Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

AN APPRCACH TO SOFTWARE MATINTENANCE SUPPORT USING A

SYNTACTIC SOURCE CODE ANALYSER DATA BASE

This thesis is presented in a partial fulfillment of
the requirements for the degree of Master of Arts in

Computer Science at Massey University.

PETER VIVIAN PARKIN

1987

ABSTRACT

In this thesis, the development of a software
maintenance tool called a syntactic source code
analyser (SSCA} 1s summarised. An SSCA supports other
malntenance tools which interact with source code by
creating a data base of source information which has
links to a formatted version of program source code.
The particular SSCA presented handles programs written

in a version of COBOL.

Before developing a SSCA system, aspects of software
maintenance need to be considered. Hence, the scope,
definitions and problems of maintenance activities are
briefly reviewed and maintenance support through
environments, software metrics, and specific tools and
techniques examined. A complete maintenance support
environment for an application is found to overlap
congiderably with the application documentation system
and shares some tools with development environments.
Program source code is also ildentified as the
fundamental documentation of an application and
interaction with this source code is a requirement of

many maintenance support tools.

ACKNOWLEDGEMENTS

I wish to record my gratitude to Professor Graham Tate

for his guidance and supervision of this thesis.

Also, I would like to thank

June Verner for her interest and support in this

research;

My flatmates for encouraging my endevours;

and Massey University for providing the necessary

facilities required for this thesis.

TARLE OF CONTENTS

Page
CHAPTER 1. Introduction 1
CHAPTER 2. An Overview of Software Maintenance 8
2.1. A Maintenance Definition and Reasocons for 8
Maintenance
2.1.1. A General Definition of Maintenance 8
2.1.2. The Reasons for Maintenance 9
2.1.3. Problems with the General Maintenance 11
Definition
2.2. Maintenance Classification 14
2.3. General Problems of Maintenance 20
2.3.1. Factors within the Overall Envircnment 20
2.3.2. Factors intrinsic to the Maintenance 23
Task
2.3.3. Conclusicns on Scftware Maintenance 24
Problems
2.4. Maintenance Life Cycles and Steps 25
2.4.1. A General Maintenance Life Cycle 25
2.4.1.1. The System Life Cycle 25
2.4.1.2. The Maintenance Life Cycle 26
2.4.2. The Software Modification Task 28
2.4.2.1. Software Modification Steps 29

2.5. Software Modification 34

2.5.1.

2.5.

1.

.3.

Software Modification Influences

1. The Influence of Documentation

.2. The Influence of Maintainability

.3. The Influence of Testability

Maintenance Quality

.1. Quality Assurance

.2. Modification Phenocmena

The Implementation of Software

Modifications

.1. Omissions when Implementing Changes
.2. A Modification Example

.3. Methods of Implementing Software

Modifications

The Role and Goals of Maintenance

CHAPTER 3. General Maintenance Support

3.1.

3.1.

.1

.1

.2

1.

.1

2.
2.

.2.

.2,

Maintenance Metrics
Standard Metrics

1. Lines of Code

.2. McCabe’s Cyclomatic Number

.3. Halstead's Software Science Measures

Types of Metrics
1. Instruction Mix Metrics

2. Program Form Metrics

.3. Control Flow Metrics

4. Data Reference Metrics

35
37
35
40
43
44
46

50

50
52

57

61

63
63
64
65
66
68
71
72
73
75

80

3.1.2.5. Control Flow / Data Flow Interaction
Metrics

3.1.3. Compoesite Measures of Complexity

3.1.4. A Discussion of Complexity Metrics

3.2. A Documentation Support Environment

3.2.1. Document Groups

3.2.2., A Documentation Scheme

3.2.3. Problems with BAutomated Support

3.3. Maintenance Support Tools

3.3.1. Classification according to Activity

3.3.2. Classification according to
Documentation Used

3.4. Syntactic Analysis

3.4.1. S3tatic Analysis

3.4.2. A Syntactic Analysis Tool

CHAPTER 4. Development of a Prototype
Syntactic Analyser

4.1. Choice of a Programming Language

4.1.1. Development of a reduced COBOL

4.1.2. Some properties of COBOL

4.2. Data Base Content

4.2.1. COBOL Entities and Relationships

4.2.1.1. Language Definition Entities

4.2.1.2. Language Definiticon Attributes

4.2.1.3. Navigation and Usage Entities

82

88

95
101
102
104
108
112
112

116

121
121

127

1386

137
139
141
146
146
146
152

1514

4.

.2.1.4., Relationships between Entities
.2.2. Maintenance Enquiries for a SSCA DB
.2.3. 8SCA Database Implementation
.2.3.1. A Database Management System

.2.3.2. Relations and Implementation

Considerations

.3. Analysis of Source Code

.3.1. SSCA Subsystems and Implementation

Considerations

.3.2. The SPEX Subsystem

.3.3. The Format Subsystem

.3.4. The Analyse Subsystem

.3.5. Metric Calculaticon and the SSCa

.3.5.1. COROL Metrics for the Metric

Calculator

3.5.2., B8SCA and SSCA DB Implications

CHAPTER 5. Conclusjions

5.

5.

1. Maintenance in General

2. Software Metrics

.3. Maintenance Support through Tools
.4. The Prototype SSCA System

.4.1. SSCA Development

.4.2. Use of the SSCA DB

.5. General Conclusion

158
164
166
166

170

176

176

179
184
195
199
200

206

209
203
212
213
216
216
219

222

APPENDIX 1. The PURGE Precgram and its

Modifications

APPENDIX 2. Maintenance Tools

APPENDIX 3. A Reduced COBOCL Language
3A. Omissions from Standard COBOL

3B. Language Description

APPENDIX 4. COBOL Source Code Information
43, Entities and Attributes for Information in

a COBOL Program

4B. Standard Phrases for Formatting

BIBLIOGRAPHY

223

245

271
271

278

296

256

311

314

TABLE OF FIGURES

Page

2.4. A Model of Operational and Maintenance 27
Activities

3.2. An Application Documentation Scheme 105

3.3. Application Documentation and Tools 117

3.4, A possible Structure for a Static Analysis 130
System

4.2.1. Examples of Section, Paragraph, 151
Statement-Groups and

Statement Instances

4.2.2. Relationships derived from Program 161
Structure

4.2.3. Relationships derived from Data 162
Declaration

4.2.4. Relationships derived from Branching 163

4.2.5., Relaticonships derived from Data 163
Reference

4.2.6. Types of Relationships 167

4.3.1. The SPEX Subsystem 178

4.3.2. The Format Subsystem 185

4.3.3. The Analyse Subsysten 196

Al.1. Data and Program Structures for Program 247
PURGE - File Structures

Al.2. Program Structure 248

CHAPTER 1. INTRODUCTION.

This thesis is concerned with software maintenance and
tools and techniques for the support of software
maintenance. This chapter briefiy outlines the areas

covered by later chapters and their sections.

Software maintenance 1s an expensive area of the system
life cycle consuming an estimated 32% of system costs
[MCKB84]. Although maintenance is now beginning to be
recognised as important, the amount of direct
maintenance research which has been <carried out is
limited. Exactly what constitutes a maintenance task is
still not completely defined especially the demarcation
between maintenance and redevelcopment. The emphasis of
Chapter 2 is on defining and describing various aspects
of maintenance {(particularly aspects which are
considered problematic), examining the relationship
between development and maintenance and attempting to
identify general principles for the modification of

software.

In Section 2.1 a broad definition of maintenance is
given and discussed. Reasons for maintenance are also
examined in this sectiocn. The reasons suggest that

maintenance 1s fundamental to most computer systems.

Although it could be supported by general tools, like
fourth generation languages (4GLs), maintenance will

certainly not disappear in the future [TATS85].

A task which has been identified as maintenance can be
further «c¢lassified using a number of categorisation
schemes. These schemes, and some of the benefits and

dangers in using them, are investigated in Section 2.2.

Source code produced in maintenance costs between 10
and 100 times more than in development [CON84]. High
code production costs and maintenance backlogs of up to
2.5 vyears [TIN84] suggest that particular problems
cccur in maintenance which hamper increases in
productivity. Several surveys o¢f DP managers and/ox
programmers [CHA85] [LIE78] [REU81] have been carried
out in an attempt to identify maintenance problems.
Results from these surveys and suggestions from other

researchers are discussed in Section 2.3.

Section 2.4 helps to further define maintenance in
terms of 1its place within the system life cycle., In
this section, the steps or actions associated with any
software modification task (i.e. maintenance task) are
also identified. The definition of aspects of
maintenance is completed in Section 2.5 with an

examination of direct influences on the process of

software modification and a description of the
phenomena known as "ripple effect" and "structural

decay™.

Section 2.6 and part of Section 2.5 are devoted +to
discussing principles for achieving successful
maintenance. Difficulties with identifying such
principles are illustrated through the design and
implementation of modifications to a particular COBOL

program (the program is given in Appendix 1).

Having defined maintenance and its problems in Chapter
2, tools and techniques to support various aspects of
maintenance are presented in Chapter 3. Static
complexity metrics {(usually applied to individual
programs) have Dbeen suggested as measures of the
difficulty in understanding scurce code in maintenance
and producing debugged source code in development.
These metrics are directly applicable in maintenance as
the code exists whereas for most development operaticns
they must be estimated. The metrics range from simple
counts of language tokens in a program through measures
requiring the applicaticon of complex algorithms for
their calculation. Section 3.1 reviews and compares

many proposed complexity metrics.

Varicus documentation is used by managers, users and
maintainers to aid understanding of an application
system. As well as using documents, maintenance 1is
concerned with keeping documents up-to-date and
consistent. Program source code itself 1is a form of
documentation. Several systems or environments have
been proposed for general documentation support (these
are summarised in Appendix 2). Aspects of documentation
suppert relevant to maintenance, including document

categorisation, are discussed in Secticon 3.2.

Software tools can automate or, at least, support many
maintenance related tasks including reformatting,
control and data flow analysis, restructuring and
dynamic analysis o¢f programs. Such tools are often
useful both in development and maintenance {e.g. RXVP
[EBE80] and SADAT [V0OG8B0]l}. A number of tools are
briefly summarised in Appendix 2. In Section 3.3, these
toecls are c¢lassified and general maintenance support

through tools is examined.

Syntactic analysis of a program’s source code 1is a
feature of many tools. Frequently, tool functions make
use of a poeol of syntactic Information gathered
earlier. For example, the contrel and data tracing
features of MAP [WAR82] and program instrumentation for

dynamic analysis 1in RXVP [EBRE8BQ]. Syntactic analysis

and the production of a syntactic data base are tasks
worth isolating in single purpose software tool. In
Section 3.4, the idea o¢f a program analysis system
composed of a variety of tools, most of which make use
of syntactic data base information, is explored., The
logical contents of such a data base are also

identified in this section.

Chapter 4 summarises the implementation of a Syntactic
Source Code Analyser (SSCA) and it’s database (SSCA DB)
for a version of COBOL. Such a system is a first step
toward a maintenance support system based on static
analysis. Availability of a SSCA DB should encourage
development of more advanced COBOL analysis tools and

provide a measure of integration between these tools.

COBCL was chosen as the language to analyse because of
the large number of commercial programs written in it
(approximately 80% according to Al-Jarrah and Torsun
[TOR79]). However, the proposed revised X3.23-Sept.
1981 COBOL language definition [COBB1] defines a large
and complex language composed of a nucleus and eleven
functional medules. For a prototype 8S8SCA, it was
considered desirable to reduce this standard by
removing many special purpose modules and simplifying
some language features. The reduction process 1is

ocutlined in Section 4.1 and Appendix 3A. Appendix 3B

contains the reduced COBOL language definition.

Part of developing a SSCA system involves selection of
an appropriate Data Base Management System (DBMS) for
the SSCA DB and detalled data design for the S$SSCA DB.
Section 3.4 has already presented a logical view of
what should be in this database. In Section 4.2 this
view 1is elaborated for application to COBOL. The new
data model is then used for the selection of a DBMS
{(the INGRES relational system was chosen) and, finally,

an implementation data model is prepared.

Section 4.3 describes the methods employed to build a
syntactic analyser and formatter for COBCL programs.
The implementation was carried out using a number of
construction devices available on a VAX 11/750 running
ULTRIX-32. ULTRIX-32 is a trademark of the Digital
Equipment Corpcration. The construction tools included
C {(a general purpose programming language), AWK (a
pattern matching language), LEX (a lexical analysis
preprocessor for C), YACC (a grammar parsing
preprocessor for C) and EQUEL (a C/INGRES interaction
language) . Extensive use was also made of the technigue

for transferring data between executing processes known

as piping.

Chapter 5 presents conclusions from the research
carried cut in this thesis. The conclusicons cover areas
such as maintenance 1in general, maintenance support
through software tools and evaluation of the 3SCA

development presented in Chapter 4.

CEAPTER 2. AN QVERVIEW OF SOFTWARE MAINTENANCE.

2.1, A MAINTENANCE DEFINITION AND REASONS FOR

MAINTENANCE

In this section the generally accepted broad definition
of maintenance is presented and problems with this
definition examined. Why maintenance 1is an essential
function for the continued operation of any software

system is also summarised.

2.1.1. A GENERAL DEFINITION OF MAINTENANCE.

The definition of maintenance used by most authors in

this field and used in this work is

"that collection of activities that relate to
correcting, adapting or perfecting software in

production use”

[ARNE82]

In his paper Arnold points out that

1. Software is a broad term and includes program code
and related design information, as well as

documentation.

2. "Correcting" is the removal of functional errors
(i.e. resolving differences between the

specification and implementation}.

3. "Adapting™ is the alteration of an application in
response to changes in the hardware, software or
business envircnment (this does nct include

addition of new functions).

4, "Perfecting® is modification to improve
performance, efficiency or in some cases
maintainability. Enhancements (addition of new
functiong), if classified as maintenance, are

usually regarded as perfective maintenance.

Some writers in this field use other names for the
activities. For exanple, to Vessey and Webber [VES83]
perfecting 1is increasing productivity and Chapin
[CHA81] 1lists the three activities as counteracting
bugs, adding functions and modifying (& deleting)
functions. However, in the main, there appears to be

general acceptance of Arnold’s definition.
2.1.2. TEE REASONS FOR MAINTENANCE.

Riggs [RIGHK9] defines maintenance in terms of who
"commissions® the process. His definition 1s that

maintenance "is the activity associated with keeping

10

operational computer systems continuously in tune with
the requirements of users, DP operations, associated
clerical functions and external demands by such
entities as governments®. This definition implies that
the underlying reason for most maintenance is some kind
of change 1in the environment outside the computer

system which impacts on the system.

Lyons [LY0OB1] states that the function of software (and
hence software systems) is to enable certain decision
processes of an enterprise to be computerised. This
suggests that, after a system’s development process has
been carried out and a new system effectively delivered
te users, the new system carries oubt or supports
various business functions as they currently exist in
the enterprise. This would be the case if the
development was considered successful. As few programs,
at least intentionally, exhibit self modifving
characteristics in current scftware techneclogies, a
system is a snap-shot of a soon-to-be-outdated approach
to business activities., The approach to activities
usually changes to some extent over Time and the main
way a software system may evolve to meet these needs is
through maintenance. This view of maintenance and
software has also been expressed by Lehman (in [ELS82])

and others.

11

Thus although software does not rust or rot ([HARS83],
[LYo81]1), 4t 41is a mistake to consider software as
stable ([PUN75], [MUN78]) because it tends to
detericrate in usefulness over time. Unfortunately, the
nature and amount of deterioration is often impossible

to forecast causing many maintenance management and

scheduling problems {[PUN75].

2.1.3. PROBLEMS WITH THE GENERAL MAINTENANCE

DEFINITION.

The greatest problem with Arnold’s maintenance
definition occurs when major or costly changes are
required in a software system. It is difficult to
distinguish between new development that impinges on a
system and maintenance of the system. The problem is
further aggravated when a system is close to requiring
a complete rewrite (i.e. it gets too far out of phase
with the real world it models to be further modified).
A complete rewrite has always been considered as

development not maintenance.

Boehm [BOE81], under certain circumstances, regards
redesign of less than 50% of existing code as
maintenance and more than 50% development. Bell
[BEL84] requires maintenance tasks te have at least 25%

of the programmer’s time spent on the understanding of

12

the existing system. It 1is suspected that data
processing management make +the distinction between
these tasks on the basis of the cost of making changes.
If the cost is too great for the maintenance budget the

task will be considered to be development.

No formal rules on where mailntenance stops and
development begins will Dbe presented in this thesis,
But as a guide to be used in later chapters the
following 1is given. Large modification tasks involving
existing software can be usually be divided into those
which invelve changing how the present code works and
those which are mainly concerned with adding new
features and extending the system (see next section).
For major modifications to how software works (e.q.
rewriting} Boehm’s requirement for deciding whether a
task is maintenance or not seems reasonable. For major
additions to a system making the new development /
maintenance decision should involve consideration of
whether the logical function {(defined in development)
carried out by the system will be significantly altered
when the modifications are made. One of Boehm’ other
task classification statements indirectly uses this
criterion on which to base a maintenance definitioen.
This statement defines activities involving little

existing system redesign but development of sizable

13

{(greater than 20% existing code) extra modules as

development.,

14

2.2, MAINTENANCE CLASSIFICATION.

The manner in which the maintenance function is
categorised in an organisation may affect the
management control, resource allocation and
effectiveness of the overall maintenance task. A number
of ways of classifying tyvpes of maintenance are looked

at in this section.

There are many ways to divide individual maintenance
tasks into groups. Given Arnold’s definition (see
previocus section), an obvious scheme 1s to group
maintenance 1into corrective, adaptive and perfective
tasks. According to Lientz [LIE83] this rudimentary
classification has been used by some maintainers and
found beneficial for cost estimation 4in a situation
where maintenance costs are charged back to wuser

organisations.

It seems anomalous that perfective maintenance includes
enhancement maintenance as well as performance
improvements. Performance improvements change how the
processing is done inside the system hopefully without
affecting what it does; whereas enhancement maintenance
effectively adds to the functional requirements of the
-original system specification. Thus perfective

maintenance can be subdivided into enhancement and true

15

perfective maintenance. A survey by Lientz and Swanson
[LIES0] gave the following estimates of the proportion
of maintenance effort devoted to different categories

of maintenance

Maintenance Category Proportion of Effort

o

Corrective (Emergency fixes & routine debugging) 22

d®

Adaptive {(from changes of data/hardware/software) 24

[l
o
P

Perfective {(improving efficliency or documentation)

de

Enhancement (new feature addition) 42

Richardson [RIC83], who uses the above categorisation,
states that for correction and adaptation a maintainer
needs a theorough understanding of the scfiware modules
being modified whereas perfective and enhancement tasks
require greater knowledge of module interaction to re-
evaluate the system structure. Also, all maintainers
need a comprehensive understanding of the change

request.

A slightly more extensive classification than those
given 80 far is presented by Reutter [REU8B1].
Categories of emergency repalr, corrective coding,
upgrades, growth, support, changes in conditions and

enhancements are suggested.

16

From the table above it can be seen that corrective
maintenance 1is a relatively small portion of all
maintenance tasks. Corrective tasks have also been seen
by many authors as a special group as they tend to
require immediate action by maintainers and stop gap
measureg are more likely to be emploved to resoclve any
problems found. Vessey and Weber [VES83] found that in
three organisations 90% of programs undergo less than
three corrective repairs during their lifetime and the
maltority undergo none. Hutchinson [HUT8¢1 handles
repair work by dividing maintenance into error
correcticn and system extension (which includes
adaptation, perfection and expansion) . Zvegintzov
[ZVE82a] ignores erxrror correction completely in his

categories.

Marsh [MAR83a] includes two c¢lassifications in his
paper. He divides tasks and requests into mandatory or
discretionary divisions and also by where the
maintenance requests originate (from users, from a
failure or problem, and other}. The results of his
calculations over a total o¢f 192 person vyears of

scftware support are tabulated below.

Category

Mandatory
Discretionary

Request Category

User
Failure or Problem

Other

An alternative, or supplement, to dividing

Percentage

36.6
63.4

Percentage

20.8

17

Percentage

maintenance

tasks by the type of request is to categorise the tasks

by which software modules are to be

[LYOB1] states

that an 80/20

maintenance, "20% of the programs

80% of the problems

maintained. Lyons

exists for

system) cause

and correspending costs”™. This

suggests that a useful basis for

the previous maintenance

program. This classification

managers usually

maintenance staff to the same group

amount of information

attempt to

history

is

allocate

available for

classification 1is
of a module or

already used, as

the same

software., The

such a

18

classification increases over time and if a
medification task similar to a previously executed one
(similarities determined by some other categorisation}
is to be carried out, the history of the former is an
extremely good indicator of ceosts and problems 1likely

to be found in the latter.

Many problems in maintenance {see next section} stem
from a lack of standard procedures for almost
everything from accepting a change reguest to
documenting a change. Classification of maintenance
tasks is desirable for activities such as cost
estimation, scheduling, and resource allocation but
classgifications shouldn’t affect standards. For
instance, all software modification tasks should
recelve appropriate retesting and redocumentation to
assure a consistent gquality within a particular system.
Isolation of corrective work from system extension
should not be complete. If time restrictions apply to a
repair then post modification installation testing will

be required.

However, given the restricted applicability of any
maintenance categorisation, the test of a
classificaticon is its wusefulness. At the moment so
little maintenance information is available for

managers or programmers to base decisions on, that

18

virtually any classification is useful. But different
divisions lend themselves to different uses. A
mandatory / discretionary division 4is helpful for
managers scheduling tasks, but irrelevant to
maintenance programmers performing the source
modifications. As more becomes known about the
maintenance function, it is likely that more detailed,
accurate and organisation-dependent classifications
will be derived and several will be used in conjunction
at any one site. On-site personnel will need to tune
these categorisations which suggests analysis of a pool
of detailed maintenance histories and constant updating

of this "maintenance data base".

20

2.3. GENERAL PROBLEMS OF MAINTENANCE,

Problems within maintenance hawve been defined,
recorded, and surveyed by a multitude of maintenance
researchers in the past 15 years. In this section an
attempt is made to categorise and briefly describe some

of the problems uncovered by these researchers.

Maintenance problems seem to fall into two groups;
problems within the overall envirenment which affect
maintenance and problems which are intrinsic to the

maintenance task.
2.3.1. FACTORS WITHIN THE OVERALIL ENVIRONMENT.

There are two main groups of factors affecting
maintenance within the environment; factors related to
how the software maintenance activity is embedded in an
organisation and factors which represent deficiencies

in other areas which impinge on maintenance.

1) Maintenance in the organisation.

a) Management - Many authors {[CCO78], [LINT3],
[(LIU76), [MAR83bk], {[PAR8Sb]}, [REBU81], ([RIC83],
[TIN83]) identifyv as a major problem the lack of
techniques and structures to effectively manage

either programmers working on individual

b)

21

maintenance tasks or the scheduling of maintenance
requests. Others ([LIE78], [MARB3a)) report that
such activities are known to be difficult to
manage. Inadequate management usually exacerbates
other problem areas. For example, lack of defined
maintenance standards reduces uniformity in change

request handling and redocumentation [NARB4].

Organisational structure and persoconnel factors -

Maintenance usually perceived to be a never—-ending
boring chore by maintainers [LIU76]. Work in this
area often goes unrewarded and unrecognised and
programmers are assigned to maintenance 1if they
don’t meet the requirements to be allocated to a
development project (see [CHA81]1). This, combined
with other factors {such as no formal training in
maintenance techniques [PAR85al], [TIN83] and no
maintenance career structure), causes low morale
and lack of professionalism among maintainers.
From a corporate resource perspective, there is
very little protection of the human investment in
maintenance [MAR83b]. Chapin [CHA85]) found by
survey that personnel factors accounted for 1%% of

what could be termed the "maintenance problem®,

22

2) Lack of support from other areas.

ajl

b}

Development - Maintenance uses the products of

development. These products include the
application system as well as various levels of
documentaticon (e.g. system, module, user and
operator documentation}. Short cuts in
development can add dramatically to the quantity
and cost of maintenance required on a system
[PAR85bL]. This can be as direct as leaving bugs in
code, but is usually caused by poor or missing
documentation coupled with source code which is
difficult to understand, modify and test
([PUNT75]). Inadequate documentation on its own 1s
considered a major problem ([CHA85], [LIE83],

[LIU76]) .

Users - The main problems which users give

maintainers stem from the users’ lack of
understanding eof the application system being
maintained. The problems usually surface in the
form of large numbers of unreasonable or
unrecognisable change requests requiring action by
maintenance perscnnel. Lack of user knowledge may
be symptomatic of problems from other areas (e.q.
minimal user training during develcopment or after

maintenance) . Conflicting proporticns of the

23

overall "maintenance problem" are attributed to
lack of user knowledge in the literature, Lientz
[LTE81] 59% and Chapin [CHA85] 5% (although Chapin
doesn’t regard things like difficulty in
communicating with users as a subproblem of user

knowledge) .
2.3.2. FACTORS INTRINSIC TO TEE MAINTENANCE TASK.

These problems arise from the fact that almost any
software is difficult to maintain. Marselos [MAR83b]
states that maintainers must constantly use creative
energy to understand, or get arcund the constraints of,

the system being maintained.

Intrinsic problems have been recorded under headings
such as program understandability, maintenance task
difficulty, program modifiability, program testability
{(from Harrison’s subfactors 1in maintenance [HAR83]),
and software complexity. It 1s arguable that most of
the content of these problems is traceable back to
other factors (e.g. difficulties with understanding
programs because of poor documentation, a development
oversight). However, given that even experts cannot
agree on what makes a program hard to understand
[HARB84], in some sense "“good" [OGD72] o©or complex

[WEI747, it is clear that there are implicit

24

difficulties in maintaining software which, although
they can be reduced, will not disappear with support
from other areas. Possible reductions in maintenance
problems may be traded-off in other areas (e.qg.

development costs).

An idea of the size of these intrinsic problems can be
obtained from Chapin’s calculation [CHAB85] that
software characteristics account for 48% of the overall
maintenance problem. Intrinsic problems are looked at

in more detail in Section 2.5.

2.3.3. CONCLUSIONS ON SOFTWARE MAINTENANCE PROBLEMS.

Maintenance is a multifaceted function and the fact
that problems encountered in it are at least partially
traceable to many other areas attest to how
interrelated maintenance 1is with application users,
application development and indirectly with the whole
corporate structure. No one teool or technicque is going
to resolve all preoblems. Maintenance 1issues must be
considered in many other organisaticonal areas rather
than Jjust the secticon which is responsible for

maintenance if problems are to be solwved or alleviated.

25

2.4. MAINTENANCE LIFE CYCLES AND STEPS.

This section 1links the development and maintenance
phases of an application system. A functional division

of the maintenance task is also presented.

2.4.1. A GENERAL MAINTENANCE LIFE CYCLE.

2.4.1.1. THE SYSTEM LIFE CYCLE.

To get the maintenance function in perspective it 1is
necessary to identify where it fits into the broad set
of growth stages of application systems. These growth
stages have come to be known as the "System Life Cycle
Model™; although Zvegintzov [ZVEB2a] argues
convincingly that the model 1is neither c¢yclic nor

portrays the system’s life.

The system life cycle, as presented by Boehm [BOES4],
has the major stages of

1} Feasibility

2} Plans and Requirements

3) Product Design

4) Programming

5) Integration and Test

6} Maintenance and

7} Phase-out

26

The naming conventions and groupings of sgystem life
cycle steps wvary among authors in this field. For
instance, Boehm {above) has seven phases, Teague and
Pidgeon (TEAB5] eight, Zvegintzov [ZVE82a] six and
Powers, Adams and Mills [POW84] <five. However, there
does appear to be general consensus about what
functions are contained in the overall development
stage of an application system and the order in which
they occur. Post development activities are usually
lumped into a phase called "Operation and Maintenance™
or something egquivalent. Some authors have extracted
the endpoint of a system’s life out of this last phase.
Boehm calls the endpeint "Phase-out™ and Powers, Adams
and Mills "System Obsolescence™. This is an attempt to

recognise that special techniques are required to
a) identify the system’s end of life and

b) cope with the endpoint (usually by system

replacement} .
2.4.1.2, THE MAINTENANCE LIFE CYCLE.

Zvegintzov [ZVE82a] presents a model of the activities
within the Operation and Maintenance phase of the
system life cycle. This model is illustrated in Figure
2.4. The model identifies the fact that, as application

system operation continues, constituents {users,

27

managers etc.) generate requests for changes on the
basis of system performance. These change reguests
prompt maintenance personnel to develop and implement
modifications to the system. The modified system then
becomes operational and subjected to more performance

assessment by constituents. The model shows that this

A Model of Operatiocnal and Maintenance Activities

Assess Performance

Modifications «§ Requests for Change
(From [ZVE82a))

Figure 2.4

phase in the system’s life is truly cyclic.

A more elaborate breakdown of operation and maintenance
is given by Taute [TAU83]

1) Request a change

28

2) Estimate effort required for the change

3) Schedule the change

4) Program the modifications

5) Test to wverify that the change performs as expected

6) Document the modifications

7) Release the modified system replacing the existing
one and

8) Operate the system

This model is alsc cyclic with one step leading into
the next and system operation prompting change

requests.
2.4.2. THE SOFTWARE MODIFICATION TASK.

This subsection locks in more detail at the task of
actually maintaining a program or system. In terms of
the B-activity software malntenance life cycle of Taute
[TAU83] elaborated 4in the previcus subsection, the
content o©f the steps te be carried out by the
maintenance programmer {usually on his own} 1is
considered. These are primarily the phases of
programming, testing and documenting and to a lesser

extent training and implementation,

The programmer’s task contains the actual work of
maintenance and is the most resource consuming part of

the maintenance c¢ycle. All other activities (e.qg.

29

maintenance estimation, scheduling and, say, the
quality assurance checks of Centre’s alternative
maintenance c¢ycle [CEN82]}), although important, merely
support the programmer’s task. This subsection i1s an
attempt to define what a maintainer does. This will
form a basis for the development of tools and

techniques to directly aid maintenance work.
2.4.2.1. SOFTWARE MODIFICATION STEPS.

Dividing the maintainer’s activity into small definable
portions 1s an attempt to specify a set of steps which
can be applied to making almost any type of change to
any system, subsystem or program written in wvirtually
any programming language. Solution steps are, of
necessity, going to be generalised and highly

abstracted.

Relatively few authors have attempted to define the
steps a maintainer would reasconably adhere to when
modifyving a program. Of the ones that do, Zvegintzov
[ZVE82a], Harrison [HAR83], Liuw [LIU76], Yau and

Collofello [YAUB0! give the most insight to the task.

Zvegintzov isclates € steps of the problem he <calls
"How to make a change"”
1) Understand the request

2) Transform the reguest to a change; the change

30

is the modification goal
3) Specify the change : choose cut—-line and patch
4) Develop the patch
5} Test and

6} Install.

Cut-line refers to existing procedures or code which
need to be changed or removed whereas the patch is the
group of new procedures. For the patch procedures, the
specifications of what each one should do are defined
in step 3 so that patch generation (step 4) may proceed
using the same techniques as the development cycle’s
rhases of detailed design and implementation.
Zvegintzov states that the major intellectual challenge
of maintenance programming is the choice of the cut-
line and the aim is to minimise the impact of the cut-
line on the existing system as well as to attempt to
isolate the patch from the variability in the existing
system (i.e. to try to produce free standing code as
patches where possible). The use this goal, although
reasonably successful in many cases, does not always
generate desirable consequences for maintenance in
general. Maintenance goals and implementation methods

are examined later (in Sections 2.5.3.3 and 2.6).

Harrison identifies a very similar group of steps to

that of Zvegintzov. The only real difference is the

31

insertion of an additional step between 2 and 3 above
for "understanding the existing software". Yau and
Colleofello also have an understanding step but steps 3
and 4 are worded ‘'generate particular maintenance
proposal®™ and “account for ripple effect™”, This
subdivides the combined specification and patch
development task into portions pertaining to the local

module and then to the rest of the system.

Liu looks specifically at modifying a piece of software
and identifies the steps of the "maintenance function"
as:
1} Understand the capacity, function or logic of
the existing system
2) Develop new logic for the new request or
additional feature and
3) Incorporate the new logic into the existing

system.

Liu admits that the new logic may not always be able to
be melded into the existing system, conflicting
situations can be created. It is implied that 1f such
conflicts arise either the new logic should be modified
{without affecting what it does} or the existing system
*redeveloped" with the new request or feature as part
of the specifications. The goal of a maintainer,

according to Liu, is to make certain the new logic

32

correctly fulfills the original request and, as well,
to make sure that unmodified portions of the existing

system are not inadvertently disturbed.

From conmparing both these authors’ steps and from a
number of breakdowns of the overall maintenance process
by other authors ([{ELS82], [CONB4], [CENB2] and
[TAUB3]}) a group of required actions within what can be
called the T"software modification task™ can be
determined
1} Understand the request and transform it into
some sort of modification or new feature
2} Understand the existing software
3) Identify a framework for modifying the existing
software into what is required
4) Implement the modifications
5) Test the new software
6) Redocument and possibly retrain users and

7Y Install the new software.

There are good reasons for personnel other than
maintenance programmers carrying out, at least
partially, the actions of request handling, testing,
documenting, training and installation. Not the least
of these reasons 1s to reduce the maintainer’s
workload. Most corganisations currently have a three to

four year backlog of maintenance requests [MAR83c]. A

33

maintainer must, however, either directly use the
results of, carry out, or supply some input to, all of

these activities.

34

2.5, SOFTWARE MODIFICATION,

The cost of maintenance {discussed in section 2.1), the
difficulty in defining the end-points of maintenance
(see section 2.2) and the general problems associated
with malntaining software systems {reviewed in sectiocon
2.3) lead us to the inevitable conclusion that
modifyving software is an extremely complex and usually
much underrated activity. If the task was relatively
gsimple 1t would not require the management procedures
of request verification, cost estimation and scheduling
or the post source modification activities of thorough
testing, redocumentation and possibly user retraining.
Most researchers 1in this area have also reached this
conclusion. The abundance of recent articles o¢n the
subiect, the number of maintenance or maintenance
applicable tools becoming available (e.g. the SADAT and
RXVP test systems reported by Geiger [EBEB(0], the
source restructuring tool SUPERSTRUCTURE and path
analyser SCAN/370 both mentioned by Richardson and
Hodil [RIC84]1) and statements that merely managing
system support is fraught with problems ([MAR83al,
[CHA851), all attest to the wunderlying difficulty of
modifying a software system. This section explores
specific problems within software modification and some

guidelines for maintenance programmers are presented.

35
2.5.1. SOFTHARE MODIFICATION INFLUENCES.

Some factors which directly influence software

modification are:

a) Costs and Programmer Productivity - Virtually all
business activities have minimisation of cost
software as a basic objective and modification is
no esxception. Maintenance as a whole is viewed as
an area in which savings can be made Dbecause it
uses a lot of resources with little apparent
effect, as maintenance 1s never ending. McKee
[MCK84] calculates that maintenance is 32.1% of an
application system’s total hardware / software
cost and Boehm [BOE76] estimates 40%. Both authors
conclude that the portion of cost attributable to

maintenance is increasing.

Computer programmers usually perform both
development and maintenance functions. Using a
very simple model of programmer activity with
parameters based on survey results and assuming a
programmer maintains all code he writes, McNeile
[MCN84] calculates that after 1.6 years only 20%
of a programmer’s time can be spent doing
development tasks. Because of the high cost of

maintenance and its stifling effect on new

b)

c)

36

software production there is often a to minimal
allocation of rescurces to maintenance projects.
As a result, an environment develops which favours
stop-gap measures which themselves usually, in the

long run, increase the overall maintenance cost.

Personnel Factors - These factors have already

been mentioned as an organisation problem in
Section 2.3.1. Two specific aspects affecting
scftware modification are maintainer availability
(part of the corporation’s resources allocated to
maintenance} and maintainer quality (e.g. lack of

specific maintenance training, see Section 2.3.1).

Maintainer Understanding - Arguably the most

critical factor in the successful modification of
a pliece of software is how much the maintainer
knows about both the particular scftware involved
and also the system of which it forxrms a part.
Marselos [MARS83b] and Basili and Mills [BAS82a]
regard understanding as crucial to¢ meaintenance.
The latter suggest that improving documentation is
a major way of increasing understanding. Bell
[BELB4] goes so far as to define maintenance
partly in terms of existing system understanding
(see Section 2.1.3). Techniques and aids for

understanding software will be looked at in later

37

chapters. Maintainer understanding is influenced
by factors from a) and b) above but is strongly
affected by software factors particularly aspects
of documentation and maintainability, which are

examined next.

d) Software Factors - Details of particular software
factors which appear central to maintenance are
investigated 1n the three subsections below.
Specific software tools and support methods will

be identified later in Section 3.2.
2.5.1.1. THE INFLUENCE OF DOCUMENTATION.

Again this has been cited as a preblem in Section
2.3.1. Poor documentation of development or previous
maintenance increases the time taken, and therefore the
cost, for a maintenance programmer to understand a
module or system. Documentation which is to be used by
maintainers must be structured and organised for
understanding and ease of update. As indicated above, a
maintenance programmer needs information about the main
system as well as about individual programs. Guimaraes
[GUI83] reports that the kind of system information
found most useful by maintenance programmers 1s a
"system flowchart™ containing structural and

architectural information about both programs and data

38

files. He also ranks the value of narrative
descriptions of the function of programs and modules
very highly. Schneider [SCH83), when producing a format
for a formal document library, places both program

definition data and program/data file interaction

information under the heading of "program
deocumentation". Guimaraes’s method of having one or a
group o©of "system chart (s} " ghould insure more

congistence and clarity among this system documentation
than a piece-wise approach. Unfortunately, many
computing professionals still tend to regard maintainer
documentation as Jjust embedded comments in source

listings.

However, program commenting is still important. The
source text is the final authority on what is executed.
Elshoff and Marcotty [ELS82] see embedded program
documentation as enhancing the program’s readability
and they present an internal comment structure for
programs. They also suggest that future modification
difficulties can be reduced by commenting discoveries
about a program as they are found. This suggestion is
expanded upon by Basili and Mills [BAS82a]. Munson
[MUN78] states, '"even if this {program) documentation
is good when delivered, invariably it will quickly fall

cut-of-date as the product is modified". Munson lists

39

criteria for documenting source c¢ode listings which
include accuracy requirements, purpose, error recovery

procedures and, also, a modification history.
2.5.,1.2. THE INFLUENCE OF MAINTAINABILITY,

Maintainability encompasses a large number of software
characteristics including clarity, structure and
flexibility. There are two major medification-related
reasons for using development and maintenance
techniques which enhance or support such
characteristics

1) To aid a maintainer in understanding a

system or module.
2) To directly aid the process of extending or

adjusting a system or module.

Many software development techniques which purpert to
support both the objectives above have been grouped
under the banner of "structured programming®. Munson
[MUN78] i1dentifies some of these techniques as well as
apparent extensions inte procedural abstraction and

"data hiding".

Even when program source c¢ode 1s extremely complex,
understanding is enhanced by readable source code.
Elshoff and Marcotty [ELS82] define many "“hints™ for

readability including making loops obvious, having

40

explicit loop terminators and removing label variables
used only for blocking. Ideas for directly supporting
module enhancements are put forward by Punter [PUN75]
and Hutchinson [HUT86]. Many of Punter’s technicques are
mestly applicable to relatively low-level assembler
languages (e.g. using indirect addressing so that data
areas and modules are more movable) but suggestions for
program independence and open—-ended design, where
possible, are also presented. Hutchinson gives more
general ideas with particular reference to data
structures (thus program design} so that record formats
and individual data fields can be changed (enlarged)
without impacting on software not using the new or

modified data elements.
2.5.1.3. THE INFLUENCE OF TESTARILITY.

Ideally, scftware should be coded clearly enough so
that a program can be "seen" to work [PUN7S].
Unfortunately, in any nontrivial example, testing is
requlired. Testing 1s the last check that a maintainer
has understood the existing software sufficiently
" enough to Dbe able to alter its function in accordance
with maintenance request without intrecducing side
effects. Taute [TAUB3] states "the quality of testing
is a function of both the thoroughness of the test plan

and the quality of the test data". Both Taute and Liu

41

[(LIU76] 1dentify the establishment a strict testing
procedure as being essential for maintenance quality
assurance (QA}. Liu alsc presents a priority for tests
after maintenance. He determines that the unmodified
portions of a system should be tested before the
modified portions. However, the likelihood of semantic
errors in the modified software would suggest that the
test ordering should be the other way round. Boehm
[BOE73] found by survey that after altering only 10
statements in a program the chances of a successful
first run are, at best, 50%. Hence, testing the
modifications for errors before the rest of the system

should reduce the amcunt of retesting necessary.

