Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

An Analysis of the Missing Data Methodology for Different Types of Data

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED STATISTICS

AT MASSEY UNIVERSITY, ALBANY NEW ZEALAND

Judith-Anne Scheffer

2000

Abstract

Missing data is an eternal problem in data analysis. It is widely recognised that data is costly to collect, and the methods used to deal with missing data in the past relied on case deletion. There is no one overall best fix, but many different methodologies to use in different situations.

This study was motivated by the writer's time spent analysing data in the nutrition study, and realising how much data was wasted by case deletion, and subsequently how this could bias inferences formed from the results. A better method (or methods), of dealing with missing data (than case deletion) is required, to ensure valuable information is not lost.

What is being done: What is in the literature? The literature on this topic has exploded with new methods in recent times. Algorithms have been written and incorporated based on these methods into a number of statistical packages and add-on libraries.

Statistical packages are also reviewed for their practicality and application in this area. The nutrition data is then applied to different methodologies, and software packages to assess different types of imputation.

A set of questions are posed; based on type of data, type of missingness, extent of missingness, the required end use of the data, the size of the dataset, and how extensive that analysis needs to be. This can guide the investigator into using an appropriate form of imputation for the type of data at hand.

A comparison of imputation methods and results is given with the principal result that imputing missing data is a very worthwhile exercise to reduce bias in survey results, which can be achieved by any researcher analysing their own data.

Further to this, a conjecture is given for using Data Augmentation for ordinal data, particularly Likert scales. Previously this has been restricted to either person or item mean imputation, or hot deck methods. Using model based methods for imputation is far superior for other types of data. Model based methods for Likert data are achieved by means of inserting the linear by linear association model into standard missing data methodology.

Acknowledgements

I wish to offer my sincerest thanks to my supervisor, Doctor Barry W. M^cDonald, for all his helpful advice, comments and efforts on my behalf, and also for his encouragement and mentoring throughout the course of this degree.

My thanks also go to Doctor Howard P. Edwards for his assistance in 'Matters Bayesian', Ms Katya Ruggiero for her ability to challenge practices and ideas, Mrs Kay Rowbottom for her assistance with the production of the flowcharts, and Synthia for her encouragement.

Thanks also go to Mrs Patsy E. Watson for providing via my supervisor, the nutrition dataset; and also to Ms Janet Norton for providing her dataset, via Professor Graham R. Wood.

Lastly but not least, I would like to thank my family (the thesis orphans) for putting up with my frequent absences for long periods to do this work.

> Blessed is the man who perseveres under trial, because when he has stood the test, he will receive the crown of life that God has promised to those who love him. James 1:12

Table of Contents

TABLE OF CONTENTS		IV
NOTAT	ION AND ABBREVIATIONS	XIII
1 INT	RODUCTION: IS IGNORANCE BLISS?	1
1.1 Т	'he thesis	1
1.1.1	An overview of the thesis	1
1.1.2	Background	1
1.1.3	The Remaining Chapters	2
2 LIT	ERATURE REVIEW OF DATA COLLECTION	
METHO	DOLOGY	4
2.1 V	Vhat is Missing Data?	4
2.1.1	Ways in which Missing Data Arise	5
2.1.2	Inference and missing data	6
2.1.3	Consequences of Missing Data	7
2.1.4	Bias	7
2.1.5	Omitting covariates	9
2.2 F	forms of Nonresponse.	9
2.2.1	Unit Nonresponse.	10
2.2.2	Item Nonresponse	11
2.3 N	Aissing Data Mechanism	12
2.3.1	Parameter distinctiveness	13
2.3.2	MCAR	13
2.3.3	MAR	15
2.3.4	NMAR	17
2.3.5	Patterns of Missing Data	17
2.4 T	ypes of data in Surveys	19
2.4.1	Surveys	19

2.4.2	Occurrences of Nonresponse in Surveys	20
2.4.3	Inevitable missingness in Surveys	20
2.4.4	Longitudinal drop out mechanism	21
2.4.5	Quota Sampling:	22
2.4.6	Telephone Surveys	23
2.4.7	Call Backs for the Noncontactables	23
2.4.8	Sensitive questions.	24
2.4.9	Coercion	25
2.4.10	Methods of Interviewing	26
2.4.11	Incentives	27
2.4.12	Double Sampling	27
2.5 SI	pecial Types of Data	28
2.5.1	Experimental design	28
2.5.2	Case Control Studies	30
2.6 W	Vays to prevent Nonresponse	30

