Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. *****

To my family

CHEMICAL STUDIES ON SOME PLANTS THAT HYPERACCUMULATE NICKEL

A thesis presented in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy in Chemistry

at

Massey University

Palmerston North, New Zealand.

Faye Allyson Homer

1991

ABSTRACT

Following the discovery of the hyperaccumulation of nickel by the Philippine plants <u>Dichapetalum gelonioides</u> subsp. <u>tuberculatum</u> and <u>Phyllanthus 'palawanensis'</u>, the nature of the nickel in aqueous extracts has been investigated by gel filtration chromatography, ion-exchange chromatography, high-voltage electrophoresis and GC-MS.

Nickel in <u>D.gelonioides</u> subsp. <u>tuberculatum</u> was shown to associate mainly with compounds of high polarity and low molar mass. In <u>P.'palawanensis</u>' only about 50 % of the nickel demonstrated this association, while 25 % of the metal appeared to be in the form of pectate or bound to proteins. In both plants, nickel was shown to exist in anionic and cationic forms. A discussion of the usefulness of assigning portions of nickel to these forms is presented in the light of changes in the relative amounts of cationic and anionic nickel observed during ion-exchange chromatography and high-voltage electrophoresis.

Nickel, citric acid and malic acid comprised 95 % of the purified extract from <u>D. gelonioides</u> subsp. <u>tuberculatum</u>. Only 25 % of the low molar mass, high polarity nickel-rich fraction from <u>P.'palawanensis</u>' was accounted for by these constituents. Small amounts of Ca, Mg, K and Na were detected in each extract. The nickel:citric acid:malic acid mole ratios were 1:0.4:1 and 1:0.4:0.4 for <u>D.gelonioides</u> subsp. <u>tuberculatum</u> and <u>P.'palawanensis'</u> respectively. These observations are discussed in terms of the stabilities of the nickel citrate and nickel malate complexes. Tartaric acid was identified in both extracts, while 4-oxopentanoic acid and 2-furylacetic acid were identified in the nickel-rich fraction from <u>P.'palawanensis'</u> only. The role of these acids in the plant is discussed in an attempt to explain their presence in the nickel-rich material.

By using X-ray crystallography, it was shown that crystals obtained from a nickel-citrate-malate solution simulating the extract from <u>D. gelonioides</u> subsp. <u>tuberculatm</u>, contained nickel exclusively in the form of an anionic Ni(II)-citrato complex. It was assumed that a crystal obtained from a nickel-citrate-malate solution of mole ratio 1:0.4:0.4, as in the nickel-rich fraction from <u>P.'palawanensis'</u>, would have yielded similar results given the greater stability of the Ni-citrate complex over the Ni-malate complex.

Pot trials carried out on <u>Alyssum troodii</u> confirmed its hyperaccumulating status, and showed it to be a cobalt hyperaccumulator as well. The amount of cobalt taken up by the plant was an order of magnitude lower than that of nickel. It was observed that <u>A.troodii</u> survived soils with

available concentrations of nickel and cobalt at least five times higher than those commonly found in serpentine soils. Possible reasons for this behaviour are presented. <u>Alyssum troodii</u> also co-accumulated nickel and cobalt. However, while the cobalt concentration in plant organs showed little difference from that obtained when the plant was cultivated in soil enriched with cobalt only, the nickel levels were lower.

<u>Aurinia saxatilis</u> did not hyperaccumulate nickel and cobalt. The levels of the metals found in the plant were one-tenth of those observed in <u>A.troodii</u>. As in the Ni-hyperaccumulating plant, cobalt uptake appeared to suppress nickel uptake when the plant was cultivated in media containing added nickel and cobalt. A possible uptake mechanism giving rise to this differential uptake is discussed. Very little difference was discerned in the tolerance to, and uptake of, copper in the two plants. The levels of this metal in <u>A.troodii</u> were about one-tenth those of cobalt, while in <u>Au.saxatilis</u> the levels of copper and cobalt were comparable.

