Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

CHARACTERIZATION OF TWO GENES INVOLVED IN NEOTYPHODIUM LOLII GROWTH.

A thesis in partial fulfillment of the requirements for the degree of Master of Science in Biochemistry at Massey University, Palmerston North, New Zealand

> Duncan George Glenn McMillan 2004

ABSTRACT

Neotyphodium lolii is a filamentous fungus that forms symbiotic associations with *Lolium perenne*, growing in its intercellular spaces. It is a feature of the symbiosis that growth of the fungus and the plant is synchronized. When the grass leaf-blade grows, the fungus grows at the same rate, hence when the blade ceases extension the hyphae do likewise. In addition, *in planta* there is little hyphal branching, where as in culture hyphae branch at regular intervals. This suggests the existence of a regulatory mechanism *in planta* that partially dictates hyphal morphology and growth.

The criteria for choosing possible candidate genes relied on whether the gene had a function relating to hyphal branching and/or regulation of hyphal extension in several organisms. Three candidate genes were selected. Protein elongation factor 2 (*EF-2*; an elongation factor associated with the ribosome) was targeted to add more direct evidence to the high metabolic rate observed *in planta* using the GUS reporter gene by Tan *et al* (2001). Cell division control protein 12 (*CDC-12*); a septin which is involved in the construction of the 10 nm ring structure associated with cell division and whose mutation is lethal in yeast was chosen to help distinguish the growth mode of *N. lolii in planta*. A Stretch-activated Calcium Channel (*SACC*) which allows exogenous calcium into the cell upon application of lateral pressure on the membrane was targeted to help distinguish the possible recognition signal the hyphae make to elucidate when the host tissue is growing.

This project was then divided into four parts, one part per gene and a final part looking at the *in vitro* and *in vivo* expression of these genes. For the first three parts degenerate PCR was performed and appropriate-sized fragments cloned, sequenced and restriction mapped for EF-2 and CDC-12 (2066 bp and 514 bp respectively). Database searches were used to identify the sequences as potentially being the target genes. Degenerate PCR was unsuccessful for the *SACC*.

Southern blots were used to identify restriction enzymes for Inverse PCR; and this was used to obtain the remaining 5' and 3' regions of each target gene. Gene prediction software was used to predict gene structure; 5' and 3' RACE to confirm the length, introns and start/stop points of *EF-2* and *CDC-12* full gene transcripts (2,900 and 1,612 bp respectively). Internet-based sequence analysis tools subsequently were used to identify sequence features.

For the second part, expression of *EF-2* and *CDC-12* are investigated during various states of hyphal growth. Growth curves were constructed and *in vitro* expression analysis was achieved by Northern blot. The expression patterns of *EF-2* and *CDC-12* followed the growth state of *N. lolii*. RT PCR was used to confirm *in planta* expression of both genes and validate their uses for future studies.

ACKNOWLEDGEMENTS

I would like to convey my thanks to my supervisor, Jan Schmid for his patience and guidance in times of trial. I would also like to thank Ningxin Zhang for her help in the lab, without whose assistance I would have struggled to achieve results at all. Thank you both for taking time out of your busy schedules to help me with my project.

I would like to thank Mark Patchett, Mike Christensen and Errol Kwan for taking the time out to have all those philosophical chats with me about many aspects of research and ideas for further research. I have appreciated your friendship and advice. I would like to thank Rosie Bradshaw for acting as an interim supervisor and helping last-minute editing when she was very busy with other aspects of her work. I would like to acknowledge the members of Scott base, particularly Andrea Bryant, Michelle Bryant, Barry Scott and Carolyn Young for useful advice as well as everyone at IMBS for giving me tidbits of guidance throughout the years.

I would like to thank my family for their support and Kathryn Stowell for her understanding and advice for so many years. Thanks to the lads, I shall miss the chronic partying and sciencefree laughs. Lastly I would like to thank Mazzie who put up with my late-night swearing/ writing episodes when I was under pressure, and who offered encouragement when I needed it.

