of plant size one subclass (c) ani the minimum at the cut-off point of plant sice five subclisis (o).

Farin Operator's Laboua
'rhe opportunity cost of the fearm oprator's laocur is assessed as 3,000 dollars per anmum over the complete rañe of heráa sizes studied. The per winit cost of the farm operator's labour, therefore, declines continuously with increases in nerd size, from a maximum of 50 dollars in the case of a 60 cow herd, to five dollar:; when a herd size of 600 cows is reacheu.

Farm Operaton's Manasement

The opportunity cost of the farm oprrator's manarement is assessed as six per cent of the gross flarm income.
37. The interest rates used in the assesiment of the interest charges are:
Group One resources : 6 per cent;
Group Two resources : 7 per cent;
38. These two interest rates were decided upon by the author after discussions with the representatives of a number of credit agencies. The two rates approximate the interest rates a farm operator would have to pay, if creait was used to purchase the two groups of resources in question.

Fioures 7.27 and 7.28 show the totitl oprortunity cost of the farm operator's manacement, according to plant and herd size when the milkfat price is 33 cents per jouna. Figure 7.27 shows the relationships when the level of milkfat production jer cow remains corstant uver the complete rance of herd sizes studied, while Piure 7.28 shows the relationships when the level of milkfict production per cow is a function of plant and nerd size.
rigures 7.27 and 7.28 show that within each subclass, the opportunity cost of the farm operator's management rises as the ciegree of plant ütilisation increases and so the maximun value is recorded at the cut-off point. within each plant size, the maximum value is recorded at cut-off point of subclass (c). For comparable cut-off points, the opportunity cost increases from rlant size one to jlent size five. Vonsequently the hichest opportunity cost is recorderi at the cut-oif point of plant size five sübclass (c).

Motal Cost (A)
Figure ' $/ .29$ shows tre jer unit cost:; of Potal vost (A) 39/ according to plant and herd size.

With the exception of the per unit rost curve of plant size one subclass (0), within each subclass, the per urit costs of potal lost (A) decline as the desree of plant, litilisation increases. In the case of the per unit cost curve of plant size one subclass (c), the minimum per unit cost is recorded at a herd size of 120 cows - the per unit cost curve is therefore "u" shaper. 40/ Between plant sizes, for comparable cut-off poirts, the per linit cost increases as one moves from plant size one to plant size five. This is due to the per unit cost of wages (at comparable cut-off points) increasing as one moves from plant size one to plant size five and being of sufficient magnitude to offset all other cash cost decreases.

For example, the total per unit cascosts (excluding labour) at the cut-off point of plant size one subclass (c) are 36.46 dollars. The
39. i.e. 'rotal cash costs.
40. Whe "u" shape is due to the increase in the per unit costs of casual and contract labour at a herd size of 136 cows (relative to a herd size of 120 cows), being of sufficient magnitude to offset the per unit decreases in the other cash costs.
per unit cost of employed labour is zero. 'therefore the total per unit cash costs are 36.46 dollars. Comparaile figures for the other plant sizes are:

Plant size two subclass (c): Per unit cash costs excluding labour 32.20 dollars

Per unit employeă labour costs 12.50 dollars Per unit 'rotai Cost (A) 44.70 dollars

Plant size three subclass (c): Fer unit wsh costs excluding
labour
29.98 donlars

Per unit rimployed labour costs 16.66 dollars
Per unit' ional iost (A) 46.64 doliars

Plant size four subclass (c): Per unit msh costs excluding
labour 28.58 dollars
Fer unit. (mployed labour costs 18.75 dnllars
Per Unit, 'intial Cost (A) 47.33 dollars
Plant size five subclais (c): Per unit mbin costs excluaing
labcur 27.94 dollars
Per unit mployed labour costs 20.00 dollars Per unit 'iotal cost (A) 47.94 dollars

Cotal Cost (B)

Ficure 7.30 shows the per unit cosis of rotal cost (B) according to plant and herd size.

With the exception of the per init, cost curve of plant size one subclass (c), within all subclasses, the per unit cost declines as the degree of plant utilisation increases. The per unit cost curve of plant size one subclass (c) is again "u" shapeci, the lowest per unit cost being recorded at a herd size of 130 cows.

A comparison of the data relating to comparable cut-off points, indicates that the per unit costs increase as one moves from plant size one to plant size five. The reason for this is that relative to plant size one, for comparable cut-off points, lower per unit depreciation costs are recorded at the cut-off points of plant sizes two to five. Such declines, however, are not of sufficient magnitude to offset the increasing per unit cash.costs discussed earlier.

For example at the cut-off point of plant size one subclass (c), the per unit cash costs are 30.46 dollars. 'Ihe per unit depreciation costs are 3.26 dollars. The per unit 'i'otal Lost (B) costs are therefore 39.72 \&oliars.

Comparable figures for the other plent sizes are:

Pctal Cost (c)

Figure 7.31 shows the per unit costs; of lotal cost (U) according to plant size and hera size.
risure 7.31 shows that within each abolass the per unit cost declines as the deerree of plant utilisation ircreases. Between plant sizes, a comparison of the per unit costs of comparable cut-off points indicates that the per unit costs increase from plant size one to plant size three and then decline slightly as one moves from plant size three to plant size five.

The reason for this is that as one moves from plant size one to plant size five (for comparable cut-off points), the per unit interest cost declines. In the case of plant sizes two and three (relative to plant size one), such declines are not of sufficient macnitude to offset the increased per unit costs of Total lost (B) discussed earlier and consequently, the per unit costs of potal cost (C) increase. However, in the
case of plant sizes four and five (relative to plant size three), the declines are of suificient macmitude to offiset the increases in the per unit costs of 'rotal Cost (i) and hence the per unit costs of rotal Cost (i) decline.

For example, the per unit cost of 'utal lost (B) at the cut-off point of plant size one, aubclass (c) is 39.72 dollars. the per unit interest cost is 42.63 dollars. 'Ine per unit cost of 'rotal Cost (i) is therefore | |
| :---: |
| 2 | 35 dollars. Comparable figures for the other mlant sizes are:

Plant size two subclass (c) : Per unit 'iotal iost (B) : 4.7.30 dollars Per unit, interest cost : 39.30 dollars Per unit, 'Iotal Cost (C) : 86.00 ciollars

Motal Cost (D)

Figure 7.32 shows the per unit costs of lotal (ost (1)) according to plant and herd size.

Within each subclass, the per unit cost declines as the degree of plant utilisation increases. Between plant sizes, the per unit costs of comparable cut-off points decline as one moves from plant size one to plant size five. This is due to the inclusion in wotal vost (D) of the opportunity cost of the farm operator's labour. Juch a cost as discussed in section 7.5 declines continuously as herd size increases, and the declines are of sufficient marnitude to sause the per unit costs of rotal Cost (D), for comparable cut-off points, to fall as one moves from plant size one to plant size five.

For example, the per unit cost of l'otal cost (心) at the cut-off point of plant size one subclass (c) is 82.35 doilars. The per unit opportunity cost of the operator's labour is 22.06 ciollars. The per unit cost of Total Cost (D) is therefore 104.41 doliars. Comparable figures for the other plant sizes are:

Plant size three subclass (c): Per unit l'otal Cost (c) : 87.13 dollars Per unit: cost of operator's

Iabour : 8.33 dollars
Per innit, 'lotal Cost (D) : 95.46 dollars

Plant size four subclass (c) : Per unit, Total Cost (心) : 85.98 dollars
Per urit cost of operator's
labour : $\underline{6.25}$ dollars
Per unit 'lotai cost (D) : 92.23 dollars

Plant size five subclass (c) : Per unib 'lotal Cost (0) : 84.13 dollars
Per unit cost of operator's
labour : 5.00 doilars
Per unit, 'rotal vost (D) : 89.13 dollars

Motal Cost (E)

Figures 7.33 and 7.34 show the per unit costs of rotal Cost (E) according to plant and herd size.

Figure 7.33 shows the relationships when the level of milkfat production per cow is conson.t over the complete range of herd and plant sizes studied, while Figure 7.34 shows the relationships iwhen the level of milkfat production per cow is a function of plant size and herd size.

Figures 7.33 and 7.34 show that the patterm of the per unit cost curves is similar to those shown in Figure 7.32 (i.e. the per unit cost curves of Total Cost (j)). 'That is:
a) Within each subclass, the per unit cost decreases as the degree of plant utilisation increases;
b) Between plant sizes, the per unit costs of comparable cut-off points decrease as one moves from plant size one to plant size five.

As the opportunity cost of the farm operator's management is assessed at a percentare of gross iarm income, it follows that when the level of milkfat production per cow remains constant over the complete range of herd sizes studied, the per lunit opportunity cost of the operator's manazemert remains constant. © vorsequentiy, between plant sizes, for comparable cut-oざf points, the per unit costs decrease as one moves from plant size one to plant size five, becanse the per urit costs are obtained by addine a constant sum to the per unit costs of rotal cost (D). Hence the pattern of the per unit cost curves is similar to that of Fifure 7.32.

When the level of milkf'at , roduction per coiv varies with plant and herd size, the per unit oportuinty cost of the farm operator's manafement, for comparable cut-off points, decreases as one moves from plant size one to plant size five. Consequentily in this case, the trerd noted in figure $\% .32$ of declines in the per unit costs (i.e. Motal Cost (D))for comparable cut-off poirits, as one moves fror plant size ore to plant size five is accentrated. $42 /$ mis is , (he to the per unit costs, for comparable cut-oif points, as one moves from plant size one to plant size five, being obtained by addine a decreasinf sum to the per unit costs of 'iotal lost (i).

7.7 PER UNIT GRUSS FARM INCOME

Gross Farm Income

Constant Milkfat Proumction per Cow (33 certs per pound of milkfat)
When the level of milkiat production per cow is constant over the complete range of herd sizes studied, the per unit gross farm income
41. Minor variations do occur, however, due to the number of cull stock sold being expressed as intergers.
42. i.e. Between plant sizes, for comparable cut-off points, the absolute difference in the per unit costs inorease when the per unit costs are expressed in terms of llotal Cost (F_{H}). For example, the absolute difference in the per unit costs of plant size one subclass (c) and plant size five subclass (c) When expressed in terms of Total lost (D) is 15.29 dollars. When expressed in terms of Total Cost (E) the difference is 15.60 dollars.
approximates 118 dollars per cow. (Minor variations between herd sizes do occur due to the number of cull stock sold being expressed as integers.)

Variable Milkfat Production per Cow (33 cents per pound of milkfat).

Fivure 7.3ζ shows the per unit gross farm incone, according to plant size and herd size, when milkfat production per cow is a function of plant size and herd size. Within each plant ::i;e, due to the level of milkfat
 per unit income declines as herd size increases. inne tive per unit eross farm income curves are rot straight, lines, due to minor variations "Eetween hera sizes in the proportions of cull stock sola. 'ihe per unit gross farm incorie falis from a maximum of 148.60 doliars in the case of 60 cow hercis (plant size ore) to 11\%. 40 dollars per 20% in the case of 6́OO cow herds (plant size five).

7.8 SUNTRY

In this chapter, a detailec accourt has beer giver of the way in which the per unit costis of the various resournes vary with chonfes in plant and nerd size. the macritude of the cost variations is indicated and the manner in which the variatiors arise disousued. he results show that with few exceptions, cost auventages accrue to the farms of the larger plant and herá sizes, relative to plant siz: one farms, because of lovier per unit resource costi. In most instances, the cost advartares arise cecuise of proportionality relationships.
43. The linear functions are of the nature

$$
\begin{aligned}
& \mathrm{y}=\mathrm{b}-\mathrm{ax} \\
& \text { where } \mathrm{y} \text { is the level of milkfat production per cow } \\
& \mathrm{x} \text { is the herd size } \\
& \mathrm{a} \text { and } \mathrm{b} \text { are constants. }
\end{aligned}
$$

CHAFTER EIGHM

MES COST-SIZE AND PRURTI-SILE RBLARTONGHPS

8.1 INYRUSTURIUN

In this chaptar, the nature of the cost-size and profit-size relationships are discussed.

In the first part of the chapter, ten series $1 /$ of short run average cost curves and the corresponding lons run average curves are discuissea. Both within and between subclasses, the ranges of herd sizes and gross farn incomes, over wich continuous reductions in the total cost per collar of erogi income occur, are indicated. The cost-size relationships are further examined when the output per labour unit data of the representative farms, approximates those of corresponding survey farms.

