
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the pennission of the Author.

AN APPROACH TO SOFTWARE MAINTENANCE SUPPORT USING A

SYNTACTIC SOURCE CODE ANALYSER DATA BASE

This thesis is presented in a partial fulfillment of

the requirements for the degree of Master of Arts in

Computer Science at Massey University.

PETER VIVIAN PARKIN

1987

ABSTRACT

In this thesis, the development of a software

maintenance tool called a syntactic source code

analyser (SSCA) is summarised. An SSCA supports other

maintenance tools which interact with source code by

creating a data base of source information which has

links to a formatted version of program source code.

The particular SSCA presented handles programs written

in a version of COBOL.

Before developing a SSCA system, aspects of software

maintenance need to be considered. Hence, the scope,

definitions and problems of maintenance activities are

briefly reviewed and maintenance support through

environments, software metrics, and specific tools and

techniques examined. A complete maintenance support

environment for an application is found to overlap

considerably with the application documentation system

and shares some tools with development environments.

Program source code is also identified as the

fundamental documentation of an application and

interaction with this source code is a requirement of

many maintenance support tools.

ACKNOWLEDGEMENTS

I wish to record my gratitude to Professor Graham Tate

for his guidance and supervision of this thesis.

Also, I would like to thank

June Verner for her interest and support in this

research;

My flatmates for encouraging my endevours;

and Massey University for providing the necessary

facilities required for this thesis.

TABLE OF CONTENTS

Page

CHAPTER 1. Introduction 1

CHAPTER 2. An Overview of Software Maintenance 8

2.1. A Maintenance Definition and Reasons for 8

Maintenance

2.1.1. A General Definition of Maintenance 8

2.1.2. The Reasons for Maintenance 9

2.1.3. Problems with the General Maintenance 11

Definition

2.2. Maintenance Classification 14

2.3. General Problems of Maintenance 20

2.3.1. Factors within the Overall Environment 20

2.3.2. Factors intrinsic to the Maintenance 23

Task

2.3.3. Conclusions on Software Maintenance 24

Problems

2.4. Maintenance Life Cycles and Steps

2.4.1. A General Maintenance Life Cycle

2.4.1.1. The System Life Cycle

2.4.1.2. The Maintenance Life Cycle

2.4.2. The Software Modification Task

2.4.2.1. Software Modification Steps

2.5. Software Modification

25

25

25

26

28

29

34

2. 5 .1.

2.5.1.1.

2.5.1.2.

2.5.1.3.

2.5.2.

2.5.2.1.

2. 5.2 .2.

2. 5. 3.

Software Modification Influences

The Influence of Documentation

The Influence of Maintainability

The Influence of Testability

Maintenance Quality

Quality Assurance

Modification Phenomena

The Implementation of Software

Modifications

35

37

39

40

43

44

46

50

2.5.3.1. Omissions when Implementing Changes 50

2.5.3.2. A Modification Example 52

2.5.3.3. Methods of Implementing Software 57

Modifications

2.6. The Role and Goals of Maintenance

CHAPTER 3. General Maintenance Support

3.1. Maintenance Metrics

61

63

63

3.1.1. Standard Metrics 64

3.1.1.1. Lines of Code 65

3.1.1.2. McCabe's Cyclomatic Number 66

3.1.1.3. Halstead's Software Science Measures 68

3.1.2. Types of Metrics 71

3.1.2.1. Instruction Mix Metrics 72

3.1.2.2. Program Form Metrics 73

3.1.2.3. Control Flow Metrics 75

3.1.2.4. Data Reference Metrics 80

3.1.2.5. Control Flow/ Data Flow Interaction 82

Metrics

3.1.3. Composite Measures of Complexity 88

3.1.4. A Discussion of Complexity Metrics 95

3.2. A Documentation Support Environment 101

3.2.1. Document Groups 102

3.2.2. A Documentation Scheme 104

3.2.3. Problems with Automated Support 109

3.3. Maintenance Support Tools 112

3.3.1. Classification according to Activity 112

3.3.2. Classification according to 116

3.4. Syntactic Analysis

3.4.1. Static Analysis

Documentation Used

3.4.2. A Syntactic Analysis Tool

CHAPTER 4. Development of a Prototype

Syntactic Analyser

4.1. Choice of a Programming Language

4.1.1. Development of a reduced COBOL

4.1.2. Some properties of COBOL

4.2. Data Base Content

4.2.1. COBOL Entities and Relationships

4.2.1.1. Language Definition Entities

4.2.1.2. Language Definition Attributes

4.2.1.3. Navigation and Usage Entities

121

121

127

136

137

139

141

146

146

146

152

154

4.2.1.4. Relationships between Entities 158

4.2.2. Maintenance Enquiries for a SSCA DB 164

4.2.3. SSCA Database Implementation 166

4.2.3.1. A Database Management System 166

4.2.3.2. Relations and Implementation 170

Considerations

4.3. Analysis of Source Code 176

4.3.1. SSCA Subsystems and Implementation 176

Considerations

4.3.2. The SPEX Subsystem

4.3.3. The Format Subsystem

4.3.4. The Analyse Subsystem

4.3.5. Metric Calculation and the SSCA

4.3.5.1. COBOL Metrics for the Metric

Calculator

4.3.5.2. SSCA and SSCA DB Implications

CHAPTER 5. Conclusions

5.1. Maintenance in General

5 .2. Software Metrics

5. 3. Maintenance Support through Tools

5. 4. The Prototype SSCA System

5. 4 .1. SSCA Development

5. 4. 2. Use of the SSCA DB

5. 5. General Conclusion

179

184

195

199

200

206

209

209

212

213

216

216

219

222

APPENDIX 1. The PURGE Program and its

Modifications

APPENDIX 2. Maintenance Tools

223

249

APPENDIX 3. A Reduced COBOL Language 271

3A. Omissions from Standard COBOL 271

3B. Language Description 278

APPENDIX 4. COBOL Source Code Information 296

4A. Entities and Attributes for Information in 296

a COBOL Program

4B. Standard Phrases for Formatting 311

BIBLIOGRAPHY 314

TABLE OF FIGURES

Page

2.4. A Model of Operational and Maintenance 27

3.2.

3. 3.

3. 4.

Activities

An Application Documentation Scheme 105

Application Documentation and Tools 117

A possible Structure for a Static Analysis 130

System

4.2.1. Examples of Section, Paragraph, 151

Statement-Groups and

Statement Instances

4.2.2. Relationships derived from Program 161

Structure

4.2.3. Relationships derived from Data

Declaration

162

4.2.4. Relationships derived from Branching 163

4.2.5. Relationships derived from Data 163

4. 2. 6.

4. 3.1.

4. 3. 2.

4. 3. 3.

Reference

Types of Relationships

The SPEX Subsystem

The Format Subsystem

The Analyse Subsystem

167

179

185

196

Al.1. Data and Program Structures for Program 247

PURGE - File Structures

Al.2. Program Structure 248

1

CHAPTER 1. INTRODUCTION.

This thesis is concerned with software maintenance and

tools and techniques for the support of software

maintenance. This chapter briefly outlines the areas

covered by later chapters and their sections.

Software maintenance is an expensive area of the system

life cycle consuming an estimated 32% of system costs

[MCK84]. Although maintenance is now beginning to be

recognised as important, the amount of direct

maintenance research which has been carried out is

limited. Exactly what constitutes a maintenance task is

still not completely defined especially the demarcation

between maintenance and redevelopment. The emphasis of

Chapter 2 is on defining and describing various aspects

of maintenance (particularly aspects which are

considered problematic), examining the relationship

between development and maintenance and attempting to

identify general principles for the modification of

software.

In Section 2.1 a broad definition of maintenance is

given and discussed. Reasons for maintenance are also

examined in this section. The reasons suggest that

maintenance is fundamental to most computer systems.

2

Although it could be supported by general tools, like

fourth generation languages (4GLs), maintenance will

certainly not disappear in the future [TAT85].

A task which has been identified as maintenance can be

further classified using a number of categorisation

schemes. These schemes, and some of the benefits and

dangers in using them, are investigated in Section 2.2.

Source code produced in maintenance costs between 10

and 100 times more than in development [CON84]. High

code production costs and maintenance backlogs of up to

2.5 years [TIN84] suggest that particular problems

occur in maintenance which hamper increases in

productivity. Several surveys of DP managers and/or

programmers [CHA85] [LIE78] [REU81] have been carried

out in an attempt to identify maintenance problems.

Results from these surveys and suggestions from other

researchers are discussed in Section 2.3.

Section 2.4 helps to further define maintenance in

terms of its place within the system life cycle. In

this section, the steps or actions associated with any

software modification task (i.e. maintenance task) are

also identified. The definition of aspects of

maintenance is completed in Section 2.5 with an

examination of direct influences on the process of

software modification and

phenomena known as "ripple

decay".

3

a description of the

effect" and "structural

Section 2.6 and part of Section 2.5 are devoted to

discussing

maintenance.

principles

principles for

Difficulties

are illustrated

achieving successful

with identifying such

through the design and

implementation of modifications to a particular COBOL

program (the program is given in Appendix 1).

Having defined maintenance and its problems in Chapter

2, tools and techniques to support various aspects of

maintenance are presented in Chapter 3. Static

complexity metrics (usually applied to individual

programs) have been suggested as measures of the

difficulty in understanding source code in maintenance

and producing debugged source code in development.

These metrics are directly applicable in maintenance as

the code exists whereas for most development operations

they must be estimated. The metrics range from simple

counts of language tokens in a program through measures

requiring the application of complex algorithms for

their calculation. Section 3.1 reviews and compares

many proposed complexity metrics.

4

Various documentation is used by managers, users and

maintainers to aid understanding of an application

system. As well as using documents, maintenance is

concerned with keeping documents up-to-date and

consistent. Program source code itself is a form of

documentation. Several systems or environments have

been proposed for general documentation support (these

are summarised in Appendix 2). Aspects of documentation

support relevant to maintenance, including document

categorisation, are discussed in Section 3.2.

Software tools can automate or, at least, support many

maintenance related tasks including reformatting,

control and data flow analysis, restructuring and

dynamic analysis of programs. Such tools are often

useful both in development and maintenance (e.g. RXVP

[EBE80] and SADAT [VOG80]). A number of tools are

briefly summarised in Appendix 2. In Section 3.3, these

tools are classified and general maintenance support

through tools is examined.

Syntactic analysis of a program's source code is a

feature of many tools. Frequently, tool functions make

use of a pool of syntactic information gathered

earlier. For example, the control and data tracing

features of MAP [WAR82] and program instrumentation for

dynamic analysis in RXVP [EBE80]. Syntactic analysis

5

and the production of a syntactic data base are tasks

worth isolating in

Section 3.4, the idea

single

of a

purpose software tool. In

program analysis system

composed of a variety of tools, most of which make use

of syntactic data base information, is explored. The

logical contents of such a data base are also

identified in this section.

Chapter 4 summarises the implementation of a Syntactic

Source Code Analyser (SSCA) and it's database (SSCA DB)

for a version of COBOL. Such a system is a first step

toward a maintenance support system based on static

analysis. Availability of a SSCA DB should encourage

development of more advanced COBOL analysis tools and

provide a measure of integration between these tools.

COBOL was chosen as the language to analyse because of

the large number of commercial programs written in it

(approximately 80% according to Al-Jarrah and Torsun

[TOR79]). However, the proposed revised X3.23-Sept.

1981 COBOL language definition [COB81] defines a large

and complex language composed of a nucleus and eleven

functional modules. For a prototype SSCA, it was

considered desirable to reduce this

removing many special purpose modules and

some language features. The reduction

outlined in Section 4.1 and Appendix 3A.

standard by

simplifying

process is

Appendix 3B

6

contains the reduced COBOL language definition.

Part of developing a SSCA system involves selection of

an appropriate Data Base Management System (DBMS) for

the SSCA DB and detailed data design for the SSCA DB.

Section 3.4 has already presented a logical view of

what should be in this database. In Section 4.2 this

view is elaborated for application to COBOL. The new

data model is then used for the selection of a DBMS

(the INGRES relational system was chosen) and, finally,

an implementation data model is prepared.

Section 4.3 describes the methods employed to build a

syntactic analyser and formatter for COBOL programs.

The implementation was carried out using a number of

construction devices available on a VAX 11/750 running

ULTRIX-32. ULTRIX-32 is a trademark of the Digital

Equipment Corporation. The construction tools included

C (a general purpose programming language), AWK (a

pattern matching language), LEX (a lexical analysis

preprocessor for C), YACC (a grammar parsing

preprocessor for C) and EQUEL (a C/INGRES interaction

language). Extensive use was also made of the technique

for transferring data between executing processes known

as piping.

7

Chapter 5 presents conclusions from the research

carried out in this thesis. The conclusions cover areas

such as maintenance in

through software tools

general, maintenance

and evaluation of

development presented in Chapter 4.

support

the SSCA

CHAPTER 2. AN OVERVIEW OF SOFTWARE MAINTENANCE.

2.1. A MAINTENANCE

MAINTENANCE.

DEFINITION AND REASONS

8

FOR

In this section the generally accepted broad definition

of maintenance is presented and problems with this

definition examined. Why maintenance is an essential

function for the continued operation of any software

system is also summarised.

2.1.1. A GENERAL DEFINITION OF MAINTENANCE.

The definition of maintenance used by most authors in

this field and used in this work is :

"that collection of activities that relate to

correcting, adapting or perfecting software in

production use"

[ARN82]

In his paper Arnold points out that

1. Software is a broad term and includes program code

and related design information, as well as

documentation.

9

2. "Correcting" is the removal of functional errors

(i.e. resolving differences between the

specification and implementation).

3. "Adapting" is the alteration of an application in

response to changes in the hardware, software or

business environment (this does not include

addition of new functions).

4. "Perfecting" is modification

performance, efficiency or

maintainability. Enhancements

functions), if classified as

to improve

in some

(addition of

maintenance,

cases

new

are

usually regarded as perfective maintenance.

Some writers in this field use other names for the

activities. For example, to Vessey and Webber [VES83]

perfecting is increasing productivity and Chapin

[CHA81] lists the three activities as counteracting

bugs, adding functions and modifying (& deleting)

functions. However, in the main, there appears to be

general acceptance of Arnold's definition.

2.1.2. THE REASONS FOR MAINTENANCE.

Riggs [RIG69] defines maintenance in terms of who

"commissions" the process. His definition is that

maintenance "is the activity associated with keeping

10

operational computer systems continuously in tune with

the requirements of users,

clerical functions and

DP operations, associated

external demands by such

entities as governments". This definition implies that

the underlying reason for most maintenance is some kind

of change in the environment outside the computer

system which impacts on the system.

Lyons [LY081] states that the function of software (and

hence software systems) is to enable certain decision

processes of an enterprise to be computerised. This

suggests that, after a system's development process has

been carried out and a new system effectively delivered

to users, the new system carries out or supports

various business functions as they currently exist in

the enterprise. This would be the case if the

development was considered successful. As few programs,

at least intentionally, exhibit self modifying

characteristics in current software technologies, a

system is a snap-shot of a soon-to-be-outdated approach

to business activities. The approach to activities

usually changes to some extent over time and the main

way a software system may evolve to meet these needs is

through maintenance. This view of maintenance and

software has also been expressed by Lehman (in [ELS82])

and others.

11

Thus although software does not rust or rot ([HAR83],

[LYO81]), it is a mistake to consider software as

stable ([PUN75], [MUN78]) because it tends to

deteriorate in usefulness over time. Unfortunately, the

nature and amount of deterioration is often impossible

to forecast causing many maintenance management and

scheduling problems [PUN75].

2 .1.3. PROBLEMS WITH THE GENERAL MAINTENANCE

DEFINITION.

The greatest problem with Arnold's maintenance

definition occurs when major or costly changes are

required in a software system. It is difficult to

distinguish between new development that impinges on a

system and maintenance of the system. The problem is

further aggravated when a system is close to requiring

a complete rewrite (i.e. it gets too far out of phase

with the real world it models to be further modified).

A complete rewrite has always been considered as

development not maintenance.

Boehm [BOE81], under certain circumstances, regards

redesign of less than 50% of existing code as

maintenance and more than 50% development. Bell

[BEL84] requires maintenance tasks to have at least 25%

of the programmer's time spent on the understanding of

12

the existing system. It is suspected that data

processing management make the distinction between

these tasks on the basis of the cost of making changes.

If the cost is too great for the maintenance budget the

task will be considered to be development.

No formal rules on where maintenance stops and

development begins

But as a guide to

will

be

be presented in this thesis.

used in later chapters the

following is given. Large modification tasks involving

existing software can be usually be divided into those

which involve changing how the present code works and

those which are mainly concerned with adding new

features and extending the system (see next section).

For major modifications to how software works (e.g.

rewriting) Boehm's requirement for deciding whether a

task is maintenance or not seems reasonable. For major

additions to a system making the new development/

maintenance decision should involve consideration of

whether the logical function (defined in development)

carried out by the system will be significantly altered

when the modifications are made. One of Boehm' other

task classification statements indirectly uses this

criterion on which to base a maintenance definition.

This statement defines activities involving little

existing system redesign but development of sizable

13

(greater than 20% existing code) extra modules as

development.

14

2.2. MAINTENANCE CLASSIFICATION.

The manner in which the maintenance function is

categorised in an organisation may affect the

management control, resource allocation and

effectiveness of the overall maintenance task. A number

of ways of classifying types of maintenance are looked

at in this section.

There are many ways to divide individual maintenance

tasks into groups. Given Arnold's definition (see

previous section), an obvious scheme is to group

maintenance into corrective, adaptive and perfective

tasks. According to Lientz [LIE83] this rudimentary

classification has been used by some maintainers and

found beneficial for cost estimation in a situation

where maintenance costs are charged back to user

organisations.

It seems anomalous that perfective maintenance includes

enhancement maintenance as well as performance

improvements. Performance improvements change how the

processing is done inside the system hopefully without

affecting what it does; whereas enhancement maintenance

effectively adds to the functional requirements of the

original system specification. Thus perfective

maintenance can be subdivided into enhancement and true

15

perfective maintenance. A survey by Lientz and Swanson

[LIE80] gave the following estimates of the proportion

of maintenance effort devoted to different categories

of maintenance

Maintenance Category Proportion of Effort

Corrective (Emergency fixes & routine debugging) 22 %

Adaptive (from changes of data/hardware/software) 24 %

Perfective (improving efficiency or documentation) 10 %

Enhancement (new feature addition) 42 %

Richardson [RIC83], who uses the above categorisation,

states that for correction and adaptation a maintainer

needs a thorough understanding of the software modules

being modified whereas perfective and enhancement tasks

require greater knowledge of module interaction to re­

evaluate the system structure. Also, all maintainers

need a comprehensive understanding of the change

request.

A slightly more extensive classification than those

given so far is presented by Reutter [REU81].

Categories of emergency repair, corrective coding,

upgrades, growth, support, changes in conditions and

enhancements are suggested.

16

From the table above it can be seen that corrective

maintenance is a relatively small portion of all

maintenance tasks. Corrective tasks have also been seen

by many authors as a special group as they tend to

require immediate action by maintainers and stop gap

measures are more likely to be employed to resolve any

problems found. Vessey and Weber [VES83] found that in

three organisations 90% of programs undergo less than

three corrective repairs during their lifetime and the

majority undergo none. Hutchinson [HUT86] handles

repair work by dividing maintenance into error

correction and system

adaptation, perfection

[ZVE82a] ignores error

categories.

extension (which includes

and expansion). Zvegintzov

correction completely in his

Marsh [MAR83a] includes two classifications in his

paper. He divides tasks and requests into mandatory or

discretionary divisions and also by where the

maintenance requests originate (from users, from a

failure or problem, and other). The results of his

calculations over a total of 19 person years of

software support are tabulated below.

Category

Mandatory

Discretionary

Request Category

User

Failure or Problem

Other

Percentage

of requests

36.6

63.4

Percentage

of requests

43.4

35.8

20.8

17

Percentage

of effort

22.9

77.1

Percentage

of effort

66.9

20.0

13.1

An alternative, or supplement, to dividing maintenance

tasks by the type of request is to categorise the tasks

by which software modules are to be maintained. Lyons

[LYO81] states that an 80/20 rule exists for

maintenance, "20% of the programs (in a system) cause

80% of the problems and corresponding costs". This

suggests that a useful basis for a classification is

the previous maintenance history of a module or

program. This classification is already used, as

managers usually attempt to allocate the same

maintenance staff to the same group of software. The

amount of information available for such a

18

classification increases over time and if a

modification task similar to a previously executed one

(similarities determined by some other categorisation)

is to be carried out, the history of the former is an

extremely good indicator of costs and problems likely

to be found in the latter.

Many problems in maintenance (see next section) stem

from a lack of standard procedures for almost

everything from accepting a change request to

documenting a change.

tasks is desirable for

Classification

activities

resource

of maintenance

such as cost

allocation but estimation, scheduling, and

classifications shouldn't affect standards. For

modification tasks should instance, all software

receive appropriate retesting and redocumentation to

assure a consistent quality within a particular system.

Isolation of corrective work from system extension

should not be complete. If time restrictions apply to a

repair then post modification installation testing will

be required.

However, given the restricted applicability of

of

any

maintenance categorisation,

classification is its usefulness.

little maintenance information

the test

At the moment

a

so

is available for

managers or programmers to base decisions on, that

19

virtually

divisions

any

lend

classification is useful. But different

themselves to different uses. A

mandatory / discretionary division is helpful for

managers scheduling tasks, but irrelevant to

maintenance

modifications.

programmers

As more

performing

becomes known

the

about

source

the

maintenance function, it is likely that more detailed,

accurate and organisation-dependent classifications

will be derived and several will be used in conjunction

at any one site. On-site personnel will need to tune

these categorisations which suggests analysis of a pool

of detailed maintenance histories and constant updating

of this "maintenance data base".

20

2.3. GENERAL PROBLEMS OF MAINTENANCE.

Problems within maintenance have been defined,

recorded, and surveyed by a multitude of maintenance

researchers in the past 15 years. In this section an

attempt is made to categorise and briefly describe some

of the problems uncovered by these researchers.

Maintenance problems seem to fall into two groups;

problems within the overall environment which affect

maintenance and problems which are intrinsic to the

maintenance task.

2.3.1. FACTORS WITHIN THE OVERALL ENVIRONMENT.

There are two main groups of factors affecting

maintenance within the environment; factors related to

how the software maintenance activity is embedded in an

organisation and factors which represent deficiencies

in other areas which impinge on maintenance.

1) Maintenance in the organisation.

a) Management Many authors ([C0078], [LIN73],

[LIU76], [MAR83b], [PAR85b], [REU81], [RIC83],

[TIN83]) identify as a major problem the lack of

techniques and structures to effectively manage

either programmers working on individual

21

maintenance tasks or the scheduling of maintenance

requests. Others ([LIE78J, [MAR83a]) report that

such activities are known to be difficult to

manage. Inadequate management usually exacerbates

other problem areas. For example, lack of defined

maintenance standards reduces uniformity in change

request handling and redocumentation [NAR84].

b) Organisational structure and personnel factors -

Maintenance usually perceived to be a never-ending

boring chore by maintainers [LIU76]. Work in this

area often goes unrewarded and unrecognised and

programmers are assigned to maintenance if they

don't meet the requirements to be allocated to a

development project (see [CHA81]). This, combined

with other factors (such as no formal training in

maintenance techniques [PAR85a], [TIN83] and no

maintenance career structure), causes low morale

and lack of professionalism among maintainers.

From a corporate resource perspective, there is

very little protection of the human investment in

maintenance [MAR83b]. Chapin [CHA85] found by

survey that personnel factors accounted for 19% of

what could be termed the "maintenance problem".

22

2) Lack of support from other areas.

a) Development - Maintenance uses the products of

development. These products include the

application system as well as various levels of

documentation (e.g. system, module, user and

operator documentation). Short cuts in

development can add dramatically to the quantity

and cost of maintenance required on a system

[PAR85b]. This can be as direct as leaving bugs in

code, but is usually caused by poor or missing

documentation coupled with source code which is

difficult to understand, modify and test

([PUN75]). Inadequate documentation on its own is

considered a major problem ([CHA85], [LIE83],

[LIU76]) .

b) Users The main problems which users give

from the users' lack of maintainers stem

understanding of

maintained. The

form of large

the application system being

problems usually surface in the

numbers of unreasonable or

unrecognisable change requests requiring action by

maintenance personnel. Lack of user knowledge may

be symptomatic of problems from other areas (e.g.

minimal user training during development or after

maintenance). Conflicting proportions of the

23

overall "maintenance problem" are attributed to

lack of user knowledge in the literature, Lientz

[LIE81] 59% and Chapin [CHA85] 5% (although Chapin

doesn't regard things like difficulty in

communicating with users as a subproblem of user

knowledge) .

2.3.2. FACTORS INTRINSIC TO THE MAINTENANCE TASK.

These problems arise from the fact that almost any

software is difficult to maintain. Marselos [MAR83b]

states that maintainers must constantly use creative

energy to understand, or get around the constraints of,

the system being maintained.

Intrinsic problems have been recorded under headings

such as program understandability, maintenance task

difficulty, program modifiability, program testability

(from Harrison's subfactors in maintenance [HAR83]),

and software complexity. It is arguable that most of

the content of these problems is traceable back to

other factors (e.g. difficulties with understanding

programs because of poor documentation, a development

oversight). However, given that even experts cannot

agree on what makes a program hard to understand

[HAR84], in some sense "good" [OGD72] or complex

[WEI74], it is clear that there are implicit

24

difficulties in maintaining software which, although

they can be reduced, will not disappear with support

from other areas. Possible reductions in maintenance

problems may be traded-off in other areas (e.g.

development costs).

An idea of the size of these intrinsic problems can

obtained from Chapin's calculation [CHA85]

be

that

software characteristics account for 48% of the overall

maintenance problem. Intrinsic problems are looked at

in more detail in Section 2.5.

2.3.3. CONCLUSIONS ON SOFTWARE MAINTENANCE PROBLEMS.

Maintenance is a multifaceted function and the fact

that problems encountered in it are at least partially

traceable to many other areas attest to how

interrelated maintenance is with application users,

application development and indirectly with the whole

corporate structure. No one tool or technique is going

to resolve all problems. Maintenance issues must be

considered in many other organisational areas rather

than just the section which is responsible for

maintenance if problems are to be solved or alleviated.

25

2.4. MAINTENANCE LIFE CYCLES AND STEPS.

This section links the development and maintenance

phases of an application system. A functional division

of the maintenance task is also presented.

2.4.1. A GENERAL MAINTENANCE LIFE CYCLE.

2.4.1.1. THE SYSTEM LIFE CYCLE.

To get the maintenance function in perspective it is

necessary to identify where it fits into the broad set

of growth stages of application systems. These growth

stages have come to be known as the "System Life Cycle

Model"; although Zvegintzov [ZVE82a] argues

convincingly that the model is neither cyclic nor

portrays the system's life.

The system life cycle, as presented by Boehm [BOE84] ,

has the major stages of :

1) Feasibility

2) Plans and Requirements

3) Product Design

4) Programming

5) Integration and Test

6) Maintenance and

7) Phase-out

26

The naming conventions and groupings of system life

cycle steps vary among authors in this field. For

instance, Boehm (above) has seven phases, Teague and

Pidgeon [TEA85] eight, Zvegintzov [ZVE82a] six and

Powers, Adams and Mills [POW84] five. However, there

does appear to be general consensus about what

functions are contained in the overall development

stage of an application system and the order in which

they occur. Post development activities are usually

lumped into a phase called "Operation and Maintenance"

or something equivalent. Some authors have extracted

the endpoint of a system's life out of this last phase.

Boehm calls the endpoint "Phase-out" and Powers, Adams

and Mills "System Obsolescence". This is an attempt to

recognise that special techniques are required to :

a) identify the system's end of life and

b) cope with the endpoint (usually by system

replacement) .

2.4.1.2. THE MAINTENANCE LIFE CYCLE.

Zvegintzov [ZVE82a] presents a model of the activities

within the Operation and Maintenance phase of the

system life cycle. This model is illustrated in Figure

2.4. The model identifies the fact that, as application

system operation continues, constituents (users,

managers

basis of

27

etc.) generate requests for changes on the

system performance. These change requests

prompt maintenance personnel to develop and implement

modifications to the system. The modified system then

becomes operational and subjected to more performance

assessment by constituents. The model shows that this

A Model of Operational and Maintenance Activities

.-otllllP-Assess Performance

Modifications ◄ Requests for Change

(From [ZVE82a])

Figure 2.4

phase in the system's life is truly cyclic.

A more elaborate breakdown of operation and maintenance

is given by Taute [TAU83]

1) Request a change

28

2) Estimate effort required for the change

3) Schedule the change

4) Program the modifications

5) Test to verify that the change performs as expected

6) Document the modifications

7) Release the modified system replacing the existing

one and

8) Operate the system

This model is also cyclic with one step leading into

the next and system operation prompting change

requests.

2.4.2. THE SOFTWARE MODIFICATION TASK.

This subsection looks in more detail at the task of

actually maintaining a program or system. In terms of

the 8-activity software maintenance life cycle of Taute

[TAU83] elaborated in the previous subsection, the

content of the steps to be carried out by the

maintenance programmer (usually on his own) is

considered. These are primarily the phases of

programming, testing and documenting and to a lesser

extent training and implementation.

The programmer's task contains the actual work of

maintenance and is the most resource consuming part of

the maintenance cycle. All other activities (e.g.

maintenance estimation,

quality assurance checks

scheduling and,

of Centre's

29

say, the

alternative

maintenance cycle [CEN82]), although important, merely

support the programmer's task. This subsection is an

attempt to define what a maintainer does. This will

form a basis for the development of tools and

techniques to directly aid maintenance work.

2.4.2.1. SOFTWARE MODIFICATION STEPS.

Dividing the maintainer's activity into small definable

portions is an attempt to specify a set of steps which

can be applied to making almost any type of change to

any system, subsystem or program written in virtually

any programming language. Solution steps are, of

necessity, going to be generalised and highly

abstracted.

Relatively few authors have attempted

steps a maintainer would reasonably

modifying a program. Of the ones that

to define the

adhere to when

do,

[ZVE82a], Harrison [HAR83], Liu [LIU76],

Zvegintzov

Yau and

Collofello [YAU80] give the most insight to the task.

Zvegintzov isolates 6 steps of the problem he calls

"How to make a change"

1) Understand the request

2) Transform the request to a change; the change

30

is the modification goal

3) Specify the change : choose cut-line and patch

4) Develop the patch

5) Test and

6) Install.

Cut-line refers to existing procedures or code which

need to be changed or removed whereas the patch is the

group of new procedures. For the patch procedures, the

specifications of what each one should do are defined

in step 3 so that patch generation (step 4) may proceed

using the same techniques as the development cycle's

phases of detailed design and implementation.

Zvegintzov states that the major intellectual challenge

of maintenance programming is the choice of the cut­

line and the aim is to minimise the impact of the cut­

line on the existing system as well as to attempt to

isolate the patch from the variability in the existing

system (i.e. to try to produce free standing code as

patches where possible). The use this goal, although

reasonably successful in many cases, does not always

generate desirable consequences for maintenance in

general. Maintenance goals and implementation methods

are examined later (in Sections 2.5.3.3 and 2.6).

Harrison identifies a very similar group of steps to

that of Zvegintzov. The only real difference is the

31

insertion of an additional step between 2 and 3 above

for "understanding the existing software". Yau and

Collofello also have an understanding step but steps 3

and 4 are worded "generate particular maintenance

proposal" and "account for ripple effect". This

subdivides the combined specification and patch

development task into portions pertaining to the local

module and then to the rest of the system.

Liu looks specifically at modifying a piece of software

and identifies the steps of the "maintenance function"

as:

1) Understand the capacity, function or logic of

the existing system

2) Develop new logic for the new request or

additional feature and

3) Incorporate the new logic into the existing

system.

Liu admits that the new logic may not always be able to

be melded into the existing system, conflicting

situations can be created. It is implied that if such

conflicts arise either the new logic should be modified

(without affecting what it does) or the existing system

"redeveloped" with the new request or feature as part

of the specifications. The goal of a maintainer,

according to Liu, is to make certain the new logic

32

correctly fulfills the original request and, as well,

to make sure that unmodified portions of the existing

system are not inadvertently disturbed.

From comparing both these authors' steps and from a

number of breakdowns of the overall maintenance process

by other authors ([ELS82], [CON84], [CEN82] and

[TAU83]) a group of required actions within what can be

called the "software modification task" can be

determined:

1) Understand the request and transform it into

some sort of modification or new feature

2) Understand the existing software

3) Identify a framework for modifying the existing

software into what is required

4) Implement the modifications

5) Test the new software

6) Redocument and possibly retrain users and

7) Install the new software.

There are good reasons for personnel other than

maintenance programmers carrying out, at least

partially, the actions of request handling, testing,

documenting, training and installation. Not the least

of these reasons is to reduce the maintainer's

workload. Most organisations currently have a three to

four year backlog of maintenance requests [MAR83c]. A

33

maintainer must, however, either directly use the

results of, carry out, or supply some input to, all of

these activities.

34

2.5. SOFTWARE MODIFICATION.

The cost of maintenance (discussed in section 2.1), the

difficulty in defining the end-points of maintenance

(see section 2.2) and the general problems associated

with maintaining software systems (reviewed in section

2.3) lead us to the inevitable conclusion that

modifying software is an extremely complex and usually

much underrated activity. If the task was relatively

simple it would not require the management procedures

of request verification, cost estimation and scheduling

or the post source modification activities of thorough

testing, redocumentation and possibly user retraining.

Most researchers in this area have also reached this

conclusion. The abundance of recent articles on the

subject, the number of maintenance or maintenance

applicable tools becoming available (e.g. the SADAT and

RXVP test systems reported by Geiger [EBE80], the

source restructuring tool SUPERSTRUCTURE and path

analyser SCAN/370 both mentioned by Richardson and

Hodil [RIC84]) and statements that merely managing

system support is fraught with problems ([MAR83a],

[CHA85]), all attest to the underlying difficulty of

modifying a software system. This section explores

specific problems within software modification and some

guidelines for maintenance programmers are presented.

35

2.5.1. SOFTWARE MODIFICATION INFLUENCES.

Some factors which directly influence software

modification are:

a) Costs and Programmer Productivity - Virtually all

business activities have minimisation of cost

software as a basic objective and modification is

no exception. Maintenance as a whole is viewed as

an area in which savings can be made because it

uses a lot of resources with little apparent

effect, as maintenance is never ending. McKee

[MCK84] calculates that maintenance is 32.1% of an

application system's total hardware / software

cost and Boehm [BOE76] estimates 40%. Both authors

conclude that the portion of cost attributable to

maintenance is increasing.

Computer programmers usually perform both

development and maintenance functions. Using a

very simple model of programmer activity with

parameters based on survey results and assuming a

programmer maintains all code he writes, McNeile

[MCN84] calculates that after 1.6 years only 20%

of a programmer's time can be spent doing

development tasks. Because of the high cost of

maintenance and its stifling effect on new

36

software production there is often a to minimal

allocation of resources to maintenance projects.

As a result, an environment develops which favours

stop-gap measures which themselves usually, in the

long run, increase the overall maintenance cost.

b) Personnel Factors - These factors have already

been mentioned as an organisation problem in

Section 2.3.1. Two specific aspects affecting

software modification are maintainer availability

(part of the corporation's resources allocated to

maintenance) and maintainer quality (e.g. lack of

specific maintenance training, see Section 2.3.1).

c) Maintainer Understanding Arguably the most

critical factor in the successful modification of

a piece of software is how much the maintainer

knows about both the particular software involved

and also the system of which it forms a part.

Marselos [MAR83b] and Basili and Mills [BAS82a]

regard understanding as crucial to maintenance.

The latter suggest that improving documentation is

a major way of increasing understanding. Bell

[BEL84] goes so far as to define maintenance

partly in terms of existing system

(see Section 2.1.3). Techniques

understanding

and aids for

understanding software will be looked at in later

37

chapters. Maintainer understanding is influenced

by factors from a) and b) above but is strongly

affected by software factors particularly aspects

of documentation and maintainability, which are

examined next.

d) Software Factors - Details of particular software

factors which appear

the

central to maintenance are

three subsections below. investigated in

Specific software tools and support methods will

be identified later in Section 3.2.

2.5.1.1. THE INFLUENCE OF DOCUMENTATION.

Again this has been cited as a problem in Section

2.3.1. Poor documentation of development or previous

maintenance increases the time taken, and therefore the

cost, for a maintenance programmer to understand a

module or system. Documentation which is to be used by

maintainers must be structured and organised for

understanding and ease of update. As indicated above, a

maintenance programmer needs information about the main

system as well as about individual programs. Guimaraes

[GUI83] reports that the kind of system information

found most useful by maintenance programmers is a

"system flowchart" containing structural and

architectural information about both programs and data

38

files. He also ranks the value of narrative

descriptions of the function of programs and modules

very highly. Schneider [SCH83], when producing a format

for a formal document library, places both program

definition data and program/data file interaction

information under the heading of "program

documentation". Guimaraes's method of having one or a

group of "system chart(s)" should insure more

consistence and clarity among this system documentation

than a piece-wise approach. Unfortunately, many

computing professionals still tend to regard maintainer

documentation as just embedded comments in source

listings.

However, program commenting is still important. The

source text is the final authority on what is executed.

Elshoff and Marcotty [ELS82] see embedded program

documentation as enhancing the program's readability

and they present an internal comment structure for

programs. They also suggest that future modification

difficulties can be reduced by commenting discoveries

about a program as they are found. This suggestion is

expanded upon by Basili and Mills [BAS82a]. Munson

[MUN78] states, "even if this (program) documentation

is good when delivered, invariably it will quickly fall

out-of-date as the product is modified". Munson lists

39

criteria for documenting source code listings which

include accuracy requirements, purpose, error recovery

procedures and, also, a modification history.

2.5.1.2. THE INFLUENCE OF MAINTAINABILITY.

Maintainability encompasses a large number of software

characteristics including clarity, structure and

flexibility. There are two major modification-related

reasons for using development and maintenance

techniques which enhance or support

characteristics :

1) To aid a maintainer in understanding a

system or module.

such

2) To directly aid the process of extending or

adjusting a system or module.

Many software development techniques which purport to

support both the objectives above have been grouped

under the banner of "structured programming". Munson

[MUN78] identifies some of these techniques as well as

apparent extensions into procedural abstraction and

"data hiding".

Even when program source code is extremely complex,

understanding is enhanced by readable source code.

Elshoff and Marcotty [ELS82] define many "hints" for

readability including making loops obvious, having

40

explicit loop terminators and removing label variables

used only for blocking. Ideas for directly supporting

module enhancements are put forward by Punter [PUN75]

and Hutchinson [HUT86]. Many of Punter's techniques are

mostly applicable to relatively low-level assembler

languages (e.g. using indirect addressing so that data

areas and modules are more movable) but suggestions for

program independence and open-ended design, where

possible, are also presented. Hutchinson gives more

general ideas with particular reference to data

structures (thus program design) so that record formats

and individual data fields can be changed (enlarged)

without impacting on software not using the new or

modified data elements.