After maintenance, the entire application system needs
to be throughly tested with a wvariety of data. Often
testing is shortened so that only portions of the main
system that a maintenance programmer "thinks” could be
affected are checked. The reasons for this occurring
may be because of cost, or that the maintainer just
doesn’t know enough about the system as a whole to test
all aspects of it. As Deutsch [DEU81] points out,
manual testing itself is an error-prone process and
automated testing or error-checking is more reliable.
If an automated software test driver system 1is used

this facilitates the retention of test cases f{and

42

correct test results for automatic comparison} so that
"regression testing®™ (as suggested by Panzl [PAN78])
can be carried out. Thus, automated testing, as well as
enhancing reliability, may reduce the amount of detail
about non-modified parts of the applicaticn system that
a mwaintainer must learn. This test case data documents

the application for maintenance.

In development, automatic test drivers and testing in
general should strive for complete test coverage of
software. Huang [HUAT78] states that the test
requirements for a program
1) Each statement in the program should be
executed at least once.
2) FEach edge in the flowchart should be
traversed more than once.
For most software these requirements are wvirtually
impossible to attain (see Boehm’s software reliability:
technical problems [BOE731). In maintenance, such
requirements may be able to be realised in some cases
because only statements and flow paths which have been
modified in some way ({e.g. through associatiocn with
modified data items) need to ke checked. The problem
with this apprcach 1lies in reliably determining how
much of the system to test. It is not just a case of

directly comparing the old and new sources because of

43

inexplicit links between source statements, data items
and contrel flow. What is really needed to attempt to
satisfy these test requirements is some kind of
computerised ripple effect analyser {see Section

2.5.2.2. for a discussion of ripple effect).
2.5.2, MATNTENANCE QUALITY,.

The <quality of the work done in maintenance as

perceived by maintainers is dependent on

1} The rcole the maintainers see themselves fulfilling

and

2) The wverification and wvalidation procedures adhered

to during the maintenance process.

Aspects of the general maintenance role are examined in
Section 2.6. Procedures for maintenance QA include not
only testing after the implementation of changes (see
previous subsection) but alse the processes of
maintenance preparation, data/file conversion,
documentation update and system acceptance QA outlined
by Center {[CEN82]. These QA activities are alsc useful
as milestones which provide management information for
the scheduling of maintenance personnel. QA routines
can usually be placed between phases of some stepwise

division of the medification task (Center gives an

44

example of this) producing an enhanced modification

cycle.
2.5.2.1. QUALITY ASSURANCE.

For any one maintenance project the quality of the
maintenance work depends primarily on the personnel
involved. However, an attempt at providing some
consistent degree of quality assurance in maintenance
must identify a framework which promotes good practices
among maintainers and helps to insure that no necessary
activities are overlooked. Connell and Brice [CON84]
recommend that maintenance quality controls consist of
workable mechanisms for measurement, evaluation and
feedback. Taute [TAU83] states that a quality assurance
program should address four areas

1) Phased approach

2) Procedure flows

3) Maintenance guidelines and

4} Implementation
The phased approach (such as adherence to enhanced
modification cycle looked at abeove) provides a number
of benefits, one of which 1s standardisation of
maintenance procedures. Procedure flows document the
system being maintained at a relatively high level
(e.g. data flow diagrams and program specifications)

and guidelines are meant to be suggestions (probably

45

based on previous experience) to aid good judgement
when making maintenance decisions. Implementation
relates to how such cycles and guidelines are
introduced and made workable in a maintenance
department. Thus both software testing and
documentation feature heavily in quality assurance

measures.,

Any maintenance support tools will directly or
indirectly enhance quality so consideration of current
quality problems is necessary to aid tool design. There
seems little argument that guality problems are not
major within maintenance. Boehm [BOE73] regards a lack
of reliability certification as a major software
problem. He states that every new zrelease of (0S/360
contains roughly 1,000 new software errors. Ogdin
[OGD72] states that for typical software systems the
reliability histories show that failure zrates peak
after maintenance. In addition, there 1s an overall
rising failure rate throughout a system’s 1life as
successive maintenance tasks are carried out. Lyon’s
[LY081] rule that 20% of programs cause 80% of the
maintenance costs and Vessey and Weber’s [VES83]
supporting figures showing that at one site, 9% of
programs had 47% of the repalr maintenance tasks

performed on them, suggest that, in many instances,

46
maintenance spawns yet more maintenance,
2.5.2,2, MODIFICATION PHENCMENA,

Two phenomena have been isolated through experience in
maintenance projects. From a quality standpoint, these
effects highlight specific problems with current
methods for designing and implementing software
modifications. In the next subsection reasons for such
phencmena occurring are discussed and possible scolution

schemes are considered.

RIPPLE EFFECT - "In software, the effect of a
medification may not be local to the modification,
but may also affect other parts of the program.
There is a ripple effect from the location of the
modification to the other parts of the program

that are affected by the modification® [YAUBO]

The above quote from Yau and Collofello defines
ripple effect. These authors regard ripple effect
as intrinsic to the modification task and provide
a phase in their maintenance steps to account for
it (see Section 2.4.2.1.). Discovering what ripple
effects a particular change creates 1is complex
and, like complete testing, complete ripple effect
analysis usually cannot be performed because of

maintainer time restrictions [CONB4]. Boehm

47

[BOCE73] quotes that, of all errors detected over a
3 year interval in one particular application, 19%
were caused directly by unexpected side effects to

changes (i.e. ripple effect).

STRUCTURAL DECAY - Maintenance work often melds old
and new scurce c¢ode In an ad hec manner which
compromises any original structure and results in
an unstructured mass o¢f code. Connell and Brice
[CONB84] state that the problem is compounded by
many small patches applied throughout the life of
a system. Individually each patch 1s relatively
insignificant structurally, but together they form
a threat to even the most structured, medular,

top-down original code.

The kinds of structure within existing software
which are in Jeopardy Ifrom maintenance are not
only the hierarchical control structures of
individual programs developed in some 'structured’
manner but general design principles on which the

system itself was founded.

Structural decay i1s a major side effect problem in
maintenance. Its affects can be seen in an
application system’s operational and maintenance

history. Lientz and Swanson [LIE81] concluded from

48

survey evidence that the older a system is the
moere perceived maintenance problems it usually
has. Ogdin [ODG72] suggests that system failure
rates increase throughout a system’s life (see
previous subsection) . This decrease in
reliability may be partially due to introduced
ripple effects but a lack of structure will make
any meodification and testing problems worse.
Psycholegical complexity of software 1s 1increased
by structural decay because structured code is
easier to wunderstand than unstructured code.
Curtis [CUR79] found (from tests done with
programmers attempting to comprehend relatively
small FORTRAN programs) that although "naturally”
structured code could be maintained more
accurately, the time taken to perform
medifications did not wvary much with increased
program structuredness. Regardless of whether
these results translate to most maintenance
projects, higher source c¢ode complexity must
result in increased costs for any subsequent
maintenance tasks (even if it is only as a result

of the time taken to hunt down introduced errors).

At some stage it is cheaper to scrap an old system

and build a new one rather than attempt any

49

further large maintenance projects. In many
situations the scrapping of the cold system may be
almost entirely due to its lack of structural
integrity. A short-term alternative to scrapping a
system is to restructure or recode some existing
programs. As Tate and Hayward [TAT85] state
"Rastructuring ig always difficult and painful,
whether in the economy, a business, a building,

or in an information system®.

Restructuring or recoding on any maijor scale is
not really feasible unless it is automated or at
least computer-assisted. Richardson and Hodil
[RIC84] state that such tools are now becoming
available although the need for these tools toc be
reasonably intelligent may reduce their general

applicability.

Increasing the operational life of an application
system can be achieved by minimising the
maintenance-induced deterioration in system
structure, complexity and reliability (in terms of
introduced defects) [CON84] . Problems with
attempting to reduce structural decay in

maintenance are considered in Section 2.5.3.

50

2.5.3. THE IMPLEMENTATION OF SOFTWARE MODIFICATIONS.

2.5.3.1. OMISSIONS WHEN IMPLEMENTING CHANGES.

The problems of ripple effect and structural decay
suggest the manner in which the first 3 actions of
software modification (presented in Section 2.4.2.1)
are often carried out. What seems to happen is that
maintainers frequently attempt changes with minimal
knowledge of the existing software. First, the
modification request or new feature is divided into
individual changes to software modules. This is a
reasonable approach but to carry it out successfully
requires an understanding of the owverall system
structure. Most of the reasons why this general
knowledge is usually lacking have already been
discussed in Sections 2.3.1 and 2.5.1. Minimal
knowledge c¢reates a tendency for meodules which produce
a "physical" input or output, such as a report or
screen interaction pertaining to the new feature to be
identified for modification whereas more obscure
modules such as transaction monitors and other
"collectors™ of internal information are overlooked.
When this modification technique i1s combined with

inceomplete testing ripple effect problems ensue.

51

If the original lack of software understanding
culminating in ripple effect is alsc carried on within
the task of implementing individual module changes,
structural decay o¢f module c¢code can also result. As
descriked in the next subsection, with minimal
knowledge of the structure of a program, it is usually
possible to patch a program at the Lop level
{(particularly when implementing additional functions or
enhancements) ., The patching is successful, in so far
that the modified program works without side effects,
but the top level patch usually adds at least one
additional control structure {(or nesting level) to the
program unnecessarily increasing complexity for later

maintenance tasks.
2.5.3.2. A MODIFTCATION EXAMPLE.

By way of an illustration of the dilemma facing
maintenance programmers when attempting to implement
changes the following program modification example is

presented.

Jackson [JAC75] outlines a problem requiring a
programmed solution, The problem inveolves a file of
sorted card images; each card carries a branch-number
and a card-type indicator, together with some other

information. What needs to be done is to purge from the

52

card image file (infile} records which are in some
sense erroneous; producing two cutput files ; a file of
good data (outfile) and a error listing (errorfile). No
detailed error diagnosis is required. Initially, in a
"good" set of records for a2 branch there are exactly
two branch records and the card types are numeric and
not equal. The original card file records hawve been
sorted into ascending order by card-type within

branch-number.
An Initial Solution

Jackson [JAC75] gives a sclution developed from the
data structures involved. BAn alternative solution is
given in the PURGE program in Appendixz 1. Figures 2l.1l
and Al.2 of the same appendix contaln program and data
structures for PURGE. The PURGE program is locsely
based on Jackson’s 1ideas but is formed around the
notion that in order to evaluate whether a set of
records for a branch is “gcood" or not, three records
(which are taken in sequence from the infile) must be
looked at. If the first two records have the same
branch number (and the third a different number) and
valid, non-equal card-types, then the first two records
form a good set. Given this basis of looking at a three
record window on infile, starting and ending special

cases can be derived as well as procedures for handling

53

and recovering from groups of error records. The main
set test is contained 1in paragraph Main-loop in a
sequence of 4 IF-ELSE statements and outputting of the
good set is done wvia a call to paragraph Print-good-
set. In ceoding the soluticn the definition of a good
set of records needs a little clarification. It was
assumed that if an error card exists for any one
branch, then all of that branch’s cards are 1in error
and can be outputted into the errorfile (see paragraph

Error—-branch-iocop} .
The First Modification

A reascnable medification to the above problem and
sclution CONnCcerns a mincr redefinition of what
constitutes a good set of branch records. We now
stipulate that 1n some instances the two branch cards
are allowed to have identical non~numeric card types.
This may occur only when the card type is the special

character group "MOD1™.

Programs PURGE-Al1 and PURGE-AZ in Appendix 1 give two
sclutions to the new problem. In program PURGE-Al the
new conditions have been carefully grafted onto the
existing PURGE program’s structure. The numeric card
type test has had an extra AND c¢lause added toc the

condition, as has the non-equality of card types test.

54

It is significant that the number of nested IF-ELSE
statements in Main-loop has not been increased,
although the complexity of individual conditions has.
Given the modified problem to begin with, and applying
the same notions and ideas for soluticn (as outlined
above 1n the initial solution), it could reasonably be
expected that the program produced weould be very close
to PURGE~AL. In program PURGE-AZ2 a simpler method of
melding in the extra condition tests has been carried
out. The modifier has attempted to maintain some
structural integrity in the program, but has opted for
adding a complete test for the new circumstances over
the top of the other tests 1in Main-loop. Doing this
successfully requires a lesser knowledge of the
existing program than needed for PURGE-Al. Paragraphs
Print-good—-set and Get-2-cards need to be understood as
the code to call to handle a good set of branch cazrds.
However, the maintainer has kept away from the more
complex and error-prone activities associated with

adding extra condition clauses.

The Second Modification

This modification to the original PURGE program also
invelves redefining what a good set of branch cards is.
An additicnal valid set now contains exactly one card

which has the character card type "MOD2™,

55

Programs PURGE-B1l, PURGE-BZ and PURGE-B3 of Appendix 1
present possible programmed solutions to the new
problem. PURGE-Bl gives a solution in similar spirit to
the previous modificaticon’s PURGE-AlL soluticon, The
careful combining of new and old tests in the paragraph
Main-lcop has Dbeen executed. The new problem requires
an extra IF-ELSE statement to determine which kind of
good branch set has been discovered (one with 1 card or
one with 2 cards). In this sclution, the extra
condition <clauses for both card type tests are rather
obscure. The clauses test that the c¢ard set being
checked has, in fact, 2 cards, regardless of whether
one or both cards have type "MOD2®. The precise coding
for these tests is quite difficult and required several
attempts. This shows the high potential for errors in

the PURGE-B1 solution.

The PURGE-B2 golution is a kind of optimised way of
adding an extra test for the new "MOD2" situation.
Instead of putting the test at the beginning of
paragraph Main-loop (which is possible and in some ways
structurally superior but requires many more
statements) it has been noted that if only one card
exists for a branch then paragraph Branches-not—equal
will be entered. A simple test and action has been

added to this paragraph to see if the one card

56

represents an error or not. The recovery actions to get
into a state for testing the next card set are

identical regardless of the outcome of the test.

The idea behind the PURGE-B3 solution is that the basic
structure of the original PURGE solution is fine for
testing for good branch sets which contain exactly two
cards but seems inappropriate tc be pushed into
handling good sets containing one card. What has been
done 1is to <check a card just before it is written to
the errorfile in paragraph Print-error-heading-card. If
the card represents a good card set (with only one card
for the branch) it is written to outfile instead of the
errorfile, This solution 1s similar in idea to post—
processing the errorfile to remove "MOD2" instances and
sorting the selected c¢ards into outfile. The other
related possibility is to preprocess "MOD2™ instances
out of infile and again resort to sorting these cards
back into outfile after PURGE has Dbeen executed.
PURGE-B3 isn't quite Jjust a melded post-processing
function as only the first card of error-card sets is

processed. This is all that’s needed to be checked.

57

2.5.3.3. METHCODS OF IMPLEMENTING SOFTWARE

MODIFICATIONS.

We can use the modification examples given in the
previous subsection to try and come up with some kinds
of rules-of-thumb for reducing structural decay. Below
we discuss what’s wrong with various modification

solutions.

In the first modification, the PURGE-A2 scolution 1is
slightly more complex than it really needs to be, the
main problem being that a special case, the MOD1
situation, has been created where it need not be (at
least in terms of the positioning of the special case
test). PURGE-Al will be easier to understand than
PURGE-A2 when subsequent maintenance is done. The
difference is almost imperceptible now, but after many
similarly implemented patches PURGE-A2 is likely be a
mass of special cases with many structural problems
usually related to overlaps between the special cases
themselves. Thus, a rule-of-thumb may be to try and
meld the changes and existing preogram as much as
possible. In the PURGE-Al example, structural decay is
reduced (compared to PURGE-AZ). This is at the expense
of the speed o¢of designing the changes and, toc some
extent, the chances of making mistakes which may mean

introduced errors.

58

In attempting to judge which second medification
sclution 1is in some sense "hest", it seems that PURGE—
B2 and PURGE-B3 are Dboth more neat and more
structurally sound {at least, in terms of complexity)
than PURGE-Bl1. Although the original ideas behind
testing a three card set at a time combine reasonably
well with checking for the second modification, in the
actual implementation of the PURGE solution extra tests
for one card sets are difficult to mix into the
existing condition structure. Both PURGE-B2 and PURGE-
B3 represent structurally superior solutions with
PURGE~-B2 slightly preferred because it is less error-
prone and less complex. There are reservations about
the lack of explicit documentation o¢f the new
modification tests and their positioning in the code.
Perhaps an external set of processing and sorting
routines (outlined previously) would be the best
alternative regarding the isclation of specific
functions, although the increased amount of source code
required seems extreme. Alsc adding external routines
linked around the existing system may be just reducing
program structural decay by increasing the decay in the

functional arrangement of programs within the system.

It is reasonable to ask what kind of programmed

solution would have been coded if the original PURGE

59

function included the MOD2Z situation. This sclution
(so long as it "fits in" with the design principles of
the rest of the application system) should be the best
structured. The design of PURGE-B2Z is a possible
solution to this new problem but PURGE-B1 doesn't seem
appropriate. As illustrated by the example, a good
rule-cf-thumb to reduce structural decay in most cases
is :

"Maintain software so that the new code ends up

looking something like what would have been

produced if the existing system plus changes were

designed from scratch".

The main problem with this rule is that it's going to
take maintainers longer to produce well-structured
patches and most of the time will be spent
understanding the existing system. They will not only
have to understand the design ideas behind the programs
being changed but specific philosophies adhered to in
application system development {(e.g. the criteria that
were used when the system was decomposed into functions
or subsystems will be relevant in many cases). Much of
this development documentation is not currently
collected for maintainers. The rule above is supported
by Parikh’s statement {PAR85Db] that development

methodologies must offer exact guidelines and methods

60

for maintenance.

The view of software put forward in the modification
examples and the rule of thumb described are primarily
at the program or mogdule level. It is even more
difficult and application-specific to attempt to give
maintenance design decisieons a system structural
perspective. However, as a system is a combination of
programs and modules, program-oriented rules and tools
will still Dbe very helpful in application maintenance

as a whole.

61

2.6. THE RCLE AND GOALS OF MATINTENANCE,

Basili and Mills [BAS82a] sgpecify the role of good
maintenance as keeping the requirements,
specifications, design and code documents up-to-date
but this d1is not always done in practice. The overall
goal is to T"successfully" implement changes to an
existing application system. At a minimum, the
adjustments must fulfill +the request which prompted
them 1if they are to be successful., However, the long
term definition of "successful" varies with factors
like the expected remaining operational life of the
application (or parts of the application system) and
expected number of subsequent maintenance tasks. In the
short term, constraints of time and money are likely to

define perceived success.

In most instances, maintenance is being carried out on
systems which are expected to operate for the
foreseeable future and thus (from Section 2.1.2.) will
certainly need further maintenance. This means that
documentation update and avoidance of structural decay
and introduced errors must be strongly considered
within maintenance tasks. In this case the objectives
maintainers should attempt to meet should be a

combination of Basili and Mills’s documentation task,

62

Liu’s request solving without new errors {considered
above and described in Section 2.4.2.1.) and support of

structural integrity within the application system.

From the modification example (Section 2.5.3.2.)} and
the discussion above, even low-level program redesign
decisions require a reascnable amount of information
about the application’s development and future. It
would seem appropriate for some of this information to
come from maintenance managers {or senior maintainers
usually in charge of programmers} and they should
ideally have quite an active role, particularly in
maintenance design decisions. The subtle trade-offs
between structural integrity, time taken and error-
proneness (as presented in Section 2.5.3.3.) are
heavily dependent on the application and are unlikely
to be performed well by programmers seconded to
application support only for the duration of a

particular maintenance project.

Whoever carries out the design and implementation of
modifications, it Thas been shown in this chapter that
understanding of various aspects of the existing system
is absolutely fundamental to these tasks and hence
maintenance itself, Designing tools to support
understanding, as well as maintenance aids in general,

are looked at in subsegquent chapters.

63

CHAPTER 3. GENERAL MAINTENANCE SUPPORT.

3.1. COMPLEXITY METRICS.

In this section a number of software complexity metrics
are reviewed and their applicability to maintenance is
discussed. If aspects of complexity are critical to the
difficulties involved in producing or modifying
programs and if a particular metric successfully
measures such aspects and is readily calculatable, then
this metric would be generally useful 1in software

development or maintenance.

In maintenance, most authors agree that the best
measures will record the difficulty of understanding a
program or the speed / accuracy of implementing
changes. These metrics could be used for performance
prediction and resource allocation in maintenance tasks
or, ©possibly, even as an indicator of the "health" of
parts or the whole of an application system ({as
suggested by Bell [BEL84j}. In development, some
metrics are proposed as predictors of development time
and / or cost (e.g. Halstead’s E} and also as measures

of program quality.

64

Static analysis of source code, largely for
understanding, 1s a major process in maintenance (see
Section 2.5.1.). With this in mind this examination of
metrics addresses static measures which attempt to
quantify psychological complexity in source code
(rather than computational or some other complexity
[CURT79]}. As Feuer and Fowlkes [FEU79] point out, these
restricted metrics cannot really be expected to
completely predict performance. However, such measures
should provide a ranking system for programs and
indicate abnormally complex software [ELS84]. Static
metrics should also identify critical programmer and
program task factors which contribute to performance
[SCH81}. This would 1lead to firmer ground for the
establishment of guidelines for good programming

practice.

3.1.1. STANDARD METRICS.

The metrics most often cited by authors in the
complexity area are lines of code (LOC), McCabe’s
cyclomatic number (V(G)} and Halstead’s software
science measures. These metrics and some variations are

reviewed in this subsection.

65
3.1.1.1, LINES OF CODE.

Complexity metrics are deemed necessary in development
and maintenance largely because a program’s LOC is not
a reasonable indicator of the difficulty in coding,
modifying or comprehending the nature of the software.
After analysing 585 PL/1 procedures from a large
program analysis system, Elshoff [ELS84] found that
both the number of source lines and number of input
lines (preprocessed source lines expanding INCLUDE and
other statements) were poorly correlated to

construction effort. Sheil [SHE81] states

"The most salient single fact about programming is
that the difficulty o¢f programming is a very

nonlinear function of the size of the problem.™

For the "size of the problem”, one could equally read
"size of the program". However, LOC still have a part
to play 1in determining complexity. Survey results
{(reported by Zolnowski and Simmons [20L801) show that
52.2 % of respondents rated number of statements as
significant 4in complexity. Many metrics taken on their
own are unbounded (e.g. V(G) and E} and for dinter-
program comparison a size factor is needed compute what
is effectively a measure of complexity density. LOC is

still wused extensively to indicate the size of a

66

program Oor system for costing and programmer

productivity, especially in development [ALB83].

3.1.1.2. MCCABE’'S CYCLOMATIC NUMRER.

McCabe [MCC76] proposes a complexity measure derived
(at least in theory) from the control flow (CF} graph
of a program. A CF graph is a digraph model of the CF
between statements in a program. In a simple CF graph,
program statements are represented as vertices (nodes}
and control branches between statements as directed
arcs {edges). Palge [PAI77] describes CF graphs in more
detall, including techniques for analysis and reduction
of graphs. McCabe defines a metric called the

cyclomatic number V(G} of a graph G by

V(iG) = e -~ n + 2 where e number of edges

n number of nodes

Using graph theoretic arguments, McCabe equates V(G) to
the maximum number of linearly independent circuits in
a CF graph of a program. Hansen [HAN78] states that
three variations of cyclomatic numbers exist; CYC-MAX,
CYC-MID, and CYC-MIN. The difference between these
measures lies in the definition of a statement branch.
CYC~MIN counts all selection and iteration statements
as single Dbranches. CYC-MID has the same branch

definition except that multiple selection statements

67

(e.g. CASE) are counted as if they were sets of nested
IF¥-THEN-ELSE statements. CYC-MAX uses the expanded
multiple selection statement and counts every logical
operator in every selection or iteration statement as
an individual branch. McCabe originally defined V(G) as
CYC-MAX but Hansen maintains that CYC-MIWN is the best
of the wvariations as without CASE or IF statement
expansions it reflects more of a readability element of
the source. The main difference between the above
cyclomatic numbers is whether a branch is defined by a
condition or decision (predicate), where a statement
such as IF {Cl AND C2) identifies two conditions but
only one compound decision. However, from an analysis
of 8% units (2040 files) of C source code Crawford,
McIntosh and Pregibon [CRA85] concluded that there is a
very close relationship between conditions and
decisions. Elshoff [ELS84] measured this relationship
for a large number of PL/I procedures as having a
correlation coefficient of 0.93. Hence, it appears that
V{G) should be fairly robust regarding branch
definition. This deoes not support Myer’s [MYE77] idea
of using the interval CYC-MID:CYC-MAX as a complexity

measure.

Most authors regard V{G} as a very useful measure. It

is easy to apply, language independent (unlike LOC),

68

and has a simple Iinterpretation. Zolnowski and Simmonsg
[Z01.81] found, by survey, that V{(G) was a "significant
consensus variable"™ in complexity and Baker and Zweben
[BAK80] conclude that V(G) is a reasonable measure of
the CF complexity of software. Schneidewind [SCH7%]
links V(G) to debugging difficulty and gives support
evidence, from four ALGOL programming projects, to the
view that digraph properties, like V{G), can quantify
program quality. The main criticisms about the
foundations of V({G}) are that it 1s too simply based
[MCT80] [PRAB4] (WCOT79] and fails to measure
interactions between branch statements {HARB1a]

[HAR81b] [PIW82].
3.1.1.3. HALSTEAD’S SOFTWARE SCIENCE MEASURES.

In his book Halstead [HAL77] derives a number of
metrics which he calls "Software Science Measures™.
These metricsg attempt to quantify coding effort,
program level, predicted program length, predicted
program volume, implementation difficulty, coding time
and language level. All the metrics are based on the

following counts of information

nl = number of unigque operators

n2 = number of unigue operands

N1l = total occurrences of operators
N2 = total occurrences cf operands

€69

No general agreement exists for determining which
tokens din a Jlanguage are operatcrs and which are
operands [CRA85] and ambiguities exist 1in Halstead’s
definitions <for FORTRAN [SHE83]. Many classification
techniques ignore all comments and declaraticn
statements. This is consistent with the original theory
which was 1intended Lo analyse algorithms but, as
pointed out by Shen, Conte and Dunsmore [SHE83] and
others, declarations form a large part of a program’s
LOC and preduction effort in many languages. In the
remaining program statements tokens are usually
regarded as operators or operands. Most languages
define a set of unary, binary etc. operators but in
addition punctuaticon tokens may be consider operators
[HAL77] {FBU79] [ELS84] or ignored [HAN78]1. Crawford et
al [CRA85] allow provision for multiple tokens to be
grouped as one operator, GOTC tokens are also a
contentious issue. Halstead [HAL77] proposes that each
GOTO tcoken is counted as a unigue operator for each
label it Dbranches to, whereas Elshoff [ELS84] counts
the number of unigue labels pointed at by GOTOs as
operators. All schemes regard intrinsic function
references as operators but user-defined function calls
may be operators [ELS84] [HAN78] or operands ([CRA85]
in most cases). Shen et al [3SHE83)] state that such

references could serve both purposes at the same time.

70

Hansen [HAN78] suggests that subscripting ¢f an array
is an implicit operation. Overall operands tend to be

user—-defined variables or literals.

The most commonly cited of Halstead’s metrics 1s the
effort measure E which is suggested as a predictor of
development cost. Both E and V{G} have been shown
empirically to be related to program construction time
in development [SUN81)]. In maintenance, the difficulty
indicater D (which 1is the reciprocal of the program
level L) is likely to be more helpful as it supposed to
measure relative eXrror—-proneness and ease of
understanding. Feuer and Fowlkes [FEU79] report that L,
when adjusted for size, appears to be a fair estimate
of maintenance performance among PL/I modules. Shen et
al [SHE83] summarise Halstead’'s metrics and conclude
that E and D seem to be useful and are supported by

empirical data. Computational formulae for E and D are

D = ——————- E = D x {N1+N2) x log2{nl+n2)

Halstead also presented a simple measure for the length
of a program. Elshoff [ELS78] found that the observed
length is highly correlated to Halstead’s calculated

length (how long the program "should" theoretically

71

be}. This cbserved length metric is defined as

length = N1 + N2

There has been some c¢riticism of the basis of
Halstead’s metrics and the problems in applying them.
Elshoff [ELS78] found E and D were not robust to
variations in operator / operand definition. Also
because the metrics are language sensitive, Jones
[JON86a] reports they cannot be effective for higher

level and special purpose programming languages.
3.1.2. TYPES OF METRICS.

Weissman [WEI74] divides complexity of programs into
four sections

1. Program Form

2. Control Flow

3. Data References

4, Control Flow / Data Flow Interaction

Zolnowski and Simons [Z0OLB80] give a similar division
for a number of COBOL program characteristics which are
Lo be measured. They exclude Weissman’s Program Form
category but include an Instruction Mix category for
raw counts of language tokens. Harrison {[HAR84] does
the same type of thing when suggesting groups of
complexity metrics. Some metrics appear to measure

properties which transcend these categories. Which

12

category a particular metric is placed in is sometimes
arbitrary. In this section an attempt 1is made to
categorised measures from Section 3.1.1 and others
which have been proposed into Weigsman’s groupings plus

an Instruction Mix group.
3.1.2.1. INSTRUCTION MIX METRICS.

These measures are raw counts of numbers, types and
specific attributes of source instructions. Some
program size measures are alsc included in this
category. Instruction mix {IM} metrics are language
dependent but can be combined to form more language
independent measures (e.g. V{(G)). Groups of IM metrics
often form a basis for more complex metrics. This
category of measures includes LOC (Section 3.1.1.1.),
McCabe’s n and e {Section 3.1.1.2.), and Halstead’s nl

and N1 (Section 3.1.1.3.).

Clearly there are many possible counts of information
which c¢an be calculated from scurce ccde, Information
from Zolnowski and Simmons’s paper [ZOLB0] indicates
that the percentage of IF statements and the total
numbers of wverbs, outer IFs and breaks in CF 1in a
program may be wuseful in determining complexity.
Admittedly this is based on a very small sample of only

13 COBQL programs, but almost all programs which were

13

rated above average complexity {measured using an index
derived from 44 discriminating characteristics) had a
greater than average appearance of the above features.
McTap [MCT80] uses the average number of verbs per
module and the ratios of IF and MOVE statements when
foerming his COBOL complexity metric. Crawford, McIntosh
and Pregibon [CRA85] present data from an analysis of a
large group of € programs to suggest DSL (delivered
source lines, macros and INCLUDBEs expanded), NCSL
{noncommentary source lines}, and FND (function
definitions) as parameters for code fault and
maintenance effort formulae. Crawford et al also show
that DSL, NCSL and SC (the number of end-statement
tokens, semicolons or pericds depending on the
language) are all highly correlated measures of program

size.

Branching measures, other than those mentioned above,
which have been wused to form general metrics include
the number of GOTOs [BER85b] and the ratic of PERFORM

verbs to all verbs (for COBOL programs) [MCT80].
3.1.2.2. PROGRAM FORM METRICS.

Weissman [(WBI74] defines program form (PF) in terms of
presence of well-placed and meaningful comments,

declaration placement, indenting and layvout of the

74

program listing and cholice and use of variable names.
PF properties are generally difficult to quantify and
interpretation of measurements tends to be rather
subjective. These types of metrics are sometimes
referred to as readability or clarity measures.
Crawford et al [CRA85] identify DOC {ratio of
noncommentary to total source lines, NCSL / DSL) as a
reasconable measure of commenting., Berry and Meekings
[BERB85b] wuse the percentages of comment lines, blank
lines, and indentation spaces to all characters; along
with the average numbers of non-blank characters per
line, blank characters per line, length of medules and
identifier length when calculating their style metric.
Zolnowski and Simmons [ZOL80] found that programs
described as complex almost always have a less than

average percentage of comment lines.

Many PF measures can also be regarded as IM metrics.
Zolnowskl and Simmons [ZOL81l] report that many survey
respondents stated that a major dilemma in current
metrics 1is that a particular factor is known to
contribute to complexity but the exact degree of its
effect is very difficult to ascertain. This is

particularly true for PF metrics.

3.1.2.3. CONTROL FLOW METRICS.

75

The number of decisions made in a program, and their
interrelationships, are generally considered
significant factors in overall complexity {[20L81]. CF
metrics are often calculated using IM metrics which

measure size and branching properties.

Many of the CF metrics can be derived from the CF graph
of a program (mentioned in Section 3,1.1.2.). Schneider
[SCHT79]) suggests that a CF graph’s adjacency matrix is
useful for determining test coverage and that
reachability (defined as the average number of ways any

node can be reached) is related to complexity.

In the CF metric category, V(G) is the most well known,
but many others have been proposed. These include
measures of knots [WOQ72] and nesting level [HAR8la]
[HARB1D] [PTW82] [PRA84]. The kneot measure K is an
attempt to combine measures of branching density and
statement ordering to get a measure of the
interwoveness of source code. K 1is the number of
unavoidable intersections of arcs which recoxrd
transfers of control among the list of source
statements. Baker and Zweben [BAK8(0] identify that a
problem with K is that arbitrary amounts of structured
transfers of control (DO and WHILE loops) have the same

complexity as straight line code.

76

Criticisms of V(G) include the contention that it does
not adequately measure the interaction o¢f branch
statements. Piwowarski [PIW82] proposes a modification
to a versicen of the c¢yclomatic number to cater for
nesting. His metric is
N = CYC-MIN + sum—over—-i—-of{ P(i))
where P (i) 1s the nesting depth of the

i-th predicate

Piwowarskifs N and Harrison and Magel’s metrics are
defined on modified CF graphs. 1In these graphs
selection and iteration branches are taken to be part
of the previous statement. These newly formed predicate
statements branch forward in the case of selections and
backward in the <case of iterations (at least for
REPEAT-UNTIIL loops). The nesting depth of a statement
is defined as the number o¢f predicate (branch
statement) scopes which overlap or contain the

statement.

Harrison and Magel [HAR8la] [HARB81b] describe two
nesting measures which require the use of the modified
program CF graph in their calculation. The first is
called the Scope Number. The Scope Number is defined as
the sum of the adijusted complexities of all nodes
(statements}) in the modified CF graph. The adjusted

complexity of a non-predicate node is just the node’s

77

raw complexity ({which was supposed to reflect the
complexity of the individual statement’s contents, a
Halstead metric applied to one statement was coriginally
suggested) . To determine the adjusted complexity of a
predicate node the greatest lower bound (glb) of the
predicate must be found. The glb measures the extent of
the predicate and all paths from the predicate must,
perhaps after iteration, contain the glb. An example of
a glb for an IF branch in some language cculd be FI,
for instance. The adjusted predicate complexity is the
sum of the raw complexities of all nodes on paths
between the predicate and 1its glb (excluding the
predicate and glb), plus the raw complexity of the
predicate. For comparison with V{(G} and ease of
calculation, Harrison and Magel set ail raw
complexities of nodes to cne. Using this definition of
raw complexity, the Scope Ratio 1is defined as the
quotient of the number of nodes divided by the Scope
Number. The Scope Ratio ranges between cne and zero, As
the magnitude of the Scope Ratic decreases, the

complexity of the program increases.

Prather [PRA84] describes an alternative nesting
strategqy which recursively assigns complexity numbers
to CF structures (selections, iterations, seguences})

and simple statements. Complexities of the generalised

78

structures are defined as
comp {simple statement} = 1
comp {(sequence(S1 , 52)} = comp(Sl) + comp(S2)
comp {IF P THEN S1 ELSE 852) =
Wgt x max (comp{S1),comp (52))
comp (WHILE P DO S1) = Wgt x comp{Sl)
where comp stands for complexity,
S1 and 82 are statements or structures,
P is a condition
and Wgt = 2 to the power of number of

simple boolean conditions in expression P

An overall nesting metric is defined as the sum of the
complexities of the outermest CF structures and
statements. For unstructured programs, Prather defines
the complexity ¢f a GOTQO statement in terms of the
complexity of the structures and statements between the
GOTC and its label. Calculating GOTO complexity is
difficult and involves determining maximal ’'spanned’
subflowcharts. The complexity given to GOTOs by
Prather’s scheme seems to be more related to chastising

GOTC use rather than measuring complexity.

To compare the nesting metrics above, consider the
addition of a selection (without an ELSE part) or
iteration control structure over the top of a section

of existing code with S statements and P predicates.

79

This effect happens freguently in maintenance (see
program PURGE-AZ in Appendix 1 and Section 2.5.3.2.).
The new control structure’s conditional expression will
be assumed to be only cne simple boolean conditicn.
Piwowarski’s N is increased by P + 1. Harrison and
Magel’s Scope Number {assuming the raw complexity of
all nodes is one) is increased by S + 1 (for the
selection) or 8 + 2 {for the iteration}. If the
existing code has Prather complexity C then the new
code has Prather complexity 2 x C. When comparing the
metrics, Prather’s metric has increase well out of
proportion to the others. As most metrics are usually
measured against some program size metrxic to aid
interpretation (for instance, consider the Scope
Ratio}, this means that Prather’s metric will probably
be difficult to¢ interpret against conventioconal size

measures.

In a program, selections indicate one condition
evaluation and a possible execution of a group of
statements, whereas iterations indicate an unknown
number of evaluations and executions of a condition and
statement group respectively. This suggests that
iterations will wusually contribute more to complexity
and understanding difficulty than selections. This

contention is alsoc put forward by Waters [WAT79]. The

80

Scope Number and Ratio are the only nesting metrics, of
the ones given above, which attempt to account for this
difference and even then the variation in the
complexlity rating between a selection and an iteration
is insignificant. All the CF nesting metrics are time
consuming to calculate for large programs, particularly

if programs are very unstructured,
3.1.2.4. DATA REFERENCE METRICS,.

Metrics in this category gquantify the data aspect of a
program. They attempt to measure the numbers and types
of variables as well as the scope and clustering of
variable references. Some measures of the use of data

structures and pointers could also fall into this

group.

Data reference measures which have been proposed
incilude Halstead’s n2 and N2 {(Section 3.1.1.3.), the
average number of wvariables per module [MCT80], the
percentage of symbolic constants [BBER8Sb], and (in
COROL) the ratioc of the number of unigue CALLs (to
other programs) to the total number of CALLs [Z0L80].
Elshoff [ELS84] indicates that data difficulty (defined
as N2 / n2) 1s a reasonable parameter of program

construction effort and, possibly understanding effort.

81

Using Halstead’s view of labels and GOTO statements
(Section 3.1.1.3.), labels can be regarded as operands
and their measures described in this category. Redish
and Smyth [RED86] use the numbers of label references
and labels defined but not referenced, and the total
number of labels (as well as many other measures) in

their style analysis tools (Section 3.1.3 and 3.3).

A group of data use measures derived from the "span" of
identifiers has been suggested. A span is the number of
statements between two textual references to the same
identifier (declaration and comment references are
ignored). The cordering for statements is taken directly
off the source code listing for span measurement. Feuer
and Fowlkes [FEU79] define two metrics
Mean-Variable-Span = Last-reference — First

Number—of-references - 1

Program-Span = Sum—of(Mean-Variable—Spans)

Number-of-variables

Elshoff [ELS76] arques that the number of identifiers
in a program which have mean span greater than, say,
100 statements is an indication of the difficulty a

maintainer will have in understanding identifier use in

82

the program.

Most attempts to measure data references are aided by
the inclusion of CF information and, thus, the metrics

produced fall also into the next category.

3.1.2.5. CONTROL FLOW / DATA FLOW INTERACTION METRICS.

These metrics measure aspects of both control and data
flow 1in their derivation. Control and data flows are
closely related, although data/information flow can
exist when no CF exists [HEN81]. The motivation behind
these measures is primarily that, alcone, the CF graph
of a program is not sufficient for complexity
measurement {TAI84}. Programs with the same CF graphs
can differ significantly in where and how variables are

defined and used.

