
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the pennission of the Author.

A COMPUTER AIDED DESIGN SYSTEM WITH

PARAMETRIC DIMENSIONING

A thesis presented

in partial fulfilment of the requirements

for the degree

of Master of Philosophy in Industrial Technology

at

Massey University

Brian Morris Meads

1987

ABSTRACT

This thesis develops the concept of a parametrically

dimensioned CAD system. Conventional CAD systems require the

actual dimensions of all objects drawn to be defined during

the drawing process. To alter any dimension requires manual

modification of all affected objects in the drawing.

Parametrically dimensioned CAD systems would allow drawings

to be constructed containing dimensions defined using

variable parameters. These parametric drawings could then be

fully specified at some later stage by supplying actual

values for the parameters. Such systems would allow drawings

of families of components (that varied only in their

dimensions) to be easily produced from a single parametric

drawing, would simplify dimensional modifications to

drawings, and would permit the drawing production to be part

of an automated design process.

The general requirements for such a parametric CAD system are

developed in the thesis and the implementation of a limited

package based on these ideas is described. On the basis of

this work, it has been concluded that such systems are

viable, could have successful user interfaces and would be a

valuable extension to conventional CAD packages.

- ii -

ACKNOWLEDGEMENTS

The production of this thesis has been made posssible by the

co-operation and help of a number of people.

First and foremost, my sincere thanks go to my supervisor,

Professor Mark Apperley, for his guidance and suggestions

during the investigations into parametric CAD and for his

helpful criticisms in the presentation of this thesis.

I would like to extend special thanks to Mr Len Chisholm for

his assistance with the Assembler routines and the hardware

interfacing in Paracad and for his helpful suggestions during

the development of Paracad.

My thanks also go to Mr Ralph Ball and Mr David Morgan who

took over a considerable amount of my lecturing related

workload thus enabling me to devote sufficient time to carry

out my studies towards this thesis.

Finally I would like to extend a very special thank you to my

wife Eileen and my children Jason, Darron and Kirsty for

their patience, love and understanding. For this I am truly

grateful.

Brian Meads

- iii -

CONTENTS

Title i

Abstract

Acknowledgements

Contents

ii

iii

iv

List Of Figures vii

1. Introduction 1

2. Review Of Conventional CAD Packages 6

3.

4.

2. 1 Hardware Features . 6
2.1.1 Graphics Display 7
2.1.2 Central Processing Unit 7
2.1.3 Graphics Input Device 8
2.1.4 Graphics Output Device 8

2. 2 Software Features . 9
2.2.1 Primitives 9
2.2.2 Input Of Primitives 10
2 . 2 . 3 Groups . 12
2.2.4 Modifying Primitives Or Groups 12
2.2.5 Copying Primitives Or Groups 13
2.2.6 Transformations On Primitives And Groups 13
2.2.7 Viewing Control . 13
2.2.8 Output . 14
2.2.9 User Interface 14

2.3 CAD Database Storage . 15

Design Considerations For Parametric CAD Systems
3.1 Two Phase Drawing Procedure
3.2 Primitive Interconnection Data
3.3 Prevention Of Impossible Drawings
3.4 Floating Primitives

General Design Decisions For Paracad
4.1 Two Drawing Phases
4.2 Drawing Saving/Loading
4. 3 Menus
4.4 Co-ordinate Storage And Viewing Control
4.5 Primitives Supported
4.6 Startpoint Types

- iv -

16
16
17
21
22

25
25
26
27
27
28
29

5 .

6.

4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

Endpoint Types
Construction Lines
Connect Points
Floating Endpoints
Floating Endpoint Connections
Cursor Indication
Rubberbanding
Parameter Setting
Parameterisation
Plotting
Miscellaneous

Paracad Environment And Structure
5.1 Hardware And Software Environment
5. 2 PGC System
5.3 Digitiser And Interface
5. 4 Cursor Display
5. 5 PGC Interface
5.6 Identification And Colours
5.7 Data Structures And Database Storage

5.7.1 Primitive Data Structure
5.7.2 Parameter Record
5.7.3 Affected Record
5. 7. 4 Entry Record
5.7.5 Queue Record
5.7.6 Primscovered Record
5.7.7 Check Record

5.8 File Handling (Saving And Loading)

Paracad User Interface
6.1 Menu Structure
6.2 User Friendliness
6.3 Directionally Constrained Lines
6.4 Primitive Selection Methods
6.5 Construction Lines
6. 6 Connects
6.7 Float Connects

6.7.1 The Float Connect Problem
6.7.2 Constraint Fields
6.7.3 Constraint Field Updating
6.7.4 Examples Of Float Connects
6.7.5 Sphere Of Influence
6 . 7 . 6 Queue Li st

6.8 Parameterisation
6.8.1 The Entry File
6.8.2 Parametric Drawing Loading
6.8.3 Primitive Record Field Resetting
6.8.4 Parameter Setting
6.8.5 Drawing Reconstruction

6. 9 Plotting

- V -

29
31
33
41
44
52
53
53
54
55
55

56
56
57
58
60
60
62
64
64
73
76
81
83
85
87
88

90
90
91
93
94
97
97

105
105
107
109
115
117
120
123
126
12 6
127
127
128
129

7.

8.

Paracad Performance And Future Developments
7.1 Paracad Performance

7 . 1 . 1 Speed
7.1.2 User Friendliness
7.1.3 Reliability
7.1.4 Parametric Variety

7.2 Future Developments
7.2.1 Deleting Primitives And Aborting

Operations
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8

Other Primitives
Floating Polar Line Lengths
Conventional CAD Features
Methods Of Supplying Parameter Values
Formula Processor
Repeated Groups
Parametric Decision Making

Conclusions - Is Parametric CAD Feasible?
8.1 Advantages Of Parametric CAD Systems
8.2 "Usability" Of Parametric CAD
8.3 Adapting An Existing Package
8.4 Is Parametric CAD Feasible?

Appendix A Notation Used In Illustrations

Appendix B Paracad Menu Structure

Bibliography

- vi -

131
131
131
136
137
137
145

145
146
147
148
148
148
149
149

151
151
153
155
156

158

159

160

1-1

1-2

3-1

3-2

3-3

3-4

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

LIST OF FIGURES

Front Cabinet Of Two Different Television Sets

Parametric Drawing Of Television Cabinet

Parametric Drawing Of Four Lines

Different Interpretations Of Figure 3-1

A Potentially "Impossible" Drawing

A Case For Floating Lines

Use Of A Construction Line

Connect Points For Vertical Line Endpoints

Connect Points For Horizontal Line Endpoints

Connect Points For Polar Lines

Equation Connect With Constrained Line Endpoint

Position Of Connect Identifier

Ambiguity With Floating Angles

Float Connect Of Horizontal And Vertical Lines

Float Connect Of Two Freefloat Lines

Float Connect From Horizontal To Vertical Line

4-11 Float Connect Between Two Freefloat Lines

4-12

5-1

5-2

5-3

The Case For Multiple Float Connects

Primitive Record List Structure

Primitive Record Format

Possible Methods Of Storing Parameters

- vii -

2

4

18

19

22

23

32

35

36

37

39

40

42

45

47

48

50

51

65

66

75

5-4

5-5

5-6

5-7

5-8

5-9

5-10

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

6-10

6-11

7-1

7-2

7-3

7-4

7-5

Method Of Storing Parameters In Paracad

Affected Record List Structure

Affected Record Format

Entry Record Formats

Queue Record Format

Primscovered Record Format

Check Record Format

Unusual Extent Selection

Line Equation Connect Position

Sign Notation For Line Equation Ratio

A Float Connect Problem

Constraint Values Stored

Vertical To Vertical Float Connect

A Float Connect Example

A Second Float Connect Example

Sphere Of Influence Example

First Constraints Have Highest Priority

Drawing Reconstruction Ambiguity

Original Parametric Drawing

Particular Drawing (1st example)

Particular Drawing (2nd example)

Particular Drawing (3rd example)

Particular Drawing (4th example)

- viii -

77

78

79

82

84

86

87

95

99

100

106

111

113

114

116

121

122

124

138

139

140

140

141

7-6 Particular Drawing (5th example) 141

7-7 Particular Drawing (6th example) 142

7-8 Particular Drawing (7th example) 142

7-9 Particular Drawing (8th example) 143

7-10 Particular Drawing (9th example) 143

7-11 Particular Drawing (10th example) 144

7-12 Particular Drawing (11th example) 144

8-1 Ambiguity Through Lack Of Prior Knowledge 154

- ix -

CHAPTER 1

INTRODUCTION

Computer Aided Design (CAD) systems are responsible for major

productivity gains in drawing and design operations. Up until

the 1980's CAD systems ran only on mainframes and were

expensive to purchase and run. This limited their use to such

areas as the aerospace, automobile and electronics

industries. Major increases in the performance of computer

systems over the last decade have resulted in real time CAD

functions that were previously only performed on mainframe

computers migrating down through minicomputers to

microcomputers. This has caused a substantial increase in the

number of potential computers on which CAD packages can be

run and has resulted in strong competition between CAD

software suppliers. This competition is manifesting itself in

increasingly sophisticated CAD features on microcomputer

systems that are tailored to the end user's requirements

becoming available [Wohl. 1984, Myer. 1985]. The basis of

this thesis is the investigation of one such feature about

which there has been little published research.

The three major areas of use of CAD packages are in

electrical and electronic design, mechanical engineering

design and architectural/layout design [Merm. 1980]. A common

1

output from each of these areas is the production of a

drawing from a plotter.

Many drawings that are produced in practice are similar,

varying only in their dimensions. This is especially true of

component drawings. As an example, consider the the two

drawings shown in Figure 1-1. These show the front cabinet

shape of two different sized television sets. The cabinets

have different widths, heights, screen sizes and speaker

cover sizes and placements.

Figure 1-1 Front Cabinet of Two Different Television Sets

This thesis examines the feasibility of having a CAD package

that allows a designer to prepare a template or "parametric"

drawing with some or all dimensions defined in terms of

variable parameters. Hereafter such a drawing will be

referred to as a parametric drawing. Final specific drawings

could then be produced by supplying values for each of the

2

parameters for that particular drawing. Such a drawing will

hereafter be referred to as a particular drawing.

A parametric drawing covering the family of television sets

similar to those in Figure 1-1 might appear something like

that in Figure 1-2. Each different model of television set

would have its own particular drawing with the actual values

entered for the various dimensions a, b, c etc. being

different in each case.

In addition to allowing easy generation of particular

drawings for families of components (or models) from a single

parametric drawing, with the consequent time savings,

parametric CAD could also be used as part of an automated

design system. It could also permit rapid "what if" tests to

be made on designs.

There appears to be no published evidence of research in the

area of parametric dimensioning. It is suspected that this is

because the only research in the area has been done by CAD

software houses who wish to keep their results confidential.

Because of the lack of published research in the area, this

thesis attempts to lay general foundations for a parametric

CAD system rather than concentrating on narrow specialised

areas within such a system.

3

-------------a-------------

e-

f

'

d

1, ______________ '-+-~

f,,,oe'--------c------..-,

h

b

Figure 1-2 Parametric Drawing of Television Cabinet

In Chapter 2 the hardware and software features of

conventional CAD packages are examined where these are

relevant to a parametric CAD system.

In Chapter 3 the extra design considerations and decisions

necessary for parametric CAD packages are considered and

other non-essential but highly desirable additional features

are contemplated.

4

In Chapter 4 design decisions for a specific implementation

of a parametric CAD package known as Paracad are discussed.

Paracad is used as a basis for investigating the feasibility

of parametric CAD.

The Paracad environment is described in Chapter 5. This

covers the hardware and software environment, interfacing

between hardware elements, data structures used and the

method of storing these data structures.

In Chapter 6 the interface between Paracad and the user is

explored. This includes the way Paracad responds to user

requests and the algorithms used to perform the actions

required by the user.

The performance of Paracad is discussed in Chapter 7 in terms

of its speed of operation and user friendliness. Future

Paracad developments and areas for further parametric CAD

research are also described.

In Chapter 8 conclusions are made as to the feasibility of

parametric CAD and the advantages of such parametric CAD

systems.

Appendix A contains a description of the notation used in the

illustrations in this thesis.

5

CHAPTER 2

REVIEW OF CONVENTIONAL CAD PACKAGES

Before making any decisions on the design of a parametric

based CAD system it is pertinent to examine the typical

features of current conventional CAD packages.

Conventional CAD packages provide a host of design features,

some of which are very specialised (eg. printed circuit board

routing) and some of which are general to most packages (eg.

adding a line to a drawing). For the purposes of this thesis,

only those CAD features that are of a general nature will be

considered.

The components of a general CAD system can be broken down

into hardware features and software features. In addition to

these, the method of database storage used is pertinent to

this thesis [Bes. 1983].

2.1 Hardware Features

The major hardware components of a CAD system are a graphics

display system, a central processing unit, a graphics input

device and a graphics output device for hardcopy output.

6

2.1.1 Graphics Display

By far the most common graphics display is a raster scan

cathode ray tube with some form of graphics processing

hardware controlling it. There is a strong tendency towards

colour systems for serious CAD work with screen resolution

being anything from 640 by 200 pixels upwards. Fast display

processing ability is a primary requirement for real time CAD

systems. Many CAD systems include an option to run a dual

screen arrangement in which a fast, high resolution colour

display is used for graphics while a standard monochrome

alphanumeric display is used for textual information (eg.

Versacad by T&W Systems).

2.1.2 Central Processing Unit

The central processing unit is some form of computer

(mainframe, mini or micro) with keyboard, primary and

secondary storage etc. CAD systems are notoriously "processor

hungry" - that is they make considerable demands on the

processor and so a fast central processing unit is a high

priority in a CAD installation.

7

2.1.3 Graphics Input Device

The graphics input device most commonly used in CAD systems

is some form of digitising tablet. This usually consists of a

flat rectangular base with a movable puck or stylus. The

position of the puck (or stylus) on the tablet base is

detected either magnetically, electrically or optically and

this positional information is passed to the CAD program -

typically to control the position of a cursor on the graphics

screen or to select a command for the software to action.

Tablet base sizes range from 25cm x 25cm (12" x 12") through

to 121cm x 121cm (48" x 48") and beyond with the tendency

towards the smaller sizes for most non-specialist CAD work.

Positional accuracy is typically 0.002cm (0.001"). Lower

positional accuracy would generally be acceptable since

graphics display device resolutions cannot approach digitiser

resolutions of this accuracy. Ergonomic design of the

graphics input device can be an important factor during

extended sessions using a CAD system. Digitiser response

speed is virtually instantaneous and is usually insignificant

when compared to the time taken in analysis of the digitiser

data and displaying of the graphics.

2.1.4 Graphics Output Device

The graphics hardcopy output device is generally a pen

plotter. These devices range in paper size from A4 through to

8

Al and some models provide multiple colours. Accuracy can be

up to 0.002cm with pen speeds in excess of 1 m/s and

accelerations of 4g (40m/s/s). Slower plotter speeds are

often acceptable as plotter files can be batched for later

spooling. Many installations have found the output quality

and general readability of plotter generated output to be

such an improvement over manual drawing that a smaller

drawing size can be used (eg. A2 size drawings are acceptable

from a plotter where Al size drawings were needed for manual

drawings).

2.2 Software Features

For the purposes of this thesis, only two dimensional CAD

systems will be considered. The major software aspects of

general 2D CAD packages can be broken down into the following

areas: primitives, input of primitives, groups, modifying

primitives or groups, copying primitives or groups,

transformations on primitives or groups, viewing control,

output and method of driving. Most CAD packages also provide

various extra features that are not mentioned here.

2.2.1 Primitives

Primitives (also called entities or objects) are the basic

graphic entities that may be added to a drawing. These

9

typically include lines, circles, arcs, rectangles, polygons,

Bezier or B-spline curves and text. Many packages allow

primitives to have various properties attached to them such

as colour, linestyle (solid, dotted etc.), plotter pen number

and textual information. Primitives are generally stored as

sets of real-numbered co-ordinates, for example a straight

line would be stored as its starting co-ordinates and its

ending co-ordinates together with any associated properties.

Often double precision real numbers are used to allow storage

of a wide range of potential primitive sizes with high

accuracy.

2.2.2 Input of Primitives

A variety of different methods of specifying the co-ordinates

of a primitive during the input stage are usually provided to

enable flexibility and ease of data entry. The most common

methods used for specifying the co-ordinates of a particular

point are :

digitiser - the position of the digitiser puck or stylus

corresponds to some real world position, and the co­

ordinates of this position are used for the co-ordinates

of the point.

absolute - two real numbers are given, via the keyboard, for

the actual co-ordinates of the required point.

10

relative - two real numbers are given, via the keyboard, for

the x and y offset of the required point from some

reference point (usually the last point entered).

polar - two real numbers are given, via the keyboard, for the

angle and distance of the required point from some

reference point (usually the last point entered).

primitive snap - the required point is specified as being

some particular point on an existing primitive (eg. one

end of a selected line - or its midpoint).