The second part of the chapter presents for each of the series of short run averace cost curves, the corrosponaing series $2^{2 /}$ of short run ret income curves; and for each of the ten lone run averase cost curves, the corresiondine lond rim net income curve. lhe nature of the profit-size relationships are discussed and the minimum herd size anù milkfat production recuired, for the entrepreneurial income of each slibclass to be positive indicated.

Finally, in the thira part of.the chapter, a breakeven analysis oi the recults is presented which aliows the effect of changes in the assumptions of the analysis, upon the shape of the long run average cost curves, to be studied.

The diagrams showine the series of cost and income curves discussed in this chapter are shown in Apperuix D of Volume II.

1. A series of short run average cost curves is the fifteen short run average curves (one for each subclass) derived from one of the five cost revenue ratios.
2. A series of short run net income curves is the fifteen short run net income curves derived from one of the five net income figures.

8.2 SHORT RUN AN: LONG RUN AVERRAGE COS2' CURVE'i

Introductory Comments

Short run and long run averaje cost curves are derived for five 3/ levels of ailkiat price. for anir given level of milkfat price, cost curves are corstructed for two levels of milkfat production per con. First, cost curves are developed for the assumption that the level of milkfat procuction jer cow remains constant irrespective of plant and herd size, and second, cost curves are developed for the assumption that the level of milkfat prodnction per cow varies with changes in plant and herd size. Finally, for any fiven milkfat price and level of milkfat production per cow, five series of cost revenue ratios (and hence five series of cost curves) are produced. Consequently for any given level of milkfat price, ter series of short run average cost curves and ten lone mun average cost curves are derived. A diagrammatic representation of the ten long run averaie cost curves associated with any given level of milkift price is shown in fiçure 8.1.

Pigure 8.1 Diagramatic Reoresentation of the ten L.R.A. © ourves

associated with each milkfat price

For simplicity, details of the ten long run average cost curves are presented for only one level of milkfat price; 33 cents per pound of milkfat. 4/ 'Ihis price is chosen as it is thought to approximate the
3. The five levels of milkfat price are: 25, 27.5, 30, 33 and 35 cents per pound of milkfat.
4. Data concerning the long run average cost curves for the other four levels of milkfat price (i.e. as mentioned above) are lodged in the Farm Management Department, Massey University and are available on request.
price which would be paid to dairy farmers in the Manawatu, in the 1970/71 dairying season. All cost curves presented in this chapter, are based upon an interest rate for the Group One resources of six per cent and an interest rate of seven per cent for the Group Two resources.

1) Cost Curves derived from the First Series of Cost Revenue Ratios

Ficure 8.2 shows the fiffteen short run average cost curves and the long run average cost curve constructed from the first series of cost revenue ratios.

With one exception, $\frac{5 /}{}$ the cost revenue ratios of all short run averače cost curves, decline continuously as gross farm income increases. Consequently, with one exception, the lowest cost revenue of each subclass is recorded at the cut-off poirt.

Further, for comparable cut-off roints, the cost revenue ratios increase as one moves from piant size one to jlant size five. Whis is due to the increase in the per unit costis of Total lost (A) as one moves from plant size one to plint size five and the fact that jer unit gross farm income ampoximates ils dollars per cow, over the complete range of plant and herd sizes studied. As discussed in section 7.6, the increase in the per unit costs of 'rotal (ost (A) is due to the increase in the per unit cost of employed labour being of sufficient maconitude to offset all other cash cost decreases.

In the case of plant sizes two to five, within each of the three subclasses of each plant size, the cost revenue ratios decline as one moves from the cut-off point of subclass (a) to the cut-off point of subclass (c). Such a reciuction is due to the recrease in the per unit costs of Total Cost. (A). In the case of plant size one, however, the lowest cost revenue ratio is recorded at the cut-off point of subclass (b). In the case of plant size one subclass (c), the per unit increase in the costs of casual and contract labour on farms of herd size in excess of 120 cows, is of sufficient magnitude to offset all other cash cost decreases and consequently the cost revenue ratio at the cut-off point is greater than that at the cut-off point of subclass (b).
5. The exception is the short run average cost curve of plant size one subclass (c). The lowest cost revenue ratio of this particular short run average cost curve is recorded at a herd size of 120 cows.

As the resources which comprise the fixed jlint are not continuously divisible, the lons run averare cost curve is segmented. It is important to note that the long run average cost curve comprises segments of all fifteen ${ }^{6}$ short m averaje cost curves. Thus each subclass of each plant size, represents tne least cost wety and hence most profitable way of producing particular raries of gross farm incone. Although it is not possione to draty an envelope curve tanezent to the short run average cost curves, the nature of the long run average cost curve can be examined oy:
a) Drawing a line which is tancent to the short run average cost curve of pliant size one siubclass (a).
b) Bxtending such a line throuifin the cut-off points of comparabie subclasises. T/
\hat{A} line of this nature, will ior the remainder of the discussion, be termed a trace curve. In wisure 8.2, the trace curve is drawn through the cutolf points of subclass (c) and is repressented by the line TC-IC'. The trace curve in jisure 2.2 is "u" shafed. The initial point is the start point of the short run averase coist curve of plant size one, subSlass (a), the low point is the low point of the short run average cost curve of viant size one suocless (c) and the firal point is the cut-off point of plant size five suoclans (こ).
2) Cost Curves Merived Irom the Second Series of Cost Revenue Ratios

Figure 8.3 shows the short mun averase cost curves and the long run averaste cost curve constructed from the second series of cost revenue ratios.

Again with the exception of the short run average cost curve of plant size one subclass (c), the cost revenue ratios of all short run
6. For each of the ten L.i.A. ©. curves which can be drawn for each level of milkfat price, the L.R.A. $\dot{\text { u }}$. curve is segmented and comprises segments of all fifteen 心.R.A. U. curves. Further in all cases, the L.R.A.C. includes the entire S.R.A. U. curve of plant size one subclass (a).
7. In circumstances when a S.R.A.C. curve is "u" shaped, the line should be drawn tangent to the low point of the S.R.A.C. curve in question rather thar through the cut-off point. 'ihe line should be such that it traces out the shortest distance between comparable cut-off points.
8. For all trace curves, the initial point is the start point of plant size one, subclass (a).
average cost curves, decline continuously as gross farm income increases.

A comparison of the data relatine io comparable cut-off points indicates that the cost revenue ratios increase as one moves from plant size one to plant size five. I'he reason for the increase is that aitnourn the per unit depreciation cost: (for comparable cut-off points) decline as one moves from plant size one to plant size five, such decreases are not of suifincient magitude, to offset the per unit increases in Cotal Cost (A). Consequently the per unit costs of Total Cost (B) increase as one moves from plant size one to plant size five.

Again for plant sizes two to five, the cost revenue ratios decline as one moves from subclass (a) to subcla:js (c). (This is due to the decrease in the per unit costs of lotal lost (B).) In the case of plant size one, however, the lowest per unit cost is recorded at a herd size of 130 cows, on the short man averare cost curve of subclass (c).

Whe trace curve is again "u" shaper, the lowest point being the low point of the short min averaje cost curve of plant size one subclass (c), and the final point beine the cut-olif poirt of plant size five sucolass (c).
3) Cost Uunves Derivea from the Mhiri Vories of Cost Revenue Ratios

Whe short rion averave cosit curves anh the loné min averae cost curve based upon the third series of cosit revenue ratios are shown in Fisure 8.4.

For all ififteen short run averase cost curves, the cost revenue ratios decline continuously as gross farm income increases, and the lowest pcint of each of the fifteen short run averase cost curves corresponds to the cut-off point.

A comparison of the cost revenue ratios relating to comparable cutoff points reveals that the cost revenue ratios, increase as one moves from plant size one to plant size three but then decline slifhtly, as one moves from plant size three to plant; size five. 'Ihis is explained by the fact that as one moves from plant size one to plant size five,
y. The short run averaye cost curves constructed from the fourth and fifth series of cost revenue ratios are of a similar nature. That is, for all short mun average cost curves, the cost revenue ratios decline continuously as the degree of plant utilisation increases.
the per unit interest costs for comparable cut-off points declines. In the case of plant sizes two ard thren, relative to plant size one, such declines are not of sufficient macnitude, to offset the per unit increases in lotal Cost (B). Kowever, in tre case of plant sizes four and five, the decreases in tre per unit interest costs, relative to plant size three, are of sufficient manitude, to cause the per unit costs of Hotal vost (iv) to decine as one moves from plant size three to plant size foive.

All three cut-off points of each plant size conform to the same pattern. inct is the cost revenue ratios decline as one moves from subclass (a) to suibclass (c). IO/ (rnis is wive to the per unit decline in the lotal úost (u) as one moves from subclass (a) to subclass (c).)

Whe trace curve is in this case "s" $11 /$ shaped. The lowest point is the cut-oif point of plant size one suruclass (c) and the highest poirt, the cut-off point of plant size i,hree suibclass (c).

With three exceptions, $12 /$ cost revenue ratios in excess of 1.0 are recorảea over the initiai deurees nf jlant utilisation of all short mun averace cost curves. buch a ratio indicates that on sucin representative farms, losses are recorued.
4) Cost birvos Dorivon fonon the Fourth Serios of bost Rovenue Patios

Wigure 8.j shows the short run averaije cost curves and the long run averase cost curve constructed irom the fourth series of cost revenue ratios.

A comparison of the cost revenue ratios relating to comparable cut-off points for this series of cost curves indicates that the cost
10. The short run average cost curves derived irom the fourth and fifth series of cost revenue ratios are similar, in that for both plant sizes, the cost revenue ratios decrease as one moves from suidclass (a) to subclass (c).
11. I'he trace curve is similar to the letter "s" in shape, turned upon, its side, i.e. Ω
12. The three exceptions are:

Plant size one, subclass (a);
Plant size two, subclasses (a) and (b);
nevenue ratios decline as one moves from plant size one to plant size five. This is due to the inclusion in the total costs, from which the cost revenue ratios are ceriven, of the opportionity cost of the farm operator's labcur. The per unit cost of the farm operator's labour declines continuousiy as herd size increases and the declines are of sufficient majonitude to calise the per unit costs of trotal cost (D) to fall as one moves from plant size one to plant size five.

I'he trace curve is in this case "L" shaped with the final point and the lowest point beine the cut-oif point of plant size five, subclass (c).

For all fisteen subciasses, cost reverue ratios greater than 1.0 are recorded by representative farms corresponding to the initial degrees of plant utilisacion.

5) Cost Curves Derived from the Fifth Beries of Cost hevenue Ratios

Fisure 8.0 shows the fifteen short run average cost curves and the long min average cost curve constructed from the fitith series of cost revenue ratios.

In this case, the cost revenue ratios of comparable cut-off points also decrease as one moves from jlant sime one to plant size íive. As the opportunity cosit of the operator's manacerial input is in all cases assessed as six per cent of the gross finm income and as the per unit cross farm income over the com, Lete rance of mlant and herd sizes studied, approximates ily doilars per cow, it follows that the per unit cost of the operator's managerial input approximates seven dollars per cuw over the complete rance of plant and herd sizes studied. The inclusion of the opiportunity cost of the operator's manarerial input, therefore, does not alter the pattern of the short run average cost curves noted in Figure 8.5. Hence the trace curve is aغain "L" shaped with the final and lowest point being the cut-off point of plant size five subclass (c).

Again for all fifteen plant sizes, cost revenue ratios Creater than 1.0 are recorded by the representative farms, corresponding to the initial degrees of plant utilisation. Proportionately more of the representative farms, however, record cost revenue ratios in excess of l.0, when the cost curves are derived from the fifth series of cost revenue ratios. For example, of the 129 representative farms from which a long run average cost curve is constructed, when the long run average cost curve is constructed from the third series of short run average cost curves, 12 representative farms recora a cost revenue ratio greater than 1.0.

When the long run averaife cost curve is derived from the fourth series of short run average cost curves, the cost reveriue ratios of 47 representative farms are greater than 1.0 and when the curve is constructed from the fifth series of cost curves, cost -evenue ratios Ereater than 1.0 are oiserved on 72 representative farms.

1) Cost Uurves Berived irom the First Series of Cost Revenue Katios

the short mun average cost curves and long run average cost curve derived from the first series of cost revenue ratios are shown in Figure 8.7.

