Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

### Computationally tractable fitting of graphical models: the cost and benefits of decomposable Bayesian and penalized likelihood approaches.

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Statistics

at Massey University, Albany, New Zealand.

Anne Marie Fitch 2012

### Abstract

Gaussian graphical models are a useful tool for eliciting information about relationships in data with a multivariate normal distribution. In the first part of this thesis we demonstrate that partial correlation graphs facilitate different and better insight into high-dimensional data than sample correlations. This raises the question of which method one should use to model and estimate the parameters. In the second, and major part, we take a more theoretical focus examining the costs and benefits of two popular approaches to model selection and parameter estimation (penalized likelihood and decomposable Bayesian) when the true graph is non-decomposable.

We first consider the effect a restriction to decomposable models has on the estimation of both the inverse covariance matrix and the covariance matrix. Using the variance as a measure of variability we compare non-decomposable and decomposable models. Here we find that, if the true model is non-decomposable, the variance of estimates is demonstrably larger when a decomposable model is used. Although the cost in terms of accuracy is fairly small when estimating the inverse covariance matrix, this is not the case when estimation of the covariance matrix is the goal. In this case using a decomposable model caused up to 200-fold increases in the variance of estimates.

Finally we compare the latest decomposable Bayesian method (the feature-inclusion stochastic search) with penalized likelihood methods (graphical lasso and adaptive graphical lasso) on measures of model selection and prediction performance. Here we find that graphical lasso is clearly outclassed on all measures by both adaptive graphical lasso and feature-inclusion stochastic search. The sample size and the ultimate goal of the estimation will determine whether adaptive graphical lasso or feature-inclusion stochastic search is better.

#### Acknowledgements

First and foremost thanks to my supervisor Beatrix Jones . I have greatly benefited from her encouragement and help along the way. Without her I would never have started let alone finished! Thanks also to my co-supervisor James Curran, especially for his help with R-graphics and LATEXcode.

Three authors made their code available to us. Thanks to Xianghong Zhou for the shortest path analysis code used by the authors of Zhou *et al.* (2002); James Scott for his C++ code for feature-inclusion stochastic search and Yang Feng for his R-code for adaptive graphical lasso.

Thanks to Robert McKibbin and Tony Norris (Heads of Institute) and Jeff Hunter, Howard Edwards and Marti Anderson (Statistics discipline leaders) who in these roles have both facilitated the opportunity for me to combine study and teaching and also gave much encouragement along the way. Thanks to fellow student Insha Ullah for sharing his R-code for finding a perfect elimination ordering. Thanks also to the rest of the Massey Statistics and Mathematics teams for your encouragement, especially over the write-up months.

Last, but certainly not least, a big thank you to my family. Thanks to Harmen for his help in getting Figure 3.3 into a printable form. Thanks to Nigel, Miriam and Harmen, Joanna, and Andrew, without their support and encouragement I could not have done this.

Whaia te iti kahurangi ki te tuohu koe me he maunga teitei.

## Contents

| 1        | Intr | roduction                                                        | 1  |
|----------|------|------------------------------------------------------------------|----|
|          | 1.1  | Research objectives                                              | 1  |
|          | 1.2  | Gaussian graphical models                                        | 2  |
|          | 1.3  | Overview                                                         | 3  |
|          | 1.4  | Publications                                                     | 6  |
| <b>2</b> | Bac  | kground                                                          | 7  |
|          | 2.1  | Gaussian graphical models                                        | 7  |
|          |      | 2.1.1 Overview                                                   | 7  |
|          |      | 2.1.2 Penalized likelihood methods: graphical lasso and adaptive |    |
|          |      | graphical lasso                                                  | 9  |
|          | 2.2  | Graph theory 1                                                   | .2 |
|          |      | 2.2.1 Decomposability and decomposable graphs                    | .2 |
|          |      | 2.2.2 Gaussian graphical models                                  | .6 |
|          |      | 2.2.3 Acyclic directed graphs                                    | .8 |
|          | 2.3  | Bayesian model selection                                         | .9 |
|          | 2.4  | Predictions                                                      | 22 |
| 3        | Sho  | rtest paths with partial correlations 2                          | 3  |
|          | 3.1  | Introduction                                                     | 23 |
|          | 3.2  | Data and methods                                                 | 25 |
|          |      | 3.2.1 Data                                                       | 25 |
|          |      | 3.2.2 Shortest path analysis                                     | 26 |
|          |      | 3.2.3 Graphical lasso                                            | 28 |