In addition to having a number of different ways of

specifying a particular point, a choice is often provided in

the way a primitive is entered. The normal entry method for a

line is to specify each endpoint, but an alternative is to

specify a start point, give another line it is to be parallel

(or normal) to, and specify its length. For a circle it is

possible to specify the endpoints of a diameter, specify the

centre and a point on the circumference or specify three

points on the circumference. Other such optional input

methods exist for other primitives.

11

2.2.3 Groups

An arbitrary collection of primitives can be collected

together to form a group (also called a segment). Groups can

also be allocated certain properties in some systems. Often

it is more convenient to work with groups rather than the

separate primitives that make up the group. For example a

collection of lines might form a chair and so when

positioning the chair it is a natural action to group these

lines together and manipulate the chair as a whole rather

than each individual line. Forming groups can be done by

"picking" each of the individual primitives that make the

group up, drawing an imaginary fence around the required

primitives, or selecting all primitives with a particular

property.

2.2.4 Modifying Primitives or Groups

Modifications may be made to selected primitives or groups.

Common modifications are deleting the primitive or group,

changing properties of the primitive or group, or applying

some transformation to the primitive or group (discussed

later) .

12

2.2.5 Copying Primitives or Groups

Many drawings have repeated features in them and so most CAD

packages provide the facility to copy any primitive or group.

Copies can be placed at any specified point (s) or may be

arranged in a line, in a matrix, or radially in a circle.

2.2.6 Transformations on Primitives and Groups

The common transformations provided are translation (moving

in a straight line), rotation, reflection, enlargement (and

reduction) and stretching in one dimension.

2.2.7 Viewing Control

A CAD drawing worksheet provides a very large area to draw

in. Windowing (also called zooming) in and out on selected

areas of the worksheet and panning in any direction is

generally provided to allow the designer to keep only the

area of interest on the screen. In addition, another property

that can be associated with primitives is a level (or layer).

Levels can be considered to be overlays, and any particular

level can be made visible or invisible. If a level is

visible, all primitives on that level (and all other visible

levels) will be displayed, otherwise they will not be

displayed. This allows selected features of a drawing to be

13

displayed or hidden. For example a drawing of a building may

have all plumbing on one level, electrical wiring on another,

structural members on another, furniture on another and so

on. The visibility of any of these levels can then be

individually controlled to allow only the required features

on the screen.

2.2.8 Output

Output involves sending part, or all, of the drawing to the

output device (usually a plotter). Control over scaling

factors, where the drawing will appear on the paper and

orientation on the paper is generally provided. For multipen

plotters a link is provided between the plotter pen property

for primitives and the various plotter pens.

2.2.9 User Interface

Most CAD packages are either menu-driven or command-driven.

With a menu-driven system (eg. Autocad by Autodesk Inc.) a

menu of all the allowable commands is displayed on screen and

the user selects one (generally by typing the first letter, a

number, or selecting it with the digitiser). Menu-driven

packages generally have a large number of different menus

arranged in a tree structure, so selecting a particular

choice from one menu produces a new menu of possible actions.

14

A command-driven system (eg. Personal Designer by

Computervision) does not use menus - instead it has a number

of valid commands that are directly entered either from the

keyboard or from a command area on the digitiser. Menu-driven

systems are generally far easier to learn as all the

allowable options at any particular stage are displayed on

screen. For experienced users the command-driven systems can

provide greater speed as it is not necessary to traverse the

menus to get to the required command.

2.3 CAD Database Storage

While many different methods of CAD database storage are

used, an important factor is that information is not stored

regarding physical interconnections between primitives. For

example, suppose line 1 is added to a drawing, then line 2 is

added where the startpoint of line 2 is specified as the

endpoint of line 1. At entry time the co-ordinates of the

startpoint of line 2 can be readily obtained and these are

stored with the primitive line 2. No information indicating

line 1 and line 2 are connected is stored apart from the

common co-ordinate value - and in fact none is needed as once

a primitive' s position has been specified it is completely

defined.

15

CHAPTER 3

DESIGN CONSIDERATIONS FOR PARAMETRIC CAD SYSTEMS

While a full implementation of a parametric CAD system would

embody all the conventional CAD features, it would require a

number of enhancements and additional elements. The main

additional requirements are a two phase drawing procedure, a

method of storing data describing the interconnections

between primitives and a check that an "impossible" drawing

is not constructed. Also, although it is not an absolute

necessity, a provision for allowing "floating" primitives

that can "fixed" at a later stage provides a considerable

increase in flexibility.

This chapter will consider each of these requirements in

greater depth.

3.1 Two Phase Drawing Procedure

With a conventional CAD package, the drawing process is

essentially a single phase whereby primitives are added in

various positions to make up a drawing and the finished

drawing is then plotted out to some required scale.

16

With a parametric CAD system two distinct phases are

required. The first phase involves the construction of the

parametric drawing by adding primitives together with their

parametric descriptions. The second stage then involves the

construction of a particular drawing which takes the

parametric drawing as input, gets the actual values required

for each parameter value and then constructs the particular

drawing which is plotted out to some required scale.

Obviously several different particular drawings may be

obtained from a single parametric drawing by specifying

different actual values for the parameters this is the

essence of a parametric CAD system. The construction of

particular drawings may also continue to occur for many years

after the parametric drawing has been constructed.

3.2 Primitive Interconnection Data

A parametric CAD system would allow the positions and

dimensions of primitives in a particular drawing to change

depending on the actual values supplied for the parameters.

This does not

causes some

happen with conventional CAD

difficulties. For example,

systems and it

consider the

parametric drawing shown in Figure 3-1. When a particular

drawing is produced, the values x and y need to be supplied.

A number of possibilities then exist for the particular

drawing depending on whether line connection points (at the

17

intersection of the line endpoints or along the locus of a

line), line positions, line lengths (for the non-parametric

lines 3 and 4), or vertex positions (a, b, c and d) are

preserved. If the supplied values for each of x and y are

such that each line using them will be longer in the

particular drawing than in the parametric drawing then some

of the possible particular drawings are shown in Figure 3-2.

D

Line 4

A

Line 3

Line 1
horizontal, length x

C

Line 2
vertical, lengthy

B

Figure 3-1 Parametric Drawing of four lines

Figure 3-2 part (a) shows the result of preserving the

endpoint intersection connections between lines 1 and 2,

between lines 2 and 3, between lines 3 and 4 and between

lines 4 and 1. The lengths of lines 3 and 4 are not preserved

and the positions of lines 2, 3 and 4 are not preserved. The

position of point A is preserved while B, C and Dare not.

18

D

A~--------
(a) (b)

D

----~----B

(c) (d)

D ~-----.
C

A '-------+-----

(e) (f)

Figure 3-2 Different Interpretations Of Figure 3-1

Figure 3-2 part (b) shows the result of preserving the

endpoint intersection connections between lines 1 and 2, 2

and 3, and 3 and 4. The connection between lines 4 and 1 is

preserved between the endpoint of line 4 and anywhere along

19

the locus of line 1. The length of line 3 is preserved while

that of line 4 is not. The position of point Dis preserved.

Figure 3-2 part (c) shows the result of preserving the

endpoint intersection connections between lines 1 and 2, and

lines 3 and 4. The positions of points Band Dare preserved

while A and Care not. The lengths and positions of lines 3

and 4 are preserved.

Figure 3-2 part (d) shows the result of preserving the

endpoint intersection connections between lines 1 and 2,

lines 3 and 4, and lines 4 and 1. The lengths and positions

of lines 3 and 4 are preserved. The position of points A and

Dare preserved.

Figure 3-2 part (e) shows the result of preserving the

endpoint intersection connections between lines 1 and 2,

lines 2 and 3, and lines 3 and 4. The lengths of lines 3 and

4 are preserved, but their positions are not.

Figure 3-2 part (f) shows the result of preserving the

endpoint intersection connections between lines 2 and 3,

lines 3 and 4, and lines 4 and 1. The lengths and positions

of lines 3 and 4 are preserved.

These are only six possible interpretations of this

parametric drawing - there are many more. Only one of these

different interpretations will be the correct one (ie. the

20

way the designer intended the parametric drawing to be

interpreted) but all represent valid possible design

requirements. Obviously it is essential to ensure that such

ambiguities do not occur in any implementation of a

parametric CAD system. This can either

rules laid down by the package which

parametric drawing is interpreted or

be done by

govern the

having

way a

else sufficient

information must be obtained from the designer during

construction of the parametric drawing to ensure all such

possible ambiguities are resolved, and this information needs

to be stored with the parametric drawing so it can be used

when a particular drawing is constructed.

3.3 Prevention of Impossible Drawings

With a conventional CAD system each primitive is fully

defined as it is entered and so checks can easily be made at

entry time to ensure only valid primitive points are entered.

This is not the case with a parametric CAD system as the

ultimate drawing shape and size is not determined until the

parametric values are supplied. This could give rise to

impossible drawings unless additional checks, or design

rules, are made. For example consider Figure 3-3. Suppose

each line has been specified so that the endpoints connect

together as shown to form a quadrilateral. It would be

impossible to construct a particular drawing of this

parametric drawing unless lengths a and care the same value

21

since the drawing must form a rectangle. If line 4 had not

been declared a vertical line no problem would have occurred.

This is a somewhat simple example of an impossible drawing.

With a more complex drawing the "impossibility" can be much

more difficult to detect.

Line 3
hor i zonta 1, length c

D C

Line 4
vertical

A Line 1 B

hor i zonta 1, length a

Line 2
vertical, length b

Figure 3-3 A Potentially "impossible" Drawing

3.4 Floating Primitives

Since a parametric CAD system is a conceptual representation

of a family of drawings rather than an actual drawing, its

construction may well be approached in a different way from a

conventional CAD drawing. An aid to drawing such diagrams

would be the facility to be able to leave the endpoint of a

22

line "floating" temporarily. For example a vertical line

could have its start point defined, but its endpoint (and

hence length) might be left floating until other required

primitives have been added, at which stage a "float

connection" can be made. This floating line concept would

also aid many conventional CAD packages.

D

Line 4
vertical

A

Line 3
horizontal

Line 1
horizontal, length a

C

Line 2
vertical, length b

B

Figure 3-4 A Case For Floating Lines

As an example of floating primitives, consider the

construction of the parametric drawing shown in Figure 3-4.

Assume that a rectangle primitive is not available so the

rectangle shown has to be constructed using lines only. Line

1 would be entered as a horizontal line with parametric

length a, line 2 would then be added as a vertical line of

23

parametric length b with its startpoint defined as the

endpoint of line 1. Line 3 would then be entered as a

horizontal line with startpoint at the endpoint of line 2 and

its end point floating. Line 4 would be entered as a vertical

line with its startpoint at the startpoint of line 1 and its

endpoint floating. The floating endpoints of lines 3 and 4

could then be connected. The alternative method of entering

this, without floating lines, would be to specify line 3 as

having length a also. This would then add the complication of

having the package perform some form of parameter checking to

ensure line 4 would remain vertical with its endpoints at the

endpoints of lines 1 and 3. Obviously this is a fairly simple

check in this case since the drawing is so simple, but in

more complex drawings such checks rapidly become very

involved and time consuming.

24

CHAPTER 4

GENERAL DESIGN DECISIONS FOR PARACAD

Having identified the main features of conventional CAD

systems and examined some of the extra requirements of a

parametric system it is possible to come up with some general

design decisions for the implementation of a parametric

system. Many of the design decisions made would apply to any

parametric CAD system, but others are specific to a

particular implementation that will be referred to as Paracad

for the rest of this thesis. Paracad has been specifically

developed to test the feasibility of a parametric CAD system.

Whenever a design decision is discussed a mention will be

made as to whether it is a general or specific decision, and

in the case of specific decisions the alternatives will be

discussed.

4.1 Two Drawing Phases

Because of the natural way in which a parametric CAD system

falls into two distinct phases, that of constructing the

parametric drawing and that of constructing a particular

drawing from the parametric drawing, it was decided to break

Paracad into two separate parts - one to cover each phase.

25

This would seem the logical approach for any parametric CAD

system as the two phases would almost always be carried out

at completely different times and often by different people.

4.2 Drawing Saving/Loading

Some means of saving and loading partially completed

parametric drawings is essential. These drawings could well

be very complex and take considerable time to design so a

user must be able to stop a design session and resume it at a

later stage. In addition to this it is obvious that there

must be a means of saving the finished parametric drawing. It

was decided Paracad should have both these features (as

should any other parametric CAD system).

The need for saving/loading partially completed particular

drawings is not so vital since constructing these drawings

essentially involves merely specifying parameters. This is a

fairly straightforward procedure and should not be

particularly time consuming. It was therefore decided that

the ability to save a partially completed particular drawing

was not a requirement for Para cad, al though it could have

some use if included in a full implementation of a parametric

CAD system. Similarly the saving of a completed particular

drawing is not essential if the drawing can be immediately

plotted, but this would be a definite advantage (and would be

a requirement in any full implementation). Since Paracad is

26

only a feasibility testing system, it was decided that this

feature could be omitted.

4.3 Menus

Because of the advantages for unfamiliar users a menu system

is the obvious choice for Paracad since a test system is

prone to frequent change and modification. The menu system

provides an inherent help method with the menu choices

(assuming they are suitably descriptive) . The argument over

whether a menu-driven or command-driven system would be best

in a full implementation is not changed by the addition of

parametric facilities to a CAD package and so each method

would have its supporters.

4.4 Co-ordinate Storage and Viewing Control

Since all CAD systems of reasonable accuracy employ real

variables to store co-ordinate data, it was decided that this

should also be the case with Paracad.

Viewing control (windowing and panning) would be necessary

for a full implementation, but this does not in any way

affect the problems encountered by adding parametric

facilities and so it was decided to omit viewing control from

Paracad.

27

4.5 Primitives Supported

The most severe restriction placed on Paracad was in the

primitives it supports. While most CAD systems support lines,

rectangles, circles, arcs, text, dimensions, polygons and so

on it was decided to limit Paracad to lines only. The reason

for this is that to implement a large number of primitives

into a CAD package takes a number of man years of programming

effort. In the case of Paracad the aim is to examine the

feasibility of parametric CAD systems rather than to provide

a full implementation of a running version and so while

restricting Paracad to lines only reduces its usefulness

considerably, it does provide a sufficient subset for initial

feasibility studies. The additional problems that might be

posed by including other primitives in a parametric CAD

system will be considered in a Chapter 7. All remaining

design decisions will relate to this line-only restriction.

It was also decided that the only method of line entry in

Paracad would be by specifying the position of the line's

startpoint and endpoint. For a full implementation it would

be advantageous to include other methods of line entry, (such

as defining a start point, a length, and another parallel

line) .

28

4.6 Startpoint Types

It was decided that the different possible ways of specifying

the startpoint of a line for Paracad should be to give the

actual point by using the digitiser, to give the actual co-

ordinates of the point from the keyboard, or

point on another line to connect to.

to specify a

While full

implementations could add some extra methods such as giving

cartesian offsets relative to the last point entered or

giving a distance and direction (polar offset) relative to

the last point entered, these do not have any additional

effect on a parametric CAD system unless the offset values

are parametrically defined (ie. the start point position is

determined by some parameter). In fact these possibilities

are catered for within Para cad by the use of construction

lines (described in Section 4.8).

4.7 Endpoint Types

Different CAD packages provide various methods of defining

the endpoint of a line. It was resolved that Paracad should

have a fairly comprehensive range of methods for line

endpoint definition. The methods it was decided to implement

were:-

a) specifying the actual position with the digitiser

29

b) entering the actual co-ordinates from the keyboard

c) specifying a vertical line (with length defined by

digitiser, keyboard, parametrically, connecting to some

point on another line, or left floating)

d) specifying a horizontal line (with length defined by

digitiser, keyboard, parametrically, connecting to some

point on another line, or left floating)

e) specifying a polar line (with angle from startpoint

defined either parametrically or actual angle entered from

keyboard and distance from startpoint also defined either

parametrically or from keyboard)

f) specifying a relative line (with x and y offset from

line's startpoint defined from keyboard)

g) specifying a connection to some particular point on

another line

h) leaving the endpoint floating

These provide a greater selection of methods than is strictly

necessary in a full implementation, but they do allow more

design flexibility and permit comprehensive testing of the

feasibility of parametric line drawing.

30

A rather insidious problem that may occur is when the

parameters supplied to a parametric drawing are such that

they result in a particular drawing that has a polar line

that ends up with the startpoint and endpoint being in the

same place. Since most formulae for calculating the endpoint

of a polar line rely on dividing by either dx (the change in

x) or dy (the change in y) an attempted divide by zero could

result if care is not taken. This problem does not arise in

conventional CAD packages as a test is made at entry time to

ensure a line has non-zero length.

4.8 Construction Lines

One of the requirements of a parametric

allow variable placement of primitives

CAD system is to

(depending on the

value provided for some parameter). One of the most flexible

methods for providing this is to allow the use of a

"construction line". This is a line that appears only in the

parametric drawing and is used as a design aid. It can be

drawn as any other line, but is depicted in a different way

(eg. different colour or linestyle) to readily identify it.

