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Abstract 

 

The potential of hyperspectral proximal sensing to quantify sward characteristics 

important in making critical decisions on the management of sheep and dairy pastures in 

New Zealand has been investigated.  

Hyperspectral data were acquired using an ASD FieldSpec® Pro FR 

spectroradiometer attached to the Canopy Pasture Probe (CAPP). The CAPP was 

developed to enable the collection of in situ reflectance data from New Zealand pasture 

canopies independent of ambient light conditions. A matt white ceramic tile was selected as 

a reflectance standard to be used with the CAPP, after testing a variety of materials. Pasture 

reflectance factor spectra between 350-2500 nm (with spectral resolutions of 3 nm between 

350-1000 nm and 10 nm between 1000-2500 nm) and pasture samples were collected from 

six hill country and lowland areas, across all seasons (August 2006 to September 2007) in a 

number of regions in the North Island of New Zealand.  

After pre-processing (e.g. spectral averaging, de-stepping, elimination of noisy 

wavelengths, smoothing) the spectral data collected from sites were correlated against 

pasture botanical composition (expressed as proportions of grass, legume and weed) and 

pasture nutrients (nitrogen, phosphorus, potassium, calcium, magnesium, sodium and 

sulphur) expressed in percentage of dry matter (%) and amount (kg ha-1) using partial least 

squares regressions (PLSR). The accuracy and precision of the calibrations were tested 

using either the full cross-validation leave-one-out method or testing datasets. Regressions 

were carried out using the reflectance factor data per se and after mathematical 

transformation, including first derivative, absorbance and continuum-removed spectra. 

Overall best results were obtained using the first derivative data. The quality of predictions 

varied greatly with the pasture attribute, site and season. 

Some reasonable results were achieved for the prediction of pasture grass and 

legume proportions when analysing samples collected during autumn (grass: R2 > 0.81 and 

SD/RMSEP  2.3 and legume: R
2 > 0.80 and SD/RMSEP  2.2), but predicting pasture 

weed content was poor for all sites and seasons (R2 ≤ 0.44 and SD/RMSEP ≤ 1.2). The 

inaccurate predictions might be explained by the fact that the diversity found in the field 
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and observed in the pasture spectral data was not taken into account in the pasture botanical 

separation.  

The potential for using proximal sensing techniques to predict pasture nutrients in 

situ was confirmed, with the sensing of pasture N, P and K increased by the procedure of 

separating the data according to the season of the year. The full potential of the technology 

will only be realised if a substantial dataset representing all the variability found in the field 

is gathered. The importance of obtaining representative datasets that embrace all the 

biophysical factors (e.g. pasture type, canopy structure) likely to affect the relat ionship, 

when building prediction calibrations, was highlighted in this research by the variance in 

the predictions for the same nutrient using different datasets, and by the inconsistency in 

the number of common wavelengths when examining the wavelengths contributing to the 

relationship. The ability to use a single model to predict multiple nutrients, or indeed 

individual nutrients, will only come through a good understanding of the factors likely to 

influence any calibration function. It has been demonstrated in this research that reasonably 

accurate and precise pasture nutrient predictions (R2 > 0.74 and SD/RMSEP  2.0) can be 

made from fresh in situ canopy measurements. This still falls short of the quality of the 

predictions reported for near infrared reflectance spectroscopy (NIRS) for dried, ground 

samples analysed under controlled laboratory conditions. 
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CHAPTER 1: 

General Introduction 

 

1.1. Pastures 

 

The grazing lands of the world are a major source of animal feed. Although the use 

of crops as livestock supplementation is growing, with the increasing emphasis on 

sustainable farming, pasture systems remain important, needing to be managed efficiently 

to sustain profitability (Riveros 1993). In New Zealand, legume-based pastures grazed in 

situ are the main source of feed for livestock (mainly the ruminants sheep, beef, dairy, deer 

and goats). Pasture is grazed all year round as a consequence of the warm and moist climate, 

which promotes pasture growth and enables ruminants to graze outdoors throughout the 

year (Guy 1993, Neeley and Parminter 1993). New Zealand‟s grasslands vary in 

composition, distribution and productivity according to changes in landform, climate, soil 

and nutrient and livestock management. Overall the soils are naturally acid with moderate 

to low chemical fertility, and current pasture production is based on genetically improved 

plants topdressed regularly with lime, and phosphate, sulfur and potassic fertilizers (Daly 

1990). Pasture quality is a key determinant of animal productivity and farm profitability. 

Pasture quality is influenced by several management factors but principally vigorous clover 

and ryegrass growth driven by soil fertility and grazing management (White and Hodgson 

1999). Managing high pasture quality through fertilizer inputs and pasture renovation incur 

the largest expenditure on most farms. Apart from a method for visual estimation of quality 

(Meat New Zealand 2009), farmers have no large scale objective management tool at hand 

to assist decisions on pasture quality management. Recently published literature (Dymond 

et al. 2006) suggest that near infrared reflectance spectroscopy, already used to assess the 

quality of dried forages in the laboratory (Roberts et al. 2004), could be applied in the field 

to supply farmers with “in the paddock” read out of pasture quality. Such information could 

be used directly to improve the efficiency of nutrient use via targeted fertilizer application 

or grazing management. 
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1.2. Remote sensing 

 

There are several definitions of remote sensing, such as “remote sensing is the 

science or art of obtaining information about an object, area or phenomenon through the 

analysis of data acquired by a device that is not in contact with the object, area or 

phenomenon under investigation” (Lillesand et al. 2007); and “remote sensing consists of 

the interpretation of measurements of electromagnetic energy reflected from or emitted by a 

target from a vantage-point that is distant from the target” (Mather 1999). All definitions 

share the same central concept, that remote sensing is the gathering of information at a 

distance (Campbell 2007), and that distance defines the levels of remote sensing data 

collection, given that in order for a sensor to collect and record the electromagnetic energy 

reflected or emitted from a target on the Earth‟s surface, it needs to be placed on a platform 

away from the surface being observed, and the platform can be based on the ground 

(laboratory or field), on an aircraft (airborne) or on a satellite (spaceborne) (Cracknell and 

Hayes 2007). To distinguish field remote sensing, from airborne or satellite, it has recently 

been referred to as proximal sensing. 

 

1.3. Hyperspectral proximal sensing 

 

In this thesis, hyperspectral proximal sensing (field remote sensing) is used to study 

the quality and quantity of pasture swards. Traditional multispectral remote sensing 

involves examination of features observed in several broad regions of the electromagnetic 

spectrum. Hyperspectral remote sensing examines many, very narrow contiguous spectral 

bands. Since hyperspectral data have more detail and greater accuracy it permits the 

observation of characteristics of vegetated surfaces (such as foliar chemistry) not feasible 

with multispectral data (Campbell 2007). Forty-two absorption features in visible and near-

infrared wavebands have been related to particular foliar chemical concentrations (cellulose, 

chlorophyll a and b, lignin, nitrogen, oil, protein, starch, sugar and water), showing the 

relationship between plant chemical constituents and the absorption of electromagnetic 

radiation (Curran 1989). Remote sensing of plant biochemical constituents is complex, due 
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to reflectance from vegetation being strongly influenced by the optical properties of plant 

materials. Different plant materials, like proteins, lignin, cellulose, etc, have similar 

absorptions, and a single absorption band can not be directly related to the chemical 

abundance of one single plant component (Kokaly and Clark 1999). The information on 

vegetation that can be extracted from remote sensing data depends on the capabilities of 

sensors, the knowledge about the interaction between radiation and vegetation canopy, and 

methodology used (Curran 1989).  

Remote sensing techniques have proved to be useful for assessing the concentration 

of foliar biochemicals under controlled laboratory conditions. More investigation is 

required to assess their capabilities in the field (Mutanga et al. 2004). Hyperspectral remote 

sensing provides the potential for a significant jump in the quality of spectral data obtained 

about earth surface features (Lillesand et al. 2007), and recent studies show that the narrow 

bands may be crucial for providing additional information with significant improvements 

over broad bands in quantifying biophysical characteristics of vegetation (Thenkabail et al. 

2000). 

 

1.4. Objective 

 

The objective of this study was to investigate the potential of hyperspectral 

proximal sensing to describe and quantify sward characteristics that are important in 

making critical decisions on the management of sheep and dairy pastures in New Zealand. 

The hypothesis is that sufficient sensitivity and consistency in the sensing of vegetated 

surfaces can be obtained in situ with hyperspectral proximal sensing, not possible with 

multispectral approaches, and such spectral data can be calibrated to pasture sward 

characteristics of economic importance. The resultant calibration should be robust and 

portable across a diversity of pasture swards. Specific objectives included: (a) develop a 

technique which enables the collection of in situ reflectance data from pasture canopies 

independent of ambient conditions; (b) evaluate the possibility of proximally sensing the 

botanical composition of grass-legume based pastures; and (c) explore the prediction of 

pasture nutrient concentration and mass of swards over contrasting soil fertility, landscapes 

(hill country site and lowland areas) and seasons of the year. 
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1.5. Outline 

 

The thesis consists of 9 chapters, 7 of which are written and presented as standalone 

research papers. Two papers have been submitted to the International Journal of Remote 

Sensing: one has been accepted (Chapter 3) and the other is under revision (Chapter 2).  

 

Chapter 1: General Introduction. Introduces the subject, the objective and structure of the 

thesis and briefly outlines each chapter. 

 

Chapter 2: A technique for acquiring in situ reflectance spectra from pastures independent 

of ambient conditions (A paper from this study has been submitted to the International 

Journal of Remote Sensing – In review). New Zealand‟s changeable weather and cloud 

cover represent a challenge for the timely collection of spectral data in situ under sunlight 

illumination. The Canopy Pasture Probe (CAPP) was developed to overcome this problem, 

to enable spectral data to be collected independently of ambient conditions. The Chapter 

describes the CAPP; how spectral measurements are obtained using the CAPP attached to 

an ASD FieldSpec® Pro FR spectroradiometer; provides examples of pasture swards 

measured using the CAPP; and shows the differences between canopy pasture spectra 

collected in situ using the CAPP compared to measurements under natural sunlight. 

 

Chapter 3: Large, durable and low-cost reflectance standard for field remote sensing 

applications (A paper from this study has been published in the International Journal of 

Remote Sensing). The development of the CAPP required a suitable large reflectance 

standard. To purchase a traditional reflectance standard panel (such as Spectralon®) large 

enough to be used with the CAPP (greater than 20 cm diameter) would be expensive. This 

Chapter describes the search for a large, durable and low cost reflectance standard. A 

variety of materials (ceramic tiles, barium sulphate powders, white paint and a Kodak card) 

are evaluated, and a matt white ceramic tile was selected. 
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Chapter 4: Influence of surface moisture on field hyperspectral data from pasture canopies. 

The CAPP has been proven very efficient in controlling the illumination, and as a wind 

barrier to keep the target still during spectral measurements. Unfortunately not all 

atmospheric influences can be controlled under field conditions, and although the sunlight 

and wind are not a concern when using the CAPP, the target surface moisture can be. This 

Chapter examines the effect of surface moisture upon in situ hyperspectral data collected 

from pasture canopies. 

 

Chapter 5: Proximal sensing the botanical composition of New Zealand dairy and sheep 

pastures. For pastoral farming systems, information on the botanical composition of swards 

is important in pasture management and in determining both the quantity and quality of 

forage. In this Chapter, the potential of using proximal sensing to obtain information on the 

botanical composition (grass, legume and weed contents) of New Zealand dairy and sheep 

pastures is evaluated. 

 

Chapter 6: Seasonal predictions of in situ pasture macro-nutrients in New Zealand 

pastoral systems using hyperspectral data. In temperate regions of humid climatic regimes, 

the deficiency of one or more essential mineral nutrients is the most common limitation to 

optimum pasture growth. The ability to predict pasture nutrient content at critical times of 

the year is essential. This Chapter investigates the ability of proximal sensing to predict 

pasture macro-nutrients (nitrogen, phosphorus and potassium) in each of the four seasons of 

the year. 

 

Chapter 7: Estimation of nutrient concentration and mass of pastures grown under 

different soil phosphorus status and varying nitrogen fertiliser regimes using field 

spectroscopy. The ability to predict pasture nutrient content in situ may vary for swards of 

different characteristics. A change in nutrient unit, such as the conversion of mineral 

concentration (percent of dry matter) into mass (kg ha-1), might be an option to improve the 

proximal estimation of nutrients in forages. This Chapter explores the prediction (from 

reflectance factor spectra recorded in situ) of nutrient (nitrogen, phosphorus, potassium, 
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calcium, magnesium, sodium and sulphur) concentration and mass by lowland dairy 

pastures swards with changing soil Olsen P status and N fertiliser inputs. 

 

Chapter 8: Prediction of the nutrient concentration and mass of hill pasture using 

proximal sensed hyperspectral reflectance. Low soil fertility is a major factor limiting 

pasture production on hill country. Compared to lowland areas, hill pasture plant 

communities are much more complex, due to the high variability within very short 

distances. Slope and aspect influences livestock grazing, camping behaviour, soil fertility 

and the quality of the pasture. For appropriate management of hill pastures data from within 

paddocks are required to cover the diversity found in the field. This Chapter evaluates the 

prediction of mineral nutrient concentrations and masses (nitrogen, phosphorus and 

potassium) in hill country pasture swards on slopes > 20° and on north, east and south-

facing aspects under sheep grazing, using hyperspectral proximal sensing. 

 

Chapter 9: Summarizes the findings of this project and recommends future study 

directions. 
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CHAPTER 2: 

A technique for acquiring in situ reflectance spectra from pastures 

independent of ambient conditions 

 

------------------------------------------------------------------------------------------------------------ 

A paper from this study has been submitted to the International Journal of Remote Sensing: 

Sanches, I. D., Tuohy, M. P. and Hedley, M. J. (XXXX). A technique for acquiring in situ 

reflectance spectra from pastures independent of ambient illumination conditions. 

International Journal of Remote Sensing. XX, XXXX-XXXX. Submitted on May 2008. 

Revised on August 2009. Currently with referees. 

------------------------------------------------------------------------------------------------------------ 

 

Abstract 

 

For the collection of pasture reflectance spectra in field conditions, the CAPP (canopy 

pasture probe) was developed. It consists of an inverted black plastic bin with a 50 Watt 

tungsten-quartz-halogen light source mounted on the top and a grip to insert the fibre optic 

input of an ASD FieldSpec® Pro FR. The independent light source allows acquisition of 

consistent reflectance spectra in variable or poor natural light conditions. Spectral 

measurements can be taken in different seasons of the year under identical conditions of 

illumination and view angle, allowing the acquisition of reproducible measurements. The 

CAPP has been successfully used to collect reflectance factor data from New Zealand 

pastures, a task that can be very difficult when relying on natural illumination because 

rapidly changing cloud cover and weather are characteristic conditions in this country. 

 

Keywords: field spectroscopy; artificial illumination; field probe; pasture canopy 

 

2.1. Introduction 

 

Reflectance from vegetation surfaces is a complex phenomenon. There are several 

factors that influence vegetation spectral measurements, such as target reflectance 
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properties (Knipling 1970), atmospheric conditions (Kriebel 1976), solar zenith angle 

(Kimes 1980), sensor characteristics, clouds and winds (Curtiss and Goetz 1994). Under 

natural conditions, cloud-free sky, minimal atmospheric turbidity and high sun elevations 

are required to acquire accurate spectral data (Williams and Wood Jr. 1987).  

In the field, a practical and frequently utilized method to record reflectance 

measurements is to represent reflectance as a reflectance factor; this quantity is defined as 

the ratio of the radiant flux reflected by a surface to that reflected into the same reflected-

beam geometry by an ideal, perfectly diffuse, standard surface irradiated under the same 

conditions (Nicodemus et al. 1977). However if the illumination conditions vary between 

the moment the reference and target materials are measured the resultant spectra will 

present errors (Curtiss and Goetz 1994). 

New Zealand lies between latitudes 34° 04‟ S and 47° 02‟ S, and changeable 

weather is a common characteristic of mid-latitude areas, especially in maritime situations. 

Because of its oceanic position in the westerly wind belt, the atmosphere over this country 

is rarely still (Garnier 1958). Both the frontal systems across the ocean and the rugged 

landscape have a major influence on the New Zealand weather; over land and at the coast, 

clouds are formed through mechanical turbulence, convection and orographic ascent 

(Beatson 1985). An analysis of 30 localities in this country found that cloud frequency 

ranged from 56 to 92%. This estimation was based on daily NOAA7 satellite images over 

347 days (not considering winter months), from November 1982 to April 1984 (Wardle 

1986). Accordingly, the changeable weather and cloud cover present a great challenge for 

the successful use of passive optical proximal sensing technology in New Zealand. 

One option to enable more control over illumination and to acquire measurements 

during non-optimal conditions is to use an artificial light source. Artificial illumination has 

been traditionally used in laboratory spectroscopy, but the collection and transportation of 

the samples to a laboratory can be time-consuming, undesirable or even impossible 

considering the destructive characteristic of the method.  

To avoid the time-varying nature of the irradiance and to minimize the time spent 

between the collection of samples in the field and the measurement of spectral reflectance 

in the laboratory, Williams and Wood Jr. (1987) developed the Transportable 

Hemispherical Illumination System (THIS), a stable source of hemispherical illumination 
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which could be transported to the area where the study would be conducted. The idea was 

to bring the laboratory to the samples, instead of the samples to the laboratory. More 

recently a range of contact devices has been developed by ASD Inc. for the measurement of 

small targets (e.g. leaves), and although the size of the objects that can be measured is 

limited, the integral light source of these devices permits measurements to be made in the 

field independently of the natural illumination, and moreover, the measurements are highly 

reproducible (Milton et al. 2007). 

In our case the objective was to use a portable spectroradiometer (ASD FieldSpec® 

Pro FR - ASD Inc., Boulder, CO) to measure reflectance of pasture canopies in the field, 

using a non-destructive approach, in different seasons of the year, even under non-optimal 

conditions (e.g. cloud cover, wind). Since no existing device was suitable for our needs, the 

CAPP (canopy pasture probe) was developed. The CAPP is described in this paper, and it 

has been successfully used to collect reflectance factor data from dairy and sheep-grazed 

pastures on flat and steep topography, respectively. These data were collected to assess the 

feasibility of predicting pasture mineral nutrients using proximal sensing techniques. 

Although the idea of taking the laboratory (controlled conditions) to the field is not 

new, to the authors‟ knowledge there is no other hand-held device currently being used 

which ensures a controlled environment for the use of spectroradiometers to measure 

pasture canopies in situ without destroying the target. 

In the remaining text the term Spectro-CAPP was adopted to refer to the combined 

use of an ASD FieldSpec® Pro FR spectroradiometer attached to the canopy pasture probe. 

 

2.2. Material and methods 

 

2.2.1. CAPP (canopy pasture probe) 

 

The CAPP consists of an inverted rounded black plastic bin, painted inside with a 

flat black paint; it is 45 cm high and has a diameter of 26 cm (Figure 2.1). Mounted in the 

top is a 50 Watt ASD Pro-lamp with a tungsten-quartz-halogen bulb. The light was placed 

in the top centre of the instrument at zenith, and it is powered by 12 volt battery. To insert 

the spectroradiometer fibre optic, a grip was initially fixed on the top of the probe beside 
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the lamp, i.e. 45 cm from the target and pointing at approximately 11 degrees; later another 

grip was fixed on the side of the CAPP, at 40 cm height and 18 degrees from zenith. The 

field-of-view (FOV) of the spectroradiometer used is 25 degrees and the potential area 

viewed by the instrument (area measured) is very close to a circle with a diameter of 

approximately 20 cm. For the reflectance standard a square, matt white ceramic tile, 

measuring 295x295 mm was used (Sanches et al. 2009, Chapter 3). 

 

 
Figure 2.1. (a) CAPP with the spectroradiometer ASD FieldSpec® Pro FR; (b) ASD light 
source mounted on the top and fibre optic cable grips on the top and side of the CAPP; (c) 
acquiring reflectance spectra from sheep-grazed pasture. 
 

2.2.1.1. The frame 

The CAPP was made of a resistant plastic suitable for field work conditions. 

Although the plastic used was already in black colour, the interior of the bin was painted 

with a flat black paint to minimize any reflectance from this surface. The paint used (Dulux 

Quick DryTM SparykoteTM) is spectrally non selective for the range analysed (350-2500 nm) 

and has very low reflectance (around 0.06) (the paint‟s reflectance was measured using the 

ASD FieldSpec® Pro FR attached to an ASD plant probe and a spectralon® panel as 
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reflectance standard). The CAPP‟s frame is light enough to be easily carried along with the 

backpack-mounted spectroradiometer; and most importantly, it blocks any interference 

from the outside environment during the measurements, such as secondary sources of 

illumination and wind. 

 

2.2.1.2. Fiber optic input position 

There are two types of reflectance from Earth-surface materials, specular and 

diffuse (Lambertian). For specular, the angle of incidence and reflection of the energy are 

equal and no scattering occurs at the surface. For diffuse reflectance, the radiance incident 

upon the surface is backscattered in all upward directions (Mather 1999). The diffuse 

component of reflectance from plant leaves comes mainly from inside the leaf, whereas the 

specular component arises primarily from the leaf surface (Grant 1987, Brakke 1994). The 

spectral variation of the diffuse reflection depends on leaf biochemistry and so can be used 

to predict the amount of leaf constituents (Bousquet et al. 2005). In most natural materials, 

like in vegetation targets, the diffuse reflectance is more abundant and causes fewer 

measurement problems (Hatchell 1999). Nevertheless, because the specular reflection 

depends on surface biophysical properties it can be useful for studies of refractive index 

and roughness of the epidermis/cuticle layer (Bousquet et al. 2005). Since the CAPP was 

developed to assist studies for the prediction of pasture biochemistry, our interest was to 

measure the diffuse reflectance and avoid the specular reflectance.  

One way to avoid measuring specular reflectance is to set the spectroradiometer 

sensor input far away from the specular plane, for example by placing the sensor input at a 

right angle to the illumination source (Hatchell 1999). Since this set up of right angle was 

not compatible with the physical structure of the CAPP, two other set ups were tested. The 

choice for the set ups was guided by the objective to measure a circular area of at least 15 

cm diameter (considering the FOV of the spectroradiometer of 25 degrees), with a probe 

that was practical for field work. Two different mounting positions for the FieldSpec® Pro 

FR fibre optic grip on the CAPP were tested. For position 1, the grip was fixed on the top 

of the probe (45 cm height) at 11 degrees to the light source (Figures 2.2a and 2.3a). For 

position 2, the cable grip was moved from the top to the side of the probe; it was placed at 

40 cm height and 18 degrees from zenith (Figures 2.2b and 2.3b). The intention was not to 
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have a probe with two different configurations, but to test if at least one of the probes 

would suit our needs. 

 

 
Figure 2.2. Diagram of pasture specular and diffuse reflection being captured by the CAPP 
with the ASD FieldSpec® Pro FR fibre optic input placed: a) on the top of the CAPP, b) on 
the side of the CAPP. 

 

 
Figure 2.3. Calculating area measured within the FOV of the sensor for measurements 
acquired by the CAPP with the ASD FieldSpec® Pro FR fibre optic input placed: a) on the 
top of the CAPP, b) on the side of the CAPP. 



Chapter 2                                                                                                                               13 
 

 

The area measured by the Spectro-CAPP, as demonstrated in Figure 2.3, is slightly 

different for each set-up, but the potential ground area viewed by both set-ups corresponds 

closely to a circle with a diameter of approximately 20 cm. However, for both set ups the 

actual area measured will depend on the pasture sward height (PSH), since the distance 

between sensor input and target will decrease with any increase of the pasture height. The 

change in measured area by the Spectro-CAPP (top and side-grips) for a pasture sward with 

different heights is illustrated in Figure 2.4. One factor to be considered is that comparing 

two pasture plots of equal size, one with a sward higher than the other, the plot with higher 

sward might need more spectral measurements to be taken (measurements posterior 

averaged) in order to cover the same area (c.f. fig 2.4 PSH = 15 cm and PSH = 5 cm); 

especially for the side-grip set-up, where the area measured is slightly smaller than with the 

top-grip set-up.  

 

 
Figure 2.4. The area inside the white circles illustrates the approximate area measured by 
the Specto-CAPP using the fibre optic input placed on the top of the probe and on the side 
of the probe, for different pasture sward heights (PSH). 
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2.2.2. Light source 

 

There are several kinds of radiant energy generators that can be used as artificial 

illumination sources, such as filament and gaseous emitters excited by electrical power, 

burning gaseous and solid emitters, or heated gaseous and solid emitters. The most 

appropriate option to obtain a smooth energy output when measuring spectral data between 

350 and 2500 nm is a bulb with tungsten filament emitter, a non absorbing gas (halogen) 

and a non absorbing envelope (quartz) (Hatchell 1999). 

The lamp mounted on the top of the CAPP was an ASD 50 Watt tungsten-quartz-

halogen Pro-lamp (ASD Inc., Boulder, CO), which was set at maximum intensity in order 

to avoid noise problems. The stability of the light source was assessed. The spectral 

radiance of a matt white ceramic tile was measured at 1-minute intervals over 30 minutes 

using the Spectro-CAPP plugged in to mains power (as opposed to running on batteries). 

Because the lamp is fixed, the distance between the light source and the target will 

vary with PSH. Consequently PSH will have an effect on the irradiance (amount of flux per 

unit area of a defined surface) on the target, the higher the PSH the higher will be the 

irradiance on the target. The spectral measurement of our interest is the reflectance factor, a 

ratio which is independent of the irradiance. So as long as the irradiance on the reflectance 

standard is the same as the irradiance on the target, the measurements will be coherent 

despite of PSH. This subject is further discussed in the text. 

 

2.2.3. Battery 

 

The CAPP‟s light source is powered by a 12 volt rechargeable battery. Since the 

overall goal for illumination is to keep it consistent, the battery stability was tested. The 

ideal would be to scan the reflectance standard just before each target sample is scanned to 

account for any variation in battery power, but because this is not always feasible when 

working in field conditions, it is important to know the change in radiance one can expect 

when dealing with a battery powered light source. The influence of variation in battery 

power was evaluated by using Spectro-CAPP to measure the spectral radiance of a matt 
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white ceramic tile, at 1-minute intervals over 60 minutes, using three different fully-

charged 12 volt batteries. 

 

2.2.4. ASD FieldSpec Pro FR 

 

The ASD FieldSpec® Pro FR is a spectroradiometer which covers the spectral range 

between 350-2500 nm, with spectral resolution of 3 nm for the region 350-1000 nm and 10 

nm for the region 1000-2500 nm. The spectral resolution is the measure of the narrowest 

spectral feature that can be resolved by the instrument, and is different and independent 

from the spectral sampling interval (spacing between sample points in the spectrum). The 

sampling interval for the ASD FieldSpec® Pro FR is 1.4 nm for the region 350-1000 nm 

and 2 nm for the region 1000-2500 nm, with measurements automatically interpolated and 

reported in 1 nm intervals (ASD 2000). 

 

2.2.5. Reflectance standard 

 

Spectralon® (Labsphere, Inc.) is one of the most commonly used reflectance 

standards. It is made of a sintered PTFE material with almost perfect Lambertian 

reflectance over 250-2500 nm (Springsteen 1999). However, large panels (greater than 20 

cm diameter) suitable for use with the CAPP are very expensive. Thus, a white matt 

ceramic tile was chosen as reflectance standard for the Spectro-CAPP (Sanches et al. 2009, 

Chapter 3). The selected tile has around 80% reflectance, presents good uniformity over the 

spectral range between 400 and 2500 nm and results in vegetation spectra with very similar 

shape to the spectra acquired using spectralon® as reference. 

 

2.2.6. Acquisition and pre-processing of reflectance factor spectra acquired using the 

Spectro-CAPP 

  

As mentioned before, the reflectance factor of a target is the ratio of the spectral 

response of the target to the spectral response of a reference sample under the same 

conditions of observation and illumination. Therefore the reference spectrum should be 
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acquired before the target measurements begin, and should be repeated every time the 

illumination conditions change. 

The FieldSpec® Pro FR spectroradiometer samples spectra continuously but reports 

a time averaged spectrum. To acquire the spectral reflectance of a target, the target must be 

kept in the FOV of the fibre optic cable until the reported time-averaged spectrum stabilises. 

The practice of time-averaging many spectra is adopted to reduce measurement error when 

collecting spectral data. The FieldSpec® Pro RS3 software is set up to do this averaging. For 

our measurements one acquired spectrum is the average of 25 measurements for target, 

dark current and white reference spectra.  

The measurement protocol for acquiring reflectance factor spectra using the 

Spectro-CAPP is as follows. Warm up the FieldSpec® Pro FR for at least 90 minutes. In the 

field turn on the CAPP‟s light (which is attached to a battery) and let it warm up for 15 

minutes just before beginning the spectral measurements. Attach the FieldSpec® Pro FR‟s 

fiber optic into the CAPP, place the white reference sample (matt white ceramic tile) under 

the CAPP and proceed with the standard procedures to take relative reflectance (reflectance 

factor) measurements using the FieldSpec® Pro FR (optimization, collection of dark current 

and white reference scan). Once the white reference has been collected, place the CAPP 

over the target (pasture sward) and collect the target spectrum. Move the CAPP to the next 

target and acquire new spectrum. To measure plots with dimensions greater than the spot 

measured within the FOV of the Spectro-CAPP (Figure 2.3), several spectra are acquired 

per plot and posterior averaged. When collecting a target‟s spectra there is a need to 

periodically check the white reference scan (by placing the CAPP over the matt white 

ceramic tile), and collecting a new white reference scan whenever necessary (e.g. when 

deviations such as steps or slopes are observed in the 100% white reference line). 

In the protocol described above, since the white reference scan is acquired by 

placing the ceramic tile under the CAPP (0 cm height), it is assumed pasture canopy height 

is short and constant. The ideal would be to have a mechanism to slide the reflectance 

standard panel up inside the CAPP according to the PSH. Thus the irradiance of both 

reflectance standard and target would be the same. Because the CAPP did not have such 

mechanism, and to manually change the tile height during measurements in the field would 

be unpractical, the reflectance factors collected using the Spectro-CAPP need to be 
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posterior compensated for PSH. The radiance of the ceramic tile (which was previously cut 

to a size that could fit inside the CAPP) at different heights inside the CAPP (every 

centimetre between 0 to 15 cm height) was acquired (Figure 2.6). With these data - the 

radiance of the ceramic tile for specific heights and also measurements of PSH, the pasture 

reflectance factor measured with the Spectro-CAPP can be corrected. The correction is 

done by multiplying the pasture reflectance factor by the tile‟s radiance at 0 cm height and 

dividing by the tile‟s radiance at the specific PSH, for each wavelength. Another option 

would be to record in the field the radiance of the target instead of the reflectance factor, 

and posterior divide it by the tile‟s radiance at the specific PSH. However the advantage of 

recording the reflectance factor is that quality control of the spectra can be done visually 

while acquiring the data and some errors can be eliminated before the data are saved. 

Following the methodology described above, the spectral reflectance factors from 

ten pasture plots were measured using the Spectro-CAPP. Each spectrum was the average 

of 10 spectra acquired within each plot. Data were obtained for the two fibre optic grip 

mounting positions. To remove the signal noise (mainly at the beginning and far end of the 

spectrum analysed, due to low signal-to-noise ratio - SNR) and step problems (steps 

discussed later in the paper) two data pre-processing procedures were applied to the spectra, 

a Savitzky-Golay smoothing filter (Savitzky and Golay 1964) with smoothing window size 

of 81 and polynomial order 4, using The Unscrambler® 9.7 software, and a de-step 

procedure (Daniel, P., Ticehurst, C., and Thulin, S., personal communication, 29 March 

2007) using ENVI 4.3 plus IDL 6.3 (Figure 2.8). The de-step procedure assesses the actual 

differences at the steps between the three detectors in the spectrum, and then it takes the 

midpoint in each step as the new point for the corrected spectrum to pass through. Each of 

the three spectral segments is tilted up or down until they pass through the midpoints while 

the ends of the spectra (350 nm and 2500 nm) are held fixed. The authors later became 

aware of another de-step method called Splice Correction, available on the ViewSpecTM 

Pro software (ASD Inc.). 
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2.2.7. Comparison between pasture spectra acquired with the Spectro-CAPP and with the 

FieldSpec® under sunlight conditions 

 

In addition to the measurements using the Spectro-CAPP, some pasture plots were 

also measured with the FieldSpec® in normal mode (under sunlight conditions) using as 

white references the matt white ceramic tile (295x295 mm) and a spectralon® disc (9 cm 

diameter). The fibre optic input when using the FieldSpec® under sunlight was fixed at 

nadir position at 45 cm height, so that the area measured (equal to a circle with a 20 cm 

diameter) would be comparable to the area measured when using the CAPP. For each plot 

four measurements were conducted: using 1) the FieldSpec® under sunlight and the 

spectralon® disc; 2) the FieldSpec® under sunlight and the ceramic tile; 3) the Spectro-

CAPP top-grip and the ceramic tile; and 4) the Spectro-CAPP side-grip and the ceramic tile. 

For the inter-comparison of spectra collected using the two different reflectance standards 

used, the reflectance factor spectra obtained were converted to absolute reflectance 

(reflectance factor spectrum multiplied by the calibrated reflectance spectrum of the 

spectralon® disc or the ceramic tile). 

 

2.3. Results and discussion 

 

2.3.1. Fiber optic input position: grip fixed on the top of the CAPP versus grip fixed on 

the side of the CAPP 

 

When the ASD FieldSpec® Pro FR fibre optic was inserted into a grip fixed on the 

top of the CAPP (45 cm height) at 11 degrees to the light source (Figures 2.2a and 2.3a), 

the resultant pasture spectra contained unwanted steps at 1000 and 1800 nm (Figure 2.5). 

Steps in field spectra are common in instruments that use multiple detectors and to discover 

the source of steps can be very difficult (Milton et al. 2007). The wavelengths 1000 and 

1800 nm correspond to the splice points between the three detectors in the ASD FieldSpec® 

Pro FR instrument (VNIR, SWIR1 and SWIR2), and because the signal is low at splice 

points, the differences are most noticeable at those places (ASD 2000). The steps can occur 

when the spectroradiometer is not warmed up sufficiently before being used; but that was 
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not the problem here as the machine was always warmed up for at least 90 minutes. When 

measuring targets with heterogeneous surfaces (vegetation canopies) the steps can also be 

related to the fact that each fibre in the fibre optic bundle of the ASD FieldSpec® Pro FR 

has its own field of view and the fibres are randomly distributed between each of the three 

detectors (MacArthur 2007, MacArthur et al. 2007).  

When the cable grip was moved from the top to the side of the probe at 40 cm 

height and 18 degrees from zenith (Figures 2.2b and 2.3b), the area measured within the 

FOV was reduced slightly (Figure 2.3) and the step problems at 1000 nm and 1800 nm 

were minimized, as demonstrated in Figure 2.5. Overall there was an increase in reflectance 

factor values when using the sensor input on the side of the CAPP. It is important to 

emphasize that for both set ups, both target and white reference were measured with the 

same configuration, and the increase in reflectance factor is possibly related to the canopy 

structural effect. 

 

 
Figure 2.5. Spectra of a pasture measured with the Spectro-CAPP, using the fibre optic 
input placed on the top of the probe (continuous lines) and on the side of the probe (dashed 
lines), between a) 400 nm to 2500 nm, and enlarged for the spectral range between: b) 950 
nm and 1050 nm; c) 1750 nm and 1850 nm. 
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2.3.2. Light source 

 

The spectral radiance reflected from the reference sample (matt white ceramic tile) 

illuminated by the Pro-lamp mounted on the CAPP has the bell shape typical of a tungsten 

light source (Figure 2.6a). Overall the radiance values were low. The radiance results 

obtained here are similar to those of Williams and Wood Jr. (1987). They commented that 

low radiance values are to be expected when measuring reflected diffuse radiance, and not 

even sunlight has a flat and high radiant output across the entire optical portion of the 

electromagnetic spectrum. 

 

 
Figure 2.6. (a) Radiance (W m-2sr-1nm-1) reflected from a reference sample (matt white 
ceramic tile) illuminated by the ASD 50 W Pro-lamp mounted on the CAPP. The 16 curves 
plotted correspond to the radiance of the reference sample when the reference panel was 
elevated to different heights (every centimetre between 0 to 15 cm) inside the CAPP: the 
curve with the lowest radiance corresponds to the reference sample placed on the ground (0 
cm height), the curve with the highest radiance corresponds to the reference sample lifted 
15 cm. (b) Percentage of the increase in radiance observed in the plot (a). 
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2.3.3. Light and battery stability 

 

The stability of the illumination source is crucial when measuring reflectance 

factors of targets. The stability of an artificial light source even if plugged into the mains 

also depends on time, mainly when switching on the lamp; our light stability tests showed 

that a warm up period 10 and 15 minutes is necessary to stabilise the radiance of the lamp 

used in the CAPP, and after this period of time the lamp‟s radiance was very stable. 

Since the light source of the CAPP is powered by a 12 v battery it was important to 

evaluate the ability of the battery to provide constant power over time. Over a period of 60 

minutes (the count of the 60 minutes started after 15 min of warm up time) the spectral 

radiance from the matt white ceramic tile changed most in the visible part (350-700 nm) of 

the spectrum analysed (350-2500 nm), and the change became smaller as the wavelength 

increased (Figure 2.7). The averaged results are presented for four wavelengths in Table 2.1. 

There was a change of -0.81% (at 2100 nm) to -2.93% (at 600 nm) in radiance values 

recorded over 30 minutes and a change of -5.51% (at 2100 nm) to -15.34% (at 600 nm) 

over 60 minutes. This equates to a decrease in radiance of 0.03% (at 2100 nm) to 0.10% 

(600 nm) per minute for the first 30 minutes and a decrease of 0.09% (at 2100 nm) to 

0.26% (600 nm) after an hour of battery usage. The decrease in radiance for the first 30 

minutes represents a reasonable stability, so the procedure for the CAPP is to scan the 

reference sample (reflectance standard) as frequently as possible, and keep the time 

between reference sample scans under 30 minutes.  