2.5.1.3. THE INFLUENCE OF TESTABILITY.

Ideally, software should be coded clearly enough so

that a program can be "seen" to work [PUN75].

Unfortunately, in any nontrivial example, testing is

required. Testing is the last check that a maintainer

has understood the existing software sufficiently

enough to be able to alter its function in accordance

with maintenance request without introducing side

effects. Taute [TAU83] states "the quality of testing

is a function of both the thoroughness of the test plan

and the quality of the test data". Both Taute and Liu

41

[LIU76] identify the establishment a strict testing

procedure as being essential for maintenance quality

assurance (QA). Liu also presents a priority for tests

after maintenance. He determines that the unmodified

portions of a system should be tested before the

modified portions. However, the likelihood of semantic

errors in the modified software would suggest that the

test ordering should be the other way round. Boehm

[BOE73] found by survey that after altering only 10

statements in a program the chances of a successful

first run are, at best, 50%. Hence, testing the

modifications for errors before the rest of the system

should reduce the amount of retesting necessary.

After maintenance, the entire application system needs

to be throughly tested with a variety of data. Often

testing is shortened so that only portions of the main

system that a maintenance programmer "thinks" could be

affected are checked. The reasons for this occurring

may be because of cost, or that the maintainer just

doesn't know enough about the system as a whole to test

all aspects of it. As Deutsch [DEU81] points out,

manual testing itself is an error-prone process and

automated testing or error-checking is more reliable.

If an automated software test driver system is used

this facilitates the retention of test cases (and

42

correct test results for automatic comparison) so that

"regression testing" (as suggested by Panzl [PAN78])

can be carried out. Thus, automated testing, as well as

enhancing reliability, may reduce the amount of detail

about non-modified parts of the application system that

a maintainer must learn. This test case data documents

the application for maintenance.

In development, automatic test drivers and testing in

general should strive for complete test coverage of

software. Huang [HUA78] states that the test

requirements for a program

1) Each statement in the program should be

executed at least once.

2) Each edge in the flowchart should be

traversed more than once.

For most software these requirements are virtually

impossible to attain (see Boehm's software reliability:

technical problems [BOE73]). In maintenance, such

requirements may be able to be realised in some cases

because only statements and flow paths which have been

modified in some way (e.g. through association with

modified data items) need to be checked. The problem

with this approach lies in reliably determining how

much of the system to test. It is not just a case of

directly comparing the old and new sources because of

43

inexplicit links between source statements, data items

and control flow. What is really needed to attempt to

satisfy these test requirements is some kind of

computerised ripple effect analyser (see Section

2.5.2.2. for a discussion of ripple effect).

2.5.2. MAINTENANCE QUALITY.

The quality of the work done in maintenance as

perceived by maintainers is dependent on:

1) The role the maintainers see themselves fulfilling

and

2) The verification and validation procedures adhered

to during the maintenance process.

Aspects of the general maintenance role are examined in

Section 2.6. Procedures for maintenance QA include not

only testing after the implementation of changes (see

previous subsection) but also the processes of

maintenance preparation, data/file conversion,

documentation update and system acceptance QA outlined

by Center [CEN82]. These QA activities are also useful

as milestones which provide management information for

the scheduling of maintenance personnel. QA routines

can usually be placed between phases of some stepwise

division of the modification task (Center gives an

44

example of this) producing an enhanced modification

cycle.

2.5.2.1. QUALITY ASSURANCE.

For any one maintenance project the

maintenance work depends primarily

involved. However, an attempt at

quality of the

on the personnel

providing some

consistent degree of quality assurance in maintenance

must identify a framework which promotes good practices

among maintainers and helps to insure that no necessary

activities are overlooked. Connell and Brice [CON84]

recommend that maintenance quality controls consist of

workable mechanisms for measurement, evaluation and

feedback. Taute [TAU83] states that a quality assurance

program should address four areas :

1) Phased approach

2) Procedure flows

3) Maintenance guidelines and

4) Implementation

The phased approach (such as adherence to enhanced

modification cycle looked at above) provides a number

of benefits, one of which is standardisation of

maintenance procedures. Procedure flows document the

system being maintained at a relatively high level

(e.g. data flow diagrams and program specifications)

and guidelines are meant to be suggestions (probably

45

based on previous experience) to aid good judgement

when making

relates to

maintenance

how such

decisions.

cycles and

introduced and made workable in

Implementation

guidelines are

a maintenance

department. Thus both software testing and

documentation feature heavily in quality assurance

measures.

Any maintenance support tools will directly or

indirectly enhance quality so consideration of current

quality problems is necessary to aid tool design. There

seems little argument that quality problems are not

major within maintenance. Boehm [BOE73] regards a lack

of reliability certification as a major software

problem. He states that every

contains roughly 1,000 new

new release

software

of OS/360

errors. Ogdin

systems the

rates peak

[OGD72] states that for typical software

reliability histories show that failure

after maintenance. In addition, there is an overall

rising failure rate throughout a system's life as

successive maintenance tasks are carried out. Lyon's

[LY081] rule that 20% of programs cause 80% of the

maintenance costs and Vessey and Weber's [VES83]

supporting figures showing that at one site, 9% of

programs had 47% of the repair maintenance tasks

performed on them, suggest that, in many instances,

46

maintenance spawns yet more maintenance.

2.5.2.2. MODIFICATION PHENOMENA.

Two phenomena have been isolated through experience in

maintenance projects. From a quality standpoint, these

effects highlight specific problems with current

methods for designing and implementing software

modifications. In the next subsection reasons for such

phenomena occurring are discussed and possible solution

schemes are considered.

RIPPLE EFFECT "In software, the effect of a

modification may not be local to the modification,

but may also affect other parts of the program.

There is a ripple effect from the location of the

modification to the other parts of the program

that are affected by the modification" [YAU80]

The above quote from Yau and Collofello defines

ripple effect. These authors regard ripple effect

as intrinsic to the modification task and provide

a phase in their maintenance steps to account for

it (see Section 2.4.2.1.). Discovering what ripple

effects a particular change creates is complex

and, like complete testing, complete ripple effect

analysis usually cannot be performed because of

maintainer time restrictions [CON84]. Boehm

47

[BOE73] quotes that, of all errors detected over a

3 year interval in one particular application, 19%

were caused directly by unexpected side effects to

changes (i.e. ripple effect).

STRUCTURAL DECAY - Maintenance work often melds old

and new source code in an ad hoc manner which

compromises any original structure and results in

an unstructured mass of code. Connell and Brice

[CON84] state that the problem is compounded by

many small patches applied throughout the life of

a system. Individually each patch is relatively

insignificant structurally, but together they form

a threat to even the most structured, modular,

top-down original code.

The kinds of structure within existing software

which are in jeopardy

only the hierarchical

from maintenance are not

control structures of

individual programs developed in some 'structured'

manner but general design principles on which the

system itself was founded.

Structural decay is a major side effect problem in

maintenance. Its affects can be seen in an

application system's operational and maintenance

history. Lientz and Swanson [LIE81] concluded from

48

survey evidence that the older a system is the

more perceived maintenance

has. Ogdin [ODG72J suggests

problems it usually

that system failure

rates increase throughout a system's life (see

previous subsection). This decrease in

reliability may be partially due to introduced

ripple effects but a lack of structure will make

any modification and testing problems worse.

Psychological complexity of software is increased

by structural decay because structured code is

easier to understand than unstructured code.

Curtis [CUR79] found (from tests done with

programmers attempting to comprehend relatively

small FORTRAN programs) that although "naturally"

structured code could be maintained more

accurately, the time taken to perform

modifications did not vary much with increased

program structuredness. Regardless of whether

these results translate to most maintenance

projects, higher source code complexity must

result in increased costs for any subsequent

maintenance tasks (even if it is only as a result

of the time taken to hunt down introduced errors).

At some stage it is cheaper to scrap an old system

and build a new one rather than attempt any

49

further large maintenance projects. In many

situations the scrapping of the old system may be

almost entirely due to its lack of structural

integrity. A short-term alternative to scrapping a

system is to restructure or recode some existing

programs. As Tate and Hayward [TAT85] state

"Restructuring is always difficult and painful,

whether in the economy, a business, a building,

or in an information system".

Restructuring or recoding on any major scale is

not really feasible unless it is automated or at

least computer-assisted. Richardson and Hodil

[RIC84] state that such tools are now becoming

available although the need for these tools to be

reasonably intelligent may reduce their general

applicability.

Increasing the operational life of an application

system can be achieved by minimising the

maintenance-induced deterioration in system

structure, complexity and reliability (in terms of

introduced defects) [CON84]. Problems with

attempting to reduce structural decay in

maintenance are considered in Section 2.5.3.

50

2.5.3. THE IMPLEMENTATION OF SOFTWARE MODIFICATIONS.

2.5.3.1. OMISSIONS WHEN IMPLEMENTING CHANGES.

The problems of ripple effect and structural decay

suggest the manner in which the first 3 actions of

software modification (presented in Section 2.4.2.1)

are often carried out. What seems to happen is that

maintainers frequently attempt changes with minimal

knowledge of the existing software. First, the

modification request or new feature is divided into

individual changes to software modules. This is a

reasonable approach but to carry

requires an understanding of

structure. Most of the reasons

lacking

it

the

out successfully

overall system

knowledge

discussed

is

in

usually

Sections 2.3.1 and

why this general

have already been

2 . 5 . 1. Minimal

knowledge creates a tendency for modules which produce

a "physical" input or output, such as a report or

screen interaction pertaining to the new feature to be

identified for modification whereas more obscure

modules such as transaction monitors and other

"collectors" of internal information are overlooked.

When this modification technique is combined with

incomplete testing ripple effect problems ensue.

51

If the original lack of software understanding

culminating

the task of

in ripple effect is also carried on within

implementing individual module changes,

decay of module code can also result. As

in the next subsection, with minimal

of the structure of a program, it is usually

to patch a program at the top level

structural

described

knowledge

possible

(particularly when implementing additional functions or

enhancements). The patching is successful, in so far

that the modified program works without side effects,

but the top level patch usually adds at least one

additional control structure (or nesting level) to the

program unnecessarily increasing complexity for later

maintenance tasks.

2.5.3.2. A MODIFICATION EXAMPLE.

By way of an illustration of the dilemma facing

maintenance programmers when attempting to implement

changes the following program modification example is

presented.

Jackson [JAC75] outlines

programmed solution. The

a problem requiring a

problem involves a file of

sorted card images; each card carries a branch-number

and a card-type indicator, together with some other

information. What needs to be done is to purge from the

52

card image file (infile) records which are in some

sense erroneous; producing two output files : a file of

good data (outfile) and a error listing (errorfile). No

detailed error diagnosis is required. Initially, in a

"good" set of records for a branch there are exactly

two branch records and the card types are numeric and

not equal. The original card file records have been

sorted into ascending order by

branch-number.

An Initial Solution

card-type within

Jackson [JAC75] gives a solution developed from the

data structures involved. An alternative solution is

given in the PURGE program in Appendix 1. Figures Al.1

and Al.2 of the same appendix contain program and data

structures for PURGE. The PURGE program is loosely

based on Jackson's ideas but is formed around the

notion that in order to evaluate whether a set of

records for a branch is "good" or not, three records

(which are taken in sequence from the infile) must be

looked at. If the first two records have the same

branch number (and the third a different number) and

valid, non-equal card-types, then the first two records

form a good set. Given this basis of looking at a three

record window on infile, starting and ending special

cases can be derived as well as procedures for handling

53

and recovering from groups of error records. The main

set test is contained in paragraph Main-loop in a

sequence of 4 IF-ELSE statements and outputting of the

good set is done via a call to paragraph Print-good­

set. In coding the solution the definition of a good

set of records needs a little clarification. It was

assumed that if an error card exists for any one

branch, then all of that branch's cards are in error

and can be outputted into the errorfile (see paragraph

Error-branch-loop).

The First Modification

A reasonable modification to the above problem and

solution concerns a minor redefinition of what

constitutes a good set of branch records. We now

stipulate that in some instances the two branch cards

are allowed to have identical non-numeric card types.

This may occur only when the card type is the special

character group "MODl".

Programs PURGE-Al and PURGE-A2 in Appendix 1 give two

solutions to the new problem. In program PURGE-Al the

new conditions have been carefully grafted onto the

existing PURGE program's structure. The numeric card

type test has had an extra AND clause added to the

condition, as has the non-equality of card types test.

54

It is significant that the number of nested IF-ELSE

statements in Main-loop has not been increased,

although the complexity of individual conditions has.

Given the modified problem to begin with, and applying

the same notions and ideas for solution (as outlined

above in the initial solution), it could reasonably be

expected that the program produced would be very close

to PURGE-Al. In program PURGE-A2 a simpler method of

melding in the extra condition tests has been carried

out. The modifier has attempted to maintain some

structural integrity in the program, but has opted for

adding a complete test for the new circumstances over

the top of the other tests in Main-loop. Doing this

successfully requires a lesser knowledge of the

existing program than needed for PURGE-Al. Paragraphs

Print-good-set and Get-2-cards need to be understood as

the code to call to handle a good set of branch cards.

However, the maintainer has kept away from the more

complex and error-prone activities associated with

adding extra condition clauses.

The Second Modification

This modification to the original PURGE program also

involves redefining what a good set of branch cards is.

An additional valid set now contains exactly one card

which has the character card type "MOD2".

55

Programs PURGE-Bl, PURGE-B2 and PURGE-B3 of Appendix 1

present possible programmed solutions to the new

problem. PURGE-Bl gives a solution in similar spirit to

the previous modification's PURGE-Al solution. The

careful combining of new and old tests in the paragraph

Main-loop has been executed. The new problem requires

an extra IF-ELSE statement to determine which kind of

good branch set has been discovered (one with 1 card or

one with 2 cards). In this solution, the extra

condition clauses for both card type tests are rather

obscure. The clauses test that the card set being

checked has, in fact, 2 cards, regardless of whether

one or both cards have type "MOD2". The precise coding

for these tests is quite difficult and required several

attempts. This shows the high potential for errors in

the PURGE-Bl solution.

The PURGE-B2 solution is a kind of optimised way of

adding an extra test for the new "MOD2" situation.

Instead of putting the test at the beginning of

paragraph Main-loop (which is possible and in some ways

structurally superior but requires many more

statements) it has been noted that if only one card

exists for a branch then paragraph Branches-not-equal

will be

added to

entered. A simple

this paragraph to

test and action has been

see if the one card

56

represents an error or not. The recovery actions to get

into a state for testing the next card set are

identical regardless of the outcome of the test.

The idea behind the PURGE-B3 solution is that the basic

structure of the original PURGE solution is fine for

testing for good branch sets which contain exactly two

cards but seems inappropriate to be pushed into

handling good sets containing one card. What has been

done is to check a card just before it is written to

the errorfile in paragraph Print-error-heading-card. If

the card represents a good card set (with only one card

for the branch) it is written to outfile instead of the

errorfile. This solution is similar in idea to post­

processing the errorfile to remove "MOD2" instances and

sorting the selected cards into outfile. The other

related possibility is to preprocess "MOD2" instances

out of infile and again resort to sorting these cards

back into outfile after PURGE has been executed.

PURGE-B3 isn't quite just a melded post-processing

function as only the first card of error-card sets is

processed. This is all that's needed to be checked.

57

2.5.3.3. METHODS OF IMPLEMENTING SOFTWARE

MODIFICATIONS.

We can use the modification examples given in the

previous subsection to try and come up with some kinds

of rules-of-thumb for reducing structural decay. Below

we discuss what's wrong with various modification

solutions.

In the first modification, the PURGE-A2 solution is

slightly more complex than it really needs to be, the

main problem being that a special case, the MODl

situation, has been created where it need not be (at

least in terms of the positioning of the special case

test). PURGE-Al will be easier to understand than

PURGE-A2 when subsequent maintenance is done. The

difference is almost imperceptible now, but after many

similarly implemented patches PURGE-A2 is likely be a

mass of special cases with many structural problems

usually related to overlaps between the special cases

themselves. Thus, a rule-of-thumb may be to try and

meld the changes and existing program as much as

possible. In the PURGE-Al example, structural decay is

reduced (compared to PURGE-A2). This is at the expense

of the speed of designing the changes and, to some

extent, the chances of making mistakes which may mean

introduced errors.

58

In attempting to judge which second modification

solution is in some sense "best", it seems that PURGE-

B2 and PURGE-B3 are both more neat and more

structurally sound (at least, in terms of complexity)

than PURGE-Bl. Although the original ideas behind

testing a three card set at a time combine reasonably

well with checking for the second modification, in the

actual implementation of the PURGE solution extra tests

for one card sets are difficult to mix into the

existing condition structure. Both PURGE-B2 and PURGE­

B3 represent structurally superior solutions with

PURGE-B2 slightly preferred because it is less error­

prone and less complex. There are reservations about

the lack of explicit documentation of the new

modification tests and their positioning in the code.

Perhaps an external set of processing and sorting

routines (outlined previously) would be the best

alternative regarding the isolation of specific

functions, although the increased amount of source code

required seems extreme. Also adding external routines

linked around the existing system may be just reducing

program structural decay by increasing the decay in the

functional arrangement of programs within the system.

It is reasonable to ask what kind of programmed

solution would have been coded if the original PURGE

59

function included the MOD2 situation. This solution

(so long as it "fits in" with the design principles of

the rest of the application system) should be the best

structured. The design of PURGE-B2 is a possible

solution to this new problem but PURGE-Bl doesn't seem

appropriate. As illustrated by the example, a good

rule-of-thumb to reduce structural decay in most cases

is :

"Maintain software so that the new code ends up

looking something like what would have been

produced if the existing system plus changes were

designed from scratch".

The main problem with this rule is that it's going to

take maintainers longer to produce well-structured

patches and most of the time will be spent

understanding the existing system. They will not only

have to understand the design ideas behind the programs

being changed but specific philosophies adhered to in

application system development (e.g. the criteria that

were used when the system was decomposed into functions

or subsystems will be relevant in many cases). Much of

this development documentation is not currently

collected for maintainers. The rule above is supported

by Parikh's statement [PAR85b] that development

methodologies must offer exact guidelines and methods

60

for maintenance.

The view of software put forward in the modification

examples and the rule of thumb described are primarily

or module level. It is even more at the program

difficult and application-specific to attempt to give

maintenance design decisions a system structural

perspective. However, as a system is a combination of

programs and modules, program-oriented rules and tools

will still be very helpful in application maintenance

as a whole.

61

2.6. THE ROLE AND GOALS OF MAINTENANCE.

Basili and Mills [BAS82a] specify the role of good

maintenance as keeping the requirements,

specifications, design and code documents up-to-date

but this is not always done in practice. The overall

goal is to "successfully" implement changes to an

existing application system. At a minimum, the

adjustments must fulfill the request which prompted

them if they are to be successful. However, the long

term definition of "successful" varies with factors

like the expected remaining operational life of the

application (or parts of the application system) and

expected number of subsequent maintenance tasks. In the

short term, constraints of time and money are likely to

define perceived success.

In most instances, maintenance is being carried out on

systems which are expected to operate for the

foreseeable future and thus (from Section 2.1.2.) will

certainly need further maintenance. This means that

documentation update and avoidance of structural decay

and introduced errors must be strongly considered

within maintenance tasks. In this case the objectives

maintainers should attempt to meet should be a

combination of Basili and Mills's documentation task,

62

Liu's request solving without new errors (considered

above and described in Section 2.4.2.1.) and support of

structural integrity within the application system.

From the modification example (Section 2.5.3.2.) and

the discussion above, even low-level program redesign

decisions require a reasonable amount of information

about the application's development and future. It

would seem appropriate for some of this information to

come from maintenance managers (or senior maintainers

usually in charge of programmers) and they should

ideally have quite an active role, particularly in

maintenance design decisions. The subtle trade-offs

between structural integrity, time taken and error­

proneness (as presented in Section 2.5.3.3.) are

heavily dependent on the application and are unlikely

to be performed well by programmers seconded to

application support only for the duration of a

particular maintenance project.

Whoever carries out the design and implementation of

modifications, it has been shown in this chapter that

understanding of various aspects of the existing system

is absolutely fundamental to these tasks and hence

maintenance itself. Designing tools to support

understanding, as well as maintenance aids in general,

are looked at in subsequent chapters.

63

CHAPTER 3. GENERAL MAINTENANCE SUPPORT.

3.1. COMPLEXITY METRICS.

In this section a number of software complexity metrics

are reviewed and their applicability to maintenance is

discussed. If aspects of complexity are critical to the

difficulties involved in producing or modifying

programs and if a particular metric successfully

measures such aspects and is readily calculatable, then

this metric would be generally useful in software

development or maintenance.

In maintenance, most authors agree that the best

measures will record the difficulty of understanding a

program or the speed / accuracy of implementing

changes. These metrics could be used for performance

prediction and resource allocation in maintenance tasks

or, possibly, even as an indicator of the "health" of

parts or the whole of an application system (as

suggested by Bell [BEL84]). In development, some

metrics are proposed as predictors of development time

and / or cost (e.g. Halstead's E) and also as measures

of program quality.

64

Static analysis of source code, largely for

understanding, is a major process in maintenance (see

Section 2.5.1.). With this in mind this examination of

metrics addresses static measures which attempt to

quantify psychological complexity in source code

(rather than computational or some other complexity

[CUR79]). As Feuer and Fowlkes [FEU79] point out, these

restricted metrics cannot really be expected to

completely predict performance. However, such measures

should provide a ranking system for programs and

indicate abnormally complex software [ELS84]. Static

metrics should also identify critical programmer and

program task factors which contribute to performance

[SCH81]. This would lead to firmer ground for the

establishment of guidelines for good programming

practice.

3.1.1. STANDARD METRICS.

The metrics most often cited

complexity area are lines of

cyclomatic number (V(G)) and

by

code

authors in the

(LOC), McCabe's

Halstead's software

science measures. These metrics and some variations are

reviewed in this subsection.

65

3.1.1.1. LINES OF CODE.

Complexity metrics are deemed necessary in development

and maintenance largely because a program's LOC is not

a reasonable indicator of the difficulty in coding,

modifying or comprehending the nature of the software.

After analysing 585 PL/1 procedures from a large

program analysis system, Elshoff [ELS84] found that

both the number of source lines and number of input

lines (preprocessed source lines expanding INCLUDE and

other statements) were poorly correlated to

construction effort. Sheil [SHE81] states :

"The most salient single fact about programming is

that the difficulty of programming is a very

nonlinear function of the size of the problem."

For the "size of the problem", one could equally read

"size of the program". However, LOC still have a part

to play in determining complexity. Survey results

(reported by Zolnowski and Simmons [ZOL80]) show that

52.2 % of respondents rated number of statements as

significant in complexity. Many metrics taken on their

own are unbounded (e.g. V(G) and E) and for inter­

program comparison a size factor is needed compute what

is effectively a measure of complexity density. LOC is

still used extensively to indicate the size of a

66

program or system for costing and programmer

productivity, especially in development [ALB83].

3.1.1.2. MCCABE'$ CYCLOMATIC NUMBER.

McCabe [MCC76] proposes a complexity measure derived

(at least in theory) from the control flow (CF) graph

of a program. A CF graph is a digraph model of the CF

between statements in a program. In a simple CF graph,

program statements are represented as vertices (nodes)

and control branches between statements as directed

arcs (edges). Paige [PAI77] describes CF graphs in more

detail, including techniques for analysis and reduction

of graphs. McCabe defines a metric called the

cyclomatic number V(G) of a graph G by:

V(G) = e - n + 2 where e = number of edges

n = number of nodes

Using graph theoretic arguments, McCabe equates V(G) to

the maximum number of linearly independent circuits in

a CF graph of a program. Hansen [HAN78] states that

three variations of cyclomatic numbers exist; CYC-MAX,

CYC-MID, and CYC-MIN. The difference between these

measures lies in the definition of a statement branch.

CYC-MIN counts all selection and iteration statements

as single branches. CYC-MID has the same branch

definition except that multiple selection statements

67

(e.g. CASE) are counted as if they were sets of nested

IF-THEN-ELSE statements. CYC-MAX uses the expanded

multiple selection statement and counts every logical

operator in every selection or iteration statement as

an individual branch. McCabe originally defined V(G) as

CYC-MAX but Hansen maintains that CYC-MIN is the best

of the variations as without CASE or IF statement

expansions it reflects more of a readability element of

the source. The main difference between the above

cyclomatic numbers is whether a branch is defined by a

condition or decision (predicate), where a statement

such as IF (Cl AND C2) identifies two conditions but

only one compound decision. However, from an analysis

of 89 units (2040 files) of C source code Crawford,

McIntosh and Pregibon [CRA85] concluded that there is a

very close relationship between conditions and

decisions. Elshoff [ELS84] measured this relationship

for a large number of PL/I procedures as having a

correlation coefficient of 0.93. Hence, it appears that

V(G) should be fairly robust regarding branch

definition. This does not support Myer's [MYE77] idea

of using the interval CYC-MID:CYC-MAX as a complexity

measure.

Most authors regard V(G) as a very useful measure. It

is easy to apply, language independent (unlike LOC),

68

and has a simple interpretation. Zolnowski and Simmons

[ZOL81] found, by survey, that V(G) was a "significant

consensus variable" in complexity and Baker and Zweben

[BAK80] conclude that V(G) is a reasonable measure of

the CF complexity of software. Schneidewind [SCH79]

links V(G) to debugging difficulty and gives support

evidence, from four ALGOL programming projects, to the

view that digraph properties, like V(G), can quantify

program quality. The main criticisms about the

foundations of V(G) are that it is too simply based

[MCT80] [PRA84] [WOO79] and fails to measure

interactions between branch statements [HAR81a]

[HAR8lb] [PIW82].

3.1.1.3. HALSTEAD'S SOFTWARE SCIENCE MEASURES.

In his book Halstead [HAL77] derives a number of

metrics which he calls "Software Science Measures".

These metrics attempt to quantify coding effort,

program level, predicted program length, predicted

program volume, implementation difficulty, coding time

and language level. All the metrics are based on the

following counts of information . .

nl = number of unique operators

n2 = number of unique operands

Nl = total occurrences of operators

N2 = total occurrences of operands

69

No general agreement exists for determining which

tokens in a language are operators and which are

operands [CRA85] and ambiguities exist in Halstead's

definitions for FORTRAN [SHE83]. Many classification

techniques ignore all comments and declaration

statements. This is consistent with the original theory

which was intended to analyse algorithms but, as

pointed out by Shen, Conte and Dunsmore [SHE83] and

others, declarations form a large part of a program's

LOC and production effort in many languages. In the

remaining program statements tokens are usually

regarded as operators or operands. Most

define a set of unary, binary etc. operators

languages

but in

addition punctuation tokens may be consider operators

[HAL77] [FEU79] [ELS84] or ignored [HAN78]. Crawford et

al [CRA85] allow provision for multiple tokens to be

grouped as one operator. GOTO tokens are also a

contentious issue. Halstead [HAL77] proposes that each

GOTO token is counted as a unique operator for each

label it branches to, whereas Elshoff [ELS84] counts

the number of unique labels pointed at by GOTOs as

operators. All schemes regard intrinsic function

references as operators but user-defined function calls

may be operators [ELS84] [HAN78] or operands ([CRA85]

in most cases). Shen et al [SHE83] state that such

references could serve both purposes at the same time.

70

Hansen [HAN78] suggests that subscripting of an array

is an implicit operation. Overall operands tend to be

user-defined variables or literals.

The most commonly cited of Halstead's metrics is the

effort measure E which is suggested as a predictor of

development cost. Both E and V(G) have been shown

empirically to be related to program construction time

in development [SUN81]. In maintenance, the difficulty

indicator D (which is the reciprocal of the program

level L) is likely to be more helpful as it supposed to

measure relative error-proneness and ease of

understanding. Feuer and Fowlkes [FEU79] report that L,

when adjusted for size, appears to be a fair estimate

of maintenance performance among PL/I modules. Shen et

al [SHE83] summarise Halstead's metrics and conclude

that E and D seem to be useful and are supported by

empirical data. Computational formulae for E and Dare

nl x N2

D = ------- E = D x (Nl+N2) x log2(nl+n2)

2 X n2

Halstead also presented a simple measure for the length

of a program. Elshoff [ELS78] found that the observed

length is highly correlated to Halstead's calculated

length (how long the program "should" theoretically

be). This observed length metric is defined as

length= Nl + N2

There has been some criticism of the basis

71

of

Halstead's metrics and the problems in applying them.

Elshoff [ELS78] found E and D were not robust to

variations in operator / operand definition. Also

because the metrics are language sensitive, Jones

[JON86a] reports they cannot be effective for higher

level and special purpose programming languages.

3.1.2. TYPES OF .METRICS.

Weissman [WEI74] divides complexity of programs into

four sections :

1. Program Form

2. Control Flow

3. Data References

4. Control Flow/ Data Flow Interaction

Zolnowski and Simons [ZOL80] give a similar division

for a number of COBOL program characteristics which are

to be measured. They exclude Weissman's Program Form

category but include an Instruction Mix category for

raw counts of language tokens. Harrison [HAR84] does

the same type of thing when suggesting groups of

complexity metrics. Some metrics appear to measure

properties which transcend these categories. Which

72

category a particular metric is placed in is sometimes

arbitrary. In this section an attempt is made to

categorised measures from Section 3.1.1 and others

which have been proposed into Weissman's groupings plus

an Instruction Mix group.

3.1.2.1. INSTRUCTION MIX METRICS.

These measures are raw counts of numbers, types and

specific attributes of source instructions. Some

program size measures are also included in this

category. Instruction mix (IM) metrics are language

dependent but can be combined to form more language

independent measures (e.g. V(G)). Groups of IM metrics

often form a basis for more complex metrics. This

category of measures includes LOC (Section 3.1.1.1.),

McCabe's n and e (Section 3.1.1.2.), and Halstead's nl

and Nl (Section 3.1.1.3.).

Clearly there are many possible counts of information

which can be calculated from source code. Information

from Zolnowski and Simmons's paper [ZOL80] indicates

that the percentage of IF statements and the total

numbers of verbs, outer IFs and breaks in CF in a

program may be useful in determining complexity.

Admittedly this is based on a very small sample of only

13 COBOL programs, but almost all programs which were

73

rated above average complexity (measured using an index

derived from 44 discriminating characteristics) had a

greater than average appearance of the above features.

McTap [MCT80] uses the average number of verbs per

module and the ratios of IF and MOVE statements when

forming his COBOL complexity metric. Crawford, McIntosh

and Pregibon [CRASS] present data from an analysis of a

large group of C programs to suggest DSL (delivered

source lines, macros and INCLUDES expanded), NCSL

(noncommentary source lines), and FND (function

definitions) as parameters for code fault and

maintenance effort formulae. Crawford et al also show

that DSL, NCSL and SC (the number of end-statement

tokens, semicolons or periods depending on the

language) are all highly correlated measures of program

size.

Branching measures, other than those mentioned above,

which have been used to form general metrics include

the number of GOTOs [BER85b] and the ratio of PERFORM

verbs to all verbs (for COBOL programs) [MCT80].

3.1.2.2. PROGRAM FORM METRICS.

Weissman [WEI74] defines program form (PF) in terms of

presence of well-placed and meaningful comments,

declaration placement, indenting and layout of the

74

program listing and choice and use of variable names.

PF properties are generally difficult to quantify and

interpretation of measurements tends to be rather

subjective. These types of metrics are sometimes

referred

Crawford

to

et

as

al

readability or

[CRASS] identify

clarity

DOC

measures.

(ratio of

noncommentary to total source lines, NCSL / DSL) as a

reasonable measure of commenting. Berry and Meekings

[BER85b] use the percentages of comment lines, blank

lines, and indentation spaces to all characters; along

with the average numbers of non-blank characters per

line, blank characters per line, length of modules and

identifier length when calculating their style metric.

Zolnowski and Simmons [ZOL80] found that programs

described as complex almost always have a less than

average percentage of comment lines.

Many PF measures can also be regarded as IM metrics.

Zolnowski and Simmons [ZOL81] report that many survey

respondents stated that a major dilemma in current

metrics is that a particular factor is known to

contribute to complexity but the exact degree of its

effect is very difficult to ascertain. This is

particularly true for PF metrics.

3.1.2.3. CONTROL FLOW METRICS.

75

The number of decisions made in a program, and their

interrelationships, are generally considered

significant factors in overall complexity [ZOL81]. CF

metrics are often calculated using IM metrics which

measure size and branching properties.

Many of the CF metrics can be derived from the CF graph

of a program (mentioned in Section 3.1.1.2.). Schneider

[SCH79] suggests that a CF graph's adjacency matrix is

useful for determining test coverage and that

reachability (defined as the average number of ways any

node can be reached) is related to complexity.

In the CF metric category, V(G) is the most well known,

but many others have been proposed. These include

measures of knots [WOO79] and nesting level [HAR81a]

[HAR81b] [PIW82] [PRA84]. The knot measure K is an

attempt to combine measures of

statement ordering to get

branching density

a measure of

and

the

interwoveness of source code. K is the number of

unavoidable intersections of arcs which record

transfers of control among the list of source

statements. Baker and Zweben [BAK80] identify that a

problem with K is that arbitrary amounts of structured

transfers of control (DO and WHILE loops) have the same

complexity as straight line code.

76

Criticisms of V(G) include the contention that it does

not adequately measure the interaction of branch

statements. Piwowarski [PIW82] proposes a modification

to a version of the cyclomatic number to cater for

nesting. His metric is

N = CYC-MIN + sum-over-i-of(P(i))

where P(i) is the nesting depth of the

i-th predicate

Piwowarski's N and Harrison and Magel's metrics are

defined on modified CF graphs. In these

selection and iteration branches are taken to

graphs

be part

of the previous statement. These newly formed predicate

statements branch forward in the case of selections and

backward in the case of iterations (at least for

REPEAT-UNTIL loops). The nesting depth of a statement

is defined as the number of predicate (branch

statement) scopes which overlap or contain the

statement.

Harrison and Magel [HAR81a] [HAR81b] describe two

nesting measures which require the use of the modified

program CF graph in their calculation. The first is

called the Scope Number. The Scope Number is defined as

the sum of the adjusted complexities of all nodes

(statements) in the modified CF graph. The adjusted

complexity of a non-predicate node is just the node's

77

raw complexity (which was supposed to reflect the

complexity of the individual statement's contents, a

Halstead metric applied to one statement was originally

suggested). To determine the adjusted complexity of a

predicate node the greatest lower bound (glb) of the

predicate must be found. The glb measures the extent of

the predicate and all paths from the predicate must,

perhaps after iteration, contain the glb. An example of

a glb for an IF branch in some language could be FI,

for instance. The adjusted predicate complexity is the

sum of the raw complexities of all nodes on paths

between the predicate and its glb (excluding the

predicate and glb), plus the raw complexity of the

predicate. For comparison with V(G) and ease of

calculation, Harrison and Magel set all raw

complexities of nodes to one. Using this definition of

raw complexity, the Scope Ratio is defined as the

quotient of the number of nodes divided by the Scope

Number. The Scope Ratio ranges between one and zero. As

the magnitude of the Scope Ratio decreases, the

complexity of the program increases.

Prather [PRA84] describes an alternative nesting

strategy which recursively assigns complexity numbers

to CF structures (selections, iterations, sequences)

and simple statements. Complexities of the generalised

structures are defined as :

comp(simple statement) = 1

78

comp(sequence(Sl, S2)) comp(Sl) + comp(S2)

comp(IF P THEN Sl ELSE S2) =

Wgt x max(comp(Sl),comp(S2))

comp(WHILE P DO Sl) = Wgt x comp(Sl)

where comp stands for complexity,

Sl and S2 are statements or structures,

Pis a condition

and Wgt = 2 to the power of number of

simple boolean conditions in expression P

An overall nesting metric is defined as the sum of the

complexities of the outermost CF structures and

statements. For unstructured programs, Prather defines

the complexity of a GOTO statement in terms of the

complexity of the structures and statements between the

GOTO and its label. Calculating GOTO complexity is

difficult and involves determining maximal 'spanned'

subflowcharts. The complexity given to GOTOs by

Prather's scheme seems to be more related to chastising

GOTO use rather than measuring complexity.

To compare the

addition of a

nesting metrics above,

selection (without an

consider the

ELSE part) or

iteration control structure over the top of a section

of existing code with S statements and P predicates.

79

This effect happens frequently in maintenance (see

program PURGE-A2 in Appendix 1 and Section 2.5.3.2.).

The new control structure's conditional expression will

be assumed to be only one simple boolean condition.

Piwowarski's N is increased by P + 1. Harrison and

Magel's Scope Number (assuming the raw complexity of

all nodes is one) is increased by S + 1 (for the

selection) or S + 2 (for the iteration). If the

existing code has Prather complexity C then the new

code has Prather complexity 2 x C. When comparing the

metrics, Prather's metric has increase well out of

proportion to the others. As most metrics are usually

measured against some program size metric to aid

interpretation (for instance, consider the Scope

Ratio), this means that Prather's metric will probably

be difficult to interpret against conventional size

measures.

In a program, selections indicate one condition

evaluation and a possible execution of a group of

statements, whereas iterations indicate an unknown

number of evaluations and executions of a condition and

statement group respectively. This suggests that

iterations will usually contribute more to complexity

and understanding difficulty than selections. This

contention is also put forward by Waters [WAT79]. The

80

Scope Number and Ratio are the only nesting metrics, of

the ones given above, which attempt to account for this

difference and even then the variation in the

complexity rating between a selection and an iteration

is insignificant. All the CF nesting metrics are time

consuming to calculate for large programs, particularly

if programs are very unstructured.

3.1.2.4. DATA REFERENCE METRICS.

Metrics in this category quantify the data aspect of a

program. They attempt to measure the numbers and types

of variables as well as the scope and clustering of

variable references. Some measures of the use of data

structures and pointers could also fall into this

group.

Data reference measures which have been proposed

include Halstead's n2 and N2 (Section 3.1.1.3.), the

average number of variables per module [MCT80], the

percentage of symbolic constants [BER85b], and (in

COBOL) the ratio of the number of unique CALLS (to

other programs) to the total number of CALLs [ZOL80].

Elshoff [ELS84] indicates that data difficulty (defined

as N2 / n2) is a reasonable parameter of program

construction effort and, possibly understanding effort.

81

Using Halstead's view of labels and GOTO statements

(Section 3.1.1.3.), labels can be regarded as operands

and their measures described in this category. Redish

and Smyth [RED86] use the numbers of label references

and labels defined but not referenced, and the total

number of labels (as well as many other measures) in

their style analysis tools (Section 3.1.3 and 3.3).