This then allows adaptable defining of a primitive's

location.

As an example, suppose a designer needs to specify a

primitive as being at an angle of 30° from some point Panda

distance r from P (where r is some parametric value that

31

varies between particular drawings). This can be done as in

Figure 4-1 which shows a construction line with startpoint at

P. The construction line is defined as being polar with

actual angle of 30° and parametric length b. The primitive to

be drawn is now drawn connected to the endpoint of this

construction line, Q, so altering the value of b will alter

the position of this primitive. On any particular drawing the

construction line is not visible.

30°
P---~----

Q

primitive
start point

Figure 4-1 Use of a Construction Line

The use of construction lines is not essential in a

parametric CAD system, but it does provide considerable

flexibility in specifying the startpoint of primitives

without increasing the complexity of the start point

definition. To not have construction lines but still retain

the features provided by them by adding different choices to

the way of defining the startpoint of a primitive would be a

more difficult approach to implement and to use (consider how

32

the example shown in Figure 4-1 could be done by startpoint

definition only - the menu for adding the startpoint would be

far more complex).

Construction lines do not really have a great deal of

usefulness in conventional CAD packages, although some

systems (eg. Versacad) do provide a form of temporary

construction line, because a normal line can be drawn instead

of the construction line and then erased after it is no

longer needed. This is not possible with a parametric CAD

system as the linkage between the startpoint and endpoint of

the construction line needs to be retained.

Because of the flexibility provided by construction lines it

was decided they should be included in Paracad.

4.9 Connect Points

One method permitted by many CAD packages for defining a

cursor position is to "snap" to a particular point on an

existing primitive. For a line this position is typically the

startpoint, endpoint or midpoint of the line. For a rectangle

it is typically any of the four vertices or the centre. Such

a "snapped" cursor position can then be used to define the

startpoint or endpoint of the primitive currently under

construction. With a parametric CAD system this concept of

snapping to a particular point on a primitive is taken a step

33

further since it is often necessary to define a connection to

the chosen point. For the rest of this thesis such a point

will be referred to as a connect point.

For Paracad the only primitives allowed are lines and so the

obvious connect points to provide on lines are the

startpoint, endpoint and midpoint. In addition to these the

provision of a fourth point, the equation point, was decided

on.

The startpoint, endpoint and midpoint connect points are

self-explanatory in most instances (ie. the connect point

midpoint of the line at the

connect

startpoint, endpoint or

to), but the decisions made for Paracad when

is

to

the

connect point is used to define vertical, horizontal and

polar endpoints may require some elucidation. For vertical

line endpoints, the connect point defines they co-ordinate

of the vertical line (the x co-ordinate is the same as that

for the line's startpoint). This is shown in Figure 4-2 which

illustrates three different vertical lines connected in turn

to the startpoint, midpoint and endpoint of another line. A

similar interpretation applies to connects used for

horizontal line endpoints except now the connect point

defines the x co-ordinate of the horizontal line's endpoint

as shown in Figure 4-3.

34

A

. 0e
\.)·

B

C

Line 3: vertical,
connect to midpoint
Bon line 1

Line 2: vertical,
connect to startpoint
A on line 1

Line 4: vertical,
connect to endpoint
Con line 1

Figure 4-2 Connect Points for Vertical Line Endpoints

For the endpoint of a polar line, the connect point specifies

either they co-ordinate of the polar line's endpoint or the

x co-ordinate - depending on whether the line is more nearly

vertical or horizontal. For lines that are more vertical, the

y co-ordinate is given by the connect point, and the x co-

35

I

I

•

A

0
·$ B
"' I

I

•

C

Line 4: horizontal,

connect to endpoint
con line 1

Line 3: hor i zonta 1,

connect to midpoint
Bon line 1

Line 2: horizontal,
connect to startpoint
A on line 1

Figure 4-3 Connect Points for Horizontal Line Endpoints

ordinate can thus be calculated. For lines that are more

horizontal the x co-ordinate is given by the connect point

and they co-ordinate is then calculated. This is illustrated

in Figure 4-4 which shows lines 2 and 3 connected to the

36

endpoint of line 1. Line 2 is a more vertical case and line 3

is a more horizontal one. Since the angle of a polar line can

be parametrically defined and can thus be different for

different particular drawings, it is quite feasible that for

one particular drawing a polar line takes a connect point to

give its endpoint x co-ordinate, while in another particular

drawing the same connect point gives its y co-ordinate.

A

Line 1 Line 2

Figure 4-4 Connect Points for Polar Lines

The so-called "equation" connect

amplification. The interpretation of

point is context dependent. If a user

startpoint of any line, or the

point needs some

an equation connect

is about to enter the

endpoint of a line

unconstrained in direction (ie. not horizontal, vertical or

polar), an equation connect indicates that the cursor is to

lock onto the equation of the line selected for connection

37

to. That is the cursor moves along the chosen line (the line

is considered to extend to the edge of the screen in both

directions) . If a user is about to enter the endpoint of a

directionally constrained line, the equation connect point is

calculated to be the point of intersection of the two lines.

Examples of this are shown in Figure 4-5. In each case the

line to connect to is line 1, and the line for which the

endpoint is being specified is line 2.

Note that if two lines are parallel there is no intersection

point and so an equation connect is not possible. For a

parametric drawing the software can prevent the user from

being offered the equation connect option for two lines that

are parallel at that time, but the parameters supplied for a

particular drawing may make a previously possible case (non­

parallel lines) into an impossible one (lines parallel). If

this occurs the package needs to indicate to the user that

the supplied parameters lead to an invalid drawing.

It is convenient for the designer to have connect points

indicated in some way so he is aware of the fact that the

points may well move in response to the repositioning of

another primitive, so a requirement for Paracad was to have

some form of connect point identification. It was decided

this identifier should be on the point being connected rather

than the point being connected to - ie. if the endpoint of

line 1 is being connected to the midpoint of line 2, the

connect identifier appears on the endpoint of line 1 (which

38

/
/

Line 1

/
/

Line 2

a) Vertical Line Endpoint

Line 1

/
/

/
/

Line 1

Line 2

b) Horizontal Line Endpoint

c) Angular Line End po int

Figure 4-5 Equation Connect with Constrained Line Endpoint

may or may not be in the same location as the midpoint of

line 2). Figure 4-6 part (a) shows a case where the two

points are in the same location while part (b) shows a case

where they are in different locations and the midpoint of

line 2 is used to give just they co-ordinate of the line 1

endpoint.

39

Line 1: free,
floating

Connect
identifier

/

Line 2

a) Same location

Connect
identifier

Line 1:
vertical,
floating

Line 2

b) Different locations

Figure 4-6 Position of Connect Identifier

40

4.10 Floating Endpoints

The concept of floating line endpoints was discussed in

Section 3.4. Providing floating lines adds a number of extra

problems for a parametric CAD system, so it was considered

necessary to include this feature in Paracad. Since the

author is unaware of any CAD package that includes floating

lines (or any similar concept) all the development techniques

for handling them needed to be developed from scratch. For

Paracad it was decided to provide floating endpoints for

lines unconstrained in direction and for the length of

vertical and horizontal lines. It was decided not to include

floating endpoints for the length or angle of polar lines or

for either offset in relative lines in Paracad since these do

not add any new problems in terms of parametric CAD

considerations but do add significantly to the complexity of

the software required for implementation.

It was also decided not to include polar lines with fixed (or

parametric) lengths and floating angles for reasons of

ambiguity. An example of this ambiguity is indicated in

Figure 4-7. Line 1 is specified as having length a and line 2

has length b. Both lines have floating angles and their

endpoints are to be connected. The endpoint of line 1 must

lie on the circle centred at the startpoint of line 1 with

radius a and similarly the line 2 endpoint lies on the circle

centred on its startpoint with radius b. These two circles

will not intersect at all if the distance between their

41

- - - --- ----- ---
--- ----/ ' / '

/ "-
/ " / ' /

I \.

I
\

I \

I \
line 1 \ I length a \

I
I

p

-- - -+--/'
/ I ' \ / "-

\ /
I \.

\ I I \

\ I I \

\ I I

\
I

\. /
/ \.

/ line 2

' \ length b "-
~/

/ I
"- I

' '
/'

Q "
/

---- ------ -- "- /

--- - - - - - /'

--- - ---- -

Figure 4-7 Ambiguity With Floating Angles

centres is greater than a+ b, they will touch at one point

if the distance between their centres equals a+ b, they will

intersect at two points if the distance between their centres

is less than a+ b but greater than zero, and if they are

concentric they will not intersect at all if a* band they

42

\
I

I

will intersect in an infinite number of places if a = b.

Figure 4-7 shows the case where they intersect in two places,

P and Q.

This form of ambiguity is difficult to resolve. The case

where the circles do not intersect could be considered an

error if it occurs in a particular drawing, as could the

concentric circle cases. The difficulty arises in the case

where there are two possible intersection points. It is

almost impossible to come up with some easy to use method for

defining which point of the two is required at parametric

time since particular drawings can look radically different

from the parametric drawings they derive from thus

requesting "the leftmost point" of the two is not

satisfactory. For this reason it was decided not to include

floating angles in Paracad.

For future reference, a line that is unconstrained in

direction and that has a floating endpoint will be referred

to as a freefloat line, while a horizontal or vertical line

with a floating endpoint will be referred to as a vertically

or horizontally floating line. Collectively they will be

referred to as floating lines while lines that are not

floating will be referred to as fixed lines.

It is convenient, for the designer, to have a floating

endpoint indicated in some way so he is aware that the

endpoint has not yet been fixed and thus the drawing is

43

incomplete, so a requirement for Paracad was to have a form

of floating point indication. This identifier should be on

the endpoint of the floating line.

It was further decided that no connect would be allowed to be

made to the midpoint, endpoint or equation point of any line

with a floating endpoint (the only exception to this is a

special float connect which is discussed in Section 4 .11) .

This restriction ·is necessary to ensure that the startpoint

of every line is always fully defined (either directly or

parametrically) . This considerably reduces the problems of

resolving floating lines when they finally become connected

and it helps prevent the construction of impossible drawings.

This is a very minor restriction in practice since once the

endpoint of a floating line has been fixed it is then

possible to connect to it.

4.11 Floating Endpoint Connections

The provision of floating endpoints on lines means some

method must be provided for eventually fixing these points.

There are two possibilities for the fixing point - either the

point will be some connect point based on another primitive

or else the point will be some actual point selected by the

digitiser or keyboard input. The latter of these two

possibilities is really an unnecessary option - there is no

need to have a floating line if it is merely fixed to a known

44

actual point at a later time since it could have been fixed

at the time it was first added (or else not been added until

the time it was fixed) and so this possibility was not

required in Paracad, although in a full implementation it may

well be incorporated.

connect
point ~

Line 1:

Line 2: horizontal

vertical

Figure 4-8 Float Connect of Horizontal and Vertical Lines

The ability to connect a floating endpoint to some other

primitive was a requirement for Paracad. The possible connect

points allowed should, for consistency, be the same as those

allowed for other connects - ie. the startpoint, endpoint,

midpoint and equation point. In fact since normal connects

can be used to fully test all these options, it was decided

to only support startpoint, endpoint and midpoint for float

connects in Paracad. This provides a saving in program

45

complexity at no cost to parametric feasibility testing.

Float connecting ideally needs to allow connecting to other

floating lines as well as fixed lines. An example of the use

of this is shown in Figure 4-8 where it is required to

connect the two floating endpoints together. Note that doing

this will then fully define the position and lengths of both

lines. This would not always be the case as is shown in

Figure 4-9. In this case the floating end of freefloat line 1

is connected to the midpoint of freefloat line 2. Before this

float connection was made, both lines were unconstrained in

both direction and length. After the float connection is made

the lines are still not fully defined in either length or

direction, but they do have a form of constraint in that once

one of the lines becomes fully defined the other one also

becomes fully defined. Since extra problems are imposed by

allowing float connection to lines that are themselves

floating, and the concept of floating lines has been

developed for parametric CAD systems, it was decided that

this feature needed to be included in Paracad.

It is worth considering the different possibilities that may

occur in float connection:

a) Any float connection to any point on a fixed line will

result in the floating line becoming fixed.

46

Line 1
freefloat

Line 2
freefloat

Line 2

Line 1

a) before connection b) after line 1 float
connected to midpoint
of line 2

Figure 4-9 Float Connect of Two Freefloat Lines

b) Any float connection to the startpoint of another line

will result in the floating line becoming fixed,

regardless of whether the line being connected to is fixed

or floating. This is because startpoints are always fully

defined for all lines in Paracad (see Section 4.6).

c) Any float connection from a floating horizontal line

endpoint to either the midpoint or endpoint of a floating

vertical line will result in both lines becoming fixed as

shown in Figure 4-10. Notice that each line adjusts its

length accordingly to fit the type of connection.

47

Line 1:
horizontal,
floating

-+---------,0

Line 2:
vertical,
floating

Line 1

Line 2

a) original line positions b) line 1 float connected
to endpoint of line 2
Both lines now fixed

Line 1

c) Line 1 float connected
to midpoint of line 2
Both lines now fixed

Figure 4-10 Float Connect From Horizontal To Vertical Line

d) Any float connection from a floating vertical line to

either the midpoint or endpoint of a floating horizontal

line will result in both lines become fixed in a similar

fashion to that illustrated in (c) above.

48

e) Any float connection from a floating vertical line to the

midpoint or endpoint of another floating vertical line, or

from a floating horizontal line to the midpoint or

endpoint of another floating horizontal line, results in

both lines remaining floating, but as soon as one of the

lines becomes fixed the other will also become fixed.

f) Any float connection from a freefloat line to the midpoint

or endpoint of any other float line (vertical floating

line, horizontal floating line, or freefloat line) results

in both lines remaining floating (although they would be

locked together in some way) but as soon as one line

becomes fixed the other will also become fixed. This is

illustrated for two freefloat lines in Figure 4-11.

g) Any float connection from a floating vertical, horizontal

or polar line to the midpoint or endpoint of a freefloat

line results in both lines remaining floating but as soon

as one line becomes fixed the other will also become

fixed.

The diagrams in Figure 4-11 illustrate another design

decision needed for Paracad. It would impose a somewhat

severe restriction on a user if he was only allowed to make

one float connection with each floating line for two reasons.

Firstly he would need to remember which lines had been float

connected in cases like that shown in Figure 4-11 as it would

49

freefloat

a) original line positions

Line 3

Line 2

b) line 2 float connected to
endpoint of line 1. Both
lines remain floating with
endpoints locked together

Line 3

Line 2

c) line 2 float connected to
endpoint of line 3.
Both lines are now fixed

Figure 4-11 Float Connect Between Two Freefloat Lines

50

not be permitted to connect line 2 to line 3 as in part 3,

rather he would have to connect line 1 to line 3 - an action

that would give exactly the same result. Secondly, it would

be restrictive in that a user may become trapped and not be

allowed to produce the type of drawing he requires easily. As

an example consider the drawing shown in Figure 4-12. The

easiest way to construct the required drawing is to float

connect the endpoint of line 2 to the midpoint of line 3,

then float connect the endpoint of line 2 to the midpoint of

line 1. If only a single float connect is permitted for each

floating endpoint this would not be possible and a more

roundabout way would be needed to construct the drawing.

line 1 line 3 line 1

line 2

line;
a) original line positions b) required drawing

Figure 4-12 The Case For Multiple Float Connects

51

Since floating lines have been created for parametric CAD

systems it is necessary to fully investigate the difficulty

in implementing them, so it was decided to place no limit on

the number of times a floating endpoint can be float

connected within Paracad - the process can continue until

such time as the endpoint becomes fixed.

Since a Paracad requirement is to have some form of

identification on floating endpoints and connect points it

was decided that a floating endpoint that has been fixed (by

some connection)

identifier, but

should no longer have a floating endpoint

rather should have a connect point

identifier. A floating endpoint that is connected to another

line but still remains floating should have some identifier

that shows it is both floating and connected.

4.12 Cursor Indication

For any interactive CAD package using an input device such as

a digitiser it is essential to have some form of visual

feedback as to the relationship between input device position

(eg. position of stylus on the digitiser tablet) and screen

position. This is normally done by displaying some form of

cursor on the screen that "follows" the input device around.

Such a cursor is a requirement for Paracad.

52

4.13 Rubberbanding

When selecting the endpoint of a line it is useful to have

the line follow the cursor about so the user can immediately

see the effect if he were to select a particular point for

the line endpoint. This feature is called rubberbanding (or

tracking). While it is not strictly necessary for parametric

feasibility testing, its inclusion makes a package easier to

use. For this reason it was decided to include rubberbanding

within Paracad where appropriate.

