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Abstract

Variants of malware and exploits are emerging on the global canvas at an ever-increasing

rate. There is a need to automate their detection by observing their malicious footprints

over network streams. Misuse-based intrusion detection systems alone cannot cope with

the dynamic nature of the security threats faced today by organizations globally, nor

can anomaly-based systems and models that rely solely on packet header information,

without considering the payload or content.

In this thesis we approach intrusion detection as a classification problem and describe

a system using exemplar-based learning to correctly classify known classes of malware

and their variants, using supervised learning techniques, and detect novel or unknown

classes using unsupervised learning techniques. This is facilitated by an exemplar se-

lection algorithm that selects most suitable exemplars and their thresholds for any

given class and a novelty detection algorithm and classification algorithm that is capa-

ble to detect, learn and classify unknown malicious streams into their respective novel

classes. The similarity between malicious network streams is determined by a proposed

technique that uses string and information-theoretic metrics to evaluate the relative

similarity or level of maliciousness between different categories of malicious network

streams. This is measured by quantifying sections of analogous information or entropy

between incoming network streams and reference malicious samples. Honeynets are

deployed to capture these malicious streams and create labelled datasets. Cluster-

ing and classification methods are used to cluster similar groups of streams from the

datasets. This technique is then evaluated using a large dataset and the correctness

of the classifier is verified by using “area under the receiver operating characteristic

curves” (ROC AUC) measures across various string metric-based classifiers. Different

clustering algorithms are also compared and evaluated on a large dataset.

The outcomes of this research can be applied to aid existing intrusion detection systems

(IDS) to detect and classify known and unknown malicious network streams by utilizing

information-theoretic and machine learning based approaches.
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Chapter 1

Introduction

“The wire protocol guys don’t worry about security

because that’s really a network protocol problem.

The network protocol guys don’t worry about it

because, really, it’s an application problem. The

application guys don’t worry about it because, after

all, they can just use the IP address and trust the

network.”
– Marcus J. Ranum

This chapter presents an introduction and background to the information security prob-

lem followed by the motivation for this thesis. The challenges in intrusion detection

schemes are identified and the need for intrusion detection and classification of mali-

cious network streams is described. The scope of the research is presented and research

problems are highlighted. The research goals are identified followed by an account of

the contributions and limitations of this thesis. The chapter concludes with an outline

of this thesis.

1.1 Background

In the past, information security has continually been overlooked and not considered

as a real problem. The need to secure data and information assets at a business and

consumer level was drawn into public consciousness after the commercialization of the

Internet in the late 1980s. Innella (2000) correlated this with emergence of the first

virus in 1988, and states:

“Therefore, in the fall of 1988 the world saw evidence of the true threats that existed to
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network security. The Internet Virus1 was launched at that time and all of the 60,000

computers on the Internet were crippled for two entire days.”

Before that, there were no real threats, as the early Internet was shared between very

few universities and government organizations primarily to conduct, collaborate and

share research (Innella, 2000).

Security is not an out-of-the-box solution. It requires careful analysis of the environ-

ment at hand before a solution can be proposed. It is a layered process and demands

a thorough understanding of the system and its constraints. No system is 100 per-

cent secure, the security of a system is as strong as its weakest point (Marcinkowski,

2001). Denning (1987) modelled the security problem around information and par-

titioned it into three major categories, more commonly known as the “CIA triad” or

“Confidentiality”, “Integrity” and “Availability”:

1. Confidentiality: Private sensitive information designated for certain users is avail-

able only to those authorized users in an authorized manner. This may include

file permissions, access control lists, encryption and other means.

2. Integrity: Information from trusted sources can be trusted. This means that

the information is protected from deletion or modification by unauthorized users.

Both Confidentiality and Integrity of a system can be attacked by unauthorized

access to private information and services.

3. Availability: Information is accessible and available to authorized users when

needed. This ensures that information resources are available to serve information

to authorized users whenever they require that information. Attacks such as

Denial Of Service (DOS)2 attacks may result in service outages causing delays to

access information.

Attackers take advantage of networks and use them as a mass transit system to exploit

remotely accessible services and spread their automated malware globally, in the form of

“malicious streams”3. Intrusion detection systems (IDSs) have become an essential tool

in the arsenal of security professionals responsible for protecting production networks.

IDSs have the capability to detect these malicious streams flowing through public and

private networks.

1“Self-replicating program that propagates through some form of infected files” (Hansman and Hunt,
2005)

2“An attack which prevents legitimate users from accessing or using a host or network.” (Hansman
and Hunt, 2005)

3Network streams created with malicious intent that may contain attacks, exploits, shellcode, or
malware
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Intrusion detection is the art of detecting malicious activity in a computer-related

system (Phoha, 2002). Malicious activities and intrusion techniques are interesting

from a computer security perspective. Denning (1987) classified IDS into “host-based”

and “network-based” IDS. Although recent progress and research in anomaly-based IDS

is quite remarkable, the majority of networks today still rely heavily on misuse-based

IDS for their network security.

Anomaly detection is the art of finding patterns in data that do not conform to expected

behaviour or models (Chandola et al., 2009). Analysis of traffic and events reveals that

intrusion behaviour patterns are different from the normal behaviour of system usage,

and hence anomaly detection techniques are applicable to intrusion detection. The

approach is to build models of normal data and detect deviations in observed data.

Misuse or signature-based detection relies on pre-defined content or pattern matching

techniques, in the form of signatures of known attacks. Signature matching techniques

are used to identify attacks by comparing the contents of packets with a set of signatures

or rules. These signatures comprise of distinct syntactic features observed from attacks

as they occur or have occurred. These features are in the form of patterns or sub-

strings. These patterns comprise of symbols or information, which make them unique

from other signatures and are used to “describe the characteristic elements of an attack”

(Kreibich and Crowcroft, 2004).

Signatures are created after analysing attack traffic data. Signature creation process is

labour intensive and requires careful analysis of the malware or exploit. A signature is

considered effective if it can narrow down the attack characteristics while being elastic

enough to detect some variations in the attack (Kreibich and Crowcroft, 2004). A

good signature should be specific enough to narrow down the exploit and avoid miss-

detection leading to false negatives and yet be generic enough to catch variants of the

same exploit, while avoiding classification of benign traffic as malicious, leading to false

positives.

1.2 Motivation

The unprecedented growth in the use of Information Technology (IT) has resulted in a

multitude of digital assets in the form of applications and services. Business enterprises

have built their entire business models utilizing these digital assets. Networks have

evolved from low speed half-duplex links to full-duplex, multi-homed, self-convergent,

gigabyte streams, controlled by advanced protocols. Applications and services have

also evolved from static, low-featured, with limited usability applications to highly
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interactive, advance, dynamic, multi-featured, high-usability, extendible and intelligent

applications. The security of these applications and services, accessible over inter-

connected networks, poses a major challenge to the IT industry. Our IT infrastructure

and resources are threatened on a daily basis by worms4, viruses, botnets5 and even

state-sponsored cyber-militants.

Each day, attackers or crackers6 and their automated agents such as: worms, viruses,

trojans7 and bots more commonly known as “malware” or malicious software, exploit

numerous vulnerabilities, threatening the IT infrastructure and its associated digital

assets. The attacker’s motivation can range from pranks, to personal gain, to lucrative

business models and cyber-espionage. The goals, however, are the same: to gain un-

privileged access to private data, information and computing resources. The attackers

have evolved from teenage “script kiddies” (Mead and Stehney, 2005), motivated to

gain publicity and notoriety by spreading havoc, to organized gangs driven by financial

motives, competing in a highly lucrative underground industry with a flourishing econ-

omy. Sensitive user data is the raw material for this industry and is continually being

harvested both overtly and covertly from globally distributed computers at an indus-

trial scale. Attackers have also evolved into state sponsored cyber-militia, involved in

sophisticated cyber-warfare, targeting the critical infrastructure of other nation states.

Over the years, we have observed a sharp increase in the intricacy, sophistication and

overall frequency of attacks. The availability of user friendly hack tools has increased

the number of attacks which do not demand a thorough understanding from their users.

Lipson (2002) studied and correlated this trend graphically, an extended version of

which is illustrated in Figure 1.1.

The Internet community has witnessed a monumental increase in cyber security inci-

dents over the last 2 decades. This trend is illustrated in Figure 1.2 from the number

of incidents reported as statistics from the Computer Emergency Response Team Co-

ordination Center (CERT/CC).

Symantec, a well-known anti-virus company, published its 2011 Internet Security Threat

Report Symantec (2011). A few highlights from this report are mentioned here:

• Blocked over 5.5 billion malware8 attacks in 2011.
4“Self-replicating program that propagates through network services on computers or through

email”. (Hansman and Hunt, 2005)
5“A group of computers that have been compromised and brought under the control of an individ-

ual.” http://us.norton.com/security-glossary/article
6“Someone who tries to break the security of, and gain access to, someone else’s system without

being invited to do so.” (Shirey, 2000)
7“A program made to appear benign that serves some malicious purpose”. (Hansman and Hunt,

2005)
8“A contraction of ”malicious software””. (Shirey, 2000)
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Figure 1.1: Intruder knowledge vs Attack sophistication (Lipson, 2002)

• 403 million of these attacks were caused by new variants of malware.

• Approximately 4500 web attacks per day.

• Nearly 42 billion spam messages.

• Over 5000 new vulnerabilities.

• Over 232.4 million identities were exposed overall during 2011.

• Cost due to the loss of business and information caused by these security breaches

accrued to billions of dollars globally.

A few notable information security incidents of global importance are presented here:

• It has been reported9 that since 1995 to 2007, the Peoples Liberation Army of

China has been involved in cyber-espionage involving stealing secret information

and theft of intellectual property from public and private institutes in the US .

• Operation Shady RAT 10 initiated in 2006, in which over 70 government and

corporate businesses across 14 countries were attacked and their digital assets

controlled by a single actor, allegedly China.

• In 2007, Estonia’s cyber infrastructure came under cyber attacks originating from

Russia. 11

9Report to Congress:http://www.defense.gov/pubs/pdfs/2010_CMPR_Final.pdf
10http://www.mcafee.com/us/resources/white-papers/wp-operation-shady-rat.pdf
11http://www.guardian.co.uk/world/2007/may/17/topstories3.russia
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Figure 1.2: CERT Incident reports received from 1988-2003 (Hansman and Hunt, 2005)

• In 2010, hackers from Pakistan defaced 1000+ Indian government and business

websites in response to similar attacks conducted earlier by the Indian Cyber

Army. 12

• In 2010, Iran’s Natanz nuclear enrichment facility was attacked by the Stuxnet

worm 13, which damaged centrifuges used in the nuclear plant. It is believed that

this worm was designed jointly by the Americans and the Israelis as an attempt

to undermine Irans nuclear program.

• In 2010, Operation Aurora 14 allegedly operated by China, targeted many US

defence and other companies including Google, Adobe, Juniper, Yahoo, Symantec

and others. The target was to steal intellectual property in the form of source

code from these companies.

• In 2012, the Maher Center in Iran reported a complex and highly sophisticated

cyber-attack in the form of “Flame” 15 spyware, that was infiltrating Iranian com-

puters and stealing and sending data to a remote command and control system.

Response time is critical in the advent of an intrusion. While available security tools

provide a good set of static defences, they cannot cope with the dynamic nature of the

threats, nor can they propose dynamic responses. Malware is getting more sophisti-

cated, harder to detect and remove. New attacks and vulnerabilities are emerging on

12http://tribune.com.pk/story/83967/36-government-websites-hacked-by-indian-cyber-army/
13http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.

html
14http://www.mcafee.com/us/threat-center/operation-aurora.aspx
15Flame:http://edition.cnn.com/2012/05/29/tech/web/iran-spyware-flame/index.html
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a large scale. AV companies generate over 100,000 signatures a week 16. Attackers use

attack variants to easily evade detection (Ptacek, 1998). Evasion can be achieved by

small changes in the attack patterns that undermine detection mechanisms based on

byte-by-byte matching. In order to identify these small changes, security analysts need

to carefully study the attacks which lead to security incidents. This may require setting

up of an environment in which network and system level events and details are logged

extensively. Security tools such as: Anti-virus software, firewalls, and intrusion detec-

tion systems (IDSs) are important tools to combat these attacks, but are greatly limited

due to a vast number of false positive (caused by miss-classification) and false negative

(caused by non-detection) results and thus give a false sense of security. The work in

this thesis focuses on the problems of network monitoring tools such as Network-based

Intrusion Detection Systems (NIDS) and proposes a solution based on payload-based

analysis techniques. These problems motivated me to investigate:

1. Resources and methodologies to setup environments that can invite attackers and

collect real attack traffic and data.

2. Methods which are more flexible, adaptable and resilient to cope with minor

changes in the network payload to detect attack variants with confidence. This

lead to the investigation of information-theoretic measures and string metrics.

3. Methodologies to classify known attacks and their variants from network streams,

using supervised learning techniques.

4. Methodologies to detect and classify new and novel attacks and recommend them

to the security analyst for analysis. This involved investigating unsupervised

learning methods.

1.3 Network-based Intrusion Detection Research Chal-

lenges

1. In order to detect an intrusion, a misuse-based IDS relies on signatures it has in

its signature database to compare with incoming network streams and packets.

Signature generation is a laborious process. It may require hours of analysis of

attack traffic by a human analyst, until a final effective signature can be pro-

duced and pushed out to be added to the database used by the IDS (Phoha,

2002). Meanwhile the automated attacks in the form of an exploit or malware is

continuously spreading havoc by globally infecting computer systems.

16http://www.zdnet.com/blog/bott/the-malware-numbers-game-how-many-viruses-are-out-there/

4783
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2. Most intrusion detection methods tend to be static, rule-based systems. They typ-

ically match against the signatures of known threats in packet content and apply

rules to drop, forward, log, or accept such packets. Signature-based detection

alone cannot cope with the demands of the current threat landscape. Attackers

today are quite capable of undermining anti-malware software and thwarting in-

trusion detection systems (Ptacek, 1998). Scrambling information within packets

can effectively evade misuse based IDS. Slight variations in the expected patterns

can result in the intrusion evading detection (Ptacek, 1998). The most common

methods of introducing variation into packet data are data scrambling or transpo-

sition, where the order of symbols forming the pattern changes, but the inherent

symbols remain the same. These syntactically distinct, but symbolically similar,

strings have similar entropy measures and so can be identified in this way using

information theoretic measures such as the Kolmogorov complexity (Cilibrasi

and Vitányi, 2005). However, this does not work if new symbols are added, or

the old ones are re-encoded, although other string metrics could be useful here.

Sometimes, even small variations result in new attacks which do not get detected

by the IDS. A similar situation occurs for new unknown zero-day exploits and

thus require a new iteration of incident or attack analysis for signature generation.

Ideally, the process to learn signatures should be automated to allow an enterprise

to stop an imminent attack. This requires that a system should automatically

perform intelligent traffic payload analysis to identify unique characteristics that

can help in generating signatures for IDS, or recommend suspicious or malicious

traffic to the human expert. This may involve identifying known attacks and

learning unknown ones.

The derivation of a sufficiently specific signature is not easy. However, simply

looking for signature matches is also problematic, as minor changes in the packet

data can lead to the data being sufficiently different such that it is no longer

identified by the signatures. This limitation is actively exploited by malware

writers (Ptacek, 1998). However the signatures cannot be made too generic as

this leads to false positives, which greatly undermines confidence in the IDS and

can result in it being ignored or disabled.

3. Existing anomaly-based solutions have a similar problem, with the addition that

most do not take into account any payload contents. Most anomaly detection

systems rely on statistical features extracted from header infromation such as:

Source and destination IP and Port, traffic volumes, arrival rates, IP and Port

distribution and latency. Packet header checks alone cannot promise security,

without incorporating entire packet payloads. Security policies based only on
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header information such as: IP address, Ports, and Protocols may become un-

reliable as attackers may conceal their malicious operations using ports used by

legitimate services, and use that trust model to transport malware via the pay-

load. Thus, obfuscating their malicious operations. IDS now need to be adaptable

and anomaly, payload or content aware.

4. Stateful protocol analysis techniques involve matching of each connection with

an existing template that acts as a profile for a given protocol such as FTP17,

HTTP18, SMTP19 and others. Any deviations from this profile are immediately

reported. A limitation is that attacks conforming to normal protocol behaviour

tend to go unnoticed (Rehak et al., 2009), and this can be used by attackers to

their advantage.

1.4 Scope of study

This thesis shows the effectiveness of information-based intrusion detection techniques

that involve string matching and compression on Honeypot network data. The proposed

system is designed to aid existing signature-based intrusion detection systems, with the

additional capability to detect variations of network intrusions in the form of malicious

streams of trojans, viruses, worms, shellcode and other active threats. To enable in-

telligent learning for automated classification, exemplar-based learning techniques are

investigated to detect variants of known attacks while they are being transferred over a

network. Similarity between known malicious stream samples and the incoming traffic

is calculated based on similar information or similar symbols. Such synergies are thus

quantified to yield a similarity score with a certain level of confidence and this is used

to classify examples of known attacks, and to add new classes of attack where there is

no known exemplar, so that the system can engage in lifelong learning and continue to

extend itself. The system is integrated with our existing Honeynet setup and we demon-

strate our approach using data from real Honeypots. In this thesis, the research scope

is restricted to intrusion detection schemes that can perform packet payload analysis.

This involves:

• Collection of malicious network streams for ground truth.

• Detection of malicious network streams and their variants (Supervised Learning).

• Detection of new or novel malicious network streams (Unsupervised Learning).

17File Transfer Protocol
18Hypter-text Transfer Protocol
19Simple Mail Transfer Protocol
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• Classification of all these streams.

1.4.1 Collection of malicious network streams for ground truth

In order to evaluate an IDS, it is necessary to have or create a dataset to serve as

a ground truth. This dataset should comprise of known malicious streams and their

variants. Variants can be synthesized or captured from live traffic. Details of known

malicious streams are studied and collected from sources such as:

Existing documented sources

It is important to start with known samples of malicious streams that can be labelled

and verified to train and test our system. Details of known malicious streams are

studied and collected from existing knowledge sources such as: CVE20, CERT21, Snort

Signatures22 and existing datasets collected by researchers and organizations (discussed

in Chapter 2). These knowledge sources have detailed documentation of the attack or

exploit, but often do not have live attack samples. These sources can be used to craft

or synthesize attack traffic and their variants.

Live sensors

Most network security tools are passive in nature; for example, firewalls and IDS.

They operate on available rules and signatures in their database. Anomaly detection

is limited only to these sets of available rules. Any activity not in alignment with

those rules goes undetected. In order to achieve a better insight into the attacks and

attacker tactics, there is a need to set up a vulnerable environment that lures an at-

tacker, to study their behaviour. To this end, apparently benign computer systems

designed to keep detailed logs of system activity are widely deployed today by security

researchers. These systems, known as ‘Honeypots’, are designed to record a hacker’s

activities to gain an insight into the methods used. The logs typically would include

intruder keystrokes, processes, and system-wide and network data. Over the years, re-

searchers have successfully isolated and identified worms and exploits using Honeypots

placed in specialized architectures called Honeynets. Honeynets are capable of logging

information, far more effectively than any other available security tool, providing the

20Common Vulnerabilities and Exposures: http://cve.mitre.org/
21Computer Emergency Response Team: http://www.us-cert.gov/ncas/alerts/
22Snort Rules: http://www.snort.org/snort-rules/
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capability to study hackers “under a microscope”. We have deployed multiple Hon-

eypot sensors emulating various services such as: FTP, HTTP, SSH, DNS23, SMB24,

RIP25, DHCP26, NTP27, POP28, TELNET, SOCKS, SNMP29, IRC30, RPC31, RDP32,

VNC33, XMPP34 and others to collect malicious network streams.

These live sensors provide three main advantages over other techniques:

• They provide an advantageous position for attack analysis, as the researchers

can control both the endpoints (Honeypots) and the intermediary network (Hon-

eynet).

• Since they have no production value, any connection attempt to them is consid-

ered suspicious or malicious. Thus avoiding intensive pre-filtering, which may be

required in production networks.

• They serve as an excellent source to collect live samples of malicious network

streams and malware.

1.4.2 Detection of malicious network streams and their variants: Su-

pervised Learning

Once a ground truth, in the form of a labelled dataset of malicious network streams

and their variants has been created, the next challenge is to investigate methods to

detect similarity between known malicious streams and their variants. The key research

questions addressed are:

Q: Is it possible to measure similarity between samples of malicious network streams?

Q: Is it possible to measure similarity between variants of malicious network streams

with statistical confidence?

Q: How should similar samples be grouped?

23Domain Name Service
24Server Message Block
25Routing Information Protocol
26Dynamic Host Configuration Protocol
27Network Time Protocol
28Post Office Protocol
29Simple Network Management Protocol
30Internet Relay Chat
31Remote Procedure Call
32Remote Desktop Protocol
33Virtual Network Computing
34Extensible Messaging and Presence Protocol
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Q: How should appropriate exemplars from known malicious stream samples for clas-

sification be selected: Instance selection problem?

1.4.2.1 Similarity measurement between malicious network streams: The

use of information-theoretic and string metrics based measures

One of the key requirements for classification is to measure similarity between malicious

network streams. String metrics, information-theoretic measures and other methods

are investigated, that can be applied on the payload collected from malicious network

streams for similarity measurements. The key questions addressed include:

Q: How should similarity between similar types of malicious network traffic or streams

be measured?

Q: What metrics are available?

Q: How do these metrics compare?

Q: What metrics provide the most appropriate methods for making similarity compar-

isons?

1.4.3 Detection of new or novel malicious network streams: Unsuper-

vised Learning

Techniques have been studied and adopted that involve detection and handling of new

or novel streams which may appear as a result of classification. The key questions

addressed here include:

Q: How should unknown or novel samples that did not get classified by prior knowledge

extracted from the training set (TR) be identified?

Q: How should appropriate exemplars from these unknown or novel samples for clas-

sification be selected?

Q: How should groups and sub-groups that may exist in these novel samples be iden-

tified to carry out classification?

1.4.4 Stream Classification

Clustering and classification algorithms have been studied, proposed and evaluated to

classify same, similar and novel streams from any given dataset. Evaluation for the
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accuracy of these algorithms is conducted using ROC curve analysis. Best performing

algorithms, that exhibit the best results in terms of highest true positive rate (TPR)

and lowest false positive rate (FPR) are considered.

1.5 Research Goals

The aim of this research is to develop novel information-theoretic intrusion detection

techniques for the detection and classification of:

• Known malicious network streams. (Supervised Learning discussed in Chapters

4 and 5)

• Variants of known malicious network streams. (Supervised Learning discussed in

Chapters 4 and 5)

• New or novel malicious network streams. (Unsupervised Learning discussed in

Chapter 6)

The proposed system is designed to aid existing signature-based intrusion detection

systems, with the additional capability to detect variations of network intrusions and

novel intrusions.

Samples of malicious streams are collected using Honeynets and labelled. Techniques

for determining similarity between malicious streams are investigated. Clustering and

classification algorithms are used for clustering and classification of similar malicious

streams. Supervised learning approaches are used for classification of known malicious

streams and their variants, while unsupervised learning approaches are used for the

classification of new or novel malicious or suspicious streams.

1.6 Contribution of this thesis

1. Developed a means to contain and capture attacker activity in a controlled envi-

ronment.

2. Developed a method to measure the similarity between malicious and benign

network streams with statistical confidence.

3. Developed the capability to detect variants of known malicious streams with

confidence and classify them.

13
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4. Developed the capability to detect new and novel streams.

5. Developed the capability to classify these novel streams into groups and sub-

groups.

1.7 Limitations

The system proposed in this thesis has some limitations, which are listed here:

1. Currently the system is not capable of detecting encrypted streams, encrypted

using substitution ciphers.

2. It might not reliably detect compressed traffic. May lead to partial or no detec-

tion.

3. Not tested on binary malware.

4. Not capable of automatically assign a meaningful label to novel streams. Needs

supervisory guidance.

5. No means to automatically validate the ground truth.

6. No mechanism to automatically validate malicious exemplars.

7. The system is not real-time.

These limitations could be eliminated or reduced by further exploration and investiga-

tion possibly following thoughts, directions and suggestions outlined in the future work

section.

1.8 Thesis Structure and Outline

The rest of this thesis is structured as follows:

Chapter 2. This chapter presents a theoretical background and gives an account of

the state of the art in intrusion detection technologies. This is followed by a brief

history and detailed taxonomy, in which we attempt to position our research

context. Computer attacks are studied to label and categorize attacks to form

a ground truth. Techniques to collect datasets or ground truth for IDS bench-

marking are discussed and Honeypot and Honeynet technologies are introduced

as tools to collect real and live attack data.

14
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Chapter 3. This chapter presents the design and architecture of our proposed IDS.

Discusses evaluation techniques for IDS and presents the dataset that we col-

lected and use. This is followed by a discussion on the usefulness of Honeynet

and Honeypot technologies, their design challenges, and a discussion on our im-

plementation followed by results in the form of intrusion data collected from this

setup.

Chapter 4. This chapter explores what similarity metrics are available for similar-

ity measurement of malicious network streams, discusses their advantages and

disadvantages and provides experimental evidence to select the best metrics.

Chapter 5. This chapter discusses the advantages and disadvantages of various clus-

tering and classification algorithms that can be used for intrusion detection. It

proposes a clustering scheme fit for our domain and evaluates, compares and tests

these schemes to find the best one, based on an appropriate criterion.

Chapter 6. This chapter deals with machine learning techniques that can be used

to add automated learning to our intrusion detection system. Exemplar based

learning techniques are investigated and custom algorithms are created to deal

with both supervised learning and unsupervised learning scenarios. Novelty de-

tection strategies are also discussed and implemented. The chapter concludes

with a comparison of the proposed algorithms with other known techniques for

evaluation and verification.

Chapter 7. This chapter summarizes the research contribution and gives a conclusion

to the research presented in this thesis and points out directions for future work

and improvements.
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Chapter 2

Literature Review on Intrusion

Detection

“Know thy self, know thy enemy. A thousand

battles, a thousand victories.”

–Sun Tzu, The Art of War

This chapter reviews the state of the art in intrusion detection technologies, their his-

tory, types and taxonomy and their strengths and weaknesses. It introduces computer

attacks and discusses the need to study them for classification and labelling purposes.

Data collection methodologies for benchmarking intrusion detection systems are stud-

ied and Honeypot and Honeynets technologies are presented as useful tools for data

collection and attack analysis.

2.1 Intrusion Detection Systems

The Internet Security Glossary (RFC2828) defines an “Intrusion” as:

“A security event, or a combination of multiple security events, that constitutes a se-

curity incident in which an intruder gains, or attempts to gain, access to a system (or

system resource) without having authorization to do so.” (Shirey, 2000)

The same document defines an “Intrusion Detection System (IDS)” as:

“A security service that monitors and analyses system events for the purpose of find-

ing, and providing real-time or near real-time warning of, attempts to access system

resources in an unauthorized manner.” (Shirey, 2000)
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Intrusions occur as attackers and intruders1 use sophisticated means to exploit vulner-

able systems to:

• Gain unauthorized remote access to computer hosts over the network or Internet.

• Gain unauthorized additional user privileges on a host system.

• Misuse privileges granted for malicious gain.

IDS enable organizations and enterprises to protect their system from the onslaught of

attackers. On detecting an attack or intrusive behaviour, an IDS can be configured to

respond, either by logging details of the attack and the attacker, or by actively taking

automated actions to mitigate further spread of the attack. Careful consideration needs

to be taken while configuring an IDS. Bad or misconfiguration of an IDS may lead to

either too many alarms or False positives (FP), or undetected attacks or False Negatives

(FN). Such situations are detrimental for the security of the organization.

Intrusion detection is not a plug-and-play or an out-of-the-box solution. Judy Novak

highlights this as: “Intrusion detection is not a specific tool but a capability, a blending

of tools and techniques” (Novak and Northcutt, 2003). It requires expert level knowl-

edge, skill and experience to install, configure and maintain such systems in a home or

enterprise environment.

2.1.1 A Brief History and Review Of IDS

The literature suggests over time there has been a transition from traditional host-

based statistical and pattern matching intrusion detection schemes to network-based

intrusion detection sensors to hybrid data mining and machine learning approaches.

Techniques involving information-theoretic measures have shown promise and have re-

cently emerged as simpler techniques for payload or content-based intrusion detection.

For NIDS2, it has been observed that most techniques rely on features extracted from

packet header data. Such techniques have become unreliable and easy to evade (Ptacek,

1998). Researchers are now employing techniques that involve payload analysis in order

to ensure that evasion is more difficult.