|          |     | 3.2.4  | Using partial correlations in shortest path analysis                                            | 29 |
|----------|-----|--------|-------------------------------------------------------------------------------------------------|----|
|          | 3.3 | Result | 55                                                                                              | 29 |
|          | 3.4 | Discus | ssion                                                                                           | 35 |
| 4        | The | cost d | of using a decomposable model                                                                   | 39 |
|          | 4.1 | Introd | luction                                                                                         | 39 |
|          | 4.2 | Backg  | round                                                                                           | 42 |
|          |     | 4.2.1  | General properties of graphs                                                                    | 42 |
|          |     | 4.2.2  | Parameter and variance estimation                                                               | 43 |
|          | 4.3 | Theor  | y for the four variable case                                                                    | 44 |
|          | 4.4 | Simula | ation study methods                                                                             | 46 |
|          |     | 4.4.1  | The four variable case                                                                          | 46 |
|          |     | 4.4.2  | 20 and 50 variable cases                                                                        | 48 |
|          | 4.5 | Simula | ation study results                                                                             | 49 |
|          |     | 4.5.1  | Estimating $\Omega$ - the four variable case $\ldots \ldots \ldots \ldots \ldots$               | 49 |
|          |     | 4.5.2  | Estimating $\Omega$ - 20 and 50 variable cases                                                  | 52 |
|          |     | 4.5.3  | Estimating the covariance matrix $(\Sigma)$                                                     | 56 |
|          | 4.6 | Case s | studies: Fisher's iris data and 12 node data                                                    | 58 |
|          |     | 4.6.1  | Fisher's iris data                                                                              | 58 |
|          |     | 4.6.2  | 12 node case                                                                                    | 60 |
|          | 4.7 | Discus | ssion $\ldots$ | 62 |
| <b>5</b> | Dec | ompos  | sable covariance selection                                                                      | 65 |
|          | 5.1 | Introd | luction                                                                                         | 65 |
|          | 5.2 | Backg  | round                                                                                           | 68 |
|          |     | 5.2.1  | General properties of graphs                                                                    | 68 |
|          |     | 5.2.2  | Feature-inclusion stochastic search                                                             | 69 |
|          |     | 5.2.3  | Kullback-Leibler divergence                                                                     | 71 |
|          |     | 5.2.4  | Graphical lasso and adaptive graphical lasso                                                    | 72 |
|          | 5.3 | Data a | and methods                                                                                     | 74 |
|          |     | 5.3.1  | Data                                                                                            | 74 |
|          |     | 5.3.2  | Model selection                                                                                 | 75 |
|          |     |        |                                                                                                 |    |

|   |     | 5.3.3  | Prediction                                                                                     | 76 |
|---|-----|--------|------------------------------------------------------------------------------------------------|----|
|   | 5.4 | Result | s                                                                                              | 77 |
|   |     | 5.4.1  | Feature-inclusion stochastic search (FINCS) treatment of non-                                  |    |
|   |     |        | decomposable graphs                                                                            | 77 |
|   |     | 5.4.2  | Model selection comparison of FINCS with graphical lasso                                       |    |
|   |     |        | methods                                                                                        | 79 |
|   |     | 5.4.3  | Comparison of predictions using FINCS and graphical lasso                                      |    |
|   |     |        | derived graphs                                                                                 | 83 |
|   | 5.5 | Discus | sion $\ldots$ | 87 |
| 6 | Con | cludin | g discussion                                                                                   | 89 |
|   | 6.1 | Estim  | ating the inverse covariance matrix                                                            | 89 |
|   | 6.2 | Regula | arizing the estimate of the covariance matrix                                                  | 91 |
|   | 6.3 | Conclu | ıding remarks                                                                                  | 92 |
|   |     |        |                                                                                                |    |