4.14 Parameter Setting

For a parametric CAD system some method of indicating what

dimensions are to be parametric is needed during the

parametric drawing construction phase and some method is

necessary for entering values for these parameters during the

particular drawing construction phase. Since Paracad is to

examine the feasibility of parametric CAD rather than the

various possible mechanisms for supplying and linking

parameters it was decided that a simple method could be used

for each of these requirements. Indicating that a particular

dimension should be parametric can be done at entry time for

the affected primitive - the parameter name can be entered

and a sample value can be provided for the purposes of

constructing the parametric drawing. During construction of

the particular drawing a scan can be made of each primitive

53

in turn, and as parameters are encountered the user can be

prompted for keyboard entry of a value for the parameter. In

a full implementation providing these parameter values could

be done from keyboard entry, lookup tables, input files,

decision tables or output from other programs.

4.15 Parameterisation

Parameterisation refers to the process of actually

constructing the particular drawing once all the parameter

values specific to that drawing have been ascertained. To

reduce the software-writing burden in producing a parametric

CAD system the most convenient approach is to use the same

routines written for constructing the parametric drawing to

construct the particular drawing. While many features will

not be required, such as input prompts, the underlying logic

will be the same. For this reason the routines written for

the parametric construction phase should be written in such a

way that they can be readily used in the construction phase.

This philosophy is to be incorporated in Paracad and the

problems encountered noted to give some indication of the

difficulty of this approach.

54

4.16 Plotting

Since Paracad is not a full implementation it was decided

that the plotting facilities required would be as simple as

practicable. These should provide the output of particular

drawings only, in one colour, with a fixed scale and no user

control over the position of the drawing on the paper.

4.17 Miscellaneous

In order to reduce the complexity of Paracad it was decided

not to provide a number of miscellaneous features that would

be expected in a full implementation. None of these features

affect the parameter feasibility testing. They include the

ability to create or use groups, perform transformations

(such as enlargement), modify primitives (such as deleting),

copy primitives, have properties attached to primitives (such

as a primitive name) and the provision of levels (or layers).

55

CHAPTER 5

PARACAD ENVIRONMENT AND STRUCTURE

This chapter covers the environment of the Paracad system.

Both hardware and software environments are covered as are

the data structures used and their method of storage.

5.1 Hardware and Software Environment

The hardware used for implementing Paracad was an IBM AT

microcomputer with 512 kbytes of RAM, 80287 numerical co­

processor chip, 20 Mbyte hard disk, serial communications

card (RS232), monochrome display adapter with monitor and

professional graphics controller (PGC) and display. The

digitiser used was a Kurta 12" x 12" and the plotter used was

a Hewlett Packard 7475A A3/A4 model.

Paracad was written in Turbo Pascal (co-processor version)

with some in-line machine language routines developed using

80286 Assembler.

Paracad would run unmodified on any IBM PC, XT, AT or

compatible computer that had a PGC system and numerical co­

processor. For machines without a co-processor the Turbo

56

Pascal source code could be recompiled, but would run more

slowly. Driver routines for the PGC are written as separate

procedures to enable easy modification to other graphics

displays. These driver routines provide for the drawing of

solid and dotted lines in different colours, solid and filled

in circles in different colours, text, and allow windows on

the screen for a menu area and a graphics area.

5.2 PGC System

The IBM Professional Graphics Controller (PGC) provides high­

function graphics capability. It supports a screen resolution

of 640 x 480 pixels with 256 colours from a palette of 4096

colours. It has an on-board 8088 microprocessor and 300

kbytes of RAM for memory-mapped graphics [IBM. l] . The host

system provides command strings to the PGC which then carries

out the appropriate action on its bit-mapped image. No direct

access is provided to the bit-image area of the PGC memory -

commands are available to transfer data to and from this area

but generally this type of use does not match the philosophy

behind the PGC design.

The PGC provides drawing facilities for many primitives

including lines, text and circles, co-ordinate

transformations with modelling and viewing transformations,

user-definable look up tables (LUT) and window and viewport

control. Communication can either be in ASCII or HEX format.

57

ASCII format enables commands to be sent in text form - for

example the command

DRAW 10 20

will draw a line from the current point to the point with co­

ordinates (10,20). In Hex format the commands are sent as a

single byte followed by the arguments (if any) . The PGC

effectively converts ASCII format commands into Hex format

before processing them. Since Paracad is to run interactively

in real-time the Hex format is used as it is significantly

faster than ASCII format.

5.3 Digitiser and Interface

Communications with the Kurta digitiser are via an RS232

serial card running at 9600 baud. Data is frequently required

from the digitiser regarding stylus and button (switch)

position. Further, this data is often required as rapidly as

possible (for example when the stylus is being moved across

the digitiser and its position is being displayed on the

screen) so drivers were written in 80286 Assembler for

maximum speed and included within Paracad as in-line code.

The digitiser has four different operating modes for

positional data output auto (continuous data output

whenever stylus is close to digitiser surface or stylus

button is activated), draw (continuous data output only when

button is activated) , point (single point data output upon

button activation) and delta (single point data output

58

whenever stylus moves more than 0.01" or button is

activated) [KURT]. The mode selected for Paracad was auto so

it was possible to obtain information on the stylus position

without the button being pressed. This enables the button to

be used for such actions as selecting primitives, indicating

the current point is the one required,

questions and so on.

responding to

The Paracad digitiser drivers consist of two in-line machine

code procedures. One procedure software configures the

digitiser to be in the auto mode, with resolution of 200

points per inch and high resolution packed binary output. The

other procedure reads the digitiser data stream and returns

the current stylus position (x and y co-ordinates) and the

button status (switch open or closed). Some spurious readings

occasionally come from the digitiser so for the most critical

positions (the ones when the button is pressed) the procedure

waits until it receives two successive positional data items

that have the same co-ordinates before passing back the

results.

In order to use a different digitiser, two new machine code

interface routines would need to be developed.

59

5.4 Cursor Display

Initial tests were done using a machine code routine for

drawing a cursor on the screen, but it was found that because

of the nature of the PGC's operation and the speed of the AT

microcomputer that it was just as fast to code the cursor

drawing routine as a Turbo Pascal procedure. The procedure is

supplied with the screen co-ordinates of the required

position and draws a cursor at this point.

The cursor chosen is of the cross-hair type with the size

specified as a program constant for easy alteration. The

cursor is drawn by complementing the value of any pixels at

the locations of the cursor pixels. This has two main

advantages. Firstly, it allows easy erasing of the cursor by

a second call to the procedure with the same screen co­

ordinates. Secondly, it permits the cursor to pass over

existing primitives without deleting or altering the

primitives when it has gone - also judicious choice of the

PGC LUT allows the cursor to still be visible (as some

different colour) when over a primitive.

5.5 PGC Interface

As discussed in Section 5.2 communication with the PGC is in

Hex format. Since PGC commands are of different lengths

(different numbers of bytes) Paracad uses a somewhat unusual

60

approach to the method of interfacing to the PGC. This

involves setting up a data type structure for each group of

commands with the same length (ie. one data type for one byte

commands, one for two byte commands and so on). The first

byte of each structure stores the number of bytes that

follow, then comes the hex command byte, then the actual

bytes that make up rest of the command (if there are any). To

pass these data structures to the PGC the Turbo Pascal

extension that allows procedures to have untyped variable

parameters is used. This allows a procedure to be declared

with a variable parameter that has no specified type.

Whenever a call is made to the procedure, what is passed

across is the address of the actual parameter [TURB.1985].

In Paracad an in-line machine code routine with an untyped

variable parameter is used to send commands to the PGC. Any

call to this procedure uses the required data structure name

as the actual parameter, so the machine code routine is given

the address of the data structure containing the information

to be sent. The first byte of this information is the length

(ie. the number of bytes following) so the routine knows how

many bytes to send. While this may seem a rather convoluted

approach, it does allow sending of variable length groups of

bytes in hex format. The alternatives are to either have a

separate routine for sending each different type of data

structure or else to send data in ASCII form (as a string).

Paracad uses eight different data structures so eight

different sending routines would be required if that approach

61

was used, and using the ASCII mode of communication is

considerably slower.

5.6 Identification and Colours

All colours used in Paracad are easily alterable by changing

the LUT initialisation area. This involves specifying three

integers in the range O - 15. These integers specify the

required intensity of the Red, Green and Blue electron guns

respectively. Each of the LUT colours specified has a

complement that provides a sensible display when the cursor

moves over the pixels of that colour, or when another line

crosses it. The various identifiers and colours used will now

be described briefly.

Menu area: Paracad uses a rectangular area at the top of the

colour screen for a menu display and message area. This

area has a blue background and text is in white. The menu

area can accommodate up to 3 lines of 80 characters of

text.

Graphics area: The area of the screen used for the drawing

comprises all the screen below the menu area. A black

background is used.

Cursor: Paracad uses a small red cross-hair cursor.

62

Floating endpoints: Paracad uses a small blue open circle on

any line endpoint that is floating.

Connect points: Paracad uses a small yellow filled-in circle

on any line connect points. If a point is both connected

and floating a blue circle circumference that is filled

in with yellow is used.

Lines: A line that has been fully drawn is shown in white.

Construction lines: A construction line that has been fully

drawn is shown in purple.

Rubberbanded lines: A line (or construction line) that is

currently being drawn and is being rubberbanded is shown

in red until its endpoint position is specified.

Selection lines: A line that is being displayed for possible

selection (eg. as a line to connect to) is shown in

green.

Float connect lines: A line with a floating endpoint that has

been selected in order to connect (or fix) its endpoint

is shown in red.

63

5.7 Data Structures and Database Storage

5.7.1 Primitive Data Structure

Each line drawn in Paracad forms a record (referred to as a

primitive record) Dynamic variables are used for these

primitive records to allow efficient memory use and to avoid

being constrained by the Turbo Pascal limit of 64 kbytes

total memory for static variables and program. Dynamic

variables can use the entire memory space of the machine.

The primitive records form a linked list. Each primitive

record has a pointer to the next record in the list and there

are separate pointers to the first and last records in the

list. As a new line is added to the drawing its corresponding

primitive record is added to the end of the list. A list

containing three primitive records is shown in Figure 5-1

part (a) and the same list with a fourth primitive added is

shown in Figure 5-1 part (b) . No deletion of records is

necessary since Paracad does not support line deletion.

The format of each primitive record is shown in Figure 5-2.

Each of the 13 different data fields will now be considered

in more detail:

64

first record
pointer

last record
pointer

next prim record 1
pointer

next
pointer

prim record 2

next
pointer prim record 3

nil

a) list containing 3 primitive records

first record
pointer

last record
pointer

next prim record 1
pointer

next
pointer

next
pointer

next
pointer

nil

prim record 2

prim record 3

prim record 4

b) list with a 4th primitive record added

Figure 5-1 Primitive Record List Structure

65

next prim start1 start2 start end end1 end2
pointer number data data type type data data

end3 end4 constraint constraint parameter
data data type value pointer

Figure 5-2 Primitive Record Format

1. Next pointer

This field is a pointer variable that contains the

pointer to the next primitive record in the linked list.

2. Prim number

This field is an integer variable that contains the

number of the current primitive. Each primitive has an

associated unique number that is used to identify the

primitive.

66

3. Startl data

This field is a real variable that is used to store the x

co-ordinate of the line's current startpoint.

4. Start2 data

This field is a real variable that is used to store they

co-ordinate of the line's current startpoint.

5. Starttype

This field is an integer variable used for storing flags

to indicate the type of startpoint the line has.

Currently Paracad only supports actual positions or

connect positions so only two different values - 0 for

actual startpoint, $8000 (hexadecimal 8000) for connect

startpoint.

6. Endtype

This field is an integer variable used for storing flags

to indicate the type of endpoint the line has. An integer

takes two bytes of storage in Turbo Pascal and so this

allows 16 one bit flags. These flags are as follows:

67

Bit 16 - If the line is a construction line this bit is 1

otherwise it is 0

Bit 15 - If there is an unresolved floating endpoint for

the line this bit is 1 otherwise it is 0.

Bit 14 - If the line has a connect endpoint and is not

directionally constrained (ie. not polar,

horizontal or vertical) this bit is 1 and the

2nd byte of the endtype field is unused (all

bits set to 0). If the endpoint is not a connect

or the line is directionally constrained this

bit is 0.

Bit 13 - If the line has an endpoint specified as an

absolute value (absolute co-ordinates entered

from either the keyboard or digitiser position)

this bit is 1 and the second byte of the field

is unused (all bi ts set to 0) , otherwise this

bit is 0.

Bit 12 - If the endpoint of the line is of the freefloat

type (ie floating and not directionally

constrained) this bit is 1 and the second byte

of the field is unused (all bits set to 0),

otherwise this bit is 0.

68

Bit 11 If the line endpoint has been defined as

relative this bit is 1 otherwise it is O. If

this bit is 1, the second byte of the field is

used as follows: - bi ts 8 and 7 are 0 (unused) ,

bit 6 is 1 if the x offset is given as an actual

value (otherwise it is 0), bit 5 is 1 if they

offset is given as an actual value (otherwise it

is 0), bit 4 is 1 if the x offset is a

parametric value (otherwise it is 0), bit 3 is 1

if they offset is a parametric value (otherwise

it is 0), bit 2 is 1 if the x offset is floating

(otherwise it is 0) and bit 1 is 1 if the y

offset is floating (otherwise it is 0). Paracad

currently does not allow relative lines with

floating endpoints so the last two of these

flags are not currently used.

Bit 10 - If the line has been defined as polar this bit

is 1 otherwise it is 0. If this bit is 1, the

second byte of the field is used as follows: -

bit 8 is 0 (unused), bit 7 is 1 if the line has

a connect endpoint (otherwise it is 0), bit 6 is

1 if the line angle is given as an actual value

(otherwise it is 0), bit 5 is 1 if the line

length is given as an actual value (otherwise it

is 0), bit 4 is 1 if the line angle is a

parametric value (otherwise it is 0), bit 3 is 1

if the line length is parametrically value

69

Bit 9 -

(otherwise it is 0), bit 2 is 1 if the line

angle is floating (otherwise it is 0) and bit 1

is 1 if the line length is floating (otherwise

it is 0). Paracad currently does not allow polar

lines with floating angles or lengths so the

last two of these flags are not currently used.

If the line has been defined as vertical or

horizontal this bit is 1 otherwise it is 0. If

this bit is 1, the second byte of the field is

used as follows:- bit 8 is 1 if the line is

vertical or 0 if horizontal, bit 7 is 1 if the

line has an endpoint connect (0 otherwise), bit

6 is 0 (unused) , bit 5 is 1 if the line length

is given as an actual value (otherwise it is 0),

bit 4 is 0 (unused) , bit 3 is 1 if the line

length is parametrically defined (otherwise it

is 0), bit 2 is 0 (unused) and bit 1 is 1 if the

line endpoint is left floating.

Bits 8 to 1 - If bits 11, 10 or 9 are set to 1, these

bits are set as described for bits 11, 10 and 9

above, otherwise they are all set to 0 (unused).

7. Endl data

This field is a real variable that is used to store the x

70

co-ordinate of the line's current endpoint.

8. End2 data

This field is a real variable that is used to store they

co-ordinate of the line's current endpoint.

9. End3 data

This field is a real variable that is used to store

endpoint information depending on the type of line. For a

polar line it stores the current angle (in radians), for

a line with a relative endpoint it stores the current x

offset, and for all other lines it is unused.

10. End4 data

This field is a real variable that is used to store

endpoint information depending on the type of line. For a

vertical, horizontal or polar line it stores the current

line length, for a line with a relative endpoint it

stores the current y offset, and for all other lines it

is unused.

71

11. Constraint type

This field is an enumerated type variable that indicates

the type of constraint on the line's endpoint. The

possible values are vertically_constrained,

horizontally_constrained, fixed and freefloat. The use of

this field will be described in more detail in Section

6. 7.

12. Constraint value

This field is a real number variable that stores the

currently constrained value for directionally constrained

line. The use of this field will be described in more

detail in Section 6.7.

13. Parameter pointer

This field is a pointer variable that contains a pointer

to the first parametric variable used by this line (if

any are used).

72

5.7.2 Parameter Record

Each primitive drawn in Paracad may have 0, 1 or 2 associated

parameters. For example, a line with an absolute startpoint

and absolute endpoint would have no associated parameters, a

vertical line with parametric length would have one

parameter, and a polar line with parametric length and

parametric angle would have two parameters. To store these

parameter names and link them to the corresponding primitive

record could be done in three possible ways.

The first method is to have variable size primitive records

depending on the number of parameters involved (using

Pascal's variant records for example), but to cover all the

possible cases where a parameter could occur would require

several different record forms, and if the package was

extended to cover other primitives the number of cases would

be even greater. This could be simplified somewhat by

allowing only three variant record types one with no

parameter name field, one with one parameter name field and

one with two parameter name fields. If this method is used it

is important to ensure parameter names are correctly matched

with the dimension they represent in the two parameter field

case - for example for a polar line with parametric angle and

parametric length it is necessary for the program logic to

have a specific order of parameter name storage so they can

be correctly retrieved and the angle parametric name does not

get used as the length parametric name. An added complication

73

arises when the parameters are given their actual values -

some form of linkage is required between the parameter names

and their values. This necessitates either an extra field in

the primitive record for each parameter value, or separate

parameter value records either with pointers back to the

primitive records or else parameter name fields within them.