TABLE OF CONTENTS

Chapter 1 INTRODUCTION

1.1 <i>NEOTYPHODIUM LOLII</i> GROWTH AND HOST INTERACTIONS	
1.1.1 The N. lolii lifecycle	1
1.1.2 Host compatibility	1
1.1.3 Biological benefits of a symbiosis	2
1.1.3.1 General Benefits	2
1.1.3.2 Alkaloids and Bioprotection	2
1.1.4 The phenonmenon of <i>N. lolii</i> growth	
1.1.4.1 Hyphal growth dogma	3
1.1.4.2 A synchronous growth pattern	5
1.1.5 Molecular Investigation	8
1.2 N. LOLII AND PROTEIN ELONGATION FACTOR 2	9
1.2.1 EF-2 structure, regulation and modification	9
1.2.2 Protein Synthesis and EF-2	11
1.3 N. LOLII AND CELL DIVISION CONTROL PROTEIN 12	14
1.3.1 CDC-12 structure	14
1.3.2 CDC-12 function	15
1.4 N. LOLII AND STRETCH-ACTIVATED CALCIUM CHANNELS	17
1.4.1 SACC structure	17
1.4.2 SACC function	18
1.5 AIMS OF THIS STUDY	19

Chapter 2 MATERIALS AND METHODS

2.1	MA	TERIALS	
2	2.1.1	Origin of Materials	22
2	2.1.2	Organism Strains and Plasmids	23
2	2.1.3	Water Supply and Sterilization	23
2	2.1.4	Media	23

	2.1.4.1	Bacterial	media	
		2.1.4.1.1	Luria Broth	25
		2.1.4.1.2	SOC	25
		2.1.4.1.3	SOB	25
	2.1.4.2	Fungal m	edia	
		2.1.4.2.1	PD broth	25
		2.1.4.2.2	MYG	25
2.1	.5 Buff	fers and S	olutions	
	2.1.5.1	Electroph	oresis Buffers	
		2.1.5.1.1	1 x TAE Buffer	25
		2.1.5.1.2	50 x TAE Buffer	26
		2.1.5.1.3	1 x TBE Buffer	26
		2.1.5.1.4	10 x TBE Buffer	26
		2.1.5.1.5	SDS Loading Buffer	26
		2.1.5.1.6	Ethidium Bromide	26
	2.1.5.2	DNA Iso	lation	
		2.1.5.2.1	Lysis Buffer	26
		2.1.5.2.2	TE Buffer	26
	2.1.5.3	Southern	Blotting Solutions	
		2.1.5.3.1	Solution 1	26
		2.1.5.3.2	Solution 2	26
		2.1.5.3.3	Solution 3	27
		2.1.5.3.4	20 x SSC	27
	2.1.5.4	RNA Tr	eatment	
		2.1.5.4.1	DNase I	27
		2.1.5.4.2	10 x MOPS Buffer	27
	2.1.5.5	DIG Dete	ection/Hybridization Solutions	
		2.1.5.5.1	Blocking Solution	27
		2.1.5.5.2	Hybridization Solution	27
		2.1.5.5.3	DIG Buffer 1	27
		2.1.5.5.4	DIG Buffer 2	27
		2.1.5.5.5	Antibody Solution	27

vi

	V11
2.1.5.5.6 DIG Buffer 3	28
2.2 METHODS	
2.2.1 Growth of Cultures	28
2.2.1.1 E. coli cultures	28
2.2.1.2 N. lolii cultures	
2.2.1.2.1 Growth on Solid Media by Subculture	28
2.2.1.2.2 Growth in Liquid Culture for DNA Isolation	28
2.2.1.2.3 Growth Curves 1	29
2.2.1.2.4 Growth Curves 2	29
2.2.1.3 A. nidulans cultures	
2.2.1.3.1 Preparation of Spore Suspension	29
2.2.1.3.2 Culture	30
2.2.2 DNA and Plasmid Isolation	
2.2.2.1 DNA Isolation from Fungal Cultures	30
2.2.2.2 DNA Isolation from Infected Plant Tissue	30
2.2.2.3 Large Scale Plasmid Isolation by Rapid Boil Method	31
2.2.2.4 Small Scale Plasmid Isolation	31
2.2.3 Purification of DNA	
2.2.3.1 Phenol/Chloroform Extraction	31
2.2.3.2 Ethanol Precipitation	32
2.2.3.3 Agarose Gel Purification	32
2.2.3.3.1 Purification of Small Fragments (0-1.5 kb)	32
2.2.3.3.2 Purification of Large fragments (1.5 kb plus)	32
2.2.3.4 Purification of DNA from a PCR Reaction	33
2.2.4 Nucleic Acid Quantification	
2.2.4.1 Determination of DNA Concentration by Fluorometric Assay	33
2.2.4.2 Determination of RNA Concentration by Spectrophotometric Assay	33
2.2.5 Agarose Gel Electrophoresis	34
2.2.6 Restriction Endonuclease Digestion of DNA	34
2.2.7 Ligation of DNA	
2.2.7.1 Ligation into pGEM-T Easy vector	35