Tai [TAIB4] proposes a metric based on data flow
possible around conditions in selection and iteration
structures in a CF graph. The measure 1is applicable
only to structured programs and is really only an
alternative CF metric. It has been included in this
category because it attempts to add a data perspective
even though only "possible"™ flows are considered. Tai
explains that a conditional statement identifies some
amount of data being used and this data must have been

defined (initialised} previously 1in a program. For a

83

restricted CF graph (statement sequences and structural
groupings having been replaced by Dblocks), Tai
allocates definitions to blocks so as to maximise the
number of M"live"™ definitions at the bottom of the
graph. This scheme assigns definitions to iterated
blocks and in selections to either the selected or
alternative block whichever is smallest in height. For
each condition (use), the number of possible positions
where the condition’s variables could have been defined
is determined. The number of definition-use (d-u)}
tuples for a condition records the number of definition
blocks ¢n paths to the condition. Tai’s DU metric is
the sum of all the d-u tuple totals. Two advantages of
this metric are that it appears to be a closer measure
of the actual number of program paths than V(G} and it
is bounded. If a CF graph G has P selection / iteration
constructs, then

P <= DUI(GB) <= P x (P + 3y [/ 2

The former advantage applies because DU 1is influenced
more by iterations than selections. This desirable
property does not hold for the nesting CF measures

considered in Section 3.1.2.3.

Chapin [CHA79} identifies four roles for data variables
used in functions. Roles are determined by considering

what happens to particular data in a function. Hence,

84

CF information is implicitly applied. Counts of the
four types of wvariables 1n a function form basic

interaction measures. These measures are defined as :

P. The number of variables used for processing

(production of output).

M. The number of wvariables changed, <created or

modified in value or identity by the function.

C. The number of variables which control aspects of

the processing in the function.

T. The number of variables which pass through the

function unchanged.

Many combined control/data flow metrics do not attempt
to account for complexity on a statement by statement
basis. Often the approach is to use module (subprogram,
subroutine or procedure) interaction and
interconnection information to derive the metrics. This
assumes other measures are available to determine
complexity within a module. Many metrics of this type

can be considered as extended CF measures.

Yau and Collofelle [YAUB0)] suggest that maintainability
would be reflected by a measure of a module’s
resistance to the impact of modifications in other

modules 1in the same program. This interconnection

85

metric is termed the module’s logical stability (LS)
and it’s reciprocal is the potential logical ripple
effect {(LRE). Ripple effect was discussed previously in
Section 2.5.2.2. The magnitude of the LRE for a module
is determined by considering how interconnected a
particular module 1is to other parts of a program
through local and global data wvariables., For each
variable definition i in module k, a set Z[kil of
modules which would be affected by a change in the
definition of 1 (either because they directly import i
or use interface variables which are influenced by 1)
is «calculated. The logical complexity of a change in
definition i of module k (LCM[ki]) is then defined as
the sum of the complexities of all modules in Z[ki].
Yau and Collofello use McCabe’s cyclomatic number V{G)
as a measure of an individual module’s internal
complexity. The LRE of a module k is
LRE[k] = Sum-of { LCM[ki])

Number-of-~variables~i-in-k

The LRE for the whole program is

LREP = Sum-of { LRE[k])

Number-of~modules-k~in-program

86

In the LREP formula an assumption is made that every
module in a program has egual chances of being selected
for modification. An alternative strategy could be to
assume that some modules are more likely to need
changes than others. The modification likelyhood
estimator could be related to a medule’s LOC, V{G) or
the previous maintenance history of modules in the
program. Support for this latter scheme lies in the

discussion at the end of Section 2.5.2.1.

Benry and Kafura [HENB81] present a number of measures
based on information flow. The first is a measure of
the complexity of a procedure (supposedly a C procedure
in some module / program).

Procedural-complexity =

L x square-of{ fan-in x fan-out)

where fan-in of a3 procedure A is the number of
local data flows into A plus the number
of data structures from which A
retrieves data
fan-out of a procedvure A is the number of
local data flows from A plus the number
of data structures which A updates

L is the length of A (LOC)

87

Henry and Kafura calculated this metric for procedures
from the UNIX operating system and summed the
complexities of procedures in each module to form a
module complexity measure. When this module complexity
measure was correlated against the percentages of
procedures per module which required changes (i.e,
maintenance} the resulting coefficient was 0.94. When
this same scheme using a procedural complexity metric
equal toe the square-of {fan-in x fan-out} was evaluated
the correlation coefficient increased to 0.98. Thus,
Henry and Kafura suggest that Halstead’s length [BAL77)
or McCabe’s V{G) would be a better measure of procedure
length 1L than LOC. The procedural complexity
measurement 1is supposed to identify procedures with
heavy information traffic and possibly inadequate

functionality or refinement.

The second metric that these authors define is the
number of global information flows through a particular
data structure 1in a module. This may be used to
determine refinement within data structures. The basis
of the metric 1lies in identifying how many of a
module’s procedures read, write or read-write a
particular data structure. The data structure metric is
defined as

{r x w) + {wx r-w) + {r x r-w) + {r-w x {(r-w — 1}}

88

where r is the number of read procedures
w is the number of write procedures

r-w 1s the number of read-write procedures

Henry and Kafura also suggest ways of measuring the
strength of information connections between any two
modules. Extending and combining these module interface
measures may lead to a system—wide coupling metric. In
development, a design goal is coften the minimisation of
module coupling. A system metric, as derived above, may

be useful in evaluating system design trade-offs.

3.1.3. COMPOSITE MEASURES OF COMPLEXITY.

To measure complexity most authors measure a number of
program characteristics and meld them to form a metric.
When this is done on a large scale with many
information counts or, equivalently, many simple
metrics being wused, the resulting measure can be
considered composite. Often the calculation of a
composite metric applies a weighting scheme to the
constituent simpler measures. In this subsection, a

number of composite metrics are described.

Zolnowski and Simmons [ZQL80] propose an index of
complexity derived from 44 program characteristics. The
characteristics are mostly counts of program constructs

which are believed to be linked with complexity.

89

Subsets of the characteristics have been described in
Sections 3.1.2.1, 3.1.2.2, and 3.1.2.4. The metric is
calculated by counting the number of characteristic
totals for a program which are above average {(or below
if lack of a <characteristic 1s thought to increase
complexity) to form a score. Averages for
characteristic totals are simple means from a "large"
group of programs (Zolnowski and Simmons use 13 COBOL
programs) . All program scores are ncormalised on a scale
of 0 to 10 to create an index of complexity for each

program.

There are some problems with this apprcach to metric
production., McTap [MCT80] notes that the method is
founded on the statistical law of large numbers. But no
attempt was made to insure independence or completeness
among characteristics. To calculate this measure for
one program, measures for a large group of similar
programs {(i.e. at least of same language}) must be

known.

McTap [MCT80] defines a similar metric to the index of
complexity, but attempts to resolve some of the
latter’s problems. The COBOL metric S uses six features
of & program {see Sections 3.1.2.1 and 3.1.2.4) and is
independent of any group of programs. The metric for a

program 1s a comparison of measurements of source

90

features against a reference vector R which represents
local standards for the features. Two other vectors
which must be available to produce the measure are
weight W and direction D. The weight vector measures
the contribution to complexity of each feature. The
direction vector records the direction of the
contribution (-1 if more of +the feature adds to
complexity and +1 if it adds to simplicity).
Calculation of a program’s score 8 proceeds by
identifying which feature measurements are greater than
the standard for -1 features, or less than the standard
for +1 features, and adding the weight from W to S for
each such feature. The metric can be applied to
programs or medules of programs. S for a program is not
an arithmetic average of module scores because of the
particular features used. McTap explains that the
features selected for comparison don’t need to be the
six identified in his paper. But care must be taken in
feature selection as measurements must be virtually

free of any software size {e.g. LOC) considerations.

An alternative to adding weights directly ontc measures
(depending on characteristics/features being present or
absent) is to multiply a measurement of a
characteristic by a weight and add the product to the

complexity metric. This latter scheme would appear to

g1

be more sensitive to absence or duplication of
characteristics used in a metric but potentially it is
more accurate. Several measures which use the latter
weighting system (sometimes heavily modified) are

described below.

Chapin [CHA79] suggests a module or program metric Q
based on interaction measures of the module or program.
The basic measures used are P, M, C, and T described in
Section 3.1.2.5. In the calculation of Q for a module,
a total weighted count W is assigned to the module. W
is defined as

W = P+ 2M + 3C + T/2

where P, M, C and T are calculated on variables
which are used, modified, occur in
conditions or just exist in the module
A value E is also assigned to the module, E is a
weighted count of the number of C (control}) items which
serve in exit tests {inside the current module) for
iterations through sub-modules. Such control items may
be initialised / modified inside sub—modules, the
current module or other modules. A control item which
is changed inside the loop (in sub-modules) contributes
one to E; outside the loop (in other modules), two to
E; and both inside and cutside, three to E.

Contributions from 1in the current module are zero. E

92

represents a measure o©of the complexity of loops
contrelled by a module and gives a strong control flow
flavour to Q. A repetition factor R is defined as

R = square-of(E / 3)

Finally Q is described as

Q = square-root-of(R x W)

Chapin explains that Q@ rarely exceeds 11 and leaf
modules rarely exceed S5 (low complexity is indicated by
low Q number}. { can be calculated £for a program by

averaging Q for it’s modules.

Berry and Meekings [BER85b] have suggested a measure of
the *¥style™ of a (€ program. Their style score is
defined as the weighted sum of 11 program

characteristics. The 11 characteristics and weights are

mean module length (15)

mean identifier length (14)

$ of comment lines (12)

% of indentation spaces to all chars {(12)
% of blank lines (11)

mean nonblank chars per line (9)

mean spaces per line (8}

% of symbeolic constants (8)

number of reserved words used (6)

93

number of #INCLUDE files used (5)

number of GOTOs used {-20)

The characteristics are those identified by Rees
[REEB82] as essential components of an elegantly written
program. Many of the characteristics are program form
metrics (Section 3.1.2.2.), Two ranges cof values for
each characteristic are required for style evaluation.
The first range defines a region within which the
contribution to the metric is nonzero. The second range
is within the first and defines the region in which the
contribution is maximum {i.e. in the case of mean
module length, 15)., Characteristic mesasurements inside
the first region but not the second, contribute a
linear proportion of the maximum depending on their
distance from the second region. The resulting style
metric ranges between 0 and 100. The greater the
metric, the better styled the program. Harrison and
Cook [HARB6] evaluated the style metric for modules
comprising over 35,000 lines of C. Correlation of style
against error frequency (computed as NCSL / number-of-
errors) for modules gave a coefficient of only ~0.052.
However, Berry and Meekings stated that the metric was
produced to promote discussion and even Harrison and

Cook describe it as a promising beginning.

94

Redish and Smyth [REDB6] report on two FORTRAN-77 style
analysis tools, AUTOMARK and ASSESS. AUTOMARK is used
to mark student programs against a model answer.
Overall, AUTOMARK measures the divergence of weighted
stylistic factors from a model. There are 30 factors
used and they include many of the instruction mix and
pregram form measures of Sections 3.1.2.1 and 3.1.2.2.
The marking scheme used is similar to that used by
Berry and Meekings above. However, instructors (who
produced the model solution} may apply different
weightings to the factors to get a measure specific to

their assignment.

ASSESS is more general than AUTOMARK as it does not
require a model answer. It is used to evaluate 10
factors (a subset of AUTOMARK’s factors) of any program
on a non-numeric scale ranging from low (bad) to high
{good). The 10 factors are

Comments in the initial block

Statement spacing

Size of comment blocks

Ratic of comments to statements

Spacing

Sum of weighted operator types by nesting depth

Sum of weighted cperand types by nesting depth

Average range of a control structure

95

Average range of a block structure

A measure of parametrisaticn

ASSESS does not actually produce a metric but in
certain cases does provide recommendations for changes

to structures and layocut of a program.

3.1.4. A DISCUSSION OF COMPLEXITY METRICS.

From the multitude of complexity metrics presented in
this section, 1t seems reasoconable to ask which one is
most suitable given particular circumstances. A partial
answer to this question is that some metrics are only
applicable to some kinds of program (e.g. structured)

and, unless definitions are translated, some languages.

Generally, a more ccomplete answer to the question posed
above 1s currently unknown and more research is needed
in this field. One could argue that some metrics have a
stronger theoretical base or are better validated by
thelir proponents against, say, occurrences of errors in
software than others. Validation 1is a particular
problem. For large commercial systems, source code 1is
frequently unavailable for analysis because of privacy
and copyright constraints [HARB4]. Authors calculate
their metrics for particular software they have access
to (e.g. a program analysis system [ELS84] or a

business DP application [FEU79]). But this software is

96

usually unavailable to other authors for either
checking/extending original results or validating new
metrics against constant data. A method which has been
suggested to get around this situation is the Reduced
Form technique [HARBS3]. Transglating software into
reduced form counts most program characteristics and
insures almost tfotal security including disabling
reproduction of the program. Aliasing of wvariable names
and removal of indentation, embedded spaces, Dblank
lines and comments are included in the technique.
Unfortunately, this means some metrics, among them
readability measures, cannot be effectively used on
reduced form programs (e.g. the Berry-Meekings style

metric [BER85bL]).

The ultimate success for any metric will not feollow
from the theories which spawned it or its wvalidation.
Success can be interpreted as how widely used and
accepted a metric becomes with developers or
maintainers. It may be that some metrics are consistent
encugh to Dbase management decisions on only when
applied to particular kinds of applications or DP
organisational structures. The easiest way for any use
to occur is for a metric or group of metrics to Dbe
automatically “calculated. The best method of

calculation is as a byproduct of compilation [RED8¢],

87

but an alternative is to use specific static analysis
tools [ZOLB{Q]. A design decision that must be made for
any software analysis tool which attempts to measure
complexity 1s, what metrics to calculate. For the
analysis tocl presented in this thesis this decision is

examined in Section 4.3.5.

Whichever automatic calculation method is used,
attempts at linking metrics to quality measurement can
lead to unusual repercussions [ELS$S84]. For instance,
creating a new constant Y equal to an existing constant
X and replacing one occurrence of X in a program
statement by Y increases Halstead’s n2 metric by one.
This artificially reduces the difficulty measure D for
the program. A way to avoid undesirable measurement
consequences 1is to calculzte a large variety of
different metrics assessing different aspects of a
program. Hopefully, inappreopriate adjustments in source
code to enhance one metric detract from others,
assuming all the metrics produced are regarded equally,
This is possibly why Redish and Smyth [RED86] can
report reasonable success when assessing gquality by

mere static means.

Static measurement of program complexity seems tc be a
still evolving theory [SHE83]. Even 1if it wasn’t, it is

clear that there are factors which affect maintenance

98

performance which are not accounted for by these
measures. A factor which influences the complexity of a
particular maintenance task is the interaction of the
kind of maintenance requested with the structure of the
existing software. This factor is reflected strongly
in our example in Appendix 1 (the medifications are
described and discussed 1in Sections 2.5.3.2 and
2.5.3.3). Some changes are easier to graft onto the
existing system’s structure than others regardless of

how complicated the change request initially appears.

Another suggested performance factor is the interaction
of the programmer with the software. Boehm [BOE73]
cites that wvariations in programmer productivity
(mainly in development) have been measured as anything
from 5:1 to 26:1. However, experiments by Schneider,
Sedmeyer and Kearney {SCH81] identify that there are,
at least, two distinct programmer populations within a
mixed group of DP professionals and Computer Science
{CS) students. There are S0 called experts
{characterised by five or more years in DP or having
passed seven or more CS courses) and less experienced
novices. Although the sample sizes and the number of
comprehension questions asked were small, variations in
source code comprehension appear to be slight within

these two populations. Variations between the

99

populations was large, some novices having up to three
and a half times more difficulty understanding large
programs than experts. Curtis, Sheppard, Borst and Love
[CUR79] found in their experiments that E and V(G) were
more highly related to performance with unstructured
and uncommented code and performance of less
experienced programmers. Weissman [WEI74] states that
very novice students {less than a year’s experience)
make poor subjects for analysing understanding
difficulties between different programs because they
have more problems with language constructs than
algorithms. Curtis et al [CUR79] suggest that
experienced programmers conceptualise programs at
levels cther than operator/operand tokens and
individual statements. They are also more likely to use
in-house programming standards which are known to ease

maintenance tasks [WO079].

Some desirable qualities, other than performance
prediction abilities, have been described for
complexity metrics by wvarious researchers. Metrics
which are largely language independent and noncoercible
(1.e. measure an appropriate underlying program
property without influence from, say, the specific
coding) are preferred by Feuer and Fowlkes [FEU79].

Hansen [BAN78] includes independence as a favourable

100

criteria when using two or more metrics in conjunction
and states that measures should show enhancement for,
or at least not penalise, the use of "good" programming
practices. Given comments that program ceomplexity is a
function of the language [WEI74] and suggestions that
development productivity differences of 2:1 and up to
3.5:1 are possible by varying the choice of
implementation language [BOE73], attainment of language
independence may actually detract from performance

prediction in metrics.

101

3.2. A DOCUMENTATION SUPPORT ENVIRONMENT .

In this section the wvarious kinds of documentation are
identified and aspects of documentation support
considered. Brief summaries of some suggested

documentation tools are given in Appendix 2.

According toc Mathis [MATB6], an underlying goal of
structured programming, programming methodologies and
software engineering is to improve the
understandability of programming by humans. The use of
high level languages rather than machine code
essentially aids human understanding. Hence, a program
in a high level language documents an activity for both
humans and machines with the emphasis on humans
(admittedly for a very small subset of the human
population). This view identifies socurce code as
fundamental documentation of an application. An
oversimplified description of maintenance could be the
activities of retrieving, updating and testing
documentation in it’s widest sense. Development could
be similarly described as the production and testing of

documents relevant to an application.

From the above, documentation support is central to any
development or maintenance environment. Thus, a general

documentation system could be used to integrate

102

activities and software toeols within an envirenment, as
all such activities must manipulate documents of some
form. This idea has also been promoted, in essence, by
Anderson [AND81], Saib [SAI83], Richmond [RIC85] and in

most development methodologies.

3.2.1. DOCDMENT GROUERS.

There are man kinds of possible documentation for a
computer system. Groupings of documents are often
linked to development phases in the software life cycle

[AND81] [BRIB3] [HORB6].

Anderson [AND81] gives a hierarchical structure to

development documents. Six levels of abstraction in

development are recognised : System, Subsystem,
Program, Module, Procedure and Statement. Design
document groupings are the System Overview

Specification (S0S5), Subsystem Functional Specification
(SFS), Subsystem Design Specification {(SDS) and Program
Design Specification (PDS). Implementation documents
for programs, modules, procedures and statements
(Program Source Specifications, PS5Ss) consist largely
of scurce code. Anderson claims that after system
installation, classical program implementation
documents like flow charts and structure diagrams are

redundant as the source code exists and is more

103

accurate, However, graphical documents, 1like these
charts and diagrams, visualise structures present in
source code and more easily convey information to
maintainers than alphanumerical material (Wagner
{EBE80]). Accuracy of graphical documents can be
achieved by generating them from source code as and
when they are required. There are considerable space
savings with this approach, especially if diagrams were

to be machine stored for ease of manipulation,

A simpler structure for development documentation is
presented by Brice and Connell [BRI83]. Three main
groups of documents are described; the System
Requirements Definition {SRD}, the System Design
Document {SDPD) and internal design information within

the Reqguirements Specification Package (RSP).

Not all decumentation is created for technical
personnel {developers, maintainers and operators).
End-user documentation in the form of manuals and on-
line T"help"™ facilities is a very important area in any
application. Tinnrello {[TIN84] identifies that, for
4GLs at least, there is considerable merit in end-users
writing their own documentation. In this way
applications would be deocumented at the business level.
A major problem with end-user documentation in relation

tc other application deocuments is that it almost never

104

covers the entire system. In general, users only need
to know about what is presented to them in reports and
on screens. Users are usually blissfully unaware about
the underlying system / program structures and man of

the "housekeeping"” routines.

Anderson [AND81] suggests that basic end-~user documents
should be held in the Human Interface descriptions of
the SFSs. If an integrated documentation system is to
be put in place then user documents must be linked to
other application documentation and differences between
user business terms and application construction terms

resolved.

3.2.2. A DOCUMENTATION SCHEME.

A possible architecture for an integrated documentation
system could mirror the Text Data Base referred to by
Richmond [RIC85]. The "physical" level of documentation
is implementaticon and operations data which includes
source coede; the "logical"™ level, the hierarchy of
requirements and specification documents; and the
"presentation” level, the user manuals and other wuser
documents {see Figure 3.2). In an extensive application
system there would probably be several overlapping

"presentation" views and hence documents for users

105

An_ Application Documentatiion Scheme

I
I
|

'Presentation’
[End-User and Business
Descriptions of the

Application's Structure]

f

Linked via
~-Application Naming Conventions

View

-ABD and ACD correspondences

v

‘L.ogical’ View
[High Level Functional & Data

Descriptions of the
Application’s Structure]

*

Linked via
-Application Naming Conventions

-Code Generators,
Code Skeleton Generators or
Parameter Table Generators

¥

'Physical’ View
[Low Level Descriptions of the | %;
Application's_Structure]

f~Business Orientated Application
! Objectives/Structure
U 'Application Business Dictionary

(ABD)
User manuals

e

et

-~
(4

w. ., lraining Guides

Online help

-

“Error/Enhancement suggestions

...

~+Requirement and Specification
documents for System
* Components down to modules

,,,éAppIication Component Dictionary
(ACD)

----------- -+System,Sub-system,Program,

: and Module Design documents

(DFDs, ER-diagrams, DFD &

L Entity diclionaries)

“ZLibrary Routine Descriptions

.
4
.

...

..

~-Source Code (Programs and
Variants/Versions)
JCL Routines

DB Subschemas

|"
.
.

i
]
‘
‘
i

o
]
!

,,a.-Operations Information (Operator
Manuals, Run & Recovery Data,
File Access Rights and Retention

——

f
L]
¥
r
r
r

E-Test Environment Information
¢ (Test data, Test bed, Test resuits)

.""‘;-Compifer and Load Data

.
ta,

_"’E—Library Routines

"’-:q‘Run-hEstory Information

... -

Figure 3.2

“~ -
mammmAmmaatAemmAmteemAtmLamaLY

B & L T T A R P Ry N -

Y

106

(depending on their department and position). Some
document control Dbetween a1l +three views can be
attained simply by using appropriate naming conventions
in the same way some compiler/loaders by default use
suffixes to identify related source, binary and obiject
files. However, as described in the subsection above,
names of functions appearing in a user interface in an
application may be unrelated to the names of programs
being invoked. The link between "presentation" objects
and application subsystems or programs can be enhanced
by holding correspondences between terms in the
Application Business Dicticonary and members in the
Compeonent Dictionary. It is more reasonable to link
end-user views to the specification view rather than
directiy to implementation because the specifications
define the "logical"™ application structure and most
development methodologies provide for user interaction

within requirement / specification production.

Verifiably 1linking the specification view to the
implementation has long been a perceived problem in
development. Suggested methods usually involve
formalising and formating regquirement / specification
documents {e.g. problem statements in PSL/PSA [TEI77]).
From these documents it may be possible to generate

application programs, but it 1s more 1likely that

107

skeleton structures for programs would be produced, as
in the proposed ADA environment ([SAI83]. This would
define a link back to the specification, although tools
which check which data and INCLUDE files are used in a
program against it’s specification are advisable. More
wide-ranging checks could inveolve which major code
grouping names (i.e. section names in COBOL) and which
global data structures are referenced and how they are
used. The point is to make sure that major
implementation objects are mentioned in the other
related documentation. Verification works both ways,
specification documents define code skeletons and the
source code defines key words which must be referenced

in specification documents.

An alternative method for linking specification and
implementation is to place descriptive information
{specification statements) within source code. This
scheme 1s used 1in the DADA files of the CASE system
[AME79] . Maintainers redocument as they change the
source, The specifications can be placed in comments so
as not to interfere with compilation and design
documents c¢an be extracted using a simple comment
collecting tool. A data base documentation scheme, like
the one suggested above, has several advantages over

this alternative. Embedded specifications do not

108

interfere with or add to the size of object code for
compiled programming languages, but this is not the
case with large JCL routines which are interpreted.
Even when JCL 1is de-commented automatically before
transfer from the documentation system to the
executable system it is still easy to make minor
patches to executable JCL to keep the application going
without updating the documented JCL. Another problem
with embedded documentation i1s that end-user manuals
and on-line help remain effectively unlinked to design

and implementation documents.

A geal of maintenance is to attempt to keep
documentation consistent (See Section 2.6 and
[BAS82al). Figure 3.2 gives an idea of the diversity of
documents which may be manipulated in a maintenance
task and which an automated document system must
support. Specific kinds of documents in a view will
depend on the particular methodoloegy used in
application development. For instance, if a methodology
producing Anderson’s documentation groupings (see
Section 3.2.1.) was used, 8§08, ©S5FS5, 8SDS and PDS
information would form the bulk of the "logical™ level
or view of application documentation. Within a view,
documents may be arranged in hierarchies or possibly

even "concept™ trees (as in MIDOK [EBEE0]). Some

109

problems which occur in document support are described

in the next subsection.

3.2.3. PROBLEMS WITH AUTOMATED SUPPORT.

From Section 3.2.1, it can be seen that documents used
in analysis, design and implementation form a large
portion of application documentation. Such development
data 1s often designed to aid the decision processes
within development and may need to be extremely
extensive to describe the evolving system effectively
to developers, managers and various groups of users. If
held for maintenance, this data needs to be reduced in
volume and tailored toward system understanding and
update by maintainers. Another problem with these
development documents is that they depend on the
methodology wused. A prime concern of documentation
automation for maintenance is to standardise the access
and update of documents. There is a need to identify a
documentation standard within a business for all
applications if maintenance and documentation is to be

centralised.

Brice and Connell [BRI84] report that altheugh
automated data dictionaries and program documentors are
commercially available, few link to other aspects of an

organisation’s functions. Important aspects which tend

110

to be overloocked are an application’s operation and the
whole area of end-user involvement. A possible reason
for omitting this data is that it needs to be accessed
and sometimes updated by operators and users and much
of it must be available when the application is
running. But maintainers must also have access to this
information. Most maintenance is carried out off-line,
in the sense that it 1s separate from the operational
application until re-installation. This identifies the
problem of where to hold user and operations
documentation and, if duplicates are required, what
processes must exist to maintain consistency. Some
users may also require access to the specification view
of an application, particularly when producing error
reports because they must know what functions the

system was supposed to provide.

Although problems obviously exist in supplying access
to documentation for the range of maintainers,
managers, operators and users, this has not stopped
centralised documentation systems being suggested.
General editing and producticon facilities as well as
comprehensive searching capabilities, like the proposed
FORTUNE system [RIC85], would be required by such a
system. The maintenance history of an application could

be stored in the form of deltas of documents (see the

111

SAMOS tool, QUODOS [EBES0] and SCCS [ALL84]) within the
documentation system. The complexity of application
documentation suggests a type of expert system to
manage searches and updates. This is the approach taken
in the ME2 system [COL85al and, for develcopment

documents only, the TEW/WS system [JONB6D].

Some kind of central DBMS has been seen as a method of
integrating many development tools ([HOR79] [HOR86]
[RID8B1} [SAI83}]). What has been indirectly suggested in
this section 1s that this controller of development
documentation and tools be extended to cater for
maintenance activities and data. In the next section
software maintenance tools will be discussed and
categorised according to the documentation they are

associated with.

112

3.3. MAINTENANCE SUPPORT TOOLS.

In this section, maintenance tools are categorised in a
number of ways in order to discover what areas, tasks
and documents each tool supports. Particular tools are

briefly summarised in Appendix 2.
3.3.1. CLASSIFICATION ACCORDING TO ACTIVITY.

When examining software tools it is worth considering
the general areas and activities which they support.
Bell [BEL84] identifies three components in the
maintenance environment : the programmers’ environment,
the managers’ environment, and the institutional
environmeﬁt. Institutional aspects include the image of
maintenance, training of personnel and career paths for
maintainers. Many of these factors were identified in
the problems of maintenance (Section 2.3.1.). In
general, the institutional environment is not directly

impacted by tools,

Management embraces planning, staffing, controlling,
directing and organising activities across the whole
application life cycle, Because it is affected by
general management tasks like project reviews and
persennel control, a maintenance management environment

cannot be considered in isolation from the project or

113

data processing management environment, Tools to
exclusively aid managers include those that estimate
effort, software "health", and resource requirements
usually based on project history data and sets of
software metrics [BELB84]. Some tools give general
support to maintenance and transcend programmer and
manager environments. Documentation systems such as

MIDOK [EBE80] and SODOS [HOR86] are prime examples.

The managers’ environment above is not to be confused
with software management and control. Scftware
management {(including configuration control) is
primarily used and directed by programmers in
development and maintenance and is a component of the

programmers’ environment.

Bell [BEL84] states that a maintenance workbench forms
the basis of the programmers’ environment. Seven types
of tools which should be present in this workbench are
recognised : retrofitters (recoders), restructurers,
static code analysers, interactive debuggers, test-data
generators, automated documentors and specialist
editors. Most tocls which have been produced to aid
specific maintenance tasks could be classified intoc one
or more of the categories in the workbench. The
proposed MEZ environment [COL85a) is an example of an

intelligent maintenance workbench.

114

The tocl categories of retrofitters and restructurers
identify aspects of perfective maintenance which can be
completely automated. These software aids have been
described by Richardson and Hodil [RIC84] as code
purifiers. Specific examples include the recoding
portion of SUPERSTRUCTURE [RIC84) and Peat Marwick’s
Structured Retrofit [CAN86L]. Such tools do not Just
support maintenance, they actually carry out
adjustments for compliance with some standard
specification. Thus, none of the maintenance actions of
Section 2.4.2.1. appear to be directly aided by these
tocls. Compilers, 1link loaders, code auditors and
source formaters are similar tools. Boehm [BOE76]
describes some of these software aids as testing and
reliability tools. This whole group appears to be
characterised by minimal interaction between
maintainers and the particular tool and conseguently
the tool~user interface is virtually non-existent apart

from small reporting facilities.

Boehm [BOE76] gives three main functions into which
tools useful for maintenance could be categorised.
These are understanding, modifying and
testing/reliability. Boehm, using a wide view of tools
which includes techniques and standards, maintains that

testihg and reliabilility tools are almost the same as

115

those used in development. Modifving alsc has similar
aids teo programming in development.. The understanding
function, Bell’s automated documentors and the
maintenance redocumentation task (Section 2.4.2.1.)
identify facets of the overall application
documentation system. A possible structure for such a

system has been discussed in Section 3.2,

The understanding function is peculiar to, and very
important in, maintenance (see Section 2.5.1.}. As
mentioned in the previous section, almost all
documentation other than source code exists to aid
someone’s understanding. Although most documentation
has a number of competing types of users, source code
is different in that it is wusually very formal and
restrictive, largely to aid compiling. General document
managing systems 1like MIDOK or SAMOS help the
understanding of source code but this task is worthy of
specific tool-based support. Letovsky and Soloway
[LET86] identify that a maintainer requires a number of
"views" in addition to the localised code view in order
to carry out his job successfully. A local examination
of source is often misleading. Alternative reporting or
visualisation of the structure of source code for
understanding is a method used in AURUM, Bell’'s static

analyser, EDIERE (SAMOS), MAP, PECAN, RXVP, and SADAT.

116

Similar viewing methods for design information are

possible in the SID and IEW/WS [JON86b] systems.

3.3.2., CLASSIFICATION ACCORDING TO DOCUMENTATION USED.

Figure 3.3 shows which kinds of documentation various
tools summarised in Appendix 2 deal with. From this
figure it can be seen that that bulk of software aids
which have been reviewed are concerned with source code
and that almost all support retrieval or modification
of the physical structure of the system rather than the
specification or business views. Houghton’s paper
[HOU83] generally supports the idea that the tools in
Appendix 2 represent a reasonable cross-section of
those currently availabkle. For instance, of 362
scftware development tools, Houghton found that 67%
catered for either source analysis and testing or
software management, contrel and maintenance. The
definition of software maintenance tools used by
Houghton appears to be confined to those which directly
support software modification through, say, version
control., Although many individual programmer
environment aids are avallable, few tools for
integrating environments and few related groups of

tools exist. Houghton found that only 3% of the tools

117

Application Pocumentation and Tools

t
;

‘Presentation’
View

4

v

Igels to suppert documentation

L i £ttt

" a anlpulatl

Busmess Orientated Application |
Objectives/Structure E
Application Business Dictionary ’;
(ABD) ;
User manuals :
Training Guides g
Online help ;

‘Error/Enhancement suggestions ,'-—MICS

‘l.ogleal’
View

/Y

A J

%

[Physical’
View

"v,[_ibrary Routines <&

Hequwement and Specification 4*—*—ADA tool box, DREAM

documents for System
Components down to modules

Application Component Dictionary
{ACD)

System,Sub-system,Program,
and Module Design documents
(DFDs, ER-diagrams, DFD &

Entity dictionaries)

AIDES, Programmer's Apprentice,
CASE, DREAM, PECAN

strary Routine DeSCr!pllonS‘Q"""‘"‘“— Programmer's Apprentice, ISADORE

Source Code (Programs and > N
Variants/Versions)

| ADA tooi box, AURUM, CASE,

CHART, CONTOUR, EDIERE, FRED,
interactive-static-analyser,

LIBMAN, MAP,

ME2-static analyser, PECAN,

RXVP, SADAT, SAS, SCAN/370,

JCL Routines-#

| STRUC, SUPERSTRUCTURE, TEXJAX
ADA tool box, DOCIVTEXT, ERZEUGE

Conceptual DB Schemas@——-——7i~ CASE
Ogperations Infermation (Operatorﬁ—*—-— DOCUTEXT

L R N L e

Manuals, Run & Recovery Data,
File Access Rights and Retention

Test Environment Information /
{Test data, Test bed, Test results)
Compiler and Load Dat

S

ADAtooI box, CASE,
ME2-ripple-effect analyser,
SADAT, SAS

CASE, LiIBMAN
Programmer's Apprentice, ISADORE,

RXVP,

Run-histery Information

bomm

 LIBMAN
MICS

General suppeort applicable to alf views is given by CASE(text documents),
FORTUNE, ME2, MIDOK, QUODOS, SID and SODOS

Figure 3.3

118

surveyed had these features.

The preoccupation of current tools with the "nuts and
bolts™ of an application rather than higher abstract
levels or integration is an indication that few firm
ideas yet exist about what aids developers or
maintainers should expect in an environment. Tool
producers tend to develop "cne off" and highly
specialised products, Such tools often duplicate
aspects of others. For instance : ERZEUGE has many JCL
abbreviation features which may be present 1in an
operating system; control flow analysis of FORTRAN
programs is carried out independently in EDIERE, RXVP,
and SADAT. The most extensive duplication among source
code tools appears to be 1in the area of syntactic
analysis. Syntactic analysis of source is an important
property of many tools and it is examined in the next

section.

An alternative view to the one expressed above is that
because the whole software area lacks generally
accepted standards for application analysis, design,
implementation, testing, documentation and maintenance,
many tool developers have done the only thing possible
and concentrated on source code alds. As maintenance is
often perceived as just hacking the source around to

alter the application in some way, then isclated source

119

code tools are likely to appear to give more direct
gains 1in maintainer productivity than, say, a general
documentation system which ensures that modified code
cannot be installed without redocumentation of program

or subsystem specifications.

Many standards did not exist when much of the software
being used today was produced. In the late seventies,
an average age of an installed system was estimated to
be about S5 years [RIC84]., Given present software
industry manpower shortages [STA84), it is thought that
many systems are now more than 10 years old (10 years
has been used as the time span to assess application
maintenance costs in the system life cycle in several

businesses and institutions [BOE76]).

0ld software systems often lack both structure and
documentation and source code tools could certainly be
useful. A complete rewrite of all existing software 1is
unrealistic. Cost information from Cane [CAN86b] and
Richardson and Hodil [RIC84] indicate it is probably
cheaper to both retrofit and redocument existing code
using toels than rewrite even if the new development
uses 4GLs for productivity gains [FOR85). If, after
future maintenance costs are considered, overall
costing suggests large scale redevelopment would

eventually pay off, there is often no-one to carry out

120

this redevelopment. Vacancies now exist for 50-100,000
programmers in the software industry and the situation
is worsening [STAB4]. From the above data, the
potential market for maintenance tools would appear to
be substantially larger than that for development tLools
in terms of the amount of software involved. However,
much o¢f the c¢ode being maintained was produced using

old and adhoc methods.

2ppendix 2 identifies many tools and automated features
which would be desirable in application development and
maintenance. To suppert the entire application life
cycle through tools what 1s required is an approach
which integrates both development and maintenance
methodologies and environments. Most of the toels
available address only isolated features of an overall
approach and even then there 1is often a lack of
functiconality and singularity of purpose. Perhaps the
most comprehensive system which appears to fulfill the
above approach requirements 1is the proposed ADA
environment and tool box which is built around one

specific programming language [SAI83].

Software tocols will also be discussed 1in the next
section with reference to syntactic analysis of source

code,

121

3.4. SYNTACTIC ANALYSIS.

3.4.1. STATIC ANALYSIS.

A large number of source code tools swmmarised in
Appendix 2 wuse some form of static analysis. In this
section, possible products of static analysis are
described. Firstly, some indication is given of why the

most commonly analysed type of software is the program.

An application’s source code can be arranged in terms
of a hierarchy consisting of a system (a group of
subsystems), subsystems (suites of programs}), programs
(groups of procedures), procedures ({alsoc called
functions, sections or paragraphs) and statements. The
software manipulated by a compiler is wusually the
source program, which is also, not surprisingly, the
largest c¢ode grouping supported by most programming
languages. Systems and subsystems tend to be described
for a computer in interpreted JCL or through program
calls embedded within programs. In this latter scheme,
program execution control is decentralised and may be
undocumented. Syntactic and other static analysis of
software 1is wvery similar to complling and hence has
usually been orientated toward programs and the
analysis one program at a time written wusing a

particular programming language. Partial exceptions are

122

ERZEUGE of the SAMOS toolset and DOCU/TEXT which scan
JCL. But these tools do not offer the extensive
analysis and differing views of, say, a subsystem,
which teools like AURUM, EDIERE (SAMOS) and MAP provide
for programs. Information about file usage and update
within a system can conly be indirectly compiled from
application source with most current teols (by running
multiple programs through tools and combining the
results) but such information may exist as design or
specification data inside the application documentation

system {see Section 3.2).

This identifies a particular problem that toolsets and
environments need to resolve. Much structural
information about an application must be held in JCL
and source code. But this may be also present in design
or other document s within the application’s
documentation system. Overlaps of information are
inevitable because the documentation system describes
the application and cne cof it’s roles is to "flesh out"
some structural data with, say, reasons for design
decisions. For any overlap, there must be a clearly
defined method for insuring and verifying consistency.
Overlap can be reduced for low level design documents
(e.g. structure charts) by generating them from source

when necessary as mentioned in Section 3.2.1.

123

The functions of tools which are supported by static
analysis are categorised below. The tools which supply

a particuilar feature or function are bracketed.

1} Functions which report or enhance the physical

layout and structure of source code.

a) Formating of a program. {(CONTOUR, EDEIRE (SAMCS),

RXVP) .

b) Identification of a program’s block structure and
generation of module/procedure hierarchy charts.

{EDEIRE (SAMOS), TEXJAX}.

¢} Production of a symbol tabkle. (PECAN).

d) Structure based editing and statement syntax

checking. (FRED, PECAN).

e) Structural deficiency report production. (SADAT).

2) Functions to specifically aid description or
programmer understanding of a program’s control flow.
This 1s suggested as a general feature of a Source

Analysis System (SAS) [DEUB1}.

a) Production of structure charts and structured flow
graphs. (CHART, Bell’s static analyser, MAP,

PECAN, TEXJAX).

124

b) Generation of a program graph, reduced program
graph or individual <c¢ontrol flow paths. Program
graphs (SADAT) . Contrel Path tracing
(EDEIRE (SAMOS) , Bell’s static analyser, MAP,

PECAN, RXVP, SCAN/370).

¢} Generation of procedure connection diagrams or
equivalently, a module invocation matrix. {(AURUM,

EDEIRE (SAMOS) , PECAN, RXVP).

