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ABSTRACT 

This thesis develops the concept of a parametrically 

dimensioned CAD system. Conventional CAD systems require the 

actual dimensions of all objects drawn to be defined during 

the drawing process. To alter any dimension requires manual 

modification of all affected objects in the drawing. 

Parametrically dimensioned CAD systems would allow drawings 

to be constructed containing dimensions defined using 

variable parameters. These parametric drawings could then be 

fully specified at some later stage by supplying actual 

values for the parameters. Such systems would allow drawings 

of families of components (that varied only in their 

dimensions) to be easily produced from a single parametric 

drawing, would simplify dimensional modifications to 

drawings, and would permit the drawing production to be part 

of an automated design process. 

The general requirements for such a parametric CAD system are 

developed in the thesis and the implementation of a limited 

package based on these ideas is described. On the basis of 

this work, it has been concluded that such systems are 

viable, could have successful user interfaces and would be a 

valuable extension to conventional CAD packages. 
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CHAPTER 1 

INTRODUCTION 

Computer Aided Design (CAD) systems are responsible for major 

productivity gains in drawing and design operations. Up until 

the 1980's CAD systems ran only on mainframes and were 

expensive to purchase and run. This limited their use to such 

areas as the aerospace, automobile and electronics 

industries. Major increases in the performance of computer 

systems over the last decade have resulted in real time CAD 

functions that were previously only performed on mainframe 

computers migrating down through minicomputers to 

microcomputers. This has caused a substantial increase in the 

number of potential computers on which CAD packages can be 

run and has resulted in strong competition between CAD 

software suppliers. This competition is manifesting itself in 

increasingly sophisticated CAD features on microcomputer 

systems that are tailored to the end user's requirements 

becoming available [Wohl. 1984, Myer. 1985]. The basis of 

this thesis is the investigation of one such feature about 

which there has been little published research. 

The three major areas of use of CAD packages are in 

electrical and electronic design, mechanical engineering 

design and architectural/layout design [Merm. 1980]. A common 
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output from each of these areas is the production of a 

drawing from a plotter. 

Many drawings that are produced in practice are similar, 

varying only in their dimensions. This is especially true of 

component drawings. As an example, consider the the two 

drawings shown in Figure 1-1. These show the front cabinet 

shape of two different sized television sets. The cabinets 

have different widths, heights, screen sizes and speaker 

cover sizes and placements. 

Figure 1-1 Front Cabinet of Two Different Television Sets 

This thesis examines the feasibility of having a CAD package 

that allows a designer to prepare a template or "parametric" 

drawing with some or all dimensions defined in terms of 

variable parameters. Hereafter such a drawing will be 

referred to as a parametric drawing. Final specific drawings 

could then be produced by supplying values for each of the 
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parameters for that particular drawing. Such a drawing will 

hereafter be referred to as a particular drawing. 

A parametric drawing covering the family of television sets 

similar to those in Figure 1-1 might appear something like 

that in Figure 1-2. Each different model of television set 

would have its own particular drawing with the actual values 

entered for the various dimensions a, b, c etc. being 

different in each case. 

In addition to allowing easy generation of particular 

drawings for families of components (or models) from a single 

parametric drawing, with the consequent time savings, 

parametric CAD could also be used as part of an automated 

design system. It could also permit rapid "what if" tests to 

be made on designs. 

There appears to be no published evidence of research in the 

area of parametric dimensioning. It is suspected that this is 

because the only research in the area has been done by CAD 

software houses who wish to keep their results confidential. 

Because of the lack of published research in the area, this 

thesis attempts to lay general foundations for a parametric 

CAD system rather than concentrating on narrow specialised 

areas within such a system. 

3 
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Figure 1-2 Parametric Drawing of Television Cabinet 

In Chapter 2 the hardware and software features of 

conventional CAD packages are examined where these are 

relevant to a parametric CAD system. 

In Chapter 3 the extra design considerations and decisions 

necessary for parametric CAD packages are considered and 

other non-essential but highly desirable additional features 

are contemplated. 
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In Chapter 4 design decisions for a specific implementation 

of a parametric CAD package known as Paracad are discussed. 

Paracad is used as a basis for investigating the feasibility 

of parametric CAD. 

The Paracad environment is described in Chapter 5. This 

covers the hardware and software environment, interfacing 

between hardware elements, data structures used and the 

method of storing these data structures. 

In Chapter 6 the interface between Paracad and the user is 

explored. This includes the way Paracad responds to user 

requests and the algorithms used to perform the actions 

required by the user. 

The performance of Paracad is discussed in Chapter 7 in terms 

of its speed of operation and user friendliness. Future 

Paracad developments and areas for further parametric CAD 

research are also described. 

In Chapter 8 conclusions are made as to the feasibility of 

parametric CAD and the advantages of such parametric CAD 

systems. 

Appendix A contains a description of the notation used in the 

illustrations in this thesis. 
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CHAPTER 2 

REVIEW OF CONVENTIONAL CAD PACKAGES 

Before making any decisions on the design of a parametric 

based CAD system it is pertinent to examine the typical 

features of current conventional CAD packages. 

Conventional CAD packages provide a host of design features, 

some of which are very specialised (eg. printed circuit board 

routing) and some of which are general to most packages (eg. 

adding a line to a drawing). For the purposes of this thesis, 

only those CAD features that are of a general nature will be 

considered. 

The components of a general CAD system can be broken down 

into hardware features and software features. In addition to 

these, the method of database storage used is pertinent to 

this thesis [Bes. 1983]. 

2.1 Hardware Features 

The major hardware components of a CAD system are a graphics 

display system, a central processing unit, a graphics input 

device and a graphics output device for hardcopy output. 
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2.1.1 Graphics Display 

By far the most common graphics display is a raster scan 

cathode ray tube with some form of graphics processing 

hardware controlling it. There is a strong tendency towards 

colour systems for serious CAD work with screen resolution 

being anything from 640 by 200 pixels upwards. Fast display 

processing ability is a primary requirement for real time CAD 

systems. Many CAD systems include an option to run a dual 

screen arrangement in which a fast, high resolution colour 

display is used for graphics while a standard monochrome 

alphanumeric display is used for textual information (eg. 

Versacad by T&W Systems). 

2.1.2 Central Processing Unit 

The central processing unit is some form of computer 

(mainframe, mini or micro) with keyboard, primary and 

secondary storage etc. CAD systems are notoriously "processor 

hungry" - that is they make considerable demands on the 

processor and so a fast central processing unit is a high 

priority in a CAD installation. 
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2.1.3 Graphics Input Device 

The graphics input device most commonly used in CAD systems 

is some form of digitising tablet. This usually consists of a 

flat rectangular base with a movable puck or stylus. The 

position of the puck (or stylus) on the tablet base is 

detected either magnetically, electrically or optically and 

this positional information is passed to the CAD program -

typically to control the position of a cursor on the graphics 

screen or to select a command for the software to action. 

Tablet base sizes range from 25cm x 25cm (12" x 12") through 

to 121cm x 121cm (48" x 48") and beyond with the tendency 

towards the smaller sizes for most non-specialist CAD work. 

Positional accuracy is typically 0.002cm (0.001"). Lower 

positional accuracy would generally be acceptable since 

graphics display device resolutions cannot approach digitiser 

resolutions of this accuracy. Ergonomic design of the 

graphics input device can be an important factor during 

extended sessions using a CAD system. Digitiser response 

speed is virtually instantaneous and is usually insignificant 

when compared to the time taken in analysis of the digitiser 

data and displaying of the graphics. 

2.1.4 Graphics Output Device 

The graphics hardcopy output device is generally a pen 

plotter. These devices range in paper size from A4 through to 
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Al and some models provide multiple colours. Accuracy can be 

up to 0.002cm with pen speeds in excess of 1 m/s and 

accelerations of 4g (40m/s/s). Slower plotter speeds are 

often acceptable as plotter files can be batched for later 

spooling. Many installations have found the output quality 

and general readability of plotter generated output to be 

such an improvement over manual drawing that a smaller 

drawing size can be used (eg. A2 size drawings are acceptable 

from a plotter where Al size drawings were needed for manual 

drawings). 

2.2 Software Features 

For the purposes of this thesis, only two dimensional CAD 

systems will be considered. The major software aspects of 

general 2D CAD packages can be broken down into the following 

areas: primitives, input of primitives, groups, modifying 

primitives or groups, copying primitives or groups, 

transformations on primitives or groups, viewing control, 

output and method of driving. Most CAD packages also provide 

various extra features that are not mentioned here. 

2.2.1 Primitives 

Primitives (also called entities or objects) are the basic 

graphic entities that may be added to a drawing. These 
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typically include lines, circles, arcs, rectangles, polygons, 

Bezier or B-spline curves and text. Many packages allow 

primitives to have various properties attached to them such 

as colour, linestyle (solid, dotted etc.), plotter pen number 

and textual information. Primitives are generally stored as 

sets of real-numbered co-ordinates, for example a straight 

line would be stored as its starting co-ordinates and its 

ending co-ordinates together with any associated properties. 

Often double precision real numbers are used to allow storage 

of a wide range of potential primitive sizes with high 

accuracy. 

2.2.2 Input of Primitives 

A variety of different methods of specifying the co-ordinates 

of a primitive during the input stage are usually provided to 

enable flexibility and ease of data entry. The most common 

methods used for specifying the co-ordinates of a particular 

point are : 

digitiser - the position of the digitiser puck or stylus 

corresponds to some real world position, and the co­

ordinates of this position are used for the co-ordinates 

of the point. 

absolute - two real numbers are given, via the keyboard, for 

the actual co-ordinates of the required point. 

10 



relative - two real numbers are given, via the keyboard, for 

the x and y offset of the required point from some 

reference point (usually the last point entered). 

polar - two real numbers are given, via the keyboard, for the 

angle and distance of the required point from some 

reference point (usually the last point entered). 

primitive snap - the required point is specified as being 

some particular point on an existing primitive (eg. one 

end of a selected line - or its midpoint). 

In addition to having a number of different ways of 

specifying a particular point, a choice is often provided in 

the way a primitive is entered. The normal entry method for a 

line is to specify each endpoint, but an alternative is to 

specify a start point, give another line it is to be parallel 

(or normal) to, and specify its length. For a circle it is 

possible to specify the endpoints of a diameter, specify the 

centre and a point on the circumference or specify three 

points on the circumference. Other such optional input 

methods exist for other primitives. 
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2.2.3 Groups 

An arbitrary collection of primitives can be collected 

together to form a group (also called a segment). Groups can 

also be allocated certain properties in some systems. Often 

it is more convenient to work with groups rather than the 

separate primitives that make up the group. For example a 

collection of lines might form a chair and so when 

positioning the chair it is a natural action to group these 

lines together and manipulate the chair as a whole rather 

than each individual line. Forming groups can be done by 

"picking" each of the individual primitives that make the 

group up, drawing an imaginary fence around the required 

primitives, or selecting all primitives with a particular 

property. 

2.2.4 Modifying Primitives or Groups 

Modifications may be made to selected primitives or groups. 

Common modifications are deleting the primitive or group, 

changing properties of the primitive or group, or applying 

some transformation to the primitive or group (discussed 

later) . 
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2.2.5 Copying Primitives or Groups 

Many drawings have repeated features in them and so most CAD 

packages provide the facility to copy any primitive or group. 

Copies can be placed at any specified point (s) or may be 

arranged in a line, in a matrix, or radially in a circle. 

2.2.6 Transformations on Primitives and Groups 

The common transformations provided are translation (moving 

in a straight line), rotation, reflection, enlargement (and 

reduction) and stretching in one dimension. 

2.2.7 Viewing Control 

A CAD drawing worksheet provides a very large area to draw 

in. Windowing (also called zooming) in and out on selected 

areas of the worksheet and panning in any direction is 

generally provided to allow the designer to keep only the 

area of interest on the screen. In addition, another property 

that can be associated with primitives is a level (or layer). 

Levels can be considered to be overlays, and any particular 

level can be made visible or invisible. If a level is 

visible, all primitives on that level (and all other visible 

levels) will be displayed, otherwise they will not be 

displayed. This allows selected features of a drawing to be 
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displayed or hidden. For example a drawing of a building may 

have all plumbing on one level, electrical wiring on another, 

structural members on another, furniture on another and so 

on. The visibility of any of these levels can then be 

individually controlled to allow only the required features 

on the screen. 

2.2.8 Output 

Output involves sending part, or all, of the drawing to the 

output device (usually a plotter). Control over scaling 

factors, where the drawing will appear on the paper and 

orientation on the paper is generally provided. For multipen 

plotters a link is provided between the plotter pen property 

for primitives and the various plotter pens. 

2.2.9 User Interface 

Most CAD packages are either menu-driven or command-driven. 

With a menu-driven system (eg. Autocad by Autodesk Inc.) a 

menu of all the allowable commands is displayed on screen and 

the user selects one (generally by typing the first letter, a 

number, or selecting it with the digitiser). Menu-driven 

packages generally have a large number of different menus 

arranged in a tree structure, so selecting a particular 

choice from one menu produces a new menu of possible actions. 
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A command-driven system (eg. Personal Designer by 

Computervision) does not use menus - instead it has a number 

of valid commands that are directly entered either from the 

keyboard or from a command area on the digitiser. Menu-driven 

systems are generally far easier to learn as all the 

allowable options at any particular stage are displayed on 

screen. For experienced users the command-driven systems can 

provide greater speed as it is not necessary to traverse the 

menus to get to the required command. 

2.3 CAD Database Storage 

While many different methods of CAD database storage are 

used, an important factor is that information is not stored 

regarding physical interconnections between primitives. For 

example, suppose line 1 is added to a drawing, then line 2 is 

added where the startpoint of line 2 is specified as the 

endpoint of line 1. At entry time the co-ordinates of the 

startpoint of line 2 can be readily obtained and these are 

stored with the primitive line 2. No information indicating 

line 1 and line 2 are connected is stored apart from the 

common co-ordinate value - and in fact none is needed as once 

a primitive' s position has been specified it is completely 

defined. 
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CHAPTER 3 

DESIGN CONSIDERATIONS FOR PARAMETRIC CAD SYSTEMS 

While a full implementation of a parametric CAD system would 

embody all the conventional CAD features, it would require a 

number of enhancements and additional elements. The main 

additional requirements are a two phase drawing procedure, a 

method of storing data describing the interconnections 

between primitives and a check that an "impossible" drawing 

is not constructed. Also, although it is not an absolute 

necessity, a provision for allowing "floating" primitives 

that can "fixed" at a later stage provides a considerable 

increase in flexibility. 

This chapter will consider each of these requirements in 

greater depth. 

3.1 Two Phase Drawing Procedure 

With a conventional CAD package, the drawing process is 

essentially a single phase whereby primitives are added in 

various positions to make up a drawing and the finished 

drawing is then plotted out to some required scale. 
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With a parametric CAD system two distinct phases are 

required. The first phase involves the construction of the 

parametric drawing by adding primitives together with their 

parametric descriptions. The second stage then involves the 

construction of a particular drawing which takes the 

parametric drawing as input, gets the actual values required 

for each parameter value and then constructs the particular 

drawing which is plotted out to some required scale. 

Obviously several different particular drawings may be 

obtained from a single parametric drawing by specifying 

different actual values for the parameters this is the 

essence of a parametric CAD system. The construction of 

particular drawings may also continue to occur for many years 

after the parametric drawing has been constructed. 

3.2 Primitive Interconnection Data 

A parametric CAD system would allow the positions and 

dimensions of primitives in a particular drawing to change 

depending on the actual values supplied for the parameters. 

This does not 

causes some 

happen with conventional CAD 

difficulties. For example, 

systems and it 

consider the 

parametric drawing shown in Figure 3-1. When a particular 

drawing is produced, the values x and y need to be supplied. 

A number of possibilities then exist for the particular 

drawing depending on whether line connection points (at the 
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intersection of the line endpoints or along the locus of a 

line), line positions, line lengths (for the non-parametric 

lines 3 and 4), or vertex positions (a, b, c and d) are 

preserved. If the supplied values for each of x and y are 

such that each line using them will be longer in the 

particular drawing than in the parametric drawing then some 

of the possible particular drawings are shown in Figure 3-2. 