 

Table 2.1. Averaged change in radiance (%) at 600 nm, 1100 nm, 1600 nm and 2100 nm, 
over 30 minutes and 60 minutes of battery usage. 

  Change in radiance over Change in radiance per minute for 

Wavelength 30 minutes 60 minutes First 30 minutes First 60 minutes 

600 nm -2.93% -15.34% -0.10% -0.26% 

1100 nm -1.76% -9.02% -0.06% -0.15% 

1600 nm -1.13% -6.59% -0.04% -0.11% 

2100 nm -0.81% -5.51% -0.03% -0.09% 
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Figure 2.7. Average percentage decrease, over time, in radiance reflected from a reference 
sample (matt white ceramic tile) illuminated by the ASD 50 W Pro-lamp mounted on the 
CAPP powered by 12 v battery. The curves correspond to the decrease in radiance recorded 
per minute over a period of 60 minutes of battery usage (the count of the 60 minutes started 
after 15 min of warm up time). 
 

2.3.4. Pasture reflectance factor acquired using the CAPP 

 

The original spectra from pasture plots (before applying smoothing and de-step 

procedures) showed noise mainly at the longer wavelength end of the spectrum, and the 

steps previously mentioned, particularly the data collected with the top-grip (Figure 2.8a). 

After applying the smoothing filter the noise was minimized, and the steps were eliminated 

from spectra acquired with the side-grip. The steps, however, were much more significant 

at 1000 nm for the data acquired with the top-grip, and the smoothing procedure 

undesirably modified the original shape of the spectra around this wavelength (Figure 2.8b). 

The de-step procedure applied to the original data effectively eliminated the steps in all 

spectra (Figure 2.8c), and the de-stepping followed by the smoothing effectively eliminated 

the steps and minimized the noise (Figure 2.8d).  
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Figure 2.8. Spectra of pasture plots measured with the Spectro-CAPP using the fibre optic 
input placed on the top of the probe (continuous lines) and on the side of the probe (dashed 
lines), between 400-2500 nm and enlarged for the spectral ranges 950-1050 nm and 1750-
1850 nm. a) Original data, b) smoothed data, c) de-stepped data and d) de-stepped and 
smoothed data. 

 

Since the reference‟s radiance is acquired at 0 cm height (reference placed under the 

CAPP) independently of the height of the pasture sward being measured, and having in 

mind that in this study the pasture reflectance factor is the ratio between the pasture‟s 

radiance and the reference‟s radiance, the pasture reflectance factor spectra collected using 

the Spectro-CAPP need to be corrected according PSH. Otherwise, the pasture spectra will 

have higher magnitude than it should have, due to the increase in the ceramic tile‟s radiance 

with the increase of PSH (Figure 2.6). The degree of increase in the ceramic tile‟s radiance 

with the increase of PSH was the same all over the spectral range analysed (Figure 2.6b). 
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2.3.5. Comparison between pasture spectra acquired with the Spectro-CAPP and with the 

FieldSpec® under sunlight conditions 

 

Some examples of the pasture plots measured using 1) the FieldSpec® under 

sunlight and the spectralon® disc; 2) the FieldSpec® under sunlight and the ceramic tile; 3) 

the Spectro-CAPP top-grip and the ceramic tile; and 4) the Spectro-CAPP side-grip and the 

ceramic tile are presented in Figure 2.9. The spectra illustrated in Figure 2.9 did not receive 

any smoothing procedure, but the spectra collected with the CAPP have been de-stepped. It 

is important to stress that the measurements presented in this study refer to the relative 

reflectance (reflectance factor) rather than the absolute reflectance. It is a relative 

reflectance because the calculation was based on a reference standard. When analysing 

spectra collected using different reflectance standards the absolute reflectance should be 

used. To allow comparisons between spectra collected using the spectralon® disc and the 

ceramic tile in Figure 2.9 the relative reflectance (not shown) was converted into absolute 

reflectance. 

For the measurements using sunlight as the illumination source, the typical water 

bands noise at around 1400 nm and 1900 nm were observed. In each plot, the pasture 

spectra collected under solar illumination using the matt white ceramic tile and the 

spectralon® disc as white references were almost identical. The high degree of similarity of 

these absolute reflectance spectra was to be expected since the conditions of observation 

and illumination source were the same during the spectral measurements. The small 

dissimilarities observed between these spectra, mainly in plot A, are probably due to slight 

change in sunlight conditions during measurements. Just like the other examples illustrated 

in this paper, the spectra collected with the Spectro-CAPP top-grip had lower reflectance 

than the spectra acquired with the Spectro-CAPP side-grip. Overall, among the plots 

measured, all spectra acquired produced similar shapes with reflectance spectra varying in 

magnitude; it is important to remember here that the spectra being compared were collected 

under different view angles. 
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Figure 2.9. Reflectance spectra (relative reflectance converted into absolute reflectance) of 
different pasture plots (A, B, C and D) acquired in four distinct ways: 1) matt white ceramic 
tile as white reference and the Spectro-CAPP top-grip (black lines), 2) ceramic tile and the 
Spectro-CAPP side-grip (dashed black lines), 3) ceramic tile and the FieldSpec® under 
sunlight (dotted grey lines), and 4) spectralon® disc as white reference and the FieldSpec® 
under sunlight (thick grey lines). 
 

2.3.6. Examples of pasture swards measured using the CAPP 

 

To demonstrate the potential of the CAPP to measure spectra from a variety of 

pasture swards, some examples of pasture spectra acquired with the Spectro-CAPP using 

the fibre optic input placed in the top grip on the CAPP, are presented in Figure 2.10 

(spectra have been pre-processed i.e. de-stepped and smoothed). Measurements were taken 
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at two quite different sites in the North Island of New Zealand. Site one corresponds to a 

sheep pasture in steep hill country (low fertility) with browntop (Agrostis capillaris) and 

fescue (Festuca spp.) as the most common grass species. Site two corresponds to a dairy 

farm in a flat, lowland area (high fertility) with perennial ryegrass (Lolium perenne) as the 

dominant grass species. At each site, the same pasture plot was measured in different 

seasons of the year. In New Zealand the seasons have a great influence on pasture attributes, 

such as botanical composition, biomass, greenness, dead matter, etc. The changes in pasture 

characteristics were clearly reflected in the spectral measurements. 

 

 
Figure 2.10. Examples of pre-processed (de-stepped and smoothed) reflectance factor 
spectra of pasture swards measured with the Spectro-CAPP using the fibre optic input 
placed on the top of the CAPP. Sites 1 and 2 correspond to a sheep pasture on a hill country 
site and a dairy pasture in a flat area, respectively. The pictures of each site show how the 
same pasture plot appears in different seasons of the year. 

 

2.4. Conclusions 

 

We have successfully developed a canopy pasture probe (CAPP) that can be used as 

an attachment to the fibre optic input of a portable field spectroradiometer. The CAPP has 

been used to acquire reflectance factor data from New Zealand pasture swards on flat and 

hilly farms. The advantages of using this device are that the independent light source allows 

the user: to acquire reflectance spectra from pasture in all seasons and variable weather 

conditions (e.g. cloudy sky, windy days) that are typical of temperate regions like New 



Chapter 2                                                                                                                               27 
 

Zealand; to measure pasture characteristics in the field without the need to cut samples and 

transport them to the laboratory; and to allow spectral measurements to be taken in different 

seasons of the year under identical conditions of illumination and view angle, a desirable 

trait when studying field plots over a period of time. 

Like any other spectral data, the reflectance factor spectra measured using the 

Spectro-CAPP need to be pre-processed to remove, or at least reduce, undesirable features 

in the target spectra. After pre-processing (de-stepping and smoothing), both top-grip and 

side-grip data are good for further interpretation.  
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CHAPTER 3: 

Large, durable and low-cost reflectance standard for field remote sensing 

applications 

 

------------------------------------------------------------------------------------------------------------ 

A paper from this study has been published: Sanches, I. D., Tuohy, M. P., Hedley, M. J. 

and Bretherton, M. R. (2009). Large, durable and low-cost reflectance standard for field 

remote sensing applications. International Journal of Remote Sensing. 30, 2309-2319. 

------------------------------------------------------------------------------------------------------------ 

 

Abstract 

 

The development of the Canopy Pasture Probe (CAPP), for acquisition of in situ pasture 

canopy reflectance factors, required a suitable large reflectance standard. Spectralon® has 

been successfully used worldwide as a reflectance standard, but large panels (greater than 

20 cm diameter) suitable for use with the CAPP are very expensive. In this context, a large, 

durable and low cost reflectance standard has been evaluated for use with an ASD 

FieldSpec® Pro FR spectroradiometer attached to the CAPP. In this study various ceramic 

tiles, barium sulphate powders, white paint and a Kodak card were tested. The material 

which best suited the requirements for a reflectance standard was the white ceramic tile 

sourced from Argentina. This tile produced around 80% total reflectance with reasonable 

uniformity over the spectral range analysed (400 – 2400 nm); and the vegetation spectra 

acquired using this tile as reference sample were very similar in shape to the vegetation 

spectra acquired using spectralon® as a white reference. 

 

Keywords: reflectance standard; hyperspectral; ceramic tile; pasture canopy 

 

3.1. Introduction 

 

Physicists, chemists and biologists use laboratory spectroscopy to characterize the 

composition of materials based on the interaction of electromagnetic radiation with matter. 
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Imaging spectroscopy (also known as hyperspectral remote sensing) was developed 

following the same concept, however at a greater scale, using the solar electromagnetic 

spectrum (Green et al. 1998). In several remote sensing applications, imaging spectroscopy 

data need to be calibrated to surface reflectance, which is done from proximally sensed 

(laboratory and/or field) reflectance from known targets (Clark et al. 2002). In addition to 

calibration, field spectroscopy can also be used to assist the development of remote sensing 

techniques and feasibility testing (Curtiss and Goetz 1994). 

In laboratory and field spectroscopy, the reflectance characteristics of the target are 

inferred by comparing the spectral response of the target to the spectral response of a 

reference sample (reflectance standard). In the field such measurements can be made under 

artificial or solar illumination by using a spectroradiometer, like the FieldSpec® Pro FR. 

It is important to note that the real quantity acquired by the FieldSpec® Pro FR is 

the reflectance factor. The reflectance factor is the ratio of the radiant flux reflected by a 

target to that reflected into the same reflected-beam geometry by an ideal and diffuse 

standard surface, irradiated under the same conditions. This differs from true reflectance, 

the ratio of the reflected flux on a sample surface to the incident flux from the same surface 

(Schaepman-Strub et al. 2006). Only when the reflectance standard is a 100% reflecting 

panel does the reflectance factor approach true reflectance, however, it seems to be 

commonly accepted in the remote sensing community that measurements of reflectance 

factor taken using high reflecting reference materials, like 99% spectralon®, are normally 

called reflectance. 

The reflectance factor can be converted to absolute reflectance in post-processing, 

by multiplying the reflectance factor spectrum by the actual calibrated reflectance spectrum 

of the reference standard (ASD 2000). 

The ideal reflectance standard is a perfect reflecting diffuser, which is defined as a 

Lambertian diffuser with a reflectance factor equal to unity (Nadal and Barnes 1999). But, 

since there is no material with such characteristics, one that approximates to this concept is 

considered a good standard. 

To be a reflectance standard a material should have the following properties: a 

reflectance factor close to unity for the operational wavelength range, be a diffuse reflector, 

highly opaque, non fluorescent, homogeneous with a smooth surface, spectrally non 
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selective, durable, transportable, stable, cleanable, easy to handle (Nadal and Barnes 1999, 

Springsteen 1999) and weather-resistant (Jackson et al. 1992). 

Some materials which have been used worldwide as reflectance standards are 

pressed and sintered polytetrafluorethylene (PTFE) resins, matt ceramic tiles and barium 

sulphates. They all have excellent reflection properties (Shitomi and Saito 2005). 

  Spectralon® (Labsphere, Inc.) is one of the most commonly used reflectance 

standards. It is made of a sintered PTFE material with almost perfectly Lambertian 

reflectance over 250-2500 nm (Springsteen 1999). The great disadvantage of spectralon® is 

its high cost, especially when a large panel is required. 

Searching for an alternative for sintered PTFE (e.g. spectralon®), Knighton and 

Bugbee (2004) tested mixtures of barium sulphate with white latex paint. The idea of 

adding paint was to make the standard more durable, because the barium sulphate, although 

highly reflective, is easily rubbed off any surface. The paint mixed with barium sulphate 

did increase its durability, but it also decreased the reflectance. 

Hanna et al. (1999) used a Kodak grey card as reflectance standard to estimate New 

Zealand pasture biomass using a three-channel radiometer (green, red and near-infrared). 

The grey side of the card turned out to be a better standard to use in the field than the white 

side of the card. 

The objective of our research was to find a large (over 20 cm diameter), durable and 

low cost reflectance standard which could be used to obtain field pasture reflectance over 

the range of 400-2400 nm, using an ASD FieldSpec® Pro FR attached to the Canopy 

Pasture Probe (CAPP). 

The CAPP (Chapter 2), Canopy Pasture Probe, consists of an inverted black plastic 

bin, with a light source mounted on the top (at zenith) and an input for the 

spectroradiometer fiber optic placed at 18 degrees from zenith (Figure 3.1). It was 

developed to allow the acquisition of weather-independent spectral measurements of 

pastures in the field (e.g. even on cloudy days) using a FieldSpec® Pro FR. Since the field-

of-view (FOV) of the fibre optic cable input to the spectroradiometer used is 25 degrees, 

and the distance from the target is set to 40 cm, the area viewed by the instrument (spot 

measured) is elliptical with a major axis of 19.7 cm and a minor axis of 18.7 cm. 

Consequently a reflectance standard with dimensions greater than these was required. 
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3.2. Material and methods 

 

3.2.1. Reflectance standards 

 

The materials tested as reflectance standards used in this study and their costs (in 

New Zealand dollars) are reported below. The prices quoted represent the real amount spent 

to acquire the materials or the cost estimated at current prices (2006). 

 

Spectralon® - Labsphere, Inc.: 

- (1) 99% reflectance factor, 9 cm diameter 

(To acquire a 99% reflectance factor spectralon® with dimensions of 250x250 mm - $2874) 

Barium sulphate (BaSO4) - white powder: 

- (2) May & Baker barium sulphate - $50/500g 

- (3) PANREAC barium sulphate for X radiology - $198/5kg 

White paint:  

- (4) Dulux weathershield X10 low sheen acrylic - ($49/l) 

Ceramic tiles - all white tiles except number 7 which is grey ($4-$6/tile): 

- (5) Asia Tile (made in Indonesia) 

- (6) Niro Whites 

- (7) Cesi Perla Satin (made in Italy) 

- (8) Tau Ceramica Benedresa (made in Spain)  

- (9) Milenio Blanco Mate Wall T.T. 

- (10) San Lorenzo Blanco Niveo (made in Argentina) 

- (11) Nordico Snow 

Card – Kodak Gray Card ($25): 

- (12) the grey side of the card 

- (13) the white side of the card 

 

Both barium sulphate powders were manually pressed on two flat plastic dishes of 9 

cm diameter. The May & Baker barium sulphate (2) was also manually pressed on a flat 
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ceramic dish of 25 cm of diameter, and for that approximately 300 grams of barium 

sulphate were used. The white paint was painted on a piece of smooth-surfaced board; it 

was determined that the surface on which the paint was applied did not affect the spectral 

measurements of the paint. 

 

3.2.2. Reflectance spectrometry 

 

The evaluation of materials was conducted using the FieldSpec® Pro FR attached to: 

an ASD plant probe, and the CAPP (Figure 3.1). 

 

 
Figure 3.1. ASD plant-probe and CAPP (canopy pasture probe). 
 

The reflectance spectra of all materials (barium sulphates, matt white paint, ceramic 

tiles and Kodak card) were compared to the spectralon®, which was considered the ideal 

reflectance standard because of its almost perfectly Lambertian reflectance characteristics 

over 400-2400 nm and high durability in field conditions. The largest spectralon® panel 

available was a 9 cm diameter disc, therefore the first tests were run using the plant probe. 

After those first comparisons, the materials considered good enough were tested using the 

CAPP. 
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3.2.2.1. FieldSpec
®
 Pro FR attached to the ASD plant probe 

The comparisons between spectralon® and the other materials mentioned above 

were achieved by analysing their reflectance (reflectance factor acquired using a calibrated 

Labsphere certified 99% reflectance standard (SRT-99-050)), the reflectance factor spectra 

of vegetation targets (fresh green leaves) obtained using the materials as reflectance 

standard, and their white reference scans. Each spectrum displayed is the average of 10 

recorded spectra and was analysed using SpectraProc (Hueni and Tuohy 2006). 

The white reference scans, which enable the adjustment of the instrument gain for 

optimal performance and determine the dark-offset used for automatic subtraction from 

reflectance calculations (ASD 2000), were acquired with the spectroradiometer viewing the 

incident illumination that was reflected off the materials tested as reflectance standard. 

 

3.2.2.2. FieldSpec
®
 Pro FR attached to the CAPP 

For the materials not discarded in the previous phases, vegetation target reflectance 

factors were obtained using the FieldSpec® Pro FR with the CAPP and the test materials 

used as reflectance standard. 

 

3.3. Results and discussion 

 

3.3.1. Evaluation of a range of potential reflectance standards 

 

The ceramic tiles and barium sulphates were chosen to be examined in this research 

because they have been used previously as reflectance reference samples. The grey side of 

the Kodak card, used for determining proper exposure in photography, videography and 

digital imaging, has been used as reference standard for inferring the reflectance from New 

Zealand pastures in the visible and near-infrared wavelengths (Hanna et al. 1999). A matt 

white paint was also tested following the idea of a pre-existing study which tested mixtures 

of barium sulphate and white latex paint (Knighton and Bugbee 2004). 

With the exception of the spectralon®, all other materials investigated in this 

research could be used as large reflectance standards without great cost. The reflectance 

spectra of the tested materials acquired using the FieldSpec® Pro FR with the plant probe 
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using a SRT-99-050 reflectance standard, (400-2400 nm) are shown in Figure 3.2. The grey 

card (12) and grey ceramic tile (7), as expected, had the lowest reflectance factors 

compared to the other materials (all white coloured); the white paint (4) and the white card 

(13) had high reflectance values from 400-1400 nm, but at longer wavelengths their 

reflectance started to decrease (Figure 3.2b). All other materials had satisfactory high 

reflectance. Spectralon® (1) and barium sulphates (2, 3) had reflectance over 90% (except 

for the bariums at 1900 nm); the ceramic tiles Asia Tile (5), Niro Whites (6), San Lorenzo 

(10) and Nordico Snow (11) presented values between 80% and 90%; and the ceramic tiles 

Tau Ceramica (8) and Milenio Blanco (9) between 70% and 80% (Figure 3.2a). 

  

 
Figure 3.2. Reflectance of the materials inferred using an ASD FieldSpec® Pro FR with an 
ASD plant probe using a SRT-99-050 reflectance standard: a) spectralon® (1), barium 
sulphates (2 and 3) and all white ceramic tiles (5, 6, 8, 9, 10 and 11); b) white  paint (4), 
grey ceramic tile (7), grey and white cards (12, 13). 
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One important property the standard should have is to be spectrally non-selective, 

that means its values for reflectance factors should be as uniform as possible in the 

operational wavelength range. The white paint (4), the grey ceramic (7) and white card (13) 

were highly selective, and the grey card (12) was slightly selective (Figure 3.2b). The 

reflectance spectra of both barium sulphates (2 and 3) had troughs around 1450 and 1950 

nm; whereas all white ceramic tiles (5, 6, 8, 9, 10 and 11) had relatively uniform reflectance 

spectra in the wavelength range analysed and the spectralon® (1) was the most uniform of 

all materials (Figure 3.2a). 

Based on either spectral non-selectivity or generally low reflectivity in the 

wavelength range 400-2400 nm the grey ceramic tile (7), white paint (4), white card (13) 

and the grey card (12) were eliminated as possible reflectance standards for the purpose of 

calibrating the larger target area of the CAPP.  

The remaining materials (spectralon® (1), barium sulphates (2, 3), white ceramic 

tiles Asia Tile (5), Niro Whites (6), Tau Ceramica (8), Milenio Blanco (9), San Lorenzo 

(10) and Nordico Snow (11)) were used as white references standards to record the spectra 

of a fresh green leaf. For the FieldSpec® Pro FR with the plant probe, generally the greatest 

variation in reflectance spectra produced using different reference materials was observed 

at the infrared wavelengths (Figure 3.3). The leaf reflectance factors acquired against the 

barium sulphates (2 and 3) were, in magnitude, the most similar to the spectralon® (1) result 

(Figure 3.3a), while the spectra referenced to the white ceramic tiles Asia Tile (5), Niro 

Whites (6) (Figure 3.3b), Tau Ceramica (8), Milenio Blanco (9), San Lorenzo (10) and 

Nordico Snow (11) presented higher values. The difference in magnitude in the leaf spectra 

was predictable, because the spectralon® panel and barium sulphates are better reflectors 

than the ceramic tiles (Figure 3.2). This means that in the calculation of the leaf reflectance 

factor using those three materials as the standard, the denominator will have a greater value 

and the calculated reflectance factor will be less than when using the ceramic tiles.  
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Figure 3.3. Spectra of a fresh green leaf obtained using an ASD FieldSpec® Pro FR with an 
ASD plant probe using as reflectance standard: a) spectralon® (1), barium sulphates (2, 3), 
white ceramic tiles Tau Ceramica (8), Milenio Blanco (9), San Lorenzo (10), Nordico Snow 
(11); b) white ceramic tiles Asia Tile (5) and Niro Whites (6). 
 

The white ceramic Asia Tile (5) had a marked „step‟ at 1000 and 1800 nm and the 

Niro Whites (6) at 1000 nm (Figure 3.3b), and therefore they were discarded as reflectance 

standards. The spectralon® (1), barium sulphates (2 and 3) and white ceramics tiles Tau 

Ceramica (8), Milenio Blanco (9), San Lorenzo (10) and Nordico Snow (11) showed no 

step feature (Figure 3.3a).  

The features observed at 1000 and 1800 nm on the spectra of Figure 3.3b are known 

as steps at splice points. These wavelengths correspond to the splice points between the 

three detector spectrometers in the FieldSpec® Pro FR instrument (VNIR, SWIR1 and 

SWIR2). Because the signal is low at splice points, the differences are most noticeable at 

those places (ASD 2000). If the spectroradiometer is not warmed up sufficiently (at least 90 
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minutes) before being used, the step problem at 1000 and 1800 nm is very pronounced; this 

was not the problem here as the machine was properly warmed up. Factors causing the step 

problem are discussed later in the text. 

Despite the differences in magnitude, the shapes of the leaf spectra acquired using 

spectralon® (1), barium sulphates (2 and 3) and white ceramics tiles Tau Ceramica (8), 

Milenio Blanco (9), San Lorenzo (10) and Nordico Snow (11) (Figure 3.3a) were all 

visually very similar. Also their white reference scans were very alike (Figure 3.4) with 

noise occurring mainly near 2400 nm (low signal-to-noise ratio (SNR)) but even the 

spectralon® spectrum had similar noise. 

 

 
Figure 3.4. Offset by 10% of the white reference scans of spectralon® (1), barium sulphates 
(2, 3), white ceramic tiles Tau Ceramica (8), Milenio Blanco (9), San Lorenzo (10) and 
Nordico Snow (11) taken using an ASD FieldSpec® Pro FR with an ASD plant probe. 
 

The final comparison between spectralon® and the potentially suitable selected 

materials was done using the FieldSpec® Pro FR with the CAPP. The spectralon® panel (1) 

available (9cm diameter) could not cover the area viewed by the CAPP and was not used in 

this experiment. The barium sulphates for X-radiology (3) was also not used in this stage, 

because both barium sulphates analysed presented similar results, it was decided to make 

only one big plate using the May & Baker barium sulphate (2). 

Some differences between the spectra obtained using the plant probe and the CAPP 

were expected. Not only because the setup (illumination and viewing geometry) of both 

devices was slightly different but also because while the area viewed by the plant probe 

was filled by a single leaf, the CAPP was developed to look at (pasture) canopies. 

 The reflectance factors of a grass canopy obtained by the FieldSpec® Pro FR with 

the CAPP using as reflectance standards the (2) May & Baker barium sulphate, white 
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ceramic tiles (8) Tau Ceramica, (9) Milenio Blanco, (10) San Lorenzo and (11) Nordico 

Snow are shown in Figure 3.5. The steps at splice points, that were observed for white 

ceramics Asia Tile (5) and Niro Whites (6) when acquiring the vegetation spectra using the 

plant probe (Figure 3.3b), were also a problem at 1000 and 1800 nm for the Tau Ceramica 

(8) (Figure 3.5) and at 1000 nm for the Nordico Snow (11) (Figure 3.5b) when using the 

CAPP. The May & Baker barium sulphate (2), Milenio Blanco (9) and white ceramic San 

Lorenzo (10) did not have this problem. 

 

 
Figure 3.5. Spectra of a grass canopy acquired by an ASD FieldSpec® Pro FR with the 
CAPP, using the May & Baker barium sulphate (2), white ceramic tiles Tau Ceramica (8), 
Milenio Blanco (9), San Lorenzo (10) and Nordico Snow (11) as reflectance standards, 
between a) 400 nm to 2400 nm, and enlarged in the spectral range between: b) 800 nm and 
1200 nm; c) 1600 nm and 2000 nm. 
 

The steps are a common problem when viewing targets with porous surfaces (non-

uniform target geometry) such as grass and soils, and targets measured at closer distances 

can have the steps because each optic fiber in the bundle of the bare input sees a slightly 

different spot due to slight offsets of the fiber‟s FOV. Those effects can be reduced or even 
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eliminated by rotating the sample (D. Campbell, personal communication, 07 June 2006); 

this procedure was adopted for all measurements. But because the first target was a single 

uniform leaf (spectra represented on Figure 3.3) and moreover, not all spectra (Figure 3.3 

and 5) presented the steps, we believe the problem can not be exclusively related to the 

target or the fiber optic. 

The tiles tested differ in the type of finishing, and according to Springsteen (1999) 

the smooth finish that is given to some tiles to improve their durability has a significant 

specular component, which can affect the measurements. The Asia Tile (5) was very glossy 

(e.g. very smooth and shiny) the Niro Whites (6) and Tau Ceramica (8) were glossy, the 

Nordico Snow (11) was slightly glossy, and the Milenio Blanco (9) and San Lorenzo (10) 

were dull. It was observed that the steps at splice points occurred when using the glossy 

tiles (with high specular component). And this observation was reaffirmed by sanding part 

of the Asia Tile (5) which reduced the size of the steps at the splice points on the 

reflectance spectra of a leaf. So the Asia Tile (5), Niro Whites (6), Tau Ceramica (8) and 

the Nordico Snow (11) were considered unsuitable as reflectance standards to be used with 

the CAPP. 

Although the barium sulphate (2 and 3) presented reasonable results, it proved 

unsuitable for field conditions. It was easily rubbed off the dish on to which it was pressed, 

and it was impossible to clean contaminating dust from its surface. To make the barium 

sulphate more resistant Knighton and Bugbee (2004) mixed it with white latex paint, but 

the mixture caused a decrease in the reflectance. Observing the reflectance factor of the 

Dulux weathershield white paint (4) tested in this study (Figure 3.2b), it is predictable that 

if mixed with barium sulphate, the resultant mixture will also have a decrease in the 

calculated reflectance spectra, and even worse, this decrease will not be equal in all 

wavelengths. 

In summary, the tiles Milenio Blanco (9) and San Lorenzo (10) were the materials 

that best fitted the profile of a large, durable and low-cost reflectance standard for use with 

the CAPP. But because the San Lorenzo Blanco Niveo (10) has a higher reflectance than 

the Milenio Blanco (9), around 80% and 75% respectively (Figure 3.2a), it was the one 

selected to be used as the reflectance standard for the CAPP. Since the material chosen as a 

reflectance standard is not a perfectly lambertian reflector (e.g. perfectly reflective and 
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uniformly radiative in all directions), the azimuthal angular effect of the San Lorenzo (10) 

tile was analysed. Using the FieldSpec® Pro FR attached to the CAPP a white reference 

scan of the San Lorenzo tile was recorded, then the probe was rotated clockwise at 45°, 90°, 

135°, 180°, 225°, 270°, 315° and 360° and scans were recorded at each position. The 

procedure was repeated three times. The mean difference, comparing the first scan 

(obtained at initial position) to the scans at other positions varied from zero to 1%, a 

satisfactory result. Subsequently, it has been used intensively in studies of proximally 

sensed pasture sward reflectance in different regions of New Zealand. 

 

3.3.2. Selection of reflectance standard tile for further study 

 

The San Lorenzo Blanco Niveo (10) tile fulfilled the conditions required of a 

reflectance standard for the CAPP. Before recommending use of the tile we considered it 

was important to assess the variability in reflectance that exists in a small sample of these 

tiles. The reflectances from six San Lorenzo tiles were compared and found to have very 

small variation (a mean variation of 0.04 for the range 400-2400 nm). Among the six tiles, 

one was from a different production batch. When this tile was removed, the 5 remaining 

tiles had even smaller variation in reflectance (a mean variation of 0.02, for the specified 

spectral range). For the purposes of our further study any of these five San Lorenzo tiles 

could be used as a backup standard reflectance tiles. We recommend that other researchers 

requiring large reflectance standards for field use also establish a back up set of reflectance 

standard tiles. 

Also, since the San Lorenzo ceramic tile has a reflectance of 80%, a lower SNR is 

expected if compared to a near 100% reflecting reflectance standard (e.g. spectralon®) 

under the same illumination conditions. Thus, depending on the application and SNR 

required, the illumination source should be powered to compensate for this characteristic. 

For our application (acquiring reflectance factor of pasture swards in the field) an ASD 50 

Watt tungsten-quartz-halogen lamp (light mounted on the top of the CAPP) is used; the 

acquired pasture spectra present some noise at the far end of the mid-infrared because of 

low SNR, but that can be reduced using a smoothing filter in data pre-processing. 
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It is important to mention that when collecting reflectance factor data, the viewing 

geometries must be taken into account, since even the best reflectance standard will never 

be a perfect reflecting diffuser. When varying the angle of the fiber optic input on the 

CAPP the steps at splice points varied in magnitude. The results showed above were 

obtained with the viewing geometry that minimized the steps (light source at zenith and 

fiber optic at 18 degrees from zenith) taking into account the limitation imposed by the 

CAPP structure and FOV of the instrument. Consequently the results presented in this 

study may vary when using other probes with different viewing geometries. 

It is also relevant to point out that the decision to run the first tests using the ASD 

plant probe, although not ideal, was the only option available to compare the spectralon® 

with the other materials tested as reflectance standard. Since the geometry and construction 

materials of the plant probe were designed to minimize measurement errors, it was assumed 

if a material did not perform well with the plant probe (looking at single leaf) it would be 

also not suitable for the CAPP (looking at complex canopies). 

 

3.4. Conclusions 

 

A matt white ceramic tile (San Lorenzo Blanco Niveo) has been proven suitable as a 

large, durable and low cost reflectance standard to obtain field pasture reflectance spectra 

over the range of 400-2400 nm, using an ASD FieldSpec® Pro FR spectroradiometer 

attached to the CAPP. Although the presented study was focused to find a reflectance 

standard for a specific usage (with the CAPP), the white ceramic tile San Lorenzo Blanco 

Niveo seems to be a reasonable option of reflectance standard for use in other applications 

in both laboratory and field conditions. It is necessary to stress that spectral curves obtained 

with San Lorenzo tile should not be compared to those obtained with any other reference 

panels, since each reference has different properties. 
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CHAPTER 4: 

Influence of surface moisture on field hyperspectral data from pasture 

canopies 

 

Abstract 

 

An ASD FieldSpec® Pro FR coupled to the CAPP (canopy pasture probe) was used to 

obtain reflectance factor spectra of pastures under three treatments dry, damp and wet. The 

research objective was to examine the influence of surface moisture on hyperspectral 

measurements obtained in the field under artificial illumination, at wavelengths ranging 

from 400 to 2468 nm. Overall, the reflectance factor sensitivity to canopy wetness 

increased with longer wavelengths, the maximum peaks were at 1450, 1920 and 2420 nm. 

The analyses used reflectance factor, first derivative and continuum removed spectra. 

Statistically significant differences were observed for mean spectral data between the three 

treatments for several parts of the infrared (IR) region; however no significant differences 

were obtained at visible (Vis) wavelengths. The impact of surface moisture on pasture 

quality prediction was also investigated, the regression results showed the pasture wetness 

influenced the crude protein prediction, especially at infrared wavelengths; in general lower 

correlations and higher RMSECVs were obtained for the wet samples comparing to dry and 

damp samples. 

 

Keywords: wetness; pasture canopies; hyperspectral data; quality prediction 

 

4.1. Introduction 

 

The economy of New Zealand is extremely dependent on the grazed pasture 

systems. Fifty four million tonnes of pasture dry matter is consumed each year. Twenty two 

million tonnes are consumed by sheep, 19 million tonnes by dairy cattle, 11 million tonnes 

by beef cattle and 2 million tonnes by deer (MFE 2007). For efficient feeding of livestock, 

both pasture quantity and quality need to be regularly monitored. Currently the assessment 

of pasture bulk quality is conducted by laboratory near infrared (NIR) spectral analysis of 
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dried samples of the sward (e.g. Corson et al. 1999) at more affordable prices and faster 

than the traditional wet chemistry method, however the samples still need to be clipped and 

transported to the laboratory. Remote and proximal sensing of Vis-NIR diffuse reflectance 

potentially offers a rapid on the go in situ measurement of pasture quality (e.g. Mutanga et 

al. 2004; Sanches et al. 2006 and Thulin et al. 2006). 

Accurate spectral data using natural illumination can only be acquired under high 

sun elevations, cloud-free sky, and minimal atmospheric turbidity (Williams and Woody Jr 

1987). Windy, changeable weather (Garnier 1958) and high cloud cover (Wardle 1986) in 

New Zealand and other mid-latitude countries limit the opportunities to use remote diffuse 

reflectance sensing technologies for reporting on pasture quality.  

To address this issue on the field scale, the Canopy Pasture Probe (CAPP) was 

developed (Chapter 2) to acquire proximal sensed diffuse reflectance factor spectra from 

pastures. The CAPP minimizes the effects of unwanted contributions to the acquired 

spectra by providing controlled illumination, a condition often obtained only in the 

laboratory. The CAPP allows the spectral measurements to be done in situ, at canopy scale. 

 The CAPP has been used to acquire spectral data to evaluate calibrations for the 

prediction of pasture quantity and quality parameters (Sanches et al. 2006, Sanches et al. 

2008, Betteridge et al. 2008). It has been proven very efficient in controlling the 

illumination, and also as a wind barrier keeping the target still during the measurements. 

Unfortunately not all atmospheric influences can be controlled under field conditions, and 

although the sunlight and wind are not a concern when using the CAPP, the target surface 

moisture can be. Thus it is essential to have knowledge about the effect of wetness upon 

hyperspectral data collected from pasture. 

 Besides the rainfall, in cool temperate climates pasture is frequently found to be wet 

due to dewfall, distillation and guttation (Hughes and Brimblecombe 1994). Both dewfall 

(the flux of water vapour from air to surface) and distillation (the flux of water vapour from 

soil to canopy) are subdivisions of dew (Monteith 1957); while guttation is the fluid exuded 

from plant tissue through leaf pores (Richards 2004).  

There are two kinds of water effect on vegetation reflectance spectra, the ones that 

can be explained solely by water radiative properties - primary effects, and others that can 

not be exclusively explained by these properties - secondary effects. Overall the primary 
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effects are more prominent than the secondary ones, and within the 400-2500 nm spectrum 

the most significant influence of water content is the direct absorption of radiation by 

water; it causes the reflectance to decrease as the leaf water content increases, particularly 

in the 1300-2500 nm range where the water absorption is strong (Carter 1991).  

According to Harris et al. (2005), the increase in surface moisture reduces 

reflectance in the Vis, NIR and SWIR regions of the electromagnetic spectrum and also 

significantly changes the overall shape of the spectra. Besides, the dew wetness can mask 

some important spectral features; Pinter (1986) observed that the actual reflectance 

differences existing between cultivars, growth stages and other factors affecting 

productivity of wheat were masked by dew wetness. 

In this context, the objective of this paper was to examine the effect of surface 

moisture of pasture canopies on spectral data obtained in field conditions under artificial 

illumination. The spectral quantity analysed was the reflectance factor, plus two spectral 

transformations, first derivative and continuum removal. The impact of wetness on pasture 

quality prediction was also analysed. 

 

4.2. Material and methods 

 

4.2.1. The study area 

 

The study area is located in Hamilton, New Zealand (Latitude: 37° 46‟ S and 

longitude: 175° 18‟ E). In this region the average rainfall per month varies from around 70 

mm (summer) to 130 mm (winter) and mean monthly temperature ranges from 9°C to 19°C 

(NIWA 2007). The soil is classified as an Allophanic soil (Hewitt 1993).  

For this study four paddocks of varying pasture quality were selected. In each 

paddock five 50 x 40 cm quadrats were selected to be measured. To analyse the effect of 

wetness on the spectra three treatments were applied: dry – no water was added to the plots; 

damp – the 0.2 m2 quadrats were sprayed (misted) with 33 ml of water; and wet – the 

quadrats were misted with an additional 100 ml of water. Consequently, the 33 ml and 100 

ml of water applied on the plots correspond to 165 ml m-2 (0.165 mm) and 500 ml m-2 (0.50 

mm) respectively. 
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4.2.2. Field canopy reflectance factor measurements and chemical analysis 

 

The spectral data were collected in the field using an ASD FieldSpec® Pro FR 

attached to the CAPP (Chapter 2) (Figure 4.1). A white ceramic tile was used as a 

reflectance standard (Sanches et al. 2009, Chapter 3). The measurements were taken in mid 

January 2007. 

 
Figure 4.1. Collection of canopy pasture spectral data using the CAPP attached to an ASD 
FieldSpec® Pro FR. 
 

The reflectance factor was recorded from each one of the 20 quadrats (five quadrats 

in each of the four paddocks) under each of the three wetness conditions (dry, damp and 

wet treatments). Ten spectra were acquired per quadrat and averaged into one spectrum in 

data pre-processing. This procedure made it possible to represent the grass in the entire plot. 

