
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Towards Implementing

RSA-based CP- ABE Algorithm

on Android System

A thesis presented in partial fulfilment of the requirements

for the degree of

Master of Information Sciences

at Massey University, Auckland, New Zealand

Jiaxin Xing

2019

Abstract

Cipher-text-Policy Attribute-Based Encryption (CP-ABE) algorithm has been

proposed to encrypt and decrypt data based on the matching between

attributes and an access policy placed over cipher-text. Using CP-ABE, data

owner can encrypt data along with an access policy to enforce a fine-grained

access control. To improve the efficiency of performance, this study chose a

RSA-based CP-ABE algorithm with an access-tree structure while most

existing CP-ABE has been implemented using ECC. This new RSA-based

CP-ABE algorithm was implemented in the Linux system in another study

while this thesis addresses an implementation strategy on an Android system.

To achieve this goal, a simple encryption application was designed for users

who want to encrypt and decrypt messages through their mobile devices.

This study used Android Studio to create the encryption application. In this

cipher program, users input the message they want to encrypt and get the

encrypted data through the function button named “CIPHER”, and they also

can decrypt the cipher-text in the same way.

There are four main algorithms involved in a CP-ABE scheme. They

respectively are setup, key generation, encryption and decryption. During the

setup process, the CP-ABE scheme uses the RSA algorithm to choose two

prime numbers. These prime numbers are used to a master public key and a

master private key. In the key generation algorithm, a secret key is generated

for a set of attributes using the master private key. In the encryption step, it

creates a cipher-text with an access tree. In the decryption algorithm, if and

only if the attributes for the user’s decryption key satisfies this access policy

is able to decode the encrypted data. This algorithm uses the construction of

lightweight no-paring crypto-system based on RSA, and the construction

supports an expressive monotone tree access structure to implement the

complex access control as a more generic system. By using this algorithm, the

encryption and decryption processes are more efficient and secure.

Acknowledgments

I would like to express my deep and sincere gratitude to my primary research

supervisor Associate Professor Julian Jang-Jaccard of Massey University (New

Zealand) for giving me the opportunity to do this research and providing

invaluable guidance throughout this research and making the CP-ABE projects

possible. Her extensive industry and academic experiences have been

extremely valuable in contributing to the successful completion of my

projects and thesis. It was a great privilege and honor to study under her

guidance. I am extremely grateful for what she has offered me. I would also

like to thank for her kindness and patience during the whole process.

I would also like to express my appreciation to my friends, Mrs. Ping Li,

Yuanyuan Wei and Timothy Raymond McIntosh for their warm-hearted help

and constant encouragement. I express my special thanks Mrs Ping Li for

providing her RSA-based Access-Tree CP-ABE algorithm to support my thesis. I

would also like to express my special thanks Yuanyuan Wei. She provided me

a lot of help with this study, and supports me all the time.

I am extremely grateful to my parents for their love, caring and sacrifices for

educating me for my future. Finally, my thanks go to all the people who have

supported me to complete the research work directly or indirectly.