3) Functions describing data usage and aliasing within
a program. This is also suggested as a general feature

of a SAS [DEU81].

a} Generaticon of standard c¢ross references for

symbols used in a program. (RXVP}.

b) Generaticn of data definition hierarchy diagrams.

(PECAN) .

¢} Production or reports on data flow between modules
and wvia common storage or external files. Data
flow tracing (AURUM, Bell’'s static analyser, MAP).

Common storage usage (RIVP).

4) Advanced functions involving comprehensive analysis

of many program features.

a}

b)

c)

d)

e)

£)

g)

h}

125

Generation of program metrics. This may not be a
very advanced function depending on the metrics
selected for calculation (see Section 3.1.}.

(TEXJAX) .

Annotation of scurce code or redocumentation.

(SCAN/370, TEXJAX).

Standards checking., This may be the same as the

reporting of structural defects above but it is
possible to have very complex standards to insure
a particular style of programming.

(SUPERSTRUCTURE} .

Program recoding or restructuring. This would
usually be in response to the functions of
structural defect identification or standards

checking. (EDEIRE (SAMOS), SUPERSTRUCTURE).

Program instrumentation for dynamic analysis.

(EDEIRE (5AMOS), RXVP, SADAT, SAS).

Execution monitoring and debugging. (PECAN).

Symbolic execution for infeasible path

identification. (SADAT).

Generation of test cases. {SADAT).

126

i} Test assistance and results analysis. (RXVP, SAS).

j) Identification of source of errors from symptoms.
{diagnostic tools in the ADA environment toolbox

[SAI83]).

k) Ripple effect analysis for potential
medifications. {proposed Ripple effect analyser in

ME2) .

From the above it can be seen that some functions are a
simple product of syntactic analysis of source code
(e.g. cross references, symbol table production and
code block identification). Other functions display
basic syntactic information in a descriptive and easy
to read form ({e.g. as program graphs or procedure
connection diagrams). These functions actively support
program understanding by maintainers. In addition,
there are the more complex functions which Fairley
[FAI78] describes as requiring sophisticated algorithms
{e.qg. isolated code determination and program
recoding). Such algorithms usually need to use the
results of syntactic analysis. Syntactic analysis of a
program can thus be identified as a central feature in
any system relying on static analysis. In the next

subsection this analysis is further discussed.

127

3.4.2. A SYNTACTIC ANALYSIS TOOL.

In Section 3.3.2, a lack of functionality was
identified as a problem with many current tocls.
Discussions in the previous subsection highlight
general syntactic analysis as a specific function of
many tools which could be isolated in a specific tool.
The general process of analysing syntax is well known
and is carried cut in all compilers. Like a compiler,
an analyser would need to be specific to a programming
language or class o¢f languages. The main unknown
quantity for an analysis system is "what would it

output for use by other tools ?",

Before considering possible outputs, the structure of a
static analysis tooclset or system will be outlined. The
number of tools which use syntactic information suggest
that this information be stored in common files or a
database. A database containing syntactic data and
usually other information forms the basis of Bell’s
Static Analyser, MAP, RXVP, SADAT, and SAS5., The most
efficient method of storing source code information is
still the source file. The source file (or, more
accurately, the formatted source file) remains the
residence of instructions which are to be modified,
recompiled and tested during a maintenance task. A

syntactic database is meerly a device for streamlining

128

access to source data for tools and, possibly, a
maintainer directly. Information stored in this
database 1is 1likely to be short lived. The database
would be generated at the beginning of a particular
maintenance task and, probably, regenerated if the

source was modified.

Automatic update of database information as source is
changed 1is a possibility. It requires the linking of
the the syntactic database and scurce within an editor.
This appreach is taken in the EDIERE {SAMOS} and PECAN
tools. For a prototype syntactic analyser supporting
potentially many tools, the editor approach is too
complex, although it does have advantages. For example,
it allows editing at the structure chart level as in

the SCG package of AIDES.

Tc use a syntactic database as a set of indices to a
source file, a pointer mechanism is required. Although
there are smaller elements, statements offer the finest
view of source code needed for most static analysis.
The most natural pointer to & statement 1in a source
file is the 1line number assuming that the source is
formatted with no more than one statement per line. A
formatter which insures the above criterion, can also
carry out standardisation of the layout of source code.

This alcone is seen as increasing readability ([LYO811,

129

Geiger [EBES80]) and aiding modification [ELSB2],

Figure 3.4. summarises the above discussion with a

structure for a generalised static analysis system.

Colofello and Blaylock [COL85a] present three templates
for maintenance information which were designed to be
the output structures for the MEZ gyntactic analyser.
The output is supposed to be loaded into a maintenance
knowledge base. The templates, with additional
information, are listed below. Possible storage
techniques for the control flow and data flow templates

are also outlined.

Declarations Template.

1. Variable information. Includes a variabkle’s name,
defining module, type, range of valid values,
initial values (if with definition), aliases and
usage (e.g. computaticnal or display). Useful data
ocmitted are definition groupings amecng variables
(data structures or hierarchies) and definition

links between data structures and external files.

2. Module information. A module’s name, parent or
defining module, type (if defined), parameters,

local entities (variables, medules, constants

130

A Possible Structure For A Siatic Analysis System

Source Code

Formatter
('Syntactic Analyser #

Formatted Source Code

-y
-
’,,’.r’ ‘
- - +
f,_,r” indiciss to Scurce Information
=

Syntactic Database

Source Modification

(" Display and) _("Structured
Reporting ' Editor
Sysiems

(includes standards

checking and g

deficiency reporting)

Program Structure . ~———»{ Redocumenter)
Control Flow
\ Data Usage) Diagnostic)
" { System

Symbolic \<§

Execution _ Metric
(Testing System Dynamic N Ripple
est Case Generator Analysis Effect
Test Assister System Analyse
Results Analyser Instrumenter
- -/ Execution Monitor

\ Results Analyser J

Figure 3.4

131

etc.), generic instantiation (as provided by ADA},
overloading (i.e. system—defined functiocns or
operators modified by the module) and abstractions
(as for ADA packages). In some languages {e.qg.
PL/I), error detection {ON conditions) and error
handiing would also be candidates for inclusion in

module informaticon.

3. Constant information. A constant’s name, defining

module, wvalue and where it is referenced.

4. Overload operators. New names assigned to

operators. Also in module information.

5. User-defined type information. A type’s name,

defining module, definition and subtypes.

6. Label information. A label’s name, location, and

visibility data.

7. External file information. A file’s name, type,
use, access, device and sentinel. As mentioned

above related data structures should be given.
Contreol Flow Template.

1. Identificaticon of blocks and modules. A block is
defined as a sequence of consecutive instructions.

This assumes that instructions (statements) are

132

somehow referenced in the source (e.g. by line
number) . This identification is really not part of
control flow (CF). It defines the layout of the
program and, for modules, this informatien could

be included in the declarations template.

2. Identification of inter-block CF.

3. Identification of inter-module CF.

4., Identification of inter-process CF. Exact inter-
process CF is determined at run time and is beyond

the scope of static analysis.

Complete CF in a program is shown by a set of CF graphs
(see Section 3.1.1.2.). This set comprises a graph for
each module and an overall graph. Within all these C(CF
graphs, module calls are identified as special non-
branching nodes (each referencing a particular CF
graph}. All inter-block and 1inter-module CF data is
stored in these graphs and hence they are a complete

storage medium for CF information.

Data Flow Template.

1. Basic data flow identification. Locations where

variable’s are used and / or modified.

133

2. Inter-block data flow. Variables within scope
(i.e. reaching) and used (i.e. live) within a
block. Use-definition chains for wvariables and
lecations of ASSERTs (conditions) which involve

particular variables.

3. Inter-module data flow. Parameters and parameter
passing within modules and global variables used

in a module.

Possible data flows in a program can be generated from
melding the CF graphs with statement information about
which variables are used and modified. Thus, variable
use within statements 1is a methoed of storing data
flows. Variable use within conditions (ASSERTs) 1is
important for any detailed predicate (branching}
analysis in a program. Potentially, such analysis could

determine isolated code segments.

The above templates duplicate a certain amount of
program data. A more refined 1list of entities and

information fo hold in a syntactic data base is

a} All information in the modified declarations

template above.

134

And in addition

b) Within each wvariable entity; the statements
referencing it, the conditions wusing it, the

modules over which it has scope.

¢} Within each module entity; the line numbers and
statements it covers, other modules it calls and

parameter passing detaills.

d} A statement entity containing: statement line
numbers, variables referenced and cother data usage
information, conditions used, containing module
and CF data. {(CF data is a method of storing the
CF graphs statement by statement. A flexible form
of this data is a CF-type for the statement and a

set of statements branched to next).

e} A condition entity containing; the condition
itself (literally), statements wusing it, and

variables used.

Much of this syntactic information is relatively low-
level and unsynthesised. This is because the results of
general syntax analysis in maintenance are to be used
in conjunction with source code as well as for the
production of high-~level views of, say, program data

flow. The relevance of some of the information above

135

will vary depending on the language used in a source
program, as will precise definitions of some entities
{e.qg. modules). However, the collection of most of
this data using syntax analysis is applicable to most

"conventional®™ programming languages.

136

CEAPTER 4. DEVELOPMENT OF A PROTOTYPE SYNTACTIC

ANALYSER,

From Section 3.4, a syntactic source code analyser
(SSCA) 1is a necessary part of many maintenance tools
and 1s worth centralising in one tool. The rest of this
thesis is devoted to developing a prototype SSCA system
which takes source c¢ode and creates a database of
source information (SSCA DB) for access by tools. The
machine available for this development exercise 1is a
VAX 11/750 running the ULTRIX-32 operating system. The
production of a SSCA is seen as a method for promoting
future research at Massey University into other areas

of static analysis.

There are three major decisions which must be made for

this development

1. Which programming language to base the analysis

system on ?

2. What to store 1n the data base ?

3. How to analyvse the source code ?

These three questions are answered and discussed in the

next three sections,

137

4.1. CHOICE OF A PROGRAMMING LANGUAGE,

To examine a program in any detail an analysis system
must be specific to a programming language or class of
programming languages. It is possible for analysis or
other tools to have the facility to handle a broad
range of languages. An example is the Toclbuild system
for LL{l1) grammar Jlanguages [INC86]. Bowever, for a
prototype system, a specific language {(and a socmewhat
simplified one) 1is desirable. Multi-lingual syntax

analysis is left for future research.

Morvissey and Wu [MOR78] state that by far the most
widely used programming language is COBOL.
Approximately 50% of all programs, suggested o be
about 75 billion lines {[CANS86Db), are written in this
business data processing language. The U.S. federal
inventory alone contains around a quarter of a million
COBOL programs [FI084]. A complete static analysis
system based of some version of COBOL thus may be
testable with a wide range of programs, wouid be
relevant to most programmers and could potentially be

commercially successful.

There are many versions of COBOL to choose from. CORBOL
was conceived in May 1958 [PHI74] and developed by the

CODASYL group. By 1976, Robinson [ROB76] reports eight

138

COBOL variants officially defined by the Programming
Language Committee of CODASYL and, in addition two
official American standards, ANS 68 (USAS X3.23-1968)
and ANS 74 (ANSI X3.23-1974). The language 1is still
evelving with new standards being proposed and
produced. ANS 74 contains a nucleus and eleven
functional modules (some with at least two distinct
levels). Most manufacturers who produce compilers,
implement the nucleus along with some versions of some
modules, Hawkins and Harandl [HAW7S] calculate that
there are potentially 104,976 official subsets of the
language. However, all COBOL variations have much in
COMMCN and programmers tend to use incompatible
portions of language definitions infrequently. For
example, Torsun and Al-Jarrah [TOR79] found in a sample
of 340 commercial programs that the simplest format of
each of the MOVE, 1IF, GO TO, PERFORM and ADD verbs
accounted for 82.5% of Procedure Division (PD)

statements.

To obtain a simplified version of COBOL, the approach
taken in this thesis was to reduce an advanced proposed
ANSI COBOL standard in terms of functionality and usage
of COBOL features. The standard chosen was the Draft
Proposed Revised X3.23-Sept. 1981 language definition

[{COB81]. A feature of this standard is the introduction

1389

of a large number of end-verb constructs for PD
statements. Adherence to these statement constructs may
allow syntactic analysis of some programs written in
future COBOL standards. The next subsection outlines

the reduced language described in Appendix 3.

4.1.1, DEVELOPMENT OF A REDUCED COBOL.

The langquage definition of September 1981 [COB81]
identifies the following functional groups of features
in COBOL

1) The Nucleus

2) The Sequential I-0 Module

3) The Relative I-0 Module

4y The Indexed I-0 Module

5) The Inter~-Program Communication Module

6) The Segmentation Module

7) The Sort-Merge Module

8) The Source Text Manipulation Module

8) The Debug Module

10) The Report Writer Module

11} The Communication Module
It was decided to produce a language consisting largely
of the first six of these groups. Some reasons for

omitting Modules 7 to 11 were

140

a} The facilities are used infrequently (e.g. the
SORT wverb represented 0.04% of all verbs in 340

programs [TOR79]).

b) These features appear to be helpful additions to
COBOL rather than an intrinsic part of the
language. This is shown by the number of COBOL
compilers which omit them or wuse alternative
facilities (e.g. the report generator (COBRG) of

bec system 10 COROL 6 [DIG62]).

In a non-prototype S5CA, it would be expected that some
of these modules would be included. The Sort-Merge
module is a clear candidate because its features, like
the SORT wverb, are still reascnably common (two SORT
references in 22 programs [TOR81]), although used
sparingly compared to other verbs. It is though that
analysis of modules 7 to 11 would not be unlike
analysis of earlier modules. Again taking the SORT
feature as an example, control flow between the input
and output procedures of the SORT statement appears to
be unusuval but it is not unlike a sequential pair of
PERFORM UNTIL statements. SORTs and MERGEs are actually
somewhat simpler than PERFORMs because nesting 1is

prohibited.

141

The Source Text Manipulation module (COPY and REPLACE
statements) seem inappropriate to any program analysis
system other than in pre-analysis source adjustment.
This 1is because syntactic (and static) analysis is
being carried out to reflect structures within the
source and properties of the object code. Unexpanded
COPY and unconverted REPLACE statements add to

confusion for both users and implementors of a SSCA.

0f the six remaining language definition modules,
various features were simplified. These features and

omission considerations are given in Appendix 3A.

4.1.2. SOME PROPERTIES OF COBOL.

The COBOL language has a few peculiar properties which
set it apart from many other high level languages (e.g.
PL/I or Pascal). Most such properties reflect original
language design decisions which were made cover 25 years
ago. These features, which will affect the analysis of
COBOL and the information obtained from COBOL programs,

are examined in this subsection,

An influential property of COBOL is the isolation of
data definitions from data manipulation and program
control statements. Data definition in a program is
sited primarily in the data division but also in the

identification and environment divisions, whereas

142

control and data manipulation 1lies in the PD. This
property is both a strength and weakness of COBOL. The
main weakness 1is that localised functions (paragraphs)
cannot have local variables as all variables are global
[EVAB2]. A consequence of this is that paragraphs and
other statement groupings cannot have formal
parameters. Procedural abstraction is thus restricted
in COBOL (though programs may be parameterised and

invoked wvia CALL statements).

In COBOL programs, a large porticn of the source lines
are data definiticons. Often many programs share common
definitions through COPY files. The definitions in each
COPY file wusually relate to a particular application
data file. COBOL data isolation has thus supperted a
type of data abstraction through program definitions
being linked external data files and programmers being
influenced to¢ think about programs in terms of data
definition usage as well as procedures and actions.
Thus, COBOL has indirectly affected software
environments and techniques. This is most evident in
data base technologies where schemas often lock very
like COBOLs file c¢ontrol and record description

entries.

Segregation of data definition from procedures suggests

that compilation, analysis or formatting could be

143

carried out separately in the data definition divisions
and the PD. Operations, other than simple formatting,
would need to be connected wvia some form of symbol

table.

Ancother COBOL feature is the melding c¢f the functions
of 1labels and modules (isolated groups ¢f statements)
in the PD. Labkels indicate branch-to positions for use
by GOTO instructions. The GOTQO is the standard
assembler control flow branching statement. Modules are
a2 higher level method of delineating statement groups.
In a program, this allows the direct instructing that a
statement set should be executed a number of times
possibly depending on some condition and then control
returned away from the set. The PERFORM verb is COBOQOL's
instruction mechanism and sections, groups of
consecutive sections, paragraphs and groups of
consecutive paragraphs form the modules. Unfortunately,
these modules are out-of-line from their instruction
mechanisms within a COBOL program which reduces

clarity.

Modules can be used other than directly with GOTO and
PERFORM statements. Programmers often use labels
{sections/paragraphs) to break up a program’s PD into
manageable portions. For example, on average 27% of

labels are unreferenced in a program [TOR79] which

144

means the corresponding modules must be either
indirectly performed {(label name doesn’t appear in the
PERFORM statement, performed through) or dropped into
(by execution without return of previous modules,
possibly achieved using a GOTC statement} to be

executed.

The label/module melding feature can thus be used to
create highly confusing programs where particular
groups of statements are directly performed, indirectly
performed ,gone to and dropped into. Further confusion
is possible by multiple program end-points (EXIT
PROGRAM or STOP RUN statements) being used in an ad hoc
manner. COBOL does not enforce structured programming
techniques and a useful product of even a simple static
analysis system would be identification of a program’s

control flow structure.

To allow clearer programming styles, the proposed
September 1981 standard {[COB8l] contains provision for
in-line statement blocks within PERFORM statements.
Such Dblocks have always been available in IF and other
similar statements and are a limited alternative to
modularisation. It remains to be seen whether these new
features will be widely implemented and used. ©On the
whole, COBOL programmers appear to have a particular

aversion to change. For instance, GOTQO statements are

145

more COmmon in programs than PERFORMs [TOR79],
especially in heavily executed portions of programs

[TOR811.

146

4.2. DATA BASE CONTENT,

In this subsection, precise details are given of
information from COBOL source to be included in the
SSCA DB. What is stored is partially dependent on which
Data Base Management System (DBMS) i1s chosen for the
database. In order to make this decision, information
about what structures exist among COBOL source
entities, as well as, some details of what the SSCA DB

is likely to be used for, must be compiled.
4.2.1. COBOL ENTITIES AND RELATIONSHIPS.

Section 3.4 presents a basis for the identification of
COBCL entities. From the extended declarations
template, it is noted that six types of information
group iﬁstances are relevant to COBOL. : variable,
module, label, external file, statement, and condition.
In the following subsections these information groups
are translated into one or more entities relevant to

COBOL.
4.2.1.1. LANGUAGE DEFINITION ENTITIES.

The entities described below represent groupings of
program information resulting primarily from the

language definition in Appendix 3B.

147

VARIABLE and VARIABLE-88 Entities

In COBOL, variable and file definitions are isolated in
the TIdentification Division (ID})}, Environment Division
(ED) and bata Diwvision (DD) from CF and other DF
details in the PD (see Section 4.1.2.). To reflect this
property entities containing definition information are
separated from entities describing references to data

items.

From the format for data-description-entries (Appendix
3B}, there are two distinct variations in definitions
of COBOL variables. These are the level-88 variables
which define conditions on pre-allocated storage and
"normal® variables which define reference names to
storage which may or may not have been pre—-allocated.
This suggests two entities VARIABLE and VARIABLE-88 to

hold instances of variable definition information.

FILE and FILE-VARIABLE Entities

File contrel and file-descripticon data are simply
stored 1in instances of the FILE entity. Direct PD
references to files are through the file-name or data
records (varjiables). Files in the PD can be handled in
a similar manner to variables. Variables can be used or
updated when referenced in statements. Files (file-

names) are updated, in the sense that data within them

148

changes, by DELETE, REWRITE and WRITE statements and
used by CLOSE, OPEN, READ, and START statements. It
should be noted that REWRITE and WRITE file references
are implicit. Unfortunately, there are file actions
other than the use and update above relevant to
understanding what happens to a file in a program.
These actions are summarised by update of file
variables such as the LINAGE~COUNTER (for sequential
LINAGE files) and the implicit file ©pointer. To
simplify often implicit references to these items in

the PD, an entity FILE-VARIABLE is defined.

IDENTIFIER-LIT Entity

Some data type items wused 1in a program are not
explicitly declared. Literals fall into this category
as do references to objects external to a program such
as subject identifiers of the CALL and CANCEL
statements. An entity IDENTIFIER-LIT is defined to hold
instances of these items. The reasons for explicitly
storing literals are exemplified by considering the
value of an occurrence number for a variable A -~ this
same value often appears within conditions of PERFORMs
contrelling update of A. Literals and identifiers such
as implementor-name (ED), block sizes and record sizes
(ED or FDs) which are unlikely to be referenced in FD

statements in the above manner are considered not form

149

instances of this entity.

FROGRAM, SECTION, PARAGRAPH, STATEMENT-GROUP and

STATEMENT Entities

Labelled modules 1in COBOL consist of sections and
paragraphs (see Section 4.1.2.)., Another grouping of
statements is the in-line block (mentioned in Sectien
4.1.2.) which groups nested statements. A block can
also have sub-blocks within it. Sentences, defined as a
set of consecutive statements ending in a full stop,
are ancother statement grouping system in COBOL. An in-
line block reflects potential sequential control flow
among it’s statements, whereas little wuseful control
flow information is identified by sentences. For this
reason it was decided to define a STATEMENT-GROUP
entity as a special kind of block. A statement-group is
a set of statements at the same level of nesting which
would be executed segquentially so long as ne GOTO, STOP
RUN or EXIT PROGRAM statements were encountered {see
figure 4.2.1.). This assumes that execution of a
statement A is completed when appropriate statement-
groups within & (i.e, embedded statements}) have been
executed. Unliked a sentence, some statement-groups may
contain more than one statement which ends in a full
stop. Thus the static structure of the PD of a program

can usually be modelled by a hierarchical segquence of

150

instances of SECTION, PARAGRAPH, STATEMENT-GROUPS and
STATEMENT entities. This hierarchy must sometimes be
modified, however, since sections are opticonal and
statement—-groups are composed of statements but may
also reside within statements (e,qg, an IF statement
contains one or more statement-group). Figure 4.,2.1.
illustrates a possible structure among entity
instances. To complete this hierarchy a PROGRAM entity
containing only one instance of general program

information is also defined.

CONDITION Entity

The CONDITION entity exists to hold conditions which
occur in the PD of a program. A particular condition
may be used in several statements and, in addition to
the direct text of a condition, data about which
variable, variable-88, file-variable and identifier-1it
instances are used is recorded. Conditions are
associated with CF branching and thus are important for
any tools performing CF analysis or modification (e.g.
Ripple Effect Analysers and Recoders). Conditions need
to be stored literally to aid more detailed analysis.
For example, conditions "X{10) < 3" and "X{I) > 5" when

viewed statically, may or may not refer to tests on the

151

Examples of Section, Paragraph, Statement-Groubs and
Statement Instances

SET: - C SECTION SECTION-A.
PA1 PAHAGRAPH 1A.

| MOVE THAT. : TO_ITHIS
IF THIS < THAT-2

PERFORM CHANGE TH}S _
“IFTHIS = THAT-2

PERFORM WHATEVER
ELSE

MOVE THAT-1 TO THIS.

[MOVE THAT-2 TO THIS,

PA2 PARAGRAPH 2A.

SE2’ .~ SECTION SECTION-B;”
PA3 F’ARAGRAPH 1B.
| ADD 1 TOTHIS.
Abbreviations ST Statement
SG Statement-Group
PA Paragraph
SE Section

Figure 4.2.1

152

same value. Symbolic execution could be used by scme

later tool to identify under what conditions I was 10,

4.2.1.2. LANGUAGE DEFINITICN ATTRIBUTES.

Potentially, there are many attributes for language
definition entities. For instance, the complete text of
variable definitions and statements could form
attributes. However, this information duplicates what
1s already efficiently stored 1in the program source
code. From Section 3.4.2, the SSCA DB exists to allow
easy access to source code data for tools. A major
obstacle for maintainer comprehension of source code is
delocalisation of information {[LET86). For example,
complete local understanding of a COBOL paragraph tells
a maintainer almost nothing about the definitions of
variables referenced, what happens to these variables
elsewhere in the program or how the paragraph could
come to be executed. The main way the SSCA DB can
support access to source information is to accurately
record the relationships between source code items,

These items are reflected as entitles in the database,

From the discussion above, attributes of entities

should largely consist of

1. Attributes to identify specific instances of an

entity (these may form keys for entity

153

relationships or instance ordering).

2. Attributes to link entities to source code items

{(i1.e. line-numbers).

3. Attributes or relationships to link entities to

entities,

Appendix 4A lists the entities, attributes and
relationships for all entities in Section 4.2.1.1.
Appendix 4A also contains implementation structures for
these entities. Implementation aspects are considered

in Section 4.2.3,

In Appendix 42, some language definition entities
contain attributes other than those mentioned above.
These are used to store small amounts of Ainformation
which would probably be required by tools or other
users of source data. This information includes

PROGRAM source and obiject computer-names, segment
limit, currency-sign and decimal point.

FILE implementor name, organisation, access mode,
block size and measure, record size and
variability, whether the file is optional and
whether duplicate alternative keys are allowed.

VARIABLE level, usage, section (FILE,
WORKING-STORAGE or LINKAGE),occurrence number and

picture and whether the occurrence is ascending or

154

descending.

SECTION segment number.

STATEMENT verb and end-verb and two other attributes

which identify

a) for OPEN statements whether the open is
input, output, I-0 or extend; and for
PERFORM statements whether the condition
evaluation is before or after.

b} for PERFCORM and SEARCH statements whether
there is a varying item or more that one
varying item.

CONDITION text {(as discussed in the CONDITION entity
of this subsection} and type. The type identifies
whether the condition is a normal boolean
expression, conditional state (ON S5IZE ERROR, ON
OVERFLOW, INVALID KEY, AT END or WHEN OTHER),
TIMES clause (PERFORM format 2 statements),
DEPENDING ON clause (GO TO format 2 statements),
or group of WHEN clauses {EVALUATE statements).
Corresponding type values are ; " "(empty), STATE,

TIMES, DEPEN and EVAL.

4.2.1.3. NAVIGATION AND USAGE ENTITIES.

The entities of the previous subsections omit data
about where program divisions and non~PD sections begin

and end and what VARIABLEs, FILEs, FILE-VARIABLEs,

155

SECTIONs, PARAGRAPHs, STATEMENT-GROUPs and CONDITIONs
are referenced 1in what STATEMENTs. The SOURCE,
CONDITION-USAGE and DATA-USAGE entities are defined
below to hold this information. For the latter two
entities there are many possible entity structures
involving different attributes and arrangements.
Reasons behind the chosen structures, which are

presented in Appendix 44, are also examined.

SOURCE Entity

Variables, files, sections, paragraphs and statements
offer direct 1links through 1line numbers to program
source information. To further aid navigaticn around a
program for users of a SSCA DB one instance per source
program of a SOURCE entity is defined. This entity
holds line numbers for program divisions, sections

(excluding PD sections) and the PROGRAM-ID paragraph.

CONDITION-USAGE and DATA-USAGE Entities

The CONDITION instances record data references within
conditions. For other portions of PD statements data
references must alsoc be stored. The DATA-USAGE entity
is defined to hold such references. An entity
(CONDITION-USAGE) 1s also needed to identify use of

conditions within statements.

156

Torsun and Al-Jarrah [TOR79] identify that by far +the
most commonly used assignment statements involve the
MOVE (format 1) and ADD {(format 1) verbs. In both these
statements, a set A of identifiers and/or literals
(VARIABLEs, FILE-VARIABLEs or IDENTIFIER-LITs) is wused
tce update a set B of identifiers (VARIABLEs or FILE-
VARIABLEs). When examining data flow 1in these and
other statements, it is common to work backward from an
output value. A typical maintenance guestion is "how
did this wvariable come to be assigned this value 27
(this question is closely related to question 4 of the
maintenance engquires 1in the next subsection). In the
context of the above statements, this question can be
answered by noting that a particular member of set B is
updated by set A, From this discussion, the
relationships a DATA-USAGE entity could reascnably bhe
involved in are
1. A relationship with an updated {(¢r potentially
updated) VARIABLE, FILE or FILE-VARIABLE.
2. A relationship with a list of VARIARLEs, FILEs,
FILE~-VARIABLEs or IDENTIFIER-LITs which are used

(possibly for the update in 1).

More than one DATA-USAGE instance can exist for a
statement. An update descriptor attribute is also

required for DATA-USAGE instances to identify whether

157

the update is a normal one, involves corresponding data
structures (e.g. ADD format 3}, is an INITIALIZE
statement wupdate (in which case the update information
resides in the data division), is absent (i.e. set B is
empty and A 1s Just used), is optional and set A is
empty {(e.g. for data-names in a CALL statement}, or
does not use other data items (set A is empty as for
the ACCEPT statement). Corresponding descriptor values

are : " "{empty), CORR, INIT, NOUP, OPUP and NOUS.

The most common control statements in COBOL programs
are the IF, GOTO (format 1) and PERFORM {(format 1)
statements [TOR73]. Thus, the IF verb would appear to
be a major user of conditions in programs. IF
statements are characterised by a condition branching
to either two statement-groups or one statement-group
and the next statement after the IF. By default,
contrel resumes at this next statement after execution
of the TIF in any event. Thus, identification of this
next statement is really part of the order of
statements (i.e. it is related to the STATEMENT
entity) rather than the use of a condition (CONDITION-
USAGE) . Bence relationships for the CONDITION-USAGE
entity are
1. A condition relationship (the CONDITION instance

used to determine the branching).

158

2. A primary branch-to relationship (link to a
STATEMENT-GRQOUP, SECTION or PARAGRAPH).
3. A secondary branch~to relaticnship (iink to a

STATEMENT-GROUP, SECTION or PARAGRAPH}.

The primary branch-to item is gone to when the
condition is true. A condition use descriptor
attribute identifies whether the condition is
unprefixed, prefixed with an UNTIL (PERFORM formats 2
and 3) or prefixed with a WHEN (SEARCH formats 1 and
2y. Values of the condition use descriptor are null,
UNTIL or WHEN accordingly. The secondary branch-to item
is optional, but if present, identifies a statement-
group gone to when the condition is false (in IF
statements) and a sectien or paragraph performed
through (i.e. from the primary item through to the
secondary item} in PERFORM statements. In GOTO (format
1) statements both the condition and secondary branch-
to item are empty. A branch descriptor is required to
identify these different branching schemes and it has
value null (no secondary branch-to), ELSE, THRU or

GOTO.

4.2.1.4. RELATIONSHIPS BETWEEN ENTITIES.

Figures 4.2.2 to 4.2.5 contain diagrams which depict

the relationships among entities identified in previous

158

subsections. These figures summarise relationship
information from Appendix 4A, Portions of relaticnships
are described as mandatory if an entity instance must
form a relationship (e.g. in fv-file, a file-variable
must have an associated file) or optional otherwise
(e.g. 1in walue, an identifier-lit may be used in the
value clause of a number of variables or it may not).
If many instances of an entity exist for one instance
of a relationship then it is possible to demand an
order among the entity instances. For example, the
order of statements within a statement-group (st-

stgroup) is important in terms of program control flow.

The figures also show multi-member and multi-owner
relationships. An example of a multi-member
relationship 1s sections-or-paras (figure 4.2.2.).
Through this relationship a program many be identified
as composed of a set of sections (sections being
identified as sets of paragraphs through pa-section) or
a set of paragraphs (if nc sections exist). Either one
set or the other must be present as sections-or-paras
is mandatory for either sections or paragraphs.
Programs without PD sections or paragraphs cannot
contain PD statements and are prohibited as they are
not wvery interesting. A multi-owner example is the

linage-size relationship {(figure 4.2.3.). This

160

involves either a wvariable 2and many files or an
identifier~1it and many files, Multi-relationships
could be decomposed into two or more relationships. For
example, linage-size combines a one-to-many
relationship between the variable and file entities
with another one-to-many relationship between the
identifier-1lit and file entities. It is considered more
descriptive for SSCA DB users to identify multi-
relationships 1rather than consider the separate sub-

relationships.

161

Relationships Derived from the Prodgram Structure

Program

i

Source

sections-or-paras

T

v

Paragraph

)

EE 2

3

Section

Statement-Group

Condition-Usage

si-stgroup
E}l]

Statement

I

Data-Usage

du-statemant

Figure 4.2.2

for Figur
422 10 4.2.5

X antity X

X relationship x
relationships
X and y

=3 0ne to one

— (O one to many
4 many
o many
combined
relationship
involves ong
or other of
antities

¢ mandatory
2 opptional

T relationship
defines an order

162

Relationships_ Derived from Data Declaration

redefines occurs-index File-Variable
ccurs-depend occurs-kay
a-va-withi
rec-Key U
Program A alt-key
e 3o R fv-fila
-]
11
K p
data-record | File
Variable 2 fila-status e
rec-size-depand
rel-key
9 4
Inage-size
occurs. 2 iinage-foot
occurs-b linage-top
valua inage-bot

Variable-88

Tdentifier-Lit

Figure 4.2.3

163

Relationships Derjved from Branching

)
Condition-Usage £ condition
F 3
Q@
—| Statement-Group
Paragraph

E Section

Figure 4.2.4

Relationships_ Derived from Data Reference

du-data-updated

Condition
F'y

File

H

Data-Usage | | JIFite-variablele

——————p1 Variableld ¢

——p identifier-Lit je—

Variable-88 [4—

Figure 4.2.5

164

4.2.2. MAINTENANCE ENQUIRIES FOR A SSCA DB.

The design methodology presented by Teorey and Fry
[TEQ82] wuses Dboth the information structure and usage
perspectives (ISP and UP} of database elements to
determine a conceptual database design. In terms of
this methodology, the design for the entities,
attributes and relaticonships given in Sections 4.2.1.1
to 4.2.1.4 was derived mainly from the structure of
COBOL programs (i.e. the ISP). However, some aspects of
what the database will be used for have been considered
{e.g. in developing a structure for the DATA-USAGE
entity}. The kinds of modifications a maintainer may be
asked to perform are diverse and, accordingly, the
kinds of guestions which may be asked of a SSCA DB
system are reasonably unpredictable. Characterising a
UP for SSCA DB infermation would require an extensive
survey of maintainers. Letovsky and Soloway [LET86]
have carried ocut a small scale survey which involved
pProgrammers "thinking-aloud” while performing
maintenance tasks but the collated results are

unavalilable at the time of writing.

As an alternative to UP determination, a small number
of enquiries which focus on unlocalised features of
COBOL source code are given below. These questions

identify a necessary set of queries rather than a

165

sufficient set and they will eventually be used to test

the implemented SSCA DB system,

QUESTION 1 : What 1s the static hierarchical
structure of the PD ? (i.e. what paragraphs are
contained 1in what sections and how are they

ordered 7).

QUESTICN 2 : Given a paragraph-name (or section-
name) , what statements directly PERFORM,
indirectly PERFORM or GOTC this paragraph and
under what circumstances is it dropped into ? This
is a first step to generating a module invocation
matrix or set of CF graphs (or equivalently CF
paths) for this program. These tasks should be
carried out by specific tools which use the SSCA

DB {see Section 3.4.2.).

QUESTION 3 : What 1s the static hierarchical
structure of data definitions in this program ?
(i.e, identification of data structures and their

static associations with filesg).

QUESTION 4 : Given a wvariable-name (or file-name or
file-variable—-name), where is it referenced (used
or updated) and what wvariables, files, file-
variables, wvariable-88s, identifier-lits is it

associated with in the PD (dynamically) 7? This

166

cross—reference is a first step toward data
tracing and program slicing (identifying a reduced
PD which demonstrates the PD of a program from the
view of what happens to and affects a particular
variable or variable set [WEL82]). These tasks are
for later tools which will use CF graphs and data
definition structures 1in addition to this cross

reference information.

4.2.3. SSCA DATABASE IMPLEMENTATION.

4.2.3.1. A DATABRASE MBNAGEMENT SYSTEM.

Figure 4.2.6 summarises the types of relationship
present among the entities of Appendix 4A. The types of
relationships are relevant to determining an
appropriate database management system (DBMS) with
which to implement the SCCA DB, Two types of
relationship directly affect the choice of DBMS
architecture. These are the many-to-many ({of which
there are 7 or 20%) and the combined (of which there

are 11 or 31%) relationships.

Combined relationships occur largely because of the
choice of entities. 1If a DATA-ITEM entity was formed
from melding wvariable, identifier-1it, file, file-

variable and variable-88 instances and a LABEL entity

167

Types _of Relationships

Relationship Number
—(—ane to one ' 3
—(— one to many 17
49 many to many 4
multi-member
ong to many 1
L O multi-owner
M one to many 7
3 multi-owner
&,—O—b multi-member 3
- many to many
Totai 35
Figure 4.2.6

from melding statement-group, paragraph and section
instances then all combined relationships would be
single relationships. However, it is believed that the
original entities reflect useful elements within a
COBOL program and melding entities would cause
confusion and would be inefficient to implement if
variable record structures are unavailable in the

chosen DBMS {e.g. identifier-lits have one attribute

168

whereas variables have seven).

There are three major architectures for DBMSs;
hierarchical, network and relaticnal, Many-to-many and
combined relationships are difficult to implement in a
hierarchical system and the numbers cf these
relationships discount the use of such a DBMS. Network
systems implement relationships as sets. A set instance
has one owner and potentially many members and can thus
store one—to-one and one—to-many relationships.
Combined relationships form multi-member sets. Many-
to-many relationships each require the introduction of
a "link"™ entity and two cone-to~many sets to be
implemented. The number of extra relationships or sets
require for a network DMBS i1s thus calculated ({from
Figures 4.2.2 to 4.2.5) to be seven. Bowever,
appropriate melding of entities, as suggested in the
previcus paragraph, could reduce the overall number of

sets.

In relational DBMSs, relationships are stored by
relations {entities) holding foreign keys.,
Implementation of many-to-many relationships may still
invelve link relations and combined relationships can
be directly represented by stipulating that keys for
statement-groups, paragraphs and sections {and

similarly variables, files, file-variables,

169

identifier-1its and variable-88s) share a common
domain. Many relational systems also offer built-in
interactive query facilities which would allow simple
verification of database information when developing a
prototype SSCA. These features may also allow answering
of some of the questions presented in Section 4.2.2.
Thus a prototype SSCA DB would appear to be best
implemented using a relational DBMS although a network

system seems just as suitable for a non-prototype.

Clearly from Section 3.4, a basic requirement for a
SSCA DBMS is to provide ready access to database
information for tools. Similarly for database creation,
the SSCA must be able to send information to the DBMS,
The DBMS must thus interface in some manner with
programming languages suitable for tool (and possibly

analyser) implementation.

Using the above criteria, it was decided to use the
INGRES Version 7.10 DBMS to implement the SSCA DB.
INGRES is a relational system which contains both an
interactive enquiry sexvice (QUEL) and € language
interface {EQUEL). C would also seem to be a useful
language for implementing the prototype formatter and
syntactic analyser as source analysis features are

supperted through LEX and YACC preprocessors.

170

4.2.3.2. RELATIONS AND IMPLEMENTATION CONSIDERATIONS.

As the SSCA DB is to be an INGRES database then a
number of adjustments and additions must be made to the
entities of Appendix 4A., This subsection explains the
additional implementation attributes (which consist
largely of foreign keys describing relationships) and
additional relations. Standard INGRES modifications
required for all entity and attribute names was to make
them all a maximum of 12 characters, lower case and to

change embedded "-" characters to " ".

KEYS AND LINK RELATIONS.

Keys are required for the implementation of
relationships involving all entities except program and
source. Ordering in a relationship can be achieved by
making the keys numeric (or in some other way ordered).
A particular order is required among sections
{sections~or-para relationship}, paragraphs (sections-
or-paras and pa-section), statements (st-statement),
condition—usages (cu-statement), values of variable-88s
(v8-value-a and v8-value-b; although this is only to
establish (value-a,value-b) pairings), occurs keys of
variables {occurs-key), occurs indices of wvariables
{occurs—-index}) and subvariables of variables {va-va-—

within}. Problems with multiple orders for wvariables

171
and identifier—-lits are resolved by 3 actions

1. The <creation of 1link relation v8 value to
implement the v8-value-a and v8-value-b

relationships.