Initiation of a measurement involved scanning the white reference, then recording the 10 

reflectance factor spectra of the quadrat under dry conditions (dry spectra) before misting 

the plot with 33 ml of water prior to taking another 10 reflectance factor spectra (damp 

spectra), then finally misting the plot with an additional 100 ml of water and recording the 
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final 10 reflectance factor spectra (wet spectra). The interval between misting and recording 

the reflectance factor was around 3 minutes. Every plot was also photographed. With field 

reflectance factor measurements completed the quadrat was clipped and dried pasture was 

analysed for crude protein content by near-infrared reflectance spectroscopy - NIRS 

(Corson et al. 1999) at the FeedTECH laboratory based at AgResearch in Palmerston North, 

New Zealand. The dry matter (kg/ha) and botanical composition (dead material, green grass 

leaf, clover, weeds and seed heads) were also determined for each plot. 

 

4.2.3 Data pre-processing and data analysis 

 

The pre-processing of the spectral data consisted of averaging and smoothing. The 

10 spectra measured for each sample were averaged to form a single spectrum, this 

procedure was adopted to minimize the noise (ASD 2000) and also to better represent the 

total area of the plots (0.2 m2). Next the spectra were smoothed with a Savitzky-Golay filter 

(Savitzky and Golay 1964), using 81 smoothing points and polynomial order 4. 

Spectral transformations have been used intensively in an effort to eliminate or 

reduce effects not related to the target‟s properties of interest and enhance spectral features. 

After pre-processing, two transformations were applied to the spectral data: derivative and 

continuum removal. The derivative of a spectrum is the rate of reflectance change with 

respect to wavelength (Demetriades-Shah et al. 1990). This technique is very promising for 

use with hyperspectral remote sensing data, and first and second order derivatives have 

been the most common (Tsai and Philpot 1998). In this study, the first derivative was 

employed. Continuum removal was applied to the major absorption features, localized 

between 425-518 nm, 550-750 nm, 910-1081 nm, 1116-1284 nm, 1285-1666 nm and 1796-

2214 nm. This transformation consists of an estimate of the other absorption features 

present in the spectrum, not including the one of interest (Clark and Roush 1984). The 

continuum is a convex hull fitted over the top of a spectrum using straight-line segments 

that connect local spectra maxima; it is removed by dividing the reflectance value by the 

convex hull (Schmidt and Skidmore 2001). It normalizes reflectance spectra in order to 

allow comparison of individual absorption features from a common baseline (Kokaly 2001).  
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To ascertain if there was a significant difference in mean spectra between the three 

treatments a t-test was applied, for each wavelength, on the reflectance factor, first 

derivative and continuum removed data. The null hypothesis was Ho: μ1i = μ2i versus the 

alternate hypothesis Ha: μ1i ≠ μ2i where: μ1i and μ2i are the mean spectral values (of 

reflectance factor, first derivative and continuum removed values) at wavelength i, between 

each pair of dry, damp and wet treatments. 

 To evaluate the pasture wetness impact on the overall quality of crude protein 

prediction, partial least squares regressions (PLSR) (Geladi and Kowalski 1986) were 

carried out between the measured crude protein content of the plots and the reflectance 

factor, first derivative and continuum removed spectra, at VIS-IR, Vis and IR wavelengths, 

for each treatment. Full cross-validation was used as the validation method. The goal here 

was not to evaluate the prediction by itself, but to compare the results (correlation and root 

mean square error) obtained for each treatment.                                                                                                                                                                         

 

4.3. Results 

 

4.3.1. Pasture samples 

 

The pasture samples collected from the 20 plots (Figure 4.2) analysed in this 

experiment varied between 9-22% of crude protein; 2122-4099 kg/ha of standing 

harvestable dry matter (DM) comprised of 7-50% of dead matter; 27-72% of green grass 

leaf; 0-32% of clover; 0-25% of weeds; and 0-23% of seed heads. 
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Figure 4.2. Photographs of pasture plots. 
 

4.3.2. Reflectance factor data 

 

In this paper the visible (Vis) refers to the wavelengths between 400-700 nm, the 

term near-infrared (NIR) refers to the range 700-1300 nm, and mid-infrared (MIR) to 1300-

2500 nm; these divisions are common in the remote sensing literature, but sometimes NIR 

is applied for the whole range from 700 to 2500 nm.  

The differences in reflectance factor spectra among treatments varied along with the 

plots. In general, at Vis wavelengths hardly any changes were observed visually between 

treatments. In the NIR, as more water was misted over the pasture canopies two responses 

were detected: a decrease in reflectance factor values at all NIR (Figure 4.3b) and; an 

increase in reflectance factor for shorter NIR (< 970 nm) after which the reflectance factor 

decreased, followed by a reflectance factor augment towards 1100 nm and decreasing 

beyond this wavelength (Figure 4.3a). In the MIR the reflectance factor for all samples 

decreased with increase in surface moisture. 
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Figure 4.3. Response of pasture canopy reflectance factor to the treatments dry (dark grey 
line), damp (light grey line) and wet (black line) for pasture plot 3 (a) and plot 7 (b). 
Overall hardly any change was observed at Vis; at NIR two reactions were noticed: (a) both 
increase and decrease in reflectance factor values, and (b) decrease in reflectance factor 
values at all NIR; at all MIR wavelengths the reflectance factor decreased. 
 

For a better representation of the effect of surface wetness on reflectance factor 

spectra, the reflectance factor difference was calculated by subtracting the dry reflectance 

factor of a pasture sample from the damp reflectance factor of the same pasture sample; and 

by subtracting the dry reflectance factor of a pasture sample from the wet reflectance factor 

of the same sample. For damp (Figure 4.4a) and wet (Figure 4.4b) treatments the 

reflectance factor differences ranged, in absolute values, between 0-6.7% and 0-11.2%, 

respectively. The largest reflectance factor differences were observed throughout the 

infrared (IR), and only small changes were observed in the Vis. 

Two distinct behaviours were detected in the reflectance factor difference data, 

dividing the pasture samples into two groups. To improve visualization, the reflectance 

factor differences of all the samples from each group were averaged, and these are 

illustrated in Figures 4.4c and 4.4d. The first group showed a slight dip in reflectance factor 
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difference near 530-560 nm and another dip around 690-760 nm, conversely the second 

group showed a slight peak and an increase for the same wavelengths ranges. Between 

1920-2210 nm both groups showed an increase in reflectance factor difference, but for the 

first group the increase was not linear; the two absorption bands at around 1940 nm and 

2060 nm (that looks like a little peak between the wavelengths 1970-2070 nm) observed on 

the dry reflectance factor spectrum (zoom in on Figure 4.3a) was not present at damp and 

wet spectra. In each group the same trend in reflectance factor difference was presented by 

both damp and wet data, and although different in magnitude, the location of major peaks 

and dips occurred at similar wavelengths. 

 

 
Figure 4.4. Percentage of reflectance factor difference for all samples (a) under damp 
treatment and (b) under wet treatment; and samples divided into two groups (c) average of 
1st group under damp and wet treatment; (d) average of 2nd group under damp and wet 
treatment. The reflectance factor difference was calculated by subtracting the dry 
reflectance factor of a pasture sample from the damp reflectance factor of the same pasture 
and from the wet reflectance factor of the same sample. 
 

To enhance the differences between treatments the reflectance factor difference was 

found to be very effective. However to identify at which wavelengths the reflectance factor 

was more affected by the pasture canopy wetness, the reflectance factor sensitivity (adapted 
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from Carter 1991) was used. It was calculated by dividing the reflectance factor difference 

(for both damp and wet samples) by the dry reflectance factor. All samples presented the 

same behaviour, for both damp and wet treatments (Figures 4.5a and 4.5b). The variation in 

sensitivity magnitude among samples occurred mostly at maximum peaks, observed at 

1450 nm, 1920 nm and 2420 nm. In general, the reflectance factor sensitivity to surface 

moisture showed a tendency to increase with the increase in wavelength; this is visualized 

better in the averaged data (Figure 4.5c).  

 

 
Figure 4.5. Reflectance factor sensitivity to surface moisture for all (a) damp data, (b) dew 
data, and (c) averaged data in a zoom in scale. The reflectance factor sensitivity was 
calculated by dividing the reflectance factor difference by the dry reflectance factor of each 
sample, for damp (grey line) and wet (black line) data. 
 

4.3.3. T-test results 

 

The three treatments were clearly differentiated visually in the pasture reflectance 

factor spectra only at MIR (Figure 4.6a). According to the t-test, between 400-2468 nm, the 

differences between treatments were statistically significant from 1296 nm for dry versus 
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damp; from 1134 nm for damp versus wet; and between 959-1012 nm and from 1121 nm 

for dry versus wet until the end of the spectra analysed (Figure 4.6b). 

 

 
Figure 4.6. (a) Reflectance factor spectra for the 20 plots analysed. And (b) results of t-test 
for the reflectance factor data. Three classes were considered: dry versus damp, damp 
versus wet, and dry versus wet. The dots plotted show the probability value when testing if 
the reflectance factors between classes are significantly different. Horizontal line in black 
and grey show 95% (p < 0.05) and 90% (p < 0.10) confidence limits correspondingly. 
 

Because it was very hard to visualize the effect of treatments in the graph of all 

derivative spectra, the averaged values of the 20 samples per treatment were plotted instead 

(Figure 4.7a). Statistically significant differences, although not continuous, can be seen in 

several parts of the IR, beginning from 925 nm for dry versus damp, from 907 nm for damp 

versus wet, and from 821 nm for dry versus wet class (Figure 4.7b).  
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Figure 4.7. (a) First derivative spectra averaged per treatment. And (b) results of t-test for 
the first derivative data of 20 plots. Three classes were considered: dry versus damp, damp 
versus wet, and dry versus wet. The dots plotted show the probability value when testing if 
the reflectance factors between classes are significantly different. Horizontal line in black 
and grey show 95% (p < 0.05) and 90% (p < 0.10) confidence limits correspondingly. 
 

Based on the continuum removal technique, the treatments were hard to 

differentiate visually (Figure 4.8a) in the two Vis absorption bands, 425-518 nm and 550-

750 nm, but were clearly distinguishable from each other in the four IR absorption bands 

(910-1081 nm, 1116-1284 nm, 1285-1666 nm, 1796-2214 nm). The t-test results agreed 

with the visual assessment; the differences between treatments were not statistically 

significant in the Vis absorption bands, but were statistically significant in the IR 

absorption bands (Figure 4.8b). The exact wavelength intervals where the differences 

between treatments were statistically significant are shown in Table 4.1. 

 

Table 4.1. Wavelength intervals where the differences between wetness treatments were 
statistically significant (t-test) in the continuum removed spectra. 

Absorption band dry versus damp dry versus wet damp versus wet 

910-1081 nm 920-1058 nm 911-1063 nm and 1072-1080 nm 912-1059 nm and 1073-1080 nm 

1116-1284 nm 1117-1271 nm 1117-1283 nm 1117-1283 nm 

1285-1666 nm 1286-1665 nm 1286-1665 nm 1286-1422 nm and 1513-1665 nm 

1796-2214 nm 1836-2156 nm 1832-2144 nm 1836-1865 nm 
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Considering that the first and last wavelengths on each continuum removed band 

(endpoints of the continua) always have value 1; the dry versus wet and damp versus wet 

classes were statistically different for the whole absorption band 1116-1284 nm, and the dry 

versus damp and dry versus wet for the entire band 1285-1666 nm. 

 

 
Figure 4.8. (a) Continuum removed reflectance factor spectra for the 20 plots analysed. And 
(b) results of t-test for the continuum removed data. Three classes were considered: dry 
versus damp, damp versus wet, and dry versus wet. The dots plotted show the probability 
value when testing if the reflectance factors between classes are significantly different. 
Horizontal line in black and grey show 95% (p < 0.05) and 90% (p < 0.10) confidence 
limits correspondingly. 
 

4.3.4. Pasture crude protein 

 

The results for PLSR between the measured crude protein content of the plots and 

the reflectance factor, first derivative and continuum removed spectra at Vis-IR, Vis and IR 

wavelengths, for dry, damp and wet samples are shown in Table 4.2. Because cross-

validation was used, the root mean square error was called RMSE of cross-validation 

(RMSECV). The correlation and RMSECV values per se should be overlooked in this case 

because the method of prediction is not being evaluated; mainly because of an insufficient 

dataset size and (crude protein) range. The intention was only to compare the regression 

results of the dry, damp and wet samples, i.e. to measure the impact of pasture wetness in 

the crude protein prediction. Overall when comparing treatments, the highest correlations 
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and lowest RMSECVs were obtained for the dry samples and lowest correlations and 

highest RMSECVs for wet samples. For regressions combining Vis-IR or using only Vis 

wavelengths the results for dry and damp treatments were very similar for first derivative 

and continuum removed data. 

 

Table 4.2. Correlation and root mean square errors of cross-validation (RMSECV) of PLSR 
carried out between measured crude protein and reflectance factor, first derivative and 
continuum removed spectra, at Vis-IR, Vis and IR wavelength ranges, for dry, damp and 
wet samples. For reflectance factor and first derivative data the Vis correspond to 
wavelengths between 400-700 nm and IR to 700-2468 nm; for continuum removed spectra 
the Vis correspond to absorption bands between 425-518 nm and 550-750 nm, and IR to 
910-1081 nm, 1116-1284 nm, 1285-1666 nm and 1796-2214 nm. 

  Spectral range dry treatment damp treatment wet treatment 

  analysed Correlation RMSECV Correlation RMSECV Correlation RMSECV 

Reflectance factor Vis-IR 0.76 0.34 0.69 0.39 0.68 0.40 

 Vis 0.85 0.27 0.80 0.32 0.68 0.40 

  IR 0.63 0.41 0.59 0.43 0.58 0.43 

First derivative Vis-IR 0.79 0.31 0.78 0.32 0.76 0.34 

 Vis 0.85 0.27 0.82 0.30 0.76 0.34 

  IR 0.74 0.37 0.69 0.39 0.65 0.40 

Continuum removed Vis-IR 0.75 0.34 0.74 0.35 0.60 0.45 

 Vis 0.78 0.33 0.77 0.33 0.72 0.37 

  IR 0.67 0.38 0.52 0.45 -0.08 0.66 

 

4.4. Discussion 

 

Even though the dataset collected for this experiment was not large, there was 

reasonable range in pasture characteristics, and sufficient diversity in canopy structure 

(Figure 4.2) to result in considerable variance in the reflectance factor spectra. Although the 

effect differed, all plots had their reflectance factor spectra affected in some way by the 

water misted on the pasture canopies. 

In contrast to our results, Pinter (1986) reported that moderate levels of natural dew 

resulted in a marked increases in the reflectance of wheat canopies at Vis wavelengths, 

decreases between 1150 and 2350 nm (MIR), and no change at NIR wavelengths. Madeira 

et al. (2001) reported similar results for dew on planophile bentgrass canopies, with an 
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increase in Vis reflectance and a decrease on MIR, although a slight decrease was observed 

in the NIR. For erectophile bluegrass, however, the most noticeable change caused by dew 

was a decrease in reflectance in the MIR, followed by a decrease in the NIR, while the 

reflectance in Vis was almost unaffected. Our results of misted water on pasture canopies 

are in accordance with those reported for erectophile bluegrass, although for some plots an 

increase in reflectance factor, instead of a decrease, was observed in the NIR. 

 To better comprehend the effect of wetness on the pasture reflectance factor spectra, 

it is necessary to keep the mechanism of vegetation reflectance in mind. The energy 

incident on a leaf/canopy can be reflected, absorbed or transmitted, and because of the 

strong absorption by leaf pigments in the Vis, and by water in the IR beyond 1300, the 

reflectance in these wavelengths is, respectively, very low and relatively low; while in the 

IR from 700 to 1300 nm the reflectance is relatively high, due to internal leaf scattering and 

nearly zero absorption (Knipling 1970).  

In the spectral range 400-2500 nm, the most significant influence of water content 

on leaf reflectance is the direct absorption of radiation by water (primary effect), that 

causes the reflectance to decrease as the leaf water content increases, particularly in the 

1300-2500 nm range where the water absorption is strong. And although the primary 

effects are overall more prominent, transmissive properties of water can also influence the 

reflectance of leaves (secondary effects) (Carter 1991). That was observed for bean leaves 

infiltrated with water: due to the leaf air cavities having been filled with water, many of the 

refractive index differences within the leaf were eliminated causing a drastic reduction in 

IR reflectance (Knipling 1970). The influence of water on leaf reflectance spectra is not the 

same for all plants, for example with a reduction of relative water content from 97 to 77%, 

the reflectance at 540 nm was considerably increased on maize leaves, remained about the 

same on soybeans leaves, and slightly decreased on cotton leaves (Woolley 1971). These 

differences probably reflect changes in the intercellular air spaces of the leaf.  

In the present study, with the increase in surface wetness, two opposite behaviours 

were also observed near 540 nm (530-560 nm), a slight increase in reflectance factor for 

one group of the samples and a decrease for the other group. All pasture plots analysed had 

different combinations of grass, legume and weeds; the first group, on average, contained 

smaller percentages of grass, legume and dry matter, and a greater percentage of dead 
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matter, compared to the second group. In addition, with the increase in water, the first 

group of samples had an increase in reflectance factor in the red-infrared transition region 

(690-760 nm), while a decrease was observed for the second group. The increase in leaf 

reflectance in this region has been attributed to the reduction of chlorophyll absorption in 

response to a change in environmental conditions (Carter 1991).  

For vegetation, in the range 400-2500 nm, the central wavelengths of the water 

absorption bands are near 970, 1200, 1450 and 1940 nm (Curran 1989). In general the 

water content of green leaves quickly saturates and dominates the reflectance spectra at 

those wavelengths (Elvidge 1990). In our experiment the maximum reflectance factor 

sensitivity to pasture canopy surface moisture, for the range analysed (400-2468 nm), 

occurred at 1450 nm, 1920 nm and 2420 nm. Smaller, peaks at 970 and 1200 nm were also 

observed (Figure 4.5c). Maximum peaks of reflectance sensitivity to relative water content 

of leaves at 1450 and 1920 nm have been reported previously, along with reflectance at 

2500 nm (Carter 1991). 

The changes in vegetation reflectance mentioned above occur only after the 

radiation has entered into the leaves, but that is not the only way the reflectance spectrum is 

affected by water. Water drops can act as lenses sending back a larger fraction of the 

incident light in the original direction, making targets like moist grass strongly 

retroreflective (Fraser 1994). This great increase in vegetation canopies‟ reflectance due to 

the high specular reflection of droplets has been reported by other authors (Pinter 1986 and 

Madeira et al. 2001), however this phenomenon was not observed in our experiment. 

 

4.4.1. Significant differences between treatments 

 

In the present study, the t-test applied to the reflectance factor, first derivative and 

continuum removed mean data showed no significant effect of pasture wetness for Vis 

wavelengths. However, for the IR region the result was more complex and dependent on 

the spectral data analysed. In the NIR and beginning of MIR, for the two transformed 

datasets, the differences between wetness treatments were significant at various 

wavelengths (Figures 4.7b and 4.8b), while with the reflectance factor data significant 

differences (p < 0.10) were obtained only between 958-1012 nm for the dry versus wet 
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class (Figure 4.6b). At remaining MIR wavelengths, significant differences (p < 0.05) were 

obtained for a range of wavelengths for all three spectral datasets. 

 At the wavelengths corresponding to the water absorption bands, 165 ml m-2 of 

water misted on the plots was enough to significantly influence the spectral data at the 

water bands around 1450 and 1920 nm (maximum sensitivity); but the bands near 970 and 

1200 nm were only affected after 500 ml m-2 water was applied. Continuum removed data 

allowed the difference between dry and damp treatments to be detected statistically at all 

four water absorption bands mentioned (Figure 4.8b). 

 

4.4.2. Pasture crude protein prediction 

 

The pasture quality needs to be monitored if feed supply to grazing animals is to be 

optimized. Traditionally, field pasture samples are clipped and sent to a laboratory to be 

analysed using wet chemistry techniques, which can be expensive. More recently, 

laboratory near infrared reflectance spectroscopy (NIRS) has been used in New Zealand to 

estimate forage quality at more affordable prices (Corson et al. 1999). The next step, 

already being investigated, is to predict quality parameters using hyperspectral data in situ 

(Mutanga et al. 2004, Christensen et al. 2004, Sanches et al. 2006, Thulin et al. 2006). 

However, that will only become reality if accurate estimations can be obtained, and these 

depend upon the collection of high quality field spectral data for calibration and prediction 

steps. 

The measurement of crude protein provides an important indication of pasture 

quality. As demonstrated in this paper, the correlation between reflectance factor data and 

pasture quality was compromised by the surface wetness of pasture canopies, reducing the 

performance of crude protein prediction. When the reflectance factor spectra were 

transformed by applying first derivative and continuum removal the regression results were 

less affected by the surface moisture, with exception of the prediction analyses for wet data 

using the continuum removed spectra in the Vis-IR and IR range. 

Twelve absorption features have been related to foliar protein content in the range 

400-2400 nm, with three of them found at 1940, 1980 and 2060 nm (Curran 1989). Among 

the pastures samples analysed, the crude protein ranged between 9-22%, and it was 
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observed on the dry reflectance factor spectra that, between 1920-2210 nm, all the samples 

with crude protein values equal to or greater than 14% showed a single absorption feature 

(Figure 4.3b), while all the samples with crude protein lower then 14% had two smaller 

absorption features (Figure 4.3a). These differences were better highlighted in the dry 

continuum removed reflectance factor between 1796-2214 nm, where the samples with 

lower crude protein not only presented a slight bump around 2000 nm, they also had 

smaller band depths. However, for damp and wet spectra this differentiation was not 

possible, because the water had masked the absorption features. 

 

4.5. Conclusion 

 

The development of devices like the CAPP is very useful when working with 

remote sensing techniques in field conditions, especially in places of changeable 

illumination conditions like New Zealand. However there are other challenges for the use 

of spectroscopy to predict pasture quality parameters in situ, and as demonstrated in this 

research the surface wetness of pasture canopy is definitely one variable that needs to be 

taken into account. The ideal would be to collect spectral data without any surface moisture 

in the pasture, but in the real world that might be unfeasible; or to have robust models that 

effectively remove the effect of water from the sensed spectra. Nevertheless, some 

straightforward approaches to deal with pasture surface moisture when predicting quality 

would be to avoid collecting spectral data at least when the pasture is very wet (e.g. after 

rain) and to use mathematically transformed spectra (such as derivatives and continuum 

removal).
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CHAPTER 5: 

Proximal sensing the botanical composition of New Zealand dairy and 

sheep pastures 

 

------------------------------------------------------------------------------------------------------------ 

Some results of this study have been orally presented in the 11th Australasian Symposium 

on Precision Agriculture, 14th September 2007, Massey University, Palmerston North, New 

Zealand; and a summary was published online: Sanches, I.D., Tuohy, M., Hedley, M., 

Mackay, A. (2008) Proximal sensing pasture composition. Southern Precision Agriculture 

Association: Precision Ag News, 17. Available online at 

(http://spaa.com.au/files/catalog/march_08(proximal_sensing_pasture_composition).pdf). 

------------------------------------------------------------------------------------------------------------ 

 

Abstract 

 

Information on botanical composition provides insights into the productivity, quality, weed 

prevalence and persistence of sown species in perennial grass-legume based pastures. In 

New Zealand pastures are established using a combination of perennial ryegrass (Lolium 

perenne) and white clover (Trifolium repens) species. Often the sown species do not persist 

allowing ingress of unwanted species (weeds). Pasture composition also changes with 

season, due to variation in temperature, day length and rainfall and with grazing 

management. All these factors impact on feed quantity and quality. Apart from visual 

observation, current options for assessing the botanical composition of pasture are labour-

intensive and time-consuming and hence have limited utility on-farm. In this paper 

(Chapter) the potential to predict the botanical composition (expressed as proportions of 

grass, legume and weed) of New Zealand dairy and sheep pastures from their proximally 

sensed spectral reflectance is tested. The PLSR models predicting either the legume, grass 

or weed content of hill pastures grazed by sheep were inaccurate (legume: R2 = 0.02-0.39, 

SD/RMSECV = 1.0-1.2, grass: R
2 = 0.02-0.44, SD/RMSECV = 0.9-1.3, and weed: R

2 = 

0.00-0.33, SD/RMSECV = 0.9-1.0), whereas more accurate predictions were obtained for 

the legume (R2 = 0.19-0.74, SD/RMSECV = 1.0-1.9) and grass (R2 = 0.02-0.85, 
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SD/RMSECV = 1.0-2.5) components in lowland dairy pasture. Predictions of the botanical 

composition of autumn samples from sheep and dairy pastures combined yielded 

reasonable accuracy when predicting grass (R2 = 0.81, SD/RMSECV = 2.3) and legume (R2 

= 0.80, SD/RMSECV = 2.2) proportions. The inaccurate predictions might be explained by 

the fact that the diversity found in the field and observed in the pasture spectral data were 

not taken into account in the pasture botanical separation. 

 

Keywords: botanical composition, pasture, field spectroscopy, grass-legume swards. 

 

5.1. Introduction 

 

Grassland ecosystems play the major role in the New Zealand economy, with dairy, 

beef and sheep grazing systems occupying 12 million ha (Hodgson et al. 2005). New 

Zealand produces 38 percent of the milk products traded internationally, with the dairy 

industry still dependent on grazed pasture as the main source of feed for the milking cow, 

despite greater use of supplementary feeds in the last 10 years (Holmes et al. 2002).  

Perennial pasture species are preferable to annual species in New Zealand because 

of the large costs associated with re-grassing and the tillage constraints imposed by the 

rolling and hill land topography. The number of species in a perennial pasture can vary 

between two and twenty, but in most situations two or three perennial species dominate. 

Adapted to most parts of the country, tolerant of frequent hard grazing and high treading 

damage, perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) are the 

most frequently sown species and a major component of most lowland swards. On hill and 

high country farms, where the soil fertility is lower, browntop (Agrostis capillaris) and 

fescue (Festuca spp.) are the most common grass species. The grass and legume species 

complement each other, the grass provides the bulk of herbage, while the legume fixes and 

supplies nitrogen (N) to the soil and has better nutritive value (Kemp et al. 1999b). An 

advantage of the legume-based pastoral farming system is that the N is provided by 

biological fixation, reducing the expenses associated with N fertilisers. A key goal of 

pasture management is to maintain adequate legume percentage in the pasture for sufficient 

N fixation (Kemp et al. 1999a). 
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Species composition is an indication of pasture quality (Tarr et al. 2005). In an ideal 

pasture the species balance needs to meet the seasonal herbage supply requirements of the 

grazing animals. Initially, the species sown determine the composition of a pasture, but in 

time the main determinants are environmental conditions and management practices (Kemp 

et al. 1999b). Pasture normally contains a mix of sown and unsown grass and legume 

species, and unwanted species. Successful grazing management strategies encourage the 

persistence of desirable and productive species (Matthews et al. 1999). Pasture botanical 

composition is therefore an important attribute to be able to define and regularly assess for 

both agronomic and animal production studies (Little and Frensham 1993). 

The traditional methods for estimating the botanical composition of a mixed pasture 

range from cutting a pasture sample and hand-separating the species through to a visual 

assessment. Other techniques have been developed including levy-point (Levy and Madden 

1933), dry-weight-rank (Jones and Hargreaves 1979) and rod-point (Little and Frensham 

1993). All these options with the exception of visual assessment or ranking for assessing 

botanical composition of pasture are used by researchers only, are labour-intensive and 

time-consuming. Visual assessment while quicker is subjective, and requires very good 

calibration otherwise lacks accuracy. A less labour-intensive, objective and accurate 

method would offer up some real advances for measurement of pasture composition for 

both researchers and practitioners. 

Diffuse reflectance spectroradiometry has proven useful for characterising the 

reflectance of natural surfaces in situ, supporting a variety of agricultural applications 

(Swain and Davis 1978, Milton et al. 2007). For vegetation studies, field spectroscopy has 

been applied to explore the plant spectral response to water content, water stress and 

phenological changes (Kumar et al. 2001), to discriminate species (Vrindts et al. 2002, 

Schmidt and Skidmore 2003, Yamano et al. 2003), to quantify biomass (Hansen and 

Schjoerring 2003) and to assess pasture quality (Mutanga et al. 2004, Thulin et al. 2006). 

For pastures the potential advantages are the speed and increased efficiency of analysis that 

will enable appropriate real-time decisions to be made for grazing management and pasture 

improvement (Roberts et al. 2004). The objective of the study was to evaluate the potential 

to quantify the botanical composition (grass, legume and weed proportions) of dairy and 

sheep pastures in New Zealand using field hyperspectral reflectance data. 
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5.2. Materials and methods 

 

5.2.1. Study area 

 

Five study sites were selected on dairy and sheep grazed pastures in the North 

Island of New Zealand (Figure 5.1). The Manawahe, Tokoroa and Atiamuri sites are all 

close to latitude 38° S and Colyton and Alfredton sites to 40° S.  

 

 
Figure 5.1. Sampling site locations: 1) Manawahe, 2) Tokoroa, 3) Atiamuri, 4) Colyton and 
5) Alfredton. 
 

Based upon temperature and rainfall, New Zealand pastures can be divided into six 

zones: northern, mid central, dry east coast, high-rainfall west coast, high country and 

cooler southern, but the boundaries of these zones are indistinct and each zone merges with 

the next (Stewart and Charlton 2006). All study sites are in the mid central zone, 

characterized by few extremes of temperature and occasionally drought in summer. 

Pastures are mostly composed of temperate grasses with very few subtropical or C4 grasses, 

with the hill pastures containing some less productive grasses (such as browntop and 

Yorkshire fog (Holcus lanatus)). The Manawahe site is located in an area very close to the 

northern zone, which has warmer temperatures and relatively mild drought stress. Alfredton 

is near the drier east coast zone, which has harsher summer droughts and rainfall infiltration 

is limited by slope. According to topography and elevation, New Zealand‟s grasslands can 
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be divided into three broad groups: high, hill and flat to rolling country (Valentine and 

Kemp 2007); Alfredton belongs to the hill country group, and all other four sites are on flat 

to rolling country. 

Manawahe, Atiamuri and Tokoroa are located in the Taupo - Rotorua Volcanic 

Region and the soils are classified as Tephric Recent, Pumice and Allophanic, respectively 

(Hewitt 1993). Pastures at these study sites ranged from well-established permanent pasture, 

to 1-year-old, 3-year-old and 5-year-old forest-to-dairy pasture conversions. The permanent 

sheep pastures at Alfredton were on steep hill soils, classified as Brown Soils (Hewitt 1993), 

and data were collected from 36 plots on pre-existing field trials, one testing the effect of 

the application of different amounts of lime and another studying nutrient runoff. The 

permanent dairy pastures at Colyton, were on a Pallic soil (Perch-gley argillic pallic, Hewitt 

1993) and data were collected from 40 plots on a pre-existing nitrogen and phosphorus 

fertiliser trial. 

 

5.2.2. Acquisition of pasture reflectance factor spectra and pasture samples 

 

At intervals between August 2006 and September 2007, reflectance factor spectra 

were acquired from pasture plots, followed by cutting of pasture samples for botanical 

analysis (Table 5.1). Four seasonally based visits were made to Colyton where 40, 2m x 5m 

experimental plots excluded from grazing were sampled. Alfredton was visited five times, 

and pasture was sampled from 36, 0.5m x 1m exclusion cages. Similar but smaller 0.36m x 

0.60m exclusion cages were sampled at Atiamuri (two field visits), Manawahe (one field 

visit) and Tokoroa (one field visit).  

 

Table 5.1. Number of pasture samples acquired per site and corresponding date of 
collection. 

Samples W Sp Sp Su A A A W Sp 

(total number of 

samples per site) 

Aug 

2006 

Oct 

2006 

Nov 

2006 

Feb 

2007 

Mar 

2007 

Apr 

2007 

May 

2007 

Jun 

2007 

Sep 

2007 

Alfredton (171) 28  36 36   35  36 

Atiamuri (28)   19       9       

Colyton (160)  40   40   40 40 

Manawahe (36)  36        

Tokoroa (9)  9        
W - winter; Sp - spring; Su - summer; A - autumn 
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Reflectance factor spectra from the pasture swards (Figure 2.1 on Chapter 2) were 

acquired in situ using an ASD FieldSpec® Pro FR spectroradiometer (ASD Inc., Boulder, 

CO, USA) under artificial illumination provided by the Canopy Pasture Probe (CAPP) top-

grip (Chapter 2). A large white ceramic tile was used as a reflectance standard (Sanches et 

al. 2009, Chapter 3). Ten spectra were acquired from each plot in order for the field of view 

of the FieldSpec® fibre optic sensor in the CAPP to cover the whole area of the pasture 

harvested from the plot, or exclusion cage. 

After the acquisition of reflectance data, each pasture plot was then clipped and the 

samples were kept refrigerated until the botanical analysis was processed. At the Colyton 

site, because of the large size of the plots, a representative pasture sample was collected; at 

the other sites the entire mass under the cage was clipped to grazeable height. In the 

laboratory, a sub-sample of each sample was separated into grass, legume and weed then 

each component was weighed and the corresponding (fresh) botanical percentage calculated. 

As the objective of this study was the quantification of botanical composition (e.g. grass, 

legume, and weed proportions), individual grass, legume and weed species in the pastures 

samples were not separated and identified, but a general observation was made on the 

dominant species present. 

 

5.2.3. Spectral data pre-processing 

 

Pre-treatment of spectral data is crucial because there are several kinds of noise, 

such as high-frequency noise associated with the instrument‟s detectors and electronic 

circuits, and baseline fluctuations affecting the spectra (Ozaki et al. 2007). In this study, the 

pre-processing consisted of applying spectral averaging, smoothing and calculating the first 

derivative of the spectra. The ten spectra acquired per pasture plot were first averaged using 

the SpectraProc software (Hueni and Tuohy 2006) to form a single spectrum per plot. Then, 

using The Unscrambler® 9.7 software (CAMO, Oslo, Norway), the spectral data were 

smoothed by applying a Savitzky-Golay filter (Savitzky and Golay 1964) with window size 

of 81 and polynomial order of 4, followed by the calculation of the first derivative of the 

reflectance (FDR) using the Savitzky-Golay algorithm with window size of 3 and 
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polynomial order of 2. The first derivative is one of the most commonly used mathematical 

transformations applied to reflectance spectra in an attempt to extract spectral features, 

minimize background noise and enhance weak signals (Demetriades-Shah et al. 1990, Tsai 

and Philpot 1998). 

 

5.2.4. Data analysis 

 

A principal component analysis (PCA) of the pre-processed first derivative spectral 

data (all samples) was conducted and the scores of the first two principal components (PC1 

and PC2) were plotted against each other (plotted per site and per season). In PCA the 

original highly correlated variables are transformed into uncorrelated new variables (the 

PCs). The PCs are ordered in relation of the amount of variation they explain, and the first 

few components retain most of the variation present in the original variables. PCA 

highlights the differences and similarities in the data, and it is useful to extract information 

about patterns in the samples (Jolliffe 2002).  

The processed data between 420 and 2400 nm (wavelengths between 350-419 nm 

and 24001-2500 were discarded because of low signal-to-noise ratio) were then regressed 

against the botanical composition proportions (grass, legume and weed percentages) using 

partial least squares regression (PLSR), and the regression model internally tested using full 

cross-validation (leave-one-out method). PLSR was chosen because there is a large amount 

of data and the predictor variables are highly correlated (the information in single 

wavelengths is usually highly correlated with information in other wavelengths). That 

means there is redundant information, but rather than select a few of the predictor variables, 

it is better to reduce their number to a few components (latent variables). In PLSR the 

components are linear combinations of the predictor variables chosen so that they describe 

as much of the variation in the predictors as possible and also give extra weight for 

variables that show a high correlation with the response variable (Miller and Miller 2005). 

Cross-validation is an internal calibration method in which the calibration data are also 

used as validation data, and is often used when observations are limited and/or separate 

validation sample sets are not available (Davies 1998). Whenever possible in this study (i.e. 

when a good number of samples were available) regressions using independent calibration 
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and validation sets and full cross-validation were both performed, but because the results of 

these two methods were very similar, only the results of cross-validation were shown. 

Firstly, PLSR was conducted with the entire botanical and spectral datasets (404, 

365 and 350 samples for grass, legume and weed predictions, respectively; samples with no 

legume and weed components were discarded from the corresponding regressions). Then 

PLSRs were conducted on data from the two sites that had a good number of samples (> 

100): Alfredton (n = 171) and Colyton (n = 160). For these two sites PLSRs were also 

conducted for each sampling date at Alfredton (Aug-06, Nov-06, Feb-07, May-07 and Sep-

07), and Colyton (Oct-06, Mar-07, Jun-07 and Sep-07). For Colyton, PLSRs were also 

carried out for the samples grouped by treatments: added P and added P+N samples, which 

correspond to the plots where P fertiliser and a combination of P and N fertiliser had been 

applied, respectively. In addition regressions were carried out for samples grouped by 

season (Spring: Alfredton Nov-06 and Sep-07, Colyton Oct-06 and Sep-07, Atiamuri Oct-

06, Manawahe Oct-06, and Tokoroa Oct-06. Winter: Alfredton Aug-06 and Colyton Jun-07. 

Autumn: Colyton Mar-07, Atiamuri Apr-07 and Alfredton May-07). 

The accuracy and precision of the PLSR models were assessed using the following 

statistics, coefficient of determination (R2), root mean square error of cross-validation 

(RMSECV), regression slope, bias and the ratio of standard deviation (SD) of the nutrients 

measured to the RMSECV (SD/RMSECV). Accurate and precise prediction is shown by 

high R2, low RMSECV, slope close to one, bias close to zero, and high SD/RMSECV. The 

R
2 of validation indicated how well the model predicted responses for unknown 

observations. The RMSECV provides a direct estimate of the modelling error expressed in 

original measurements units (percentage of grass, legume and weed in the pasture samples). 