The different possibilities are illustrated in Figure 5-3

with the two forms of parameter value storage indicated. If

the same parameter name (and value) is to be used for more

than one primitive, which is a reasonable requirement,

modifications would be needed to this storage mechanism.

The second method is to append each primitive record with two

data fields for the names of the parameters and only use as

many as are necessary for that primitive. This has the

overhead of having two data fields associated with every

primitive record, and one (or both) may not be used in many

cases. As with the first method, the order the parameters are

stored in is critical to ensure correct matching of names on

retrieval, the linkage of names to values is still required,

and modifications would be required to allow the same

parameter name for more than one primitive.

The third method is to have a single parameter pointer field

in the primitive record that points to a separate parameter

record (if one is needed) that in turn points to a second

parameter record (if two are needed) . Again the order of

parameter name storage is important, but no problems exist

74

7
value

primitive
record

par=:am1 T par=:am1 '
1

pa;am2 1 pa~m2 7
name I value name I value I

~-------~----l---L---~---~
(optional)

a) storing all parameter data with primitive record

primitive
record

I
primitive next

pa~ m1 T pa r=:a m2 l
name I name I
- - - l - - -

variant
pointer pointer

variant record

value primitive next variant
- pointer pointer

variant record L

b) storing parameter name only with primitive record

Figure 5-3 Possible Methods Of Storing Parameters

75

with linkage between the parameter name and value as both

would be stored as part of the parameter record. This also

simplifies processing and storage when the same parameter is

used for more than one primitive and allows extra fields to

be easily added to the parameter records (if required for

future expansion). It also allows any number of parameters to

be associated with a single primitive record without any

modification and so lends itself to future expansion to other

primitive types. This was considered the most attractive

method of the three and so it is the one implemented in

Paracad. Figure 5-4 illustrates the method. The parameter

record in the parametric drawing program does not contain a

value field, while the parameter record in the particular

drawing program does.

5.7.3 Affected Record

The linkage between connect points is an important one in any

parametric CAD system. Since line lengths and angles can vary

with their parameters, so the positions of other lines

connected to them also changes. It is possible for a single

parameter change for one line to have a ripple-through effect

causing changes in the position of every other line in the

drawing. Further, during floating endpoint connection the

fixing or connecting of one floating endpoint has an effect

on all other interconnected floating lines. The processing

involved in calculating these effects can be considerable and

76

so it is essential that the mechanism used to indicate line

interconnections permits fast access.

primitive record

parameter record
pointer

parameter record

parameter next parameter
name record pointer

parameter record

parameter next parameter
name record pointer

Figure 5-4 Method Of Storing Parameters In Paracad

Initially Paracad was designed with line interconnection data

stored as part of the primitive record, but this became too

unwieldy for floating line connection processing and also

required considerable storage overhead in fields needed in

the primitive record - fields that would be unused if the

primitive was not connected to another. To find out what

lines were connected to each other it was necessary to scan

77

all primitive records (several times in many cases) and then

deduce interconnections. For example, to find out what lines

were affected by line 1 it was necessary to scan all

primitive records to find connections to line 1 and if any

line was connected, line 4 say, it was then necessary to scan

all primitive records again for a reference to line 4 and so

on.

first record
pointer

last record
pointer

next affected record 1
pointer

next affected record 2
pointer

next
pointer

nil

affected record 3

Figure 5-5 Affected Record List Structure

It was quickly apparent that this method of connect data

storage was unsatisfactory, so an alternative method is now

implemented. This involves having separate records containing

connection data. These records are called affected records

and are dynamic records in a linked list. This affected

records list has been set up to enable fast processing of

78

both normal connections and floating endpoint connections as

described in Sections 6.6 and 6.7. The list structure has a

separate pointer to the first and last records and each

record in the list has a pointer to the next record as shown

in Figure 5-5.

controlling affected controlling affected lineequation next
primitive primitive point point ratio affected

pointer

Figure 5-6 Affected Record Format

The format of each affected record is shown in Figure 5-6. An

explanation of each of the 6 fields follows:

1. Controlling primitive

This field is an integer variable that stores the

primitive number of the primitive that causes some other

primitive to be affected because of this particular

connection.

2. Affected primitive

This field is an integer variable that stores the

79

primitive number of the primitive that is affected by this

particular connection.

3. Controlling point

This field is an enumerated type variable that indicates

the position on the controlling primitive where the

affected primitive is connected. Current allowable

positions are linestart, lineend, line middle and line

equation.

4. Affected point

This field is an enumerated type variable that indicates

the point on the affected primitive that is connected to

the controlling point. Current allowable positions are

linestart, lineend, line middle and line equation.

5. Line-equation ratio

This field is a real variable that stores the ratiometric

position of a connect point for a line equation

connection. This is described in more detail in Section

6.6.

80

6. Next affected pointer

This field is a pointer variable that stores the pointer

address to the next affected record (if there is one).

For more information on the method of primitive connection,

refer to Sections 6.6 and 6.7.

5.7.4 Entry Record

The method used for parameterisation in Paracad follows

through each primitive addition and float connection in the

order they were performed during construction of the

parametric drawing (refer Section 6. 8) . This requires the

order these actions are performed in to be recorded. This is

done by using entry records. An entry record is a variant

record with two different forms - one for adding primitives

and one for float connections. These records are stored in a

linked list with a separate pointer to the first and last

record in the list. The two different formats for entry

records are shown in Figure 5-7. The various fields in these

records are as follows:

81

floating

add
primitive

next entry
record pointer

a) primitive addition form

connect connect next entry
primitive primitive position record pointer

b) float connect form

Figure 5-7 Entry Record Formats

1. Add primitive

This field is an integer variable that stores the

primitive number of the primitive that is being added.

2. Next entry record pointer

This field is a pointer variable that stores the pointer

address of the next entry record (if there is one).

82

3. Floating primitive

This field is an integer variable that stores the

primitive number of the primitive with the floating

endpoint that is being connected.

4. Connect primitive

This field is an integer variable that stores the

primitive number for the primitive that the floating

endpoint is being connected to.

5. Connect position

This field is an enumerated type variable that stores the

position on the connect primitive where the floating

endpoint of the floating primitive is being connected to.

The positions allowed within Paracad are linestart,

lineend, linemiddle and line equation.

5.7.5 Queue record

The method of connecting floating endpoints adopted in

Paracad is described in detail in Section 6.7. This method

involves searching the affected primitives list to find any

83

primitives affected by the one that is being connected. If

any are, they are added to a queue (that is initially empty).

Once the search reaches the end of the affected records list,

the primitive that is first in the queue is taken and another

scan is made of the affected records to see if any are

affected by this primitive and so on until the queue is

empty. The records stored in the queue are called queue

records and are dynamic records that are stored in a linked

list with a pointer to the first and last record in the list.

The format of each queue record is illustrated in Figure 5-8.

primitive primitive next queue
number type pointer

Figure 5-8 Queue Record Format

The various fields in these queue records are as follows:

1. Primitive number

This field is an integer variable that stores the

primitive number for the primitive being added to the

queue.

84

2. Primitive type

This field is an enumerated type variable that indicates

how the primitive endpoint is constrained. Possible values

for this field are vertically constrained, horizontally

constrained, fixed and free floating.

3. Next queue pointer

This field is a pointer variable that stores the pointer

address of the next queue record (if there is one).

5.7.6 Primscovered Record

During the float connect stage

are being connected) scans

(ie. when floating endpoints

are made of the affected

primitives records to find any primitives affected by the

current queue record (this process is discussed in more

detail in Section 6.7). Once all affected records have been

scanned for the current queue primitive the record is removed

from the queue. To prevent it being put back in the queue by

a subsequent affected record Paracad employs a list

containing primitives that have been covered by an affected

records scan. This list, called the primscovered list,

consists of dynamic record variables in a linked list with

85

pointers to the first and last elements in the list. The

format of each primscovered record is shown in Figure 5-9,

and each field is described in detail below.

primitive
number

next primscovered
record pointer

Figure 5-9 Primscovered Record Format

1. Primitive number

This field is an integer variable that stores the number

of the primitive that has been covered by an affected

records list scan.

2. Next primscovered record pointer

This field is a pointer variable that stores the pointer

address of the next primscovered record (if there is one).

86

5.7.7 Check Record

When a floating endpoint is being connected to another

primitive it is important to ensure that a connection causing

a circular float conflict is not made. A simple example of a

circular float conflict is if lines 1 and 2 are both

floating, the endpoint of line 1 is float connected to the

midpoint of line 2, and then an attempt is made to float

connect the endpoint of line 2 to the midpoint of line 1.

This circular float conflict involves only two primitives,

but in practice any number of primitives can be involved

(circular float conflicts are discussed in more detail in

Section 6. 7) . In order to detect such conflicts, Paracad

builds up a list of circularly affected primitives during a

float connect. The elements of this list are called check

records and are dynamic record variables. The format of a

check record is shown in Figure 5-10 and the contents of each

field is described below.

primitive next check
number record pointer

Figure 5-10 Check Record Format

87

1. Primitive number

This field is an integer variable that stores the number

of the primitive that is being added for check purpose.

list scan.

2. Next check record pointer

This field is a pointer variable that stores the pointer

address of the next check record (if there is one).

5.8 File Handling (Saving and Loading)

During the parametric drawing construction phase Paracad

provides the ability to save and/or reload any partially or

fully completed parametric drawing. During the particular

drawing construction phase it allows the loading of any

parametric drawing, but will not permit processing if the

drawing has any lines with floating endpoints that have not

been fixed.

Saving a partially or fully completed parametric drawing

involves saving, as separate files, the primitive records,

the entry records, the affected primitive records and the

parameter records. Since all pointer variable linkages that

exist when a drawing is saved will be incorrect when the

88

drawing is reloaded again, an alternative to pointers is

necessary in the files saved. For the entry record, affected

primitive record and parameter record files the records are

stored, without pointers, in their linked list order. The

primitive records are also stored in their linked list order,

and the parameter pointer field that points to the first

parameter record associated with this primitive is changed to

store an integer that gives the position of the parameter

record in the parameter file (it is set to zero for

primitives that have no associated parameters).

When a parametric drawing is to be loaded, either during the

parametric drawing construction phase or the particular

drawing construction phase, all these files are read back in

again and the pointer records re-established.

89

CHAPTER 6

PARACAD USER INTERFACE

The way the user operates Paracad and the way it responds to

the user is discussed in this chapter. Direct responses (such

as the menu structures) are described as are the algorithms

used for implementing these responses (such as the method of

selecting primitives, the way line connects operate and so

on) . Both the parametric drawing phase and the

parameterisation phase (and its output) are covered.

6.1 Menu Structure

Paracad is a menu-driven package with the various menus

forming a tree structure. The top three lines of the graphics

display screen are reserved for menus and text. For menu

displays, the top line is used for a description of the menu

(eg. Main Menu, Add Line Endpoint etc.) while the second and

third line display allowable choices. A selection is made by

typing the first letter of the required menu item. To exit

from a menu to the menu above the user selects the Quit menu

item. An outline of the menu structure employed in Paracad is

displayed in Appendix B.

90

6.2 User Friendliness

Since Paracad is an interactive package it is important that

the user feels comfortable with its use. Necessary

consequences of this are to have a sensible menu structure

with easy to understand options, consistency in software

actions, user feedback to ensure the user is kept informed of

what is happening and fast response to all user actions

wherever possible or an indication of what is happening if

this is not practicable.

Considerable efforts have been made to make the menu

structure easy to understand and use and to ensure

consistency throughout. An improvement that should be

considered on any full implementation is an on-line help

facility to explain in detail the actions of any menu choice.

User feedback is employed in a number of ways. Whenever an

invalid menu choice is made or an illegal action is attempted

the system emits an audible error "beep" and displays a

message (if appropriate).

If the user is required to enter data either from the

keyboard or the digitiser the system emits an audible prompt

"pip" of shorter duration than the error beep to indicate to

the user that some action is required. Whenever digitiser

action is permitted the cursor is displayed on the screen and

moves in synchronisation with the digitiser stylus. If

91

digitiser input is not permitted the cursor is not displayed.

Rubberbanding is used when a primitive is being drawn to show

how the primitive would appear if the current digitiser

stylus position was selected. The

rubberbanded is also drawn in a different

primitive being

colour from the

other primitives to make it stand out. Once the endpoint

position is selected the primitive colour reverts back to the

same coiour as the other primitives.

Rubberbanding of some primitives involves more calculation

than others. For example the endpoint of a primitive that has

no directional constraints can follow the cursor anywhere,

while a polar line say has only its x or y endpoint co­

ordinate defined by the cursor and the other co-ordinate must

be calculated by some formula. The algorithms used in Paracad

for calculating such co-ordinates have been optimised for

speed and there is no noticeable difference in the speed at

which any type of line endpoint tracks the cursor.

Initially Paracad flashed the primitive being drawn on and

off during rubberbanding, but the flash rates were so fast

for some lines that they appeared to be invisible at times.

This is now changed so that during rubberbanding a line is

kept continuously displayed unless the digitiser moves the

cursor by at least a pixel. When this occurs the old

rubberband line is erased and a new one drawn. This results

in a far steadier and more aesthetically pleasing display.

92

Any primitive that is selected for some action in Paracad

(for example for a connection to be made to) is displayed in

a different colour from other primitives to enable it to

stand out. During a connect the cursor becomes "locked" on

the line selected to connect to.

6.3 Directionally Constrained Lines

At all stages within Paracad, the endpoint position specified

for a vertical line determines the lines y co-ordinate only -

the x co-ordinate is made the same as that for the lines

startpoint. This is true regardless of whether the endpoint

is specified by digitiser, absolute co-ordinates, connection

to another line, by parametric definition or whether the line

is tracking the cursor during rubberbanding. Similarly for

horizontal lines the endpoint position specified defines the

x co-ordinate only at all times.

For polar lines the endpoint position always specifies the x

co-ordinate for lines that are more nearly horizontal than

vertical or the y co-ordinate for lines more vertical than

horizontal.

The above rules for endpoint determination of directionally

constrained lines were implemented to provide a consistent

behaviour pattern for such lines and to avoid any conflicting

problems that may arise in the construction of parametric

93

drawings such as that shown in Figure 3-3 and discussed in

Section 3. 3. In this case, if the endpoint of line 4 was

defined as being connected to the startpoint of line 1 (at

point A) then point A would merely be supplying the y co­

ordinate of line 4 and line 4 would not actually go to point

A except in the special case where parameters a and c were

supplied with the same values.

6.4 Primitive Selection Methods

During the parametric drawing construction phase in a Paracad

session it is often a requirement to select a primitive - for

example to connect a line to. The method adopted for this is

to select the required line by first using the digitiser to

move the cursor to a point close to the line. The software

then uses a two-level elimination process to locate the

primitive.

The first level elimination involves taking the first

primitive stored and checking to see whether the cursor lies

within its extents - ie. whether the cursor falls within the

rectangle enclosing the primitive. This is performed by

testing whether the cursor's x value falls within the x

values covered by the primitive and the cursor's y value also

lies within the y range covered by the primitive) If the

cursor is not within both x and y extents, the line is

rejected and the next line is tested. This provides a very

94

rapid method of eliminating almost all unwanted lines, but

can lead to some primitives being accepted that the user may

find rather strange [FOL. 1984]. As an example of this

consider Figure 6-1.

-------------------------- 7

\+A
1 ine 2\

line 1

j - - - -
screen

Figure 6-1 Unusual Extent Selection

The cursor is placed at point A to select line 2. If line 1

is stored first in the database then it will come up as the

first line that passes the extent test. As far as users are

concerned this is a poor action since it is obvious that line

2 is required. Users should not need to be aware of the

strategy used by the software for primitive selection, they

95

merely want actions that seem reasonable.

To avoid problems like that described above a second level of

elimination is provided. If a primitive passes the extent

test, a calculation is then made to see whether the cursor is

within a certain number of screen pixels, called a trap

range, of the line. If not, the line is rejected and the

search moves on by extent testing the next line. If the trap

range test is successful, the primitive is displayed in a

different colour and the user is asked whether it is the

required primitive. If not, the search continues. The trap

distance, in pixels, can be readily changed in Paracad. For

calculating whether the cursor is within the lines trap

distance, the equation of the line is deduced (since its

current startpoint and endpoint are known) and the cursor's x

value put into this equation (vertical and horizontal lines

are treated as special cases) and a y value is obtained. This

is then tested to see whether it is within the trap range of

the cursor's y value.

This search strategy has the advantage of eliminating the

majority of primitives that are not near the cursor by the

very quick extent test, and the few that pass this test but

are still a long way from the cursor are then rejected by the

much slower but more precise trap range test. To the user the

selection process appears almost instantaneous.