### Appendices

| $\mathbf{A}$ | Suj   | pplementary Tables and Figures for Chapter 4    | 95  |
|--------------|-------|-------------------------------------------------|-----|
|              | A.1   | Tables and Figures for the four variable case   | 95  |
|              | A.2   | Tables and Figures for 20 and 50 variable cases | 101 |
|              | A.3   | Tables and Figures for estimations of $\Sigma$  | 110 |
|              | A.4   | Tables and Figures for 12 node example          | 113 |
| В            | Sup   | plementary Tables and Figures for Chapter 5     | 117 |
|              | B.1   | $\Omega$ matrices                               | 117 |
|              | B.2   | Graphs and Tables for Section 5.4.1             | 118 |
|              | B.3   | Relative inclusion probabilities                | 126 |
|              | B.4   | Maximum likelihood estimate (MLE) results       | 131 |
| С            | DR    | C forms                                         | 133 |
| Re           | efere | nces                                            | 137 |

#### CONTENTS

# List of Figures

| 1.1 | Example of a graphical model: Fisher's <i>Iris virginica</i> dataset                          | 3  |
|-----|-----------------------------------------------------------------------------------------------|----|
| 2.1 | Graphs of five variables illustrating the idea of decomposition and                           |    |
|     | decomposable versus non-decomposable                                                          | 13 |
| 3.1 | Proportion of categorised paths less than upper bounds                                        | 30 |
| 3.2 | Percentage of transitive genes with annotations matching the anno-                            |    |
|     | tations of the terminal genes on the same path                                                | 31 |
| 3.3 | Subgraphs of cytoplasm categorised path graphs                                                | 33 |
| 4.1 | A 4 variable non-decomposable graph(a) and a 4 variable decompos-                             |    |
|     | able graph (b). $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$       | 45 |
| 4.2 | Two different decomposable models when $p = 6. \ldots \ldots \ldots$                          | 48 |
| 4.3 | OFI variances for $\hat{\omega}_{1,2}$ in $\Omega_{same}$ with sample sizes 10, 100 and 1000. | 50 |
| 4.4 | Percentage change in expected (EFI) and empirical variances when a                            |    |
|     | decomposable model is fitted.                                                                 | 54 |
| 4.5 | Empirical variances for elements of $\Sigma$ when a decomposable model                        |    |
|     | (Type A) vs when the true (non-decomposable) model is fitted. $\ldots$                        | 57 |
| 4.6 | The 12 variable models                                                                        | 60 |
| 5.1 | The 12 variable model                                                                         | 74 |
| 5.2 | Model score vs Kullback-Leibler divergence                                                    | 78 |
| 5.3 | Model comparison measures: $p = 4, n = 50$ and $n = 1000$                                     | 80 |
| 5.4 | Model comparison measures: $p = 20. \dots \dots \dots \dots \dots \dots \dots$                | 81 |
| 5.5 | Model comparison measures: $p=12$                                                             | 82 |
| 5.6 | Mutual-funds data: edges vs total sum of squared errors                                       | 83 |