2. The creation of link relation wva_occurs to
implement the occurs-index and occurs—key
relationships and stere the attribute occurs asc.
This new relation is keyed to determine the order

of keys or indices.

3, The realisation that a variable needs only to know
its parent to store the va-va-within relationship.
Thus va-va-within needs only to be one-to-many but
is still ordered. This order is the only ordering
constraint on variable instances and 1is thus

achievable via keys.

From the above discussion and adapting the approach of
using the same domain for keys of at least two groups
of relations (see previous subsection}), a keying system
was derived for relations. A major portion of the

keying system is illustrated by the following table,

172

Relation Sub-Keys

Variable 01 Statement 07
Condition 02 Variable-88 08
Condition-Usage 03 Identifier-Lit (9
Section 04 Data-Usage 10
Paragraph 05 Statement Group 11
Va-0Occurs 06

It was decide to use the same domain for all keys. A
key thus comes 1in two parts : the relation sub-key
which defines the relation pointed at (identified
above) and the instance sub-key which defines the
particular tuplie of the relation. A minimum size for an
instance sub-~key is several thousand as statements and
variables are plentiful in COBOL programs [TOR7%). The
combined key fits neatly into a 16 bit integer {(iz2
INGRES format). The top 4 bits forming the relation
sub-key and the bottom 12 bits the instance sub-key.
This gives a maximum of 4095 instances for relations.
However, a non-prototype S$SCA DB system could make use
of relation sub-keys 00, 12, 13, 14 and 15 to extend
the maximum number of statements and/or variables.
There are minor machine dependent implementation
problems with retrieval of 16 bit INGRES integers into

standard 32 bit C integers when the top-bit (16th} 1is

173

1. In this case, the C integers are padded out with 1s
in bits 32 to 17. A solution is to add 200000 octal to

the integer if it is less than 1.

A one-to-many {or one-to-one) relationship between
entities A and B respectively can be implemented by
storing a key to an instance of A in every B tuple.
with the exceptions of relationships sections-or-paras,
pd-using and data-record (see Other Considerations),
all one-to-one and one-to-many associations between
entities of Appendix 4A {(and the link relations) were

implemented in this fashion.

As mentioned in Section 4.2.3.1, many~to-many
associlations can be implemented via link relations. In
the actions above, 1link relations v8 value and
va occurs were identified to store four many-to-many
relationships. Two remaining many-to-many relationships
are co-data-used and du-data-used. A link relation was

created for each of these relationships.
OTHER CONSIDERATIONS.

Several other modifications teo entities, attributes and
relationships were carried out during identification of

INGRES relations. These are described below.

174

As relations section and paragraph are each ordered on
a particular key {(the order being as per occurrences 1in
the source code), then relationship sections-or-paras
which identifies this same information is redundant.
Relationship pd-using is a simple cone-to-many
relationship between program and variable., Direct
implementation would mean storing a program key in each
variable instance. However, as there are only a maximum
of five pd-using variables ([COR81}, it is more
efficient to hold five wvariable keys within the one
instance of program. In file-description-entries of the
DD, data receords are implicitly associated with files.
A file’s later data records implicitly redefine the
first data record. It was decided to implement the
implicit redefinitions directly as instances of the
redefines relationship. This reduces data-record to a
one—to-one relationship which 1is best stored as a

variable key in each file instance.

The file entity contains many attributes and is in many
relationships. In an effort to reduce the number of
fields in the file relation a relation linage file was
created to hold 1l1linage information (page size and
footing, top and bottom positions) for sequential

linage files.

175

Since many ULTRIX-32 print functions fail for character
fields greater than 128 wide, it was decided to use 128
as an absclute maximum attribute size for INGRES
relations. This meant breaking il-token of identifier-
1it into il token a and il token b (each of 80 chars)
and cond-text of condition into cond text a,
cond text b, cond text ¢ and cond text d (each of 64

chars}.

This completes explanation of the relations and most of
the attributes of Appendix 4A. In the next section,
mechanisms t¢ build the INGRES relations from a COBOL
program are examined and a small set of attributes to

hold metric information are identified.

176

4.3. BANALYSIS OF SQOURCE CODE.

The previous section identifies much of information
which 1s required to be derived from a COBOL program,
This section is concerned with the methods employed to
carry out this derivation and possible extra by-
products (i.e. some counts of information for metric

production} which could also be generated.

4.3.1. S8Ca SUBSYSTEMS AND IMPLEMENTATION

CONSIDERATIONS.

Although SSCA system implementation employs compiler
production tools, a SSCA is not a compiler. A function
which should be foreign to a SSCA (unless linked
directly to an editor) 1s production of detailed
messages for source syntax errors and complex error
recovery. The reasons for this are to reduce
duplication of processing already available in
compilers and to discourage attempted analysis of
incomplete source code. The source code being analysed
is assumed to have already been checked by a compiler.
There is a possible problem here for the prototype SSCA
being developed in this thesis. No compiler exists for
the reduced COBOL language of Appendix 3B. However, a
specific COBOL program may use language features

present in some other COBOL compiler. Thus, the

177

documenting o¢f errors and error recovery should be
rudimentary in the prototype SSCA although syntax
checking remains a necessary by-product of syntactic

analysis.

From Section 3.4.2, the two main components in a SSCA
system are the formatter and the syntactic analyser
itself. The formatter produces formatted source code
from which the analyser produces the SSCA DB. Both the
formatter and analyser need to identify language tokens
(such as wverbs, identifiers, punctuation etec.) and
build wup the concepts of statements, paragraphs,
sections and divisions. In COBOL, the layout of
statements on source code lines is relatively
unrestricted. Portions of statements can appear
anywhere in columns 12 to 73 (Area B) of lines.
Statements can be breoken over any number of lines and
interspersed with comment and blank lines. A statement
token recognising technique could be based on ignoring
all comment lines, c¢olumns 1 to 11, linefeeds and
multiple blanks. However, COBOL division, section and
paragraph names must begin in columns 8 to 11 (Area A)
and comments and continuation are indicated by
characters in the indicator field (column 7). The
mixture of fixed and freely laid-out objects in COBOL

suggests separate recognition mechanisms for these

178

objects.

A method is to parse source code twice 1in the S5CA
system. Once to 1dentify paragraphs (of +the PD),
sections and divisions, and again with the formatter.
The formatted source code only requires one parse with
an analyser]e] long as information such as
section/paragraph names are retained and their line
numbers updated. 2n obvious place to retain this
information 1s the 8SCA DE in instances of source,
section and paragraph. The first initial parse has been
called the section/paragraph extractor (SPEX)

subsystem.

Piping is a method of data transfer Dbetween executing
processes. Piping between processes A and B is similar
to executing A which creates an intermediate data file,
and then executing B which uses this file and finally
disposing of the file, However, piping supports
concurrent process executicon and the intermediate file
exists only as a run—time buffer te be written to by A
and read by B. A pipe between A and B is thus a fast
and effective means o¢f data transfer bketween these
processes., In terms of pipes, process A and B are

considered filters.

178

Process communication through the piping of default
input and output data between processes is simple to
achieve and test in ULTRIX. Bence, it was decided to
use this technigue extensively in the development of
all subsystems. Thus, subsystems were decomposed into
functions which could act on data one after ancther to

create the desired results.
4.3.2. THE SPEX SUBSYSTEM,.

Figure 4.3.1 shows the design of the SPEX subsystem and

PEX

source SPEXT souice

SPEXfIIter'l SPEXfIlter2
Source Code-‘”d'-;b()———’(

dbname,division,section
and paragraph information

relation definitions{all relaticns)
instances{Source,Section, Paragraph)_ p| SSCA DB

Createdb
[C,EQUEL]

dbname

pl SSCA#

Figure 4.3.1

the tools used in its implementation.

180

SPEXfilterl and SPEXfilter2

The first two filters (SPEXfilterl and SPEXfilter?2)
identify, adjust for, and warn about simple errors in
the source code. All warnings or error messages for
components of all subsystems are written to the
standard error pipe (stderr}. Error checking done in

SPEXfilterl is

1) Checking that source characters are alphanumeric,
space, punctuation, tab or Iinefeed characters

(invalid characters are converted to spaces).

2} Checking for 1lines longer that 80 characters

(longer lines are truncated).

Other processing carried on in SPEXfilterl involves
replacing tab characters by the appropriate number of
spaces and making sure that the last line of the source
code ends in a linefeed (a linefeed is inserted if not
present, this makes processing easier for later

filters).

The only check in SPEXfilter2 is to wverify that
indicator fields of non-empty lines contain wvalid
indicators (" M, WEAU", N/M or "), Invalid indicators
are replaced with spaces. Other actions of SPEXfilter?2

are the removal of line-numbers {columns 1-6), the

181

conversiocn of all lower case alphabetic characters to
upper case and the shortening of comments (although the
comment lines themselves remain, all characters other
than spaces and the indicator field are removed). The
shortening c¢f comments merely removes source characters

unnecessary in the SPEX subsystem.

These first two filters check for simple errors and
tailcer the source code for later filters. The basic
checks are also needed in the Format subsystem and, for
safety, the Analyse subsystem. To speed up SSCA
implementation, the first two filters of all three
subsystems are all modified versions of one ancther.
The reason for isolating the filter processing above in
two filters instead of one is that this is a
requirement for FORMfilterl and FORMfilter2? as well as

ANALfilterl and ANALfilter2 (see next subsections).

SPEX.awk

To set up instances of source, section and paragraph,
information is required to be retrieved from the source
code. The extraction mechanism is the SPEX.awk filter.
This filter 1is written 4in the AWK pattern matching
language and produces a list of lines containing a
linenumber and one character code. The code identifies

whether the linenumber pertains to the Data Divisiocn,

182

File Section or some other division, section or
paragraph. Additional information for the PROGRAM-ID
paragraph of the 1ID includes the program name {after
which the SSCA DB will be named). For PD sections and
paragraphs, additional information includes the
section/paragraph name and for sections, the segment
number. AWK 1s line orientated and a conseguence of
this is that COBCOL program layouts must be restricted
to excluding the breaking of division, section ang
paragraph tokens over several lines. Hence, the
following is illegal
000020 DATA

000021 DIVISIGON.

This restriction seems a small price to pay for the use
of the AWK language but c¢ould be removed in a non-
prototype SSCA by reccding the extractor filter in LEX.
Such a LEX filter would be much more complicated as all
source oblJects must be pattern matched 1in some way
because the default for unmatched objects is to echo
them in the output (the opposite default occurs in
AWK) . Other pattern matching facilities are GREP and
SED. These appear to be line orientated like AWK (and
hence similar restrictions could apply) but the actions
available after matching has occurred are more limited.

Actions of LEX and AWK are written in C-like languages

183

which are very flexible,. AWK, even with its
restricticons, 1is thus a <convenient language for the

implementation of a prototype information extractor.

Createdb

The final processing in the S5PEX subsystem is done in
Createdb, Createdb must set up instances of source,
section and paragraph relaticons using data supplied
from SPEX.awk. The SSCA DR must, of course, be created
and the relations above defined. It is convenient to
define =2ll SSCA relations here as well. The SSCA DB
will be named after the program name. An INGRES
restriction means that the program name must be
translated so that all azlphabetic characters are lower
case. Later subsystems will be required to retrieve and
update S8S8CA information. A simple method of passing the
database name to these subsystems (to avoid them having
to extract it from the source code) is to dump the name
in a standard file known about throughout the S8SCA
system. This standard file was <called SSCA#. If
software tools are later developed which use SSCA DBs
then the SSCA# file could be expanded. This file could
contain the names of all SSCA databases which currently
exist {(at any point in time, at most one could be
marked as in a state of creation}. Customised access to

the INGRES function destroydb would also be required so

184

that the S88CA# file is kept updated.

When carrying out its processing, a number of error
conditions can be encountered in Createdb. These
include identifying that the COBOL program being
examined has nc¢ ID, program—-id, DD or PD or has other
problems such as divisions being duplicated or
incorrectly ordered. Database errors such as an
already existing database of the same name are alsc
possible. All errors found cause error messages to be
sent and the destruction of any database which has been

created.

4.3.3. THE FORMAT SUBSYSTEM,.

Formatting is a means-to-an-end in terms of a prototype
SSCA system and the main emphasis is to insure that
there is, at most, one COBOL statement per line (see
Section 3.4). Enhancing the layout of a program is a
secondary consideration. Program layout is constrained
in COBROL, especially by out-of-line performed
paragraphs. There is often no way a program can be
formatted to the complete satisfaction of a programmer
used to, say, a block structured language. Feormatting
without major restructuring of a COBOL program is thus
largely cosmetic. The format subsystem i1is illustrated

in figure 4.3.2,

185

The Format Svbsystem

| SsCA bB
smdeource F filter1 I Source,Section
Source Code! ermil Formi source Para r; h
[C] . grap
instancs
dbname information
Formfilter2
[C,EQUEL]
SSCA DB updated Source instance
< iine numbers Form2
updated Section & Paragraph source
instance line numbers code

Formatter2 formatted ZD.ED&DD(Formattert
[C,EQUEL,LEX,YACC unformatted PD L[C,EQUEL,LEX,YACC

Qatled 50UrCe
coda
Formaited
P

Source Code

Figure 4.3.2

FORMfilterl and FORMfilter2

The first two filters of the format subsystem carry out
the same error checking of SPEXfilterl and SPEXfilter2
as the previous subsystem. In FORMfilterl, in addition
to the processing of SPEXfilterl, trailing spaces are
removed from all lines which have an even number of
quote {") characters. This activity coupled with
specific actions <carried out when the continuation

indicator 1is encountered in FCRMfilter? allows the

186

reforming of all tokens broken by continuation. The
process of reforming continued tokens relies on no
comments existing between a line and its continuation
line. This forms a restriction on the programs used in
this 8SCA system. A possible way around this
restriction would be to buffer up comments in a
temporary file while rebuilding tokens. This solution
could have the side-effect of moving comments around
among groups of tokens In the program and seems

inappropriate in a prototype SSCA anyway.

Like SPEXfilter2, FORMfilter?2 removes line numbers and
converts lower case characters to upper case. Because
strings (non-numeric literals) and comments will appear
in the formatted source code, upper casing of these
items is excluded. Other actions of FORMfilter2 are the
highlighting of comments and division, section and PD
paragraph identifiers with tab characters so that they
can be more easily recognised by the Formatter filters.
In order to identify division and other identifiers,
their line numbers are retrieved from the SSCA DB. For
lines which are not comments or other highlighted
symbol lines, linefeeds are removed as they are

unnecessary for formatting.

A major problem in the Format subsystem is the handling

of comments which are within statements. It was

187

originally hoped to be able to remove all comments with
some filter, format the source, and insert the comments
back in. The main advantage of this approach is that
instead of Jjust token (word} recogniticn in the LEX
procedures of Formatterl and FormatterZ2, complete
phrases like ON SIZE ERRCR could be identified. This
would make the rest of the Formatter filters much
simpler, Unfortunately, a by-product of comment
removal/insertion is the moving of all comments within
a statement to either before or after the newly
reformatted statement. The difficulty is that some
comments, like the ones in the statement below, become

less meaningful with this scheme,

GO TO
INITIALISE-LOQP

* status indicates begin again
REENTER-LOQP

* status indicates resume
FINISH

* status indicates return a result

DEPENDING ON STATUS
Instead of the removal/insertion scheme, comments both
within and between statements are accommodated in the
LEX procedures of the Formatter filters. When a comment
is encountered within a statement, the currently

formatted 1line <followed by the comment line is

188

outputted. The next line continues from the last
character position in the previous non-comment line.
For example, a move statement containing a comment
could be formatted to
MOVE A
* comment
TO B.

Comments between statements are merely cutputted.

Comments within statements are a problem in CORBROL.
There are many methods for handling them other than the
one above but all methods seem to have drawbacks. What
is required is a stricter comment philosophy than "put
a comment line in whenever you feel 1ike it"™. The main
reason why strict commenting philosophies are not given
or enforced in languages seems Lo be that comments are
ignored by compilers. With the advent of formatters and
other source code manipulators the use of internal
documentation in programming languages needs

formalisation.

Formatterl and Formatter?

The Formatter filters format statements which appear
between comment and division, section and paragraph
identifier lines. Formatterl produces formatted cutput

for the ID, ED and DD portions of a program and passes

189

this, along with raw PD information to Formatter2.
Formatter? prints the already formatted parts of a
program (keeping a count of the number of lines) and
formats and prints the program’s PD. This division of
workload 1s possible because of data definition /
procedure segregation in COBOL and was suggested in
Section 4.1.2. Both filters update line numbers of

Source, Section and Paragraph instances in the SSCA DB.

The two major components of both Formatters are a LEX
token recognising procedure (yylex} and a YACC grammar
parsing procedure (yyparse). These components are
melded together with other procedures such as printline
{to produce a numbered formatted line of source code)
and yyverror (toc report a YACC parsing error, remove the
S5CA DB and abort formatting) in a C program. Yylex
identifies language tokens ({e.qg. verbs), program
identifiers {e.g.variable names) and highlighted lines
and performs suitable actions. As menticned above,
comments are directed to the printline procedure from
yylex. Yyparse uses the symbols from yylex to form
groups of tokens (phrases} and statements. Using this
information, yyparse executes the process of compesing

formatted source code.

A Summary of the formatting carried ocut in Formatterl

and Formatter?2 is given below.

180

Division, section and PD paragraph identifiers are
formatted to begin in column 8. The PROGRAM-ID and
FILE-CONTROL paragraphs are alsc formatted in this
fashion. In addition, a blank line appears before each
line centaining any of the above identifiers. The
PROGRAM-ID paragraph also contains the program name on
the same line. Other paragraphs in the ID and ED begin
in column 10. Elements of these paragraphs begin on the
same line as the paragraph name. Exceptions are the
SEGMENT-LIMIT, CURRENCY and DECIMAL-PQINT clauses in
the ED which, if present, are laid out one per 1line

each beginning in column 12,

In all divisions, if a statement, clause or some other
portion of a statement will not fit on one line
(normally columns 12 to 73y it 1s broken at a
convenient word and continued (indented by two spaces
relative to the starting 1line of the statement or
clause) on the next line. A non-numeric literal token
may be longer than the line size available and token
continuaticn using the continuation indicator is
necessary. In this c¢ase the literal is broken if
possible so that the last character on a line is not a
space. This is to attempt to avoid problems which may
be encountered 1if the formatted source code is ever

edited. Many editors remove trailing spaces from 1lines

191

{usually by default}. Indicated continuation iines have
the same indentation as any other statement continuing

lines.

Lines which begin file-control, file-description, 77-
level-description and 01 level data-description entries
start in column 12. Clauses for these entries follow
line by line, each indented two further spaces to
column 14 {largely as shown in Appendix 3B). Exceptions
are the PICTURE (PIC) and VALUE <c¢lauses of data-
description-entries (01 & 77). These clauses begin in
columns 40 and 55 respectively and, if they are the
only clauses of an entry, an attempt is made to place
the whole entry on one line. A nested data-
description-entry begins two spaces in from the start
of the previous entry but the same clause layout is
maintained. The maximum amount of nesting of data-
description-entries which is shown by indenting is 10
entries or 20 indentation spaces. An 88-level entry
begins at same column as it’s previous entry and has
it’s VALUE clauses starting at column 40 (if possible
the first one is put on the same line as the condition

name) .

In the PD, section and paragraph identifying lines are
formatted to contain no portions of statements. Lines

with section naming tokens may alsoc contain a segment

182

number. The PD token itself is on the same line as the

start of any USING clause.

Unnested PD statements begin in column 12. All end-verb
tokens are formatted onto new lines and indented the
same amount as the corresponding wverb (a period may
also be present on this line}. Inside statements
formatting is carried out mostly on a c¢lause basis.
That is, particular clauses cause formatting in a
different manner than the standard methed of grouping
tokens on a line until it is full or the last statement
token is encountered. Many statements do not have any
formatting clauses ({(e.g. ACCEPT and both formats of the
GOTO verb). There are general formatting clauses and
several exceptions. A general formatting clause, when
encountered, causes the clause token and subsequent
non~verb tokens to be placed on a new line {(indented
two spaces relative to the start of the current
statement) and following embedded statements to be
indented another two spaces. For example
ADD A TO B
ON SIZE ERRCR
MOVE "“X" TO STATUS
END-ADD
Verbs and clause tokens of the general type are listed

below. There can be a number of such clauses in any

193

statement (e.g. SEARCH can have WHEN and WHEN OTHER
clauses) and the embedded statement group may appear
empty (e.g. EVALUATE or SEARCH with a number of WHENs
but only one statement group following) .

Verb Formatting Clause Tokens

ADD (formats 1 & 3), COMPUTE, ON SIZE ERROR
DIVIDE (format 1), MULTIPLY
(format 1), SUBTRACT
(formats 1 & 3)

ADD (format 2), DIVIDE GIVING, ON SIZE ERROR
(formats 2 & 3), MULTIPLY
(format 1), SUBTRACT (format 2)

CALL, STRING, UNSTRING ON OVERFLOW
DELETE, REWRITE, START, INVALID KEY

WRITE (format 2)
EVALUATE WHEN, WHEN OTHER
INITIALIZE REPLACING
INSPECT (format 1) TALLYING, REPLACING
INSPECT {format 2) CONVERTING
PERFORM (format 3) VARYING, AFTER
READ AT END, INVALID KEY
SEARCH (formats 1 & 2) AT END, WHEN
WRITE (format 1} AT EOP

Exceptions to the general formatting clause are found
in IF and PERFORM (formats 1 & 2) statements. In these
statements, if embedded statements are discovered (by
identifying a verb token) they are indented two spaces
relative to the start of the original statement so long
as certain clauses have not been found so far. These
clauses are the ELSE clause in IF statements and the
TIMES and UNTIL clauses of PERFORM (format 2)
statements. The ELSE clause 1s placed at the same level
of indenting as its IF and subsequent embedded

statements are indented as above (two spaces}) unless

134

the first of these is another IF statement. A nested IF
statement following an ELSE clause begins on the same
line as the ELSE and its embedded statements are
indented only two spaces relative to the previous IF.
IF A = B THEN
ADD 2 TO A
MOVE B TO C
ELSE TF A < 9

MOVE 0 TO A.

A PERFORM (formet 2) statement with TIMES or UNTIL
clauses gives the same results as the statements with
the general formatting clauses above, There are some
mincr recognition problems with identifying the TIMES
clause as it begins with an integer or wvariable. For
the purposes of formatting IF statements, NEXT SENTENCE

is regarded as both a verb and embedded statement.

The nesting of PD statements coupled with the use of
end-verbs c¢an make it difficult to determine which
statements are still in scope at some points in a
program. Scope determination is require for formatting.
A stack containing verbs and amounts of indentation of
statements currently in scope 1is used to hold this
information in FormatterZ. In Formatterl a similar
stack is a convenient method for contrelling the format

of nested data-description-entries. This stack holds

195

Jevel numbers instead of verbs.

From the descriptions above which use phrases such as
ON SIZE ERROR instead of either SIZE ERROR or ON SIZE
ERRCR, it is clear that some phrase standardisation has
been carried out. Phrase standardisation within source
code is a natural task for a formatter and has been
implemented in the yyparse procedures of Dboth
Formatterl and Formatter?. Standard COBOL phrases and
their equivalents which are manipulated by the yyparse

procedures are given in Appendix 4B,

4.3.4. THE ANALYSE SUBSYSTEM.

From figure 4.3.3., the Analyse subsystem has a very
similar structure to the Format subsystem. As
identified in Section 4.3.1, Analyserl and Analyser?2
are required to perform token recognition and parsing
just as the Formatter filters are. The actions after
identification of, say, a COBOL statement are, of

course, different.

ANALfilterl and ANALfilter?

ANALfilterl is identical to FORMfilterl except that
warning messages issued by this filter indicate a
different filter-name. ANALfilter2 has this same

change compared to FORMfilter2. Other changes 1in

186

The Anaiyse Svbsystem

SSCA DB
Formatted ;ormaﬂecj Analfiiter1 [Source Section
ource 3
Source Code | cxde [C] Anall source Paragraph
instance
information
SSCA#
Analfilter2
dbname
[C,EQUEL]

Anal2
source
coda

Analyser2 Line-count
[C.EQUELLEX YACC] Jugg2ticeCoda PO/ Ahalyserd

PD relation L[C,EOUEL,LEX.YACC
instances ID,ED & DD relation
SSCA DB instances
Figure 4.3.3

ANALfilter2 are that linefeeds on non-highlighted
symbol lines are no longer remcoved. This is because the
Analyser filters, unlike the Formatter filters, must
keep track of current 1line numbers so they can be
stored with related information in the SSCA DB. If the
Format subsystem 1is working correctly, all error
checking in these filters is redundant. However, in a
prototype SSCA system it 1s easier and safer to leave

these checks in place.

197

Analyserl and Analyser’Z

As indicated above the token identifying portions of
yylex and grammar parsing portions of vyyparse are
almost identical in Fermatterl and Analyserl and in
Formatter2 and Analyser?2. In yylex of both analyser
filters, comment line handling after recognition is
unnecessary (other than incrementing the line count).
Because source code analysed in Analyserl is not passed
on to Analyser2, line count information must be passed
to Analyser?2 for it to correctly initialise the 1line
number count. This informaticon precedes a program’s PD
in the pipe between the Analyser filters. Yylex of
Analyser?2 must thus retrieve and utilise the line count
information. In yyparse of both Analyser filters,
identification of equivalent COBOL phrases and
standardisation of these phrases is unnecessary as the

source code is already formatted.

The task of Analyserl and BAnalyser2 is to create and
update {as new source information 1s identified)
instances of SSCA DB relations. In both filters,
achieving this aim is mostly straight forward. For
instance, an instance of relaticn File will be created
when the file’s file-control-entry is parsed in the ED
and updated when the file’s FD is parsed in the DD. The

main problems occur with both data-description-entry

198

and PD statement nesting. In nesting, references to
data items or statements still in scope are implicit
and hence, retrieval o¢f the corresponding relation
instances for update 1s complicated. The method
employed to handle similar problems in Formatter2 was a
stack. The stack mechanisms of the Formatter filters
are adapted for used in their corresponding Analyser
filters. Instead of level numbers, wvariable instance
identifiers (va num) are used in Analyserl and instead
of wverbs and indentation counts, statement instance
identifiers (st num) are used in Analyser2. However, in
Analyser2 a further stack is required. This is because
when analysing nested statements, not only are there
implicitly referenced statement instances potentially
requiring update (e.g. if the end-verb is encountered),
there are condition usage {cu) instances whose
cu_br desc and cu branch b attributes are unknown at
the time of instance c¢reation ({this occurs when cu
branches are statement-groups e.g. in IF-ELSE
statements). The cu stack holds the cu identifiers
(cu_num) and corresponding statement instance
identifiers (st num) for c¢u instances currently "in
scope™. When the end of a statement which has embedded
statements is encountered (i.e. an end-verb or peried),
both the cu and statement stacks must, at Ileast, be

popped o©of statement related information {and possibly

1389

instances updated). It is possible to have many cu
instances from one statement "in scope™ at any one time
(e.g. greouped WHEN clauses of EVALUATE or SEARCH

statements).
4.3.5. METRIC CALCULATION AND THE SSCA,.

A worth-while feature cof any general static analysis
system is the collection of complexity metrics {Section
3.1.4.). In terms of the structure of such & system
(see Figure 3.4), actual metric calculaticon is carried
ount by the metric calculator tool. However, a SSCA can
support the producticon of some metrics by recording
certain source measurements during syntactic analysis
and storing these measurements in the SSCA DB. The
metric calculator 1is directly <considered in the
development of the prototype SSCA because a simplified
version of it is likely to be the next implemented tool
after the S8SSCA. This simplified metric calculator
should, at least, produce the standard metrics for a
program and 1its development would promote further
research in software complexity measures. Support for
production of even simple software metrics underlines
the.importance of attempting to quantify elements of
maintenance. Without measures for elements such as
software complexity it is not possible to effectively

budget for or manage resources in maintenance.

200

In this subsecticon, a small subset of the metrics in
Section 3.1 which appear relevant and suited to COBOL
programs are identified. Definitions of these metrics
for COBOL are also presented. Values of metrics from
this subset are suggested as part of the output of a
metric calculator. The implications of supporting
metric production in the 8SCA and SSCA DB are then

explored.

4.3.5.1. COBOL METRICS FOR THE METRIC CALCULATCR.

0f the large range of metrics given 1in Section 3.1,
only standard, instruction mix, program form and data
reference metrics will be considered. One of the
reasons for this is that many of the other metrics are
better supported by tools other than a syntactic
analyser. For instance, Piwowarski’s N and Harrison and
Magel’s scope number and ratio (Section 3.1.2.3) could
be derived from control flow (CF) graphs which are
products of program CF analysis in the "™Display and
Reporting Systems" set of tools (see Figure 3.4}. A
reason for excluding consideration of complex metrics
when implementing a SSCA system 1is that complete
support for their calculation would compromise the main
purpose of a 88CA which 1s to create a database of
general program information with links to the formatted

source code. Many complex metrics are composed of

201

lesser metrics whose «calculation may be supported
anyway. For example McTap’s S metric {Section 3.1.3.)

uses instruction mix and data reference metrics.

STANDARD METRICS

All standard metrics {(in one form or other) of Section
3.1.1. would be regquired output of any metric
calculator because they are the most well known
measures cf program complexity. Halstead’s E and
McCabe’s V{(G} have been suggested to be closely related
[CUR79] ([SCHB1] [SUN81] but later measurements discount
this when variations for size are removed [CRA85]. The
forms of metrics which appear useful for COBOL programs

are given below.

LOC : defined as the total number of non-blank lines
in the source c¢ode. Blank 1lines are ignored
because the COBOL programs being analysed have
already Dbeen formatted (i.e. the blank lines have
not been entered by any programmer and their
number is totally dependent on other elements in
the program, such as the number of divisions,
sections and paragraphs). LOC is composed of the
submeasures LOCD, LOCP and comments {see

submeasures definitions below).

202

VI(G) : Which corresponds the CYC-MID (Section

3.1.1.2.). See submeasures definitions below.

E, D and length : Halstead’'s effort, difficulty and
length measures (Secticn 3.1.1.3.). Sece

submeasures definitions below.

Submeasure definitions for the above metrics are

LOCD, LOCP : These are the number of non-blank {(non-
comment) lines in the PD (LOCP) and in all other
divisions (LOCD) . Two such measures seem
appropriate because of COBOL’s data definition /

procedure segregation.

Comments : The number of comment lines in the source

code.

n : The number of statements in the PD (equal to the

number of wverb occurrences).

e : The number of branch cccurrences in the PD.

For CQOBOL, CASE statements are the EVALUATE, GO TO
DEPENDING and SEARCH statements. The number of
branches in these statements equals the number of

alternatives.

nl : The number of unique operators in the PD.

n2

203

An operator is defined as a verb, phrase (set of
words), or individual token (word or punctuation}.
Individual tokens must not be operands (see
below), parts of phrases or commas. Commas appear
inappropriate to count as operators in COBOL as
they are often intsrchangeable with spaces.
Phrases are a problem to define as no standard set
of phrases exists for COBOL. Consider, for
instance, whether RECORD IS VARYING 1IN SIZE
identifies one phrase or a token (RECORD) and the
IS VARYING IN SIZE phrase. Bowever, phrases like
RECORD IS VARYING IN SIZE and RECORD VARYING are
synonymous even though their sub-tokens differ.
Hence, in any token measuring count, such as ni,
these phrases should be considered identical and
indivisible. Such phrases have been standardised
by the Format subsystem anyway. Appendix 4B
contains the standard formatting phrases used in

the prototype SSCA system.

The number of unique operands in the PD.

An operand is defined as a reference to a
variable, variable-88, file, identifier-1it,
file-variable or label (paragraph oxr section).
Paragraph and section references in COBOL are not

considered operators as it is difficult to use

204

them as substitutes for intrinsic procedures or
functions as parameters and local wvariables are
unavailable. Subscripting is considered to be an
extra occurrence of an operand although the
brackets are punctuation and hence, are operators.
Qualification of a data item may ke optional, so
when it 1s present, 1t seems appropriate to regard
qualification tokens as part of the reference to

an item (i.e. included in the operand instance).

N1 : The number of operator occurrence in the PD. See

operator definition above.

N2 : The number of operand occurrence in the PD,

Operands are defined above. It should be noted
that labels such a section and paragraph names are
not regarded as operand occurrences in keeping
with not counting declarations, although
references to these labels are operand coccurrences

{see operand definition above).

OTHER METRICS.

The submeasures defined above represent many measures
suggested in Sections 3.1.2.1, 3.1.2.2 and 3.1.2.4.
However, there are other instruction mix, program form

and data reference metrics or equivalent measures.

205

These are given Dbelow. A definition of equivalent
measures is exemplified by the numbers of PD statements
{(n) and IF statements (#IFs) being egquivalent to the
percentage of IFs metric identified by Zeolnowski and
Simmeons [ZOL8O0] .

- is an abbreviation for "number of"

#sections - sections in the PD

#paragraphs - paragraphs in the PD

#period occurrences - periods in the PD

#end-verb occurrences

average identifier name length -~ an identifier
is a program data item

#CALLs

#unique CALLS

#IFs

#outer IFs - i.e., #IFs which are unnested as
laid out in the program

#GOTOs

#label references - section and paragraph
references

#labels defined but not referenced

#MOVEs

#PERFORMs

variable spans ~ for particular variables
referenced in the PD

In the abkove list many measures have been omitted. This
was sometimes done because of duplication. For example,
#verb occurrences equals n, NCSL equals LOCD + LOCP,
and DSL equals DPOC (ignoring blank lines). Omissions
were also made because of non-applicability. For
example, #blank lines (an argument against blank line
measures is given in the LOC definition), average
#indentation spaces per 1line (same argument as for

#blank lines), average variable definitions per module

206

and percentage of symbolic constants ({symbolic
constants are not available in the reduced COBOL of
this thesis)}. For COBOL, terms such as function and
module, were taken include both sections and
paragraphs. Hence, FD (#function definitions) equals
#sections + #paragraphs, and the average length of
modules equals LOCP / #paragraphs for paragraphs and
LOCP / #sections for sections. $CF breaks (e of CYC-
MIN}) was left out as it should be approximately e from
Torsun and Al-Jarrah’s analysis of COBOL programs

[TOR79].

4.3.5.2. SSCA AND SSCA DB IMPLICATIONS.

Baving identified a set of desirable program measures,
it must be determined whether the current SSCA DB can
support calculation of all metrics in this set.
Calculation of the measures in terms of SSCA DB

information is given below.

LOCD ~ Unsupported {(although the number of lines in

the PD is known).

LOCP, Comments - Unsupported.

n ~ The number of Statement instances.

e — Can be derived from Condition—-usage instances.

207

nl, N1 - Unsupported.

n2, N2, variable spans — These can be derived from
Data-usage, Co—-data-used and Du-data-used
instances. {(Name lookup would require the use of
File, Variable, Variable-88, Identifier-Lit,

Section and Paragraph instances).

#sections — The number of Section instances.

#paragraphs ~ The number of Paragraph instances.

#period occurrences — Unsupported.

#end-verb occurrences -~ The number of Statement

instances with end-verbs.

average identifier length - Can be derived from File,
Variable, Variable-88, Identifier-TLit, Section and

Paragraph names.

#CALLs, #GOTOs, #1Fs, #MOVEs, #PERFORMs -~ The number

of Statement instances with a particular verb.

fouter IFs - Can be derived from IF Statement and

Paragraph instances.

#label references, #labels defined but not
referenced - These <¢an be derived from Section,

Paragraph and Condition usage instances.

208

#unique CALLs - Can be derived from CALL Statement,

Data-usage and Du-data-used instances.,

Unsupported metrics are LOCD, 1LOCP, comments, nl, N1
and #period occurrences. Information for these metrics
lies within the formatted source code but not currently
in the SSCA DB. For all of these metrics except LOCD
and comments not in the PD, a useful breakdown of their
values 1s given by PD paragraph. This suggests the
extra metric attributes of locp, pa_comments,
u operators, operators, and periods for the Paragraph
relaticn. LOCD and the number of comment lines in the
ID, ED and DD suggest metric attributes for either the
Program or Scurce relations. The Source relation was
chosen to hold the attributes 1locd and comments.
Definitions for the metric attributes above are gilven
in the entities of Appendix 4A. These metric attributes
are supported in the SSCA by extra processing in the
Analyse subsystem. Collection of metric information is
carried out in the printline and yylex procedures of
both Analyserl and Analyser? and the yyparse procedure

of AnalyserZ.

208

CHAPTER 5. CONCLUSIONS.

This final chapter presents conclusions about the
aspects of software maintenance and maintenance support
examined and discussed 1in earlier chapters. These
conclusions are divided into sections on maintenance in
general, software metrics, maintenance support through
tools, the prototype SSCA system, and a general

conclusion.

5.1. MAINTENANCE IN GENERAL.

The main themes of Chapter 2 are the definition of

maintenance and an outline of its perceived problems.

Section 2.1 identifies & generally accepted definition
for maintenance although it seems toc broad to be very
useful. This is especially the case when attempting to
classify system extensions. An extension to an existing
application can be regarded as new development, or
enhancement, or adaptive maintenance. However,
modifications to existing parts of an application to
cater for an extension would appear from definitions to
be adaptive maintenance. Section 2.2 examines
difficulties with subcategorisation of maintenance.

There seems to be a general lack of solid and useful

210

definitions throughout the maintenance area.

Because of its position at the end of the system life
cycle, maintenance may dinherit many problems from
development. Obvious examples are poor application
documentation and bugs in programs., Less clear are the
affects of ill-trained users and poor program design.
More survey evidence is required about these factors.
This evidence c¢ould provide quantitative benefit
information for development techniques such as
structured design. At the moment, factors like
documentation are known to affect maintenance costs but
no information such as, "every X dollars spent on
development documentation will, on average, save Y

deollars off the maintenance budget"™ is available.

In additicen te problems caused by the lack of clear
definitions and by external 4influences, there are
certainly internal problems in most maintenance tasks
related to actually modifyving software. These problems
are illustrated by the difficulty in formulating a set
of steps to aid a maintainer in modifying software (see
Section 2.4). A clear understanding of the program to
be changed, and to a lesser extent of the application,
are definite factors affecting success 1in program
modification. Even with a complete knowledge of a

program’s purpose and design, the design of

211

modifications is affected by the role and goals of
program maintenance as perceived by the maintainer. If
a particular program 1is expected to have a remalining
operational life of only & months, then the goals of
maintenance on this program might exclude modification
design to minimise structural decay and might
concentrate on development of an effective, guickly
implemented and more easily verified program patch. For
programs which are expected to have much longer life-
times and survive numerous modifications, it is
suggested 1in this thesis that the goal of preserving
good design principles during maintenance would usually
outway the short term goal of implementing
modifications to solve a perceived prokblem in the
shortest possible time. However, there 1s 1little
evidence available to support or contradict this

hypothesis.

Overall, in almost all aspects of maintenance, more
research 1s required. However, there are overlaps with
areas such as development methodologies and tools,
programming language design, documentation systems and

DP management technigques.

212

5.2. SOFTWARE METRICS.

Investigations into static measures of software
complexity have a part to play in identifying and
quantifying factors critical to maintenance
productivity. It 1is c¢lear from Section 3.1 that a
massive number o¢f complexity metrics have been
proposed. What is required is large numbers of
evaluations of, at least, a small group of metrics.
These metric wvalues, together with actual maintenance
costs and size / wvolume values for the maintenance
tasks being performed, would allow some determination
of what factors influence productivity. Static
complexity metrics are considered to be measures of the
difficulty in dealing with a piece of software.
However, measures for the extent of changes to be made
and additional code t¢ be created in a maintenance task
are few. After modification, task sizes could be
ascertained by counting the number of lines 1in the
modified program which are different form the original.
However, for newly added functions and procedures,
their complexity metrics might be a better indication
of coding effort. These measures may be useful for
identifying productivity factors but, in terms of cost
estimation, other task size / volume metrics which can

be calculated earlier in a maintenance task are

213

required. Hopefully, the productivity factors

themselves will suggest such metrics.

Complexity metric research would seem to have a long
way to go before its products are suitable for cost
estimation in maintenance. Re-iterating the
suggestions from Section 3.1.4, this research 1is
supported by compilers or specific tools which
automatically evaluate a set of complexity metrics. The
SSCA system whose development 1is summarised in this
thesis is a first step toward a metric calculating tool

as well as several other software tools.