Table of Contents

CHAPTER 1. INTRODUCTION ... 1

1.1 Overview ... 1

1.2 Goal ... 2

1.3 Structure.. 3

CHAPTER 2. BACKGROUND TECHNOLOGY .. 4

2.1 Attributes-Based Encryption (ABE) .. 4

2.2 Access structure ... 5

2.3 CP-ABE ... 8

2.3.1 Five Fundamental Algorithms of CP-ABE ... 11

2.3.2 Security Mode for CP-ABE.. 15

2.4 Rivest-Shamir-Adleman (RSA) ... 16

2.4.1 RSA Algorithm .. 18

2.4.2 The Security of RSA ... 19

CHAPTER 3. LITERATURE REVIEW .. 21

3.1 CP-ABE for Mobile PHR System ... 21

3.2 CP-ABE for Mobile Devices in IoT .. 22

3.3 CP-ABE Based Privacy-Preserving User Profile Matching in Mobil Social

Networks... 23

CHAPTER 4. REVISIT RSA-based ACCESS-TREE CP-ABE SCHEME 24

4.1 Model .. 24

4.2 Algorithm Description .. 26

4.3 Security ... 31

CHAPTER 5. IMPLEMENTATION ... 33

5.1 Overview ... 33

5.2 Preparation for CP-ABE ... 33

5.2.1 Setup Environment ... 34

5.2.2 Java Native Interface (JNI) .. 45

5.3 App on Android Studio ... 47

5.4 Implementation Algorithm ... 50

5.4.1 Setup ..511

5.4.2 Key Generation ... 56

5.4.3 Encryption .. 59

5.4.4 Decryption .. 633

5.5 Running the App ...69

5.6 App Demonstration ... 711

5.7 Performance Evaluation .. 742

5.8 Lessons Learned .. 74

CHAPTER 6. CONCLUSION ... 77

REFERENCES ..79

List of Figures

Figure 1 . Attributes based encryption [7] .. 5

Figure 2 . Access control tree structure [32] ... 7

Figure 3 . A functional overview of CP-ABE [10] ... 9

Figure 4 . CP-ABE Implementation [10] ... 10

Figure 5 . Flow Chart of CP-ABE Algorithm ... 12

Figure 6 . Asymmetric Algorithm .. 17

Figure 7 . An CP-ABE access control structure for PHR data [15] 22

Figure 8 . Setup algorithm ... 27

Figure 9 . Key generation algorithm .. 28

Figure 10 . Encryption algorithm... 29

Figure 11 . Decryption algorithm .. 30

Figure 12 . Install M4, bison and flex .. 35

Figure 13 . Configure the GMP library .. 36

Figure 14 . Build the GMP library .. 37

Figure 15 . Install the GMP library .. 37

Figure 16 . Extract compressed file ... 38

Figure 17 . Configure the PBC library .. 39

Figure 18 . Build the PBC library.. 39

Figure 19 . Install the PBC library .. 40

Figure 20 . Test code.. 40

Figure 21 . Compile file “foo” and run .. 40

Figure 22 . Configure the Libbswabe library ... 41

Figure 23 . Build the Libbswabe library ... 41

Figure 24 . Libbswabe sudo make install ... 42

Figure 25 . Install openssl and glib .. 42

Figure 26 . Build CP-ABE .. 43

Figure 27 . Test CP-ABE scheme .. 43

Figure 28 . Interface pointer [20] .. 46

Figure 29 . Interface design window ... 48

Figure 30 . Native CP-ABE.. 48

Figure 31 . Main activity widow .. 49

Figure 32 . Build Gradle(Module: app) .. 49

Figure 33 . Setup ... 55

Figure 34 . Key generation for Sara ... 55

Figure 35 . Key generation for Kevin ... 58

Figure 36 . Encryption ... 62

Figure 37 . Steps for USB debugging ... 69

Figure 38 . Install Android adb tools package on terminal .. 70

Figure 39 . Select deployment target .. 70

Figure 40 . (a) Application interface (b) Hint for empty import (c) import text 71

Figure 41 . Key size .. 71

Figure 42 . Number of attributes .. 74

1

Chapter 1. Introduction

The first part of this chapter gives an overview of this study. It introduces the

basic algorithms supported in the new CP-ABE system, and also briefly

explains how CP-ABE scheme works. In the second part, it describes the main

purpose of this project which is to implement the RSA-based CP-ABE scheme

on an Android system. In the last part, it provides a brief description of the

structure of this study.

1.1 Overview

The open source mobile Android system was developed by Google based on

an Android kernel design. The Android operating system has become the

basis of the recent applications that include smart phone, tablet computer,

and smart TV etc. Android system supports a complete ecosystem that

includes from development, installation and usage of applications. Due to it’s

wide use, it is important to provide a secure mechanism to keep the data

system and application that runs on an Android OS.

The Attributes-Based Encryption (ABE) algorithm was first proposed by Amit

Sahai and Brent Waters in Fuzzy Identity-Based Encryption in 2005 [1]. One

year later, Goyal etal., proposed the ABE for Fine-Grained Access Control of

Encrypted Data [2]. Then the first construction of the Chiphertext-Policy

Attributes-Based Encryption (CP-ABE) was provided by John Bethencourt,

Amit Sahai, and Brent Waters in 2007 [3]. In their work, they presented the

first construction of a scheme as CP-ABE, in which, the secret key of the user

is combined with a set number of attributes. Data owners can defines an

access structure over a secret document in such a way that allows the users

to decrypt only if the users’ attributes satisfy the access policy. A more

efficient CP-ABE scheme named RSA-based Access-Tree CP-ABE was

presented by a master student Ping Li [36]. In her research, a no-pairing RSA

algorithm was proposed to improve the efficiency of a CP-ABE scheme that

was also based on the access tree structure. This scheme was implemented

on Linux system. This study aims to provide an implement strategy for the

new CP-ABE scheme on Android system.