D 

Line 4 

A 

Line 3 

Line 1 
horizontal, length x 

C 

Line 2 
vertical, lengthy 

B 

Figure 3-1 Parametric Drawing of four lines 

Figure 3-2 part (a) shows the result of preserving the 

endpoint intersection connections between lines 1 and 2, 

between lines 2 and 3, between lines 3 and 4 and between 

lines 4 and 1. The lengths of lines 3 and 4 are not preserved 

and the positions of lines 2, 3 and 4 are not preserved. The 

position of point A is preserved while B, C and Dare not. 
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D 

A~--------
(a) (b) 

D 

----~----B 

(c) (d) 

D ~-----. 
C 

A '-------+-----

(e) (f) 

Figure 3-2 Different Interpretations Of Figure 3-1 

Figure 3-2 part (b) shows the result of preserving the 

endpoint intersection connections between lines 1 and 2, 2 

and 3, and 3 and 4. The connection between lines 4 and 1 is 

preserved between the endpoint of line 4 and anywhere along 
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the locus of line 1. The length of line 3 is preserved while 

that of line 4 is not. The position of point Dis preserved. 

Figure 3-2 part (c) shows the result of preserving the 

endpoint intersection connections between lines 1 and 2, and 

lines 3 and 4. The positions of points Band Dare preserved 

while A and Care not. The lengths and positions of lines 3 

and 4 are preserved. 

Figure 3-2 part (d) shows the result of preserving the 

endpoint intersection connections between lines 1 and 2, 

lines 3 and 4, and lines 4 and 1. The lengths and positions 

of lines 3 and 4 are preserved. The position of points A and 

Dare preserved. 

Figure 3-2 part (e) shows the result of preserving the 

endpoint intersection connections between lines 1 and 2, 

lines 2 and 3, and lines 3 and 4. The lengths of lines 3 and 

4 are preserved, but their positions are not. 

Figure 3-2 part (f) shows the result of preserving the 

endpoint intersection connections between lines 2 and 3, 

lines 3 and 4, and lines 4 and 1. The lengths and positions 

of lines 3 and 4 are preserved. 

These are only six possible interpretations of this 

parametric drawing - there are many more. Only one of these 

different interpretations will be the correct one (ie. the 
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way the designer intended the parametric drawing to be 

interpreted) but all represent valid possible design 

requirements. Obviously it is essential to ensure that such 

ambiguities do not occur in any implementation of a 

parametric CAD system. This can either 

rules laid down by the package which 

parametric drawing is interpreted or 

be done by 

govern the 

having 

way a 

else sufficient 

information must be obtained from the designer during 

construction of the parametric drawing to ensure all such 

possible ambiguities are resolved, and this information needs 

to be stored with the parametric drawing so it can be used 

when a particular drawing is constructed. 

3.3 Prevention of Impossible Drawings 

With a conventional CAD system each primitive is fully 

defined as it is entered and so checks can easily be made at 

entry time to ensure only valid primitive points are entered. 

This is not the case with a parametric CAD system as the 

ultimate drawing shape and size is not determined until the 

parametric values are supplied. This could give rise to 

impossible drawings unless additional checks, or design 

rules, are made. For example consider Figure 3-3. Suppose 

each line has been specified so that the endpoints connect 

together as shown to form a quadrilateral. It would be 

impossible to construct a particular drawing of this 

parametric drawing unless lengths a and care the same value 
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since the drawing must form a rectangle. If line 4 had not 

been declared a vertical line no problem would have occurred. 

This is a somewhat simple example of an impossible drawing. 

With a more complex drawing the "impossibility" can be much 

more difficult to detect. 

Line 3 
hor i zonta 1, length c 

D C 

Line 4 
vertical 

A Line 1 B 

hor i zonta 1, length a 

Line 2 
vertical, length b 

Figure 3-3 A Potentially "impossible" Drawing 

3.4 Floating Primitives 

Since a parametric CAD system is a conceptual representation 

of a family of drawings rather than an actual drawing, its 

construction may well be approached in a different way from a 

conventional CAD drawing. An aid to drawing such diagrams 

would be the facility to be able to leave the endpoint of a 
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line "floating" temporarily. For example a vertical line 

could have its start point defined, but its endpoint (and 

hence length) might be left floating until other required 

primitives have been added, at which stage a "float 

connection" can be made. This floating line concept would 

also aid many conventional CAD packages. 

D 

Line 4 
vertical 

A 

Line 3 
horizontal 

Line 1 
horizontal, length a 

C 

Line 2 
vertical, length b 

B 

Figure 3-4 A Case For Floating Lines 

As an example of floating primitives, consider the 

construction of the parametric drawing shown in Figure 3-4. 

Assume that a rectangle primitive is not available so the 

rectangle shown has to be constructed using lines only. Line 

1 would be entered as a horizontal line with parametric 

length a, line 2 would then be added as a vertical line of 
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parametric length b with its startpoint defined as the 

endpoint of line 1. Line 3 would then be entered as a 

horizontal line with startpoint at the endpoint of line 2 and 

its end point floating. Line 4 would be entered as a vertical 

line with its startpoint at the startpoint of line 1 and its 

endpoint floating. The floating endpoints of lines 3 and 4 

could then be connected. The alternative method of entering 

this, without floating lines, would be to specify line 3 as 

having length a also. This would then add the complication of 

having the package perform some form of parameter checking to 

ensure line 4 would remain vertical with its endpoints at the 

endpoints of lines 1 and 3. Obviously this is a fairly simple 

check in this case since the drawing is so simple, but in 

more complex drawings such checks rapidly become very 

involved and time consuming. 
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CHAPTER 4 

GENERAL DESIGN DECISIONS FOR PARACAD 

Having identified the main features of conventional CAD 

systems and examined some of the extra requirements of a 

parametric system it is possible to come up with some general 

design decisions for the implementation of a parametric 

system. Many of the design decisions made would apply to any 

parametric CAD system, but others are specific to a 

particular implementation that will be referred to as Paracad 

for the rest of this thesis. Paracad has been specifically 

developed to test the feasibility of a parametric CAD system. 

Whenever a design decision is discussed a mention will be 

made as to whether it is a general or specific decision, and 

in the case of specific decisions the alternatives will be 

discussed. 

4.1 Two Drawing Phases 

Because of the natural way in which a parametric CAD system 

falls into two distinct phases, that of constructing the 

parametric drawing and that of constructing a particular 

drawing from the parametric drawing, it was decided to break 

Paracad into two separate parts - one to cover each phase. 
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This would seem the logical approach for any parametric CAD 

system as the two phases would almost always be carried out 

at completely different times and often by different people. 

4.2 Drawing Saving/Loading 

Some means of saving and loading partially completed 

parametric drawings is essential. These drawings could well 

be very complex and take considerable time to design so a 

user must be able to stop a design session and resume it at a 

later stage. In addition to this it is obvious that there 

must be a means of saving the finished parametric drawing. It 

was decided Paracad should have both these features (as 

should any other parametric CAD system). 

The need for saving/loading partially completed particular 

drawings is not so vital since constructing these drawings 

essentially involves merely specifying parameters. This is a 

fairly straightforward procedure and should not be 

particularly time consuming. It was therefore decided that 

the ability to save a partially completed particular drawing 

was not a requirement for Para cad, al though it could have 

some use if included in a full implementation of a parametric 

CAD system. Similarly the saving of a completed particular 

drawing is not essential if the drawing can be immediately 

plotted, but this would be a definite advantage (and would be 

a requirement in any full implementation). Since Paracad is 
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only a feasibility testing system, it was decided that this 

feature could be omitted. 

4.3 Menus 

Because of the advantages for unfamiliar users a menu system 

is the obvious choice for Paracad since a test system is 

prone to frequent change and modification. The menu system 

provides an inherent help method with the menu choices 

(assuming they are suitably descriptive) . The argument over 

whether a menu-driven or command-driven system would be best 

in a full implementation is not changed by the addition of 

parametric facilities to a CAD package and so each method 

would have its supporters. 

4.4 Co-ordinate Storage and Viewing Control 

Since all CAD systems of reasonable accuracy employ real 

variables to store co-ordinate data, it was decided that this 

should also be the case with Paracad. 

Viewing control (windowing and panning) would be necessary 

for a full implementation, but this does not in any way 

affect the problems encountered by adding parametric 

facilities and so it was decided to omit viewing control from 

Paracad. 
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4.5 Primitives Supported 

The most severe restriction placed on Paracad was in the 

primitives it supports. While most CAD systems support lines, 

rectangles, circles, arcs, text, dimensions, polygons and so 

on it was decided to limit Paracad to lines only. The reason 

for this is that to implement a large number of primitives 

into a CAD package takes a number of man years of programming 

effort. In the case of Paracad the aim is to examine the 

feasibility of parametric CAD systems rather than to provide 

a full implementation of a running version and so while 

restricting Paracad to lines only reduces its usefulness 

considerably, it does provide a sufficient subset for initial 

feasibility studies. The additional problems that might be 

posed by including other primitives in a parametric CAD 

system will be considered in a Chapter 7. All remaining 

design decisions will relate to this line-only restriction. 

It was also decided that the only method of line entry in 

Paracad would be by specifying the position of the line's 

startpoint and endpoint. For a full implementation it would 

be advantageous to include other methods of line entry, (such 

as defining a start point, a length, and another parallel 

line) . 
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4.6 Startpoint Types 

It was decided that the different possible ways of specifying 

the startpoint of a line for Paracad should be to give the 

actual point by using the digitiser, to give the actual co-

ordinates of the point from the keyboard, or 

point on another line to connect to. 

to specify a 

While full 

implementations could add some extra methods such as giving 

cartesian offsets relative to the last point entered or 

giving a distance and direction (polar offset) relative to 

the last point entered, these do not have any additional 

effect on a parametric CAD system unless the offset values 

are parametrically defined (ie. the start point position is 

determined by some parameter). In fact these possibilities 

are catered for within Para cad by the use of construction 

lines (described in Section 4.8). 

4.7 Endpoint Types 

Different CAD packages provide various methods of defining 

the endpoint of a line. It was resolved that Paracad should 

have a fairly comprehensive range of methods for line 

endpoint definition. The methods it was decided to implement 

were:-

a) specifying the actual position with the digitiser 

29 



b) entering the actual co-ordinates from the keyboard 

c) specifying a vertical line (with length defined by 

digitiser, keyboard, parametrically, connecting to some 

point on another line, or left floating) 

d) specifying a horizontal line (with length defined by 

digitiser, keyboard, parametrically, connecting to some 

point on another line, or left floating) 

e) specifying a polar line (with angle from startpoint 

defined either parametrically or actual angle entered from 

keyboard and distance from startpoint also defined either 

parametrically or from keyboard) 

f) specifying a relative line (with x and y offset from 

line's startpoint defined from keyboard) 

g) specifying a connection to some particular point on 

another line 

h) leaving the endpoint floating 

These provide a greater selection of methods than is strictly 

necessary in a full implementation, but they do allow more 

design flexibility and permit comprehensive testing of the 

feasibility of parametric line drawing. 
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A rather insidious problem that may occur is when the 

parameters supplied to a parametric drawing are such that 

they result in a particular drawing that has a polar line 

that ends up with the startpoint and endpoint being in the 

same place. Since most formulae for calculating the endpoint 

of a polar line rely on dividing by either dx (the change in 

x) or dy (the change in y) an attempted divide by zero could 

result if care is not taken. This problem does not arise in 

conventional CAD packages as a test is made at entry time to 

ensure a line has non-zero length. 

4.8 Construction Lines 

One of the requirements of a parametric 

allow variable placement of primitives 

CAD system is to 

(depending on the 

value provided for some parameter). One of the most flexible 

methods for providing this is to allow the use of a 

"construction line". This is a line that appears only in the 

parametric drawing and is used as a design aid. It can be 

drawn as any other line, but is depicted in a different way 

(eg. different colour or linestyle) to readily identify it. 

This then allows adaptable defining of a primitive's 

location. 

As an example, suppose a designer needs to specify a 

primitive as being at an angle of 30° from some point Panda 

distance r from P (where r is some parametric value that 
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varies between particular drawings). This can be done as in 

Figure 4-1 which shows a construction line with startpoint at 

P. The construction line is defined as being polar with 

actual angle of 30° and parametric length b. The primitive to 

be drawn is now drawn connected to the endpoint of this 

construction line, Q, so altering the value of b will alter 

the position of this primitive. On any particular drawing the 

construction line is not visible. 

30° 
P---~----

Q 

primitive 
start point 

Figure 4-1 Use of a Construction Line 

The use of construction lines is not essential in a 

parametric CAD system, but it does provide considerable 

flexibility in specifying the startpoint of primitives 

without increasing the complexity of the start point 

definition. To not have construction lines but still retain 

the features provided by them by adding different choices to 

the way of defining the startpoint of a primitive would be a 

more difficult approach to implement and to use (consider how 
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the example shown in Figure 4-1 could be done by startpoint 

definition only - the menu for adding the startpoint would be 

far more complex). 

Construction lines do not really have a great deal of 

usefulness in conventional CAD packages, although some 

systems (eg. Versacad) do provide a form of temporary 

construction line, because a normal line can be drawn instead 

of the construction line and then erased after it is no 

longer needed. This is not possible with a parametric CAD 

system as the linkage between the startpoint and endpoint of 

the construction line needs to be retained. 

Because of the flexibility provided by construction lines it 

was decided they should be included in Paracad. 

4.9 Connect Points 

One method permitted by many CAD packages for defining a 

cursor position is to "snap" to a particular point on an 

existing primitive. For a line this position is typically the 

startpoint, endpoint or midpoint of the line. For a rectangle 

it is typically any of the four vertices or the centre. Such 

a "snapped" cursor position can then be used to define the 

startpoint or endpoint of the primitive currently under 

construction. With a parametric CAD system this concept of 

snapping to a particular point on a primitive is taken a step 
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further since it is often necessary to define a connection to 

the chosen point. For the rest of this thesis such a point 

will be referred to as a connect point. 

For Paracad the only primitives allowed are lines and so the 

obvious connect points to provide on lines are the 

startpoint, endpoint and midpoint. In addition to these the 

provision of a fourth point, the equation point, was decided 

on. 

The startpoint, endpoint and midpoint connect points are 

self-explanatory in most instances (ie. the connect point 

midpoint of the line at the 

connect 

startpoint, endpoint or 

to), but the decisions made for Paracad when 

is 

to 

the 

connect point is used to define vertical, horizontal and 

polar endpoints may require some elucidation. For vertical 

line endpoints, the connect point defines they co-ordinate 

of the vertical line (the x co-ordinate is the same as that 

for the line's startpoint). This is shown in Figure 4-2 which 

illustrates three different vertical lines connected in turn 

to the startpoint, midpoint and endpoint of another line. A 

similar interpretation applies to connects used for 

horizontal line endpoints except now the connect point 

defines the x co-ordinate of the horizontal line's endpoint 

as shown in Figure 4-3. 
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B 

C 

Line 3: vertical, 
connect to midpoint 
Bon line 1 

Line 2: vertical, 
connect to startpoint 
A on line 1 

Line 4: vertical, 
connect to endpoint 
Con line 1 

Figure 4-2 Connect Points for Vertical Line Endpoints 

For the endpoint of a polar line, the connect point specifies 

either they co-ordinate of the polar line's endpoint or the 

x co-ordinate - depending on whether the line is more nearly 

vertical or horizontal. For lines that are more vertical, the 

y co-ordinate is given by the connect point, and the x co-
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Line 4: horizontal, 

connect to endpoint 
con line 1 

Line 3: hor i zonta 1, 

connect to midpoint 
Bon line 1 

Line 2: horizontal, 
connect to startpoint 
A on line 1 

Figure 4-3 Connect Points for Horizontal Line Endpoints 

ordinate can thus be calculated. For lines that are more 

horizontal the x co-ordinate is given by the connect point 

and they co-ordinate is then calculated. This is illustrated 

in Figure 4-4 which shows lines 2 and 3 connected to the 
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endpoint of line 1. Line 2 is a more vertical case and line 3 

is a more horizontal one. Since the angle of a polar line can 

be parametrically defined and can thus be different for 

different particular drawings, it is quite feasible that for 

one particular drawing a polar line takes a connect point to 

give its endpoint x co-ordinate, while in another particular 

drawing the same connect point gives its y co-ordinate. 

A 

Line 1 Line 2 

Figure 4-4 Connect Points for Polar Lines 

The so-called "equation" connect 

amplification. The interpretation of 

point is context dependent. If a user 

startpoint of any line, or the 

point needs some 

an equation connect 

is about to enter the 

endpoint of a line 

unconstrained in direction (ie. not horizontal, vertical or 

polar), an equation connect indicates that the cursor is to 

lock onto the equation of the line selected for connection 
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to. That is the cursor moves along the chosen line (the line 

is considered to extend to the edge of the screen in both 

directions) . If a user is about to enter the endpoint of a 

directionally constrained line, the equation connect point is 

calculated to be the point of intersection of the two lines. 

