Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Mortality and Cancer Incidence in New Zealand Meat Workers

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

In Epidemiology

At Massey University, Wellington, New Zealand

David J. McLean

June 2003

CANDIDATE'S DECLARATION

This is to certify that the research carried out for my Doctoral thesis entitled "Mortality and cancer incidence in New Zealand meat workers" in the Centre for Public Health Research, Massey University, Wellington, New Zealand is my own work and that the thesis material has not been used in part or in whole for any other qualification. Wellington Campus Private Box 756, Wellington, New Zealand Telephone: 64 4 801 2794 Facsimile: 64 4 801 2692

Centre for Public Health Research

Massey University ~ Wellington Campus Private Box 756, Wellington New Zealand

Administration +64 (0)4 380 0602

Direct Fax +64 (0)4 380 0600

Courier Address 102 Adelaide Road Newtown Wellington New Zealand

Internet www.massey.ac.nz

Dave McLean

Direct Telephone +64 (0)4 3800 609

Extension 6009

Email D.J.McLean@massey.ac.nz

Candidate's Name

David J McLean

Signature

Date

12 JUNE 2003

Te Kunenga ki Pūrehuroa

MasseyUniversity

SUPERVISOR'S DECLARATION

This is to certify that the research carried out for the Doctoral thesis entitled "Mortality and Cancer incidence in New Zealand Meat Workers" was done by Dave McLean in the Centre for Public Health Research, Massey University, Wellington campus, New Zealand. The thesis material has not been used in part or in whole for any other qualification, and I confirm that the candidate has pursued the course of study in accordance with the requirements of the Massey University regulations.

Wellington Campus Private Box 756. Wellington, New Zealand Telephone: 64 4 801 2794 Facsimile: 64 4 801 2692

Centre for Public Health Research

Massey University -Wellington Campus Private Box 756, Wellington New Zealand

Administration +64 (0)4 380 0602

Direct Fax +64 (0)4 380 0600

Courier Address 102 Adelaide Road Newtown Wellington New Zealand

Internet www.massey.ac.nz

Dave McLean

Direct Telephone +64 (0)4 3800 609

Extension 6009

Email D.J.McLean@massey.ac.nz

Supervisor's Name

Prof Neil Pearce

Signature

Ned Peane 12/6/03.

Date

Te Kunenga ki Pūrehuroa

Massey University

CERTIFICATE OF REGULATORY COMPLIANCE

This is to certify that the research carried out in the Doctoral Thesis entitled

"Mortality and Cancer Incidence in New Zealand Meat Workers" in the Centre for Public Health Research at Massey University, New Zealand:

- (a) is the original work of the candidate, except as indicated by appropriate attribution in the text and/or in the acknowledgements;
- (b) that the text, excluding appendices/annexes, does not exceed 100,000 words:
- (c) all the ethical requirements applicable to this study have been complied with as required by Massey University, other organisations and/or committees, i.e. Wellington Ethics Committee, which had a particular association with this study, and relevant legislation.

Please insert Ethical Authorisation code(s) here: (if applicable)

99/94 Work related risk of cancer in meat workers

Wellington Campus Private Box 756. Wellington New Zealand Telephone: 64 4 801 2794

Facsimile: 64 4 801 2692

Centre for Public Health Research

Massey University -Wellington Campus Private Box 756, Wellington New Zealand

Administration +64 (0)4 380 0602

Direct Fax +64 (0)4 380 0600

Courier Address 102 Adelaide Road Newtown Wellington New Zealand

Internet www.massey.ac.nz

Dave McLean

Direct Telephone +64 (0)4 3800 609

Extension 6009

Email D.J.McLean@massey.ac.nz

Candidate's Name: David McLean

Supervisor's Name: Neil Pearce

Signature:

June 2003

Signature:

Date:

Date:

nil Peace 12/6/03

Te Kunenga ki Pūrehuroa

Abstract

Background:

Several studies have suggested increased risks of cancers of the lung and lymphohaematopoietic tissue associated with work in the meat industry. The evidence for lung cancer is reasonably consistent, although few studies have controlled for smoking. Increased risks of lymphohaematopoietic cancers have been found consistently in case-control studies, including several conducted in New Zealand, but not in cohort studies. This project aimed to ascertain whether there is an increased risk of these cancers in workers employed in the New Zealand meat processing industry, and to identify what exposures are associated with any increased risks.