Early Host-based IDS (HIDS): In 1980 Anderson (1980), while working for the

US government suggested the notion of an automated program for computer security

1“An entity that gains or attempts to gain access to a system or system resource without having
authorization to do so” (Shirey, 2000)

2Network Intrusion Detection System
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threat monitoring and surveillance. His focus was on an automated review of UNIX

system or host-based audit trails, to optimize them and reduce redundancies within

them. Although he did not describe his system as an Intrusion Detection System, but

functionally laid down the foundation of such a system by pointing out the need for

statistical analysis of user behaviour. The development of IDS initiated with a focus

on host-based IDS. Dorothy Denning (1987) described the first model and framework

of an Intrusion Detection System (IDS) in her seminal paper in 1987, while she was

working at SRI International. This led to the development of a host-based IDS called

“Intrusion Detection Expert System (IDES)” (Javitz and Valdes, 1991) at SRI, this

was a hybrid system that relied on anomaly detectors and expert systems. In 1988,

the Lawrence Livermore Labs at UC Davis developed the “Haystack” IDS (Smaha,

1988) for the US Air Force. The same year the National Computer Security Center

(NCSC) developed another IDS called “Multics intrusion detection and alerting system

(MIDAS)” (Sebring et al., 1988). In 1989, Los Alamos National Laboratory developed

a statistics-based anomaly detector called “Wisdom and Sense (W&S)”. IDES, MIDAS,

Haystack and W&S were host-based IDS, that relied on user behaviour and system log

information analysis for detection. These initial IDS were effective systems in their time,

but cannot meet the requirements of the current threat landscape and sophisticated

malware that exists today. This is because these systems relied on host-based detection

alone and current day malware is intelligent enough to employ techniques to imitate

normal user behaviour while evading detection.

Network-based IDS (NIDS): During the 1990’s, Intrusion Detection Systems started

to mature, demonstrating a move towards more sophisticated, network-centric and hy-

brid approaches. In 1990, Heberlein at UC Davis developed the first network-based IDS

called “Network Security Monitor (NSM)” (Heberlein et al., 1990). This system laid

the foundation for all network-based intrusion detection systems, as it involved packet

capture and analysis. In 1991, UC Davis developed the first hybrid IDS called “Dis-

tributed Intrusion Detection System (DIDS)” (Snapp et al., 1991). DIDS used NSM

for network-based detection and Haystack for multi host-based detection. The same

year Los Alamos National Laboratory developed the “Network Anomaly Detection and

Intrusion Reporter (NADIR)” (Ning and Xu, 2003), a network-based IDS. NADIR

performs detection by analysing audit trails of network service nodes. In 1993, SRI ex-

tended IDES to create an intelligent host-based IDS called “Next-generation Intrusion

Detection Expert System (NIDES)”. UC Santa Barbara developed the STAT and US-

TAT (Ilgun, 1993) system, a host-based IDS with a focus on transition analysis based

detection in 1993. Researchers at Purdu University applied state-transition-based anal-

ysis with coloured petri-nets to IDS to create “IDIOT” (Crosbie et al., 1996). In 1996
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DARPA sponsored the “Graph-based IDS (Gr-IDS)” project at UC Davis to create Gr-

IDS (Staniford-Chen et al., 1996), a network-based IDS. GrIDS uses graph analysis

of network activities for detection. In 1998, Steven Northcutt created SHADOW (Sec-

ondary Heuristic Analysis for Defensive Online Warfare) (Northcutt and Aldrich, 1998)

IDS for the US Navy, as part of the CIDER3 project. SHADOW performs traffic analy-

sis using PERL scripts on SSH and tcpdump data, but suffers from high false positives

and negatives. In 1997, SRI labs created a distributed hybrid IDS the “EMERALD”

IDS (Porras and Neumann, 1997a). EMERALD is an extension to IDES/NIDES, which

can detect network misuse, but suffered from high false positives and required manual

creation of new rules for new attack/anomaly types. In 1998, Giovanni Vigna created

“NETSTAT” (Vigna and Kemmerer, 1998), a NIDS that uses state-transition-analysis.

Bro IDS (Paxson, 1999) was developed by Lawrence Berkeley National Laboratory in

1998. The same year Yoan created Prelude (Vandoorselaere, 1998), a hybrid IDS. In

1999, Martin Roesch developed SNORT (Roesch et al., 1999), an open source light

weight intrusion detection system for networks. The IDS were now getting smarter

and more network aware. However, they have limitations in the form of high false-

positives and relatively easy and successful evasion by attackers. A compilation of

evasion techniques is presented by Ptacek (1998)

IDS with Data-mining and Machine learning capabilities: At this point in

time, with the increase in the number of detection sensors, especially due to distributed

and hybrid IDS, researchers were faced with the problem of large datasets to process.

This led to a shift towards detection methodologies that involve data mining and ma-

chine learning approaches. The same year Columbia university created a network-based

misuse detection system called MADAM ID (Lee et al., 1999), an IDS that used data

mining techniques. MADAM ID takes into account connection characteristics for anal-

ysis but does not consider packet payload data. Thus any attack having connection

characteristics matching normal behaviour goes undetected. Mississippi state univer-

sity developed an “Intelligent IDS (IIDS)” (Bridges and Vaughn, 2000), that used

fuzzy data mining techniques. CERIAS developed “Autonomous Agents for Intrusion

Detection (AAFID)” (Balasubramaniyan et al., 1998), a multi host-based distributed

intrusion detection system. “ADAM or Audit Data and Mining” (Barbara et al., 2001)

developed in 2001, employs data mining techniques on tcpdump audit trail for intru-

sion detection. Like MADAM, ADAM also uses connection-level data and does use

the packet payload for analysis and detection. In 2001, the MITRE corporation devel-

oped an IDS called “Data Mining for Network Intrusion Detection” (Bloedorn et al.,

3”Cooperative Intrusion Detection Evaluation and Response”
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2001). In 2002, Silicon Defence worked on an anomaly detection project called Statis-

tical Packet Anomaly Detection Engine (SPADE) (Staniford et al., 2002), SPADE use

packet header or connection data for statistical anomaly detection. “PHAD or Packet

Header Anomaly Detection” (Mahoney and Chan, 2002), was developed by Mahoney

et al. in 2004. An important limitation of this system is that It analyses features from

packet header data for analysis and not the payload. Ertoz et al. (2004) developed

“Minnesota Intrusion detection system (MINDS)”, a network-based IDS that employs

multiple modules for intrusion detection. MINDS also extracts multiple features from

the packet header data for analysis and detection. Here it can be noted that although

the sophistication and complexity of IDS has increased over the years; but still, most

network-based techniques rely heavily on features extracted from packet header data

alone. Over the years many extensions in the form of plugins have been added to these

existing IDS. Computer attacks that can be exploited remotely over the network com-

prise mostly of known vulnerabilities, exploits and shell code, which are transported

using the payload.

Intrusion detection techniques which ignore the payload data cannot act as effective

defences and fail when attackers evade them by sending malicious payloads using head-

ers resembling normal traffic or normal behaviour. Accordingly, in our work we have

adopted techniques which go beyond examination of just the packet headers.

Payload-based Detection: Packet payload information gives an insight into ap-

plication level data and is most useful in identifying attacks against vulnerable ap-

plications. For payload content-based detection, researchers have employed detection

techniques and algorithms based on frequency distribution-based n-gram techniques.

These techniques created models of normal network data and detected deviations from

it. A few notable contributions include PayL (Wang and Stolfo, 2004) in 2004, McPAD

(Perdisci et al., 2009) in 2009, and the recent work done by Miller (Miller and Hu,

2012; Miller et al., 2011). Some contributions that extend PayL by adding intelligence

and unsupervised learning include (Bolzoni et al., April) and (Ariu and Giacinto,

2010). Such frequency distribution-based anomaly detection techniques are effective

and better than header-based detection, but suffer from both high false positives and

false negatives and require considerable memory and processing.

Information-theoretic Intrusion detection techniques: Other researchers found

success with Kolmogorov Complexity and information-theoretic approaches for intru-

sion detection namely Lakhina et al. (2005); Feinstein et al. (2003); Wehner (2007);
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Kulkarni and Bush (2001a); Evans and Barnett (2002); Evans et al. (2004); Kulka-

rni and Bush (2006); Eiland and Liebrock (2006); Flake (2004); Cilibrasi and Vitányi

(2005); Leland et al. (1994). These techniques promise simple and effective methods for

intrusion detection and an active area for research. Researchers have used these tech-

niques to successfully detect focused problems such as: network scans, anomalous FTP

and binary malware. However, there does not appear to be any generalized solution

for malicious network streams.

Honeypots for Intrusion detection: Other researchers employed Honeypots to

capture anomalous streams and generate signatures (Kreibich and Crowcroft, 2004;

Mohammed et al., 2008; Pouget and Dacier, 2004; Levine et al., 2003; Julisch, 2002;

Tang and Chen, 2007) (discussed in 2.1.6.5). Honeypots serve as an excellent data

collection resource to capture malicious streams for analysis.

There has been a shift from generalized IDS to more focused intrusion detection tech-

niques, such as those focusing on worm detection (Leland et al., 1994; Singh et al.,

2004; Kreibich and Crowcroft, 2004; Kim and Karp, 2004; Newsome et al., 2005; Mo-

hammed et al., 2008; Kim and Karp, 2004; Singh et al., 2004; Eiland and Liebrock,

2006; Kulkarni and Bush, 2006; Wehner, 2007; Evans and Barnett, 2002; Tang and

Chen, 2007; Levine et al., 2003; Pouget and Dacier, 2004) (discussed in 2.1.6.5) and

botnet detection (Gu et al., 2007).

This was a brief history and review of a few notable IDS, well known in the research

community. More detail on these systems is presented in the subsequent sections. Many

commercial products based on the aforementioned IDS and techniques have also been

developed over the years, which are not listed here since they are the intellectual prop-

erty of a company and their internal functionality is not fully disclosed or documented.

A compiled time line of a few notable IDSs is illustrated in Figure 2.1.

2.1.2 A Taxonomy of Intrusion Detection Systems

In order to understand different classes of intrusion detection systems, the work done

in each class and the gaps in existing intrusion detection techniques, it is helpful to

study their taxonomy. Numerous Intrusion detection techniques have been proposed

over the years. A comprehensive list of such resources is available on-line at the Center

for Education and Research in Information Assurance (CERIAS), located at Purdue

University CERIAS (2011). In 1998 DARPA created a working group called “The Com-

mon Intrusion Detection Framework (CIDF)”, which was responsible for coordinating

and defining a common framework in the IDS field. Later in 2000, this working group
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Figure 2.1: Time-line of a few notable Intrusion Detection Systems

was integrated within the “Internet Engineering Task Force (IETF)”, under the new

acronym IDWG, which stands for Intrusion Detection Working Group”. Several classi-

fication schemes have been proposed by researchers in the past have proposed such as:

Allen et al. (2000), Axelsson (2000), Debar et al. (1999), Jones et al. (2000), Kruegel

and Toth (2000), Kvarnström (1999), Lunt (1993), Qing et al. (2004), Lazarevic et al.

(2005), Sabahi and Movaghar (2008), Garcia-Teodoro et al. (2009), Amer and Hamil-

ton Jr (2010) and Liao et al. (2012). However, unfortunately there is yet no universally

accepted taxonomy for IDS. After careful study of these taxonomies, it was observed

that at the core, all IDS are dependent on and can be distinguished by categories

such as: information sources, analysis methods, location and detection methodologies.

Other attributes of the IDS such as: architecture, time, and response are important

but serve as extra categories to categorize IDSs. All these categories are important and

highly integrated with each other. This strong coupling has troubled researchers in

the past and they seemed to mix categories such as: information sources and location,

though they are independent categories. Based on these and other observations and

shortcomings of previous taxonomies, it was decided to group IDSs using the following

seven categories as a criteria. This is a general taxonomy that is conceived by adding,

splitting and merging several categories from previous taxonomies, mostly extracted

from Lazarevic et al. (2005), Sabahi and Movaghar (2008), Amer and Hamilton Jr

(2010) and Liao et al. (2012):

1. Analysis Method
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2. Location in the Network

3. Architecture

4. Processing time

5. Response

6. Information Sources

7. Detection Methodology

This proposed taxonomy is also illustrated graphically in Figure 2.2, here the relation-

ships are also highlighted between different categories. A summary of these categories

is also illustrated in table 2.1

2.1.3 Categorization by Analysis Method

CERIAS classifies IDS under the two most widely used categories, which are: Misuse

detection based and Anomaly detection based.

Researchers in intrusion detection have used many different techniques, but these can

broadly be classified into the following categories and sub-categories:

• Misuse-based intrusion detection: Performs predefined signature or pattern matches

on events or strings.

– Signature Based.

– Rule Based.

– State Based.

• Anomaly-based intrusion detection: Detection on observing deviations from nor-

mal behaviour of the system. May use statistics, information-theoretic and ma-

chine learning techniques for detection.

– Statistical methods.

– Scan detection: Focused on detecting network scans.

– Profile detection: Aggregate network connections to identify behavioural

features, often using clustering techniques.

• Hybrid detection: Uses the combination of multiple techniques for detection.
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IDS Taxonomy Summary

Category Main Attributes Examples

Analysis Method
Misuse-based Snort, Bro, STAT, NetSTAT,

Haystack
Anomaly-based IDES, NIDES, ADAM, MADAM,

EMERALD, SPADE, MINDS,
PHAD

Location
Network-based Snort, Bro, NSM
Host-based IDES, MIDAS, Haystack, W&S,

OSSEC, BSM, LSM, SELinux

Processing Time
Realtime or Online Snort
Non-realtime or Offline Argus, DIDS

Response
Active or Pro-active Configuration Dependent
Passive or Reactive Configuration Dependent

Architecture
Centralized Snort, Bro, STAT, OSSEC
Distributed DIDS, GrIDS, Argus

Information
Source

System calls, Audit trail,
Logs, Socket/tcpip data, Net-
work flow, Packet header
info., Packet payload, States,
Process/binary

Snort, Bro, STAT, NetSTAT,
Haystack, IDES, NIDES, ADAM,
MADAM, EMERALD, SPADE,
MINDS, PHAD, OSSEC, BSM,
LSM, SELinux, DIDS, GrIDS,
Argus

Detection Meth.
Statistical IDES, SPADE, PHAD
Data-mining and Machine
Learning

MADAM ID, IDDS, ADAM,
NIDES, Lee et al. (1999), Sung
and Mukkamala (2003), Kruegel
and Toth (2003), Chebrolu et al.
(2005), Liu et al. (2002), Chen et al.
(2005),Liao and Vemuri (2002),
Wang et al. (2006), Soule et al.
(2005), Portnoy et al. (2001), Zhang
et al. (2008) and others

Information theoretic Lakhina et al. Lakhina et al.
(2005) , Wehner Wehner (2007),
Kulkarni and Bush Kulkarni and
Bush (2001a), Evans and Barnett
Evans and Barnett (2002), Kulka-
rni, Evans and Barnett Kulka-
rni and Bush (2006), Eiland and
Liebrock Eiland and Liebrock
(2006), Halvar Flake Flake (2004),

Table 2.1: Proposed IDS Taxonomy
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2.1.3.1 Misuse-based Detection Systems:

Misuse or signature based detection is used to identify unique patterns of unauthorized

activity, and use these patterns to predict and detect subsequent similar attempts.

Notable Misuse detection systems include: Snort (Roesch et al., 2006), Bro, Haystack,

STAT, MIDAS and IDES.

Misuse detection relies on already available knowledge of an attack or exploit in the

form of a signature. The signature creation process may require extensive analysis of

an attack by a human expert. This may increase the accuracy of a misuse-based IDS,

however they may be unable to cope with attack variants, and novel and emerging

threats, as they lack the intelligence to detect them and any variations. Misuse-based

IDS may incorporate the following methods for detection:

• Signature-based detection.

• Rule-based detection.

• State-based detection.

• Data-mining methods for detection.

Signature-based detection involves matching monitored events to known attacks,

by searching through a signature database of known attacks for each event. If a moni-

tored event matches a known attack, alarms are raised or action is taken by the system.

This detection methodology, however, is not capable of detecting novel or emerging

threats. Signatures require careful analysis by a human expert to be created, while an

exploit is actively exploiting vulnerable systems over the network. Once a signature

is created and tested, it is then added to the signature database for use. Examples of

well-known systems that incorporate signature-based detection methodology include:

Snort (Roesch et al., 2006), Haystack (Smaha, 1988) and others.

Rule-based detection methods These use rules to identify attacks. Rules are cre-

ated using a rule-based language to describe characteristics of an attack. These rules

are then applied on the collected data to detect attacks or intrusive patterns. Exam-

ples of rule-based IDS include Bro (Paxson, 1999), which uses a rule based language to

create rules and policies that define intrusive activity. IDES (Intrusion Detection Ex-

pert System) Javitz and Valdes (1991), developed by SRI International. This system

had a rule-based expert system along with a statistical anomaly detection sub-system.

EMERALD IDS (Porras and Neumann, 1997a) is another rule-based IDS. It uses the
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Production Based Expert System Toolset (P-BEST) (Lindqvist and Porras, 1999)

which is a rule-based expert system developed at SRI. P-BEST is also used as the

rule-based inference engine of NIDES (Next-gen Intrusion Detection Expert System)

(Anderson et al., 1995).

State-based detection State-based detection methodologies involve detecting in-

trusive system states. The system is modelled as a finite state machine. Malicious

activities or attack scenarios are modelled as states. This serves as a reference mali-

cious state. System states transitions are then monitored and any state that resembles

the malicious reference state is flagged as a threat or intrusion. State-based detection

can be modelled on a host’s security audit trail. Examples of such systems include

USTAT (Unix State Transition Analysis Tool) (Ilgun, 1993), based on STAT (Por-

ras and Kemmerer, 1992). State-based detection can also be modelled using network

data, as done by NetSTAT (Network-based State Transition Analaysis Tool) (Vigna

and Kemmerer, 1998). In such systems attack scenarios (modelled as state transition

diagrams) and the network itself are modelled as hypergraphs, with network interfaces

represented as nodes and hosts modelled as edges on the graph. This results in a highly

customizable architecture for detecting attacks and probes, as it has an extra advantage

that network topological knowledge added to the system.

Data-mining and machine learning methods for misuse detection imply

learning algorithms on benign and intrusive labelled data to train the system. Once

the system gets trained, it can then be used on live system or network data for misuse

detection. A comprehensive account of techniques that use data-mining and machine

learning are discussed in Section 2.1.6.3

2.1.3.2 Anomaly-based Detection Systems:

Anomaly detection systems raise alarms on detecting significant deviations from normal

patterns or models. An anomaly is defined as a deviation from the normal or expected

behaviour or outcome of a system.

A few notable anomaly detection systems include: Snort with Spade plugin, MADM,

ADAM, NIDES, and EMERALD.

Anomaly-base detection has the capability to detect novel and emerging threats, but

may incorporate numbers of high false positives. Researchers in the past have used

many different algorithms for anomaly detection systems. Anomaly detection tech-

niques mainly differ in terms of source of information and methodology. Anomaly-based
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detection techniques can be classified into the following main groups:

1. Statistical Methods

2. Rule-based methods

3. Distance-based methods

4. Profiling methods

5. Model-based methods

Statistical Methods This technique involves applying statistical methods to de-

tect intrusions in system and network data. This is done by extracting features from

data and translating them into variables. Next, statistical techniques such as average,

standard deviation or others are used to detect abnormal deviations in these vari-

ables. Such simplistic statistical models can be applied to host and network based

IDS. Most anomaly detection systems depend on statistical features extracted from

the network traffic such as: source and destination ip, source and destination port,

latency changes, arrival rates, traffic volume. Examples of anomaly-based systems that

use statistical methods include: IDES (Javitz and Valdes, 1991), NIDES (Anderson

et al., 1995), EMERALD (Porras and Neumann, 1997b) and SPADE (Staniford et al.,

2002). SPADE is available as a plugin for SNORT (Roesch et al., 2006) and can detect

port scans using probability and frequency techniques. Other systems use probability,

chi-square statistics, outlier detection and others.

Rule-based Methods In anomaly detection systems, rule-based methods are used

to create rules to define ‘normal’ behaviour in system and network data. Any deviation

from these rules is considered an anomaly and flagged for inspection by an expert.

Distance-based Methods To overcome the statistical limitations posed by multi-

dimensional data, distance-based methods are used to identify outliers by calculating

distances between all data points from one another and then calculating their neigh-

bourhood densities. Lazarevick et al. has given a good comparison of several distance-

based methods in their technical report (Lazarevic et al., 2003). A good example of a

distance-based system is MINDS (Minnesota Intrusion detection system) (Ertoz et al.,

2004). This system uses net-flow data to extract features. All network connections are

assigned an anomaly score, which is then investigated by an expert.
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Profiling Methods Profiling methods involve creation of normal user, system and

network behaviour profiles. Any deviation from these profiles is considered as intrusive

behaviour. They incorporate several data-mining and heuristics for decision making.

Examples of such system include ADAM or Audit Data and Mining (Barbara et al.,

2001), that uses data-mining to detect attacks in tcpdump data. PHAD or Packet

Header Anomaly Detection (Mahoney and Chan, 2002) is yet another IDS of this type.

PHAD is capable of extracting multiple (up to 33) features from packet headers to build

behaviour profiles. These profiles are then used for anomaly detection. There are some

other systems, such as those that are inspired by the human immune system, and those

that perform behaviour modelling using association pattern analysis or association

rules, rate-based profiling methods and connection based profiling methods.

Model-based Methods Anomaly-based IDS mostly employ model-based methods

(ADAM, NIDES, EMERALD, PayL). Using model-based methods, normal and anoma-

lous behaviour models are created for training the system. Once trained, the system

can identify intrusions based on deviations from normal behavioural models and simi-

larity with anomalous behaviour. Researchers have used supervised and unsupervised

learning techniques for model-based anomalous intrusion detection. Commonly used

techniques include Markov-model4, Artificial neural networks (ANN)5 and k-NN (k-

nearest neighbour) based approaches.

For our proposed IDS, we employ multiple anomaly-based detection techniques to en-

hance detection. We employ profiling methods to create profiles of packet or stream

payload data in our work, distance-based methods to determine a similarity distance

between these profiles, model-based methods to create models to guide the classifica-

tion.

2.1.3.3 Hybrid Intrusion Detection Systems:

Hybrid detection systems incorporate multiple detection schemes to provide exten-

sive and accurate detection. This may include a combination of network-based and

host-based approaches and signature-based and anomaly-based approaches and their

variants. Hybrid systems often correlate information and events received from mul-

tiple sensors to identify intrusions. This is done by using multiple correlation and

data-mining approaches. Examples of such systems include the distributed intrusion

detection system (DIDS), developed by Snapp et al. (1991). This system makes use

4http://www.mathpages.com/home/kmath232/part2/part2.htm
5http://en.wikipedia.org/wiki/Artificial_neural_network
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of a HIDS called Haystack (Smaha, 1988) to detect local attacks, while network secu-

rity monitor or (NSM) (Heberlein et al., 1990) is used to monitor the network. Both

systems, Haystack and NSM, send information to the DIDS Director, where the final

analysis is performed.

2.1.4 Categorization by Location in the network:

Generally, intrusion detection systems can be categorized into one of two main cat-

egories, having sub-categories. This is based on their location or deployment in the

network:

• Host-based IDS (HIDS): Uses System Commands, System Accounting info, Sys-

tem Log information and Security Logs

• Network-based IDS (NIDS)

– Wired network

– Wireless network

∗ Mobile

∗ Fixed

2.1.4.1 Host-based IDS (HIDS)

Early IDS emerged as HIDS deployed on Unix systems (discussed in 2.1.1. Host-based

IDS monitor and analyze user activity on a host system. They are able to derive first-

hand data from attackers interacting with the host system. Since HIDS are actively

monitoring the host system, they can be detected by the attackers and in some extreme

cases get tampered with or even shut down by them. It is imperative for such systems

to quickly report intrusive behaviour to a remote server before they get spotted and

turned off or tampered with by an attacker. They can provide information sources such

as system commands typed on the console by the user, system accounting information,

process logging information, and security audit information.

System Commands can be used to detect malicious activity by analyzing com-

mands typed by the user. Since malicious users may use a different set of commands

from ordinary users, they can be profiled as having malicious or intrusive intent.
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System Accounting information such as process accounting (pacct file in Unix),

which contains information about a process owner, execution time and memory, and

login accounting information (wtmp and access.log file in Unix), which contains infor-

mation about successful login and logout along with unsuccessful login attempts, are a

major source of accounting information. They can be used to detect attacks or intrusive

patterns.

System Log information or syslog provides information that is logged by both, the

system and applications or services. Hence any interaction of the malicious user with

the system and or its applications and services would be recorded by syslog. Syslog is

highly configurable and can be setup to speak with many Unix services such as ‘login’,

‘httpd’, ‘sendmail’, ‘nfs’, ‘ftpd’, ‘mysqld’, ‘sudo’, ‘swatch’, ‘TkLogger’ and others. The

examples here relate to Unix/Linux specific services, but similar methods are applicable

to other operating systems like Windows and Mac OSX.

Security Logs on a host contain audit logs generated by the host security module.

This module is responsible for maintaining and logging a chronological list of security

events that have taken place on a host. This information is collected by inserting

hooks into the kernel that detect all user-level system calls interfaces with the kernel.

This information may include authentication information, access control information,

system call traces, user and group information, CPU and memory allocation and file

reads. Analysis of these logs may reveal intrusive activity or patterns. In Sun Solaris

systems, The Basic Security Module or BSM (Soft, 1995) is responsible for monitoring

and recording security related events. For Linux systems the Linux Security Module

or LSM (Wright et al., 2002) performed the same task, which is now replaced by the

SELinux (Smalley et al., 2001) module.

2.1.4.2 Network-based Intrusion Detection Systems or (NIDS)

They monitor network traffic to detect intrusive behaviour. With the exponential

growth of computer networks and services available on the Internet, the need to monitor

and safeguard network protocols, segments and devices has become imperative. A

detailed discussion of NIDS systems has been presented earlier (section 2.1.1 ).

NIDS can be deployed at strategic locations in the network, mainly at entry and exit

points or network gateways. NIDS can detect various known attacks and intrusive be-

haviours at the network level by analyzing packets flowing through its sensors. Packet

information may include header and payload information. Complete communication
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between hosts can be retrieved and studied using tcpstream-reassembly or packet re-

assembly. Packets are usually collected by a sniffer sub-system, which copies packet

instances from network interfaces for analysis. They can provide insight into low level

packet details and protocol structures.

2.1.5 Categorization by Information source

Another interesting way to classify intrusion detection systems is by their information

or input sources as:

• Header-based detection

• Payload/content-based detection

• Hybrid approach

• System calls

• Event log

• TCP/IP data

• Binary/executable analysis

• Network flow aggregation

Intrusion detection systems initially emerged as host-based systems. As users logged

into mainframes for their computational tasks, the security and monitoring of user ac-

tivity on these systems became a requirement. Hence, information sources were limited

to host-only events. However, with the exponential growth of computer networks, net-

work data became an information source for IDS. Today many systems focus on either

or both in a hybrid arrangement.

2.1.6 Categorization by Detection Methodology:

Due to the vast amount of data generated by various distributed host and network-based

detection sensors, there is a requirement for a capability to quickly and efficiently parse

these large datasets and correlate information between them to identify patterns and

make intelligible decisions. This may involve creating models after discovering knowl-

edge and patterns from datasets and using learning algorithms to learn and predict

changes intelligibly and suggest responses automatically.
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Recent trends in IDS research suggest a shift from misuse and anomaly based method-

ologies for intrusion detection towards those that incorporate data mining and statisti-

cal machine learning techniques (as discussed in section 2.1.1). They can be categorized

as:

• Statistical method based detection: This may include Univariate, Multivariate,

Time series model.

• Knowledge-based detection: This includes Finite state machine (FSM) and Ex-

pert Systems.

• Machine learning based detection: This includes Bayesian Networks, Fuzzy Logic,

Neural Networks, Markov models, Genetic Algorithms, Clustering and Classifi-

cation.

• Information theoretic based detection.

2.1.6.1 Statistical Methods for Intrusion Detection

Research on Intrusion Detection Systems can be categorized by the use of statistical

techniques and methods used for intrusion detection. This may include techniques

involving mean, standard deviation, probability, Chi-square statistics and others. A

detailed discussion on statistical techniques has been discussed earlier in the section on

“Anomaly Detection” (See: 2.1.3.2)

2.1.6.2 Knowledge-based detection

Such systems are focused on availability of prior knowledge or data. The expert system

approach is a well known knowledge-based IDS scheme, in which decision making is

modelled around the behaviour of human experts. This is done by identifying different

groups, classes, parameters and procedures. Next, rules are created around these, which

help in data classification. Finite state machines are also used under knowledge-based

techniques, in which states and transitions are analysed and decisions are taken based

on them.