In the case oi plant sizes tivo to live, the cost revenue ratios of all short run average cost curves deciine contiruously as the gross farm income increases and consequently the lowest cost revenue ratio in eacn case is recorcien at the cut-off point. the short run averase cost curves of plart size one suoclasses (i) and (c), however, are "u" shaped. 13/ Whe short ruri average cost curve of subciass (a) is sinilar to those of plant sizes two to five.

For comparabie vuroíf points, the cost revenue ratios increase as one moves from jlant size one to plant size five. I'his is aue to the fact that for comparable cut-off points, as ore roves from ilant size one to plant size five, the jer unit cash costs increase and furtner, the per unit gross farm income decreases.

For plant sizes two to five, within each plant size, the cost revenue ratios at the cut-off points decrease as one movei from subclass (a) to subclass (c). This is due to the decrease in the per unit cash costs beins of sufficient mainitude to offset the effect of the decrease in the per unit gross farm income. In the case of plant size one, however, the cost revenue ratios at the cut-off points increase as one moves from
13. The short run averace cost curve of plant size one subclass (c) is "u" shaped because of:
i) The increase in the per unit cashcosts of herds of over 120 coivs.
ii) The decline in the per unit gross farm income which accompanies increases in herd size.
Whe short run average cost curve of plant size one subclass (b) is "u" shaped because over the range of 110 - 120 cows, the decline in
subclass (a) to subclass (c). 14/
A trace curve drawn through the sut-ofi points of subclass (c) is asain "u" shaper. Whe lowest point is the cut-of point of plant size one subclass (a) and the final point is the cut-off point of plant size five subclass (c).

2) Cost Curves Derived from the Second Series of Cost Revenue Ratios

the short min average cosi curves ind iong run average cost curve derived from the second series of cost revenue ratios are shown in Pisure 8.8.

The short run averace cost curves of plant sizes two to five are again characterised by a continuous declire in the cost revenue ratios as fross farm incore increases. In tho case of plant size one, the short rü average cost curve oì subclasf; (0) is aşain "u" shaped. The short mun averacie cost curvesof subohasses (a) and (b), however, are similar to those of plant sizes two to f'ive. $15 /$

Fon conparable cut-off pointe, the cost revenue ratios increase as ore moves from plant size one to jhont size five. This is cue to the per unit costs of 'Lotal Cost (B) increasine and تne per unit gross fam income decreasinë as one roves from piant size one to plant size five.

The cost revenue ratios at the cut-osi points of the three subclasses of each plant size açin conform to one of two patterns. the cost zavenue ratios of plant sizes two to flive decrease as one moves fron subciass (a) to subciass (0). 'The cost reverue ratios of plant. size one, however, increase as one moves from subrlass (a) to subclass (c).
14. In the case of subclass (c), this is due to the increase in the per unit cash costs and the decrease in the per unit fross farm income, while for subclass (b) this is due to decrease in the per urit sross farm incone being of surficient magritude to offset the effect of the slightly lower per unit cash costs.
15. 'I'he short run average cost curves constructed from the third, fourth and fifth series $O f$ cost revenue ratios also conform to this pattern. I'hat is, the cost revenue ratios of all short run average curves, with the exception of that of plant size one subclass (c), decline continuously as the degree of plant utilisation increases.

The trace curve is "u" shaped with the low point occurring at the cut-off point of plant size one subclass (a) and tise final point is the cut-off point of plant size five subclass (c).
3) Lost Lurves Deriveu from the Mnird Geries of Cost Revenue Ratjos

Whe short rur average cost curvesini long run average cost curve derived from the third series of cost reventie ratios are shown in Figure 8.9.

A comparison of the cost revenue ratios oi comparaole cut-off points indicates that first, the cost revenue ratios of subclasses (a) and (b) increase as one moves irum plant size one to plant size five. Second, the cost revenue ratios at the cut-ofi points of subclass (c) increase fron plant size one to plant size four and then decline slightly as one moves fron plant size four to plant size five.

The decline in the cont revenue ratio at the cut.of!s point of plant size five subclass (c) is wiue to the isecrease in the per unit costs of Total iost (\because) being of suifficaient marifincie to offset the effect of the ciecline in the per unit uross íame incoinn.

The cost revenue ratioe at the cut-ol't points of plant sizes three to five decrease as one moves from subchass (a) to subciass (c). the Iowest cost revenue ratios oi plant sizes one and two however, are recorued rit the cut-cif point of subciasi; (í).
'Prace curves conotiructed throusin the: subriass (a) and wioclass (b) cut-oif points are therefore "u" shajeu. for boun zrace curves, the Low point corresponds to the respective, llant size ore cut-off point. 'rne final point is corresponding cut-oft' point of plant size five. A trace curve constructea through the subalass (c) cut-off points is, however, "s" shaped. "he lowest point being the low point of the short run averase cost curve of plant size.one sizbclass (c) and the highest point being the cut-off point of plant si:se four subclass (c).

4) Uost Curves Derived from the Fourth Series of Cost Revenue Ratios

Figure 8.10 shows the short run averase cost curves and the long run average curve derived from the fourth series of cost revenue ratios.

For comparable cut-of'f points, the cost revenue ratios decline as one moves from plant size one to plant size five. Ihis is due to the decreases in the per unit costs of l'otal lost (D) being of sufficient magnitude to offset the per unit decrease in gross farm income.

Por all plant sizes, the cost revenue ratios at the cut-off points decrease as one moves from subclass (a) to subclass (c). 16/ Trace curves constructed through the cut-off points of all three subclasses are "L" shaped. The lowest point of such curves is the cut-off point of a plant size five subelass.

For all fifteen subclasses, coct revenue ratios of greater than 1.0 result over the initial derrees of plant utilisation. Of the 129 representative farms from which a lone run averase cost curve is derived, the cost revenue ratios of 28 farms is jeater than 1.0 .
5) Lost Liurves Derived from the fintin series of Cost Revenue Ratios

Cost curves derived from the fifth series of cost revenue ratios are shown in fiemue 0.11 . Bor comparable cut-ofi points, the cost revenue ratios deciine as one moves fron plant siaze one to yant size five due to tre decrease in the per unit costs of liotial Cost (E) being of sufficient nagnitude to ofinset the decreases in the per unit fross farm income. "race curves are in this cose "L" shaped with the low point occurring at the out-ofi point of a plant size five subclass.

For all fifteen subclasses, cost reverue ras' os geater than 1.0 are reconded over the initial derrees of rignt utilinabon. (if the 129 representative farras irom which the long run averase cost curve is deriveu, the cost revemue ratios of 39 iarm is greater than 1.0. I7/

Ió. Such a pattern is also aiscemible in the cost cumves derived from the fifth series of cost revenue ration. that is for ail ilart sizes, the cost revenue ratios decreane ais one moves from subciass (a) to suocless (c).
17. As inaiaated in section 6.5 the author omitted a consise for car expenses. If it is assuried that such a charre remeins constant at l()O dollars per annum irrespective of plant and hera size, the inclusion of such a charee does not markedy alter the shape of the long mun average cost curve. For example, if such a sum is includer in the rotal Cost (E) data, the cost revenue ratios at the low points of the five subclass (c) short mn avera氏je cost curves are increased by:
a) Plant size one : 0.0060 dollars per dollar of gross income;
b) Plant size two : 0.0034 aollars per dollar of gross income;
c) Plant size three : 0.0025 dollars per dollar of gross income;
d) Plant size four : 0.0018 dollars per dollar of gross income;
e) Plant size five : 0.0015 dollars per dollar of gross income;

1) Introdactory Comments

In this study, the cost curves derived from the fifth series of cost revenue ratios ane lisedtodiscuiss the nature of the cost-size relationships, as the total cost data from which the cost revenue ratios are derived, includes an allowarce for ail resources nsed in the production process The two long rua averase cost curves of interest are therefore those shown in Figures 8.6 aniu 8.11 .

The two figures inaiaate that poth when milkfat production per cow varies and remains constant with haceses in plant and herd size, the long mun average cosi curve:
a) Consists of secments of ail fifteen short run average cost curves. Eence each subclass represents the least cost way and hence most profitiable way of producing particular rances of crose farm incone.
b) Inciudes the entire short rur average cost chrve of plant size one subcless (a). In the case of the other fourteen short mun averaje co..t curves, onyy secrients of each curve are inciuaded in the joia; run averaje co:st curve.
c) Because the resources which constitute the fixed plant are not continuously divisible is segmented.
2) Economies of Si arising fron Incroasing the Decree of Plant

Utilisation
In both cases, within each suiclass, reductions in the total cost per doinar of eross income are realised as the degree of plant Litilisation increases. 'That 4 , within each subclass, economies of size are realised. With one exception, suin reductions occur over the complete lensth oi the short run averace cost curves. The one exception is the short min average cost curve of plant size one subclass (c) when the per cow milkfat production varies with plant and herd size. 'Ihis short run average cost curve, as discussed earlier, is " 4 " shaped. Consequently reductions in the total cost per dollar of gross income are realised only over the range of $60-130$ cows.

3) Economies of Size arising from Chancing Plant Size

Between subclasses, continuous reauctions in the total cost per dollar of eross incone occur oriy over specific rances of herd sizes and Eross farm incomes. Whe rances of eross farm income over wich such between plant reauctions oncur are shom in tijures 8.12 and 8.13 by the curve 'RT'.

Whe short mun averaje cost curves of rifure 8.6 are reproduced in Figure 8.12. The heav' sections of the curve Tr' in Fiture 8.12 show the rarige of bross farn incones over with continuous detween subclass reductions in the cost reverue ratio occur, inen the level of milkfat production per cow remains constant irrespective of plart arak herd size.

Conversely, the horizontal dotted sections of curve TT' indicate the ranges of grosi farm inccmes over winch continaous between subclass reunctions in the cont revcuie ratio do rot occur. For example, the cost revenue ratio, when plant size one mbolass (a) is utilised, declines as bruss furn inoome increases over the rance correspondine to $60-105$ cows. Tris is hom by the seement 'rx, of the curve Mrn'. In the case of a nerd size or lo cows, utilisine plant size one subclass (b), the cost reverue ratio is sreater then that recorded at the cut-of point of plart sige ore subclass (a). The horizontial segment marks the range of gross fanm. Encomes over wish the trend towards contimuous between subciass reductions in the cost rovenue ratio is intermpted. Over the rance of 10 ? to 120 cows, however, continuous between subclass reductions in the cost revenue ratio are realisea. "his is shom by the segment $X_{2}-X_{z}$ of curve 'v'. The heavy seoments of the curve 'ri' therefore, demarcate the portions 18 of the lone run averase cost curve over which continuous recuctions in the cost revenue rasio are obtained, and hence economies oi size are realised by changing (increasing) plant size.
18. 'The heavy segments of the curve Tri show:
i) The subclasses over which continuous reductions in the cost reverue ratio occur.
ii) For each reievant subclass, the corresponding ranges of gross farm income.

Curve 'f1' of Figure 8.12 shows that economies of size resulting from chances in plant size $29 /$ are realised over segments $20 /$ of all short run average cost curves of plant size one. However, in the case of plant sizes two to fiive, economies of size resultind from chanses in plant size are realisea only over sesments of the short run average cost curves of subclasses (i) and (c).

Data concerning the rances of herd sizes and fross fam incomes, over which contiruous between subclass reauctions in the cost revenue ratio occur are shovin in cietail in faole 8.1.

From i'ciure 8.12 and 'rable 8.1, it can te sean that over the initial sefment of the long run average cost curve (i.e. that sesment corresponding to tine snort mun averase cost curve oi piant size one subclass (a)), the cost revenue ratio declines rapidly. However, over the complete length of this segment, the cost reverue ratio is sreater tran 1.0 . Consequently, although economies of sise are realise over this portion of the long run averare cost. curve, losses are recordied oy the representative iamis which correspona to this segment. In the cases of plant size one farms, a cost revenue ratio oi less thar, l. 0 is not recorded until a herd size of ilj cows is encomatered on that part of the lons run average cost curve which corresponds to the short man average cost curve of subclass (b).
 fiam is the jiant size five famm with a herd size of 600 cows and that over the comilete rance of plant ard herd sizes studied, the total cost per dollar of erross incone is reduced by 0.ós\% cioliars. However, it should ve rotec that the difference between the cost revenue ratios of the inost efficiert plant size ore farm and the most efficient farm is only 0.1281 dollars. vomparaile fitures for the other plant sizes are:
Plant size two $: 0.0834$ dollars;
Plant: size tiree $: 0.0535$ aoliars;
Hlant size four $: 0.0254$ dollars;
19. The phrase "economies of size resulting from changes in plant size" is symonymous with the phrase "continuous between subclass reductions in the cost reverue ratio".
20. Ir the case of plant size ore subclass (a), economies of size are realised over the comilete lencth of the short run average curve.
21. i.e. The farm with the lowest cost revenue ratio.

