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Abstract 

Bovine plasmin is a proteolytic enzyme that is naturally present in milk. Plasmin can 

have a detrimental impact on product quality including proteolysis, age-gelation 

and bitterness. The activity of plasmin is difficult to control as its precursor, 

plasminogen, and its activators can survive severe heat treatments such as ultra-

high-temperature processing.  

The aim of this work was to understand and control the plasmin-induced hydrolysis 

of caseins in milk systems. A sequential approach was used. In the first stage, the 

effect of substrate modification on plasmin-induced hydrolysis in a pure β-casein 

model system was studied; this allowed us to propose a control mechanism to limit 

the availability of the substrate by protein modification. In the second stage, 

different protein modifications were applied to a real milk system. In the analysis of 

this system, the casein micelle structure, whey protein denaturation and whey 

protein association with the casein micelle were considered. The final stage 

investigated plasmin-induced dissociation of casein micelles in real milk systems to 

understand the effect of plasmin activity on gelation and sedimentation in heat-

treated milks. 

Modification of lysine residues on the protein decreased plasmin-induced 

hydrolysis. Lactosylation had a greater effect than succinylation and 

transglutamination at the same level of lysine modification. A mechanism for this 

phenomenon was proposed. Lactosylation involves the attachment of lactose and, 

in advanced stages, cross-linking, thus modifying lysine and making it 

unrecognisable to plasmin; in addition, the cross-linking may affect the release of 

plasmin-generated peptides. Transglutamination also modifies lysine by cross-

linking and has a similar effect to lactosylation, but to a lesser extent. In contrast, 

succinylation modifies the charge associated with lysine, making it unrecognisable 

to plasmin. Collectively, this knowledge can be used to make protein resistant to 

plasmin activity. 
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The combined effect of micellar structure and protein modification on plasmin 

activity was also studied. Calcium chelation and dissociation of the casein micelle 

increased plasmin activity because of reduced steric hindrance, which made the 

protein more readily available to plasmin. In contrast, succinylation decreased 

plasmin activity, which could be attributed to the formation of succinyl-lysine 

rendering β-casein unrecognisable to the substrate-binding pocket of plasmin, 

resulting in a decrease in hydrolysis with an increase in modification. These results 

indicated the importance of the casein micelle structure as a tool for controlling the 

activity of plasmin on milk proteins in food systems. 

The effect of high heat treatment on plasmin-induced hydrolysis was also 

investigated. A high-heat-treated skim milk (120°C/15 min) was found to have 

greater resistance to plasmin activity than non-heated skim milk. Both whey protein 

association with the casein micelles and lactosylation decreased the availability of 

protein to plasmin. Whey-protein-free milk was the most plasmin resistant, 

followed by skim milk and lactose-free milk. Collectively, these results suggest that 

lactosylation plays a more significant role than whey protein association with the 

casein micelles in making protein resistant to plasmin activity.  

The plasmin-induced dissociation of the casein micelle was explored by identifying 

peptide release from the micelle. Upon plasmin-induced hydrolysis of the casein 

micelle, hydrophilic peptides, i.e. proteose peptones, were the first to dissociate 

from the casein micelle, followed by hydrophobic peptides, which had dissociation 

patterns that were identical to those of κ-casein. This suggests that the release of κ-

casein from the micelle is too slow to cause gelation. Extensive plasmin-induced 

hydrolysis of the casein micelle leads to sedimentation in heat-treated milk because 

of the formation of β-lactoglobulin–κ-casein complexes and their aggregation with 

hydrolysed hydrophobic peptides. 

Overall, the results of the present study showed that casein modification can be 

useful in controlling plasmin activity and has developed our understanding of the 

plasmin-induced dissociation of casein micelles. Further research work is needed to 

understand the mechanism of plasmin’s selective hydrolysis pattern and the 
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structural aspects of the substrate-binding pocket of plasmin. Studies on casein 

micelle dissociation separately and in conjunction with physicochemical changes 

during storage could be useful in further understanding the phenomenon of age 

gelation. 
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