2.1.6.3 Machine learning approaches for Intrusion Detection

Machine learning is a branch of Artificial Intelligence (AI), that deals with the study

and creation of evolving systems or algorithms that can learn and evolve from data. A
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machine learner is trained on labelled data and can then use that knowledge to identify

patterns in unlabelled data for classification, and identify new patterns as they emerge.

Machine learning algorithms are now being widely deployed for intrusion detection.

Machine learning algorithms can be categorized as:

1. Supervised learning 6

2. Unsupervised learning 7.

3. Semi-supervised learning 8

Generally machine learning algorithms may be mapped to the following important

categories:

• Fuzzy Logic9

• Markov Model10

• Bayesian Networks11

• Genetic Algorithms12

• Clustering and Classification13

Many machine learning algorithms are now being used for intrusion detection. A few

notable techniques are mentioned below:

6A machine learner or classifier is trained on a labelled dataset of examples. It uses a function to
map samples to correct classes, by utilizing prior knowledge from the training phase. It is often referred
to as a classification problem. Examples include: Artificial Neural Networks (ANN), Bayesian statis-
tics, Kernel estimators, Support vector machines (SVM), Random forest and the Nearest neighbour
algorithm.

7The machine learner has no prior knowledge of the data structure and attempts to identify hidden
structures in such unlabelled data. It is similar to density estimation in statistics and often referred to
as a clustering problem. Examples include: k-means, hierarchical clustering and self-organizing maps
(SOM)

8These learning methods use both supervised and unsupervised learning techniques in a hybrid
manner for better classification.

9Use of fuzzy predicate logic to yield an approximation.
10Markov models comprise of interconnected states and derives a model by studying transition be-

tween states. Mainly comprise of markov chains and hidden markov models. Markov model based
techniques have been used by researchers for intrusion detection.

11Bayesian networks use probability to encode relationships between variables. In intrusion detection
they can be used to detect intrusive behaviour by analysing the probability of system or network events.

12Evolutionary algorithms inspired by biology. Used in IDS as they provide robust global search
methods.

13These algorithms group or cluster similar items together, based on proximity from a reference
point, density points or neighbouring points. Clustering algorithms are now being widely adopted by
IDS.
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Misuse detection using Statistical Machine learning Methodology Lee et al.

(1999) applied association rules in audit data and network traffic for misuse detec-

tion. Sung and Mukkamala (2003) applied SVM on host and network logs to identify

attacks and misuse patterns causing computer security breaches. Kruegel and Toth

(2003) designed an algorithm to generate a decision tree for fast detection of malicious

events from network data. Chebrolu et al. (2005) applied the CART-tree algorithm

on the KDD cup 1999 intrusion detection dataset and eliminated features that did not

contribute to the ranking, which increased overall accuracy of the system. They also

investigated a feature selection and classification algorithm involving Bayesian networks

on host data (Chebrolu et al., 2005). Most of the work done using these algorithms

focuses on data obtained from host-based events or features extracted from packet

headers for network-based data. These techniques do not consider network payload,

hence cannot reliably determine the attack without payload analysis.

Anomaly-based detection using Statistical Machine learning Methodology

Liu et al. (2002) used artificial neural network (ANN) techniques to analyze sequences

of system calls for anomaly detection with good accuracy. Chen et al. (2005) com-

pared SVM and ANN on 1999 DARPA evaluation set and BSM audit data and found

that SVM outperformed ANN. Liao and Vemuri (2002) used KNN to classify program

behaviours as normal or intrusive based on their system calls. For their dataset they

observed a high accuracy with very low false positive rate. Wang et al. (2006) applied

HMM to host audit data to detect anomaly data quickly at a lower mismatch rate.

However the training phase requires multiple passes, resulting in slow detection rates

and limiting the detection to host-based systems only. Soule et al. (2005) used Kalman

filters to recognize traffic patterns using a network-wide view. Portnoy et al. (2001)

applied clustering anomaly detection methods on both DARPA and KDD cup 1999

datasets and obtained good results in terms of classifier accuracy for known or labelled

data, whereas, clustering unlabelled data resulted in lower detection. Zhang et al.

(2008) applied the random forest algorithm to the KDD cup and DARPA datasets.

They observed comparatively better results than other unsupervised techniques, how-

ever the classifiers performance became degraded over minority attacks. The algorithms

and methodologies discussed in this section also rely on features extracted from packet

headers and do not consider network payload for analysis.

Statistical machine learning algorithms are used in this thesis for learning known exem-

plars for classification and unknown exemplars for novelty detection and classification.
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2.1.6.4 Information-theoretic approaches for Intrusion Detection

This section outlines information-theoretic approaches that are being used for intrusion

detection.

Information-theoretic approaches for intrusion detection have recently been explored

by researchers. Lakhina et al. (2005) demonstrated the detection of a wide range of

anomalous network flows by examining their entropy measures. Feinstein et al. (2003)

identified DDoS attacks by examining the entropy of packet header fields. Information-

theoretic approaches can also be applied to packet or stream payload data for measure-

ments and analysis. A few notable techniques used by researchers are discussed here:

Wehner (2007) created a fast method for guessing the family of an observed worm

without disassembly, by comparing the compressibility amongst binaries to determine

their similarity using Kolmogorov Complexity (KC). For network traffic Wehner (2007)

used average compression ratios of good or expected traffic and flagged anomalies on

deviations from it. There has been a significant amount of work on network traffic

characterization but little has been done in compression-based clustering and classifi-

cation for traffic. This can be because compression is an expensive operation in terms

of CPU time. Kulkarni and Bush (2001a) attempted a similar approach to monitor

network traffic without using compression. Work carried out by Evans and Barnett

(2002) used compression to compare the complexity of legal FTP traffic with illegal

traffic, but at a header level only, whereas we shall use entire TCP payload sessions.

Evans and Barnet gave the concept of “conservation of complexity” (Evans and Bar-

nett, 2002). They asserted that the Kolmogorov Complexity (KC) can be used as

a fundamental property of information to build models and laws of information se-

curity. They applied this concept to network protocols to identify normal or attack

traffic. Their initial experiment focused on transport headers of FTP sessions, using

Unix Compress utility. Attack and normal traffic dumps were converted to ASCII first

and then compressed incoming and outgoing traffic sets, while removing noise such as

header information. They found that FTP has predictable complexity. Their prelimi-

nary work focused only on TCP session data and not the payload. Later Evans, Eiland

and Markham worked on a scheme that used the ASCII text stream of the FTP control

channel (Evans et al., 2004) and got comparatively better results. Kulkarni et al.

Worked on DDOS detection using Kolmogorov Complexity, based on the theme that

“Highly correlated data has a high compression ratio” (Kulkarni and Bush, 2006).

Since in a DDOS attack similar packets are sent to a single target from distributed

locations, their similarity can be used to detect such attacks. Packets are sampled from

flows and their complexity differential is calculated. Highly correlated packets indicate
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existence of a pattern for detection. Kulkarni and Bush (2006) performed denial of ser-

vice measures using compression ratios based on Kolmogorov Complexity by estimating

the entropy of 1’s contained in the packet. Such techniques generally prove to be quite

efficient in determining worm and worm-like activity, but suffer from limitations that

may lead to false positives. Eiland and Liebrock (2006) detected network scans from

normal traffic using Kolmogorov Complexity by estimating the inverse compression ra-

tio of scan and normal traffic. This technique fails when used to partition or classify

various types of attack traffic using full payload data.

Flake (2004) and Carrera and Erdlyi compared executable objects by instigating graph-

based methodologies. Flake (2004) also applied this technique to the analysis of mal-

ware by disassembling the binary. Wehner (2007) created a fast method for guessing

the family of an observed worm without disassembly, by comparing the compressibility

amongst binaries to determine their similarity. There has been a significant amount of

work on network traffic characterization but little has been done in compression-based

clustering and classification for traffic, possibly because compression is an expensive op-

eration. Wehner (2007) employed Kolmogorov’s Complexity using a method suggested

by Cilibrasi and Vitányi (2005) to determine similarities. Kulkarni and Bush (2006)

attempted a similar approach to monitor network traffic without using compression.

Work carried out by Evans and Barnett (2002) used compression to compare the com-

plexity of legal FTP traffic with illegal traffic. Evans and Barnett (2002) performed

denial of service measures using compression ratios based on Kolmogorov complexity.

Such techniques are effective, but limited to focused attacks like FTP or scan traffic.

We explore these techniques further and propose more general solutions to enhance

detection.

In this thesis, such techniques are applied to packet or stream payload data, as a method

to determine similarity between them.

2.1.6.5 Worm Detection Systems

Due to the fast propagation techniques, sophistication and large scale havoc caused

by computer worms, they have recently become an interesting problem for research

and security researchers. In the last two decades, many worm detection techniques

have emerged and considered as an important capability from an IDS perspective. A

few notable worm detection techniques are discussed here: The existence of complex

self-similar patterns in Internet traffic was first revealed in work done by Leland et al.

(1994). Multiple invariant sub-strings must often be present in all variants of a worm

payload (Leland et al., 1994). Generation of a short single substring signature for
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every worm instance can result in a high number of false positive rates (Leland et al.,

1994). Systems based on pattern-based analysis extract common byte patterns across

suspicious flows to generate a signature for novel Internet worms. Examples of such

systems include EarlyBird (Singh et al., 2004), Honeycomb (Kreibich and Crowcroft,

2004), and Autograph (Kim and Karp, 2004). A single signature is used to match

all worm instances based on unique sub-strings in the payload. These sub-strings

are considered invariant across worm connections. Such systems may suffer from a

relatively high false positive and high false negative rate. Earlybird, Autograph and

Honeycomb generate a single, contiguous substring of a worm’s payload as a signature.

This inhibits their ability to detect all polymorphic worm instances.

Classification of signatures for polymorphic worms are usually divided into two main

categories: (Newsome et al., 2005; Mohammed et al., 2008; Kim and Karp, 2004; Singh

et al., 2004):

• Content-based: Detect similarity in different instances of byte sequences to char-

acterize a given worm.

• Behaviour-based: Characterization by perceiving the semantics of byte sequences.

(Execution behaviour.)

The data from Honeypots can provide some insight information useful for intrusion and

attack analysis. Here we discuss systems that generate offline signatures for any instance

of a polymorphic worm. Pouget and Dacier (2004) analysed traffic in Honeypots to

identify root causes of frequent processes. Levin et al. explained the use of Honeypots in

extracting particulars of a worm (Levine et al., 2003). Julisch (2002) defined a method

that clustered intrusion alarms for discovering the root cause of an alarm. Content-

based systems like Honeycyber, Polygraph, Hamsa and LISABETH (Newsome et al.,

2005; Li et al., 2006; Cavallaro et al., 2008; Mohammed et al., 2008) generate automated

signatures for polymorphic worms. The commonality between these systems is their use

of several distinct sub-strings that are often present in variants of polymorphic worm

payloads regardless of whether or not the payload changes for each infection.

All these systems capture packets from a gateway router, thus these systems may find

multiple polymorphic worms addressing a different vulnerability from the other. This

can make it difficult to find distinct content shared amongst polymorphic worms. To

capture most polymorphic worm instances, it is necessary to observe the polymorphic

worm while it interacts with the host. Honeycyber (Mohammed et al., 2008) uti-

lizes a “Double-Honeynet” method to detect polymorphic worms and collect all their

instances. Sommer and Paxson (2003) proposed adding connection-level context to

signatures to reduce false positives. Yegneswaran et al. (2005) described the Nemean
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system, that incorporates protocol semantics into the signature generation algorithm,

giving it a wider coverage in dealing with polymorphic worms. Tang and Chen (2007)

defined a ”Double-Honeypots” system. Since polymorphic worms use random keys to

encrypt each instance of it, this will result in huge number of signatures that would

increase with every iteration or propagation. Since after decryption of the polymor-

phic function, the op-code remains consistent, a better approach would be to develop

a signature for the in-memory run-time op-code used by the polymorphic worm.

Information-theoretic approaches for worm detection have been successful. Work done

by Wehner (2007), Kulkarni and Bush (2001b),Kulkarni and Bush (2006), Evans and

Barnett (2002) and Eiland and Liebrock (2006) has been discussed in detail in the

section 2.1.6.4

2.1.7 Categorization by Processing time:

IDS can be categorized by the time they take to process data, making them online

or ‘real-time’ IDS, in which data is processed in parallel or almost simultaneously on

reception. IDS can also be offline or ‘non real-time’ IDS, in which data is first collected

and later processed in batch mode. Due to the extensive processing and learning of

malicious streams, the IDS proposed in this thesis is a non real-time IDS.

2.1.8 Categorization by Architecture:

From architectural view point, IDSes can be ‘Centralized’, i.e. they monitor a single

host or server and analyse its data only. They can also be ‘Distributed’, i.e. they can

monitor several distributed hosts or sensors and collect, consolidate and analyse their

data to detect global, distributed and coordinated attacks and patterns. Distributed

architecture may give better insight into attacks, as they have the capability to coordi-

nate cyber attacks from several distributed locations. Distributed IDSes often employ

agents on remote hosts to collect and exchange data. The data is then correlated by

an inference engine to detect attacks. This process may incorporate methods based on

similarity in alert features such as source or destination IP address and ports, it can

also decide based on correlation of known attacks scenarios, which need to be specified

prior to detection. Another way to detect attacks is by correlating pre and post attack

data. Well-known examples of Distributed IDS include: DIDS (Snapp et al., 1991),

GrIDS (Staniford-Chen et al., 1996) and Argus (?). The IDS proposed in this thesis

can be employed as both centralized, on a single host and distributed, by collecting

data from multiple hosts or Honeypot sensors.
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2.1.9 Categorization by Response:

IDS can be categorized by their response to attacks or intrusions. This response can

be ‘active’, which can further be ‘pro-active’ i.e. on detection of intrusive behaviour

the IDS can take pre-emptive countermeasures such as lockout the attacker and kill

suspicious processes run by him and in some extreme cases, launch an automated attack

against the attacker, or ‘reactive’, i.e. on detection of intrusive activity it can react to

the incident in a prescribed way, defined by the administrator. An IDS should actively

detect and respond to attacks as they occur. Conversely, an IDS can be ‘passive’. In

this scenario, on detection of malicious activity, the IDS would passively log or drop

malicious packets. A response may be active or passive, but either way maximum

information about the attack and the attacker should be collected by the system. The

IDS proposed in this thesis can act actively on detection of known malicious streams

and passively on detection of new or novel malicious or suspicious streams.

2.1.10 Gaps in Intrusion Detection Systems

There has been a significant amount of work done on intrusion detection technologies,

the most notable of which has been reviewed in this chapter. The literature has demon-

strated a clear shift from traditional statistical and pattern matching intrusion detection

schemes to hybrid data mining and machine learning approaches. Techniques involving

information-theoretic measures have shown promising result and have recently emerged

as more simple techniques for intrusion detection. For NIDS, it has been observed that

most techniques rely on features extracted from packet header data. Such techniques

become unreliable and easy to evade (Ptacek, 1998). Researchers are now employing

techniques that involve payload analysis.

From the literature review we conclude that applying statistical techniques to packet

header information alone cannot serve as a reliable intrusion detection technique, as

most of the information can be extracted from the payload part of a packet or TCP

stream. Many evasion techniques (Ptacek, 1998) can be used to undermine IDS that

solely rely on packet header information. We assert that the information present inside

the packet payload is unique to an attack or intrusion and hence can be used to classify

attacks. Information-theoretic measures can be applied to measure this payload infor-

mation and classify attacks accordingly. Some approaches that use similar techniques

have been discussed in section 2.1.6. The intrusion detection techniques proposed in

this thesis are anomaly-based detection schemes with an information-theoretic focus,

that incorporates multiple techniques such as: profiling methods, distance and model

based methods using statistical machine learning algorithms for detection.
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2.2 Classifying Computer Attacks

This section defines and describes different types of computer attacks and presents a

review of their taxonomy. Knowledge of these attacks is useful to both the attackers

to infiltrate computer networks and systems, and system administrators or defenders

or security engineers to safeguard against the attackers. For our thesis we use this

knowledge of attacks to label attack samples in order to create training sets to train

our proposed IDS.

The Committee on National Security Systems (CNSS) (on National Security Systems,

2003) of the United States of America defines a computer attack as:

“Any kind of malicious activity that attempts to collect, disrupt, deny, degrade, or

destroy information system resources or the information itself.”

2.2.1 Types of Attacks

A comprehensive list of computer attack definitions are listed in resources like the

Internet Security Glossary (RFC 2828) (Shirey, 2000). Generally an attack can be

divided into two main types, based on an attacker’s response:

• Active: “An active attack attempts to alter system resources or affect their oper-

ation” (Shirey, 2000). Examples may include: Denial-of-service (DOS)14 attack,

Spoofing, Man-in-the-middle (MITM)15 attack, ARP poisoning, Ping flood, Ping

of death16, Smurf attack17, Buffer overflow18, Heap overflow and Web-based at-

tacks.

• Passive: “A passive attack attempts to learn or make use of information from the

system but does not affect system resources” (Shirey, 2000). Examples of such

types of attacks include: Sniffing19 and Wiretapping.

Based on source or origination, an attack can further be divided into:

14“The prevention of authorized access to a system resource” (Shirey, 2000).
15“A form of active wiretapping attack in which the attacker intercepts and selectively modifies

communicated data in order to masquerade as one or more of the entities involved in a communication
association.” (Shirey, 2000)

16“An attack that sends an improperly large ICMP echo request packet (a ping) with the intent of
overflowing the input buffers of the destination machine and causing it to crash.” (Shirey, 2000)

17“Software that mounts a denial-of-service attack (smurfing) by exploiting IP broadcast addressing
and ICMP ping packets to cause flooding.” (Shirey, 2000)

18“A process that gains control or crashes another process by overflowing the other processs buffer.”
(Hansman and Hunt, 2005)

19“A synonym for passive wiretapping” (Shirey, 2000)
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• Insider:“An inside attack is an attack initiated by an entity inside the security

perimeter (an insider), i.e., an entity that is authorized to access system resources

but uses them in a way not approved by those who granted the authorization”

(Shirey, 2000).

• Outsider: “An outside attack is initiated from outside the perimeter, by an unau-

thorized or illegitimate user of the system (an outsider). In the Internet, potential

outside attackers range from amateur pranksters to organized criminals, interna-

tional terrorists, and hostile governments” (Shirey, 2000).

Based on medium or target, an attack can be:

• Network-based: Attacks that target, damage or influence a hosts network con-

nectivity. Examples include: Denial-of-service (DOS) attack, Spoofing or mas-

querade attacks, Man-in-the-middle (MITM) attack, ARP poisoning, Ping flood,

Ping of death, Smurf attacks and others.

• Host-based: Attacks that target, damage or influence a host system. Examples

include: Buffer Overflows, Heap Overflows and others

2.2.2 Why is it important to understand Computer Attacks?

In the intrusion detection literature a computer attack may encompass all means that

can be used in an intrusion attempt. Thus a successful computer attack may lead to

an intrusion (Powell and Stroud, 2001). It is important to understand and categorize

attacks, as this may lead to better defences and detection. For our thesis we study

computer attack taxonomies to develop an understanding of the attacks and their

categories and use this knowledge to assign labels when creating a dataset for IDS

evaluation.

2.2.3 A Brief Taxonomy Of Computer Attacks

Attack classification has always been an interesting area for security researchers. Over

the years, many classification techniques have been proposed and adopted and later

replaced by better techniques. MITRE’s Common Vulnerabilities and Exposures (CVE)

(MITRE, 2012) list provides a common name of all publicly known attacks. This list or

dictionary, however, is not a taxonomy. The CVE list contains a unique identifier and a

description of the vulnerability, along with references. Researchers have also attempted

to use attack patterns ((Hoglund and McGraw, 2004), (Moore et al., 2001)), derived
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from design patterns, which are used to describe the attackers perspective of an attack

to classify attacks. MITRE’s common attack pattern enumeration and classification

(CAPEC) is a community developed resource of attack patterns. Although it provides

a good means for taxonomy, however it suffers from some subjective categories that are

misleading and may cause confusion.

A good computer attack taxonomy should be able to describe and classify an attack

without ambiguities or repetitions. In the past, researchers have attempted to catego-

rize computer attacks and intrusion on the basis of vulnerabilities (Landwehr et al.,

1994; Lindqvist and Jonsson, 1997; Lough, 2001; Bisbey and Hollingworth, 1978; Ab-

bott et al., 1976). Other taxonomies focus on attacks, their perpetrators and the result

(Lazarevic et al., 2005). A comprehensive list of computer attacks, comprising of 3000

documented attacks and misuse in the form of a Computer Abuse Method Model (Neu-

mann, 1994; Neumann and Parker, 1989; Parker, 1989) was compiled by Neumann and

Parker at SRI International Labs. The CERIAS group at Purdue University (Aslam,

1995; Krsul, 1998; Kumar, 1995), contributed towards a computer attack taxonomy, fo-

cused on a Unix system. Aslam (1995) and Krsul (1998) extended this work. Kendall

(1999) developed a database of computer attacks based on the DARPA intrusion detec-

tion evaluation datasets. Lough (2001) proposed a general taxonomy based upon the

attack characteristics, but this has shortcomings in practically categorizing attacks like

worms, viruses and others. However, Howard at US-CERT (Howard, 1997) outlined

one of the most significant taxonomies based on types of attackers, their attack tools,

information accessed, attack results and objectives. Atlantic Consulting Services devel-

oped the Internet Attack Taxonomy (DeLooze, 2004) in 2000, in which attacks were

classified under 4 main categories: Reconnaissance, Denial of Service, Unauthorized

Access, and Deception.

There is as yet, no universally accepted taxonomy for computer attacks. One of the

reasons for this may be due to the blended nature of attacks. A high coupling may

exist between different categories which researchers in the past had difficulty exhibiting

with their design. In 2005, Hansman and Hunt (2005) created a taxonomy using

four dimensions which addressed: the attack vector, attack target, vulnerabilities and

payloads for categorizing computer attacks. They showed the effectiveness of their

technique using multiple well-known attacks. This taxonomy can serve as a means to

understand attacks and help in labelling them. In order to understand and categorize

attacks for labelling purpose, we use features from the taxonomies of Hansman and

Hunt (2005) and Lazarevic et al. (2005), some important features that may help in

categorizing attacks are illustrated here.

1. Attack Vector or Type
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• This includes: Virus, Worms, Buffer Overflow, Denial of Service (DOS),

Distributed Denial of Service (DDOS), Remote or Network Attack (includ-

ing P2P network attack and Wireless network attack), Physical Attack and

Reconnaissance or Information gathering attack.

2. Attack Target

3. Vulnerability

4. Attack Outcome

• This includes: Corruption of Information, Disclosure of Information, Theft

of Information, Subversion20, Remote to Local21, User to Root22

5. Sophistication and Automation: The use of sophisticated tactics and intelligent

automated tools to carry out attacks. (Hansman and Hunt, 2005)

2.3 Data Collection for Intrusion Detection

In order to evaluate, train and test intrusion detection systems, it is important to collect

suitable labelled data and correlate relevant information and malicious events from it.

From the literature review it has been observed that data for intrusion detection is

usually collected from sources such as:

1. Networks: data packets

2. Host: Input commands from users

3. Host: System calls, log files, system usage statistics.

Since the focus of our thesis is on NIDS, therefore, we consider network sources.

Datasets from network sources may be artificial or synthesized datasets, or non-artificial

datasets. Some popular artificial datasets used for performance evaluation measures in

the intrusion detection domain include: The DARPA-Lincoln datasets and the KDD99

datasets. Most anomaly detection systems depend on statistical features extracted from

the network traffic such as: source and destination ip, source and destination port, la-

tency changes, arrival rates, traffic volume. Many datasets created by researchers were

designed with these features in mind. Such datasets lacked payload or content infor-

mation.
20The use of a compromised systems resources for attackers gain
21 Malicious attacker gains local privileged access over the network or Internet
22Attacker is able to escalate/elevate his privileges to administrator or root level (Lazarevic et al.,

2005)

45



CHAPTER 2. LITERATURE REVIEW ON INTRUSION DETECTION

The DARPA-Lincoln datasets were synthesized and collected at MIT’s Lincoln

Labs for IDS performance evaluation. It is available in the form of two datasets known

as DARPA 1998 and DARPA 1999 datasets23, also known as the IDEVAL corpus. Both

datasets are in TCPDump and BSM24 format. The DARPA 1998 dataset contains

seven weeks of training data and two weeks of test data. This includes 300 instances

of 38 different attacks that can be categorized into four main attack categories, against

a Unix host. The DARPA 1999 dataset contains three weeks of training data and

two weeks of test data, with around 58 attack types launched against a Unix host, a

Windows NT host and a Cisco Router.

The KDD99 dataset was derived form the DARPA 1998 network dataset. This

dataset was used in the KDD Cup competition. Features were extracted from TCP

connections and labelled as normal or attack traffic. The training set comprises of 24

attacks while the test set contains 38 attacks.

Other artificial datasets can be created employing frameworks to generate ma-

licious traffic. Two notable frameworks include: MACE (Sommers et al., 2004) and

FLAME (Brauckhoff et al., 2008).

(McHugh, 2000) critically analysed the DARPA dataset and concluded that the results

of artifical or synthetic data are not sufficiently similar to real network traffic data, and

hence the DARPA or IDEVAL corpus is not analogous to the properties of real network

traffic. This was highlighted with statistics and rate difference between synthetic and

original traffic, since the KDD99 dataset was extracted from the DARPA dataset

Real or non-artificial datasets are now being generated to benchmark IDS by re-

searchers. Self-produced datasets promise a larger training set, since malicious streams

are manually extracted and labelled from live networks. The procurement of real

datasets can be facilitated by the use of Honeypots and Honeynets. In order to get a

better insight into computer attacks and create a labelled dataset of such attacks, we

employed Honeypots and Honeynets as a data collection tool to evaluate the methods

developed in our thesis.

23http://www.ll.mit.edu/IST/ideval/data/data_index.html
24Basic Security Module, logs audit data
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2.3.1 Honeypots and Honeynets

Honeypots and Honeynets provide the means to study malicious attacks and attackers

under a microscope. Because of their unique architecture they provide a strategic

advantage over other security tools by allowing researchers access to critical information

regarding attacks as they occur on live systems, at both network and system level.

This extra insight helps researchers to quickly devise defence mechanisms to fend off

any new or novel attacks. They serve as a means to spy on malicious attackers, their

organization, their tools and their sophisticated techniques. Since all traffic received

by the Honeynet and or Honeypot is considered malicious, it becomes easy to focus on

attack data compared to gateway devices, which cannot provide this much granularity

due to the scale or high volume of traffic they process.

2.3.1.1 Honeypots

A Honeypot is generally defined as a network security resource whose value lies in it

being scanned, attacked, compromised, controlled and misused by an attacker to achieve

his malicious goals. Lance Spitzner defines Honeypots as: “An information system

resource whose value lies in unauthorized or illicit use of that resource” (Spitzner,

2002). Honeypots can be classified into two main categories. Firstly, they can be based

upon their level of interaction with an attacker. This can be further categorized as:

Low-interaction Honeypot Emulate a variety of host services. These mimic real

services but are implemented as a sandbox environment and run as an application. e.g.

honeyd and nepenthes. (Provos and Holz, 2007)

High-interaction Honeypot Attacker is given the freedom to interact with a real

operating system and their every attempt is logged and accounted for.

Hybrid A hybrid Honeypot would be a mixed type of Honeypot, combining features

and functionalities from both low and high interaction Honeypots.

Honeypots can also be categorized by the way they are deployed in a network. This can

include server-side Honeypots, which are deployed on a server or host running services,

malicious attacker actively attack and exploit these services. Honeypots can also be

deployed as client-side Honeypots, which act as clients and actively interact with a

malicious server.
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Figure 2.3: A Honeypot comic by XKCD(http://xkcd.com/350/), showing several honey-
pots connected together in a network, running samples of malware

Honeypots are now widely being deployed and used by security researchers and rolled

out in production networks to monitor malicious and suspicious activities. The concept

is also illustrated in a light-hearted way in Figure 2.3.

2.3.1.2 Honeynet

A Honeynet is a special kind of high-interaction Honeypot. Honeynets extend the

concept of a single Honeypot to a highly controlled network of Honeypots. A Honeynet

is a specialized network architecture configured in a way to achieve:

• Data Control: It deals with the containment of activity within the Honeynet.

• Data Capture: It involves the capturing, monitoring and logging of all threats

and attacker activities within the Honeynet.

• Data Collection: Captured data is securely forwarded to a centralized data col-

lection point.

This architecture creates a highly controlled network, in which one can control and

monitor all kinds of system and network activity. Honeypots are then placed within

this network. A basic Honeynet comprises of Honeypots placed behind a transparent

gateway the Honeywall. Acting as a transparent gateway the Honeywall is undetectable
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by attackers and serves its purpose by logging all network activity going in or out of

the Honeypots.