The regression slope is the amount of change in the dependent variable (pasture botanical 

composition) that is associated with a change in the independent variable (pasture spectral 

data). The bias is the systematic difference between predicted and measured values 

(average value of the residuals). The SD/RMSECV ratio enables the evaluation of the 

RMSECV in terms of SD of the reference data (pasture nutrients measured), making 

possible the comparison of the prediction ability of models developed for datasets which 

have different sample ranges.  
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5.3. Results and discussion 

 

5.3.1. Pasture botanical components 

 

All samples (404) collected in this study had a grass component, 90% a legume 

component, and 87% a weed component. With the exception of the Alfredton site, the most 

common grass species was perennial ryegrass; and legume, white clover. All plant species 

not belonging to grass or legume families were classified as weeds. These included 

buttercups (Ranunculus spp.), catsear (Hypochaeris radicata), chickweed (Stellaria media), 

daisy (Bellis perennis), docks (Rumex spp.), hydrocotyle (Hydrocotyle spp.), plantain 

(Plantago spp.), red dead-nettle (Lamium purpureum), thistle (Cirsium arvense) and yarrow 

(Achillea millefolium). The hill country pasture at Alfredton presented the greatest diversity 

in pasture species, with browntop the dominant grass species. 

According to Suckling (1975), an ideal legume proportion in a pasture sward should 

be at least 20-25%; Kemp et al. (1999a) suggested that for sufficient N fixation, clover 

should be higher (25-35%) in white-clover based pastures. Only in summer was the legume 

content of the hill pasture (Alfredton) > 20% (Table 5.2). For the lowland sites legume 

percentages were > 20% in all seasons except winter. 

In New Zealand pasture systems the complementary behaviour of summer-autumn 

growth patterns of legumes and winter-spring dominance by temperate grass growth is 

exploited (Brock et al. 1989). This oscillatory behaviour of grass-legume swards is 

naturally balanced, the improvement of grass growth occurs via enhanced legume N 

fixation, followed by legume inhibition by competitive grass growth (Valentine and 

Matthew 1999). This seasonality in pasture botanical composition was apparent at both 

Alfredton and Colyton sites (Figure 5.2), where the legume content was highest and grass 

content lowest in summer and the opposite case occurred in the winter. In summer, the 

grass growth was limited because the grass enters the reproductive growth phase and 

moisture stress may also occur; at the same time, white clover has its maximum production 

because of its higher optimum temperature of growth (Valentine and Kemp 2007). 
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Table 5.2. Basic statistics: minimum (Min.), maximum (Max.), range, mean and standard 
deviation (SD) for grass, legume and weed percentages (in fresh weight basis) in each 
dataset analysed. 

Sample set Grass (%)   Legume (%)   Weed (%) 
(n. of samples) Min. Max. Range Mean SD   Min. Max. Range Mean SD   Min. Max. Range Mean SD 

ALFREDTON                                   
  Aug-06 (28) 84 99 15 92 5   0 11 11 3 3   1 13 12 4 3 
  Nov-06 (36) 33 93 60 72 15   1 57 56 15 14   1 36 35 13 8 
  Feb-07 (36) 26 95 69 68 17   2 70 68 21 16   0 31 31 11 8 
  May-07 (35) 75 99 24 91 6   0 13 13 3 3   0 22 22 6 6 
  Sep-07 (36) 73 99 26 90 7   0 5 5 1 1   0 24 24 9 7 
  TOTAL (171) 26 99 73 82 15   0 70 70 9 12   0 36 36 9 7 

COLYTON                                   
  Oct-06 (40) 57 100 43 88 11   0 39 39 7 9   0 35 35 5 8 
  Mar-07 (40) 17 100 83 70 25   0 79 79 21 23   0 25 25 8 7 
  Jun-07 (40) 70 100 30 91 8   0 22 22 4 6   0 22 22 5 5 
  Sep-07 (40) 56 100 44 85 12   0 32 32 10 10   0 24 24 5 5 
  Added P+N  (80) 68 100 32 93 7   0 15 15 2 3   0 28 28 5 6 
  Added P (80) 17 97 80 74 19   0 79 79 20 17   0 35 35 7 7 
  TOTAL (160) 17 100 83 83 17   0 79 79 11 15   0 35 35 6 7 

MANAWAHE                                   
  Oct-06 (36) 44 95 51 65 11   4 33 29 20 8   2 41 39 15 10 

ATIAMURI                                   
  Oct-06 (19) 45 99 54 72 17   0 55 55 25 18   0 17 17 3 6 
  Apr-07 (9) 9 92 83 64 29   5 91 86 32 31   0 15 15 4 5 
  TOTAL (28) 9 99 90 70 21   0 91 91 27 22   0 17 17 3 5 

TOKOROA                                   
  Oct-06 (9) 45 99 54 80 16   0 28 28 12 9   0 27 27 8 10 

SEASONS                                   
  Spring (216) 33 100 67 79 15   0 57 57 12 13   0 41 41 8 9 
  Winter (68) 70 100 30 91 7   0 22 22 4 5   0 22 22 5 4 
  Autumn (84) 9 100 91 78 23   0 91 91 15 22   0 25 25 7 7 

TOTAL (404) 9 100 91 80 17   0 91 91 12 15   0 41 41 8 8 
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Figure 5.2. Botanical proportions (grass, legume and weed) averaged per date of data 
collection for Alfredton and Colyton sites. 

 

At Colyton, the averaged percentage of legume in the added P plots (which received 

applications of P fertiliser) was 20%, approximately 10 times higher than that of the added 

P+N plots (which received applications of both P and N). In New Zealand, P fertilisers are 

applied to maintain or increase pasture production by encouraging legume growth and 

therefore N fixation. Grasses are more competitive than legumes in taking up available N 

from the soil and when N fertiliser is applied legume yield and N fixation rate are reduced 

(Kemp et al. 1999a). 

Legumes have a major impact on the pastures nutrient value for animals, as do low 

palatability weeds (Litherland and Lambert 2007). Although some weeds supply nutrients,  

most common weeds (such as buttercup, docks and thistles) found in New Zealand pastures 

have low feed quality (Stewart and Charlton 2006), thus the number of weeds should be 

kept minimal. From the dataset collected the weeds percentage varied from 0% to 41%, 

with an average of 8% (Table 5.2); and 21% of the samples (73 of 350) contained over 15% 

of weeds, with the majority of weeds found in the pastures in mid-late spring and summer. 

 



Chapter 5                                                                                                                               72 
 

5.3.2. Pasture spectra 

 

There was more variation in the pasture reflectance factor spectra at the Alfredton 

hill site than the lowland Colyton site, due to the greater diversity in sward attributes 

including botanical composition, presence of non-green components (seed heads, dead 

matter, and flowers), pasture height and pasture sward cover at the hill pasture sites (Figure 

5.3).  For example, the amplitude of the variation of the reflectance factor spectra between 

700 nm and 1300 nm was 50% higher among Alfredton spectra than among Colyton 

spectra (Figure 5.3a). In those wavelengths (near infrared) the spectral response of plants is 

dominated by leaf internal structure. Different plant species may have distinct leaf internal 

structure with different distribution of intercellular air spaces and arrangement and size of 

cells that affect the way the light passes through leaves and consequently the amount of 

light that is reflected by the leaves (Kumar et al. 2001). The amplitude of the variation of 

the reflectance factor spectra between 700 nm and 1300 nm was also higher among summer 

spectra (which has higher diversity in sward attributes) than among winter spectra (Figure 

5.3b), providing further support to the explanation above.  

 

 
Figure 5.3. Reflectance factor spectra of pasture swards collected in different seasons and 
sites and photographs illustrating some of the plots measured: a) spectra collected during 
early spring at Alfredton and Colyton; b) spectra collected at Alfredton during winter and 
summer. 
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An efficient way to analyse the distribution of spectral data of various samples is to 

conduct a PCA. The sum of the variance accounted for in PC1 and PC2 (Figure 5.4) is 85%, 

so the PCA score plots (PC1, PC2) can be interpreted with a high degree of confidence. 

Samples closer to each other in the score plots are similar to each other and conversely 

samples far away from each other are different from each other (Figure 5.4). 

 

 
Figure 5.4. PCA score plots for entire FDR dataset (n = 404): a) plotted per site and b) 
plotted per season. PCA score plots for c) Alfredton samples (n = 171) and d) Colyton 
samples (n = 160) plotted per season. 

 

It is clear in the PCA score plots that there is more variation in the spectral data 

collected from the Alfredton site (Figure 5.4c) than from Colyton (Figure 5.4d). Compared 

to Colyton, which was a high fertility lowland site, the plots analysed at the Alfredton site 

were located on steep and moderate slopes with north, south and east-facing aspects. The 

diversity in botanical composition in New Zealand hill pastures is highly influenced not 

only by rainfall, temperature and soil moisture, but also by altitude, slope, aspect and 

micro-topography (Nicholas 1999). Normally rainfall increases and temperature decreases 

with altitude. In addition, different aspects receive differing solar radiation inputs, have 
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different temperatures and effective rainfall (the proportion of runoff increases with 

increased slope) resulting in differing soil moisture regimes, (McKenzie et al. 1999). 

Accordingly species diversity is much higher in the hill country than in lowland pastoral 

systems (Matthew et al. 1988). Moreover, the Colyton data were collected from a dairy 

pasture under a cutting (non-grazed) regime compared with the sheep grazed pasture at 

Alfredton, where the pasture samples were collected from under exclusion cages. Thus the 

sample variability in the exclusion cage was influenced by the uneven return of sheep dung 

and urine. Consequently, the data collected from the Alfredton hill pasture in this study 

reflect not only the greater pasture species diversity, but also the influence of nutrient return 

by animals, in addition to the effect of greater variation in soil fertility. The PCA score 

plots (Figure 5.4c and 5.4d) confirm that this variation observed in the field is also 

observed in the spectral data.  

The degree of variability in the spectral data changes with season (Figure 5.4b, PCA 

score plot). The variability is caused largely by the Alfredton hill site dataset (Figure 5.4c). 

Across all sites and samplings, grass content in the sward was greater in winter than in 

spring and autumn, while in spring and summer higher legume contents were observed. 

These observations are consistent with literature reporting cyclical changes in the botanical 

composition of New Zealand pasture. In the beginning of the year (summer) pastures 

contain increased dead matter, changing to mainly leafy and vegetative growth in the 

middle of the year (winter), and increasing stem and reproductive growth at the end of the 

year (in late spring and early summer) (Holmes et al. 2002). The change from vegetative to 

reproductive growth from early spring through to early summer is accompanied by a 

change from a vigorous leafy pasture to one dominated by stem and inflorescences as the 

plant flowers and sets seeds (Chaves 2003). 

 

5.3.3. Predictions of pasture botanical components 

 

It was not possible to build accurate PLSR calibration or validation models (results 

not shown) between pasture grass, legume and weed percentages (expressed on a fresh 

weight basis) and the processed reflectance factor data (1981 wavelengths from 420 nm to 

2400 nm at 1 nm spacing). However, when the first derivative of the reflectance (FDR) data 
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was calibrated against the pasture botanical composition data using PLSR (cross validation 

method), some significant relationships were obtained for predictions of unknown pasture 

botanical composition. The R2s for the prediction of grass percentage (Table 5.3 and Figure 

5.5) varied from -0.04 to 0.85, and the regression slopes between -0.01 and 0.87. In general 

as the range of observed % grass in the sward increased the ability of the spectral data to 

predict that range improved. For example, higher R2s and regression slopes were obtained 

for data from the Colyton site in March 2007 (grass range = 83%) than in June 2007 (grass 

range = 30%). Similarly the % grass in autumn samples across all sites (grass range = 91%) 

was better predicted than spring (grass range = 67%) and winter (grass range = 30%) 

samplings across all sites. Samples collected at the Alfredton site from May to September 

were amongst the sample sets with the lowest range of  % grass (  32%), along with 

Colyton added P+N samples and winter samples from all sites combined (Table 5.2), 

which invariably produced PLSR models with little accuracy of prediction of % grass in the 

sward (Table 5.3). The R2 statistic can be misleading when used to assess the accuracy of 

relationships predicting narrow ranges of observed values. The resultant R
2 might be very 

low but this does not necessarily means the calibration is poor, and for that reason the 

regression should not be evaluated solely on the R
2. Overall, the bias was small. The 

highest bias (0.231) was observed for the regression using all Alfredton samples. The 

RMSECV, the estimate of the error expected, varied from 5% to 17%. The smallest 

RMSECV were obtained for the samples collected from late autumn to early spring 

independent of site. For Alfredton the highest RMSECV values were obtained for the 

seasons (late spring and summer) with higher weed content. However, a better way to 

evaluate the RMSE, especially when comparing datasets with different ranges of samples, 

is to use the SD/RMSECV ratio (Table 5.3). SD/RMSECV values near or under one 

indicate that the predictions are poor and not reliable, since the predicted error is greater or 

similar to the standard deviation of the samples analysed. For the grass predictions, the 

SD/RMSECV ratio ranged from 0.9 to 2.5. All Alfredton regressions were inaccurate. 

Colyton regressions were reasonable for all but the added P+N samples and mid spring 

season. The regression carried out using all samples (n = 404) was also reasonable, as well 

as the prediction for the autumn season.  
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Table 5.3. Statistical summary of partial least squares regression (PLSR) models fitted to 
predict grass percentage in different datasets. 

 Season N. of samples Latent Variables R
2 RMSECV Slope Bias SD/RMSECV 

All samples W Sp Su A 404 9 0.58 11 0.62 -0.008 1.5 

Alfredton W Sp Su A 171 3 0.44 12 0.47 0.231 1.3 

Colyton W Sp      A 160 8 0.66 10 0.72 -0.096 1.7 

Colyton added P+N W Sp      A 80 1 0.07 7 -0.04 0.040 1.0 

Colyton added P W Sp      A 80 4 0.51 13 0.56 -0.165 1.5 

Alfredton Aug-06 W (late) 28 1 0.04 5 0.03 -0.025 1.0 

Alfredton Nov-06 Sp (late) 36 3 0.23 14 0.31 -0.162 1.1 

Alfredton Feb-07 Su (late) 36 2 0.07 17 0.12 -0.095 1.0 

Alfredton May-07 A (late) 35 1 0.02 6 -0.03 -0.022 1.0 

Alfredton.Sep-07 Sp (early) 36 1 0.02 8 -0.01 -0.067 0.9 

Colyton Oct-06 Sp (mid) 40 1 0.02 11 -0.01 0.011 1.0 

Colyton Mar-07 A (early) 40 4 0.85 10 0.86 -0.118 2.5 

Colyton Jun-07 W (early) 40 4 0.52 5 0.58 0.137 1.6 

Colyton Sep-07 Sp (early) 40 4 0.72 6 0.76 0.074 2.0 

Spring Sp 216 6 0.47 11 0.50 0.031 1.4 

Winter W 68 4 0.13 6 0.22 0.074 1.2 

Autumn A 84 8 0.81 10 0.87 -0.170 2.3 
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Figure 5.5. Relationships between measured grass percentage (x-axis) and those predicted 
from the PLSR full cross-validation (y-axis). 

 

The PLSR models developed to predict the % legume component in the sward 

(Table 5.4 and Figure 5.6) were of similar accuracy to the grass models. The R2 values for 

the regression models ranged from 0.02 to 0.80, and the regression slopes between 0.02 and 

0.83. The largest R
2 values were again obtained for the Colyton site and for autumn 

samples. All regressions using sample data exclusively from the Alfredton site and winter 

samples had very low R
2 values, again mostly associated with observed datasets having 

small ranges. The RMSECV ranged from 1% to 16%. The smallest errors were regression 
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models built using samples collected from late autumn to early spring, independently of site. 

For Alfredton the highest RMSECV values were obtained using data from the seasons with 

higher weed content (late spring and summer). The regressions for Alfredton late spring 

and Colyton mid spring samples had the highest bias (0.241 and 0.525, accordingly). The 

SD/RMSECV ratio ranged from 1.0 to 2.2, with the higher values associated with autumn 

samples (combined sites) and Colyton autumn samples. 

 

Table 5.4. Statistical summary of partial least squares regression (PLSR) models fitted to 
predict legume percentage in different datasets. 

Legume% Season N. of samples Latent Variable R2 RMSECV Slope Bias SD/RMSECV 

All samples W Sp Su A 365 9 0.56 10 0.60 0.044 1.5 

Alfredton W Sp Su A 169 4 0.39 10 0.43 0.096 1.2 

Colyton W Sp      A 126 10 0.71 9 0.77 0.090 1.7 

Colyton added P+N W Sp      A 47 1 0.19 3 -0.10 -0.007 1.0 

Colyton added P W Sp      A 79 4 0.55 11 0.58 0.064 1.5 

Alfredton Aug-06 W (late) 28 1 0.07 3 0.06 -0.013 1.0 

Alfredton Nov-06 Sp (late) 36 3 0.19 13 0.31 0.241 1.1 

Alfredton Feb-07 Su (late) 36 1 0.02 16 0.02 0.117 1.0 

Alfredton May-07 A (late) 33 1 0.05 3 -0.04 -0.006 1.0 

Alfredton.Sep-07 Sp (early) 36 2 0.05 1 0.10 0.009 1.0 

Colyton Oct-06 Sp (mid) 25 3 0.20 8 0.29 0.525 1.1 

Colyton Mar-07 A (early) 34 1 0.74 12 0.73 -0.026 1.9 

Colyton Jun-07 W (early) 31 3 0.30 5 0.39 -0.113 1.2 

Colyton Sep-07 Sp (early) 36 3 0.67 6 0.71 -0.100 1.7 

Spring Sp 194 7 0.46 9 0.52 0.024 1.4 

Winter W 59 2 0.08 4 0.12 0.012 1.3 

Autumn A 76 6 0.80 10 0.83 0.034 2.2 
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Figure 5.6. Relationships between measured legume percentage (x-axis) and those 
predicted from the PLSR full cross-validation (y-axis). 

 

The regression models for weed percentage (Table 5.5 and Figure 5.7) had very low 

R
2 values (0.00 to 0.44) and low regression slopes (≤ 0.21) in all situations. Overall the 

range of weeds in the samples analysed was very narrow. The RMSECV values ranged 

between 3% and 12%. The lowest RMSECV (3%) was observed for regression models 

using samples collected during winter at Alfredton, followed by models using the winter 

samples of combined sites (4%). The SD/RMSECV statistic (values ≤ 1.1) was low for all 

weed models and all predictions were inaccurate. The prediction of weed percentage was, 
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in general, the weakest of the three sward components examined. Along with the small 

absolute percentages and small range of weeds species in the datasets, the poor fit of the 

regression model might be explained by the fact that several distinct types of plants 

(buttercup, catsear, chickweed, daisy, dock, hydrocotyle, plantain, red dead-nettle, thistle 

and yarrow) with different types of leaves and plant structure were classified into one single 

weed group (weed). In contrast, grass and to a lesser degree the legume components were 

represented by fewer species and with similar plant structures. 

 

Table 5.5. Statistical summary of partial least squares regression (PLSR) models fitted to 
predict weed percentage in different datasets. 

Weed% Season N. of samples Latent Variable R2 RMSECV Slope Bias SD/RMSECV 

All samples W Sp Su A 350 5 0.15 7 0.18 0.009 1.1 

Alfredton W Sp Su A 167 4 0.11 7 0.14 0.019 1.0 

Colyton W Sp      A 128 4 0.08 6 0.17 0.017 1.2 

Colyton added P+N W Sp      A 61 6 0.18 7 0.38 -0.176 0.9 

Colyton added P W Sp      A 67 3 0.05 7 0.12 0.093 1.0 

Alfredton Aug-06 W (late) 28 1 0.03 3 -0.04 0.034 1.0 

Alfredton Nov-06 Sp (late) 36 1 0.00 8 0.00 0.025 1.0 

Alfredton Feb-07 Su (late) 34 1 0.03 8 -0.03 -0.008 1.0 

Alfredton May-07 A (late) 34 1 0.06 7 -0.06 -0.045 0.9 

Alfredton.Sep-07 Sp (early) 35 1 0.33 8 -0.13 -0.057 0.9 

Colyton Oct-06 Sp (mid) 18 1 0.44 12 -0.20 -0.186 0.7 

Colyton Mar-07 A (early) 36 1 0.01 7 0.02 0.036 1.0 

Colyton Jun-07 W (early) 36 1 0.09 5 0.12 -0.051 1.0 

Colyton Sep-07 Sp (early) 38 4 0.18 5 0.33 -0.004 1.0 

Spring Sp 176 3 0.20 8 0.21 0.001 1.1 

Winter W 64 1 0.02 4 -0.01 0.006 1.0 

Autumn A 76 1 0.02 7 0.03 -0.003 1.0 
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Figure 5.7. Relationships between measured weed percentage (x-axis) and those predicted 
from the PLSR full cross-validation (y-axis).  
 

5.3.4. PLSR carried out separately for Colyton samples with and without added N  

 

The added P and added P+N plots at the Colyton site had marked differences in 

legume and grass percentages. This created a significant range in botanical composition 

(Table 5.2), that resulted in PLSR calibration models that gave a reasonably accurate 

prediction of grass and legume contents (Tables 5.3 and 5.4). When the data for the added 

P and added P+N plots were separated into individual sample sets (Table 5.3 and 5.4), the 
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range in the grass and legume botanical composition data was less for the added P+N set, 

and the PLSR calibrations for this set were less accurate.  

 

5.3.5. Contrasting predictions for hill (Alfredton) and lowland (Colyton) sites 

 

Despite a similar range of botanical compositions (grass, legume and weed) in 

samples at the Alfredton (hill country) and Colyton (flat) sites (Table 5.2), the variation of 

botanical components explained by the Alfredton PLSR calibration models (low R
2s 

values) was low. The Alfredton pasture sample set includes a greater diversity of grass and 

legume species compared to the Colyton sample set, which could explain the more complex 

spectral data and the inaccuracy of the calibration models. The problem is not the high 

diversity per se, but that this diversity was not taken into account in the botanical separation. 

In contrast (as described in the previous section), the variation in spectral data at the 

Colyton site is a direct consequence of the variation in grass and legume components.  

When examining the RMSECV, which measures the variability of the difference 

between predicted and reference values, the results were comparable for both Alfredton and 

Colyton sites. Since no summer data were available for Colyton, and to make the 

comparison equal (based on seasons represented) for the entire dataset per site, the summer 

data (Feb-07) were omitted from the Alfredton dataset and new PLSRs were carried out for 

grass (135 samples: LV = 4, R
2 = 0.41, RMSECV = 10, slope = 0.44, bias = 0.127, 

SD/RMSECV = 1.3) and legume (133 samples: LV = 10, R2 = 0.47, RMSECV = 7, slope = 

0.59, bias = -0.048, SD/RMSECV = 1.3). The RMSECV values were indeed similar for 

both sites (c.f. Tables 5.3 and 5.4), which means the error of prediction (expressed in 

original measurements units) was similar for both Alfredton and Colyton (hill country and 

lowland sites, respectively). However, based on the SD/RMSECV ratio, better results were 

still obtained for Colyton predictions (SD/RMSECV = 1.7 for both grass and legume 

components). 

 

 

 



Chapter 5                                                                                                                               83 
 

5.3.6. Contrasting prediction for different seasons 

 

The ability to predict pasture botanical composition from spectral data also varied 

between seasons. Data for the four seasons were available for the Alfredton site, and 

although all predictions for this site were inaccurate, useful information could be extracted. 

Low R2 values were observed for all seasons (Tables 5.3 and 5.4), and that might be related 

to the narrow range of grass and legume percentage for winter, autumn and early spring 

samples (Table 5.2), however that does not explain the inaccurate calibration results for late 

spring and summer samples. At Colyton, data were available for early and mid spring, 

autumn and winter seasons. Colyton winter PLSR calibrations were affected by the narrow 

sample data range, and although the sample ranges were similar in mid and early spring 

datasets less accurate calibrations were obtained for mid spring samples. Comparing PLSR 

models across seasons for all sites, autumn presented the more accurate calibration models 

(also the best range of grass and legume percentage), winter and spring calibration models 

were less accurate, with winter calibrations highly affected by the narrow range of sample 

data (Tables 5.3 and 5.4). Confirmation that the winter PLSR models inaccuracy was 

caused by the narrow range of samples was obtained by conducting new PLSRs using the 

winter samples and autumn samples combined. The resulting calibration models for grass 

(152 samples: LV = 7, R2 = 0.75, RMSECV = 9, slope = 0.79, bias = -0.059, SD/RMSECV 

= 2.0) and for legume (135 samples: LV = 7, R2 = 0.79, RMSECV = 8, slope = 0.80, bias = 

0.069, SD/RMSECV = 2.2) were as good as the autumn ones for legume prediction and a 

little inferior for grass prediction.  

The non-green components of a pasture are poor quality components. Good grazing 

management with regular and significant defoliations focuses on improving feed quality by 

minimizing reproductive growth (flowering) during spring and the accumulation of dead 

matter in summer and autumn (Stewart and Charlton 2006). Grazing management varied at 

each site. At Alfredton, in the periods (mid late spring till autumn) when the pasture had 

higher non-green components (such as flowers, seed heads, stems and dead matter), the 

PLSR calibration models inaccurately predicted pasture grass and legume composition. The 

worse predictions of pasture grass and legume proportions using Colyton samples were 

obtained with the PLSR calibration models using samples collected during mid spring; 
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however, in the Colyton site the variation in non-green components was not very 

perceptible throughout the seasons. In this study the pasture samples were separated into 

grass, legume and weed components only and senescing leaves were combined with green 

leaves and flowers. Green plant materials are spectrally different from non-green plant 

materials. This divergence appeared in the spectral data analysed but was not taken into 

account in the botanical composition data. Therefore the accurate prediction of the 

botanical composition of pastures that have few or no senescing component or flowers 

(winter or pastures with good grazing management such as at Colyton site) is less 

challenged. 

 

5.4. Conclusions 

 

Reasonably accurate PLSR calibration models can be achieved for predicting 

pasture grass and legume proportions from proximal sensed sward reflectance. Similar 

accuracy was not achieved in predicting pasture weed content. Reasonable level of 

accuracy of prediction could not be achieved with hill pastures (Alfredton), which include a 

greater diversity of grass and legume species compared to a lowland sample set (Colyton). 

The most accurate PLSR calibration models for predicting grass and legume composition 

were achieved in autumn, a period of the year when a wide range of samples could be 

gathered. In winter the PLSR calibration models were less accurate probably confounded 

by the extremely narrow ranges of sample values. The low level of model accuracy was 

overcome by combining winter samples with autumn samples in the regressions. At the hill 

country site in summer (data only available for the hill country site) it was noticed that even 

with a good range of grass and legume percentage in the samples (the greatest among all 

seasons) the PLSR calibration models were very inaccurate. This is probably related to the 

high proportion of non-green components in the pasture that unfortunately was not 

quantified in this study.  

In this study, whereas there is variability in botanical composition and in spectral 

data, the two sets of data are not highly correlated as shown by the low coefficients of 

determination for most sites and seasons. This study separated the pastures samples into 

grass, legume and weed components, without discriminating if the materials were green or 
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dead matter, vegetative or reproductive. The physiological changes in the pasture sward 

species with season are revealed in the spectra (colour, seed head and structural change) but 

not in the botanical separation. If the non-green pasture components had been quantified for 

each sample, botanical prediction may have been improved for mid spring until summer 

periods. This is a relevant consideration that would be interesting to be examined in further 

research. 

The limited utility of the technology may be in part a product of the way in which it 

is applied and evaluated. For example the interest in the identification of weed species in 

mixed pasture might be in early detection of a potential infestation, rather than the actual 

percentage. Exploring proximal sensing for early detection before the weed is visually 

perceptible might be where the technology adds value to pasture management decision 

making. Similarly with sensing the legume content of the pasture, the interest may only be 

in establishing if there is sufficient legume (>20%) for finishing young stock and so the 

level of accuracy achieved here may be adequate. 
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CHAPTER 6: 

Seasonal predictions of in situ pasture macro-nutrients in New Zealand 

pastoral systems using hyperspectral data 

 

------------------------------------------------------------------------------------------------------------ 

Some results of this study have been presented as a poster in the 13th Australasian Remote 

Sensing and Photogrammetry Conference, Canberra, Australia, 20-24 November 2006 

(abstract); and have been orally presented and published (full paper) in the proceedings of 

the 14th Australasian Remote Sensing and Photogrammetry Conference, Darwin, Australia, 

29-03 October 2008. 

------------------------------------------------------------------------------------------------------------ 

 

Abstract 

 

For optimum nutrient management of grazed pastures, soil and pasture nutrient levels need 

to be regularly monitored. The development of new approaches for gathering this kind of 

information can be justified by the twin goals of both economic and environmental 

sustainability. Remote sensing technologies have been proven very useful for estimating 

plant biochemistry attributes in laboratory conditions. The challenge is to extend this 

technology for in situ conditions. To evaluate the ability of proximal sensing for predicting 

pasture macro-nutrients, spectral reflectance measurements between 350-2500 nm were 

taken from a number of dairy and sheep pastures in New Zealand, in each of the four 

seasons of the year. Mathematical transformations (absorbance, derivatives, continuum 

removal) were applied to the reflectance factor spectra and the data regressed against 

pasture nitrogen (N), phosphorus (P) and potassium (K) concentrations using partial least 

squares regression (PLSR). Overall more accurate predictions were achieved using the first 

derivative data. The accuracy of the PLSR calibration models to predict pasture N, P and K 

concentrations increased with the separation of the pasture samples by season. Predictions 

with reasonable accuracy (R2 > 0.74 and SD/RMSEP  2.0) were obtained for N during 

winter, autumn and summer seasons; P during autumn; and K during summer.  
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remote sensing. 

 

6.1. Introduction 

 

The productivity of pastoral systems depends to a large extent on soil fertility. In 

temperate regions, the deficiency of one or more essential mineral nutrients is the most 

common limitation to optimum pasture growth (McKenzie et al. 1999). Although the levels 

of all macro and micro-nutrients need to be regularly monitored, soil fertility in New 

Zealand is usually limited by nitrogen (N) and phosphorus (P) availability (Roberts and 

Morton 1999). In this country, soils are naturally acid and generally deficient in N and P, 

but other mineral deficiencies can occur, such as potassium (K) deficiency, particularly in 

intensive dairying systems and pastures cut for silage or hay. 

New Zealand pastures are based on a mix of perennial grasses and legumes; with 

perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) the most 

frequently sown species because of their high tolerance to frequent defoliation and treading 

by livestock. The grass-legume mix is a successful combination because the grass provides 

the majority of herbage, while the legume species supply symbiotically fixed N and has a 

high nutritive value (Kemp et al. 1999b). The establishment and maintenance of perennial 

ryegrass and white clover based pastures in New Zealand requires regular input of P and S, 

while the major N input is obtained through biological fixation of atmospheric N (N2) by 

legumes. The primary source of K is acquired mostly by mineral weathering in most soils 

(During 1972). 

Nutrient availability not only dictates pasture growth rates but also influences 

botanical composition and the phenology of the pasture species. Nitrogen is required by 

plants for synthesis of chlorophyll and proteins (Moot et al. 2007). From 40 to >200 kg ha-1 

year-1 of N can be fixed by legume-based pastures in New Zealand (Hoglund et al. 1979). 

Most of fixed N is cycled within the grazing system. In grazing systems N is lost in 

harvesting of animal products (20-60 200 kg ha-1 year-1) but more significantly it is lost 

through non-uniform transfer to small areas of the grazed pasture (e.g. stock camps) and 

from urine patches through both gaseous and leaching losses (Ledgard 2001). Most New 
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Zealand pastures are N deficient because of the dependence on legume growth, its 

seasonality and the inefficient transfer of N to the grass species (White and Hodgson 1999). 

In high fertility lowland pastures with optimum soil test values, 25-30% legume in the 

sward is ideal for adequate N fixation (Moot et al. 2007). Often the legume content is much 

lower. In hill country the legume component can be very low, particularly in undeveloped 

pastures (Lambert et al. 1986) and it is common for hill pasture growth to be very N limited. 

Phosphorus is another key nutrient for plants; it is required in photosynthesis and is 

found in plant membranes and in the DNA. Phosphorus deficiency can cause early 

senescence of old leaves and stunting of young leaves. In New Zealand pastoral systems, P 

is also important for the maintenance of the legume component in the pastures (During 

1972). Response of pasture to P application is explained by legume growth being 

stimulated which in return fixes more N. This N simulates better grass growth. Phosphorus 

availability for uptake by plant roots is controlled by the rate of P adsorption, fixation and 

immobilisation in soil. Removal of P from the plant available pool by these processes is 

ongoing and is the main reason why P fertiliser topdressings are required annually. Other 

reasons are that P losses can occur in surface runoff, erosion and P removal by animal 

products (McDowell et al. 2005). 

Potassium (K) is essential for plants to maintain the electrical balance of cell 

membranes, for enzyme activation, carbohydrate production and transport and stomatal 

activity (Lanyon and Smith 1985). Losses of K in grazed pastures result from K removal in 

animal products, removal of herbage K in hay and silage crops, transfer of excreta to 

unproductive areas of the farm (e.g. shed, raceways) and K leaching (Williams 1988). 

Potassium is also necessary to maintain the legume in the grass-legume based pastures; low 

exchangeable K concentrations in the soil can cause poor legume establishment since 

grasses are more competitive than legumes in extracting K from the soil (Roberts and 

Morton 1999). Pasture yield might be reduced if soil K levels are below the critical 

concentration; on the other hand, the presence of high levels of K can decrease the plant 

uptake of ions such as Ca++, Mg++ and Na+ (Barber 1984). 

Optimum nutrient management of grazed pastures requires knowledge of both soil 

and pasture fertility. This can only be achieved by regular monitoring. In grazed pastures 

monitoring is made more difficult as the animal, in the process of foraging, excretes highly 
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concentrated minerals in patches. Excreta returns are also strongly influenced by the 

biophysical features of the landscape, with distinct stock camps receiving disproportionate 

amounts of excreta, while other areas receive little or no excreta (Gillingham 1980). The 

net effect is high spatial variance in soil nutrient levels and corresponding pasture nutrient 

concentrations. Approaches capable of measuring and reporting on nutrient content of 

pasture across the whole farmed landscape, such as with the use of remote sensing 

techniques, offers the option of differential management of the landscape. Traditional 

pasture sampling is generally limited to bulking of samples from along fixed transects in 

just one or two paddocks of a farm, limiting the scope for nutrient management at the 

paddock scale. While the cost of differential fertiliser application often outweighs the 

agronomic benefits, limiting excessive nutrient application to landscape units has other 

advantages. This could include limiting excessive pasture N content as it leads to high N in 

animal urine, through to high soil P levels contributing to surface water contamination. 

Near infrared reflectance spectroscopy (NIRS) has been used to successfully predict 

foliar biochemical concentrations in dried ground forage leaves under controlled laboratory 

conditions (Roberts et al. 2004). NIRS made it possible to estimate forage quality 

composition more quickly and cheaply than by wet chemistry methods (Berardo 1997 and 

Corson et al. 1999). New methods using laboratory spectroscopy were developed for 

estimating the biochemistry of dried leaves, such as the use of continuum-removed analysis 

by Kokaly and Clark (1999) which was further explored by Curran et al. (2001) using a 

wider range of wavelengths and by Mutanga et al. (2005) for measuring pasture canopy 

parameters. The challenge is to apply remote sensing techniques for the estimation of plant 

biochemical attributes directly in the field. This would save time, labour, and costs related 

to the collection, transportation and preparation of samples, and more importantly allow the 

“mapping” of the plant nutrient profile across the landscape. 

Several factors need to be taken into account when extending reflectance 

measurements from dried ground leaves to fresh canopies (Huang et al. 2004). These 

include absorption bands in the infrared wavelengths being masked by leaf water, variation 

in leaf internal structure, atmospheric and background effects (Yoder and Pettigrew-Crosby 

1995). While some research has been conducted in this area, and promising results were 

obtained in prediction of pasture parameters in situ (Mutanga et al. 2004, Sanches et al. 
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2006, Thulin et al. 2006, Kawamura et al. 2006), testing and improvements of in field 

techniques are still required.  

In this paper the ability to predict the N, P and K concentration of pasture in 

different seasons of the year under mowing and sheep and cattle grazing using in situ 

hyperspectral remote sensing data, was examined. 

 

6.2. Material and methods 

 

6.2.1. Study sites 

 

The study areas were located on seven farms in the Waikato (Hamilton), Taupo-

Rotorua (Tokoroa, Atiamuri and Manawahe), Wairarapa (Alfredton and Woodville) and 

Manawatu (Colyton) regions, of the North Island of New Zealand (Figure 6.1).  

 

 
 

Figure 6.1. Sampling site locations: 1) Hamilton – Ruakura, 2) Tokoroa, 3) Atiamuri, 4) 
Manawahe, 5) Colyton, 6) Woodville – Ballantrae, and 7) Alfredton. 
 

At Alfredton paddocks covering different aspects (North, South and East) and 

slopes (gentle and steep) under sheep grazing were selected. At Woodville on the 

AgResearch “Ballantrae” Hill Country Research Station, one low-fertility and one high-
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fertility site under sheep grazing were selected. At Colyton, and at Hamilton (on the 

AgResearch “Ruakura” Research Station), 40 plots, on irrigated dairy pastures within 

experimental areas receiving different amounts of P and N and cut by mower (instead of 

grazed), were sampled. At Tokoroa, Atiamuri and Manawahe, pastures ranging from well-

established permanent pasture, to 1-year-old, 3-year-old and 5-year-old forest-to-dairy 

pasture conversions under dairy cow grazing were sampled. 

 

6.2.2. Field data collection 

 

Data were collected from August 2006 to September 2007 in the four seasons of the 

year (Table 6.1), with spring being defined as September to November; summer as 

December to February; autumn as March to May; and winter as June to August. 

Reflectance factors of the pasture swards were acquired in situ using an ASD FieldSpec® 

Pro FR spectroradiometer (ASD Inc., Boulder, CO, USA) under artificial illumination 

provided by the Canopy Pasture Probe (CAPP) top-grip (Chapter 2). The area measured by 

the CAPP corresponds closely to a circle with a diameter of approximately 20 cm. The 

reflectance standard was a white ceramic tile described by Sanches et al. 2009 (Chapter 3). 