Table 8.1 Rances of Hera Bizes (and Gross Parm Incomes) over whioh continuous between Subclass Reauctions in the Cost Revenie Ratio occur (Constant Kilkfat yroduction per Cow).

Reance of cross Fam Incorres (Dollars) (1)	Range of Ferd Sizes (2)	Subclass (3)	Cost Revenue Ratio (4)
7,138-12,384	$60-105$	Plant size one (a)	1.4727-1.04.53
12,600-14,224	107-120	Piant size one (b)	1.0416-0.9801
14,587-17,012	123-136	Plarit zize one (c)	0.9771-0.9437
25,218-20,699	213-226	Plant. size two (b)	0.9436-0.9194
27,071-28,346	229-240	Plant size two (c)	0.9185-0.8990
39,192-40,035	$332-3 * 9$	Plant size ${ }^{\text {a }}$,	0.8985-0.8898
$40,515-42,477$	343-360	P1ant bice warae (c)	0.8885-0.8691
52,420-53,305	444-452	Pant size four (b)	$0.8683-0.8620$
$54,050-50,643$	458-480	Plant size four (c)	$0.8616-0.8414$
$66,071-66,650$	$500-565$	Plarit size five (b)	$0.8407-0.8369$
67,390-70,774	571-600	Part size five (c)	0.8363-0.8156

NOMES: i) the rame of poss farm incores and hord sines oven which contirucus between subclasis reductiond in the cost revenue ratio occur are shown in volums (1) and (2) respectively.
ii) The subclasses over wich such continuous reductions occur are shown in column (3).
iii) 'The cost revenue ratios correspondind to the range of gross farm incomes and herd sizes over which such continuous reductions occur are shown in column (4).

The short run average cost curves of Figure 8.11 are reproduced in Figure 8.13. Trine heavy eactions of the curve 'IT" in Fiture 8.13 show the rance of fross farn incomes over winch continuous between subclass reductions in tre cost revenue ratio occur, wen the level of milkfat prodiction per cow varies with plant ard herd size. C'urve rinl shows that wren the level of milkiat prociuction varies with piant and herd size, economies of size ironi chancireg jlant size are realised over segrments of all the short run average cost curves of plari sizes ont and むwo ana over sefments oi the short mun averaje cowt curves of subclasses (b) and (c) in the case of plant sizes trinee to five.
 cernine the ranees of herd sizes and erois farm incones over which continuous between subclass reauctions in the cost reverue ratio occur when the level of milkfat paocuution per cow varies with plant and herd size.

Fron Tab?e 8.2 ano Pisure 6.13 , it can be seen that the cost reverue natio asfain drops rapidiy over that portion of the lone run average cost curve corresponding to the short mun averaje cost curve of plant size one subalass (a). त̈owever, in this case, onij the cost revenue ratios corresponaing to tine iritial degrees of blant utilisation are greater
 size reaches f̛ cows. the most eificient fam is acrain the plant size five farm with a rern size o: oú covs.

Over tine complete range of plant und nerd sizes studied, however, the reduction in tine to cost per dollar of eross income is only 0.34ió doliars. furtion the aifference between tre most efficient farm of plant size one and the most efficient farr is reduced to 0.0478 dollars. Comparable さigures for the other plant sizes are:

$$
\begin{aligned}
& \text { Plant size two }: 0.0341 \text { dollars; } \\
& \text { Plant size three : } 0 .(0242 \text { dollars; } \\
& \text { Plant size four : } 0 .(0133 \text { dollars; }
\end{aligned}
$$

4) Milkiat Output per Labour Unit on the Representative and Survey Farms

The ranges of milkfat output per labour wnit which correspond to the data show in Columns (1) and (2) of Paole 8.2 are shown in rable 8.3. (19able 8.3 therefore shows the ranges of milkfat output per labour unit over which continuous between subclass reductions in the cost revenue ratio occur, when the level of milkfat per cow varies with plant and herd size.)