96

6.5 Construction Lines

During the parametric drawing construction phase in Paracad,

construction lines are added in the same way as ordinary

lines - they can have connect, polar, floating etc. endpoints

and can be parametrically defined. The major difference is

that construction lines are shown in a different colour from

other lines to distinguish them once they have been drawn.

During the particular drawing construction phase construction

lines are only displayed while the parameter values are being

obtained. Once this is done, the particular drawing is

displayed with no construction lines visible. In a full

implementation it may be worthwhile having a user-selectable

visibility option to allow the optional display of

construction lines on a particular drawing (and possibly even

to control their visibility on a parametric drawing).

6.6 Connects

Any new line that is added in Paracad may have its startpoint

or endpoint (or both) connected to existing lines. As

described in Section 4.9 a connect may be made to a

startpoint, endpoint, midpoint, or equation point (in the

case of a vertical, horizontal or polar line the equation

point is the point of intersection; for all other lines it is

the locus of all points on the line to connect to - extending

97

to the screen extremities). For later processing of connected

lines, particularly during float connects and parameter­

isation, it was decided to have a linked list of records

describing the interconnections. Each record stores the

primitive number of the line being connected, the line it is

being connected to, the relevant point on the line being

connected (ie. whether it is the line startpoint or endpoint

being connected) and the point it is being connected to (ie.

whether it is linestart,

equation) .

lineend, linemiddle or line

As an example of the use of this affected records list,

suppose line 1 has a parametric length and line 2 has its

startpoint connected to the midpoint of line 1. When a

particular drawing is constructed, the value provided for the

length of line 1 will cause line 1 to change its length. A

scan can then be made of all affected records to see which

lines are affected by line 1 and these lines would in turn

have their corresponding positions changed, so this scan

would indicate that the start of line 2 must be moved to the

new position of the midpoint of line 1. This in turn may lead

to changes in the endpoint of line 2 (eg. if it is defined as

a vertical line) . Another scan would then be made of the

affected records to find any lines affected by line 2 and so

on.

Whenever a connect is made in Paracad an affected record is

also created and added to the end of the linked list.

98

Because the positions and lengths of lines can change in a

parametric drawing a design decision was made for Paracad

that a line equation connect to a line (by a freefloat line)

will result in the line being connected retaining its

proportional position on the line it is being connected to if

this line should change its length or position. Figure 6-2

illustrates an example of a line equation connect where line

2 is connected to line 1 at point P.

p

/
/

/

line 2

Figure 6-2 Line Equation Connect Position

The ratio b/a is saved as part of the affected record (where

a is the length of the line being connected to and b is

distance from the startpoint of the line being connected to

to the connect position). For any particular drawing, this

ratio is maintained regardless of any change in the position

99

MASSEY U~IIVcRSITY
LIBRARY

and length of line 1. The length b is considered to be a

directed length (ie. a negative value for b indicates the

connect point is in the opposite direction from the

startpoint to endpoint direction. This is shown in Figure 6-

3. The ratio b/a will always have the same sign as b.

end

start

line being
connected to

a) example 1

start

b) example 2

end

Figure 6-3 Sign Notation For Line Equation Ratio

100

This means if a connect point is placed 2/3 of the way along

a line in a parametric drawing, it will always be 2/3 of the

way along that line in any particular drawing. In Figure 6-2

if length a becomes a' in a particular drawing, b' is easily

calculated by similar triangles to give the formula

b' = (a' x b)/a

Whenever a vertical, horizontal or polar line endpoint is

connected to another line some form of calculation is

required. For a vertical line endpoint connect to the

startpoint, endpoint or midpoint of another line the

calculation is trivial since the point being connected to

provides they value of the vertical line's endpoint and the

x value of the vertical line's endpoint is the same as its

startpoint. For a connect to the line equation the

intersection point between the vertical line and the line

being connected to is required. First a check is made to

ascertain whether the line being connected to is also

vertical (if it is Paracad does not permit the line equation

connect as there is no intersection point).

Any line can be defined by the linear equation y = mx + c

where mis the slope of the line and c is the intersection

point of the line to connect to and they axis. The equation

is also given by y - Y1 = m(x - Xl) where (x1,Y1) is any

point on the line. Further, m = (Y2 - Y1)/(x2 - x1) where

(Y1,x2) is any other point on the line. From this we get

y = (Y2 - Y1)/(x2 - X1)X + (Y1 - xl ((Y2 - Y1)/{x2 - x1))

101

and so we get the following:

m = <Y2 - Y1)/(x2 - x1)

and c = Y1 - mx1

for the formula y = mx + c

For calculating the intersection point in Paracad, the co­

ordinates of the startpoint of the line being connected to

are taken as (x1 ,y1) and the endpoint co-ordinates are taken

as (x2,Y2), y is they co-ordinate of the connect point and x

is the x co-ordinate of the connect point (this is the same

as the x co-ordinate of the vertical line's startpoint, so it

is known). Note that if the line being connected to is also

vertical, this method will fail since it will give a zero

denominator form. To avoid this a check is made at the start

to ensure the line is not vertical (which would make the two

lines parallel).

For a horizontal line endpoint connect a similar approach is

used - for linestart, lineend or linemiddle connects the

point provides the x co-ordinate of the connect point and the

y co-ordinate is the same as the y co-ordinate for the

horizontal line startpoint. For a line equation connect the

lines are again checked to ensure they are not parallel, but

the above formula cannot be used because the line being

connected to could now be vertical and thus the x 2 - x 1

denominator would be zero. The formula used in this case is:

102

x = m'y + c'

where m' = (x2 - x1)/(y2 - Y1)

and c' = x 1 - m'y1

(x1,Y1) and (x2,Y2) are the same as for the vertical case,

and y is they co-ordinate of the horizontal line startpoint.

This is also the same as its endpoint. Note that this formula

cannot be used if the line being connected to is horizontal

as this would make the denominator form' zero. This prevents

this formula also being used for the vertical line case

above.

For polar line endpoint connects the polar line is first

checked to see if it is either vertical or horizontal. If so,

the connect is processed as for vertical and horizontal

connects described above. If not, two different sets of

formulae are used depending on whether the polar line is more

vertical than horizontal or vice versa. In the case of a

polar line that is more vertical the following formulae are

used:

For linestart, lineend or linemiddle connects the y co­

ordinate of the point selected provides they co-ordinate of

the connect point. The x co-ordinate of the connect point is

then found using the formula

x = x 3 + (y1 - y 3)/tan0

where (x1 ,y1) is the startpoint of the line to connect to,

(x3 ,y3) is the startpoint of the polar line, y is they co-

103

ordinate of the polar line endpoint and tan0 is the slope of

the polar line. Note that there will never be a zero

denominator since the line is more vertical than horizontal

hence 0 cannot be zero. Similarly tan0 will not be infinite

since this only occurs for a vertical line which is treated

as a separate case.

For a line equation connect the line being connected to is

checked to see if it is parallel to the polar line. If so, no

line equation connect is possible. If not, the formula used

to calculate the x co-ordinate of the intersection point is

and for they co-ordinate it is

For the case when the polar line is more horizontal than

vertical the same formula is used for a line equation connect

as that shown above for the more vertical case. For

linestart, lineend or linemiddle connects the x co-ordinate

of the point selected provides the x co-ordinate of the

connect point. They co-ordinate of the connect point is then

found using the formula

Y = Y3 + (x1 - x 3)tan0

104

6.7 Float Connects

Float connect refers to the process whereby a floating line

endpoint is connected to some other line (which in turn may

or may not be floating). It is the only time Paracad permits

a floating endpoint to be connected to some other primitive.

In Paracad floating endpoints are shown on the graphics

display with an open circle. When they are float connected to

some other point the circle is filled in to indicate a

connect, and if the floating point becomes fully defined or

fixed then the colour of the circle is changed.

6.7.1 The Float Connect Problems

Two major difficulties arise in the processing of float

connects. The first problem is that many floating lines may

have their endpoints and midpoints interconnected until

eventually one of them becomes fixed. This will then fix all

the other lines and so some means of updating all these other

affected lines is required.

The second problem is that normally when a floating endpoint

is float connected to a freefloat line midpoint or endpoint

the two lines still remain floating, but sometimes other

interconnections may have been made to the freefloat line

that could have made it partially constrained in such a way

that the floating lines now become fully defined. This is

105

shown in Figure 6-4 where part (a) shows line 1 (a vertical

line with floating length) float connected to the endpoint of

line 2 (a freefloat line).

line 3
horizontal,
floating
I o

line 2
freefloat

line 1
vertical,
floating

a) original line positions

line 3 line 1

line 2

b) final line positions

Figure 6-4 A Float Connect Problem

This cause!:; line 2 to have its endpoint x co-ordinate fixed

to that of line 1. If line 3 a horizontal line with

floating lengt>.) is now float connected to the midpoint of

line 2 then they co-ordinate of the midpoint of line 2 is

now fixed. Since tne startpoint of line 2 is fixed, this now

completely defines line 2 and so it is now a fixed line and

it in turn fixes lines 1 and 3 as shown in part (b) of Figure

106

6-4. Since a much larger number of floating lines than the

three shown in Figure 6-4 could be interconnected together

some rapid method is needed to find out what partial

constraints, if any, exist on any floating lines that are

being connected together. This is done by using two fields in

the primitive record for constraint type and constraint

value.

6.7.2 Constraint Fields

Since Paracad does not permit polar lines with floating

angles (for reasons of ambiguity discussed in Section 4.10)

the only partial constraint types required are vertical,

horizontal, fixed or freefloat.

A vertical constraint type indicates the line has its

endpoint x co-ordinate defined. This is the case for lines

that have been initially entered as vertical floating lines

or for freefloat lines that have a connection between their

endpoint or midpoint and another line that is vertically

constrained. The constraint value field of the primitive

record contains the value of this x co-ordinate.

A horizontal constraint type indicates the line has its

endpoint y co-ordinate defined. This is the case for lines

that have been initially entered as horizontal floating lines

or for freefloat lines that have a connection between their

107

endpoint or midpoint and another line that is horizontally

constrained. The constraint value field of the primitive

record contains the value of this y co-ordinate.

A fixed constraint type indicates the line's endpoint is not

floating. This is the case for all lines entered without a

floating endpoint and for all floating lines that have become

fully defined by float connects. The constraint value field

is not used for fixed constraint types.

A freefloat constraint type indicates the line's endpoint is

unconstrained directionally. This is the case for any line

entered as a freefloat line that has either not been float

connected to any other line or else only float connected to

the midpoint or endpoint of other lines that have freefloat

constraint types. The constraint value field of the primitive

record is not used for freefloat constraint types.

Whenever a primitive is added, its constraint type and value

fields are set to the appropriate values. If a float connect

is made these fields are updated accordingly for both the

lines involved in the connection. In the example shown in

Figure 6-4 the original constraint types would have been

vertically constrained, freefloat and horizontally

constrained for lines 1, 2 and 3 respectively. Lines 1 and 3

would also have constraint values representing their constant

x and y values respectively. When line 1 is float connected

to the endpoint of line 2 there is no change to the

108

constraints on line 1, but line 2 now has constraint type

vertically constrained with the same constraint value as line

1. When line 3 is float connected to line 2 the constraint

type of all three lines is changed to fixed.

6.7.3 Constraint Field Updating

When a float connect is made the constraint fields may need

updating for one or both of the lines involved. The different

possible combinations are connecting a floating endpoint

(regardless of constraint type) to a fixed line or to a line

startpoint, a line endpoint with freefloat constraint type to

(the middle or endpoint of) a freefloat line, a freefloat

endpoint to a horizontally constrained line or vice versa, a

freefloat to a vertically constrained line or vice versa, a

vertically constrained endpoint to a horizontally constrained

line or vice versa, a vertically constrained endpoint to a

vertically constrained line and a horizontally constrained

endpoint to a horizontally constrained line. The action taken

in Paracad for each of these cases is:

Any floating endpoint to fixed line midpoint or endpoint -

the endpoint becomes fully defined so its constraint type is

changed to fixed and the floating line is redrawn with its

new endpoint.

109

Any floating endpoint to line startpoint - since startpoints

are all fixed in Paracad the endpoint becomes fully defined

so its constraint type is changed to fixed and the floating

line is redrawn with its new endpoint.

Freefloat endpoint to midpoint or endpoint of freefloat line

- both lines remain freefloat although they now are linked

together. The line being connected is redrawn with its

endpoint moved to (the midpoint or endpoint of) the line

being connected to.

Freefloat endpoint to midpoint or endpoint of horizontally

constrained line (or vice versa) the freefloat line

endpoint becomes horizontally constrained so its constraint

type is changed accordingly and the constraint value is

updated to store they co-ordinate of its line endpoint. No

change is made to the horizontal line's constraint fields.

The freefloat line is then redrawn in its connected position.

Note that if the connect was a horizontally constrained

endpoint connect to a freefloat line midpoint the constraint

value will not be the same as the y co-ordinate of the

horizontal line. This is illustrated in Figure 6-5. If line 1

with startpoint co-ordinates (xa, Ya> and endpoint co­

ordinates (xb,Yb) is float connected to the midpoint of line

2, which has startpoint co-ordinates of (x1 ,y1) then the co­

ordinates of the new endpoint of line 1 will be (x2 ,y2)

where x 2 = 2xb - x1

and Y2 = 2yb - Y1·

110

The constraint value stored will be y2 .

line 1

horizontal,
floating

line 2
free float

a) original line positions

y co-ordinate is -----­
constraint value

line 1

line 2

b) connected line positions

Figure 6-5 Constraint Values Stored

111

Freefloat endpoint to midpoint or

constrained line (or vice versa)

endpoint of vertically

the freefloat line

endpoint becomes vertically constrained so its constraint

type is changed accordingly and the constraint value is

updated to store the x co-ordinate of its line endpoint. No

change is made to the vertical line's constraint fields. The

freefloat line is then redrawn in its connected position.

Note that if the connect was a vertically constrained

endpoint connect to a freefloat line midpoint the constraint

value will not be the same as the x co-ordinate of the

vertical line as described in the horizontal line case above.

Vertically constrained endpoint to midpoint or endpoint of

horizontally constrained line (or vice versa) - both lines

will become fully defined since the horizontal line provides

they co-ordinate of the connect point and the vertical line

provides the x co-ordinate. Both lines have their constraint

types changed to fixed. Note that if the connect was to the

midpoint of one line rather than its endpoint the new

endpoint will need to be calculated for this line.

Vertically constrained endpoint to midpoint or endpoint of

vertically constrained line both lines still remain

floating. No change is made to their constraint types. The

line being connected is changed in length so its endpoint has

the same y co-ordinate as the midpoint or endpoint of the

line it is being connected to and no change is made to its

constraint value. This is shown in Figure 6-6 where line 1 is

112

float connected to the midpoint of line 2.

line 1
vertical,
floating

line 2
vert i ca 1.
floating

a) original line positions

line 1 1 ine 2

b) 1 ine 1 float connected to
line 2 midpoint

Figure 6-6 Vertical To Vertical Float Connect

Horizontally constrained endpoint to midpoint or endpoint of

horizontally constrained line both lines still remain

floating. No change is made to their constraint types. The

line being connected is changed in length so its endpoint has

the same x co-ordinate as the midpoint or endpoint of the

line it is being connected to and no change is made to its

constraint value.

113

line 3

line 3
horizontal,
floating

I ine 2 \
free float_

line 1
vertical,
floating

a) original line positions

line 2 line 2

line 3

line 1

line 1

b) 1 ine 3 float connected to
midpoint of line 2

c) line 2 float connected to
endpoint of line 1

Figure 6-7 A Float Connect Example

114

6.7.4 Examples Of Float Connects

Two additional examples are appropriate to further illustrate

the float connect process.

Figure 6-7 shows the same lines used in Figure 6-4 with the

connects made in the reverse order. Part (a) shows the

original lines. Part (b) shows the result when line 3 is

float connected to the midpoint of line 2 - this causes line

2 to move and its endpoint becomes horizontally constrained.

Part (c) shows line 2 float connected to the endpoint of line

1 which causes all three lines to be fixed. Notice that the

final positions and lengths of the lines are the same in both

Figure 6-4 and Figure 6-7.

Figure 6-8 shows a case when connecting two lines that are

originally freefloating and then become constrained can cause

several lines to become fixed. Part (a) shows the original

lines. Part (b) shows the effect of connecting line 2 to the

endpoint of line 1 and line 3 to the endpoint of line 4,

causing line 2 to become horizontally constrained and line 3

to become vertically constrained. Part (c) shows the effect

of connecting line 2 to the endpoint of line 3, causing lines

2 and 3 to become fixed and thus also fixing lines 1 and 4.