Typically, there are four main algorithms of a CP-ABE scheme, which

respectively are setup, key generation, encryption and decryption. In the first

setup algorithm, two prime numbers are picked based on the concept of RSA

algorithm, and new security parameters are produced step by step from

these two primes. After getting all the security parameters, a master public

2

key as well as a master secret key are created by utilising the security

parameters produced in the setup stage. In the second algorithm, it takes a

set of attributes and the master private key as inputs and then it outputs a

secret key associated with a set of attributes defined by each decoder by

using a hash function for each attribute. In the third algorithm, a Lagrange

polynomial is selected with an up-to-down manner for each node in an access

structure. The algorithm randomly chooses a value from N which is

defined in setup algorithm and sets this value as the polynomial of the root

node. Then this algorithm constructs a polynomial for each internal leaf node

in an access tree, such that, an access tree structure is built during this

process. Then, it encrypts the text with the access tree that associated with a

set of attributes. In the last step, it checks the user’s attributes associated

with the secret key with the access policy by calling a recursive algorithm. The

users will be able to access and decode the documents if their attributes

meet the access policy.

This study implements the RSA-based CP-ABE scheme on an Android system

by making an application for Android mobile devices. In order to build up this

app, an Android Studio was used along with a series of tools, such as Java

Native Interface (JNI). Many tools are all used to build a bridge that connects

the native Java methods with the CP-ABE library written in C code.

1.2 Goal

There have been many algorithms to encrypt sensitive data as a way to

provide data privacy. This study chose the RSA-based Access-Tree CP-ABE

scheme that is considered as an efficient and lightweight encryption system

that can run on resource constraint devices such as mobile phones. The

original proposal of RSA-based CP-ABE system was written in C code and was

implemented in the Linux system by another master student Ping Li.

Extending from this, the goal of this study is to implement the RSA-based

CP-ABE on the Android system so that it can be applied to android mobile

devices.

Based on the new features of RSA-based CP-ABE scheme, this study made an

encryption application that can work on an Android mobile device. This app

uses the improved algorithm to encrypt and decrypt messages, and it is

designed as a user interface with three basic functions: input text, encryption

and decryption. In this encryption application, the users input messages that

they want to encrypt in a text box, then click the “CIPHER” button to encrypt

the message. The encrypted text is shown in the second text box that under

the cipher button. After getting the encrypted text, a users can decrypt it by

3

using the “DECRYPT” button and get the original plain-text message.

To implement the RSA-based Access-Tree CP-ABE algorithm on Android

system, there are a number of mechanisms involved. First of all, a setup of

the development environment needed be built successfully. Some libraries

that supports a CP-ABE algorithm need be installed, such as PBC, GMP and so

on. After preparing those libraries, the CP-ABE algorithm should be compiled

first, and then it is ready to be used in the system. Then, the Android Studio

should be prepared to link the dynamic libraries. For example, the project

should be built under the “C/C++ support” version. In addition, an

Android.mk file is required to make .so libraries work, and other tools inside

Android Studio are also needed to be prepared such as Native Development

Kit (NKD) tools. Those tools can work as a bridge between C language and

Java language. JNI is one of them, and it is a tool for calling functions from

Java to another language. In Android Studio, it needs to import the CP-ABE

libraries as well as to write Java code to link CP-ABE functions with Java

command by JNI. In this way, the encryption application is able to implement

the RSA-based Access-Tree CP-ABE scheme on the Android system.

1.3 Structure

In the beginning of this study, it describes the preliminary understanding of

the encryption algorithm and discuses the advantages of a CP-ABE algorithm.

In the next chapter, it describes the background knowledge required to better

understand the proposed algorithm which includes the description of ABE

algorithm, CP-ABE algorithm and RSA algorithm, which will all be involved in

the RSA-based Access-Tree CP-ABE scheme. The related works are presented

in chapter 3. It introduces the application of the CP-ABE algorithm in three

different fields, and describes the basic working principle for each field.