Examples of this are shown in Figure 4-5. In each case the 

line to connect to is line 1, and the line for which the 

endpoint is being specified is line 2. 

Note that if two lines are parallel there is no intersection 

point and so an equation connect is not possible. For a 

parametric drawing the software can prevent the user from 

being offered the equation connect option for two lines that 

are parallel at that time, but the parameters supplied for a 

particular drawing may make a previously possible case (non­

parallel lines) into an impossible one (lines parallel). If 

this occurs the package needs to indicate to the user that 

the supplied parameters lead to an invalid drawing. 

It is convenient for the designer to have connect points 

indicated in some way so he is aware of the fact that the 

points may well move in response to the repositioning of 

another primitive, so a requirement for Paracad was to have 

some form of connect point identification. It was decided 

this identifier should be on the point being connected rather 

than the point being connected to - ie. if the endpoint of 

line 1 is being connected to the midpoint of line 2, the 

connect identifier appears on the endpoint of line 1 (which 
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Line 1 

Line 2 

b) Horizontal Line Endpoint 

c) Angular Line End po int 

Figure 4-5 Equation Connect with Constrained Line Endpoint 

may or may not be in the same location as the midpoint of 

line 2). Figure 4-6 part (a) shows a case where the two 

points are in the same location while part (b) shows a case 

where they are in different locations and the midpoint of 

line 2 is used to give just they co-ordinate of the line 1 

endpoint. 
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Line 1: free, 
floating 

Connect 
identifier 
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Line 2 

a) Same location 

Connect 
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Line 1: 
vertical, 
floating 

Line 2 

b) Different locations 

Figure 4-6 Position of Connect Identifier 
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4.10 Floating Endpoints 

The concept of floating line endpoints was discussed in 

Section 3.4. Providing floating lines adds a number of extra 

problems for a parametric CAD system, so it was considered 

necessary to include this feature in Paracad. Since the 

author is unaware of any CAD package that includes floating 

lines (or any similar concept) all the development techniques 

for handling them needed to be developed from scratch. For 

Paracad it was decided to provide floating endpoints for 

lines unconstrained in direction and for the length of 

vertical and horizontal lines. It was decided not to include 

floating endpoints for the length or angle of polar lines or 

for either offset in relative lines in Paracad since these do 

not add any new problems in terms of parametric CAD 

considerations but do add significantly to the complexity of 

the software required for implementation. 

It was also decided not to include polar lines with fixed (or 

parametric) lengths and floating angles for reasons of 

ambiguity. An example of this ambiguity is indicated in 

Figure 4-7. Line 1 is specified as having length a and line 2 

has length b. Both lines have floating angles and their 

endpoints are to be connected. The endpoint of line 1 must 

lie on the circle centred at the startpoint of line 1 with 

radius a and similarly the line 2 endpoint lies on the circle 

centred on its startpoint with radius b. These two circles 

will not intersect at all if the distance between their 
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Figure 4-7 Ambiguity With Floating Angles 

centres is greater than a+ b, they will touch at one point 

if the distance between their centres equals a+ b, they will 

intersect at two points if the distance between their centres 

is less than a+ b but greater than zero, and if they are 

concentric they will not intersect at all if a* band they 
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will intersect in an infinite number of places if a = b. 

Figure 4-7 shows the case where they intersect in two places, 

P and Q. 

This form of ambiguity is difficult to resolve. The case 

where the circles do not intersect could be considered an 

error if it occurs in a particular drawing, as could the 

concentric circle cases. The difficulty arises in the case 

where there are two possible intersection points. It is 

almost impossible to come up with some easy to use method for 

defining which point of the two is required at parametric 

time since particular drawings can look radically different 

from the parametric drawings they derive from thus 

requesting "the leftmost point" of the two is not 

satisfactory. For this reason it was decided not to include 

floating angles in Paracad. 

For future reference, a line that is unconstrained in 

direction and that has a floating endpoint will be referred 

to as a freefloat line, while a horizontal or vertical line 

with a floating endpoint will be referred to as a vertically 

or horizontally floating line. Collectively they will be 

referred to as floating lines while lines that are not 

floating will be referred to as fixed lines. 

It is convenient, for the designer, to have a floating 

endpoint indicated in some way so he is aware that the 

endpoint has not yet been fixed and thus the drawing is 
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incomplete, so a requirement for Paracad was to have a form 

of floating point indication. This identifier should be on 

the endpoint of the floating line. 

It was further decided that no connect would be allowed to be 

made to the midpoint, endpoint or equation point of any line 

with a floating endpoint (the only exception to this is a 

special float connect which is discussed in Section 4 .11) . 

This restriction ·is necessary to ensure that the startpoint 

of every line is always fully defined (either directly or 

parametrically) . This considerably reduces the problems of 

resolving floating lines when they finally become connected 

and it helps prevent the construction of impossible drawings. 

This is a very minor restriction in practice since once the 

endpoint of a floating line has been fixed it is then 

possible to connect to it. 

4.11 Floating Endpoint Connections 

The provision of floating endpoints on lines means some 

method must be provided for eventually fixing these points. 

There are two possibilities for the fixing point - either the 

point will be some connect point based on another primitive 

or else the point will be some actual point selected by the 

digitiser or keyboard input. The latter of these two 

possibilities is really an unnecessary option - there is no 

need to have a floating line if it is merely fixed to a known 
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actual point at a later time since it could have been fixed 

at the time it was first added (or else not been added until 

the time it was fixed) and so this possibility was not 

required in Paracad, although in a full implementation it may 

well be incorporated. 

connect 
point ~ 

Line 1: 

Line 2: horizontal 

vertical 

Figure 4-8 Float Connect of Horizontal and Vertical Lines 

The ability to connect a floating endpoint to some other 

primitive was a requirement for Paracad. The possible connect 

points allowed should, for consistency, be the same as those 

allowed for other connects - ie. the startpoint, endpoint, 

midpoint and equation point. In fact since normal connects 

can be used to fully test all these options, it was decided 

to only support startpoint, endpoint and midpoint for float 

connects in Paracad. This provides a saving in program 
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complexity at no cost to parametric feasibility testing. 

Float connecting ideally needs to allow connecting to other 

floating lines as well as fixed lines. An example of the use 

of this is shown in Figure 4-8 where it is required to 

connect the two floating endpoints together. Note that doing 

this will then fully define the position and lengths of both 

lines. This would not always be the case as is shown in 

Figure 4-9. In this case the floating end of freefloat line 1 

is connected to the midpoint of freefloat line 2. Before this 

float connection was made, both lines were unconstrained in 

both direction and length. After the float connection is made 

the lines are still not fully defined in either length or 

direction, but they do have a form of constraint in that once 

one of the lines becomes fully defined the other one also 

becomes fully defined. Since extra problems are imposed by 

allowing float connection to lines that are themselves 

floating, and the concept of floating lines has been 

developed for parametric CAD systems, it was decided that 

this feature needed to be included in Paracad. 

It is worth considering the different possibilities that may 

occur in float connection: 

a) Any float connection to any point on a fixed line will 

result in the floating line becoming fixed. 
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Line 1 
freefloat 

Line 2 
freefloat 

Line 2 

Line 1 

a) before connection b) after line 1 float 
connected to midpoint 
of line 2 

Figure 4-9 Float Connect of Two Freefloat Lines 

b) Any float connection to the startpoint of another line 

will result in the floating line becoming fixed, 

regardless of whether the line being connected to is fixed 

or floating. This is because startpoints are always fully 

defined for all lines in Paracad (see Section 4.6). 

c) Any float connection from a floating horizontal line 

endpoint to either the midpoint or endpoint of a floating 

vertical line will result in both lines becoming fixed as 

shown in Figure 4-10. Notice that each line adjusts its 

length accordingly to fit the type of connection. 
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Line 1: 
horizontal, 
floating 

-+---------,0 

Line 2: 
vertical, 
floating 

Line 1 

Line 2 

a) original line positions b) line 1 float connected 
to endpoint of line 2 
Both lines now fixed 

Line 1 

c) Line 1 float connected 
to midpoint of line 2 
Both lines now fixed 

Figure 4-10 Float Connect From Horizontal To Vertical Line 

d) Any float connection from a floating vertical line to 

either the midpoint or endpoint of a floating horizontal 

line will result in both lines become fixed in a similar 

fashion to that illustrated in (c) above. 

48 



e) Any float connection from a floating vertical line to the 

midpoint or endpoint of another floating vertical line, or 

from a floating horizontal line to the midpoint or 

endpoint of another floating horizontal line, results in 

both lines remaining floating, but as soon as one of the 

lines becomes fixed the other will also become fixed. 

f) Any float connection from a freefloat line to the midpoint 

or endpoint of any other float line (vertical floating 

line, horizontal floating line, or freefloat line) results 

in both lines remaining floating (although they would be 

locked together in some way) but as soon as one line 

becomes fixed the other will also become fixed. This is 

illustrated for two freefloat lines in Figure 4-11. 

g) Any float connection from a floating vertical, horizontal 

or polar line to the midpoint or endpoint of a freefloat 

line results in both lines remaining floating but as soon 

as one line becomes fixed the other will also become 

fixed. 

The diagrams in Figure 4-11 illustrate another design 

decision needed for Paracad. It would impose a somewhat 

severe restriction on a user if he was only allowed to make 

one float connection with each floating line for two reasons. 

Firstly he would need to remember which lines had been float 

connected in cases like that shown in Figure 4-11 as it would 
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freefloat 

a) original line positions 

Line 3 

Line 2 

b) line 2 float connected to 
endpoint of line 1. Both 
lines remain floating with 
endpoints locked together 

Line 3 

Line 2 

c) line 2 float connected to 
endpoint of line 3. 
Both lines are now fixed 

Figure 4-11 Float Connect Between Two Freefloat Lines 
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not be permitted to connect line 2 to line 3 as in part 3, 

rather he would have to connect line 1 to line 3 - an action 

that would give exactly the same result. Secondly, it would 

be restrictive in that a user may become trapped and not be 

allowed to produce the type of drawing he requires easily. As 

an example consider the drawing shown in Figure 4-12. The 

easiest way to construct the required drawing is to float 

connect the endpoint of line 2 to the midpoint of line 3, 

then float connect the endpoint of line 2 to the midpoint of 

line 1. If only a single float connect is permitted for each 

floating endpoint this would not be possible and a more 

roundabout way would be needed to construct the drawing. 

line 1 line 3 line 1 

line 2 

line; 
a) original line positions b) required drawing 

Figure 4-12 The Case For Multiple Float Connects 
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Since floating lines have been created for parametric CAD 

systems it is necessary to fully investigate the difficulty 

in implementing them, so it was decided to place no limit on 

the number of times a floating endpoint can be float 

connected within Paracad - the process can continue until 

such time as the endpoint becomes fixed. 

Since a Paracad requirement is to have some form of 

identification on floating endpoints and connect points it 

was decided that a floating endpoint that has been fixed (by 

some connection) 

identifier, but 

should no longer have a floating endpoint 

rather should have a connect point 

identifier. A floating endpoint that is connected to another 

line but still remains floating should have some identifier 

that shows it is both floating and connected. 

4.12 Cursor Indication 

For any interactive CAD package using an input device such as 

a digitiser it is essential to have some form of visual 

feedback as to the relationship between input device position 

(eg. position of stylus on the digitiser tablet) and screen 

position. This is normally done by displaying some form of 

cursor on the screen that "follows" the input device around. 

Such a cursor is a requirement for Paracad. 
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4.13 Rubberbanding 

When selecting the endpoint of a line it is useful to have 

the line follow the cursor about so the user can immediately 

see the effect if he were to select a particular point for 

the line endpoint. This feature is called rubberbanding (or 

tracking). While it is not strictly necessary for parametric 

feasibility testing, its inclusion makes a package easier to 

use. For this reason it was decided to include rubberbanding 

within Paracad where appropriate. 

4.14 Parameter Setting 

For a parametric CAD system some method of indicating what 

dimensions are to be parametric is needed during the 

parametric drawing construction phase and some method is 

necessary for entering values for these parameters during the 

particular drawing construction phase. Since Paracad is to 

examine the feasibility of parametric CAD rather than the 

various possible mechanisms for supplying and linking 

parameters it was decided that a simple method could be used 

for each of these requirements. Indicating that a particular 

dimension should be parametric can be done at entry time for 

the affected primitive - the parameter name can be entered 

and a sample value can be provided for the purposes of 

constructing the parametric drawing. During construction of 

the particular drawing a scan can be made of each primitive 
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in turn, and as parameters are encountered the user can be 

prompted for keyboard entry of a value for the parameter. In 

a full implementation providing these parameter values could 

be done from keyboard entry, lookup tables, input files, 

decision tables or output from other programs. 

4.15 Parameterisation 

Parameterisation refers to the process of actually 

constructing the particular drawing once all the parameter 

values specific to that drawing have been ascertained. To 

reduce the software-writing burden in producing a parametric 

CAD system the most convenient approach is to use the same 

routines written for constructing the parametric drawing to 

construct the particular drawing. While many features will 

not be required, such as input prompts, the underlying logic 

will be the same. For this reason the routines written for 

the parametric construction phase should be written in such a 

way that they can be readily used in the construction phase. 

This philosophy is to be incorporated in Paracad and the 

problems encountered noted to give some indication of the 

difficulty of this approach. 
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4.16 Plotting 

Since Paracad is not a full implementation it was decided 

that the plotting facilities required would be as simple as 

practicable. These should provide the output of particular 

drawings only, in one colour, with a fixed scale and no user 

control over the position of the drawing on the paper. 

4.17 Miscellaneous 

In order to reduce the complexity of Paracad it was decided 

not to provide a number of miscellaneous features that would 

be expected in a full implementation. None of these features 

affect the parameter feasibility testing. They include the 

ability to create or use groups, perform transformations 

(such as enlargement), modify primitives (such as deleting), 

copy primitives, have properties attached to primitives (such 

as a primitive name) and the provision of levels (or layers). 
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CHAPTER 5 

PARACAD ENVIRONMENT AND STRUCTURE 

This chapter covers the environment of the Paracad system. 

Both hardware and software environments are covered as are 

the data structures used and their method of storage. 

5.1 Hardware and Software Environment 

The hardware used for implementing Paracad was an IBM AT 

microcomputer with 512 kbytes of RAM, 80287 numerical co­

processor chip, 20 Mbyte hard disk, serial communications 

card (RS232), monochrome display adapter with monitor and 

professional graphics controller (PGC) and display. The 

digitiser used was a Kurta 12" x 12" and the plotter used was 

a Hewlett Packard 7475A A3/A4 model. 

Paracad was written in Turbo Pascal (co-processor version) 

with some in-line machine language routines developed using 

80286 Assembler. 

Paracad would run unmodified on any IBM PC, XT, AT or 

compatible computer that had a PGC system and numerical co­

processor. For machines without a co-processor the Turbo 
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Pascal source code could be recompiled, but would run more 

slowly. Driver routines for the PGC are written as separate 

procedures to enable easy modification to other graphics 

displays. These driver routines provide for the drawing of 

solid and dotted lines in different colours, solid and filled 

in circles in different colours, text, and allow windows on 

the screen for a menu area and a graphics area. 

5.2 PGC System 

The IBM Professional Graphics Controller (PGC) provides high­

function graphics capability. It supports a screen resolution 

of 640 x 480 pixels with 256 colours from a palette of 4096 

colours. It has an on-board 8088 microprocessor and 300 

kbytes of RAM for memory-mapped graphics [IBM. l] . The host 

system provides command strings to the PGC which then carries 

out the appropriate action on its bit-mapped image. No direct 

access is provided to the bit-image area of the PGC memory -

commands are available to transfer data to and from this area 

but generally this type of use does not match the philosophy 

behind the PGC design. 

The PGC provides drawing facilities for many primitives 

including lines, text and circles, co-ordinate 

transformations with modelling and viewing transformations, 

user-definable look up tables (LUT) and window and viewport 

control. Communication can either be in ASCII or HEX format. 
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ASCII format enables commands to be sent in text form - for 

example the command 

DRAW 10 20 

will draw a line from the current point to the point with co­

ordinates (10,20). In Hex format the commands are sent as a 

single byte followed by the arguments (if any) . The PGC 

effectively converts ASCII format commands into Hex format 

before processing them. Since Paracad is to run interactively 

in real-time the Hex format is used as it is significantly 

faster than ASCII format. 