Methods:

Two cohorts, 4,064 individuals assembled from union records and 6,647 individuals assembled from company records, were followed from 1988 until 2000. Exposure status was assigned according to a job-exposure matrix. The observed number of deaths and cancer registrations was compared with expected numbers using five-year age-specific rates for the New Zealand population. Subgroup analyses evaluated the effect of duration of exposure to selected agents.

Results:

Vital status was determined for 93% (union) and 92% (company) of the total possible person-years. In the union cohort, mortality from all causes (SMR 0.86) and all cancers (SMR 0.88) were reduced, with no elevation observed for the cancers of *a priori* interest. Mortality from all causes (SMR 1.12) and all cancers (SMR1.12) were elevated in the company cohort, with a significant excess of lung cancer (SMR 1.79) and an excess of non-Hodgkin's lymphoma (SMR 1.45). Subgroup analyses showed significant trends of increasing risk with duration of exposure to biological material.

Conclusions:

The union cohort exhibited a strong healthy worker effect, with no increase in mortality or cancer incidence. By contrast, excess risks for all cause and cancer mortality and incidence, and for lung and lymphohaematopoietic cancers, were observed in the company cohort. This is unlikely to be due to confounding by smoking, and the strong dose response relationship suggests the effect is related to occupational exposures.

Acknowledgements

A large number of people have provided me with support and encouragement during the course of this research.

In particular I am indebted to Professor Neil Pearce, Director of the Centre for Public Health Research at Massey University in Wellington, who acted as my principal supervisor in this research project. It was Neil who originally sparked my interest in occupational cancer epidemiology by showing it to be both a challenging endeavour in its own right and also a means of providing an evidence base on which to promote improvements in working conditions. Without his encouragement, and occasional cajoling, over the last few years I doubt I would have completed this study. I am also especially grateful to Alistair Woodward of the Department of Public Health at Wellington School of Medicine who acted as my second supervisor, and who reviewed drafts and was always willing to provide advice when asked.

Historical cohort studies involve large amounts of clerical work necessary for transcribing and checking historical records, and I am indebted to Merryn Macaulay, Nyk Huntington, Sarah Duignan and Jessica Smith for their conscientious efforts with this work. For the major data management and data linkage projects, which I now realise are also immense tasks in the undertaking of an historical cohort study, I am also indebted to Soo Cheng the Computer Manager and Biostatistician at the Centre for Public Health Research. I also thank Andrea t'Mannetje for her work setting up the PC LTAS analysis programme complete with New Zealand rates.

A number of people within the meat industry gave generously of their time and resources to support the study, and I wish to thank them for their help. Special thanks are due to the following officials of the two New Zealand meat workers' unions, namely Tiny Kirk, Maevis Watson, Amanda Stephens, Darryl Carron, Peter Swain, Graham Cooke and Eric Mischiefski. Darryl Carron and Peter Swain in particular deserve recognition for their foresight in archiving historical plant and personnel records, and their fortitude for granting me access to these when their employer had refused to support the study.

I also thank Barbara Aberdeen from Jacques Martin NZ Ltd and V. Alan Langford from National Provident for providing access to the records of the old meat industry superannuation scheme for linkage with union membership records, as without this help there would have been no union cohort. Several people associated with Richmond Ltd also deserve acknowledgement for their help with locating and accessing personnel records, with answering numerous queries about these records, and also with providing unfettered access to plants. In particular I acknowledge the assistance of Marlene Bishop, Linda Codyre, Gary Williams and Mike Finucane. Dr Michael Short and Penny French from Dannevirke Surgery also volunteered invaluable help with checking historical records from these plants, and their help increased the size of the available dataset.