Implementation and design challenges of Honeypots and Honeynets relevant to our

thesis are discussed in Chapter 3.

2.4 Summary

This chapter provided a brief history, taxonomy and review of the state of the art in

intrusion detection technologies, followed by an introduction to computer attacks and

a need to study attacks for categorizing and labelling them. This was followed by a

discussion on data collection challenges in IDS and a brief introduction of Honeypot

and Honeynet technologies as tools for procuring real network datasets for evaluating

IDS.

There has been a significant amount of work done on intrusion detection technolo-

gies, some of which has been reviewed in this chapter. The literature has demon-

strated a clear shift from traditional statistical and pattern matching intrusion detection

schemes to hybrid data mining and machine learning approaches. Techniques involv-

ing information-theoretic measures have shown promising prospects and have recently

emerged as more simple techniques for intrusion detection. For NIDS, it has been ob-

served that most techniques rely on features extracted from packet header data. Such

techniques become unreliable and easy to evade (Ptacek, 1998). Researchers are now

employing techniques that involve payload analysis.

An understanding of computer attacks can be used to categorize and label attacks to

create a training set to train an IDS and later create a larger set to test it. Researchers

in the past have used artificial or synthetic datasets for IDS benchmarking, but such

datasets have problems associated with them, as they fail to exhibit real network traffic

characteristics and may mislead the IDS. There is a need to create datasets based on

real or live traffic captures. Honeypots and Honeynets prove to be useful tools to collect

and study attacks.
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Chapter 3

Architectural Design, Honeynets

and Datasets

“Many of the nation’s essential and emergency

services, as well as our critical infrastructure, rely

on the uninterrupted use of the Internet and the

communications systems, data, monitoring and

control systems that comprise our cyber

infrastructure. A cyber attack could be debilitating

to our highly inter-depended Critical Infrastructure

and Key Resources (CIKR) and ultimately to our

economy and national security.”

– Homeland Security Council, National Strategy for

Homeland Security, 2007

3.1 Problem Description

Security tools provide a line of defence against malicious attacks and attackers. Most

of these tools are reactive in nature and attempt to respond only when a known attack

has been detected. These security tools, when not properly updated or configured can

result in a false sense of security, as attack variants and other evasion techniques can

evade these security mechanisms. Attackers are getting more sophisticated and it is

becoming difficult to cope with the threats they pose with conventional security tools.

In this chapter we shall discuss:

• The design overview of the proposed IDS.
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• The database that is used for evaluation.

• Honeynet architectures and deployment challenges.

• Our implementation of a Virtual Honeynet.

3.2 Design Overview

The general design details of our proposed IDS are described in this section. From a

design perspective, our proposed IDS system comprises of the following main compo-

nents:

1. Malicious Stream Profiler

2. Malicious Stream Processor

These components help us in creating and labelling the ground truth and provide an

overview of the various components involved in processing and intrusion detection.

3.2.1 The Malicious Stream Profiler

The malicious stream profiler creates a dataset of known malicious streams. This is done

by creating and assigning labels to any given malicious network stream. This serves as a

reference (training) dataset of various malicious behaviours. The system is illustrated in

Figure 3.1. Details of known malicious streams are studied from sources like CVE, Cert,

Snort and samples are collected and extracted from various Honeypot sensors. Unique

attack characteristics are identified from these malicious streams. In the absence of real

exemplars or samples of malicious streams in the form of PCAPs, packets are crafted

or synthesized based on this information containing the actual malicious payload. In

order to validate these streams, they are tested with Snort to verify that they are being

detected and later sent to the packet profiler module. The packet profiler creates a

profile from a stream by stripping the packet headers and extracting the payload. This

payload is then written out to raw text files. Labels generated from the validation

phase are used to label the malicious stream profile. The profiles of these malicious

packets are then added to a set of packet profiles of benign user traffic available for free

from http://www.wireshark.com and http://www.pcapr.net and labelled manually.

Once a mixed dataset of profiles containing both benign and malicious streams is cre-

ated, they are then sent to the similarity calculator module. This module calculates
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the similarity between these profiles to yield a pair-wise distance matrix of all packet

profiles. The similarity calculation module uses similarity metrics (discussed in the

next chapter) for similarity measurements. Each numerical value in the matrix is a

representative similarity score between 0 and 1, with 0 being the best match and 1

being the worst match. These similarity scores are then analysed to determine a sim-

ilarity threshold or cut-off value. This threshold or cut-off value might vary between

classes and determines the size of the class. This technique gives us the advantage of

being able to accurately estimate the threshold value and avoid any false positives that

may arise due to wrong estimation of the threshold. A false positive (FP) in this case

would be a benign packet/stream being classified as a malicious packet/stream, due to

similarity indicated by the threshold. For all such situations, the threshold value should

be lowered enough to avoid any false positives (FP). Once the label and the optimum

threshold value is determined, this information is saved inside the labelled malicious

stream database. This database becomes our reference malicious network stream sig-

nature database. This would be helpful to determine malicious stream activity and

behaviour over the network.

3.2.2 Malicious Stream Processor

This system component is in charge of processing network packets or streams to deter-

mine malicious behaviour in them. It can detect known malicious streams and their

variants and identify novel streams. This is the main detection engine of our proposed

IDS. The detection process is similar to the malicious stream profiler with few modifi-

cations. The system is illustrated in Figure 3.2. All packets are read from the network

device or from a PCAP file and profiled by the packet profiler. As an example, a set

of 100 packets or streams are collected and profiled this way. Malicious profiles are

exported as signatures or exemplars from the reference malicious streams database and

added to the set of 100 captured profiles by the stream adder module. This combined

dataset is then sent off to the similarity score calculator module. The similarity score

calculator module calculates a pair-wise distance matrix of similarity scores between

the collected or incoming profiles and the reference profiles. These scores are then

compared with those of the reference malicious streams, and similar packets are clus-

tered together into groups using a clustering algorithm. Any packets or streams found

within the threshold range of a reference sample are marked and the classification is

updated. These packet profiles display a similarity with the malicious profiles and

are thus marked as having malicious activity. This information is inserted into the

signature database.
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Figure 3.1: Malicious Stream Profiler: Create and label malicious streams

54



CHAPTER 3. ARCHITECTURAL DESIGN, HONEYNETS AND DATASETS

Figure 3.2: Malicious stream processor: Capture and compare network profiles

3.3 Honeynet Architectures and Deployment Strategies

In the previous chapter we highlighted how Honeypots can be used to collect real data

for IDS training and benchmarking. There are several strategies for deploying Honey-

pots. Most commonly they are deployed as stand-alone systems facing the Internet.

Other more advanced strategies involve installing them in a specially crafted network

or a Honeynet. Depending on the technologies adopted, and the way data capture,

control and collection activities have been carried out within the Honeynet network,

the Honeynet has evolved across three architectures or generations over the years, as

outlined below:
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Generation I or Gen I Honeynet was developed in 1999 by the Honeynet Project.

The architecture was simple with a firewall aided by an IDS as the gateway and Hon-

eypots placed behind it. This architecture required two interfaces on the Honeywall

gateway, one facing the external network and one facing the Honeypots internal net-

work. This architecture was flawed as the gateway acting as a Layer 3 device could be

detected by attackers.

Generation II & III Honeynets brought about a change in the architecture by the

introduction of a single device that handles the data control and data capture mecha-

nisms of the Honeynet called the IDS Gateway or the Honeywall. This is implemented

as a transparent bridge.

Gen II Honeynets were first introduced in 2001 and Gen III Honeynets were released at

the end of 2004. Gen II Honeynets were made in order to address the deficiencies in Gen

I Honeynets. Gen II and Gen III Honeynets have the same architecture, with the only

difference being improvements in deployment and management in Gen III Honeynets

along with the addition of a Sebek server built in the gateway this is known as the

Honeywall. This architecture incorporates three interfaces on the Honeywall. Two

interfaces acted as a bridge between the external network and the internal Honeypot

network; whilst the third interface was used for management and configuration tasks.

3.3.1 Virtual Honeynet

Virtualization technology allows running multiple virtual machines on a single physical

machine. Each virtual machine can be an independent Operating System installation,

running concurrently with others. This is achieved by sharing the machines physical

resources such as CPU, memory, storage and peripherals through specialized software

across multiple environments. This reduces project hardware costs. A virtual Honeynet

is a complete Honeynet running on a single computer in virtual environment.

VMware Server (Hammersley, 2006) was used as the virtualization solution for our

project. VMware Server was selected because it is free, reliable, has large community

support, extensive documentation, and the author had previous experience of managing

virtual machines with VMware, it is flexible and has robust networking components.

For the scope of our project, we used VMware Server version 1.0.6 for Fedora Linux.

Later we moved our architecture to a virtualized node running VMware ESX server.
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3.3.2 Data capture and analysis tools On the Gateway

For our project implementation we created a prototype using free or Open Source tools.

The Honeynet Project1 is a non-profit, Open Source security research organization.

This organization has actively published papers and developed and contributed Open

Source security tools. For the scope of our project we used Honeywall CDROM Roo

(Project, 2005) version 1.4. Honeywall CDROM is a bootable CDROM operating

system built on CentOS for installing, deploying and maintaining a Honeynet. The

purpose of the Honeywall CDROM is to automate the installation and maintenance

of a Honeynet and provide data analysis support for all activity within the Honeynet.

Honeywall Roo includes many well-known security tools such as:

• Snort (Roesch et al., 2006): Intrustion Detection System (IDS)

• Snort inline: Intrusion Prevention System (IPS).

• Argus (Argus Project, 2008),

• Pof: Passive OS fingerprinting tool

• Tcpdump: Viewing of packet headers.

• Hflow2: A data coalescing tool for Honeynet data analysis.

• Walleye: A web-based interface for Honeywall configuration, administration and

data analysis.

• Sebek (Project, 2008): Sebek is a data capture tool designed to stealthily capture

attacker’s activities

Balas and Viecco (Balas and Viecco, 2005) have given a generalized data collection

and fusion diagram for a Generation III Honeywall. Extending their work further, we

propose an extended architecture for Honeywall Roo (Project, 2005). Its logical design

is shown in Figure 3.3:

3.3.3 Data capture tools on the Honeypot

We implemented a standard Ubuntu server as our Honeypot. This server had basic

services running that included SSHD, FTPD and HTTPD etc. OpenSSH was patched

and custom compiled to add both a user name and a password logging capability. The

passwords were logged to a secure hidden directory within the server. A bash script

1http://www.honeynet.org
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was used to parse the logs and associate them with attacker IPs. Based on a timestamp

difference, this script could distinguish between SSH scanners/crackers and interactive

SSH sessions. Sebek was also installed on the Honeypot and concealed as a printer

driver name. It collected valuable system information such as attacker keystrokes,

processes and associated system calls. After analysis of script and Sebek data with

Honeynet flows, we could correlate attacks and attack techniques effectively.

3.4 Proposed Honeynet Architecture and Deployment Chal-

lenges

The Honeynet Project provides some general documentation on deploying Generation

III virtual Honeynets. This documentation was developed by the Pakistan Honeynet

Project Chapter. The document was a How-To for deploying virtual Honeynets using

VMware. This served as a standard template for anyone wanting to deploy a virtual

Honeynet using VMware and Honeywall Roo.

3.4.1 Problem Identification and Proposed Solution

During our literature review it was decided to use the design suggested by Shuja (2008)

as the standard template for our project’s implementation. Using VMware, a bridged

interface like vmnet0 has direct access to the physical network interface. Bridging two

such interfaces will cause a bridge between the same LAN segment resulting in loops

in the network, whereas the requirement was to bridge between two different LAN seg-

ments i.e. the external network segment pointing to the router and the internal network

segment on pointing towards the Honeypots. It was observed that the Honeynet design

suggested by Shuja (2008) configured both eth0 & eth1 interfaces as a VMware bridge

interface and eth2 as a VMware host-only interface. This was causing loops in the

topology and the Honeypot LAN segment was being avoided and unroutable. Similar

design problems were being faced and discussed by security researchers all over the

globe who wanted to implement a similar virtual Honeynet. Many of these questions

appeared in the official Honeywall community mailing list. I communicated this prob-

lem and proposed solution to the Pakistan Honeynet Project with a complete proof of

concept in June, 2008. They accepted and updated the design on their website.
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Figure 3.3: Honeywall Roo Logical Design
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3.4.2 Design Details and Discussion

We shared and discussed our findings with the community on the Honeywall project

mailing list. After necessary testing, a design for a data collection Honeypot was

prepared and followed for the project implementation. Based on the success of this

effort it was decided to publish the improved design. This design proposes 3 virtual

interfaces for the virtual Honeywall such that:

1. Interface vmnet0 (on eth0) is a VMware bridge interface pointing towards the

router. (As shown in Figure 3.4)

2. Interface vmnet1 (on eth1) is a VMware host-only interface leading to the internal

LAN segment where Honeypot(s) are kept. (Also shown in the figure 3.4).

3. Interface vmnet2 (on eth2) is a VMware bridge interface that is firewalled and

accessible for remote management purpose (remote access via SSH and Walleye.)

Interfaces 1 and 2 are picked up by Roo as eth0 and eth1 and are used for bridging.

Interface 3 is used for remote management. As shown in Figure 3.4 the doted boxes

indicate the publically assigned IP addresses. In this case, the host machine’s eth0

interface and the Honeypot virtual machines (1, 2 or many) are assigned public IP

addresses. The Honeywall management interface (i.e. interface 3) is assigned a private

IP from the Host machines virtual remote management interface, and can be configured

in many ways:

1. The interface can be routed to an internal virtual subnet (private IP subnet) on

the same physical machine.

2. The interface can be routed to an internal/external routable network using a

separate physical Ethernet controller on the physical machine.

3. The interface can be routed on the same subnet as of the Honeynet sharing the

same physical machines Ethernet controller.

For our implementation we assigned the management interface a public IP from within

the Honeynet subnet, but restricted access to it only from a specific IP (via Roo

(Project, 2005) configuration). This project was implemented successfully with one

physical gigabit Ethernet interface. Another physical interface could have been used

by binding it with the remote management interface
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Figure 3.4: Virtual Honeynet Proposed Design
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3.4.3 Results and Discussion

The virtual Honeynet was online for a period of approximately 60 days from 15th

September 2008 to 15th November, 2008. During this period we received approxi-

mately 30,000 identifiable attack connections. The attack results were documented

as attacked ports and services, Attacker IPs and Country of Origin. The first attack

was documented after 4 days of setting up the Honeynet. After several port scans

an attacker attempted a SSH brute force attack from 82.99.xx.xxx. Geo-location of

the IP was retrieved (Padmanabhan and Subramanian, 2001). After several hundred

attempts the attacker was successful in brute forcing a user account. A botnet client

was installed from a free webhosting server and IRC (Oikarinen and Reed, 1993) com-

munication was initiated, the chat sessions were translated from Romanian to English

using Google Translate service. The tools and chat/commands were retrieved from this

session successfully for further forensic analysis. During the project, five similar sophis-

ticated attacks were observed, from which valuable information and tools have been

successfully retrieved. Forensic analysis have revealed a depth of information on the

attackers, their organization into groups, their ties with each other and some system

credentials were logged during the chat exchange. These forensic results are outside

the scope of this thesis. However, we came to the conclusion that attackers originating

from Europe are commanding a large army of zombie hosts in China and the US to

gain access to targets across the globe. Servers are always a highly valued target for

them as they offer a variety of services over stable high speed links. The malicious

streams collected using our virtual Honeynet setup have been used to train and test

our proposed IDS. Some statistics on attacks are detailed in the following sub-sections.

Attacked Ports and Services

A small observation of attacked ports and services was made, which revealed that,

out of a total of 29,643 probed ports and services, 29,048 were targeted at SSH. This

indicates the attackers’ focus on brute force means of gaining access to the server. This

is followed by high activity on IRC ports indicating botnet activity.

Attacker IPs

During its 60 day tenure, the Honeypot received 34263 attacks from 615 unique IP’s.

A great many of these attacks originated from Europe and China, followed by the US,

as shown in Figure 3.5 and 3.6
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Figure 3.5: Top 50 Attackers by IP Address
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Figure 3.6: Top 50 Attackers by Country

Attackers Country of Origin

615 unique attacker IP addresses were identified originating from 79 countries across

the globe. Out of these 79 countries the highest number of attacks came from China

and Europe followed by the US. The same proportion also stands for the highest attack

frequencies as shown in Figure 3.5 and 3.6.

3.4.4 Honeynet Architecture Summary

The hardware and software used for this project has been summarized in Table 3.1. It

can be inferred that standard hardware can easily be used to setup a virtual Honeynet.

Large amounts of memory are always a preference for virtualized environments and

can be used as a performance benchmark. The availability of free and Open Source

tools and technologies such as Linux, VMware, Snort, Argus and those provided by

the Honeynet Project have considerably eased the process of setting up such projects.

However, such tools demand a high degree of skill and customization, along with a

thorough understanding of the system.

We successfully setup and maintained a Generation III Virtual Honeynet using free

and Open Source software, along with standard hardware. This led to a very nominal

implementation cost for the project. A great deal was learned from this experience
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Project Summary

Feature Product Specifications

Host Operating
System

Linux, Fedora 9 HW Vendor: Dell Optiplex 755, Proces-
sor: Intel(R) Core(TM)2 Duo CPU E6850 @
3.00GHz, L2 Cache: 4MB, RAM: 4GB , Stor-
age: 250GB, NIC: 1GB Ethernet controller
(public IP )

Guest Operating
System 1 ( HON-
EYWALL )

Linux, Honeywall
Roo 1.3

Single Processor Virtual Machine, RAM: 512
MB, Storage: 100 GB, NIC 1: 100Mbps
Bridged interface vmnet0, NIC 2: 100Mbps
host-only interface vmnet1 , NIC 3: 100Mbps
Bridged interface vmnet2 (public IP )

Guest Operating
System 2 ( HON-
EYPOT )

Linux, Ubuntu
8.04 LTS (Hardy
Heron)

Single Processor Virtual Machine, RAM: 256
MB, Storage: 20 GB, NIC: 100Mbps host-
only vmnet (public IP )

Virtualization
software

VMware Server VMware Server 1.0.6 for Linux x86

Architecture Gen III Gen III implemented as a virtual Honeynet

Honeywall Roo Roo 1.3

IDS Snort Snort 2.6.x

IPS Snort inline Snort inline 2.6.1.5

Data Capture
Tool

Sebek Sebek 3.2.0

Honeynet Project
Online Tenure

September 12, 2008 TO November 1, 2008

Table 3.1: Project Summary: November, 2008

and certain areas for improvement have been identified. We have achieved a significant

level of familiarity with all the tools utilized for the project and have identified some

areas for further tool development and enhancement.

The project was initially setup at Victoria University of Wellington, many thanks to

Dr. Peter Komisarczuk and Dr. Ian Welch, who kindly provided the means and

equipment to host the project at Victoria University of Wellington. Since then we

have setup a virtual honeynet node at Massey University Campus, running special

virtualized hardware managed by the VMware ESX software. We are now running

multiple honeypots including:

• Dionaea: for stream payload and malware collection.

• Kippo: as a SSH Honeypot.

• Glastopf: as a webserver honeypot.

• Cuckoo box: as a sandbox for malware analysis.
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• Several high-interaction windows and linux honeypots (real operating system with

real services).

For this thesis, data from the Dionaea sensor was used for analysis. Other Honeypot

sensors listed here do contribute data, but are currently not used in the analysis.

From our experience with Honeynets it can be concluded that, although Honeynets are

excellent tools for data capture, there is still room to enhance and automate them. The

current mechanism lacks correlation of network and host events. Automated attacker

profiling can also be implemented in Sebek. It is believed that virtual Honeynets can

serve as an excellent environment for collection of malicious streams and to aid detection

of existing IDS. Finally, the Hflow database may serve as an excellent platform for

building feature rich future security applications.

3.5 Dataset

To evaluate the effectiveness of an IDS or to compare its performance, we require

datasets of malicious traffic, or attack generation tools. In the absence of standard IDS

evaluation data sets, it is difficult to establish an unbiased evaluation of its detection

capability. A good test dataset should contain a greater coverage of the various types

of network traffic including labelled attacks, while also accounting for the properties

and nature of network traffic. Unfortunately no such standard dataset could be found.

Various research groups have maintained their own datasets for evaluation, but they

aren’t very reliable. Very few datasets are publicly available, many of which contain

only features of statistical importance extracted from packets. Many datasets used

by researchers focus on statistical features extracted from network traffic and mainly

headers to identify anomalies instead of actual network dumps. Features such as source

and destination IP and ports, packet size, header size, bytes sent and received, flags,

protocol type fields and connection rate. These features may serve to identify some

types of anomalous traffic, but cannot serve as a general rule for sophisticated attacks.

We are more interested in the packet/stream payloads, as they contain representative

digital fingerprints of exploits. The closest to a good (and to some extent a standard)

dataset is the MIT DARPA 1998 and 1999 dataset also known as the IDEVAL corpus.

Though dated, the dataset comprises of categorized or labelled traces of benign as well

as malicious network activity. McHugh (2000) gave a critical analysis and determined

that results for synthetic data are not practical to real data. Hence it is concluded that

the IDEVAL corpus is not analogous to the properties of real network traffic. Exploit
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frameworks like Metasploit2 could also be used to create a labelled dataset for IDS

testing, however real attacks seen by honeypots usually have variations from known

attacks and provide a chance to detect novel attacks.

Tillmann Werner employed honeytrap3 honeypots to create a manually analyzed and

labelled dataset for Nebula (Werner et al., 2009). He was kind enough to share this

dataset for our IDS evaluation. Honeytrap is a low interaction honeypot that is capable

to capture all network streams directed towards it. This dataset comprises of a set of

6631 unique malicious streams and benign, but suspicious streams collected from two

honeytrap honeypot instances during the last quarter of 2007.

These malicious and benign streams comprising of categories including: TFTP down-

load, Buffer Overflow (LSASS), Shellcode, TFTP download, Oracle DB Connection

Attempt, Remote Framebuffer Protocol (VNC) Version String 005, Big Yellow (Syman-

tec) Buffer Overflow Exploit, TrendMicro ServerProtect Buffer Overflow Exploit, FTP

download (via cmd.exe), Webmin Exploit GET /unauthenticated/..%01/..,RPC/DCOM

Buffer Overflow Exploit with simple polymorphic random data, ASN1 Buffer Overflow

Exploit (Shellcode 1), MySQL UDF Injection and Execution with FTP download,

MySQL root access, SMB/CIFS Scan, HTTP GET Request (absolute http Path),

HTTP GET Request /w00tw00t.at. ISC.SANS.DFind:), HTTP OPTIONS Request

with User Agent Infos, POP3 Login Attempt, SIP scanner, ack, invite, cancel, MS-

directory service (port445), NMAP SERVICE PROBE, MMS stream, EPMAPPER

(port 135) and PROPFIND WEBDAV. The system is also tested on this dataset and

results are discussed in Chapter 5 and 6. This dataset contains 28 main labelled cate-

gories and a total of 55 labels including all sub categories. The labels for two subcate-

gories a and b of a main category c are expressed by c.a and c.b. The malicious streams

range from buffer-overflows, to exploits, to shellcode to worm and worm variants. The

benign but suspicious streams include traffic like HTTP GET, POST and OPTIONS

requests, FTP and TFTP download requests, Oracle and Mysql database connection

requests.

We also created our own dataset using a Dionaea Honeypot. Dionaea (2012) is a low

interaction Honeypot that has proven to be quite useful for collecting binary malware

samples, binary network streams or payload, shellcode and extensive attack detail. For

our implementation we used the latest version 0.1.0. This gives it a clear advantage

over honeytrap. It too like honeytrap can detect and log all network streams directed

towards it. We manually collected, labelled and classified 6600+ samples using Dionaea

bi-streams, and labelled the dataset using Tillmann’s methodology as discussed above.

2http://www.metasploit.com/
3http://honeytrap.carnivore.it/
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3.6 Summary

This chapter outlined the design of our proposed IDS and describes the different func-

tional components of this system that will be discussed in detail in the subsequent

chapters. It presented a discussion on why Honeypots and Honeynets are important

for security researchers and what strategic advantages they provide over other security

tools because of their unique design. At the end we discussed implementation chal-

lenges and details and finally presented some results, based on our experiences. The

chapter concluded with a discussion on the Datasets that are used for evaluation of the

IDS.
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Chapter 4

Similarity Metrics

“If you cannot measure it you cannot control it.”

John Grebe (1990)

In this chapter we shall discuss how distance metrics can be used to determine the sim-

ilarity between malicious network streams. Similarity metrics are listed and described.

The problems and challenges in their use and evaluation are identified. A methodology

is developed in response to these challenges, followed by a series of experiments and

results. Finally, validation and comparison strategies are investigated to determine the

best metric for comparison.

This chapter serves as a foundation for the thesis, in which the similarity measure-

ment techniques are identified. The next chapter discusses the application of clustering

and classification techniques on these measures and the chapter after that (Exemplar

Learning) discusses life-long learning strategies from an implementation perspective,

highlighting algorithms for supervised and unsupervised learning for intrusion detec-

tion.

4.1 Problem Description

The problems that we shall address in this chapter include:

1. What metrics are available to measure similarity between similar types of mali-

cious network traffic or streams?

2. What metrics provide the most appropriate methods for making similarity com-

parisons for our domain?
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3. How do these metrics compare?

Signature or Misuse based intrusion detection systems (IDS) use signature or pattern

matching techniques to detect intrusive events in packets or streams. A signature is a

unique pattern or characteristic used for identification and it is used to “describe the

characteristic elements of an attack” (Kreibich and Crowcroft, 2004). It is assumed

that network attacks comprise of specially crafted string sequences, used to exploit ser-

vices and shellcode instructions to execute code remotely on the victim host. Signature

matching techniques identify attacks by comparing the contents or byte sequence of

packets with a set of signatures or rules that the system has in its signature database.

These techniques can become unreliable against evasion techniques like transposition

or scrambling of information within a packet or stream (Ptacek, 1998). Variation or

permutation of network attacks and exploits may cause problems, as they are unde-

tected by an IDS because the pattern matching mechanism fails to identify the mutated

pattern or sequence in that attack variant. Hence, minor tweaks currently slip past au-

tomated defences, as they are very order sensitive and modification may change the

ordering of byte sequences. Most intrusion detection techniques focus on creating sig-

natures from attack traffic. A large number of false positives (FP) occur when such

systems misclassify benign traffic as attack traffic, thus greatly undermining confidence

in the reliability of such systems.

Since both forms of variation i.e. transposition or reordering or permutations of sym-

bols and substitution or substitution of symbols cause evasions, both are considered

a challenge for IDS. Substitution may change the byte sequence substantially, making

it difficult to detect such sequences. Hence, the focus of this thesis will be to detect

variants caused by transposition methods or those variants that may inherit symbols

or a block of symbols from a common reference i.e they share some analogous informa-

tion with a reference. This is evaluated experimentally throughout this chapter using

a simple, contrived examples.

It is hypothesized that similar types of network traffic can be grouped together based on

their entropy or the similarity of characters or byte sequences within them, independent

of their ordering. If this similarity X between network traffic profiles can be measured,

then it can be reflected as a similarity score. The problem is how to measure and

determine this similarity X with confidence.
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4.2 Methodology

This section investigates what information in malicious packets and streams can be

used as features for similarity measurements.

A significant amount of information can be extracted from any given traffic stream.

This information can be processed and filtered for detecting attack variants, prior to

sending them to the signature generation sub-system. This can be done with the help

of systematic measures that can determine similarity between variants of attack or ma-

licious streams with statistical confidence. The notion that information is quantifiable

is well established (Shannon, 2001). However the approach involving measurement of

analogous information content in packets using string metrics and semi-metrics, to de-

termine a level of similarity between them is novel. In this section, we shall discuss

the various components of our system that enhance an existing signature-based system

with the additional capability of detecting attack variations or variations of malicious

network streams.

4.2.1 Feature Extraction: Packet/Stream Profiles

For network based measurements and simulations, researchers have utilized 5-tuples

[Source IP, Destination IP, Src Port, Dst Port, Protocol] as the basis for detection and

analysis of network traffic. This method might be effective in certain problem domains,

however, information contained within this tuple can have high entropy due to the

changing IP addresses and port numbers targeted during an attack, and thus the IDS

fails to perform intrusion detection properly. Furthermore, the defining characteristic

of an attack or malicious stream lies in the packet payload. This payload can be used

to create a raw profile of a malicious packet or stream. This information can easily be

extracted from a flow. A “Flow” is a unidirectional component of a TCP connection

(or its UDP or ICMP equivalent). A bi-directional flow maintained by a session (like a

TCP session), is called a network stream. From these flows we intend to:

• Extract meaningful features associated with each flow (or group of flows/streams),

and

• Use these feature values to determine whether the flow is anomalous or not, by

grouping them together based on the similarity between them.