5.3 Digitiser and Interface 

Communications with the Kurta digitiser are via an RS232 

serial card running at 9600 baud. Data is frequently required 

from the digitiser regarding stylus and button (switch) 

position. Further, this data is often required as rapidly as 

possible (for example when the stylus is being moved across 

the digitiser and its position is being displayed on the 

screen) so drivers were written in 80286 Assembler for 

maximum speed and included within Paracad as in-line code. 

The digitiser has four different operating modes for 

positional data output auto (continuous data output 

whenever stylus is close to digitiser surface or stylus 

button is activated), draw (continuous data output only when 

button is activated) , point ( single point data output upon 

button activation) and delta (single point data output 
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whenever stylus moves more than 0.01" or button is 

activated) [KURT]. The mode selected for Paracad was auto so 

it was possible to obtain information on the stylus position 

without the button being pressed. This enables the button to 

be used for such actions as selecting primitives, indicating 

the current point is the one required, 

questions and so on. 

responding to 

The Paracad digitiser drivers consist of two in-line machine 

code procedures. One procedure software configures the 

digitiser to be in the auto mode, with resolution of 200 

points per inch and high resolution packed binary output. The 

other procedure reads the digitiser data stream and returns 

the current stylus position (x and y co-ordinates) and the 

button status (switch open or closed). Some spurious readings 

occasionally come from the digitiser so for the most critical 

positions (the ones when the button is pressed) the procedure 

waits until it receives two successive positional data items 

that have the same co-ordinates before passing back the 

results. 

In order to use a different digitiser, two new machine code 

interface routines would need to be developed. 
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5.4 Cursor Display 

Initial tests were done using a machine code routine for 

drawing a cursor on the screen, but it was found that because 

of the nature of the PGC's operation and the speed of the AT 

microcomputer that it was just as fast to code the cursor 

drawing routine as a Turbo Pascal procedure. The procedure is 

supplied with the screen co-ordinates of the required 

position and draws a cursor at this point. 

The cursor chosen is of the cross-hair type with the size 

specified as a program constant for easy alteration. The 

cursor is drawn by complementing the value of any pixels at 

the locations of the cursor pixels. This has two main 

advantages. Firstly, it allows easy erasing of the cursor by 

a second call to the procedure with the same screen co­

ordinates. Secondly, it permits the cursor to pass over 

existing primitives without deleting or altering the 

primitives when it has gone - also judicious choice of the 

PGC LUT allows the cursor to still be visible (as some 

different colour) when over a primitive. 

5.5 PGC Interface 

As discussed in Section 5.2 communication with the PGC is in 

Hex format. Since PGC commands are of different lengths 

(different numbers of bytes) Paracad uses a somewhat unusual 
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approach to the method of interfacing to the PGC. This 

involves setting up a data type structure for each group of 

commands with the same length (ie. one data type for one byte 

commands, one for two byte commands and so on). The first 

byte of each structure stores the number of bytes that 

follow, then comes the hex command byte, then the actual 

bytes that make up rest of the command (if there are any). To 

pass these data structures to the PGC the Turbo Pascal 

extension that allows procedures to have untyped variable 

parameters is used. This allows a procedure to be declared 

with a variable parameter that has no specified type. 

Whenever a call is made to the procedure, what is passed 

across is the address of the actual parameter [TURB.1985]. 

In Paracad an in-line machine code routine with an untyped 

variable parameter is used to send commands to the PGC. Any 

call to this procedure uses the required data structure name 

as the actual parameter, so the machine code routine is given 

the address of the data structure containing the information 

to be sent. The first byte of this information is the length 

(ie. the number of bytes following) so the routine knows how 

many bytes to send. While this may seem a rather convoluted 

approach, it does allow sending of variable length groups of 

bytes in hex format. The alternatives are to either have a 

separate routine for sending each different type of data 

structure or else to send data in ASCII form (as a string). 

Paracad uses eight different data structures so eight 

different sending routines would be required if that approach 
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was used, and using the ASCII mode of communication is 

considerably slower. 

5.6 Identification and Colours 

All colours used in Paracad are easily alterable by changing 

the LUT initialisation area. This involves specifying three 

integers in the range O - 15. These integers specify the 

required intensity of the Red, Green and Blue electron guns 

respectively. Each of the LUT colours specified has a 

complement that provides a sensible display when the cursor 

moves over the pixels of that colour, or when another line 

crosses it. The various identifiers and colours used will now 

be described briefly. 

Menu area: Paracad uses a rectangular area at the top of the 

colour screen for a menu display and message area. This 

area has a blue background and text is in white. The menu 

area can accommodate up to 3 lines of 80 characters of 

text. 

Graphics area: The area of the screen used for the drawing 

comprises all the screen below the menu area. A black 

background is used. 

Cursor: Paracad uses a small red cross-hair cursor. 
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Floating endpoints: Paracad uses a small blue open circle on 

any line endpoint that is floating. 

Connect points: Paracad uses a small yellow filled-in circle 

on any line connect points. If a point is both connected 

and floating a blue circle circumference that is filled 

in with yellow is used. 

Lines: A line that has been fully drawn is shown in white. 

Construction lines: A construction line that has been fully 

drawn is shown in purple. 

Rubberbanded lines: A line (or construction line) that is 

currently being drawn and is being rubberbanded is shown 

in red until its endpoint position is specified. 

Selection lines: A line that is being displayed for possible 

selection (eg. as a line to connect to) is shown in 

green. 

Float connect lines: A line with a floating endpoint that has 

been selected in order to connect (or fix) its endpoint 

is shown in red. 
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5.7 Data Structures and Database Storage 

5.7.1 Primitive Data Structure 

Each line drawn in Paracad forms a record (referred to as a 

primitive record) Dynamic variables are used for these 

primitive records to allow efficient memory use and to avoid 

being constrained by the Turbo Pascal limit of 64 kbytes 

total memory for static variables and program. Dynamic 

variables can use the entire memory space of the machine. 

The primitive records form a linked list. Each primitive 

record has a pointer to the next record in the list and there 

are separate pointers to the first and last records in the 

list. As a new line is added to the drawing its corresponding 

primitive record is added to the end of the list. A list 

containing three primitive records is shown in Figure 5-1 

part (a) and the same list with a fourth primitive added is 

shown in Figure 5-1 part (b) . No deletion of records is 

necessary since Paracad does not support line deletion. 

The format of each primitive record is shown in Figure 5-2. 

Each of the 13 different data fields will now be considered 

in more detail: 
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first record 
pointer 

last record 
pointer 

next prim record 1 
pointer 

next 
pointer 

prim record 2 

next 
pointer prim record 3 

nil 

a) list containing 3 primitive records 

first record 
pointer 

last record 
pointer 

next prim record 1 
pointer 

next 
pointer 

next 
pointer 

next 
pointer 

nil 

prim record 2 

prim record 3 

prim record 4 

b) list with a 4th primitive record added 

Figure 5-1 Primitive Record List Structure 
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next prim start1 start2 start end end1 end2 
pointer number data data type type data data 

end3 end4 constraint constraint parameter 
data data type value pointer 

Figure 5-2 Primitive Record Format 

1. Next pointer 

This field is a pointer variable that contains the 

pointer to the next primitive record in the linked list. 

2. Prim number 

This field is an integer variable that contains the 

number of the current primitive. Each primitive has an 

associated unique number that is used to identify the 

primitive. 
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3. Startl data 

This field is a real variable that is used to store the x 

co-ordinate of the line's current startpoint. 

4. Start2 data 

This field is a real variable that is used to store they 

co-ordinate of the line's current startpoint. 

5. Starttype 

This field is an integer variable used for storing flags 

to indicate the type of startpoint the line has. 

Currently Paracad only supports actual positions or 

connect positions so only two different values - 0 for 

actual startpoint, $8000 (hexadecimal 8000) for connect 

startpoint. 

6. Endtype 

This field is an integer variable used for storing flags 

to indicate the type of endpoint the line has. An integer 

takes two bytes of storage in Turbo Pascal and so this 

allows 16 one bit flags. These flags are as follows: 
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Bit 16 - If the line is a construction line this bit is 1 

otherwise it is 0 

Bit 15 - If there is an unresolved floating endpoint for 

the line this bit is 1 otherwise it is 0. 

Bit 14 - If the line has a connect endpoint and is not 

directionally constrained (ie. not polar, 

horizontal or vertical) this bit is 1 and the 

2nd byte of the endtype field is unused (all 

bits set to 0). If the endpoint is not a connect 

or the line is directionally constrained this 

bit is 0. 

Bit 13 - If the line has an endpoint specified as an 

absolute value (absolute co-ordinates entered 

from either the keyboard or digitiser position) 

this bit is 1 and the second byte of the field 

is unused (all bi ts set to 0) , otherwise this 

bit is 0. 

Bit 12 - If the endpoint of the line is of the freefloat 

type (ie floating and not directionally 

constrained) this bit is 1 and the second byte 

of the field is unused (all bits set to 0), 

otherwise this bit is 0. 
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Bit 11 If the line endpoint has been defined as 

relative this bit is 1 otherwise it is O. If 

this bit is 1, the second byte of the field is 

used as follows: - bi ts 8 and 7 are 0 (unused) , 

bit 6 is 1 if the x offset is given as an actual 

value (otherwise it is 0), bit 5 is 1 if they 

offset is given as an actual value (otherwise it 

is 0), bit 4 is 1 if the x offset is a 

parametric value (otherwise it is 0), bit 3 is 1 

if they offset is a parametric value (otherwise 

it is 0), bit 2 is 1 if the x offset is floating 

(otherwise it is 0) and bit 1 is 1 if the y 

offset is floating (otherwise it is 0). Paracad 

currently does not allow relative lines with 

floating endpoints so the last two of these 

flags are not currently used. 

Bit 10 - If the line has been defined as polar this bit 

is 1 otherwise it is 0. If this bit is 1, the 

second byte of the field is used as follows: -

bit 8 is 0 (unused), bit 7 is 1 if the line has 

a connect endpoint (otherwise it is 0), bit 6 is 

1 if the line angle is given as an actual value 

(otherwise it is 0), bit 5 is 1 if the line 

length is given as an actual value (otherwise it 

is 0), bit 4 is 1 if the line angle is a 

parametric value (otherwise it is 0), bit 3 is 1 

if the line length is parametrically value 
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Bit 9 -

(otherwise it is 0), bit 2 is 1 if the line 

angle is floating (otherwise it is 0) and bit 1 

is 1 if the line length is floating (otherwise 

it is 0). Paracad currently does not allow polar 

lines with floating angles or lengths so the 

last two of these flags are not currently used. 

If the line has been defined as vertical or 

horizontal this bit is 1 otherwise it is 0. If 

this bit is 1, the second byte of the field is 

used as follows:- bit 8 is 1 if the line is 

vertical or 0 if horizontal, bit 7 is 1 if the 

line has an endpoint connect (0 otherwise), bit 

6 is 0 (unused) , bit 5 is 1 if the line length 

is given as an actual value (otherwise it is 0), 

bit 4 is 0 (unused) , bit 3 is 1 if the line 

length is parametrically defined (otherwise it 

is 0), bit 2 is 0 (unused) and bit 1 is 1 if the 

line endpoint is left floating. 

Bits 8 to 1 - If bits 11, 10 or 9 are set to 1, these 

bits are set as described for bits 11, 10 and 9 

above, otherwise they are all set to 0 (unused). 

7. Endl data 

This field is a real variable that is used to store the x 
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co-ordinate of the line's current endpoint. 

8. End2 data 

This field is a real variable that is used to store they 

co-ordinate of the line's current endpoint. 

9. End3 data 

This field is a real variable that is used to store 

endpoint information depending on the type of line. For a 

polar line it stores the current angle (in radians), for 

a line with a relative endpoint it stores the current x 

offset, and for all other lines it is unused. 

10. End4 data 

This field is a real variable that is used to store 

endpoint information depending on the type of line. For a 

vertical, horizontal or polar line it stores the current 

line length, for a line with a relative endpoint it 

stores the current y offset, and for all other lines it 

is unused. 
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11. Constraint type 

This field is an enumerated type variable that indicates 

the type of constraint on the line's endpoint. The 

possible values are vertically_constrained, 

horizontally_constrained, fixed and freefloat. The use of 

this field will be described in more detail in Section 

6. 7. 

12. Constraint value 

This field is a real number variable that stores the 

currently constrained value for directionally constrained 

line. The use of this field will be described in more 

detail in Section 6.7. 

13. Parameter pointer 

This field is a pointer variable that contains a pointer 

to the first parametric variable used by this line (if 

any are used). 
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5.7.2 Parameter Record 

Each primitive drawn in Paracad may have 0, 1 or 2 associated 

parameters. For example, a line with an absolute startpoint 

and absolute endpoint would have no associated parameters, a 

vertical line with parametric length would have one 

parameter, and a polar line with parametric length and 

parametric angle would have two parameters. To store these 

parameter names and link them to the corresponding primitive 

record could be done in three possible ways. 

The first method is to have variable size primitive records 

depending on the number of parameters involved (using 

Pascal's variant records for example), but to cover all the 

possible cases where a parameter could occur would require 

several different record forms, and if the package was 

extended to cover other primitives the number of cases would 

be even greater. This could be simplified somewhat by 

allowing only three variant record types one with no 

parameter name field, one with one parameter name field and 

one with two parameter name fields. If this method is used it 

is important to ensure parameter names are correctly matched 

with the dimension they represent in the two parameter field 

case - for example for a polar line with parametric angle and 

parametric length it is necessary for the program logic to 

have a specific order of parameter name storage so they can 

be correctly retrieved and the angle parametric name does not 

get used as the length parametric name. An added complication 
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arises when the parameters are given their actual values -

some form of linkage is required between the parameter names 

and their values. This necessitates either an extra field in 

the primitive record for each parameter value, or separate 

parameter value records either with pointers back to the 

primitive records or else parameter name fields within them. 

The different possibilities are illustrated in Figure 5-3 

with the two forms of parameter value storage indicated. If 

the same parameter name (and value) is to be used for more 

than one primitive, which is a reasonable requirement, 

modifications would be needed to this storage mechanism. 

The second method is to append each primitive record with two 

data fields for the names of the parameters and only use as 

many as are necessary for that primitive. This has the 

overhead of having two data fields associated with every 

primitive record, and one (or both) may not be used in many 

cases. As with the first method, the order the parameters are 

stored in is critical to ensure correct matching of names on 

retrieval, the linkage of names to values is still required, 

and modifications would be required to allow the same 

parameter name for more than one primitive. 

The third method is to have a single parameter pointer field 

in the primitive record that points to a separate parameter 

record (if one is needed) that in turn points to a second 

parameter record (if two are needed) . Again the order of 

parameter name storage is important, but no problems exist 
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variant 
pointer pointer 
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value primitive next variant 
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variant record L 

b) storing parameter name only with primitive record 

Figure 5-3 Possible Methods Of Storing Parameters 
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with linkage between the parameter name and value as both 

would be stored as part of the parameter record. This also 

simplifies processing and storage when the same parameter is 

used for more than one primitive and allows extra fields to 

be easily added to the parameter records (if required for 

future expansion). It also allows any number of parameters to 

be associated with a single primitive record without any 

modification and so lends itself to future expansion to other 

primitive types. This was considered the most attractive 

method of the three and so it is the one implemented in 

Paracad. Figure 5-4 illustrates the method. The parameter 

record in the parametric drawing program does not contain a 

value field, while the parameter record in the particular 

drawing program does. 