Chapter 4 revisits the new CP-ABE algorithm and provides in depth

description of the new CP-ABE algorithm. Chapter 5 describes the

implementation process of the new CP-ABE system. In particularly, it

introduces the setup environment that is used for preparing libraries and JNI

function that is used to help the new algorithm run in the Android mobile

devices. It also presents the steps of the application demonstration, and

discusses the lessons learned. In the last chapter, it provides the conclusion.

4

Chapter 2. Background Technology

This chapter describes the background technology of the RSA-based CP-ABE

scheme. This includes the description of the original ABE scheme where a

CP-ABE is based on the description of a RSA algorithm, and the details of the

original CP-ABE algorithm.

2.1 Attributes-Based Encryption (ABE)

In an ABE system, an encrypted data is associated with a set of attributes. A

user’s private key is associated with an access structure over a set of

attributes. The user’s private key reflects the user’s access policy [6]. This

implies that the user is allowed to decrypt if and only if the set of attributes

of a user’s private key satisfies the access policy.

Comparing with the original ABE scheme, the advanced ABE scheme

improved it’s expressibility, which means that the user’s private key is able to

express any monotone access formula consisting of AND, OR, or threshold

gates [6]. Moreover, when encrypting a message, a user may not be aware of

the attributes. After creating the cipher-text, a new set of attributes may be

used in the system. The core component of the current ABE systems is a

secret-sharing scheme.

The ABE algorithm can encrypt the text from a data owner which correlates

the attributes of the user [2]. The main characteristic of ABE is to reconsider

the concept of a public key. Normally, a receiver decodes an encrypted

message with a public key. In identity-based encryption (IBE) cryptography,

the user’s public key can be any string such as an email address [4]. Thus, the

cipher-text can be decoded only if someone holds the key with the matching

attributes. Generally, the user’s key is issued by a third trusted party. ABE is

basically a one-to-many algorithm that sends a message so that all legitimate

users are able to decode [5]. By contrast, a one-to-one encryption algorithm

has scalability issue as it can only send the message to a single recipient.

5

Figure 1. Attributes based encryption [7]

For example, let’s assume that Figure 1 is a student database, and the user is

a student in the mathematics department. On the right top of Figure 1, it

shows the encryption process:

• The user (U) sends the credential L to the key generate centre (KGC).

• The credential of user U is the mathematics (MA) department and

master of science (MSc) designation.

• KGC uses parameters and a master key (MK) to verify the credential L,

and sends the secret key with the credentials of the user U(SK_L) back

to user U.

If these attributes are satisfied with W, which indicates that the student

studies in the mathematics department and either he/she is a PhD student or

a MSc student, then the encryption should be done. What happens next is

the message is encrypted into a cipher-text that is sent to each user through

the public channel. When broadcasting a cipher-text, only the groups of

students who satisfy W are able to decode the information asset by using the

secret key based on their credentials. In figure 1 for example, it is clear to see

that the credentials of the user U3 are {MA, MSc} which in turn satisfies the

decryption conditions. This results in user U3 being able to decode the

cipher-text with their secret key and be able to access the original message.

2.2 Access structure

In a security system, there are usually multiple parties that work together to

obtain a resource. Therefore, access structures are used to keep the system

6

secure. The users who are authorized to access the resource are called the

qualified groups of parties, which in turn are called qualified sets, and the set

of all qualified sets is called the access structure of the system. In other words,

the access structures are used to describe the necessary conditions that are

needed to be able to access the information asset.

At the beginning stages of access structure applied in cryptography, the

information asset was shared among the user’s secretly [8]. Only the groups

of users who are contained in the access structure are able to access the

information asset. Normally, the information asset is a task that participants

can solve together, such as decoding an encrypted message.

The background knowledge of an access structure is introduced below.

Gates

There are usually three types of gates in an access structure in a CP-ABE

algorithm, which respectively are AND gates, OR gates and NOT gates:

• The AND gates allow passing if all the conditions are met.

• The OR gates allow passing if at least one of the conditions is met.

• The NOT gates allow passing if all the conditions are not met.

Threshold [1]

Both the user’s private key and the cipher-text are each associated with a

different set of attributes. If and only if the overlapping part between each

set is at least the same as the globally defined threshold, then the decryption

algorithm is able to work [31].