5.3. MAINTENANCE SUPPORT THROUGH TOCLS.

Observations from Section 3.3.2 indicate there 1s a
need for a more integrated approach to maintenance
support tools. An 1integrated maintenance support
environment is the 1ideal but how it should be

constructed is largely unknown.

Application documentation is most often used in the
operational and maintenance areas of the system life
cycle and so a complete maintenance support environment
may actually contain a documentation support system. At
the very least, portions of a maintenance environment

will be closely involved with interrogating and

214

updating application documents. A clear conclusion 1is
that documentation and maintenance support are inter-
related and, in many areas, overlap. In wider
perspectives, Anderson (AND81] and Saib [SAIB3]
interweave an application documentation system with a
combined development and maintenance support

environment.

with reference to the integration of maintenance
support tools, the contention of this thesis is that a
data base, such as the SSCA DB, is a reasonable method
of linking some tools which manipulate or use source
code. The centralising and formalising of access to
source code allows these tocls to achieve a higher
degree of specialisation. Supporting a toolbox system
based arcund static analysis of source code appears
well-founded as the logic within source programs is
fundamental to computer systems and maintenance and the
programmer or maintainer’s wview of this code is
primarily static in nature (interactive debugging being
an exception). A consequence of the source code
analysis approach, at least 1in a prototype toolbox
system, is the production of tools for a specific
preogramming language. COBOL was chosen as the language
whose programs would be analysed in the static analysis

system of which the SSCA and SSCA DB are components.

215

Building tools for an archaic (in computing time-
scales) programming language could be considered as
similar to installing plumbing in the pyramids.
However, COBOL is still extensively used today and, by
the shear veolume of current code, will be arcund for at
least the next 10 vyears. Production of commercial
software tools for COBOL is a method of speeding up the
diffusion rate of new scoftware engineering innovations.
The diffusion rate is expected to slow through the

1980s according to Morrissey and Wu [MOR79].

Most suggested maintenance toocls aid maintainers teo
understand aspects of an application system. Most
research in tool production must thus consider how
maintainers (tocl-users) form an understanding of
software and perform modifications on it. Comprehension
of common methods of software understanding and
modification in any programming language provide
valuable 1input into areas such as preduction of 4GLs
and support environments. If maintenance tools are in
use in an application system written in so-called 3GLs,
this should force any suggested replacement or partial
replacement for these 3GLs to provide at least as much
maintenance support as currently offered. Tool
production for current languages thus indirectly

enhances future maintenance facilities.

216

5.4. THE PROTOTYPE SSCA SYSTEM.

5.4.1. SSCA DEVELOPMENT.

The method used for designing the SSCA in Section 4.3
was Dbasically a melding of the actions which needed to
be carried out and the tools available for the
development. Clear objectives of the SSCA in terms of
data base information were defined in Section 4.2. The
tools used include simple input / output (i/0)
pipelines, the AWK and C programming languages and YACC
and LEX preprcocessors. All these tcools proved extremely

useful in speeding up the implementation process.

For the use of AWK and i/o pipelines, there was a small
price to pay. AWK is line orientated and consequently
has trouble identifying sequences of tokens broken by
blank or comment 1lines. I/0 pipelines had the most
effect on system design. Simple i/o pipes implement
sequential data flows only. Breaks in the sequential
nature of the data flows are implemented as data stores
such as SSCA¥#¥ or SSCA DB (see Figures 4.3.1 to 4.3.3).
Data flow branching c¢ould have been implemented by
sending, waiting and receiving mechanisms in filters

but this is complicated and error-prone.

217

When confined to sequential filtering {except for data

stores), the main subsystem design decision was which

actions to group in which filters so that

a)

b}

c)

Either simple i/o piping or data stores (files or
data bases} were the communication c¢hannels

between filters.

Processing was simplified within filters {(e.g. if
indicator fields of lines are checked in a filter,
some comment and continuation actions are

relatively simple to implement as well)

Each filter has a reasonably logical set of

actions.

There is also an order among some actions which must be

maintained. For example, the two actions below regroup

tokens broken by line continuation, but they must be

carried out in the order 1 then 2.

1}

2)

removal of trailing spaces from lines not

containing unfinished strings.

removal of columns 1 to 7 and proceeding spaces

(and '™ if continuing a string) from continuation
lines, and linefeeds from all lines except
division, section, paragraph headings and

comments.

218

Problems encountered when developing the SSCA system
suggest alternative methods of storing source code and
comments. From Section 4.3, the comments and layout
(e.g. 80 character line orientation) of programs cause
particular problems for tools which manipulate source
code. Even 1in free~format programming languages (e.g.
Pascal), source code tends to be commented and laid out
for clarity when displayed on 24 line by 80 character
screens or 132 character per 1line printers. For
software tools which need t¢ recognise elements of
source code or automatically rewrite portions of
programs, it seems useful to store a program {(in a free
format language) as a set of statements delimited by
linefeeds ({(with no maximum line length}. Statement
nesting would needed to be indicated, probabkly by using
control characters. Comments could be mapped onto a
set of statements using line numbers, Ideally program
comments would be stored separately in the application
documentation system. Isclation of comments from
program code has advantages for comment update and
integration with other application documentation. To
view, print or modify source code, the formatting
services of a language-orientated editor {LOE) would be
required to structure source information and comments
for display on a particular device. Allowing higher

program views (e.g. structure charts) rather than Jjust

219

formatted statements, could also be a feature of the
LOE. The context editor EDIERE (one of the SAMOS tools
[EBEB0O]) has these facilities for c¢onventioconal source
code. There are overheads with source code / comment
separation especially in terms of pointer adjustment
for comments when source statements are added, deleted

or moved.,
5.4.2. USE Of THE SSCA DB.

This topic is best summarised using some simple
examples. Four gquestions given in Sectilon 4.2.2 were
suggested as enquiries a maintainer may make. Partial
answers to the first twe questions formulated as QUEL
(INGRES’s interactive enquiry language) dgueries are

given below.

QUESTION 1. Part of this question translates as '"given
a section sname, what are its paragraphs ?". The answer
is given by

range of s is section

range of p is paragraph

retrieve (p.pa name)

where p.pa_section = s.se num
and s.se name = "sname"

QUESTION 2. "Given a paragraph pname, at what lines in
the source code is it directly PERFORMed or gone to 2"

is answered by

range of p 1s paragraph
range of ¢ is cond usage

220

range of s is statement
retrieve (s.st positiocn)
where s.st num = c.cu_statement
and p.pa_name = "pname"
and (c.cu branch a = p.pa num

or c.cu_branch b = p.pa_num)
Another part of question 2 was the identification of
paragraphs and sections dropped into (possibly from GO
TOs to earlier paragraphs/sections). A partial answer
for paragraphs is to identify paragraphs for which the
previous paragraph is gone to and nce unconditioned GO
TOs, STOP RUNs or EXIT PROGRAEMs exist in this previous

paragraph. The query is

range of p is paragraph
range of g is paragraph
range of c is cond usage
range of s is statement

range of t is statement
retrieve (q.pa name)
where p.pa_num = g.pa num - 1
and c.cu branch_a = p.pa_num
and c¢.cu statement = t.st num and t.verb = "GO TO"
and any{s.st_ stgroup by p.pa stgroup
where s.st stgroup = p.pa stgroup and
(s.verb = "GO TO" or s.verb = "STOP RUN"
or s.verb = "EXIT PROGRAM")) = 0

The solution above takes no account of the previous
paragraph being dropped inte itself and conditioned
GOTOs or STOP RUNs do not necessarily mean the next
paragraph c¢an be dropped into. For example, the
statement below has the same branching effect as a
unceonditional GOTO.
IF A =B
GO TO C

ELSE
GO TO D.

221

The last query alsc shows a simulation of negated
existential quantification in QUEL using the aggregate

function "any".

The QUEL queries above were presented as examples to
show that SSCA DB information is useful when accessed
by an interactive enguiry system. These queries could
have Just as well have been EQUEL statements. However,
it can be seen that most useful dinteractive enquires
are very complex and cumberscome to type. For a
maintainer, the best solution in the interactive
environment is a preformulated library of queries from
which he can select and then invoke. Such a selection
process is currently possible in QUEL through the

editing mechanism for queries.

Question 1 was actually stated in Section 4.2.2. as
"what 1is the static hierarchical structure of the PD
?". This suggests that ordered lists of sections and
paragraphs are not what was requested. Hierarchical
diagrams would show the static relationships much
better. Similarly, control flow paths indicated in the
answers to question 2 are best described as a set of
digraphs. These observations imply that the enquiry
interface should really only be a method for tools
(including display and report tools) to retrieve SSCA

DB information. In a complete static analysis system,

222

maintainers should interact exclusively through the

user interfaces of tools.

When running the SSCA system to build the SSCA DB it is
noted that appending of instances of relations one by
cne is very time consuming in INGRES. It would be
possible, 1in some cases, to build an intermediate file
of instances and copy them into the data base all at
once. This would speed up data base creation. Speed and
constraints in the INGRES DBMS, such as the need to use
strange methods te simulate negated existential
quantifiers, indicate that other DBMSs for the SSCA DB
would be worth exploring 1in later SSCA systems. The
DBMS chosen could again be relaticonal or could be a
network system so long as reasonable enquiry system was

supported (as concluded in Section 4.2.3.1.).

5.5. GENERAL CONCLUSICN.

The development of a prototype SSCA system has shown
that a data base of program information is a feasible,
practicable and worthwhile foundation for a basic set
of maintenance tools. Enhanced access to program
information encourages development of further
components of the Dbasic toclset and other related

tools.

223

APPENDIX 1 - THE PURGE PROGRAM AND ITS MODIFICATIONS

Source File: <8TUD2>CS302X>MISC>WRITEUP>PURGE.CBL
Compiled on: FRI, AUG 22 13986 at 14:30
by: CBL rev 19.3.5 06/12/85.09:38
Options are: LISTING BINARY OPTIMIZE U(PPER)CASE
FORMATTED DISPLAY

*
R SRS S SR T ERETEREEE RS EEEESLEEE LTS ESEEET TR LR EEEEEEEEE]

* PURGE Program from "Principles of Program Design,*
* page 135, problem 11 by M.A., Jackscon [JACT75] *

LR R EEE R L SR ESEEE S SR E SRS SRRS S AEE SRS EEERESEE SRS SRS AR T
*

Identification Division.
Program—id. PURGE.
Environment Division.
Input-Qutput Section.
File-Control.
Select infile assign to PFMS.
Select ocutfile assign to PFMS.
Select errorfile assign to PFMS.
Data Division.
File Section.
FD infile Compressed
value of file-id is "infile",
01 inrec pic x (80},
FD outfile Compressed

WO D 0 Oy LRl L DD

Y e
OWLO-dR Wb Wi EO

21 value of file-id is "outfile".

22 01 outrec pic x(80).
23 FD errorfile compressed

24 value of file-id is "errorfile™,

25 01 errorrec pic x(80}.
26 *

27 Working—Storage Section.
28 * file record structures

29 01 recl.

30 02 rl-branch pic 8599,

31 02 rl-type pic 9999.

32 02 rl-info pic x(72).
33 01 rec?Z.

34 02 r2-branch pic %999,

35 02 r2-type pic 9999,

36 02 r2-info pic x(72).
37 01 rec3,

38 02 r3-branch pic 9998.

39 02 r3-type pic 98859,

40 02 r3-info pic x{(72).

41 01 error-heading.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
10
71
12
73
74
15
76
77
78
79
80
81
B2
83
84
85
86
87
88
89
90
91
82

(2 e-~heading

value " ERRCOR DATA FOR

02 e-~heading-branch
02 filler
* pther variables
01 end-of-input-switch
88 end-of-input

AR SR AL LR EERESEELMEEREEESELAEEEESEEEEEREESEEEE LSS SRR R B SR

Procedure Division.
*
Main.
perform Start-para.
read infile into rec3
at end

pic x

224

pic x(30)
BRANCE~-NUMBER ".
pic 9899,
plic x(46).

value "F",
value "T".

move *T" to end-of-input-switch.

if not end-of-input
perform Get-2-cards
perform Main-loop

until rl-branch =

perform Finish-para.
stop run.
*
Start-para.
open input infile.
open output outfile,
open output errorfile.
*
Finish-para.
close infile.
close ocutfile.
close errorfile.
*

Main-loocp.

if rl-branch not = r2-branch
perform Branches-not-equal

else

if ri-branch = r3-branch

0.

perform More-than-2-cards
perform Get-Z-cards

else

if not (rl-type numeric and rZ2-type numeric)

perform Type-problem

perform Get-2-cards

else

if not {rl-type < r2-type)
perform Type-problem
perform Get-2-cards

else

perform Print-good-set
perform Get-2-cards.

93

94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

*

*

*

*

*

*

*

Branches—not-equal.

perform Print-error-heading-card.
move recd to recl.
move rec3 to rec2,
if not end-cf-input
perform Read-rec3.

More-than—-2-cards.

perform Print-error-heading-card.
write errorrec from rec2.
write errorrec from rec3.
perform Error-branch-loop
until rl-branch not = r3-branch.

Type-problem.

perform Print-error-heading-card.
write errorrec from rec2,

Error-branch-loop.

read infile into rec3
at end

move "T" to end-of-input-switch.

if end-cf-input
move zerces to recl
else
if rl-branch = r3-branch
write errorrec from rec3i.

Get—-2-cards.

move rec3 to recl.
if not end-of-input
perform Read-recZ
if not end-of-input
perform Read-rec3,

Read-rec?2.

read infile into rec?
at end

move "T" to end-of-input-switch.

if end-cf~input
move zeros to rec?.

Read-rec3.

read infile into rec3
at end

move "T" te end-of-input—-switch.

if end-of-input
move zeros to recil.

Print-good-set.

write outrec from recl.

225

144
145
146
147
148
149
150

*

write outrec from rec?.

Print-error-heading-card.
meve rl-branch to e-heading-branch.
write errorrec from error-heading.
write errorrec from recl.

226

Source File:

Compiled on: FRI, AUG 22 19886 at 14:29
by: CBL rev 19.3.5 06/12/85.09:38

Options are:

WO 00 - O N W G D

*

FORMATTED DISPLAY

<STUDZ2>CS302X>MISC>WRITEUP>P-Al.CBL

LISTING BINARY OPTIMIZE U(PPER)CASE

227

EEFEE R A RS R AR SRR SRS S EEE SRR EEEE AR SR EEEE LRSS &SRS SR L]

PURGE-A1 Program - handles the first modification*

*
*

t¢o PURGE

*

ISR A E R A SR AL RS AR R L A a R R RS St AR R RS R EAE RS LR S A S LSRR S SRS

*

*

Identification Division,.
Program—-id. PURGE-Al.
Environment Division.
Input-Output Section.
File~Control.

Select infile assign to PFMS.
Select outfile assign to PFMS.
Select errorfile assign to PFMS.

Data Division.
File Section.

FD infile Compressed

value of file-id is "infile".

01 inrec pic
¥FD outfile Compressed

value of file-id is "cutfile™.

01 outrec pic
FD errcorfile compressed

value of file-id is "errorfile".
01 errorrec pic

Working—Storage Section.

* file record structures

01 recl.
02 ri-branch pic 9989.
02 ri-type pic 9899.
02 rl-info pic x(72).
01 rec2.
02 r2-branch pic 8999.
02 r2-type pic 9995.
02 r2-info pic x({(72).
0l rec3.
02 r3-branch pic 9899.
02 r3-type pic 9989.
02 r3-info pic x(72).
01 error-heading.
02 e-heading pic x(30)
value " ERROR DATA FOR BRANCH-NUMBER ™.
02 e-heading-branch pic 9999.
02 filler pic x(46).

x (80} .

x(80).

% (80} .

228

46 * other variables
47 01 end-of-input-switch pic x wvalue "F".
48 88 end-of-input value "T".

49 IR S S E RS S EEESAEE RS E S S E S ES LSS SRR LSS EEEEESEEEEEEEEE]

50 Procedure Division.

51 %

52 Main.

53 perform Start-para.

54 read infile into rec3

55 at end

56 move "T" to end-of-input-switch.
57 if not end-of-input

58 perform Get-2-cards

59 perform Main-loop

60 until ri-branch = 0,

61 perform Finish-para.

62 stop run.

63 *

64 Start-para.

65 open input infile.

66 open output outfile.

67 open output errorfile.

68 *

69 Finish-para.

70 close infile.

71 close outfile.

72 close erroriile.

13 %

74 Main-loop.

75 if rl-branch not = r2-branch

76 perform Branches-not-equal

77 else

78 if rl-branch = r3-branch

79 perform More-than-2-cards

80 perform Get-Z-cards

81 else

82 if not (rl-type numeric and r2-type numeric)
83 and not {rl-type = "MOD1" and
84 r2-type = "MOD1")

85 perform Type-problem

86 perform Get-2-cards

87 else

88 1f not{rl-type < rzZ-type) and
89 not {(rl-type = "MOD1" and
90 r2-type = "MOD1")

91 perform Type-problem

92 perform Get-2-cards

93 else

94 perform Print-good-set
85 perform Get-2-cards.

9¢ *

97

98

93

100
101
102
103
104
105
106
107
108
108
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
128
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

*

*

*

*

*

*

*

229

Branches—-not-equal.

perform Print-error-heading-card.
move rec?Z to recl.
move rec3 to rec?z.
if not end-of-input
perform Read-rec3.

More—~than-~2-cards.

perform Print-error-heading-card.
write errorrec from recZ.
write errorrec from rec3.
perform Error-branch-loop
until rl-branch not = r3-branch.

Type-problem.

perform Print-error-heading-card.
write errorrec from rec2.

Error-branch—-leoop.

read infile into rec3
at end
move "T" to end-of-input-switch.
if end-of-input
move zeros to recl
alse
if rl-branch = r3-branch
write errorrec from rec3.

Get-2-cards.

move rec3 to recl.
if not end-of-input
perform Read-rec?
if not end-of-input
perform Read-rec3.

Read-rec?.

read infile into rec?2
at end
move "T" to end-of-input-switch.
if end-of-input
move zeros to rec?.

Read~rec3.

read infile into rec3
at end
move "T" to end-of-input-switch.
if end-of-input
move zeros to rec3.

Print-good-set.

write outrec from recl.

230

148 write cutrec from rec2.

149 *

150 Print-error-heading-card.

151 move rl-branch to e-heading-branch.
152 write errorrec from error-heading.
153 write errorrec from recl,

154 *

231

Source File: <STUDZ>CS302X>MISC>WRITEUP>P-AZ.CBL
Compiled on: FRI, AUG 22 1986 at 14:30

by: CBL rev 19.3.5 06/12/85.09:38

Options are: LISTING BINARY QOPTIMIZE U(PPER)CASE

(o0 o U e MU S IV SV AN

FORMATTED DISPLAY

*
RS AR SRS S LR A ERS RS SRS R EEEEE SRS SR S-S E R RS SRR SRR RS RS

* PURGE-AZ Program - handles the first modification*
* to PURGE *

R ERE RS SRR EEA SRR ER LR AL RS EE R SR LR RS EE S &SRR R SR
*

Identification Division.
Program-id. PURGE-AZ,
Environment Division.
Input-Output Section.
File-Control.
Select infile assign to PFMS.
Select outfile assign to PFMS,
Select errorfile assign to PFMS,
Data Division.
File Section.
FD infile Compressed
value of file-id is "infile".
01 inrec pic x({80).
FD ocutfile Compressed
value of file-id is "outfile™.
01 outrec pic x (80},
FD errorfile compressed
value of file-id is "errorfile™.
01 errorrec pic x(80}.
*
Working-Storage Section.
* file record structures

01 recl.
02 rl-branch pic 9989,
02 rl-type pic 9999.
02 ri-info pic x(72).
01 rec2,
02 rz2-branch pic 9999,
02 r2-type pic 8999,
02 r2-info pic x(72).
01 rec3.
02 r3-branch pic 9898,
02 r3-type pic 9999,
02 r3-info pic x{72}.
01 error-heading.
02 e-heading pic x(30)
value " ERROR DATA FOR BRANCH-NUMBER ".
02 e-heading-branch pic 9%99,

02 filler pic x{46).

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
17
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
86

232

* other variables
01 end-of-input-switch pic x wvalue "F".
88 end-of-input value "T".
R EE SRS R L ERELEERESEELEEEEEEEE S E AR ESR RN SR EEESESEEEEE]

Procedure Division.
*
Main.
perform Start-para.
read infile into rec3
at end
move "T" to end-of-input-switch.
if not end-of-input
perform Get-2-cards
perform Main-loop
until rl-branch = 0.
perform Finish-para.
stop run.
*
Start-para.
open input infile.
open output cutfile,
open output errorfile.
*
Finish-para.
close infile,
close outfile,
close errcorfile.
x
Main-loop.
if rl-branch = r2-branch and
ri-branch not = r3-branch
and rl-type = "MOD1" and r2-type = "MOD1"
perform Print-good-set
perform Get-2-cards
else
if rl-branch ncot = rZ2-branch
perform Branches—not—equal
else
if rl-branch = r3-branch
perform More—-than-2-cards
perform Get-2-cards
else
if not (rl-type numeric and
r2-type numeric)
perform Type-problem
perform Get-—-Z-cards
else
if not(rl-type < rZ-type)
perform Type-problem
perform Get-2-cards
else

97

38

99

100
101
102
103
104
105
106
107
108
108
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
1293
130
131
132
133
134
135
136
137
138
138
140
141
142
143
144
145
146
147

perform Print-good-set
perform Get-Z-cards.
*
Branches-not-equal.
perform Print-error-heading-card,
move rec?2 to recl.
move recl to rec?.
if not end-of-input
perform Read-rec3.
*
More-than-2Z2-cards.
perform Print-error-heading-card.
write errorrec from rec2.
write errorrec from rec3.
perform Error-pbranch-loop
until rl-branch not = r3-branch.
*
Type-problem.
perform Print-error-heading-card.
write errorrec from recZ.
*
Error-branch-loop,
read infile into rec3
at end
move "T" to end-of-input-switch.
if end-of-input
move zeros to recl
else
if ri-branch = r3-branch
write errorrec from rec3.
*
Get-2-cards.
move rec3 to recl.
if not end-ocf-input
perform Read-rec?
if not end-of-input
perform Read-rec3,
k3
Read-rec2.
read infile into rec2
at end
move "T" to end-of-input-switch.
if end-of-input
move zeros to rec2,
*
Read-rec3.
read infile into rec3
at end
move “"T" to end-of-input-switch.
if end-of-input
move zeros to rec3.

233

234

148 *

149 Print-good-set.

150 write outrec from recl.

151 write outrec from rec2.

152 *

153 Print-error-heading-card.

154 move rl-branch to e-heading-branch.
155 write errorrec from error-heading.
1586 write errorrec from recl.

157 *

Source File:

235

<STUD2>CS5302X>MISC>WRITEUP>P-B1.CBL

Compiled on: FRI, AUG 22 1986 at 14:42
by: CBL rev 19.3.5 06/12/85.09:38

Options are:

WLWXO-dJMmndioNE

FORMATTED DISPLAY

*

LISTING BINARY OPTIMIZE U(PPER)CASE

IS S S S SR ESSESES SRS SRR LERSEESEEESEEEEL S SRR EREEEREE SR

* PURGE-Bl Program — handies the second
* medification to PURGE

IR EESTER ST A EEETESEEESELEEES SRS RS EESEE SRS LR RS SRS E ST Y

*

Identification Division,
Program-id. PURGE-BI1.
Environment Division.
Input-Output Section.
File-Control.
Select infile assign to PFMS.
Select cutfile assign to PFMS.

Select errorfile assign to PEMS.

Data Division.
File Section.
FD infile Compressed
value of file-id is "“infile".
01 inrec
FD outfile Compressed
value of file-id is "outfile™.
01 outrec
FD errorfile compressed

pic =(80).

plic x{80}.

value of file-id is "errorfile".

01 errorrec
*
Working—-Storage Section.
* file record structures
01 recl.
02 rl-branch
02 rl-type
02 ri-info
01 rec2.
02 rZ2-branch
02 r2-type
02 r2-info
01 rec3.
02 r3-branch
02 r3-type
02 r3-info
01 errcr—heading.
02 e-heading
value " ERROR DATA FOR
02 e-heading-branch
0z filler

pic x(80).

pic 9%99.
pic 9999,
pic =(72).

pic 9999.
pic 9999.
pic x(72).

pic 9999%.
pic 8999.
pic x(72).

pic x(30)

BRANCH-NUMBER ™.

pic 999%9.
pic x(46).

*
+*

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
63
70
71
72
73
74
75
76
17
78
738
80
81
82
83
84
85
86
87
88
89
30
91
82
93
94
95
g6

236

* other variables
01 end-cf-input-switch pic x wvalue "F",
88 end-of-input value T,
A A S L RS LA S EEEERESSEEEEESEEEEEEEEREEREEEEEREESEEEEESERE L

Procedure Division.
*
Main.
perform Start-para.
read infile into rec3
at end
move "T" to end-of-input-switch.
if not end-of-input
perform Get-2-cards
perform Main-loop
until rl-branch = 0.
perform Finish-para,
stop run.
ke
Start-para.
open input infile.
open output ocutfile,
open output errorfile.
*
Finish-~para.
close infile,
close cutfile.
close errorfile.
*
Main-loop.
if ri-branch not = rZ-branch andg
rl-type not = "MOD2"
perform Branches-not-equal
else
if rl-branch = r3-branch
perform More-than—-2-cards
perform Get-2-cards
else
if not {rl-type numeric and r2-type numeric)
and rl-branch = r2-branch
perform Type-problem
perform Get-2-cards
else
. if not{rl-type < r2-type)
and rl-branch = rZ-branch
perform Type-problem
perform Get-2-cards
else
if ri-type not = "MOD2"
perform Print-good-set
perform Get-2-cards
else

87

S8

39

100
101
102
103
104
105
106
107
108
108
110
111
112
113
114
115
116
117
118
118
120
121
122
123
124
125
126
127
128
128
130
131
132
133
134
135
136
137
138
138
140
141
142
143
144
145
146
147

*

*

*

*

kS

*

*

write outrec from recl

move rec?2 to recl

move rec3 to rec2

if not end-of-input
perform Read-rec3.

Branches-not—equal.

perform Print-error-heading-card.
move recZ to recl,.
move rec3 to rec?2.
if not end-of-input
perform Read-rec3.

More-than-2-cards.

perform Print-error-heading~card.
write errorrec from rec?.
write errorrec from rec3.
perform Error-branch-loop
until ri-branch not = r3-branch,

Type-problem,

perform Print-error-heading-card.
write errorrec from rec2.

Error-branch-loop.

read infile into rec3
at end
move "T" to end-of-input-switch.
if end-cf-input
move zeros Lo recl
else
if ri-branch = r3-branch
write errorrec from rec3.

Get-2-cards.

move rec3 to recl.
if not end-of-input
perform Read-rec?
if not end-of-input
perform Read-rec3.

Read~rec?Z.

read infile into rec?
at end
move "TY to end-of-input-switch.
if end-of-input
move zeros to recZ.

Read-rec3.

read infile into recl
at end

237

148
149
150
151
152
153
154
155
156
157
158
159
160

move "T" teo end-of-input-switch.

if end-of-input
move zeros to recl.
*
Print~good~set.
write outrec from recl,.
write outrec from rec2,
*
Print-error—-heading-card.
move rl-branch to e-heading-branch.
write errorrec from error—-heading.
write errcrrec from reg¢l,

238

239

Source File: <STUDZ2>CS302X>MISC>WRITEUP>P-B2.,CBL
Compiled on: FRI, AUG 22 1986 at 14:43
by: CBL rev 19.3.5 06/12/85.09:38
Options are: LISTING BINARY OPTIMIZE U(PPER}CASE
FORMATTED DISPLAY

1 *

2 kA hhk A A A A A A AL TR AT A LA R A AT A bk bk dd b hdhhbdd bbbk ks
3 * PURGE-BZ Program - handles the second *
4 * modification to PURGE *
5 EE R S EE S EEEEESEE SRR S EEEEEEE LS EEERESEES SRS SRS LIS R &K R
6 *

7 Identification Divisicn.

8 Program—id. PURGE-B2.

9 Environment Division,

10 Input-Output Section,

11 File~Control.

12 Select infile assign to PFMS.

13 Select outfile assign to PFMS.

14 Select errorfile assign to PFMS.

15 Data Division.

16 File Sectiocn.

17 FD infile Compressed

18 value of file-id is "infile™.

19 01 inrec pic = (80).

20 ¥D outfile Compressed

21 value of file-id is "outfile™.

22 01 outrec pic x{80).

23 FD errcrfile compressed

24 value of file-id is "errorfile".

25 01 errorrec pic x(80).

26 * .,

27 Working-Storage Section.

28 * file record structures

29 01 recl.

30 02 ri-branch pic 9999,

31 02 rl-type pic 9999.

32 02 rl-info pic x(72}.

33 01 recz.

34 02 rZ-branch pic 9999.

35 02 r2-type pic 8999,

36 02 r2-info plic % (72).

37 01 rec3.

38 02 r3-branch pic 9999,

39 02 r3-type pic 9989.

40 02 r3-info pic x(72).

41 01 error-heading.

42 02 e-heading pic x{(30)

43 value " ERROR DATA FOR BRANCH-NUMBER ".
44 02 e—heading-branch pic 8999,

45 02 filler pic x(46).,

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
80
91
82
93
84
85
96

240

* pther variables
01 end-of-input-switch pic x wvalue "F".

88

end-of-input value "T".

R A SR RS AL SR A RS RRRERRLELESEEEREEREEEEEERER SR SRR R

Procedure Division.

*

*

*

*

*

Main.

perform Start-para.
read infile into rec3

if n

at end
move "T" to end-of-input-switch.
ot end-of-input
perform Get-2-cards
perform Main-loop
untll rl-branch = 0.

perform Finish-para.
stop run.

Start-pa

ra.

open input infile.

open
open

output ocutfile.
output errorfile.

Finish-para.

clos
clos
clos

Main~loco

e Infile.
e oputfile.
e errorfile,

P.

if rl-branch not = rZ2-branch

else

Branches
if r

else

perform Branches-not-equal

if rl-branch = r3-branch
perform More-than-2-cards
perform Get-2Z-cards
else
if not (rl-type numeric and r2-type numeric)
perform Type-problem
perform Get-2-cards
else
if not (ril-type < r2-type)
perform Type-problem
perform Get-2-cards
else
perform Print-good-set
perform Get-2-cards.

-not-equal.
l1-type = "MOD2"
write outrec from recl

87

98

29

100
101
102
103
104
105
106
107
108
103
110
111
112
113
114
115
116
117
118
113
120
121
122
123
124
125
126
127
128
128
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

*

*

*

*

*

*

*

perform Print-error~heading-card.
move rec?2 to recl.
move rec3 to rec2.
if not end-of-input

perform Read-rec3.

More-~than—-2-cards.
perform Print-~error-heading-card.
write errorrec from rec?.
write errorrec from rec3.
perform Error-branch-loocp
until rl-branch not = r3-branch.

Type-problem.
perform Print-error-heading—card.
write errorrec from rec2.

Error-branch-loop.
read infile into rec3
at end

move "T" to end-of-input-switch.

if end-of-input
move zeros to recl
else
if rl-branch = r3-branch
write errcorrec from rec3.

Get-2-cards,
move recl3 to recl.
if not end-of-input
perform Read-rec2
if not end-of-input
perform Read-rec3.

Read-rec?2.
read infile into rec?
at end

move "T" to end-of-input-switch.

if end-of-input
move zeros to rec?.

Read-rec3.
read infile into rec3
at end

move "T" to end-of-input-switch.

if end-of-input
move zeros to recl,

Print-good-set.
write outrec from recl.
write outrec from rec?z.

241

242

148 *

143 Print-error-heading-card.

150 move rl-branch to e-heading-branch.
151 write errorrec from error-heading.
152 write errorrec from recil.

153 =

Source File:

Compiled on: FRI, AUG 22 18986 at 14:43
by: CBL rev 138.3.5 06/12/85.09:38

Options are:

W -l N k-

I T R e el =
COWVWD~JOUBRWNHO

BB B BRI B
oy LA s) P

27
28
29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45

FORMATTED DISPLAY

*

<STUD2>CS302X>MISC>WRITEUP>P-B3.CBL

LISTING BINARY OPTIMIZE U(PPER)CASE

243

RS RS R R R RS E RS EEE LS R LS EEELTESESE R LRSS SR EEEESEEEE SR SRS

* PURGE-B3 Program - handles the second
* modification to PURGE

(S E S SRR EESEESE LSRR NSRS RS S EREEREE LT RS E SRR EREAEEEEEE RS &S

*

Identification Divisicn.
Program-id. PURGE-B3.
Environment Division.
Input—-Output Section.
File~Control.
Select infile assign to PFMS.
Select outfile assign to PEMS.

Select errorfile assign to PFMS.

Data Division.
File Section.
FD infile Compressed
value of file-id is "infile”.
01 inrec
FD outfile Compressed
value of file-id is "outfile™.
01 ocutrec
FD errorfile compressed
value of file-id is "errorfile"
01 errorrec
*
Working-Storage Section.
* file record structures
01 recl.
02 rl-branch
02 rl-type
02 rl-info
01 rec2.
02 rZ2-branch
02 r2-type
02 r2-info
01 rec3.
02 r3-branch
02 r3-type
02 r3-info
01 error—-heading.
02 e-heading
value " ERROR DATA FOR
02 e-heading-branch
02 filler

pic

pic

pic

Pic
pric
pic
pic
pic
pic
pic
pic
pic

pic

BRANCH-NUMBER ".

pic

plic x{486).

x(80).

x(80).

x(80).

9399,

89599.

x{72).

9999.
9999,

x(72).

9989.
99589,

x(72).

x(30)

9999.

*
*

46
47
48
49
50
51
52
53
54
55
56
57
58
59
&0
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
739
B8O
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
86

244

* other variables
01 end-of-input-switch pic x wvalue "F".
88 end-of-input value "T".
R R B E S S EEEEE SR ESE S SRS EEERESSEREEEE SRS I TSR EES IS

Procedure Division.
*
Main.
perform Start-para,
read infile into rec3
at end
move "T" to end-of-input-switch.
if not end-of-input
perform Get-Z2-cards
perform Main-loop
until ri-branch = (.
perform Finish-para.
stop rumn.
*
Start-para.
open input infile.
open output ocutfile.
open output errorfile.
&
Finish-para.
close infile.
close outfile.
close errorfile.
*
Main-loop.
if rl-branch not = r2-branch
perform Branches—-not—equal
else
if rl-branch = r3-branch
perform More-than—-2-cards
perform Get-2-cards
else
if not (rl-type numeric and r2-type numeric)
perform Type-problem
perform Get-2-cards
else
if not{rl-type < rZ-type)
perform Type-problem
perform Get-2-cards
else
perform Print-good-set
perform Get-2-cards.
*
Branches-not-equal.
perform Print-error-heading-card.
move rec?2 to recl.
move rec3 to recZ.

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
118
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
138
140
141
142
143
144
145
146
147

245

if not end-of-input
perform Read-rec3.
*
More—-than-Z-cards.
perform Print-error-heading-card.
write errorrec from rec2.
write errorrec from rec3.
perform Error-branch-loop
until rl-branch not = r3-branch.
*
Type-problemn.
perform Print-error-heading-card.
write errorrec from rec2.
*
Error-branch-loop.
read infile into rec3
at end
move "T" to end-of-input-switch.
if end-of-input
move zZerces to recl
else
if rl-branch = r3-branch
write errorrec from rec3.
*
Get~2-~cards.
move recl to recl,
if not end-of-input
perform Read-rec2
if not end-of-input
perform Read-rec3.
*
Read-rec?2.
read infile into rec2
at end
move "T" to end-of-input-switch.
if end-ocf-input
move zeros to recz,
*
Read-rec3.
read infile into rec3
at end
move "“T" to end-of-input-switch.
if end-of-input
move zeros to rec3.
&
Print-good-set.
write outrec from recl.
write outrec from rec?.
*
Print-error~heading-card.
if {(rl-branch not = r2-branch) and ril-type = "MODZ"

246

148 write outrec from recl

149 else

150 move rl-branch to e-heading-branch
151 write errorrec from error-heading
152 write errorrec from recl.

153 *

Data and Program Structures for Preogram PURGE

Eile Sfrucfures

indow-body

247

o
Branches-not
equal Window

o

More-than
2-cards
Window

0
IType-problem-1

Window

o
Type-problem-2
Window

lGood Window

=]

/

Br1 = Br2

Rect]Rec? IRecS [ﬁecs *

Bri = Br2 = Br3 = Br

Sets

Ksood-record *

T

}Sood-record

Tyl or Ty2
non-numeric

Rect }\ece TRecS

Tyl < Ty2

Sels

Error-record

I

Error-record

Roct [Rec2 {Rec3 |

Set
Set
e
o e} o o
Branchas-not | iMore-thani {Type-problem-1] Type-problem-2
equal 2-cards

lError-headindE-rec‘f]

iError—headindE—rec 1 | E-reca

V>~

{Error-heading{E—reﬂ I IJ_E-recE !

IError-headindE—reﬂ] [E-rec2]

Figure A1.1

Pr

ggram _Structure

C-INFILE
P-QUTFILE
P-ERRORFILE

Maln

C-Window-body
Main-loop

Nate - COBCL paragraph
names are identified on
this diagram in bold type

C-Branches-not-aqual-W o]
P-Branches-not-equal-errorsel

C-More-than-2-cards-W
P-More-than-2-cards-erro

O] [C-Type-problem-1-W
rsel [P-Type- .1

Brenches-not-egqual

P-Error-heading & E-reci
Print-error-heading-card

o

iC-Type-problem-2-W o]

T¥pe-problem-2-e(rarse

lC-Good-Windowo
P-Good-Set

P-Type-problem-errorsei
Type-problem et-2-cards

-Window

P-Good-set

lC-Window
Print-good-sef jGet-2.cards

F-More-than-2-cards-arrorsel| JC-Window
More-than-2-cards

iGet-2-cards

P—Type-proi}lem-errorsel C-Window
Type-preblem

Get-2-cards

P-Error-heading & E-reci
Print-ecror-heading-card

P-E-recs
Frror-branch-loop

P-Error-heading & E-rect
Print-errar-heading-card

|P~E~r902] lP-E-recSI

Figure A1.2

]P~E-rec:2[

P-Error-heading & E-rect

Print-error-heading-card

|P-E-reczl

8%

249

APPENDIX 2 - MAINTENANCE TOOLS

DOCUMENTATION SUPPORT TOOLS

Below several tools which support or can be applied to

general or specific documentation are summarised.

FORTUNE

FORTUNE [RIC85] is a proposed project to develop a
desk-top system for software engineers. This UNIX-based
system is centred around documentation including text,
design diagrams, source code, tables, charts, manuals
and user documents. It’s purpose is to support other
IPSE systems by providing iInterfaces for system
designers, programmers, technical writers and graphics
designers to documentation. Interface features include
editing, cross-reference searching, demand publishing
(on high quality printers} and allowing document
annotation by users. Author’s toocls for spelling
checking and correcting, thesaurus and style checkers
are also supported. This project is a method of
enhancing documentation gquality and appears to be
directed more toward development information. FORTUNE
will be tailorable to different devel opment

methodologies.

250

MIDOK

MIDOK (Kammerer [EBEB0]) i1s a documentaticon management
system for the systematic storage, retrieval and
reproducticn of informaticon. MIDOK is essentially the
user interface to documents held either in files or a
GOLEM data Dbase. The data base provides extensive
searching and keywording functions although a reduced
version of MIDOK can omit it. The structure of
documentation from the user’s view 1s hierarchical.
Information about a particular subject is arranged into
a concept tree of increasing specification which has as
its leaf level individual documents (or information
objects). There 1is considerable scope for different
kinds of document and they may be identified
(classified), wunidentified, formatted or unformatted.
Users may access, update or print documents, concepts
or subjects wvia a menu-type dialogue. An accelerated

"chaining" of dialogue commands is also supported.