Pable 8.2 Rarces of Herd Bizes (and Gross Farmincomes) over which continuous between Subclars Redactions in the Cost Revenue Ratio ocour (Variable Milkfat Procuction per Cow).

```Nange of Gross Farm Income (IOIlars) (1)```	riance of Herd Sizes   (2)	Subcla:s $(3)$	Oost Revenue Ratio   (4)
3,920-14,038	60-105	Prant size one (a)	1.1905-0.9262
14,496-15,631	100-120	Plant size one (b)	0.9195-0.8973
10́,102-16,517	126-130	Plant size one (c)	0.8966 - 0.893?
26,330-25,491	203-210	Plant size two (a)	0.8917-0.8901
27,013-27,856	210-226	Plant size two (b)	0.8899-0.8837
20,46?-29,005	23) - 240	Plant size two (c)	0.8836 - 0.8800
40,173-40,693	333-339	Plant size three (b)	0.8792-0.8764
41,269-42,425	$340-300$	Pant size three (c)	0.8763-0.8701
52,400-52,549	446-452	Plant size Pour (b)	0.8696-0.8674
33,939-25,303	$463-80$	Plant size four (c)	0.8671-0.8592
64,549-64,985	500-565	Piant size five (b)	$0.8591-0.8568$
65,820́-68,04,5	574-600	Plant size five (c)	$0.8567-0.8459$

 continuous between suibclass reciuctions in the cost revenue ratio occur are shown in Column (1) and (2) respectively.
ii) 'The suoclasses over which such continuous reductions occur are shown in Column (3).
iii) Ihe cost revenue ratios correspondin to the range of bross farm incomes and herd sizes, over which such continuous reductions occur are shown in column (4).

An examination of such data reveals that the output per labour unit (of farms of eacin plant sise with the lonest cost revenue ratio), declines as one moves from plant size one to piant size five. If such data is compared with that of the fam surver, the following goints are of ̇nterest. First, there are examples ot Growi I and II survey farms
 representative famm marked in table 8.3 by an asterisk. For example, the output ver laocur unit on the following Gromp I surver farms exceeds that of the corresyondine represchtative fames.

$$
\begin{aligned}
& \text { 1906/09 season - 5inn Nos. 7, 8, 9, } 10 \text { and 11; } \\
& 1969 / 70 \text { season - manir jos. ?, 8, 9, 10, } 11 \text { and 12. 23/ }
\end{aligned}
$$

Similariy on Fiann No. 21, both in the 29nio/6y anu 196j/\% season, the output per laboun unit exiscded that of the con"esponding representative farm. Gecond, there is only one examice of a Group ITI or IV farm on which the output per labour unit exceeds that of the corresponding plant Gize show in 'ravle U. 3. Whis farm in question is Na..No. 22, the output per labour unit on which was ereater than that shown in Table $\{3.3$ in both seiaons. Ir both seasons, however, on this famm, a married courle vas employed. Consequently, the data conceming the output per milking unit of Pamm No. 22 indicaves that the figure in both seasons is less than that shown in Colum (3) o: Male 8.3.

A new series u- cost revenue ratios 24 can be computed for plant sizes two to five so that the cut put jer labour unit cater of the (four) representative fanms aproximates the maximu... fisure recoried bir a comranable survejr foam. Mris data is presentea in Table 8.4.
22. i.e. Farms mith the same rumber of lacour units.
23. It should be noted, however, that in the $9968 / 0$ season, Famm Nos. \%, 8 and 10 employed two milniner units and in the 1969/70 season, Farm Nos. \&, 9, 10 and 12 emploved two milking units.
24. A further cost revenue ratio was also computed for plunt size two. As noted earlier, there is only one example of a survey farm, where the output per labour unit exceeds that of a corresponding representative farm. As on the farm in question (i.e. Parm No. 2l) both labour units were concerned with the entrepreneurial function, and hence no "employed" lavour was involved, the output data from Farm No. 21 has been ignored.

Table 8．3 Ranges of Output per Labour Unit over which continuous between Subclass Reductions in the Cost Revenue Ratio occur（Variable Nilkfat Production ner Cow）．

Rance or   Herd bizes   （1）	ごルローえas $(2)$	Output per Leibour Unit （pounds of milkfat）   （3）
$60-105$	Plant size one（a）	23，400－36，660
108－120	Piarts size one（b）	37，4，14－40，264
126－130	Yasit size one（c）	41，590－42，439
208－210	ulant size two（a）	33，775－33，992
216－226	Plant size two（w）	34，630－35，653
233－240	Plant size two（c）	30，338－30，997
335－339	Prant size three（b）	34， $153-34,564$
346－360	Plant size trree（0）	35，054－35，945
$446-402$	plant size foun（0）	53，326－33，630
403－480	plant size four（c）	34，196－35，04，${ }^{*}$
200－565	Plant size five（0）	32，60＇？－32，900
574－600	2上at eize five（c）	$33,272-34,346 *$

NOTES：

 courespoñing subclasnos over which cön ．．．．üs between subclass ređuctions in the cost reverue ratio occur．
ii）Colum（3）shows for each of the suiclasses over which such cost reductions occur，the corresponding ranges of milkfat outjut ver Iabour unit．＇The output per labour unt figures marked by an asterisk in Column（3） are those which correspond to the representative farm of each plant size，win the lowest cost revenue ratio．

Nable 8.4 Modified Cost Revenue Ratios and Output per Labour Unit Data for Plant Sizes two, three, Four and Five.

$\begin{aligned} & \text { Mart } \\ & \text { Size } \end{aligned}$   (1)	Moaified Cost Revenue Ratic (2)	Nodified Gutput per Laboun Unit data (pounds Of miveiat) (3)	Fera   Size   (4)	SubClass (5)	Averace Milking Pime (Hours)   (6)
(2)	0.8899	34,630	215	(b)	2.675
(3)	0.8834	35,735	327	(b)	2.690
(4)	0.9090	29,335	375	(a)	1.575
(5)	0.8756	30,694	515	(a)	1.710

HORES: i) Coinm (2) show the cost revenue ratios of the (four) represenvidive farms when the output per labour unit aporoximates the maximan ficure recorded by a comparaitle surver fazin.
ii) Colum (S) shows the relevant milichat outhat per lacour unito data of the (four) representative farms.
in) Colum ( $\therefore$ ) rovis for ench of the (four) reveesentative fams, the here size winch, should be miznod in order - Lt the appropriate outri. ver labour figure show 1a voivian (j) ve cubcineu.
iv) Colurn (j) show for anch of the ('oun') representative farms, the subclans (.... .ize of ferwingbone) which should be usea, $\begin{aligned} & \text { sto hova En that shown }\end{aligned}$ in Column (4). (the Ghrüse "ohoulu de used" means the suoclass wich Cor the hera size (and hence output per labour unit in question) gives the lowest cost reverue ratic.)
v) Uolumin ( 0 ) shows for the herd size and subclass shown in Coluinns (4) and (5), respectively, the corresponding average milking time.
25. Table 8.4 is based upon the assumption that the level of milkfat production per cow varies with plant and herd size.

The cost reverue ratio of the :ilant size one farm with the highest output per labour unit is 0.8948 (i.e. plant size one subclass (c) 136 cows). From Mable 8.4, it car be seen that the cost revenue ratios of the representative farrs of gient sizes two, three and five (the output yen labour unit data of won ampoximates the naximum recorie by a comparable survey farm) ane lower than that of the plant size one representative fom discussea above. In the case of plant size four, the "modifieci" cost revenie ratio as shown in table 8.4 is greater than that of the plant size one Fam.

It should be noted, however, that he differences bitween the cost revenue ratios of the piant size one farm (with the highest output per labour urit) and those on the repescentative farms of plant sizes two to five as shown in trable 8.4 are not great. For example, the difference between the cost revenue natio of the plint size one farm (with the hichest output per laboun unit) and that of the plant size two farm,
 compravie fisures for the other plant sizes are:

Plant size throe :	0.0114	collars per dollon of sross income;					
Plant size four	-0.0142	$"$	$"$	$"$	$"$	$"$	$"$
Plant size five	:	0.0192	$"$	$"$	$"$	$"$	$"$

However, it is inportant to note that the average milking time of the plant size one fam in question is breater than the average milking time of the representative farms or piant sizes two to five as shown in Coiumn (6) of 'able 8.4. Whe average milking time of the plant size che farm is $1.7 j$ hours. It sears likely, therefore, thas plant size one farms can achieve a cost revenue ratio which is comparable to those of the fiums of the larger plant sizes and nence between plant sizes, corstant returns to size are realined. However, it vould seem probable that in order for constant returns to size to be realised, the hours of work of the labour units of the plant size one farms would have to be greater than those of the labour units of the farms of the larger plant sizes, (i.e. the cegree of plant utilisation of the plant size one farms would need to be greater than that of the farms of the larger plant sizes.)

In this context, if a new cost revenue ratio is computed for plant size one, so that the output per labour unit of the representative farm approximates that of survey farm No. 11 in the $1968 / 69$ season, the resulting cost revenue ratio is 0.8239 . Such a cost revenue ratio is:
a) Lower than the cost revenue ratios of all representative farms of tiable 8.4.
b) Lower than the cost revenue ratios ot all 129 representative farms from wich the lons run averace cost curve of pigure U. 11 is derivea (i.e. L.R.A. U. curve, variable milkfat procuction per cow).
c) Wiatin one exception, 25/ Iower thair the cost revenue ratios of all 129 representstive farms from vitch the lone run average cost curve of ங゙igure 8.6 is derived (i.e. i.ir.A. ©. curve, constant milakiat procuation per cow).

Howevern, it is imporiant to realise that the average milking time of the plant size one farm, with a cost revenue of 0.8239 , is 2.76 hours.

### 8.6 NHP INCOME CURVES - INMRODUGYORY COMEMIS

As discussed earizer, for each representative farm, five net incone


i) IVt fañi jncome;
c) Operaivon iabour anci managoment income;

む) Uperatox managemert incore;
e) intrepreneurial ircore;

Mhereiore for each of tre ten scries ofi shori mun average cost curves, which can be arawn for a given level of milkfat price, a corresyondinc series of shcrt run ret income curves can be dram. Such curves show for any ixiven subciass, the net income (or net loss), resultine from producing a eriven level of uross fiari incone, with the subclass in question.

From a series of short run net income curves, another curve can be constructed, which shows the most profitable way of producing any given level of gross farm income. Such a curve may be termed a long run net ircome curve. In this section, ten long run net income curves are presented, each corresponding to one of the long run average curves discussed earlier.
26. The one exception is the cost revenlie ratio of the representative farm corresponding to the cut-off point of plant size five subclass (c) (i.e. 600 cows). The cost revenue ratio of this farm is 0.8156 .


1) Net Vash Income Uurves

The short man and long riun net cash income curves are shown in Ficure 8.14.

For all fifteen sưoclasses, the net income (i.e. net cash income) increases as the aecree of plant utilisiztion increases. Consequently the hiefnest net cash inccan in all cases is recozden at the cut-off point.

A1sthough the brort mun avenace cosi curve of finit size one subciass (c) is "u" ohaped, the net cash income increases as the degree of plant utilisation increases. Whis indicates that insurfocient variable resources have been adied to the fixed biant to cance roitit (i.e. net cash income) to fail. The piant is there:ore beins operated at a degree of plant utilisation wich either coincices with, on is sliently less than, the degree or plant utilisation at which profit is maximiseá.

For comparaile cut-off points, the net incone increases as one moves from plant size cre to picit size five. Whrther, within each plart size, the nat income increases as one moves from the cut-off point of subclass (a) to the cutofir poini ci sutciaise (c). Whe highest net cash income is therefore recorded at the chit-ofif point of plant size five subclass (c).
 shori run net income curves, inaicatiry thai each subclass represents the most profitable way of producine particuian rances or erosis farm income. We lore mun net income curve is segmented because the resources Which comprise the ificoú plant are not continuously divisible. 28/
27. In all cases, the lone run net incorse curve incluades the complete net income curve of plant size one subolass (a).
28. The comments made in the second, fourth and fifth paragraphs also apply to the net income curves derived from the other four net income figures. That is:
i) For all fifteen subclasses, the net income increases as the degree of plant utilisation increases.
ii) For comparable cut-off points, the net income increases as one moves from plant size one to plant size five. Within each plant size, the net income increases as one moves from the cut-off point of subclass (a) to the cut-off point of subclass (c). iii) the long run net income curve comprises segments of all fifteen short run net income curves.

The net cash income of all 129 farms (from which the long run net income curve is derived) is positive.
2) Net Parm Income Burves
the short run and long min net farin income curves are shown in Pigure 8.15.

Again, although the short rur averaje cost curve of ilant size one, subciass (c) is "u" shapen, the net farm income increases as the aegree of plant utilisation increwies. Whis, as dicoussed earlier, is due to insufficient variable resources being cunced to the İixed plant to cause the net income (i.e. net farm income) to foll.

The net fiam ́rcoue of all 129 representative ianm is accin positive. this is of particuiar inverest, for as lores as this sum is positive, the fam operator can remairs solvent. the minimurn net facm income is recorded at the sturn point of plant biat one subclass (c), the sum in question beinc 3,079 doliars.
3) Operator Labour and Naracement Income Curves

The shost run and long mun operator labour and management income ourves are shown in inture e.26.

In this case, with three cacotion, losses are recorded over the
 The cost revenue ratios of such repiesentative farms are greater than 2.0.)
4) Operator Management Income Gurves

The short run and long run operator manacement income curves are show in Figure 8.17. Figure 8.17 shows that in all cases, losses are recorded over the initial cegrees of plant utilisation of each subclass, and further compared with the operator labour and management income curves, proportionately more of the representative farms record losses. For example, when the ret incorie curves are derived from the operator labour and management income data, on twelve of the 129 representative farms, losses are recorded. when the net income curves are derived
29. The three exceptions are:

Plant size one, subclass (a);
Plant size two, subclasses (a) and (b).
from the operator management income data on 47 of the 129 representative farms, losses are recorded.

## 5) Entrepreneurial Income curves

The short min and long run entreureneurial income curves are shown in Hisure 8.13.

In this case, on 72 of the 129 representative fams, losses are observed. Firther, 站 shouid be noted that on ill representative farms of plant size one subclass (a), losises are recoraeu.

Income to be positive
'rable 8.5 shows for each subclasu, the ninimur sord size and corresporaing outyut arc co:is per Labour unt dita required for the entrepreneurial income to be positive.

From Table 8.j, it is appanent that for comparable sujclasses, the minimum ratio oi cows jer láoun unt and output per labour unit, vequireu zor the entreprencurial incone to be positive declines as one moves Srominent size cre to pient size five. with the exception of plant size one, $30 /$ Within ewin plant size, the minimun herd size recuired (and hence cows per labour unit and outpht per labour unit) is zecorued by subciass (a). Vonsequently, over the complete rancfe of plant and herk size stubied, the minimum ratio of cors ner lacour unit recuirea declines srom 215.0 in the case or plant size one subclass (b) to 79.4 in the case of blant size five sabclass (a). . The a.sociated output per labe . $\therefore$ Enres are 3f,500 pounde, plant size one subclass (i), and 23,820 puintu, yiant size five subclass (a).