),(nn -Threshold

The Shamirs Secret Sharing (SSS) with a variable threshold value t is used by
the AND gates as a),(nt -scheme. A single AND gates with n attributes is

used, if all shares are required to be present. The),(nn -Threshold access

structure is the same as the AND gates method because the attributes can be
multi-valued, thus it is called),(nn -Threshold. However, in most cases, it is

usually just called AND gates.

7

Tree [2]

This is a method that shares a secret resource in a KP-ABE or CP-ABE scheme.

By using Lagrange interpolation, it can be reconstructed. It not only allows

both AND gates and OR gates, but also permits any threshold gates with SSS

for each node of the tree. The access tree can be easily built up from a textual

representation (such as a boolean formula).

Figure 2. Access control tree structure [32]

The children of each internal-leaf node and a threshold value are used to
describe a threshold gate represented by each internal-leaf in an access tree
T which is illustrated in Figure 2. The number of child nodes of node x is
presented as numx , and the threshold value of the node x is

 numxkx ,1 . It indicates that node x performs the OR operation on all

subsets of kx children of x , and each subset supports an AND operation.
As for the leaf-nodes, each of them is described by an attribute and a
threshold value which is defined as 1kx . When generating a data item, a
tree is created for access control by defining the access rights with the
associated attributes. This means that only the person who owns the
attributes of the data item is able to decode the cipher-texts.

Linear Secret Sharing Scheme (LSSS)

LSSS stands for Linear Secret Sharing Scheme and it works on a matrix that

signed rows with attributes of the policy. Based on this matrix, it creates

shares from a secret element. The output of this scheme is the same as the

access tree structure, although, in most situations, the LSSS approach can be

replaced by the tree approach. However, due to the security games may

depend on a specific approach, thus the security will not be guaranteed after

exchanging [31].

8

2.3 CP-ABE

By using traditional methods, the difficulty of guaranteeing data security

increases. When storing resources at several locations, the chances that one

of them may become compromised increases dramatically [3]. A CP-ABE

scheme allows sensitive data to be stored in an encrypted form regardless of

whether or not a server is compromised. Moreover, it is able to efficiently

handle more expressive types of encrypted access control [3].

Most existing CP-ABE schemes have a disadvantage of not being able to

satisfy the flexibility and efficiency required by an enterprise’s requirements

of access control. A CP-ABE scheme is limited in some aspects, such as

specifying policies and managing user attributes. In the CP-ABE construction,

the secret key contains the set of attributes of the user. In other words, to

satisfy policies, a user is only able to use possible combinations of attributes

in a single set that is issued in their private keys [33]. The nature of a CP-ABE

scheme influences itself. Due to the decryption privilege is shared by multiple

users with the same attributes, this makes it hard to identify the original key

owner from an exposed key. The commercial applications of CP-ABE are

limited by this situation to some extent [34].

Here are the two main algorithms of the ABE scheme:

 • KP-ABE, it combines a set of attributes with every encrypted

message. Then an access structure is associated with each secret

key of the user.

 • CP-ABE, a set of attributes is associated with each user’s private key.

An access policy is defined over a message [9].

It is important in a CP-ABE scheme that the person who owns the secret data

is able to determine the access policy. Moreover, the data owner can only

determine the people who have the authority to access the data by

describing their attributes or credentials rather than knowing the certain

identities of the other users.

Generally, the information asset of the owner is in the custody of a

trustworthy server. In order to make sure that only the accredited person is

entitled to obtain the secret message, software checking is applied to control

the access structure. However, identifying every potential recipient, acquiring

and storing their public keys is difficult to do in a large-scale system. Thus, it is

expected to encrypt the data with an incomplete list of intended recipients.

The CP-ABE algorithm is an emerging approach to handle this situation and

9

ensures the authentication of the user by checking whether the user’s

attributes satisfy the access policy or not. CP-ABE can identify whether the

user is legitimate when performing an operation on the stored data. Access

control policies provide two significant functions, the first one is authorizing

multiple user rights to access an information asset. The second one is making

personal access rights more flexible. The data owner can encrypt the data

without the information of all the receivers by using flexible access policy in a

CP-ABE scheme.