3 LITERATURE REVIEW OF METHODOLOGY FOR ANALYSING MISSING DATA 32

3.1	Cure for Missing data	32
3.1.1	Complete and Available Case Analysis	32
3.1.2	Imputation (see chapter 5, for a more detailed description of methods used)	33
3.1.3	Reweighting	34
3.1.4	Model Based Methods	35
3.2	Older Methods used an 'ad hoc approach': Early Literature on Missing	
Observa	ations	37
3.2.1	Performance of Different Methods:	38
3.3	More Modern Methods	40
3.3.1	Imputation using Box-Cox Transformations	40
3.3.2	More on Regression Imputation	42
3.3.3	Imputation using Coarsening, or Discretising Data	43
3.3.4	Multiple Imputation	44
3.3.5	Uncongenial sources of input.	48

3.3.6	EM Based, MCMC Based Methods	51
3.4 1	Little's test for MCAR	53
3.4.1	Σ known.	54
3.4.2	Σ unknown.	54
3.4.3	Monotone missing	54
3.4.4	Monotone data patterns	55
	gnorable Nonresponse	57
3.5.1	EM algorithm: what is it applied to Missing data	60
3.5.2	MLE for multivariate normal	61
3.5.3	Contingency Tables (Categorical)	62
3.5.4	MLE for Multinomial Model	66
3.5.5	MLE for Loglinear Model	66
3.5.6	Longitudinal	67
3.5.7	Repeated Binary outcomes	67
3.5.8	Mixed models	68
3.5.9	Likert-type scales	69
3.6 N	Non-Ignorable Missing.	72
3.6.1	Non-Random Missingness.	73
5.0.1	Ton-Random Missinghess.	15
3.7 I	Data Models	74
3.7.1	Multivariate Normal	74
3.7.2	Multinomial (Saturated)	74
3.7.3	Loglinear	75
3.7.4	General Location Model	76
	Likelihood theory	77
3.8.1	Coarsening	77
3.8.2	Sensitivity to Normality	77
3.8.3	Categorical	78
3.8.4	Bayesian Approach	78
3.9	Analysis of missing data	79
3.9.1	Rubin's Rules for Recombining Estimates	79

3.9.	3 Longitudinal data	80
3.9.4	4 Bayesian Methods (Multiple Imputation): as applied to Frequentist Ideas.	81
3.9.5	5 Parameter Expansion for Data Augmentation	82
3.9.0	6 Nonparametric Method	82
3.9.2	7 MCMC Algorithm.	82
4 N	IOTIVATION AND DATA DESCRIPTION	83
4.1	The problem:	83
4.2	Motivation for this study:	83
4.3	The two data sets used here.	84
4.3.3	Nutrition Data set.	84
4.3.2	2 Genetics Foods Data Set.	87
5 II	MPUTATION	94
5.1	What is Imputation, and why Impute?	94
5.2	Complete Case Methods Overview	96
5.2.1	Case Deletion	97
5.2.2	2 Available case	98
5.2.3	3 Logical substitution and Look-up tables	98
5.3	Mean Based Methods Overview	99
5.3.1	Mean Substitution	99
5.3.2	2 Mode Substitution (categorical)	99
5.3.3	3 Median Substitution (robust)	100
5.3.4	4 Discriminant Analysis	100
5.3.5	5 Stochastic Mean Substitution.	101
5.3.0	6 Mean within category substitution (conditional)- class mean.	101
5.4	Data Substitution Methods Overview	102
5.4.1	l Colddeck	102
5.4.2	2 Hotdeck- random	103
5.4.3	B Hotdeck- next available case.	103

5.4.4	Last value carried forward (Hot deck)	104
5.5	Time Series Models Overview	104
5.5.1	ARIMA models	105
5.5.2	Kalman Filter models	105
5.5.3	Period on Period Movements Ratio.	106
5.5.4	Within Case Year on Year Movements Ratio.	106
5.6	Regression Imputation Overview	107
5.6.1	Predictive Regression Imputation	107
5.6.2	Predictive Mean Matching	107
5.6.3	Random (Stochastic) Regression Imputation	108
5.6.4	Logistic Regression Imputation	109
5.7	Other single imputation methods Overview	109
5.7.1	Nearest Neighbour Imputation	109
5.7.2	Neural Networks	110
5.8	Model Based Imputation Methods Overview	112
5.8.1	EM Based Single Imputation.	113
5.8.2	Multiple Imputation - Bayesian	114
5.8.3	Multiple Imputation MCMC based - Bayesian	114
5.8.4	Multiple Imputation - Conditional	115
5.8.5	Multiple imputation for GEE (Generalised Estimating Equations)	118
5.8.6	MI for Case Control Studies	118
6 S	OFTWARE FOR MISSING DATA	120
6.1	Overview of Software Available	120
6.2	Commercial Packages	121
6.2.1	Minitab	121
6.2.2	SAS	122
6.2.3	S-PLUS	125
6.2.4	Base SPSS (Data step)	126
6.2.5	SPSS MVA	126
6.2.6	Statistica	127