A Packet Profiler subsystem (discussed in Chapter 3: 3) extracts payload information

from a packet and writes it into a raw text file to form a behavioural profile. This file

is the representative packet profile and will be referred to as a “Packet Profile” in this
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text. Using similarity metrics we can determine the similarity of information content

amongst these various packet profiles. This will help to determine and classify similar

packets into groups. Thus, by creating profiles for malicious network traffic, we should

be able to identify malicious packets/streams and their variations from network flows.

4.2.2 Measuring similarity between packet/stream profiles?

A Signature ‘sig’ in an intrusion detection system consists of a set of distinct syntactic

features fi observed from attacks as they occur or have occurred and rules r or actions

to take when such a set of features is detected, thus sig = {fi, r}. These features fn

form a distinct set of patterns P such that P := {f1, f2, ..., fn}. Where each individual

feature fi comprises of one or many unique symbols s such that fi = s+ or bytes b such

that b = ({0, 1}8)+. Here, P is a set of sub-strings that are unique to an attack. In the

case of permuted or scrambled information Iscrambled the order of symbols s forming

the pattern P changes, but the inherent symbols remain the same. These syntactically

distinct but symbolically similar strings can be measured effectively for similarity due to

similar corresponding information or symbols. Thus scrambling the information, using

transposition ciphers T (I) = Iscrambled, has little effect on the entropy of the strings.

However, if new symbols are added or replaced or substituted, using substitution ciphers

S(I) = Isubstituted, the entropy may change drastically.

Based on the above discussion and literature review, it is concluded that two groups of

measurement techniques can be used for our domain:

1. Those derived from Mathematics: edit distance based measures.

2. Those derived from information theory: information-theoretic based measures.

Information theory suggests some techniques to determine the similarity between two

strings. One way to do this is by using the notion that each string contains information

and the amount of information stored in a string is quantifiable and articulated by

its Entropy and Kolmogorov Complexity. Another technique involves exploiting the

redundancy of information within these strings to determine similarity.

From mathematics, string metrics can be used to determine the approximate similarity

or dissimilarity between strings. Applying the same theme to network streams, we can

now perform similarity measures of known attacks or malware streams with features

extracted from incoming network streams. The advantage over plain misuse based IDS

is that instead of matching byte sequences occurring at a certain position in the packet,

information patterns within them are matched.
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4.3 Similarity Metrics

This section discusses and compares the various methodologies involved in finding the

similarity between network profiles. A theoretical overview with some contrived exam-

ples is illustrated, followed by a discussion on the criteria for choosing that methodology,

compared to the others. This shall be followed by detailed experiments and results to

provide empirical evidence to choose the best method in the subsequent sections.

In the previous section it was concluded that since our problem domain involves network

or packet profiles expressed as strings or symbols, the metrics can be categorized by

their measurement techniques. For this section the following groups will be considered,

with several metrics selected from the literature:

1. String Metric ( Edit distance based measures )

(a) Levenshtein Distance

(b) Demaru-Levenshtein Distance

(c) Hamming Distance

(d) Jaro Distance

(e) Jaro-Winkler Distance.

2. Information-theoretic based measures

(a) Spamsum

(b) NCD

3. Hybrid

4.3.1 String Metric or Edit distance based measures

These methods involves the use of string metrics on raw packet/stream profiles for

establishing a similarity score for similarity measurements.

Edit Distance Metrics

From the literature, five edit distance based similarity metrics have been short listed.

These similarity metrics are used to identify similarities between various network pro-

files in our dataset. These metrics were selected on the criteria of being most suitable

for our domain, well-known, established, and highly cited, which involves string oper-

ation between instances of network streams. These metrics are: Levenshtein Distance
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(Navarro, 2001), Demaru-Levenshtein Distance (Navarro, 2001), Hamming Distance

(Navarro, 2001), Jaro Distance (Cohen et al., 2003), and Jaro Distance (Cohen et al.,

2003)

From a classification point of view, these metrics represent a few notable classes. Edit

distance is one such class of distance functions, which maps a pair of strings x and y

to a real number �. A smaller value of indicates greater similarity and a larger value

represents dissimilarity between x and y. The similarity scores between x and y can be

expressed in a vector form such as: x,y,score.

Levenshtein distance can be explained as “ the minimal number of insertions,

deletions and substitutions required to make two strings equal” Navarro (2001). It

counts an operational cost of 1 for every insertion, deletion and substitution. It is

also known as “string matching with k differences” Navarro (2001). The distance is

symmetric, such that:

0 ≤ d(x, y) ≤ max(|x| , |y|)

For any two given strings A and B having i characters. Let a be a character from string

A and b represents a character from string B, then:

Sub(a, b) = 0, when a = b ;

Sub(a, b) = 1, when a �= b;

Del(x) = Ins(x) = 1, when a �= b;

Then L[m−1, n−1] represents the Levenshtein distance between A and B (Levenshtein,

1966).

In contrast to the Levenshtein distance which performs three edit operations (insertions,

deletions and substitutions), the DamerauLevenshtein edit distance allows multiple edit

operations with transposition as an additional edit operation.

Hamming Distance allows only substitutions, with a cost of 1. It is also termed

as “string matching with k mismatches.” (Navarro, 2001) The distance is symmetric,

such that: 0 ≤ d(x, y) ≤ |x|

Jaro Distance and its variants are used often for record-linkage. This heuristic

based similarity metric is not based on an edit distance model (Cohen et al., 2003). To

determine the Jaro distance between any two given strings x and y, where x = a1...aK

and y = b1...bL,
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We have, bj = ai , when any character ai in x is common with character bj in y

A transposition Tx′,y′ for a position i such that x′i �= y′i will be when x′ = a′1...a′K
characters in x would be common with y′ = b′1...b′L in y, The Jaro similarity metric for

x and y is

Jaro(x, y) =
1

3
·
( |x′|
|x| +

|y′|
|y| +

|x′| − Tx′,y′

|x′|
)

(4.1)

Winkler (Cohen et al., 2003) proposed a variant of the Jaro distance that uses the

length L of the longest common prefix of x and y. Given here:

Jaro-Winkler(x, y) = Jaro(x, y) +
L′

10
· (1− Jaro(x, y)) (4.2)

Comparisons

Test 1 We performed an evaluation of these string metrics with the help of the follow-

ing basic test. For example, consider two strings ‘strA’ and ‘strB’:

strA = “aaabbbcccdddeeefffggghhhiiijjjkkklll

mmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz”

strB = “zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmm

lllkkkjjjiiihhhgggfffeeedddcccbbbaaa”

Here string b ‘strB’ is the reverse of string a ‘strA’. Now we will perform string measure-

ments on these two strings and some variants to show their effectiveness in detecting

network attacks:

## HAMMING DISTANCE

>>> hamming_distance(strA,strB)

78 or 0.78 on a scale of 0-1

## LEVENSHTEIN AND DAMERAU

>>> levenshtein_distance(strA,strB)

78 or 0.78 on a scale of 0-1

>>> damerau_levenshtein_distance(strA,strB)

77 or 0.77 on a scale of 0-1

## JARO AND WINKLER
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>>> jaro_distance(strA,strB)

0.5085470085470085

>>> jaro_winkler(strA,strB)

0.5085470085470085

Here the results are scaled from 0 to 1, where a result of 0 means identical and 1 means

highly dissimilar. Here it is important to note that the scaling does incorporate 100

which is scaled down to 1 as the upper limit. For Levenshtein and Hamming distances

there could be situations where the upper limit may go beyond 100 (or 1). This could be

mainly due to extra or more dissimilarities in unequal sized strings that get accounted

for by their respective algorithms. However, for our calculations the upper limit is

restricted to 100 or 1, as this is interpreted as 100% dissimilarity and any percentage of

dissimilarity beyond that is not required or considered by our proposed system. From

the above similarity results its evident that the Jaro and Winkler distance gives the

lowest score or greatest similarity between the two strings.

Test 2 In order to determine how sensitive the Jaro metric really is to variants, we

perform some additional tests. We now test the Jaro metric for unequal length string

comparisons, followed by mismatched strings and their variants:

>>> jaro_distance(strA,strB)

0.5085470085470085

>>> jaro_distance(strA,"fahim")

0.4213675213675214

>>> jaro_distance("uvwxyz","abcdef")

1.0

>>> jaro_distance("uvwxyz","abcdefz")

0.6365079365079365

The above tests have pointed out a limitation of the Jaro metric, which may cause

problems and unreliable results for our domain. The comparison between ‘strA’ and

the string ‘fahim’ yields a very high score of 0.42, approximately 60% similarity, which

is unusual or unexpected for the two strings. For the second and third strings, though

strings ‘uvwxyz’ and ‘abcdef’ do not share any common characters and therefore are

correctly termed as having 0% similarity, with a score or distance of 1, a simple addition

of the character ‘z’ makes them 40% similar, as shown in the next string comparison

between ”uvwxyz” and ”abcdefz”. This bias in the results due to a single matching

character can lead to ambiguous or unreliable results. Hence it can be concluded that
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although the Jaro metric can be used to give a good approximation for similarity

between similar length strings, its ability to work on unequal length strings having

some common characters becomes highly biased. This is discussed in more detail later

in the results section 4.5.

Conclusion

From the above experiments and disucssion it can be concluded that Jaro and Jaro-

winkler distances provide the best approximation amongst other edit distance based

measures tested for our domain. However, Jaro distance does have some sensitivity

issues and might yield ambiguous results for partially similar strings.

4.3.2 Information-theoretic measures

4.3.2.1 Information Theory and Security

Information theory states that “Information is a measure” and is based on probability

theory and statistics. A key measure of information is entropy, expressed by the aver-

age number of bits required for communicating that information. A bit is the unit of

information, based on binary logarithm Shannons definition of self-information I(E) of

an event E is given by (Shannon, 2001):

I(E) = log2

(
1

P (E)

)
= − log2 P (E) (4.3)

Information theory thus becomes the foundation and motivation for finding information

patterns instead of string patterns for intrusion detection. The Entropy of a random

variable X is given by:

H(X) = −
∑

p(x) log2 p(x) (4.4)

Here X is a set of all messages x1, x2...xn and p(x) is probability of X given xεX.

Entropy is at its maximum when messages in the ensemble are equi-probable, viz
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p(x) = 1/n for all x i.e. most unpredictable such that H(X) = log2n. Entropy is

now widely used for security in areas like the determination of the quality of random-

ness in a cryptographic system, detection of encrypted and packed malware, the finding

of cryptographic material, forensics and network anomaly detection. Each malicious

stream carries information in its payload. Even if the attacker attempts to mask this

information, it will have a distinct fingerprint. We attempt to measure this information

when it is in its deterministic or raw state.

4.3.2.2 Similarity using Spamsum

Spamsum is a program for spam email detection, based on the Context Triggered Piece-

wise Hash (CTPH) algorithm. Spamsum was developed by Andrew Tridgell (Tridgell,

2002) as a means to detect emails similar to reference spam emails. The concept of

Spamsum is suitable for our domain and the idea to utilize it as a measure to detect

similar malicious network streams is novel and unique to this thesis. A series of tests

are performed to evaluate the effectiveness of this measure for our domain.

Test 1 This methodology involves the use of string metric algorithms (discussed in

previous section), on network profiles containing Spamsum hashes.

Scaling down the packet payload with Fuzzy hashing (Spamsum) Ideally, our

system should be capable to detect attack variations by observing network packets or

streams. Since packet payloads can vary drastically in both length and content during

a communication, adding the entire ASCII or Hex payload to the profile can yield

abnormal results when calculating similarity. One approach is to create a fingerprint

of the entire payload or parts of it that are a unique representation of the payload and

yet reproducible, to find similarities when compared with other flows.

A possible solution is to represent variable size payloads as fixed size fingerprints and

hash them. A hash is a mathematical process that can generate a unique fixed size

sequence, such as the widely used MD5 and SHA hashing algorithms. The problem

with hashes is that a slight change in input can cause an avalanche effect and drastically

changes the output. This will result in a unique hash for a slightly different payload.

This result is unacceptable for a system that requires the estimation of the similar-

ity between network streams/flows. Thus, similar flows will be marked by the system

as entirely separate. Fuzzy hashing or context-triggered piece-wise hashing (CTPH)

solves this problem. Fuzzy hashing applies traditional hashing to file segments. These

segments are identified by a rolling hash algorithm. This algorithm produces a series of
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MD5 CTPH
Before 1d238b19da513ce35e129e7dc0169ad 3:Pg/vmNKzug:Y/vmNKzug
After fe1b01ed311cd84e49a6b397d0e3e19 3:Pg/vmNKzul6A4jFS:Y/vmNKzulrr

Table 4.1: Comparison of MD5 with CTPH

‘reset points’ depending on the context of the plain text. The segments created before

and after these reset points are then processed to generate hashes. The final hash is

represented as a colon separated value. Thus CTPH makes use of both traditional

and rolling hashes to create a segmented hash. It involves the ability to compare two

distinctly different items and determine a fundamental level of similarity (expressed

as a percentage) between the two (Ninja, 2007). This technique was used to develop

the “Spamsum” program and originated as an effort by Dr. Andrew Tridgell (Tridgell,

2002) to find commonality between spam email messages. The payload hashed with

this technique is added to the profile.

Example:

Contents of file alphabet.txt: “ABCDEFGHIJKLM”

After Modification: “ABCDEFGHIJKLM Edited by Fahim”

The difference in hash can be illustrated in Table 4.1

Discussion and limitation For this approach, the network profiles would comprise

of the Spamsum hash of the original stream. This will reduce the network profile size

considerably, as it will now be represented by a one line hash or fingerprint. String

metric algorithms would then be applied on these profiles to determine the similarity

between them. Another novel add-on to this method is the addition of the native

string edit distance algorithm used by Spamsum for similarity measurement. Spamsum

utilizes an edit distance algorithm to determine the similarity between any two given

hashes.

Problems for calculating the Spamsum edit distances may arise if any two signatures use

different ‘reset frequency’ or ‘block sizes’. This block size mismatch may occur due to

varying file context and size. This can result in a worst case scenario of the two files not

being able to be compared, resulting in maximum dissimilarity. A contrived example

of this can be a case of reverse input strings being undetectable by the algorithm.

Test 2: Spamsum with Reverse string Spamsum is used to scale down the

variable length packet/stream payloads being tested. A detailed account of this was
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discussed in the previous section 4.3.2.2. From the literature, it was revealed that

Spamsum is also equipped with an approximated string edit distance algorithm, which

is used to determine similarity between any two Spamsum generated hashes. This

algorithm uses dynamic programming and a customized cost/weight based edit distance

algorithm to calculate the weight of each string operation. In Spamsum, the edit

operations are weighted as: ‘insert’ and ‘delete’ edit operations are assigned a weight

of 1, while each substitution is given a weight of 3 and each transposition a weight of 5.

Spamsum edit distance score is scaled to produce a range between 0-100, where 0 means

mismatch and 100 means 100% match or perfect match. This algorithm is incorporated

into our methodology as it is customized to work well with Spamsum generated hashes

Kornblum (2006).

A possible limitation, which can cause Spamsum to fail could arise in situations where

the two hashes or signatures use different block sizes or ‘reset frequency’, or whenever

the two strings are very different. In such situations, the score is automatically set to

0 or no similarity. For our domain, one such situation could arise when the payload is

scrambled to an extent that it is reversed. This can be a strategy used by attackers

to evade detection. A similar example or simulation is discussed in the NCD section

4.3.2.3, where we have two strings ‘strA’ and ‘strB’:

strA = “aaabbbcccdddeeefffggghhhiiijjjkkklll

mmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz”

strB = “zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmm

lllkkkjjjiiihhhgggfffeeedddcccbbbaaa”

Here strB is the reverse of strA. NCD (discussed in Section 4.3.2.3), compared to other

string metrics, is able to detect a high similarity between the two strings, as discussed

in 4.3.2.3. Using this same contrived example for Spamsum we find that Spamsum fails

to detect any similarity between the two strings.:

Example

## import Spamsum module

>>> import Spamsum

## string variable strA and strB carrying the strings

>>> strA = "aaabbbcccdddeeefffggghhhiiijjjkkklll

mmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz"

>>> strB = "zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmm
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lllkkkjjjiiihhhgggfffeeedddcccbbbaaa"

## Spamsum of strA and strB

>>> suma = Spamsum.Spamsum(strA)

>>> sumb = Spamsum.Spamsum(strB)

## print the two Spamsum variables to see Spamsum generated hashes

>>> print suma

3:te9DBClNO+fJ4I2FtXRWhFG6LdAv:2dQnSBA7m

>>> print sumb

3:vcv6SU/tU/Vs/8lO3dA3Bgnkt:EhKUmWMIWW

## Spamsum edit distance on hashes

>>> Spamsum.match(suma,sumb)

## No match here

Spamsum similarity score = 0

Here the similarity score of 0 indicates no match, whereas 100 means a perfect match.

Discussion The example above illustrates, that though Spamsum might be a good

similarity metric, it has some limitations. The limitations can however, be removed

using some special strategies on the input for this algorithm, thus pre-process the

input to detect some variations, which were otherwise undetectable by Spamsum. One

such method was discussed in the previous section 4.3.2.2, however, the results are not

as satisfactory.

It is assumed that that there exists a means to determine similarity between reverse

strings with more confidence, but that will involve having a reference string containing

segments from both the original string (strA) and its reverse (strB). This will increase

the chances/probability of having common segments or sub-strings present in scrambled

strings or variants of the same or original string. This idea is illustrated with the

example below:

Example

## Continued from above workspace

## String variable strC containing original and reverse string
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>>> strC = strA + rev(strA)

>>> strC = "aaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnooopppqqq

rrrssstttuuuvvvwwwxxxyyyzzzzzzyyyxxxwwwvvvuuutttsssrrrqqqpppooo

nnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa"

## Spamsum hash generated for this string

>>> sumc = Spamsum.Spamsum(strc)

>>> sumc

’3:te9DBClNO+fJgZtXRWhFG6LdAXud6SU/tU/Vs/8DuOU3dA3Bgnkt:2dQnYBA7zKUmoyIWW’

## Comparisions made with strA and strB

>>> Spamsum.match(suma,sumc)

53 ## or 53% similarity

>>> Spamsum.match(sumb,sumc)

49 ## or 49% similairty

Here we take a variable string C or ‘strC’ which contains the normal string ‘strA’ and

appends its reverse variant ‘strB’ as a suffix. Next we construct the Spamsum hash for

this new string ‘strC’ and finally compare it with both ‘strA’ and ‘strB’. Interestingly,

Spamsum with reverse string or Spamsumrev was able to identify matching sub-strings

and is confidently able to identify approximately above 50% similarity. This approach

is better than the one mentioned earlier in 4.3.2.2, and comparable to that used by

NCD that is discussed in the next section.

4.3.2.3 Similarity with Normalized Compression Distance (NCD)

Normalized Compression Distance or (NCD) is an information theoretic measure that

provides an approximation of the relative information distance between any two objects

or strings that contain information in them. NCD is discussed later in section 4.3.2.3.

Before understanding the internal working of NCD, it is imperative to understand its

relationship with information theory and particularly Kolmogorov Complexity (KC).

Additionally, the rationale for using compression as a means for measuring distance is

also discussed here.

Exploiting redundancy with Compression Compression is the encoding of infor-

mation using fewer bits. A compressor or source coder is used to compress information,
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which reduces the size of the original message to yield a compressed message. This mes-

sage is recoverable using a decompresser or decoder. There are many types of compres-

sors that use various algorithms for compression. Categorizing these algorithms based

on encoding schemes, we have lossless and lossy compression algorithms. Lossless com-

pression allows the flawless reproduction of the input data from the compressed stream,

while Lossy compression discards some information, and thus minimizes the amount

of data used in compression and decompression. Lossless compression is required for

most computer text or data files. However, for images, video and sound, where it is

difficult for humans to distinguish the change in quality, due to the perception caused

by limitations in their sight and sound stimuli, lossy compression is used.

Text or lossless compression algorithms can be classified into two main categories:

1. Static, such as Huffman codes and

2. Adaptive, like Lempel-Ziv based compression.

The quality and efficiency of a compressor depends on the percentage by which it can

reduce the message (in bits) in linear time. Hence, compressors are evaluated by their

execution speed and compression ratios. Repeated occurrences of the same symbol or

string would compress better, by similar amounts, as they have similar information in

them. Hence, compressibility can be used to measure similarity between strings.

NCD uses compression for approximating the Kolmogorov’s Complexity to determine

the relative information distances between network streams. Our implementation of the

compressor is based on zlib (Gailly and Adler, 1995), which uses an LZ77-type (Winters

et al., 1996) algorithm for fast and efficient compression. Choosing the right compressor

for the job is always tricky. It has been observed that an efficient compressor like bzip,

might not be suitable for compressing small text files, as it adds more fixed size overhead

to the file and hence increases its size. Since we are involved with compressing hashes

of payloads, which preserve similarities, zlib which works well with small files was found

to be the best tool for the job.

Kolmogorov complexity and Entropy In simple terms, Kolmogorov Complexity

K states that the complexity of a string can be given by its shortest representation.

Hence it is a measure of the descriptive complexity within an object. It refers to the

minimum length of a program that will compute a string x and terminate (Li and

Vitanyi, 2008). Compared to Entropy, the Kolmogorov complexity is a measure of

the amount of complexity of a string, whereas entropy is the measure of uncertainty.

Kolmogorov Complexity determines how “random” a string or message is, whereas

entropy determines how random an entire distribution of messages are. Kolmogorov
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Complexity can be described as follows:

Kϕ(x) = min
ϕ(p)=x

l (p) (4.5)

where p represents a program, ϕ represents a universal computer, and x represents a

string. ϕ (p) is the output of a program p by ϕ and l() is the function to calculate the

length.

Why NCD? Since Kolmogorov complexity is non computable in the Turing sense, an

approximation using a compressor C is given in the form of the Normalized Compression

Distance (NCD) Cilibrasi and Vitányi (2005). NCD is given by the formula:

NCD(x,y) =
C(xy)−min {C(x), C(y)}

max {C(x), C(y)} (4.6)

Where x and y can be arbitrary text files.

Based on Kolmogorov complexity, the NCD provides a measure of similarity between

any two given strings or files based on their analogous information densities. The result

is a value between 0 and 1. ‘0’ indicates that the items being compared are very similar,

whereas a result of ’1’ indicates being highly dissimilar.

Test 1: For scrambled information, the compressor in NCD exploits redundancies of

symbols or information between any two given strings or files. This is how it outper-

forms some other string metrics in situations that rely on accounting for the number of

substitutions, insertions and deletions required to transform one string into the other.

Applying this concept to network security, we can say that packets may have mutations

in the form of the same exploit, but different shellcode, or variants of the same exploit.

Similarity scores based on compressibility versus substitutions, insertions, deletions

(done by string metrics) are more deterministic for this domain. For example, consider

two strings ‘strA’ and its inverse ‘strB’:

strA = “aaabbbcccdddeeefffggghhhiiijjjkkklll

mmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz”

strB = “zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmm

lllkkkjjjiiihhhgggfffeeedddcccbbbaaa”
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Calculating the Levenshtein distance between these two strings, we get:

>>> levenshtein_distance(strA,strB)

>>> 78 (or 0.781 on a scale of 0-1 )

The value 78 on a scale of 0-100 roughly translates to 78% dissimilarity or 19% simi-

larity, whereas the NCD result is:

>>> ncd(strA , strB)

>>> 0.5375 (since NCD uses the scale 0-1}\

Here 0.53 means approx 50% similarity. As the second string ‘strB’ is simply the

first string ‘strA’ reversed, and there are multiple common repeated elements, the

50% similarity returned by the NCD evaluation seems more intuitively appropriate

than the very low 19% similarity given by the Levenshtein evaluation. Therefore the

NCD comparison would theoretically seem to be a better method for quantifying the

similarities between two strings, or, in our case, malicious streams.

Test 2: NCD with Spamsum hashes. In the previous section 4.3.2.2, it was

discussed how Spamsum was used to create hashes of the payload and similarity metrics

were applied on those hashes. As an additional example, NCD is tested as a similarity

measures on the Spamsum generated hash for the payload:

>>> strA = "aaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnoooppp

qqqrrrssstttuuuvvvwwwxxxyyyzzz"

>>> strB = "zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkk

jjjiiihhhgggfffeeedddcccbbbaaa"

>>>

>>> hasha = Spamsum.Spamsum(strA)

>>> hashb = Spamsum.Spamsum(strB)

>>>

>>> ncd(hasha,hashb)

0.8333333333333334 or approx. 17% similarity

Conclusion: This shows that applying NCD on the Spamsum hash of packet payloads

does yield some similarity, but compared to NCD on the original stream (plain text or
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raw payload) it yields a worse score and has no advantages. It is concluded that NCD

on raw payload performs similarity measurement with more confidence and hence is a

better measure.

Conclusion and limitation

These information theoretic metrics provide a unique set of similarity measurement

mechanisms. From a theoretical point of view, NCD has the capability of exploit-

ing redundancies that exist in information contained inside packets, which gives it an

advantage over other edit distance type string metrics. The edit distance algorithms

provide an account of the exact measure of similarity expressed as a numerical value,

which may be more accurate than the approximations provided by NCD, but is per-

haps difficult to scale as the string size increases. Therefore, NCD is better than edit

distance based string metrics.

The bursty nature of network traffic results in variable length packet/stream sizes. Net-

work profiles extracted from such streams can pose a challenge for the string metric

algorithms, as in many cases the number of insertions or deletions may increase ex-

ponentially. This will significantly effect the overall measurements. There is a need

to scale down or normalize the network profiles before applying similarity measure-

ments to them. Spamsum would perform well with its context triggered piecewise hash

algorithm. The packet profile would be broken into smaller segments and each seg-

ment would be hashed and thus preserve the information in it. Spamsum, like NCD,

has advantages over plain edit distance based measures, but would fail to provide an

approximation in situations where the block sizes differ significantly, as disscussed in

the reverse string test. Special pre-processing strategies are required to cope with this

problem to make Spamsum measurements reliable.

At this stage it is difficult to suggest which information theoretic metric has the ad-

vantage. Both NCD and Spamsum use different strategies to calculate distance scores

and both rely on computationally intensive operations like compression and hashing to

meet their goals. Further testing is required to conclude clearly as to which metric has

advantage over the other.

4.3.3 Hybrid approach

In the previous section 4.3.2.2 it was concluded that using Spamsum with the appended

reverse string can be used to determine the similarity even for reverse strings variants

with confidence. This means that in order to compare any two given strings ‘strA’
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and ‘strB’, we first need to append their reverse to them, before sending them as input

to the Spamsum sub-system for similarity measurements. Another interesting thing

learned from this experience is that the resulting similarity score output is very close,

or approximately equal to that of NCD. A question that arises here is: Are Spamsum

and NCD closely related metrics for similarity measurement?

Hypothesis

In order to answer this question, the problem was studied both theoretically and empir-

ically. In theory, both NCD and Spamsum use different means to determine similarity.

NCD is based on compression and compressibility at its core, while Spamsum uses the

context-triggered piece-wise hashing algorithm, along with a string edit distance algo-

rithm. From the initial experiment, the two techniques did show similar results, but

we need to test this on a slightly larger dataset to determine any correlation between

them.