| 5.7  | Total sum of squared errors for 5 simulated samples of each $n$ and $p$                                                                               |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | as specified                                                                                                                                          |
| 5.8  | Total sum of squared errors for 5 simulated samples: $n = 51$ and $p - 50$ . 86                                                                       |
| A.1  | OFI variances for $\widehat{\Omega}_{same}$ with sample sizes 10, 100 and 1000 98                                                                     |
| A.2  | OFI variances for $\widehat{\Omega}_{big}$ with sample sizes 10, 100 and 1000 99                                                                      |
| A.3  | OFI variances for $\widehat{\Omega}_{small}$ with sample sizes 10, 100 and 1000 100                                                                   |
| A.4  | Percentage change in expected (EFI) and empirical variances when a                                                                                    |
|      | decomposable model is fitted and relative standard deviation (RSD)                                                                                    |
|      | when fitting true (cycle) and decomposable models                                                                                                     |
| A.5  | Percentage change in expected (EFI) and empirical variances when a                                                                                    |
|      | decomposable model is fitted and relative standard deviation (RSD)                                                                                    |
|      | when fitting true and decomposable models                                                                                                             |
| A.6  | Range of OFI variances when a cycle and two different decomposable                                                                                    |
|      | models are fitted for $p=20, n=21, \ldots, \ldots, \ldots, \ldots, 107$                                                                               |
| A.7  | Range of OFI variances when a cycle and two different decomposable                                                                                    |
|      | models are fitted for $p=50, n=51. \dots \dots$ |
| A.8  | Percentage of true non-zero elements declared zero when a cycle and                                                                                   |
|      | two different decomposable models are fitted for $p=20, n=21. \dots 108$                                                                              |
| A.9  | Percentage of elements corresponding to 'extra edges' which are de-                                                                                   |
|      | clared non-zero for $p=20, n=21, \ldots, \ldots, \ldots, \ldots, \ldots, 108$                                                                         |
| A.10 | Percentage of true non-zero elements declared zero when a cycle and                                                                                   |
|      | two differnt decomposable models are fitted for $p=50, n=51. \dots 109$                                                                               |
| A.11 | Percentage of elements corresponding to 'extra edges' which are de-                                                                                   |
|      | clared non-zero for $p=50, n=51, \ldots, \ldots, \ldots, \ldots, \ldots, 109$                                                                         |
| A.12 | Empirical variances for elements of $\Sigma$ when a decomposable model                                                                                |
|      | (type B) vs when the true (non-decomposable) model is fitted $p=20$                                                                                   |
|      | and $n=21$                                                                                                                                            |
| A.13 | Empirical variances for elements of $\Sigma$ when a decomposable model                                                                                |
|      | (type A) vs when the true (non-decomposable) model is fitted for                                                                                      |
|      | p=50  and  n=51111                                                                                                                                    |

| A.14 | 4 Empirical variances for elements of $\Sigma$ when a decomposable model          |       |
|------|-----------------------------------------------------------------------------------|-------|
|      | (type B) vs when the true (non-decomposable) model is fitted for                  |       |
|      | p=50  and  n=51                                                                   | . 112 |
| A.15 | 5 Elements of $\Sigma$ when a decomposable model vs when the true (non-           |       |
|      | decomposable) model is fitted                                                     | . 115 |
|      |                                                                                   |       |
| B.1  | Top 10 graphs found by FINCS for $p=4$ , samples of $n=1000$ for dif-             |       |
|      | ferent $ \tilde{\rho}_{ij} $                                                      | . 118 |
| B.2  | Top 50 graphs found by FINCS for $p=20$ , samples of $n=1000$ for                 |       |
|      | different $ \tilde{\rho}_{ij} $                                                   | . 119 |
| B.3  | Top 10 graphs found by FINCS for $p=4$ , samples of $n=1000$ for $\Omega_{small}$ |       |
|      | and $\Omega_{big}$ .                                                              | . 120 |
| B.4  | Top 50 graphs found by FINCS for samples of $n=1000$ for for $\Omega_{small}$     |       |
|      | and $\Omega_{big}$ (both $p=20$ ) and for $\Omega_{twelve}$ ( $p=12$ )            | . 122 |
|      |                                                                                   |       |