5.7.3 Affected Record 

The linkage between connect points is an important one in any 

parametric CAD system. Since line lengths and angles can vary 

with their parameters, so the positions of other lines 

connected to them also changes. It is possible for a single 

parameter change for one line to have a ripple-through effect 

causing changes in the position of every other line in the 

drawing. Further, during floating endpoint connection the 

fixing or connecting of one floating endpoint has an effect 

on all other interconnected floating lines. The processing 

involved in calculating these effects can be considerable and 
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so it is essential that the mechanism used to indicate line 

interconnections permits fast access. 

primitive record 

parameter record 
pointer 

parameter record 

parameter next parameter 
name record pointer 

parameter record 

parameter next parameter 
name record pointer 

Figure 5-4 Method Of Storing Parameters In Paracad 

Initially Paracad was designed with line interconnection data 

stored as part of the primitive record, but this became too 

unwieldy for floating line connection processing and also 

required considerable storage overhead in fields needed in 

the primitive record - fields that would be unused if the 

primitive was not connected to another. To find out what 

lines were connected to each other it was necessary to scan 
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all primitive records (several times in many cases) and then 

deduce interconnections. For example, to find out what lines 

were affected by line 1 it was necessary to scan all 

primitive records to find connections to line 1 and if any 

line was connected, line 4 say, it was then necessary to scan 

all primitive records again for a reference to line 4 and so 

on. 

first record 
pointer 

last record 
pointer 

next affected record 1 
pointer 

next affected record 2 
pointer 

next 
pointer 

nil 

affected record 3 

Figure 5-5 Affected Record List Structure 

It was quickly apparent that this method of connect data 

storage was unsatisfactory, so an alternative method is now 

implemented. This involves having separate records containing 

connection data. These records are called affected records 

and are dynamic records in a linked list. This affected 

records list has been set up to enable fast processing of 
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both normal connections and floating endpoint connections as 

described in Sections 6.6 and 6.7. The list structure has a 

separate pointer to the first and last records and each 

record in the list has a pointer to the next record as shown 

in Figure 5-5. 

controlling affected controlling affected lineequation next 
primitive primitive point point ratio affected 

pointer 

Figure 5-6 Affected Record Format 

The format of each affected record is shown in Figure 5-6. An 

explanation of each of the 6 fields follows: 

1. Controlling primitive 

This field is an integer variable that stores the 

primitive number of the primitive that causes some other 

primitive to be affected because of this particular 

connection. 

2. Affected primitive 

This field is an integer variable that stores the 
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primitive number of the primitive that is affected by this 

particular connection. 

3. Controlling point 

This field is an enumerated type variable that indicates 

the position on the controlling primitive where the 

affected primitive is connected. Current allowable 

positions are linestart, lineend, line middle and line 

equation. 

4. Affected point 

This field is an enumerated type variable that indicates 

the point on the affected primitive that is connected to 

the controlling point. Current allowable positions are 

linestart, lineend, line middle and line equation. 

5. Line-equation ratio 

This field is a real variable that stores the ratiometric 

position of a connect point for a line equation 

connection. This is described in more detail in Section 

6.6. 
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6. Next affected pointer 

This field is a pointer variable that stores the pointer 

address to the next affected record (if there is one). 

For more information on the method of primitive connection, 

refer to Sections 6.6 and 6.7. 

5.7.4 Entry Record 

The method used for parameterisation in Paracad follows 

through each primitive addition and float connection in the 

order they were performed during construction of the 

parametric drawing (refer Section 6. 8) . This requires the 

order these actions are performed in to be recorded. This is 

done by using entry records. An entry record is a variant 

record with two different forms - one for adding primitives 

and one for float connections. These records are stored in a 

linked list with a separate pointer to the first and last 

record in the list. The two different formats for entry 

records are shown in Figure 5-7. The various fields in these 

records are as follows: 
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floating 

add 
primitive 

next entry 
record pointer 

a) primitive addition form 

connect connect next entry 
primitive primitive position record pointer 

b) float connect form 

Figure 5-7 Entry Record Formats 

1. Add primitive 

This field is an integer variable that stores the 

primitive number of the primitive that is being added. 

2. Next entry record pointer 

This field is a pointer variable that stores the pointer 

address of the next entry record (if there is one). 
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3. Floating primitive 

This field is an integer variable that stores the 

primitive number of the primitive with the floating 

endpoint that is being connected. 

4. Connect primitive 

This field is an integer variable that stores the 

primitive number for the primitive that the floating 

endpoint is being connected to. 

5. Connect position 

This field is an enumerated type variable that stores the 

position on the connect primitive where the floating 

endpoint of the floating primitive is being connected to. 

The positions allowed within Paracad are linestart, 

lineend, linemiddle and line equation. 

5.7.5 Queue record 

The method of connecting floating endpoints adopted in 

Paracad is described in detail in Section 6.7. This method 

involves searching the affected primitives list to find any 
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primitives affected by the one that is being connected. If 

any are, they are added to a queue (that is initially empty). 

Once the search reaches the end of the affected records list, 

the primitive that is first in the queue is taken and another 

scan is made of the affected records to see if any are 

affected by this primitive and so on until the queue is 

empty. The records stored in the queue are called queue 

records and are dynamic records that are stored in a linked 

list with a pointer to the first and last record in the list. 

The format of each queue record is illustrated in Figure 5-8. 

primitive primitive next queue 
number type pointer 

Figure 5-8 Queue Record Format 

The various fields in these queue records are as follows: 

1. Primitive number 

This field is an integer variable that stores the 

primitive number for the primitive being added to the 

queue. 
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2. Primitive type 

This field is an enumerated type variable that indicates 

how the primitive endpoint is constrained. Possible values 

for this field are vertically constrained, horizontally 

constrained, fixed and free floating. 

3. Next queue pointer 

This field is a pointer variable that stores the pointer 

address of the next queue record (if there is one). 

5.7.6 Primscovered Record 

During the float connect stage 

are being connected) scans 

(ie. when floating endpoints 

are made of the affected 

primitives records to find any primitives affected by the 

current queue record (this process is discussed in more 

detail in Section 6.7). Once all affected records have been 

scanned for the current queue primitive the record is removed 

from the queue. To prevent it being put back in the queue by 

a subsequent affected record Paracad employs a list 

containing primitives that have been covered by an affected 

records scan. This list, called the primscovered list, 

consists of dynamic record variables in a linked list with 
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pointers to the first and last elements in the list. The 

format of each primscovered record is shown in Figure 5-9, 

and each field is described in detail below. 

primitive 
number 

next primscovered 
record pointer 

Figure 5-9 Primscovered Record Format 

1. Primitive number 

This field is an integer variable that stores the number 

of the primitive that has been covered by an affected 

records list scan. 

2. Next primscovered record pointer 

This field is a pointer variable that stores the pointer 

address of the next primscovered record (if there is one). 
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5.7.7 Check Record 

When a floating endpoint is being connected to another 

primitive it is important to ensure that a connection causing 

a circular float conflict is not made. A simple example of a 

circular float conflict is if lines 1 and 2 are both 

floating, the endpoint of line 1 is float connected to the 

midpoint of line 2, and then an attempt is made to float 

connect the endpoint of line 2 to the midpoint of line 1. 

This circular float conflict involves only two primitives, 

but in practice any number of primitives can be involved 

(circular float conflicts are discussed in more detail in 

Section 6. 7) . In order to detect such conflicts, Paracad 

builds up a list of circularly affected primitives during a 

float connect. The elements of this list are called check 

records and are dynamic record variables. The format of a 

check record is shown in Figure 5-10 and the contents of each 

field is described below. 

primitive next check 
number record pointer 

Figure 5-10 Check Record Format 
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1. Primitive number 

This field is an integer variable that stores the number 

of the primitive that is being added for check purpose. 

list scan. 

2. Next check record pointer 

This field is a pointer variable that stores the pointer 

address of the next check record (if there is one). 

5.8 File Handling (Saving and Loading) 

During the parametric drawing construction phase Paracad 

provides the ability to save and/or reload any partially or 

fully completed parametric drawing. During the particular 

drawing construction phase it allows the loading of any 

parametric drawing, but will not permit processing if the 

drawing has any lines with floating endpoints that have not 

been fixed. 

Saving a partially or fully completed parametric drawing 

involves saving, as separate files, the primitive records, 

the entry records, the affected primitive records and the 

parameter records. Since all pointer variable linkages that 

exist when a drawing is saved will be incorrect when the 
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drawing is reloaded again, an alternative to pointers is 

necessary in the files saved. For the entry record, affected 

primitive record and parameter record files the records are 

stored, without pointers, in their linked list order. The 

primitive records are also stored in their linked list order, 

and the parameter pointer field that points to the first 

parameter record associated with this primitive is changed to 

store an integer that gives the position of the parameter 

record in the parameter file (it is set to zero for 

primitives that have no associated parameters). 

When a parametric drawing is to be loaded, either during the 

parametric drawing construction phase or the particular 

drawing construction phase, all these files are read back in 

again and the pointer records re-established. 
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CHAPTER 6 

PARACAD USER INTERFACE 

The way the user operates Paracad and the way it responds to 

the user is discussed in this chapter. Direct responses (such 

as the menu structures) are described as are the algorithms 

used for implementing these responses (such as the method of 

selecting primitives, the way line connects operate and so 

on) . Both the parametric drawing phase and the 

parameterisation phase (and its output) are covered. 

6.1 Menu Structure 

Paracad is a menu-driven package with the various menus 

forming a tree structure. The top three lines of the graphics 

display screen are reserved for menus and text. For menu 

displays, the top line is used for a description of the menu 

(eg. Main Menu, Add Line Endpoint etc.) while the second and 

third line display allowable choices. A selection is made by 

typing the first letter of the required menu item. To exit 

from a menu to the menu above the user selects the Quit menu 

item. An outline of the menu structure employed in Paracad is 

displayed in Appendix B. 
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6.2 User Friendliness 

Since Paracad is an interactive package it is important that 

the user feels comfortable with its use. Necessary 

consequences of this are to have a sensible menu structure 

with easy to understand options, consistency in software 

actions, user feedback to ensure the user is kept informed of 

what is happening and fast response to all user actions 

wherever possible or an indication of what is happening if 

this is not practicable. 

Considerable efforts have been made to make the menu 

structure easy to understand and use and to ensure 

consistency throughout. An improvement that should be 

considered on any full implementation is an on-line help 

facility to explain in detail the actions of any menu choice. 

User feedback is employed in a number of ways. Whenever an 

invalid menu choice is made or an illegal action is attempted 

the system emits an audible error "beep" and displays a 

message (if appropriate). 

If the user is required to enter data either from the 

keyboard or the digitiser the system emits an audible prompt 

"pip" of shorter duration than the error beep to indicate to 

the user that some action is required. Whenever digitiser 

action is permitted the cursor is displayed on the screen and 

moves in synchronisation with the digitiser stylus. If 
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digitiser input is not permitted the cursor is not displayed. 

Rubberbanding is used when a primitive is being drawn to show 

how the primitive would appear if the current digitiser 

stylus position was selected. The 

rubberbanded is also drawn in a different 

primitive being 

colour from the 

other primitives to make it stand out. Once the endpoint 

position is selected the primitive colour reverts back to the 

same coiour as the other primitives. 

Rubberbanding of some primitives involves more calculation 

than others. For example the endpoint of a primitive that has 

no directional constraints can follow the cursor anywhere, 

while a polar line say has only its x or y endpoint co­

ordinate defined by the cursor and the other co-ordinate must 

be calculated by some formula. The algorithms used in Paracad 

for calculating such co-ordinates have been optimised for 

speed and there is no noticeable difference in the speed at 

which any type of line endpoint tracks the cursor. 

Initially Paracad flashed the primitive being drawn on and 

off during rubberbanding, but the flash rates were so fast 

for some lines that they appeared to be invisible at times. 

This is now changed so that during rubberbanding a line is 

kept continuously displayed unless the digitiser moves the 

cursor by at least a pixel. When this occurs the old 

rubberband line is erased and a new one drawn. This results 

in a far steadier and more aesthetically pleasing display. 
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Any primitive that is selected for some action in Paracad 

(for example for a connection to be made to) is displayed in 

a different colour from other primitives to enable it to 

stand out. During a connect the cursor becomes "locked" on 

the line selected to connect to. 

6.3 Directionally Constrained Lines 

At all stages within Paracad, the endpoint position specified 

for a vertical line determines the lines y co-ordinate only -

the x co-ordinate is made the same as that for the lines 

startpoint. This is true regardless of whether the endpoint 

is specified by digitiser, absolute co-ordinates, connection 

to another line, by parametric definition or whether the line 

is tracking the cursor during rubberbanding. Similarly for 

horizontal lines the endpoint position specified defines the 

x co-ordinate only at all times. 

For polar lines the endpoint position always specifies the x 

co-ordinate for lines that are more nearly horizontal than 

vertical or the y co-ordinate for lines more vertical than 

horizontal. 

The above rules for endpoint determination of directionally 

constrained lines were implemented to provide a consistent 

behaviour pattern for such lines and to avoid any conflicting 

problems that may arise in the construction of parametric 
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drawings such as that shown in Figure 3-3 and discussed in 

Section 3. 3. In this case, if the endpoint of line 4 was 

defined as being connected to the startpoint of line 1 (at 

point A) then point A would merely be supplying the y co­

ordinate of line 4 and line 4 would not actually go to point 

A except in the special case where parameters a and c were 

supplied with the same values. 

6.4 Primitive Selection Methods 

During the parametric drawing construction phase in a Paracad 

session it is often a requirement to select a primitive - for 

example to connect a line to. The method adopted for this is 

to select the required line by first using the digitiser to 

move the cursor to a point close to the line. The software 

then uses a two-level elimination process to locate the 

primitive. 

The first level elimination involves taking the first 

primitive stored and checking to see whether the cursor lies 

within its extents - ie. whether the cursor falls within the 

rectangle enclosing the primitive. This is performed by 

testing whether the cursor's x value falls within the x 

values covered by the primitive and the cursor's y value also 

lies within the y range covered by the primitive) If the 

cursor is not within both x and y extents, the line is 

rejected and the next line is tested. This provides a very 
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rapid method of eliminating almost all unwanted lines, but 

can lead to some primitives being accepted that the user may 

find rather strange [FOL. 1984]. As an example of this 

consider Figure 6-1. 

-------------------------- 7 

\+A 
1 ine 2\ 

line 1 

j - - - -
screen 

Figure 6-1 Unusual Extent Selection 

The cursor is placed at point A to select line 2. If line 1 

is stored first in the database then it will come up as the 

first line that passes the extent test. As far as users are 

concerned this is a poor action since it is obvious that line 

2 is required. Users should not need to be aware of the 

strategy used by the software for primitive selection, they 
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merely want actions that seem reasonable. 

To avoid problems like that described above a second level of 

elimination is provided. If a primitive passes the extent 

test, a calculation is then made to see whether the cursor is 

within a certain number of screen pixels, called a trap 

range, of the line. If not, the line is rejected and the 

search moves on by extent testing the next line. If the trap 

range test is successful, the primitive is displayed in a 

different colour and the user is asked whether it is the 

required primitive. If not, the search continues. The trap 

distance, in pixels, can be readily changed in Paracad. For 

calculating whether the cursor is within the lines trap 

distance, the equation of the line is deduced (since its 

current startpoint and endpoint are known) and the cursor's x 

value put into this equation (vertical and horizontal lines 

are treated as special cases) and a y value is obtained. This 

is then tested to see whether it is within the trap range of 

the cursor's y value. 

This search strategy has the advantage of eliminating the 

majority of primitives that are not near the cursor by the 

very quick extent test, and the few that pass this test but 

are still a long way from the cursor are then rejected by the 

much slower but more precise trap range test. To the user the 

selection process appears almost instantaneous. 
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6.5 Construction Lines 

During the parametric drawing construction phase in Paracad, 

construction lines are added in the same way as ordinary 

lines - they can have connect, polar, floating etc. endpoints 

and can be parametrically defined. The major difference is 

that construction lines are shown in a different colour from 

other lines to distinguish them once they have been drawn. 

During the particular drawing construction phase construction 

lines are only displayed while the parameter values are being 

obtained. Once this is done, the particular drawing is 

displayed with no construction lines visible. In a full 

implementation it may be worthwhile having a user-selectable 

visibility option to allow the optional display of 

construction lines on a particular drawing (and possibly even 

to control their visibility on a parametric drawing). 

6.6 Connects 

Any new line that is added in Paracad may have its startpoint 

or endpoint (or both) connected to existing lines. As 

described in Section 4.9 a connect may be made to a 

startpoint, endpoint, midpoint, or equation point (in the 

case of a vertical, horizontal or polar line the equation 

point is the point of intersection; for all other lines it is 

the locus of all points on the line to connect to - extending 
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to the screen extremities). For later processing of connected 

lines, particularly during float connects and parameter­

isation, it was decided to have a linked list of records 

describing the interconnections. Each record stores the 

primitive number of the line being connected, the line it is 

being connected to, the relevant point on the line being 

connected (ie. whether it is the line startpoint or endpoint 

being connected) and the point it is being connected to (ie. 

whether it is linestart, 

equation) . 

lineend, linemiddle or line 

As an example of the use of this affected records list, 

suppose line 1 has a parametric length and line 2 has its 

startpoint connected to the midpoint of line 1. When a 

particular drawing is constructed, the value provided for the 

length of line 1 will cause line 1 to change its length. A 

scan can then be made of all affected records to see which 

lines are affected by line 1 and these lines would in turn 

have their corresponding positions changed, so this scan 

would indicate that the start of line 2 must be moved to the 

new position of the midpoint of line 1. This in turn may lead 

to changes in the endpoint of line 2 (eg. if it is defined as 

a vertical line) . Another scan would then be made of the 

affected records to find any lines affected by line 2 and so 

on. 

