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Abstract

Gaussian graphical models are a useful tool for eliciting information about relation-
ships in data with a multivariate normal distribution. In the first part of this thesis
we demonstrate that partial correlation graphs facilitate different and better insight
into high-dimensional data than sample correlations. This raises the question of
which method one should use to model and estimate the parameters. In the second,
and major part, we take a more theoretical focus examining the costs and benefits of
two popular approaches to model selection and parameter estimation (penalized like-

lihood and decomposable Bayesian) when the true graph is non-decomposable.

We first consider the effect a restriction to decomposable models has on the esti-
mation of both the inverse covariance matrix and the covariance matrix. Using the
variance as a measure of variability we compare non-decomposable and decompos-
able models. Here we find that, if the true model is non-decomposable, the variance
of estimates is demonstrably larger when a decomposable model is used. Although
the cost in terms of accuracy is fairly small when estimating the inverse covariance
matrix, this is not the case when estimation of the covariance matrix is the goal. In
this case using a decomposable model caused up to 200-fold increases in the variance

of estimates.

Finally we compare the latest decomposable Bayesian method (the feature-inclusion
stochastic search) with penalized likelihood methods (graphical lasso and adaptive
graphical lasso) on measures of model selection and prediction performance. Here
we find that graphical lasso is clearly outclassed on all measures by both adaptive
graphical lasso and feature-inclusion stochastic search. The sample size and the
ultimate goal of the estimation will determine whether adaptive graphical lasso or

feature-inclusion stochastic search is better.
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