I also wish to thank Jim Fraser, Chris Lewis and Suzette Laws from the NZ Health Information Service who either facilitated or did the electronic and manual matching of our datasets with the NZHIS database. This type of study would also not be possible without the support of organisations like Work and Income New Zealand (WINZ) and the Electoral Enrolment Centre for providing access to data linkage to ascertain vital status of study participants, and I acknowledge the support of both organisations. Mike O'Rourke from WINZ deserves special thanks for his willing assistance with the project.

This work was undertaken during my tenure as a Health Research Council of New Zealand Public Health Research Training Fellow, and a project grant from the Health Research Council of New Zealand funded the research, and I am especially grateful for their assistance.

My greatest debt is to my family, and in particular my wife Sally and daughter Sylvie who have supported me during the entire difficult process, and to my mother Rhoda and late father Ian McLean who are responsible for having instilled a sense of the value of education.

Table of contents

Abstract	1
Acknowledgements	2
Table of contents	4
List of tables	8
Abbreviations	12

Chapter 1	Introduction	
1.1	Background	14
1.2	Objectives	16
1.3	Thesis outline	17

Chapter 2. Previous studies of cancer in meat workers

2.1	Introduction	20
2.2	Methods	21
2.3	Analyses of routine mortality and cancer incidence records	21
2.4	Proportionate mortality and incidence studies	25
2.5	Cohort studies	31
2.6	Case-control studies	41
2.7	Studies of other relevant populations	54
2.8	Summary	57

Chapter 3. Exposures in the meat industry

3.1	Introd	uction		67
3.2	Process description			70
3.3	Potent	tial exposures		74
	3.3.1	Infectious bic	ological exposures	75
		3.3.1(i)	Zoonoses	77
		3.3.1(ii)	Oncogenic retroviruses	86
	3.3.2	Non-infection	us bio-aerosols	90
	3.3.3	Chemical exp	posures	91
	3.3.4	Physical and	psychosocial exposures	96
3.4	Summ	arv		99

Chapter 4. Study design

4.1	Overview 1	
4.2	Choice of study design	
4.3	Consultation and ethical approval process	107
4.4	Study population	
	4.4.1 The Union Cohort	111
	4.4.2 The Company Cohort	113
	4.4.3 Combination of cohorts	115
4.5	Exposure assessment	117
4.6	Ascertainment of vital status	
4.7	Analysis of data 12	

Chapter 5. Results

5.1	Introduction 13		130	
5.2	Description of cohorts 1			131
5.3	Vital s	status ascertain	ment and loss to follow-up	134
5.4	Cause	-specific morta	ality	135
	5.4.1	Cause-specif	ic mortality – Union Cohort	135
	5.4.2	Cause-specif	ic mortality – Company Sub-cohorts	137
		5.4.2 (i)	Lorneville sub-cohort	139
		5.4.2 (ii)	Oringi sub-cohort	139
		5.4.2 (iii)	Takapau sub-cohort	141
5.4.3	Cause	-specific mort	ality – Combined Company Cohort	143
5.5	Mortality from selected causes by age, duration of			
	emplo	yment and tim	e since first employed	145
5.6	Distri	bution of the st	tudy population by potential exposures	150
5.7	Mortality by department "ever worked" in 153		153	
	5.7.1	Mortality by	department – Union Cohort	153
	5.7.2	Mortality by	department – Company Cohort	159
5.8	Morta	llity by biologi	cal exposures	164
	5.8.1	Mortality by	biological exposures – Union Cohort	164
	5.8.2	Mortality by	biological exposures – Company Cohort	168
5.9	Morta	llity by chemic	al exposures	173
	5.9.1	Mortality by	chemical exposures - Union Cohort	173
	5.9.2	Mortality by	chemical exposures - Company Cohort	176

5.10	Mortality by duration of exposure	
	5.10.1 Mortality by duration of exposure - Union Cohort	179
	5.10.2 Mortality by duration of exposure - Company Cohort	184
5.11	Cancer Incidence	189
	5.11.1 Cancer Incidence - Union Cohort	190
	5.11.2 Cancer Incidence - Company Cohort	199
5.12	Cancer Incidence by level of exposure	208