Whenever a connect is made in Paracad an affected record is 

also created and added to the end of the linked list. 
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Because the positions and lengths of lines can change in a 

parametric drawing a design decision was made for Paracad 

that a line equation connect to a line (by a freefloat line) 

will result in the line being connected retaining its 

proportional position on the line it is being connected to if 

this line should change its length or position. Figure 6-2 

illustrates an example of a line equation connect where line 

2 is connected to line 1 at point P. 

p 

/ 
/ 

/ 

line 2 

Figure 6-2 Line Equation Connect Position 

The ratio b/a is saved as part of the affected record (where 

a is the length of the line being connected to and b is 

distance from the startpoint of the line being connected to 

to the connect position). For any particular drawing, this 

ratio is maintained regardless of any change in the position 
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and length of line 1. The length b is considered to be a 

directed length (ie. a negative value for b indicates the 

connect point is in the opposite direction from the 

startpoint to endpoint direction. This is shown in Figure 6-

3. The ratio b/a will always have the same sign as b. 

end 

start 

line being 
connected to 

a) example 1 

start 

b) example 2 

end 

Figure 6-3 Sign Notation For Line Equation Ratio 
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This means if a connect point is placed 2/3 of the way along 

a line in a parametric drawing, it will always be 2/3 of the 

way along that line in any particular drawing. In Figure 6-2 

if length a becomes a' in a particular drawing, b' is easily 

calculated by similar triangles to give the formula 

b' = (a' x b)/a 

Whenever a vertical, horizontal or polar line endpoint is 

connected to another line some form of calculation is 

required. For a vertical line endpoint connect to the 

startpoint, endpoint or midpoint of another line the 

calculation is trivial since the point being connected to 

provides they value of the vertical line's endpoint and the 

x value of the vertical line's endpoint is the same as its 

startpoint. For a connect to the line equation the 

intersection point between the vertical line and the line 

being connected to is required. First a check is made to 

ascertain whether the line being connected to is also 

vertical (if it is Paracad does not permit the line equation 

connect as there is no intersection point). 

Any line can be defined by the linear equation y = mx + c 

where mis the slope of the line and c is the intersection 

point of the line to connect to and they axis. The equation 

is also given by y - Y1 = m(x - Xl) where (x1,Y1) is any 

point on the line. Further, m = (Y2 - Y1)/(x2 - x1) where 

(Y1,x2) is any other point on the line. From this we get 

y = (Y2 - Y1)/(x2 - X1)X + (Y1 - xl ( (Y2 - Y1)/{x2 - x1)) 
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and so we get the following: 

m = <Y2 - Y1)/(x2 - x1) 

and c = Y1 - mx1 

for the formula y = mx + c 

For calculating the intersection point in Paracad, the co­

ordinates of the startpoint of the line being connected to 

are taken as (x1 ,y1 ) and the endpoint co-ordinates are taken 

as (x2,Y2 ), y is they co-ordinate of the connect point and x 

is the x co-ordinate of the connect point (this is the same 

as the x co-ordinate of the vertical line's startpoint, so it 

is known). Note that if the line being connected to is also 

vertical, this method will fail since it will give a zero 

denominator form. To avoid this a check is made at the start 

to ensure the line is not vertical (which would make the two 

lines parallel). 

For a horizontal line endpoint connect a similar approach is 

used - for linestart, lineend or linemiddle connects the 

point provides the x co-ordinate of the connect point and the 

y co-ordinate is the same as the y co-ordinate for the 

horizontal line startpoint. For a line equation connect the 

lines are again checked to ensure they are not parallel, but 

the above formula cannot be used because the line being 

connected to could now be vertical and thus the x 2 - x 1 

denominator would be zero. The formula used in this case is: 
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x = m'y + c' 

where m' = (x2 - x1)/(y2 - Y1) 

and c' = x 1 - m'y1 

(x1,Y1) and (x2,Y2) are the same as for the vertical case, 

and y is they co-ordinate of the horizontal line startpoint. 

This is also the same as its endpoint. Note that this formula 

cannot be used if the line being connected to is horizontal 

as this would make the denominator form' zero. This prevents 

this formula also being used for the vertical line case 

above. 

For polar line endpoint connects the polar line is first 

checked to see if it is either vertical or horizontal. If so, 

the connect is processed as for vertical and horizontal 

connects described above. If not, two different sets of 

formulae are used depending on whether the polar line is more 

vertical than horizontal or vice versa. In the case of a 

polar line that is more vertical the following formulae are 

used: 

For linestart, lineend or linemiddle connects the y co­

ordinate of the point selected provides they co-ordinate of 

the connect point. The x co-ordinate of the connect point is 

then found using the formula 

x = x 3 + (y1 - y 3 )/tan0 

where (x1 ,y1 ) is the startpoint of the line to connect to, 

(x3 ,y3 ) is the startpoint of the polar line, y is they co-
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ordinate of the polar line endpoint and tan0 is the slope of 

the polar line. Note that there will never be a zero 

denominator since the line is more vertical than horizontal 

hence 0 cannot be zero. Similarly tan0 will not be infinite 

since this only occurs for a vertical line which is treated 

as a separate case. 

For a line equation connect the line being connected to is 

checked to see if it is parallel to the polar line. If so, no 

line equation connect is possible. If not, the formula used 

to calculate the x co-ordinate of the intersection point is 

and for they co-ordinate it is 

For the case when the polar line is more horizontal than 

vertical the same formula is used for a line equation connect 

as that shown above for the more vertical case. For 

linestart, lineend or linemiddle connects the x co-ordinate 

of the point selected provides the x co-ordinate of the 

connect point. They co-ordinate of the connect point is then 

found using the formula 

Y = Y3 + (x1 - x 3 )tan0 
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6.7 Float Connects 

Float connect refers to the process whereby a floating line 

endpoint is connected to some other line (which in turn may 

or may not be floating). It is the only time Paracad permits 

a floating endpoint to be connected to some other primitive. 

In Paracad floating endpoints are shown on the graphics 

display with an open circle. When they are float connected to 

some other point the circle is filled in to indicate a 

connect, and if the floating point becomes fully defined or 

fixed then the colour of the circle is changed. 

6.7.1 The Float Connect Problems 

Two major difficulties arise in the processing of float 

connects. The first problem is that many floating lines may 

have their endpoints and midpoints interconnected until 

eventually one of them becomes fixed. This will then fix all 

the other lines and so some means of updating all these other 

affected lines is required. 

The second problem is that normally when a floating endpoint 

is float connected to a freefloat line midpoint or endpoint 

the two lines still remain floating, but sometimes other 

interconnections may have been made to the freefloat line 

that could have made it partially constrained in such a way 

that the floating lines now become fully defined. This is 
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shown in Figure 6-4 where part (a) shows line 1 (a vertical 

line with floating length) float connected to the endpoint of 

line 2 (a freefloat line). 

line 3 
horizontal, 
floating 
I o 

line 2 
freefloat 

line 1 
vertical, 
floating 

a) original line positions 

line 3 line 1 

line 2 

b) final line positions 

Figure 6-4 A Float Connect Problem 

This cause!:; line 2 to have its endpoint x co-ordinate fixed 

to that of line 1. If line 3 a horizontal line with 

floating lengt>.) is now float connected to the midpoint of 

line 2 then they co-ordinate of the midpoint of line 2 is 

now fixed. Since tne startpoint of line 2 is fixed, this now 

completely defines line 2 and so it is now a fixed line and 

it in turn fixes lines 1 and 3 as shown in part (b) of Figure 
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6-4. Since a much larger number of floating lines than the 

three shown in Figure 6-4 could be interconnected together 

some rapid method is needed to find out what partial 

constraints, if any, exist on any floating lines that are 

being connected together. This is done by using two fields in 

the primitive record for constraint type and constraint 

value. 

6.7.2 Constraint Fields 

Since Paracad does not permit polar lines with floating 

angles (for reasons of ambiguity discussed in Section 4.10) 

the only partial constraint types required are vertical, 

horizontal, fixed or freefloat. 

A vertical constraint type indicates the line has its 

endpoint x co-ordinate defined. This is the case for lines 

that have been initially entered as vertical floating lines 

or for freefloat lines that have a connection between their 

endpoint or midpoint and another line that is vertically 

constrained. The constraint value field of the primitive 

record contains the value of this x co-ordinate. 

A horizontal constraint type indicates the line has its 

endpoint y co-ordinate defined. This is the case for lines 

that have been initially entered as horizontal floating lines 

or for freefloat lines that have a connection between their 
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endpoint or midpoint and another line that is horizontally 

constrained. The constraint value field of the primitive 

record contains the value of this y co-ordinate. 

A fixed constraint type indicates the line's endpoint is not 

floating. This is the case for all lines entered without a 

floating endpoint and for all floating lines that have become 

fully defined by float connects. The constraint value field 

is not used for fixed constraint types. 

A freefloat constraint type indicates the line's endpoint is 

unconstrained directionally. This is the case for any line 

entered as a freefloat line that has either not been float 

connected to any other line or else only float connected to 

the midpoint or endpoint of other lines that have freefloat 

constraint types. The constraint value field of the primitive 

record is not used for freefloat constraint types. 

Whenever a primitive is added, its constraint type and value 

fields are set to the appropriate values. If a float connect 

is made these fields are updated accordingly for both the 

lines involved in the connection. In the example shown in 

Figure 6-4 the original constraint types would have been 

vertically constrained, freefloat and horizontally 

constrained for lines 1, 2 and 3 respectively. Lines 1 and 3 

would also have constraint values representing their constant 

x and y values respectively. When line 1 is float connected 

to the endpoint of line 2 there is no change to the 
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constraints on line 1, but line 2 now has constraint type 

vertically constrained with the same constraint value as line 

1. When line 3 is float connected to line 2 the constraint 

type of all three lines is changed to fixed. 

6.7.3 Constraint Field Updating 

When a float connect is made the constraint fields may need 

updating for one or both of the lines involved. The different 

possible combinations are connecting a floating endpoint 

(regardless of constraint type) to a fixed line or to a line 

startpoint, a line endpoint with freefloat constraint type to 

(the middle or endpoint of) a freefloat line, a freefloat 

endpoint to a horizontally constrained line or vice versa, a 

freefloat to a vertically constrained line or vice versa, a 

vertically constrained endpoint to a horizontally constrained 

line or vice versa, a vertically constrained endpoint to a 

vertically constrained line and a horizontally constrained 

endpoint to a horizontally constrained line. The action taken 

in Paracad for each of these cases is: 

Any floating endpoint to fixed line midpoint or endpoint -

the endpoint becomes fully defined so its constraint type is 

changed to fixed and the floating line is redrawn with its 

new endpoint. 
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Any floating endpoint to line startpoint - since startpoints 

are all fixed in Paracad the endpoint becomes fully defined 

so its constraint type is changed to fixed and the floating 

line is redrawn with its new endpoint. 

Freefloat endpoint to midpoint or endpoint of freefloat line 

- both lines remain freefloat although they now are linked 

together. The line being connected is redrawn with its 

endpoint moved to (the midpoint or endpoint of) the line 

being connected to. 

Freefloat endpoint to midpoint or endpoint of horizontally 

constrained line (or vice versa) the freefloat line 

endpoint becomes horizontally constrained so its constraint 

type is changed accordingly and the constraint value is 

updated to store they co-ordinate of its line endpoint. No 

change is made to the horizontal line's constraint fields. 

The freefloat line is then redrawn in its connected position. 

Note that if the connect was a horizontally constrained 

endpoint connect to a freefloat line midpoint the constraint 

value will not be the same as the y co-ordinate of the 

horizontal line. This is illustrated in Figure 6-5. If line 1 

with startpoint co-ordinates (xa, Ya> and endpoint co­

ordinates (xb,Yb) is float connected to the midpoint of line 

2, which has startpoint co-ordinates of (x1 ,y1 ) then the co­

ordinates of the new endpoint of line 1 will be (x2 ,y2) 

where x 2 = 2xb - x1 

and Y2 = 2yb - Y1· 
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The constraint value stored will be y2 . 

line 1 

horizontal, 
floating 

line 2 
free float 

a) original line positions 

y co-ordinate is -----­
constraint value 

line 1 

line 2 

b) connected line positions 

Figure 6-5 Constraint Values Stored 
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Freefloat endpoint to midpoint or 

constrained line (or vice versa) 

endpoint of vertically 

the freefloat line 

endpoint becomes vertically constrained so its constraint 

type is changed accordingly and the constraint value is 

updated to store the x co-ordinate of its line endpoint. No 

change is made to the vertical line's constraint fields. The 

freefloat line is then redrawn in its connected position. 

Note that if the connect was a vertically constrained 

endpoint connect to a freefloat line midpoint the constraint 

value will not be the same as the x co-ordinate of the 

vertical line as described in the horizontal line case above. 

Vertically constrained endpoint to midpoint or endpoint of 

horizontally constrained line (or vice versa) - both lines 

will become fully defined since the horizontal line provides 

they co-ordinate of the connect point and the vertical line 

provides the x co-ordinate. Both lines have their constraint 

types changed to fixed. Note that if the connect was to the 

midpoint of one line rather than its endpoint the new 

endpoint will need to be calculated for this line. 

Vertically constrained endpoint to midpoint or endpoint of 

vertically constrained line both lines still remain 

floating. No change is made to their constraint types. The 

line being connected is changed in length so its endpoint has 

the same y co-ordinate as the midpoint or endpoint of the 

line it is being connected to and no change is made to its 

constraint value. This is shown in Figure 6-6 where line 1 is 
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float connected to the midpoint of line 2. 

line 1 
vertical, 
floating 

line 2 
vert i ca 1. 
floating 

a) original line positions 

line 1 1 ine 2 

b) 1 ine 1 float connected to 
line 2 midpoint 

Figure 6-6 Vertical To Vertical Float Connect 

Horizontally constrained endpoint to midpoint or endpoint of 

horizontally constrained line both lines still remain 

floating. No change is made to their constraint types. The 

line being connected is changed in length so its endpoint has 

the same x co-ordinate as the midpoint or endpoint of the 

line it is being connected to and no change is made to its 

constraint value. 
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line 3 

line 3 
horizontal, 
floating 

I ine 2 \ 
free float\_ 

line 1 
vertical, 
floating 

a) original line positions 

line 2 line 2 

line 3 

line 1 

line 1 

b) 1 ine 3 float connected to 
midpoint of line 2 

c) line 2 float connected to 
endpoint of line 1 

Figure 6-7 A Float Connect Example 
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6.7.4 Examples Of Float Connects 

Two additional examples are appropriate to further illustrate 

the float connect process. 

Figure 6-7 shows the same lines used in Figure 6-4 with the 

connects made in the reverse order. Part (a) shows the 

original lines. Part (b) shows the result when line 3 is 

float connected to the midpoint of line 2 - this causes line 

2 to move and its endpoint becomes horizontally constrained. 

Part (c) shows line 2 float connected to the endpoint of line 

1 which causes all three lines to be fixed. Notice that the 

final positions and lengths of the lines are the same in both 

Figure 6-4 and Figure 6-7. 

Figure 6-8 shows a case when connecting two lines that are 

originally freefloating and then become constrained can cause 

several lines to become fixed. Part (a) shows the original 

lines. Part (b) shows the effect of connecting line 2 to the 

endpoint of line 1 and line 3 to the endpoint of line 4, 

causing line 2 to become horizontally constrained and line 3 

to become vertically constrained. Part (c) shows the effect 

of connecting line 2 to the endpoint of line 3, causing lines 

2 and 3 to become fixed and thus also fixing lines 1 and 4. 
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line 1 
horizontal, floating 

tine 2 
/ freefloat 

~ 
freefloat 

line 4 
vertical 
floating 

a) original line positions 

line 1 line 1 

line 2 

line 3 

line 4 

line 4 

b) line 2 connected to line 1 
line 3 connected to line 4 

c) 1 ine 2 connected to line 3 

Figure 6-8 A Second Float Connect Example 
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6.7.5 Sphere of Influence 

Float connects require fast checking of the primitives 

affected by any selected primitive. To enable this a "sphere 

of influence" system is employed in Paracad. This involves 

having a list of all primitive points that are affected by 

some other primitive. The records in this list are the 

affected records outlined in Section 5.7.3. New records are 

added to the affected records list whenever a connect is made 

- whether it is a normal connect or a float connect. The 

action taken for a normal connect is outlined in Section 6.6. 