6.2.	7 Systat	128
6.2.	6.2.8 Matlab	
6.3	Commercial Packages which are lesser known	129
6.3.		129
6.3.		129
6.3.	3 Solas	130
6.4	Specialist Freeware Missing Data Packages	132
6.4.	1 Amelia	132
6.4.	2 Cat	132
6.4.	3 IVEWARE	133
6.4.	4 MDM	133
6.4.	5 MICE	134
6.4.	6 MIX	134
6.4.	7 NORM	135
6.4.	8 OSWALD	135
6.4.	9 PAN	137
6.4.	10 TRANSCAN	137
6.5	Other Packages which may be Useful	137
6.5.	1 MULTIMIX	137
6.5.	2 SNOB	138
7 F	RULES FOR IMPUTATION	141
7.1	Imputation Strategies	141
7.2	Type of Missingness: Is the missingness MCAR, MAR, NMAR?	142
7.2.	1 Continuous Data, MCAR.	142
7.2.	2 Continuous Data MAR	143
7.2.	3 Continuous data NMAR	143
7.3	Categorical data.	144
7.3.	1 Ordinal data, MCAR.	144
7.3.	2 Ordinal data, MAR	145
7.3.	3 Ordinal data NMAR.	145

7.3.	4 Binary, Nominal data MCAR	146
7.3.	5 Binary, Nominal MAR data	146
7.3.	6 Binary Nominal NMAR	146
7.4	Mixed data	147
7.4.	1 Mixed data MCAR.	147
7.4.2 Mixed data MAR		147
7.4.	3 Mixed data NMAR	148
7.5	Time series data	148
7.5.	1 Time Series MCAR	148
7.5.	2 Time Series MAR	148
7.5.	3 Time series NMAR	149
7.6	Other longitudinal studies (Repeated measures)	149
7.6.	1 Repeated measures MCAR	149
7.6.	2 Repeated Measures MAR	149
7.6.	3 Repeated measures NMAR	149
7.7	Panel data, and Clustered data	150
7.8	Case control studies.	150

8 SOME APPROACHES TO ORDINAL CATEGORICAL DATA IMPUTATION: LIKERT DATA IN PARTICULAR (A CONJECTURE) 151

ANALYSIS AND IMPUTATION OF DATA 157 9 9.1 Preparation of the data. 157 9.1.1 SPSS MVA Imputation 159 9.1.2 Solas 161 9.1.3 S-Plus 162 9.2 Analysis of data using Minitab 165 9.2.1 Results 165 9.2.2 Validity of Imputations, and results. 167

9.3	Further Analysis	169
10 C	CONCLUSION	170
10.1	The Ethics of Imputation	170
10.2	Conclusion	172
APPE	ENDIX	175
BIBL	IOGRAPHY	184

List of Tables and Figures

Table 3.1. Construction of a look-up table:	65
Figure 5.1. Efficiency of Imputation Table	113
Table 9.1. Estimates of coefficients under different Imputation schemes	165
Table 9.2. Standard deviations under different Imputation schemes.	166
Figure 9.1. Normal probability plot of the residuals	167
Figure 9.2. Histogram of the residuals	168
Figure 9.3. Plot of residuals versus fitted values	168

Notation and Abbreviations

BLR	Binary Logistic Regression
CD	Case Deletion
EM	Expectation Maximisation (algorithm)
EM Imp	Imputation via the EM algorithm
GLM Imp	General Location Model Imputation
HD	Hotdeck (Imputation)
iid	Independent identically distributed
LUM	Look up methods
LVCF	Last Value Carried Forwards
MCAR	Missing Completely at Random
MAR	Missing at Random
Mean Imp	Mean family of Imputation
MI	Multiple Imputation
MI BB	Multiple Imputation Bayesian Bootstrap
MICE	Multiple Imputation by Chained Equations
MI DA	Multiple Imputation via Data Augmentation
MI EM	Multiple Imputation via the EM algorithm
N.Neighbour	Nearest Neighbour
N Nets	Neural Networks
NLR	Nominal Logistic Regression
NMAR	Not Missing at Random (Informatively Missing)
OLR	Ordinal Logistic Regression
PMM	Predictive Mean matching
Reg Imp	Regression Imputation
SHHD	Sequential and/or Hierarchical Hotdeck
SI	Single Imputation
St Reg	Stochastic regression Imputation

W	Indicator for Missingness
х	Co-variate in model
Y	Variable of interest
â	Gamma Parameter (Ch 8)
β	Gamma Parameter (Ch 8)
β	Regression Coefficient Estimate (Ch 9)
θ	Distribution Parameter
$\hat{ heta}$	Maximum Likelihood Estimate of the Parameter
ψ	Missingness Parameter in Model