Methodology and Results

The hypothesis was tested on a small dataset of 500 samples of labelled malicious

and benign streams. It was observed that Spamsum with reverse string appending

(Spamsumrev) and NCD are highly correlated, with a Pearson product-moment cor-

relation coefficient of r = 0.96 and coefficient of determination R2 = 0.93. However,

these scores do not tell the whole story, and it was observed that in some circum-

stances only one of the two metrics identified similarities better over the other (see

section 4.5. Based on these observations, it was decided to use them both by taking

the minimum score of the two as the criteria to determine similarity. Hence similarity

is now calculated as:

Similarity Score = min(NCD(x, y), Spamsumrev(x, y))

4.4 Experiments

In this section, experiments are conducted using similarity metrics to detect the simi-

larity between variants of malicious network streams.
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Distance Metric D(strA,strB)
Levenshtein 0.78
Damerau Levenshtein 0.77
Hamming 0.78
Jaro Distance 0.51
Jaro-Winkler 0.5
NCD 0.53
NCD with Spamsum 0.83
Spamsum 1
Spamsum Reverse 0.53

Table 4.2: Comparison of Similarity metrics: Levenshtein, Damerau Levenshtein, Ham-
ming, Jaro Distance, Jaro-Winkler, NCD, NCD with Spamsum, Spamsum, Spamsum Re-
verse using Strings: strA and strB. Scaled such that 0 means perfect match and 1 means
complete miss match

4.4.1 Experimental Objectives

1. To simulate variation, by adding random fuzz to reference packet data to synthe-

size variants. (Discussed in: 4.4.2)

2. To measure the variation in the synthesized variants with respect to reference or

original data. (Discussed in: 4.4.2)

3. To test the hypothesis of measuring network packet variants on real packet data.

(Discussed in: 4.4.3)

4.4.2 Experiment 1: Simulation

A fuzzer script was created using Python1 and the Scapy2 module. This script takes as

input any worm packet instance, creates N variant instances of the same packet, with

K bytes of random fuzz replacing the original packet payload content per instance,

resulting in a total of K×N replacements. Here fuzz refers to randomly chosen alpha-

numeric ASCII or hex characters. The script was tested with an original instance of

a slammer worm packet. Three datasets of 50, 100 and 200 packets respectively were

synthesized in PCAP format. Here each instance added 10 bytes of fuzz at random

locations in the payload to its predecessor. All these packets are created as sequential

increments of their predecessor. Next, we tested each dataset for detection using Snort

(Roesch et al., 2006) and then with our proposed system (Using methodology discussed

earlier, see 4.3.2.2). Results are summarized in Table 4.3. For Slammer worm detection,

Snort was configured with the following signature:

1http://www.python.org/
2http://www.secdev.org/projects/scapy/
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alert udp EXTERNAL_NET any -> HOME_NET 1434

(msg:"SQL version overflow attempt" ; flow:to-server; size:> 100;

content: "|04|"; depth:1; reference:bugtraq,5310; reference:cve,

2002-0649; reference: url, www.microsoft.com/technet/security/

bulletin/MS02-039.mspx;classtype:attempted-admin; sid:2050; rev:15;)

A distance threshold is setup as a cut-off value for similarity. For the threshold we

require a moderate value, that will not incorporate too many false positives and yet

should be tight enough as not to miss any worms. Based on prior experimentation

and work, we chose the NCD threshold value to be 0.57. This means that any packet

which shows a similarity score of less than 0.58 with the original worm packet will be

considered malicious.

As a comparison, this same experiment was then repeated using various similarity

metrics discussed earlier. (see section 4.3).

4.4.3 Experiment 2: Mixed Internet and worm traffic

Another experiment was designed, in which the system is tested with another original

PCAP dataset comprising of mixed Internet traffic. This was a two stage experiment:

In the first stage, a dataset was created from packets extracted from various malicious

and benign pcaps collected from wireshark.com and pcapr.net. A total of 66 packets

were extracted from these pcaps comprising of 30 worm packets, 10 Netbios Packets,

10 POP3 packets, 6 SMTP packets and 10 HTTP packets.

For the second stage we collected and labelled 500 malicious and benign streams com-

prising of categories including: TFTP download, Buffer Overflow (LSASS), Shellcode,

TFTP download , Oracle DB Connection Attempt, Remote Framebuffer Protocol

(VNC) Version String 005, Big Yellow (Symantec) Buffer Overflow Exploit, Trend-

Micro ServerProtect Buffer Overflow Exploit, FTP download (via cmd.exe), Webmin

Exploit GET /unauthenticated/..%01/..,RPC/DCOM Buffer Overflow Exploit with

simple polymorphic random data, ASN1 Buffer Overflow Exploit (Shellcode 1), MySQL

UDF Injection and Execution with FTP download, MySQL root access, SMB/CIFS

Scan, HTTP GET Request (absolute http Path), HTTP GET Request /w00tw00t.at.

ISC.SANS.DFind:), HTTP OPTIONS Request with User Agent Infos, POP3 Login

Attempt, SIP scanner,ack,invite,cancel , MS-directory service (port445), NMAP SER-

VICE PROBE, MMS stream, EPMAPPER (port 135) and PROPFIND WEBDAV.

The system is also tested on this dataset and results are discussed in 4.5.3.

In order to conduct the experiment, a reference class is selected from any of the classes
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Figure 4.1: NCD results for 50 fuzzed packets. 50 packets were synthesized from an
original slammer worm packet instance. Each synthesized packet contained 10 bytes of
random fuzz added to its predecessor instance in a cumulative manner.

mentioned above. Next, similarity scores are calculated between this reference class

and all the other classes and samples in the dataset. Results of each similarity metric

used is written out to a file for analysis. An analysis is carried out to identify any false

positives or negatives due to overlaps. Ideally, we want to find the metric which provides

the best means to partition the reference class from other classes in that dataset.

4.5 Results

A detailed analysis of the results obtained from the experiments discussed earlier are

provided in this section:

4.5.1 Result 1: Simulation Results

Graphical plots of the NCD results for experiment 1 are illustrated here in Figures 4.1,

4.2 and 4.3:

Figures 4.1, 4.2, 4.3 for experiment 4.4.2 suggests that as the number of fuzz packets

increases, the Snort detection rate goes down. For our proposed IDS system the general

trend is similar, but with a few exceptions, wherever the fuzzer added such symbols to

the payload, which were similar to the replacements, it increased the overall similarity

90



CHAPTER 4. SIMILARITY METRICS

Figure 4.2: NCD results for 100 fuzzed packets. 100 packets were synthesized from an
original slammer worm packet instance. Each synthesized packet contained 10 bytes of
random fuzz added to its predecessor instance.

N (in-
stances)

K bytes
(fuzz)/pkt

KxN (re-
placements)

Snort Detec-
tion %

Detection by
our Sys. %

50 10 500 45 47
100 10 1000 19 52
200 10 2000 10 40

Table 4.3: Comparison of IDS: Snort vs Similarity metric

score, thus making all such packets more detectable by our system. This may lead to

statistical errors and further experimentation is required. This, to some extent, simu-

lates the masking of information in packets by the attacker in the form of encryption

by substitution. The NCD threshold value serves as a key for our system. The tighter

or more closer to 0 the value is, the lower the detection and False positive (FP) rates.

Further experimentation will help us to determine a suitable threshold value that will

be more effective. For a test threshold value of 0.55 our system generated approx 60%

detection rate for the 200 sample pcap, approx 52% detection rate for the 100 sample

pcap and 47% for the 50 sample pcap, compared to 10%, 19% and 45% respectively

for Snort, as shown in table 4.3.

Repeating this same experiment using different similarity metrics, we get some inter-

esting results:
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Figure 4.3: NCD results for 200 fuzzed packets. 200 packets were synthesized from an
original slammer worm packet instance. Each synthesized packet contained 10 bytes of
random fuzz added to its predecessor instance.

Comparative results

Comparative results for all similarity metrics are shown in figure 4.4 and condensed

in Figure 4.10. Theoretically, there should be a gradual increase in distance, as the

amount of fuzz in the packet variants increases. This should be enough to draw decisive

boundaries and avoid overlaps.

Here it can be seen that as the amount of fuzz in packets increases, their similarity

starts to decrease almost linearly. For edit distance based string metrics: Levenshtein,

Damarau and Hamming distances exhibit this trend in the form a steep curve, surpass-

ing the scale of 0-1. Next the Jaro and Winkler distances show a slight increase in this

trend, but the line is quite flat indicating that the effect of fuzz is not affecting the

similarity too much. This to some extent causes ambiguities as it will become difficult

to draw decision boundaries between what is or is not similar.

NCD seems to conform to the norm by exhibiting an expected behaviour in terms of a

gradual increase limiting by distance scale 0-1. For NCD, a similarity threshold of 0.8

can be used as a decision boundary in this case. Applying NCD on Spamsum hashes

for this experiment reveals some interesting findings. The similarity scores suggest a

sharp increase in similarity, followed by a slight dip and then a flat line. This again

is ambiguous behaviour in terms of similarity measurements. Once again it becomes

difficult to draw a decision boundary here, especially for example, for a threshold of

0.8, all packets suggested by the flat line will be considered similar by the system. This
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Figure 4.5: Comparative results on the 50 fuzz packet dataset (similarity scores are nor-
malized and scaled between 0-1). Here 0 = identical and 1 = dissimilar

is against the expected ground truth. Hence using this method a 100% fuzzed packet

will still be considered similar.

Spamsum with reverse hash is able to detect more similar packets correctly compared

to Spamsum on the original sample, but fails to detect the trend over the subsequent

packet as done by NCD. This further strengthens the hypothesis laid down in the

hybrid similarity metric discussion, see 4.3.3, where the need for a hybrid approach

is advocated. From this experiment we can now conclude that Spamsum with reverse

hash ( 4.3.2.2) and NCD on the original sample ( 4.3.2.3), which are combined to

create a hybrid technique (discussed in 4.3.3), outweighs other similarity metrics, as

comparatively, this methodology is able to detect more similar packets correctly.

A similar trend was observed with 100 and 200 fuzzed packets.

Sensitivity test:

In order to avoid any statistical bias that may have been introduced due to incremental

iterations of fuzz resulting in packets with cumulative fuzz as stated above, another

experiment was designed. Nine original packets of the Slammer worm instance were

selected. All these instances were tested and verified by Snort detection. Next for each
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Figure 4.6: Sensitivity test of distance with incremental fuzz

original packet instance, 100 variation were created/synthesized from the reference

instance with varying amounts of fuzz. This resulted in groups of packets based on

incremental fuzz mutations. Here, for example, the first group contained 100 packets

synthesized from the original reference, created using 10 bytes of fuzz mutations per

packet, the second group was created using 20 bytes of fuzz and so on, with the ninth

group having 90 bytes of fuzz in each instance.

For each group a distance score was calculated between the original reference and the

tainted or fuzzed or mutated packet. Next the Mean and Standard deviation across

all these scores was calculated for each group and the results were plotted on a graph

shown in Figure 4.6. Here a linear positive slope is observed, which conforms to the

theory that as the amount of fuzz or mutations increase in packets, their distance from

the reference increases.

Conclusion: It can be concluded that this methodology can be used to reliably iden-

tify variants of packets, worms or malicious streams.
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Figure 4.7: NCD and Jaro results for fuzzed Slammer worm packets

4.5.2 Validation of Simulation

In this section we validate the rationale for using similarity metrics to detect the simi-

larity between variants of malicious network streams.

In order to validate the results obtained by various string metrics and semi-metrics, edit

distances like Jaro-Winkler Distance, Hamming Distance, Levenshtein distance, and

information theoretic measures like Information gain or Kullback-Leibler divergence

and Entropy have been used on the 50 packet dataset as shown in Figure 4.10. A

general relationship has been identified between all string metrics using entropy. For

this dataset it has been observed that packets with higher entropies than the reference

packet yield a higher or worse similarity score. We believe this is due to the increase

in the complexity of the string. The added randomness decreases the similarity of the

string and hence that much more energy is required to transform it into the reference.

4.5.3 Result 2: Mixed Internet Traffic

Comparative results of one instance of the Slammer worm with the dataset discussed

in 4.4.3 are shown in Figures 4.10 and 4.7. There were only 3 packets of the Slammer

worm instance in this dataset (Packets 1 - 3), which show a very close similarity score,

while other packets are distinctly dissimilar.
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The results from the second part of this experiment are shown in Figure 4.8. This

experiment was carried out on a larger dataset of 500 samples. We observed that NCD

outperformed other metrics, by providing a clear class boundary between samples of

the reference labelled class and other labelled classes in the experiment. For NCD

a threshold of 0.75 can correctly identify similar items from that class, without any

false positives as shown in Figure 4.9. Jaro seems to be the second best, but still has

ambiguities that will lead to false positives. For Jaro a threshold of 0.45 will cause false

positives due to overlaps and anything below this threshold will cause false negatives.

Spamsum with reverse hash failed to identify any similarity. This further endorses the

need for having a hybrid approach (discussed in section 4.3.3)

4.6 Limitation

The method detailed in this chapter will have some limitations. An attacker could

intentionally alter the entropy or complexity of the attack traffic or exploit to such

an extent that the classifier fails to identify it correctly. This could be achieved by

adding interleaved random symbols in with the actual exploit data. However, this may

well affect the exploit and make the overall attack considerably more difficult. This

technique would not work with evasion techniques involving substitution/encryption

and traffic containing polymorphic version of the same malicious stream. However,

malware containing polymorphic binaries should be extracted from such streams and

tested separately in a sandbox environment. A similar classification methodology could

be applied but for in-memory code analysis on such samples.

4.7 Comparison with Inverse Compression Ratio

In the past, researchers have used information-theoretic approaches for intrusion de-

tection. Approaches involving the use of entropy for the detection of anomalous flows

suggested by Lakhina et al. (2005) and for detecting DDos attacks was suggested by

Feinstein et al. (2003). Work done by Evans and Barnett (2002) used compression to

compare the complexity of legal FTP traffic with illegal traffic, but at a header level

only, whereas we use entire TCP sessions. Kulkarni and Bush (2006) also performed

denial of service measures using compression ratios based on Kolmogorov complexity by

estimating the entropy of 1’s contained in the packet, which has some limitations. Ei-

land and Liebrock (2006) detected network scans from normal traffic using Kolmogorov

complexity by estimating the inverse compression ratio of scan and normal traffic.
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Figure 4.10: Comparison of similarity metrics on fuzzed worm packets, with reference
Slammer worm instance

The technique proposed in this chapter for similarity measurement were compared with

the aforementioned work including the work of Eiland and Liebrock (2006). They used

inverse compression ratio to detect scan traffic. Inverse compression ratio (ICR) was

used as it is bounded by zero and one and hence scales nicely, compared to compression

ratio, which ranges from one to infinity. Since inverse compression ratio is checking the

ratio of compressed file with its uncompressed version, any file having more variations

will not compress well compared with the one having fewer variations. Applying this

methodology to our domain, exploits with variations will not compress better and it

will be difficult to classify them as variants. To empirically prove this, we performed an

experiment involving a small dataset comprising of 500 labelled samples from various

classes and applied inverse compression ratio to all these samples. The ratios were then

used to see if we could classify the samples correctly. We found that this technique

fails to partition or classify various types of attack traffic that we have in our dataset.

Variations within the same class were causing misclassification due to varying results

from the ratio.
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4.8 Conclusion

It can be concluded that the use of packet payload information as signatures to classify

malicious streams using network data does work. We concluded that we can perform

similarity measurements on packet payload data with confidence. Experimentally we

found the system to be robust and can allow for significant changes in the signatures

without misclassifying the stream. We found that for this type of data, NCD and

Spamsum metric were the most appropriate similarity metrics and concluded that since

both are highly correlated and have some advantages over the other, we can use them

in a hybrid approach for similarity measurements.

101



CHAPTER 4. SIMILARITY METRICS

102



Chapter 5

Clustering and Classification for

Intrusion Detection

“There are known knowns; there are things we

know that we know. There are known unknowns;

that is to say there are things that, we now know we

don’t know. But there are also unknown unknowns

there are things we do not know we don’t know”

–Donald Rumsfeld, US Secretary of Defence

The previous chapter demonstrated how the use of edit distance and information the-

oretic similarity metrics can help determine similarity between network profiles for

intrusion detection. Several similarity metrics were reviewed and a few were chosen

from the literature, and used to determine the similarity between various packet or

stream profiles. Some preliminary tests have been conducted to identify the most suit-

able metrics for our domain. Different combinations for measurements were discussed

and metrics of choice were proposed based on theoretical analysis and some initial

experiments.

This chapter builds on this work and investigates the use of machine learning techniques

for the classification of malicious network streams. This chapter discusses clustering

and classification techniques using data obtained from similarity measurements of ma-

licious network streams. Some machine learning approaches for intrusion detection are

discussed. Experiments are designed to find the best clustering algorithm and cut-off

threshold for our domain given the similarity metrics. The results are analysed with a

discussion on ROC-AUC based measures and Accuracy. Results obtained by compar-

ing all the clustering algorithms used for the evaluation will be discussed and the best

ones highlighted.
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5.1 Problem Description

In order to establish the best performing metric suitable for our domain, the metrics are

compared and evaluated both theoretically and empirically, using statistical machine

learning techniques. These techniques would help in correctly grouping the measure-

ments obtained from similarity metrics into their respective groups for classification.

To achieve this classification goal, it is necessary to find a combination of the best sim-

ilarity metrics and clustering algorithms to use. The following questions are addressed

in this chapter:

1. How to group similar items together?

2. How to determine the optimal threshold to partition data into groups?

3. How to find the best clustering algorithm(s) for our domain?

4. How to evaluate the classifier results for correctness?

5. How to identify the most suitable similarity metric for our domain using the above

evaluations?

5.2 Background

5.2.1 Machine Learning

The discipline of machine learning provides a set of algorithms for solving problems that

require learning, adapting or evolving a computer program based on empirical data.

Examples or observations from the training data can be used to extract unique features

or characteristics to create models. These models can be used to automatically learn

or recognize complex patterns that emerge in the data or make intelligent decisions

based on them. The performance of the learner is directly proportional to the coverage

of features in the training data. Since not all features can be made readily available

to the system during training, the learner should generalize known features in order to

learn and identify new and novel features from the test set. In other words, the learner

should be able to generalize from its experience.

5.2.2 Machine Learning for Intrusion Detection

Cyber criminals target individual and organizations’ data for their gain. Security tools

are deployed in the cyber infrastructures to defend against these cyber criminals and
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their ill intent. Information security tools like intrusion detection and prevention sys-

tems, anti-virus systems and firewalls produce large amounts of data in the form of

logs. With all these security appliances generating large amounts of data, the industry

is finding it hard to cope with and make appropriate intelligent decisions. Data mining,

statistics and machine learning capabilities are required to address the challenges of cy-

ber security i.e. to process vast amount of data. We intend to use machine learning

techniques to extract knowledge from data for better intrusion detection and preven-

tion. Machine learning techniques will give us the capability to extract strong patterns

or derived rules from the data to group entities and to use that knowledge to predict

new classes of data. It serves as an iterative process of extracting knowledge from data.

Applying this concept to intrusion detection can help better detect intrusive behaviour

in networks and systems, than done by researchers in the past.

Clustering and Classification

Machine learning algorithms are used for our domain, for the clustering and classifica-

tion of malicious network streams. Instances of malicious and benign network traffic

profiles are used as a template or an example to classify other similar instances, thus

“learning from examples” (Aha et al., 1991), this is an example of supervised learn-

ing. An instance space consists of a set of stored instances. Given an instance from

instance space, an instance-based learning algorithm is used to map instances to cat-

egories. Instance-based learning algorithms use similarity and classification functions

for their operation. We hypothesize that instance-based machine learning algorithms

with random instance selection, utilizing input from similarity metrics and clustering

algorithms can provide good classification.

Classification is the process of identifying which set of categories an observation belongs

to 1. A similarity score is established between incoming packets or streams and the

instances in the instance space. Classification is carried out using a model comprising

of instances and their corresponding thresholds to categorize the input streams. A

confusion matrix is generated as a result of this classification, populating table entries

for the predicted class and the actual class, to evaluate the performance of the classifier.

From this confusion matrix we calculate: Accuracy, Area Under the Curve (AUC) and

finally generate a Receiver Operating Characteristics curve (ROC curve) to visualize

the performance of the binary classifier.

1http://en.wikipedia.org/wiki/Classification in machine learning
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5.3 Evaluation

Evaluation measures play a crucial role in both assessing the classification performance

and guiding the classifier modelling. Traditionally, Accuracy is the most commonly

used measure for these purposes. Accuracy is defined as:

Accuracy =
#TP +#TN

P +N
(5.1)

here:

P = TP + FN (5.2)

N = FP + TN (5.3)

However, for classification with the class imbalance problem, Accuracy is no longer

the appropriate measure as the less represented classes can have very little impact on

accuracy compared to the dominant class (Weiss, 2004). The area under the receiver

operating characteristic curve or ROC-AUC based measures can be used to provide a

better means to evaluate such imbalanced datasets.

The ROC curve provides a graphical plot between the true positive rate (TPR) or

sensitivity (or recall) and the false positive rate (FPR) or 1-specificity (or true negative

rate), here:

TPR = TP/P (5.4)

FPR = FP/N (5.5)

AUC23 is defined as:

AUC =

∫ 1

0
ROC(t)dt (5.6)

Here t = (1− specificity) and ROC(t) is sensitivity.

Working with imbalanced classes, a variety of classification metrics could have been used

2http://www.floppybunny.org/robin/web/virtualclassroom/dss/articles/sensitivity_

specificity_accuracy_CI.pdf
3AUC = (1 + TPR− FPR)/2
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to evaluate our system. A few notable ones are: Receiver Operating Characteristics

(ROC), cost curves, precision recall curves, precision, Q-score, F-score, recall and G-

mean.

Precision measures the exactness of the positive labels among all positive labelled

samples. Precision is sensitive to the distribution and does not indicate any FN. Recall

measures the percentage of correctly labelled positive samples from all positive class

samples. F-measure of F-score combines recall and precision and thus provides more

details on the accuracy of the classifier. Several of these metrics are defined here:

Precision =
#TP

#TP +#FP
(5.7)

Recall =
#TP

P
(5.8)

F −measure =
(1 + β)2 · recall · Precision

β2 ·Recall · Precision
(5.9)

Since compared to these metric ROC provides a means to compare different models and

select the optimal one using cost versus benefit, we choose ROC as it gives an accurate

idea of the classifiers performance.

5.3.1 ROC

The accuracy of a classifier can be evaluated using Receiver Operating Characteristics

(ROC)(Fogarty et al., 2005) curve analysis as shown in Figure 5.1. ROC provides a

good means to measure the trade off between true positive rate (TPR) and false positive

rate (FPR) as seen by the classifier. The points on the curve represent the performance

of the classifier. The ideal model is one that obtains a True Positive Rate of one and

a zero False Positive Rate (i.e., TPrate = 1 and FPrate = 0, point A in Figure 5.1. A

worst case scenario would be point B, coordinates (1,0), where TPR is zero and FPR

is a maximum.
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Figure 5.1: ROC Curve: the points on the curve represent the performance of the classifier.
The ideal model is one that obtains a True Positive Rate of one and a zero False Positive
Rate (i.e., TPrate = 1 and FPrate = 0, point A in this figure. A worst case scenario
would be point B, coordinates (1,0), where TPR is zero and FPR is a maximum. A model
that makes a random guess should reside along the line connecting the points (TPrate =
0, FPrate = 0), where every instance is predicted as a negative class, and (TPrate = 1,
FPrate = 1), where every instance is predicted as a positive class.

5.4 Methodology and Experiments

5.4.1 Information visualization and analysis through Multi-dimensional

scaling MDS

Before attempting any clustering or classification algorithms to identify clusters or

groups in network data, the data is analysed carefully. From statistics we have multi-

dimensional scaling or MDS, which is an information visualization technique for ex-

ploring similarities or dissimilarities in data. It provides an aerial view of the natural

clusters that are forming in the data. This is done by reducing multi-dimensional data

and visualizing it in 2 or 3 dimensions using the MDS algorithm. MDS provides a

means to visualize how far away, or close together, the data points are in two dimen-

sional space.
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Figure 5.2: A 2D visualization of a small dataset of different types of packet data, us-
ing MDS. The natural clusters forming are highlighted and partitioning between different
packets types is clearly visible.

Fifteen labelled packet samples are chosen from a small dataset comprising of 66 labelled

packets of worm and benign packets (discussed in experiment 2 of the previous chapter).

In order to determine how similar or dissimilar each packet is from the other, a pair-wise

n× n similarity matrix of these 15 packets is created, using the minimum of NCD and

Spamsum: min(NCD,Spamsumrev) as the similarity metric. This similarity matrix

is a matrix of scores that represents how similar or far away in space each point in

the dataset is to the other. Applying MDS on this small matrix and visualizing it,

results in a graphic illustrated in Figure 5.2. Clusters formed between similar packets

are highlighted in this figure. The empty space between the different types of packets

expresses the partitioning of this type of data. This analysis serves as a preface which

indicates that clustering techniques from machine learning can be applied on such data

to exploit the inherent grouping that exists within it.

5.4.2 Experimental Objectives

We conducted a series of experiments to:
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• Identify the best clustering algorithm. (Discussed in section 5.4.4 )

• Identify the optimal cut-off or threshold value. (Discussed in section 5.5.4)

• Evaluate the correctness of the classifiers using confusion matrix and ROC curves

(Discussed in section 5.5.5 )

• Finally, based on the above results, identify the best similarity metric. (Discussed

in section 5.5.5 )

5.4.3 Preparing Test Datasets for experiments

For one of our experiments, ten small datasets extracted from a large dataset were

created. Each dataset contained 500 malicious or benign streams randomly picked

from the large dataset presented in the chapter 3. These samples comprise of the raw

stream payloads, which are referred to as stream or network profiles. These labelled

network profiles are in the form of a text file with the naming format of “c.a-the md5sum

of the stream”, where ‘c’ is the class and ‘a’ is the subclass of the labelled stream. Five

hundred such profiles were created using this methodology – one for each stream in the

dataset.

In order to measure the relative similarity scores between these packet profiles, metrics

such as: NCD, Levenshtein Distance, Hamming distance, Jaro distance, Spamsum and

Hybrid were used. Edit distance metrics were used on raw profiles, as discussed in the

previous chapter. Information theoretic measures like NCD and Spamsum with reverse

string, were also discussed in the previous chapter. For each metric, a combinatorial

similarity score was calculated across the dataset, resulting in 500× 500 combinations

per instance.

Both string metric calculations and Fuzzy hashing the payload are computationally

expensive operations and they gravely affects the performance of the system, so pre-

processing, automated-analysis and classification are performed offline. For this exper-

iment, the system is designed to start its operation on receiving 500 streams in the

buffer or wait for n seconds and process the buffer, whichever triggers first.

5.4.4 Experiment 1: Determination of the best Clustering and Clas-

sification algorithm

The similarity scores obtained via the similarity metrics are clustered, in order to group

similar items together. Various clustering techniques are available in the literature.

We choose the following based on their relevance with our domain. These clustering
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techniques are then tested with different similarity metrics and their performance is

observed and compared. Some visualizations are presented in this section using a small

dataset of 100 packets extracted from malicious classes (such as: MSSQL SLAMMER,

CONFICKER, ZEUS, SADMIND, SMB ATTACK) and benign classes (such as:POP3,

SMTP, HTTP, SMB), later visualizations are created using 500 packets.

Minimum Quartet Tree Cost (MQTC)

To construct a tree from a pair-wise distance matrix of similarity scores between objects,

we utilize the tools provided by the freely available CompLearn toolkit (Cilibrasi, 2003).

This tool makes use of a heuristic to implement the quartet method. The heuristic

is called the standardized benefit score S(t). The quartet method proposed by this

technique is the Minimum Quartet Tree Cost problem, which is an NP-hard graph

optimization problem. A visualization produced using the Complearn toolkit on a

dataset of 100 packets is shown in Figure 5.3.

Limitations: While effective, it was observed that the minimum quartet tree cost

(MQTC)-based clustering(Cilibrasi and Vitányi, 2005) becomes highly inefficient (very

slow to process a result) as the dataset size increases (Abbasi and Harris, 2010). For a

small test set of 200 samples, the MQTC algorithm took 26 hours to process the data

and produce a result. In our analysis other clustering methods were investigated, and

compared with MQTC.

Unweighted-Pair Group Method with Arithmetic Mean or (UPGMA)

UPGMA is an agglomerative or hierarchical clustering method used heavily in bio-

informatics and very well known for the creation of phenetic or phylogenetic trees.

The motivation behind using UPGMA was to test its ability to create phenetic trees of

labelled variations of malicious streams. Based on past observations (Abbasi and Harris,

2010), we set the threshold value to 0.55 and ran the system to cluster a relatively small

dataset of 100 packets. The results were quite encouraging as can be seen in Figure 5.4.

The rectangular boxes show the clusters, the dark oval nodes represent similarity and

dissimilarity percentages, while the light coloured flat oval nodes represent the packets.

In a very short time, UPGMA was able to correctly cluster the dataset according to its

labels.
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Figure 5.3: MQTC on a small dataset of mixed 100 packets of benign and worm packets.
The algorithm took a long time to calculate a stable tree even for such a small dataset.
The clusters are highlighted here in this figure.

Limitations: UPGMA is much faster than MQTC but slows down considerably as

the dataset size increases. UPGMA took over 10 hours to process a dataset of 1000

samples.

k-Nearest Neighbour algorithm (k-NN)

k-NN is one of the simplest machine learning algorithms, which attempts to classify

objects by a majority vote of its k nearest neighbours. However, determining the value

of k before hand is a difficult and computationally expensive task. We tested our system

with k = 1,3 and 5.