For a float connect, a record is always set up with the 

floating point being connected as the affected point and the 

point it is being connected to as the controlling point. In 

addition, a further record is set up if the point being 

connected to is not fixed (or does not become fixed by the 

float connect that has just been made) . In this record the 

affected point is the point being connected to, and the 

controlling point is the point being connected. An example 

will indicate the need for this step. Suppose lines 1 and 2 

both have freefloat endpoints and line 1 is float connected 

to the endpoint of line 2. If line 1 is then float connected 

to some other fixed primitive then line 1 controls the 

position of line 2 rather than the other way around, while if 

line 2 is float connected to a fixed primitive then it 

becomes the controlling primitive over line 1. 
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Whenever the endpoint of any floating primitive becomes fully 

defined (fixed) a scan is made of all affected records to 

find any other primitives affected by this primitive and 

corresponding changes are made to them. These affected 

primitives may in turn affect other primitives and so the 

affected records list is also scanned with them as 

controlling primitive. 

It is not sufficient to have a single scan of the affected 

records list in an attempt to locate all affected primitives. 

This can be shown with the aid of Figure 6-9. If the float 

connect sequence is A to B then A to C then D to Ethen we 

get the following sequence of affected records: 

a) line 3 point A controlling line 2 point B 

b) line 2 point B controlling line 3 point A 

c) line 3 point A controlling line 1 point C 

d) line 1 point C controlling line 3 point A 

e) line 4 point E controlling line 1 point D 

At this stage point D becomes fixed and so line 1 is fully 

defined and can be redrawn. If we now scan through this 

affected records list in reverse order to update other 

affected lines we can ignore record (e) since we have just 

processed it. Record (d) indicates line 1 point C controls 

line 3 point A so line 3 also becomes fixed and can be 

redrawn. We are now interested in both lines 1 and 3 as 

controlling primitives. Record (c) is ignored as the affected 

primitive (line 1) has been fixed. Record (b) is ignored 

since the controlling primitive (line 2) is not yet in the 
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fixed list. Record (a) causes line 2 to become fixed and so 

it is redrawn. So in this example, a single scan, with a 

growing list of possible controlling primitives, was 

sufficient to catch all primitives affected. 

Suppose instead the connecting sequence was B to C then A to 

B then D to E. This gives exactly the same drawing as before, 

but now the affected records list is: 

a) line 2 point B controlling line 1 point C 

b) line 1 point C controlling line 2 point B 

c) line 3 point A controlling line 2 point B 

d) line 2 point B controlling line 3 point A 

e) line 4 point E controlling line 1 point D 

Point Dis now fixed so line 1 is fully defined. Record (d) 

is ignored as the controlling primitive (line 2) is not yet 

in the fixed list. Record (c) is similarly ignored as the 

controlling primitive (line 3) is not yet in the fixed list. 

Record (b) results in line 2 becoming fixed and being 

redrawn. Record (a) is ignored as the affected primitive 

(line 1) is fixed. Note that this scan has not fixed line 3 

at any stage and this indicates that a single scan of the 

affected records is not sufficient to ensure all lines that 

should be fixed will be located. 

The approach used in Paracad to overcome this problem is by 

having a queue list as explained in the next section. 
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6.7.6 Queue List 

Paracad has a list (called a queue list) for each new line 

that becomes fixed during an affected records scan. Initially 

the queue list will have only the line that was fixed by the 

float connect. A scan is made of the affected records list 

and every new primitive affected by this line is added to the 

queue list. At the end of the scan the next record is taken 

off the queue list and a new scan is made of the affected 

records and so on until the queue list is empty. This ensures 

every line that should become fixed does get fixed, but a 

method is needed to ensure primitives that have been 

processed are not added to the list again. For primitives 

that are being fixed this is not a problem, but if the 

primitives are still not fully fixed it would cause the queue 

to never empty. For example, suppose lines 1 and 2 are both 

freefloating and line 1 has its endpoint float connected to 

the endpoint of line 2. This would add line 2 to the queue 

list. A scan of the affected records list would then show 

line 1 is connected to line 2, so line 1 would be added to 

the queue list. When line 1 was then taken from the list and 

processed, line 2 would be added to the queue list again and 

so on. 

This particular case could be prevented fairly easily, but 

more obscure cases of a similar nature are much harder to 

detect. To avoid this problem in Paracad another temporary 

list called the primscovered list is used to hold all 

120 



primitives that have been processed by the queue list. Before 

any primitive is added to the queue list a check is first 

made of the primscovered list to see if it has already been 

covered, and if so it is discarded. 

line 1 
freefloat 

C 

D 

B 

line 2 
free float 

A 

E 

line 3 
free float 

Figure 6-9 Sphere Of Influence Example 

This method of handling float connects leads to the first 

constraints made having the highest priority. This is 

illustrated in Figure 6-10. Part (a) shows three lines before 

float connecting. Part (b) shows the result if point B is 

connected to A then B to C or if Bis connected to A then A 

to C. Note that A and B, which were connected first, remain 

121 



line 1 
hor i zonta 1, 
floating 

-+-----~O A 

line 2 
free float 

8 C 

line 3 
fixed 

line 1 

line 2 

line 3 

a) initial line positions b) B connected to A then 
A (or 8) to C 

line 1 

c) 8 connected to C then 
A to B (or C) 

Figure 6-10 First Constraints Have Highest Priority 
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physically connected. Part (c) shows the result when Band C 

are connected first then A is connected either to B or C. 

Note that Band C remain physically connected in this case. 

A consequence of the way float connects are handled in 

Paracad is that the constraint type of any line connected to 

the midpoint or endpoint of any other line is the same as the 

constraint type of the line it is connected to (ie. if line 1 

is float connected to the midpoint or endpoint of line 2 then 

the constraint type of line 1 is the same as the constraint 

type of line 2). Further, if the constraint type of any line 

endpoint changes, all interconnected (through midpoints and 

endpoints) lines' constraint points will also change to the 

new constraint type. Note that al though all interconnected 

lines (through midpoints and endpoints) have the same 

constraint type, they do not necessarily have the same 

constraint value. 

Whenever any line has a floating endpoint fixed, the floating 

bit flag in the endtype field of the primitive record for 

that line is updated to O (see Section 5.7.1). 

6.8 Parameterisation 

The object of the parameterisation phase is to get actual 

values for the parameters used in a parametric drawing and 

reconstruct it to form a parametric drawing. 
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It soon became apparent that it was not possible to have just 

the parametric drawing files that have been discussed so far 

and still be able to reconstruct all drawings correctly. An 

example of one problem area is shown in Figure 6-11. 

line 1 
horizontal 

-+--------- - - -

line 2 
vertical 

line 3 
vertical 

a) line 1 connected to 
line 2 first 

line 1 

line 2 

b) line 1 connected to 
line 3 first 

Figure 6-11 Drawing Reconstruction Ambiguity 

line 3 

This shows the two possibilities that can arise if the line 1 

endpoint is connected to both the line 2 and line 3 

endpoints. Part (a) is the result of connecting line 1 to 

line 2 first and part (b) is the result of connecting line 1 

to line 3 first. The correct version can only be determined 

if there is some record of the order in which the connects 

were made. This problem arises whenever the same line 

endpoint in a drawing is connected (either by a float connect 

or normal connect) to more than one other point (as either a 
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controlling or an affected point) where it cannot be 

physically attached to all the points it is connected to. 

Another major problem was to find an efficient strategy for 

deciding when and where lines should be drawn on the final 

drawing. With the existing files the only way possible 

appears to be to draw all fixed and floating lines with the 

actual values used for the parameters and then connect and 

redraw them in a process of continuous refinement until they 

all become fixed. Attempts were made at designing such an 

algorithm to do this, but they were largely unsuccessful. 

Because of these two major problems it was decided the best 

solution was to have an additional file that stored the order 

actions were performed in during the parametric drawing, and 

this order could be followed during the construction of the 

particular drawing. This strategy has another highly 

attractive feature in that it means that the reconstruction 

process effectively operates in the same way as the 

parametric drawing construction (without the user prompts of 

course) so the same algorithms can be used with little 

modification. This provides considerable advantages for 

extending the package to include other primitives. This 

approach was adopted in Paracad. The file used to store the 

order actions are taken in is called the entry file and 

consists of records called entry records. 
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Using these entry records, the parameterisation process in 

Paracad involves loading a parametric drawing, resetting some 

fields in the primitive records, parameter setting and 

drawing reconstruction - in that order. 

6.8.1 The Entry File 

The entry file used in Paracad to indicate the order of 

actions taken during the parametric drawing construction 

is implemented in memory as a linked list of dynamic entry 

records. The structure of each record is described in Section 

5.7.4. The only types of action that need to be logged are 

the adding of primitives and the connecting of floating 

endpoints. A variant record is used since the only 

information needed to be saved for a primitive addition is 

the primitive number while a float connect requires the 

floating primitive number and the number of the primitive it 

is connected to to be saved (it is also advantageous to store 

the connect position to save later searching of the affected 

records list) . 

6.8.2 Parametric Drawing Loading 

In Paracad an existing parametric drawing is selected by the 

user and loaded. The same structures used in the parametric 

drawing phase are used in the parameterisation phase. A check 
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is made to ensure the parametric drawing has no unresolved 

floating endpoints since these would prevent a particular 

drawing being fully constructed. If any unresolved floats 

exist, processing is terminated. 

6.8.3 Primitive Record Field Resetting 

Since the parameterisation method used in Paracad mimics the 

original parametric drawing construction it is necessary to 

reset the unresolved floating endpoint flag in the endtype 

field and the constraint type field of the primitive records 

(refer Section 5. 7 .1) to the original values they had when 

each primitive was first entered during the parametric 

drawing construction phase. 

6.8.4 Parameter Setting 

To obtain the actual required values for the parameters used 

in Paracad the screen is cleared, then the parametric drawing 

is progressively redrawn a primitive at a time. As soon as a 

primitive with a parametric dimension is encountered the 

primitive is shown in a different colour, a prompt is 

displayed on the screen indicating the parameter name and a 

description of the dimension it represents (eg. "The line 

displayed has a parametric angle. The parameter name is 

THETA"). The user is then requested to supply a numeric value 
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for the parameter. The primitive is then redrawn in the same 

colour as the other primitives and the process of adding 

primitives continues until the original parametric drawing is 

completely drawn. (Note that the drawing will use all the 

default values and positions supplied during the parametric 

construction phase - although the parameter values are being 

entered by the user, they are not yet being used to modify 

the drawing) . Once all parameters have been obtained, the 

screen is again cleared and drawing reconstruction occurs. 

6.8.5 Drawing Reconstruction 

In Paracad the reconstruction of a parametric drawing to 

create a particular drawing is achieved by scanning each of 

the records in the entry file in turn. 

If the entry record is a primitive addition the corresponding 

primitive record is obtained. If it has a connected start 

point (ie. start point affected by some other primitive - not 

controlling it) the other primitive must be already 

recalculated and so the new start point can be computed. If 

the line is vertical or horizontal its constraint value is 

then reset accordingly (note that this could not be done at 

an earlier stage than this because the constraint value is 

dependent 

parametric 

on the start point). If the 

dimension ( or dimensions) 

primitive has a 

the corresponding 

parameter is looked up in the parameter records and the value 
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is stored in the appropriate primitive record data field (ie. 

the End3 or End4 data fields - depending on what type of 

dimensions are parametric). The line endpoint, or temporary 

endpoint for floating lines, is then calculated using the 

same routines used for parametric drawing construction (with 

the user prompts, user inputs and display feedback areas 

removed) . 

If the entry record is a primitive connect then a float 

connect is done using the same routines utilised in the 

parametric drawing construction (with the user prompts, user 

inputs and display feedback areas removed). 

6.9 Plotting 

A plot routine is included in Paracad to allow hardcopy 

output of particular drawings. This routine opens up a spool 

file, with a name specified by the user, then writes the 

necessary handshaking and setup commands to prepare an 

HP7 4 7 SA A3/A4 plotter. The routine then scans through each 

primitive in order and writes, to the spool file, the 

appropriate plotter commands to draw the primitive. Finally, 

the spool file is appended with commands to terminate the 

plot. The actual plot is then made by exiting from Paracad 

and using a separate spool file transfer program to send the 

spool file to the plotter. 
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The plot 

completed 

routine is 

particular 

currently 

drawings 

only 

but 

configured to output 

it could readily be 

extended to include parametric drawings as well. 
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CHAPTER 7 

PARACAD PERFORMANCE AND FUTURE DEVELOPMENTS 

The first part of this chapter considers the operation of 

Paracad in its current state. The speed of the package at 

both the entry stage (parametric drawing construction) and 

the output stage (particular drawing construction) is 

discussed and conclusions are made as to its reliability and 

user-friendliness. 

The second part of the chapter outlines future developments 

that could be made to Paracad to improve its operation and 

indicates areas for further research into parametric CAD in 

general. 

7.1 Paracad Performance 

7 .1.1 Speed 

In general the performance of Paracad in terms of speed is 

excellent. The four main areas where speed is important are 

during interactive drawing, 

parameterisation. 
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1. Interactive Drawing Speed 

Studies have shown the importance of the sub-second 

response time of computer software during interactive 

sessions and the effect of this response time on the 

user's concentration patterns [GOOD. 1978]. The time 

taken for Paracad to respond with a new menu whenever an 

existing menu choice is selected is too rapid to 

accurately measure, but it is estimated to be less than 

0.1 second. Keypresses are buffered so even if an 

experienced user can type faster than the menu displays 

can respond there is no loss of input data and the menus 

will eventually "catch up" to the user. After less than 

an hour's experience with Paracad it is common for users 

to key in most required menu choices without even looking 

at the changing menus. 

Response time to digitiser movements is limited by the 

9600 baud interface and by the cursor drawing routines in 

Paracad. The cursor drawing routines have been written in 

Assembler language for optimum speed and the response 

speed of the cursor is sufficiently fast to feel natural 

to the user without having any appreciable lag evident. 

Stylus button selections (eg. for indicating line 

startpoints or endpoints) are acknowledged with an 

audible "pip" when they are accepted so the user has both 
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visual and audible feedback. 

Rubberbanding also shows no speed deficiencies in Paracad 

in fact as mentioned in Section 6. 2 initially 

rubberbanding was performed by continuously flashing the 

line, but when the cursor was stationary this resulted in 

flashrates so fast that the line became difficult to see. 

This problem has been overcome by keeping the line 

displayed continuously until the cursor moves more than a 

pixel in any direction. Rubberbanding a line cause a 

reduction in the speed of the cursor following the 

stylus, but the speed is still fully acceptable - even 

for rubberbanding polar lines (which require most 

calculation). This is due to the rubberbanding algorithms 

being optimised for speed. 

Once a line endpoint is selected the line appears almost 

instantaneously - the only change the user notices is the 

sudden colour change from a rubberbanded line to a drawn 

line (with a connect or float circle added if 

appropriate) . 

2. Float Connect Speed 

Float connecting involves a significant amount of 

calculation, especially if a large number of floating 

lines are interconnected. Benchmark tests were performed 
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to find the times required for float connects. In these 

tests a vertical floating line and a horizontal floating 

line were drawn. A number of other floating lines were 

then drawn and one connected to the midpoint of the 

vertical line, the next one connected to the middle of 

the previous one and so on (with another chain - of 

floating lines connected to the horizontal line) . When 

the required number of lines for the benchmark test were 

drawn, the horizontal line was float connected to the end 

of the vertical line and the time to completely 

recalculate and draw the new line positions was recorded. 

Times for these tests were less than 0.1 seconds for 10 

lines, 2.6 seconds for 50 lines and 7.1 seconds for 100 

lines. 

These times are considerably better than was originally 

forecast considering this is an area that was expected to 

be very slow. This speed is due to the efficient method 

employed for float connections using the various linked 

lists. In addition, during the float connects lines are 

being rapidly redrawn on the screen so the user is left 

in no doubt that something is happening. 

3. Redraw Speed 

A redraw feature was included in Paracad to allow 

parametric drawings loaded from file to be displayed on 
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the screen. This routine is also used following a float 

connect - all new line endpoint co-ordinates are first 

calculated then a complete screen redraw is done. 

Benchmark tests were done on redraw speeds for different 

numbers of lines and the results were 1.0 seconds for 100 

lines and 4.8 seconds for 500 lines. Again the speed is 

impressive and is better than originally hoped for. 

4. Parameterisation Speed 

Parameterisation is the most time-intensive part of 

Paracad but once parameter values have been entered 

(which is user-speed dependent rather then computer-speed 

dependent) the user does not need to stay at the computer 

so time is not overly critical. 