# List of Tables

| 4.1 | $\Omega$ matrices used for simulating data                                                                                                 | 47  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.2 | n = 1000 empirical variances for cycle and percentage increase to                                                                          |     |
|     | decomposable                                                                                                                               | 49  |
| 4.3 | n = 1000 Relative Standard Deviations for non-decomposable model                                                                           |     |
|     | and increase for decomposable model                                                                                                        | 51  |
| 4.4 | Percentage of times an element is declared zero ( estimate  $< 2 \times$                                                                   |     |
|     | standard error) for 1000 simulations $(n = 10)$                                                                                            | 53  |
| 4.5 | Estimated $\Omega$ and $\Sigma$ matrices for <i>Iris virginica</i> dataset                                                                 | 59  |
| 4.6 | Estimates and standard error ( $\sqrt{\text{OFI variance}}$ ) for <i>Iris virginica</i> dataset.                                           | 59  |
| 4.7 | Estimates and standard error ( $\sqrt{\text{OFI variance}}$ ) for $\hat{\omega}_{1,2}$ , $\hat{\omega}_{10,11}$ and $\hat{\omega}_{1,8}$ . | 61  |
| A.1 | n = 1000 Relative Standard Deviations for non-decomposable model                                                                           | 06  |
|     |                                                                                                                                            | 90  |
| A.2 | Four variable empirical and EFI variances for elements of $\Omega_{same}$ for                                                              |     |
|     | cycle and decomposable, when $n=10$                                                                                                        | 96  |
| A.3 | Four variable empirical and EFI variances for elements of $\widehat{\Omega}_{big}$ for                                                     |     |
|     | cycle and decomposable, when $n=10.$                                                                                                       | 96  |
| A.4 | Four variable empirical and EFI variances for elements of $\widehat{\Omega}_{small}$ for                                                   |     |
|     | cycle and decomposable, when $n=10.$                                                                                                       | 97  |
| A.5 | Percentage of times an element is declared zero ( estimate  $< 2 \times$                                                                   |     |
|     | standard error) for 1000 simulations $(\Omega_{small})$                                                                                    | 97  |
| A.6 | Non-zero elements of $\Omega$ matrices for $p=20$                                                                                          | 102 |
| A.7 | Non-zero elements of $\Omega$ matrices for $p=50$                                                                                          | 103 |

| A.8  | Four variable empirical variances for elements of $\widehat{\Sigma}$ for cycle and per-                                                      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|
|      | centage increase to decomposable, when $n=10.\ldots\ldots\ldots\ldots110$                                                                    |
| A.9  | Estimates and OFI standard deviations for elements of $\widehat{\Omega}$ for cycle                                                           |
|      | and three decomposable models , when $p=12$ and $n=250.$                                                                                     |
| B.1  | $\Omega_{twelve}$                                                                                                                            |
| B.2  | True edges missing in top 10 graphs found by FINCS for $\Omega_{small}$ when                                                                 |
|      | p=4                                                                                                                                          |
| B.3  | True edges missing in top 10 graphs found by FINCS for $\Omega_{big}$ when                                                                   |
|      | p=4                                                                                                                                          |
| B.4  | True edges missing in top 10 graphs found by FINCS for $\Omega_{small}$ when                                                                 |
|      | $p=20. \ldots \ldots$ |
| B.5  | True edges missing in top 10 graphs found by FINCS for $\Omega_{big}$ when                                                                   |
|      | p=20.                                                                                                                                        |
| B.6  | True edges missing in top 10 graphs found by FINCS for $\Omega_{twelve}$ 125                                                                 |
| B.7  | Relative inclusion probability matrices for $n{=}1000$ and $\tilde{\rho}_{ij}{=}{-}0.45.$ 126                                                |
| B.8  | Relative inclusion probability matrix for 12 node case when $n=1000$                                                                         |
|      | and $\tilde{\rho}_{ij}$ =-0.4 and for 20-node cycle when $n$ =1000 and $\tilde{\rho}_{ij}$ =-0.45 127                                        |
| B.9  | Relative inclusion probability matrices when $n=1000$ and top graphs                                                                         |
|      | are supersets                                                                                                                                |
| B.10 | Relative inclusion probability matrices when $n=50.$                                                                                         |
| B.11 | Relative inclusion probability matrices when $n=1000$ and partial cor-                                                                       |
|      | relations are small                                                                                                                          |
| B.12 | Model comparison measures for MLE results                                                                                                    |
| B.13 | Sum of squared errors using the MLE                                                                                                          |