Chapter 6. Discussion

6.1	Introduction	
6.2	Summary of findings	
	6.2.1 Overall mortality	213
	6.2.2 Cancers of <i>a priori</i> interest – the Union Cohort	214
	6.2.3 Cancers of <i>a priori</i> interest – the Company Cohort	216
6.3	Limitations of the data	220
	6.3.1 Cohort definition	220
	6.3.2 Follow-up of the cohorts	221
	6.3.3 Confounding	223
	6.3.4 Exposure data	226
6.4	Summary	231
6.5	Concluding remarks	234
Appendix I	Ethics Committee Approval	236
References		238

List of Tables

Table 2.1	Analyses of routinely collected data for lung cancer in meat	
	workers	
Table 2.2	Proportionate mortality and proportionate incidence studies	28
	of cancer in meat workers	
Table 2.3	Cohort studies of cancer in meat workers	37
Table 2.4	Case-control studies of cancer in meat workers	52
Table 3.1	Total numbers of stock slaughtered in New Zealand in 1998	70
Table 4.1	Years of employment and follow-up for the meat workers	116
	sub-cohorts	
Table 4.2	Biological exposure categories in the meat industry	120
Table 4.3	Chemical exposure categories in the meat industry	121
Table 4.4	Potential biological exposures in job areas and titles within	122
	the freezing works	
Table 4.5	Potential chemical exposures in job areas and titles within	124
	the freezing works	
Table 5.1	Characteristics of the cohorts	132
Table 5.2	Distribution of person-years	133
Table 5.3	Follow-up and vital status ascertainment	135
Table 5.4.1	Cause-specific mortality – Union Cohort	136
Table 5.4.2	Cause-specific mortality – Lorneville Cohort	138
Table 5.4.3	Cause-specific mortality – Oringi Cohort	140
Table 5.4.4	Cause-specific mortality – Takapau Cohort	142
Table 5.4.5	Cause-specific mortality – Combined Company Cohort	144
Table 5.5.1	Mortality from selected causes according to age, duration of	146
	employment and time since first employed among members	
	of the Union Cohort	
Table 5.5.2	Mortality from selected causes according to age, duration of	148
	employment and time since first employed among members	
	of the Company Cohort	

Table 5.6	Distribution of the study population by department ever	151
	worked in and by potential biological and chemical	
	exposures	
Table 5.7.1	Mortality by department ever worked in – Union Cohort	155
Table 5.7.2	Mortality by department ever worked in - Company Cohort	160
Table 5.8.1	Mortality by potential biological exposures - Union Cohort	165
Table 5.8.2	Mortality by potential biological exposures - Company	169
	Cohort	
Table 5.9.1	Mortality by potential chemical exposures - Union Cohort	174
Table 5.9.2	Mortality by potential chemical exposures - Company	177
	Cohort	
Table 5.10.1	All cause mortality in the Union Cohort according to	180
	employment duration in selected departments and exposure	
	categories	
Table 5.10.2	Mortality from all malignant neoplasms in the Union Cohort	181
	according to employment duration in selected departments	
	and exposure categories	
Table 5.10.3	Lung cancer mortality in the Union Cohort according to	182
	employment duration in selected departments and exposure	
	categories	
Table 5.10.4	Mortality from malignant neoplasms of lymphatic and	183
	haematopoietic tissue in the Union Cohort according to	
	employment duration in selected departments and exposure	
	categories	
Table 5.10.5	All cause mortality in the Company Cohort according to	185
	employment duration in selected departments and exposure	
	categories	
Table 5.10.6	Mortality from all malignant neoplasms in the Company	186
	Cohort according to employment duration in selected	
	departments and exposure categories	
Table 5.10.7	Lung cancer mortality in the Company Cohort according to	187
	employment duration in selected departments and exposure	
	categories	