At each plot, 10 reflectance factor spectra were acquired and subsequently averaged to form 

a single reflectance factor spectrum per plot. After the acquisition of spectral data, each plot 

was then clipped to grazeable height and the pasture samples were sent to be analysed for N 

(Kjeldahl digest and analysis colorimetrically by FIA with a modified Berthelot reaction) 

and P and K (Nitric-Perchloric digest and analysis by ICP-OES) using wet chemistry. 
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Table 6.1. Number of pasture samples collected per site and per season which were 
analysed for N (n = 357), P (n = 474) and K (n = 377) concentration. 

Site / Winter 06 Spring 06 Summer 06-07 Autumn 07 Winter 07 Spring 07 
Season Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 
N%                           
  Alf 12 -  - 12 - - 12 -  - 12 -  -  - - 
  Bal -  - 30  - - - 30 -  -  - -  -  - - 
  Col  - - 40  - - -  - 40  -  - 40  -  - 40 
  Man - - 30 - - - - - - - - - - - 
  Rua - - - - - 40 - - - - - - - - 
  Tok - - - - - - - - - - - - - - 
  Atia - - 10 - - - - - 9 - - - - - 
P%                             
  Alf 34 - - 36 - - 35 - - 36 - - - - 
  Bal - - 30 - - - 30 - - - - - - - 
  Col - - 40 - - - - 40 - - 40 - - 40 
  Man - - 36 - - - - - - - - - - - 
  Rua - - - - - 40 - - - - - - - - 
  Tok - - 9 - - - - - - - - - - - 
  Atia - - 19 - - - - - 9 - - - - - 
K%                             
  Alf 22 - - 24 - - 23 - - 24 - - - - 
  Bal - - 30 - - - 30 - - - - - - - 
  Col - - 40 - - - - 40 - - 40 - - 40 
  Man - - 6 - - - - - - - - - - - 
  Rua - - - - - 40 - - - - - - - - 
  Tok - - 9 - - - - - - - - - - - 
  Atia - - 9 - - - - - - - - - - - 

Alf – Alfredton; Bal – Ballantrae; Col – Colyton; Man – Manwahe; Rua – Ruakura; Tok – Tokoroa; Ati - Atiamuri 

 

6.2.3. Spectral data pre-processing 

 

Pre-processing the raw spectral data in this study consisted of averaging, de-

stepping, smoothing, removing wavelengths with high signal-to-noise ratio (SNR), and 

removing bad spectra. The ten spectra acquired per pasture plot were first averaged using 

the SpectraProc software (Hueni and Tuohy 2006) to form a single spectrum per plot. After 

that, a de-step procedure using ENVI 4.3 plus IDL 6.3 (Daniel, P., Ticehurst, C., and 

Thulin, S., personal communication, 29 March 2007) was applied to correct for „steps‟ 

observed at 1000 and 1800 nm, the splice points between the three detectors - VNIR, 
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SWIR1 and SWIR2 - in the FieldSpec® Pro FR (ASD 2000). Field spectra containing steps 

are common in instruments that use multiple detectors and to discover the source of steps 

can be very difficult (Milton et al. 2007). The main contributors to „steps‟ are non-uniform 

target geometry; different spots on the target are illuminated with different energy density 

levels; and each fibre in the bundle of the bare input cable sees a slightly different field due 

to slightly offset fibre fields-of-view, so the actual field-of-view seen by the three 

spectrometers is different (MacArthur 2007). 

Using The Unscrambler® 9.7 software (CAMO, Oslo, Norway), the spectral data 

were smoothed by applying a Savitzky-Golay filter using 81 smoothing points and 

polynomial order 4. The selection of the smoothing points and polynomial order were based 

on experience with previous analysis (Sanches et al. 2008). After the smoothing filter had 

been applied, the spectral data between 390-419 nm and over 2400 nm still presented 

considerable noise, and for that reason those wavelengths were discarded. The spectrum of 

one of the 474 pasture samples collected was markedly different from all others (did not 

presented the typical green vegetation curve) and was discarded from the dataset to be 

analysed. The final pre-processed data included 473 samples with reflectance factor 

measured between 420-2400 nm. 

 

6.2.4. Transformations 

 

Three mathematical transformations - absorbance, derivative and continuum 

removal - were applied to the pre-processed reflectance factor data to test if the 

transformations could improve the predictions. In spectroscopy analysis absorbance is 

frequently used because of the near linear relationship with the concentration of an 

absorbing chemical. Derivative methods have also long been used in spectroscopy studies 

for resolution enhancement and baseline correction purposes. Tsai and Philpot (1998) 

indicated such analysis can be particularly effective when analysing hyperspectral data. The 

continuum removal method, initially used in geological remote sensing (Clark and Roush 

1984), was first applied to vegetation studies by Kokaly and Clark (1999), who used the 

band-depth analysis of absorption features to determine dry leaf biochemistry. Sensitivity to 

common influences of soil background and atmospheric absorption is reduced by the 
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normalized band depth approach. More recently Mutanga et al. (2004) further explored the 

continuum removal technique by proposing and testing two new variables: normalized band 

depth index (NBDI) and continuum-removed derivative reflectance (CRDR) to estimate in 

situ pasture quality. 

The final forms of spectral data which were analysed in this study were: 

- Reflectance factor (R); 

-  Absorbance (Log(1/R)); 

- First derivative reflectance (FDR): Calculated by applying the Savitzky-Golay 

derivative on the reflectance factor spectra; 

- First derivative absorbance (FDLog(1/R): Calculated by applying the Savitzky-

Golay derivative on the absorbance spectra; 

- Continuum removed reflectance (CR): The continuum removed spectra is calculated 

by dividing the original reflectance factor value for each waveband in the absorption 

feature by the reflectance factor level of the continuum line (convex hull) at the 

corresponding wavelength (Kokaly and Clark 1999). In this study the continuum 

removal was applied to the absorption features between 420-518 nm, 550-750 nm, 

910-1081 nm, 1116-1284 nm, 1720-1786 nm, 2010-2196 nm and 2222-2378 nm. 

These absorption features were selected based on previous research (Kokaly and 

Clark 1999, Curran et al. 2001, Mutanga et al. 2004, Huang et al. 2004); 

- Continuum-removed derivative reflectance (CRDR): Calculated by applying the 

Savitzky-Golay derivative on the continuum removed reflectance; 

 - Band depth ratio (BDR): Calculated by dividing the band depth (absorption band 

depth relative to the continuum) of each waveband by the band depth at the band 

centre (maximum band depth); and 

- Normalized band depth index (NBDI): Calculated by subtracting the band depth 

from the band centre and dividing it by their sum. 

 

6.2.5. Regression analyses 
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6.2.5.1. Entire dataset (357 samples for N%, 473 samples for P% and 376 samples 

for K% prediction) 

The difference in dataset size used for calibration of N, P and K concentration 

against spectral data is a consequence of the different experimental sources of data used in 

the study. Data were collected from a number of experiments established for other 

purposes. The K concentration was not obtained in all these experiments. Although in all 

experiments N and P concentration of the samples were obtained, N concentration of some 

samples was analysed using NIRS, while others were analysed using wet chemistry 

methods. In this study only the samples analysed by wet chemistry were used. 

The original reflectance factor dataset (R) and the mathematically transformed 

datasets (Log(1/R), FDR, FDLog(1/R), CR, CRDR, BDR, NBDI) were regressed against 

pasture N, P and K concentration (%) using partial least square regressions (PLSR) in The 

Unscrambler® 9.7 software. The number of latent variables (LV) (also known as principal 

components - PCs) used for each PLSR model represents the number at which additive 

prediction errors are minimized. The samples were split into calibration and validation 

datasets (N: 179 calibration and 178 validation samples; P: 237 calibration and 236 

validation samples; K: 188 calibration and 188 validation samples). The allocation of data 

to calibration and validation sets was conducted using prior knowledge of the range of the 

samples from the chemical analyses (Kusumo et al. 2008). The samples were ranked from 

the lowest to the highest nutrient concentration (N, P and K, separately) and odd and even 

ranked samples were allocated for calibration and validation sets, correspondingly. 

The accuracy and precision of the PLSR calibration models were assessed in terms 

of coefficient of determination (R2), root mean square error of prediction (RMSEP), slope, 

bias and the ratio of standard deviation of the nutrients measured to the RMSEP 

(SD/RMSEP) for the validation dataset. Accurate and precise prediction is shown by high 

R
2, low RMSECV, slope close to one, bias close to zero, and high SD/RMSECV. 

The SD/RMSEP ratio (or SD/RMSECV, for cross-validation) (previously used by 

Chang et al. 2001 and Thulin et al. 2006) is a modification of the ratio of prediction to 

standard deviation (RPD) developed for NIRS analysis (of dried samples) in agricultural 

commodity applications, which is calculated by dividing the SD of the measured data in the 

validation dataset by the standard error of prediction (SEP) corrected for bias (Williams 
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2001). In Williams (2001), for a regression model to be considered acceptable it needs to 

have a RPD value higher than 3. However, some studies have reported that a model with a 

SD/RMSEP or RPD  2 would provide an excellent calibration model (Chang et al. 2001, 

Dunn et al. 2002 and Cohen et al. 2005), since the measured variability of the difference 

between the predicted and measured values for a set of validation samples will be half (or 

less) of the SD of the measured data. 

 

6.2.5.2. Seasonal datasets 

The pasture samples and respective spectra were also grouped according to season. 

For the samples analysed for N% the seasonal dataset consisted of 162 spring, 82 summer, 

61 autumn and 52 winter samples. For P%, 210 spring samples were analysed, 105 summer, 

84 autumn and 74 winter samples. For K% there were 158 spring, 93 summer, 63 autumn 

and 62 winter samples. The data for each season were regressed against pasture N, P and K 

concentration using PLSR. Because some datasets did not have sufficient samples to be 

divided into calibration and validation subsets, all the regressions carried out per season 

used full cross-validation (leave-one-out) as the validation method. Preferably, according to 

Malley and Martin (2003), a calibration subset should have a minimum of 100-150 samples. 

The accuracy of the PLSR models carried out per season was assessed in terms of 

coefficient of determination (R2), root mean square error of cross-validation (RMSCV), 

slope, bias and the ratio of standard deviation of the nutrients measured to the RMSECV 

(SD/RMSECV) for the validation dataset. Accurate prediction is shown by high R
2, low 

RMSECV, slope close to one, bias close to zero, and high SD/RMSECV. 

 

6.2.6. Martens’ Uncertainty Test 

 

To assess which wavelengths were significantly important for the pasture nutrient 

predictions models a Martens‟ Uncertainty Test, available in The Unscrambler® software, 

was applied. Under cross-validation, a number of sub-models are created which are based 

on all the samples that were not kept out in the cross-validation segment. For every sub-

model, a set of model parameters (including B-coefficients) is calculated. Variations over 

these sub-models will be estimated so as to assess the stability of the results. For each 
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variable the difference between the B-coefficient Bi in a sub-model and the Btot for the total 

model is calculated. The Unscrambler® takes the sum of the squares of the differences in all 

sub-models to get an expression of the variance of the Bi estimate for a variable. With a t-

test the significance of the estimate of Bi is calculated. Thus, the resulting regression 

coefficients can be presented with uncertainty limits that correspond to 2 standard 

deviations under ideal conditions. Variables with uncertainty limits that do not cross the 

zero line are significant variables. Variables that are non-significant in the Martens‟ 

Uncertainty Test display non-structured variation (i.e. noise), and they can be considered 

useless or unreliable variables (Martens and Martens 2000, CAMO 2007). 

 

6.3. Results and discussion 

 

6.3.1. Pasture chemical analysis 

 

A wide range of concentrations were obtained for the three nutrients analysed 

(Table 6.2). The coefficient of variation (CV), calculated by dividing the standard deviation 

(SD) by the mean, was the same for P and K (0.28) and lower for N (0.21).  

 

Table 6.2. Summary of statistics for pasture N, P and K concentration for entire dataset and 
for data divided into calibration and validation sets. 

Nutrient (%) Min. Max. Range Mean SD CV 

N (n = 357) 1.16 4.99 3.83 3.53 0.73 0.21 

calibration (n = 179) 1.16 4.99 3.83 3.52 0.74 0.21 

validation  (n = 178) 1.42 4.93 3.51 3.53 0.73 0.21 

P (n = 473) 0.15 0.79 0.64 0.40 0.11 0.28 

calibration (n = 237) 0.15 0.79 0.64 0.40 0.11 0.28 

validation  (n = 236) 0.17 0.67 0.50 0.39 0.11 0.28 

K (n = 376) 0.90 4.20 3.30 2.55 0.71 0.28 

calibration (n = 188) 0.90 4.15 3.25 2.55 0.71 0.28 

validation  (n = 188) 0.90 4.20 3.30 2.56 0.71 0.28 

 

Pasture samples analysed for N ranged in value from 1.16% to 4.99%, with an 

averaged value of 3.53%. According to McNaught (1970) critical N values for optimum 
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clover and ryegrass growth are from 4.50-5.50% and 4.00-4.50%, respectively. Cornforth 

and Sinclair (1984) defined the optimum N concentration for white clover of 4.80-5.50% 

and 4.5-5.0% for ryegrass. In this study only 24% of the samples had N values over 4.50%, 

with the majority of these samples from two dairy pastures sites (Ruakura and Colyton), 

which received fertiliser N and P inputs. The lowest N values were observed for pasture 

samples from hill country (Alfredton and Ballantrae), sites of lower fertility.   

McNaught (1970) defines critical P levels of 0.30-0.40% for optimum clover 

growth and 0.28-0.36% for optimum ryegrass growth, while Cornforth and Sinclair (1984) 

define optimum P level of 0.35% for white clover and 0.40% for ryegrass. Within the 473 

pasture samples P concentration varied from 0.15% to 0.79%, with 0.40% as the mean 

value. Lowest P values came from samples collected at one of the hill country sites 

(Alfredton) and the highest values from dairy pastures receiving large amounts of P 

fertilizer (Colyton). 

Williams (1988) established 2.0-2.5% K as being adequate for plant growth, with 

levels >2.5% K being luxury uptake. McNaught (1970) defined the critical K concentration 

for optimum ryegrass and white clover growth of 2.2% and 2.0%, respectively. Smith and 

Middleton (1978) in a survey of New Zealand pastures found K concentrations ranging 

from 0.98 to 5.21%, with 75% of the sites sampled having concentrations >2.5%. In this 

study, K concentrations ranged from 0.90% to 4.20%, with an average value of 2.55%. 50% 

of samples had K levels >2.5%, coming primarily from Tokoroa, Colyton and Ballantrae. 

Under 25% of samples had K values under the critical level, coming mostly from Ruakura, 

Atiamuri and Alfredton. 

 

6.3.2. Prediction of pasture N, P and K concentration using different mathematically 

transformed spectral data 

 

The accuracy of PLSR calibration models (calibration datasets; N: 179 samples; P: 

237 samples; K: 188 samples) in predicting N, P and K concentrations of pasture from 

different mathematically transformed spectral data was tested using separate validation 

datasets (N: 178 samples; P: 236 samples; K: 188 samples) (Table 6.3). 
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Table 6.3. PLSR results between pasture nutrient concentration and reflectance factor (R), 
first derivative reflectance (FDR), absorbance (Log(1/R), first derivative of absorbance 
(FDLog(1/R)), continuum removed reflectance (CR), continuum removed derivative 
reflectance (CRDR), band depth ratio (BDR) and normalized band depth index (NBDI) for 
the validation datasets using regression models developed from the calibration datasets. 

  
Mathematical 

transformations 
Latent 

Variables R2 RMSEP Slope Bias SD/RMSEP 

N
itr

og
en

 %
 

R 6 0.49 0.52 0.52 -0.0117 1.4 
FDR 5 0.45 0.54 0.54 -0.0229 1.4 
Log(1/R)  5 0.37 0.58 0.38 0.0121 1.3 
FDLog(1/R) 3 0.34 0.59 0.33 0.0453 1.2 
CR 8 0.40 0.56 0.46 0.0202 1.3 
CRDR 2 0.28 0.62 0.28 0.0182 1.2 
BDR 1 0.24 0.63 0.21 -0.0012 1.2 
NBDI 9 0.41 0.56 0.47 0.0269 1.3 

Ph
os

ph
or

us
 %

 

R 11 0.53 0.07 0.59 -0.0001 1.5 
FDR 8 0.53 0.07 0.61 -0.0004 1.5 
Log(1/R)  10 0.55 0.07 0.59 -0.0008 1.5 
FDLog(1/R) 8 0.53 0.07 0.61 -0.0013 1.5 
CR 12 0.38 0.09 0.47 -0.0003 1.3 
CRDR 6 0.35 0.09 0.50 -0.0010 1.3 
BDR 2 0.20 0.10 0.26 -0.0042 1.1 
NBDI 2 0.23 0.10 0.28 -0.0011 1.2 

Po
ta

ss
iu

m
 %

 

R 13 0.52 0.49 0.61 -0.0773 1.5 
FDR 9 0.51 0.50 0.63 -0.0129 1.4 
Log(1/R)  9 0.44 0.53 0.48 -0.0179 1.3 
FDLog(1/R) 5 0.45 0.52 0.52 0.0220 1.4 
CR 7 0.38 0.56 0.45 -0.0315 1.3 
CRDR 5 0.38 0.56 0.46 -0.0232 1.3 
BDR 1 0.15 0.65 0.17 0.0268 1.1 
NBDI 9 0.36 0.57 0.45 -0.0797 1.3 

 

The PLSR prediction models developed from the all-seasons dataset collected for 

all three nutrients were inaccurate at predicting N, P and K concentrations. Slightly better 

prediction results were obtained using the R, FDR, Log(1/R) and FDLog (1/R) datasets. 

Although previous research had reported that continuum removal analysis would be useful 

in predicting pasture parameters in situ (Mutanga et al. 2004, Kawamura et al. 2009a), the 

PLSR results for N, P, K predictions in this study, were not improved by the continuum 

removed spectra of the seven absorption features selected. This was irrespective of the 

method of data transformation (CR, CRDR, BDR and NBDI, Table 6.3). Results might 

have been improved if the continuum was calculated using different wavelength ranges 

(Kawamura et al. 2009a), but it was decided not to explore the continuum removal process 
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further in this research. Hence for the pasture nutrient predictions in different seasons of the 

year analyses were restricted to the use of R, FDR, Log(1/R) and FDLog(1/R) data. 

There is very little published research that has explored the prediction of pasture 

nutrient content by testing different mathematically transformed spectral data, and of that 

published, the results diverge greatly. For example Mutanga et al. (2004) used 96 samples 

collected in the Kruger National Park, South Africa, during the dry season of 2002, to 

predict in situ nutrient concentration of a pasture composed of mixed species. The data 

were split into training (calibration dataset, n = 72) and testing sets (validation dataset, n = 

24), and using stepwise multiple linear regression (SMLR) and a bootstrapping procedure, 

predictions for N, P and K yielded mean RMSEP of 0.08, 0.02 and 0.05, respectively, and 

mean R
2 of 0.60, 0.70 and 0.53, respectively. These results were achieved by analysing 

CRDR data, but the authors also ran regressions for band depth (BD) (BD = 1-CR), BDR 

and NBDI transformations, and those resultant R2 values were similar to our results (Table 

6.3), but in their case the CRDR yielded better results. The RMSEP values for our 

predictions are much higher than the values presented by Mutanga et al. (2004), especially 

for N and K. Compared with the Mutanga et al. (2004) study, where the N concentration 

ranged from 0.38 to 2.00% (mean = 0.78%), P ranged between 0.04-0.48% (mean = 0.18%), 

and K from 0.21 to 2.71% (mean = 0.96); in this study nutrient concentrations were much 

higher (Table 6.2). 

Bogrekci and Lee (2005) using absorbance data (between 225 and 2525 nm) and P 

concentration of 150 fresh Bahia grass samples collected in three sites in the Lake 

Okeechobee drainage basin in Florida, obtained the best result (R
2 = 0.43 and RMSEP = 

0.07%) using PLSR compared to SMLR. The values of RMSEP are similar to those for P% 

in this study, but the R2 was higher. Again compared with the present study, the P% in the 

Bahia grass samples were much lower (0.12-0.50%). 

Under controlled conditions, and in one season, Mutanga et al. (2005) used 96 

Cenchrus ciliaris grass plots from a greenhouse experiment to predict pasture quality using 

continuum removal analysis in the visible domain (550-750 nm). SMLR and bootstrapping 

procedures were applied to transformed spectral data (CRDR, BD, BDR and NBDI) and 

pasture nutrient concentration. Using R2 to test the model‟s accuracy for predicting pasture 

N and K concentrations, the highest R
2 (0.73 and 0.33, respectively) were obtained with 
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NBDI data, while for P concentrations the best result (R2 = 0.33) was achieved with BDR 

data. Apart from the high accuracy of the N calibration model, these findings are similar to 

the findings of the present study from sampling contrasting field sites in situ in different 

seasons. 

Thulin et al. (2006) predicted in situ pasture crude protein (CP) of 75 samples 

collected on December 2000, January and October 2002, from two sites in the south-eastern 

temperate zone of Victoria, Australia. Using PLSR full cross-validation, the best results 

were obtained using derivative of absorbance data (FDLog(1/R)) and yielded a R
2 = 0.61 

and a RMSECV of 2.97% CP (equivalent to 0.48% N, since CP is 6.25 times the nitrogen 

content of forages). The data collected in 2000 (n = 30) and in 2002 (n = 45) were captured 

using different methods, with the former having an internal average of 10 captured directly 

above a pasture canopy. The latter had an internal averaging of 50 or 200 and consisted of 

multiple spectra averaged over an area. Limiting analysis to samples collected in January 

and October 2002 improved the relationship (R2 = 0.79 and RMSECV = 2.39% CP (0.38% 

N)).  

Kawamura et al. (2009a) used 96 samples (48 samples for calibration and 

validation) to estimate New Zealand hill pasture nutrient content. Reflectance, derivatives 

and continuum-removed reflectance data were regressed against pasture nutrient content (in 

kg ha-1) using PLSR. Best predictions for N (R2 = 0.89) and P (R2 = 0.94) content were 

obtained when analysing CRDR data, and best K content prediction (R
2 = 0.81) when 

analysing FDR. The analyses of Kawamura et al. (2009a) were limited to data collected 

from a single farm on a single date (during spring-summer time transition), which may 

account for the improved accuracy of their calibration models. 

 

6.3.3. Predictions of pasture nutrient concentration by season 

 

The ability to predict pasture nutrient concentration year round from one calibration 

offers the most flexibility, but restricting the calibration and validation of the PLSR model 

to one season might improve the accuracy of the model.  It may be that improved accuracy 

at critical times of the year has greater utility as reported by Mutanga et al. (2004) who 
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focused their pasture quality prediction study at the beginning of the dry season, because 

nutrient quality became more critical at this time of the year. 

 

6.3.3.1. Nitrogen 

On average the winter pasture samples had the highest N concentration and spring 

samples the lowest with the greatest range of N concentrations measured in summer (from 

severely N deficient values of 1.16% N to an adequate N concentration of  4.99%, Table 

6.4). 

 

Table 6.4. Summary of statistics for pasture N concentration (%) per season. 
  Number   Nitrogen     

Season Site of samples Min Max Range Mean SD CV 

Spring  Alf., Bal., Col., Man., Ati. 162 1.69 4.93 3.24 3.34 0.64 0.19 

Summer Alf., Bal., Rua. 82 1.16 4.99 3.83 3.73 0.88 0.24 

Autumn Alf., Col., Ati. 61 1.42 4.42 3.00 3.38 0.72 0.21 

Winter Alf., Col.  52 2.75 4.85 2.10 3.94 0.49 0.13 

 Alf. – Alfredton, Bal. – Ballantrae, Col. – Colyton, Man. – Manawahe, Rua. – Ruakura, Ati. –Atiamuri. 

 

The accuracy of the PLSR calibration models differed little with the four types of 

transformed spectral data (Table 6.5, Figure 6.2). The models derived for the spring data 

presented the lowest R
2s (average R

2 = 0.43) in comparison with the other three seasons 

(average R2 = 0.76). The coefficient of variation (CV) can impact on the predictive capacity 

of the data regressions, but interestingly even with a low CV (0.13) the winter samples 

reached the highest R2 observed (average R2 = 0.78). Conversely, the regressions for spring 

yielded very low values of R2, but that can not be explained by the low CV (0.19). 
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Table 6.5.  Seasonal summary of prediction statistics (PLSR full cross-validation) for 
pasture N% using R, FDR, and Log(1/R) data between 420-2400 nm. 

  Latent variables R2 RMSECV Slope Bias SD/RMSECV 
Spring           

R 8 0.43 0.49 0.46 0.0063 1.3 
FDR 8 0.43 0.48 0.53 0.0034 1.3 
Log(1/R) 9 0.49 0.46 0.55 0.0028 1.4 
FDLog(1/R) 4 0.37 0.51 0.43 0.0028 1.3 

Summer           
R 7 0.72 0.47 0.76 -0.0015 1.9 
FDR 8 0.78 0.41 0.83 -0.0030 2.1 
Log(1/R) 8 0.74 0.45 0.77 0.0089 2.0 
FDLog(1/R) 8 0.76 0.43 0.77 0.0089 2.0 

Autumn           
R 3 0.77 0.35 0.79 -0.0011 2.0 
FDR 3 0.75 0.36 0.77 -0.0012 2.0 
Log(1/R) 4 0.75 0.36 0.78 0.0018 2.0 
FDLog(1/R) 3 0.77 0.35 0.80 -0.0011 2.1 

Winter           
R 5 0.75 0.25 0.80 0.0028 2.0 
FDR 5 0.79 0.23 0.86 -0.0031 2.2 
Log(1/R) 5 0.74 0.25 0.81 -0.0093 2.0 
FDLog(1/R) 4 0.83 0.21 0.84 0.0100 2.4 

 

 

 
Figure 6.2. Relationships between measured pasture nitrogen concentrations and those 
predicted from the FDLog(1/R) dataset for the four seasons of the year. 
 



Chapter 6                                                                                                                             105 
 

Considering all the statistics presented for the PLSR models (Table 6.5) the most 

accurate predictions were obtained for the winter samples and the least accurate predictions 

for spring samples. There are major pasture-related differences between these two seasons 

including photosynthetic activity and rate of growth and nutrient concentration (Table 6.4).  

Based on an interpretation of SD/RMSECV values (Table 6.5), calibration models 

for pasture N% prediction in situ for summer (exception for R data), autumn and winter 

were reasonably accurate, but inaccurate for spring. Of the data collected in spring, the 

smallest average difference between predicted N values (by PLSR model) and measured N 

values was observed for samples collected from Colyton in September 2007 (average 

difference between measured and predicted N values significantly smaller (t-test, p < 0.05) 

than the average difference of all other sites). This dataset, Colyton September 2007, was 

collected during early spring, while all other datasets examined were collected during mid 

or late spring. This difference in time of sampling may have been important because, in 

early spring, grasses have vigorous leaf production, whereas in mid and late spring, as the 

temperatures rise, the proportion of stem and inflorescence increases (Chaves 2003).  

In comparison to the Colyton September 2007 (early spring) dataset, the dataset 

collected at Colyton in October 2006 (mid spring) presented one of the highest average 

differences between measured and predicted N values, 0.20 and 0.48 (t-test p < 0.05) 

respectively. Although the reproductive components of the herbage samples collected were 

not quantified at this site, pictures taken of the Colyton plots in October 2006 indicate a 

similar proportion of stems and inflorescences to that seen at the same site in September 

2007. Standing biomass was on average higher (20%) in October 2006 (range = 1985-3360 

kg DM/ha, average = 2642 kg DM/ha) than September 2007 (range = 1559-2807 kg DM/ha, 

average = 2123 kg DM/ha). While there was no significant correlation (t-test, p < 0.05) 

between standing biomass and the differences between predicted and measured N values 

for the pasture samples collected during September 2007, a negative correlation of 0.70 (t-

test, p < 0.05, data not shown) was observed for October 2006 samples. In general, two 

distinct trends were observed in the October 2006 dataset, overall the samples with biomass 

up to approximately 2500 kg DM/ha had the N% overestimated by the PLSR models, while 

samples with biomass greater than 2500 kg DM/ha had the N% underestimated by the 

models.  
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While the Colyton pasture plots were cut and not grazed by animals, at Manawahe 

(range = 927-2096 kg DM/ha, average = 1421 kg DM/ha) and Alfredton (range = 1197-

2376 kg DM/ha, average = 1759 kg DM/ha) pastures were under dairy and sheep grazing, 

respectively. For Manawahe a low correlation (r = -0.39, P < 0.05) was observed between 

the biomass and the differences between predicted and measured N values, while at 

Alfredton no statistically significant correlation (P < 0.05) was observed. 

The N predictions accuracy for summer, autumn and winter samples (Table 6.5) 

were improved compared to the regressions based on all-seasons data (Table 6.3). If the 

spring data are excluded from the all-seasons dataset and a new regression is done (PLSR 

using cross-validation and R data) (n = 195) the result (LV = 15, R2 = 0.78, slope = 0.85, 

bias = 0.0006, RMSECV = 0.37, and SD/RMSCV = 2.1) is improved (c.f. all seasons data 

in Table 6.3) and is comparable with the three individual seasons analysed separately 

(Table 6.5). Regressions using absorbance and derivatives data against summer, autumn 

and winter samples combined had inferior results to the one obtained using the reflectance 

factor (data not shown). 

In New Zealand pastoral systems, N fertiliser is still used predominantly to lift 

pasture production in periods of low growth, which are commonly caused by seasonally 

low soil temperatures. N fertiliser is not commonly used to sustain all year round base 

pasture production. N supply for base productions is achieved through the inclusion of N 

fixing legumes in the pasture mix. New Zealand pastures, however, are responsive to 

applied N fertiliser in all months of the year (Lynch 1982), although the greatest use would 

be the autumn and winter and early spring months. Lynch (1982) suggests that the ability to 

predict the likelihood of a pasture growth response to N applied in autumn is poor. 

Compared with the spring, pasture growth in the autumn and winter can be limited by a 

number of factors (e.g. temperature, moisture and mineralizable N levels), all of which will 

affect the response to added N. Improving the ability to predict likelihood and size of the 

pasture response to added N in the autumn and winter by sensing the N concentration in the 

mixed pasture would have immediate economic benefits by avoiding some unnecessary 

fertiliser application. In turn this would reduce pasture N concentrations leading to less 

urine N and lower gaseous and leaching losses of N to the environment. The results 

presented in this Chapter show that the N concentration (degree of N deficiency) in New 
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Zealand pastures could be predicted with reasonable accuracy using the spectral reflectance 

of pasture samples taken in summer, autumn and winter seasons. The ability to accurately 

sense pasture for N concentration immediately before applying N using hand held sensors 

could result in significant saving in N fertiliser use and improvements to the environment. 

 

6.3.3.2. Phosphorus  

The highest herbage P concentrations occurred in spring samples; followed by 

summer, winter and autumn samples (Table 6.6). The greatest range in P concentrations 

also occurred in spring (from severely P deficient values of 0.19% P to an excessive P 

concentration of 0.79%). Summer and autumn samples had similar average P 

concentrations (0.34), likewise did winter and spring samples (0.43). The CV was similar 

for spring, summer and autumn; and lowest in winter (0.12). 

 

Table 6.6. Summary of statistics for pasture P concentration (%) per season. 
  Number   P     

Season Site of samples Min Max Range Mean SD CV 

Spring  Alf., Bal., Col., Man., Tok., Ati. 210 0.19 0.79 0.60 0.43 0.12 0.28 

Summer Alf., Bal., Rua. 105 0.20 0.62 0.42 0.34 0.09 0.27 

Autumn Alf., Col., Ati. 84 0.15 0.52 0.37 0.34 0.10 0.29 

Winter Alf., Col.  74 0.33 0.56 0.23 0.43 0.05 0.12 

   Alf. – Alfredton, Bal. – Ballantrae, Col. – Colyton, Man. – Manawahe, Rua. – Ruakura, Tok. – Tokoroa, Ati. –Atiamuri. 

 

The PLSR calibration models predicted pasture P concentration to a similar level of 

accuracy irrespective of the method of data transformation used (Table 6.7, Figure 6.3). All 

PLSR models using observations taken in winter were inaccurate (very low R
2) at 

predicting unknown herbage P concentrations. The inaccuracy is attributed to the very low 

range of P concentrations observed in winter samples (0.23) and low CV (0.12). PLSR 

calibration models based on spring observations were moderately accurate (R2s 0.53 - 0.60) 

for all sites, although spring data had the highest range and second highest CV. The most 

accurate PLSR calibration models were produced from autumn observations (highest R
2 

and highest SD/RMSECV).  
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Table 6.7.  Seasonal summary of prediction statistics (PLSR full cross-validation) for 
pasture P% using R, FDR, and Log(1/R) data between 420-2400 nm. 

  Latent variables R2 RMSECV Slope Bias SD/RMSECV 
Spring           

R 7 0.53 0.08 0.56 0.0005 1.5 
FDR 7 0.59 0.08 0.63 0.0002 1.6 
Log(1/R) 10 0.60 0.08 0.64 0.0000 1.6 
FDLog(1/R) 5 0.60 0.08 0.64 0.0008 1.6 

Summer           
R 7 0.65 0.05 0.68 -0.0007 1.7 
FDR 7 0.74 0.05 0.77 -0.0004 1.9 
Log(1/R) 5 0.65 0.05 0.68 0.0002 1.7 
FDLog(1/R) 5 0.70 0.05 0.73 -0.0002 1.8 

Autumn           
R 3 0.76 0.05 0.76 -0.0001 2.0 
FDR 2 0.77 0.05 0.77 -0.0001 2.1 
Log(1/R) 2 0.75 0.05 0.75 -0.0002 2.0 
FDLog(1/R) 1 0.76 0.05 0.76 -0.0001 2.1 

Winter           
R 3 0.17 0.05 0.18 -0.0001 1.1 
FDR 3 0.14 0.05 0.02 -0.0001 1.1 
Log(1/R) 2 0.12 0.05 0.14 -0.0002 1.1 
FDLog(1/R) 2 0.16 0.05 0.21 -0.0003 1.1 

 

 

 
Figure 6.3. Relationships between measured pasture phosphorus concentrations and those 
predicted from the FDR dataset for the four seasons of the year. 
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PLSR calibration models produced using summer, autumn and winter observations 

had the same error of prediction (RMSECV = 0.05) but because the SD of winter samples 

(0.05) is about half of the SD of summer (0.09) and autumn (0.10) samples, the 

comparative level of accuracy of prediction (SD/RMSECV ratio) for winter samples is half 

that of the summer and autumn values. This indicates that less accurate predictions result 

from samples sets with small ranges rather than the inability of the methodology (field 

hyperspectral data) to predict the nutrient content. 

PLSR models based on observations taken in autumn samples followed by summer 

produced the most accurate predictions (Table 6.7). When the summer and autumn samples 

were pooled, a PLSR calibration produced using FDR data had slightly lower R
2 and 

SD/RMSECV values (LV = 8, R2 = 0.69, slope = 0.79, bias = -0.0001, RMSECV = 0.05, 

and SD/RMSECV = 1.8) compared to the regressions for summer and autumn data 

separately (Table 6.7); but greater accuracy compared to the regression for all seasons 

combined (Table 6.3). 

The PLSR calibration models presented above showed that reasonably accurate 

pasture P concentration predictions could be achieved in autumn. In New Zealand, P 

fertilisers are applied annually to pastures, to maintain or increase pasture production by 

encouraging legume growth (and therefore N fixation) (Roberts and Morton 1999). Most 

annual P fertiliser applications are made in autumn when dry soil conditions allow the 

operation of heavy spreading machinery. Soil P testing has traditionally been used for 

monitoring the P status of the pasture, although pasture P concentrations are also used to 

monitor the P status. Monitoring by either soil testing or collecting pasture samples for 

testing in the laboratory is generally limited to a few fixed sites on a pastoral farm. These 

fixed sites are then used to provide an indication of the likely P levels over much wider 

areas. The findings of the present study show that hyperspectral remote sensing can predict 

pasture P in autumn with reasonable accuracy, offering an approach that would allow the P 

concentration in pasture to be measured beyond fixed transects, providing an indication of 

the changes in P status for example in and around water ways and within and across 

paddocks, opening the opportunity for increasing the efficiency of use of applied P and 

reducing P losses to the environment.  
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6.3.3.3. Potassium 

The greatest range of K concentrations occurred during summer, followed by spring, 

autumn and winter (Table 6.8). The K concentrations in New Zealand pastures have been 

previously reported to have a seasonal variation, with the concentration lower in the drier 

months of the year and higher in the wetter months (Williams 1988; Thomas and Hipp 

1968). Our findings agree with this; with the highest average K concentrations occurring in 

spring and winter (wetter months), than in summer and autumn samples (drier months). 

 

Table 6.8. Summary of statistics for pasture K concentration (%) per season. 
  Number   K     

Season Site of samples Min Max Range Mean SD CV 

Spring  Alf., Bal., Col., Man., Tok., Ati. 158 1.50 4.20 2.70 3.02 0.55 0.18 

Summer Alf., Bal., Rua. 93 1.00 4.15 3.15 2.17 0.67 0.31 

Autumn Alf., Col. 63 0.90 2.76 1.86 1.87 0.46 0.25 

Winter Alf., Col.  62 1.73 3.40 1.67 2.62 0.36 0.14 

Alf. – Alfredton, Bal. – Ballantrae, Col. – Colyton, Man. – Manawahe, Rua. – Ruakura, Tok. – Tokoroa, Ati. –Atiamuri. 

 

The PLSR calibration models built using the FDR data from the summer and 

autumn samplings were slightly more accurate than the PLSR models using the other 

spectral data transformations (Table 6.9, Figure 6.4). The only accurate models were 

produced using summer observations (R2 values ≥ 0.7, RMSECV ≤ 0.37, SD/RMSECV ≥ 

1.8). PLSR models using spring, autumn and winter observations were less accurate (R2 ≤ 

0.40; RMSECV ≥ 0.36, SD/RMSECV ≤ 1.3). PLSR models based on winter samples had 

extremely low R2s, which can be explained by a low sample values range and the lowest 

CV among all samples.  
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Table 6.9.  Seasonal summary of prediction statistics (PLSR full cross-validation) for 
pasture K% using R, FDR, and Log(1/R) data between 420-2400 nm. 