A group of data use measures derived from the "span" of

identifiers has been suggested. A span is the number of

statements between two textual references to the same

identifier (declaration and comment references are

ignored). The ordering for statements is taken directly

off the source code listing for span measurement. Feuer

and Fowlkes [FEU79] define two metrics :

Mean-Variable-Span Last-reference - First

Number-of-references - 1

Program-Span = Sum-of(Mean-Variable-Spans)

Number-of-variables

Elshoff [ELS76] argues that the number of identifiers

in a program which have mean span greater than, say,

100 statements is an indication of the difficulty a

maintainer will have in understanding identifier use in

82

the program.

Most attempts to measure data references are aided by

the inclusion of CF information and, thus, the metrics

produced fall also into the next category.

3.1.2.5. CONTROL FLOW/ DATA FLOW INTERACTION METRICS.

These metrics measure aspects of both control and data

flow in their derivation. Control and data flows are

closely related, although data/information flow can

exist when no CF exists [HEN81]. The motivation behind

these measures is primarily that, alone, the CF graph

of a program is not sufficient for complexity

measurement [TAI84]. Programs with the same CF graphs

can differ significantly in where and how variables are

defined and used.

Tai [TAI84] proposes a metric based on data flow

possible around conditions in selection and iteration

structures in a CF graph. The measure is applicable

only to structured programs and is really only an

alternative CF metric. It has been included in this

category because it attempts to add a data perspective

even though only "possible" flows are considered. Tai

explains that a conditional statement identifies some

amount of data being used and this data must have been

defined (initialised) previously in a program. For a

83

restricted CF graph (statement sequences and structural

groupings having been replaced by blocks), Tai

allocates definitions to blocks so as to maximise the

number of "live" definitions at the bottom of the

graph. This scheme assigns definitions to iterated

blocks and in selections to either the selected or

alternative block whichever is smallest in height. For

each condition (use), the number of possible positions

where the condition's variables could have been defined

is determined. The number of definition-use (d-u)

tuples for a condition records the number of definition

blocks on paths to the condition. Tai's DU metric is

the sum of all the d-u tuple totals. Two advantages of

this metric are that it appears to be a closer measure

of the actual number of program paths than V(G) and it

is bounded. If a CF graph G has P selection/ iteration

constructs, then

P <= DU(G) <= P x (P + 3) / 2

The former advantage applies because DU is influenced

more by iterations than selections. This desirable

property does not hold for the nesting CF measures

considered in Section 3.1.2.3.

Chapin [CHA79] identifies four roles for data variables

used in functions. Roles are determined by considering

what happens to particular data in a function. Hence,

84

CF information is implicitly applied. Counts of the

four types of variables in a function form basic

interaction measures. These measures are defined as :

P. The number of variables used for processing

(production of output).

M. The number of variables changed, created or

modified in value or identity by the function.

C. The number of variables which control aspects of

the processing in the function.

T. The number of variables which pass through the

function unchanged.

Many combined control/data flow metrics do not attempt

to account for complexity on a statement by statement

basis. Often the approach is to use module (subprogram,

subroutine or procedure) interaction and

interconnection information to derive the metrics. This

assumes other measures are available to determine

complexity within a module. Many metrics of this type

can be considered as extended CF measures.

Yau and Collofello [YAU80J suggest that maintainability

would be reflected by a measure of a module's

resistance to the impact of modifications in other

modules in the same program. This interconnection

85

metric is termed the module's logical stability (LS)

and it's reciprocal is the potential logical ripple

effect (LRE). Ripple effect was discussed previously in

Section 2.5.2.2. The magnitude of the LRE for a module

is determined by considering how interconnected a

particular module is to other parts of a program

through local and global data variables. For each

variable definition i in module k, a set Z[ki] of

modules which would be affected by a change in the

definition of i (either because they directly import i

or use interface variables which are influenced by i}

is calculated. The logical complexity of a change in

definition i of module k (LCM[ki]} is then defined as

the sum of the complexities of all modules in Z[ki].

Yau and Collofello use McCabe's cyclomatic number V(G)

as a measure of an individual module's internal

complexity. The LRE of a module k is

LRE[k] = Sum-of(LCM[ki]

Number-of-variables-i-in-k

The LRE for the whole program is

LREP = Sum-of(LRE[k] }

Number-of-modules-k-in-prograrn

86

In the LREP formula an assumption is made that every

module in a program has equal chances of being selected

for modification. An alternative strategy could be to

assume that some modules are more likely to need

changes than others. The modification likely hood

estimator could be related to a module's LOC, V(G) or

the previous maintenance history of modules in the

program. Support for this latter scheme lies in the

discussion at the end of Section 2.5.2.1.

Henry and Kafura [HEN81] present a number of measures

based on information flow. The first is a measure of

the complexity of a procedure (supposedly a C procedure

in some module/ program).

Procedural-complexity =

L x square-of(fan-in x fan-out)

where fan-in of a procedure A is the number of

local data flows into A plus the number

of data structures from which A

retrieves data

fan-out of a procedure A is the number of

local data flows from A plus the number

of data structures which A updates

Lis the length of A (LOC)

87

Henry and Kafura calculated this metric for procedures

from the UNIX operating system and summed the

complexities of procedures in each module to form a

module complexity measure. When this module complexity

measure was correlated against the percentages of

procedures per module which required changes (i.e.

maintenance) the resulting coefficient was 0.94. When

this same scheme using a procedural complexity metric

equal to the square-of(fan-in x fan-out) was evaluated

the correlation coefficient increased to 0.98. Thus,

Henry and Kafura suggest that Halstead's length [HAL77J

or McCabe's V(G) would be a better measure of procedure

length L than LOC. The procedural complexity

measurement is supposed to identify procedures with

heavy information traffic and possibly inadequate

functionality or refinement.

The second metric that these authors define is the

number of global information flows through a particular

data structure in a module. This may be used to

determine refinement within data structures. The basis

of the metric lies in identifying how many of a

module's procedures read, write or read-write a

particular data structure. The data structure metric is

defined as

(r x w) + (w x r-w) + (r x r-w) + (r-w x (r-w - 1))

where r is the number of read procedures

w is the number of write procedures

88

r-w is the number of read-write procedures

Henry and Kafura also suggest ways of measuring the

strength of information connections between any two

modules. Extending and combining these module interface

measures may lead to a system-wide coupling metric. In

development, a design goal is often the minimisation of

module coupling. A system metric, as derived above, may

be useful in evaluating system design trade-offs.

3.1.3. COMPOSITE MEASURES OF COMPLEXITY.

To measure complexity most authors measure a number of

program characteristics and meld them to form a metric.

When this is done on a large scale with many

information counts or, equivalently, many simple

metrics being used, the resulting measure can be

considered composite. Often the calculation of a

composite metric applies a weighting scheme to the

constituent simpler measures. In this subsection, a

number of composite metrics are described.

Zolnowski and Simmons [ZOL80] propose an index of

complexity derived from 44 program characteristics. The

characteristics are mostly counts of program constructs

which are believed to be linked with complexity.

89

Subsets of the characteristics have been described in

Sections 3.1.2.1, 3.1.2.2, and 3.1.2.4. The metric is

calculated by counting the number of characteristic

totals for a program which are above average (or below

if lack of a characteristic is thought to increase

complexity} to form a score. Averages for

characteristic totals are simple means from a "large"

group of programs (Zolnowski and Simmons use 13 COBOL

programs}. All program scores are normalised on a scale

of O to 10 to create an index of complexity for each

program.

There are some problems with this

production. McTap [MCT80] notes

approach to metric

that the method is

founded on the statistical law of large numbers. But no

attempt was made to insure independence or completeness

among characteristics. To calculate this measure for

one program, measures for a large group of similar

programs (i.e. at least of same language} must be

known.

McTap [MCT80] defines a similar metric to the index of

complexity, but attempts to resolve some of the

latter's problems. The COBOL metric S uses six features

of a program (see Sections 3.1.2.1 and 3.1.2.4) and is

independent of any group of programs. The metric for a

program is a comparison of measurements of source

90

features against a reference vector R which represents

local standards for the features. Two other vectors

which must be available to produce the measure are

weight W and direction D. The weight vector measures

the contribution to complexity of each feature. The

direction vector records the direction of the

contribution (-1 if more of the feature adds to

complexity and +1 if it adds to simplicity).

Calculation of a program's score S proceeds by

identifying which feature measurements are greater than

the standard for -1 features, or less than the standard

for +1 features, and adding the weight from W to S for

each such feature. The metric can be applied to

programs or modules of programs. S for a program is not

an arithmetic average of module scores because of the

particular features used. McTap explains that the

features selected for comparison don't need to be the

six identified in his paper. But care must be taken in

feature selection as measurements must be virtually

free of any software size (e.g. LOC) considerations.

An alternative to adding weights directly onto measures

(depending on characteristics/features being present or

absent) is to multiply a measurement of a

characteristic by a weight and add the product to the

complexity metric. This latter scheme would appear to

91

be more sensitive to absence or duplication of

characteristics used in a metric but potentially it is

more accurate. Several measures which use the latter

weighting system (sometimes heavily modified) are

described below.

Chapin [CHA79] suggests a module or program metric Q

based on interaction measures of the module or program.

The basic measures used are P, M, C, and T described in

Section 3.1.2.5. In the calculation of Q for a module,

a total weighted count w is assigned to the module. w

is defined as

W = P + 2M + 3C + T/2

where P, M, C and Tare calculated on variables

which are used, modified, occur in

conditions or just exist in the module

A value Eis also assigned to the module. E is a

weighted count of the number of C (control) items which

serve in exit tests (inside the current module) for

iterations through sub-modules. Such control items may

be initialised / modified inside sub-modules, the

current module or other modules. A control item which

is changed inside the loop (in sub-modules) contributes

one to E; outside the loop (in other modules), two to

E; and both inside and outside, three to E.

Contributions from in the current module are zero. E

92

represents a measure of the complexity of loops

controlled by a module and gives a strong control flow

flavour to Q. A repetition factor R is defined as . .

R = square-of(E I 3)

Finally Q is described as . .

Q = square-root-of(Rx W)

Chapin explains that Q rarely exceeds 11 and leaf

modules rarely exceed 5 (low complexity is indicated by

low Q number). Q can be calculated for a program by

averaging Q for it's modules.

Berry and Meekings [BER85b] have suggested a measure of

the "style" of a C program. Their style score is

defined as the weighted sum of 11 program

characteristics. The 11 characteristics and weights are

mean module length (15)

mean identifier length (14)

g_
0 of comment lines (12)

% of indentation spaces to all chars

% of blank lines (11)

mean nonblank chars per line (9)

mean spaces per line (8)

% of symbolic constants (8)

number of reserved words used (6)

(12)

number of tINCLUDE files used (5)

number of GOTOs used (-20)

The characteristics are those identified by

93

Rees

[REE82] as essential components of an elegantly written

program. Many of the characteristics are program form

metrics (Section 3.1.2.2.). Two ranges of values for

each characteristic are required for style evaluation.

The first range defines a region within which the

contribution to the metric is nonzero. The second range

is within the first and defines the region in which the

contribution is maximum (i.e. in the case of mean

module length, 15). Characteristic measurements inside

the first region but not the second, contribute a

linear proportion of the maximum depending on their

The

100.

resulting style

The greater the

distance from the second region.

metric ranges between O and

metric, the better styled the

Cook [HAR86] evaluated the

program. Harrison and

style metric for modules

comprising over 35,000 lines of C. Correlation of style

against error frequency (computed as NCSL / number-of­

errors) for modules gave a coefficient of only -0.052.

However, Berry and Meekings stated that the metric was

produced to promote discussion and even Harrison and

Cook describe it as a promising beginning.

94

Redish and Smyth [RED86] report on two FORTRAN-77 style

analysis tools, AUTOMARK and ASSESS. AUTOMARK is used

to mark student programs against a model answer.

Overall, AUTOMARK measures the divergence of weighted

stylistic factors from a model. There are 30 factors

used and they include many of the instruction mix and

program form measures of Sections 3.1.2.1 and 3.1.2.2.

The marking scheme used is similar to that used by

Berry and Meekings above. However, instructors (who

produced the model solution) may apply different

weightings to the factors to get a measure specific to

their assignment.

ASSESS is more general than AUTOMARK as it does not

require a model answer. It is used to evaluate 10

factors (a subset of AUTOMARK's factors) of any program

on a non-numeric scale ranging from low (bad) to high

(good). The 10 factors are :

Comments in the initial block

Statement spacing

Size of comment blocks

Ratio of comments to statements

Spacing

Sum of weighted operator types by nesting depth

Sum of weighted operand types by nesting depth

Average range of a control structure

Average range of a block structure

A measure of parametrisation

95

ASSESS does not actually produce a metric but in

certain cases does provide recommendations for changes

to structures and layout of a program.

3.1.4. A DISCUSSION OF COMPLEXITY METRICS.

From the multitude of complexity metrics presented in

this section, it seems reasonable to ask which one is

most suitable given particular circumstances. A partial

answer to this question is that some metrics are only

applicable to some kinds of program (e.g. structured)

and, unless definitions are translated, some languages.

Generally, a more complete answer to the question posed

above is currently unknown and more research is needed

in this field. One could argue that some metrics have a

stronger theoretical base or are better validated by

their proponents against, say, occurrences of errors in

software than others. Validation is a particular

problem. For large commercial systems, source code is

frequently unavailable for analysis because of privacy

and copyright constraints [HAR84]. Authors calculate

their metrics for particular software they have access

to (e.g. a program analysis system [ELS84] or a

business DP application [FEU79]). But this software is

96

usually unavailable to other authors for either

checking/extending original results or validating new

metrics against constant data. A method which has been

suggested to get around this situation is the Reduced

Form technique [HAR85]. Translating software into

reduced form counts most program characteristics and

insures almost total security including disabling

reproduction of the program. Aliasing of variable names

and removal of indentation, embedded spaces, blank

lines and comments are included in the technique.

Unfortunately, this means some

readability measures, cannot be

reduced form programs {e.g. the

metric [BER85b]).

metrics, among them

effectively used on

Berry-Meekings style

The ultimate success for any metric will not follow

from the theories which spawned it or its validation.

Success can be interpreted as how widely used and

accepted a metric becomes with developers or

maintainers. It may be that some metrics are consistent

enough to base management decisions on only when

applied to particular kinds of applications or DP

organisational structures. The easiest way for any use

to occur is for a metric or

automatically calculated.

group

The

of metrics to

best method

be

of

calculation is as a byproduct of compilation [RED86],

97

but an alternative is to use specific static analysis

tools [ZOL80]. A design decision that must be made for

any software analysis tool which attempts to measure

complexity is, what metrics to calculate. For the

analysis tool presented in this thesis this decision is

examined in Section 4.3.5.

Whichever automatic calculation method is used,

attempts at linking metrics to quality measurement can

lead to unusual repercussions [ELS84]. For instance,

creating a new constant Y equal to an existing constant

X and replacing one occurrence of X in a program

statement by Y increases Halstead's n2 metric by one.

This artificially reduces the difficulty measure D for

the program. A way to avoid undesirable measurement

consequences is to calculate a large variety of

different metrics assessing different aspects of a

program. Hopefully, inappropriate adjustments in source

code to enhance one metric detract from others,

assuming all the metrics produced are regarded equally.

This is possibly why Redish and Smyth [RED86] can

report reasonable success when assessing quality by

mere static means.

Static measurement of program complexity seems to be a

still evolving theory [SHE83]. Even if it wasn't, it is

clear that there are factors which affect maintenance

98

performance which are not accounted for by these

measures. A factor which influences the complexity of a

particular maintenance task is the interaction of the

kind of maintenance requested with the structure of the

existing software. This factor is reflected strongly

in our example in Appendix 1 (the modifications are

described and discussed in Sections 2.5.3.2 and

2.5.3.3). Some changes are easier to graft onto the

existing system's structure than others regardless of

how complicated the change request initially appears.

Another suggested performance factor is the interaction

of the programmer with the software. Boehm [BOE73]

cites that variations in programmer productivity

(mainly in development) have been measured as anything

from 5:1 to 26:1. However, experiments by Schneider,

Sedmeyer and Kearney [SCH81] identify that there are,

at least, two distinct programmer populations within a

mixed group of DP professionals and Computer Science

(CS) students. There are so called experts

(characterised by five or more years in DP or having

passed seven or more CS courses) and less experienced

novices. Although the sample sizes and the number of

comprehension questions asked were small, variations in

source code comprehension appear to be slight within

these two populations. Variations between the

99

populations was large, some novices having up to three

and a half times more difficulty understanding large

programs than experts. Curtis, Sheppard, Borst and Love

[CUR79] found in their experiments that E and V(G) were

more highly related to performance with unstructured

and uncommented code and performance of less

experienced programmers. Weissman [WEI74] states that

very novice students (less than a year's experience)

make poor subjects for analysing understanding

difficulties between different programs because they

have more problems with language constructs than

algorithms. Curtis et al [CUR79] suggest that

experienced

levels other

programmers conceptualise

than operator/operand

programs

tokens

at

and

individual statements. They are also more likely to use

in-house programming standards which are known to ease

maintenance tasks [W0079].

Some desirable qualities, other

prediction abilities, have been

than performance

described for

complexity metrics by various researchers. Metrics

which are largely language independent and noncoercible

(i.e. measure an appropriate underlying program

property without influence from, say, the specific

coding) are preferred by Feuer and Fowlkes [FEU79].

Hansen [HAN78] includes independence as a favourable

100

criteria when using two or more metrics in conjunction

and states that measures should show enhancement for,

or at least not penalise, the use of "good" programming

practices. Given comments that program complexity is a

function of the language [WEI74J and suggestions that

development productivity differences of 2:1 and up to

3.5:1 are possible by varying the choice of

implementation language [BOE73J, attainment of language

independence may actually detract from performance

prediction in metrics.

101

3.2. A DOCUMENTATION SUPPORT ENVIRONMENT.

In this section the various kinds of documentation are

identified

considered.

and

Brief

aspects of documentation support

summaries of some suggested

documentation tools are given in Appendix 2.

According to Mathis [MAT86J, an underlying goal of

structured programming, programming methodologies and

software engineering is to improve the

understandability of programming by humans. The use of

high level languages rather than machine code

essentially aids human understanding. Hence, a program

in a high level language documents an activity for both

humans and machines with the emphasis on humans

(admittedly for a very small subset of the human

population). This view identifies source code as

fundamental documentation of an application. An

oversimplified description of maintenance could be the

activities of retrieving, updating and testing

documentation in it's widest sense. Development could

be similarly described as the production and testing of

documents relevant to an application.

From the above, documentation support is central to any

development or maintenance environment. Thus, a general

documentation system could be used to integrate

102

activities and software tools within an environment, as

all such activities must manipulate documents of some

form. This idea has also been promoted, in essence, by

Anderson [AND81], Saib [SAI83], Richmond [RIC85] and in

most development methodologies.

3.2.1. DOCUMENT GROUPS.

There are man kinds of possible documentation for a

computer system. Groupings of documents are often

linked to development phases in the software life cycle

[AND81] [BRI83] [HOR86].

Anderson [AND81] gives a hierarchical structure to

development documents. Six levels of abstraction in

development are recognised

Program, Module, Procedure

document groupings are

System, Subsystem,

and Statement. Design

the System Overview

Specification (SOS), Subsystem Functional Specification

(SFS), Subsystem Design Specification (SDS) and Program

Design Specification (PDS). Implementation documents

for programs, modules, procedures and statements

(Program Source Specifications, PSSs) consist largely

of source code. Anderson claims that after system

installation, classical program

documents like flow charts and structure

implementation

diagrams are

redundant as the source code exists and is more

103

accurate. However, graphical documents, like these

charts and diagrams, visualise structures present in

source code and more easily convey information to

maintainers than alphanumerical material (Wagner

[EBE80]). Accuracy of graphical documents can be

achieved by generating them from source code as and

when they are required. There are considerable space

savings with this approach, especially if diagrams were

to be machine stored for ease of manipulation.

A simpler structure for development documentation is

presented by Brice and Connell [BRI83]. Three main

groups of documents are described; the System

Requirements Definition (SRD), the System Design

Document (SDD) and internal design information within

the Requirements Specification Package (RSP).

Not all documentation is created for technical

personnel (developers, maintainers and operators).

End-user documentation in the form of manuals and on­

line "help" facilities is a very important area in any

application. Tinnrello [TIN84] identifies that, for

4GLs at least, there is considerable merit in end-users

writing their own documentation. In this way

applications would be documented at the business level.

A major problem with end-user documentation in relation

to other application documents is that it almost never

104

covers the entire system. In general, users only need

to know about what is presented to them in reports and

on screens. Users are usually blissfully unaware about

the underlying system I program structures and man of

the "housekeeping" routines.

Anderson [AND81] suggests that basic end-user documents

should be held in the Human Interface descriptions of

the SFSs. If an integrated documentation system is to

be put in place then user documents must be linked to

other application documentation and differences between

user business terms and application construction terms

resolved.

3.2.2. A DOCUMENTATION SCHEME.

A possible architecture for an integrated documentation

system could mirror the Text Data Base referred to by

Richmond [RIC85]. The "physical" level of documentation

is implementation and operations data which includes

source code; the "logical" level, the hierarchy of

requirements and specification documents; and the

"presentation" level, the user manuals and other user

documents (see Figure 3.2). In an extensive application

system there would probably be several overlapping

"presentation" views and hence documents for users

105

An Application Documentation Scheme

'Presentation' View
[End-User and Business

Descriptions of the
Application's Structure]

Linked via

/ ,------ - - -- -- ----------------, ...
Lsusiness Orientated Application i
: Objectives/Structure !
' ').-Application Business Dictionary l

.,,,..,,., ' '
~==:····· l (ABD) ;

-::,:.·• •• ······;..user manuals : •.. ' '
'• •• "• I I

·• .. :•· .. :·•.J ... Training Guides l
•• •• I t

•·• •• ···.~Online help : .. ' '
•, I '

·.;,:_~rror/Enhancement _suggestions ___ .,. j

-Application Naming Conventions
/.,. .,..,.,. .,..,. .,,.,,. .. .,.,,,. ,,. .. ,,. .,..,.,.- .. .,..,. .,. .. .I.-,. ·#·t~

.J-Requirement and Specification ,
-ABD and ACD correspondences •••• •··· ; documents for System '

'Logical' View
[High Level Functional & Data

Descriptions of the
Application's Structure]

Linked via

••• •·· : Components down to modules .. .
•••• •···· ~Application Component Dictionary

•••• •· : (ACD) . .,,,.,,,,. ' .f:--, ________ ,, ____ ~-Syste m ,Sub-system, P rog ram,

····•... : and Module Design documents
···•.... \ (DFDs, ER-diagrams, DFD &

···•..... : Entity dictionaries)
·····~-~ibrary __ Routine __ Descriptions _______ /

-Application Naming Conventions ,---·-/ \
-Code Generators,

Code Skeleton Generators or
Parameter Table Generators

.Jsource Code (Programs and ;
.... •· l Variants/Versions) ;

•• I I

./ .J..JCL Routines :
• •"' I I

••. •··· .•. •······..,..J.-Ds Subschemas l
•• -." ./· I I

,•• ,,,•"'" // I • , I

'Physical' View
•• (-;,,.,---:_.,. ,+operat1ons Information (Operator ;
f~~,,...... : Manuals, Run & Recovery Data, ;
,;0::··••.,. ; File Access Rights and Retention ; [Low Level Descriptions of the

A Ii i n' S rue ure
,_.••• ""•,...,...,. I I

·==:::.:••.. ····•·, .. L Test Environment Information l
•• •• •• I t ·· .. :••·>•. ; (Test data, Test bed, Test results) : ·•. ·• .. ·•... : :

•♦ •• •♦ I ;

•• ••• ·•... ··.-... compiler and Load Data :
•... ··•. : :

·• ••• ··:-Library Routines ;
'• ' '
··.;-:_Run-history Information _}

··---,

Figure 3.2

106

(depending on their

document control

department

between all

and position). Some

three views can be

attained simply by using appropriate naming conventions

in the same way some compiler/loaders by default use

suffixes to identify related source, binary and object

files. However, as described in the subsection above,

names of functions appearing in a user interface in an

application may be unrelated to the names of programs

being invoked. The link between "presentation" objects

and application subsystems or programs can be enhanced

by holding correspondences between terms in the

Application Business Dictionary and members in the

Component Dictionary. It is more reasonable to link

end-user views to the specification view rather than

directly to implementation because the specifications

define the "logical" application structure and most

development methodologies provide for user interaction

within requirement/ specification production.

Verifiably linking the

implementation

development.

has long

Suggested

specification view to the

been a perceived problem in

methods usually involve

formalising and formating requirement/ specification

documents (e.g. problem statements in PSL/PSA [TEI77]).

From these

application

documents

programs,

it

but

may be possible to generate

it is more likely that

107

skeleton structures for programs would be produced, as

in the proposed ADA environment [SAI83]. This would

define a link back to the specification, although tools

which check which data and INCLUDE files are used in a

program against it's specification are advisable. More

wide-ranging checks could involve which major code

grouping names (i.e. section names in COBOL) and which

global data structures are referenced and how they

used. The point is to make sure that

implementation objects are mentioned in the

are

major

other

related documentation. Verification works both ways,

specification documents define code skeletons and the

source code defines key words which must be referenced

in specification documents.

An alternative method for linking specification and

implementation is to place descriptive information

(specification statements) within source code. This

scheme is used in the DADA files of the CASE system

[AME79]. Maintainers redocument as they change the

source. The specifications can be placed in comments so

as not to interfere with compilation and design

documents can be extracted using a simple comment

collecting tool. A data base documentation scheme, like

the one suggested above, has several advantages over

this alternative. Embedded specifications do not

108

interfere with or add to the size of object code for

compiled programming languages, but this is not the

case with large JCL routines which are interpreted.

Even when JCL is de-commented automatically before

transfer from the documentation system to the

executable system it is still easy to make minor

patches to executable JCL to keep the application going

without updating the documented JCL. Another problem

with embedded documentation is that end-user manuals

and on-line help remain effectively unlinked to design

and implementation documents.

A goal of maintenance is

documentation consistent

to

(See

attempt

Section

to

2.6

keep

and

[BAS82a]). Figure 3.2 gives an idea of the diversity of

documents which may be manipulated in a maintenance

task and which an automated document system must

support. Specific kinds of documents in a view will

depend on the particular methodology used in

application development. For instance, if a methodology

producing Anderson's documentation groupings (see

Section 3.2.1.) was used, SOS, SFS, SDS and PDS

information would form the bulk of the "logical" level

or view of application documentation. Within a view,

documents may be arranged in hierarchies or possibly

even "concept" trees (as in MIDOK [EBE80]). Some

109

problems which occur in document support are described

in the next subsection.

3.2.3. PROBLEMS WITH AUTOMATED SUPPORT.

From Section 3.2.1, it can be seen that documents used

in analysis, design and implementation form a large

portion of application documentation. Such development

data is often designed to aid the decision processes

within development and may need to be extremely

extensive to describe the evolving system effectively

to developers, managers and various groups of users. If

held for maintenance, this data needs to be reduced in

volume and tailored toward system understanding and

update by maintainers. Another problem with these

development documents is that they depend on the

methodology used. A prime concern of documentation

automation for maintenance is to standardise the access

and update of documents. There is a need to identify a

documentation standard within a business for all

applications if maintenance and documentation is to be

centralised.

Brice and Connell [BRI84] report that although

automated data dictionaries and program documentors are

commercially available, few link to other aspects of an

organisation's functions. Important aspects which tend

110

to be overlooked are an application's operation and the

whole area of end-user involvement. A possible reason

for omitting this data is that it needs to be accessed

and sometimes updated by operators and users and much

of it must be available when the application is

running. But maintainers must also have access to this

information. Most maintenance is carried out off-line,

in the sense that it is separate from the operational

application until re-installation. This identifies the

problem of where to hold user and operations

documentation and, if duplicates are required, what

processes must exist to maintain consistency. Some

users may also require access to the specification view

of an application, particularly when producing error

reports because they must know what functions the

system was supposed to provide.

Although problems obviously exist in supplying access

to documentation for the range of maintainers,

managers, operators and users, this has not stopped

centralised documentation systems being suggested.

General editing and production facilities as well as

comprehensive searching capabilities, like the proposed

FORTUNE system [RIC85], would be required by such a

system. The maintenance history of an application could

be stored in the form of deltas of documents (see the

111

SAMOS tool, QUODOS [EBE80] and SCCS [ALL84]) within the

documentation system. The

documentation suggests a

complexity of

type of expert

application

system to

manage searches and updates. This is the approach taken

in the ME2 system [COL85a] and, for development

documents only, the IEW/WS system (JON86b].

Some kind of central DBMS has been seen as a method of

integrating many development tools ([HOR79] [HOR86]

[RID81] [SAI83]). What has been indirectly suggested in

this section is that this controller of development

documentation and tools be extended to cater for

maintenance activities and data. In the next section

software maintenance

categorised according

associated with.

tools will be discussed and

to the documentation they are

112

3.3. MAINTENANCE SUPPORT TOOLS.

In this section, maintenance tools are categorised in a

number of ways in order to discover what areas, tasks

and documents each tool supports. Particular tools are

briefly summarised in Appendix 2.

3.3.1. CLASSIFICATION ACCORDING TO ACTIVITY.

When examining software tools it is worth considering

the general areas and activities which they support.

Bell [BEL84] identifies three components in the

maintenance environment : the programmers' environment,

the managers' environment, and the institutional

environment. Institutional aspects include the image of

maintenance, training of personnel and career paths for

maintainers. Many of these factors were identified in

the problems of maintenance (Section 2.3.1.). In

general, the institutional environment is not directly

impacted by tools.

Management embraces planning, staffing, controlling,

directing and organising activities across the whole

application life cycle. Because it is affected by

general management tasks like project reviews and

personnel control, a maintenance management environment

cannot be considered in isolation from the project or

113

data processing

exclusively aid

management environment. Tools to

managers include those that estimate

effort, software "health",

usually based on project

software metrics [BEL84].

and resource

history data

Some tools

requirements

and sets of

give general

support to maintenance and transcend programmer and

manager environments. Documentation systems such as

MIDOK [EBE80] and SODOS [HOR86] are prime examples.

The managers' environment above is not to be confused

with software management and control. Software

management (including configuration control) is

primarily used and directed by programmers in

development and maintenance and is a component of the

programmers' environment.

Bell [BEL84] states that a maintenance workbench forms

the basis of the programmers' environment. Seven types

of tools which should be present in this workbench are

recognised retrofitters (recoders), restructurers,

static code analysers, interactive debuggers, test-data

generators, automated documentors

editors. Most tools which have been

and specialist

produced to aid

specific maintenance tasks could be classified into one

or more of the categories in the workbench. The

proposed ME2 environment [COL85a] is an example of an

intelligent maintenance workbench.

114

The tool categories of retrofitters and restructurers

identify aspects of perfective maintenance which can be

completely automated. These software aids have been

described by Richardson and Hodil [RIC84] as code

purifiers. Specific examples include the recoding

portion of SUPERSTRUCTURE [RIC84] and Peat Marwick's

Structured Retrofit [CAN86b]. Such tools do not just

support maintenance, they actually carry out

adjustments for compliance with some standard

specification. Thus, none of the maintenance actions of

Section 2.4.2.1. appear to be directly aided by these

tools. Compilers, link loaders, code auditors and

source formaters are similar tools. Boehm [BOE76]

describes some of

reliability tools.

characterised by

these software aids as testing and

This whole group appears to be

minimal interaction between

maintainers and the particular tool and consequently

the tool-user interface is virtually non-existent apart

from small reporting facilities.

Boehm [BOE76] gives three main functions into which

tools useful for maintenance could be categorised.

These are understanding, modifying and

testing/reliability. Boehm, using a wide view of tools

which includes techniques and standards, maintains that

testing and reliability tools are almost the same as

115

those used in development. Modifying also has similar

aids to programming in development. The understanding

function, Bell's automated documentors and the

maintenance redocumentation task (Section 2.4.2.1.)

identify facets of the overall application

documentation system. A possible structure for such a

system has been discussed in Section 3.2.

The understanding function is peculiar to, and very

important in, maintenance (see Section 2.5.1.). As

mentioned in the previous section, almost all

documentation other than source code exists to aid

someone's understanding. Although most documentation

has a number of competing types of users, source code

is different in that it is usually very formal and

restrictive, largely to aid compiling. General document

managing systems like MIDOK or SAMOS help the

understanding of source code but this task is worthy of

specific tool-based support. Letovsky and Soloway

[LET86] identify that a maintainer requires a number of

"views" in addition to the localised code view in order

to carry out his job successfully. A local examination

of source is often misleading. Alternative reporting or

visualisation of the structure of source code for

understanding is a method used in AURUM, Bell's static

analyser, EDIERE (SAMOS), MAP, PECAN, RXVP, and SADAT.

116

Similar viewing methods for design information are

possible in the SID and IEW/WS [JON86b) systems.

3.3.2. CLASSIFICATION ACCORDING TO DOCUMENTATION USED.

Figure 3.3 shows which kinds of documentation various

tools summarised in Appendix 2 deal with. From this

figure it can be seen that that bulk of software aids

which have been reviewed are concerned with source code

and that almost all support retrieval or modification

of the physical structure of the system rather than the

specification or business views. Houghton's paper

[HOU83] generally supports the idea that the tools in

Appendix 2 represent a reasonable cross-section of

those currently available. For instance, of 362

software development tools, Houghton found that 67%

catered for either source analysis and testing or

software management, control and maintenance. The

definition of software maintenance tools used by

Houghton appears to be confined to those which directly

support software modification through, say, version

control. Although

environment aids

many

are

individual

available, few

programmer

tools for

integrating environments and few related groups of

tools exist. Houghton found that only 3% of the tools

'Presentation'
View

Logical'
View

Physical'
View

117

Application Documentation and Tools

Tools to support documentation
/" ·•,.. access. storage or manipulation
' Business Orientated Application :

Objectives/Structure :
•

Application Business Dictionary :
(ABO) :

User manuals

Training Guides

Online help

• • • • • • •
' ' •
'

t~rror/Enhancement suggestions ~ MIGS
·-·------------------------------'

/ ,.,. .. .,,,., .. .,.,..,. .. ,,., ,,,,..,.,. ~.
'Requirement and Specification ◄ ADA tool box, DREAM

documents for System
Components down to modules

Application Component Dictionary
(ACD) :

System,Sub-system,Program,~IDES, Programmer's Apprentice,
and Module Design documents : I.QASE, DREAM, PECAN
(DFDs, ER-diagrams, DFD & :

Entity dictionaries) :

.pbrary Routine Descriptions ◄◄t------- Programmer's Apprentice, ISADORE,.,,.,.,.,,.,,.,.,,.,.,,.,,.,.,.,.,.,.,.,.,.,.,.,,.,.,.,,

ADA tool box, AURUM, CASE,
CHART, CONTOUR, EDIERE, FRED,

/,... interactive-static-analyser,
I ..., LIBMAN, MAP,
Source Code (Programs and ---ME2-static analyser, PECAN,

Variants/Versions) RXVP, SADAT, SAS, SCAN/370,

STRUC,SUPERSTRUCTURE,TEXJAX

JCL Routines---------,-ADA tool box, DOCU/TEXT, ERZEUGE
I

Conceptual DB Schemas◄ i CASE
•

Operations Information (Operate~ DOCU/TOO
~anuals, Run_ & Recovery Da:a, j ADA tool box, CASE,
File Access Rights and Retention , ME2 . 1 ff t I RXVP -npp e-e ec ana yser, ,

Test Environment Information , SADAT, SAS
(Test data, Test bed, T:st r~ CASE, LIBMAN

Compiler and Load Da~ :~ 1
. . : Programmer's Apprentice, ISADORE,

Run-history Information ◄ ; LIBMAN
•

~Library Routines ◄ } MIGS
'~---------------------------------✓ General support applicable to all views is given by CASE(text documents),

FORTUNE, ME2, MIDOK, QUODOS, SID and SODOS

Figure 3.3

118

surveyed had these features.

The preoccupation of current tools with the "nuts and

bolts" of an application rather than higher abstract

levels or integration is an indication that few firm

ideas yet exist about what aids developers or

maintainers should expect in an environment. Tool

producers tend to develop "one off" and highly

specialised products. Such tools often duplicate

aspects of others. For instance : ERZEUGE has many JCL

abbreviation features which may be present in an

operating system; control flow analysis of FORTRAN

programs is carried out independently in EDIERE, RXVP,

and SADAT. The most extensive duplication among source

code tools appears to be in the area of syntactic

analysis. Syntactic analysis of source is an important

property of many tools and it is examined in the next

section.

An alternative view to the one expressed above is that

because the whole software area lacks generally

accepted standards for application analysis, design,

implementation, testing, documentation and maintenance,

many tool developers have done the only thing possible

and concentrated on source code aids. As maintenance is

often perceived as just hacking the source around to

alter the application in some way, then isolated source

119

code tools are likely to appear to give more direct

gains in maintainer productivity than, say, a general

documentation system which ensures that modified code

cannot be installed without redocumentation of program

or subsystem specifications.

Many standards did not exist when much of the software

being used today was produced. In the late seventies,

an average age of an installed system was estimated to

be about 5 years [RIC84]. Given present software

industry manpower shortages [STA84], it is thought that

many systems are now more than 10 years old (10 years

has been used as the time span to assess application

maintenance costs in the system life cycle in several

businesses and institutions [BOE76]).

Old software systems often lack both structure and

documentation and source code tools could certainly be

useful. A complete rewrite of all existing software is

unrealistic. Cost information from Cane [CAN86b) and

Richardson and Hodil [RIC84) indicate it is probably

cheaper to both retrofit and redocument existing code

using tools than rewrite even if the new development

uses 4GLs for productivity gains [FOR85). If, after

future maintenance costs are considered, overall

costing suggests large scale redevelopment would

eventually pay off, there is often no-one to carry out

120

this redevelopment. Vacancies now exist for 50-100,000

programmers in the software industry and the situation

is worsening [STA84). From the above data, the

potential market for maintenance tools would appear to

be substantially larger than that for development tools

in terms of the amount of software involved. However,

much of the code being maintained was produced using

old and adhoc methods.

Appendix 2 identifies many tools and automated features

which would be desirable in application development and

maintenance. To support the entire application life

cycle through tools what is required is an approach

which integrates both development and maintenance

methodologies and environments. Most of the tools

available address only isolated features of an overall

approach and even then there is often a lack of

functionality and singularity of purpose. Perhaps the

most comprehensive system which appears to fulfill the

above approach requirements is the proposed ADA

environment and tool box which is built around one

specific programming language [SAI83].

Software tools will also be discussed in the next

section with reference to syntactic analysis of source

code.

121

3.4. SYNTACTIC ANALYSIS.

3.4.1. STATIC ANALYSIS.

A large number of source code tools summarised in

Appendix 2 use some form of static analysis. In this

section, possible products of static analysis are

described. Firstly, some indication is given of why the

most commonly analysed type of software is the program.