Table 5.10.8	Mortality from malignant neoplasms of lymphatic and	188
	haematopoietic tissue in the Union Cohort according to	
	employment duration in selected departments and exposure	
	categories	
Table 5.11.1	Incidence of selected cancers – Union Cohort	190
Table 5.11.2	Incidence of selected cancers according to age, duration of	192
	employment and time since first employed among members	
	of the Union Cohort	
Table 5.11.3	Cancer incidence in the Union Cohort by employment	194
	duration in selected departments and exposure categories	
Table 5.11.4	Lung cancer incidence in the Union Cohort by employment	195
	duration in selected departments and exposure categories	
Table 5.11.5	Lymphohaematopoietic cancer incidence in the Union	196
	Cohort by employment duration in selected departments and	
	exposure categories	
Table 5.11.6	Non-Hodgkin's lymphoma incidence in the Union Cohort by	197
	employment duration in selected departments and exposure	
	categories	
Table 5.11.7	Leukaemia incidence in the Union Cohort by employment	198
	duration in selected departments and exposure categories	
Table 5.12.1	Incidence of selected cancers – Company Cohort	199
Table 5.12.2	Incidence of selected cancers according to age, duration of	200
	employment and time since first employed among members	
	of the Company Cohort	
Table 5.12.3	Cancer incidence in the Company Cohort by employment	202
	duration in selected departments and exposure categories	
Table 5.12.4	Lung cancer incidence in the Company Cohort by	203
	employment duration in selected departments and exposure	
	categories	
Table 5.12.5	Lymphohaematopoietic cancer incidence in the Company	204
	Cohort by employment duration in selected departments and	
	exposure categories	
Table 5.12.6	Non-Hodgkin's lymphoma incidence in the Company Cohort	205

by employment duration in selected departments and exposure categories

- Table 5.12.7Leukaemia incidence in the Company Cohort by206employment duration in selected departments and exposure
categories206
- Table 5.13Cancer incidence by exposure to biological material from209animal urine, faeces or blood

Abbreviations

ATLL	Adult T-cell leukaemia/lymphoma
BIV	Bovine immunodeficiency virus
BPSV	Bovine popular stomatitis virus
BLV	Bovine leucosis virus
BSE	Bovine spongiform encephalopathy
CI	Confidence interval
COPD	Chronic obstructive pulmonary disease
CTS	Carpal tunnel syndrome
CWD	Chronic wasting disease of deer
GaLV	Gibbon ape leukaemia virus
HIV	Human immunodeficiency virus
HPV	Human papilloma virus
HTLV	Human T-cell lymphotropic virus
IARC	International Agency for Research on Cancer
ICD	International classification of diseases
IRD	Inland Revenue Department
JEM	Job-exposure matrix
JSRV	Jaagsiekte sheep retrovirus
MOR	Mortality odds ratio
MPMV	Mason-Pfitzer monkey retrovirus
MRL	Maximum residue level
МТВ	mercaptobenzothiazole
NHI	National Health Index (number)

NIOSH	US National Institute for Occupational Safety and Health
NMDS	National Minimum Data Set
NZHIS	New Zealand Health Information Service
ODTS	Organic dust toxic syndrome
OR	Odds ratio
РАН	Polycyclic aromatic hydrocarbons
PC LTAS	Life Table Analysis System for personal computer
PCPV	Pseudocowpoxvirus
PCR	Polymerase chain reaction
PIR	Proportionate incidence ratio
PMR	Proportionate mortality ratio
PPCS	Primary Producers Cooperative Society
PPVO	Parapoxvirus orf
PVNZ	Parapoxvirus of red deer in New Zealand
RR	Relative risk
SIR	Standardised incidence ratio
SMR	Standardised mortality ratio
SRV	Simian retrovirus
STLV	Simian T-cell lymphotropic virus
ТСМТВ	2-(thiocyanomethylthio) benzothiazole
TDE	Transmissible degenerative encephalopathies
TSFE	Time since first employed
vCJD	New variant Creutzfeldt-Jakob Disease
WHO	World Health Organisation
WINZ	Work and Income New Zealand