Low concentrations of nickel exerted a stimulatory effect on the germination of <u>A.troodii</u> seeds. Cobalt appeared to exert this effect on <u>Au saxatilis</u> seeds at higher concentrations. Copper was not observed to be stimulatory to either plant.

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those people who advised, assisted and encouraged me during this project.

I am extremely grateful to my parents. This achievement, like so many others, is a result of their faith in me,their support, and their encouragement.

I am particularly indebted to my chief supervisor Professor R.R. Brooks and my co-supervisor Associate Professor R.D. Reeves for their guidance and unstinting support. No Ph.D. student could be supervised by a better duo.

My gratitude is also extended to other staff of the Department of Chemistry and Biochemistry at Massey University. Thanks to Dr G. Midwinter who initially assisted me in carrying out electrophoretic separations, Mr J. Reid for amino acid determinations, Dr G.Norris and Mr S. Ingham for X-ray crystallography work, and Mr G. Freeman for allowing me the use of his laboratory, labware and chemicals on numerous occasions during the course of this research.

I thank Dr J. Clemens and his staff at the New Zealand Nursery Research Centre, Palmerston North, for allowing me the use of their facilities, and for the advice offered.

Thanks to Dr J. Lee, Dr J. Shaw and Mr J. Allen of the Department of Scientific and Industrial Research, Palmerston North for making GC-MS and ICP-AES analysis possible.

I thank Dr M. Hoashi for the initial perusal of my thesis prior to typing, for typing the references, and for her advice and encouragement during the preparation of this thesis.

I am grateful to Dr A.J. M. Baker for his comments and advice on certain aspects of my thesis. Thanks are also extended to you, along with my two supervisors, for making available the plant material used in this research.

To Mrs J. Trow, I say thanks for doing a good job on the illustrations.

I acknowledge the receipt of a Commonwealth Scholarship from the New Zealand Government, which was made possible through the Government of Guyana.

Lastly, thanks to all my friends in New Zealand and abroad, for their encouragement during this research. A special thank you to Mr U. L. Opara for his moral support during the preparation of this thesis.

TABLE OF CONTENTS

		page
Abstract		i
Acknowledgements		iii
Table of Con	ntents	v
Chapter I	General Introduction	
I.1 Intro	duction	2
11.	Metallophytes Containing Elevated Levels of Nickel	4
	II The Essentiality of Nickel to Plants	6
	III Distribution of Nickel Hyperaccumulators	
	in the Plant Kingdom	7
	· · · ·	
I.2 Evol	ution	8
	otation to Toxic Metals	11
	of Metallophytes	12
	arch Aims	13
1.5 1050		15
PART 1	PHYTOCHEMICAL STUDIES	
Chapter II	Extraction and Isolation of Nickel Species from Two	
1	Philippine Nickel-hyperaccumulating Plants	
II.1 Intr	oduction	16
II.2 Nic	kel Hyperaccumulattion in the Dichapetalum	
	Phyllanthus Genera	19
	vey of Techniques Used for Locating Nickel-binding Sites	
	Plant Tissue	26
П.3	.I Differential Centrifugation	26
П.3	.II Proton Microprobe Analysis and Microscopic Examination	26
П.3	.III Sequential Solvent Extraction	27
II.4 Ain	n and Rationale	28
II.5 Seq	uential Solvent Extraction of Nickel in Some	
Phi	lippine Nickel Hyperaccumulators	28
II.6 Ato	mic Absorption Spectrometry	29
II.7 Dis	cussion	33

.