An application's source code can be arranged in terms

of a hierarchy consisting of a system (a group of

subsystems), subsystems (suites of programs), programs

(groups of procedures), procedures (also called

functions, sections or paragraphs) and statements. The

software manipulated by a compiler is usually the

source program, which is also, not surprisingly, the

largest code grouping supported by most programming

languages. Systems and subsystems tend to be described

for a computer in interpreted JCL or through program

calls embedded within programs. In this latter scheme,

program execution control is decentralised and may be

undocumented. Syntactic and other static analysis of

software is very similar to compiling and hence has

usually been orientated toward programs and the

analysis one program at a time written using a

particular programming language. Partial exceptions are

ERZEUGE

JCL. But

122

of the SAMOS toolset and DOCU/TEXT which scan

these tools do not offer the extensive

analysis and differing views of, say, a subsystem,

which tools like AURUM, EDIERE (SAMOS) and MAP provide

for programs. Information about file usage and update

within a system can only be indirectly compiled from

application source with most current tools (by running

multiple programs through tools and combining the

results) but such information may exist as design or

specification data inside the application documentation

system (see Section 3.2).

This identifies a particular problem that toolsets and

environments need to resolve. Much structural

information about an application must be held in JCL

and source code. But this may be also present in design

or other documents within the application's

documentation system. Overlaps of information are

inevitable because the documentation system describes

the application and one of it's roles is to "flesh out"

some structural data with, say, reasons for design

decisions. For any overlap, there must be a clearly

defined method for insuring and verifying consistency.

Overlap can be reduced for low level design documents

(e.g. structure charts) by generating them from source

when necessary as mentioned in Section 3.2.1.

123

The functions of tools which are supported by static

analysis are categorised below. The tools which supply

a particular feature or function are bracketed.

1) Functions which report or enhance the physical

layout and structure of source code.

a) Formating of a program. (CONTOUR, EDEIRE(SAMOS),

RXVP).

b) Identification of a program's block structure and

generation of module/procedure hierarchy charts.

(EDEIRE(SAMOS), TEXJAX).

c) Production of a symbol table. (PECAN).

d) Structure based editing and statement syntax

checking. (FRED, PECAN).

e) Structural deficiency report production. (SADAT).

2) Functions to specifically aid description or

programmer understanding of a program's control flow.

This is suggested as a general feature of a Source

Analysis System (SAS) [DEU81].

a) Production of structure charts and structured flow

graphs. (CHART, Bell's static analyser, MAP,

PECAN, TEXJAX) .

124

b) Generation of a program graph, reduced program

graph or individual

graphs (SADAT) .

control flow paths. Program

Control Path tracing

(EDEIRE(SAMOS) , Bell's static analyser, MAP,

PECAN, RXVP, SCAN/370).

c) Generation of procedure connection diagrams or

equivalently, a module invocation matrix. (AURUM,

EDEIRE(SAMOS), PECAN, RXVP).

3) Functions describing data usage and aliasing within

a program. This is also suggested as a general feature

of a SAS [DEU81].

a) Generation of standard cross references for

symbols used in a program. (RXVP).

b) Generation of data definition hierarchy diagrams.

(PECAN) .

c) Production or reports on data flow between modules

and via common storage or external files. Data

flow tracing (AURUM, Bell's static analyser, MAP).

Common storage usage (RXVP).

4) Advanced functions involving comprehensive analysis

of many program features.

125

a) Generation of program metrics. This may not be a

very advanced function depending on the metrics

selected for calculation {see Section 3.1.).

(TEXJAX).

b) Annotation of source code or redocumentation.

(SCAN/370, TEXJAX).

c) Standards checking. This may be the same as the

reporting of structural defects above but it is

possible to have very complex standards to insure

a particular style of programming.

{SUPERSTRUCTURE).

d) Program

usually

recoding

be in

or restructuring. This would

response to the functions of

structural defect identification or standards

checking. (EDEIRE{SAMOS), SUPERSTRUCTURE).

e) Program instrumentation for dynamic analysis.

(EDEIRE {SAMOS), RXVP, SADAT, SAS).

f) Execution monitoring and debugging. (PECAN).

g) Symbolic execution for infeasible path

identification. (SADAT).

h) Generation of test cases. (SADAT).

126

i) Test assistance and results analysis. (RXVP, SAS).

j) Identification of source of errors from symptoms.

(diagnostic tools in the ADA environment toolbox

[SAI83]) .

k) Ripple effect analysis for potential

modifications. (proposed Ripple effect analyser in

ME2).

From the above it can be seen that some functions are a

simple product of syntactic

(e.g. cross references, symbol

code block identification).

analysis of source code

table production and

Other functions display

basic syntactic information in a descriptive and easy

to read form (e.g. as program graphs or procedure

connection diagrams). These functions actively support

program understanding by maintainers. In addition,

there are the more complex functions which Fairley

[FAI78] describes as requiring sophisticated algorithms

(e.g. isolated code determination and program

recoding). Such algorithms usually need to use the

results of syntactic analysis. Syntactic analysis of a

program can thus be identified as a central feature in

any system relying on static analysis. In the next

subsection this analysis is further discussed.

127

3.4.2. A SYNTACTIC ANALYSIS TOOL.

In Section 3.3.2, a lack of functionality was

identified as a problem with many current tools.

Discussions in the previous subsection highlight

general syntactic analysis as a specific function of

many tools which could be isolated in a specific tool.

The general process of analysing syntax is well known

and is carried out in all compilers. Like a compiler,

an analyser would need to be specific to a programming

language or class of languages. The main unknown

quantity for an analysis system is "what would it

output for use by other tools?".

Before considering possible outputs, the structure of a

static analysis toolset or system will be outlined. The

number of tools which use syntactic information suggest

that this information be stored in common files or a

database. A database containing syntactic data and

usually other information forms the basis of Bell's

Static Analyser, MAP, RXVP, SADAT, and SAS. The most

efficient method of storing source code information is

still the source file. The source file (or, more

accurately, the formatted source file) remains the

residence of instructions which are to be modified,

recompiled and tested during a maintenance task. A

syntactic database is meerly a device for streamlining

128

access to source data for tools and, possibly, a

maintainer directly. Information stored in this

database is likely to be short lived. The database

would be generated at the beginning of a particular

maintenance task and, probably, regenerated if the

source was modified.

Automatic update of database information as source is

changed is a possibility. It requires the linking of

the the syntactic database and source within an editor.

This approach is taken in the EDIERE(SAMOS) and PECAN

tools. For a prototype syntactic analyser supporting

potentially many tools, the editor approach is too

complex, although it does have advantages. For example,

it allows editing at the structure chart level as in

the SCG package of AIDES.

To use a syntactic database as a set of indices to a

source file, a pointer mechanism is required. Although

there are smaller elements, statements offer the finest

view of source code needed for most static analysis.

The most natural pointer to a statement in a source

file is the line number assuming that the source is

formatted with no more than one statement per line. A

formatter which insures the above criterion, can also

carry out standardisation of the layout of source code.

This alone is seen as increasing readability ([LY081J,

129

Geiger [EBEB0J) and aiding modification [ELS82].

Figure 3.4. summarises the above discussion with a

structure for a generalised static analysis system.

Colofello and Blaylock [COL85a] present three templates

for maintenance information which were designed to be

the output structures for the ME2 syntactic analyser.

The output is supposed to be loaded into a maintenance

knowledge base. The templates, with additional

information, are listed below. Possible storage

techniques for the control flow and data flow templates

are also outlined.

Declarations Template.

1. Variable information. Includes a variable's name,

defining module, type, range of valid values,

initial values (if with definition), aliases and

usage (e.g. computational or display). Useful data

omitted are definition groupings among variables

(data structures or hierarchies) and definition

links between data structures and external files.

2. Module information. A module's name, parent or

defining module, type (if defined), parameters,

local entities (variables, modules, constants

130

A Possible Structure For A Static Analysis System

Source Code

Syntactic Analyser

Formatted Source Code ,,~,,_ __________ _
.,,..,,,,,.,,

.,,,, lndicies to Source Information _____ __,,...,.. ___ _
Syntactic Database

Source Modification

Display and
Reporting
Systems

(includes standards
checking and
eficiency reporting)

Program Structure
Control Flow
Data Usage

Symbolic \4!'----­

Execution
System

Testing
est Case Generator
est Assister

Results Analyser

Editor

Dynamic
Analysis
System

I nstrumenter
Execution Monitor
Results Analyser

Figure 3.4

Redocumenter

Diagnostic
System

Ripple
Effect
Analyse

131

etc.), generic instantiation (as provided by ADA),

overloading (i.e. system-defined functions or

operators modified by the module) and abstractions

(as for ADA packages). In some languages (e.g.

PL/I), error detection (ON conditions) and error

handling would also be candidates for inclusion in

module information.

3. Constant information. A constant's name, defining

module, value and where it is referenced.

4. Overload operators. New names assigned to

operators. Also in module information.

5. User-defined type information. A type's name,

defining module, definition and subtypes.

6. Label information. A label's name, location, and

visibility data.

7. External file information. A file's name, type,

use, access, device and sentinel. As mentioned

above related data structures should be given.

Control Flow Template.

1. Identification of blocks and modules. A block is

defined as a sequence of consecutive instructions.

This assumes that instructions (statements) are

132

somehow referenced in the source (e.g. by line

number). This identification is really not part of

control flow (CF). It defines the layout of the

program and, for modules, this information could

be included in the declarations template.

2. Identification of inter-block CF.

3. Identification of inter-module CF.

4. Identification of inter-process CF. Exact inter­

process CF is determined at run time and is beyond

the scope of static analysis.

Complete CF in a program is shown by a set of CF graphs

(see Section 3.1.1.2.). This set comprises a graph for

each module and an overall graph. Within all these CF

graphs, module calls are identified as special non­

branching nodes (each referencing a particular CF

graph). All inter-block and inter-module CF data is

stored in these graphs and hence they are a complete

storage medium for CF information.

Data Flow Template.

1. Basic data flow identification. Locations where

variable's are used and/ or modified.

133

2. Inter-block data flow. Variables within scope

(i.e. reaching) and used (i.e. live) within a

block. Use-definition chains for variables and

locations of ASSERTS (conditions) which involve

particular variables.

3. Inter-module data flow. Parameters and parameter

passing within modules and global variables used

in a module.

Possible data flows in a program can be generated from

melding the CF graphs with statement information about

which variables are used and modified. Thus, variable

use within statements is a method of storing data

flows. Variable use within conditions (ASSERTS) is

important for any detailed predicate (branching)

analysis in a program. Potentially, such analysis could

determine isolated code segments.

The above templates duplicate a certain amount of

program data. A more refined list of entities and

information to hold in a syntactic data base is :

a) All information in the modified declarations

template above.

134

And in addition

b) Within each variable entity; the statements

referencing it, the conditions using it, the

modules over which it has scope.

c) Within each module entity; the line numbers and

statements it covers, other modules it calls and

parameter passing details.

d) A statement entity containing: statement line

numbers, variables referenced and other data usage

information, conditions used, containing module

and CF data. (CF data is a method of storing the

CF graphs statement by statement. A flexible form

of this data is a CF-type for the statement and a

set of statements branched to next).

e) A condition entity containing; the condition

itself (literally), statements using it, and

variables used.

Much of this syntactic information is relatively low­

level and unsynthesised. This is because the results of

general syntax analysis in maintenance are to be used

in conjunction with source code as well as for the

production of high-level views of, say, program data

flow. The relevance of some of the information above

135

will vary depending on the language used in a source

program, as will precise definitions of some entities

(e.g. modules). However, the collection of most of

this data using syntax analysis is applicable to most

"conventional" programming languages.

136

CHAPTER 4.

ANALYSER.

DEVELOPMENT OF A PROTOTYPE SYNTACTIC

From Section 3.4, a syntactic source code analyser

(SSCA) is a necessary part of many maintenance tools

and is worth centralising in one tool. The rest of this

thesis is devoted to developing a prototype SSCA system

which takes source code and creates a database of

source information (SSCA DB) for access by tools. The

machine available for this development exercise is a

VAX 11/750 running the ULTRIX-32 operating system. The

production of a SSCA is seen as a method for promoting

future research at Massey University into other areas

of static analysis.

There are three major decisions which must be made for

this development :

1. Which programming language to base the analysis

system on?

2. What to store in the data base?

3. How to analyse the source code?

These three questions are answered and discussed in the

next three sections.

137

4.1. CHOICE OF A PROGRAMMING LANGUAGE.

To examine a program in any detail an analysis system

must be specific to a programming language or class of

programming languages. It is possible for analysis or

other tools to have the facility to handle a broad

range of languages. An example is the Toolbuild system

for LL(l) grammar languages [INC86]. However, for a

prototype system, a specific language (and a somewhat

simplified one) is desirable. Multi-lingual syntax

analysis is left for future research.

Morrissey and Wu [MOR79] state that by far

widely used programming language is

the most

COBOL.

Approximately 50% of all programs, suggested to be

about 75 billion lines [CAN86b], are written in this

business data processing language. The U.S. federal

inventory alone contains around a quarter of a million

COBOL programs [FIO84]. A complete static analysis

system based of some version of COBOL thus may be

testable with a wide range of programs, would be

relevant to most programmers and could potentially be

commercially successful.

There are many versions of COBOL to choose from. COBOL

was conceived in May 1959 [PHI74] and developed by the

CODASYL group. By 1976, Robinson [ROB76] reports eight

138

COBOL variants officially defined by the Programming

Language Committee of CODASYL and, in addition two

official American standards, ANS 68 (USAS X3.23-1968)

and ANS 74 (ANSI X3.23-1974). The language is still

evolving

produced.

with

ANS 74

new standards

contains a

being

nucleus

proposed and

and eleven

functional modules (some with at least two distinct

levels). Most manufacturers who produce compilers,

implement the nucleus along with some versions of some

modules. Hawkins and Harandi [HAW79] calculate that

there are potentially 104,976 official subsets of the

language. However, all COBOL variations have much in

common and programmers tend to use incompatible

portions of language definitions infrequently. For

example, Torsun and Al-Jarrah [TOR79] found in a sample

of 340 commercial programs that the simplest format of

each of the MOVE, IF, GO TO, PERFORM and ADD verbs

accounted for 82.5% of

statements.

Procedure Division (PD)

To obtain a simplified version of COBOL, the approach

taken in this thesis was to reduce an advanced proposed

ANSI COBOL standard in terms of functionality and usage

of COBOL features. The standard chosen was the Draft

Proposed Revised X3.23-Sept. 1981 language definition

[COB81]. A feature of this standard is the introduction

139

of a large number of end-verb constructs for PD

statements. Adherence to these statement constructs may

allow syntactic analysis of some programs written in

future COBOL standards. The next subsection outlines

the reduced language described in Appendix 3.

4.1.1. DEVELOPMENT OF A REDUCED COBOL.

The language definition of September 1981 [COB81]

identifies the following functional groups of features

in COBOL

1) The Nucleus

2) The Sequential I-O Module

3) The Relative I-O Module

4) The Indexed I-O Module

5) The Inter-Program Communication Module

6) The Segmentation Module

7) The Sort-Merge Module

8) The Source Text Manipulation Module

9) The Debug Module

10) The Report Writer Module

11) The Communication Module

It was decided to produce a language consisting largely

of the first six of these groups. Some reasons for

omitting Modules 7 to 11 were :

140

a) The facilities are used infrequently (e.g. the

SORT verb represented 0.04% of all verbs in 340

programs [TOR79]).

b) These features appear to be helpful additions to

COBOL rather than an intrinsic part of the

language. This is shown by the number of COBOL

compilers which omit them or use alternative

facilities (e.g. the report generator (COBRG) of

Dec system 10 COBOL 6 [DIG69]).

In a non-prototype SSCA, it would be expected that some

of these modules would be included. The Sort-Merge

module is a clear candidate because its features, like

the SORT verb, are still reasonably common (two SORT

references in 22 programs [TOR81]), although used

sparingly compared to other verbs. It is though that

analysis of modules 7 to 11 would not be unlike

analysis of earlier modules. Again taking the SORT

feature as an example, control flow between the input

and output procedures of the SORT statement appears to

be unusual but it is not unlike a sequential pair of

PERFORM UNTIL statements. SORTS and MERGEs are actually

somewhat simpler than PERFORMS because nesting is

prohibited.

141

The Source Text Manipulation module (COPY and REPLACE

statements) seem inappropriate to any program analysis

system other than in pre-analysis source adjustment.

This is because syntactic (and static) analysis is

being carried out to reflect structures within the

source and properties of the object code. Unexpanded

COPY and unconverted REPLACE statements add to

confusion for both users and implementors of a SSCA.

Of the six remaining language definition modules,

various features were simplified. These features and

omission considerations are given in Appendix 3A.

4.1.2. SOME PROPERTIES OF COBOL.

The COBOL language has a few peculiar properties which

set it apart from many other high level languages (e.g.

PL/I or Pascal). Most such properties reflect original

language design decisions which were made over 25 years

ago. These features, which will affect the analysis of

COBOL and the information obtained from COBOL programs,

are examined in this subsection.

An influential property of COBOL is the isolation of

data definitions from data manipulation and program

control statements. Data definition in a program is

sited primarily in the data division but also in the

identification and environment divisions, whereas

142

control and data manipulation lies in the PD. This

property is both a strength and weakness of COBOL. The

main weakness is that localised functions (paragraphs)

cannot have local variables as all variables are global

[EVA82]. A consequence of this is that paragraphs and

other statement groupings cannot have formal

parameters. Procedural abstraction is thus restricted

in COBOL (though programs may be parameterised and

invoked via CALL statements).

In COBOL programs, a large portion of the source lines

are data definitions. Often many programs share common

definitions through COPY files. The definitions in each

COPY file usually relate to a particular application

data file. COBOL data isolation has thus supported a

type of data abstraction through program definitions

being linked external data files and programmers being

influenced to think about programs in terms of data

definition usage as well as procedures and actions.

Thus, COBOL has indirectly affected software

environments and techniques. This is most evident in

data base technologies where schemas often look very

like COBOLs file control and record description

entries.

Segregation of data definition from procedures suggests

that compilation, analysis or formatting could be

143

carried out separately in the data definition divisions

and the PD. Operations, other than simple formatting,

would need to be connected via some form of symbol

table.

Another COBOL feature is the melding of the functions

of labels and modules (isolated groups of statements)

in the PD. Labels indicate branch-to positions for use

by GOTO instructions. The GOTO is the standard

assembler control flow branching statement. Modules are

a higher level method of delineating statement groups.

In a program, this allows the direct instructing that a

statement set should be executed a number of times

possibly depending on some condition and then control

returned away from the set. The PERFORM verb is COBOL'S

instruction mechanism and sections, groups of

consecutive sections, paragraphs and groups of

consecutive paragraphs form the modules. Unfortunately,

these modules are out-of-line from their instruction

mechanisms within a COBOL program

clarity.

which reduces

Modules can be used other than directly with GOTO and

PERFORM statements. Programmers often use labels

(sections/paragraphs) to break up a program's PD into

manageable portions. For example, on average 27% of

labels are unreferenced in a program [TOR79] which

144

means the corresponding modules must be either

indirectly performed (label name doesn't appear in the

PERFORM statement, performed through) or dropped into

(by execution without return of previous modules,

possibly

executed.

achieved using a GOTO statement) to be

The label/module melding feature can thus be used to

create highly confusing programs where particular

groups of statements are directly performed, indirectly

performed ,gone to and dropped into. Further confusion

is possible by multiple program end-points (EXIT

PROGRAM or STOP RUN statements) being used in an ad hoc

manner. COBOL does not enforce structured programming

techniques and a useful product of even a simple static

analysis system would be identification of a program's

control flow structure.

To allow clearer programming styles, the proposed

September 1981 standard [COB81) contains provision for

in-line statement blocks within PERFORM statements.

Such blocks have always been available in IF and other

similar statements and are a limited alternative to

modularisation. It remains to be seen whether these new

features will be widely implemented and used. On the

whole, COBOL programmers appear to have a particular

aversion to change. For instance, GOTO statements are

145

more common in programs than PERFORMS [TOR79],

especially in heavily executed portions of programs

[TOR81].

146

4.2. DATA BASE CONTENT.

In this subsection, precise details are given of

information from COBOL source to be included in the

SSCA DB. What is stored is partially dependent on which

Data Base Management System (DBMS} is chosen for the

database. In order to make this decision, information

about what structures exist among COBOL source

entities, as well as, some details of what the SSCA DB

is likely to be used for, must be compiled.

4.2.1. COBOL ENTITIES AND RELATIONSHIPS.

Section 3.4 presents a basis for the identification of

COBOL entities. From the extended declarations

template, it is noted that six types of information

group instances are relevant to COBOL : variable,

module, label, external file, statement, and condition.

In the following subsections these information groups

are translated into one or more entities relevant to

COBOL.

4.2.1.1. LANGUAGE DEFINITION ENTITIES.

The entities described below represent groupings of

program information resulting primarily from the

language definition in Appendix 3B.

147

VARIABLE and VARIABLE-88 Entities

In COBOL, variable and file definitions are isolated in

the Identification Division (ID), Environment Division

(ED) and Data Division (DD) from CF and other DF

details in the PD (see Section 4.1.2.). To reflect this

property entities containing definition information are

separated from entities describing references to data

items.

From the format for data-description-entries (Appendix

3B), there are two distinct variations in definitions

of COBOL variables. These are the level-88 variables

which define conditions on pre-allocated storage and

"normal" variables which define reference names to

storage which may or may not have been pre-allocated.

This suggests two entities VARIABLE and VARIABLE-88 to

hold instances of variable definition information.

FILE and FILE-VARIABLE Entities

File control and file-description data are simply

stored in instances of the FILE entity. Direct PD

references to files are through the file-name or data

records (variables). Files in the PD can be handled in

a similar manner to variables. Variables can be used or

updated when referenced in statements. Files (file­

names) are updated, in the sense that data within them

148

changes, by DELETE, REWRITE and WRITE statements and

used by CLOSE, OPEN, READ, and START statements. It

should be noted that REWRITE and WRITE file references

are implicit. Unfortunately, there are

other than the use and update above

understanding what happens to a file in

file actions

relevant to

a

These actions are

variables such as the

summarised by

LINAGE-COUNTER

program.

of file update

(for sequential

pointer. To LINAGE files) and the implicit file

simplify often implicit references to these items in

the PD, an entity FILE-VARIABLE is defined.

IDENTIFIER-LIT Entity

Some data type items used in a program are not

explicitly declared. Literals fall into this category

as do references to objects external to a program such

as subject identifiers of the CALL and CANCEL

statements. An entity IDENTIFIER-LIT is defined to hold

instances of these items. The reasons for explicitly

storing literals are exemplified by considering the

value of an occurrence number for a variable A - this

same value often appears within conditions of PERFORMS

controlling update of A. Literals and identifiers such

as implementor-name (ED), block sizes and record sizes

(ED or FDs) which are unlikely to be referenced in PD

statements in the above manner are considered not form

instances of this entity.

PROGRAM, SECTION,

STATEMENT Entities

PARAGRAPH,

149

STATEMENT-GROUP and

Labelled modules in COBOL consist of sections and

paragraphs (see Section 4.1.2.). Another grouping of

statements is the in-line block (mentioned in Section

4.1.2.) which groups nested statements. A block can

also have sub-blocks within it. Sentences, defined as a

set of consecutive statements ending in a full stop,

are another statement grouping system in COBOL. An in­

line block reflects potential sequential control flow

among it's statements, whereas little useful control

flow information is identified by sentences. For this

reason it was decided to define a STATEMENT-GROUP

entity as a special kind of block. A statement-group is

a set of statements at the same level of nesting which

would be executed sequentially so long as no GOTO, STOP

RUN or EXIT PROGRAM statements were encountered (see

figure 4.2.1.). This assumes that execution of a

statement A is completed when appropriate statement­

groups within A (i.e. embedded statements) have been

executed. Unliked a sentence, some statement-groups may

contain more than one statement which ends in a full

stop. Thus the static structure of the PD of a program

can usually be modelled by a hierarchical sequence of

150

instances of SECTION, PARAGRAPH, STATEMENT-GROUPS and

STATEMENT entities. This hierarchy must sometimes be

modified, however, since sections are optional and

statement-groups are composed of statements but may

also reside within statements (e.g. an IF statement

contains one or more statement-group}. Figure 4.2.1.

illustrates a possible structure among entity

instances. To complete this hierarchy a PROGRAM entity

containing only one instance of general program

information is also defined.

CONDITION Entity

The CONDITION entity exists to hold conditions which

occur in the PD of a program. A particular condition

may be used in several statements and, in addition to

the direct text of a condition, data about which

variable, variable-88, file-variable and identifier-lit

instances are used is recorded. Conditions are

associated with CF branching and thus are important for

any tools performing CF analysis or modification (e.g.

Ripple Effect Analysers and Recoders}. Conditions need

to be stored literally to aid more detailed analysis.

For example, conditions "X(l0} < 3" and "X(I} > 5" when

viewed statically, may or may not refer to tests on the

151

Examples of Section, Paragraph, Statement-Groups and

Statement Instances

s E 1 < SECTION SECTION-A.

PA1 PARAGRAPH-1A.

f' IF THIS< THAT-2
:\\

PERFORM CHANGE-THIS

IF THIS= THAT-2 ST4 I $G3 ·.·•> I PERFORM WHATEVER ST5 11
ELSE

MOVE THAT-1 TO THIS. ST6 , ,

PARAGRAPH-2A.

ST8 :::::Jl~~,
· / ... ·· ·· SECTION SECTION-B; . ····''·' .·.

PA3

Abbreviations

:.•·.:: ·:::· ..

PARAGRAPH-18.

ST
SG
PA
SE

Statement
Statement-Group
Paragraph
Section

Figure 4.2.1

.

I

152

same value. Symbolic execution could be used by some

later tool to identify under what conditions I was 10.

4.2.1.2. LANGUAGE DEFINITION ATTRIBUTES.

Potentially, there are many attributes for language

definition entities. For instance, the complete text of

variable definitions and statements could form

attributes. However, this information duplicates what

is already efficiently stored in the program source

code. From Section 3.4.2, the SSCA DB exists to allow

easy access to source code data for tools. A major

obstacle for maintainer comprehension of source code is

delocalisation of information [LET86]. For example,

complete local understanding of a COBOL paragraph tells

a maintainer almost nothing about the definitions of

variables referenced, what happens to these variables

elsewhere in the program or how the paragraph could

come to be executed. The main way the SSCA DB can

support access to source information is to accurately

record the relationships between source code items.

These items are reflected as entities in the database.

From the discussion above, attributes of entities

should largely consist of :

1. Attributes to identify specific instances of an

entity (these may form keys for entity

153

relationships or instance ordering).

2. Attributes to link entities to source code items

(i.e. line-numbers).

3. Attributes or relationships to link entities to

entities.

Appendix 4A lists the entities,

relationships for all entities in

attributes and

Section 4.2.1.1.

Appendix 4A also contains implementation structures for

these entities. Implementation aspects are considered

in Section 4.2.3.

In Appendix 4A, some language definition entities

contain attributes other than those mentioned above.

These are used to store small amounts of information

which would probably be required by tools or other

users of source data. This information includes :

PROGRAM source and object computer-names, segment

limit, currency-sign and decimal point.

FILE implementor name, organisation, access mode,

block size and measure, record size and

variability, whether the file is optional and

whether duplicate alternative keys are allowed.

VARIABLE level, usage, section (FILE,

WORKING-STORAGE or LINKAGE),occurrence number and

picture and whether the occurrence is ascending or

154

descending.

SECTION segment number.

STATEMENT verb and end-verb and two other attributes

which identify

a) for OPEN statements whether the open is

input, output, I-O or extend; and for

PERFORM statements whether the condition

evaluation is before or after.

b) for PERFORM and SEARCH statements whether

there is a varying item or more that one

varying item.

CONDITION text (as discussed in the CONDITION entity

of this subsection) and type. The type identifies

whether the condition is a normal boolean

expression, conditional state (ON SIZE ERROR, ON

OVERFLOW, INVALID KEY, AT END or WHEN OTHER),

TIMES clause (PERFORM format 2 statements),

DEPENDING ON clause (GO TO format 2 statements),

or group of WHEN clauses (EVALUATE statements).

Corresponding type values are; " "(empty), STATE,

TIMES, DEPEN and EVAL.

4.2.1.3. NAVIGATION AND USAGE ENTITIES.

The entities of the previous subsections omit data

about where program divisions and non-PD sections begin

and end and what VARIABLES, FILES, FILE-VARIABLES,

155

SECTIONS, PARAGRAPHS, STATEMENT-GROUPS and CONDITIONS

are referenced in what STATEMENTS. The SOURCE,

CONDITION-USAGE and DATA-USAGE entities are defined

below to hold this information. For the latter two

entities there are many possible entity structures

involving different attributes and arrangements .

Reasons behind the chosen structures, which are

presented in Appendix 4A, are also examined.

SOURCE Entity

Variables, files, sections, paragraphs and statements

offer direct links through line numbers to program

source information. To further aid navigation around a

program for users of a SSCA DB one instance per source

program of a SOURCE entity is defined. This entity

holds line numbers for program divisions, sections

(excluding PD sections) and the PROGRAM-ID paragraph.

CONDITION-USAGE and DATA-USAGE Entities ----- --- -- -- --- -----

The CONDITION instances record data references within

conditions. For other portions of PD statements data

references must also be stored. The DATA-USAGE entity

is defined to hold such references. An entity

(CONDITION-USAGE) is also needed to identify use of

conditions within statements.

156

Torsun and Al-Jarrah [TOR79] identify that by far the

most commonly used assignment statements involve the

MOVE (format 1) and ADD (format 1) verbs. In both these

statements, a set A of identifiers and/or literals

(VARIABLES, FILE-VARIABLES or IDENTIFIER-LITS) is used

to update

VARIABLES).

a set B of identifiers (VARIABLES or FILE­

When examining data flow in these and

other statements, it is common to work backward from an

output value. A typical maintenance question is "how

did this variable come to be assigned this value?"

{this question is closely related to question 4 of the

maintenance enquires in the next subsection). In the

context of the above statements, this question can be

answered by noting that a particular member of set Bis

updated by set A. From this discussion, the

relationships a DATA-USAGE entity could reasonably be

involved in are :

1. A relationship with an updated (or potentially

updated) VARIABLE, FILE or FILE-VARIABLE.

2. A relationship with a list of VARIABLES, FILEs,

FILE-VARIABLES or IDENTIFIER-LITS which are used

(possibly for the update in 1).

More than one DATA-USAGE instance can exist for a

statement. An update descriptor attribute is also

required for DATA-USAGE instances to identify whether

157

the update is a normal one, involves corresponding data

structures (e.g. ADD format 3), is an INITIALIZE

statement update (in which case the update information

resides in the data division), is absent (i.e. set B is

empty and A is just used), is optional and set A is

empty (e.g. for data-names in a CALL statement), or

does not use other data items (set A is empty as for

the ACCEPT statement). Corresponding descriptor values

are : ""(empty), CORR, INIT, NOUP, OPUP and NOUS.

The most common control statements in COBOL programs

are the IF, GOTO (format 1) and PERFORM (format 1)

statements [TOR79]. Thus, the IF verb would appear to

be a major user of conditions in programs. IF

statements are characterised by a condition branching

to either two statement-groups or one statement-group

and the next statement after the IF. By default,

control resumes at this next statement after execution

of the IF in any event. Thus, identification of this

next statement

statements (i.e.

is really part of the order of

it is related to the STATEMENT

entity) rather than the use of a condition (CONDITION­

USAGE). Hence relationships for the CONDITION-USAGE

entity are :

1. A condition relationship (the CONDITION instance

used to determine the branching).

2. A primary branch-to relationship (link to a

STATEMENT-GROUP, SECTION or PARAGRAPH).

3. A secondary branch-to relationship (link to a

STATEMENT-GROUP, SECTION or PARAGRAPH).

158

The primary branch-to item is gone to when the

condition

attribute

is true.

identifies

A condition use descriptor

whether the condition is

unprefixed, prefixed with an UNTIL (PERFORM formats 2

and 3) or prefixed with a WHEN (SEARCH formats 1 and

2). Values of the condition use descriptor are null,

UNTIL or WHEN accordingly. The secondary branch-to item

is optional, but if present, identifies a statement­

group gone to when the condition is false (in IF

statements) and a section or paragraph performed

through (i.e. from the primary item through to the

secondary item) in PERFORM statements. In GOTO (format

1) statements both the condition and secondary branch­

to item are empty. A branch descriptor is required to

identify these different branching schemes and it has

value null (no secondary branch-to), ELSE, THRU or

GOTO.

4.2.1.4. RELATIONSHIPS BETWEEN ENTITIES.

Figures 4.2.2 to 4.2.5 contain diagrams which depict

the relationships among entities identified in previous

159

subsections. These figures summarise relationship

information from Appendix 4A. Portions of relationships

are described as mandatory if an entity instance must

form a relationship (e.g. in fv-file, a file-variable

must have an associated file) or optional otherwise

(e.g. in value, an identifier-lit may be used in the

value clause of a number of variables or it may not).

If many instances of an entity exist for one instance

of a relationship then it is possible to demand an

order among the entity instances. For example, the

order of statements within a statement-group (st­

stgroup) is important in terms of program control flow.

The figures also show multi-member and multi-owner

relationships. An example of a multi-member

relationship is sections-or-paras (figure 4.2.2.).

Through this relationship a program many be identified

as composed of a set of sections (sections being

identified as sets of paragraphs through pa-section) or

a set of paragraphs (if no sections exist). Either one

set or the other must be present as sections-or-paras

is mandatory for either sections or paragraphs.

Programs without PD sections or paragraphs cannot

contain PD statements and are prohibited as they are

not very interesting. A

linage-size relationship

multi-owner example is the

(figure 4.2.3.). This

160

involves either a variable and many files or an

identifier-lit and many files. Multi-relationships

could be decomposed into two or more relationships. For

example, linage-size

relationship between the

with another one-to-many

combines a one-to-many

variable and file entities

relationship between the

identifier-lit and file entities. It is considered more

descriptive for SSCA DB users to identify multi­

relationships rather than consider the separate sub­

relationships.

161

Relationships Derived from the Program Structure

Source I

a-section Section

Statement-Group
Condition-Usage

Iµ

Statement

Figure 4.2.2

Key for Figures
4.2.2 to 4.2.5

[!J entity x

CD relationship x

~ relationships
~ xandy

-0- one to one

-()+ one to many

~ many
to many

combined
relationship
involves one
or other of
entities

µ mandatory

2 optional

L relationship
defines an order

162

Relationships Derived from Data Declaration

File-Variable

Program
2

µ

Figure 4.2.3

163

Relationships Derived from Branching

µ
Condition

2

Statement-Group
Paragraph

cu-branch-b ----- 2 .___ _____________ _

Figure 4.2.4

Relationships Derived from Data Reference

Data-Usage

2

2

du-data-used

du-data-updated

2

File

File-Variabfe.--i---

Variable

Identifier-Lit

Variable-88,....--'

Figure 4.2.5

Section

Condition

µ

164

4.2.2. MAINTENANCE ENQUIRIES FOR A SSCA DB.

The design methodology presented by Teorey and Fry

[TEO82] uses both the information structure and usage

perspectives (ISP and UP) of database elements to

determine a conceptual database design. In terms of

this methodology, the design for the entities,

attributes and relationships given in Sections 4.2.1.1

to 4.2.1.4 was derived mainly from the structure of

COBOL programs (i.e. the ISP). However, some aspects of

what the database will be used for have been considered

(e.g. in developing a structure for the DATA-USAGE

entity). The kinds of modifications a maintainer may be

asked to perform are diverse and, accordingly, the

kinds of questions which may be asked of a SSCA DB

system are reasonably unpredictable. Characterising a

UP for SSCA DB information would require an extensive

survey of maintainers. Letovsky and Soloway [LET86]

have carried out a small scale survey which involved

programmers "thinking-aloud" while performing

maintenance tasks but the collated results are

unavailable at the time of writing.

As an alternative to UP determination, a small number

of enquiries which focus on unlocalised features of

COBOL source code are given below. These questions

identify a necessary set of queries rather than a

165

sufficient set and they will eventually be used to test

the implemented SSCA DB system.

QUESTION 1 : What is the static hierarchical

structure of the PD? (i.e. what paragraphs are

contained in what sections and how are they

ordered?).

QUESTION 2

name),

Given a paragraph-name (or section-

what statements directly PERFORM,

indirectly PERFORM or GOTO this paragraph and

under what circumstances is it dropped into? This

is a first step to generating a module invocation

matrix or set of CF graphs (or equivalently CF

paths) for this program. These tasks should be

carried out by specific tools which use the SSCA

DB (see Section 3.4.2.).

QUESTION 3 : What is the static hierarchical

structure of data definitions in this program?

(i.e. identification of data structures and their

static associations with files).

QUESTION 4 : Given a variable-name (or file-name or

file-variable-name), where is it referenced (used

or updated) and what variables, files, file­

variables, variable-88s, identifier-lits is it

associated with in the PD (dynamically) ? This

166

cross-reference is a first step toward data

tracing and program slicing (identifying a reduced

PD which demonstrates the PD of a program from the

view of what happens to and affects a particular

variable or variable set [WEL82]). These tasks are

for later tools which will use CF graphs and data

definition structures in addition to this cross

reference information.

4.2.3. SSCA DATABASE IMPLEMENTATION.

4.2.3.1. A DATABASE MANAGEMENT SYSTEM.

Figure 4.2.6 summarises the types of relationship

present among the entities of Appendix 4A. The types of

relationships are relevant to determining an

appropriate database management system (DBMS) with

which to implement the SCCA DB. Two types of

relationship directly affect the choice of DBMS

architecture. These are the many-to-many (of which

there are 7 or 20%) and the combined (of which there

are 11 or 31%) relationships.

Combined relationships occur largely because of the

choice of entities. If a DATA-ITEM entity was formed

from melding variable, identifier-lit, file, file­

variable and variable-88 instances and a LABEL entity

167

Types of Relationships

Relationship Number

-0- one to one 3
--0.one to many 17

~ many to many 4

-o{i multi-member
one to many 1

~ multi-owner
one to many 7

~
multi-owner
multi-member 3
many to many

Total 35

Figure 4.2.6

from melding statement-group, paragraph and section

instances then all combined relationships would be

single relationships. However, it is believed that the

original entities reflect useful elements within a

COBOL program and melding entities would cause

confusion and would be inefficient to implement if

variable record structures are unavailable in the

chosen DBMS (e.g. identifier-lits have one attribute

168

whereas variables have seven).

There are three major architectures for DBMSs;

hierarchical, network and relational. Many-to-many and

combined relationships are difficult to implement in a

hierarchical system and the numbers of these

relationships discount the use of such a DBMS. Network

systems implement relationships as sets. A set instance

has one owner and potentially many members and can thus

store one-to-one and one-to-many relationships.

Combined relationships form multi-member sets. Many­

to-many relationships each require the introduction of

a "link" entity and two one-to-many sets to be

implemented. The number of extra relationships or sets

require for a network DMBS is thus calculated (from

Figures 4.2.2 to 4.2.5) to be seven. However,

appropriate melding of entities, as suggested in the

previous paragraph, could reduce the overall number of

sets.

In relational DBMSs, relationships are stored by

relations (entities) holding foreign keys.