## 

1) The Short Kun and Lone Fun Net Incone Curves

The five series of short run and long run net income curves are shown in Figures 8.19, 8.20, 8.21, 8.22 and 8.23. From Figures 8.19-8.23, when the level of milkiat production per cow varies with plant and herd size, the following points are of interest.
30. In the case of.plant size one subclass (a), the entrepreneurial income is negative for all degrees of plant utilisation. （Constant rilkfat per（Cow）

Suibclass   （1）		Minimu： そerd 说ze   （2）	Cown Labone   （3）	Uutput yer Laシour Unit （Pounds of Niitifat） （4）
（a）   （b） $(0)$	Plant   Size one	－	－	－
		115	115	34，500
		128	1 13	33，400
（a）   （b）   （c）	S－ant	－－7	9\％．5	28，050
		－89	$9 \% .5$ ．	28，350
		192	96.0	23,800
（a）	Plant   Size three	263	（3．6\％	26，300
		200	以リア	25，800
		272	90． 33	27，200
$\begin{aligned} & (a) \\ & (0) \\ & (c) \end{aligned}$	212．   size four	333	83.25	$22_{r}, 975$
		330	83.50	2．5，350
		342	（3）． 50	25，650
（a）   （b）   （c）	1）2ant   Siue İve	397	79.40	23， 820
		405	81.00	24，300
		409	31.30	2．4，540

NOIES：
i）Column（2）sows for each of the fifteen subclasses，the minimum herù size required for the entrepreneurial income to be positive．
ii）Column（3）shows the corresmonding ratio of cows per labour unit．
iii）Column（4）shows the corresponding milkfat production per labour unit．

In all five cases, $31 / a s$ the degree of plant utilisation of each of the fifteen suoclasses increases, the appropriate net income figures increase. Consequently, the highest net income figures for each subclass are recorded at ine cut-off point.

Uf particular interest are the five short run net income curves of plant size one subclasi (c) and one $\frac{22}{}$ net income curve of plant size one subclass (b). Anthough ine corresionaing short run averaje cost cirrves of these net income curves are "u" shaped, the net income fisures increase as the decrree oi piant utilisation increase.i. This, as noted earlier, is due to insufficient variable resurnces being added to the fixed plant to cause net income to fail.

In ail five cases, Son comarabie cut-oif points, the net income increases as one moves from plant size one io plant sise five; within eacn plant size, the net incore ficures increase as che moves from the cut-off point of suociass ( a ) to the cut-oin point of subclass (c). The hichest net income in ail five cases is recorded at the cut-off point of plant size five subolass (c).

The iony mun not income curve in all cases is secmented, aue to the resources which comprise the fixed plant not deinc continuously áivisible.

As one moves fram the first to the fitith senies of net income curves, there is a trend towarus losses beine recorad on paporionately more of the representative foarms. For examile, when the net income curves are derived from the net cash income datia, on none of the 129 representative farms (from which the lonor mun net income curve is derived) is the net income (i.e. net cash income) regative. Comparable figures for the four other series oir net income curves are:


Series Four : | Operator |  |
| ---: | :--- |
|  | Management |
|  | Incone |

Series Five : Entrepreneurial Income
: Losses are recorded on 39 of the 129 farms;
31. i.e. For each of the five series of net income curves.
32. i.e. The net income curve derived from the net cash income data.
2) Minimum Herd Size and Milkfat Output required for $\operatorname{montrepreneurial~}$ Income to be Positive

Tabie 8.6 shows for each subclass, the minimivi herd size and correspordine output and cows per labour unit data required for the entreprexeurial income to be positive, when the level of milkfat production per cow väries with piant anà hera size.

Golurn (3) shows that when the level of milkfat production per cow varies with piant and hera size, for comparable drolasses, the differences between the finve piant sizes in terns of the minimia ratio of cows per Labour unit required are much sohnceù. Within each piant size, the minimum hera size roquited is roconded oy subclass (a). Column (4) shows that for comparaile sabclasees, the output per liabour unit required uecreases from piant size une to plant size five and within each plant size, the minimuri outhut per lavour unit required is recorued by subclass (a). Consequently over the compiete ranse of piant and herd sizes stuaied, the minimum ratio of coviper labour unit required declines from bob. 0 in the case of piant size one mioclass a) to 72.8 in the case of plant size five subolass (a). The corresponaite output per labour unit fisizures are 32,003 pounçs in the canse of yant size one subolass (a) and 23,218 pounas in trie case ol pilant size İve sujdiass (a).

### 8.9 Breareman anamsis

## 1) Milutat prociuotion jer Gow

Une 0 : the most criticai assumption:; of the analysis is the assumption conceming the level of milkfat production per cow pertaining to each of the 129 epresentative farms, from which the long run averace cost curves are constructea.

As discussed eariier in this study, iong run average cost curves are presented:
a) Under the assumption that the level of milkfat production per cow remains constant over the complete range of herd sizes studiea.
b) Under the assumption that milkfat production per cow is a function of plant and herd size.

Figures 8.6 and 8.11 snow that in both cases, the low point of the long run averase cost curve is represented by the cut-off point of plant size five subclass (c).

Mable 8.6 Minimum Herd Size, Cows per labour Unit, Output per Labour Unit required for the intrepreneuriai Income to be Positive (Variable Minfat per cow).

Süoclass   (1)	Ninimün Eera Size   (2)	Cows pe= Labour Ünit   (弓)	Output per Laboun Unit (Mounds of Wilkfat) (4)
$\begin{aligned} & \text { (a) } \begin{array}{l} \text { (b) } \operatorname{lan} t \\ \text { (c) Size } \end{array}, \end{aligned}$	88	88.0	32,083
	90	$y(0.0$	32,649
	92	92.0	33,207
(a)   (b)   2   $S$   (c)	140	70.0	25,180
	142	71.0	25,467
	14.5	\%	25,893
(e) jant(w) Size 3$(0)$	214	?1.53	24,506
	279	7, \%00	$22_{4}^{4}, 972$
	2?	$7 \% .00$	25, 246
(a) plant   (0) Size 4   (c)	292	73.00	$22_{i}, 0.43$
	296	74.00	24,32
	302	7 ¢.50	2*, 716
(a)   (b) Plant   (c)	36.4	72.80	23,218
	372	74.20	23,592
	376	75. 20	23,858

NOUES:
i) Column (2) shows for each of the fifteen subclasses, the minimum herd size required for entrepreneurial income to be positive.
ii) Colutn (3) shows the corresponding ratio of cows per labour unit.
iii) Column (4) shows the corresponding milkfat production per labour unit.

If milkfat production per cow is ar:umed not to vary with plant and herd size, the selection of another levol of milkfat production per cow, will not aiter the shape of the ione run average cost curves. If it is considered that milkfat production ver cow is a function of herd and plant size (and in the author's opinion, this is more likelyy, then altering the five linear functions which expreus milkfat production per cow as a function of herd and plant size, could alter the shape of the long min average cost curves. zurther, it shoula be remeromea the data which was used in the derivation of the five lirear functions was arbitrarily decidea uyon by the ansion after a stüaj of the fam survey àata.

Rather than derive a number of lonir run averace cost curves based upon a serice of assumptione conesming the levels oi milkiat prouction per com, the effect of varying levels of milfiat rioduction per cow on the shape of the long run averaje cost curvesis studied in the following way. For each of the i2y representative faym (fron which a long run average cosi curve is derivecj, the level of milkfat production per cow required fon the cost revenue ratio of the farm in question to be equal to that of the low point of the lone run average cost curve is determined.

Readers are thereiore invited to fum their own opinions concernin" the relationship betwect milkiat prodict, ion per cow and plant and herd size and to examine figures 8.24 and e. $\boldsymbol{c}^{\prime \prime}$, to detemine whe then their opinions ane such that ine low point and rence shape of the long run averaje cosi curveswill alter.

Figuice ob.24 show the level of milkiat production per cow which mast be attained by each oi the representativn iams if the cost reverue ratio $33 /$ Oi each farm is to equal that of the low point of the long run average cost shown in Fieure 8.6. Similarly yisure 8.25 shows the level of milkfat production per cow which must be attained by each of the representative farms if the cost revenue ratio of each farm is to be equal to that of the low point of the long mun averase cost curve shown in Figure 8.21. 34/The curves AA', BB', U', iD' and iH' of Figure 8.25 show the relationship between milkfat production per cow and plant and neri
33. The cost revenue ratios in question are those of the fifth series of cost revenue ratios i.e. $\frac{\text { Total cost }}{\text { Gross farm } \frac{(E)}{\text { income }}}$
34. A second computer programme was used for the determination of the data shown in Higures 8.24 and 8.25 .
:iac, resulting from the use of the five linear functions described in section $B .2$ of Appendix $B$.

An exmmation of Figures 3.24 and 8.2 jodicatoss that in both cases, the level of milkfat production per cow which mat, be at, tatined by the farm: representine the initiol decrees of plant, utiliantion, of the fiftenen subclasises is relatively hich. for example, for pach of the three subclasseg associated with each plant sise, both when the lovel of milkfat production varics and remains constant, with changees in plant size and herd size, in order that the cost rovome ratios be equal to that of the loiv point of the long run averare cost, curve, the milkfat production per cow of those farms correspondins to the initial defrees of plant utilisation must exceed $4(0)$ pounds. Discu:s;ions with Pranawatur Patension UPricers lod the author to the conclusion that such output levels are extremely unlikely to be attained, particularly as otocking rate rmains constaint irrespeot,ive of plant, and hard size. lonversely, in both
 utiliation, the levels of milklat production por cow required biv the mepresoritative farms to equiblise the lownit, cost, resenure ration of the Jone; rim average curve appear to be morn likinly.
'iable 8.7 presents data concerninis the levol of milf fot production
 woint: of the five subclasis (c) short run avarase costi curves in ordor tist the cost revenue ratios of such farms be namat to those of the low soint of the lone run average cost curvos. From the data presentabl in 'j'able 83.7 , it san be seen that relativel.' mall increases in milkfat Hroulution per cow are required for the cost revenue ratios of the four representative farms to be equal to those of the low points of the long run iverase cost curves. Discussions with Mamatu fixtension Officers ital the author to the conclusion that such increases are feasible, in which sase between plant sizes, constant returns to size would exist.

Hinally, if the reader should disarree with the level of milkfat production per co: of the representative farms which correspond to the low points of the long run averare cost curves, the data pressented in Ficures 8.24 and 3.25 are no loneer applicable. In such circumstances,

Table 8.7 Milkfat Production per cow required for the Cost Revenue Ratios of Representative Farms to be equal to those of the Low Point of the Long Run Averace Cost Curves

Plant   Size   (1)	Constant Milkfat per Low		Variable Milkfat per Cow	
	$\begin{aligned} & \text { Milkfat/ } \\ & \text { Cow } \\ & \text { (Pounds) } \\ & (2) \end{aligned}$	Difference (rounds of Milkfat) (3)	$\begin{aligned} & \text { Milkfat/ } \\ & \text { C'ow } \\ & \text { (Pounds) } \\ & (4) \end{aligned}$	Difference (Pounds of Milkfat) (5)
1	365.95	65.95	349.86	28.86
2	339.45	39.45	324.20	15.89
3	325.24	25.24	310.55	11.01
4	312.17	12.17	297.98	5.93
5	300.00	0.00	286.22	0.00

Wores:
i) Column (2) shows the level of milkfat production per cow required by each of the five representative farms, in order that the cost revenue ratios of the representative farms be equal to that of the low point of the long run averase cost curve shown in Figre 8.6.
ii) Colunn (3) shows for each of the representative farms, the required increase in the per cow ppoduction.
iii) Column (4) shows for each of the representative farms, the level of milkfat production per cow required in order that the cost revenue ratios of the representative farms be equal to that of the low point of the long run average cost curve shown in Figure 8.11.
iv) Column (5) shows for each of the representative farms, the required increase in per cow production.
the effect of varying levels of milkfat production per cow on the shape of the long run average cost curves can be determined by recalculating the cost revenue ratios from the data shown in Figures 7.33, 7.34 and 7.35. by the use of the following procedure.

For example, if the reader should decide that the level of milkfat production per cow at the cut-off point of plant size five subclass (c) should be 290 pounds and at the cut-off point of plant size four subclass (c) 30 pounds, the modified cost revenue ratios can be obtained as follows:
i) From Figure $8.2 \zeta$ it can be seen that the level of milkfat production per cow has increased by:

Approximately 13 pounds per cow in the case of the plant size four farm;

Approximately 4 pounds in the case of the plant size five farm;
ii) The per unit gross farm income data is shown in Figure 7.35. From Figure 7.35, it can be seen that the per unit gross farm income is:

In the case of the plant size four farm, approximately 115 dollars per cow;

In the case of the plantsize five farm, approximately 113 dollars per cow;
iii) The modified per unit gross farm income figures are therefore:

Plant size five farm, $\nless 113+\$ 1.32=\$ 114.32$
iv) The per unit costs of total cost (E) are shown in Figure 7.34. The per unit costs are:

Approximately $\$ 99$ per cow in the case of the plant
size four farm;
Approximately $\$ 96$ per cow in the case of the plant
size five farm;
v) The modified per unit costs of total cost (E) therefore become: (I'he per unit opportunity cost of the operator's management is increased.)

Plant size four farm, $\$ 99.00+\$ 0.26=\$ 99.26$
Plant size five farm, $\$ 96.00+\$ 0.08=\$ 96.08$
vi) The modified cost revenue ratios therefore become:

$$
\begin{aligned}
& \text { Plant size four farm, } \frac{99.26}{119.29}=0.8320 \\
& \text { Plant size five farm, } \frac{96.08}{114.32}=0.8404
\end{aligned}
$$

2) Cost Data

Similarly, the reader may also disagree with some of the assumptions made in the study, and with certain details of the cost data. For this reason, for each of the 129 farms from which a long run average cost curve is constructed, the sum by which the 'lotal Cost ( E ) must be reduced in order that the cost revenue ratio be er $e_{i}$ ual to that of the low point of the long run average cost curve is determined. 35/ As the Total Cost (E) consists of five separate components, alterations in the assumptions made, or cost data used, in the computation of each of the five components, will cause variations in the (fifth) cost revenue ratio.

Figure 8.26 shows the reductions in the per unit cost of Total cost (E), required for the cost revenue ratios of each of the representative farms, to be equal to that of the low point of the long run average cost curve, when the level of milkfet production per cow remains constant over the complete range of herd sizes studied.

Similarly Figure 8.27 shows the reductions required in the per unit cost of Total cost ( $E$ ) when the level of milkfat production per cow varies with plant and herd size.