115

line 1
horizontal, floating

tine 2
/ freefloat

~
freefloat

line 4
vertical
floating

a) original line positions

line 1 line 1

line 2

line 3

line 4

line 4

b) line 2 connected to line 1
line 3 connected to line 4

c) 1 ine 2 connected to line 3

Figure 6-8 A Second Float Connect Example

116

6.7.5 Sphere of Influence

Float connects require fast checking of the primitives

affected by any selected primitive. To enable this a "sphere

of influence" system is employed in Paracad. This involves

having a list of all primitive points that are affected by

some other primitive. The records in this list are the

affected records outlined in Section 5.7.3. New records are

added to the affected records list whenever a connect is made

- whether it is a normal connect or a float connect. The

action taken for a normal connect is outlined in Section 6.6.

For a float connect, a record is always set up with the

floating point being connected as the affected point and the

point it is being connected to as the controlling point. In

addition, a further record is set up if the point being

connected to is not fixed (or does not become fixed by the

float connect that has just been made) . In this record the

affected point is the point being connected to, and the

controlling point is the point being connected. An example

will indicate the need for this step. Suppose lines 1 and 2

both have freefloat endpoints and line 1 is float connected

to the endpoint of line 2. If line 1 is then float connected

to some other fixed primitive then line 1 controls the

position of line 2 rather than the other way around, while if

line 2 is float connected to a fixed primitive then it

becomes the controlling primitive over line 1.

117

Whenever the endpoint of any floating primitive becomes fully

defined (fixed) a scan is made of all affected records to

find any other primitives affected by this primitive and

corresponding changes are made to them. These affected

primitives may in turn affect other primitives and so the

affected records list is also scanned with them as

controlling primitive.

It is not sufficient to have a single scan of the affected

records list in an attempt to locate all affected primitives.

This can be shown with the aid of Figure 6-9. If the float

connect sequence is A to B then A to C then D to Ethen we

get the following sequence of affected records:

a) line 3 point A controlling line 2 point B

b) line 2 point B controlling line 3 point A

c) line 3 point A controlling line 1 point C

d) line 1 point C controlling line 3 point A

e) line 4 point E controlling line 1 point D

At this stage point D becomes fixed and so line 1 is fully

defined and can be redrawn. If we now scan through this

affected records list in reverse order to update other

affected lines we can ignore record (e) since we have just

processed it. Record (d) indicates line 1 point C controls

line 3 point A so line 3 also becomes fixed and can be

redrawn. We are now interested in both lines 1 and 3 as

controlling primitives. Record (c) is ignored as the affected

primitive (line 1) has been fixed. Record (b) is ignored

since the controlling primitive (line 2) is not yet in the

118

fixed list. Record (a) causes line 2 to become fixed and so

it is redrawn. So in this example, a single scan, with a

growing list of possible controlling primitives, was

sufficient to catch all primitives affected.

Suppose instead the connecting sequence was B to C then A to

B then D to E. This gives exactly the same drawing as before,

but now the affected records list is:

a) line 2 point B controlling line 1 point C

b) line 1 point C controlling line 2 point B

c) line 3 point A controlling line 2 point B

d) line 2 point B controlling line 3 point A

e) line 4 point E controlling line 1 point D

Point Dis now fixed so line 1 is fully defined. Record (d)

is ignored as the controlling primitive (line 2) is not yet

in the fixed list. Record (c) is similarly ignored as the

controlling primitive (line 3) is not yet in the fixed list.

Record (b) results in line 2 becoming fixed and being

redrawn. Record (a) is ignored as the affected primitive

(line 1) is fixed. Note that this scan has not fixed line 3

at any stage and this indicates that a single scan of the

affected records is not sufficient to ensure all lines that

should be fixed will be located.

The approach used in Paracad to overcome this problem is by

having a queue list as explained in the next section.

119

6.7.6 Queue List

Paracad has a list (called a queue list) for each new line

that becomes fixed during an affected records scan. Initially

the queue list will have only the line that was fixed by the

float connect. A scan is made of the affected records list

and every new primitive affected by this line is added to the

queue list. At the end of the scan the next record is taken

off the queue list and a new scan is made of the affected

records and so on until the queue list is empty. This ensures

every line that should become fixed does get fixed, but a

method is needed to ensure primitives that have been

processed are not added to the list again. For primitives

that are being fixed this is not a problem, but if the

primitives are still not fully fixed it would cause the queue

to never empty. For example, suppose lines 1 and 2 are both

freefloating and line 1 has its endpoint float connected to

the endpoint of line 2. This would add line 2 to the queue

list. A scan of the affected records list would then show

line 1 is connected to line 2, so line 1 would be added to

the queue list. When line 1 was then taken from the list and

processed, line 2 would be added to the queue list again and

so on.

This particular case could be prevented fairly easily, but

more obscure cases of a similar nature are much harder to

detect. To avoid this problem in Paracad another temporary

list called the primscovered list is used to hold all

120

primitives that have been processed by the queue list. Before

any primitive is added to the queue list a check is first

made of the primscovered list to see if it has already been

covered, and if so it is discarded.

line 1
freefloat

C

D

B

line 2
free float

A

E

line 3
free float

Figure 6-9 Sphere Of Influence Example

This method of handling float connects leads to the first

constraints made having the highest priority. This is

illustrated in Figure 6-10. Part (a) shows three lines before

float connecting. Part (b) shows the result if point B is

connected to A then B to C or if Bis connected to A then A

to C. Note that A and B, which were connected first, remain

121

line 1
hor i zonta 1,
floating

-+-----~O A

line 2
free float

8 C

line 3
fixed

line 1

line 2

line 3

a) initial line positions b) B connected to A then
A (or 8) to C

line 1

c) 8 connected to C then
A to B (or C)

Figure 6-10 First Constraints Have Highest Priority

122

physically connected. Part (c) shows the result when Band C

are connected first then A is connected either to B or C.

Note that Band C remain physically connected in this case.

A consequence of the way float connects are handled in

Paracad is that the constraint type of any line connected to

the midpoint or endpoint of any other line is the same as the

constraint type of the line it is connected to (ie. if line 1

is float connected to the midpoint or endpoint of line 2 then

the constraint type of line 1 is the same as the constraint

type of line 2). Further, if the constraint type of any line

endpoint changes, all interconnected (through midpoints and

endpoints) lines' constraint points will also change to the

new constraint type. Note that al though all interconnected

lines (through midpoints and endpoints) have the same

constraint type, they do not necessarily have the same

constraint value.

Whenever any line has a floating endpoint fixed, the floating

bit flag in the endtype field of the primitive record for

that line is updated to O (see Section 5.7.1).

6.8 Parameterisation

The object of the parameterisation phase is to get actual

values for the parameters used in a parametric drawing and

reconstruct it to form a parametric drawing.

123

It soon became apparent that it was not possible to have just

the parametric drawing files that have been discussed so far

and still be able to reconstruct all drawings correctly. An

example of one problem area is shown in Figure 6-11.

line 1
horizontal

-+--------- - - -

line 2
vertical

line 3
vertical

a) line 1 connected to
line 2 first

line 1

line 2

b) line 1 connected to
line 3 first

Figure 6-11 Drawing Reconstruction Ambiguity

line 3

This shows the two possibilities that can arise if the line 1

endpoint is connected to both the line 2 and line 3

endpoints. Part (a) is the result of connecting line 1 to

line 2 first and part (b) is the result of connecting line 1

to line 3 first. The correct version can only be determined

if there is some record of the order in which the connects

were made. This problem arises whenever the same line

endpoint in a drawing is connected (either by a float connect

or normal connect) to more than one other point (as either a

124

controlling or an affected point) where it cannot be

physically attached to all the points it is connected to.

Another major problem was to find an efficient strategy for

deciding when and where lines should be drawn on the final

drawing. With the existing files the only way possible

appears to be to draw all fixed and floating lines with the

actual values used for the parameters and then connect and

redraw them in a process of continuous refinement until they

all become fixed. Attempts were made at designing such an

algorithm to do this, but they were largely unsuccessful.

Because of these two major problems it was decided the best

solution was to have an additional file that stored the order

actions were performed in during the parametric drawing, and

this order could be followed during the construction of the

particular drawing. This strategy has another highly

attractive feature in that it means that the reconstruction

process effectively operates in the same way as the

parametric drawing construction (without the user prompts of

course) so the same algorithms can be used with little

modification. This provides considerable advantages for

extending the package to include other primitives. This

approach was adopted in Paracad. The file used to store the

order actions are taken in is called the entry file and

consists of records called entry records.

125

Using these entry records, the parameterisation process in

Paracad involves loading a parametric drawing, resetting some

fields in the primitive records, parameter setting and

drawing reconstruction - in that order.

6.8.1 The Entry File

The entry file used in Paracad to indicate the order of

actions taken during the parametric drawing construction

is implemented in memory as a linked list of dynamic entry

records. The structure of each record is described in Section

5.7.4. The only types of action that need to be logged are

the adding of primitives and the connecting of floating

endpoints. A variant record is used since the only

information needed to be saved for a primitive addition is

the primitive number while a float connect requires the

floating primitive number and the number of the primitive it

is connected to to be saved (it is also advantageous to store

the connect position to save later searching of the affected

records list) .

6.8.2 Parametric Drawing Loading

In Paracad an existing parametric drawing is selected by the

user and loaded. The same structures used in the parametric

drawing phase are used in the parameterisation phase. A check

126

is made to ensure the parametric drawing has no unresolved

floating endpoints since these would prevent a particular

drawing being fully constructed. If any unresolved floats

exist, processing is terminated.

6.8.3 Primitive Record Field Resetting

Since the parameterisation method used in Paracad mimics the

original parametric drawing construction it is necessary to

reset the unresolved floating endpoint flag in the endtype

field and the constraint type field of the primitive records

(refer Section 5. 7 .1) to the original values they had when

each primitive was first entered during the parametric

drawing construction phase.

6.8.4 Parameter Setting

To obtain the actual required values for the parameters used

in Paracad the screen is cleared, then the parametric drawing

is progressively redrawn a primitive at a time. As soon as a

primitive with a parametric dimension is encountered the

primitive is shown in a different colour, a prompt is

displayed on the screen indicating the parameter name and a

description of the dimension it represents (eg. "The line

displayed has a parametric angle. The parameter name is

THETA"). The user is then requested to supply a numeric value

127

for the parameter. The primitive is then redrawn in the same

colour as the other primitives and the process of adding

primitives continues until the original parametric drawing is

completely drawn. (Note that the drawing will use all the

default values and positions supplied during the parametric

construction phase - although the parameter values are being

entered by the user, they are not yet being used to modify

the drawing) . Once all parameters have been obtained, the

screen is again cleared and drawing reconstruction occurs.

6.8.5 Drawing Reconstruction

In Paracad the reconstruction of a parametric drawing to

create a particular drawing is achieved by scanning each of

the records in the entry file in turn.

If the entry record is a primitive addition the corresponding

primitive record is obtained. If it has a connected start

point (ie. start point affected by some other primitive - not

controlling it) the other primitive must be already

recalculated and so the new start point can be computed. If

the line is vertical or horizontal its constraint value is

then reset accordingly (note that this could not be done at

an earlier stage than this because the constraint value is

dependent

parametric

on the start point). If the

dimension (or dimensions)

primitive has a

the corresponding

parameter is looked up in the parameter records and the value

128

is stored in the appropriate primitive record data field (ie.

the End3 or End4 data fields - depending on what type of

dimensions are parametric). The line endpoint, or temporary

endpoint for floating lines, is then calculated using the

same routines used for parametric drawing construction (with

the user prompts, user inputs and display feedback areas

removed) .

If the entry record is a primitive connect then a float

connect is done using the same routines utilised in the

parametric drawing construction (with the user prompts, user

inputs and display feedback areas removed).

6.9 Plotting

A plot routine is included in Paracad to allow hardcopy

output of particular drawings. This routine opens up a spool

file, with a name specified by the user, then writes the

necessary handshaking and setup commands to prepare an

HP7 4 7 SA A3/A4 plotter. The routine then scans through each

primitive in order and writes, to the spool file, the

appropriate plotter commands to draw the primitive. Finally,

the spool file is appended with commands to terminate the

plot. The actual plot is then made by exiting from Paracad

and using a separate spool file transfer program to send the

spool file to the plotter.

129

The plot

completed

routine is

particular

currently

drawings

only

but

configured to output

it could readily be

extended to include parametric drawings as well.

130

CHAPTER 7

PARACAD PERFORMANCE AND FUTURE DEVELOPMENTS

The first part of this chapter considers the operation of

Paracad in its current state. The speed of the package at

both the entry stage (parametric drawing construction) and

the output stage (particular drawing construction) is

discussed and conclusions are made as to its reliability and

user-friendliness.

The second part of the chapter outlines future developments

that could be made to Paracad to improve its operation and

indicates areas for further research into parametric CAD in

general.

7.1 Paracad Performance

7 .1.1 Speed

In general the performance of Paracad in terms of speed is

excellent. The four main areas where speed is important are

during interactive drawing,

parameterisation.

131

float connects, redraws and

1. Interactive Drawing Speed

Studies have shown the importance of the sub-second

response time of computer software during interactive

sessions and the effect of this response time on the

user's concentration patterns [GOOD. 1978]. The time

taken for Paracad to respond with a new menu whenever an

existing menu choice is selected is too rapid to

accurately measure, but it is estimated to be less than

0.1 second. Keypresses are buffered so even if an

experienced user can type faster than the menu displays

can respond there is no loss of input data and the menus

will eventually "catch up" to the user. After less than

an hour's experience with Paracad it is common for users

to key in most required menu choices without even looking

at the changing menus.

Response time to digitiser movements is limited by the

9600 baud interface and by the cursor drawing routines in

Paracad. The cursor drawing routines have been written in

Assembler language for optimum speed and the response

speed of the cursor is sufficiently fast to feel natural

to the user without having any appreciable lag evident.

Stylus button selections (eg. for indicating line

startpoints or endpoints) are acknowledged with an

audible "pip" when they are accepted so the user has both

132

visual and audible feedback.

Rubberbanding also shows no speed deficiencies in Paracad

in fact as mentioned in Section 6. 2 initially

rubberbanding was performed by continuously flashing the

line, but when the cursor was stationary this resulted in

flashrates so fast that the line became difficult to see.

This problem has been overcome by keeping the line

displayed continuously until the cursor moves more than a

pixel in any direction. Rubberbanding a line cause a

reduction in the speed of the cursor following the

stylus, but the speed is still fully acceptable - even

for rubberbanding polar lines (which require most

calculation). This is due to the rubberbanding algorithms

being optimised for speed.

Once a line endpoint is selected the line appears almost

instantaneously - the only change the user notices is the

sudden colour change from a rubberbanded line to a drawn

line (with a connect or float circle added if

appropriate) .

2. Float Connect Speed

Float connecting involves a significant amount of

calculation, especially if a large number of floating

lines are interconnected. Benchmark tests were performed

133

to find the times required for float connects. In these

tests a vertical floating line and a horizontal floating

line were drawn. A number of other floating lines were

then drawn and one connected to the midpoint of the

vertical line, the next one connected to the middle of

the previous one and so on (with another chain - of

floating lines connected to the horizontal line) . When

the required number of lines for the benchmark test were

drawn, the horizontal line was float connected to the end

of the vertical line and the time to completely

recalculate and draw the new line positions was recorded.

Times for these tests were less than 0.1 seconds for 10

lines, 2.6 seconds for 50 lines and 7.1 seconds for 100

lines.

These times are considerably better than was originally

forecast considering this is an area that was expected to

be very slow. This speed is due to the efficient method

employed for float connections using the various linked

lists. In addition, during the float connects lines are

being rapidly redrawn on the screen so the user is left

in no doubt that something is happening.

3. Redraw Speed

A redraw feature was included in Paracad to allow

parametric drawings loaded from file to be displayed on

134

the screen. This routine is also used following a float

connect - all new line endpoint co-ordinates are first

calculated then a complete screen redraw is done.

Benchmark tests were done on redraw speeds for different

numbers of lines and the results were 1.0 seconds for 100

lines and 4.8 seconds for 500 lines. Again the speed is

impressive and is better than originally hoped for.

4. Parameterisation Speed

Parameterisation is the most time-intensive part of

Paracad but once parameter values have been entered

(which is user-speed dependent rather then computer-speed

dependent) the user does not need to stay at the computer

so time is not overly critical.

Benchmark parameterisation tests were taken of some worst

case examples with every line float connected to another

line and a time of 58. 9 seconds was recorded for a 50

line drawing and 2 minutes 21. 6 seconds for a 100 line

drawing.

These figures are more than an order of magnitude better

than originally hoped for. Again the speed is due to

careful algorithm and data structure design.

135

7.1.2 User Friendliness

Considerable efforts were made in the design of Paracad to

make it as user friendly as possible. User-friendliness is

essential to a new user but can often slow down and irritate

an experienced user. To try and strike a suitable medium

careful consideration was given to the menu structure, menu

choices, user feedback (eg. rubberbanding) and the prompts

provided. The resulting system enables an experienced user to

move rapidly and unhampered from task to task while the

visual and audible prompts used assist the inexperienced

user. Explanatory error messages are displayed whenever an

invalid input is made.

Frequent modifications were made to Paracad in an effort to

optimise user-friendliness, and as a result the package is

fast and easy to use for both novices and experts.