Limitations: k-NN is much faster than both MQTC and UPGMA. It was able to

process 1000 samples in under 15 minutes. However, determining an optimal value for

k is difficult and is prone to high false positive results.
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Figure 5.4: UPGMA on a small dataset @ T = 0.55. The rectangular boxes show the
clusters, the dark oval nodes represent similarity and dissimilarity percentages, while the
light coloured flat oval nodes represent the packets. In a very short span of time (less
than a minute), UPGMA was able to correctly cluster the dataset according to its la-
bels. UPGMA results were visualized using a modified version of Ero Carreras script
(http://blog.dkbza.org/2005/07/using-complexity-theory-to-measure.html) 113
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Threshold-based nearest neighbor or (T-NN)

T-NN is a variant of the nearest neighbour algorithm proposed for our domain. It is

based on a simple linear search. For a dataset having N data points we want to find

all such points in the metric space that are below the threshold value defined as a

parameter at the beginning of the algorithm. These points will be considered as the

nearest or closest to the reference point. For any query point, the algorithm computes

distances between every other point in the dataset and adds the ones that are below

the defined threshold value to the same cluster. The threshold defines the radius of

the cluster. The optimal threshold value will create clusters comprising of only those

points that are similar to the reference point, resulting in a perfect classification of

data points from only the same class. Determination of the optimal threshold value is

a challenge which directly affects the outcome of the classifier.

Limitations: Determining an optimal threshold value is a challenge.

While determining the threshold for T-NN and the value of k for k-NN might be

difficult, they have shown some promising results.

5.4.5 Experiment 2: Determination of the threshold for T-NN

Central to the T-NN algorithm is a threshold value that determines the size of the

classification. Determining the optimum threshold value that will maximize the true

positives (TP), while minimizing false positives (FP) is a difficult task. We design two

experiments in an attempt to approach this problem. In the first experiment we use

a fixed threshold value, known from our past experiences to be good enough to meet

the criteria, and use this to classify a given test set. This value was selected as initially

a middle value between 0 and 1 that may serve as a boundary to distinguish between

variants of the same class and different classes. In the second experiment we use a

step-wise or adaptive threshold approach, in which the threshold value is increased in

small increments of 0.05 from 0 to 1, and the accuracy is checked for each iteration.

The iteration that gives the maximum accuracy is marked and the threshold for that

case is considered to be the optimum threshold.

The threshold value is significant for the classifier, as it should determine the cut-off

value which ascertains the classifier boundary between classes. This value should serve

as input for the clustering algorithm to create clusters. One way to determine the

threshold is by increasing it by small step increments of 0.05, starting from 0 and going

to 1, and then calculating the accuracy of the classifier per increment in terms of true

114



CHAPTER 5. CLUSTERING AND CLASSIFICATION FOR INTRUSION
DETECTION

and false detection. Ideally, the threshold value having the most TP values and the

least FP values for Accuracy or AUC or the one with zero FP is considered as the

optimum value for that dataset.

5.4.6 Experiment 3: Determining the best Similarity Metric

To determine the optimal classification based on edit distance based similarity metrics,

we used both the ROC accuracy and the ROC AUC based measures. Clustering tech-

niques were applied to the results using an adaptive threshold to determine the clusters

formed with maximum true positives (TP) and minimum false positives (FP). Next the

ROC curve was plotted for result analysis. Since AUC is statistically consistent and

a better discriminating measure than Accuracy (defined in the next section) (Weiss,

2004), it can be used to determine the optimal threshold value.

5.5 Results and Discussion:

5.5.1 Result 1: The best clustering algorithm for our domain

In experiment 1 presented in the previous section it was discussed in detail both theoret-

ically and empirically using a small dataset how T-NN outperforms the other candidate

clustering algorithms selected for our domain. A detailed discussing on the result using

a much larger dataset comparing these clustering algorithms is given later in 5.5.6.

5.5.2 Result 2.1: T-NN with Fixed Threshold Clustering using dif-

ferent Similarity Metrics

Visualizations of cluster formations, for the clustering algorithms (discussed in 5.4.4)

can be seen in Figures 5.5, 5.6, 5.7, and 5.8. 4

The loosely coupled, multiple galaxies appearing in 5.5 are the clusters formed between

labels of the same class measured using NCD for a threshold (T) of 0.55. The same

fixed threshold value for other string metrics caused classification problems as can be

seen in Figure 5.6 for the Jaro, in Figure 5.7 for the Levenshtein and in Figure 5.8 for

Hamming distance. Based on these results a separate experiment (discussed in the next

section) was conducted to determine the optimum threshold value for each similarity

4We visualized the results as undirected graphs, showing relationships between packet streams us-
ing Graphviz Ellson et al. (2002). The packet stream profiles are represented by oval nodes. The
relationships are represented by a line or edges with the similarity score.
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metric. It can be concluded that NCD similarity metrics comparatively creates the best

clusters in terms of correct classification. A partial screen-shot obtained from the NCD-

based T-NN clustering on the 500 dataset is shown in Figure 5.9. This figure gives

an idea of the skewed dataset. The prominent mass visible in the center is the largest

class, representing the largest galaxy, while the sister galaxies around it represent other

relatively smaller classes.

5.5.3 Result 2.2: T-NN Adaptive vs T-NN Fixed Threshold

From each of the 10 test sets (described in section 5.4.3), using NCD as the similarity

metric, we collected accuracy results for both fixed (Discussed in section 5.4.5) and

adaptive threshold (Discussed in section 5.4.5). The average accuracy expressed as

a percentage was calculated for both these methods and it was observed that the

fixed threshold method gave 64% accuracy compared to 87% accuracy provided by

the adaptive threshold technique, as can be seen in the bar chart in Figure 5.10.

This significant increase in accuracy has made the adaptive threshold technique, our

technique of choice to be used with T-NN for clustering. For this experiment, the

fixed threshold value was set to 0.5 and adaptive was found to vary between 0.7 - 0.8,

between different test sets.

5.5.4 Threshold Results: Using T-NN with Adaptive threshold

We define the optimum threshold value as the cut-off value at which the system iden-

tifies the maximum number of True Positive (TP) values while minimizing the False

Positive (FP) values. The experiments to determine the optimum threshold value are

discussed in Section 5.4.5. The results in this section, followed by the discussion in Sec-

tion 5.3 conclusively shows why Accuracy is not the optimal criteria for determining

the threshold value, as there is a very large compromise in terms of high FP values for a

small increase in the TP values. AUC provides a better compromise, with a substantial

decrease in the number of FP values while maintaining a high percentage of TP.

5.5.4.1 AUC vs Accuracy vs Zero False Positive (FP).

Since AUC (when compared to Accuracy) yields a cut-off value that has fewer false

positives (FP), yet maintains a high true positive (TP) value, AUC was chosen as the

determining factor to identify the optimal cut-off.

The bar chart shown in Figure 5.11 shows the magnitude of the TP and FP values
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Figure 5.10: Adaptive vs fixed threshold: The adaptive threshold technique has a clear ad-
vantage over the fixed threshold technique, in terms of accuracy. Here applying an adaptive
threshold gives 87% accuracy, while using a fixed threshold gives only 64% accuracy.

for AUC, Accuracy and Zero FP, across all four distance metrics. Thi graph was

created using maximum value of Accuracy and AUC and maximum Accuracy at Zero

FP. Ideally, a system would yield no zero false positives (FP) or false negatives (FN).

However, it is evident from this figure that such a system would have a considerable

reduction in the number of true positives, and a very large increase in the false negatives

(FN). It can be seen from the graphs that Accuracy (approx. 88%) followed by AUC

(approx. 87%) has the highest number of TP, whereas for a zero false positive system,

the TP are nearly half of the Accuracy. However, the advantage is that there would be

zero false positives (FP).

Figure 5.12 shows a bar chart expressing the magnitude of FP values across all four

distance metrics using Accuracy, AUC and Zero FP. The graph is created using maxi-

mum value of Accuracy and AUC and maximum Accuracy at Zero FP observed from

the results. Since at zero FP there would be no FP values, we shall focus on Accuracy

and AUC only. Here NCD followed by Jaro is showing the lowest number of FP samples

compared to the others.

NCD and Jaro for FP observations are compared in Figure 5.13. The graph created

using number of FP observations resulting from the maximum value of Accuracy and

AUC observed from the results. Here It can be seen that AUC has a significantly lower
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Figure 5.11: Accuracy vs AUC vs Zero FP across all metrics. This figure shows that NCD
with AUC yields a high number of TP values with very few FP values compared to Accuracy.
This tradeoff helps decide a suitable threshold (T) using the adaptive thresholding method
for T-NN clustering.

number of FP values compared to Accuracy. Here NCD with AUC is showing the least

number of FP samples, as highlighted in Figure 5.13.

5.5.5 Result 3: Best similarity metric using T-NN with adaptive

threshold

We performed ROC curve analysis on all the string metrics. From the combined ROC

classification results illustrated in Figure 5.14, NCD outperforms the other similarity

metrics. Adding Spamsum to this comparison as shown in Figure 5.15, we observe an

ROC analysis of the similarity metrics studied. It can be seen that Spamsum and NCD

outperformed other similarity metrics. A high correlation (r = 0.96 and coefficient of

determination R2 = 0.93) between Spamsum and NCD can be seen visually in Figure

5.14. This confirms and endorses our observations and discussion presented earlier in

the previous chapter (Similarity metrics: Hybrid approach).

5.5.6 Comparative Results: Cluster comparisons

In order to empirically compare various clustering algorithms discussed in this chapter,

we selected a small subset of 1000 samples from the main dataset. We then split this

dataset into a training set and a test set. The training set was created by manually

picking 3 or more samples from each class. We then tested the classifier by randomly

picking samples from the training set and using them as exemplars to classify the test
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Figure 5.12: FP results for NCD, Jaro, Levenshtein and Hamming distance metrics - AUC
vs Accuracy. Here NCD is showing the lowest number of FP samples compared to the
others.

Figure 5.13: FP results for NCD and Jaro – AUC vs. Accuracy. Here NCD with AUC is
showing the least number of FP samples.
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Figure 5.14: ROC: Hamming vs Levenshtein vs Jaro vs NCD, while step-wise varying
the threshold. Here Hamming and Levenshtein distance performs poorly with many false
positives at the start and getting worse towards the end. Jaro distance, compared to the
previous two metrics performs much better, with many TP results until at the end a few FP
results start to appear. As is evident from the ROC curve analysis, NCD has outperformed
other similarity metrics by comparison.

set. Next we increased the number of exemplars selected from the training set and ob-

served the accuracy of the classifier for each step. Using this methodology we compared

all clustering algorithms discussed in this chapter. The result of this comparative work

is illustrated in Figure 5.16. Since, for this experiment, ROC analysis will be unable

to depict the number of exemplars or reference samples used as signatures, Accuracy

is used on the y-axis with exemplar count or number of exemplars on the x-axis.

Discussion

As the number of exemplars or instances increase, the knowledge base of the classifier

increases and hence it can perform better classification resulting in better accuracy.

However, more knowledge in terms of exemplars would demand more comparisons

and considerably slow down the computation process, as it undergoes a nxn or n2

operation. Ideally, we would like our classifier to yield maximum accuracy with the

lowest possible number of exemplars taken from the training set. For this particular

dataset, the results illustrated in Figure 5.16 show an interesting situation where the
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Figure 5.15: An ROC curve comparing Hamming, Levenshtein, Jaro, NCD and Spamsum
similarity measures, while step-wise varying the threshold. It can be seen that Hamming
and Levenshtein distance measures perform poorly, with many false positives at the start
and getting worse towards the end. Jaro distance metric is much better, with true positive
results until, at the end, a few false positives results start to appear. NCD and Spamsum
outperform the other similarity metrics.

adaptive thresholding algorithm seems to outperform others. Step-wise or adaptive

thresholding gives the best results and seems to be better than fixed thresholding and

k-NN for k = 3 and 5, except when 3-NN has a very large number of exemplars (80-90).

Here we can conclude that the nearest neighbour and adaptive thresholding seem to

be fairly correlated. NN would select its nearest neighbour, however this sample can

be a FP samples. TNN has the additional capability to reduce the search radius of

NN by applying a threshold. This way only samples within the similarity threshold

of an exemplar get classified by that exemplar as members of the class. Here MQTC

and UPGMA could not scale due to the size of the dataset and were omitted from the

comparison.

5.6 Limitations

This method has several limitations, firstly, when an attacker intentionally alters the

entropy or complexity of the attack traffic or exploit to such an extent that the classifier
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fails to identify it correctly. This could be achieved by adding interleaved random

symbols with the actual exploit data.

Secondly, the n×n operations performed by the experiments are expensive and resource

intensive in terms of both CPU and memory. It does provide a chance to study the

data partitioning in more detail, but the cost to maintain such an experiment in a

production environment is quite high. In order to provide efficient intrusion detection

services there is a need to explore more efficient approaches, involving fewer exemplars

to represent the entire dataset. Another limitation is that for both fixed and adaptive

threshold methods, the same threshold value is applied across all classes. Ideally, for

the adaptive threshold, the process should be extended to a per-class basis to achieve

better accuracy.

Finally, we have not determined the most appropriate exemplars per-class from the

training set, as currently they are being selected by a random selection function.

5.7 Conclusions

It can be concluded that the use of machine learning techniques like clustering, on

results obtained from information theoretic similarity metrics, can be used for clas-

sification of malicious streams using network payload data. It was concluded that

threshold plays a significant role in clustering and classification and determining an

optimal threshold is a challenging task. We found that for this type of data, NCD

and Spamsum metric are the most appropriate similarity metrics and concluded that

ROC-AUC is a better measure than Accuracy. Finally, for evaluation we found that

step-wise or adaptive thresholding (based on T-NN) is the best classification algorithm

for our domain.

In the next chapter, the use of exemplar-selection algorithms to select the most impor-

tant exemplars from the training set are investigated. Study involving the correlation

between compression ratios and our proposed technique is conducted and comparisons

between our technique with other machine learning techniques are carried out. Addi-

tionally, approaches involving automated learning of exemplar signature and threshold

for optimum classification of known and novel classes are studied and compared.
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Chapter 6

Exemplar Learning for Intrusion

Detection

“If you know the enemy and know yourself, you

need not fear the result of a hundred battles. If you

know yourself but not the enemy, for every victory

gained you will also suffer a defeat. If you know

neither the enemy nor yourself, you will succumb in

every battle”

–Sun Tzu, The Art of War

In the previous chapters the most suitable clustering algorithms for our domain were

identified. After a theoretical comparison, a custom algorithm was proposed. Finally

all these clustering algorithms were compared with each other using a dataset. After

extensive testing, it was revealed that threshold based nearest neighbour or T-NN serves

as the best algorithm for clustering and classification. Later some limitations of T-NN

were identified.

In this chapter we shall discuss how to utilize machine learning techniques to automat-

ically choose the most appropriate exemplars and thresholds for each class and make

our system evolve by learning exemplars from novel classes.
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6.1 Introduction

Concept Learning and Exemplar Learning

Concepts are general notions that help us categorise objects, data, ideas, people or

events based on some unique characteristics.

Concept learning is also referred to as category learning, concept attainment and con-

cept formation. It is defined as: “the search for and listing of attributes that can be

used to distinguish exemplars from non exemplars of various categories”1.

In other words, concept learning is a learning method that requires a machine learner

to be able to compare, distinguish and classify objects based on unique features or

characteristics extracted from examples, it has been trained on. General concepts

learned from prior examples are used to classify new examples.

Exemplar learning involves the learner choosing exemplars or instances from a set of

objects based on their resemblance to a certain category or group. The identification

of an object as an exemplar or instance and the rules to determine matching objects

group membership are the two key measurements that the exemplar theory depends

on.

In machine learning terms, concept learning comes under the category of supervised

learning. A class labelled dataset is provided to the algorithm to train on. The algo-

rithm or learner uses exemplars from this labelled training data set to create gener-

alizations to classify other objects. Such algorithms are often referred to as instance

learning algorithms or lazy learning algorithms.

6.2 Problem Description

Given the data and the similarity metric, there are four problems for the exemplar

learner:

1. To identify and select suitable exemplars or instances from the training set (TR),

(Instance Selection Problem).

2. To learn an appropriate similarity threshold, to determine data points which

belong to the same class as the exemplar class, for better classification.

1Defined by cognitive psychologist Jerome Bruner. Bruner, Goodnow, and Austin (1967)
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Figure 6.1: For categories a, b, c, d, each with a set of samples such as a1 . . . an, a model
can be defined as a list of tuples, where each tuple comprises of an exemplar aε selected
from the samples and a corresponding distance threshold value aτ . If there are significant
variations within one class, there may be several exemplars from the same class.

3. To identify unknown or novel samples that did not get classified by prior knowl-

edge extracted from the training set (TR).

4. To select appropriate exemplars from these unknown or novel samples for classi-

fication.

6.3 Methodology and Algorithm Design

6.3.1 Exemplar Learning for Intrusion Detection

We have chosen to use exemplar learning, since we have a labelled dataset of previously

known attacks available, and since at a later stage we expect that novel attacks, which

will be detected automatically by our system, will be analysed by humans (or eventually

other software systems) in order to name and identify suitable responses to them.

After selection of the appropriate exemplars and their corresponding thresholds, the

acquired model consists of a set of (exemplar data point, threshold) tuples. A schematic

of this is shown in figure 6.1 and figure 6.2.

Choosing the exemplars appropriately is important. A poorly selected exemplar may

result in:
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Figure 6.2: The model written out to a csv file. Each row can be read as: The labelled
exemplar ε , and the threshold τ . There can be several exemplars from the same class
(e.g. class 30 in this case has several exemplars), indicating rich variations within the class
samples or candidate sub-classes. Otherwise if all samples in the class are quite similar,
then they can be represented by a single exemplar.

1. a large number of false positives: Mainly due to exemplars selected from the class

boundaries, which may exhibit more similarity with samples of other classes than

their parent class and therefore result in high FP by classifying samples from a

different or negative class.

2. a large number of exemplars being required: If a few bad exemplars, which do

not show similarity with other class members are selected to create a model, then

they could degrade the classifiers accuracy. This will result in more exemplars

randomly being selected from the training set (TR) to increase the classifiers

accuracy. This would be detrimental to the classifier as it would result in a very

large and bulky model and would require that many more data points to process

for classification.
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This is particularly important when the training dataset is unbalanced or skewed (due

to class imbalance), when there are a very small number of samples of some classes

(minority class), while other classes might have more samples (majority class).

6.3.2 Model Creation using exemplar-based learning

In machine learning, the performance of a learning classifier depends directly on the

effectiveness of its mathematical or statistical model. In other words, how well the

given dataset or algorithm output fits to the prescribed model. Model selection requires

selecting the best or most appropriate model from candidate models, to solve a given

machine learning problem.

We have an imbalanced labelled dataset of malicious network streams that we want to

classify. An imbalanced dataset resembles real traffic. For classification or supervised

learning problems the classifier is trained on classified examples and is expected to

classify unseen samples. It is assumed that every instance (input sample) belongs to

one, and only one, class. The model M would include multiple instances of exemplar ε

and threshold τ tuples. Our model will be able to determine the best exemplar(s) per

category, and suggest the optimal threshold for that exemplar, for classification. The

design of this exemplar-based learning classifier model is now discussed.

6.3.2.1 Algorithm 1: Exemplar Selection (Choosing Exemplars from TR)

Choosing an exemplar for each category is a difficult task. A poorly selected exemplar

may result in a single, noisy exemplar, which in turn may result in a large number of

false positives. This may be due to the imbalanced/skewed dataset or the nature of the

samples in it. It is required to prune the noisy exemplars (Edition(Aha et al., 1991) or

ENN discussed in section 6.5.4) and update the model with the appropriate exemplars

and threshold values per class (Condensation(Aha et al., 1991) or CNN discussed in

section 6.5.4).

Algorithm 1 shows our exemplar selection algorithm. As a first step, an n×n similarity

matrix of samples in the training set (TR) is calculated. From this matrix, an exemplar

ε for a category is chosen by comparing all samples in a particular class to find the one

with the lowest overall distance (i.e. greatest similarity). This is done by taking the

minimum of the sum of all corresponding similarity scores of the data points for each

sample. This sample then becomes our exemplar label.

The threshold value is then calculated by taking themax of the corresponding similarity

scores of this sample with others in the same category. The optimal threshold value is

133



CHAPTER 6. EXEMPLAR LEARNING FOR INTRUSION DETECTION

determined by testing for false-positives on each data point below the initial threshold,

until a value with no false-positives is established. Note that this assumes that each

data point belongs to precisely one class, which is true for the datasets that we have

analysed. The algorithm iterates over the remaining points for that category, until all

the points are accounted for by the model. Finally a sanity check is performed on the

model to ensure that that the threshold τ satisfies the condition 0.1 < τ < 0.8. Here a

very tight threshold i.e. less than or equal to 0.1 will encompass very few or data points

that are exactly the same as the exemplar. This inhibits the ability of the system to be

able to detect variations in the form of similar samples and not just the same samples.

A very high threshold i.e. greater than 0.8 would cause false-positives due to negative

class classification.

Algorithm 1 Calculate model = train(labelled distance matrix, list of classes)

Require: list of class , similarity matrix
Ensure: list of outliers

1: for each class C in list of class do
2: find the datapoint p ∈ C that has minimum distance to all points in C
3: set initial threshold τ to max (distance from p to all elements of C)
4: if any exemplar is within threshold τ distance of p then
5: set threshold τ = first point below min(distance from p to exemplars)
6: check that 0.1 < τ < 0.8, otherwise set to bottom/top of range
7: end if
8: add(p, τ) to model
9: remove all points within distance τ of p

10: if any points in C remain then
11: leave C in list of classes
12: else
13: remove C from list of classes
14: end if
15: end for

6.3.3 Algorithm 2: Lifelong Learning (Detecting and adding novel

input classes)

The work done for Algorithm 1 involved creating a model (comprising of exemplars and

thresholds) from a known labelled training dataset and then trying to classify a large

test/target dataset with this model. This work was very much a two-class classification

problem, where all the samples in the set were classified as one of the classes identified

in the model.

There were, however, a few unknown samples which did not get classified/identified
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Figure 6.3: Novelty detection

by any of the classes in the model that were scattered across between the boundaries

of known classes in multidimensional space. Identification and classification of these

unknown or novel data samples became a motivation to study and solve the problem of

novelty detection for our domain. In the literature, the terms One-class classification,

novelty detection, outlier detection and concept learning refer to different applications

of the same problem.

Using the algorithm given in the previous section, we are able to identify a set of

exemplars and their corresponding distance thresholds. New input data can now be

classified into one of the existing classes by simply comparing it to each exemplar in

order and checking if it is within the appropriate threshold distance. However, we also

want to deal with novel exemplars that are introduced and do not match any of the

current classes in the model. All such samples are added to a set of outliers. A pictorial

manifestation of this is shown in Figure 6.3.

Algorithm 2 describes a methodology to:

1. Classify the outliers into new classes

2. Select exemplars and thresholds for these new classes
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3. Add these new exemplars and thresholds to the model to enhance classification.

Any data point not recognised as belonging to any class is added to a list of outliers.

The algorithm first calculates the distance between the exemplars εmodel from the model

and all the points in the list of outliers. This results in a n × m distance matrix of

similarity scores. An initial outlier exemplar εoutlier is chosen as the data point p in the

list of outliers with the lowest score to all the other outlier data points and the current

exemplars in the model εmodel. The initial threshold τoutlier is set to the maximum score

observed from the corresponding scores for p. Next, the exemplar εoutlier and threshold

τoutlier are tested for false positives.

For the novelty detection algorithm, the false positive observations would be the exem-

plar εmodel data points taken from the model. If any exemplar εmodel from the input

model has a similarity below the initial threshold τoutlier of p, it is considered to be

a false positive, while the true positive values would be all data points in the list of

outliers, under the test threshold. In the case where false positives exist, the threshold

is adjusted to the maximum true positive value that is less than the minimum cost false

positive observation. A sanity check is performed to ensure that the threshold τoutlier

value satisfies the condition 0.1 < τ < 0.8.

This new exemplar p or εoutlier and its adjusted threshold τoutlier′ is then appended to a

list of exemplars in the model and this exemplar and the true positive data points that

it was able to classify are removed from the list of outliers. The process is repeated

until there are no more items remaining in the list of outliers.

Algorithm 2 Calculate update model = add Exemplar(list of outliers,
similarity score matrix,model)

Require: list of class , similarity matrix, list of outliers
Ensure:

1: while outliers in list of outliers do
2: find the data point p that has minimum distance to all points in similar-

ity score matrix
3: set initial threshold τ to max (distance from p to all outliers)
4: if any exemplar is within threshold τ distance of p then
5: set threshold τ = first point below min(distance from p to exemplars)
6: check that 0.1 < τ < 0.8, otherwise set to bottom/top of range
7: end if
8: remove all outliers within distance τ of p
9: add(p, τ) to model

10: end while
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6.4 Experiments and Validation

To validate this approach, a total of 6 experiments were conducted:

1. Experiment 1: Exemplar Selection (Supervised) 6.4.1.1

2. Experiment 2: Novelty Detection (Supervised) 6.4.2.1

3. Experiment 3: Novelty Detection (Unsupervised) 6.4.2.3

4. Experiment 4: Instance Selection 6.5.1

5. Experiment 5: Threshold Selection 6.5.2

6. Experiment 6: Comparison with other Instance Selection Algorithms (ENN)

6.5.4.2

6.4.1 Validation of the Exemplar Selection Algorithm

6.4.1.1 Experiment 1: Exemplar Selection (Supervised)

In order to validate Algorithm 1 we conducted an experiment in which we randomly

selected samples from the training set (TR) to create a model and compare the results

with the model provided by this algorithm. A key question here would be that: how do

we determine a threshold value for the exemplar? Do we need to run a sensitivity test

for that? Such a test will involve sliding the threshold in small increments to determine

the threshold value that will encompass maximum classification. This will be time

consuming and far less efficient, as randomly selecting exemplars can never guarantee

good classification by the classifier, as the classes may contain sub-classes, which might

not get classified at all by the randomly chosen exemplar.

As an initial, ‘straw-man’ test we created a training set made up of of 300 samples,

representing 30 known classes, and a test set comprising of 1200 samples from the

same 30 classes. Both the training set and the test set were selected from the dataset

described in Chapter 3. We used a set of exemplars chosen at random from the training

set, up to three for each class, and assigned each of them a fixed threshold value of

0.5 (this is similar to the T-NN Fixed method discussed in the previous chapter). We

did this for 10 different random choices of exemplar sets, and saw an overall average

accuracy of around 70%. We observed that a large part of the problem with this

method is that 0.5 is not a fair threshold to choose, and so we repeated the experiment,

but this time determined the threshold by starting from 0.3 and increasing it in small
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Method Exemplars % Accuracy

TNN-Fixed 120 70

TNN-Adaptive 120 88

TNN using Algorithm 1 49 95

Table 6.1: Comparison of methods random exemplars vs selected exemplars

increments of 0.1 to determine the maximum classification (this is similar to the T-NN

Adaptive method discussed in previous chapter). This is time-consuming, but makes a

fair test.

6.4.1.2 Results of Experiment 1

We performed 10 iterations of Experiment 1 and found an average accuracy of 88%. In

contrast, using our algorithm to select exemplars and thresholds led to 95% accuracy,

and used only 49 exemplars instead of the 120 used by the random method.

We found that the experiments based on randomly selecting exemplars led to fluctuating

results. The highest accuracy results obtained via randomly picking exemplars led to

an overall accuracy of 92%, compared to 95% using our algorithm. This is a significant

increase in the classifier’s performance and provides an automated and robust method

of exemplar selection for model creation. The relatively high average percentage (88%)

in terms of accuracy for the random exemplar-selection methodology is due to the fact

that we were picking five exemplars per class and optimising the choice of threshold for

each, which is considerably more computationally expensive than using our algorithm.

The results are summarized in table 6.1. It also points to the fact that similarity

within a category of network streams exists because of the protocol design, which

reduces complexity and enhances the similarity for classification.

The same experiment was repeated on a larger dataset of 6600 samples and similar

results were obtained. A graphical visualization of the results can be seen in Figure

6.4, 6.5, 6.6 and 6.7.

6.4.1.3 Discussion

Compared to T-NN with adaptive thresholding, our algorithm requires fewer exemplars

with more definitive thresholds. On the 300 sample training set, our algorithm proposed

only 49 exemplars compared to 120 exemplars. Hence with only one-third the number

of exemplars and with a more accurate or definitive threshold in the model we get at
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Figure 6.4: An aerial view of the classification. We can see multiple clusters forming, with
one large cluster in the center representing the majority class. While the minority classes
are shown in the sides. This graphic gives a clear picture and idea of the different sizes of
classes. We used 49 exemplars to successfully cluster this test set .

least a 10% increase in terms of accuracy.

6.4.2 Validation of the Novelty Detection Algorithm

The validation of the novelty detection algorithm was motivated by the following two

questions:

1. Can the novelty detection algorithm detect known classes, which were removed
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Figure 6.5: The core of the large cluster is visible here. It has 1 exemplar, represented as
green node and multiple samples of the same class, represented as pale blue nodes.