Figure:; 8.26 and 8.27 show that for each of the fifteen plant sizes, when the degree of plant utilisation is low, the magnitude of the cost reductions required is relatively high. 'This indicates that major alterations (i.e. in excess of 30 dollars per cow) in the assumptions made or in the cost data used, are required if the cost revenue ratios of such farms are to be equal to those of the low points of the long run average cost curves. Such reductions in the per unit costs of Total Cost (F) are, in the author's opinion, extremely unlikely to be attained. Conversely over the latter degrees of plant utilisation, particularly in the case of the larger plant sizes, the magnitude of cost reductions required
35. A computer programme was written to determine these sums.
is relatively low. Consequently, on such farms, minor alterations in the assumptions made, or cost data used, could alter the shape of the long run average cost curves.

Bonsequently, if readers disagree with any of the assumptions made, or with certain details of cost data used, (other than the assumptions made or cost data used, for the calculation of the cost revenue ratios of the representative farms corresponding to the low points of the long run averace cost curves), they are invited to recalculate the per unit costs of Iotal ( Cost (E), (based upon their own assumptions and cost data) ann to compare the results of such recalculations with the data shown in Fibiares 8.26 and 8.27.

If the reauer should disagree with the assumptions made or with details of the cosit data used, for the calculation of the cost revenue ratios of the representative farms corresponding to the low points of the long run average cost curves, the effect of variations in the per unit cosits of the representative farms, upon the shape of the long run averaje coit curves can be determined by recalculating the cost revenue ratios usinü a similar procedure to that discussed on pages 199-200.
8.10) SUTTHARY

In this chapter, a detailed account has been fiven of the nature of the cost-size and profit-size relationships. The results indicate thet whereas within each subclass relatively large reductions in the cost revenue ratio are obtained as the degree of plant utilisation increases, comparatively small reductions in the cost revenue ratio are obtained by chancine plant size. Further, between plant sizes when the output per labour unit data of the representative farms approximates the maximum figure of a comparable survey farm, extremely small differences in the cost revenue ratios are observed.

The net income data indicates that in all cases within each subclass, the net income increases continuously as the degree of plant utilisation increases, and within each plant size, the net income increases as one moves from the cut-off point of subclass (a) to the cut-off point of subclass (c). Further for comparable cut-of'f points, the net income (in all.cases) increases as one moves from plant size one to plant size five and consequently the highest net income figure is recorded at the cut-off point of plant size five subclass (c).

When the level of milkfat production per cow remains constant irrespective of chanjes in plant and herd size, the minimum ratio of cows per labour unit and output per labour unit required for the entrepreneurial income of comparable subclasses to be positive declines as one moves from plant size one to plant size five. A similar trend is discernible in the output per laoour unit; data when the milkfat production per cow varies with plant and herd size. The continuous decline for comparable subclasses as one moves from plant size one to plant size five is not $a_{l}$ parent in the data relating to the minimum ratio of cons per labour unit required when per cow production varies with plant and herd size. 'This results because of the hicher per cow production of the representative farms of the smaller plant sizes. In this case, the minimum ratio of cows per labour unit is recorded by plant size two.

The breakeven analysis indicates that both when the level of milkfat prouuction per cow varies and remains constant with changes in plant and herd size, relatively small increases in the milkfat produced per cow, and relatively small decreases in the per unit costs, are required for the cost revenue ratios of the representative farms corresponding to the latter decrees of plant utilisation of each subclass, to be equal to those of the low points of the long run average cost curves.

## CHAPTER NINE

## IMPLICATIONS OF IHE STYDY AND CONCLUSIONS

### 9.1 INIPRODUCTION

In this chapter, some of the more salient implications of the study are discussed and the author's conclusions presented.

## Y. 2 PRUFI' MAXIMISA'IIUN AND CUGL MINIMISATIUN CONGIDHRA'IIONS

The results of the analysis illustrate an important point which should be borne in mind when considering economies of size studies. In the case of plant size one subclass (c), the low point of the short run average cost curve (when the level of milkfat production per cow varies with plant and herd size) corresponds to a herd size of 130 cows. $1 /$ Further increases in the degree of plant utilisation lead to the realisation of diseconomies of size. However, although diseconomies of size are realised as the defree of plant utilisation increases beyond a herd size of 130 cows, net income (in all five cases) increaves.

Similarly, it is possible to move from a given point on a particular short mun averaçe cost curve to a higher point on another short run averace cost curve (and hence diseconomies of size are realised) and for the change to be associated with an increase in net income. For example, the five series of cost revenue ratios corresponding to a plant size one subclass (c) representative farm, with 130 cows are shown in lolumn (1) of Table 9.1. The corresponding figures for a plant size two subclass (a) representative farm, with a herd size of 180 cows are shown in Column (2) of Table 9.1.

1. The low point corresponds to a herd size of 130 cows, when the short run average cost curves are derived from the third, fourth and fifth series of cost revenue ratios. When the cost curves are derived from the first and second series of cost revenue ratios, the low point corresponds to a herd size of 120 cows.

Table 9.1 Cost Revenue Ratios corresponding to Herd Sizes of 130 cows (Plant size one) and 180 cows (Plant size two) (Variable Milkfat Production per cow).

Cost Revenue   Ratio	Plant size one   Subclass (c)   l30 cows   $(1)$	Plant size two   Subclass (a)   180 cows   $(2)$
Ratio 1	0.2850	0.3894
Ratio 2	0.3117	0.4118
Katio 3	0.6520	0.7341
Ratio 4	0.8337	0.8613
Ratio 5	0.8937	0.9213

The net income data of the two farms corresponding to the cost revenue ratio data of l'able 9.1 are shown in 'rable 9.2.

Taole 9.2 Net Income Data corresponding to Herd Sizes of 130 cows (Plant size one) and 180 cows (Plant size two) (Variable Milkiat Production per cow).

Net Income	Plant size one Subclass (c) 130 cows (dollars) (1)	```Plant size two Subclass (a) 180 cows (dollars) (2)```
Cash Income	11,809	14,401
Net Farm Income	11,368	13,872
Uperator Labour and Manasement Income	5,746	6,270
Operator Management Income	2,746	3,270
kintrepreneurial Income	1,755	1,855

From Tables 9.1 and 9.2 , it can be seen that although the cost revenue ratios of the plant size two farm are in all (five) cases greater than those of the plant size one farm, the corresponding net income figures of the plant size two farm are in all (five) cases greater than those of the plant size one farm. This arises because, although the net return
per dollar of gross farm income is lower in all five cases for the plant size two farm, the number of units of gross farm income (i.e dollars) of the plant size two foarm is sufficiently great to overcome the lowered per unit return and cause the absolute (income) sum to be sreater. 2/

Although it seems likely that the main factor of interest to a farmer considering a change of farm size is whether such a change will lead to an increase in net income, it is desirable that any chance in farm size be such that economies of size are realised. (bonsequently, the total cost of producing a dollar of gross farm income is reduced and hence the net return per dollar of gross farm income increased.)

In order for such changes in farm size to be accompanied by the realisation of economies of size, it is essential that all resources (and particularly those which in this study constitute the fixed plant be utilised as fully as possible. For example, if a change is made from a farm corresponding to the low point of the sinort run average cost curve, of plant size one subclass (c) to a farm corresponding to a plant size two representative farm with 210 cows, the resulting cost revenue ratios and net income data are shown in 'rable 9.3.
2. For example, the fross farm income of the two farms is:

Plant size one	16,517 dollars
Plant size two	23,586 dollars

The first cost revenue ratios for the farms are:

Plant size one	0.2850
Plant size two	0.3894

The net return per dollar of gross farm income is therefore:

Plant size one	$(1-0.2450)=0.7150$ dollars
Plant size two	$(1-0.3894)=0.6106$ dollars

The net cash income is therefore:
Plant size one $16,517 \times 0.7150=11,809$ dollars
Plant size two $23,586 \times 0.6106=14,401$ dollars

Table 9.3 Cost Kevenue Katios and Net Income Data corresponding to a Herd Size of 130 cors (Plant size one) and 210 cows (Plant size two) (Variable Milkfat Production per cow).

Cost Revenue Ratio	Plant size one 13() cows	Plant size two 210 cows	Net Income	Plant Size one 130 cows	Plant Size two 210 cows
Ratio 1	0.2850	0.3729	Net Cash Income	11,809	16,562
Ratio 2	0.3117	0.3950	Net Farm Income	11,368	16,026
Ratio 3	0.6520	0.7168	Uperator   Labour   and   Manacement   Income	5,746	7,499
Ratio 4	0.8337	0.8301	(1perator   Manacement   Income	2,746	4,499
Ratio 5	0.8937	0.8901	Mntrepreneurial Incone	1,755	2,910

Fror Table 9.3 , it is aprarent that in the case of the fourth and fifth series of cost revenue ratios, the , ost, revenue ratios of trie plant size two farm are lower then those of the plant size one farm and hence economies of sizc are realised. Thus moving from the 130 cow farm to the 210 cow farm, gives rise not only to a greater gross farm income but also to a lower total cost per dollar of erosis farm incone and consequently a higher net return per dollar of gross farm income.

Further in this context, it seems likely that in certain circumstances, the magnitude of the cost reductions which accompany increases in farm size (as indicated in this study) will be reduced and consequently, it may be extremely difficult for a change in farm size to be accompanied by the realisation of economies of size.

For example, there are three main ways in which the area of the farm a farmer operates can be increased.
a) The existing property can be sold and another purchased;
b) Contiguous areas of land can be purchased and farmed in conjunction with the present property.
c) Non contiguous areas of land can be purchased and farmed in conjunction with the present property.

In all three cases, peculiarities in the shape of the "new large farm" may be such that most of the cost advantages accruing to the larger farins, in terms of reduced per unit investment costs of fencing, water reticulation systems and farm races are destroyed. Further, resources may have to ve purchased which are not required, (e.g. dwellings, farm dairies, etc.). The acquisition of such resources which cannot be effectively utilised will tend to increase the per unit costs. In addition in the case of b) and c), pecuniary economies in the acquisition of land may not be realised because land is purchased in small parcels.

However, in the author's opinion, it is extremely important that any farmer contemplating a chanêe in farm size should carefully consider the various factors which \&ive rise to economies of size and wherever possible, take advantace of these factors.

## 

The results of the analysis also indicate that on those farms of each subclass where the output per labour unit is low, the entrepreneurial income is negative. 'This does not necessarily mean that such farms will be forced out of production. Such farms will be forced out of production only if:
a) The net farm incomes are negative;
b) The income generated by such farms is insufficient to overcome the reservation price $3 /$ the operators attach to their invested capital, and their personal services of labour and manazement.

It is interesting to note that both when the level of milkfat production per cow varies and remains constant with plant and herd size,
3. Maddern (9, p.13) describes opportunity cost as the highest return a resource can earn in any alternative employment currently available. In some cases, the returns to certain resources are lower than the opportunity costs but the resources are still retained in production. - In these cases, the reservation price becomes relevant as the lower limit of resource returns below which the resources will be retired from use.
the net farm income of all farms is positive. 'lhe lowest figure recorded is that of the 60 cow plant size one subclass (c) farm, when the level of milkfat production per cow remains constant irrespective of plant and herd size. The figure in question being 3,879 dollars.

In this context, Candler (3), p.5) in his submissions to the Scale of Farming Working Party of the Agricultural Development Conference, sugcested that:
"A farm should be considered too small if farm family income is less than the basic wase order."
'Tne lowest net farm income observed (i.e. 3,879 dollars) would appear to give a weekly remuneration which is \&reater than the averase weekly waie eamed in New Gealand. $A /$ However, in adicition to meeting the living expenses and taxation liabilit, of the farm operator, the sum in question, in most instances will also ke required to service any debt commitments 5 and provide funds for nerr farmi investments.

The operators of those farms where entrepreneurial incomes are nesative, may consider that the farms have sufficient earning capacity to overcone the reservation prices they attach to their invested capital anu personal services of labour and manacement while still providing satisfactory levels of "farm family income" and so elect to continue farminct.

However, any serious decline in the farmers' terms of trade could result in these farms being unable to provide a satisfactory "farm family income". For example, if the price of milkfat was to drop to 20 cents a pound, the net farm incomes of the representative farms, corresponding to the start points of the five subclass (a) plant sizes are shown in Table 9.4.
4. 'Ihe average weekly wacre payout per person in New Zealand as at October 1969, was estimated to be 49.945 dollars. (36, p. 45 )
5. e.g. Interest and principal payments.

Plant Size	Constant Milkfat   per cow (dollars)   $(2)$	Variable Milkfat   per cow (dollars)   $(3)$
1	1,668	2,748
2	1,444	3,124
3	884	2,820
4	692	2,596
5	476	2,144

In the author's opinion, these sums (and particularly those shown in Column (2)) are unlikely to provide a satisfactory level of farm family income and hence wuch farms under these conditions could be viewed as being "too small".
further, on farms where the output per labour unit is low (and hence entrepreneurial incomes necative), such losses can be offset if the labour force (plus certain other resources) can be emplojed in other remunerative activities. For example, a farm operator of a farm where the output per latour unit is low, may be able to "sell" some of the excesis labour and machinery capacity of his farin, bir jerformine outside contract work. Maddern (9, p.21) notes that if such farms are viewed as goods ank service firms, rather thian as firma concerned solely with the production of farm rodice, the resultime net income of sush farms inay be satissfactory. In addition, he postulates that if the incrace in costs associated with off-farm activities, are less than the proportionate increase in gross farm income, the farm's cost revenue ratio will decrease.