..

2.2.7.2 Intramolecular (Self) Ligation	35
2.2.8 Degenerate and General Oligonucleotide Design	36
2.2.9 General and Degenerate PCR	36
2.2.10 Sequencing	37
2.2.11 Computer Analysis and Tools	38
2.2.12 Cloning (Bacterial Transformation)	
2.2.12.1 Preparation of Competent Cells	41
2.2.12.2 Transformation of <i>E. coli</i>	41
2.2.12.3 Diagnostic PCR Screening of Transformants	42
2.2.12.4 Storage of clones	42
2.2.13 Southern Blotting and Hybridization	
2.2.13.1 Southern Blotting	42
2.2.13.2 Preparation of Digoxigenin-11-dUTP (DIG) Labeled DNA Probe	43
2.2.13.2 Hybridization using DIG DNA Probes	44
2.2.13.4 Detection of Hybridization using Chemiluminescence	44
2.2.14 Inverse PCR (IPCR)	44
2.2.15 RNA Technique Precautions	45
2.2.16 RNA Isolation	
2.2.16.1 Total RNA Isolation	46
2.2.16.2 DNase Treatment of RNA	46
2.2.16.3 mRNA Isolation	47
2.2.17 Northern Blotting and Hybridization	47
2.2.17.1 Formaldehyde Gel Electrophoresis	47
2.2.17.2 Northern Blotting	48
2.2.17.3 Probe Stripping	48
2.2.18 RT PCR Techniques	48
2.2.18.1 RT PCR for In planta Analysis	48
2.2.18.1.1 Reverse Transcriptase Synthesis of cDNA	48
2.2.18.1.2 PCR probing of cDNA	49
2.2.18.2 RACE	
2.2.18.2.1 Synthesis of RACE-Ready cDNA	49

viii

	ix
2.2.18.2.2 Design of RACE Primers and PCR	49
Chapter 3 EF-2 Cloning	
3.1 MOLECULAR CLONING OF A PROTEIN ELONGATION FACTOR 2	
GENE FROM N. LOLII (Lp19)	
3.1.1 Degenerate Primer Design	50
3.1.2 PCR amplification of a putative Lp19 <i>EF-2</i> (<i>nlEF-2</i>) gene fragment	50
3.1.3 Cloning and sequencing of the putative <i>nlEF-2</i> fragment	55
3.1.4 Initial verification of the identity of the putative <i>nlEF-2</i> fragment	55
3.1.5 Obtaining the <i>nlEF-2</i> 2066 bp flanking regions	56
3.1.5.1 Enzyme Identification; Southern Blotting	57
3.1.5.2 Inverse PCR (IPCR)	57
3.2 5' AND 3' RACE FOR <i>nlEF-2</i>	73
3.3 ANALYSIS AND DISCUSSION OF SEQUENCE RESULTS	
3.3.1 N. lolii (Lp19) Protein Elongation Factor 2 (nlEF-2)	82
3.3.2 Intron Sites	89
3.3.3 Identification Of Transcription Start/Stop Sites	89
3.3.4 Analysis of the <i>nlEF-2</i> gene promoter region	92
3.3.5 Analysis of sequences resulting from <i>nlEF-2</i> gene	
3.3.5.1 Identification of Putative Translation Start/Stop Sites	93
3.3.5.2 <i>nIEF-2</i> putative amino acid sequence: homology to elongation factor 2	94
3.3.5.3 Condon Usage of <i>nlEF-2</i>	99