Implementation of many-to-many relationships may still

involve link relations and combined relationships can

be directly represented by stipulating that keys for

statement-groups, paragraphs and sections (and

similarly variables, files, file-variables,

169

identifier-lits and variable-88s) share a common

domain. Many relational systems also offer built-in

interactive query facilities which would allow simple

verification of database information when developing a

prototype SSCA. These features may also allow answering

of some of the questions presented in Section 4.2.2.

Thus a prototype SSCA DB would appear to be best

implemented using a relational DBMS although a network

system seems just as suitable for a non-prototype.

Clearly from Section 3.4, a basic requirement for a

SSCA DBMS is to provide ready access to database

information for tools. Similarly for database creation,

the SSCA must be able to send information to the DBMS.

The DBMS must thus interface in some manner with

programming languages suitable for tool (and possibly

analyser) implementation.

Using the above criteria, it was decided to use the

INGRES Version 7.10 DBMS to implement the SSCA DB.

INGRES is a relational system which contains both an

interactive enquiry service (QUEL) and C language

interface (EQUEL} . C would also seem to be a useful

language for implementing the prototype formatter and

syntactic analyser as source analysis features are

supported through LEX and YACC preprocessors.

170

4.2.3.2. RELATIONS AND IMPLEMENTATION CONSIDERATIONS.

As the SSCA DB is to be an INGRES database then a

number of adjustments and additions must be made to the

entities of Appendix 4A. This subsection explains the

additional implementation attributes (which consist

largely of foreign keys describing relationships) and

additional relations. Standard INGRES modifications

required for all entity and attribute names was to make

them all a maximum of 12 characters, lower case and to

change embedded"-" characters to " "

KEYS AND LINK RELATIONS.

Keys are required for the implementation of

relationships involving all entities except program and

source. Ordering in a relationship can be achieved by

making the keys numeric (or in some other way ordered).

A particular order is required among sections

(sections-or-para relationship), paragraphs (sections­

or-paras and pa-section), statements (st-statement),

condition-usages (cu-statement), values of variable-88s

(v8-value-a and v8-value-b; although this is only to

establish (value-a,value-b) pairings), occurs keys of

variables (occurs-key), occurs indices of variables

(occurs-index) and subvariables of variables (va-va­

within). Problems with multiple orders for variables

171

and identifier-lits are resolved by 3 actions

1. The creation of

implement the

relationships.

link relation

v8-value-a

v8 value to

and v8-value-b

2. The creation of link relation va occurs to

implement the occurs-index and occurs-key

relationships and store the attribute occurs asc.

This new relation is keyed to determine the order

of keys or indices.

3. The realisation that a variable needs only to know

its parent to store the va-va-within relationship.

Thus va-va-within needs only to be one-to-many but

is still ordered. This order is the only ordering

constraint on variable instances and is thus

achievable via keys.

From the above discussion and adapting the approach of

using the same domain for keys of at least two groups

of relations (see previous subsection), a keying system

was derived for relations. A major portion of the

keying system is illustrated by the following table.

172

Relation Sub-Keys

Variable 01 Statement 07

Condition 02 Variable-88 08

Condition-Usage 03 Identifier-Lit 09

Section 04 Data-Usage 10

Paragraph 05 Statement_Group 11

Va-Occurs 06

It was decide to use the same domain for all keys. A

key thus comes in two parts : the relation sub-key

which defines the relation pointed at (identified

above) and the instance sub-key which defines the

particular tuple of the relation. A minimum size for an

instance sub-key is several thousand as statements and

variables are plentiful in COBOL programs [TOR79]. The

combined key fits neatly into a 16 bit integer (i2

INGRES format). The top 4 bits forming the relation

sub-key and the bottom 12 bits the instance sub-key.

This gives a maximum of 4095 instances for relations.

However, a non-prototype SSCA DB system could make use

of relation sub-keys 00, 12, 13, 14 and 15 to extend

the maximum number of statements and/or variables.

There are minor machine dependent implementation

problems with retrieval of 16 bit INGRES integers into

standard 32 bit C integers when the top-bit (16th) is

173

1. In this case, the C integers are padded out with ls

in bits 32 to 17. A solution is to add 200000 octal to

the integer if it is less than 1.

A one-to-many (or one-to-one) relationship between

entities A and B respectively can be implemented by

storing a key to an instance of A in every B tuple.

With the exceptions of relationships sections-or-paras,

pd-using and data-record (see Other Considerations),

all one-to-one and one-to-many associations between

entities of Appendix 4A (and the link relations) were

implemented in this fashion.

As mentioned in Section 4.2.3.1, many-to-many

associations can be implemented via link relations. In

the actions above, link relations v8 value and

va occurs were identified to store four many-to-many

relationships. Two remaining many-to-many relationships

are co-data-used and du-data-used. A link relation was

created for each of these relationships.

OTHER CONSIDERATIONS.

Several other modifications to entities, attributes and

relationships were carried out during identification of

INGRES relations. These are described below.

174

As relations section and paragraph are each ordered on

a particular key (the order being as per occurrences in

the source code), then relationship sections-or-paras

which identifies this same information is redundant.

Relationship

relationship

pd-using is a simple one-to-many

between program and variable. Direct

implementation would mean storing a program key in each

variable instance. However, as there are only a maximum

of five pd-using variables [COB81J, it is more

efficient to hold five variable keys within the one

instance of program. In file-description-entries of the

DD, data records are implicitly associated with files.

A file's later data records implicitly redefine the

first data record. It was decided to implement the

implicit redefinitions directly as instances of the

redefines relationship. This reduces data-record to a

one-to-one relationship which is best stored as a

variable key in each file instance.

The file entity contains many attributes and is in many

relationships. In an effort to reduce the number of

fields in the file relation a relation linage_file was

created to hold linage information (page size and

footing, top and bottom positions) for sequential

linage files.

175

Since many ULTRIX-32 print functions fail for character

fields greater than 128 wide, it was decided to use 128

as an absolute maximum attribute size for INGRES

relations. This meant breaking il-token of identifier­

lit into il token a and il token b (each of 80 chars)

and cond-text of condition into

cond_text_b, cond text c and cond text d

chars).

cond_text_a,

(each of 64

This completes explanation of the relations and most of

the attributes of Appendix 4A. In the next section,

mechanisms to build the INGRES relations from a COBOL

program are examined and a small set of attributes to

hold metric information are identified.

176

4.3. ANALYSIS OF SOURCE CODE.

The previous section identifies much of information

which is required to be derived from a COBOL program.

This section is concerned with the methods employed to

carry out this derivation and possible extra by­

products (i.e. some counts of information for metric

production) which could also be generated.

4.3.1. SSCA SUBSYSTEMS AND IMPLEMENTATION

CONSIDERATIONS.

Although SSCA system implementation employs compiler

production tools, a SSCA is not a compiler. A function

which should be foreign to a SSCA (unless linked

directly to an editor) is production of detailed

messages for source syntax errors and complex error

recovery. The reasons for this are to reduce

duplication of processing already available in

compilers and to discourage attempted analysis of

incomplete source code. The source code being analysed

is assumed to have already been checked by a compiler.

There is a possible problem here for the prototype SSCA

being developed in this thesis. No compiler exists for

the reduced COBOL language of Appendix 3B. However, a

specific COBOL program may use language features

present in some other COBOL compiler. Thus, the

177

documenting of errors and error recovery should be

rudimentary in the prototype SSCA although syntax

checking remains a necessary by-product of syntactic

analysis.

From Section 3.4.2, the two main components in a SSCA

system are the formatter and the syntactic analyser

itself. The formatter produces formatted source code

from which the analyser produces the SSCA DB. Both the

formatter and analyser need to identify language tokens

(such as verbs, identifiers, punctuation etc.) and

build up the concepts of statements, paragraphs,

sections and divisions. In COBOL, the layout of

statements on source

unrestricted. Portions

code

of

lines is relatively

statements can appear

anywhere in columns 12 to 73 {Area B) of lines.

Statements can be broken over any number of lines and

interspersed with comment and blank lines. A statement

token recognising technique could be based on ignoring

all comment lines, columns 1 to 11, linefeeds and

multiple blanks. However, COBOL division, section and

paragraph names must begin in columns 8 to 11 {Area A)

and comments and continuation are indicated by

characters in the indicator field {column 7). The

mixture of fixed and freely laid-out objects in COBOL

suggests separate recognition mechanisms for these

178

objects.

A method is to parse source code twice in the SSCA

system. Once to identify paragraphs (of the PD),

sections and divisions, and again with the formatter.

The formatted source code only requires one parse with

an analyser so long as information such as

section/paragraph names are retained and their line

numbers updated. An obvious place to retain this

information is the SSCA DB in instances of source,

section and paragraph. The first initial parse has been

called

subsystem.

the section/paragraph extractor (SPEX)

Piping is a method of data transfer between executing

processes. Piping between processes A and Bis similar

to executing A which creates an intermediate data file,

and then executing B which uses this file and finally

disposing of the file. However, piping supports

concurrent process execution and the intermediate file

exists only as a run-time buffer to be written to by A

and read by B. A pipe between A and Bis thus a fast

and effective means of data transfer between these

processes. In terms of pipes, process A and Bare

considered filters.

179

Process communication through the piping of default

input and output data between processes is simple to

achieve and test in ULTRIX. Hence, it was decided to

use this technique extensively in the development of

all subsystems. Thus, subsystems were decomposed into

functions which could act on data one after another to

create the desired results.

4.3.2. THE SPEX SUBSYSTEM.

Figure 4.3.1 shows the design of the SPEX subsystem and

The SPEX Sybsystem

source

Source Code i--;;;code;;;;.;;,;;;,. _ _.

Createdb
[C,EQUEL]

dbname,division,section
and ara ra h information SPEX.awk

[AWK]

relation definitions(all relations)
instances Source.Section.Para

dbname
SSCA#

Figure 4.3.1

the tools used in its implementation.

SPEXfilter2

[CJ

SPEX2

SSCA DB

180

SPEXfilterl and SPEXfilter2

The first two filters (SPEXfilterl and SPEXfilter2)

identify, adjust for, and warn about simple errors in

the source code. All warnings or error messages for

components of all subsystems are written to the

standard error pipe (stderr). Error checking done in

SPEXfilterl is

1) Checking that source characters are alphanumeric,

space, punctuation, tab or linefeed characters

(invalid characters are converted to spaces).

2) Checking for lines longer that 80 characters

(longer lines are truncated).

Other processing carried on in SPEXfilterl involves

replacing tab characters by the appropriate number of

spaces and making sure that the last line of the source

code ends in a linefeed (a linefeed is inserted if not

present, this makes processing easier for later

filters).

The only check in SPEXfilter2 is to verify that

indicator fields of non-empty lines contain valid

indicators (" ","*","/" or "-"). Invalid indicators

are replaced with spaces. Other actions of SPEXfilter2

are the removal of line-numbers (columns 1-6), the

181

conversion of all lower case alphabetic characters to

upper case and the shortening of comments (although the

comment lines themselves remain, all characters other

than spaces and the indicator field are removed). The

shortening of comments merely removes source characters

unnecessary in the SPEX subsystem.

These first two filters check for simple errors and

tailor the source code for later filters. The basic

checks are also needed in the Format subsystem and, for

safety, the Analyse subsystem. To speed up SSCA

implementation, the first two filters of all three

subsystems are all modified versions of one another.

The reason for isolating the filter processing above in

two filters instead of one is that this is a

requirement for FORMfilterl and FORMfilter2 as well as

ANALfilterl and ANALfilter2 (see next subsections).

SPEX.awk

To set up instances of source, section and paragraph,

information is required to be retrieved from the source

code. The extraction mechanism is the SPEX.awk filter.

This filter is written in the AWK pattern matching

language and produces a list of lines containing a

linenumber and one character code. The code identifies

whether the linenumber pertains to the Data Division,

182

File Section or some other division, section or

paragraph. Additional information for the PROGRAM-ID

paragraph of the ID includes the program name (after

which the SSCA DB will be named). For PD sections and

paragraphs, additional information includes the

section/paragraph name and for sections, the segment

number. AWK is line orientated and a consequence of

this is that COBOL program layouts must be restricted

to excluding the breaking of division, section and

paragraph tokens over several lines. Hence, the

following is illegal

000020 DATA

000021 DIVISION.

This restriction seems a small price to pay for the use

of the AWK language but could be removed in a non­

prototype SSCA by recoding the extractor filter in LEX.

Such a LEX filter would be much more complicated as all

source objects must be pattern matched in some way

because the default for unmatched objects is to echo

them in the output (the opposite default occurs in

AWK). Other pattern matching facilities are GREP and

SED. These appear to be line orientated like AWK (and

hence similar restrictions could apply) but the actions

available after matching has occurred are more limited.

Actions of LEX and AWK are written in C-like languages

183

which are very flexible. AWK, even with its

restrictions, is thus a convenient language for the

implementation of a prototype information extractor.

Createdb

The final processing in the SPEX subsystem is done in

Createdb. Createdb must set up instances of source,

section and paragraph relations using data supplied

from SPEX.awk. The SSCA DB must, of course, be created

and the relations above defined. It is convenient to

define all SSCA relations here as well. The SSCA DB

will be named after the program name. An INGRES

restriction means that the program name must be

translated so that all alphabetic characters are lower

case. Later subsystems will be required to retrieve and

update SSCA information. A simple method of passing the

database name to these subsystems (to avoid them having

to extract it from the source code) is to dump the name

in a standard file known about throughout the SSCA

system. This standard file was called SSCA#. If

software tools are later developed which use SSCA DBs

then the SSCA# file could be expanded. This file could

contain the names of all SSCA databases which currently

exist (at any point in time, at most one could be

marked as in a state of creation). Customised access to

the INGRES function destroydb would also be required so

184

that the SSCA# file is kept updated.

When carrying out its processing, a number of error

conditions can be encountered in Createdb. These

include identifying that the COBOL program being

examined has no ID, program-id, DD or PD or has other

problems such as divisions being duplicated or

incorrectly ordered. Database errors such as an

already existing database of the same name are also

possible. All errors found cause error messages to be

sent and the destruction of any database which has been

created.

4.3.3. THE FORMAT SUBSYSTEM.

Formatting is a means-to-an-end in terms of a prototype

SSCA system and the main emphasis is to insure that

there is, at most, one COBOL statement per line (see

Section 3.4). Enhancing the layout of a program is a

secondary consideration. Program layout is constrained

in COBOL, especially by out-of-line performed

paragraphs. There is often no way a program can be

formatted to the complete satisfaction of a programmer

used to, say, a block structured language. Formatting

without major restructuring of a COBOL program is thus

largely cosmetic. The format subsystem is illustrated

in figure 4.3.2.

185

The Format Sybsystem

source

Source Code t,--;,code;_.;..-1111-1

dbname

Formfilter1

[C]
source

SSCA DB
Source,Section
Paragraph
instance
information

Formfi lter2
[C,EQUEL]

SSCA DB updated Source instance
ine num

updated Section & Paragraph
instance line numbers

Formatter2 formatted ID,ED & DD

[C,EQUEL,LEX,YACC unformatted PD

Figure 4.3.2

FORMfilterl and FORMfilter2

Formatter1
[C,EQUEL,LEX, YACC

Formatted
Source Code

Form2

The first two filters of the format subsyste~ carry out

the same error checking of SPEXfilterl and SPEXfilter2

as the previous subsystem. In FORMfilterl, in addition

to the processing of SPEXfilterl, trailing spaces are

removed from all lines which have an even number of

quote (") characters. This activity coupled with

specific actions carried out when the continuation

indicator is encountered in FORMfilter2 allows the

186

reforming of all tokens broken by continuation. The

process of reforming continued tokens relies on no

comments existing between a line and its continuation

line. This forms a restriction on the programs used in

this SSCA system. A possible way around this

restriction would be to buffer up comments in a

temporary file while rebuilding tokens. This solution

could have the side-effect of moving comments around

among groups of tokens in the program and seems

inappropriate in a prototype SSCA anyway.

Like SPEXfilter2, FORMfilter2 removes line numbers and

converts lower case characters to upper case. Because

strings (non-numeric literals) and comments will appear

in the formatted source code, upper casing of these

items is excluded. Other actions of FORMfilter2 are the

highlighting of comments and division, section and PD

paragraph identifiers with tab characters so that they

can be more easily recognised by the Formatter filters.

In order to identify division and other identifiers,

their line numbers are retrieved from the SSCA DB. For

lines which are

symbol lines,

not comments

linefeeds are

unnecessary for formatting.

or other highlighted

removed as they are

A major problem in the Format subsystem is the handling

of comments which are within statements. It was

187

originally hoped to be able to remove all comments with

some filter, format the source, and insert the comments

back in. The main advantage of this approach is that

instead of just token (word) recognition in the LEX

procedures of Formatterl and Formatter2, complete

phrases like ON SIZE ERROR could be identified. This

would make the rest of the Formatter filters much

simpler. Unfortunately, a by-product of comment

removal/insertion is the moving of all comments within

a statement to either before or after the newly

reformatted statement. The difficulty is that some

comments, like the ones in the statement below, become

less meaningful with this scheme.

GO TO

*

*

*

INITIALISE-LOOP

status indicates begin again

REENTER-LOOP

status indicates resume

FINISH

status indicates return a result

DEPENDING ON STATUS

Instead of the removal/insertion scheme, comments both

within and between statements are accommodated in the

LEX procedures of the Formatter filters. When a comment

is encountered within a statement, the currently

formatted line followed by the comment line is

188

outputted. The next line continues from the last

character position in the previous non-comment line.

For example, a move statement containing a comment

could be formatted to :

MOVE A

* comment

TO B.

Comments between statements are merely outputted.

Comments within statements are a problem in COBOL.

There are many methods for handling them other than the

one above but all methods seem to have drawbacks. What

is required is a stricter comment philosophy than "put

a comment line in whenever you feel like it". The main

reason why strict commenting philosophies are not given

or enforced in languages seems to be that comments are

ignored by compilers. With the advent of formatters and

other source code manipulators the use of internal

documentation in programming languages needs

formalisation.

Formatterl and Formatter2

The Formatter filters format statements which appear

between comment and division, section and paragraph

identifier lines. Formatterl produces formatted output

for the ID, ED and DD portions of a program and passes

189

this, along with raw PD information to Formatter2.

Formatter2 prints the already formatted parts of a

program (keeping a count of the number of lines) and

formats and prints the program's PD. This division of

workload is possible because of data definition /

procedure segregation in

Section 4.1.2. Both filters

COBOL and was suggested in

update line numbers of

Source, Section and Paragraph instances in the SSCA DB.

The two major components of both Formatters are a LEX

token recognising procedure (yylex) and a YACC grammar

parsing procedure (yyparse). These components are

melded together with other procedures such as printline

(to produce a numbered formatted line of source code)

and yyerror (to report a YACC parsing error, remove the

SSCA DB and abort formatting) in a C program. Yylex

identifies language tokens (e.g. verbs), program

identifiers (e.g.variable names) and highlighted lines

and performs suitable actions. As mentioned above,

comments are directed to the printline procedure from

yylex. Yyparse uses the symbols from yylex to form

groups of tokens (phrases) and statements. Using this

information, yyparse executes the process of composing

formatted source code.

A Summary of the formatting carried out in Formatterl

and Formatter2 is given below.

Division, section and

formatted to begin in

FILE-CONTROL paragraphs

190

PD paragraph identifiers are

column 8. The PROGRAM-ID and

are also formatted in this

fashion. In addition, a blank line appears before each

line containing any of the above identifiers. The

PROGRAM-ID paragraph also contains the program name on

the same line. Other paragraphs in the ID and ED begin

in column 10. Elements of these paragraphs begin on the

same line as the paragraph name. Exceptions are the

SEGMENT-LIMIT, CURRENCY and DECIMAL-POINT clauses in

the ED which, if present, are laid out one per line

each beginning in column 12.

In all divisions, if a statement, clause or some other

portion of a statement will not fit on one line

(normally columns 12 to 73) it is broken at a

convenient word and continued (indented by two spaces

relative to the starting line of the statement or

clause) on the next line. A non-numeric literal token

may be longer than the line size available and token

continuation using the continuation indicator is

necessary. In this case the literal is broken if

possible so that the last character on a line is not a

space. This is to attempt to avoid problems which may

be encountered if the formatted source code is ever

edited. Many editors remove trailing spaces from lines

191

(usually by default). Indicated continuation lines have

the same indentation as any other statement continuing

lines.

Lines which begin file-control, file-description, 77-

level-description and 01 level data-description entries

start in column 12. Clauses for these entries follow

line by line, each indented two further spaces to

column 14 (largely as shown in Appendix 3B). Exceptions

are the PICTURE (PIC) and VALUE clauses of data­

description-entries (01 & 77). These clauses begin in

columns 40 and 55 respectively and, if they are the

only clauses of an entry, an attempt is made to place

the whole entry on one line. A nested data­

description-entry begins two spaces in from the start

of the previous entry but the same clause layout is

maintained. The maximum amount of nesting of data­

description-entries which is shown by indenting is 10

entries or 20 indentation spaces. An 88-level entry

begins at same column as it's previous entry and has

it's VALUE clauses starting at column 40 (if possible

the first one is put on the same line as the condition

name).

In the PD, section and paragraph identifying lines are

formatted to contain no portions of statements. Lines

with section naming tokens may also contain a segment

192

number. The PD token itself is on the same line as the

start of any USING clause.

Unnested PD statements begin in column 12. All end-verb

tokens are formatted onto new lines and indented the

same amount as the corresponding verb (a period may

also be present on this line). Inside statements

formatting is carried out mostly on a clause basis.

That is, particular clauses cause formatting in a

different manner than the standard method of grouping

tokens on a line until it is full or the last statement

token is encountered. Many statements do not have any

formatting clauses (e.g. ACCEPT and both formats of the

GOTO verb). There are general formatting clauses and

several exceptions. A general formatting clause, when

encountered, causes the clause token and subsequent

non-verb tokens to

two spaces

statement)

relative

be placed on a new line (indented

to the start of the current

and following embedded statements

indented another two spaces. For example :

ADD A TO B

ON SIZE ERROR

MOVE "X" TO STATUS

END-ADD

to be

Verbs and clause tokens of the general type are listed

below. There can be a number of such clauses in any

193

statement (e.g. SEARCH can have WHEN and WHEN OTHER

clauses) and the embedded statement group may appear

empty (e.g. EVALUATE or SEARCH with a number of WHENS

but only one statement group following).

Verb Formatting Clause Tokens

ADD(formats 1 & 3), COMPUTE,
DIVIDE(format 1), MULTIPLY
(format 1), SUBTRACT
(format s 1 & 3)

ADD(format 2), DIVIDE
(formats 2 & 3), MULTIPLY
(format 1), SUBTRACT(format

CALL, STRING, UNSTRING
DELETE, REWRITE, START,

WRITE (format 2)
EVALUATE
INITIALIZE
INSPECT(format 1)
INSPECT(format 2)
PERFORM (format 3)
READ
SEARCH(formats 1 & 2)
WRITE (format 1)

ON SIZE ERROR

GIVING, ON SIZE ERROR

2)
ON OVERFLOW
INVALID KEY

WHEN, WHEN OTHER
REPLACING
TALLYING, REPLACING
CONVERTING
VARYING, AFTER
AT END, INVALID KEY
AT END, WHEN
AT EOP

Exceptions to the general formatting clause are found

in IF and PERFORM (formats 1 & 2) statements. In these

statements, if embedded statements are discovered (by

identifying a verb token) they are indented two spaces

relative to the start of the original statement so long

as certain clauses have not been found so far. These

clauses are the ELSE clause in IF statements and the

TIMES and UNTIL clauses of PERFORM (format 2)

statements. The ELSE clause is placed at the same level

of indenting as its IF and subsequent embedded

statements are indented as above (two spaces) unless

194

the first of these is another IF statement. A nested IF

statement following an ELSE clause begins on the same

line as the ELSE and its embedded statements are

indented only two spaces relative to the previous IF.

IF A= B THEN

ADD 2 TO A

MOVE B TO C

ELSE IF A< 9

MOVE OTO A.

A PERFORM (format 2) statement with TIMES or UNTIL

clauses gives the same results as the statements with

the general formatting clauses above. There are some

minor recognition problems with identifying the TIMES

clause as it begins with an integer or variable. For

the purposes of formatting IF statements, NEXT SENTENCE

is regarded as both a verb and embedded statement.

The nesting of PD statements coupled with the use of

end-verbs can make it difficult to determine which

statements are still in scope at some points in a

program. Scope determination is require for formatting.

A stack containing verbs and amounts of indentation of

statements currently in scope is used to hold this

information in Formatter2. In Formatterl a similar

stack is a convenient method for controlling the format

of nested data-description-entries. This stack holds

195

level numbers instead of verbs.

From the descriptions above which use phrases such as

ON SIZE ERROR instead of either SIZE ERROR or ON SIZE

ERROR, it is clear that some phrase standardisation has

been carried out. Phrase standardisation within source

code is a natural task for a formatter and has been

implemented in the yyparse procedures of both

Formatterl and Formatter2. Standard COBOL phrases and

their equivalents which are manipulated by the yyparse

procedures are given in Appendix 4B.

4.3.4. THE ANALYSE SUBSYSTEM.

From figure 4.3.3., the Analyse subsystem

similar structure to the Format

identified in Section 4.3.1, Analyserl

has a very

subsystem. As

and Analyser2

are required to perform token recognition and parsing

just as the Formatter filters are. The actions after

identification of, say, a COBOL statement are, of

course, different.

ANALfilterl and ANALfilter2

ANALfilterl is identical

warning messages issued

different filter-name.

to FORMfilterl except that

by this filter indicate a

ANALfilter2 has this same

change compared to FORMfilter2. Other changes in

Formatted
Source Code

source
cooe

Analyser2
[C,EQUEL,LEX,YACC

PD relation
instances

SSCA DB

196

The Analyse Sybsystem

Analfilter1

[CJ

Line-count
Source Code PD

$SCA DB
Source,Section
Paragraph
instance
information

Analfilter2
[C,EQUEL]

Analyser1
[C,EQUEL,LEX,YACC

Anal2

ID,ED & DD relation
instances

Figure 4.3.3

ANALfilter2 are that linefeeds on non-highlighted

symbol lines are no longer removed. This is because the

Analyser filters, unlike the Formatter filters, must

keep track of current line numbers so they can be

stored with related information in the SSCA DB. If the

Format subsystem is working correctly, all error

checking in these filters is redundant. However, in a

prototype SSCA system it is easier and safer to leave

these checks in place.

197

Analyserl and Analyser2

As indicated above the token identifying portions of

yylex and grammar parsing portions of yyparse are

almost identical in Formatterl and Analyserl and in

Formatter2 and Analyser2. In yylex of both analyser

filters, comment line handling after recognition is

unnecessary (other than incrementing the line count).

Because source code analysed in Analyserl is not passed

on to Analyser2, line count information must be passed

to Analyser2 for it to correctly initialise the line

number count. This information precedes a program's PD

in the pipe between the Analyser filters. Yylex of

Analyser2 must thus retrieve and utilise the line count

information. In yyparse of both Analyser filters,

identification of equivalent COBOL phrases and

standardisation of these phrases is unnecessary as the

source code is already formatted.

The task of Analyserl and Analyser2 is to create and

update (as new source information is identified)

instances of SSCA DB relations. In both filters,

achieving this aim is mostly straight forward. For

instance, an instance of relation File will be created

when the file's file-control-entry is parsed in the ED

and updated when the file's FD is parsed in the DD. The

main problems occur with both data-description-entry

198

and PD statement nesting. In nesting, references to

data items or statements still in scope are implicit

and hence,

instances

retrieval of

for update

the corresponding relation

is complicated. The method

employed to handle similar problems in Formatter2 was a

stack. The stack mechanisms of the Formatter filters

are adapted for used in their corresponding Analyser

filters. Instead of level numbers, variable instance

identifiers (va_num) are used in Analyserl and instead

of verbs and indentation counts, statement instance

identifiers (st_num) are used in Analyser2. However, in

Analyser2 a further stack is required. This is because

when analysing nested statements, not only are there

implicitly referenced statement instances potentially

requiring update (e.g. if the end-verb is encountered),

there are condition_usage (cu) instances whose

cu br desc and cu branch b attributes are unknown at

the time of instance creation (this occurs when cu

branches are

statements).

statement-groups

The cu stack holds

e.g. in IF-ELSE

the cu identifiers

(cu_num) and corresponding statement instance

identifiers (st_num) for cu instances currently "in

scope". When the end of a statement which has embedded

statements is encountered (i.e. an end-verb or period),

both the cu and statement stacks must, at least, be

popped of statement related information (and possibly

199

instances updated). It is possible to have many cu

instances from one statement "in scope" at any one time

(e.g. grouped WHEN clauses of EVALUATE or SEARCH

statements).

4.3.5. METRIC CALCULATION AND THE SSCA.

A worth-while feature of any general static analysis

system is the collection of complexity metrics (Section

3.1.4.). In terms of the structure of such a system

(see Figure 3.4), actual metric calculation is carried

out by the metric calculator tool. However, a SSCA can

support the production of some metrics by recording

certain source measurements during syntactic analysis

and storing these measurements in the SSCA DB. The

metric calculator is directly considered in the

development of the prototype SSCA because a simplified

version of it is likely to be the next implemented tool

after the SSCA. This simplified metric calculator

should, at least, produce the standard metrics for a

program and its development would promote further

research in software complexity measures. Support for

production of even simple software metrics underlines

the importance of attempting to quantify elements of

maintenance. Without measures for elements such as

software complexity it is not possible to effectively

budget for or manage resources in maintenance.

200

In this subsection, a small subset of the metrics in

Section 3.1 which appear relevant and suited to COBOL

programs are identified. Definitions of these metrics

for COBOL are also presented. Values of metrics from

this subset are suggested as part of the output of a

metric calculator. The implications of supporting

metric production in the SSCA and SSCA DB are then

explored.

4.3.5.1. COBOL METRICS FOR THE METRIC CALCULATOR.

Of the large range of metrics given in Section 3.1,

only standard, instruction mix, program form and data

reference metrics will be considered. One of the

reasons for this is that many of the other metrics are

better supported by tools other than a syntactic

analyser. For instance, Piwowarski's N and Harrison and

Magel's scope number and ratio {Section 3.1.2.3) could

be derived from control flow {CF) graphs which are

products of program CF analysis in the "Display and

Reporting Systems" set of tools {see Figure 3.4). A

reason for excluding consideration of complex metrics

when implementing a SSCA system is that complete

support for their calculation would compromise the main

purpose of a SSCA which is to create a database of

general program information with links to the formatted

source code. Many complex metrics are composed of

201

lesser metrics whose calculation may be supported

anyway. For example McTap's S metric (Section 3.1.3.)

uses instruction mix and data reference metrics.

STANDARD METRICS

All standard metrics (in one form or other) of Section

3.1.1. would be

calculator because

required

they are

output of

the most

any

well

metric

known

measures of program complexity. Halstead's E and

McCabe's V(G) have been suggested to be closely related

[CUR79] [SCH81] [SUN81] but later measurements discount

this when variations for size are removed [CRA85]. The

forms of metrics which appear useful for COBOL programs

are given below.

LOC : defined as the total number of non-blank lines

in the source code. Blank lines are ignored

because the COBOL programs being analysed have

already been formatted (i.e. the blank lines have

not been entered by any programmer and their

number is totally dependent on other elements in

the program, such as the number of divisions,

sections and paragraphs). LOC is composed of the

submeasures LOCD, LOCP and comments (see

submeasures definitions below).

202

V(G) : Which corresponds the CYC-MID (Section

3.1.1.2.). See submeasures definitions below.

E, D and length : Halstead's effort, difficulty and

length measures (Section 3.1.1.3.). See

submeasures definitions below.

Submeasure definitions for the above metrics are

LOCD, LOCP : These are the number of non-blank (non­

comment) lines in the PD (LOCP) and in all other

divisions (LOCD). Two such measures seem

appropriate because of COBOL's data definition/

procedure segregation.

Comments : The number of comment lines in the source

code.

n : The number of statements in the PD (equal to the

number of verb occurrences).

e The number of branch occurrences in the PD.

For COBOL, CASE statements are the EVALUATE, GO TO

DEPENDING and SEARCH statements. The number of

branches in these statements equals the number of

alternatives.

nl The number of unique operators in the PD.

203

An operator is defined as a verb, phrase (set of

words), or individual token (word or punctuation).

Individual tokens must not be operands (see

below), parts of phrases or commas. Commas appear

inappropriate to count as operators in COBOL as

they are often interchangeable with spaces.

Phrases are a problem to define as no standard set

of phrases exists for COBOL. Consider, for

instance, whether RECORD IS VARYING IN SIZE

identifies one phrase or a token (RECORD) and the

IS VARYING IN SIZE phrase. However, phrases like

RECORD IS VARYING IN SIZE and RECORD VARYING are

synonymous even though their sub-tokens differ.

Hence, in any token measuring count, such as nl,

these phrases should be considered identical and

indivisible. Such phrases have been standardised

by the Format subsystem anyway. Appendix 4B

contains the standard formatting phrases used in

the prototype SSCA system.

n2 The number of unique operands in the PD.

An operand is defined as a reference to a

variable, variable-88,

file-variable or label

file, identifier-lit,

(paragraph or section).

Paragraph and section references in COBOL are not

considered operators as it is difficult to use

204

them as substitutes for intrinsic procedures or

functions as parameters and local variables are

unavailable. Subscripting is considered to be an

extra occurrence of an operand although the

brackets are punctuation and hence, are operators.

Qualification of a data item may be optional, so

when it is present, it seems appropriate to regard

qualification tokens as part of the reference to

an item (i.e. included in the operand instance).

Nl : The number of operator occurrence in the PD. See

operator definition above.

N2 The number of operand occurrence in the PD.

Operands are defined above. It should be noted

that labels such a section and paragraph names are

not regarded as operand occurrences in keeping

with not counting declarations, although

references to these labels are operand occurrences

(see operand definition above).

OTHER METRICS.

The submeasures defined above represent many measures

suggested in Sections 3.1.2.1, 3.1.2.2 and 3.1.2.4.

However, there are other instruction mix, program form

and data reference metrics or equivalent measures.

205

These are given below. A definition of equivalent

measures is exemplified by the numbers of PD statements

(n) and IF statements (#IFs) being equivalent to the

percentage of IFs metric identified by Zolnowski and

Simmons [ZOL80].

:ft - is an abbreviation for "number of"

#sections - sections in the PD
#paragraphs - paragraphs in the PD
#period occurrences - periods in the PD
#end-verb occurrences
average identifier name length - an identifier

is a program data item

#CALLS
#unique CALLS
#IFs
#outer IFs - i.e. #IFs which are unnested as

laid out in the program
#GOTOs
#label references - section and paragraph

references
#labels defined but not referenced
#MOVES
#PERFORMS
variable spans - for particular variables

referenced in the PD

In the above list many measures have been omitted. This

was sometimes done because of duplication. For example,

#verb occurrences equals n, NCSL equals LOCD + LOCP,

and DSL equals DOC (ignoring blank lines). Omissions

were also made because of non-applicability. For

example, #blank lines (an argument against blank line

measures is given in the LOC definition), average

#indentation spaces per line (same argument as for

fblank lines), average variable definitions per module

and percentage of symbolic constants

constants are not available in the reduced

206

(symbolic

COBOL of

this thesis). For COBOL, terms such as function and

module, were taken include both sections and

paragraphs. Hence, FD (#function definitions) equals

#sections+ #paragraphs, and the average length of

modules equals LOCP / #paragraphs for paragraphs and

LOCP I #sections for sections. #CF breaks (e of CYC­

MIN) was left out as it should be approximately e from

Torsun and Al-Jarrah's analysis of COBOL programs

[TOR79].

4.3.5.2. SSCA AND SSCA DB IMPLICATIONS.

Having identified a set of desirable program measures,

it must be determined whether the current SSCA DB can

support calculation of all metrics in this set.

Calculation of the measures in terms of SSCA DB

information is given below.

LOCD - Unsupported {although the number of lines in

the PD is known).

LOCP, Comments - Unsupported.

n - The number of Statement instances.

e - Can be derived from Condition-usage instances.

207

nl, Nl - Unsupported.

n2, N2, variable spans - These can be derived from

Data-usage, Co-data-used and Du-data-used

instances. (Name lookup would require the use of

File, Variable, Variable-88, Identifier-Lit,

Section and Paragraph instances).

!sections - The number of Section instances.

fparagraphs - The number of Paragraph instances.

fperiod occurrences - Unsupported.

fend-verb occurrences - The number of Statement

instances with end-verbs.

average identifier length - Can be derived from File,

Variable, Variable-88, Identifier-Lit, Section and

Paragraph names.

fCALLs, #GOTOs, #IFs, fMOVEs, #PERFORMS - The number

of Statement instances with a particular verb.

#outer IFs - Can be derived from IF Statement and

Paragraph instances.

flabel references, flabels defined but not

referenced - These can be derived from Section,

Paragraph and Condition_usage instances.

208

#unique CALLs - Can be derived from CALL Statement,

Data-usage and Du-data-used instances.

Unsupported metrics are LOCD, LOCP, comments, nl, Nl

and fperiod occurrences. Information for these metrics

lies within the formatted source code but not currently

in the SSCA DB. For all of these metrics except LOCD

and comments not in the PD, a useful breakdown of their

values is given by PD paragraph. This suggests the

extra metric attributes of locp, pa_cornrnents,

u_operators, operators, and periods for the Paragraph

relation. LOCD and the number of comment lines in the

ID, ED and DD suggest metric attributes for either the

Program or Source relations. The Source relation was

chosen to hold the attributes locd and comments.

Definitions for the metric attributes above are given

in the entities of Appendix 4A. These metric attributes

are supported in the SSCA by extra processing in the

Analyse subsystem. Collection of metric information is

carried out in the printline and yylex procedures of

both Analyserl and Analyser2 and the yyparse procedure

of Analyser2.

209

CHAPTER 5. CONCLUSIONS.

This final chapter presents conclusions about the

aspects of software maintenance and maintenance support

examined and discussed in earlier chapters. These

conclusions are divided into sections on maintenance in

general, software metrics, maintenance support through

tools, the prototype SSCA system, and a general

conclusion.

5.1. MAINTENANCE IN GENERAL.

The main themes of Chapter 2 are the definition of

maintenance and an outline of its perceived problems.

Section 2.1 identifies a generally accepted definition

for maintenance although it seems too broad to be very

useful. This is especially the case when attempting to

classify system extensions. An extension to an existing

application can be regarded as new development, or

enhancement, or adaptive maintenance. However,

modifications to existing parts of an application to

cater for an extension would appear from definitions to

be adaptive maintenance. Section 2.2 examines

difficulties with subcategorisation of maintenance.

There seems to be a general lack of solid and useful

210

definitions throughout the maintenance area.

Because of its position at the end of the system life

cycle, maintenance may inherit many problems from

development. Obvious examples are poor application

documentation and bugs in programs. Less clear are the

affects of ill-trained users and poor program design.