Finally, the data shown in lables 8.5 and 8.6 showinf for each subclass, the minimum herd size and output per labour unit required for the entrepreneurial income to be positive are basea upon an imputed interest charee, which is assessed on a percentage basis of the data show in Figure 7.13 (i.e. the total farm investment data). Investications, however, indicated that the total investment requirements of the representative farms, were in excess of those expected to be required by farms of comparable plant and herd sizes in the Awahuri district. Hence, when the interest charge is assessed on the data shown in Firure 7.14 (i.e. the estimated "market value" of farms), the minimum herd size and output per labour unit figures required by each subclass for the entrepreneurial income to be positive will be lower than those shown in Tables 8.5 and 8.6 .

### 9.4 NRE EFPRCI OF VARIATIONS IN MILKPATP PRICE

Increases or decreases in the price of milkfat do not alter the shape of the long run averave cost curves. (i.e. The L.R.A.S. curve in all cases is segmented, comprises segments of all 15 n.R.A. U. curves and the low point is recorded at the cut-off point of plant size five subclass (c).) The effect of an increase in the price of milkfat is to decrease the minimum herd size (and hence output per labour unit) required by each subclass in order that entrepreneurial income be positive. Conversely, the effect of a decrease in the price of milkfat is to increase the minimum herd size (and hence output per labour unit) required by each subclass in order that the entrepreneurial income be positive.

At a milkfat price of 25 cents per pound, losses are recorcied on all 129 representative farms. At a milkfat jrice of 27.5 cents per pound of rrilkfat, losies are recorded on all farms except those corresponding to the latter desrees of plant utilisation of plant sizes four and five. However, it rust be remembered that there were no examples of Group III and IV survey farms where the output per labour unit data is equal to or greater than those of comparable representative farms. Consequently, if a new series of cost reverue ratios are calculated for varying levels of milkfat price so that the output per labour unit data of the representative farms, approxinates the maximum fisure recorded by a comparable survey farm, it is found that at a price of 27.5 cents per pound of milkfat, on none of the farms of the five plant sizes is entrepreneurial incone positive. Consequently in the event of a severe drop in the price of milkfat, advantaces will accrue to plant size four and five farms but only if the output per labour unit figures of such farms can be increased above the levels currently being achieved.

### 9.5 CONULUSIONS

One of the most salient features of the farm survey was the extremely high ratio of cows per labour unit and output per labour unit on some of the Group I farms. The hiog productivity of these farms does not necessarily indicate that phenomena exist which give advantages to one man farms relative to multi labour unit farms in terms of labour productivity. 'The extremely high ratios of cows per labour unit and output per labour unit on the Group I farms were achieved by the labour units working extremely long hours (particularly in the spring), taking little time off during the milking season, making extensive use of contractors and specialising in stock work. The author believes that the differences between the four eroups of farms in terms of the output per labour unit would decrease, if the ratio of cows per labour unit and hence the hours of work of the labour units on some of the Group III and IV farms were increased.

Although specialisation and division of labour was evident on all multi-labour unit farms, the author considers such division and specialisation to be of little importance. lhe author is of the opinion that the main reason for such division and specialisation was because of the large numbers of animals carried on some of the farms, technical difficulties were encountered with certain tasks (e.g. calf rearing, detecting inseason cows for artificial breedine etc.) In order for such tasks to be performed to a satisfactory level of proficiency, the labour units performing these tasks must be skilful and experienced. There were some tasks where advantages could be gained by allowing the labour units to specialise in tasks for which they had a natural aptitude. (e.g. machinery work, and repairs and maintenance work.) However, the author considers that cost economies resulting from this source are likely to be of litile sifnificance because such tasks are performe infrequently and do not contribute ereatly to the productivity of the farm.

The data of the farm survey indicates that over the rance of herd sizes studied, there appeared to be few technical diseconomies. 'rhere was a trend towards a lower milkfat production per cow on those farms of the larëer herd sizes. juch data are extremely difficult to interpret because of the difficulties in disentanglinc the effects of such factors as stocking rate, a氏ูe composition and cemetic merit of the herd. In this context, it was of interest to observe that certain of the large herdis were producing or had produced at satisfactory levels (i.e. 300 pounds of milkfat per cow or more) in the past.

In the absence of a detailed study, little can be said about the effect of herd size on animal health problems. The author considers that the manager of a large herd would have to pay more attention to calf rearing and herd condition.

The author does not consider that increases in herd size are accompanied by any significant deterioration in stock performance statistics. (i.e. percentages of stock losses, herd wastage, empty cows and heifers and calving percentages.) The author believes that the detection of in-season cows becomes increasingly difficult as herd size increases and can be regarded as a possible technical diseconomy.

The farm survey data does indicate that it is likely that advantages will accrue to the larger farms because of pecuniary economies. The
author takes the view, however, that the obtaining of recmiary economies is probably more a function of manacrerial ability than herd size per se.

There is little to suicgest that cost economies could accrue to farms of larger herd sizes because of the employment of superior resources and techniques. 'rhere were no major differences between the systems of farming employed by the four groups of survey farms.
'Ihe author is of the opinion that the managerial problems of the multi-labour unit farms are greater than those of one man farms. Two reasons are advanced for this. First the employment of labour necessitates some effort by manarement to evolve and apply strategies which give rise to high labour productivitir and second, technical difficulties are encountered when large numbers of animals are run in a single herd, (e.g. calf reariné, detecting in-season cows, herd condition, etc.)
'The results of the analysis indicate that economies of size exist in New Zealand dairy farming. However, although within each subclass, relatively larife reductions in the cost revenue ratio are obtained, as the degree of plant utilisation increases, relatively small reductions in the cost revenue ratio are obtained by chancing filant size. For example, fiefures 8.6 and 8.11 show that for each of the three subclasses associated with each of the five plant sizes, reductions in the cost revenue ratio in excess of 0.170 dollars are obtained by increasine the degree of plant utilisation. The diffcrence between the cost revenue ratios of the most efficient plant size one farm and the most efficient farm is however:
0.1281 dollars, per dollar of cross income when the level of milkfat per cow remains constant irrespective of plant and herd size.
0.0478 dollars, per dollar of erross income when the level of milkfat production per cow varies with plant and herd size.
(The differences in both cases are in the same direction. That is the cost revenue ratios of the plant size five farm are lower than those of the plant size one farm.)

Further, when a new series of cost revenue ratios are computed so that the output per labour unit data of the plant size two to five representative farms approximates that of the maximum figure recorded by a comparable survey farm, the difference between the most efficient plant size one farm and the most efficient farm is only 0.0192 dollars.

It seems likely therefore that one man farms can achieve a cost revenue ratio which is comparable to that of multi-labour unit farms, but in order for this to be achieved, it is probable that the hours of work: of the labour units of the one man farms must be greater than those of the labour units of the multi-labour unit farms.

Both within and between plant sizes, proportionality relationships are larcely responsible for the reductions in the cost revenue ratios. The compilation of the cosit data and the results of the analysis confirm the observation made from the farr survey that pecuniary economies exist.

In certain circumstance:s, chane es in farm size may e accompanied by the realisation of diseconomies of size despite the fact that the chance is accomparied by an increase in net income. In the author's view, it is important that any farmer considerinê a chañe in farm size should pay attention to the various factors which give rise to economies of size and wherever possible, take advantage of these factors.

The author does not advocate a major restructuring of the New Zealand dairy industry towards solely larise units. The results of the analysis indicate that 10 sises are recorded on those farms of each subclass where the cutput per labour unit is low, and hence it would seem more desirable to encourace the formation of farms where the output per labour unit is hich irreipective of jlant size. Substantial increases in the labour productivity of those farms corresponding to the latter degrees of plant utilisation of plant sizes four and five could five such farms definite advantaees particularly in the event of a substantial fall in the price of milkfat.

The recent evolution of rotary farm dairies and automatic cup removal devices are important developments. If the employment of rotary farm dairies and automatic cup removal devices can lead to a freater number of cows being handled per labour unit (and hence a freater output per labour unit), then it seenis likely that for farms of each plant size, opportunities may exist for lower cost revenue ratios to be obtained and higher net incomes to be earned, and in addition, these innovations may be of considerable importance in combatting the effects of a continuation in the cost price squeeze. Further, if by the utilisation of rotary farm dairies and automatic cup removal devices, advantages accrue to a particular plant size, the shape of the long run averace cost curves may be markedly altered.

1. Anon. (1967)
2. (1970)
3. $\qquad$ (1961)
4. $\quad(1968)$
5. Feríuson, i. B. (190́6) :
6. Heady, E.U. (1952)
: Farm Production Report (1966-1967), New Zealand Dairy Board, Wellington
: Annual Report (1969-70). New Zealand Dairy Board, Wellington.
: Report on Farm Production Statistics, (1960-61) Department of statistics, Wellington.
: Report on Farm Production Statistics; (1967-68) Department of Statistics, Wellington.

Niicroeconomic Theory, Richard D. Irwin, Inc, Homewood, Illinois.

Economics of Agricultural Productiori and Resource Use, Frentice-Hall, Inc, Englewood Uliffs, N.J.
7. Chamberlin, E.H. (1936):

The Theory of Monopolistic Competition : A Re-orientation of the Theory of Value. Appenaix B : 'ihe Cost curve of the Individual Producer. 2d. ed. Harvard Univ. Press, Cambridse.
8. Stonier, A.V. and Hague, D.'. (1957)
9. Maddern, J.Y. (1967) : Economies of Size in Farmine. Agricultural Sconomic Keport No. 107. United States. Department of ragriculture, washington D. U.
10. Pellows, I.F., Frick, G.E. and Weeks, S.B. (19j2)
11. Hodgson, J.N. (1965)
12. Davis, K. and Maddern, J.P. (1965)
13. Castle, E.M. and - Becker, E.N. (1962)
14. Kaldor, N. (1934)
: 'The Gquilibrium of the Firm. Econ. Jour. 44 (173).
15. McConnel, R. (1966) : E'conomics: Principles, Problems and Policies, 3rd ed. McGraw-Hill, New York.
16. Heady, E.O. and Dillon, J.L. (1966)
17. Olsen, R.U. (1956)
18. Heady, E.O. (1956)
: Agricultural Production Functions. Iowa S'tate University Press, Ames, Iowa.
: Analytical Procedures for Studying Cost-Size Relationships. In Heady, E.U., Johnson, G.L. and Hardin, L.S. eds, Kesource Productivity Returns to Scale and Farm Size. Iowa Sitate Col. Press, Ames, Iowa.
: Budsetine and Linear Programming in Estimating Resource Productivity and Cost Relationships. In ifeady, L.U., Johnson, G.L. and Hardin, L.S. eds, Resource Productivity, Returns to Scale, and Farin Size, Iowa State Col. Press, Ames, Iowa.
19. Bressler, R.G. (1945) :

Pesearch Determination of Economies of Scale. J. Fm Econ. 27 (3).
20. Uarter, H.u. and Dean, G.if. (1961)
21. French, B.心., Sanmet, L.L. and Bressler, R.G. (1956)
22. Parker, J.S. and : Tlurnbuil, H.G. (1970)
23. Bradford, P.V. (1970) :
24. Cartwright, R.V. (19067):
25. Milne, A.C. (1969)
26. Cronin, M.B. (1968)
27. Festinger, L. and Katz, D. (1953)
28. Wright, A. (1963)
29. Schapper, H.P. (1957) :
30. Anon. (1969)
: Cost-Size Relationships for Lash Crop Farms in a Highly Commercialised Agriculture. J. Fm Econ 43 (2).
: Economic Efficiency in Plant Operations with Special Reference to the Narketing of California Pears. Calif. Agr. Exp. Sta., Hilgandia 24 (19).
: The Economies of Size in Dairy Farming, N.L. Ä̈ric. Sci. A (6́).

Larce kiry Herds, Report of a Survey in the Bay of Plenty East Coast Region, 1967-68. N.'Z. Dairy Board Pu'lication, Wellington.

The Potential for Increased Production on Sheep Famns in Wairoa County, Unpublished Masters Thesis, Massey University.
: A study of Labour Saving Techniques on North Island Sheep Farms. Unpublished Masters Thesis, Massey University.
: A Study of F'actors Hindering Increased Production on the Rangitaiki Plains and in Galatea. Unpublished Masters Thesis, Massey University.
: Research Methods and the Behavioural Sciences. Holt, Rinehart and Winston, New York.
: The Development of Unploughable Hill Country. Unpublished Masters Thesis, Massey University.

Uses and Limitations of Farm Surveys, Rev. Mktng. Agric. Econ. 25 (1-2).
: Frarm Production Report (1968-1969), New Zealand Dairy Board, Wellington
31. Anon. (1968) : Herd Improvement in New Zealand. Herd Improvement Council Publication, New Zealand Dairy Board, Wellington.
32. Kilgour
: Social Behaviour in the !airy Herd, N.Z. Jl. Agric. 119 (3).
33. Usoorne, iv.L. (1969) : Farming in the Manawatu, 4th ed. Farm Advisory Division, New Zealand Department of Agriculture, Palmerston North.
34. Lu, F.P.S. (196y) : Economic Decision-Makine for Engineers and Managers. Whitcombe and Tombs Ltd. Unristchurch.
35. Candler, W.V. (1964) : Scale of Farminc. Discuasion Paper No.14, Department of Acricultural Economics and Farn Kanagement, Massey University.
36. Anon. (1970) : Prices, Waçes, Labour. (1970) Department of Statistics, Wellington.
37. Anon. (1970) : Bloat Prevention with Anti Foaming Afgents, Farm Production Division, N.Z. Dairy Board, Vellington
38. Anon (1961)
: Farm Production Report (1960-196́1), New Zealand Dairy Board, Wellington


[^0]:    5. L.R.A.C. is an abbreviation for lone run averafe cost curve.
[^1]:    6. For this reason, the farm has been classified as a Group I farm.
[^2]:    32. See section $5.13,4$ ).