The addition of an on-line help facility would go further

towards assisting the beginner but this was not implemented

because it was outside the scope of the original aims of

Paracad.

User-friendliness in the parameterisation phase is evident in

the method of prompting for parameter values - the line

affected by the parameter is displayed in a different colour

from other lines, the parameter name is displayed and the

feature being controlled by the parameter (eg. the length) is

136

described on the screen. This is an important area for user­

friendliness as users could easily become confused in

associating parameters with their correct primitives in

complex drawings containing many parameters. Further, the

user supplying the parameter values in the particular

drawing may well be a different user from the one who

designed the parametric drawing and so unfamiliarity with the

drawing could increase possible confusion.

7.1.3 Reliability

Exhaustive testing of all features of the current version of

Paracad has failed to reveal any remaining "bugs". All

features implemented work as required by the design

specifications. The system is not yet fully protected against

all forms of invalid user input - for example the entry of

alphabetic characters where numeric input is required can

cause the program to terminate in some places. Protecting

against all forms of invalid input was not considered an

essential part of Paracad since it was mainly intended for

feasibility testing.

7.1.4 Parametric Variety

One of the first things that becomes apparent when using

Paracad is how completely different a particular drawing can

137

look from the original parametric drawing. Even for drawings

with only a few lines in them it can be hard to reconcile the

parametric and particular drawings in some cases. This is

especially true if parameter lengths of zero or negative

values are supplied. Examples of some of the widely different

possible combinations possible for the simple four line

parametric drawing shown in Figure 7-1 are illustrated in

Figures 7-2 to 7-12.

line 4

line 1
hor i zonta 1,
length a

line 2
vertical,
length b C

line 3
length d
angle c

- j - - .

Figure 7-1 Original Parametric Drawing

138

All these particular drawings are produced using the inbuilt

Paracad plotter routine and are just a small sample of the

different possibilities. The wide variety of particular

drawings conceivable from such a simple parametric drawing

gives an indication of the diversity possible for more

complex parametric drawings and demonstrates the flexibility

provided by a parametric CAD system.

a= 300
b = 300
C 45
d 600

Figure 7-2 Particular Drawing

139

a 300
b = 100
C = 45
d 500

Figure 7-3 Particular Drawing

a= 300
b = O
C = 90
d 500

Figure 7-4 Particular Drawing

140

a = 300
b = 0
C = 0
d = 300

Figure 7-5 Particular Drawing

a= 300
b = 300
C = 300
d = 600

Figure 7-6 Particular Drawing

141

a
b
C

d

=
=
=
=

300
300
0
600

Figure 7-7 Particular Drawing

a
b
C

d

=
=

=

300
300
0
-600

Figure 7-8 Particular Drawing

142

a= 300
b 500
C 45
d = -BOO

Figure 7-9 Particular Drawing

a = 0
b = O
C 90
d = 600

Figure 7-10 Particular Drawing

143

a= 300
b = 300
C = 180
d 300

Figure 7-11 Particular Drawing

a= 1000
b = 100
C 180
d = 1000

Figure 7-12 Particular Drawing

144

7.2 Future Developments

7.2.1 Deleting Primitives And Aborting Operations

Paracad currently does not allow primitives to be deleted. In

addition to this it is not possible to abort an operation

midway through it (eg. if a polar line has been specified

then the user changes his mind before the line is finished).

These two limitations mean that any errors made when entering

lines cannot be altered - they either have to be left as they

are or the whole drawing needs to be started again. This is a

major shortcoming as input errors appear to be made rather

frequently during CAD sessions. The facility to abort from

any operation and a means of deleting primitives are both

strong requirements.

Providing a method of aborting an operation should not pose

any great difficulties. A key such as the ESC key could be

used for this purpose and the processing involved would be to

cancel the pending action and revert to the previous menu.

This may involve disposing of any dynamic list variables that

were set up by the pending action.

Deleting an existing line could prove a more difficult task.

For an isolated line (not connected to any other line) it

would merely involve disposing of the primitive record and

changing the next record pointer of the previous primitive

145

record, but for a line that has other lines connected to it

things are more complex. The line to be deleted could earlier

have resulted in other floating lines becoming fixed and so

if it is removed they will need to be updated. Worse still,

it is possible that another line may have had its startpoint

connected to one of these subsequently fixed floating lines.

This would then mean that deleting the line would leave

"illegal" lines remaining (ie. lines with floating

startpoints). Two methods for overcoming this difficulty are

to either delete all "illegal" lines as well, or to allow

line startpoints to be floating. Of these the second is

probably the most attractive for the user.

Resetting of various bit flags for affected lines and

disposing of the relevant affected records from the affected

records list would also be required for all lines that are

connected to a line to be deleted.

7.2.2 Other Primitives

Any full parametric CAD package obviously needs to support

more primitives than just lines. Adding circles, arcs, text

etc. increases the complexity of the exercise considerably

and further study is required in this area.

146

7.2.3 Floating Polar Line Lengths

Currently Paracad supports freefloat lines and vertical and

horizontal lines with floating lengths. As discussed in

Section 4 .10 having polar lines with floating angles gives

rise to ambiguities, but it would be useful to allow polar

lines with floating lengths.

Floating line processing is performed largely using the

constraint type and constraint value fields of the primitive

records. Extending Paracad to include floating polar line

lengths would require altering this processing. One possible

method would be to have three constraint values stored rather

than one - these being the coefficients a, b and c of the

equation

ay +bx+ c = 0

This equation represents the equation of the line the

floating endpoint is constrained to. This would cover polar,

vertical and horizontal lines. Constraint types could also be

extended for polar lines to include angularly constrained (in

fact the constraint type is no longer needed as this

information can be deduced from the constraint values, but it

would significantly speed up processing).

If Paracad is extended to cover other primitives as well as

lines and these primitives are also able to be floating the

complexity of the problem would be considerably magnified.

147

7.2.4 Conventional CAD Features

For Paracad to be used in production work it would be

desirable to include many of the conventional CAD features

that are not currently supported. These include viewing

control (to set up windows, viewports, allow panning etc.),

groups and transformations of groups and primitives. These

features are all described in more detail in Section 2.2.

7.2.5 Methods Of Supplying Parameter Values

Paracad has only one method of supplying values for

parameters during particular drawing construction. This

should be extended to include some or all of look-up tables,

decision tables, formula calculations and input from other

programs or files. All of these should be able to be

implemented without any major side effects on Paracad.

7.2.6 Formula Processor

A highly desirable feature of a parametric CAD package under

certain circumstances is being able to specify formulae for

parameters rather than just a parameter name. For example a

line's length could be specified by the parametric formula

2a - b where a and bare parameter names used elsewhere.

Implementing a formula processor for handling such parametric

148

expressions at particular drawing construction time is not a

trivial exercise and would probably require some form of

parsing of the formula. This area warrants further study.

7.2.7 Repeated Groups

Another useful extension to any parametric CAD system would

be the ability to have certain sections of the drawing

repeated where the number of times the section is repeated

depends on the value provided for some parameter (eg. an

explicit count parameter, or the length of some primitive

etc.). An example of the use of such a facility might be in

designing a roof where the number of supporting members

depends on the roof's dimensions. Such a facility would need

considerable further study.

7.2.8 Parametric Decision Making

A powerful extension to any parametric CAD system would be

the ability to control the actions taken (not just the

dimensions) during particular drawing construction by some

parameter value. For example if a particular parameter value

is greater than a specified number a certain set of

primitives will be drawn, otherwise a different set will be

drawn. A use of such a feature could be to control the number

of holes in a flange or plate by entering the number of holes

149

as a parameter.

Again considerable further study would be necessary before

deciding whether it was feasible to implement such a feature.

150

CHAPTER 8

CONCLUSIONS - IS PARAMETRIC CAD FEASIBLE?

The studies made and experiences gained with Paracad indicate

that not only is it possible to implement a parametric CAD

package involving line primitives, but such a package can be

made easy to use, powerful and provide considerable

flexibility.

The indications are that extending this to cover other

primitives would also be feasible. One of the more difficult

areas of Paracad to implement was the idea of floating lines,

but floating lines provided a considerable increase in the

power and flexibility of Paracad. If this floating concept

was extended to cover other primitives then matters would be

complicated considerably but the gains could be well

worthwhile.

8.1 Advantages Of Parametric CAD Systems

One major advantage of a parametric CAD system is that a

skilled designer can be used to generate a parametric drawing

and then, with careful program design and judicious choice of

parameter names, the generation of particular drawings from

151

this parametric drawing becomes a simple process with the

manual input of parameter values able to be handled by

unskilled users. All engineering decisions, safety

considerations, legal aspects etc. can be incorporated at the

parametric design stage.

Another major advantage is the reduction in effort required

when families of components can be produced using a single

parametric drawing to produce multiple different particular

drawings. The savings in drawing time increase with the

number of different particular drawings produced.

A third major advantage is the ability to construct a drawing

without knowing its dimensions. A parametric drawing can be

constructed and the actual dimensions can be left until

during the particular drawing stage. This approach could be

used for "what if" testing to examine the results of altering

various dimensions. As an example, a parametric drawing of

the side view of a prototype car (or any other product with

an iterative design cycle) could be constructed and

parameters changed at will to optimise the final appearance.

A fourth major advantage of a parametric CAD system is its

potential to automate the output drawing from a combination

of different input methods (once the parametric drawing has

been produced). The input to the parameterisation process can

be from output piped from another program, manual input,

lookup tables, files and so on. A simple example of this is

152

to set up a parametric drawing for a bar chart using a number

of bars with parametric widths, lengths and positions. Input

to the parameterisation process would be the heights and

widths of the bars with a constant (or variable) being added

to each bar position to provide horizontal separation. A more

practical example is the design of modular houses or sheds.

By having parametric dimensions the size and shape of the

structure can be easily changed to meet the needs of the

customer.

8.2 "Usability" Of Parametric CAD

An important facet of any interactive computer package is its

ease of use. Many of the concepts involved in parametric CAD

are natural to humans - for example the idea of making a

width or length

Unfortunately,

larger or smaller is

as discussed earlier

easy

in

to comprehend.

the thesis,

ambiguities can easily arise in such cases and what seems

obvious to one person may seem ridiculous to the next. An

example of such an ambiguity appears in Figure 8-1 which

shows a partially dimensioned bracket. The bracket is 100mm

long. If an order comes through for some of these brackets

with the request "make them 120mm long instead of 100mm" an

ambiguity immediately arises. Does the wide part of the

bracket get extended, or does the narrower end piece get

extended, or do they both get extended -and if so, how much

does each change by. If the narrower part is to be extended,

153

what happens to the bolt holes? To the person making the

order the answers to these questions are obvious since he has

prior knowledge, but a parametric CAD system has no such

prior knowledge.

5mm Dia.

I -E-----100-------l--

10

-i

All dimensions in mm.
Not to scale

Figure 8-1 Ambiguity Through Lack Of Prior Knowledge

To overcome such ambiguities a parametric CAD system must

either enforce a particular interpretation to potentially

ambiguous situations or else it must request further

information from the user to resolve the ambiguity. The

balance between these two methods largely determines the

usability of the package. Too much enforcing of particular

interpretations by the package will reduce flexibility and

154

limit the user. On the other hand, requiring the user to

meticulously describe each action increases flexibility but

slows productivity and frustrates the user.

An example of ambiguity resolution in Paracad that combines

both these methods is the strategy employed for connecting

line endpoints. If a vertical line endpoint is connected to

some point on another line the program resolves ambiguities

by always assuming the point provides they co-ordinate only

for the vertical line. User flexibility still exists as the

user chooses which point on the line he wants to connect to.

In some cases the program should make the decision required

to resolve ambiguitites, in some cases the user should make

it, and in some cases it should be a combined effort.

Deciding which of these three is appropriate in each

particular case is an important decision in terms of the user

friendliness,

program.

usability and general flexibility of the

8.3 Adapting An Existing Package

The question of how difficult it would be to adapt an

existing CAD package to include parametric features can only

be answered with respect to line drawings and depends largely

on the current structure of the particular CAD package in

question. Most of the routines could be readily adapted (eg.

155

windowing, panning, line drawing, cursor tracking, plotting

etc.) if they exist as modular routines. The data structures

would need to be extended, an overall shell would need to be

written and a number of new routines for handling parametric­

specific areas would have to be written.

8.4 Is Parametric CAD Feasible?

The main purpose of this thesis was to investigate the

feasibility of parametric CAD. While the investigations were

limited to lines only, reasonable assumptions can be based on

extending this to cover other primitives.

A line-only system is definitely feasible and can be user

friendly and flexible. Any other primitives that might be

added can be fully defined by a finite number of points and

since the position of any of these points can be described by

line segments it should be possible to extend a parametric

CAD system to cover all common primitives.

As an example consider adding circles. One common way of

defining a circle is by its centre and radius. The centre

position could be described by a parametric construction line

from some known point, and the radius could be described by a

parametric construction line from the centre. This would

allow both the circle position and size to be parametrically

altered. Another way of defining a circle is by any three

156

points on its circumference. Again the position of each of

these points could be described by a parametric construction

line (once more this allows both variable circle size and

position) . So by proving the feasibility of parametric CAD

for lines only the feasibility for other primitives has also

been largely proved. There appears to be no reason why a

parametric CAD system able to perform all the functions

suggested in the introduction cannot be designed. The only

real difficulties arise when extra features, such as floating

primitives, are required and such so such features would need

careful further study.

This project has shown that parametric CAD is viable, useful

and usable for line drawings and should be able to be

extended to cover all common primitives used in conventional

CAD packages.

157

+

•
0

@

I or II

Appendix A

Notation Used In Illustrations

startpoint of line

connect point (on startpoint or endpoint of line
being connected)

floating line endpoint (on end of floating line)

floating line endpoint that has been connected to
another floating line and is not yet fully fixed

indicates equal length line segments

Points are indicated in capital letters (eg. A, B, C)

Lines are numbered (eg. 1, 2, 3)

Parameters are indicated in lower case letters (eg. a, b, c)

158

_..Add

Save

----=::,,,-1-1-- Load

Redraw

exit

Appendix B

Paracad Menu

Constr=lution Line

Line

Startpoint

Redraw

Float conn

Cluit

connect 1
Absolute -

Digitiser Endpoint

_..Quit

Structure

Absolute

'=-" Relative --....;;- X shift _--...l Y shift
Actual :::J- -c Actual

~Parametric - Parametric

Connect

Floating {Actual

Actual Parametric
Polar Angle length

--[Paramet~ Connect

Vertical I Digitiser

Horizontal -L- Length lActual

Parametric

Floating

Connect

Digitiser

°' u,
.-I

BIBLIOGRAPHY

Bes. 1983 - Besant,C.B.

Computer-Aided Design And Manufacture

Wiley, 1983

CADl 1984 - Teicholz,E. (Editor-in-Chief)

CAD/CAM Handbook

McGraw-Hill, 1984

CAD2 1985 - Barr,P.C. Krimper,R.L. Lazear,M.R. Stammen,C.

CAD Principles And Applications

Prentice-Hall, 1985

Enc. 1983 - Encarnacao,J. and Schlechtendahl,E.G.

Computer Aided Design

Springer-Verlab, 1983

Find. 1981 - Findlay,W. and Watt,D.A.

Pascal - An Introduction To Methodical

Programming

Pitman, 1982

Fol. 1984 - Foley,J.D. and Van Dam,A.

Fundamentals Of Interactive Computer Graphics

Addison-Wesley, 1984

160

Good. 1978 - Goodman,T. and Spence,R.

IBM.1 -

The Effect Of System Response Time On

Interactive Computer Aided Problem Solving

Computer Graphics 12 (3) 1978, ppl00-104

IBM Corporation

Technical Reference Manual - Options And

Adapters, Volume 3

IBM Corporation, 1984

Kro. 1982 - Krouse,J.K.

Kurt. -

What Every Engineer Should Know About

Computer-Aided Design And Computer Aided

Engineering

Marcel Dekker, 1982

Kurta Corporation

Kurta Graphics Tablet User Manual

Kurta Corporation, 1984

Merm. 1980 - Mermet,J. (Editor)

CAD In Medium Sized And Small Industries

North Holland, 1980

Myer. 1985 - Myer,D. and Wohlers,T.

Realising The Potential Of Micro-Based CAD

Autofact '85 Conf. Proc. (Detroit) 1985

161

New. 1973 - Newman,W.M. and Sproull,R.F.

Principles Of Interactive Computer Graphics

McGraw-Hill, !973

Pav. 1982 - Pavlidis,T.

Graphics And Image Processing

Computer Science Press, 1982

Ryan 1985 - Ryan,D.L.

Computer-Aided Graphics And Design

Marcel Dekker, 1985

Turb. 1985 - Borland International

Turbo Pascal 3.0 Reference Manual

Borland International, 1985

Wohl. 1984 - Wohlers,T.

Potential Of Personal Computer CAD Systems

Autofact 6 Conf. Proc. (Anaheim) 198 4,

162