More

This

survey

evidence

information

structured

evidence is required about these factors.

could provide quantitative benefit

for development techniques such as

design. At the moment, factors like

documentation are known to affect maintenance costs but

no information such as, "every X dollars spent on

development documentation will, on average, save Y

dollars off the maintenance budget" is available.

In addition to problems caused by the lack of clear

definitions and by external influences, there are

certainly internal problems in most maintenance tasks

related to actually modifying software. These problems

are illustrated by the difficulty in formulating a set

of steps to aid a maintainer in modifying software (see

Section 2.4). A clear understanding of the program to

be changed, and to a lesser extent of the application,

are definite factors affecting success in program

modification. Even with a complete knowledge of a

program's purpose and design, the design of

211

modifications is affected by the role and goals of

program maintenance as perceived by the maintainer. If

a particular program is expected to have a remaining

operational life of only 6 months, then the goals of

maintenance on this program might exclude modification

design to minimise structural decay and might

concentrate on development of an effective, quickly

implemented and more easily verified program patch. For

programs which are expected to have much longer life­

times and survive numerous modifications, it is

suggested in this thesis that the goal of preserving

good design principles during maintenance would usually

out way the short term goal of implementing

modifications to solve a perceived problem in the

shortest possible time. However, there is little

evidence available to support or contradict

hypothesis.

this

Overall, in almost all aspects of maintenance, more

research is required. However, there are overlaps with

areas such as development methodologies and tools,

programming language design, documentation systems and

DP management techniques.

212

5.2. SOFTWARE METRICS.

Investigations into static measures of software

complexity have a part to play in identifying and

quantifying factors critical to maintenance

productivity. It is clear from Section 3.1 that a

massive number of complexity metrics have been

proposed. What is required is large numbers of

evaluations of, at least, a small group of metrics.

These metric values, together with actual maintenance

costs and size/ volume values for the maintenance

tasks being performed, would allow some determination

of what factors influence productivity. Static

complexity metrics are considered to be measures of the

difficulty in dealing with a piece of software.

However, measures for the extent of changes to be made

and additional code to be created in a maintenance task

are few. After modification, task sizes could be

ascertained by counting the number of lines in the

modified program which are different form the original.

However, for newly added functions and procedures,

their complexity metrics might be a better indication

of coding effort. These measures may be useful for

identifying productivity factors but, in terms of cost

estimation, other task size/ volume metrics which can

be calculated earlier in a maintenance task are

213

required. Hopefully, the productivity factors

themselves will suggest such metrics.

Complexity metric research would seem to have a long

way to go before its products are suitable for cost

estimation in maintenance. Re-iterating the

suggestions from Section 3.1.4, this research is

supported by compilers or specific tools which

automatically evaluate a set of complexity metrics. The

SSCA system whose development is summarised in this

thesis is a first step toward a metric calculating tool

as well as several other software tools.

5.3. MAINTENANCE SUPPORT THROUGH TOOLS.

Observations from Section 3.3.2 indicate there is a

need for a more

support tools. An

environment is

integrated approach to maintenance

integrated maintenance

the ideal but how it

support

should be

constructed is largely unknown.

Application documentation is most often used in the

operational and maintenance areas of the system life

cycle and so a complete maintenance support environment

may actually contain a documentation support system. At

the very least, portions of a maintenance environment

will be closely involved with interrogating and

214

updating application documents. A clear conclusion is

that documentation and maintenance support are inter­

related and, in many areas, overlap. In wider

perspectives, Anderson [AND81] and Saib [SAI83]

interweave an application documentation system with a

combined development and maintenance support

environment.

With reference to the integration of maintenance

support tools, the contention of this thesis is that a

data base, such as the SSCA DB, is a reasonable method

of linking some tools which manipulate or use source

code. The centralising and formalising of access to

source code allows these tools to achieve a higher

degree of specialisation. Supporting a toolbox system

based around static analysis of source code appears

well-founded as the logic within source programs is

fundamental to computer systems and maintenance and the

programmer or maintainer's view of this code is

primarily static in nature (interactive debugging being

an exception). A consequence of the source code

analysis approach, at least in a prototype toolbox

system, is the production of tools for a specific

programming language. COBOL was chosen as the language

whose programs would be analysed in the static analysis

system of which the SSCA and SSCA DB are components.

215

Building tools for an archaic (in computing time-

scales)

similar

programming language could

to installing plumbing in

be considered as

the pyramids.

However, COBOL is still extensively used today and, by

the shear volume of current code, will be around for at

least the next 10 years. Production of commercial

software tools for COBOL is a method of speeding up the

diffusion rate of new software engineering innovations.

The diffusion rate is expected to slow through the

1980s according to Morrissey and Wu [MOR79].

Most suggested maintenance

understand aspects of an

research in tool production

maintainers (tool-users)

tools aid maintainers to

application system. Most

must thus consider how

form an understanding of

software and perform modifications on it. Comprehension

of common methods of software understanding and

modification in any programming language provide

valuable input into areas such as production of 4GLs

and support environments. If maintenance tools are in

use in an application system written in so-called 3GLs,

this should force any suggested replacement or partial

replacement for these 3GLs to provide at least as much

maintenance support as currently offered. Tool

production for current languages thus indirectly

enhances future maintenance facilities.

216

5.4. THE PROTOTYPE SSCA SYSTEM.

5.4.1. $SCA DEVELOPMENT.

The method used for designing the SSCA in Section 4.3

was basically a melding of the actions which needed to

be carried out and the tools available for the

development. Clear objectives of the SSCA in terms of

data base information were defined in Section 4.2. The

tools used include simple input / output (i/o)

pipelines, the AWK and C programming languages and YACC

and LEX preprocessors. All these tools proved extremely

useful in speeding up the implementation process.

For the use of AWK and i/o pipelines, there was a small

price to pay. AWK is line orientated and consequently

has trouble identifying sequences of tokens broken by

blank or comment lines. I/o pipelines had the most

effect on system design. Simple i/o pipes implement

sequential data flows only. Breaks in the sequential

nature of the data flows are implemented as data stores

such as SSCAI or SSCA DB (see Figures 4.3.1 to 4.3.3).

Data flow branching could have been implemented by

sending, waiting and receiving mechanisms in filters

but this is complicated and error-prone.

217

When confined to sequential filtering (except for data

stores), the main subsystem design decision was which

actions to group in which filters so that :

a) Either simple i/o piping or data stores (files or

data bases) were the communication channels

between filters.

b) Processing was simplified within filters (e.g. if

indicator fields of lines are checked in a filter,

some comment and continuation actions are

relatively simple to implement as well)

c) Each filter has a reasonably logical set of

actions.

There is also an order among some actions which must be

maintained. For example, the two actions below regroup

tokens broken by line continuation, but they must be

carried out in the order 1 then 2.

1) removal of trailing spaces from lines not

containing unfinished strings.

2) removal of columns 1 to 7 and proceeding spaces

(and'"' if continuing a string) from continuation

lines, and linefeeds from all lines except

division, section, paragraph headings and

comments.

218

Problems encountered when developing the SSCA system

suggest alternative methods of storing source code and

comments. From Section 4.3, the comments and layout

(e.g. 80 character line orientation) of programs cause

particular problems for tools which manipulate source

code. Even in free-format programming languages (e.g.

Pascal), source code tends to be commented and laid out

for clarity when displayed on 24 line by 80 character

screens or 132 character per

software tools which need to

line printers. For

recognise elements of

source code or automatically rewrite portions of

programs, it seems useful to store a program (in a free

format language) as a set of statements delimited by

linefeeds (with no maximum line length). Statement

nesting would needed to be indicated, probably by using

control characters. Comments could be mapped onto a

set of statements using line numbers. Ideally program

comments would be stored separately in the application

documentation system. Isolation of comments from

program code has advantages for comment update and

integration with other application documentation. To

view, print or modify source code, the formatting

services of a language-orientated editor (LOE) would be

required to structure source information and comments

for display on a particular device. Allowing higher

program views (e.g. structure charts) rather than just

219

formatted statements, could also be a feature of the

LOE. The context editor EDIERE (one of the SAMOS tools

[EBE80]) has these facilities for conventional source

code. There are overheads with source code/ comment

separation especially in terms of pointer adjustment

for comments when source statements are added, deleted

or moved.

5.4.2. USE OF THE SSCA DB.

This topic is best summarised using some simple

examples. Four questions given in Section 4.2.2 were

suggested as enquiries a maintainer may make. Partial

answers to the first two questions formulated as QUEL

(INGRES's interactive enquiry language) queries are

given below.

QUESTION 1. Part of this question translates as "given

a section sname, what are its paragraphs?". The answer

is given by:

range of sis section
range of pis paragraph
retrieve (p.pa name)

where p.pa section= s.se num
and s.se-name = "sname"-

QUESTION 2. "Given a paragraph pname, at what lines in

the source code is it directly PERFORMed or gone to?"

is answered by :

range of pis paragraph
range of c is cond_usage

range of sis statement
retrieve (s.st position)

wheres.st num = c.cu statement
and p.pa-name = "pname"
and (c.cu branch a= p.pa num
or c.cu branch b ~ p.pa_nurn)

220

Another part of question 2 was the identification of

paragraphs and sections dropped into (possibly from GO

TOs to earlier paragraphs/sections). A partial answer

for paragraphs is to identify paragraphs for which the

previous paragraph is gone to and no unconditioned GO

TOs, STOP RUNs or EXIT PROGRAMS exist in this previous

paragraph. The query is

range of pis paragraph
range of q is paragraph
range of c is cond_usage
range of sis statement
range oft is statement
retrieve (q.pa_name)

where p.pa num = q.pa num - 1
and c.cu-branch a =-p.pa num
and c.cu-statement = t.st num and t.verb ="GOTO"
and any(s.st stgroup by p~pa stgroup

where s.st-stgroup = p.pa stgroup and
(s.verb ="GOTO" ors.verb= "STOP RUN"
ors.verb= "EXIT PROGRAM")) = 0

The solution above takes no account of the previous

paragraph being dropped into itself and conditioned

GOTOs or STOP RUNs do not necessarily mean the next

paragraph can be dropped into. For example, the

statement below has the same branching effect as a

unconditional GOTO.

IF A= B
GO TO C

ELSE
GO TOD.

221

The last query also shows a simulation of negated

existential quantification in QUEL using the aggregate

function "any".

The QUEL queries above were presented as examples to

show that SSCA DB information is useful when accessed

by an interactive enquiry system. These queries could

have just as well have been EQUEL statements. However,

it can be seen that most useful interactive enquires

are very

maintainer,

complex and cumbersome

the best solution in

to type. For a

the interactive

environment is a preformulated library of queries from

which he can select and then invoke. Such a selection

process is currently possible in QUEL through the

editing mechanism for queries.

Question 1 was actually stated in Section 4.2.2. as

"what is the static hierarchical structure of the PD

?". This suggests that ordered lists of sections and

paragraphs are not what was requested. Hierarchical

diagrams would show the static relationships much

better. Similarly, control flow paths indicated in the

answers to question 2 are best described as a set of

digraphs. These observations imply that the enquiry

interface should really only be a method for tools

(including display and report tools) to retrieve SSCA

DB information. In a complete static analysis system,

222

maintainers should interact exclusively through the

user interfaces of tools.

When running the SSCA system to build the SSCA DB it is

noted that appending of instances of relations one by

one is very time consuming in INGRES. It would be

possible, in some cases, to build an intermediate file

of instances and copy them into the data base all at

once. This would speed up data base creation. Speed and

constraints in the INGRES DBMS, such as the need to use

strange methods to simulate negated existential

quantifiers, indicate that other DBMSs for the SSCA DB

would be worth exploring in later SSCA systems. The

DBMS chosen could again be relational or could be a

network system so long as reasonable enquiry system was

supported (as concluded in Section 4.2.3.1.).

5.5. GENERAL CONCLUSION.

The development of a prototype SSCA system has shown

that a data base of program information is a feasible,

practicable and worthwhile foundation for a

of maintenance tools. Enhanced access

basic set

to

of

program

further information

components

tools.

of

encourages

the basic

development

toolset and other related

223

APPENDIX 1 THE PURGE PROGRAM AND ITS MODIFICATIONS

Source File: <STUD2>CS302X>MISC>WRITEUP>PURGE.CBL
FRI, AUG 22 1986 at 14:30 Compiled on:

by: CBL rev 19.3.5 06/12/85.09:38
LISTING BINARY OPTIMIZE U{PPER)CASE
FORMATTED DISPLAY

Options are:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

*

*
*

PURGE Program from "Principles of Program Design,*
page 135, problem 11 by M.A. Jackson [JAC75J *

*

*

Identification Division.
Program-id. PURGE.
Environment Division.
Input-Output Section.
File-Control.

Select infile assign to PFMS.
Select outfile assign to PFMS.
Select errorfile assign to PFMS.

Data Division.
File Section.

FD infile Compressed
value of file-id is "infile".

01 inrec pie x(80).
FD outfile Compressed
value of file-id is "outfile".

01 outrec pie x(80).
FD errorfile compressed
value of file-id is "errorfile".

01 errorrec pie x(80).

Working-Storage Section.
* file record structures

01 reel.
02 rl-branch
02 rl-type
02 rl-info

01 rec2.
02 r2-branch
02 r2-type
02 r2-info

01 rec3.
02 r3-branch
02 r3-type
02 r3-info

01 error-heading.

pie 9999.
pie 9999.
pie x(72).

pie 9999.
pie 9999.
pie x(72).

pie 9999.
pie 9999.
pie x(72).

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

02 e-heading
value II ERROR DATA FOR

02 e-heading-branch
02 filler

224

pie x(30)
BRANCH-NUMBER"
pie 9999.
pie X (46).

* other variables
01 end-of-input-switch pie x

88 end-of-input
value "F".
value "T".

Procedure Division.

*

*

*

Main.
perform Start-para.
read infile into rec3

at end
move "T" to end-of-input-switch.

if not end-of-input
perform Get-2-cards
perform Main-loop

until rl-branch = 0.
perform Finish-para.
stop run.

Start-para.
open input infile.
open output outfile.
open output errorfile.

Finish-para.
close infile.
close outfile.
close errorfile.

*
Main-loop.

*

if rl-branch not= r2-branch
perform Branches-not-equal

else
if rl-branch = r3-branch

perform More-than-2-cards
perform Get-2-cards

else
if not(rl-type numeric and r2-type numeric)

perform Type-problem

else
perform Get-2-cards

if not(rl-type < r2-type)
perform Type-problem
perform Get-2-cards

else
perform Print-good-set
perform Get-2-cards.

93
94
95
96
97
98
99 *
100
101
102
103
104
105
106 *
107
108
109
110 *
111
112
113
114
115
116
117
118
119
120 *
121
122
123
124
125
126
127 *
128
129
130
131
132
133
134 *
135
136
137
138
139
140
141 *
142
143

Branches-not-equal.
perform Print-error-heading-card.
move rec2 to reel.
move rec3 to rec2.
if not end-of-input

perform Read-rec3.

More-than-2-cards.
perform Print-error-heading-card.
write errorrec from rec2.
write errorrec from rec3.
perform Error-branch-loop

until rl-branch not= r3-branch.

Type-problem.
perform Print-error-heading-card.
write errorrec from rec2.

Error-branch-loop.
read infile into rec3

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to reel

else
if rl-branch = r3-branch

write errorrec from rec3.

Get-2-cards.
move rec3 to reel.
if not end-of-input

perform Read-rec2
if not end-of-input

perform Read-rec3.

Read-rec2.
read infile into rec2

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to rec2.

Read-rec3.
read infile into rec3

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to rec3.

Print-good-set.
write outrec from reel.

225

144
145 *
146
147
148
149
150 *

write outrec from rec2.

Print-error-heading-card.
move rl-branch toe-heading-branch.
write errorrec from error-heading.
write errorrec from reel.

226

227

Source File: <STUD2>CS302X>MISC>WRITEUP>P-Al.CBL
FRI, AUG 22 1986 at 14:29 Compiled on:

by: CBL rev 19.3.5 06/12/85.09:38
LISTING BINARY OPTIMIZE U(PPER)CASE
FORMATTED DISPLAY

Options are:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

*

* PURGE-Al Program - handles the first modification*
* to PURGE *

*

*

Identification Division.
Program-id. PURGE-Al.
Environment Division.
Input-Output Section.
File-Control.

Select infile assign to PFMS.
Select outfile assign to PFMS.
Select errorfile assign to PFMS.

Data Division.
File Section.

FD infile Compressed
value of file-id is "infile".

01 inrec pie x(80).
FD outfile Compressed
value of file-id is "outfile".

01 outrec pie x(80).
FD errorfile compressed
value of file-id is "errorfile".

01 errorrec pie x(80).

Working-Storage Section.
* file record structures

01 reel.
02 rl-branch
02 rl-type
02 rl-info

01 rec2.
02 r2-branch
02 r2-type
02 r2-info

01 rec3.
02 r3-branch
02 r3-type
02 r3-info

01 error-heading.
02 e-heading

value" ERROR
02 e-heading-branch
02 filler

pie 9999.
pie 9999.
pie X (72).

pie 9999.
pie 9999.
pie x(72).

pie 9999.
pie 9999.
pie X (72).

pie x(30)
DATA FOR BRANCH-NUMBER"

pie 9999.
pie x(46).

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

* other variables
01 end-of-input-switch

88 end-of-input
pie x value "F".

value "T".

228

**
Procedure Division.

*

*

*

Main.
perform Start-para.
read infile into rec3

at end
move "T" to end-of-input-switch.

if not end-of-input
perform Get-2-cards
perform Main-loop

until rl-branch = 0.
perform Finish-para.
stop run.

Start-para.
open input infile.
open output outfile.
open output errorfile.

Finish-para.
close infile.
close outfile.
close errorfile.

*
Main-loop.

*

if rl-branch not= r2-branch
perform Branches-not-equal

else
if rl-branch = r3-branch

perform More-than-2-cards
perform Get-2-cards

else
if not (rl-type numeric and r2-type numeric)

and not (rl-type = "MODl" and
r2-type = "MODl")

else

perform Type-problem
perform Get-2-cards

if not(rl-type < r2-type) and
not (rl-type = "MODl" and
r2-type = "MODl")

else

perform Type-problem
perform Get-2-cards

perform Print-good-set
perform Get-2-cards.

97
98
99
100
101
102
103 *
104
105
106
107
108
109
110 *
111
112
113
114 *
115
116
117
118
119
120
121
122
123
124 *
125
126
127
128
129
130
131 *
132
133
134
135
136
137
138 *
139
140
141
142
143
144
145 *
146
147

Branches-not-equal.
perform Print-error-heading-card.
move rec2 to reel.
move rec3 to rec2.
if not end-of-input

perform Read-rec3.

More-than-2-cards.
perform Print-error-heading-card.
write errorrec from rec2.
write errorrec from rec3.
perform Error-branch-loop

until rl-branch not= r3-branch.

Type-problem.
perform Print-error-heading-card.
write errorrec from rec2.

Error-branch-loop.
read infile into rec3

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to reel

else
if rl-branch = r3-branch

write errorrec from rec3.

Get-2-cards.
move rec3 to reel.
if not end-of-input

perform Read-rec2
if not end-of-input

perform Read-rec3.

Read-rec2.
read infile into rec2

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to rec2.

Read-rec3.
read infile into rec3

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to rec3.

Print-good-set.
write outrec from reel.

229

148
149 *
150
151
152
153
154 *

write outrec from rec2.

Print-error-heading-card.
move rl-branch toe-heading-branch.
write errorrec from error-heading.
write errorrec from reel.

230

231

Source File: <STUD2>CS302X>MISC>WRITEUP>P-A2.CBL
FRI, AUG 22 1986 at 14:30 Compiled on:

by: CBL rev 19.3.5 06/12/85.09:38
LISTING BINARY OPTIMIZE U(PPER)CASE
FORMATTED DISPLAY

Options are:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

*

* PURGE-A2 Program - handles the first modification*
* to PURGE *

*

*

Identification Division.
Program-id. PURGE-A2.
Environment Division.
Input-Output Section.
File-Control.

Select infile assign to PFMS.
Select outfile assign to PFMS.
Select errorfile assign to PFMS.

Data Division.
File Section.

FD infile Compressed
value of file-id is "infile".

01 inrec pie x(80).
FD outfile Compressed
value of file-id is "outfile".

01 outrec pie x(80).
FD errorfile compressed
value of file-id is "errorfile".

01 errorrec pie x(80).

Working-Storage Section.
* file record structures

01 reel.
02 rl-branch
02 rl-type
02 rl-info

01 rec2.
02 r2-branch
02 r2-type
02 r2-info

01 rec3.
02 r3-branch
02 r3-type
02 r3-info

01 error-heading.
02 e-heading

value II ERROR
02 e-heading-branch
02 filler

pie 9999.
pie 9999.
pie x(72).

pie 9999.
pie 9999.
pie x(72).

pie 9999.
pie 9999.
pie x(72).

pie x(30)
DATA FOR BRANCH-NUMBER 11

pie 9999.
pie x(46).

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

* other variables
01 end-of-input-switch

88 end-of-input
pie x value "F".

value "T".

232

**
Procedure Division.

*

*

*

Main.
perform Start-para.
read infile into rec3

at end
move "T" to end-of-input-switch.

if not end-of-input
perform Get-2-cards
perform Main-loop

until rl-branch = 0.
perform Finish-para.
stop run.

Start-para.
open input infile.
open output outfile.
open output errorfile.

Finish-para.
close infile.
close outfile.
close errorfile.

*
Main-loop.

if rl~branch = r2-branch and
rl-branch not= r3-branch
and rl-type = "MODl" and r2-type = "MODl"
perform Print-good-set

else
perform Get-2-cards

if rl-branch not= r2-branch
perform Branches-not-equal

else
if rl-branch = r3-branch

perform More-than-2-cards
perform Get-2-cards

else
if not (rl-type numeric and

r2-type numeric)
perform Type-problem
perform Get-2-cards

else
if not(rl-type < r2-type)

perform Type-problem
perform Get-2-cards

else

97
98
99 *
100
101
102
103
104
105
106 *
107
108
109
110
111
112
113 *
114
115
116
117 *
118
119
120
121
122
123
124
125
126
127 *
128
129
130
131
132
133
134 *
135
136
137
138
139
140
141 *
142
143
144
145
146
147

Branches-not-equal.

perform Print-good-set
perform Get-2-cards.

perform Print-error-heading-card.
move rec2 to reel.
move rec3 to rec2.
if not end-of-input

perform Read-rec3.

More-than-2-cards.
perform Print-error-heading-card.
write errorrec from rec2.
write errorrec from rec3.
perform Error-branch-loop

until rl-branch not= r3-branch.

Type-problem.
perform Print-error-heading-card.
write errorrec from rec2.

Error-branch-loop.
read infile into rec3

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to reel

else
if rl-branch = r3-branch

write errorrec from rec3.

Get-2-cards.
move rec3 to reel.
if not end-of-input

perform Read-rec2
if not end-of-input

perform Read-rec3.

Read-rec2.
read infile into rec2

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to rec2.

Read-rec3.
read infile into rec3

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to rec3.

233

148 *
149
150
151
152 *
153
154
155
156
157 *

Print-good-set.
write outrec from reel.
write outrec from rec2.

Print-error-heading-card.
move rl-branch toe-heading-branch.
write errorrec from error-heading.
write errorrec from reel.

234

235

Source File: <STUD2>CS302X>MISC>WRITEUP>P-Bl.CBL
FRI, AUG 22 1986 at 14:42 Compiled on:

by: CBL rev 19.3.5 06/12/85.09:38
LISTING BINARY OPTIMIZE U(PPER)CASE
FORMATTED DISPLAY

Options are:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

*

*
*

PURGE-Bl Program - handles the second
modification to PURGE

*
*

*

*

Identification Division.
Program-id. PURGE-Bl.
Environment Division.
Input-Output Section.
File-Control.

Select infile assign to PFMS.
Select outfile assign to PFMS.
Select errorfile assign to PFMS.

Data Division.
File Section.

FD infile Compressed
value of file-id is "infile".

01 inrec pie x(80).
FD outfile Compressed
value of file-id is "outfile".

01 outrec pie x(80).
FD errorfile compressed
value of file-id is "errorfile".

01 errorrec pie x(80).

Working-Storage Section.
* file record structures

01 reel.
02 rl-branch
02 rl-type
02 rl-info

01 rec2.
02 r2-branch
02 r2-type
02 r2-info

01 rec3.
02 r3-branch
02 r3-type
02 r3-info

01 error-heading.
02 e-heading

value" ERROR
02 e-heading-branch
02 filler

pie 9999.
pie 9999.
pie x(72).

pie 9999.
pie 9999.
pie x(72).

pie 9999.
pie 9999.
pie x(72).

pie x(30)
DATA FOR BRANCH-NUMBER"

pie 9999.
pie X (4 6) .

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

* other variables
01 end-of-input-switch

88 end-of-input
pie x value "F".

value "T".

236

**
Procedure Division.

*

*

*

Main.
perform Start-para.
read infile into rec3

at end
move "T" to end-of-input-switch.

if not end-of-input
perform Get-2-cards
perform Main-loop

until rl-branch = 0.
perform Finish-para.
stop run.

Start-para.
open input infile.
open output outfile.
open output errorfile.

Finish-para.
close infile.
close outfile.
close errorfile.

*
Main-loop.

if rl-branch not= r2-branch and
rl-type not= "MOD2"
perform Branches-not-equal

else
if rl-branch = r3-branch

perform More-than-2-cards
perform Get-2-cards

else
if not (rl-type numeric and r2-type numeric)

and rl-branch = r2-branch

else

perform Type-problem
perform Get-2-cards

if not(rl-type < r2-type)
and rl-branch = r2-branch
perform Type-problem
perform Get-2-cards

else
if rl-type not= "MOD2"

perform Print-good-set
perform Get-2-cards

else

97
98
99
100
101
102 *
103
104
105
106
107
108
109 *
110
111
112
113
114
115
116 *
117
118
119
120 *
121
122
123
124
125
126
127
128
129
130 *
131
132
133
134
135
136
137 *
138
139
140
141
142
143
144 *
145
146
147

write outrec from reel
move rec2 to reel
move rec3 to rec2
if not end-of-input

perform Read-rec3.

Branches-not-equal.
perform Print-error-heading-card.
move rec2 to reel.
move rec3 to rec2.
if not end-of-input

perform Read-rec3.

More-than-2-cards.
perform Print-error-heading-card.
write errorrec from rec2.
write errorrec from rec3.
perform Error-branch-loop

until rl-branch not= r3-branch.

Type-problem.
perform Print-error-heading-card.
write errorrec from rec2.

Error-branch-loop.
read infile into rec3

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to reel

else
if rl-branch = r3-branch

write errorrec from rec3.

Get-2-cards.
move rec3 to reel.
if not end-of-input

perform Read-rec2
if not end-of-input

perform Read-rec3.

Read-rec2.
read infile into rec2

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to rec2.

Read-rec3.
read infile into rec3

at end

237

148
149
150
151 *
152
153
154
155 *
156
157
158
159
160 *

move "T" to end-of-input-switch.
if end-of-input

move zeros to rec3.

Print-good-set.
write outrec from reel.
write outrec from rec2.

Print-error-heading-card.
move rl-branch toe-heading-branch.
write errorrec from error-heading.
write errorrec from reel.

238

239

Source File: <STUD2>CS302X>MISC>WRITEUP>P-B2.CBL
FRI, AUG 22 1986 at 14:43 Compiled on:

by: CBL rev 19.3.5 06/12/85.09:38
LISTING BINARY OPTIMIZE U(PPER)CASE
FORMATTED DISPLAY

Options are:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

*

*
*

PURGE-B2 Program - handles the second
modification to PURGE

*
*

*

*

Identification Division.
Program-id. PURGE-B2.
Environment Division.
Input-Output Section.
File-Control.

Select infile assign to PFMS.
Select outfile assign to PFMS.
Select errorfile assign to PFMS.

Data Division.
File Section.

FD infile Compressed
value of file-id is "infile".

01 inrec pie x(80).
FD outfile Compressed
value of file-id is "outfile".

01 outrec pie x(80).
FD errorfile compressed
value of file-id is "errorfile".

01 errorrec pie x(80).

Working-Storage Section.
* file record structures

01 reel.
02 rl-branch
02 rl-type
02 rl-info

01 rec2.
02 r2-branch
02 r2-type
02 r2-info

01 rec3.
02 r3-branch
02 r3-type
02 r3-info

01 error-heading.
02 e-heading

value II ERROR
02 e-heading-branch
02 filler

pie 9999.
pie 9999.
pie X (72) .

pie 9999.
pie 9999.
pie X (72) .

pie 9999.
pie 9999.
pie x(72).

pie X (30)
DATA FOR BRANCH-NUMBER 11

pie 9999.
pie x(46).

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

* other variables
01 end-of-input-switch

88 end-of-input
pie x value "F".

value "T".

240

**
Procedure Division.

*

*

*

Main.
perform Start-para.
read infile into rec3

at end
move 11 T11 to end-of-input-switch.

if not end-of-input
perform Get-2-cards
perform Main-loop

until rl-branch = 0.
perform Finish-para.
stop run.

Start-para.
open input infile.
open output outfile.
open output errorfile.

Finish-para.
close infile.
close outfile.
close errorfile.

*
Main-loop.

*

if rl-branch not= r2-branch
perform Branches-not-equal

else
if rl-branch = r3-branch

perform More-than-2-cards
perform Get-2-cards

else
if not (rl-type numeric and r2-type numeric)

perform Type-problem

else
perform Get-2-cards

if not(rl-type < r2-type)
perform Type-problem
perform Get-2-cards

else
perform Print-good-set
perform Get-2-cards.

Branches-not-equal.
if rl-type = "MOD2"

write outrec from reel
else

97
98
99
100
101
102 *
103
104
105
106
107
108
109 *
110
111
112
113 *
114
115
116
117
118
119
120
121
122
123 *
124
125
126
127
128
129
130 *
131
132
133
134
135
136
137 *
138
139
140
141
142
143
144 *
145
146
147

perform Print-error-heading-card.
move rec2 to reel.
move rec3 to rec2.
if not end-of-input

perform Read-rec3.

More-than-2-cards.
perform Print-error-heading-card.
write errorrec from rec2.
write errorrec from rec3.
perform Error-branch-loop

until rl-branch not= r3-branch.

Type-problem.
perform Print-error-heading-card.
write errorrec from rec2.

Error-branch-loop.
read infile into rec3

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to reel

else
if rl-branch = r3-branch

write errorrec from rec3.

Get-2-cards.
move rec3 to reel.
if not end-of-input

perform Read-rec2
if not end-of-input

perform Read-rec3.

Read-rec2.
read infile into rec2

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to rec2.

Read-rec3.
read infile into rec3

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to rec3.

Print-good-set.
write outrec from reel.
write outrec from rec2.

241

148 *
149
150
151
152
153 *

Print-error-heading-card.
move rl-branch toe-heading-branch.
write errorrec from error-heading.
write errorrec from reel.

242

243

Source File: <STUD2>CS302X>MISC>WRITEUP>P-B3.CBL
FRI, AUG 22 1986 at 14:43 Compiled on:

by: CBL rev 19.3.5 06/12/85.09:38
LISTING BINARY OPTIMIZE U(PPER)CASE
FORMATTED DISPLAY

Options are:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

*

*
*

PURGE-B3 Program - handles the second
modification to PURGE

*
*

*

*

Identification Division.
Program-id. PURGE-B3.
Environment Division.
Input-Output Section.
File-Control.

Select infile assign to PFMS.
Select outfile assign to PFMS.
Select errorfile assign to PFMS.

Data Division.
File Section.

FD infile Compressed
value of file-id is "infile".

01 inrec pie x{80).
FD outfile Compressed
value of file-id is "outfile".

01 outrec pie x(80).
FD errorfile compressed
value of file-id is "errorfile".

01 errorrec pie x(80).

Working-Storage Section.
* file record structures

01 reel.
02 rl-branch
02 rl-type
02 rl-info

01 rec2.
02 r2-branch
02 r2-type
02 r2-info

01 rec3.
02 r3-branch
02 r3-type
02 r3-info

01 error-heading.
02 e-heading

value II ERROR
02 e-heading-branch
02 filler

pie 9999.
pie 9999.
pie x(72).

pie 9999.
pie 9999.
pie x(72).

pie 9999.
pie 9999.
pie x(72).

pie x(30)
DATA FOR BRANCH-NUMBER 11

pie 9999.
pie x(46).

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

* other variables
01 end-of-input-switch

88 end-of-input
pie x value "F".

value "T".

244

**
Procedure Division.

*

*

*

Main.
perform Start-para.
read infile into rec3

at end
move "T" to end-of-input-switch.

if not end-of-input
perform Get-2-cards
perform Main-loop

until rl-branch = 0.
perform Finish-para.
stop run.

Start-para.
open input infile.
open output outfile.
open output errorfile.

Finish-para.
close infile.
close outfile.
close errorfile.

*
Main-loop.

*

if rl-branch not= r2-branch
perform Branches-not-equal

else
if rl-branch = r3-branch

perform More-than-2-cards
perform Get-2-cards

else
if not (rl-type numeric and r2-type numeric)

perform Type-problem

else
perform Get-2-cards

if not(rl-type < r2-type)
perform Type-problem
perform Get-2-cards

else
perform Print-good-set
perform Get-2-cards.

Branches-not-equal.
perform Print-error-heading-card.
move rec2 to reel.
move rec3 to rec2.

97
98
99 *
100
101
102
103
104
105
106 *
107
108
109
110 *
111
112
113
114
115
116
117
118
119
120 *
121
122
123
124
125
126
127 *
128
129
130
131
132
133
134 *
135
136
137
138
139
140
141 *
142
143
144
145 *
146
147

if not end-of-input
perform Read-rec3.

More-than-2-cards.
perform Print-error-heading-card.
write errorrec from rec2.
write errorrec from rec3.
perform Error-branch-loop

until rl-branch not= r3-branch.

Type-problem.
perform Print-error-heading-card.
write errorrec from rec2.

Error-branch-loop.
read infile into rec3

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to reel

else
if rl-branch = r3-branch

write errorrec from rec3.

Get-2-cards.
move rec3 to reel.
if not end-of-input

perform Read-rec2
if not end-of-input

perform Read-rec3.

Read-rec2.
read infile into rec2

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to rec2.

Read-rec3.
read infile into rec3

at end
move "T" to end-of-input-switch.

if end-of-input
move zeros to rec3.

Print-good-set.
write outrec from reel.
write outrec from rec2.

Print-error-heading-card.

245

if (rl-branch not= r2-branch) and rl-type = "MOD2"

148
149
150
151
152
153 *

else
write outree from reel

move rl-braneh to e-heading-braneh
write errorree from error-heading
write errorree from reel.

246

Data and Program Structures for Program PURGE

File Structures

0
Branches-not
equal Window

Rec1

Br1 ;e Br2

Outfile

ood-record *

Sets

INFILE

Br1 = Br2 = Br3 = Br Ty1 or Ty2 Ty1 < Ty2
non-numeric

Errorfile

Error-record •
Sets

Error-record
Set

Figure A1.1

247

ec2 Rec3

C-Branches-not-equal-W
P-Branches-not-equal-errorse

Branches-not-equal

P-Error-heading & E-rec1
Prl n t-error-head Ing-ca rd

P-Error-heading & E-rec1
Prl nt-error-headlng-ca rd

Program Structure

C-INFILE
P-OUTFILE
P-ERRORFILE

Main

P-Error-headlng & E-rec1
P rl nt-error-headl ng-ca rd

Figure A1.2

Note - COBOL paragraph
names are identified on
this diagram· in bold type

N
~
o:::>

249

APPENDIX 2 MAINTENANCE TOOLS

DOCUMENTATION SUPPORT TOOLS

Below several tools which support or can be applied to

general or specific documentation are summarised.

FORTUNE

FORTUNE [RIC85] is a proposed project to develop a

desk-top system for software engineers. This UNIX-based

system is centred around documentation including text,

design diagrams, source code, tables, charts, manuals

and user documents. It's purpose is to support other

IPSE systems by providing interfaces for system

designers, programmers, technical writers and graphics

designers to documentation. Interface features include

editing, cross-reference searching, demand publishing

(on high

annotation

quality printers)

by users. Author's

and allowing

tools for

document

spelling

checking and correcting, thesaurus and style checkers

are also supported. This project is a method of

enhancing documentation quality and appears to be

directed more toward development information. FORTUNE

will be tailorable to different development

methodologies.

250

MIDOK

MIDOK (Kammerer (EBE80]) is a documentation management

system for the systematic storage, retrieval and

reproduction of information. MIDOK is essentially the

user interface to documents held either in files or a

GOLEM data

searching

version of

base. The data base provides extensive

and keywording functions although a reduced

MIDOK can omit it. The structure of

documentation from the user's view is hierarchical.

Information about a particular subject is arranged into

a concept tree of increasing specification which has as

its leaf level individual documents (or information

objects). There is considerable scope for different

kinds of document and they may be identified

(classified), unidentified, formatted or unformatted.

Users may access, update or print documents, concepts

or subjects via a menu-type dialogue. An accelerated

"chaining" of dialogue commands is also supported.

SID

SID [BRI84] (System Information Data Base) is an

automated documentation system for rapid and accurate

entry, update and retrieval of documents. SID is based

around a relational database. Elements stored in the

system include details of the purposes, customer and

251

who is responsible for maintenance in business

application components as well as typical development

information about component functions, data usage and

invocational structures. The system supports retrieval

of information as visual tables of contents (VTOC) and

hierarchical input process output (HIPO) diagrams and

readily displays the information inventory through

indices of programs, files, tasks and catalogues of

subsystems. As well as helping programmers understand

and document an application, SID has been used to

quickly identify which personnel have administrative,

maintenance and operational responsibilities over which

parts of a system. Eventually it is hoped to include in

SID run and recovery instructions, file access rights,

account restrictions, file retentions and other

operations data.

SODOS

SODOS (Software Documentation Support) [HOR86] is a

system to support the definition and manipulation of

development documents. SODOS is a connecting user

interface to an object based model of the Software Life

Cycle (SLC) and documents held in a relational DBMS.

Documents such as memos, notes, tutorials, formal

documents (which depend on the development methodology

252

used), manuals and source code are stored as instances

of a DOCUMENT relation. The system allows documents to

be created, updated and queried. Hierarchies and

interrelationships can be defined between documents.

Every document has associated keywords, components

(e.g. figures) and a structure (i.e. format). Using the

SLC model, SODOS provides for consistency and

completeness checks among documentation.

253

TOOL-BASED DEVELOPMENT AND MAINTENANCE ENVIRONMENTS

Some environments usually consisting of sets of

integrated tools are briefly outlined below.