II.8 Aqueou	as Extraction of Nickel in	
Dichape	etalum gelonioides subsp. tuberculatum	33
II.9 Gel Filt	tration Chromatography	35
II.10 Isolati	on of Nickel Complexes in the Extract from	
Dicha	petalum gelonioides subsp. tuberculatum	35
II.11 Extrac	ction of Nickel in Phyllanthus 'palawanensis'	37
II.12 Isolati	on of Nickel Complexes in the Extract	
from I	Phyllanthus 'palawanensis'	37
II.13 Result	ts and Discussion	39
Chapter III 7	The Ionic Nature of Nickel Complexes Isolated from	
Ī	Dichapetalum gelonioides subsp. tuberculatum	
a	nd Phyllanthus 'palawanensis'	
III.1 Introdu	uction	44
III.2 Forms	of Metal in Non-tolerant Plants	46
III.3 Forms	of Metal in Tolerant Accumulating Plants	47
III.4 Metal-	binding Polypeptides	49
III.5 Phytoc	chelatins and Nickel-hyperaccumulating Plants	49
III.6 Aim and Rationale		50
III.7 Analyt	tical Techniques	50
III.7.I I	on-exchange Chromatography	50
Ш.7.П	Electrophoresis	51
III.8 Separa	ation of Nickel Complexes from	
D.gelor	nioides subsp. tuberculatum by Ion-exchange Chromatography	
and Hig	gh-voltage Electrophoresis	53
ШІ.8.І С	Cation-exchange Chromatography	53
Ш.8.П	Anion-exchange Chromatography	54
Ш.8.Ш	I High-voltage Electrophoresis	54
ШІ.8.ІV	Results and Discussion	56
III.9 Separa	ation of Nickel Complexes in Extracts from <u>P. 'palawanensis'</u>	63
ШІ.9.1 А	Anion-exchange Chromatography	63
Ш.9.П	Cation-exchange Chromatography	63
Ш.9.П	I Results and Discussion	67

.

	olar Mass Determination of Nickel Complexes Isolated m <u>P. 'palawanensis'</u>	69
ПІ 1(0.I The Use of Gel Filtration Chromatography for	
	Molar Mass Determination	69
Ш.1(0.II Methodology	71
	0.III Results and Discussion	79
III.11 Im	proved Extraction of Nickel from P. 'palawanensis'	
and	d Separation of Resulting Nickel Complexes	80
Ш.1	1.I Methodology	80
III.1	1.II Ion-exchange Chromatography and	
	High-voltage Electrophoresis	81
III.1	1. III Results and Discussion	84
III.12 UV	//VIS Spectrotrophotometric Study of the Effect of Pyridine	
on Aquo-nickel and Nickel-citrate Systems		85
III.13 Hi	gh-voltage Electrophoresis Using Phosphate buffer	89
III.14 Ad	ditional Cation-exchange Chromatography of Nickel Complexes	
inl	D.gelonioides subsp. tuberculatum and P. 'palawanensis'	89
ПІ.14	4.I Background	89
III.14	4.II The Effect of Concentration and IRC50-H Column Height	
	on the Adsorption of Nickel	92
III.14	4.III Discussion and Conclusions	95
Chapter IV	Characterisation of Nickel-binding Ligands in	
	Dichapetalum gelonioides subsp. tuberculatum and	
	Phyllanthus 'palawanensis'	
IV.1 Intr		97
	and Rationale	98
-	paration of Purified Nickel Complexes from	
<u>D.g</u>	elonioides subsp. tuberculatum	98
	I Extraction and Isolation	98
IV.3	.II Crystallisation	99