  Latent variables R2 RMSECV Slope Bias SD/RMSECV 
Spring           

R 8 0.37 0.44 0.44 0.0009 1.3 
FDR 4 0.33 0.45 0.36 0.0018 1.2 
Log(1/R) 13 0.36 0.44 0.51 0.0026 1.2 
FDLog(1/R) 5 0.32 0.46 0.46 0.0087 1.2 

Summer           
R 7 0.70 0.37 0.74 -0.0045 1.8 
FDR 7 0.76 0.33 0.81 -0.0033 2.0 
Log(1/R) 9 0.72 0.36 0.78 -0.0006 1.9 
FDLog(1/R) 5 0.73 0.35 0.75 0.0015 1.9 

Autumn           
R 3 0.34 0.38 0.37 0.0024 1.2 
FDR 4 0.40 0.36 0.44 0.0006 1.3  
Log(1/R) 2 0.30 0.39 0.32 0.0028 1.2 
FDLog(1/R) 2 0.34 0.38 0.38 0.0008 1.2 

Winter           
R 1 0.01 0.36 0.01 0.0006 1.0 
FDR 1 0.01 0.36 0.01 -0.0004 1.0 
Log(1/R) 1 0.06 0.37 -0.02 0.0011 1.0 
FDLog(1/R) 1 0.01 0.36 0.01 0.0005 1.0 

 

 

 
Figure 6.4. Relationships between measured pasture potassium concentrations and those 
predicted from the FDR dataset for the four seasons of the year. 
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This study shows that pasture K prediction could be achieved with reasonable 

accuracy for samples collected during the summer months only. In New Zealand this is one 

of the seasons with the lowest concentrations of K in pasture. With fertiliser K applied 

predominantly in late winter and early spring on NZ dairy systems to limit the loss of K by 

leaching and also to limit the impact of added K on pasture Ca and Mg concentrations and 

cow metabolism, a model calibrated from summer data would only be useful if low K 

values in summer coincided with low pasture K concentrations in winter and spring. Good 

correlations exist between summer and spring pasture K concentrations (0.64 for Alfredton 

site, 0.88 for Ballantrae, and 0.77 considering Alfredton and Ballantrae), which indicate 

that the assessment of K status could be conducted during summer with the application of 

K fertiliser done later in the following early spring based on the summer assessment. No 

correlation was observed between summer and winter samples collected at Alfredton, the 

only site in this study which had samples from those two seasons. 

 

6.3.3.4. Most important wavelengths for the pasture nutrient predictions 

In Figures 6.5, 6.6 and 6.7, regression coefficient plots for PLSR calibration models 

are shown for the prediction of  N% (using the FDLog(1/R) data), and for P% and K% 

(using FDR datasets). Regression coefficients of the PLSR calibration models indicate the 

importance of a particular waveband in explaining the variance in the measured pasture N, 

P and K concentrations (Figures 6.5, 6.6 and 6.7).  

The wavelengths detected as significant by the Martens‟ Uncertainty Test are 

highlighted in the regression coefficient plots (Figure 6.5, 6.6 and 6.7). Some wavelengths 

which presented high values of regression coefficients were detected as non-significant 

(useless or unreliable) in the Martens‟ Uncertainty Test; these wavelengths were mainly 

localized in the extremes parts of the spectrum and have higher noise (low signal-to-noise 

ratio).  

For the prediction of pasture N, wavebands in the visible (Vis) part of the 

electromagnetic spectrum was the most important for the models, independent of the season 

analysed (Figure 6.5). Chlorophyll absorption bands are found at 430 nm, 460 nm, 640 nm 

and 660 nm; and since N is a key component of chlorophyll, different levels of plant N are 

expected to be seen as a different concentration of plant chlorophyll (Donahue et al. 1983). 
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The red edge (680-750 nm) has been reported to have a good correlation with N content 

and other biochemical compounds (Lichtenthaler et al. 1996, Lamb et al. 2002, Mutanga et 

al. 2005). In the present study better predictions of herbage N% were achieved for the 

seasons where red edge wavelengths had greatest influence on the prediction model. 

However, N absorption features for dried and ground vegetation samples are found not only 

at the previously mentioned chlorophyll absorption bands but also at 910 nm, 1020 nm, 

1510 nm, 1690 nm, 1940 nm, 1980 nm, 2060 nm, 2130 nm, 2180 nm, 2240 nm, 2300 nm, 

2350 nm (Curran 1989). These are protein absorption features which are of course closely 

related to N% content. It is well known that one of the challenges when working with 

spectra of fresh leaves is that water in the leaves masks absorption features (Elvidge 1990), 

especially between 1300-2500 nm where water strongly absorbs energy (Carter 1991). The 

fact that wavelengths in the Vis are less influenced by water than in infrared (IR) might 

explain why the most important wavelengths for N prediction of fresh pasture canopies in 

this study were found in the Vis region.  

 

 
Figure 6.5. Regression coefficients of PLSR models for pasture N% prediction using the 
FDLog(1/R) dataset by season. Plotted in black are the significant wavelengths for the 
regression according to the Martens‟ Uncertainty Test. Values plotted in the graphs 
represent the significant wavelengths with highest regression coefficient values. 
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When using the FDLog(1/R) data to calibrate the PLSR model, the most accurate  

results for predicting N% were achieved with winter observations, followed by autumn and 

summer, while spring observations yielded inaccurate results (Table 6.5). The Uncertainty 

test revealed that for the spring dataset, only two wavelengths (421 nm and 422 nm) out of 

the 1981 wavelength bands analysed were considered significant in the PLSR model. For 

winter, summer and autumn datasets 963, 822 and 595 wavelength bands spread all over 

the spectrum  range analysed were significant, respectively. 

The most influential wavelengths for the PLSR models used to predict P% (Figure 

6.6), were spread all over the Vis and IR wavelength regions. The number of wavelength 

bands considered significantly important by the Uncertainty Test was 1691, 753, 454 and 

383 for autumn, spring, winter and summer, accordingly. Five distinct wavebands, 

localized at around 732-735 nm, 948-949 nm, 1134-1141 nm, 1403-1408 nm and 1884-

1886 nm, were the most important wavelengths for prediction of P% during autumn (using 

FDR data, Table 6.7). The PLSR model built using winter data had only 3 highly important 

wavelength ranges, 709-710 nm, 1390-1392 nm and 1872-1873 nm. For summer, the 

wavelength at 420 nm had the highest absolute regression coefficient value with much 

smaller regression coefficients associated with other wavelengths. For spring, 5 

wavelengths presented the highest values of regression coefficients with much smaller 

regression coefficients associated with other wavelengths.  

Seasonal variations in the important wavelengths selected by the PLSR calibration 

models to predict pasture nutrient content were also reported by Kawamura et al. (2009b). 

In their study reflectance data of 30 pasture plots measured in two seasons were used to 

determine the best paired combination of bands (as input to normalized difference spectral 

indices) for predicting pasture P. The frequency distribution of selected wavebands changed 

with season, and in spring Vis wavelengths were mostly selected while in summer 

wavelengths in both Vis and IR regions were important. 

The most accurate predictions of pasture P content in this study were achieved for 

the samples collected during the drier months (autumn and summer) than for wet months.  

One explanation for this could be the pasture samples collected during wet months have 

higher moisture contents with more pronounced spectral absorption bands at 1200 nm, 

1450 nm and 1940 nm, which are central wavelengths of water absorption bands (Curran 
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1989), which are close to bands associated with prediction of P concentration in this study 

(e.g. near water absorption band 1450 nm, the wavelengths between 1403-1408 nm had 

significant influence on the autumn PLSR model, and for winter, the range was between 

1390-1392 nm). 

 

 
Figure 6.6. Regression coefficients of PLSR models for pasture P% prediction using the 
FDR dataset per season. Plotted in black are the significant wavelengths for the regression 
according to the Martens‟ Uncertainty Test. Values plotted in the graphs represent the 
significant wavelengths with highest regression coefficient values. 
 

The regression coefficient plots for K prediction varied significantly among seasons. 

According to the Uncertainty Test, spring, summer, autumn and winter PLSR calibration 

models (using FDR data) utilised 814, 484, 127 and 100 significantly important wavelength 

bands, respectively (Figure 6.7). The most accurate predictions of K concentration were 

produced using the summer observations (Table 6.9), and the most influential wavelength 

for this regression model was observed at 420 nm, followed by other visible wavelengths. 

Kawamura et al. (2009b), analysing the best paired combination of bands as input to 

normalized difference spectral indices, also found that visible wavelengths were mostly 

important for predicting pasture K concentrations in spring. For the summer datasets 

wavelengths from both visible and IR regions were important. 
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Figure 6.7. Regression coefficients of PLSR models for pasture K% prediction using the 
FDR dataset per season. Plotted in black are the significant wavelengths for the regression 
according to the Martens‟ Uncertainty Test. Values plotted in the graphs represent the 
significant wavelengths with highest regression coefficient values. 
 

Overall, the best prediction accuracy for pasture P and K concentration occurred 

during the drier seasons (autumn and summer). For predicting N concentration season was 

less important, although in spring months when pastures were growing the most actively 

the prediction was inaccurate. The wavelengths with higher values of regression 

coefficients for N prediction were localized mainly in the visible region of the spectrum, 

where water has less influence. For P and K predictions wavelengths of great significance 

were found in both visible and IR regions. There were indications that the water content of 

the pasture samples may influence the accurate prediction of pasture P and K 

concentrations more than pasture N concentrations. 

  

6.4. Conclusions 

 

The present study has shown that there is potential to predict pasture macro-nutrient 

concentrations using proximally sensed hyperspectral reflectance from the pasture. 

Clustering the data according to the season of the year increased the accuracy of predicting 

the concentrations of the three pasture macro-nutrients. The best predictions were obtained 

with first derivative spectral data, for N% during winter (R
2 = 0.83, RMSECV = 0.21, slope 
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= 0.84, bias = 0.0100 and SD/RMSECV = 2.4), although autumn and summer datasets also 

produced reasonable predictions; for P% during autumn (R2 = 0.77, RMSECV = 0.05, slope 

= 0.77, bias = -0.0001 and SD/RMSECV = 2.1); and for K% during summer (R2 = 0.76, 

RMSECV = 0.33, slope = 0.81, bias = -0.0033 and SD/RMSECV = 2.0). Pastures samples 

collected during winter presented the lowest range of nutrient concentrations, which might 

explain the low accuracy of predicting P% and K% for this season. Calibrations models 

derived from spring data were in general inaccurate. The reason for that is not fully 

understood and further research is necessary to explain it. 

Even though the prediction accuracy presented in this research might not be as high 

as that reported for laboratory NIR spectroscopy on  dried, ground herbage samples, it has 

demonstrated that reasonably accurate predictions can be attained from fresh in situ canopy 

reflectance  measurements. 
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CHAPTER 7: 

Estimation of nutrient concentration and mass of pastures grown under 

different soil phosphorus status and varying nitrogen fertiliser regimes 

using field spectroscopy 

 

------------------------------------------------------------------------------------------------------------ 

Some results of this study have been orally presented and published (full paper) in the 

proceedings of the 14th Australasian Remote Sensing and Photogrammetry Conference, 

Darwin, Australia, 29-03 October 2008. 

------------------------------------------------------------------------------------------------------------ 

 

Abstract 

 

The potential of field spectroscopy to estimate phosphorus (P) and nitrogen (N) content of 

pasture swards in situ, for ensuring optimum use of these two nutrients in grazed pastures, 

was evaluated by collecting spectral data from a field study examining the influence of N 

fertiliser on a legume-based pasture response to added P fertiliser. Spectral data between 

350-2500 nm were collected at four dates from 40 pasture plots which had received 

applications of P (added P) and P and N (added P+N) fertilisers. Calibration models were 

developed using partial least squares regression (PLSR) from first derivative reflectance 

(FDR) and measured pasture P and N concentration (%) and mass (kg ha-1). The accuracy 

of the models was tested using leave-one-out cross-validation. Pasture P concentration and 

mass were inaccurately predicted (R2s = 0.31-0.42 and SD/RMSECV = 1.2-1.3). Higher 

R2s and SD/RMSECV resulted for N prediction when the regressions were carried out 

using the nutrient mass (R2s = 0.61-0.78 and SD/RMSECV = 1.6-2.1) rather than nutrient 

concentration (R2s = 0.39-0.63 and SD/RMSECV = 1.3-1.6). The prediction accuracy for N 

was better for the added P pasture compared to the added P+N pasture, and when separate 

models were used instead of a regression using all samples. This highlights the importance 

of knowing the sample set‟s content when building, evaluating and using prediction 

calibrations. Estimates of R2s and SD/RMSECV for pasture potassium, calcium, 
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magnesium, sodium and sulphur are also presented in the paper. Confidence in using a 

single model to predict multiple nutrients, or a model developed for individual nutrients, 

will only come through building a good understanding of the factors likely to influence any 

one calibration function.  

 

Keywords: minerals, field measurements, pasture sward, hyperspectral data, remote sensing 

 

7.1. Introduction 

 

 Soils in New Zealand generally have pHs < 6.0 and are naturally deficient in 

nitrogen (N) and phosphorus (P), with sulphur (S) deficiency widespread and potassium 

(K) deficiency being induced under intensive livestock farming (e.g.. dairying) and, or, 

where silage or hay is regularly harvested. The main input of N in New Zealand pastures 

comes from biological N fixation by legumes, with N fertilisers used to augment N supply 

during periods of the year when legume growth and N fixation is low. Optimum legume 

growth and consequently N fixation, requires soil P and S levels be maintained in the 

optimum range by applying P and S fertilisers (During 1972). Although P, S, K and N are 

the main growth limiting nutrients considered in fertiliser application, the adequacy of other 

nutrients (Ca, Mg and Na) also need to be monitored, including trace elements (Co, Se, Mo 

and Cu) for both plant growth and the dietary requirements of ruminants (Grace 1983, Chiy 

and Phillips 1996). 

Laboratory based wet chemical methods to measure plant nutrient concentrations 

have been substituted by near infrared reflectance spectroscopy (NIRS), allowing quicker 

and cheaper estimation of forage nutrient content (Berardo 1997 and Corson et al. 1999). 

While NIRS represents an advance on wet chemical methods, there is still the requirement 

to collect plant samples from the field, and to dry and grind them before analysis. Direct 

application of spectroscopic technology in situ to estimate forage nutrient contents 

(Mutanga et al. 2004, Sanches et al. 2006 and Kawamura et al. 2006) has the challenge of 

dealing with variation in leaf internal structure, atmospheric and background effects (Yoder 

and Pettigrew-Crosby 1995) but has the potential not only to eliminate laboratory handling 

and preparation costs but also provide producers with real time data for decision making. 
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Field spectroscopy adds the opportunity to extend sampling beyond fixed locations or 

transects to the whole paddock and even the whole farm.  

The biggest single expenditure faced by most New Zealand pastoral farmers is P 

fertiliser. Phosphorus losses from pastoral systems are implicated increasingly in declining 

water quality and in eutrophication of fresh water bodies. Field spectroscopy could be used 

to increase the precision in calculating P requirements and targeting P applications. It may 

also assist in identifying critical source areas enriched in P at risk of contributing P to 

transmission pathways to surface water bodies.  

To overcome seasonal N deficiency urea is often applied at short notice to a few 

paddocks to boost pasture growth rates (Gillingham et al. 2008). Field spectroscopy could 

provide an estimate of the N content of pasture immediately before N fertiliser application. 

This has the potential to increase efficiency of N fertiliser use and to ensure N contents are 

not elevated above the optimum range. In doing so this would limit the loss of N leached or 

emitted as nitrous oxide from urine patches, as there is a direct relationship between dietary 

N, urine N and N loss to the environment (Ledgard et al. 2008).   

NIRS analysis has been used to measure several constituents and properties of 

forages, but unfortunately the estimation of forage minerals by NIRS can be hindered by 

mineral concentrations with narrow ranges unsuited for calibration against spectral 

properties (Roberts et al. 2004). For estimation of leaf biochemistry (e.g. plant pigment and 

protein content) using NIRS, the spectral data is normally calibrated against the 

concentration of the biochemical represented as percentage of dry weight. However, in a 

study to evaluate the potential of remote sensing for estimating the biochemistry of dry and 

fresh leaves, Jacquemoud et al. (1996) pointed out that concentration might not be the most 

suitable unit for this application, because fractions do not represent the amount of matter 

interacting with light. In their study, the authors reported an increase in biochemical 

variation by a factor between 1 and 10 when the concentration data were expressed per unit 

surface area (g cm-2). Datt (1998), when using leaf pigments both expressed in mg/g fresh 

leaf mass and in mg/cm2 leaf area to estimate chlorophyll and carotenoid of eucalyptus 

leaves by remote sensing, found that while the two units differed by as much as 2 orders of 

magnitude, their coefficients of variation (CV) were similar. Kawamura et al. (2009a) in 

predicting herbage biomass and nutrient (N, P, K and S) contents in hill pastures reported 
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an increase in biochemical variation (CV) two or three times larger when the data were 

expressed as amount per unit area (nutrient mass) instead of percent of dry weight. 

Accordingly, prediction calibrations based on forage nutrients expressed as amount per unit 

area rather than nutrient expressed as concentration might improve the estimation of 

nutrients in forages. 

The objective of this research was to evaluate the use of field spectroscopy to 

estimate pasture P and N using spectral data collected in situ from pasture plots in a field 

study examining the influence of the addition of fertiliser N on a legume based pasture 

response to added P. The opportunity was also taken in the study to estimate the pasture K, 

S, calcium (Ca), magnesium (Mg) and sodium (Na) concentration and mass from the same 

spectral data collected. Spectral data were calibrated against measured pasture nutrient 

expressed as concentration (percent of dry matter) and nutrient mass per hectare (nutrient 

concentration (%) multiplied by the dry matter yield (kg ha-1)). 

 

7.2. Materials and methods 

 

7.2.1. Study area 

 

The field trial site was located on a dairy farm at Colyton (40°13‟S, 175°38‟E), in 

the North Island of New Zealand. The soil of the area is classified as a Pallic soil (Perch-

gley argillic pallic) (Hewitt 1993). Based upon temperature and rainfall, this site is in the 

mid central zone, which is characterized by few extremes of temperature and occasional 

droughts in summer; with pasture mostly composed of temperate grasses (Stewart and 

Charlton 2006). Topography is flat to rolling country with the trial on flat ground. The 

dominant pasture species are perennial ryegrass (Lolium perenne) and white clover 

(Trifolium repens). The P x N study (Mackay et al. 2008) is made up of 5 rates of P 

fertiliser added to sustain Olsen P levels of 24, 30, 42, 49 and 76 (mg L-1), and two rates of 

N (0 and 400 kg N ha-1 y-1) applied as urea. Treatments are replicated 4 times in a 

randomized block design. The study area is excluded from grazing, with clippings removed 

at each harvest. 
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7.2.2. Data collection 

 

Field visits were made to the Colyton site in October-2006, March-2007, June-2007 

and September-2007. In each of the 40, 2m x 5m experimental plots pasture height was 

recorded using a rising plate pasture meter (FILIPTM), pasture samples were cut at 

grazeable height for laboratory analysis for pasture N, P, K, Ca, Mg, Na and S, and 

reflectance factor spectra of the pasture swards were acquired in situ using an ASD 

FieldSpec® Pro FR spectroradiometer (ASD Inc., Boulder, CO, USA) attached to the 

Canopy Pasture Probe (CAPP) top-grip described in Chapter 2. A white ceramic tile was 

used as a reflectance standard (Sanches et al. 2009, Chapter 3). 

 

7.2.3. Spectral data processing and analyses 

 

Ten reflectance factor spectra were acquired from each plot and later averaged using 

the SpectraProc software (Hueni and Tuohy 2006) to form a unique spectrum per plot. 

Using The Unscrambler® 9.7 software (CAMO, Oslo, Norway), the spectra were then 

smoothed by applying a Savitzky-Golay filter (Savitzky and Golay 1964) with a window 

size of 81 and a polynomial order of 4, followed by the calculation of the first derivative of 

the reflectance factor using the Savitzky-Golay algorithm with window size of 3 and 

polynomial order of 2. Spectral data in the wavelength regions between 350-419 nm and 

2401-2500 nm were eliminated because of the low signal-noise ratio in the instrument. All 

these procedures were applied to minimize noise and to enhance spectral features in the 

spectral data collected.  

The first derivative reflectance (FDR) data between 420 and 2400 nm were used to 

build calibration models to predict pasture nutrients of the added P treatments and added 

P+N treatments using partial least squares regression (PLSR). The accuracy of the models 

was tested using the leave-one-out full cross-validation method. The optimal number of 

latent variables (principal components) used in the PLSR were determined by choosing the 

latent variables that produced the lowest root mean square error of cross-validation 

(RMSECV). Regression analyses were done for each of the two datasets (added P 
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treatments = 20 samples by 4 harvests, added P and N = 20 samples by 4 harvests) and for 

the two datasets combined (160 samples). Regressions using the first derivative of the 

absorbance (Log 1/R) spectra rather than the FDR were also conducted, but the results were 

inferior (not shown). The accuracy of the PLSR calibration models were assessed in terms 

of coefficient of determination (R2), root mean square error of cross-validation (RMSECV), 

slope, bias and the ratio of standard deviation (SD) of nutrient measured to the RMSECV 

(SD/RMSECV) for the validation dataset. Accurate prediction is shown by high R2, low 

RMSECV, slope close to one, bias close to zero, and high SD/RMSECV. The RMSECVs 

for the calibrations of spectral data against nutrient concentration (% DM) and nutrient 

mass (kg ha-1) cannot be directly compared because they have different units. In this case 

the SD/RMSECV ratio, which enables the evaluation of the RMSECV in terms of the SD 

of the measured data, was used to compare the prediction models for nutrient concentration 

and mass, the higher the value of this ratio the better. 

To assess the importance of each wavelength for predicting plant P and N 

concentration and mass, the coefficients for the PLSR calibration models were examined. 

These plots summarise the relationship between the predictor variables and the pasture 

nutrients for the model selected. The higher the absolute regression coefficient values for a 

wavelength, the greater the importance of that particular wavelength in the PLSR 

calibration model. To assess which wavelengths were significant (useful and reliable) for 

the pasture nutrient prediction models, a Martens‟ Uncertainty Test, available in The 

Unscrambler® software, was used to estimate the approximate uncertainty variance of the 

PLSR coefficients under cross-validation. This test uses a Jack-knife method (Efron 1982), 

which was modified in order to compensate for rotational ambiguities of bilinear modelling, 

to estimate the uncertainty of the model parameters. During cross-validation, a number of 

sub-models are created with different data each time. For every sub-model, a set of model 

parameters (B-coefficients, scores, loadings and loading weights) is calculated. Variations 

over these sub-models are estimated so as to assess the stability of the results. For each 

variable the difference between the B-coefficient Bi in a sub-model and the Btot for the total 

model is calculated. The Unscrambler® takes the sum of the squares of the differences in all 

sub-models to get an expression of the variance of the Bi estimate for a variable. With a t-

test the significance of the estimate of Bi is calculated. Thus the resulting regression 
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coefficients can be presented with uncertainty limits that correspond to 2 standard 

deviations under ideal conditions. Variables with uncertainty limits that do not cross the 

zero line are significant variables (Martens and Martens 2000, CAMO 2007). 

 

7.2.4. Chemical analyses 

 

Kjeldahl digests were conducted on the dried milled herbage. The N concentration 

of the Kjeldahl digests was determined using Flow Injection Analysis (FIA) Colorimetry 

with a modified Berthelot reaction (Searle 1984). Concentrations of P, K, Ca, Mg, Na and S 

were measured by digesting plant samples with nitric-perchloric acid followed by analysis 

using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES, Boumans 

1980). Nutrients concentrations were expressed as a percentage of dry matter (DM). To 

obtain nutrient mass per unit area, concentrations of N, P, K, Ca, Mg, Na and S (% DM) 

were multiplied by the mass (DM = 158 * plate meter height + 500) of dried pasture (kg 

DM ha-1).  

 

7.3. Results and Discussion 

 

7.3.1. Phosphorus and Nitrogen 

 

7.3.1.1. Effect of P and N fertilisers on grass-legume pasture composition 

 

Increasing soil P status had no significant effect on sward composition (Table 7.1) 

or overall yield (Table 7.2). Added fertiliser N however reduced legume percentage in the 

sward (Figure 7.1). The average legume content of the added P treatment samples was 20%, 

whereas added P+N treatments samples averaged only 2% (Table 7.1). The average grass 

percentage was higher for the added P+N treatments (Table 7.1) as was the DM yield for 

added P+N treatments (Table 7.2), indicating that N limits grass growth even in well 

managed legume based pasture.  
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Table 7.1. Pasture botanical composition (percentages of grass, legume and weed) for each 
treatment. 

 Treatment  Min Max Range Mean SD 

G
ra

ss
 (%

) 

Added P       
24P (n = 16) 34 94 59 72b 19 
30P (n = 16) 46 97 51 82a 14 
42P (n = 16) 39 95 56 72b 18 
49P (n = 16) 17 91 73 67b 23 
76P (n = 16) 39 96 56 76ab 19 
Total (n = 80) 17 97 80 74 19 

Added P+N       
24P+N (n = 16) 72 100 28 93ab 9 
30P+N (n = 16) 88 100 12 95a 4 
42P+N (n = 16) 68 100 32 91b 9 
49P+N (n = 16) 86 100 14 95a 5 
76P+N (n = 16) 84 100 16 93ab 6 
Total (n = 80) 68 100 32 93 7 

Le
gu

m
e 

(%
) 

Added P       
24P (n = 16) 4 54 51 18ab 16 
30P (n = 16) 1 52 51 13b 13 
42P (n = 16) 2 55 53 23a 18 
49P (n = 16) 8 79 72 26a 19 
76P (n = 16) 2 56 54 19ab 17 
Total (n = 80) 1 79 79 20 17 

Added P+N       
24P+N (n = 16) 0 7 7 1a 2 
30P+N (n = 16) 0 6 6 1a 2 
42P+N (n = 16) 0 7 7 1a 2 
49P+N (n = 16) 0 8 8 1a 2 
76P+N (n = 16) 0 15 15 4b 4 
Total (n = 80) 0 15 15 2 3 

W
ee

d 
(%

) 

Added P       
24P (n = 16) 0 35 35 11a 10 
30P (n = 16) 0 13 13 5b 4 
42P (n = 16) 0 16 16 5b 5 
49P (n = 16) 0 25 25 7ab 8 
76P (n = 16) 0 11 11 5b 4 
Total (n = 80) 0 35 35 7 7 

Added P+N       
24P+N (n = 16) 0 28 28 6ab 8 
30P+N (n = 16) 0 12 12 3b 4 
42P+N (n = 16) 0 25 25 8a 8 
49P+N (n = 16) 0 14 14 4b 4 
76P+N (n = 16) 0 14 14 4b 4 
Total (n = 80) 0 28 28 5 6 

Mean values followed by different letters are different (t-test, p < 0.05). 
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Table 7.2. Pasture dry matter yield (kg ha-1) for each treatment considering four cuts. 
Treatment  Min Max Range Mean SD 

Added P       

24P (n = 16) 1669 2744 1074 2206 ns 310 

30P (n = 16) 1638 2665 1027 2252 ns 327 

42P (n = 16) 1685 2886 1201 2243 ns 352 

49P (n = 16) 1638 3075 1438 2349 ns 395 

76P (n = 16) 1559 2791 1232 2258 ns 358 

Total (n = 80) 1559 3075 1517 2262 344 

Added P+N       

24P+N (n = 16) 2222 3644 1422 2808 ns 367 

30P+N (n = 16) 2333 3597 1264 2858 ns 340 

42P+N (n = 16) 2349 3613 1264 2976 ns 359 

49P+N (n = 16) 2191 3439 1248 2881 ns 369 

76P+N (n = 16) 2380 3628 1248 2947 ns 357 

Total (n = 80) 2191 3644 1454 2894 355 
ns = not significant (t-test, p < 0.05). 

 

 
Figure 7.1. Photographs illustrating the legume composition of pastures receiving added P 
and added P+N (200kgN/ha). Averaged legume production (considering 4 cuts), which was 
calculated by multiplying the average legume % by the pasture mass, per treatment. 
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7.3.1.2. P and N concentration and mass 

 

The concentration (%) and mass (kg ha-1) of P and N in pasture dry mass are 

presented in Table 7.3. Mean herbage P concentrations were not affected by N application. 

Mean pasture N concentrations were higher (t-test, p < 0.05) in the added P+N samples. 

Mean P and N mass (kg ha-1) from added P+N treatments were higher as consequence of 

the greater amount of DM from those treatments. The coefficients of variation (CVs) for 

concentration and mass of P were similar. The introduction of the N treatment (added P+N) 

increased the CV relative to the added P treatment. The CV is an important parameter to be 

considered because the lack of variation in sample populations can indicate that regression 

analysis may fail to establish any significant relationship for measured properties across 

individuals in that population. The CVs for N mass were higher than for concentration, 

with the CV slightly higher for added P samples compared to added P+N samples for N 

mass (Table 7.3). 

 

Table 7.3. Summary statistics of N and P concentration (%) and mass (kg ha-1) for added P 
and added P+N samples separately and combined. 

Nutrient Sample n Min. Max. Range Mean SD CV 

N 

Concentration (%) added P 80 2.99 4.53 1.54 3.73a 0.37 0.10 

  added P+N 80 3.33 4.93 1.60 3.98b 0.35 0.09 

  combined 160 2.99 4.93 1.94 3.85c 0.38 0.10 

Mass (kg ha-1) added P 80 53.91 130.40 76.49 84.80a 18.65 0.22 

  added P+N 80 83.46 150.84 67.38 114.97b 15.78 0.14 

  combined 160 53.91 150.84 96.93 99.88c 22.92 0.23 

P 

Concentration (%) added P 80 0.35 0.79 0.44 0.50ns 0.08 0.15 

  added P+N 80 0.31 0.68 0.37 0.48ns 0.10 0.20 

  combined 160 0.31 0.79 0.49 0.49ns 0.09 0.18 

Mass (kg ha-1) added P 80 6.47 15.93 9.46 11.21a 1.70 0.15 

  added P+N 80 8.02 20.77 12.75 13.92b 2.86 0.21 

  combined 160 6.47 20.77 14.30 12.56c 2.71 0.22 

Mean values followed by different letters are different (t-test, p < 0.05). 
ns = not significant (t-test, p < 0.05). 
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7.3.1.3. Pasture reflectance factor spectra 

 

The reflectance factor spectra of the pasture samples collected (Figure 7.2a) were 

typical of the reflectance curve for green vegetation: low reflectance in the visible (Vis) 

part of the spectrum analysed (420-700 nm) due to strong absorption by leaf pigments, with 

a peak around 550 nm (green region); and high reflectance in the infrared (IR) over the 

range 700-1300 nm, which gradually decreases beyond 1300 nm due to water absorption 

(Knipling 1970). Visual interpretation showed the averaged reflectance factor spectrum of 

the added P treatment samples had higher values in the IR region, especially in the near-

infrared (NIR) (700-1300 nm), compared to the spectrum of added P+N treatment samples. 

The spectral response of plants in NIR is dominated by leaf internal structure, which means 

the passage of light through leaves is influenced by factors such as the distribution of 

intercellular air spaces and the arrangement and size of cells (Kumar et al. 2001). Grasses 

are monocotyledonous and structurally different from dicotyledonous legumes; so pasture 

swards with and without legume species, or with different amounts of legume are likely to 

have different reflectances in the NIR, that need to be considered in any analysis. In fact, 

Verdebout et al. (1994) reported higher NIR reflectance for dicotyledonous compared to 

monocotyledonous plants due to the spongy nature of the leaf mesophyll of dicotyledonous 

compared to monocotyledonous, which is more compact. Where there are more air spaces 

and more air-water boundaries in leaves with spongy mesophyll, there is more scattering of 

radiation (translated into higher reflectance in the NIR). Leaves with a compact mesophyll 

have fewer air spaces, allowing more transmission and less scattering of radiation.  

Reflectance has much larger magnitude in NIR than in Vis wavelengths. The added 

P treatment spectrum showed higher reflectance factor values than the added P+N 

treatment spectrum (Figure 7.2a) across the entire spectral range examined, and this 

difference was significant (t-test, p < 0.05). To better evaluate the spectral differences 

between added P and added P+N treatment spectra, the percentage difference in 

reflectance factor was calculated by subtracting the added P+N averaged spectrum from 

the added P averaged spectrum and then expressing the difference as a percentage of the 

reflectance factor of the added P spectrum, at each wavelength. For example, at 671 nm the 

reflectance factor difference is 0.003 (0.014 in added P averaged spectrum – 0.011 in 
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added P+N averaged spectrum), which is equivalent to a 22% decrease in relation to the 

added P averaged spectrum; at 1108 nm the reflectance factor difference is 0.043 (0.519 in 

added P averaged spectrum – 0.476 in added P+N averaged spectrum), which is equivalent 

to an 8% decrease in relation to the added P averaged spectrum.  

 

 
Figure 7.2. (a) Averaged reflectance factor spectra of added P and added P+N samples. (b) 
Percentage difference in reflectance factor, which corresponds to the percentage by which 
the reflectance factor of the added P averaged spectrum is higher than the added P+N 
averaged spectrum, at each wavelength. 
 

With the difference spectra (Figure 7.2b), the greatest differences (over 10%) 

between the two spectra were observed in the Vis region, with the maximum peaks of 

difference at 471-496 nm (15%) and 671-675 nm (22%), blue and red wavelengths 

respectively. It is in the blue and red wavelengths that absorption bands caused by electron 

transitions in chlorophyll are found (Curran et al. 1989). Chlorophyll pigments absorb 

violet-blue and red light for photosynthesis (Kumar et al. 2001). When N is non-limiting, 

grasses have a higher photosynthetic rate than legumes (Ross et al. 1972), because the 

photosynthetic N use efficiency of grasses is better than legumes (Del-Pozo et al. 2000). As 

the added P+N treatment pasture samples had, on average, more N than added P pasture 

samples, the additional N available for the plants would allow higher rates of 
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photosynthesis, resulting in more light being absorbed by chlorophyll pigments in the blue 

and red wavelengths. The sensing of plant canopies compared with single leaves is more 

complex because of a number of factors, particularly the canopy structure. Norman and 

Campbell (1989) described canopy structure as the amount of above-ground plant material 

and its organization, including the size, shape and orientation of leaves, stems, flowers and 

seed heads. Grass and clover canopies are distinctly different, with the former having long, 

mostly, erect-leaves allowing light penetration into the canopy. Clover leaves have a 

planophile arrangement, with leaves positioned at right angles to the sun and ground for 

much of the day (Harris 1994). Differences in canopy architecture affect sunlight 

penetration and consequently reflectance. Galvao et al. (2005) showed higher reflectance 

for planophile than erectophile sugarcane varieties. Madeira et al. (2001) also found 

erectophile rough bluegrass absorbed more radiation within the canopy, thereby lowering 

reflectance, than the planophile homogeneous bent grass. In our study, the presence of a 

higher percentage of legume in the added P treatment encouraged by P fertiliser addition 

only, resulted in a more horizontal/planophile canopy structure, and a higher reflectance 

than the added P+N treatments (Figures 7.2a, 7.2b). 

 The pattern of differences between the averaged reflectance factor spectra of added 

P and added P+N samples presented above was observed for each of the treatments (10P 

versus 10P+N, etc.) (not shown). When limiting the comparison of spectra to the added P 

samples, average reflectance factor spectra of 24P and 49P treatments were different (t-test, 

p < 0.05) between 674-676 nm (red region) and 745-795 nm (NIR); but no differences in 

botanical composition or DM yield were observed between those treatments. The average 

reflectance factor spectra of 30P and 49P treatments were different (t-test, p < 0.05) 

between 758-785 nm (NIR); and 30P treatment had a higher (t-test, p < 0.05) mean content 

of grass (82%) and lower mean content of legume (13%) compared to 49P treatment (mean 

values of 67% of grass and 26% of legume). Among the added P+N samples there were no 

differences (p < 0.05) in the spectra between treatments. Therefore, the variability detected 

in pasture spectra among pastures with different P levels was reduced with the application 

of N fertiliser and the associated decline in legume content. 

 



Chapter 7                                                                                                                             132 
 

7.3.1.4. Correlation between FDR and pasture P and N concentration and mass 

 

Highest correlation coefficients (> 0.6) between FDR and P were observed at the 

Vis wavelengths for P concentration and in the NIR region for P mass (Figure 7.3). For N 

concentration and mass the highest coefficients were observed at both Vis and NIR 

wavelengths. This is consistent with observations made by Mutanga et al. (2004), who 

found highest correlation coefficients between FDR and tropical pasture N and P 

concentrations at both Vis and NIR under 1800 nm. Mutanga et al. (2004) found the best 

correlation at 521 nm and 566 nm for N, and 639 nm for P, which relate closely to the 

important wavelengths of 522 nm and 565 nm for N, and 634 nm for P in the present study. 

Mutanga et al. (2004) observed peaks at 521 nm, 1123 nm and 1297-1298 nm for both N 

and P concentration, while in our study peaks were at 511-513 nm for P and N 

concentration, 705-706 nm for P and N concentration, and 671-672 nm for P concentration 

and N mass. 

Marked similarities were found when comparing the correlograms for added P 

samples with the correlograms of added P+N samples, especially for P concentration. This 

was not the case for N. For added P+N samples, wavelengths in the mid infrared (MIR) 

(1300-1400 nm) presented the highest correlations between N and the FDR. Overall the 

correlations were higher for added P samples than for added P+N samples, especially in 

the Vis region. The analysis of the correlograms shows the application of N fertiliser did 

not influence the correlation between pasture P and FDR. In contrast the correlation 

between pasture N and FDR was affected, indicating the prediction of pasture N with and 

without added N fertiliser will have different accuracies if not factored into the analysis. 

The differences are partly associated with the changing nature of the sward (Figure 7.2) and 

perhaps with the reduction in variance of the measured N mass values when fertiliser N is 

added (Table 7.3).   
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Figure 7.3. Correlation between FDR and pasture N and P concentration (%) and mass (kg 
ha-1) for the added P (black lines) and added P+N (grey lines) samples. Wavelengths with 
high correlation coefficients are identified. 
 