ADA Environment Tool Box

When suggesting future tools to be incorporated into an

ADA environment, Saib [SAI83] identifies three major

groups: multipurpose, software production and

management. Software production tools are requirements

processor, specification processor, design analyser,

coding assistant, standards checker, compiler, static

analyser, linking loader, configuration manager, test

assister and verifier. Management activities supported

by tools are planning, staffing, directing, organising

and status reporting. The major multipurpose tool which

integrates the whole proposed environment is a data

base manager which controls a single data base for all

environment activities. A feature of the connection

between design

generation of

description.

and coding tools in development is the

a program skeleton from the design

For most maintenance activities, the support tools are

the same as for development. Exceptions include

diagnostic mechanisms to aid in identifying the source

254

of error symptoms in corrective maintenance. It is

suggested that enhancement maintenance should be

carried out by modifying first the requirement

documents then the specifications and finally the code.

This order facilitates identification of the extent of

changes early in the enhancement task by comparison of

original and modified program skeletons. Good

documentation of the entire history of a project

including test descriptions, data sets and results

appears to be a corner-stone of environment support for

maintenance (and development).

DREAM

DREAM [RID81] is a design system for development. The

basis of DREAM is DDN (DREAM Design notation), which is

a language which allows description of design decisions

and their hierarchies and interrelationships. DDN is

particularly suited to concurrent system design. DDN

text for modules/programs is obviously referred to when

coding but can also be used for integration and a type

of modelling of the developing application. The DREAM

system supports managed access and updating of

fragments of DDN script stored in a central data base.

ME2

ME2 [COL85a] is a proposed

engineering environment. The

255

prototype maintenance

environment consists of

three parts; a knowledge base, an integrated toolset,

and maintenance personnel. The proposed knowledge base

contains a data base of maintenance information.

Maintenance personnel interact

when performing their tasks.

with this information

The knowledge base

monitors the interaction and is supposed to "learn"

from it, creating new implied relationships among the

information. It is suggested that the toolset should

contain the technical support tools outlined below. To

derive a portion of the maintenance information

required in the knowledge base, a prototype syntactic

analyser for PASCAL has been developed.

Understanding tools

problem-knowledge

To enable

domain view

a high

(i.e.

level,

program

level requirements information) as well as lower

views of module imports, exports, syntax

semantics and module calling hierarchies.

and

Modification Management Tools : To link modification

requirements to design and to perform software

change control management.

Designing and Testing Tools

analyser is suggest and

effective regression

investigation.

256

A ripple effect

a subsystem for cost-

testing is under

257

TOOLS FOR SOURCE CODE MANAGEMENT

Some tools exclusively for the management, access or

manipulation of program source are identified below.

AURUM

AURUM (Wagner [EBE80]) is a system for

visualisations of the structure of an

representing

application

system. This tool uses application information such as

source code, module libraries, cross-reference listings

and procedure tracing paths for its analysis but the

main emphasis is on displaying the analysis results

using a graphics workstation machine and plotter.

Application information is derived from other tools

present on a mainframe. AURUM allows graphical

observation of procedure/module linkages (both static

and dynamic) and usage of language structures and data

structures within a program. Source languages whose

structures can be represented include PASCAL, FORTRAN

and COBOL.

CHART and STRUC

CP4~RT and STRUC [THA81] are graphical tools for

computer science education. They are written in MIRA-2D

and allow visualisation of processes and structures

258

within a PASCAL program. CHART supports viewing the

structure of a program by producing structured charts.

STRUC shows the evolution of data structures during

program execution and appears to be a minor advance on

interactive debuggers. CHART is also a relatively

simple student program understanding tool and it does

not allow any direct program modification.

CONTOUR

CONTOUR [GIM80] is a program formatter for Pascal and C

programs. This tool illustrates blocks and the scope of

control structures in source code by outlining sections

with "contour" lines or boxes. The formatted source is

suitable for display on standard terminals unlike many

graphical tools.

MAP

MAP [WAR82] is an interactive understanding tool

designed to assist maintainers in understanding COBOL

programs. MAP takes the source of a COBOL program,

generates a data base of source information and allows

various views and enquiries on the DB data. A program

can be viewed as a structure chart (of CALLed and

PERFORMed blocks) or local source code (a paragraph

which has been zoomed in on). By displaying relevant

259

lines of source, MAP supports control tracing

(following control flow paths) and data tracing

(following data aliasing and references). Tracing can

be carried out both forward from a particular line

number and backward. MAP also contains a scheme for

comparing

reporting

two versions

differences. To

of the

enhance

same

the

program

simple

and

MAP

commands a facility for macro definition (called Script

files) is available.

SCAN/370 and SUPERSTRUCTURE

SCAN/370 [RIC84J is a tool which can be applied to a

COBOL program to produce a source listing containing

embedded path data and reports that trace all logic

paths within the source and identify dead code.

SUPERSTRUCTURE [RIC84] is a more advanced tool which

identifies unacceptable flaws in COBOL source (e.g.

fall through execution of paragraphs) and rewrites a

program using only structured constructs.

Interactive Static Analyser

Bell [BEL84J reports on the results of a beta test on

an interactive static analyser and identifies where

this tool fits into the overall maintenance

environment. The analyser takes COBOL source and stores

260

it in an on-line data base. Through this system three

views of a program are possible using structure charts,

the source code itself, or source differences (a

program version comparison). For each view, selection

and tracing of data and control flows is supported.

This static analyser primarily aids programmer

understanding.

TEXJAX

TEXJAX [RIC84] is

documenter for

an

PL/I

in-house

programs.

static analyser

It scans code

and

and

produces complexity metrics, structure charts, module

hierarchy charts and annotated source code.

261

OTHER TOOLS

Tools which are associated with particular application

documentation, other than exclusively source code, are

summarised below. Some of these paragraphs identify

systems which support large areas within application

development or maintenance.

AIDES

AIDES [WIL79] (Automated Interactive Design and

Evaluation System) is a proposed system to support

application design in the form of structure charts of

the Structured Design methodology. Two AIDES tools

which have been developed are a structure chart

graphics

package

structure

package (SCG} and a

(DQM}. The SCG allows

design quality metric

the building of a

chart on a graphics terminal. It

automatically collects design information in a database

and supports reproduction of designs. The DQM evaluates

a structure chart produced by the SCG in terms of

hierarchies of calling modules and module connectivity.

Other parts of AIDES include features for automatic

chart layout, design quality assurance, automatic test

selection and documentation and configuration control.

262

The Programmer's Apprentice

The Programmer's Apprentice [WAT82] is system to assist

in application design and implementation. This system

documents an evolving program using two

representations; a plan and the program text.

Components of the apprentice are a library (plans of

common program modules), an analyser (which produces

plans from existing source), a drawer (to draw plans),

a coder (which generates source from simple plans) and

a plan editor (which interfaces to all other components

and the user. The idea is to automate code production

for simple programs and enable modification of these

programs by merely modifying their plans. The system

was designed to support development but clearly could

be used in maintenance.

CASE

CASE [AME79] is a system development tool to support

the functions of document production, module design and

code production, module testing, configuration

management and management report production. CASE is

designed to provide status information for managers as

well as various documentation and configuration data

for programmers and designers. This system allows

information to be entered and edited in a variety of

263

general documents), DADA

DBD (data base definitions),

files including text (for

(designs and diagrams),

test descriptions, and CCS (Configuration Control

systems) files. Using these files, testing can be

directed, overall database schemas and subschemas

designed and correct application configuration assured.

In this system, program source is entered directly into

DADA files. A measure of consistency can be achieved

between program design and implementation in terms the

functions used and data referenced using a cross file

correlator.

DOCU/TEXT

DOCU/TEXT [RIC84] is a system redocumentation tool

linked to JCL. It requires the JCL to fit into a

fairly rigid format and seems to be most useful when

combined with a customised JCL scanner. DOCU/TEXT

provides the basis for automated production of

application operator manuals.

FRED, ISADORE

FRED [SHI85] is a structured screen based editor and

ISADORE is an associated automated reference librarian

system. FRED, like other language orientated editors,

is used to avoid syntax and context sensitive errors in

264

source code. Error detection is performed by

incrementally parsing user input. FRED achieves a

degree of language independence in that all language

orientated information is derived from description

tables which can be adjusted for different dialects or

languages. An advanced feature of FRED is that it

allows users to find library code and construct

interfaces to this code. ISADORE is responsible for

managing the library routines whose existence is an

attempt to reuse previously tested code. The library

routines may be in several different languages and

identification is by function. Hence descriptive

documentation about routines must also be available in

some form.

LIBMAN

LIBMAN [RIC84]

for control

is a custom library management

of source and load libraries

system

across

multiple sites. It is specifically designed to support

repair and enhancement of production programs.

MICS

MICS (MVS Integrated Control System) [RIC84] is an

operational logging system which gathers information

from many sources on problems within an application

265

system. The information is stored in a SAS data base

from which reports can be generated.

PECAN

PECAN [REI84] is a program development system generator

for algebraic programming languages. PECAN is built on

a Brown workstation environment and uses tools

including MAPLE, ASH, VT and WILLOW to provide

graphical views of an evolving application. This system

allows a developer to enter, edit or display a program

through a syntax-directed editor, Nassi-Schneiderman

flow chart, structured flowgraph (proposed extension)

or procedure-connection diagram (proposed extension)

view. An application program can also be displayed

terms of its symbol table, data types, expressions and

flow of control. PECAN uses an incremental compiler to

build many of these views so that the analysis of a

program is often partially static and partially

dynamic. Execution views of variables and stacks

provide for debugging and execution monitoring services

within PECAN.

RXVP

RXVP (Geiger [EBE80]) is a automated test and

documentation system for static analysis of FORTRAN

266

programs. The system first standardises the format of a

program and then generates documentation reports

containing control flow and data usage information. For

large programs, a data base is used to store program

information between analysis and report production. The

reports produced include a module invocation matrix,

cross-reference data (identifying variable definition,

use and updating), and a common block usage report. In

addition to static analysis, RXVP can aid dynamic

analysis. This is achieved by modifying the program to

report reaching of branches during

the "instrumented" program in a

execution. Running

test bed situation

results in execution frequencies of parts of the

program for the test data used. Thus, the completeness

of test coverage can be assessed.

SADAT

SADAT [VOG80] is an automated testing tool applicable

to single FORTRAN modules. This tool combines the

functions of static analysis, dynamic analysis, test

case generation and path predicate calculation. These

functions are integrated via a common database and

directed by a user. The database is generated through

static analysis which also produces a program graph,

reduced program graph and reports on structural

267

deficiencies of the source. From the database, a near

optimal group of test cases ensuring at least one

execution of each node of the program graph can be

derived and, by using symbolic execution, infeasible

paths through the program are identified (path

predicate calculation). Dynamic analysis is performed

by automatically instrumenting the program (again using

data base information), recompiling, loading with a

monitoring subroutine and execution. Reports produced

by dynamic analysis include frequencies of path and

loop execution for given test data.

SAMO$ tools

SAMOS (Software Adaption and Maintenance Organisation

System) applies an integrated toolset to the task of

firstly adapting mainly FORTRAN software to different

environments, and then managing maintenance of the

adapted systems. The toolset includes QUODOS, EDIERE,

PROTRAN (a compiler construction tool for

dialect/language translation), COMPARISON (for delta

abstraction and analysis, see QUODOS), and ERZEUGE.

Some of these tools are briefly described below. For

further information see the SAMOS section of [EBE80] by

Luegger, Fromm, Goecke and Roitzsch.

268

QUODOS and secs : secs (Source Code Control System)

[ALL84) is a model for the modification management

of text (source, documentation or JCL). Within

this model original text exists along with chains

of deltas (changes) representing modifications

which have been made over time. Information about

the author and creation date are held about each

delta. An identification system defines modified

versions of text in terms of release numbers

(possibly major development phases) and within

releases, level numbers. From the information a

particular version of, say, a program, can be

generated.

QUODOS is an automated tool for a similar control

system to SCCS. There is a different approach in

QUODOS with reverse deltas being stored, recording

what changes to the current up-to-date version of

text generate earlier versions. Benefits from this

scheme include better delta synchronisation as

line numbers can be more easily used to define

changes. In secs, line numbering is complicated by

renumbering when inserting new text.

EDIERE: EDIERE is a context editor designed to cope

with maintenance and adaptation requirements for

large programs. A generalised I/0 interface in

269

EDIERE allows it to access diverse types of files

with different organisations and structures. To

enable editing and alternative "views" of these

files EDIERE has a command structure based on

SNOBOL4 pattern matching and allows extensive use

of command macros. When editing source code,

programming language orientated macros can pick

out block structures, extended control structures

and other source objects. EDIERE is thus useful

for source analysis, systematic modification and

source restructuring as well as standard editing.

The static source analysis appears to be more

tailored to control flow analysis than extensive

data abstraction, but this may be because EDIERE

has mainly been used in adapting FORTRAN systems

to different machines.

ERZEUGE : ERZEUGE is an organisation tool for JCL and

is basically a macro processor with some

interactive features. It allows control of the

modification process through parameterisation of

change procedures and coordination of other tools.

ERZEUGE macros can be used to abbreviate JCL

commands or to extend the JCL to, say,

automatically link compiling, loading and testing

of a generalised module. This tool, based on

270

interpreted macros, may be redundant as it's

facilities are already present in some operation

systems (e.g. UNIX)

SAS

Deutsch [DEU81] describes a general class of automated

test assistance tools called Source Analyser Systems

(SASs). SASs provide facilities for measuring

performance of software and effectiveness of test

cases. The five basic functions are:

1. Source analysis and database creation.

2. Generation of reports from static analysis

describing software control and data features and

identifying potential problems.

3. Insertion of software probes (instrumentation) for

the collection of execution information.

4. Analysis and reporting of test results.

5. Generation of test assistance reports.

An integrated SAS would form a test environment useful

in both development and maintenance. RXVP is an example

of a complete SAS but most tools provide only some of

test functions given above (e.g. CHART and TEXJAX).

271

APPENDIX 3 A REDUCED COBOL LANGUAGE

APPENDIX 3A OMISSIONS FROM STANDARD COBOL

A module by module account of disparities between the

COBOL standard defined in [COB81] and Appendix 3A is

given below. Abbreviations used are :

ID for IDENTIFICATION DIVISION

ED for ENVIRONMENT DIVISION

DD for DATA DIVISION

PD for PROCEDURE DIVISION

1. The Nucleus.

In an effort to remove machine configuration dependent

aspect from the COBOL standard being produced,

implementor-names which link objects such as files to

external devices were omitted (except in the ASSIGN TO

clause of file-control-entries). This led to the

removal of mnemonic-names which are heavily related to

implementor-names via

ALPHABET and SYMBOLIC

the SPECIAL-NAMES paragraph.

CHARACTER statements of this

paragraph and partial array references within a program

were also omitted to simplify analysis of COBOL symbols

and statements. The STOP verb is similar to

implementor-names in that it defines an external

execution link and so it too was removed. Level 66

272

(renames) variables were deleted because they are

seldom used [TOR79]. Some of these changes imply other

deletions in the I/O modules, but nucleus specific

omissions are

PROGRAM COLLATING SEQUENCE statements in the

OBJECT-COMPUTER paragraph of the

CONFIGURATION SECTION

Implementor-names, ALPHABET, or SYMBOLIC

CHARACTERS statements in the SPECIAL-NAMES

paragraph of the CONFIGURATION SECTION

Level 66 RENAMES statements in data-description-

entries of the DD

FROM mnemonic-name clause for the ACCEPT verb in

the PD

UPON clause for the DISPLAY verb in the PD

Mnemonic-name TO ON/OFF format for the SET verb

in the PD

STOP verb in the PD (used to temporarily suspend

program execution)

Reference to partial arrays by

subscript (leftmost-character-position

[length)

in any identifier

273

2. The I/O Modules.

The omissions of implementor, mnemonic and alphabet­

names from the nucleus mean removal of some clauses in

file-control-entries FDs and PD statements. The ASSIGN

TO clause of file-control-entries remains because it is

thought to be commonly used. In analysis, no action,

other than identifying and storing the group of

implementor-names in each ASSIGN clause will be carried

out. As the PADDING CHARACTER clause of file-control­

entries is peculiar to sequential I/O and not present

in ANS 740, it was deleted. The DATA RECORD IS clause

of FDs was also removed as it is redundant and marked

for removal in later COBOL standards [COB81J. Specific

omissions are :

PADDING CHARACTER IS clause in a file-control-entry

in the ED

RECORD DELIMITER IS clause in a file-control-entry

in the ED

CODE-SET clause in a file-control-entry in the ED

DATA RECORDS clause of FDs in the DD

VALUE OF clause in FDs in the DD

CODE-SET clause in FDs in the DD

ADVANCING mnemonic-name clause for the WRITE verb

in the PD

274

Out-of-line exception and recovery facilities were

considered extras to COBOL which although used in many

modules could be ignored in a prototype SSCA. Specific

omissions are

I-O-CONTROL paragraph of the INPUT-OUTPUT SECTION

(also part of the Sort/Merge module)

DECLARATIVES to END-DECLARATIVES block preceding

normal PD sections and paragraphs (also

part of the Debug and Report Writer modules)

USE verb in the PD (also part of the Inter-Prograrn­

Cornmunication, Debug and Report Writer modules)

3. The Inter-Program Communication Module.

Some inter-program communication features and the

system for nesting programs within one compilable unit

were omitted. This is because the prototype SSCA is

concerned with building a database reflecting just one

COBOL program. Limited communication facilities remain.

For instance, the CALL statement is available and data

can be sent or received via the LINKAGE SECTION. BY

REFERENCE and BY CONTENT clauses of the CALL were left

out because they are not present in ANS 74. The EXIT

PROGRAM statement in the PD will be treated in a

similar manner to the STOP RUN statement (i.e. in terms

of the executing program it is as if it had been

CALLed). Specific omissions are

END-PROGRAM-HEADER entry

COMMON or INITIAL clauses of the PROGRAM-ID

paragraph of the ID

EXTERNAL or GLOBAL clauses in FDs in the DD

EXTERNAL or GLOBAL clauses in data-description­

entries in the DD

275

BY REFERENCE or BY CONTENT clauses for the CALL verb

in the PD

4. The Sort/Merge Module.

The whole module is omitted. This includes removal of

the following features :

Sort-merge-file-description-ehtries (SDs) in the

FILE SECTION

MERGE verb in the PD

RELEASE verb in the PD

RETURN verb in the PD

SORT verb in the PD

5. The Source Text Manipulation Module.

The whole module is omitted. This includes removal of

the following features :

COPY statement anywhere in the program

text-name IN/OF library-name qualification clauses

in any statement

REPLACE verb in the PD

REPLACE OFF verb in the PD

276

6. The Debug Module.

The whole module is omitted. This includes removal of

the following features

WITH DEBUGGING MODE clause in the SOURCE-COMPUTER

paragraph of the CONFIGURATION SECTION

7. The Report Writer Module.

The whole module is omitted. This includes removal of

the following features :

REPORT SECTION or Report-file-description-entries

(RDS) in the DD

IN/OF report-name qualification of an identifier,

LINE-COUNTER or PAGE-COUNTER

GENERATE verb in the PD

INITIATE verb in the PD

SUPPRESS PRINTING verb in the PD

TERMINATE verb in the PD

8. The Communication Module.

The whole module is omitted. This includes removal of

the following features :

COMMUNICATION SECTION or cornmunication-description­

entries (CDs) in the DD

IN/OF cd-name qualification of a condition or

identifier

cd-narne MESSAGE COUNT format for the ACCEPT verb in

the PD

DISABLE verb in the PD

ENABLE verb in the PD

PURGE verb in the PD

RECEIVE verb in the PD

SEND verb in the PD

277

278

APPENDIX 3B LANGUAGE DESCRIPTION

This is a reduced version of COBOL based on the Draft

Proposed Revised X3.23 A.N.S. Programming Language

COBOL, Sept. 1981 [COB81]

Meta Language Description

1) Object Grouping { objectl object2 } - normal gp.

objectl object2] - optional gp.

2) Iteration of a group: { objectl } ... - indicates 1

or more objectls

[objectl] ... - indicates 0

or more objectls

3) Case (one or other of objects) {I objectl I}

object2

- either objectl or object2

4) Case entries over more than one line :

{I objectl I} - indicates objectl or

/ object2 \ object2 object3

\ object3 /

5) Mandatory objects objectl

Format for the Overall Program

identification-division

[environment-division

data-division

procedure-division

Format for the Identification Division

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

AUTHOR. comment-entry] ...

INSTALLATION. comment-entry] ... J

[DATE-WRITTEN. [comment-entry] .. .

[DATE-COMPILED.

SECURITY.

[comment-entry] ...]

comment-entry] ... J

279

Format for the Environment Division

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. [computer-name .]]

OBJECT-COMPUTER. [computer-name
[SEGMENT-LIMIT IS segment-number].]]

SPECIAL-NAMES.
[CURRENCY SIGN IS literal-4]
[DECIMAL-POINT IS COMMA] .]

INPUT-OUTPUT SECTION.

FILE-CONTROL.
{ file-control-entry} ...

Format for file-control-entry

SELECT [OPTIONAL] file-name-1

ASSIGN TO { implementor-name-1 } ...

[RESERVE integer-1 [I AREA I]]
I AREAS I

[[ORGANIZATION IS] {I SEQUENTIAL I}]
I RELATIVE I
I INDEXED I

[BLOCK CONTAINS [integer-2 TO] integer-3
{ I RECORDS I} J
I CHARACTERS I

280

[ACCESS MODE IS {I SEQUENTIAL
I RANDOM

I} [RELATIVE KEY
I

I DYNAMIC I
IS data-name-1)]]

RECORD KEY IS data-name-1]

ALTERNATE RECORD KEY IS data-name-2
[WITH DUPLICATES]] ...

FILE STATUS IS data-name-2].

281

Format for the Data Division

DATA DIVISION.

FILE SECTION.
--[file-description-entry

{record-description-entry} ... J .•• J

[WORKING-STORAGE SECTION.
[I 77-level-description-entry I] ...

I record-description-entry I

[LINKAGE SECTION.
[I 77-level-description-entry I] ...

I record-description-entry I

Format for file-description-entry

FD file-narne-1

[BLOCK CONTAINS [integer-1 TO] integer-2
{I RECORDS I} J

I CHARACTERS I

[RECORD
{ I CONTAINS integer-3 [TO integer-4) CHARACTERS I}

I / IS VARYING IN SIZE-[[FROM integer-4) \ I
I I [TO integer-5 J CHARACTERS J I I
I \ [DEPENDING ON data-narne-1 J / I

[LABEL {I RECORD IS I} {I STANDARD I} J
I RECORDS ARE I I OMITTED I

[LINAGE IS { I data-narne-4 I } LINES
I integer-8 I

[WITH FOOTING AT { I data-narne-5
I integer-9

[LINES AT TOP { I data-narne-6 I } --
I integer-10 I

LINES AT BOTTOM { I data-narne-7
I integer-8

[[ACCESS MODE IS] { I SEQUENTIAL
I RANDOM

I }
I

I }
I
J

I }
I

J

J J

I DYNAMIC
RELATIVE KEY IS

I
data-narne-8 J J

RECORD KEY IS data-name-9)

ALTERNATE RECORD KEY IS data-name-10
[WITH DUPLICATES)) ...

FILE STATUS IS data-name-11] .

282

Format for record-description-entry

record-description-entry::= levelled set of

data-description-entries

77-level-description-entry ::=

record-description-entry

where level-number is 77

Format for data-description-entry

{ I I 88 condition-name-1 { I VALUE IS I } \
I I I VALUES ARE I I
I I { literal-1 [{ I THROUGH I } data-name-4] } I
I \ ITHRU I I
I
I I level-number [I data-name-5 I J \
I I I FILLER I I
I I I
I I REDEFINES data-name-6) I
I I I
I I I { I PICTURE I } IS character-string \) I
I I \ I PIC I I I --
I I I
I I [I [USAGE IS) { I COMPUTATIONAL I } \ I
I I I I COMP I I I
I I I I DISPLAY I I I
I I \ I INDEX I I I
I I I
I I [I SIGN IS] { I LEADING I } \ I
I I I I TRAILING I I I
I I \ [SEPARATE CHARACTER I I

I }
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

283

I I
I [I OCCURS integer-1 [TO integer-2] TIMES\ I
I I [DEPENDING ON data-name-7] I I
I I [I { I ASCENDING I } \ I I
I I I I DESCENDING I I I I
I I \ KEY IS {data-name-3} ...] ... / I I
I \ [INDEXED BY {index-name-1} ...]] I I
I I
I I { I SYNCHRONIZED I } [I LEFT I J \ I
I \ I SYNC I I RIGHT I I I
I I
I I { I JUSTIFIED I } RIGHT \] I
I \ I JUST I I I
I I
I BLANK WHEN ZERO] I
I I
\ VALUE IS literal-2] I

284

Format for the Procedure Division
====-==-==----------=------------

PROCEDURE DIVISION [USING {data-narne-1} ... J •

{ [section-name SECTION [segment-number]. J
[paragraph-name. [sentence] ...] ... } ...

sentence set-of-statements

Format for COBOL Verbs

ACCEPT identifier-1 [FROM { I DATE I}
I DAY I
I iSAY-OF-WEEK I
I TIME I

Format 1 ADD {I identifier-1 I} ...
-- I literal-1 I

TO { identifier-2 [ROUNDED] } ...

[ON SIZE ERROR irnperative-staternent-1 [END-ADD]]

Format 2 ADD {I identifier-1 I} ... TO {I identifier-2 I}
-- I literal-1 I - I literal-2 I

GIVING { identifier-3 [ROUNDED] } ...

[ON SIZE ERROR imperative-statement-1 [END-ADD] J

Format 3 ADD { I CORRESPONDING I} identifier-1
- I CORR I

TO identifier-2 [ROUNDED]

ON SIZE ERROR imperative-statement-1 [END-ADD] J

CALL { I identifier-1 I} [USING { data-narne-2 } ...]
-- I literal-1 I

[ON OVERFLOW imperative-statement-1 [END-CALL]

CANCEL {I identifier-1 I}
I literal-1 I

CLOSE { file-name-1 [I /
I \
I /
I \

{I REEL I} [FOR REMOVAL]
I UNIT I

WITHTT NO REWIND I}
I LOCK I

COMPUTE { identifier-1 [ROUNDED] } ...
= arithmetic-expression-1

285

\ I J
/ I
\ I
/ I

} ...

ON SIZE ERROR imperative-statement-1
[END-COMPUTE]]

CONTINUE

DELETE file-name-1 RECORD

[INVALID KEY imperative-statement-1 [END-DELETE]]

DISPLAY {I identifier-1 I} .•• [WITH NO ADVANCING J
I literal-1 I

Format 1 DIVIDE {I identifier-1 I}
I literal-1 I

INTO { identifier-2 [ROUNDED] } ...

ON SIZE ERROR imperative-statement-1
[END-DIVIDE]]

Format 2 DIVIDE { I identifier-1 I} {I INTO I}
I literal-1 I I BY I

{I identifier-2 I}
I literal-2 I

GIVING { identifier-3 [ROUNDED J } •.•

[ON SIZE ERROR imperative-statement-1
[END-DIVIDE]]

286

Format 3 DIVIDE { I identifier-1 I} {I INTO I}
I literal-1 I I BY I

{I identifier-2 I} GIVING identifier-3 [ROUNDED]
I literal-2 I

REMAINDER identifier-4

[ON SIZE ERROR imperative-statement-1
[END-DIVIDE]]

EVALUATE { I identifier-1 I } ... { { WHEN
I literal-1 I
I expression-1 I
I TRUE I
I FALSE I

{ I ANY
I condition-1
I TRUE
I FALSE
I
I I [NOT] { { I identifier-2 I }
I I I literal-2 I
I I I arithmetic-expression-2 I
I I [I { I THROUGH I }
I I I I THRU I
I I I {Tl:ctentifier-3
I \ \ I arithmetic-expression-3
I

} ... imperative-statement-1 } ...

[WHEN OTHER imperative-statement-2

[END-EVALUATE]

EXIT.

EXIT PROGRAM

Format 1 GO TO procedure-name-1

\
I
I

\]} I
I I

I } I I
I I I

Format 2 GO TO {procedure-name-1} ... DEPENDING ON
identifier-1

I } ...
I
I
I
I
I
I
I
I
I
I
I
I

IF condition-1 THEN {I {statement-1} ... I}
I NEXT SENTENCE I

[I ELSE { statement-2}. . . [END-IF] I J
I ELSE NEXT SENTENCE I
I ENiS=I_F_ I

INITIALIZE {identifier-1} ...

[REPLACING { I
I
I
I
I

ALPHABETIC
ALPHANUMERIC
NUMERIC
ALPHANUMERIC-EDITED
NUMERIC-EDITED

I }
I
I
I
I

287

DATA BY { I
I

identifier-2 I}
literal-2 I

Format 1 INSPECT identifier-1

TALLYING { identifier-2 FOR
{ I I CHARACTERS [{ I BEFORE I } \ l} ... } ... J

I I I AFTER I I I
I I INITIAL { I identifier-3 I } J ••• I I
I \ I literal-3 I I I
I I
I I { I ALL I } { { I identifier-4 I}\ I
I I I LEADING I I literal-4 I I I
I I [{ I BEFORE I } INITIAL I I
I I I AFTER I I I
I I { I identifier-5 I } J ••• } ••• I I
I \ I literal-5 I I I
I I

REPLACING
{ I / CHARACTERS BY { I identifier-6 I } \ I } ... J

I I I literal-6 I I I
I I [{ I BEFORE I } INITIAL I I
I I I AFTER I I I
I I { I identifier-7 I } J ••• I I
I \ I literal-7 I I I
I I
I I { I ALL I } { { I identifier-8 I} BY \ I
I I I LEADING I I literal-8 I I I
I I I FIRST I I I
I I { I identifier-9 I } [{ I BEFORE I } I I
I I I literal-9 I I AFTER I I I
I I INITIAL { I identifier-10 I } J ••• } ••• I I
I \ I literal-10 I I I

288

Format 2 INSPECT identifier-1 CONVERTING

{I identifier-2 I} TO {I identifier-3 I}
I literal-2 I - I literal-3 I

{ I BEFORE I} INITIAL {I identifier-4 I}] ...
I AFTER I I literal-4 I

Format 1 MOVE {I identifier-1 I} TO { identifier-2 } ...
I literal-1 I

Format 2 MOVE {I CORRESPONDING I} identifier-1
I CORR I

TO identifier-2

Format 1 MULTIPLY {I identifier-1 I}
I literal-1 I

BY {identifier-2 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1
[END-MULTIPLY]]

Format 2 MULTIPLY {I identifier-1 I}
I literal-1 I

BY {I identifier-2 I}
I literal-2 I

GIVING { identifier-3 [ROUNDED] } ...

[ON SIZE ERROR imperative-statement-1
[END-MULTIPLY]]

OPEN {I INPUT { file-name-1 [WITH NO REWIND] } ... I} ...
I OUTPUT { file-name-2 [WITHNO REWIND J } ••• I
I I-0 { file-name-3 }. .. - I
I EXTEND { file-name-4 }. .. I

Format 1 PERFORM [procedure-name-1
[{ I THROUGH I} procedure-name-2]]

I THRU I

imperative-statement-1 END-PERFORM

289

Format 2 PERFORM [procedure-name-1
[{I THROUGH I} procedure-name-2

[I /
I \
I /
I \

I THRU I

{I identifier-1 I} TIMES
I integer-1 I

[WITH TEST {I BEFORE I}
-- I AFTER I

\ I J
I I

] UNTIL condition-1\ I
/ I

[imperative-statement-1 END-PERFORM

Format 3 PERFORM [procedure-name-1
[{I THROUGH I} procedure-name-2 J J

I THRU I

[WITH TEST {I BEFORE I} J
-- I AFTER I

VARYING {I identifier-1 I} FROM {I identifier-2 I}
I index-name-1 I -- I index-name-2 I

I literal-2 I
BY { I identifier-3 I} UNTIL condition-1
- I literal-3 I
[AFTER {I identifier-4 I}

I index-name-4 I

BY {I identifier-6 I}
I literal-6 I

FROM {I identifier-5 I}
-- I index-name-5 I

I literal-5 I
UNTIL condition-2] ...

imperative-statement-1 END-PERFORM]

READ filename-1 [NEXT] RECORD

KEY IS data-name-2 J

INTO identifier-1

[{I AT END I} imperative-statement-1
I INVALID KEY I

[END-READ] J

REWRITE record-name-1 [FROM identifier-2 J

[INVALID KEY imperative-statement-1 [END-REWRITE]

Format 1 SEARCH identifier-1

[VARYING { I identifier-2 I}
I index-name-2 I

[AT END imperative-statement-1 J

290

{ WHEN condition-1 {I imperative-statement-2 I} } ...
I NEXT SENTENCE I

[END-SEARCH]

Format 2 SEARCH ALL identifier-1

[AT END imperative-statement-1

WHEN { { I I data-name-2 IS { I EQUAL TO I } \ I } }

I I I = I I I
I I I I
I I { I identifier-3 I } I I
I I I literal-3 I I I
I \ I arithmetic-expression-31 I I
I I
I condition-name-1 I

AND { I I data-name-4 IS { I EQUAL TO I } \ I } J •••
I I I = I I I
I I I I
I I { I identifier-5 I } I I
I I I literal-5 I I I
I \ I arithmetic-expression-SI I I
I I
I condition-name-2 I

{ I imperative-statement-2 I }
I NEXT SENTENCE I

[END-SEARCH]

Format 1 SET {I index-narne-1 I} ... TO {I index-narne-2 I}
I identifier-1 I I identifier-2 I

I integer-2 I

Format 2 SET { index-narne-1 } ...

{I UP BY

DOWN BY

I} { I index-narne-2 I}

integer-2

291

START

file-name-1 KEY IS { I EQUAL TO I} data-name-1 J
I = I
I GREATER THANI
I > I
INOT LESS THANI
I NOT_<_--,

[INVALID KEY imperative-statement-1 [END-START]]

STOP RUN

STRING { {I identifier-1 I} ...
I literal-1 I

DELIMITED BY {I identifier-2 I} } ...
I literal-2 I
I SIZE I

INTO identifier-3 [WITH POINTER identifier-4]

[ON OVERFLOW imperative-statement-1 [END-STRING] J

Format 1 SUBTRACT {I identifier-1 I} ...
I literal-1 I

FROM { identifier-2 [ROUNDED] } ...

ON SIZE ERROR imperative-statement-1
[END-SUBTRACT]]

Format 2 SUBTRACT {I identifier-1 I} ...
I literal-1 I

FROM {I identifier-2 I}
I literal-2 I

GIVING { identifier-3 [ROUNDED J } •••

[ON SIZE ERROR imperative-statement-1
[END-SUBTRACT J]

292

Format 3 SUBTRACT {I CORRESPONDING I} identifier-1
I CORR I

FROM identifier-2 [ROUNDED]

ON SIZE ERROR irnperative-staternent-1
[END-SUBTRACT]]

UNSTRING identifier-1
[DELIMITED BY [ALL] { I identifier-2 I}

I literal-2 I
OR [ALL] { I identifier-3 I}] ... J
- -- I literal-3 I

INTO { identifier-4 [DELIMITER IN identifier-5

[COUNT IN identifier-6] } ...

WITH POINTER identifier-7

TALLYING IN identifier-8]

ON OVERFLOW irnperative-statement-1 [END-UNSTRING]]

Format 1 WRITE record-name-1 [FROM identifier-2
[{ I BEFORE I } ADVANCING --

1 AFTER I

{ I I { I identifier-3 I} { I LINE I} \ I}]
I \ I integer-3 I I LINES I / I
I I
I PAGE I

[AT { I END-OF-PAGE I} irnperative-staternent-1
I EOP I

[END-WRITE]]

Format 2 WRITE record-narne-1 [FROM identifier-2]

[INVALID KEY imperative-statement-1 [END-WRITE]

293

Qualification Formats

Identifiers
data-name-1 { I IN I} data-name-2] ...

I OF I
{I IN I} file-name-1

I OF I

[({ I integer-1
I
I / {I data-name-2 I}

I }
I

{I + I} integer-2) \I
I \ I index-name-1 I I - I / I

[
' { I integer-3

I
I I { I data-name-3 I }
I I I index-name-2 I
I I { I + I } integer-4
I \ I - I

Paragraphs
paragraph-name [{I IN I} section-name)

I OF I

Linage-Counters
LINAGE-COUNTER {I IN I} file-name

I OF I

\
I
I
I

Conditions
condition-narne-1 {I IN I} data-name-2 J •.•

I OF I

I } ...)

I
I
I
I
I

{I IN I} file-name-1 J
I OF I

[({ I integer-1 I }
I I
I I { I data-name-2 I } [{ I + I } integer-2] \I
I \ I index-name-1 I I - I II

[
' { I integer-3 I } ...

I I
I I { I data-narne-3 I } \ I
I I I index-name-2 I I I
I I { I + I } integer-4] I I
I \ I - I I I

)

]

294

Miscellaneous Formats

Relational Conditions

{ I identifier-1 I} IS [NOT] {I GREATER THANI}
I literal-1 I I > I
I arithmetic-expression-11 I LESS THAN I

I < I
I EQUAL TO I
I = I

{ I identifier-2 I }
I literal-2 I
I arithmetic-expression-2 I

{ I AND I } [NOT] { I GREATER THAN I }
I OR I I > I

I LESS THAN I
I < I
I EQUAL TO I
I = I

{ I identifier-3 I }] ...
I literal-3 I
I arithmetic-expression-3 I

Simple Conditions

[NOT] { I I identifier-1 IS \ I }
I I [NOT] { I NUMERIC I } I I
I I I APHABETIC I I I
I I I APHABETIC-LOWERI I I
I \ I APHABETIC-UPPERI I I
I I
I I arithmetic-expression-1 IS \ I
I I [NOT] { I POSITIVE I } I I
I I I NEGATIVE I I I
I \ I ZERO I I I
I I
I condition-narne-1 I

295

Complex Conditions

[NOT (] ... { I simple-condition-1 I} [)] ...
I relational-condition-1 I

{ {I AND I} [NOT (] ...
I OR I -

{I simple-condition-2
I relational-condition-2

General Condition

{I simple-condition-1 I}
I relational-condition-1 I
I complex-condition-1 I

I} [)] ... } ...
I

296

APPENDIX 4 COBOL SOURCE CODE INFORMATION

APPENDIX 4A ENTITIES AND ATTRIBUTES FOR INFORMATION

IN A COBOL PROGRAM

Abbreviations.

general abbreviations : YIX - either Y or X

{X} - any number of X tokens

A{X}B - between A and BX tokens

[XJ - optional; specified for

relationships only.

descriptors : id - general identifier

ln - source line number

fg - flag

tokens : co condition, cu condition-usage,

du data-usage, fi file, fv file-variable,

il identifier-lit, pa paragraph,

pr program, se section,

sg statement-group, so source,

st statement, va variable,

v8 variable-88.

storage characteristics

c? - 1 occurrence of? characters

xc? - x occurrences of? characters

i? - 1 occurrence of a? byte integer

xi? - x occurrences of? byte integers

Token pointers are assumed to have

storage characteristic i2.

relationships . one to one .

--> one to many

<-- many to one

<--> many to many

LANGUAGE DEFINITION ENTITIES.