Bethencourt, Sahai and Waters introduced BSW’s scheme as the construction

of a CP-ABE scheme. The function of BSW’s scheme is to present more

expressive models for access control. The private key is combined with strings

that represent an arbitrary number of attributes. For those users who are

able to decrypt the message, there is always a policy that is selectively

specified by the encrypted data party. The only condition for a user to decode

the cipher-texts is that the decryption key meets the access policy.

To provide privacy for the access of confidential data, the CP-ABE system is

required. Here is a simple case of how CP-ABE works. In Figure 1, let’s

suppose that the data owner only wants the users with “MA” and “MSc” to

access the resources and decrypt the documents. Therefore, only the group

of people whose attributes all satisfy the policy is able to access the data. Any

other users without the attributes which can satisfy the access policy are

unable to access those data. For example, the user U2 in Figure1 has the

attributes {“CS”, “MSc”} which does not meet the access policy, thus user U2

will be unable to access the files.

Figure 3. A functional overview of CP-ABE [10]

10

This graph gives a detailed explanation of the usage and the basic function of

an access tree in CP-ABE. An access policy A is created by the data owner,

which is “Only Undergraduates and Postgraduates in the IT department may

access this data”. Then the data is encrypted with this access policy. There are

three data users with their own attributes respectively. The attributes of Alice

are {Dept = IT, Gender = Female, Country = UK, Status = Postgraduate}. In the

attributes set of Alice, there shows IT and Postgraduate which meet the

access policy. Therefore, Alice is authorized and she can access the data and

the same goes for Dave. The attributes of Bob are {Dept = Law, Gender =

Male, Country = UK, Status = Postgraduate}. However, as Bob is a

Postgraduate student in the Department of Law, he only satisfies one

condition. Therefore, Bob is unable to access the data.

Figure 4. CP-ABE Implementation [10]

Figure 4 shows how CP-ABE can work in daily life. The data owner (DO) wants

to share some documents, then the owner sets up an access policy for their

information asset. When the data owner gets the public key (PK) from the

attribute authority (AA), they can then encode the message (M) by using the

public key (PK) and an access policy (A). Then an encrypted data is kept in a

trusted storage server. The attribute authority (AA) also gives each user a

different secret key, in the example of Figure 4, they are SK1, SK2 and SK3. As

it is shown in Figure 4, there are three users, Bob, Alice and Dave, and their

attributes respectively are {Law, P/G}, {IT, P/G} and {IT, U/G}. In the access tree

for attributes shows that the user should satisfy those conditions. The user

should be in the group of {IT, U/G} or {IT, P/G} respectively. The access tree for

the attributes shows what conditions the users need to meet in order to gain

11

access. In Figure 4, the user needs to be in the group of {IT, U/G} or {IT, P/G}.

Thus, according to the parameters of Figure 4, Alice and Dave meet the

conditions and they can decrypt the documents uploaded by the data owner

respectively with their secret key SK2 and SK3 respectively. However, the

attributes of Bob are {Law, P/G}, which does not meet the access attributes

required. Therefore, due to his attributes, Bob cannot obtain the files from

the data owner with his secret key SK1.

2.3.1 Five Fundamental Algorithms of CP-ABE

Here is the basic description of five fundamental algorithms in a CP-ABE

scheme [3]:

① set up (input: universal attributes set, security parameter

 output: public parameters PK, master secret key MK)

During this process, security parameter and universal attributes set are taken

as the input of this algorithm. Then it outputs the public parameter PK and

master key MK.

② key generate (input: MK, attributes S

 output: private key SK)

The key generation algorithm inputs MK and a set of attributes S that

describes the key. Then it outputs a private key SK.

③ Encrypt (input: PK, message M,

access structure A over the universe of attributes

 output: cipher-text CT)

The inputs of the encryption algorithm are the PK, a message M, and an

access structure A over the universe of attributes. Then the message M is

encrypted into the cipher-text CT, and only the receiver whose attributes

satisfy the access structure are able to decrypt the cipher-text.

④ Decrypt (input: PK, CT[A], SK[S]

 output: M)

PK, CT with an access policy A, private key SK (a private key for a set of

attributes S) are the inputs of decryption algorithm, and it decodes the

cipher-text CT into the message M only if the set of attributes S satisfies the

12

access structure A.