7.3.1.5. PLSR to predict pasture P and N concentration and mass 

 

All PLSR based predictions for pasture P concentration and mass were inaccurate. 

However, some pasture N predictions were moderately accurate (Table 7.4, Figures 7.4 and 

7.5).  

 

Table 7.4. Summary of PLSR (cross-validation) results for predicting N and P 
concentration (%) and mass (kg ha-1) of added P and added P+N samples analysed 
separately (each with  n = 80) and combined (n = 160). 

Nutrient Sample n Latent variable R2 RMSECV Slope Bias SD/RMSECV 

N 

Concentration (%) added P 80 8 0.63 0.22 0.69 0.005 1.6 
  added P+N 80 4 0.39 0.28 0.43 -0.002 1.3 
  combined 160 4 0.22 0.34 0.26 0.000 1.1 

Mass (kg ha-1) added P 80 6 0.78 8.75 0.81 -0.012 2.1 
  added P+N 80 5 0.61 9.86 0.68 0.079 1.6 
  combined 160 5 0.40 17.76 0.45 -0.024 1.3 

P 

Concentration (%) added P 80 2 0.35 0.06 0.36 0.000 1.2 
  added P+N 80 6 0.42 0.07 0.54 0.000 1.3 
  combined 160 6 0.48 0.06 0.54 0.000 1.4 

Mass (kg ha-1) added P 80 4 0.41 1.32 0.48 -0.007 1.3 
  added P+N 80 1 0.31 2.40 0.32 0.001 1.2 
  combined 160 5 0.30 2.28 0.36 0.000 1.2 
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The ability of the PLSR models to predict N and P concentration or N and P mass 

contrasted between elements. Coefficients of determination (R2s) and  slopes for pasture P 

prediction were low in all cases (R2s < 0.42 and slopes < 0.54), improving slightly in 

prediction of P mass when analysing the added P treatment samples only, and for P 

concentration when analysing the added P+N dataset (Figure 7.4). The bias and 

SD/RMSECV ratio for P concentration were very similar to those for P mass (Table 7. 4).  

 

 
Figure 7.4. Relationship between measured pasture P concentration (%) and mass (kg ha-1) 
and those predicted using PLSR cross-validation and FDR, of added P and added P+N 
samples separately (each with n = 80) and combined (n = 160). 
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Figure 7.5. Relationship between measured pasture N concentration (%) and mass (kg ha-1) 
and those predicted using PLSR cross-validation and FDR, of added P and added P+N 
samples separately (each with n = 80) and combined (n = 160). 
 

For N prediction, better regression results were observed when analysing N mass 

rather than N concentration, and were independent of fertiliser N addition (Figure 7.5). The 

transformation of N concentration into mass increased the variation in this dataset 

contributing to an increase in the variance explained by the PLSR regression (R2s). It is 

well known that the variation of samples in a dataset can impact on the predictive ability of 

the data, and this is the case here for pasture N estimation. 

Comparing the regressions between samples sets, the results were similar when 

predicting pasture P. For the prediction of pasture N, the regressions for the added P 

samples were more accurate and precise, had higher R2s, slope and SD/RMSECV and 

lower RMSECVs and bias than the regressions for the added P+N samples. Improved 

predictions of N in the added P samples can be linked to the fact that overall, the 
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correlation of this nutrient with the FDR (Figure 7.3) was higher (higher values of 

correlation coefficients) in the added P samples than in the added P+N samples, at several 

wavelengths.  

Regressions were also carried out using the combined datasets (Table 7.4, Figures 

7.4 and 7.5) to check if a single model would be better than sub-models for added P and 

added P+N pastures. Estimation of P mass, N concentration and N mass were inferior in 

the combined model. Estimation of P concentration was slightly improved in the combined 

model, although the relationship was still poor (R2 < 0.50). As mentioned before, the 

correlations between FDR and P concentration for plots with and without N fertiliser 

(Figure 7.3) were very similar, which explains why, when the samples were combined, the 

same correlation with the FDR was maintained. The greater range of samples had a positive 

influence on the regression results. 

To examine if the 76P and 76P+N treatments, which had pasture P concentrations 

well above the optimum and into the luxury range (in excess of 0.65%), had an undue 

impact on the predictions of pasture P concentration or mass range, additional regressions 

were run (with the 76P data removed). Except for a small improvement in the prediction of 

pasture concentration with just the added P samples, all the new results had inferior 

accuracy compared to the analyses with all samples included. Also, no correlations were 

found between PLSR residuals and treatments in the calibration regressions developed, 

which means the highest errors when predicting pasture P and N were not associated with 

any specific treatment (e.g. N or P levels). 

Mutanga et al. (2004) found R2s for N% prediction of tropical pasture (0.60) were 

similar to the prediction of N concentration in added P samples and N mass in added P+N 

in this study. Their prediction of pasture P had a much higher R2 (0.70) than ours (≤ 0.48). 

The RMSEP values of our N and P predictions are higher than the values presented by 

Mutanga et al. (2004). Compared with their study, where N content ranged from 0.38 to 

2.00% (mean = 0.78%) and P ranged between 0.04-0.48% (mean = 0.18%); in this study 

nutrient concentrations were higher (Table 7.3), which explained the higher RMSEP values. 

Bogrekci and Lee (2005) using absorbance data and P concentration of 150 fresh Bahia 

grass samples (P range = 0.12-0.50%) collected in three sites in the Lake Okeechobee 
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drainage basin in Florida, obtained a R2 of 0.43 and RMSEP of 0.07%. This is similar to 

our result for predicting P concentration in added P+N samples (range = 0.31-0.68%).  

Thulin et al. (2006) predicted in situ pasture crude protein (CP) of 75 samples 

collected from two sites in the south-eastern temperate zone of Victoria, Australia. Using 

derivative of absorbance data the prediction result was an R2 of 0.62 and an RMSECV of 

2.97% CP (equivalent to 0.48% N, since CP is 6.25 times the N content of forages). Their 

data were collected in 2000 and 2002 using different methods of capture. Limiting analysis 

to samples collected in 2002 (n = 45) improved the prediction accuracy (R2 of 0.79 and a 

RMSECV of 2.39% CP (0.38% N)); this result was based on fewer samples compared to 

the present study, but had a much wider range of pasture N concentration (0.92-4.87% N) 

yielding a higher R2 (similar R2 if compared to the prediction of N mass for added P 

samples) and higher RMSE. 

Kawamura et al. (2009a) using PLSR and FDR data have estimated New Zealand 

hill pasture N and P mass (kg ha-1) with R2 = 0.78 and RMSEP = 18.75, and R2 = 0.94 and 

RMSEP = 2.57, respectively. Compared to our results, the prediction of N mass for added 

P samples had a similar R2, but lower RMSEP. Our P predictions had much lower R2s, 

although lower RMSEPs. In Kawamura et al. (2009a) the samples analysed had a wider 

range (N: 13.3-192.1 kg ha-1 and P: 1.6-36.9 kg ha-1). Their results were improved when 

analysing CRDR data (R2 = 0.89 and RMSEP = 17.14 for N, R2 = 0.94 and RMSEP = 2.43 

for P) instead of FDR. 

The relationships between FDR and pasture P and N in the PLSR models selected 

(Table 7.4) are summarised in the regression coefficient plots (Figures 7.6 and 7.7). The 

wavelengths detected as important (significant) by the Martens‟ Uncertainty Test are 

highlighted in the plots. Some wavelengths which presented high values of regression 

coefficients were determined to be non-significant in the Martens‟ Uncertainty Test. These 

wavelengths were mainly localized on the margins of the spectrum and have higher noise 

(low signal-to-noise ratio). Important wavelengths for P and N prediction models were 

observed across the spectrum analysed, at Vis, NIR and MIR regions. The Martens‟ 

Uncertainty Test identified that only 2% of the original wavelengths (n = 1981) used in the 

regression to predict pasture P were retained in all 4 regressions (regressions predicting P 

concentration and mass in added P and added P+N samples, separately). These 
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wavelengths were 1369-1374 nm, 1651-1660 nm, 1662-1668 nm, 1670-1673 nm, 1677-

1683 nm and 1860-1863 nm. The same low percent of wavelengths were commonly 

selected as important in all 4 regressions predicting N, and were localized at 473-476 nm, 

1034-1040 nm, 1108 nm, 1338 nm, 1344 nm, 1356-1363 nm, 1399 -1405 nm and 1416-

1417 nm.  

The low number of common wavelengths for the prediction of two pasture nutrients, 

highlights the importance of obtaining representative datasets that embrace all the 

biophysical factors (e.g. pasture type, canopy structure) likely to affect the relationship 

when building prediction calibrations. It is also important to be cautious when developing 

the calibrations on the choice of units to express nutrient. The present study highlights both 

these points showing that the practice of N fertiliser application to a legume based pasture 

and the simple conversion from nutrient concentration to mass impacts significantly on the 

pasture P and N prediction calibration. In the process of developing a calibration function, 

embracing as much of the variation in the field as possible is important; and in the 

promotion and use of that calibration function, one must ensure that any sampling falls 

within the limits of the datasets used in the construction of  the regression. 

 

 
Figure 7.6. Regression coefficients of PLSR models between FDR and pasture P 
concentration (%) and mass (kg ha-1) using the added P and added P+N samples analysed 
separately. Plotted in black are the significant wavelengths for the regression according to 
the Martens‟ Uncertainty Test. 
 



Chapter 7                                                                                                                             139 
 

 
Figure 7.7. Regression coefficients of PLSR models between FDR and pasture N 
concentration (%) and mass (kg ha-1) using the added P and added P+N samples analysed 
separately. Plotted in black are the significant wavelengths for the regression according to 
the Martens‟ Uncertainty Test. 
 

7.3.2. Pasture potassium, calcium, magnesium, sodium and sulphur predictions 

 

7.3.2.1. Pasture nutrient concentrations and masses 

 

All 40 pasture plots receive applications of K, Ca, Mg, Na and S as a basal dressing 

twice a year to ensure they are not limiting pasture growth (Mackay et al. 2008). 

Comparing the nutrient concentration of the pasture plots with and without N fertiliser 

(Table 7.5), average K and Mg concentrations were similar. Mean Ca concentration values 

were higher for added P pasture samples (pasture with average legume content = 20%). In 

general, dicotyledonous plants have a higher cation exchange capacity, providing improved 

ability to compete with grasses for Ca (Laidlaw and Teuber 2001). Conversely, the added 

P+N samples (pastures with average legume content = 2%) had higher mean values of Na 

and S concentrations. Greater Na concentration in ryegrass than in white clover has been 

previously reported by Chiy and Phillips (1996). The higher concentration of S can be 

explained by the fact that grasses compete more strongly for S than legumes (Walker et al. 

1956). For nutrient mass, the added P+N samples had higher mean values of all nutrients 

analysed; the result of greater DM production of those pastures. 
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Table 7.5. Summary of statistics of K, Ca, Mg, Na and S concentration (%) and mass (kg 
ha-1) for added P and added P+N samples separately and combined. 

Nutrient Sample Min Max Range Mean SD CV 

K 

Concentration (%) added P 1.51 3.86 2.35 2.84ns 0.57 0.20 
  added P+N 1.30 3.93 2.63 2.78ns 0.69 0.25 
  combined 1.30 3.93 2.63 2.81ns 0.63 0.22 

Mass (kg ha-1) added P 40.30 85.79 45.49 63.12a 11.28 0.18 
  added P+N 38.81 129.00 90.19 79.26b 18.19 0.23 
  combined 38.81 129.00 90.19 71.19c 17.12 0.24 

Ca 

Concentration (%) added P 0.42 1.14 0.72 0.67a 0.17 0.26 
  added P+N 0.44 0.85 0.41 0.62b 0.10 0.16 
  combined 0.42 1.14 0.72 0.65a 0.14 0.22 

Mass (kg ha-1) added P 8.63 32.32 23.69 15.45a 5.62 0.36 
  added P+N 10.58 29.13 18.55 17.96b 4.28 0.24 
  combined 8.63 32.32 23.69 16.70c 5.14 0.31 

Mg 

Concentration (%) added P 0.18 0.38 0.20 0.27ns 0.05 0.19 
  added P+N 0.15 0.43 0.28 0.29ns 0.06 0.22 
  combined 0.15 0.43 0.28 0.28ns 0.06 0.21 

Mass (kg ha-1) added P 3.32 10.39 7.07 6.27a 1.89 0.30 
  added P+N 4.23 14.86 10.63 8.47b 2.49 0.29 
  combined 3.32 14.86 11.54 7.37c 2.46 0.33 

Na 

Concentration (%) added P 0.10 0.65 0.55 0.31a 0.15 0.49 
  added P+N 0.15 1.24 1.09 0.55b 0.26 0.47 
  combined 0.10 1.24 1.13 0.43c 0.24 0.57 

Mass (kg ha-1) added P 1.67 17.40 15.73 7.35a 4.35 0.59 
  added P+N 3.45 42.31 38.86 16.32b 8.78 0.54 
  combined 1.67 42.31 10.64 11.83c 8.24 0.70 

S 

Concentration (%) added P 0.29 0.50 0.21 0.39a 0.04 0.10 
  added P+N 0.34 0.49 0.15 0.42b 0.03 0.08 
  combined 0.29 0.50 0.21 0.40c 0.04 0.10 

Mass (kg ha-1) added P 6.30 11.15 4.84 8.75a 1.26 0.14 
  added P+N 8.87 16.76 7.89 11.99b 1.66 0.14 
  combined 6.30 16.76 10.46 10.37c 2.19 0.21 

Mean values followed by different letters are different (t-test, p < 0.05). 
ns = not significant (t-test, p < 0.05). 

 

Except for K, the CV for Ca, Mg, Na and S increased when the nutrients were 

transformed into mass. The CVs for those nutrients varied between 0.08-0.49 when 

analysed in concentration, and between 0.14-0.59 when analysed in mass. 
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7.3.2.2. Correlation with FDR 

 

With the exception of S, acceptable correlations (R > 0.6) between FDR and the 

pasture cations were observed (Figure 7.8). Again except for S, the correlograms for 

concentration and mass were similar for the four cation nutrients, with marked similarity 

observed between the correlograms of added P and added P+N samples. 

Some striking similarities were noticed between P and K correlograms (Figures 7.3 

and 7.8, respectively) and for Ca, Mg and Na correlograms, reflecting in some cases high 

co-correlation between nutrients (Table 7.6). The correlation between Mg and Na in the 

pasture samples analysed varied from 0.82 (nutrient concentration in added P samples) to 

0.91 (nutrient mass in added P samples), and between Ca and Mg from 0.59 (nutrient 

concentration in added P samples) to 0.88 (nutrient mass in added P+N samples). Mutanga 

et al. (2004) found that correlograms (nutrient concentration of tropical pasture with FDR) 

for P and K were similar to each other, while Ca and Mg correlograms were different. In 

Mutanga et al. (2004), the intercorrelations between P and K (0.74) and between Ca and 

Mg (0.60) were higher and lower, respectively, than in this study (Table 7.6). 

 

Table 7.6. Intercorrelation of measured nutrient concentration and mass, for added P and 
added P+N samples. 

added P samples: added P+N samples: 
Conc. N P K Ca Mg Na S Conc. N P K Ca Mg Na S 

N 1.00       N 1.00       
P -0.39* 1.00      P -0.03 1.00      
K -0.44* 0.56* 1.00     K 0.30* 0.60* 1.00     
Ca 0.45* -0.36* -0.50* 1.00    Ca -0.21 -0.31* -0.62* 1.00    
Mg 0.55* -0.44* -0.69* 0.59* 1.00   Mg -0.05 -0.48* -0.74* 0.75* 1.00   
Na 0.55* -0.44* -0.68* 0.43* 0.82* 1.00  Na -0.09 -0.51* -0.84* 0.77* 0.85* 1.00  
S -0.09 0.38* 0.20 -0.16 0.12 -0.01 1.00 S -0.15 0.32* 0.31* 0.18 -0.08 -0.14 1.00 

added P samples: added P+N samples 
Mass N P K Ca Mg Na S Mass N P K Ca Mg Na S 

N 1.00       N 1.00       
P 0.34* 1.00      P 0.26* 1.00      
K 0.10 0.49* 1.00     K 0.21 0.53* 1.00     
Ca 0.73* 0.15 -0.18 1.00    Ca 0.49* 0.10 -0.36* 1.00    
Mg 0.86* 0.27* -0.13 0.80* 1.00   Mg 0.58* 0.02 -0.41* 0.88* 1.00   
Na 0.84* 0.25* -0.14 0.70* 0.91* 1.00  Na 0.42* -0.12 -0.63* 0.84* 0.87* 1.00  
S 0.68* 0.50* 0.14 0.45* 0.77* 0.73* 1.00 S 0.53* 0.43* 0.12 0.75* 0.67* 0.50* 1.00 

Conc. – concentration;  * Significant: p < 0.05 
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Figure 7.8. Correlation between FDR and pasture K, Ca, Mg, Na and S concentration (%) 
and mass (kg ha-1) for the added P (black lines) and added P+N (grey lines) samples. 
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7.3.2.3. Prediction of pasture K, Ca, Mg, Na and S concentration and masses using 

PLSR models 

 

Prediction accuracy varied greatly between the pasture K, Ca, Mg, Na and S 

analysed. Pasture S predictions were inaccurate, which was foreseen based on low 

correlations shown in the correlagrams between S and FDR (Figure 7.8). For K, Ca, Mg 

and Na predictions, accuracy varied depending on the data unit used (concentration or 

mass) and pasture treatments (added P or added P+N) included in the analysis. The R2s, 

regression slopes and SD/RMSECV for Ca, Mg, Na and S predictions, but not K, were 

higher for nutrient mass than for concentration (Table 7.7), possibly reflecting the increased 

variation in these nutrients when expressed as mass rather than concentration. 

The regression R2s for prediction of pasture Ca and Mg in our study were higher 

than those of Mutanga et al. (2004), who reported  R2 = 0.40 and R2 = 0.52 for tropical 

pasture Ca and Mg predictions, respectively, using continuum-removed derivative 

reflectance. These authors‟ R2 for K prediction (0.60) was slightly higher than K 

concentration prediction in added P samples and lower than K concentration prediction in 

added P+N samples in the present study. The range in concentration of pasture Ca, Mg and 

K in the samples analysed in our study was wider than in the sample set analysed in 

Mutanga et al. (2004). Kawamura et al. (2009a) found New Zealand hill pasture K (kg ha-1) 

estimations were R2 = 0.81 and RMSEP = 28.41 using PLSR and FDR. In our study the R2s 

of the pasture K predictions were inferior, and the RMSEPs lower. In Kawamura et al. 

(2009a) the samples analysed had a wider range of pasture K mass values (1.3-294.2 kg ha-

1). 
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Table 7.7. Summary of PLSR (cross-validation) results for predicting K, Ca, Mg, Na and S 
concentration (%) and mass (kg ha-1) of added P and added P+N samples analysed 
separately (each with  n = 80) and combined (n = 160). 

Nutrient Sample n Latent variable R2 RMSECV Slope Bias SD/RMSECV 

K 

Concentration (%) added P 80 5 0.57 0.37 0.63 0.000 1.5 
  added P+N 80 6 0.68 0.39 0.72 0.002 1.8 
  combined 160 6 0.58 0.41 0.63 0.002 1.5 

Mass (kg ha-1) added P 80 5 0.41 8.71 0.49 -0.022 1.3 
  added P+N 80 5 0.49 13.04 0.58 0.166 1.4 
  combined 160 5 0.37 13.65 0.41 0.008 1.3 

Ca 

Concentration (%) added P 80 5 0.66 0.10 0.71 0.001 1.7 
  added P+N 80 4 0.46 0.07 0.53 0.002 1.4 
  combined 160 4 0.61 0.09 0.63 0.000 1.6 

Mass (kg ha-1) added P 80 6 0.80 2.54 0.83 0.055 2.2 
  added P+N 80 6 0.62 2.66 0.68 0.050 1.6 
  combined 160 6 0.66 3.01 0.70 0.002 1.7 

Mg 

Concentration (%) added P 80 5 0.72 0.03 0.75 0.000 1.9 
  added P+N 80 6 0.60 0.04 0.66 -0.001 1.6 
  combined 160 6 0.62 0.04 0.66 0.000 1.6 

Mass (kg ha-1) added P 80 6 0.87 0.69 0.88 0.001 2.7 
  added P+N 80 6 0.70 1.37 0.73 0.009 1.8 
  combined 160 7 0.65 1.47 0.69 0.000 1.7 

Na 

Concentration (%) added P 80 4 0.61 0.10 0.65 0.000 1.6 
  added P+N 80 6 0.66 0.15 0.71 0.001 1.7 
  combined 160 7 0.66 0.14 0.69 -0.001 1.7 

Mass (kg ha-1) added P 80 5 0.69 2.42 0.74 -0.013 1.8 
  added P+N 80 6 0.68 5.00 0.73 0.106 1.8 
  combined 160 7 0.66 4.83 0.69 -0.001 1.7 

S 

Concentration (%) added P 80 4 0.23 0.04 0.31 0.000 1.1 
  added P+N 80 1 0.00 0.03 0.01 0.000 1.0 
  combined 160 4 0.23 0.03 0.27 0.000 1.1 

Mass (kg ha-1) added P 80 5 0.49 0.90 0.58 -0.011 1.4 
  added P+N 80 6 0.31 1.39 0.43 0.020 1.2 
  combined 160 6 0.42 1.68 0.49 0.005 1.3 
 

Comparing the regressions of added P samples with the regressions of added P+N 

samples, the highest R2s were not always obtained for the samples with highest CVs, but 

that is not surprising since the differences between the two datasets reflect not only the 

variation of nutrients, but also variation due to other factors which influenced the pasture 

reflectance, including the botanical composition and standing pasture biomass. Based on 
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the SD/RMSECV ratio, the prediction of Ca and Mg concentrations and masses were more 

accurate for the added P data than added P+N data; while the predictions for the other 

nutrients produced similar values of SD/RMSECV for both datasets. Better predictions of 

Ca and Mg for the added P samples, as with N predictions, can be linked to the fact that 

correlation of these nutrients with the FDR (Figure 7.8) was greater in the added P samples 

than in the added P+N samples, at several wavelengths. This result indicates that it is 

important to have samples that cover the complete range of nutrient contents that would be 

of interest when developing the calibration equation, but equally, that all other factors that 

are likely to influence reflectance and hence the relationship between nutrient content and 

reflectance are incorporated within the initial datasets. In general the predictions using large 

combined datasets are likely to have similar or inferior accuracy when compared to the 

regressions carried out from subsets of the data, as in the present study with the added P 

and added P+N subsets. This highlights the danger of collecting large datasets without an 

understanding of their influence and or importance in developing a robust calibration. 

 

7.4. Conclusions 

 

 Field spectroscopy has the potential to predict pasture nutrient contents, but the 

quality of the calibrations and hence the prediction is dependent on pasture type, 

management practices such as fertiliser application, through to the unit of expression of 

nutrient status. The predictive power of the PLSR models developed in this study varied 

with each nutrient, with some pasture nutrient contents being predicted more successfully 

(e.g. N, Ca and Mg) than others (e.g. P and S). The expression of N, Ca, Mg, Na and S 

nutrient as mass (kg ha-1) rather than nutrient as concentrations (percent of DM) resulted in 

a significant increase in the coefficient of variation of the samples which had a positive 

effect on the predictive ability of the PLSR models developed. The predictions of P and K 

did not benefit from the transformation of concentration into mass. It would be 

advantageous to have one universal model to predict multiple nutrients across a range of 

pasture types. The findings from this study indicate that a universal model may have less 

predictive accuracy. Specific calibrations for each nutrient and pasture type will increase 

the prediction accuracy, as was the case for the predictions of N, Ca and Mg on added P 
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and added P+N pastures presented in this research. Improved confidence with which one 

can use a single model to predict multiple nutrients, or a model developed for individual 

nutrients, will only come through building a good understanding of the factors likely to 

influence the calibration function, rather than building larger datasets without this 

understanding. Without more research it is not advisable to extrapolate the PLSR models 

from this study to other sites. 
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CHAPTER 8: 

Prediction of the nutrient concentration and mass of hill pasture using 

hyperspectral proximal sensing 

 

------------------------------------------------------------------------------------------------------------ 

Some results of this study have been orally presented and published (full paper) in the 

proceedings of the 14th Australasian Remote Sensing and Photogrammetry Conference, 

Darwin, Australia, 29-03 October 2008. 

------------------------------------------------------------------------------------------------------------ 

 

Abstract  

 

Hill pasture systems are much more complex than lowland areas, due to the high variability 

within very short distances caused by factors such as slope and aspect, resulting in diverse 

micro-climate and micro-topography, and the uneven nutrient transfer by livestock. The 

present study explored the use of hyperspectral proximal sensing to predict in situ nitrogen, 

phosphorus and potassium concentration (percent of dry matter) and mass (kg ha-1) from a 

sheep grazed pasture of steep slope (> 20°), in the North Island of New Zealand. Partial 

least squares regressions between pasture nutrient concentration and the first derivative of 

reflectance (420-2400 nm), using a cross-validation method, yielded for N prediction: R2 = 

0.47, RMSECV = 0.40 and SD/RMSECV = 1.4; for P: R2 = 0.71, RMSECV = 0.04 and 

SD/RMSECV = 1.9; and for K: R2 = 0.68, RMSECV = 0.38 and SD/RMSECV = 1.8. The 

poorer results for N may be explained in part by the smaller sample size. Analyses carried 

out using N, P and K mass, were inferior. When the wavelengths were limited to those 

selected by the Martens‟ Uncertainty Test, the quality of pasture P% prediction increased 

slightly (R2 = 0.78, RMSECV = 0.04 and SD/RMSECV = 2.0). It is concluded that there is 

a potential to use proximal sensing techniques to predict in situ nutrient contents of hill 

pasture, but this potential will realised only if a substantial dataset representing all the 

variability found in the field is evaluated. 

 

Keywords: sheep pasture, hill country site, steep slope, hyperspectral data, nutrients. 
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8.1. Introduction 

 

Hill country includes landscapes with slopes > 15°. Slope and aspect create a 

diverse micro-topography and micro-climate within very short distances. The livestock 

grazing and camping behaviours are influenced by slope and aspect; steeper slopes have 

increased nutrient loss, with the transfer of nutrients in excreta to tracks and low slope areas 

(Gillingham 1980). This heterogeneity and diversity makes the management of hill country 

pastures much more complex compared to lowland pastures (Harris 1994). 

Low soil fertility along with low soil pH are major factors limiting pasture 

production on hill country (Edmeades et al. 1984). In New Zealand, low available soil 

nitrogen (N) concentrations are the primary factor limiting pasture production. The 

productivity of New Zealand hill country farms relies heavily on legume (clover) based 

pastures. Because of low clover content and yields, N fixation is often low in hill pastures. 

Fertilisers (mainly phosphorus (P) and sulphur (S)) are applied to stimulate the clover 

growth and N fixation. Fertilizer inputs represent the largest single input cost and therefore 

there is an increasing economic, as well environmental, pressure for more efficient use of 

fertiliser in hill country (Blennerhassett 2002).  

To manage fertiliser nutrient inputs more efficiently, soil fertility and pasture 

nutrient content must be measured and monitored. Traditional methods of acquiring this 

kind of information are costly, especially when data from within hill country paddocks need 

to cover the diverse soil fertility status of hill pastures. One approach which has great 

potential for estimating pasture fertility at the within-paddock scale is the use of remotely 

sensed hyperspectral reflectance from the sward. 

The reflectance (the ratio of radiation reflected from a surface to the radiation 

reaching that surface) spectra of plants in the visible (Vis), near infrared (NIR) and mid 

infrared (MIR) parts of the electromagnetic spectrum are dominated by plant pigments 

(chlorophyll, xanthophylls and carotenes), internal leaf structure (distribution of 

intercellular air spaces, arrangement and size of cells) and by leaf water content, 

respectively. Plant pigments strongly absorb energy in the Vis range, and the reflectance 

from leaves in those wavelengths is very low. In the NIR, the energy levels of light are not 
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great enough for photochemical reaction so they are not absorbed by plant pigments, 

explaining the higher reflectance in those wavelengths. In MIR the reflectance is much 

lower compared to the NIR because of strong water absorption (Kumar et al. 2001).  

The absorption bands of organic compounds of plant tissues noticed in the Vis (400-

700 nm), NIR (700-1300 nm) and MIR (1300-2500 nm) regions are generally due to 

harmonics and overtones of the fundamental stretching frequencies of bonds (C-H, N-H 

and O-H) (Kumar et al. 2001). The organic chemical constituents of the plant tissue 

determine how much light is absorbed at a particular wavelength, thus reflectance spectra 

contain information on the chemical composition of that plant tissue (Foley et al. 1998). 

Under controlled laboratory conditions, foliar biochemicals of dried and ground samples 

have been successfully estimated by near infrared reflectance spectroscopy (NIRS) (Norris 

et al. 1976). For the analysis of fresh samples the task becomes complicated because the 

signature absorption bands for organic constituents can be masked by leaf water (Elvidge 

1990). Moreover, if fresh plant samples are to be analysed in situ, the task of predicting 

organic constituents is even more challenging because of a number of factors such as the 

variation in leaf internal structure, atmospheric and background effects (Yoder and 

Pettigrew-Crosby 1995) and sward height (Lamb et al. 2002). Nevertheless promising 

results reported in the literature (Mutanga et al. 2004, Christensen et al. 2004, Sanches et al. 

2006, Thulin et al. 2006, Kawamura et al. 2006) motivate further research into the 

development of proximal sensing for monitoring plant tissue composition in situ. 

The present study investigates the prediction of in situ pasture N, P and potassium 

(K) concentrations and masses at a New Zealand hill country site using a portable 

spectroradiometer to acquire hyperspectral reflectance between 420 and 2400 nm. 

 

8.2. Materials and methods 

 

8.2.1. Study area 

 

The study area was located on a sheep farm at Alfredton (around 40°38‟38” S 

175°53‟52” E), in the North Island of New Zealand. The soil is classified as Brown Soil 

(Central Yellow-Brown Earths (Gibbs 1980) – Brown Soil (Hewitt 1993)). Data were 



Chapter 8                                                                                                                             150 
 

collected from 36 sites (on north, south and east aspects; on slopes of 20 - 30°) set up for 

two experiments, one testing the effect of the application of different amounts of lime (24 

plots: 12 facing north and 12 facing east), and another studying runoff (12 plots: 4 on north, 

4 on south and 4 on east aspects). 

Based upon temperature and rainfall, New Zealand pastures can be divided into six 

zones: northern, mid central, dry east coast, high-rainfall west coast, high country and 

cooler southern, but the boundaries of these zones are indistinct and each zone merges with 

the next. Alfredton is in the mid central zone, near the east coast zone. The mid central zone 

is characterized by few extremes of temperature and occasionally drought in summer. The 

hill pastures at this site are mostly composed of temperate grasses and legumes (cocksfoot, 

perennial ryegrass, dogstail and white and subterranean clovers, respectively) with very few 

subtropical or C4 grasses and some presence of less productive grasses, such as browntop 

and Yorkshire fog. In the dry east coast zone the summer drought is overwhelming and 

rainfall infiltration is limited by slope (Stewart and Charlton 2006). According to 

topography and elevation, New Zealand‟s grasslands can be divided into three broad 

groups: high, hill and flat to rolling country (Valentine and Kemp 2007); Alfredton belongs 

to the hill country group, with slopes > 22º). 

 

8.2.2. Data collection 

 

Four field visits were made to Alfredton in August-2006 (winter), November-2006 

(spring), February-2007 (summer), and May-2007 (autumn). The data were collected from 

swards under 1m x 0.5m exclusion cages. Data collection consisted of acquiring the 

spectral measurements and cutting of pasture samples at grazeable height. Reflectance 

factors of the pasture swards were acquired in situ using an ASD FieldSpec® Pro FR 

spectroradiometer (ASD Inc., Boulder, CO, USA) under artificial illumination provided by 

the Canopy Pasture Probe (CAPP) top-grip (Chapter 2). The reflectance standard was a 

white ceramic tile described by Sanches et al. 2009 (Chapter 3).  
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8.2.3. Spectral data processing and statistical analysis 

 

At each plot (cage) ten spectra were acquired; these were later averaged using the 

SpectraProc software (Hueni and Tuohy 2006) to form a single spectrum per plot. These 

were then processed using The Unscrambler® 9.7 software (CAMO, Oslo, Norway). The 

spectral data were smoothed by applying a Savitzky-Golay filter (Savitzky and Golay 1964) 

with window size of 81 and polynomial order of 4, followed by calculation of the first 

derivative of the reflectance factor using the Savitzky-Golay algorithm with window size of 

3 and polynomial order of 2. Spectral data in the wavelength regions between 350-419 nm 

and 2401-2500 nm were eliminated because of the low signal-to-noise ratio in the 

instrument. All these procedures were applied in an attempt to minimize as much noise as 

possible and to enhance spectral features in the spectral data collected.  

The pre-processed first derivative reflectance (FDR) data between 420 and 2400 nm 

(1981 wavelengths) were then calibrated against the laboratory determined N, P or K 

content of the pasture samples using partial least squares regression (PLSR). The 

calibrations were tested using full cross-validation (leave-one-out method). The selection of 

the optimal number of latent variables (principal components) used in the PLSR was based 

on minimizing the additive prediction errors (minimum RMSECV). PLSR was carried out 

using the pasture nutrient content expressed as concentration (percentage of dry matter 

(DM)) or as mass (kg element ha-1). PLSR calibration models using the reflectance factor, 

the absorbance (Log 1/R), and the first derivative of the absorbance spectra rather than the 

FDR were also conducted, but the results were inferior (not shown) to PLSR models using 

FDR. 

The accuracy and precision of the PLSR calibration models were assessed in terms 

of coefficient of determination (R2), root mean square error of cross-validation (RMSECV), 

slope, bias and the ratio of standard deviation of the nutrients measured to the RMSECV 

(SD/RMSECV) for the validation dataset. The SD/RMSECV ratio enables the evaluation of 

the RMSECV in terms of the SD of the measured data (N, P, and K concentration or mass 

measured by chemical analysis), and it is useful when comparing PLSR models of the 

different nutrients (nutrients with different ranges of samples) or the same nutrient in 
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different units (concentration versus mass). Accurate and precise prediction is shown by 

high R2, low RMSECV, slope close to one, bias close to zero, and high SD/RMSECV. 

To assess the importance of each wavelength for the nutrient predictions, the PLSR 

coefficients plots were examined. These plots summarise the relationship between the 

predictor variables and the pasture nutrient concentration and mass for the models selected; 

the greater the absolute regression coefficient value of a wavelength, the greater the 

importance of that particular wavelength for that prediction model. To assess which 

wavelengths were significant (useful and reliable) for the pasture nutrient predictions 

models, a Martens‟ Uncertainty Test, available in The Unscrambler® software, was used to 

estimate the approximate uncertainty variance of the PLSR coefficients under cross-

validation. This test uses a Jack-knife method (Efron 1982), which was modified in order to 

compensate for rotational ambiguities of bilinear modelling, to estimate the uncertainty of 

the model parameters. Under cross-validation, the number of sub-models created is one less 

that the total number of observations as the procedure iteratively leaves one observation out 

to compare predicted and observed values. For every sub-model, a set of model parameters 

(B-coefficients, scores, loadings and loading weights) is calculated. Variations over these 

sub-models are estimated so as to assess the stability of the results. For each variable the 

difference between the B-coefficient Bi in a sub-model and the Btot for the total model is 

calculated. The Unscrambler® takes the sum of the squares of the differences in all sub-

models to produce an expression of the variance of the Bi estimate for a variable. With a t-

test the significance of the estimate of Bi is calculated. Thus the resulting regression 

coefficients can be presented with uncertainty limits that correspond to 2 standard 

deviations under ideal conditions. Variables with uncertainty limits that do not cross the 

zero line are significant variables (Martens and Martens 2000, CAMO 2007). 

 

8.2.4. Nitrogen, phosphorus and potassium chemical analyses 

 

From the 144 pasture samples collected in this study (36 plots at four dates), 4 

samples could not be analysed (samples were too small), 48 samples were analysed for N 

using a wet chemistry method (samples from the runoff trial); 92 samples were analysed for 
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K (samples from the lime trial) and 140 samples were analysed for P (samples from both 

trials).  

Pasture samples were dried in a forced air oven at 60˚C for 48 hours, and weighed 

to determine pasture mass (kg DM ha-1). The N concentration was determined by the 

Kjeldahl digest method. Concentrations of P and K were measured by a nitric-perchloric 

digest followed by analysis using Inductively Coupled Plasma-Optical Emission 

Spectroscopy (ICP-OES). The nutrient concentration was expressed as a percentage of DM. 

To obtain nutrient mass in kg ha-1 the concentrations of N, P and K (% DM) were 

multiplied by pasture mass (kg DM ha-1).  

 

8.3. Results and Discussion 

 

8.3.1. Pasture spectra 

 

The averaged reflectance factor spectra for each aspect were noticeably different 

(Figure 8.1a). The differences among spectra in certain waveband regions were statistically 

significant. Statistically significant differences (t-test, p < 0.05) were observed between 

north and south aspects for the NIR (between 720-1220 nm); and between north and east 

aspects for the Vis (between 420-511 nm and 585-698 nm), NIR (between 724-874 nm, 

942-1017 nm and 1136-1210 nm) and MIR (between 1440-1478 nm, 1875-2083 nm and 

2365-2400 nm) spectral regions. There was no significant difference between spectra 

collected from east and south aspects (Figure 8.1b). 
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Figure 8.1. (a) Averaged reflectance factor spectra for each aspect (N – north, S – south, E – 
east). And (b) results of the t-test considering three aspects: N versus S, N versus E and E 
versus S. The dots plotted show the probability value, for each wavelength, when testing if 
the average reflectance factor spectra between classes are significantly different. Horizontal 
line in dashed black shows 95% (p < 0.05) confidence limit. 
 