ENTITY-NAME program token : pr

Description Records general program information

from the ID and Configuration Section of the ED.

Pd-using identifies linkage variables.

Instances : One only

Attributes : pr-name(pr,c31),

source-computer(id,c31), object-computer(id,c31),

segment-limit(i2), currency-sign(cl),

decimal-point(fg,cl).

Relationships : [pd-using(pr --> va)),

sections-or-paras(pr --> selpa).

Implementation Attributes : pd_using(0{pva,i2}5).

Relation : program(pr_name = c31,

source comp = c31, object comp = c31, - -

seg_ limit = i2, currency_ sn = cl, decimal _pt =

pd_ using_ 1 = i2, pd_ using_ 2 = i2, pd_using_ 3 =

pd_using_ 4 = i2, pd_ using_ 5 = i2)

cl,

i2,

297

file token : fi ENTITY-NAME

Description Records definition information about

particular files. Contains file-control-entry

(ED} and file-description-entry (DD} data as

well as links to record-description-entries.

Instances : One per file

Attributes : fi-name(fi,c31},

fi-control-position(ln,i2}, fd-position{ln,i2},

optional(fg,cl}, implementor(id,c31},

organization(SIRII,cl}, block-size(2i2},

block-measure{CIR,cl}, rec-size{2i2},

rec-varying{fg,cl}, access(SIRID,cl},

alt-duplicates(fg,cl}.

Relationships : [rec-size-depend(fi <-- va)],

[file-status(fi <-- va}],

data-record(fi --> va),

[(Sequential Files linage-size{fi <-- valil},

linage-foot{fi <-- valil),

linage-top(fi <-- valil),

linage-bot(fi <-- valil))],

[{Relative Files rel-key{fi <-- va})],

[(Indexed Files rec-key(fi -- va),

alt-key(fi -- va)}],

fv-file(fi --> fv}, [du-data-updated(fi --> du)],

[du-data-used(fi <-->du)].

298

Implementation Attributes : fi num(i2),

rec size_dep(pva,i2), file_status(pva,i2),

data_record(pva,i2), rel_key(pva,i2),

rec_key(pva,i2), alt_key(pva,i2).

Relation : file(fi_num = i2, fi_name = c31,

fic_position = i2, fd_position = 12,

optional= cl, implementor= c31,

organization= cl, block size a= i2,

block size b = i2, block meas= cl,

299

rec size a= i2, rec_size_b = i2, rec_varying = cl,

rec_size_dep = i2, access= cl, file status= i2,

data record= i2, rel_key = i2, rec_key = i2,

alt_key = i2, alt_dups = cl

variable token : va ENTITY-NAME

Description Records data-description information

from non-88 variables defined in all sections of

the DD.

Instances : Many

Attributes : va-name(va,c31), level(i2),

def-position(ln,i2), usage(CIDII,cl),

def-section(FIWIL,cl), occurs-asc({fg,cl}),

picture(id,c30).

Relationships : [redefines(va --> va)),

[va-va-within(va <--> va)),

300

[(Occurs occurs-a(va <-- il), occurs-b(va <-- il),

occurs-depend(va <-- va), occurs-key(va <--> va),

occurs-index(va <--> va))J,

[(Non-occurs Non-redefinition value(va <-- il))J,

[pd-using-data(va <-- pr)],

[rec-size-depend(va --> fi)],

[file-status(va --> fi)], [data-record(va <-- fi)J,

[lineage-size(va --> fi)], [linage-foot(va --> fi)J,

[linage-top(va --> fi)J, [linage-bot(va --> fi)J,

[rel-key(va --> fi)], [rec-key(va -- fi)],

[alt-key(va fi)], [v8-va-switch(va --> v8)],

[v8-value-b(va <--> v8)], [co-data-used(va <--> co)],

[du-data-updated(va --> du)],

[du-data-used(va <-->du)].

Implementation Attributes : va_num(i2),

redefines(pva,i2), va_va_within(pva,i2),

occurs_a(pil,i2), occurs_b(pil,i2),

occurs_dep(pva,i2), value(pil,i2).

Relation: variable(va_num = i2, va_name = c31,

level= i2, def_position = i2, usage= cl,

def section= cl, redefines= i2, va_va_within = i2,

occurs_a = i2, occurs b = i2, occurs_dep = i2,

picture= c30, value= i2)

ENTITY-NAME : variable-88 token: v8

Description : Records data-description information

from 88 variables defined in all sections of the

DD.

Instances : Many

Attributes : v8-name(v8,c31).

Relationships : v8-value-a(v8 <--> il),

[v8-value-b(v8 <--> illva)],

301

v8-va-switch(v8 <-- va), [co-data-used(v8 <-->co)].

Implementation Attributes

v8_va_switch(pva,i2).

v8_num(i2),

Relation: variable 88(v8 num = i2, v8 name= c31,

v8 va switch= i2)

ENTITY-NAME file-variable token: fv

Description Records LINAGE-COUNTER information for

sequential LINAGE files and implicit file pointers

for all files.

Instances : Many.

Attributes : fv-type(LIP,cl).

Relationships : fv-file(fv <-- fi),

[co-data-used(fv <--> co)],

[du-data-used(fv <--> du)],

[du-data-updated(fv -->du)].

Implementation Attributes fv_num(i2), fv_file(pfi,i2).

Relation : fi variable(fv num = i2, fv_type = cl,

fv file= i2)

identifier-lit token : il

302

ENTITY-NAME

Description Records (Non-variable, non-file-variable,

non-variable-88, non-file) data-names, identifiers

and literals used in the program.

Instances : Many

Attributes : il-token(il,c160)

Relationships : [lineage-size(il --> fi)],

[linage-foot(il --> fi)], [linage-top(il --> fi)],

[linage-bot(il --> fi)], [occurs-a(il --> va)],

occurs-b(il --> va)], [value(il --> va)],

[v8-value-a(il <--> v8)], [v8-value-b(il <-->-v8)],

[co-data-used(il <--> co)],

[du-data-used(il <-->du)].

Implementation Attributes : il_num(i2).

Relation: ident_lit(il num = i2, il token a= c80,

il token b = c80)

condition token : co ENTITY-NAME

Description Records PD condition and conditional

expression information.

Instances : Many

Attributes : cond-text(id,c256),

cond-type(-ISTATEITIMESIDEPENIEVAL,cS).

Relationships : co-data-used(co <--> valv81fvlil),

cu-condition(co -->cu).

Implementation Attributes : co_num(i2).

303

Relation : condition(co_num = i2, cond text a= c64,

cond text b = c64, cond text c = c64,

cond text d = c64, cond_type = cS)

ENTITY-NAME section token: se

Description Records PD section information. Default

seg-nurnber is 0.

Instances : Many.

Attributes : se-name(se,c31), seg-nurnber(i2),

se-position(ln,i2).

Relationships : sections-or-paras(se <-- pr),

[cu-branch-a(se --> cu)], [cu-branch-b(se --> cu)],

pa-section(se -->pa).

Implementation Attributes : se_num(i2).

Relation: section(se_nurn = i2, se name= c31,

seg_nurnber = i2, se_position = i2)

ENTITY-NAME: paragraph token : pa

Description : Records PD paragraph information.

Instances : Many.

Attributes : pa-name(pa,c31), pa-position(ln,i2).

Relationships : pa-section(pa <-- se),

304

sections-or-paras(pa <-- pr), pa-stgroup(pa -- sg),

[cu-branch-a(pa --> cu)], [cu-branch-b(pa -->cu)].

Implementation Attributes : pa_num(i2},

pa_section(pse,i2}, pa_stgroup(psg,i2).

Metric Attributes : locp(i2), pa_comments(i2),

u_operators(i2), operators(i2), periods(i2).

Relation: paragraph(pa_num = i2, pa_name = c31,

pa_position = i2, pa_section = i2, pa_stgroup = i2,

locp = i2, pa_comments = i2, u_operators = i2,

operators= i2, periods= i2

ENTITY-NAME statement-group token: sg

Description Records PD statement group information.

A statement-group is a group of consecutive

statements (in terms of the same nesting level)

within a paragraph or statement.

Instances : Many

Attributes : sg-type(-INEXT SENTENCEIEXIT,c13).

Relationships : [pa-stgroup(sg -- pa)],

[st-stgroup(sg --> st)], [cu-branch-a(sg --> cu}],

[cu-branch-b(sg -->cu)].

Implementation Attributes : sg_num(i2).

Relation : stgroup(sg_num = i2, sg_type = c13)

statement token: st ENTITY-NAME

Description Records PD statement information.

Instances : Many

Attributes : verb(id,cl0), end-verb(id,cl2),

st-position(ln,i2),

st-attr-a(IIOII-OIEXlbeforelafter,c6),

st-attr-b(-lvaryinglmultvar,c7).

Relationships : st-stgroup(st <-- sg),

305

[cu-statement(st --> cu)], [du-statement(st -->du)].

Implementation Attributes

st_stgroup(psg,i2).

st_num(i2),

Relation : statement(st_num = i2, verb= cl0,

end verb= c12, st_position = i2, st attr a= c6,

st attr b = c7, st_stgroup = i2)

NAVIGATION AND USAGE ENTITIES.

ENTITY-NAME source token: so

Description Records line numbers which map the source

code. Line numbers for the IDENTIFICATION DIVISION,

PROGRAM-ID paragraph, ENVIRONMENT DIVISION,

CONFIGURATION SECTION, INPUT-OUTPUT SECTION,

DATA DIVISION, FILE SECTION, WORKING-STORAGE

SECTION, LINKAGE SECTION and PROCEDURE DIVISION

are stored.

Instances : One only

Attributes : iden-div(ln,i2), pid-para(ln,i2),

envi-div(ln,i2), conf-sec(ln,i2), inou-sec(ln,i2),

data-div(ln,i2), file-sec(ln,i2), wost-sec(ln,i2),

link-sec(ln,i2), proc-div(ln,i2).

Metric Attributes . locd(i2), cornments(i2) .

Relation . source (iden div = i2, pid_para = i2, . -
envi div = i2, conf sec = i2, inou sec = i2,

data div = i2, file sec = i2, wost sec = i2,

link sec = i2, proc div = i2, locd = i2, -

comments = i2)

ENTITY-NAME condition-usage token : cu

306

Description Records PD branch parameter information

about statements.

Instances : Many

Attributes : cu-desc(-IUNTILIWHEN,c5),

cu-br-desc(-IELSEITHRUIGOTO,c4).

Relationships : cu-condition(cu <-- co),

cu-branch-a(cu <-- selpajsg),

[cu-branch-b(cu <-- selpalsg)],

cu-statement(cu <--st).

Implementation Attributes : cu_num(i2),

cu_condition(pco,i2), cu_branch_a(pselppalpsg,i2),

cu_branch_b(pselppalpsg,i2), cu_statement(pst,i2).

Relation: cond_usage(cu_num = i2,

cu_condition = i2, cu_branch_a = i2,

cu_branch_b = i2, cu desc = c5, cu br desc = c4,

cu statement= i2

data-usage token: du ENTITY-NAME

Description Records PD data use and update

information about statements.

Instances : Many

307

Attributes : du-desc(-ICORRIINITINOUPIOPUPINOUS),c4).

Relationships : [du-data-updated(du <-- valfvlfi],

[du-data-used(du <--> valfvlfilil],

du-statement(du <--st).

Implementation Attributes : du_num(i2),

du_updated(pvalpfvlpfi,i2), du_statement(pst,i2).

Relation: data_usage(du_num = i2, du_updated = i2,

du desc = c4, du statement= i2)

LINK AND OTHER RELATIONS.

RELATION-NAME : linage_file token : lf

Description : Records linage information for

sequential file with LINAGE clauses.

Instances : One per sequential LINAGE file

Relationships : fi-num(lf -- fi),

308

linage_size(lf <-- valil), linage_foot(lf <-- valil),

linage_top(lf <-- valil), linage_bot(lf <-- valil).

Implementation Attributes : fi_num(pfi,i2),

linage_size(pvalpil,i2), linage_foot(pvalpil,i2),

linage_top(pvalpil,i2), linage_bot(pvalpil,i2).

Relation: linage_file(fi_num = i2, linage_size = i2,

linage_foot = i2, linage_top = i2, linage_bot = i2)

RELATION-NAME : va occurs token: vo

Description : Records key and index lists from

occurs clauses of variable definitions.

Instances : Many per occurs clause with keys or

indices

Relationships va-num(vo <-- va),

occurs-key(vo <-- va), occurs index(vo <-- va).

Implementation Attributes vo_num(i2), va_num(pva,i2),

occurs_asc(fg,cl), occurs_key(pva,i2),

309

occurs_index(pva,i2).

Relation : va occurs(vo_nurn = i2, va_num = i2,

occurs asc = cl, occurs_key = i2, occurs index= i2)

RELATION-NAME : v8 value token : vv

Description : Records lists of pairs of values

associated with variable-88s.

Instances : Many per variable-88

Relationships : v8-nurn(vv <-- v8),

v8-value-a(vv <-- il), v8-value-b(vv <-- valil).

Implementation Attributes : v8_num(pv8,i2),

v8_value_a(pil,i2), v8_value_b(pvalpil,i2).

Relation : v8 value(v8 nurn = i2, v8 value a= i2,

v8 value b = i2)

RELATION-NAME : co data used token : cd

Description : Records lists of data used in

conditions.

Instances : Many per condition

Relationships : co-nurn(cd <-- co),

co-data-used(cd <-- valv8lfvlil).

Implementation Attributes : co_num(pco,i2),

co_used(pvalpv81pfvlpil,i2).

Relation : co_data_used(co nurn = i2, co used= i2)

RELATION-NAME : du data used token : dd

Description : Records lists of data used in

data-usage instances of statements.

Instances : Many per data-usage instance

Relationships : du-num(dd <-- du),

du-data-used(dd <-- filvalfvlil).

Implementation Attributes : du_num(pdu,i2),

du_used(pfilpvalpfvlpil,i2).

Relation: du_data_used(du num = i2, du used= i2)

310

311

APPENDIX 4B - STANDARD PHRASES FOR FORMATTING

Standard Phrase Equivalents

SEGMENT-LIMIT IS
CURRENCY SIGN IS

DECIMAL-POINT IS COMMA
ASSIGN TO
AREAS
ORGANIZATION IS
BLOCK CONTAINS
ACCESS MODE IS

RELATIVE KEY IS

RECORD KEY IS

ALTERATE RECORD KEY IS

WITH DUPLICATES
FILE STATUS IS

RECORD CONTAINS

RECORD IS VARYING IN SIZE

DEPENDING ON
LABEL RECORDS ARE
LINAGE IS
WITH FOOTING AT

LINES AT TOP

LINES AT BOTTOM

VALUE IS

SEGMENT-LIMIT
CURRENCY
CURRENCY SIGN
DECIMAL-POINT COMMA
ASSIGN
AREA
ORGANIZATION
BLOCK
ACCESS MODE
ACCESS IS
RELATIVE KEY
RELATIVE IS
RECORD KEY
RECORD IS
RECORD {in Environment

Division only}
ALTERNATE RECORD KEY
ALTERNATE RECORD IS
DUPLICATES
FILE STATUS
STATUS IS
RECORD {within Data

Division only}
RECORD IS VARYING IN
RECORD IS VARYING SIZE
RECORD IS VARYING
RECORD VARYING IN SIZE
RECORD VARYING IN
RECORD VARYING SIZE
DEPENDING
LABEL RECORD IS
LINAGE
WITH FOOTING
FOOTING AT
FOOTING
LINES TOP
AT TOP
TOP
LINES BOTTOM
AT BOTTOM
BOTTOM
VALUE
VALUES ARE
VALUES

THRU
PIC

USAGE IS
SIGN IS
SEPARATE CHARACTER
ASCENDING KEY IS

DESCENDING KEY IS

INDEXED BY
SYNCHRONIZED
JUSTIFIED
BLANK WHEN ZERO
VALUE
CORRESPONDING
ON SIZE ERROR
ON OVERFLOW
FOR REMOVAL
WITH NO REWIND
WITH LOCK
INVALID KEY
WITH NO ADVANCING

GO TO
DATA BY

BEFORE INITIAL

AFTER INITIAL

WITH TEST
KEY IS
AT END
DELIMITED BY
WITH POINTER
DELIMITER IN
COUNT IN
TALLYING IN
AT EOP

>

NOT>

THROUGH
PIC IS
PICTURE
PICTURE IS
USAGE
SIGN
SEPARATE
ASCENDING KEY
ASCENDING IS
ASCENDING
DESCENDING KEY
DESCENDING IS
DESCENDING
INDEXED
SYNC
JUST
BLANK ZERO
VALUE IS
CORR
SIZE ERROR
OVERFLOW
REMOVAL
NO REWIND
LOCK
INVALID
NO ADVANCING
WITH NO
GO

312

BY {within INITIALIZE
statement only}

BEFORE {within INSPECT
statement only}

AFTER {within INSPECT
statement only}

TEST
KEY
END
DELIMITED
POINTER
DELIMITER
COUNT
TALLYING
AT END-OF-PAGE
END-OF-PAGE
EOP
IS>
IS GREATER THAN
IS GREATER
GREATER THAN
GREATER
IS NOT>

<

NOT<

=

NOT=

IS NOT GREATER THAN
IS NOT GREATER
NOT GREATER THAN
NOT GREATER
IS<
IS LESS THAN
IS LESS
LESS THAN
LESS
IS NOT<
IS NOT LESS THAN
IS NOT LESS
NOT LESS THAN
NOT LESS
IS=
IS EQUAL TO
IS EQUAL
EQUAL TO
EQUAL
IS NOT=
IS NOT EQUAL TO
IS NOT EQUAL
NOT EQUAL TO
NOT EQUAL

313

BIBLIOGRAPHY

[ALB83] ALBRECHT A.J., GAFFNEY J.E.
"Software Function, Source Lines of Code and

Development Effort Prediction"

314

IEEE Transactions on Software Engineering,Vol.SE-9,
--No.6,Nov.1983

[ALL84] ALLMAN E.
"An Intro to SCCS"
ULTRIX-32 Supplementary Documents, Vol.II

Programmers, Digital Equipment Corporation 1984

[AME79] AMEY W.S.
"The Computer Assisted Software Engineering (CASE)

System"
4th International Conference on Software Engineering,

Sept.1979

[AND81] ANDERSON R.E.
"Modular Documentation: a Software Development Tool"
AFIPS National Computer Conference,May 1981,

pp401-405

[ARN82] ARNOLD R.S., PARKER D.A.
"The Dimensions of Healthy Maintenance"
6th International Conference on Software Engineering,

Sept.1982 IEEE,ppl0-27

[BAK80] BAKER A.L., ZWEBEN S.H.
"A Comparison of Measures of Control Flow Complexity"
IEEE Transactions on Software Engineering,Vol.SE-6,
--No.6,Nov 1980

[BAS82a] BASLI V.R., MILLS H.D.
"Understanding and Documenting Programs"
IEEE Transactions on Software Engineering,Vol.SE-8,
--May 1982,pp270-283

[BEL84] BELL F.J.
"Technology Transfer in the Maintenance Environment"
AFIPS National Computer Conference, 1984,pp229-234

[BER85b] BERRY R.E., MEEKINGS B.A.
"A Style Analysis of C programs"
Communications of ~-f-~.,Vol.28,No.1,Jan.1985

[BOE73] BOEHM B.W.
"Software and its Impact a Quantitive Assessment"

Datamation,May 1973,pp48-59

[BOE76] BOEHM B.W.
"Software Engineering"
IEEE Transactions on Computers,Vol.C-25,No.12,
--Dec.1976,pp1226-1240

[BOE81] BOEHM B.W.
"Software Engineering Economics"
Prentice-Hall 1981

[BOE84] BOEHM B.W.
"Software Engineering Economics"

315

IEEE Transactions on Software Engineering,Vol.SE-10,
--No.l,Jan.1984

[BRI83] BRICE L., CONNELL J.
"A Methodology for Minimizing Maintenance Costs"
AFIPS National Computer Conference,May 1983,pp113-121

[BRI84] BRICE L., CONNELL J.
"System Information Database: an Automated

Maintenance Aid"
AFIPS National Computer Conference, 1984,pp209-216

[CAN86b] CANE A.
"Getting Programs back into shape"
The Dominion (New Zealand Newspaper),Dec 1st 1986,pp18

[CEN82] CENTRE J.W.
"A Quality Assurance Program for Software Maintenance"
AFIPS National Computer Conference,June 1982,pp399-407

[CHA79] CHAPIN N.
"A Measure of Software Complexity"
AFIPS National Computer Conference, 1979,pp995-1002

[CHA81] CHAPIN N.
"Productivity in Software Maintenance"
AFIPS National Computer Conference, 1981,pp349-352

[CHASS] CHAPIN N.
"Software Maintenance: a Different View"
AFIPS National Computer Conference, 1985,pp507-513

[COB81] TECHNICAL COMMITTEE X3J4 - COBOL
"Draft Proposed Revised X3.23 American National

Standard ProgramrningLanguage COBOL"
American National Standards Institute, Sept.1981

[COL85a] COLLOFELLO J.S., BLAYLOCK J.W.

"Syntactic Information Useful for Software
Maintenance"

316

AFIPS National Computer Conference, 1985,pp547-553

[CON84] CONNELL J., BRICE L.
"Prolonging the Life of Software"
AFIPS National Computer Conference, July 1984,

pp243-249

[COO78] COOPER J.D.
"Corporate Level Software Engineering"
IEEE Transactions on Software Engineering,Vol.SE-4,

July 1978,pp319-325

[CRA85] CRAWFORD S.G., MCINTOSH A.A., PREGIBON D.
"An Analysis of Static Metrics and Faults in C

Software"
Journal of Systems and Software, No.5, 1985 pp37-48

[CUR79] CURTIS B., SHEPPARD S.B., MILLIMAN P., BORST M.A.,
LOVET.

"Measuring the Psychological Complexity of Software
Maintenance Task with the Halstead and McCabe
Metrics"

IEEE Transactions on Software Engineering,Vol.SE-5,
--May 1979,pp96-104

[DEU81] DEUTSCH M.S.
"Software Project Verification and Validation"
Computer, Vol.14,No.4,April 1981

[DIG69] DIGITAL
"DecSysteml0 COBOL Programmer's Reference Manual"
DIGITAL EQUIPMENT CORPORATION,-1969

[EBE80] EBERT R., LUGGER J., GOECKE R.
"Practice in Software Adaptation & Maintenance"
North-Holland 1980

[ELS76] ELSHOFF J.L.
"An Analysis of Some Commercial PL/1 Programs"
IEEE Transactions on Software Engineering,Vol.SE-2,
--No.2,June 1976-

[ELS78] ELSHOFF J.L.
"An Investigation into the Effect of the Counting

Method Used on Software Science Measurements"
Sigplan Notices,Vol.13,No.2,Feb.1978,pp30-45

[ELS82] ELSHOFF J.L., MARCOTTY M.
"Improving Computer Program Readability to Aid

317

Modification"
Communications of ~-f-~.,Vol.25,No.8,Aug.1982

[ELS84] ELSHOFF J.L.
"Characteristic Program Complexity Measures"
7th International Conference on Software Engineering,

1984 IEEE,pp288-293

[EVA82] EVANS M., BANKEN S.E.
"Software Engineering for the COBOL Environment"
Communications of the ~-f-~.,Vol.25,No.12,Dec 1982

[FAI78] FAIRLEY R.E.
"Tutorial: Static Analysis and Dynamic Testing

of Computer Software"
Computer,Vol.11,No.4,April 1978

[FEU79] FEUER A.R., FOWLKES E.B.
"Relating Computer Program Maintainability to

Software Measures"
AFIPS National Computer Conference, 1979,pp1003-1012

[FIO84] FIORELLO M., CUGINI J.
"Is COBOL-8x Cost Effective?"
AFIPS National Computer Conference, 1984,pp223-228

[FOR85] FORAGE G.
"Fourth-Generation Languages and Advanced Software

Development Aids"
Data Processing,Vol.27,No.9,Nov 1985

[GIM80] GIMPEL J.F.
"CONTOUR -A Method of Preparing Structured Flowcharts"
Sigplan Notices,Vol.15,No.10,Oct 1980

[GUI83] GUIMARAES T.
"Managing Application Program Maintenance Expenditures"
Communications of the ~-f-~.,Vol.26,No.10,Oct 1983

[HAL77] HALSTEAD M.H.
"Elements of Software Science"
North-Holland 1977

[HAN78] HANSEN W.J.
"Measurement of Program Complexity By the Pair

(Cyclomatic Nurnber,Operator Count)"
Sigplan Notices,Vol.13,No.3,Mar.1978,pp29-33

[HAR81a] HARRISON W.A., MAGEL K.I.
"A Complexity Measure Based on Nesting Level"
Sigplan Notices,Vol.16,No.3,Mar 1981

318

[HAR81b) HARRISON W.A., MAGEL K.I.
"A Topological Analysis of Computer Programs with

less than 3 Binary Branches"
Sigplan Notices,Vol.16,No.4,Apr.1981,ppSl-63

[HAR83) HARRISON W., MAGEL K., KLUCZNY R.
"Research in Software Maintenance"
Journal of Systems Management,July 1983,ppl0

[HAR84) HARRISON W.A.
"Software Complexity Metrics"
Journal of Systems Management,July 1984,pp28

[HAR85) HARRISON W., COOK C.R.
"A Method of Sharing Software Complexity Data"
Sigplan Notices,Vol.20,No.2,Feb.1985

[HAR86) HARRISON W., COOK C.R.
"A Note on the Berry-Meekings Style Metric"
Communications of the ~.f.~.,Vol.29,No.2,Feb.1986

[HAW79] HAWKINS T.J., HARANDI M.T.
"Towards more Portable COBOL"
The Computer Journal,Vol.22, 1979,pp290

[HEN81) HENRY S., KAFURA D.
"Software Structure Metrics Based on Information Flow"
IEEE Transactions on Software Engineering,Vol.SE-7,
--No.5,Sept.1981

[HOR79] HORSLEY T.R., LYNCH W.C.
"Pilot : a Software Engineering Case Study"
4th International Conference on Software Engineering,

Sept.1979

[HOR86] HOROWITZ E., WILLIAMSON R.C.
"SODOS - A Software Documentation Support

Environment - Its Definition"
IEEE Transactions on Software Engineering,Vol.SE-12,
--No.8,Aug.1986

[HOU83) HOUGHTON R.C.
"Software Development Tools : A Profile"
Computer,Vol.16,No.5,May 1983

[HUA78] HUANG J.C.
"Program Instrumentation and Software Testing"
Computer,Vol.11,No.4,Apr.1978

[HUT86] HUTCHINSON A.
"Some Practical Principles for Design of Maintainable

319

Systems"
The Computer Journal,Vol.29,No.1, 1986

[INC86] INCE D., WOODMAN M.
"The Rapid Generation of a Class of Software Tools"
The Computer Journal,Vol.29,No.2,April 1986

[JAC75] JACKSON M.A.
"Principles of Program Design"
Academic Press Inc. (London) Ltd, 1975

[JON86a] JONES C.
"Programming Productivity"
McGraw-Hill 1986

[JON86b] JONES R.
"Automated Tools for the Analyst"
Data Processing,Vol.28,No.5,June 1986

[LET86] LETOVSKY S., SOLOWAY E.
"Delocalized Plans and Program Comprehension"
IEEE Software,Vol.3,No.3,May 1986

[LIE78] LIENTZ B.P., SWANSON E.B., TOMKINS G.E.
"Characteristics of Application Software Maintenance"
Communications of the ~.C.~.,Vol.27, 1978,pp466-471

[LIE80] LIENTZ B.P., SWANSON E.B.
"Software Maintenance Management"
Addison-Wesley 1980

[LIE81] LIENTZ B.P., SWANSON E.B.
"Problems in Application Software Maintenance"
Communications of the ~.C.~.,Vol.24,Nov.1981,pp763-769

[LIE83] LIENTZ B.P.
"Issues in Software Maintenance"
Computing Surveys,Vol.15,No.3,Sept 1983

[LIN73] LINDHORST W.M.
"Scheduled Maintenance of Application Software"
Datamation, May 1973,pp64-67

[LIU76] LIU C.C.
"A look at Software Maintenance"
Datamation,Vol.22,Nov.1976,pp51-55

[LYO81] LYONS M.J.
"Salvaging your Software Asset(Tools Based

Maintenance)"
AFIPS National Computer Conference, 1981,pp337-341

320

[MAR83a] MARSH R.E.
"Application Maintenance: One Shop's Experience and

Organization"
AFIPS National Computer Conference, 1983,pp146-153

[MAR83b] MARSELOS N.L.
"Human Investment Techniques for Effective Software

Management"
AFIPS National Computer Conference,May 1983,ppl31-136

[MAR83c] MARTIN J., MCCLURE C.
"Software Maintenance : The Problem and Its Solutions"
Prentice-Hall N.J., 1983,ppS-7

[MAT86] MATHIS R.F.
"The Last 10 Percent"
IEEE Transactions on Software Engineering,Vol.SE-12,
--No.6,June 1986-

[MCC76] MCCABE T.J.
"A Complexity Measure"
IEEE Transactions on Software Engineering,Vol.SE-2,
--No.4,Dec.1976

[MCK84] MCKEE J.R.
"Maintenance as a Function of Design"
AFIPS National Computer Conference, 1984,pp187-193

[MCN84] MCNEILE A.T.
"A Model of Programming Activity"
Computer Bulletin,Sept.1984

[MCT80] MCTAP J.L.
"The Complexity of an Individual Program"
AFIPS National Computer Conference, 1980,pp767-771

[MOR79] MORRISSEY J., WU L.
"Software Engineering - An Economic Perspective"
4th International Conference on Software Engineering,

Sept.1979

[MUN78] MUNSON J.B.
"Software Maintainability: a Practical Concern for

Life-Cycle Costs"
Proc. Compsac,Nov.1978,pp54-59

[MYE77] MYERS G.J.
"An Extension to the Cyclomatic Measure of Program

Complexity"
Sigplan Notices,Vol.12,No.10,Oct 1977,pp62-64

321

[NAR84] NARROW B., KELLY I.
"Two Perceptions of Software Maintenance Performed by

On-Site Contractors"
AFIPS National Computer Conference,July 1984,pp235-245

[OGD72] OGDINOG J.L.
"Designing Reliable Software"
Datamation,Vol.18,July 1972,pp71-78

[PAI77] PAIGE M.R.
"On Partitioning Programs Graphs"
IEEE Transactions on Software Engineering,Vol.SE-3,
--No.6,Nov 1977

[PAN78] PANZL D.J.
"Automatic Software Test Drivers"
Computer,Vol.11,No.4,April 1978

[PAR85a] PARIKH G.
"Discovering the World of Software Maintenance:

Selected Readings"
Sigsoft Software Engineering Notes,Vol.10,No.5,

Oct 1985

[PAR85b] PARIKH G.
"Software Maintenance: Penny Wise, Program Foolish"
Sigsoft Software Engineering Notes,Vol.10,No.5,

Oct 1985

[PHI74] PHILIPPAKIS A., KAZMIER L.
"Information Systems Through COBOL"
McGraw-Hill, 1974

[PIW82] PIWOWARSKI P.
"A Nesting Level Complexity Measure"
Sigplan Notices,Vol.17,No.9,Sept 1982

[POW84] POWERS M.J., ADAMS D.R., MILLS H.D.
"Computer Information Systems Development: Analysis

and Design"
South-Western Publishing Co., 1984,p38

[PRA84] PRATHER R.E.
"An Axiomatic Theory of Software Complexity Measure"
The Computer Journal,Vol.27,No.4,Nov.1984

[PUN75] PUNTER M.
"Programming for Maintenance"
Data Processing,Sept.1975,pp292-294

[RED86] REDISH K.A., SMITH W.F.

"Program Style Analysis: A Natural By-Product
of Program Compilation"

322

Communications of the ~-f-~.,Vol.29,No.2,Feb.1986

[REE82] REES M.J.
"Automatic Assessment Aids for Pascal Programs"
Sigplan Notices,Vol.17,No.10,Oct.1982

[REI84] REISS S.P.
"Graphical Program Development with PECAN

Program Development System"
Dept.Comp.Sci.,Brown Univ.,Rhode Is.,Technical Report

CS-84-04,Mar.1984

[REU81] REUTTER J.
"Maintenance is a Management Problem and a

Programmers Opportunity"
AFIPS National Computer Conference, 1981,pp343-347

[RIC83] RICHARDSON G.Y., BUTLER W.C.
"Organizational Issues on Effective Maintenance

Management"
AFIPS National Computer Conference,May 1983,pplSS-161

[RIC84] RICARDSON G., HODIL E.D.
"Redocumentation: Addressing the Maintenance Legacy"
AFIPS National Computer Conference, 1984,pp203-208

[RIC85] RICHMOND I.
"Documentation Support - a Route to Full Life Cycle

Productivity"
Data Processing,Vol.27,No.9,Nov.1985

[RID81] RIDDLE W.E.
"An Assessment of DREAM"
Software Enginnering Environments,H.Hunke,

North-Holland 1981,pp191-221

[RIG69] RIGGS R.
"Computer Systems Maintenance"
Datamation,Nov.1969,pp227-232

[ROB76] ROBINSON P.
"Advanced COBOL: ANS 74"
Macdonald and Jane's/American Elsevier 1976

[SAI83] SAIB S.H.
"Future ADA Environments"
AFIPS National Computer Conference, 1983,pp57-63

[SCH79] SCHNEIDEWIND N.F.

323

"Software Metrics for Aiding Program Development and
Debugging"

AFIPS National Computer Conference, 1979,pp989-994

[SCH81] SCHNEIDER G.M., SEDLMEYER R.L., KEARNEY J.
"On the Complexity of Measuring Software Complexity"
AFIPS National Computer Conference, 1981,pp317-322

[SCH83] SCHNEIDER G.R.E.
"Structured Software Maintenance"
AFIPS National Computer Conference, 1983,pp138-144

[SHE81] SHIEL B.A.
"The Psychological Study of Programming"
Computing Surveys,Vol.13,No.1,Mar.1981

[SHE83] SHEN V.Y., CONTE S.D., DUNSMORE H.E.
"Software Science Revisited: A Critical Analysis of

the Theory and Its Empirical Support"
IEEE Transactions on Software Engineering,Vol.SE-9,
--No.2,Mar.1983

[SHI85] SHILLING J.
"FRED : A Program Development Tool"
Dept.Comp.Sci.,Univ.Illinois,

Report UIUCDCS-R-85-1224,Sept.1985

[STA84] STANDISH T.A.
"An Essay on Software Reuse"
IEEE Transactions on Software Engineering,Vol.SE-10,
--No.5,Sept.1984

[SUN81] SUNOHARA T. , TAKANO A. , UEHARA K. , OHKAWA T.
"Program Complexity Measure for Software Development

Management"
5th International Conference on Software Engineering,

Mar.1981,ppl00-106

[TAI84] TAI K.C.
"A Program Complexity Metric Based On Data Flow

Information In Control Graphs"
7th International Conference on Software Engineering,

1984 IEEE,pp239-248

[TAT85] TATE G., HAYWARD R.
"Software Engineering Issues in the Use of Fourth

Generation Languages"
Massey University Computer Science Report 85/5,

ISSN0112-630X,July 1985

[TAU83] TAUTE B.J.

324

"Quality Assurance and Maintenance Application Systems"
AFIPS National Computer Conference,May 1983,ppl23-129

[TEA85) TEAGUE L.C., PIDGEON C.W.
"Structured Analysis Methods for Computer Information

Systems"
SRA, 1985,p42

[TEI77) TEICHROEW D., HERSHEY E.
"PSL/PSA: A Computer-Aided Technique for Structured

Documentation and Analysis of Information
Processing Systems"

IEEE Transactions on Software Engineering,Vol.SE-3,
--No.1,Jan.1977

[TEO82) TEOREY T., FRY J.
"Design of Database Structures"
Prentice-Hall, 1982

[THA81) THALMANN D., MAGNENAT-THALMANN N.
"Computers in Education"
North-Holland 1981

[TIN83) TINNIRELLO P.C.
"Improving Software Maintenance Attitudes"
AFIPS National Computer Conference, 1983,pp107-122

[TIN84) TINNRELLO P.C.
"Software Maintenance in Fourth Generation

Environments"
AFIPS National Computer Conference,July 1984,pp251-257

[TOR79) TORSUN I.S., AL-JARRAH M.M.
"An Empirical Analysis of COBOL Programs"
Software Practice and Experience,Vol.9,No.5,May 1979

[TOR81] TORSUN I.S., AL-JARRAH M.M.
"Dynamic Analysis of COBOL Programs"
Software Practice and Experience,Vol.11,No.9,Sept 1981

[VES83] VESSEY I., WEBER R.
"Some Factors Affecting Program Repair Maintenance:

An Empirical Study"
Communications of A.C.~.,Vol.26,No.2,Feb.1983

[VOG80) VOGES U., GMEINER L., VON MAYRHAUSER A.A.
"SADAT - An Automated Testing Tool"
IEEE Transactions on Software Engineering,Vol.SE-6,
--No.3,May 1980

[WAR82) WARRENS.

325

"MAP : a Tool for Understanding Software"
6th International Conference on Software Engineering,

Sept.1982 IEEE,pp28-37

[WAT79] WATERS R.C.
"A Method for Analyzing Loop Programs"
IEEE Transactions on Software Engineering,Vol.SE-5,
--No.3,May 1979

[WAT82) WATERS R.C.
"The Programmer's Apprentice : Knowledge Based

Program Editing"
IEEE Transactions on Software Engineering,Vol.SE-8,

No.1,Jan.1982

[WEI74] WEISSMAN L.
"Psychological Complexity of Computer Programs: an

Experimental Methodology"
Sigplan Notices,June 1974,pp25-36

[WEL82] WELSER M.
"Programmer uses Slice when Debugging"
Communications of ~-f-~.,Vol.25,July 1982,pp446-452

[WIL79] WILLIS R.R., JENSEN E.P.
"Computer Aided Design of Software Systems"
4th International Conference on Software Engineering,

Sept.1979 -

[WOO79] WOODWARD M.R., RENNELL M.A., HEDLEY D.
"A Measure of Control Flow Complexity in Program Text"
IEEE Transactions on Software Engineering,Vol.SE-5,

No.1,Jan.1979

[YAU80] YAU S.S., COLLOFELLO J.S.
"Some Stability Measures for Software Maintenance"
IEEE Transactions on Software Engineering,Vol.SE-6,
--Nov.1980,pp545-552

[ZOL80] ZOLNOWSKI J., SIMMONS D.B.
"Measuring Program Complexity in a COBOL Environment"
AFIPS National Computer Conference, 1980,pp757-766

[ZOL81] ZOLNOWSKI J.C., SIMMONS D.B.
"Taking the Measure of Program Complexity"
AFIPS National Computer Conference, 1981,pp329-336

[ZVE82a] ZVEGINTZOV N.
"What Life? What Cycle?"
AFIPS National Computer Conference,June 1982,pp561-568