Benchmark parameterisation tests were taken of some worst 

case examples with every line float connected to another 

line and a time of 58. 9 seconds was recorded for a 50 

line drawing and 2 minutes 21. 6 seconds for a 100 line 

drawing. 

These figures are more than an order of magnitude better 

than originally hoped for. Again the speed is due to 

careful algorithm and data structure design. 
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7.1.2 User Friendliness 

Considerable efforts were made in the design of Paracad to 

make it as user friendly as possible. User-friendliness is 

essential to a new user but can often slow down and irritate 

an experienced user. To try and strike a suitable medium 

careful consideration was given to the menu structure, menu 

choices, user feedback ( eg. rubberbanding) and the prompts 

provided. The resulting system enables an experienced user to 

move rapidly and unhampered from task to task while the 

visual and audible prompts used assist the inexperienced 

user. Explanatory error messages are displayed whenever an 

invalid input is made. 

Frequent modifications were made to Paracad in an effort to 

optimise user-friendliness, and as a result the package is 

fast and easy to use for both novices and experts. 

The addition of an on-line help facility would go further 

towards assisting the beginner but this was not implemented 

because it was outside the scope of the original aims of 

Paracad. 

User-friendliness in the parameterisation phase is evident in 

the method of prompting for parameter values - the line 

affected by the parameter is displayed in a different colour 

from other lines, the parameter name is displayed and the 

feature being controlled by the parameter (eg. the length) is 
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described on the screen. This is an important area for user­

friendliness as users could easily become confused in 

associating parameters with their correct primitives in 

complex drawings containing many parameters. Further, the 

user supplying the parameter values in the particular 

drawing may well be a different user from the one who 

designed the parametric drawing and so unfamiliarity with the 

drawing could increase possible confusion. 

7.1.3 Reliability 

Exhaustive testing of all features of the current version of 

Paracad has failed to reveal any remaining "bugs". All 

features implemented work as required by the design 

specifications. The system is not yet fully protected against 

all forms of invalid user input - for example the entry of 

alphabetic characters where numeric input is required can 

cause the program to terminate in some places. Protecting 

against all forms of invalid input was not considered an 

essential part of Paracad since it was mainly intended for 

feasibility testing. 

7.1.4 Parametric Variety 

One of the first things that becomes apparent when using 

Paracad is how completely different a particular drawing can 
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look from the original parametric drawing. Even for drawings 

with only a few lines in them it can be hard to reconcile the 

parametric and particular drawings in some cases. This is 

especially true if parameter lengths of zero or negative 

values are supplied. Examples of some of the widely different 

possible combinations possible for the simple four line 

parametric drawing shown in Figure 7-1 are illustrated in 

Figures 7-2 to 7-12. 

line 4 

line 1 
hor i zonta 1, 
length a 

line 2 
vertical, 
length b C 

line 3 
length d 
angle c 

- j - - . 

Figure 7-1 Original Parametric Drawing 
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All these particular drawings are produced using the inbuilt 

Paracad plotter routine and are just a small sample of the 

different possibilities. The wide variety of particular 

drawings conceivable from such a simple parametric drawing 

gives an indication of the diversity possible for more 

complex parametric drawings and demonstrates the flexibility 

provided by a parametric CAD system. 

a= 300 
b = 300 
C 45 
d 600 

Figure 7-2 Particular Drawing 
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a 300 
b = 100 
C = 45 
d 500 

Figure 7-3 Particular Drawing 

a= 300 
b = O 
C = 90 
d 500 

Figure 7-4 Particular Drawing 
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a = 300 
b = 0 
C = 0 
d = 300 

Figure 7-5 Particular Drawing 

a= 300 
b = 300 
C = 300 
d = 600 

Figure 7-6 Particular Drawing 
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a 
b 
C 

d 

= 
= 
= 
= 

300 
300 
0 
600 

Figure 7-7 Particular Drawing 

a 
b 
C 

d 

= 
= 

= 

300 
300 
0 
-600 

Figure 7-8 Particular Drawing 
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a= 300 
b 500 
C 45 
d = -BOO 

Figure 7-9 Particular Drawing 

a = 0 
b = O 
C 90 
d = 600 

Figure 7-10 Particular Drawing 
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a= 300 
b = 300 
C = 180 
d 300 

Figure 7-11 Particular Drawing 

a= 1000 
b = 100 
C 180 
d = 1000 

Figure 7-12 Particular Drawing 
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7.2 Future Developments 

7.2.1 Deleting Primitives And Aborting Operations 

Paracad currently does not allow primitives to be deleted. In 

addition to this it is not possible to abort an operation 

midway through it (eg. if a polar line has been specified 

then the user changes his mind before the line is finished). 

These two limitations mean that any errors made when entering 

lines cannot be altered - they either have to be left as they 

are or the whole drawing needs to be started again. This is a 

major shortcoming as input errors appear to be made rather 

frequently during CAD sessions. The facility to abort from 

any operation and a means of deleting primitives are both 

strong requirements. 

Providing a method of aborting an operation should not pose 

any great difficulties. A key such as the ESC key could be 

used for this purpose and the processing involved would be to 

cancel the pending action and revert to the previous menu. 

This may involve disposing of any dynamic list variables that 

were set up by the pending action. 

Deleting an existing line could prove a more difficult task. 

For an isolated line (not connected to any other line) it 

would merely involve disposing of the primitive record and 

changing the next record pointer of the previous primitive 
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record, but for a line that has other lines connected to it 

things are more complex. The line to be deleted could earlier 

have resulted in other floating lines becoming fixed and so 

if it is removed they will need to be updated. Worse still, 

it is possible that another line may have had its startpoint 

connected to one of these subsequently fixed floating lines. 

This would then mean that deleting the line would leave 

"illegal" lines remaining (ie. lines with floating 

startpoints). Two methods for overcoming this difficulty are 

to either delete all "illegal" lines as well, or to allow 

line startpoints to be floating. Of these the second is 

probably the most attractive for the user. 

Resetting of various bit flags for affected lines and 

disposing of the relevant affected records from the affected 

records list would also be required for all lines that are 

connected to a line to be deleted. 

7.2.2 Other Primitives 

Any full parametric CAD package obviously needs to support 

more primitives than just lines. Adding circles, arcs, text 

etc. increases the complexity of the exercise considerably 

and further study is required in this area. 
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7.2.3 Floating Polar Line Lengths 

Currently Paracad supports freefloat lines and vertical and 

horizontal lines with floating lengths. As discussed in 

Section 4 .10 having polar lines with floating angles gives 

rise to ambiguities, but it would be useful to allow polar 

lines with floating lengths. 

Floating line processing is performed largely using the 

constraint type and constraint value fields of the primitive 

records. Extending Paracad to include floating polar line 

lengths would require altering this processing. One possible 

method would be to have three constraint values stored rather 

than one - these being the coefficients a, b and c of the 

equation 

ay +bx+ c = 0 

This equation represents the equation of the line the 

floating endpoint is constrained to. This would cover polar, 

vertical and horizontal lines. Constraint types could also be 

extended for polar lines to include angularly constrained (in 

fact the constraint type is no longer needed as this 

information can be deduced from the constraint values, but it 

would significantly speed up processing). 

If Paracad is extended to cover other primitives as well as 

lines and these primitives are also able to be floating the 

complexity of the problem would be considerably magnified. 
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7.2.4 Conventional CAD Features 

For Paracad to be used in production work it would be 

desirable to include many of the conventional CAD features 

that are not currently supported. These include viewing 

control (to set up windows, viewports, allow panning etc.), 

groups and transformations of groups and primitives. These 

features are all described in more detail in Section 2.2. 

7.2.5 Methods Of Supplying Parameter Values 

Paracad has only one method of supplying values for 

parameters during particular drawing construction. This 

should be extended to include some or all of look-up tables, 

decision tables, formula calculations and input from other 

programs or files. All of these should be able to be 

implemented without any major side effects on Paracad. 

7.2.6 Formula Processor 

A highly desirable feature of a parametric CAD package under 

certain circumstances is being able to specify formulae for 

parameters rather than just a parameter name. For example a 

line's length could be specified by the parametric formula 

2a - b where a and bare parameter names used elsewhere. 

Implementing a formula processor for handling such parametric 
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expressions at particular drawing construction time is not a 

trivial exercise and would probably require some form of 

parsing of the formula. This area warrants further study. 

7.2.7 Repeated Groups 

Another useful extension to any parametric CAD system would 

be the ability to have certain sections of the drawing 

repeated where the number of times the section is repeated 

depends on the value provided for some parameter (eg. an 

explicit count parameter, or the length of some primitive 

etc.). An example of the use of such a facility might be in 

designing a roof where the number of supporting members 

depends on the roof's dimensions. Such a facility would need 

considerable further study. 

7.2.8 Parametric Decision Making 

A powerful extension to any parametric CAD system would be 

the ability to control the actions taken (not just the 

dimensions) during particular drawing construction by some 

parameter value. For example if a particular parameter value 

is greater than a specified number a certain set of 

primitives will be drawn, otherwise a different set will be 

drawn. A use of such a feature could be to control the number 

of holes in a flange or plate by entering the number of holes 
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as a parameter. 

Again considerable further study would be necessary before 

deciding whether it was feasible to implement such a feature. 
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CHAPTER 8 

CONCLUSIONS - IS PARAMETRIC CAD FEASIBLE? 

The studies made and experiences gained with Paracad indicate 

that not only is it possible to implement a parametric CAD 

package involving line primitives, but such a package can be 

made easy to use, powerful and provide considerable 

flexibility. 

The indications are that extending this to cover other 

primitives would also be feasible. One of the more difficult 

areas of Paracad to implement was the idea of floating lines, 

but floating lines provided a considerable increase in the 

power and flexibility of Paracad. If this floating concept 

was extended to cover other primitives then matters would be 

complicated considerably but the gains could be well 

worthwhile. 

8.1 Advantages Of Parametric CAD Systems 

One major advantage of a parametric CAD system is that a 

skilled designer can be used to generate a parametric drawing 

and then, with careful program design and judicious choice of 

parameter names, the generation of particular drawings from 
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this parametric drawing becomes a simple process with the 

manual input of parameter values able to be handled by 

unskilled users. All engineering decisions, safety 

considerations, legal aspects etc. can be incorporated at the 

parametric design stage. 

Another major advantage is the reduction in effort required 

when families of components can be produced using a single 

parametric drawing to produce multiple different particular 

drawings. The savings in drawing time increase with the 

number of different particular drawings produced. 

A third major advantage is the ability to construct a drawing 

without knowing its dimensions. A parametric drawing can be 

constructed and the actual dimensions can be left until 

during the particular drawing stage. This approach could be 

used for "what if" testing to examine the results of altering 

various dimensions. As an example, a parametric drawing of 

the side view of a prototype car (or any other product with 

an iterative design cycle) could be constructed and 

parameters changed at will to optimise the final appearance. 

A fourth major advantage of a parametric CAD system is its 

potential to automate the output drawing from a combination 

of different input methods (once the parametric drawing has 

been produced). The input to the parameterisation process can 

be from output piped from another program, manual input, 

lookup tables, files and so on. A simple example of this is 
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to set up a parametric drawing for a bar chart using a number 

of bars with parametric widths, lengths and positions. Input 

to the parameterisation process would be the heights and 

widths of the bars with a constant (or variable) being added 

to each bar position to provide horizontal separation. A more 

practical example is the design of modular houses or sheds. 

By having parametric dimensions the size and shape of the 

structure can be easily changed to meet the needs of the 

customer. 

8.2 "Usability" Of Parametric CAD 

An important facet of any interactive computer package is its 

ease of use. Many of the concepts involved in parametric CAD 

are natural to humans - for example the idea of making a 

width or length 

Unfortunately, 

larger or smaller is 

as discussed earlier 

easy 

in 

to comprehend. 

the thesis, 

ambiguities can easily arise in such cases and what seems 

obvious to one person may seem ridiculous to the next. An 

example of such an ambiguity appears in Figure 8-1 which 

shows a partially dimensioned bracket. The bracket is 100mm 

long. If an order comes through for some of these brackets 

with the request "make them 120mm long instead of 100mm" an 

ambiguity immediately arises. Does the wide part of the 

bracket get extended, or does the narrower end piece get 

extended, or do they both get extended -and if so, how much 

does each change by. If the narrower part is to be extended, 
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what happens to the bolt holes? To the person making the 

order the answers to these questions are obvious since he has 

prior knowledge, but a parametric CAD system has no such 

prior knowledge. 

5mm Dia. 

I -E-----100-------l--

10

-i 

All dimensions in mm. 
Not to scale 

Figure 8-1 Ambiguity Through Lack Of Prior Knowledge 

To overcome such ambiguities a parametric CAD system must 

either enforce a particular interpretation to potentially 

ambiguous situations or else it must request further 

information from the user to resolve the ambiguity. The 

balance between these two methods largely determines the 

usability of the package. Too much enforcing of particular 

interpretations by the package will reduce flexibility and 
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limit the user. On the other hand, requiring the user to 

meticulously describe each action increases flexibility but 

slows productivity and frustrates the user. 

An example of ambiguity resolution in Paracad that combines 

both these methods is the strategy employed for connecting 

line endpoints. If a vertical line endpoint is connected to 

some point on another line the program resolves ambiguities 

by always assuming the point provides they co-ordinate only 

for the vertical line. User flexibility still exists as the 

user chooses which point on the line he wants to connect to. 

In some cases the program should make the decision required 

to resolve ambiguitites, in some cases the user should make 

it, and in some cases it should be a combined effort. 

Deciding which of these three is appropriate in each 

particular case is an important decision in terms of the user 

friendliness, 

program. 

usability and general flexibility of the 

8.3 Adapting An Existing Package 

The question of how difficult it would be to adapt an 

existing CAD package to include parametric features can only 

be answered with respect to line drawings and depends largely 

on the current structure of the particular CAD package in 

question. Most of the routines could be readily adapted (eg. 
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windowing, panning, line drawing, cursor tracking, plotting 

etc.) if they exist as modular routines. The data structures 

would need to be extended, an overall shell would need to be 

written and a number of new routines for handling parametric­

specific areas would have to be written. 

8.4 Is Parametric CAD Feasible? 

The main purpose of this thesis was to investigate the 

feasibility of parametric CAD. While the investigations were 

limited to lines only, reasonable assumptions can be based on 

extending this to cover other primitives. 

A line-only system is definitely feasible and can be user 

friendly and flexible. Any other primitives that might be 

added can be fully defined by a finite number of points and 

since the position of any of these points can be described by 

line segments it should be possible to extend a parametric 

CAD system to cover all common primitives. 

As an example consider adding circles. One common way of 

defining a circle is by its centre and radius. The centre 

position could be described by a parametric construction line 

from some known point, and the radius could be described by a 

parametric construction line from the centre. This would 

allow both the circle position and size to be parametrically 

altered. Another way of defining a circle is by any three 
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points on its circumference. Again the position of each of 

these points could be described by a parametric construction 

line (once more this allows both variable circle size and 

position) . So by proving the feasibility of parametric CAD 

for lines only the feasibility for other primitives has also 

been largely proved. There appears to be no reason why a 

parametric CAD system able to perform all the functions 

suggested in the introduction cannot be designed. The only 

real difficulties arise when extra features, such as floating 

primitives, are required and such so such features would need 

careful further study. 

This project has shown that parametric CAD is viable, useful 

and usable for line drawings and should be able to be 

extended to cover all common primitives used in conventional 

CAD packages. 
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Appendix A 

Notation Used In Illustrations 

startpoint of line 

connect point (on startpoint or endpoint of line 
being connected) 

floating line endpoint (on end of floating line) 

floating line endpoint that has been connected to 
another floating line and is not yet fully fixed 

indicates equal length line segments 

Points are indicated in capital letters (eg. A, B, C) 

Lines are numbered (eg. 1, 2, 3) 

Parameters are indicated in lower case letters (eg. a, b, c) 
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Appendix B 

Paracad Menu 

Constr=lution Line 

Line 

Startpoint 

Redraw 

Float conn 

Cluit 

connect 1 
Absolute -

Digitiser Endpoint 

_..Quit 

Structure 

Absolute 

'=-" Relative --....;;- X shift _--...l Y shift 
Actual :::J- -c Actual 

~Parametric - Parametric 

Connect 

Floating {Actual 

Actual Parametric 
Polar Angle length 

--[Paramet~ Connect 

Vertical I Digitiser 

Horizontal -L- Length lActual 

Parametric 

Floating 

Connect 

Digitiser 
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