IV.4 Preparation of Purified Nickel Complexes from P. 'palawanensis'	
IV.4.I Isolation	102
IV.4.II Crystallisation	102
IV.5 Elemental Composition of Nickel-rich Fractions	104
IV.5.I Aim	104
IV.5.II Inductively Coupled Plasma Atomic Emission	
Spectroscopy (ICP-AES)	104
IV.5.III Results and Discussion	107
IV.6 Gas Chromatography-Mass Spectrometry	108
IV.6.I Instrumentation	108
IV.6.II Application to Plant Organic Acids	110
IV.6.III Gas Chromatographic-Mass Spectral Analysis of	
Isolated Purified Nickel Complexes	110
IV.7 Quantitative Gas Chromatography	111
IV.8 Results and Discussion	117
IV.9 Gel Filtration Chromatography Studies of Mixtures of	
Nickel-citrate, Nickel-malate and Nickel-citrate-malate	132
IV.9.I Introduction	132
IV.9.II Methodology	134
IV.9.III Results and Discussion	135
IV.9.IV High-voltage Electrophoresis of Mixtures of Nickel-citrate	
and Nickel-citrate-malate	139
IV.9.V Results and Discussion	140
IV.9.VI Conclusion	141
IV.10 Structural Elucidation of a Crystal Obtained from a	
Nickel-citrate-malate Solution of Mole Ratio 1:0.4:1	141
IV.10.I Introduction	141
IV.10.II Crystallisation of Nickel-citrate-malate Solution	
of Mole Ratio 1:0.4:1	144
IV.10.III X-ray Crystallography	145

IV.10.IV Results and Discussion	147
IV.11 Amino Acid Analysis	148
IV.11.I Introduction	148
IV.11.II Sample Preparation	151
IV.11.III Instrumentation	151
IV.11.IV Results and Discussion	152
Chapter V Determination of Fluoride in <u>Dichapetalum gelonioides</u>	
subsp. <u>tuberculatum</u>	
V.1 Introduction	167
V.2 Aim and Rationale	168
V.3 Methods of Determining Covalently Bonded Fluoride	
in Biological Materials	169
V.4 Experimental Procedure	171
V.4.I Aqueous Extraction	171
V.4.II Alkaline Hydrolysis	171
V.4.III Ashing	172
V.4.IV Fluoride Determination	172
V.5 Results	173
V.6 Discussion	175
Chapter VI Urease Activity and Nickel-accumulating Plants	
VI.1 Introduction	178
VI.2 Aim and Rationale	181
VI.3 Methodology	181
VI.3.I Principle	181
VI.3.II Experimental Procedure	182
VI.3.IIa Sample Preparation	182
VI.3.IIb Urease Assay	184
VI.4 Results and Discussion	186

•

ix

Chapter V	/II Uptake of Nickel, Cobalt and Copper by Alyssum troodii	
	and <u>Aurinia saxatilis</u>	
VII.1	Introduction	188
Ţ	/II.1.I Metal Uptake Patterns	191
	/II.1.II Quantification of Metal Tolerance	191
,	11.1.11 Quantification of Mietal Tolerance	172
VII.2	Aim and Rationale	195
VII.3	Experimental Methods	196
٢	/II.3.I Media Preparation	196
V	/II.3.II Plant Cultivation	197
١	/II.3.III Preparation and Analysis of Plant Material	197
V	/II.3.IV Preparation and Analysis of Soils	198
١	/II.3.V Germination Tests	199
VII.4	Results	199
١	/II.4.I Metal Uptake	199
١	/II.4.II Relative Biomass Yields and Accumulatory Capacity	204
٧	/II.4.III The Effect of Nickel, Cobalt and Copper on	
	Seed Germination	211
7	/II.4.IV Metal Content of Seeds	214
١	/II.4.V Plant-available Metal Concentration at Time of Harvesting	214
VII.5	Discussion	215
Chapter V	/III Concluding Discussion	
VIII.	1 Summary and General Conclusions	223
VIII.	2 Recommendations for Further Research	228
List of References Errata		231
Appendic	ces	
Ia)	Fertiliser Composition	262
Ib)	Composition of 1:1 Peat/Pumice Diluent Prior to the Addition	
	of Metal	262

х

PART 2 METAL UPTAKE STUDIES

	II)	AAS Operating Conditions	263
		Concentration of Metals in Plants Cultivated in Soils Containing No Added Nickel, Cobalt or Copper Concentration of HCl(2 M)-Extractable metal in Soils Containing	264
		No Added Nickel, Cobalt or Copper	264
	IV)	Elemental Relationships in Cultivated A.troodii Plants	265
Pu	blicatio	ons Arising from this Thesis	267