SID

SID [BRIB4} (System Information Data RBase} 1s an
auntomated documentation system for rapid and accurate
entry, update and retrieval of documents. SID is based
around a relational database. Elements stored in the

system include details of the purposes, customer and

251

who isg responsible for maintenance in business
application components as well as typical development
information about c¢omponent functions, data usage and
invocational structures. The system supports retrieval
of information as wvisual tables of contents (VTOC) and
hierarchical input process output (HIPO) diagrams and
readily displays the information inventory through
indices of programs, files, tasks and catalcgues of
subsystems. As well as helping programmers understand
and document an application, SID has been used to
quickly identify which persconnel have administrative,
maintenance and operational responsibilities over which
parts of a system. Eventually it is hoped to include in
SID run and recovery instructions, file access rights,
account restrictions, file retentions and other

operations data.

S0DOS

S50D0S (Software Documentation Support) [HORB6] i1is a
system to support the definition and manipulation of
development documents. S0DOS 1s a connecting user
interface to an object based model of the Software Life
Cycle (SLC) and documents held in a relaticnal DBMS.
Documents such as memos, notes, tuterials, formal

documents (which depend on the development methodology

252

used), manuals and scurce code are stored as instances
of a DOCUMENT relation. The system allows documents to
be created, updated and queried. Hierarchies and
interrelationships can be defined between documents.
Every document has associated keywords, compeonents
(e.g. figures) and a structure (i.e. format). Using the
SI.C model, SODOS provides for consistency and

completeness checks among documentation.

253

TOOL-BASED DEVELOPMENT AND MAINTENANCE ENVIRONMENTS

Some environments usually consisting of sets of

integrated tocls are briefly outlined below.

ADA Environment Tool Box

When suggesting future tools to be incorporated into an
ADA environment, Saib [SAI83) identifies three maior
groups: multipurpose, software production and
management. Software production tocls are requirements
processor, specification processor, design analyser,
coding assistant, standards checker, compiler, static
analyser, linking loader, configuration manager, test
assister and verifier. Management activities supported
by tools are planning, staffing, directing, organising
and status reporting. The major multipurpose tool which
integrates the whole proposed environment is a data
base manager which controls a single data base for all
environment activities. A feature of the connection
between design and coding tools in development is the
generation of a program skeleton from the design

description.

For most maintenance activities, the support tools are
the same as for development. Exceptions include

diagnostic mechanisms to aid in identifying the source

254

of error symptoms 4in corrective maintenance. It is
suggested that enhancement maintenance shoulqd be
carried out by modifying first the reguirement
documents then the specifications and finally the code.
This order facilitates identification of the extent of
changes early in the enhancement task by comparison of
original and nodified program skeletons. Good
documentation of the entire history of a project
including test descriptions, data sets and results
appears to be a corner-stone of environment support for

maintenance (and development).

DREAM

DREAM [RID81] is a design system for development. The
basis of DREAM is DDN (DREAM Design notation), which is
a language which allows description of design decisions
and their hierarchies and interrelationships. DDN is
particularly suited to concurrent system design. DDN
text for modules/programs is obviously referred to when
coding but can alsc be used for integration and a type
of modelling of the developing application. The DREAM
system supperts managed &access and updating of

fragments of DDN script stored in a central data base.

255

ME2

MEZ [COL85a)l is a proposed prototype maintenance
engineering envirconment. The environment consists of
three parts; a knowledge base, an integrated toolset,
and maintenance perscnnel. The proposed knowledge base
contains a data base of maintenance information.
Maintenance personnel interact with this information
when performing their tasks. The knowledge base
menitors the interaction and is supposed to "learn®
from it, creating new implied relationships among the
information. It 1is suggested that the toolset should
contain the technical support tools ocutlined below. To
derive a porticn of the maintenance information
required in the knowledge base, a prototype syntactic

analyser for PASCAL has been developed,

Understanding tools : To enable a high level,
problem-knowledge domain view {i.e. program
requirements information) as well as lower level
views o0f module imports, exports, syntax and

semantics and module calling hierarchies.

Modification Management Tools : To link modification
requirements to design and to perform software

change contrel management.

256

Designing and Testing Tools : A ripple effect
analyser 1is suggest and a subsystem for cost-
effective regression testing is under

investigation.

257

TOOLS FOR SOURCE CODE MANAGEMENT

Some tools exclusively for the management, access oOr

manipulation of program scurce are identified below.

AURUM

AURUM (Wagner [EBE8B0]) is a system for representing
visualisations of the structure of an application
system. This tool uses application information such as
source code, module libraries, cross-reference listings
and procedure tracing paths for its analysis but the
main emphasis 1is on displaying the analysis results
using a graphics workstation machine and plotter.
Application informaticn is derived £from other tools
present on a mainframe. AURUM allows graphical
observation of procedure/module linkages (both static
and dynamic) and usage of language structures and data
structures within a program. Source languages whose
structures can be represented include PASCAL, FORTRAN

and COBOL.

CEART and STRUC

CRART and STRUC [THABl] are graphical tools for
computer science education. They are written in MIRA-2D

and allow wvisualisation of processes and structures

258

within a PASCAL program. CHART supports viewing the
structure of a program by producing structured charts,
STRUC shows the evolution of data structures during
program execution and appears to be a minor advance on
interactive debuggers. CHART is also a relatively
simple student program understanding tool and it does

not allow any direct program mcdification.

CONTOUR

CONTOUR [GIM80) is a program formatter for Pascal and C
programs. This tool illustrates blocks and the scope of
control structures in source code by outlining sections
with "contour"™ lines or boxes. The formatted socurce is
suitable for display on standard terminals unlike many

graphical tools.

MAP [WAR8B82] 1is an interactive understanding tool
designed to assist maintainers in understanding COBOL
programs, MAP takes the source of a COBOL program,
generates a data base of source information and allows
various views and enguiries on the DB data. A program
can be vwviewed as a structure chart (of CALLed and
PERFORMed blocks) or local scurce code {a paragraph

which has been zoomed in on). By displayving relevant

259

lines of source, MAP supports control tracing
(following control flow paths} and data tracing
{(following data aliasing and references). Tracing can
be carried out both forward from a particular line
number and backward. MAP alsc contains a scheme for
comparing two versicns of the same program and
reporting differences. To enhance the simple MAP
commands a facility for macro definition (called Script

files) is available.

SCAN/370 and SUPERSTRUCTURE

SCAN/370 [RIC84)] is a tool which can be applied to a
COBOL program to produce a source listing containing
embedded path data and reports that trace all logic
paths within the source and identify dead code.
SUPERSTRUCTURE [RIC84] is a more advanced tocl which
identifies wunacceptable flaws in COBQOL source ({e.g.
fall through execution of paragraphs) and rewrites a

program using only structured constructs.

Interactive Static Analyser

Bell [BEL84] reports on the results of a beta test on
an interactive static analyser and identifies where
this tool fits into the overall maintenance

envirconment. The analyser takes COBOL source and stores

260

it in an on-line data base. Through this system three
views of a program are possible using structure charts,
the source code itself, or scurce differences (a
program version comparison). For each view, selection
and tracing of data and control flows 1s supported.
This static analyser primarily alds programmer

understanding.

TEXJAX

TEXJARX [RICB4] 1is an in-house static analyser and
documenter for PL/I programs. It scans code and
produces complexity metrics, structure charts, module

hierarchy charts and annotated source code.

261

OTEER TOQOLS

Tools which are associated with particular application
documentation, other than exclusively source c¢ode, are
summarised below. Some of these paragraphs identify
systems which support large areas within application

development or maintenance.

AIDES

AIDES [WIL79] {Automated Interactive Design and
Evaluation System) 1s a proposed system to support
application design in the form of structure charts of
the Structured Design methodology. Two AIDES tools
which have been developed are a structure chart
graphics package (8CG) and a design quality metric
package (DQM). The SCG allows the building of a
structure chart on a graphics terminal. It
automatically collects degsign information in a database
and supports reproduction of designs. The DOM evaluates
a structure chart produced by the SCG in terms of
hierarchies of calling modules and module connectivity.
Other parts of AIDES include features for automatic
chart layout, design quality assurance, automatic test

selection and documentation and configuration control.

262

The Programmer’s Apprentice

The Programmer’s Apprentice [WATB82] is system to assist
in application design and implementation. This system
documents an evolving program using two
representations; a rlan and the program text.
Components of the apprentice are a library (plans of
common program modules), an analyser (which produces
plans from existing source), a drawer (to draw plans),
a coder {which generates source from simple plans) and
a plan editor (which interfaces to all other components
and the user. The idea is to automate code production
for simple programs and enable modification o¢f these
programs by merely modifying their plans. The system
was designed to support development but c¢learly could

be used in maintenance.

CASE

CASE [AME79] is a system development tool to support
the functions of document production, module design and
code production, module testing, configuration
management and management report production. CASE is
designed to provide status information for managers as
well as wvarious documentation and configuration data
for programmers and designers. This system allows

information to be entered and edited in a variety of

263

files including text (for general documents), DADA
(designs and diagrams), DBD (data base definitions),
test descriptions, and CCS (Configuration Control
systems) files. Using these files, testing c¢an be
directed, overall database schemas and subschemas
deslgned and correct application configuration assured.
In this system, program source is entered directly into
papa files. A measure of consistency can be achieved
between program design and inplementaticn in terms the
functions used and data referenced using a cross file

correlator,

DOCU/TEXT

DOCU/TEXT [RIC84] is a system redocumentation tocol
linked to JCL. It requires the JCL to fit into a
fairly rigid format and seems to be most useful when
combined with a customised JCL scanner. DOCU/TEXT
provides the basis for automated production of

application operator manuals.

FRED, ISADORE

FRED [SHIB85] is a structured screen based editor and
ISADORE 1s an assocliated automated reference librarian
system. FRED, like other language orientated editors,

is used to aveid syntax and context sensitive errors in

264

source code. Error detection is performed by
incrementally parsing user input. FRED achieves a
degree of language independence in that all language
orientated information 1s derived from description
tables which can be adjusted for different dialects or
languages. An advanced feature of ¥FRED is that it
allows wusers to find library code and construct
interfaces to this code. ISADORE is responsible for
managing the library routines whose existence is an
attempt to reuse previously tested code. The library
routines may be in several different languages and
identification is by function. Hence descriptive
documentation about routines must also be available in

some form.

LTBMAN

LIBMAN [RIC84) is a custom library management system
for control of source and load libraries across
multiple sites. It is specifically designed to support

repair and enhancement of production programs.

MICS

MICS {MVS Integrated Control System) [RICB4] is an
operational 1logging system which gathers information

from many sources on problems within an application

265

system. The information is stored in a SAS data base

from which reports can be generated.

PECAN

PECAN [REI8B4] is a program development system generator
for algebraic programming languages. PECAN is built on
a Brown workstation environment and uses tools
including MAPLE, ASH, VT and WILLOW to provide
graphical views of an evolving application. This system
allows a developer to enter, edit or display a program
through a syntax-directed editor, WNassi-Schneiderman
flow chart, structured flowgraph (proposed extension)
or procedure-connection diagram (proposed extension)
view. An application program can also be displayed
terms of its symbol table, data types, expressicons and
flow of control., PECAN uses an incremental compiler to
build many of these views so that the analysis of a
program is often partially static and partially
dynamic. Execution views of wvariables and stacks
provide for debugging and execution monitoring services

within PECAN.

RXVP (Geiger [EBE80]) 1s a automated test and

documentation system for static analysis of FORTRAN

266

programs. The system first standardises the format of a
program and then generates documentation reports
containing contrel flow and data usage information. For
large programs, a data base is used to store program
information between analysis and repert preduction. The
reports preoduced include a module invocation matrix,
crossfreference data (identifying variable definition,
use and updating}, and a common block usage report. In
addition to static analysis, RXVP can aid dynamic
analysis. This is achieved by modifying the program to
report reaching of branches during execution. Running
the "instrumented" program in a test bed situation
results in execution frequencies of parts of the
program for the test data used. Thus, the completeness

of test coverage can be assessed.

SADAT

SADAT [VOG80] is an automated testing tool applicable
to single FORTRAN modules. This tool combines the
functions of static analysis, dynamic analysis, test
case generation and path predicate calculaticn. These
functicns are integrated via a common database and
directed by a user. The database is generated through
static analysis which alsc produces a program graph,

reduced program graph and reports on structural

267

deficiencies of the source. From the database, a near
optimal group of test cases ensuring at least one
execution of each node of the program graph c¢an be
derived and, by using symbolic executicon, infeasible
paths through the program are identified (path
predicate calculation). Dynamic analysis is performed
by automatically instrumenting the program {(again using
data base information), recompiling, loading with a
monitoring subroutine and execution. Reports produced
by dynamic analysis include <frequencies of path and

loop execution for given test data.

SAMOS tools

SAMOS (Software Adaption and Maintenance Organisation
System) applies an integrated toclset to the task of
firstly adapting mainly FORTRAN software to different
environments, and then managing maintenance of the
adapted systems. The toolset includes QUODOS, EDRIERE,
PROTRAN (a compiler construction tool for
dialect/language translation), COMPARISON (for delta
abstraction and analysis, see {QUODOS), and ERZEUGE.
Some of these tools are briefly described below. For
further information see the SAMOS section of [EBE80] by

Luegger, Fromm, Goecke and Roitzsch,

268

QUODOS and SCCS : SCCS (Source Code Contreol System)
[ALLB84] is a model for the modification management
of text (source, documentation or JCL). Within
this model original text exists along with chains
of deltas (changes) representing modifications
which have been made over time. Information about
the author and creation date are held about each
delta. An identification system defines modified
versions of text in terms of release numbers
(possibly major development phases) and within
releases, level numbers. From the information a
particular wversion of, say, & program, can be

generated.

QUODOS is an automated tool for a similar control
system to SCCS. There is a different approach in
QUODOS with reverse deltas being stored, recording
what changes to the current up-to-date version of
text generate earlier versions. Benefits from this
scheme include better delta synchronisation as
line numbers can be more easily used to define
changes. In SCCS, line numbering is complicated by

renumbering when inserting new text.

EDIERE : EDIERE is a context editor designed to cope
with maintenance and adaptation requirements for

large programs. A generalised 1I/0 interface in

269

EDIERE allcws it to access diverse types of files
with different organisations and structures. To
enable editing and alternative "views" of these
files EDIERE has a command structure based on
SNOBOL4 pattern matching and allows extensive use
of command macros. When editing source code,
preogramming language orientated macros can pick
out block structures, extended control structures
and other source co¢bjects. EDIERE is thus useful
for scurce analysis, systematic modification and
source restructuring as well as standard editing.
The static source analysis appears tc be more
tallored to control flow analysis than extensive
data abstraction, but this may be because EDIERE
has mainly been used in adapting FORTRAN systems

to different machines.

ERZEUGE : ERZEUGE is an organisation tool for JCL and
is basically a macro processor with some
interactive features. It allows control of the
modification process through parameterisation of
change procedures and coordination of other tools.
ERZEUGE macros c¢an be used to abbreviate JCL
commands or to extend the JCL to, say,
avtomatically 1link compiling, loading and testing

of a generalised module. This tocl, based on

270

interpreted macros, may be redundant as it's
facilities are already present in some operation

systems (e.g. UNIX)

SAS

Deuvtsch [DEU81] describes a general class of automated
test assistance tools called Source Analyser Systems
(SASs) . SASs provide facilities for measuring
performance of software and effectiveness of test

cases. The five basic functicns are

1., Source analysis and database creation.

2. Generation of reports from static analysis
describing software control and data features and

identifying potential problems.

3. Insertion of software probes (instrumentation) for

the ceollection of execution information.

4. Analysis and reporting of test results.

5. Generation of test assistance reports.

An integrated SAS would form a test environment useful
in both development and maintenance. RXVP 1s an example
of a complete SAS but most tools provide only some of

test functions given above (e.g. CBART and TEXJAX).

271

APPENDIX 3 - A REDUCED COBCL LANGUAGE

APPENDIX 3A -~ OMISSIONS FROM STANDARD COBOL

A module by module account of disparities between the
COBOL standard defined in [COBB1] and Appendix 3A is
given below. Abbreviations used are

ID for IDENTIFICATION DIVISION

ED for ENVIRONMENT DIVISTON

DD for DATA DIVISION

PD for PROCEDURE DIVISION

1. The Nucleus.

In an effort to remove machine configuration dependent
aspect from the COBCL standard being produced,
implementor-names which link objects such as files to
external devices were omitted {except in the ASSIGN TO
clause of file-control-entries). This led to the
removal of mnemonic-names which are heavily related to
implementor~names via the SPECIAL-NAMES paragraph.
ALPHARET and SYMBOLIC CHARACTER statements of this
paragraph and partial array references within a program
were also omitted to simplify analysis of COBOL symbols
and statements. The STOP verb is similar to
implementor—-names in that it defines an external

execution link and so it toc was removed. Level 66

272

(renames} variables were deleted because they are
seldom used [TOR739]. Some of these changes imply other
deletions 1in the 1I/0 modules, but nucleus specific
omissions are
PROGRAM COLLATING SEQUENCE statements in the
OBJECT-COMPUTER paragraph of the
CONFIGURATION SECTICHN
Inplementor-names, ALPHABET, or SYMBOLIC
CHARACTERS statements in the SPECIAL-NAMES
paragraph of the CONFIGURATION SECTION
Level €66 RENAMES statements in data~description~
entries of the DD
FROM mnemonic-name clause for the ACCEPT verb in
the PD
UPON clause for the DISPLAY wverb in the PD
Mnemonic—name TO ON/CFF format for the SET verb
in the PD
STOP verb in the PD (used to temporarily suspend
program execution)
Reference to partial arrays by
subscript (leftmost-character—-position
(length])

in any identifier

273

2. The I/0 Modules.

The omissions of implementor, mnemonic and alphabet-
names from the nucleus mean remcval of some clauses in
file-control-entries FDs and PD statements. The ASSIGN
TO clause of file-control-entries remains because it is
thought to be commonly used. In analysis, no action,
other than identifying and storing the group of
implementor-names in each ASSIGN clause will be carried
out. As the PADDING CHARACTER clause of file-control-
entries is peculiar to sequential I/0 and not present
in ANS 740, it was deleted. The DATA RECORD IS clause
of FDs was also removed as it is redundant and marked
for removal in later COBOL standards [COB81]. Specific
omissions are

PADDING CHARACTER IS clause in a file-control-entry

in the ED
RECORD DELIMITER IS clause in a file-control-entry
in the ED

CODE-SET clause in a file-control-entry in the ED

DATA RECORDS clause of FDs in the DD

VALUE OF clause in FDs in the DD

CODE~SET clause in FDs in the DD

ADVANCING mnemonic-name c¢lause for the WRITE verb

in the PD

274

Out-of-line exception and recovery facilities were
considered extras to COBOL which although used in many
modules could bhe ignored in a prototype SSCA. Specific
cmissions are @
I-0~-CONTROL paragraph of the INPUT~OUTPUT SECTION
(alsc part of the Sort/Merge module)
DECLARATIVES to END-DECLARATIVES block preceding
normal PD sections and paragraphs (also
part of the Debug and Report Writer modules)
USE verb in the PD (also part of the Inter-Program-—
Communication, Debug and Report Writer modules)

3. The Inter-Program Communication Module.

Some inter-program communication features and the
system for nesting programs within one compilable unit
were omitted. This is because the prototype SSCA is
concerned with building a database reflecting just one
COBOL program. Limited communication facilities remain.
For instance, the CALL statement is available and data
can be sent or received via the LINKAGE SECTION. BY
REFERENCE and BY CONTENT clauses of £he CALL were left
out because they are not present in ANS 74. The EXIT
PROGRAM statement in the PD will be treated in a
similar manner to the STOP RUN statement (i.e. in termns
of the -executing program 1t is as if it had been

CALLed) . Specific omissions are

275

END-PROGRAM-EEADER entry

COMMON or INITIAL clauses of the PROGRAM-ID
paragraph of the ID

EXTERNAL cor GLOBAL clauses in FDs in the DD

EXTERNAL or GLOBAL clauses in data-description-—
entries in the DD

BY REFERENCE or BY CONTENT clauses for the CALL wverb
in the PD

4. The Sort/Merge Module.

The whole module 1s omitted. This includes removal of
the following features
Sort-merge-file-description-entries {(SDs) in the
FILE SECTION
MERGE wverb in the PD
RELEASE wverb in the PD
RETURN verb in the PD
SORT verb in the PD

5. The Source Text Manipulation Module.

The whole module is omitted. This includes removal of
the feollowing features
COPY statement anywhere 1n the program
text—-name IN/OF library-name qualification clauses
in any statement
REPLACE verb in the PD

REPLACE OFF verb in the PD

276

6. The Debug Mcdule.

The whole module is omitted. This includes removal of
the following features
WITH DEBUGGING MODE clause in the SCOURCE-COMPUTER
paragraph of the CONFIGURATION SECTION

7. The Report Writer Module,

The whole module is omitted. This includes removal of
the following features
REPORT SECTION or Report-file—-description-entries
(RDs) in the DD
IN/OF report-name qualification of an identifier,
LINE-COUNTER or PAGE-COUNTER
GENERATE verb in the PD
INITIATE verb in the PD
SUPPRESS PRINTING verb in the PD
TERMINATE verb in the PD

8. The Communication Module.

The whole module is omitted. This includes removal of
the following features
COMMUNICATION SECTION or communication-description-—
entries (Cbs) in the DD
IN/OF cd-name qualification of a condition or
identifier

cd—name MESSAGE COUNT format for the ACCEPT verb in

the PD
DISABLE verb in the PD
ENABLE wverb in the PD
PURGE verb in the PD
RECEIVE wverb in the PD

SEND verb in the PD

277

278

APPENDIX 3B - LANGUAGE DESCRIPTION

This is a reduced version of COBQOL based on the Draft

Proposed Revised X3.23 A.N.S. Programming Language

COBOL, Sept. 1981 [COB81]

Meta Language Description

1) Object Grouping : { objectl object2 } - normal gp.
[objectl object2 1 - optional gp.
2} Iteration of a group : { objectl }... - indicates 1
or more objectls
[objectl]1... - indicates O
or more obijectls
3} Case {one or other of objects} : {| objectl {}
| object2 |
- either objectl or objectz

4) Case entries over more than one line :

{| objectl [} - indicates obijectl or
| / object2 \ | object2 object3
I \ object3 / |

5) Mandatory objects : objectl

219

Format for the Overall Program

identificaticon~divisicn
[environment—division }
data-division

procedure~division

Format for the Identification Division

IDENTIFICATION DIVISION.

PROGRAM-TID. program-name.

[AUTHCR. [comment—entry J... }

[INSTALLATION. [comment-entry J...]

[DATE-WRITTEN. [comment-entry }... 1
{ DATE-COMPILED. [comment-entry]...]

[SECURITY. [comment~entry J...]

280

Format for the Envirconment Division

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SQURCE-COMPUTER. [computer-name . }]

[OBJECT-COMPUTER. [computer-name
[SEGMENT-LIMIT IS segment-number].]]

[SPECIAL-NAMES.
[CURRENCY SIGN IS literal-4]}
[DECIMAL-POINT IS COMMA] .]

[INPUT-OUTPUT SECTION.

FILE-CONTROL.
{ file~control-entry }...

Format for file-contrel-entry

SELECT [OPTIONAL] file-name-1

ASSIGN TO { implementor-name-1 }...

[RESERVE integer-1 [| AREA |1]
[ARRAS |

[[ORGANIZATION IS] {| SEQUENTIAL |}]
| RELATIVE |
I

| INDEXED

[BLOCK CCNTAINS [integer-2 TO] integer-3
{1 RECORDS [}]
i CHARACTERS |

[ACCESS MODE IS {} SEQUENTIAL |} [RELATIVE KEY
{ RANDOM |
f DYNAMIC !
IS data-name-1} 1]

[RECORD KEY IS data-name-1]

[ALTERNATE RECORD KEY IS data-name-2
[WITH DUPLICATES] J]...

[FILE STATUS IS data-name-2 }.

281

Fermat for the Data Division

DATA DIVISICN,

[FILE SECTION.
[file-description—-entry
{ record~description—~entry }... 1... 1

[WORKING-STORAGE SECTION,
[i 77-level-description~entry |1...]
| record-description-entry !

[LINKAGE SECTION.
[l 77-level-description-entry []...]
| record-description—entry i

Format for file-description-entry

FD file-name-1
[BLOCK CONTAINS [integer-1 T0 1 integer-2
{| RECORDS [} 1]
i CHARACTERS |

[RECORD
{| CONTAINS integer-3 [TO integer-4] CHARACTERS |}]
| / I8 VARYING IN SIZE [[FROM integer-4} \ |
| | [TO integer-5] CHARACTERS] |]
| \ [DEPENDING ON data-name-1] /ol
[LABEL {| RECORD IS [} {| STANDARD |}]
| RECORDS ARE | | OMITTED |

[LINAGE IS {| data-name—-4 |} LINES
| integer-8 I
[WITH FOOTING AT {] data-name-5 |
| integer-9 |
[LINES AT TOP {| data-name-6 |}]
{ integer-10 |
[LINES AT BOTTOM {| data-name-7 |} I]
| integer-8 |
[[ACCESS MODE IS 1 {| SEQUENTIAL |}
! RANDOM |
| DYHAMIC |
[RELATIVE KEY IS data-name-8 1]

282

[RECORD KEY IS data-name-9%]

[ALTERNATE RECORD KEY IS data-name-10
[WITH DUPLICATES]]...

[FILE STATUS IS data-name-11]

Format for record-description-entry

record-description-entry ::= levelled set of
data-description-entries

T77-level-description-entry :1:=
record-description-entry

where level-number is 77

Format for data-description-entry

88 condition-name-1 {| VALUE IS I}
| VALUES ARE |
{ literal-1 [{|THRCUGH|} data—-name-4] }.
| TBRU |
i FILLER |

[REDEFINES data-name-6]

/ \
I I
| |
\ /
/ level-number [| data-name-5]} \
I |
| I
! I
I |
| I
] I
| I
I |
| |
I I
I I
I I
I I
| |
I !

{ / {] PICTURE |} IS character-string \]}
\ | PIC | /
[/ [USAGE IS 1 {| COMPUTATIONAL |} \ 1
| | COMP | I
| | DISPLAY | |
\ I INDEX | /
[/ [SIGN I5 1 {| LEADING |} N
; | TRAILING | f
\ [SEPARATE CHARACTER] /

o i s i i e

283

OCCURS integer-1 [TO integer-2] TIMES\]
{DEPENDING ON data-name-7]

{ / {] ASCENDING

I'}

| | DESCENDING |
\ KEY IS {data-name-3}...

{| SYNCHRONIZED !}

/

!

|

!

I

A\

/
AN
/{
\
B

LANK

VALUE

SYNC I

[

LEFT
16

JUSTIFIED |} RIGHT \]

JUST !

b JUST

WHEN 2ERQ }

IS literal-2]

/

H

T

!
I

1

1..
[INDEXED RBY {index-name-1}...}

\
/

]

A\
l

v

]

I
|
I
/

Sy s e S o o ien o e e e e

284

Format for the Procedure Division

PROCEDURE DIVISION [USING {data-name-1}...]}
{ [section-name SECTION [segment-number].]
| paragraph—-name. [sentence]l... J1... }.
sentence ::= set-of-statements

Format for COBOL Verbs

ACCEPT identifier-1 [FROM {| DATE 1}]
| DAY |
| DAY-OF-WEEK |
| TIME |

Format 1 ADD {]| identifier-1 |{}.
[literal-1 I

TO { identifier-2 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1 [END-ADD]]

Format 2 ADD {| identifier-1 |}... TO {| identifier-2 |}

} literal-1 | | iiteral-2 |
GIVING { identifier-3 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1 [END-ADD]]

Format 3 ADD {| CORRESPONDING |} identifier-1
| CORR |

TO identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1 [END-ZDD]]

Cail {| identifier-1 |} [USING { data-name-2 }...]
| literal-1 |

[ON OVERFLOW imperative-statement-1 [END-CALL] }

285

CANCEL {| identifier-1 |}

| literal-1 |

CLOSE { file-name-1 [| / {] REEL |} {FOR REMOVAL} \ 1] }..
I\ | UNIT !} /o
[/ WITH {] NO REWIND |} \ |
I\ I LOCK | VA

COMPUTE { identifier-1 {ROUNDED] }...
= arithmetic-expression-1

[ON SIZE ERROR imperative-statement-1
[END-COMPUTE 1 1}

CONTINUE

DELETE file—name-1 RECORD

[INVALID KEY imperative-statement-1 [END-DELETE]]

DISPLAY {| identifier-1 [}... [WITH NO ADVANCING]
| literal-1 !

Format 1 DIVIDE {| identifier-1 |}
| literal-1

!
I
INTO { identifier-2 [ROUNDED] }...

[ON SIZE ERRCR imperative-statement-1
{ END-DIVIDE]]

Format 2 DIVIDE {] identifier-1 |} {] INTO !}
| literal-1 ! | BY |
{] identifier-2 |}
| literal-2 |

GIVING { identifier-3 [ROUNDED] }.

[ON SIZE ERROR imperative-statement-1
[END-DIVIDE]]

286

Format 3 DIVIDE {| identifier-1 |} {{| INTQO [}
! literal-1 i | BY |

{} identifier-2 |} GIVING identifier—-3 [ROUNDED]
| literal-2 }

REMAINDER identifier-4

[ON SIZE ERROR imperative-statement-1
[END-DIVIDE]} j

EVALUATE {| identifier-1 |}... { { WHEN
| literal-1i |
| expression—1 |
| TRUE i
| FALSE !

{1} ANY i
| condition-1 [
| TRUE |
} FALSE |
I I
i/ [NOT] {{} identifier-2 1} N
Pl | literal-2 } P
| | arithmetic-expression-2 | b
Pl [/ {} THRQUGH [} NI b
o | { THRU | | |
bl | {| identifier-3 B! |1
|\ \ [arithmetic-expression-3 | / /)
} |

}... imperative-statement-1 }...
[WHEN OTHER imperative-statement-2]
[END~EVALUATE]
EXIT.
EXIT PROGRAM
Format 1 GO TO procedure-name-1
Format 2 GO TO {procedure-name-l}... DEPENDING ON

identifier-1

287

IF condition-1 THEN {| {statement-1}... |}
| NEXT SENTENCE !

[t ELSE {statement-2}.,.. [END-IF] |
| ELSE NEXT SENTENCE i
) I

END-IF

]

INITIALIZE {identifier-1}...

ALPHABETIC i
ALPHANUMERIC [
I
I

l }
!

| NUMERIC

I

|

[REPLACING {

ALPHANUMERIC-EDITED
NUMERIC~EDITED |
DATA BY {| identifier-2 |}]}
| literal-2 |

Format 1 INSPECT identifier-i

[TALLYING { identifier-2 FOR
{1 / CHARACTERS [{| BEFORE 1!}
[| AFTER |}
INITIAL {| identifier-3 }1}].
I literal-3 !

—-— .
N e — e N — —

| LEADING | | literal-4
[{| BEFORE |} INITIAL
| AFTER |
{1 identifier-5 |} J...}...
j literal-5 |

I
\
/ {| ALL i} { {] identifier-4
I
I
I
|
\

!
I
|
I
I
|
!
I
I
I

[REPLACING
{{ / CHRRACTERS BY {| identifier-6 |}
} | literal-6 |
[{] BEFORE |} INITIAL
| AFTER [
{| identifier-7 |}]...
| literal-7 |
{1 ALL 1} { {| identifier-8 |} BY
| LEADING | | literal-8 P
| FIRST !
{{ identifier-% |} [{| BEFORE |}
| literal-9 | | AFTER i
INITIAL {]| identifier—-10 |} }...}...
| literal-10 |

E
I
I
I
I
!
I
I
I
I
|
|
I
I
i

e S e —

I
|
I
\
/
|
I
|
!
I
\

288

Format 2 INSPECT identifier-1 CONVERTING

{{ identifier-2 [} TO {| identifier-3 |}

{ literal-2 | } literal-3 [

[{| BEFORE |} INITIAL {| identifier~4 i} J]...
| AFTER |} | literal-4 !

Format 1 MOVE {] identifier-1 t} TO { identifier-2 }...
| literal-1l |

Format 2 MOVE {| CORRESPONDING |} identifier-i
| CORR I

TO identifier-2
Format 1 MULTIPLY {} identifier-1 |}
!} literal-1 |
BY {identifier-2 [ROUNDED]}...

[ON SIZE ERROR imperative-statement-1
[END-MULTIPLY]]

Format 2 MULTIPLY {| identifier-1 {}
| literal~—1 i

BY {| identifier-2 |}
| literal-2]
GIVING { identifier-3 [ROUNDFD 1 }...

[ON SIZE ERROR imperative-statement-1
{ END-MULTIPLY]]

OPEN {| INPUT { file-name-1 { WITH NO REWIND] }... |
| OUTPUT { file-name-2 [WITH NO REWIND] }...|
| I-0 { file-name-3 }... !
| EXTEND { file—-name—-4 }... |

Format 1 PERFORM [procedure—name-1
{ {| THROUGE |} procedure-name-2]]
| THRU]

[imperative-statement-1 END-PERFORM 1

289

Format 2 PERFORM [procedure—-name-1
[{! THROUGH |} procedure-name-2]

| THRU |
(] / {] identifier-1 |} TIMES \
I \ | integer-1 | /
| / [WITH TEST {| BEFORE [}] UNTIL condition-1\
|\ | AFTER | /

[imperative-statement-1 END-PERFORM]

Format 3 PERFORM [procedure-name-1
[{|] THROUGH |} procedure-name-2]

{ THRU [
[WITH TEST {| BEFORE |}]
| AFTER |
VARYING {| identifier-1 |} FROM {]| identifier-2 |}
| index—-name-1 | | index-name-2 |
| literal-2 |
BY {| identifier-3 |} UNTIL condition-1
| literal-3 |
[AFTER {| identifier—-4]} FROM {]| identifier-5
I index~name—-4 | i index—name-5
| literal-5

BY {| identifier-6 [} UNTIL condition-2]...

| literal-—-é6 |

[imperative-statement-1 END-PERFORM]

READ filename—-1 [NEXT] RECORD [INTO identifier-1]
[KEY IS data-name-2 J}
[{| AT END |} imperative-statement-1
| INVALID KEY |
[END-READ]
REWRITE record-name-1 [FROM identifier-2]

[INVALID KEY imperative-statement-1 [END-REWRITE]

280

Format 1 SEARCH identifier-1

[VARYING {| identifier-2 |}]
| index~name-2 |

[AT END imperative-statement-1]

{ WHEN condition~1 {]| imperative-statement-2 [} }...
| NEXT SENTENCE !

[END-SEARCH]

Format 2 SEARCH ALL identifier-1
[AT END imperative-statement-1]

WBEN { {1} / data-name-2 IS {}| EQUAL TO |}

| = I
| identifier-3 [
| literal-3 |
| arithmetic-expression—3}

\

I

I

{ b
I

/

o — e — r—

condition—name-1

/ data-name-4 IS {| EQUAL TQ |} \
I | = | !
I I
i {| identifier-5 [} i
| | literal-5 I
\ | arithmetic-expression-5| /

|
I
|
I
!
|
|
| condition-name-2

{] imperative-statement-2 1}
| NEXT SENTENCE |

[END-SEARCH]

Format 1 SET {]| index-name-1l [}... TC {! index-name- }
| identifier-1 | | identifier-
I

integer-2

2 |
2 |
|
Format 2 SET { index—name-1 }...

{i{ UpP BY |} {| index-name-2 |}

{ DOWN BY | | integer-2 i

291

START

file-name-1 [KEY IS {]| EQUAL TO |} data-name-1]
| = i
| GREATER THAN|
| > |
INOT LESS THAN|
| NOT < !

[INVALID KEY imperative—statement-~1 [END-START]]

STOP RUN

STRING { {| identifier-1 |}...

I literal-1 !
DELIMITED BY {1} identifier-2 |} 1..
| literal-2 }
| SIZE |

INTO identifier—-3 [WITH POINTER identifier—4]

[ON OVERFLOW imperative-statement~1 [END~STRING]]
Format 1 SUBTRACT {!} identifier-1 |}...
| literal-~1l [
FROM { identifier-2 [RQUNDED] }...

[ON SIZE ERROR imperative-statement-1
[END-SUBTRACT]]

Format 2 SUBTRACT {| identifier-1 |}...
| literal-1 |

FROM {| identifier-2 |}
| literal-2 [

GIVING { identifier-3 [ROUNDED] }..

[ON 5IZE ERROR imperative-statement-1
[END-SUBTRACT]]

282

Format 3 SUBTRACT {] CORRESPONDING |} identifier-1
I CORR |

FROM identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1
[END-SUBTRACT]]

UNSTRING identifier-1
[DELIMITED BY [ALL]} {[| identifier-2 |}

| literal-2 i
[OR [ALL) {| identifier-3 |}]...]
| literal-3 I

INTO { identifier-~4 [DELIMITER IN identifier-5]
{ COUNT IN identifier-6 1 }...
[WITH POINTER identifier-7 }

[TALLYING IN identifier-8]

[ON OVERFLOW imperative-statement-1 [END-UNSTRING]]

Format 1 WRITE record-name-1 [FROM identifier-2]
[{| BEFCRE |} ADVANCING
| AFTER

{

/ {! identifier-3 |} {| LINE }
A

}
I I
} integer-3 | | LINES |
|

| PAGE

[AT {| END-OF-PAGE |} imperative-statement-1
| EQOP !

[END-WRITE]]

Format 2 WRITE record-name-~l [FROM identifier-2]

[INVALID KEY imperative-statement-1 [END-WRITE]]

283

Qualification Formats

Identifiers
data-name-1 | {] IN |} data-name-2 }...
| OF |

[{I IN |} file—name-1]
I OF |

[({I integer-1
I
i/ {} data-name—-2 |} [{|
[v\ { index—name-1 | |

+ |} integer-2 J \
- /

integer-3

oo}

| |
! !
| / {]| data-name-3 |} A
| | | index—name-2 | []
[[{1 + |} integer-4) I
I\ -1 /]
Paragraphs
paragraph-name [{| IN |} section-name]
| OF |

Linage-Counters
LINAGE-COUNTER {| IN]} file—name

I OF |
Conditicns
condition-name-1 [{| IN }} data-name-2 7J...
| OF |
__ [{}! IN |} file-name-1]
| OF 1
[{ {] integer-1 |}
] I
i / {| data-name-2 |} [{ {
oA I

+ |} integer-2] \
- /

index-name—1 |

{I| data-name-3 }
| index-name-2

/
!
I L {I +
\ [-

I
!
} integer-4]

~———

254

Miscellaneous Formats

Relational Conditions

EQUAL TO

{| identifier-1 [} IS [NOT] (| GREATER THAN]}
| literal-1] | > I
| arithmetic-expressiocn-1| | LESS THAN |

< I
I I
I |

| identifier-2 [}
{ literal-2 I
| arithmetic-expression-2 |

{

[{{ AND |} ([NOT] {| GREATER THAN |}
| OR | F>]
| LESS THAN |
| < |
| EQUAL TO |
| |

| identifier-3 iy 1...
] literal-3 |
| arithmetic-expression-3 |

{

Simple Conditions

[NOT] / identifier-1 IS A
[[NOT] {| NUMERIC [} |
| APHBABETIC P
| APHARETIC-LOWER| |
| APHABETIC-UPPER| /

{NOT]} (| POSITIVE |
| NEGATIVE |
| ZERO |

|

I

\

/ arithmetic-expression-1 IS
i 1
|

\

{
I
I
|
I
|
I
|
I
|
I
I

condition—name-1

285

Complex Conditions

(NOT (]... {]| simple-conditicn-1 'y [y 1...
| relaticonal-condition-1 |
{ £i AND |} [WOT {]...
I OR |
{| simple~condition-2 [y £ 3 1..
[

relational-condition-2 |

General Condition

{! simple-condition-1
{ relational-condition-1
|

complex—-condition-1

APPENDIX 4

APPENDIX 4A

296

COBOL SQOURCE CODE INFORMATION

- ENTITIES AND ATTRIBUTES FOR INFORMATICN

IN A CORBOL PROGRAM

Abbreviations.

general

abbreviations : Y[|X - either Y or X
{X} - any number of X tokens

A{X}B - between & and B X tokens
[X1 — optional; specified for

relationships only.

descriptors : id - general identifier

tokens

storage

In - socurce line number
fg - flag
co condition, cu condition-usage,
du data-usage, fi file, fv file-variable,
il identifier-1lit, pa paragraph,
pr program, se section,
sg statement-group, S0 source,
st statement, va variable,
v8 variable-88.
characteristics
¢? — 1 occurrence of ? characters
xCc? — x occurrences of 7 characters
i? =~ 1 occurrence of a ? byte integer

xi? - x occurrences of ? byte integers

297

Token pointers are assumed to have
storage characteristic i2.
relationships : - one to one
--> one to many
<-— many to one

<--> many to many

LANGUAGE DEFINITION ENTITIES.