The wavelengths at which the averaged reflectance factor spectrum of north-facing 

slopes differed statistically from spectra of east and south-facing slopes in this study had 

been reported (Thenkabail et al. 2004) as the hyperspectral bands best correlated with 

several plant variables such as biomass (centred at 655 nm, 885 nm, 915 nm, 1085 nm, 

1135 nm), soil background (centred at 495 nm, 655 nm), and plant moisture (centred at 980 

nm, 1215 nm, 1445 nm, 2005 nm, 2035 nm).  

In hill pastures, aspect is one parameter which influences the temperature and soil 

moisture, causing large differences in pasture composition and production between aspects. 

Average DM yield of north-facing slopes was much lower than on east and south-facing 

aspects (Table 8.1). The average DM yield collected from eastern and southern aspects was 

not statistically different (t-test, p < 0.05), but was significantly different from yield on the 

northern aspect. Sunny or north-facing aspects have higher soil temperatures than shady or 

south-facing aspects. Exposed to north-west winds and receiving greater levels of radiation, 

they are also much drier. Shady south facing slopes had less bare soil, higher plant densities 
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and greater species diversity than sunny north facing slopes, which agrees with other 

observations in hill country (White 1990).  

 

Table 8.1. Basic statistics of pasture DM yield (kg ha-1) by aspect. DM yield values based 
on four cuts (August-2006, November-2006, February-2007 and May-2007). 

Aspect Min. Max. Mean SD 

North (n = 60) 7 2977 960 654 

East (n = 64) 107 3035 1408 788 

South (n = 16) 290 2462 1642 648 

 

8.3.2. Pasture nutrient concentration and mass 

 

The N, P and K concentrations and masses in the samples analysed (Table 8.2) are 

typical of low to moderate fertility New Zealand hill pastures.  

 

Table 8.2. Basic statistics of nitrogen, phosphorus and potassium concentration (%) and 
mass (kg ha-1) of the pasture samples analysed. 

  Min. Max. Range Mean SD CV 

N
ut

rie
nt

 c
on

ce
nt

ra
tio

n 
(%

) 

N (n = 48)  1.16 3.80 2.64 2.49 0.54 0.22 
 North (n = 16) 1.69 3.29 1.59 2.45 0.48 0.20 
 East (n = 16) 1.42 3.44 2.02 2.50 0.57 0.23 
 South (n = 16) 1.16 3.80 2.64 2.53 0.60 0.24 

P (n = 140)  0.15 0.49 0.34 0.32 0.08 0.25 
 North (n = 60) 0.17 0.49 0.32 0.30 0.09 0.30 
 East (n = 64) 0.15 0.45 0.30 0.34 0.07 0.20 
 South (n = 16) 0.22 0.49 0.28 0.37 0.07 0.18 

K  (n = 92)  0.90 3.80 2.90 2.15 0.66 0.31 
 North (n = 44) 0.90 3.40 2.50 1.97 0.73 0.37 
 East (n = 48) 1.40 3.80 2.40 2.32 0.54 0.23 

  Min. Max. Range Mean SD CV 

N
ut

rie
nt

 m
as

s (
kg

 h
a-1

) 

N (n = 48)  4.14 75.29 71.15 37.04 17.10 0.46 
 North (n = 16) 11.6 67.63 56.03 36.36 15.64 0.43 
 East (n = 16) 4.14 63.99 59.85 34.93 18.16 0.52 
 South (n = 16) 8.61 75.29 66.68 39.83 18.13 0.46 

P (n = 140)  0.13 9.76 9.64 4.03 2.56 0.64 
 North (n = 60) 0.13 7.61 7.48 2.94 2.10 0.71 
 East (n = 64) 0.41 9.48 9.08 4.60 2.59 0.56 
 South (n = 16) 1.11 9.76 8.65 5.81 2.43 0.42 

K  (n = 92)  0.76 75.87 75.11 24.67 19.23 0.78 
 North (n = 44) 0.76 53.28 52.52 16.52 14.33 0.87 
 East (n = 48) 2.68 75.87 73.20 32.14 20.22 0.63 
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No significant differences (t-test, p < 0.05) were observed between average pasture 

N, P and K concentrations and masses from eastern and southern aspects; the northern 

aspect had significantly lower average P and K concentration and mass. 

 

8.3.3. Correlation between FDR and pasture nutrients  

 

Acceptable correlations (R > 0.50) were observed between the FDR over the range 

420-2400 nm and pasture nutrient concentration and mass (Figure 8.2). This finding 

contrasts to that of Mutanga et al. (2004) who found very weak correlations between FDR 

and the N, P and K concentration of tropical pasture between 2000-2500 nm. Both studies 

find some similarities among N, P and K correlograms, and an inter-correlation between 

these nutrients. In the Mutanga et al. (2004) study, N, P and K correlograms had similar 

highly correlated peaks at blue (521 nm), NIR (721-747 nm, 1123, 1289-1297 nm) and 

MIR (1523-1531 nm) wavelengths; and R values between N-P = 0.41, N-K = 0.72 and P-K 

= 0.74. In the present study, the highest correlation coefficients for N, P and K 

concentration (%) had common wavelengths at blue (around 490 nm) and red (around 670 

nm) regions. For P and K mass (kg ha-1) correlograms were almost identical; green (around 

560 nm) and red (around 630 nm) wavelengths had the highest correlation coefficient 

values. Overall correlation coefficients were higher for pasture P and K nutrients compared 

to N and for nutrient concentration (%) compared to nutrient mass (kg ha-1). The 

correlations were: N-P (%) = 0.78; N-P (kg ha-1) = 0.95; P-K (%) = 0.87; and P-K (kg ha-1) 

= 0.98. The correlation between N and K could not be explored because there were no 

pasture samples which were analysed for both nutrients. 
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Figure 8.2. Correlation between FDR and pasture nitrogen, phosphorus and potassium 
concentration (%) and mass (kg ha-1) represented in the plots in black lines and grey lines, 
respectively. Highest correlated wavelengths are identified. 
 

8.3.4. Prediction of pasture nutrients 

 

The PLSR models predicting pasture N, P and K concentrations (%) from FDR data 

yielded acceptable R2s (> 0.5) and slopes for K and P predictions, but poor R2 (< 0.5) and 

slopes for N prediction; with a small bias for all the predictions (Table 8.3 and Figure 8.3). 

The RMSECV obtained for N, P and K predictions was 0.40, 0.04 and 0.38, respectively, 

with the best SD/RMSECV ratio (lowest value) obtained for P and the worst for N. 
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Table 8.3. Summary of results for the PLSR models developed using the FDR data to 
predict pasture nitrogen, phosphorus and potassium concentrations (%) and mass (kg ha-1). 
Model accuracy was tested internally using leave one out cross-validation. Results are 
presented for the analysis using all wavelengths between 420-2400 nm (1981 wavelengths) 
and when analysis was limited to the wavelengths selected by the Martens‟ Uncertainty 
Test. 

Nutrient   

Number of 

wavelengths 

Latent 

variable R2 RMSECV Slope Bias SD/RMSECV 

Nitrogen (n = 48) (%) 1981 (100%) 4 0.47 0.40 0.54 -0.011 1.4 

  (kg ha-1) 1981 (100%) 1 0.14 16.05 0.14 -0.069 1.1 

  (%) 71 (4%) 3 0.44 0.41 0.47 -0.005 1.3 

  (kg ha-1) 1073 (54%) 1 0.14 16.05 0.14 -0.065 1.1 

Phosphorus (n = 140) (%) 1981 (100%) 7 0.71 0.04 0.75 -0.001 1.9 

  (kg ha-1) 1981 (100%) 5 0.42 1.96 0.47 -0.003 1.3 

  (%) 578 (29%) 7 0.78 0.04 0.80 0.000 2.0 

  (kg ha-1) 502 (25%) 7 0.46 1.89 0.52 -0.001 1.4 

Potassium (n = 92) (%) 1981 (100%) 6 0.68 0.38 0.72 0.005 1.8 

  (kg ha-1) 1981 (100%) 4 0.49 13.84 0.54 0.166 1.4 

  (%) 115 (6%) 5 0.67 0.38 0.69 0.000 1.7 

  (kg ha-1) 16 (1%) 2 0.36 15.50 0.36 -0.017 1.2 
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Figure 8.3. Relationship between measured and predicted pasture nitrogen, phosphorus and 
potassium concentration (%) and mass (kg ha-1) using PLSR cross-validation method. 

 

The RMSEP values for the predictions in the present study are much higher than the 

values presented by Mutanga et al. (2004) especially for pasture N and K concentrations. 

Compared with the study of Mutanga et al. (2004), where the N content ranged from 0.38 

to 2.00% (mean = 0.78%), P ranged between 0.04-0.48% (mean = 0.18%), and K from 0.21 

to 2.71% (mean = 0.96); in this study nutrient concentrations were higher and did not cover 

such a large range (Table 8.2). The percentage variation in pasture P concentration 

explained by the predictive model developed in this study and that of Mutanga et al. (2004) 

were similar (R2 = 0.71 – 0.70). Bogrekci and Lee (2005) using absorbance data and P 

concentrations of 150 fresh Bahia grass samples collected at three sites in the Lake 

Okeechobee drainage basin in Florida, obtained an R2 of 0.43 and RMSEP of 0.07%. That 

predictive model has lower accuracy than the model developed in this Chapter, despite 

having used a similar number of samples and range of P% (0.12-0.50%).  
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Thulin et al. (2006) predicted in situ pasture crude protein (CP) concentrations for 

75 samples collected from two sites in the south-eastern temperate zone of Victoria, 

Australia. The predictive model using the derivative of the absorbance data had an R2 of 

0.62 and a RMSECV of 2.97% CP (equivalent to 0.48% N, since CP is 6.25 times the N 

content of forages). Their data were collected in 2000 and 2002, using different methods of 

capture. Limiting analysis to samples collected in 2002 (n = 45) improved the relationship 

(R2 of 0.79 and a RMSECV of 2.39% CP (0.38% N)). This last result analysed a similar 

number of samples to our study but had a much wider range of pasture N concentration 

(0.92-4.87% N) yielding a similar RMSE, but much higher R2. 

Since low levels and narrow ranges in reference nutrient concentrations can cause 

regression model R2 values to be misleading (Roberts et al. 2004), the ranges of the three 

nutrients analysed in this study were increased by transforming the nutrient concentration 

(%) into the amount of nutrient in the standing sward (kg ha-1) expressed here as mass 

(Table 8.2). The idea to use the nutrients expressed as kg ha-1 was based on Yoder and 

Pettigrew-Crosby (1995), Jacquemoud et al. (1996) and Kawamura et al. (2009a). These 

authors reported an increase in biochemical variation when the reference data were 

expressed as amount (g cm-2, kg ha-1) instead of concentration (percent of dry weight). 

Indeed, in this study the variation of samples was increased when the nutrients were 

transformed into kg ha-1; the coefficient of variation (CV), calculated by dividing the SD by 

the mean, varied between 0.22-0.31 for nutrient concentration (%), and between 0.46-0.78 

for nutrient mass (kg ha-1) (Table 8.2). When the regression models were calibrated against 

the mass (kg ha-1), the predictions of the three nutrients decreased considerably in accuracy 

with respect to the R2s, slopes and SD/RMSECV, despite the number of latent variables in 

the PLSR models having been reduced (Table 8.3 and Figure 8.3). In PLSR the latent 

variables represent linear combinations of the predictor variables chosen to describe as 

much of the variation in the predictors (in this case the FDR data) as possible. They also 

provide extra weight for variables that show a high correlation with the response variable, 

the reference nutrient concentration (Miller and Miller 2005). The most robust regression 

models will have as few latent variables as possible. The use of mass (kg ha-1) in the 

regression seems to have introduced variation which could not be explained by the spectral 

data (lower R2s values). The slope of the regression lines decreased (Table 8.3 and Figure 
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8.3), and since slope represents the degree to which the predicted values change relative to 

the measured values, it should be as close as possible to 1. If the slopes deviates too much 

from 1 the model may be very sample sensitive (Williams 2001). 

Kawamura et al. (2009a) have estimated New Zealand hill pasture nutrients (in kg 

ha-1) with R2 = 0.78 and RMSEP = 18.75 for N, R2 = 0.94 and RMSEP = 2.57 for P, and R2 

= 0.81 and RMSEP = 28.41 for K using PLSR and FDR. The results for N and P were 

improved when analysing CRDR data (R2 = 0.89 and RMSEP = 17.14 for N, R2 = 0.94 and 

RMSEP = 2.43 for P). In Kawamura et al. (2009a) the samples analysed had a wider range 

for both nutrient content and biomass (N: 13.3-192.1 kg ha-1, P: 1.6-36.9 kg ha-1, K: 1.3-

294.2 kg ha-1) and were collected from a hill country site of easy slope on one date; while 

in this study samples were collected from a steeply sloping, hill country site with a sward 

structure that varied over four seasons of the year. 

The present study adds to the body of literature supporting the observation that the 

accuracy that might be achievable in remotely predicting pasture nutrient content is 

strongly influenced by the characteristics of the dataset used to build the calibration 

function. Regression models calibrated against pasture samples containing a wide range of 

nutrient contents are likely to improve the apparent accuracy of the model, compared to 

calibrations developed over a narrow nutrient range. Calibrations based on data collected 

throughout the year (four seasons) offer the possibility of developing one predictive model 

to cover the seasonal changes in botanical composition and sward structure, which may 

provide a better representation of the variability found in the field. With more variability in 

the reference data the predictive model may have less calibration accuracy. Calibrations 

developed for more complex areas, such as steep hill sites, will also have to deal with more 

variability, and again might result in inferior calibration accuracy when compared to 

calibrations developed for less variable swards in lowland and on easy-hill country. 

 

8.3.5. Important wavelengths 

 

The wavelengths detected as significant by the Martens‟ Uncertainty Test are 

highlighted in the regression coefficient plots (Figure 8.4). Some wavelengths which 

presented high values of regression coefficients were detected as non-significant in the 
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Martens‟ Uncertainty Test; these wavelengths were mainly localized in the extreme parts of 

the spectrum and have higher noise (low signal-to-noise ratio).  

 

 
Figure 8.4. Regression coefficients for the PLSR calibration models using cross-validation 
of the FDR against pasture nitrogen, phosphorus and potassium concentration (%) and mass 
(kg ha-1). Plotted in black are the significant wavelengths for the regression according to the 
Martens‟ Uncertainty Test. 
 

Many wavelengths, all over the spectrum, were significantly important in the 

calibration for P concentration and P and N mass; whereas for N and K concentration and K 

mass only few wavelengths in the Vis and NIR were significant (Figure 8.4). Predictions 

for P were based on a greater number of sample observations compared to N and K, 

meaning more sub-models were created for the cross-validation of the N and K PLSR 

models. This enabled a more thorough evaluation of the importance of each wavelength. 

Although several wavelengths were significant in the Uncertainty Test for predicting N 

mass, there were insufficient sub-models to evaluate the reliability of the wavelengths 

robustly, as few samples were analysed and only one latent variable was used in the PLSR. 

Predictions for all three nutrients had two common significant spectral regions (670-

750 nm and 1100-1300 nm). The former interval contains the red-edge, the spectral region 
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which has been related to plant chlorophyll content in numerous studies (Kumar et al. 

2001). Chlorophyll absorbs light in the Vis wavelengths for photosynthesis, and since N is 

a key component of chlorophyll, the concentrations of N and chlorophyll are correlated 

(Donahue et al. 1983). P and K nutrients are also related to the photosynthetic process and 

tissue composition of plants, so spectral reflectance in the Vis is also expected to be 

correlated to these nutrients (Mutanga et al. 2004). The range between 1100-1300 nm is 

one of the four principal zones in the NIR containing biochemical absorption features. This 

is dominated by C-H stretch 2nd overtones, features common to all biochemical constituents 

(Peterson and Hubbard 1992). 

The use of the full spectrum for developing calibrations enables a greater number of 

absorption features to be explored with the potential to increase the quality of the regression 

models. The negative side is that whereas more information is available, more non-

information (in the form of noise) is also present too. PLSR deals with this problem by 

reducing the predictor variables into fewer latent variables; where the spectral variation 

relevant to the variation in the reference nutrient dataset is described in the first latent 

variables, retained in the model, and the data noise is incorporated into the later, discarded 

(Martens and Naes 1987) variables. Nevertheless, to refine PLSR analysis some studies 

have proposed wavelength selection. Kawamura et al. (2008) investigating the performance 

of the PLSR with waveband selection found that elimination of redundant (or useless) 

wavebands suggested that only 2-17% of full-spectrum wavebands in the 400–2350 nm 

range were important for estimating forage biomass and quality. The Kawamura et al. 

(2008) study was based on 86 samples collected on one date. In more recent work 

Kawamura et al (2009a) reported that 62% of the spectrum (400-2400 nm) analysed with 

PLSR did not contribute to the prediction of pasture nutrient contents. Because the data 

were collected on a single date, Kawamura et al (2009a) have recommended that further 

research to include other seasons and a greater diversity of pasture types is required to test 

the approach further.  

In the present study, observing the wavelengths selected as significant by the 

Martens‟ Uncertainty Test for pasture N, P and K predictions (Figure 8.4), it also was 

possible to identify bands not contributing to the regression models developed. Variables 

that are non-significant in the Martens‟ Uncertainty Test display non-structured variation 
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(i.e. noise), and they can be considered useless, or unreliable, variables. Once those 

variables are removed the resulting model should be more stable and robust (i.e. less 

sensitive to noise) and the prediction error should decrease (Martens and Martens 2000). 

Limiting the model to the wavelengths considered significant by the Uncertainty Test, the 

results (Table 8.3) are generally similar to those presented previously for the whole 

spectrum between 420-2400 nm (Table 8.3). Overall P predictions were slightly better, and 

N and K predictions a little poorer. The bias (which is the average value of the residuals) 

did improve (decreased in value) in all regressions, when using only the wavelengths 

selected as significant. The improved P predictions may reflect the larger number of 

samples used in the P regressions, enabling more cross-validation sub-models to be used to 

identify the importance of each wavelength for the predictions. 

Slightly better predictions of pasture P concentration were obtained in our study 

using 29% of the original 1981 wavelengths analysed. Kawamura et al. (2009a) also 

obtained a better result reducing the number of wavelengths used in the prediction models. 

They found the important wavebands to predict N, P, K and S were located at 980-1080, 

1115-1360, and 1700-1920 nm. The wavelength range 1100-1300 nm was selected in both 

studies, but whereas the red edge (690-740 nm) was important for N, P and K predictions in 

our study and for crude protein prediction (and other pasture quality parameters) in the 

study of Kawamura et al. (2008), this wavelength range did not contribute significantly to 

the prediction of N, P and K in the study of Kawamura et al. (2009a). Important 

wavelengths can also vary depending on the reference nutrient unit (concentration, or mass), 

for example, in this study, wavelengths at 1100-1200 nm were selected as significant in the 

Martens‟ Uncertainty Test when analysing K concentration, but not for K mass (Figure 8.4). 

Moreover, the analyses of different spectral data can generate a different selection of 

wavebands, as reported in Kawamura et al. (2008) when comparing reflectance factors with 

FDR data. For the prediction of CP in their study, wavelengths in the blue spectral region 

(430 nm and 450 nm) were selected as important only when analysing reflectance factor 

data, and wavelengths around 1515-1520 nm were selected only when analysing FDR data. 

Waveband selection might improve PLSR predictions, but this is not a trivial or easy task. 

Before any conclusions about the best wavebands for the estimation of particular plant 

variables can be defined, further research is required.  
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8.4. Conclusions 

 

This study has examined the use of proximally-sensed hyperspectral reflectance 

factors between 420 and 2400 nm to predict hill pasture N, P and K concentration and mass. 

PLSR models using the first derivative of the reflectance (FDR) spectra gave more accurate 

predictions of pasture P concentrations, followed by pasture K and N concentration. The 

poor prediction of N concentration may be explained in part by the limited number of 

observations included in the sample set. The PLSR using the FDR of the full spectrum 

could explain 47%, 71% and 68% of the variation of pasture N, P and K concentration (%), 

respectively. The product of concentration and biomass, mass (kg ha-1), added more 

variation to the reference data but this could not be explained by the PLSR regression 

models, decreasing the quality of the predictions. 

Our study adds to the body of literature that suggests waveband selection might 

improve PLSR predictions. Further research analysing datasets with a greater number of 

samples, and samples with a wider range of nutrient contents collected from a greater 

variety of field sites to ensure a good representation of the range of swards found in the 

field (such as pasture samples from different seasons) is still required.  

There is indeed potential to use proximal sensing techniques to predict nutrients of 

hill pasture in situ. But this potential will only be realised if a substantial dataset 

representing all the variability found in the field is gathered. This substantial dataset is 

required to first develop a universal calibration (including all data) and then evaluate, for 

each situation, if specific calibrations (for specific areas, seasons, or using specific 

wavebands, etc.) would be more appropriate (increase the predictions accuracy). 
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CHAPTER 9: 

Summary, general discussion, final considerations and future work 

recommendations 

 

In this Chapter, the major findings of the present research are summarised, discussed with 

some final reflections, including suggestions for future research. 

 

9.1. Summary, general discussion and final considerations   

 

9.1.1. Chapters 2, 3 and 4   

 

The present research investigated the potential of pasture reflectance spectra, 

acquired in situ, to describe and quantify sward characteristics important in making critical 

decisions on the management of pastures in New Zealand. Reflectance measurements in the 

field, were recorded by representing reflectance (the ratio of the reflected flux on a sample 

surface to the incident flux from the same surface) as a reflectance factor (the ratio of the 

radiant flux reflected by a sample surface to that reflected into the same reflected-beam 

geometry by an ideal, perfectly diffuse, standard surface irradiated under the same 

conditions). New Zealand has changeable weather with rarely still atmosphere and high 

cloud frequency. These are characteristics which limit the collection of reflectance factors 

under natural conditions (e.g. sunlight). If the illumination conditions vary between the 

acquisition of the reference and the target spectra, the resultant reflectance factor spectra 

will present errors. The Canopy Pasture Probe (CAPP) was developed to allow the 

acquisition of the pasture‟ swards reflectance factor, in the field, independent of the 

ambient conditions (e.g. cloud cover, wind) (Chapter 2). Pasture reflectance factors were 

acquired in this research using an ASD FieldSpec® Pro FR spectroradiometer, which was 

attached to the CAPP.  

The ASD FieldSpec® Pro FR is a spectroradiometer which covers the spectral range 

between 350-2500 nm, with spectral resolution of 3 nm for the region 350-1000 nm and 10 

nm for the region 1000-2500 nm. It is important to note that spectral resolution (measure of 

the narrowest spectral feature that can be resolved by the instrument) is different and 
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independent from the spectral sampling interval (spacing between sample points in the 

spectrum). The sampling interval for the ASD FieldSpec® Pro FR is 1.4 nm for the region 

350-1000 nm and 2 nm for the region 1000-2500 nm, with measurements automatically 

interpolated and reported in 1 nm intervals (one value for 350 nm, one value for 351 nm, 

etc.). 

The CAPP consists of an inverted black bin; a lamp to provide a smooth energy 

output; and a frame to block the interference from exterior illumination and wind while the 

pasture spectra are recorded. To acquire reflectance factors, a reference panel needs to be 

used as a reflectance standard. Spectralon® (Labsphere, Inc.) is worldwide the most 

common reflectance standard used, but it is an expensive material if a large panel is 

required. After testing a variety of materials, a matt white ceramic tile, which has a 

reflectance of 80%, was selected as an alternate reflectance standard for field measurements 

(Chapter 3). 

The CAPP increases the utility of proximal sensing techniques under field 

conditions, especially in places of changeable illumination conditions like New Zealand. 

There are other challenges for the use of spectroscopy in situ, including the surface wetness 

of pasture canopy (Chapter 4). Water can mask some important spectral absorption 

features and consequently compromise the prediction of pasture parameters from spectra. 

The ideal would be to collect spectral data without any surface moisture in the pasture, but 

under field conditions this is rarely the case. Some straightforward approaches to deal with 

pasture surface moisture were adopted in this research: to avoid collecting spectral data 

when pasture was likely to be wet (e.g. immediately after rain or irrigation, early in the 

morning with dew still on the ground) and to use mathematically transformed spectra, 

including derivatives to reduce the effect of water from the sensed spectra.  

 

9.1.2 Chapters 5, 6, 7 and 8 

 

Under laboratory conditions sensing technologies have been proven very useful for 

estimating plant biochemistry attributes from dried and ground samples. The challenge is to 

extend this technology for in situ conditions (i.e. standing mixed plant communities under 

field conditions). To evaluate the ability of proximal sensing for predicting pasture 
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nutrients and botanical composition, reflectance factor data were acquired from a number 

of lowland dairy and hill sheep pastures in New Zealand, in each of the four seasons of the 

year (August 2006 to September 2007) using an ASD FieldSpec® Pro FR attached to the 

CAPP (top-grip).  

The relationships between pasture spectra and pasture botanical composition and 

nutrients content were explored using partial least squares regression (PLSR). PLSR was 

chosen because of the large amount of data and predictor variables are highly correlated 

(the information in single wavelengths is usually highly correlated with information in 

other wavelengths). That means there is redundant information, but rather than select a few 

of the predictor variables, it is better to reduce their number to a few components (latent 

variables).  Depending on the number of samples available, the accuracy and precision of 

the PLSR calibration models were evaluated using separate calibration and validation 

datasets or using the leave-one-out method of full cross-validation. 

A review of the research literature indicated that there is not a consensus on the 

criteria for evaluating the efficiency of calibration of spectral data against measured plant 

properties (e.g. nutrient content, biomass). The lack of consensus and hence standardization 

in approaches creates difficulties in comparing the findings of published studies. Frequently, 

regression results are assessed in terms of coefficient of determination (R
2) and root mean 

square error (RMSE). Too often R2, which is the percentage of the variance explained by 

the regression function, and highly dependent on the range of the samples used in the 

regression, is used alone. The RMSE, which is a direct estimate of the modelling error 

expressed in original measurements units, when analysed together with the R
2 provides a 

more complete view of the error of prediction. However the RMSE does not allow 

comparison between different parameters. Other statistics used to assess calibration 

regressions are the regression slope (rate of change in the dependent variable associated 

with a change in the independent variable), bias (the systematic difference between 

predicted and measured values) and ratios between standard deviation (SD) of the measured 

data in the validation dataset and standard error of prediction (SEP) or RMSEP (which 

enables the comparison between different parameters). In this research, the accuracy and 

precision of the PLSR models to predict pasture parameters were assessed using R2, RMSE 

of prediction or cross-validation (RMSEP or RMSECV), regression slope, bias and the 
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ratio of SD of the measured nutrient concentration or mass to the RMSEP or RMSECV 

(SD/RMSEP or SD/RMSECV, to provide a complete evaluation of regressions and allow 

comparison with other published studies. Accurate and precise predictions were those with 

high R
2, low RMSEP (or RMSECV), slope close to one, bias close to zero, and high 

SD/RMSEP (SD/RMSECV). To assess which wavelengths were significantly important for 

the pasture nutrient predictions models a Martens‟ Uncertainty Test, available in The 

Unscrambler® software, was applied. 

(Chapter 5) Data collected to describe pasture botanical composition (expressed as 

grass, legume and weed proportions), were used to characterise the nature of the pastures at 

each of the field sites. As a consequence botanical separation of the grass, legume and weed 

components of the pasture samples did not extend to separating green plant material (e.g. 

leaves) from non-green plant material (e.g. dead matter, seed heads, etc.). Green plant 

materials are spectrally different from non-green plant materials. This divergence appeared 

in the spectral data analysed but could not be taken into account in the botanical 

composition data. Nevertheless some useful information could be extracted from this study. 

While some PLSR calibration models could predict pasture grass and legume proportions 

with reasonable accuracy, the weed component was poorly predicted in all situations. The 

poor fit of the calibration models might be explained by the narrow range in proportion of 

weeds in the pasture samples analysed and by the fact that several distinct species 

(buttercup, catsear, chickweed, etc.) with contrasting leaf morphologies were grouped into 

a single weed category. 

The improved accuracy of the PLSR calibration models for predicting legume and 

grass proportions from samples collected from dairy lowland pasture plots (e.g. Colyton 

dataset) appears to be due to the fact that there were few grass and legume species in the 

dairy pasture, compared with the hill pasture (e.g. Alfredton dataset) where a great diversity 

of distinct grass and legume species were found. The high botanical diversity found in the 

hill country site that appeared in the spectral data, was not adequately described by the 

simple botanical separation. 

Of the four seasons, autumn presented the most accurate calibration model (also the 

best range of grass and legume percentage), winter, spring and summer (summer data 

available for one site only) calibration models were less accurate, with winter calibrations 
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highly affected by the narrow range of sample data. Quantification of the non-green pasture 

components, along with separation to pasture species level, might have improved spring 

and summer predictions of botanical composition. 

(Chapter 6) Different mathematical transformations were applied to the reflectance 

factor spectra before regressing against pasture N, P and K concentrations. In general more 

accurate predictions were achieved using the first derivative data. Clustering the data 

according to the season of the year increased the accuracy of predicting the concentrations 

of the three pasture macro-nutrients. Predictions with reasonable accuracy (R2 > 0.74 and 

SD/RMSEP  2.0) were obtained for N during winter, autumn and summer seasons; P 

during autumn; and K during summer. The narrow range in %P and %K in pastures in 

winter appears to be the reason for the low accuracy in the prediction of these nutrients, 

rather than a weakness in the methodology. Calibrations models derived from spring data 

explained little variance in the measured nutrient concentration and mass. The reason for 

that is not fully understood. Some wavelengths which presented high values of regression 

coefficients were detected as non-significant (useless or unreliable) in the Martens‟ 

Uncertainty Test. These wavelengths were mainly localized in the extreme parts of the 

spectrum and have higher noise (low signal-to-noise ratio). Seasonal variations in the 

important wavelengths selected by the PLSR calibration models to predict pasture nutrient 

concentrations were observed. 

(Chapter 7) First derivative reflectance (FDR) spectra obtained from lowland dairy 

pasture grown under differential P and N fertiliser applications, were regressed against 

pasture N, P (also K, Ca, Mg, Na and S) concentration (%) and mass (kg ha-1). Field 

spectroscopy has the potential to predict pasture nutrient contents, but the quality of the 

calibrations and hence the prediction is dependent on pasture type, management practices 

such as fertiliser application, through to the unit of expression of nutrient status. The 

predictive power of the PLSR models developed in this Chapter varied with each element. 

Some nutrient were predicted more successfully (e.g. N, Ca and Mg) than others (e.g. P and 

S). For example higher R
2s and SD/RMSECV resulted for N prediction when the 

regressions were carried out using nutrient mass (R2s = 0.61-0.78 and SD/RMSECV = 1.6-

2.1) rather than nutrient concentration (R2s = 0.39-0.63 and SD/RMSECV = 1.3-1.6). 

Pasture P concentration and P mass predictions were inaccurate (R2s = 0.31-0.42 and 
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SD/RMSECV = 1.2-1.3). The importance of separating datasets on the basis of pasture 

composition when building, evaluating and using prediction calibrations was highlighted 

when comparing prediction accuracy between pasture fertilised with added P (pasture with 

average legume content = 20%) or added P+N (pasture with average legume content = 2%). 

(Chapter 8) FDR spectra obtained from hill sheep pasture were regressed against 

pasture N, P and K concentration (%) and mass (kg ha-1). The PLSR calibration models 

for % N prediction had the following statistics: R2 = 0.47 and SD/RMSECV = 1.4; for %P: 

R
2 = 0.71 and SD/RMSECV = 1.9; and for %K: R2 = 0.68 and SD/RMSECV = 1.8. The 

less accurate prediction for N may be explained in part by the limited number of 

observations included in the sample set. When the wavelengths were limited to those 

selected by the Martens‟ Uncertainty Test, the accuracy of prediction for pasture % P 

increased slightly (R2 = 0.78 and SD/RMSECV = 2.0). The PLSR calibration using the 

FDR of the full spectrum could explain 47%, 71% and 68% of the variation of pasture N, P 

and K concentration (%), respectively. The product of concentration and biomass, the 

nutrient mass (kg ha-1), added more variation to the reference data but this could not be 

explained by the PLSR regression models, decreasing the quality of the predictions. The 

study presented in this Chapter adds to the body of literature that suggests removal of 

redundant wavebands might improve PLSR predictions. 

A comparison of the best PLSR calibrations for predicting pasture N, P and K 

concentrations and masses (Chapters 6, 7 and 8) is summarised in Table 9.1. 
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Table 9.1. Comparison of the best predictions for pasture N, P and K concentration and 
mass (see Chapters 6 to 8). Predictions with reasonable accuracy (R2 > 0.74 and 
SD/RMSEP  2.0) are highlighted (in bold). 

       SD/   N. of Sample Range Seasons Thesis 

Nutrient Unit R2
 RMSECV Sites samples % kg ha

-1
 W Sp Su A Chapter 

N % 0.83 2.4 Alf., Col. 52 2.75-4.85   x       6 

N % 0.77 2.1 Alf., Col., Ati. 61 1.42-4.42         x 6 

N kg ha
-1

 0.78 2.1 Col. (added P) 80   54-130 x x   x 7 

N % 0.76 2.0 Alf., Bal., Rua. 82 1.16-4.99       x   6 

N % 0.63 1.6 Col. (added P) 80 2.99-4.53   x x   x 7 
N % 0.47 1.4 Alf. 48 1.16-3.80   x x x x 8 
N kg ha-1 0.14 1.1 Alf. 48   4-75 x x x x 8 
P % 0.77 2.1 Alf., Col., Ati. 84 0.15-0.52         x 6 

P % 0.71 1.9 Alf. 140 0.15-0.49   x x x x 8 
P % 0.48 1.4 Col. 160 0.31-0.79   x x   x 7 
P kg ha-1 0.41 1.3 Col. (added P) 80   6-16 x x   x 7 
P kg ha-1 0.42 1.3 Alf. 140   13-10 x x x x 8 

K % 0.76 2.0 Alf., Bal., Rua. 93 1.00-4.15       x   6 

K % 0.68 1.8 Col. (add.P+N) 80 1.30-3.93   x x   x 7 
K % 0.68 1.8 Alf 92 0.90-3.80   x x x x 8 
K kg ha-1 0.49 1.4 Col. (add.P+N) 80   39-129 x x   x 7 
K kg ha-1 0.48 1.4 Alf. 92   0.76-76 x x x x 8 

 

The present research has demonstrated that reasonably accurate pasture nutrient 

predictions can be attained from fresh, in situ, canopy reflectance measurements. The 

importance of obtaining representative datasets that embrace all the biophysical factors (e.g. 

pasture type, canopy structure) likely to affect the relationship when building prediction 

calibrations was emphasized in this research by the different results obtained for the 

predictions of the same nutrient using different datasets and by the low number of common 

wavelengths when comparing predictions (c.f. predictions of pasture N, P and K presented 

in Chapters 6 to 8). The confidence to use a single model to predict multiple nutrients or a 

model developed for individual nutrients will only come through building a good 

understanding of the factors likely to influence any one calibration function. Considerable 

potential exists to use proximal sensing techniques to predict and manage the mineral 

nutrients of pasture in situ. But this potential will only be realised if research can be 

conducted on substantial field datasets that encompass the major causes of variability in 

pasture nutrient content and spectral reflectance. 
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9.2 Future work recommendations 

 

For calibration of spectral reflectance to pasture botanical composition it is 

recommended that future studies separate living and senescing grass, legume and weed in 

addition to dissection of grass, legume and weed by species. Detailed work at this 

development phase may lead to greater utility of the spectral data. For example, whereas 

the interest in sensing the grass component of a pasture might be to assess persistence of a 

recently sown cultivar and the legume content to predict feed supply quality and animal 

growth rates, early detection of invasion of weed species may allow targeted herbicide 

applications and reduced herbicide use. 

For this purpose it would be interesting to test discriminant analysis of the spectral 

data, a technique to classify new observations into pre-defined classes. In the discriminant 

analysis, a calibrated dataset is used to create discriminant functions, which are used to 

predict the class of new samples. The classes could be pastures with different proportions 

of legume, for example, class 1 = pastures with legume percentage ≥ 20% and class 2 = 

pasture with legume percentage < 20%.   

It has been reported in the literature that the continuum removal technique can 

improve the relationship between hyperspectral data and plant nutrients, consequently 

increasing plant nutrient predictions based on spectral data. This improvement was not 

observed in this present research (Chapter 6). In this study, the continuum removal was 

applied to the absorption features between 420-518 nm, 550-750 nm, 910-1081 nm, 1116-

1284 nm, 1720-1786 nm, 2010-2196 nm and 2222-2378 nm. It would be interesting to test 

the continuum removal technique applied to other spectral ranges in datasets representing 

all the variability found in the field. 

In general, the calibration models derived from spring data to predict pasture N, P 

and K in this research were poor. The reason for this is not clear, and further research is 

necessary to clarify the situation. In spring, pastures are growing very quickly, so a rapid 

change in biomass is observed. In this study (Chapter 6), there is some indication that 

prediction of pasture nutrient content might be affected by pasture biomass. It would be 
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interesting to include the pasture biomass as a variable in the PLSR and test if predictions 

could be improved for the periods when pasture biomass is high (e.g. spring). 

Some of the calibrations and predictions presented in this research were based on 

smaller than the ideal (100-150 samples) datasets. All too often this is also the case found 

in the literature, although as in the present study, many of these investigations were 

exploring the potential of the methodology beyond current applications. But, to truly 

evaluate calibrations and predictions with confidence, and build a calibration to be put into 

practice, a large dataset with a significant range of spectral and measured data is necessary. 

Cross-validation is indeed a useful method to test a calibration when there is a shortage of 

data, but larger datasets would allow independent calibration and validation. A calibration 

validation based on a properly collected validation dataset is better than cross-validation, 

because in cross-validation the samples are not truly independent. 

Remembering that a good spectral dataset needs to have samples of both pasture 

quality and quantity that represent all the variability found in the field, then the purposes of 

a study need to be clear before gathering the data. In the case of collecting data to explore 

field spectroscopy for estimation of pasture nutrients, it is recommended that the 

researcher: is aware of all farm practices that affect sward characteristics (e.g. fertiliser 

applications, grazing, weed control, etc.); is aware of the differences in pasture swards 

caused by seasons of the year (e.g. different pasture botanical composition); and, only after 

all this information is known, collects data (> 100-150 samples) that represent all this 

variation. 
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