Chapter 4 CDC-12 CLONING RESULTS

4.1	MO	LECULAR CLONING OF A CELL CYCLE DIVISION PROTEIN 12	
	GEN	NE FROM N. LOLII (Lp19)	
4	4.1.1	Degenerate Primer Design	100
L	4.1.2	PCR amplification of a putative Lp19 CDC-12 (nlCDC-12) gene fragment	100
4	4.1.3	Cloning and sequencing of the putative nlCDC-12 fragment	105
2	4.1.4	Initial verification of the identity of the putative nlCDC-12 fragment	105
2	4.1.5	Obtaining the nlCDC-12 514 bp flanking regions	106

4.1.5.1 Enzyme Identification; Southern Blotting	106
4.1.5.2 Inverse PCR (IPCR)	109
4.2 5' AND 3' RACE FOR <i>nlCDC-12</i>	114
4.3 ANALYSIS AND DISCUSSION OF SEQUENCE RESULTS	
4.3.1 N. lolii (Lp19) Cell Cycle Division Protein 12 (nlCDC-12)	120
4.3.2 Intron Sites	120
4.3.3 Identification Of Transcription Start/Stop Sites	127
4.3.4 Analysis of the <i>nlCDC-12</i> gene promoter region	127
4.3.5 Analysis of sequences resulting from <i>nlCDC-12</i> gene	
4.3.5.1 Identification of Putative Translation Start/Stop Sites	128
4.3.5.2 <i>nlCDC-12</i> putative amino acid sequence: homology to CDC-12	128
4.3.5.3 Condon Usage of <i>nlCDC-12</i>	129

Chapter 5 SACC CLONING

5.1 A	TTEMPTED CLONING OF A STRETCH-ACTIVATED CALCIUM	
C	HANNEL GENE FROM N. LOLII (Lp19)	
5.1	.1 Degenerate Primer Design	132
5.1	.2 Attempted PCR amplification of a putative <i>N. lolii SACC</i> gene fragment	132
5.1	.3 Attempted Detection of a N. lolii SACC using an A. nidulans probe on	
	Southern Blot	133
Chapt	er 6 EF-2 AND CDC-12 EXPRESSION RESULTS	
6.1 E	xpression of <i>nlEF-2</i> and <i>nlCDC-12</i> in culture	136
6.2 E	xpression of <i>nlEF-2</i> and <i>nlCDC-12</i> in planta	141
Chapt	ter 7 DISCUSSION AND FUTURE DIRECTIONS	
7.1 S	UMMARY OF <i>nlEF-2</i> AND <i>nlCDC-12</i> GENERAL FEATURES	145
7.2 S	UMMARY OF <i>nlEF-2</i> SPECIFIC FEATURES	
7.2	.1 Promoter elements	145
7.2	.2 Putative protein elements	146
7.3 n	<i>lEF-2</i> EXPRESSION AND FUTURE DIRECTIONS	147

X

7.4 SUMMARY OF <i>nlCDC-12</i> SPECIFIC FEATURES	
7.4.1 Promoter elements	147
7.4.2 Putative protein elements	148
7.5 <i>nlCDC-12</i> EXPRESSION AND FUTURE DIRECTIONS	148
7.6 SACC FUTURE DIRECTIONS	149
APPENDICES	
See Figures and Tables for content	
REFERENCES	184