Figure 6.6: Enlarging previous figure: The core of the large cluster is visible here. It has
1 exemplar, represented as green node and multiple samples of the same class, represented
as blue nodes.
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Figure 6.7: A small cluster representing a small class, having 2 exemplars, represented as
green nodes and multiple samples of the same class, represented as blue nodes.

from the model for testing?

2. How much does learning new and novel classes increases the overall accuracy of

the classifier?

6.4.2.1 Experiment 2: Novelty Detection (Supervised)

A full description of this experiment follows:

1. The model was trained with five classes. This created a model comprising of 9

exemplars (2 exemplars selected from class 1, 3 from class 2, 1 from class 3, 2

from class 4, 1 from class 5).

2. Both exemplars for classes 1 and 4 were removed from the model.
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Method % Accuracy Outliers

Algorithm 1 70 1300

Algorithm 2 97 0

Table 6.2: Learning with Algorithm 2

3. After classification, the system found that all elements of class 1 and 4 were

outliers, and none of classes 1, 2, 3, 5 were outliers.

4. The novelty detection algorithm was applied and three exemplars of class 1 and

two of class 4 were added to the model.

5. Thus the classes that were manually removed earlier were automatically detected

and added to the model, and no others.

6.4.2.2 Results of Experiment 2

In order to validate Algorithm 2, we used Algorithm 1 to create a model from a small

training set (TR) comprising of 50 samples representing five classes, and then deleted

the exemplars of two classes from it, as shown in figure 6.8. We then used the first step

of Algorithm 1 to test on a dataset that included both known and unknown classes.

This resulted in 80% correct classification in terms of accuracy. The unknown samples

were appended to the outlier list as shown in Figure 6.9.

Following this, the outlier list was used with Algorithm 2 to create new exemplars for

these unknown classes, as illustrated in Figure 6.10.

6.4.2.3 Experiment 3: Novelty Detection (Unsupervised)

Finally, we tested the combination of the two algorithms on a larger set of 6600 labelled

samples with 50 classes. We started with a small training set (TR), of around 300

samples representing 30 classes. Algorithm 1 was used to learn a model of this dataset,

and created 49 exemplars representing 30 classes. The model was then tested on an

independent test set of around 6000 samples with all 50 classes represented.

6.4.2.4 Results of Experiment 3

Using the model created by Algorithm 1 (exemplar selection algorithm) to classify the

large test set for experiment 3 resulted in an accuracy of approximately 70%. The

data points identified as outliers were then learnt about using Algorithm 2 and their
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exemplars appended to the model. A second test set (of the last 300 data points) was

applied, giving classification results of 97% on this second test set, with all 50 classes

represented as summarized in table 6.2

These results are very pleasing, and show that this simple method of lifelong learning

based on our exemplar learning has distinct promise for detecting and classify new

malicious streams for the IDS application.

Figure 6.8: Original model, with highlighted samples that will be removed from the model
for testing the novelty detection algorithm

6.4.2.5 Discussion

The question that motivated our first validation test was that: can the novelty detection

algorithm detect known classes, which were removed from the model for testing?

The first test conducted for validating the algorithm involved creating a model from

a small training set, removing exemplars from random classes from this model and

then performing classification. This resulted in a partial or no classification for classes
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Figure 6.9: List of outliers found by the novelty detection algorithm

Figure 6.10: New Exemplar εnovel and Threshold τnovel pairs proposed by the algorithm.
The highlighted samples/exemplars are the samples from the same class that we initially
removed from the original model

that were removed from the model and a large list of outliers. These outliers were

then run through the novelty detection algorithm to yield results. The results were

quite satisfactory as the algorithm correctly identified the missing classes and proposed

respective exemplars for their classification.

Our second validation test was motivated by the question: How much does learning

new and novel classes increases the overall accuracy of the classifier?

For this test, we created a model from a training set of approx 300 samples extracted

from a large dataset of 6600 samples. The model was used to classify the test set,

comprising of 6600 samples. After classification, the classifier gave an overall accuracy

of 90%. A list outliers was identified and the novelty detection algorithm was then

applied to them to identify novel classes and exemplars. These new exemplars were

then appended to the model for re-classification. The new classification resulted in a
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an overall accuracy of 98%.

6.5 Comparative work

Using a small labelled test set comprising of 1200 samples and a training set of 300

samples, we performed a comparative analysis of the exemplar learning technique with

both of our prior techniques i.e. (a) Classification using a fixed threshold (T-NN Fixed)

and (b) Classification at the optimal threshold obtained by adaptive thresholding (T-

NN Adaptive). Both of these techniques provide a good approximation, but do not

give a precise measurement in terms of: (a) the optimum number of exemplars that

are required per class and (b) the optimum similarity threshold for those exemplars

in that class. Next, these results will be compared with well-known machine learn-

ing algorithms like nearest neighbour and k-nearest neighbour, which do not require

threshold constraints, and finally concluded with a comparison using our proposed

exemplar-learning and novelty detection algorithm.

6.5.1 Experiment 4: Instance Selection

For comparison we performed a two-stage experiment to answer the following questions:

6.5.1.1 How best to select the exemplars or instances required per class

for classification?

Previously, for randomly selecting exemplars per class from the training set TR, we

sampled on a smaller scale by randomly selecting 1 to 9 exemplars from the training

set (TR) in increments of 1. For this experiment the exemplars were selected in step-

wise increments of 10 exemplars (ε = ε + 10), picked randomly from the training set

starting from ε = 10 till ε = 90 exemplars. In each iteration, a set of exemplars were

produced that were then subjected to the second stage. The second stage answers the

following question.

6.5.2 Experiment 5: Threshold Selection

6.5.2.1 How to select the optimal threshold required per instance per class?

To answer this question we used an adaptive threshold method that requires small step-

wise threshold increments of τ = τ +0.25 starting from 0.0 till 1.0 creating a confusion
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matrix for each class individually and determining the optimum threshold τ for the

whole test set.

6.5.3 Comparative Results

For comparison of the classification techniques, we divided the methodologies into three

main categories:

1. Methodologies that involve threshold for classification or threshold-based e.g.

fixed and adaptive thresholds.

2. Methodologies that involve just instances for classification or instance-based learn-

ing e.g. nearest neighbour and k-nearest neighbour

3. A hybrid methodology that uses both instance-based learning guided by the

threshold for classification e.g. threshold-based exemplar-learning techniques

Accuracy results for (1) fixed threshold (T-NN Fixed) and (2) optimized thresholds

(T-NN Adaptive) (3) nearest neighbour and (4) k-nearest neighbour at k = 3 and 5

were plotted using an XY Scatter plot for each exemplar set. Additionally, results

from our proposed exemplar-learning and novelty detection algorithm were added for

comparison.

The results from this experiment are shown in Figure 6.11, it can be seen that as the

number of exemplars increases, it increases the accuracy since the chances of getting a

better classification increases with it, due to better coverage. This however does not

guarantee the best or optimal exemplar selection for each class, as the exemplars are

picked randomly from the training set. The performance of the (a) optimized threshold

technique is better than (b) the fixed threshold, as enumerating through every possible

result to yield the best one, on average, gives approximately 8% better results. Results

from nearest neighbour and the k-nearest neighbour algorithm have been added to

the results for comparison. Here it can be seen that the nearest neighbour algorithm

performs very well as the number of exemplars increases and is found to be better

than (a) and (b). For the k-nearest neighbour algorithm, we are not certain about

the value of k, so we used both k = 3 and 5 respectively. It can be observed here

and also in table 6.3, that as the size of k increases, the accuracy decreases as it is

believed to add more false positives to the results, which eventually have a greater

vote and thus detrimentally impacts on the accuracy of the classifier. Finally, results

of exemplar learning (Algorithm 1) have been added to the graph. It can be seen in

Figure 6.11 that using Algorithm 1 results in 30 exemplars with a percentile accuracy
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Exemplars Accuracy
@ Fixed
Threshold

Accuracy us-
ing adaptive
threshold

Accuracy us-
ing Nearest
Neighbour

Accuracy
using k-NN,
k=3

Accuracy at
k=5

10 0.452157 0.544964 0.571024 0.109010 0
20 0.576236 0.640812 0.721024 0.417137 0.1642226
30 0.759805 0.817226 0.884628 0.5422261 0.3131625
40 0.811627 0.900676 0.923233 0.78524 0.565282
50 0.822666 0.877459 0.925088 0.853533 0.66934
60 0.835433 0.898047 0.955778 0.869257 0.752385
70 0.83998 0.903421 0.959452 0.898144 0.792667
80 0.854127 0.904411 0.963250 0.926855 0.856713
90 0.885432 0.907568 0.967844 0.944169 0.878091

Table 6.3: Comparison of algorithms using incremental numbers of exemplars

of approximately 90%, with some outliers. Next we apply Algorithm 2 on the outliers

which results in approximately 80 exemplars with an overall 98% accuracy result.

6.5.4 Comparison with other instance selection algorithm

Instance selection algorithms can be classified into three main groups namely, edition

algorithms, condensation algorithms and hybrid algorithms ((Aha et al., 1991) and

(Garcia et al., 2012)).

Edition algorithms edit out noise instances as well as close border class. e.g ENN2,

Condensation algorithms aim to condense the selection set from the training set, while

retaining points close to the class boundary. e.g. CNN3, RNN4, SNN5

Hybrid algorithms aim to increase classification accuracy by using a combination of

approaches from edition and condensation algorithms. e.g. instance-based learning

family of algorithms IB3. Our proposed instance selection algorithm (Algorithm 1) is

a hybrid algorithm as it performs both edition and condensation at a per class level to

select the the most appropriate instances for creating the model.

6.5.4.1 Difference between ENN and our proposed algorithm

ENN is an edition algorithm which uses a decremental search. ENN starts by consid-

ering the entire selection set as the training set i.e. S = TR and then removes all such

points/selections which have a negative class neighbour majority discovered by k-nn.

2Edition-based Nearest Neighbour
3Condensed Nearest Neighbour
4Reduced Nearest Neighbour
5Selective Nearest Neighbour
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Our proposed exemplar selection algorithm (Algorithm 1) is a hybrid instance selection

algorithms, which starts with an empty selection set i.e. S = [ ]. After that it creates an

n×n similarity matrix of all points in the training set (TR), then for each class it finds

the point with the shortest distance to all the other points in that same class/category.

This point is chosen to be the initial instance or the exemplar for that class, and is

added to the list of selections. Next an optimal threshold is calculated in a way to avoid

any possible false positives i.e. points/samples from other classes. For any threshold if

there are FP observations, the threshold value is reduced. This process continues till

a threshold with no FP values is selected. This threshold is also added to the selec-

tion list in correspondence to its exemplar or instance. The process is iterated for the

remainder points/prototypes in the class, untill we have enough instances/exemplars

and thresholds to classify the training set with maximum accuracy and minimum ex-

emplars. Compared to ENN this method can guarantee a comparatively small number

of exemplars/instances that are required for classification, as shown in table 6.4.

Differences with ENN can be highlighted as follows:

1. Starts with S = [ ]

2. Does not use k-NN

3. Uses a similarity matrix

4. Computation and instance selection is done on a per class basis

5. Selects fewer exemplars

6.5.4.2 Experiment 6: Comparison with other Instance Selection Algo-

rithms (ENN)

We conducted an experiment to empirically compare the performance of ENN with our

proposed model selection algorithm:

1. A training set (TR) was created comprising of 334 samples. The samples were

selected randomly from the dataset using the criteria of 10 or less random samples

or instances per class.

2. ENN was implemented on this training set TR to select instances/exemplars.

3. Next, our proposed instance selection algorithm (Algorithm 1) was implemented

on the training set TR to select instances/exemplars.

4. Compared the results.
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Algorithm Exemplars/Instances Selected % reduction in TR
ENN 320 4.2
Algorithm 1 36 88.75

Table 6.4: Comparison with ENN

6.5.4.3 Results of Experiment 6

1. Out of a total of 334 samples, ENN was able to reduce the size of the TR by

4.2%, resulting in a total of 320 instances or a selection set comprising of approx

95% of the TR.

2. The exemplar selection algorithm selected 36 instances/exemplars out of the 334,

thus reducing the TR by approximately 89% with a selection set comprising of

only about 11% of the TR. With this model, the classifier was able to achieve an

overall accuracy of approx 90% on a large test set of 6000 samples. A small TR

would result in a more compact model. This would improve the classifiers perfor-

mance significantly as fewer similarity comparison operations would be required.

However, the case would be different if the model comprised of many exemplars,

as each test set sample/datapoint would be required to be tested for similarity

with each exemplar sample/datapoint.

6.6 Conclusion

It is concluded that exemplar-selection approaches can be applied effectively to select

the best exemplar and threshold from any given class. The exemplars can be used

as a reference signature and added to the model for classification. It was observed

that the classification accuracy increased manifold by applying the proposed exemplar-

learning algorithm on supervised data. The accuracy was increased even further with

the application of the algorithm that deals with exemplar-learning for novel data. It

was demonstrated that novel classes can be identified and exemplars from these novel

classes can be selected intelligently. It was demonstrated that an exemplar-learning

algorithm with novelty detection has comparatively given the best results in terms of

accuracy of the classification, followed by nearest neighbour and optimized or adaptive

thresholding.
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Chapter 7

Conclusions and Future Work

“The only thing necessary for the triumph of evil is

for good men to do nothing.”

– Edmund Burke

This chapter provides an overview of the research done in this thesis, presents a con-

clusion to the research questions addressed and highlights the novel contributions to

intrusion detection. This chapter concludes with a discussion of directions for future

work.

7.1 Summary of the Research and Significant findings

The objective of this thesis is the detection and classification of known malicious net-

work streams, their variants, and novel streams. Samples of malicious streams are

collected using Honeynets and labelled. Techniques to determine similarity between

malicious streams are investigated. Clustering and classification algorithms are used

for clustering and classification of similar malicious streams. Supervised learning ap-

proaches are used for classification of known malicious streams and their variants, while

unsupervised learning approaches are used for the classification of new or novel mali-

cious or suspicious streams.

The thesis begins with an introduction and background to the information security

problem. This is followed by the motivation for this thesis, which highlights the cur-

rent threat landscape, reports some significant cyber intrusions and incidents, identifies

problems with existing information security tools and lists research areas to investigate.

Next, the challenges in network-based intrusion detection schemes are identified and
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the need for intrusion detection and classification of malicious network streams is de-

scribed. After that, the scope of the research is presented and research problems are

categorized and highlighted. The research goals are identified followed by an account of

the contributions and limitations of this thesis. The chapter concludes with an outline

of this thesis.

The literature review reviews the state of the art in intrusion detection methodologies

and technologies, their history, types and taxonomy and their strengths and weaknesses.

The detection schemes are classified and each class is discussed with related work.

This review revealed a shift from simple statistical anomaly-based intrusion detection

systems, towards more complex and intelligent systems that incorporate data-mining

and machine learning methodologies. It was demonstrated that existing methods fail to

satisfy the criteria to detect attack variants and novel attacks mentioned in this thesis.

It was shown that many intrusion detection techniques focused mainly on features

extracted from packet headers alone, while the actual exploit or attack data is sent

through the payload. Techniques such as signature-based detection only look for certain

patterns or strings in certain locations of the payload. Such systems fail to detect small

variations of the same attack, resulting in false-negatives (FN). It was shown that

information-theoretic methods can be applied to intrusion detection to detect similar

traffic and is more robust and less error prone to other methods. Machine learning

methods can be used to add lifelong learning to the system. After a review of IDS,

computer attacks are studied to label and categorize attack samples in datasets. Data

collection techniques to test and train IDSes were discussed. A critical analysis of

existing datasets was presented and Honeypots and Honeynets were introduced as real

data collection tools and a means to study attacks and attackers.

After the literature review, a detailed design and architecture of our proposed IDS is

presented, followed by a discussion on the datasets that were collected and used for

evaluating the IDS. A discussion on Honeypot and Honeynet deployment strategies,

design, architecture and implementation challenges are also presented. Improvements

to existing Generation III design for virtual Honeynet deployment were suggested. Re-

sults are presented which demonstrate advantages of using Honeynets as they provide

extra insight into intrusions, which other tools lack. This is mainly due to the as-

sumption that since the Honeypot has no production value and is not advertised to

the outside world, any interaction in the form of traffic directed towards it is assumed

to suspicious and malicious in nature, thus they actively collect filtered traffic for the

researcher. Additionally, the Honeynet architecture allows a researcher to control both

the intermediate network and the endpoint (Honeypot).

Next, a foundation for the experimental approach of this thesis is presented, in which,
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similarity measurement techniques are identified, followed by a discussion on how edit

distance and information theoretic similarity metrics can be used to determine similarity

between malicious network streams and their variants. The problems and challenges

are determined. Various similarity metrics were reviewed and some were chosen from

the literature, that have been used to determine the similarity between various packet

or stream profiles. A methodology is developed in response to these challenges, followed

by a series of experiments to evaluate these metrics given different labelled real and

synthesized payload samples. The results for these experiments are presented. Finally,

validation and comparison strategies are investigated with a conclusion to suggest the

best metric for comparison. This study revealed that a hybrid metric using both NCD

and Spamsum proved to be the best metric to accurately measure the similarity of

malicious streams. This work was also compared with the study done by (Eiland

and Liebrock, 2006) who used inverse compression ratio to detect scan traffic. It was

concluded that our proposed novel hybrid approach is more accurate.

The research questions addressed include:

1. Is it possible to measure similarity between samples of malicious network streams?

2. What metrics are available?

3. How do these metrics compare?

4. What metrics provide the most appropriate methods for making similarity com-

parisons?

5. Is it possible to measure similarity between variants of malicious network streams

with statistical confidence?

From the results, it be determined that instead of matching strings in the payload,

packet payload information on the whole can be used as a reference signature to classify

malicious streams using network data. Therefore, it is possible to perform similarity

measurements on packet payload data with confidence. The system proved to be robust

and allows for significant changes in the signatures without misclassifying the stream.

For this type of data, both NCD and Spamsum metrics are the most appropriate

similarity metrics. Although both metrics use different methodologies for similarity

calculation and have some advantages over the other, a high correlation was observed

in their results. Based on this criteria it was decided to use them in a hybrid approach

for similarity measurement.

Once a means to measure similarity had been established, machine learning techniques

were investigated to cluster and classify malicious network streams. Some machine
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learning approaches for intrusion detection are discussed. Clustering and Classification

algorithms are studied and one is proposed for our domain. Experiments are designed

to find the best clustering algorithm and cut-off threshold for our domain. The results

are analysed with a discussion on ROC-AUC based measures and Accuracy. Results

obtained by comparing all the clustering algorithms used for the evaluation are dis-

cussed and the best ones are highlighted. Here the following research questions were

addressed:

1. How should similar items be grouped together?

2. How should optimal threshold to partition data into groups be determined?

3. How to find the best clustering algorithm(s) for our domain?

4. How to evaluate the results for classifier correctness?

5. How to identify the most suitable similarity metric for our domain using the above

evaluations?

The use of machine learning techniques like clustering, on results obtained from infor-

mation theoretic similarity metrics, can be used for classification of malicious streams

using network payload data. Threshold plays a significant role in clustering and clas-

sification and determining an optimal threshold is a challenging task. We found that

for this type of data, NCD and Spamsum metrics are the most appropriate similarity

metrics and ROC-AUC is a better measure than Accuracy.

Next, the most suitable clustering algorithms for our domain were identified from the

literature. After a theoretical comparison of these algorithms, a custom algorithm was

proposed. Finally all these clustering algorithms were compared with each other using

a standard dataset and after extensive testing, it was revealed that threshold based

nearest neighbour or T-NN serves as the best algorithm for clustering and classification.

Later, some limitations of T-NN were also identified.

At this stage we investigate methodologies to automatically select the best exemplar

from each class to create a model. For this purpose, exemplar-selection algorithms are

studied to select the most important exemplars and threshold from the training set.

These are used to create models to guide the classification. Machine learning tech-

niques are used to automatically choose the best exemplars and threshold from each

class, along with methods to make our system evolve by learning exemplars from novel

classes. Life-long learning strategies from an implementation perspective are investi-

gated, highlighting algorithms for supervised and unsupervised learning for intrusion

detection. Customized exemplar learning algorithms are proposed for our domain for
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both supervised and unsupervised learning approaches. These algorithms are validated

experimentally. These proposed algorithms are then compared with existing clustering

and classification algorithms discussed in previous chapter for evaluation. Addition-

ally, approaches involving automated learning of exemplar signature and threshold for

optimum classification of known and novel classes are studied and compared. Here the

following research questions were answered:

Given the data and the similarity metric, there are four problems for the exemplar

learner.

1. How to identify and select suitable exemplars or instances from the training set

(TR)(Instance selection problem)?

2. How to learn an appropriate similarity threshold within which the data points

belong to the same class as the exemplar class, for better classification?

3. How to identify unknown or novel samples that did not get classified by prior

knowledge extracted from the training set (TR)?

4. How to select appropriate exemplars from these unknown or novel samples for

classification?

5. How to Identify groups and sub-groups that may exist in these novel samples and

perform classification?

It is concluded that exemplar-selection approaches can be applied effectively to select

the best exemplar and threshold from any given class. The exemplars can be used as

a reference signature and added to the model for classification. It was observed that

the classification accuracy increased substantially by applying the proposed exemplar-

learning algorithm on supervised data. The accuracy was increased even further with

the application of the algorithm that deals with exemplar-learning for novel data. It

was demonstrated that novel classes can be identified and exemplars from these novel

classes can be selected intelligently. It was demonstrated that the exemplar-learning

algorithm with novelty detection has comparatively given the best results in terms of

accuracy of the classification, followed by nearest neighbour and optimized or adaptive

T-NN.

7.2 Implementation summary

The current system is implemented as an offline system, which first captures the mali-

cious streams using Honeypots and then sends the daily captured streams for analysis
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and detection. These streams (collected over a period of 24 hours) are then analysed

using a model of existing exemplars for the detection of malicious streams, variants

of malicious streams and novel streams. New exemplars selected from novel streams

are labelled using random alpha-numeric labels and are then added to the model. The

process continues and new knowledge in the form of novel exemplars are added to the

model to enhance the classifier’s performance. It has been demonstrated that the pro-

posed technique has significantly improved the detection results with a smaller number

of exemplars than currently used techniques. Additionally, with life-long learning ca-

pabilities, the system continually learns novel exemplars in an automated and unsuper-

vised manner and adds them to the existing knowledge-base to enhance the detection,

without human intervention.

7.3 Contribution of this thesis

1. Developed a means to contain and capture attacker activity in a controlled envi-

ronment.

2. Developed a method to reliably measure the similarity between malicious and

benign network streams with statistical confidence.

3. Developed the capability to detect variants of known malicious streams with

confidence and classify them.

4. Developed the capability to detect new and novel streams.

5. Developed the capability to classify these novel streams into groups and sub-

groups.

7.4 Future Research and Open Questions

For future research we would like to extend our system. Various possibilities are listed

below:

• The system proposed in this thesis could be integrated into Dionaea Honeypot1 as

a detection and analysis sub-system. Detection and analysis of incoming streams

would begin as soon as they arrive.

1http://dionaea.carnivore.it/
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• The classification of novel streams will result in novel exemplars. These exemplars

could be automatically labelled using input from free malware detection and

analysis services such as VirusTotal2, automated sandbox environments such as

Anubis3, Joe Sandbox4, Norman Sandbox5 and Cuckoo6. The exemplars and the

analysis reports could also be sent to a human analyst to create signatures for

Snort or other signature-based IDS.

• Methodologies that may involve similarity metrics for similarity measurements,

followed by analysis of the data to determine the best approach for clustering,

classification, life-long learning and novelty detection can be investigated further,

to detect and classify:

– compressed malicious network streams. This work would involve the creation

of a labelled dataset of compressed malicious streams for evaluation.

– binary malware. A labelled dataset of binary malware could be created for

evaluation. To validate these labels, free malware detection and analysis

services like VirusTotal and automated sandbox environments as discussed

in the first point, can be used and integrated with the system.

– encrypted malicious network streams, encrypted with substitution ciphers.

A labelled dataset of encrypted malicious streams could be created for eval-

uation. The basis for this work would be the hypothesis that the same

encryption algorithm should generate the same output, as long as the en-

cryption key remains constant. Several permutations of the same malicious

sample can be created.

– system events from a host-based intrusion detection perspective. This work

would involve the creation of a labelled dataset of system-wide malicious

event profiles for evaluation. Honeypots that can track or log changes to

system, services, file system, registry, memory and network sockets could be

of great value for this purpose.

• Metasploit is a widely used exploit framework used by hackers and penetration

testers. It can be used to create datasets of known exploits and shellcode. Train-

ing the system on such datasets could possibly give more detection coverage to the

system. Other frameworks such as MACE (Sommers et al., 2004) and FLAME

(Brauckhoff et al., 2008) may also be used.

2http://www.virustotal.com
3http://www.anubis.iseclab.org
4www.joesecurity.org
5http://www.norman.com/security_center/security_tools/submit_file/en
6http://www.cuckoosandbox.org/
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• Explore alternative similarity metrics for use in the similarity measurements.

• Investigate means to make the system real-time. This could involve the use of

special hardware circuits, parallel processing and optimization using GPU’s and

FPGA’s.

• The similarity measurement approach used in this thesis could have applications

in plagiarism detection and also be used to investigate evolutionary data for

phylogeny.
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Cilibrasi, R. and Vitányi, P. (2005). “Clustering by compression.” Information

Theory, IEEE Transactions on, 51(4): 1523–1545.

Cohen, W., Ravikumar, P., and Fienberg, S. (2003). “A comparison of string

distance metrics for name-matching tasks.” In “Proceedings of the IJCAI-2003 Work-

shop on Information Integration on the Web (IIWeb-03),” pages 73–78. Citeseer.

Crosbie, M., Dole, B., Ellis, T., Krsul, I., and Spafford, E. H. (1996). “Idiot-

users guide.” Technical report.

Debar, H., Dacier, M., and Wespi, A. (1999). “Towards a taxonomy of intrusion-

detection systems.” Computer Networks, 31(8): 805–822.

DeLooze, L. (2004). “Classification of computer attacks using a self-organizing map.”

In “Information Assurance Workshop, 2004. Proceedings from the Fifth Annual IEEE

SMC,” pages 365 – 369.

Denning, D. (1987). “An Intrusion-Detection Model.” Software Engineering, IEEE

Transactions on, SE-13(2): 222–232.

Dionaea (2012, February). “Dionaea catches bugs. Onilne.” http://dionaea.

carnivore.it/.

Eiland, E. and Liebrock, L. (2006). “An application of information theory to

intrusion detection.” In “Information Assurance, 2006. IWIA 2006. Fourth IEEE

International Workshop on,” pages 126–134.

161



BIBLIOGRAPHY

Ellson, J., Gansner, E., Koutsofios, L., North, S., and Woodhull, G. (2002).

“Graphviz open source graph drawing tools.” In “Graph Drawing,” pages 594–597.

Springer.

Ertoz, L., Eilertson, E., Lazarevic, A., Tan, P.-N., Kumar, V., Srivastava,

J., and Dokas, P. (2004). “Minds: minnesota intrusion detection system.” Next

Generation Data Mining, pages 199–218.

Evans, S. and Barnett, B. (2002). “Network security through conservation of

complexity.” In “MILCOM,” volume 2, pages 1133–1138. IEEE.

Evans, S., Barnett, B., Bush, S. F., and Saulnier, G. J. (2004). “Minimum

description length principles for detection and classification of FTP exploits.” In

“Military Communications Conference,” volume 1, pages 473–479. IEEE.

Feinstein, L., Schnackenberg, D., Balupari, R., and Kindred, D. (2003). “Sta-

tistical approaches to DDoS attack detection and response.” In “DARPA Information

Survivability Conference and Exposition, 2003. Proceedings,” volume 1, pages 303 –

314.

Flake, H. (2004). “Structural comparison of executable objects.” In “Proc. of the

International GI Workshop on Detection of Intrusions and Malware & Vulnerability

Assessment, in Lecture Notes in Informatics,” pages 161–174.

Fogarty, J., Baker, R. S., and Hudson, S. E. (2005). “Case studies in the use of

ROC curve analysis for sensor-based estimates in human computer interaction.” In

“Proceedings of Graphics Interface 2005,” GI ’05, pages 129–136. Canadian Human-

Computer Communications Society, School of Computer Science, University of Wa-

terloo, Waterloo, Ontario, Canada. Retrieved from http://dl.acm.org/citation.

cfm?id=1089508.1089530.

Gailly, J. and Adler, M. (1995). “Zlib home page.” Accessed: 2010-09-30.

Garcia, S., Derrac, J., Cano, J., and Herrera, F. (2012). “Prototype Selection for

Nearest Neighbor Classification: Taxonomy and Empirical Study.” Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 34(3): 417 –435.

Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., and Vázquez,
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