ENTITY-NAME : program token : pr

Description : Records general program information
from the ID and Configuration Section of the ED.
Pd-using identifies linkage variables.

Instances : One only

Attributes : pr-name{pr,c3l),
source-computer {id,c3l}, object-computer (id,c31},
segment-limit (i2), currency-sign{cl),
decimal-point {fg,cl).

Relationships : [pd—-using{pr --> val}l,

sections-or-paras(pr --> sejpa).

Implementation Attributes : pd using(0{pva,i2}5}.
Relation : program{ pr name = c31,
source comp = c¢31, object_comp = c31,
seg limit = 12, currency sn = cl, decimal pt = ci,
pd using 1 = 12, pd using 2 = iZ2, pd using 3 = i2,

pd using 4 = 12, pd using 5 = i2)

288

ENTITY-NAME : file token : fi
Description : Records definition information about
particular files. Contains file-control-entry
(ED) and file-description-entry (DD) data as
well as links to record-description-entries.

Instances : One per file
Attributes : fi-name(fi,c31),
fi-control-position{ln,i2), fd-position{ln,i2),
optional (fg,cl), implementor (id,c31),
crganization(S|R|I,cl), block-size(2i2),
block-measure (CIR,cl), rec-size(2i2),
rec—-varying{fqg,cl), access(S|R|D,cl},
alt-duplicates{fg,cl).
Relationships : [rec-size-depend{fi <--~ va)],
[file-status (fi <-— wvaj],
data-record{(fi --> wva},
[(Sequential Files linage-size(fi <-- valil),
linage~foot (fi <-- wvalil),
linage-top(fi <-~- wvalil),
linage-bot {(fi <-- valil)}],
[(Relative Files rel-key(fi <-- wva))l,
[{(Indexed Files rec-key{fi -- va),
alt-key(fi —- wva})l,
fv-file{fi ~-> £fv), [du-data-updated(fi --> du)],

[du—data-used {fi <--> du)].

299

Implementation Attributes : fi num(i2),
rec size dep(pva,i2), file status(pva,i2),
data record{pva,i2), rel key(pva,il},
rec_key(pva,i2), alt key(pva,i2).

Relation : file{ fi num = i2, fi name = c31,
fic position = 12, fd position = 12,

optional = cl, implementor = c¢31,

organization = c¢l, block size a = i2,

block size b = i2, block meas = cl,
rec size a = 12, rec size b = i2, rec varying = cl1,
rec size dep = i2, access = cl, file status = i2,

data record = i2, rel key = 12, rec key = i2,

alt_key = i2, alt_dups = cl)}

ENTITY-NAME : variable token : va

Description : Records data-description information
from non-88 variables defined in all sections of
the DD.

Instances : Many

Attributes : va-name(va,c31l), level(i2},
def-position(ln,i2), usage(CiDI|I,cl),
def-section{(F|W|L,cl), occurs—-asc{{fg,cl}),
picture{id, c30).

Relationships : [redefines(va --> va)],

[va-va-within{va <--> va}],

300

[(Occurs cccurs-a({va <-- 1l), occurs~b({va <-- il},
occurs—-depend(va <-- va), occurs-key(va <-—-> va),
occurs-index (va <--> va)}],

[(Non~occurs Non-redefinition value({va <-— il)}],

[pd-using-data({va <-- pr)},

[rec-size-depend(va --> fi)],

[file~-status(va --> fi}], [data-record(va <—-- fi)],

[lineage-size{va --> fi)]), [linage-fcot (va —-—-> fi}],

flinage~top(va —-—> fi})]l, [linage-bot({va --> fi}},

[rel-key{va —--> fi)], [rec~key(va ~- £fi}],

[alt-key(va -- fi}], (vB-va-switch{va --> v8)],

[vB~value-biva <--> v8}1, [co-data-used{va <--> co)],

[du-data~updated(va ~-> du}],

[du-~data—used (va <——-> du)}l.

Implementation Attributes : va num(iZ2),
redefines (pva,i2), va va within(pva,iZ2},
occurs_a(pil,i2), occurs b{pil,i2),
occurs dep(pva,i2), value(pil,i2).

Relation : variable{ va num = 12, va name = c31,
level = 12, def position = i2, usage = ci,
def section = cl, redefines = i2, va va within = i2,
occurs a = 12, occurs b = i2, occurs dep = 12,

picture = ¢30, value = i2)

ENTITY~-NAME : wvariable-88 token : v8

301

Description : Records data-description informaticn
from B8 variables defined in all sections of the
DD.

Instances : Many

Attributes : vB-name{v8,c31}.

Relationships : v8-value-a(v8 <—-> il},
[vB~value-b{v8 <--> iljva)]l,

vB-va-switch (vB <—-- wva), [co—-data-used(v8 <--> co}].

Implementation Attributes : v8 num(i2),
vB8 va switch(pva,i2).
Relation : variable 88(v8 num = i2, v8 name = ¢31,

v8 va switch = 12)

ENTITY-NAME : file-variable token : fv

Description : Records LINAGE-CQOUNTER information for
sequential LINAGE files and implicit file pointers
for all files.

Instances : Many.

ttributes : fv-type(L|P,cl}.

Relationships : fv-file(fv «—- fi},
[co-data-used (fv <--> co}],
[du-data-used{fv <--> du)l,

[du-data-updated(fv —--> du)].

Implementation Attributes : fv num{i2), fv_file(pfi,iZ2).

302

Relation : fi_variable(fv num = i2, fv_type = cl,

fv_file = i2)

ENTITY-NAME : identifier-1lit token : il

Description : Records (Non-variable, non-file-variable,
non—-variable-88, non-file) data-names, identifiers
and literals used in the program.

Instances : Many

Attributes : il-token(il, cl&0)

Relationships : [lineage-size{il --> fi}],
[linage—foot (il --> fi}], (linage-top(il --> fi)],
[linage-bot (11 --> fi)], [occurs-a{il --> va}l,
occurs-b{(il --> va)], [value(il --> wva)l,
[vB—value-a (il <--> v8}], [vB-value-b(il <--> v8)],
{co-data-used (il <--> co)l,

[du—data-used (il <--> du)].

Implementation Attributes : il num(i2).
Relation : ident 1lit(il num = i2, il token a = c80,

il _teoken b = ¢80)

ENTITY-NAME : condition token : co
Description : Records PD condition and conditional
expression information.

Instances : Many

303

Attributes : cond-text (id,c256),
cond-type (~ | STATE | TIMES | DEPENtEVAL, c5) .
Relationships : co-data-used(co <--> val|vB8|fviil),

cu-condition(co —-> cu).

Implementation Attributes : co num(i2).

Relation : condition(co_num = 12, cond text_a = c64,

i

cond_text_b c64, cond text c = cb4,

cond text d céd, cond type = cb)

ENTITY-NAME : section token : se

Description : Records PD section information. Default
seg-number is 0.

Instances : Many.

Attributes : se-namel(se,c31l}, seg-number(i2),
se-position{(ln,i2).

Relationships : sections—-or-paras(se <—-- pr),
fcu-branch~a{se ~-> cu)l, [cu-branch-b(se —--> cu)],

pa-section(se —-> pa}.

Implementation Attributes : se num(iZ}.
Relation : section(se num = i2, se name = ¢31,

seg number = 12, se position = i2)

ENTITY-NAME : paragraph token : pa

304

Description : Records PD paragraph information.

Instances : Many.

Attributes : pa-name(pa,c3l), pa-position{ln,i2).

Relationships : pa-section(pa <-—— se),
sections-or-paras (pa <-- pr), pa-stgroup(pa -- sg),

[cu-branch-a(pa --> cu)], [cu-branch-b({pa --> cu)].

Implementation Attributes : pa num({i2),
pa_section(pse,i2), pa stgroup(psg,iZ2).
Metric Attributes : locp(i2), pa comments (i),
u operators{iZ), operators(i2}, periods{i2}.
Relation : paragraph(pa num = i2, pa name = ¢31,
pa position = i2, pa section = 12, pa stgroup = 12,
locp = 12, pa comments = i2, u operators = i2,

operators = i2, periods = 12)

ENTITY-NAME : statement-group token : sg

Description : Records PD statement group information.
A statement-group is a group of consecutive
statements (in terms ¢f the same nesting level)
within a paragraph or statement.

Instances : Many

Attributes : sg-type (- |NEXT SENTENCE|EXIT,c13).

Relationships : [pa-stgroup(sg —— palj,

[st-stgroup{sg --> st}]}, [cu-branch-a{sg --> cu)],

305

[cu-branch~b{sg --> cu}]j.

Implementation Attributes : sg num(i2).

Relation : stgroup(sg num = 12, sg type = c¢l3)

ENTITY-NAME : statement token : st

Description : Records PD statement information.

Instances : Many

Attributes : verb(id,cl0), end-verb{id,cl2},
st-position(in,i2),
st-attr-a{l|Q|I-0|EX|before|after,cb),
st-attr-b{-|varyingi{multvar,c7?).

Relationships : st-stgroup (st <—-- sg),

fecu-statement (st ——> cu)], [du-statement{st ~-> du)].

Implementation Attributes : st _num(iZ2),
st_stgroup(psg,i?2).

Relation : statement{ st num = i2, verb = cl0,
end verb = ¢l2, st position = i2, st attr a = c6,

st_attr b = ¢7, st stgroup = i2)

NAVIGATION AND USAGE ENTITIES.

ENTITY-NAME : source token : so
Description : Records line numbers which map the source

code. Line numbers for the IDENTIFICATION DIVISION,

PROGRAM-ID paragraph, ENVIRONMENT DIVISION,
CONFIGURATION SECTION, INPUT-QUTPUT SECTION,
DATA DIVISION, FILE SECTION, WORKING-STORAGE
SECTION, LINKAGE SECTION and PROCEDURE DIVISION
are stored.

Instances : One only

Attributes : iden-div(ln,i2), pid-para(lin,i2},
envi—-div{lin,i2), conf-sec{ln,i2), inou-sec(ln,i2),
data—-div{(ln,i2), file-sec(ln,i?)}, wost-sec({ln,i?Z),

link-sec{ln,1i2), proc-div{ln,iZ2).

Metric Attributes : locd(i2), comments{i2).
Relation : source{ iden div = i2, pid para = 1i2,

envi div = i2, conf sec = 12, inou sec = i2,

data div i2, file_ sec i2, wost sec = i2,

12, locd = i2,

f

link sec = i2, proc div

comments = 12)

ENTITY-NAME : condition-usage token : cu

Description : Records PD branch parameter informatio
about statements.

Instances : Many

Attributes : cu-desc({~|UNTIL|WHEN,c5),
cu-br—-desc (- | ELSE|THRU| GOTQ, c4}) .

Relationships : cu-condition{cu <-- co),

cu-branch-a{cu <-— selpaisg),

306

n

307

lcu-pranch-b(cu <-- sel|palsgll,

cu-statement (cu <-- st}.

Implementation Attributes : cu num{i2),
cu condition(pco,iZ), cu branch a{pselppaipsg,i2},
cu branch_b{pselppalpsg,i2}, cu statement (pst,i2).
Relaticon : cond usage{ cu _num = i2,
cu condition = 12, cu branch a = i2,
cu_branch b = i2, cu desc = ¢5, cu br desc = ¢4,

cu_statement = i2)

ENTITY-NAME : data-usage token : du

Description : Records PD data use and update
information about statements.

Instances : Many

Attributes : du-desc{—|CORR|INIT|NOUP |OPUP|NQUS},c4}.

Relationships : [du-data-updated(du <-- wval|fv]|fi],
[du-data-used{(du <--> va|fv}fijiill,

du-statement (du <-- st).

Implementation Attributes : du num{i2),
du updated{pval|pfv|pfi,i2), du statement (pst,iZ2).
Relation : data usage(du num = i2, du updated = i2,

du desc = ¢4, du_statement = i2)

308

LINK AND OTHER RELATIONS.

RELATION-NAME : linage_file token : 1f
Description : Records linage information for

sequential file with LINAGE clauses.
Instances : One per sequential LINAGE file
Relaticonships : fi-num(lf -- fi),

linage size(lf <-- valil), linage foot (1f <-- valil),

linage top(1f <-- wvalil}, linage bot (1f <-- wvailil).

Implementation Attributes : fi num{pfi,i2),
linage size{pvalpil,i2), linage foot (pvalpil,iZ),
linage top{pvalpil,i2), linage bot (pvaipil,i2}.
Relation : linage file(fi num = i2, linage size = i2,

linage foot = 12, linage top = 12, linage bot = i2)

RELATION-NAME : wa_occurs token : vo

Description : Records key and index lists from
occurs clauses of variable definitions.

Instances : Many per occurs clause with keys or
indices

Relationships : va-num(vo <-~ va),

occurs—key(vo <-- va}, occurs index{vo <-- va}.

Implementation Attributes : vo num{i2), va num(pva,i2),

occurs asc(fg,cl), occurs key(pva,i2),

309

occurs_ index(pva,i2).
Relation : va occurs{ vo num = i2, va num = 12,

occurs_asc = ¢l, occurs_key = 12, occars*index = 12 }

RELATION-NAME : v8_value token : vv

Description : Records lists of pairs of values
associated with variable-88s.

Instances : Many per variable-88

Relationships : v8-num({vv <—— v8),

v8-value-a{vv <-- 11}, wvB8-value-b(vv <-- wva[il).

Implementation Attributes : v8 num(pv8,i2),
v8_value_a(pil,i2), v8 value b(pval|pil,i2).
Relation : v8 value(v8 num = 12, v8 value a = i2,

v8 value b = i2)

RELATION-NAME : co_data_used token : cd

Description : Records lists of data used in
conditions.

Instances : Many per condition

Relationships : co-num{cd <-— co),

co-data—used({cd <—— wval|v8f{fv]il).

Implementation Attributes : co num(pco,i?2),
co_used(pvalpv8|pfvipil,i2).

Relation : co_data used(¢co num = 12, co_used = 12)

RELATION-NAME : du_data used token

Descripticn : Records lists of data used in
data-usage instances of statements.

Instances : Many per data-usage instance

Relationships : du=num{dd <-- du},

du-data-used{dd <-- fi{val|fviil).

Implementation Attributes : du num(pdu,i2),

du used{pfi|pvalpfvipil,i2).

Relation : du data_used(du_num = i2, du used = i2)

310

APPENDIX 4B -~

Standard Phrase

SEGMENT-LIMIT IS
CURRENCY SIGN IS

DECIMAL-POINT IS COMMA
ASSIGN TO

AREAS

ORGANIZATION IS

BLOCK CONTAINS

ACCESS MODE IS
RELATIVE KEY IS

RECORD KEY IS

ALTERATE RECORD KEY IS

WITH DUPLICATES
FILE STATUS IS

RECORD CONTAINS

RECORD IS5 VARYING IN SIZE

DEPENDING ON
LABEL RECORDS ARE
LINAGE IS

WITH FOOTING AT

LINES AT TOP

LINES AT

BOTTOM

VALUE 1S

311

STANDARD PHRASES FOR FORMATTING

Equivalents

SEGMENT-LIMIT

CURRENCY

CURRENCY SIGN

PECIMAL-POINT COMMA

ASSIGN

AREAR

ORGANIZATION

BLOCK

ACCESS MODE

ACCESS IS

RELATIVE KEY

RELATIVE IS

RECORD KEY

RECORD IS5

RECORD {in Environment

Division only}

ALTERNATE RECORD KEY

ALTERNATE RECQORD IS

DUPLICATES

FILE STATUS

STATUS 13

RECORD {within Data
Division only}

IS VARYING IN

IS VARYING SIZE

1S5 VARYING

VARYING IN STZE

RECORD VARYING IN

RECORD VARYING SIZE

DEPENDING

LABEL RECORD IS

LINAGE

WITH FOOTING

FOOTING AT

FOOTING

LINES TOP

AT TOP

TOP

LINES BOTTOM

AT BOTTOM

BOTTOM

VALUE

VALUES ARE

VALUES

RECORD
RECORD
RECORD
RECORD

THRU
PIC
USAGE IS
SIGN IS

SEPARATE CHARACTER
ASCENDING KEY IS

DESCENDING KEY IS

INDEXED BY
SYNCHRONIZED
JUSTIFIED
BLANK WHEN ZERO
VALUE
CORRESPONDING
ON 5IZE ERROR
ON OVERFLOW
FOR REMOVAL
WITH NO REWIND
WITH LOCK
INVALID KEY
WITH NO ADVANCING

GG TOC
DATA BY

BEFORE INITIAL
AFTER INITIAL

WITH TEST
KEEY IS

AT END
DELIMITED BY
WITH POINTER
DELIMITER IN
COUNT IN
TALLYING IN
AT EOP

ROT >

312

THROUGH

PIC IS

PICTURE

PICTURE IS

USAGE

SIGN

SEPARATE

ASCENDING KEY

ASCENDING IS

ASCENDING

DESCENDING KEY

DESCENDING IS

DESCENDING

INDEXED

SYNC

JUST

BLANK ZERO

VALUE IS

CORR

SIZE ERRCR

OVERFLOW

REMOVAL

NO REWIND

LOCK

INVALID

NO ADVANCING

WITH NC

GO

BY {within INITIALIZE
statement only}

BEFORE {within INSPECT
statement only)

AFTER {within INSPECT
statement only}

TEST

KEY

END

DELIMITED

POINTER

DELIMITER

COUNT

TALLYING

AT END-OF-PAGE

END-OF-PAGE

EOF

IS >

13 GREATER THAN

IS GREATER

GREATER THAN

GREATER

IS NOT >

NOT <

NOT =

IS NOT GREATER THAN
IS NOT GREATER
NOT GREATER THAN
NCT GREATER

IS <

IS LESS THAN

IS LESS

LESS THAN

LESS

IS NOT <

IS NOT LESS THAN
IS5 NOT LESS

NOT LESS THAN
NOT LESS

Is =

IS EQUAL TO

IS EQUAL

EQUAL TO

EQUAL

IS NOT =

IS NOT EQUAL TO
IS NOT EQUAL

NOT EQUAL TO

NOT EQUAL

313

314

BIBLIOGRAPREY

[ALB83] ALBRECHT A.J., GAFFNEY J.E.
"Software Function, Source Lines of Code and
Development Effort Prediction"
IEEE Transactions on Software Engineering,Vol.SE-9,
No.6,Nov,1883

[A1.1.84] ALLMAN E.
"An Intro to SCCS®
ULTRIX-32 Supplementary Documents, Vol.II
Programmers, Digital Equipment Corporation 1984

[AME7S] AMEY W.S.
"The Computer Assisted Software Engineering (CASE)
System”
4th Internatioconal Conference on Software Engineering,
Sept.1979

[AND81] ANDERSON R.E.
"Modular Documentation: a Software Development Tool"
AFIPS National Computer Conference,May 1981,
pp401~-405

[ARNB2] ARNOLD R.S., PARKER D.A.
"The Dimensions of Healthy Maintenance®
6th International Conference on Software Engineering,
Sept..1982 IEEE,ppl0-27

[BAK80] BAKER A.L., ZWEBEN S.H.
"A Comparison of Measures of Control Flow Complexity"
IEEE Transactions on Scftware Engineering,Vol.SE-6,
No.6,Nov 1380

[BASB2a] BASLI V.R,, MILLS H.D.
"Understanding and Dogcumenting Programs”
IEEE Transactions on Software Engineering,Vol.SE-8,
May 13982,pp270-283

[BEL84] BELL F.J.
"Technology Transfer in the Maintenance Environment™
AFIPS National Computer Conference, 15984,pp229-234

[BER85bh] BERRY R.E., MEEKINGS B.A.
"A Style Analysis of C programs”
Communications of A.C.M.,V0ol.28,No.1,Jan.1985

[ROE73] BCEHM B.HW.
"Software and its Impact : a Quantitive Assessment"”

315

Datamaticn,May 1973,pp48-58

[BOE76] BOEHM B.W.
"Software Engineering"
IEEE Transactions on Computers,Vel.C-25,Nc.12,
Dec.1876,ppl226-1240

[BOE81] BOEHM B.W.
"Software Engineering Economics"
Prentice~Hall 1981

[BOEB4] BOEHM B.W.
"Software Engineering Economics”
IEEE Transactions on Software Engineering,Vol.SE-10,
No.1l,Jan.1984

[BRI83] BRICE L., CONNELL J.
"A Methodology for Minimizing Maintenance Costs™
AFIPS National Computer Conference,May 1983,ppll3-121

[BRI84] BRICE L., CONNELL J.
"System Information Database: an Automated
Maintenance Aid"
AFIPS National Computer Conference, 1984,pp209-21¢

[CANBeRh] CANE A.
"Getting Programs back into shape”
The Dominion {(New Zealand Newspaper),Dec 1lst 1986,ppl8

[CEN82] CENTRE J.W.
YA Quality Assurance Program for Software Maintenance™
AFIPS National Computer Conference,June 1982,pp399%-407

[CHAT79] CHAPIN N.
"A Measure of Software Complexity™
AFTIPS National Computer Conference, 1979,pp995-1002

[CHAB1] CHAPIN N.
"Productivity in Software Maintenance"
AFIPS National Computer Conference, 1981,pp34%-352

{CHA85] CHAPIN N.
"Software Malintenance: a Different View™
AFIPS National Computer Conference, 1885,ppbh07-513

(COB81) TECHNICAL COMMITTEE X3J4 - COBOL
"Draft Proposed Revised X3.23 American Naticnal
Standard Programming Language COBOL"™
American Naticonal Standards Institute, Sept.1981

[COL85a] COLLOFELLC J.5., BLAYLOCK J.W.

316

"Syntactic Information Useful for Software
Maintenance™
AFIPS National Computer Conference, 1985,pp547-553

[CONB4] CONNELL J., BRICE L.
"FProlonging the Life of Software"™
AFIPS National Computer Conference, July 1984,
pPp243-249

[CCOT78]1 COCPER J.D.
"Corporate Level Software Engineering®
IEEE Transactions on Software FEngineering,Vel.SE-4,
July 1978,pp319-325

[CRA85] CRAWFORD 5.G., MCINTOSH A.A., PREGIRBON D.
"An Analysis of Static Metrics and Faults in C
Software"
Journal of Systems and Software, No.5, 13885 pp37-48

[CUR79]} CURTIS B., SHEPPARD S5.B., MILLIMAN P., BORST M.A.

LOVE T.
"Measuring the Psychological Complexity of Software
Maintenance Task with the Halstead and McCabe
Metrics"
IEEE Transactions on Software Engineering,Vol.SE-5,
May 1979,pp96-104

[bEUB1] DEUTSCH M.S.
"Software Project Verification and Validation™
Computer, Vol.14,No.4,April 1981

[DIG6ES] DIGITAL
"DecSysteml(0 COBOL Programmer’s Reference Manual™
DIGITAL EQUIPMENT CORPORATION, 1969

{EBEB0] EBERT R., LUGGER J., GOECKE R.
"Practice in Software Adaptation & Maintenance"
Neorth-Holland 1380

[ELS76] ELSHOFF J.L.
"An Analysis of Some Commercial PL/1 Programs"
IEEE Transactions on Software Engineering,Vol.SE-2,

No.2,June 1876

[ELS78] ELSHOFF J.L.
"An Investigation into the Effect of the Counting
Method Used on Software Science Measurements"
Sigplan Notices,Vol.13,No.2,Feb.1978,pp30-45

[ELS82] ELSHOFF J.L., MARCOTTY M.
"Improving Computer Program Readability to Aid

317

Modification®
Communications of A.C.M.,Vol.25,N0.8,Aug.1982

[ELS84] ELSHOFF J.L.
"Characteristic Program Complexity Measures"
7th International Conference on Scftware Engineering,
1584 IEEE,pp288-293

[EVA82] EVANS M., BANKEN S.E.
"Software Engineering for the COBOL Envirconment”
Communications of the A.C.M.,Vol.25,Nc.12,Dec 1882

[FAI78] FAIRLEY R.E.
"Tutorial: Static Analysis and Dynamic Testing
of Computer Software”
Computer,vol.1l1,No.4,April 1978

[FEU7S] FEUER A.R., FOWLKES E.B.
"Relating Computer Program Maintainability to
Software Measures"
AFIPS National Computer Conference, 1979,ppl003-1012

[FI084] FICRELLC M., CUGINI J.
"Is COBOL-8x Cost Effective 2"
AFIPS National Computer Conference, 1984,pp223-228

[FOR85] FORAGE G.
"Fourth-Generation Languages and Advanced Software
Development Aids"
Data Processing,Vol.27,No.9,Nov 1985

{GIMB0] GIMPEL J.F.
"CONTQUR -A Method of Preparing Structured Flowcharts®
Sigplan Notices,Vol.15,No.10,0ct 1980

[GUIB3] GUIMARAES T.
"Managing Application Program Maintenance Expenditures"
Communications of the A.C.M.,Vo0l.26,No.10,0ct 1983

[HAL77} HALSTEAD M.H.
"Elements of Software Science”
North-Holland 1877

[HAN78] HANSEN W.J.
"Measurement of Program Complexity By the Pair
{Cyclomatic Number,Operator Count)™"
Sigplan Notices,vol.,13,Nc.3,Mar.1878,pp29-33

[HAR81a] HARRISON W.A., MAGEL K.I.
"A Complexity Measure Based on Nesting Level"”
Sigpian Notices,Vol.l16,No.3,Mar 1981

318

[HAR81b] HARRISON W.A., MAGEL K.I.
"A Topological Analysis of Computer Programs with
less than 3 Binary Branches"
Sigplan Notices,Veol.16,No.4,Apr.1981,pp5l-63

[HARB3] HARRISON W., MAGEL K., KLUCZNY R.
"Research in Software Maintenance"
Journal of Systems Management,July 1983,ppl0

[BAR84] HARRISON W.A,
"Software Complexity Metrics®
Journal of Systems Management,July 13584,pp28

[HARB85] HARRISON W., COCK C.R.
"A Method of Sharing Software Complexity Data™
Sigplan Notices,Vol.20,N0.2,Feb.1985

[HAR86] HARRISON W., COOK C.R,
"A Note on the Berry-Meekings Style Metric"
Communications of the A.C.M.,V0l.29,No.2,Feb.1386

[HAW79] HAWKINS T.J., HARANDI M.T.
“Towards more Portable COBOLY
The Computer Journal,Vol.22, 19879,pp2%0

[HEN81] HENRY S., KAFURA D,
"Software Structure Metrics Based on Information Flow”
TEEE Transactions on Software Engineering,Vol.SE-7,
No.5,Sept.1981

[HOR79] HORSLEY T.R., LYNCH W.C.
"Pilot : a Scftware Engineering Case Study”
4th International Conference on Software Engineering,
Sept.1278

(HORB6] HOROWITZ E., WILLIAMSON R.C.
"SODOS - A Software Documentation Support
Environment ~ Its Definition"
IEEE Transactions on Software Engineering,Vol.SE-12,
No.8,Aug.1%86

[HOU83] HCUGHTON R.C.
"Software Development Tools : A Profile™
Computer,Vol.16,No.5,May 1983

[HUAT78] HUANG J.C.
"Program Instrumentation and Software Testing"®
Computer,vVol.11,No.4,Apr.1978

[HUT86] HUTCHINSON A.
"Scome Practical Principles for Design of Maintainable

318

Systems"
The Computer Journal,Vel.Z2%,No.1, 1986

[INC86] INCE D., WOODMAN M.
"The Rapid Generation of a Class of Software Tools™
The Computer Journal,Vol,29,No.2,April 1986

[JACT75] JACKSON M.A.

"Principles of Program Design™
Academic Press Inc. {London) Ltd, 1875

[JONB6a] JONES C.
"Programming Productivity®
McGraw-Hill 1986

[JON86D] JONES R.
"Automated Tools for the Analyst”
Data Processing,Vol.28,No.5,June 1986

[LET86] LETOVSKY S., SOLOWAY E.
"Delocalized Plans and Program Comprehension®
ITEEE Software,Vol.3,No.3,May 1986

[LIE78] LIENTZ B.P., SWANSON E.B., TOMKINS G.E.
"Characteristics of Application Software Maintenance™
Communications of the A.C.M.,Vol.27, 1978,pp466-471

[LIEBOQ} LIENTZ B.P., SWANSON E.B.
"Software Maintenance Management"
Addison-Wesley 1980

[LIE81] LIENTZ B.P., SWANSON E.B.
"Problems in Application Software Maintenance™
Communications of the A.C.M.,Vol.24,Nov.1981,pp763-769

[LTE83] LIENTZ B.P,.
"Issues in Software Maintenance"
Computing Surveys,Vol.15,No.3,Sept 1983

[LIN73] LINDHORST W.M.
"Scheduled Maintenance of Application Software™
Datamation, May 1973,pp&d-67

[LIU76] LIU C.C.
"A look at Software Maintenance"
Datamation,Vol,22,Nov,1976,pp51-55

[LY(0OB81] LYONS M.J.
"Salvaging your Software Asset (Tools Based
Maintenance)™
AFIPS National Computer Conference, 1981,pp337-341

320

[MAR83a] MARSH R.E.
"Application Maintenance: One Shop’s Experience and
Organization"
AFIPS National Computer Conference, 1983,ppl46-153

[MAR83b]} MARSELOS N.L.
"Human Investment Techniques for Effective Software
Management"
AFIPS National Computer Conference,May 1983,ppl31-136

[MAR83c] MARTIN J., MCCLURE C.
"Software Maintenance : The Problem and Its Scolutions™®
Prentice-Hall N.J., 1983,pp5-7

[MAT86] MATHIS R.F,
"The Last 10 Percent®
IEEE Transactions on Software Engineering,Vol.SE-12,
No.6,June 1986

[MCC76] MCCARBE T.J.
"A Complexity Measure™
TEEE Transactions on Software Engineering,Vol.SE-2,
No.4,Dec.13876

[MCK84] MCKEE J.R.
"Maintenance as a Function of Design"
AFIPS National Computer Conference, 1884,ppl87-193

[MCNB4] MCNEILE A.T.
"A Model of Programming Activity"”
Computer Bulletin,Sept.1584

[{MCT80] MCTaP J.L.
"The Complexity of an Individual Program"
AFIPS National Computer Conference, 1980,pp767-771

[MOR79] MORRISSEY J., WU L.
"Software Engineering - An Economic Perspective™
4th International Conference on Software Engineering,
Sept.1879

[MUN78] MUNSON J.B.
"Software Maintainability: a Practical Concern for
Life-Cycle Costs"
Proc. Compsac,Nov.1978,pp54-58

[MYET7] MYERS G.J.
"An Extension to the Cyclomatic Measure of Program
Complexity"
Sigplan Notices,Vel.12,No.10,0ct 1877,pp62-64

321

[NARB84] NARROW B., KELLY I.
"Two Perceptions of Software Maintenance Performed by
On-Site Contractors™
AFIPS National Computer Conference,July 1984,pp235-245

[OGD72]) OGDINOG J.L.
"Designing Reliable Software®
Datamation,Vol,18,JdJuly 1972,pp71-78

[PAI77] BAIGE M.R.
"On Partitioning Programs Graphs"
IEEE Transactions on Software Engineering,Vol.SE-3,
No.6,Nov 1877

[PAN78] PANZL D.J.
"Automatic Software Test Drivers®
Computer,vVol.11,No.4,April 1978

[PAR85a] PARIKH G.
"Discovering the World of Software Maintenance:
Selected Readings™"
Sigsoft Software Engineering Notes,Vol.10,No.5,
Oct 1985

[PARS8Sb] PARIKH G.
"Software Maintenance: Penny Wise, Program Foolish"
Sigsoft Software Engineering Notes,Vol.1l0,No.5,
Cct 1985

[PHI74] PHILIPPAKIS A., KAZMIER L.
"Information Systems Through COBOL"
McGraw—-Hill, 1974

[PIW82] PIWOWARSKI P.
"A Nesting Level Complexity Measure®
Sigplan Notices,Vol.17,No0.9,Sept 1982

[POW84] POWERS M.J., ADAMS D.R., MILLS H.D.
"Computer Informaticon Systems Development: Analysis
and Design"
South~Western Publishing Co., 1584,p38

[PRA84] PRATHER R.E.
"An Axiomatic Theory of Software Complexity Measure"
The Computer Journal,Vol.27,No.4,Nov,1984

[PUN75] PUNTER M.
"Programming for Maintenance"
Data Processing,Sept.19875,pp292-294

{RED86} REDISH K.A., SMITH W.F.

322

"Program Style Analysis: A Natural By-Product
of Program Compilation”
Communications of the A.C.M.,V0l.29,No.2,Feb.1886

[REE82] REES M.J.
"Automatic Assessment Aids for Pascal Programs”®
Sigplan Notices,Vol.17,N0.10,0ct.1982

[REIB4] REISS S.P,
"Graphical Program Development with PECAN
Program Development System”
Dept.Comp.Sci.,Brown Univ.,Rhode Is.,Technical Report
CS—-84-04,Mar.1984

[REU81] REUTTER J.
"Maintenance is a Management Problem and a
Programmers Opportunity™
AFIPS Natiocnal Computer Conference, 1981,pp343-347

[RICB3] RICHARDSON G.Y., BUTLER W.C.
"Organizational Issues on Effective Maintenance
Management"
AFIPS National Computer Conference,May 1983,pplb5-16l

[RIC84] RICARDSON G., HODIL E.D.
"Redocumentation: Addressing the Maintenance Legacy"
AFTIPS National Computer Conference, 1984,pp203-208

[RIC85] RICHMOND I.
"Documentation Support - a Route to Full Life Cycle
Productivity"
Data Processing,vol.27,No.9,Nov.1985

[RIDB81] RIDDLE W.E,
"An Assessment of DREAMM
Software Enginnering Environments, B.Hunke,
North-Holland 1981,ppl&%l1-221

[RIG69] RIGGS R.
"Computer Systems Maintenance"
Datamation,Nov.1969,pp227-232

[ROB76] ROBINSON P.
"Advanced COBOL : ANS 74"
Macdonald and Jane’s/American Elsevier 1976

[SAI83] SAIB S.H.
"Future ADA Environments"
AFIPS National Computer Conference, 1983,pp57-63

[SCH79] SCHNEIDEWIND N.F.

323

"Software Metrics for Alding Program Development and
Debugging"
AFIPS National Computer Conference, 197%,pp9835-954

[SCH81] SCHNEIDER G.M., SEDLMEYER R.L., KEARNEY J,
"On the Complexity of Measuring Software Complexity"
AFIPS National Computer Conference, 1981,pp317-322

[SCH83] SCHNEIDER G.R.E.
"Structured Software Maintenance®
AFIPS National Computer Conference, 1983,ppl38-144

[SHE81] SHIEL B.A.
“"The Psychological Study of Programming”
Computing Surveys,Vol,13,No.1,Mar.1881

{SHEE83] SHEN V.Y., CONTE S.D., DUNSMCRE H.E.
"Software Science Revisited: A Critical Analysis of
the Theory and Its Empirical Support™
IEEE Transactions on Software Engineering,Vel.SE-9,
No.2,Mar.15883

[SHI85] SBILLING J.
"FRED : A Program Development Tool™
Dept.Comp.Sci.,Univ.Illinois,
Report UIUCDCS-R-85-1224,8ept.1985

[STAB4] STANDISH T.A.
YAn Essay on Software Reuse”
IEEE Transactions on Software Engineering,Vol.SE-10,
No.5,3ept.1984

[SUN81] SUNCHARA T., TAKANO A., UEHARA K., OHKAWA T.
"Program Complexity Measure for Software Development
Management®”
5th International Conference on Scftware Engineering,
Mar.1981,ppl00-106

[TAT84] TAI K.C.
"A Program Complexity Metric Based On Data Flow
Information In Control Graphs"
7th Internaticnal Conference on Scoftware Engineering,
1984 1EEE,pp23S5-248

[TAT85] TATE G., HAYWARD R,
"Software Engineering Issues in the Use of Fourth
Generation Languages”
Massey University Computer Science Report 85/5,
ISSN0112-630X,July 1985

{TAU83] TAUTE B.J.

324

"Quality Assurance and Maintenance Application Systems"
AFIPS Natioconal Computer Conference,May 1983,ppl23-129%

[TEAB5] TEAGUE L.C., PIDGECN C.W.
"Structured Analysis Methods for Computer Information
Systems”
SRA, 1985,p4z2

I[TEI77] TEICHROEW D., HERSHEY E.

"PSL/PSA: A Computer—-Aided Technique for Structured
Documentation and Analysis of Information
Processing Systems™

IEEE Transactions on Software Engineering,Vol.SE-3,
No.l,Jdan.1877

[TEC82] TEOREY T., FRY J.
"Design of Database Structures"”
Prentice—-Hall, 1982

[THA81] THALMANN D., MAGNENAT-THALMANN N.
"Computers in Bducation”
North-Holland 1981

[TINB83] TINNIRELLO P.C,.
"Inproving Software Maintenance Attitudes™
AFIPS National Computer Conference, 1983,ppl(07-122

[TIN84] TINNRELLO P.C.
"Software Maintenance in Fourth Generation
Environments”
AFIPS Naticnal Computer Conference,July 1884,pp251-257

[TOR79] TORSUN I.5., AL-JARRAH M.M.
"An Empirical Analysis of COBOL Programs"
Software Practice and Experience,Vel.9,No.5,May 1979

[TOR81] TORSUN I.S., AL-JARRAH M.M.
"Dynamic Analysis of COBOL Programs”
Software Practice and Experience,Vel.11,No.9,Sept 19381

[VES83] VESSEY I., WEBER R,
"Scome Factors Affecting Program Repair Maintenance:
An Empirical Study"
Communications of A.C.M.,V0l.26,No0.2,Feb.1983

[VOG80] VOGES U., GMEINER L., VON MAYRHAUSER A.A.
"SADAT - An Automated Testing Tool™
IEEE Transactions on Software Engineering,Vol.SE-6,
No.3,May 1980

[WAR82] WARREN S.

325

*MAP : a Tool for Understanding Software"
6th International Conference on Software Engineering,
Sept.1982 IEEE,pp28-37

[WAT79] WATERS R.C.
"A Methoed for Analyzing Loop Programs™
IEEE Transactions on Software Engineering,Vel.SE-5,
No.3,May 1979

[WATB82] WATERS R.C.
"The Programmer’s Apprentice : Knowledge Based
Program Editing™
IEEE Transactions on Software Engineering,Vol.SE-8,
No.l,Jan.1982

[WEIT74] WEISSMAN L.
"Psychological Complexity of Computer Programs: an
Experimental Methodology"
Sigplan Notices,June 1974,pp25-36

{WELB2] WELSER M.
"Programmer uses Slice when Debugging™
Communications of A.C.M.,Vol.25,July 1382,ppd46-452

[WIL79] WILLIS R.R., JENSEN E.P.
"Computer Aided Design of Software Systems™
4th International Conference on Scftware Engineering,
Sept . 1979

[WOOT79] WOODWARD M.R., HENNELL M.A.,, HEDLEY D.
"A Measure of Control Flow Complexity in Program Text™
IEEE Transactions on Software Engineering,Vol.SE-5,
Neo.1l,Jan,1879

[YaU80] YAU S.S8., COLLOFELLO J.S5.
"Some Stability Measures for Software Maintenance"
IEEE Transactions on Software Engineering,Vol.SE-6,
Nov.1980,pp545-552

[ZOL80O] ZOLNOWSKI J., SIMMONS D.B.
"Measuring Program Complexity in a COBOL Environment™
AFIPS National Computer Conference, 1980,pp757-766

[Z0OLB81] ZOLNOWSKI J.C., SIMMONS D.B.
"Taking the Measure of Program Complexity"
AFIPS Natioconal Computer Conference, 1981,pp322-336

[ZVEBZa] ZVEGINTZOV N.
"What Life ? What Cycle 2"
AFIPS National Computer Conference,June 1982,pp561-568