REFERENCES

xi

FIGURES

CHAPTER 1

1.1	N. lolii in planta	6
1.2	Protein Elongation in Fungi	12
1.3	Molecular Model of SACC opening	20

CHAPTER 3

3.1	EF- 2 Degenerate primer design	51
3.2	PCR amplification of putative EF-2 gene fragments	53
3.3	Southern Analysis for <i>nlEF-2</i> Inverse PCR	59
3.4	A Theoretical construction of a Complete <i>nlEF-2</i> gene from 2066 bp PCR	
	product and the expected Inverse PCR product.	62
3.5	First Attempt of IPCR amplification of putative nlEF-2 gene fragments	65
3.6	Identity verification of IPCR products	68
3.7	Second Attempt of IPCR amplification of putative EF-2 gene fragments	71
3.8	Schematic of Mapped EF2-con2 (Linear A) and Circular B))	74
3.9	nlEF-2 5' RACE	79
3.10	nlEF-2 3' RACE	79
3.11	Full Nucleotide sequence of EF2-con2	83
3.12	Schematic comparison of EF-2 gene structure	90
3.13	Alignment Comparing nIEF-2p and Fungal EF-2 Protein Sequences	95

CHAPTER 4

4.1	CDC-12 Degenerate primer design	101
4.2	PCR amplification of putative nlCDC-12 gene fragments	103
4.3	Southern Analysis for nlCDC-12 Inverse PCR	107
4.4	A Theoretical construction of a complete nlCDC-12 gene from 514 bp PCR	
	product and the expected Inverse PCR product.	110

4.5	IPCR amplification of putative nCDC-12 gene fragments		
4.6	nlCDC-12 5' RACE	117	
4.7	nlCDC-12 3' RACE	117	
4.8	Full Nucleotide sequence of Sep-con1	121	
4.9	Schematic comparison of <i>nlCDC-12</i> gene structure	125	
4.10	Alignment Comparing nlCDC-12p and Fungal CDC-12 Protein Sequences	130	
CHAI	PTER 5		
5.1	Partial alignment of proteins used to design SACC degenerate PCR primers	134	
CHAP	PTER 6		
6.1	Lp19 Growth Curve	137	
6.2	Northern Analysis of <i>nlEF-2</i> and <i>nlCDC-12</i> Expression	139	
6.3	In planta Analysis of nlEF-2 and nlCDC 12 Expression	143	
APPE	NDIX		
A.1.1	Host grass	162	
A.2.1	pGEM-T Easy vector map	163	
A.2.2	IPCR Strategies schematic	164	
A.3.1	Endonuclease non-cutters	167	
A.3.2	Schematic assembly of EF2-con1 and -con2	170	
A.3.3	nlEF-2 characterization alignment	174	
A.3.4	nlCDC-12 characterization alignment	180	

xiii

TABLES

CHAPTER 2				
2.1	Strains and Plasmids	24		
2.2	PCR and Sequencing Primers	39		
CHAI	PTER 3			
3.1	Intron sites for <i>nIEF-2</i>	77		
CHAI	PTER 4			
4.1	Intron sites for <i>nlCDC-12</i>	115		
APPE	NDIX			
A1.1	Genes involved in hyphal morphogenesis	151		
A.2.1	PCR protocols	165		
A.2.2	Example transformation results	166		
A.3.1	Intron and Exon lengths and locations	167		
A.3.2	nlEF-2 and nlCDC-12 codon usage	171		
A.3.3	Dry weights of Northern samples	173		

xiv

ABBREVIATIONS

ATP	Adenosine 5'-triphosphate	h	Hour
GTP	Guanine 5'-triphosphate	mm	Millimeter
dNTP	Nucleotide 5'-triphosphate	cm	Centimeter
CDC	Cell cycle division protein	U	Units of Enzyme
EF	Protein Elongation factor		
SACC	Stretch-activated calcium channel		
mRNA	Messenger RNA		
MCS	Multiple cloning site		
GUS	β-glucuronidase		
Gd ³⁺	Galadeninum ion		
GST	Glutathione S-transferase		
kb	Nucleotides (Kilobases)		
b	Nucleotide (base)		
MOPs	3-N-Morpholinepropanesulfonic acid		
°C	Degrees centigrade		
μL	Micro-liter		
mL	Milli-liter		
L	Liter		
рМ	Pico-mole		
μΜ	Micro-mole		
mМ	Milli-mole		
M	Mole		
ng	Nanogram		
μg	Microgram		
mg	Milligram		
g	Gram		
S	Second		