⑤ Delegate (input: SK

 output: SK, S~)

If required, a delegate takes the secret key (SK) as an input and return a

secret key (SK) for a given set of attributes (S~).

Figure 5. Flow Chart of CP-ABE Algorithm

Figure 5 shows the process of CP-ABE algorithm. Firstly, it uses a setup

algorithm to create a master secret key MK and a public key PK from a

universal attributes set. Then, the key generation algorithm takes a set of

attributes and MK as input and output the assigned secret key SK with this set

of attributes. Meanwhile, PK is used to encrypt the message M with an access

policy A during the encryption algorithm, and it outputs the cipher-text with

A. Finally, the message can be decoded with PK, the satisfied SK[S] and CT[A].

Here is the construction of these five algorithms, but first, it defines some

elements which are used in those algorithms.

• 0G : A bilinear group of prime order p

• g : A generator of 0G

• 100: GGGe  : The bilinear map

13

• k : A security parameter which determine the size of the groups.

•
ji

jx
x ijSjSi




  ,,)(: The Lagrange coefficient Si , for pZi and

S which is a set of elements in pZ .

•   0

*
1,0: GH  : A hash function H which models as a random

oracle. This function maps any attribute described as a binary string
to a random group element.

Here are the mathematical formula descriptions of these five algorithms [3]:

① Setup algorithm:

Choose: A bilinear group G of prime order p with a generator g ;

 Two random exponents p , .

Then get the public key and the master key respectively. Note that f is only

used for delegation procedure:

),(,,,, 1

0 ggegfghgGPK 

),( gMK 

② Key generate algorithm (master secret key MK and a set of attributes
S):

Choose: a random pt  and random pj Zr  for each attribute Sj .

Then get the secret key SK as follow:

)',)(:,()(jj r

j

rr

j

r gDjHgDSjgDSK   

③ Encryption algorithm(public key PK , message  and access tree T):

Choose: a polynomial xq for each node x in the access tree T ;

For the root node R choose:

 a random pZs and sets sqR )0(;

Rd other points of the polynomial
Rq randomly.

14

For any other node x :

 set))(()0()(xindexqq xparentx  ;

 choose xd other points randomly to define xq completely.

Let Y be the set of leaf nodes in T , then the cipher-text CT is computed
as:

)))((',:,,),(,(
)0()0(

~
yy q

y

q

y

ss yattHCgCYyhCggMeCTCT  

④ Delegate algorithm (secret key SK and a set of attributes SS 
~

)

Choose: random
~

r such that
~~

Skr k  .

Then a new secret key is computed as:

)'',)(:,(
~~~~ ~~~~~
kr

kk
krr

kk
r gDDkHgDDSkDfDKS   

⑤ Decryption algorithm (cipher-text CT  and secret key SK ): 

This is a recursive algorithm, and it is defined as ),,( xSKCTeDecryptNod . If 

the node x  from access tree T  is a leaf node, then set )(xatti  : 

If Si , then 

)','(

),(
),,(

xi

xi

CDe

CDe
xSKCTeDecryptNod   

                                    
 
 )0(

)0(

)(,

,)(
xi

xi

qr

qrr

iHge

hiHge 
  

                                    )0(
),( xrq

gge  

If Si , then 

),,( xSKCTeDecryptNod  

If x  is a non-leaf node, for nodes z  which are the children of node x , it is 

defined as ),,( zSKCTeDecryptNod . Let zF  be the output. Let xS  be the 

arbitrary xk -sized set of child nodes z  which satisfies that zF , then 



 

  

15 







x

xSi

Sz

zz FF
)0(', , where )(zindexi  , and  xx SzzindexS  :)('  

 





x

xSi
x

Sz

qr
gge

)0()0( ',

),(  

 





x

xSi
zparent

Sz

zindexqr
gge

)0())(( ',
)(),(  

)0()( ',

),( xSix

x

iqr

Sz

gge




  

)0(
),( xqr

gge


  

Else return  . 

After the function eDecryptNod  is defined, now the decryption algorithm 

can start with calling function eDecryptNod  on the root node R  of the 

access tree T . If and only if this access tree T  is satisfied by the set of 
attributes S , then set 

rsrq
ggeggerSKCTeDecryptNodA R ),(),(),,(

)0(
  

Then the original message is computed as: 

    MggegheCADCeC rsrs   ),(),(),( )(
~~

  

2.3.2 Security Mode for CP-ABE 

① Setup 

The challenger generates the public parameters PK  by running the Setup 
algorithm, and the adversary receives the public parameters PK . 

② Phase 1 

The adversary makes repeated private keys corresponding to the attributes 

sets which are 
1

,...,1 qSS . 

③ Challenge 

The adversary not only submits two messages 0M  and 1M which have 

equal length, but also gives a challenge access structure 
A  such that none 



 

  

16 

of the sets of attributes 
1

,...,1 qSS  from Phase 1 satisfy the access tree made 

by adversary. The challenger flips a random coin b , and encrypts bM
 under 

the access tree structure A . Then the cipher-text CT  is sent to the 
adversary. 

④ Phase 2 

Phase 1 is repeated with the restriction that none of sets of attributes 

qq SS ,...,11
satisfy A  corresponding to the challenge.  

⑤ Guess 

The adversary gives a guess 'b  of b . 

In these processes, the advantage of an adversary is defined as  
2

1
'Pr  bb . 

Allowing for decryption queries in Phase 1 and Phase 2, the model can be 
extended to handle chosen-cipher-text attacks easily. 

Therefore, if all polynomial time adversaries have at most a negligible 
advantage in the above procedures, then a CP-ABE scheme can be secure. 

2.4 Rivest-Shamir-Adleman (RSA) 

Rivest-Shamir-Adleman (RSA) is an asymmetric algorithm that uses key pairs 
(public keys & private keys) to deal with the message. Public keys can be 
exposed to anyone. On the contrary, only the owner of keys holds the private 
keys. In other words, there is no need to compromise security of public keys 
which can be distributed publicly, but the privacy of private keys. 

In order to generate the key pairs safely, cryptographic algorithms based on 
mathematical problems to generate one-way functions are needed. It can be 
a notion of a trapdoor function which is a mathematical function that 
underpins the public key encryption system [23]. For example, the process of 
taking a given value A and using the trapdoor function to get another value B 
is very easy, however, it is intractable to use trapdoor function to get the 
value A from the value B. The reason is that it is easy to “add” points together 
and to “multiply” a point by an integer by using the “group law” (trapdoor 
function), but it is very difficult to work backward to “divide” a point by a 
number. In other words, assuming that it is intractable to factor a large 
integer composed of two or more large prime factors, the public key systems 
are secure. The greatest common divisor of two numbers can be found by 
using the Euclidean algorithm. 



 

  

17 

 

 
Figure 6. Asymmetric Algorithm 

As it is shown in Figure6, Alice wants to send message to Bob. In the 

beginning, Bob generates both his public key ( pubK ) and the private key 

( prK ). When Alice receives the public key from Bob, she can encrypt the 

message x with the public key. After encrypting, Alice sends the encrypted 
message y to Bob. By using the private key, Bob can decrypt the message y 
into the original message x. This figure explains how the asymmetric 
algorithm works. Alice uses the public key which is from Bob to encrypt the 
message x, and Bob uses the private key to decrypt the message y. The 
security coefficient is improved by using different keys during encryption and 
decryption process. 

Due to the complex mathematics that RSA algorithm presents, it is safe and 
secure. The reason is that it refers to the factorization of prime numbers. 
These prime numbers are large enough that is hard to factorize. This trap 
door function guarantees the security of this algorithm. Moreover, another 
advantage of RSA algorithm is the public key which is public and easy to get 
by anyone. This allows distributing keys safely, which is the big issue in 
cryptography system. 

The RSA algorithm can be slow when generating key pairs with large primes. 
Besides this, when encrypting large data in the same computer, the RSA 
algorithm can also be very slow. For further explanation, the main 
computational cost of the RSA algorithm is the modular exponentiation 
during the key generation, encryption and decryption process [35]. The 
reason is that this algorithm needs a third trusted party to identify the public 
keys. During the data transmission, it can be exposed to the middlemen who 
is able to temper with the public key system and the algorithm can be 
compromised. Thus, a secure implement is difficult due to the slow speed of 
signing and decryption. In addition, the RSA algorithm has weaknesses 
against certain attacks, such as Brute force as the capacity of supercomputer 
advances rapidly. 



 

  

18 

2.4.1 RSA Algorithm 

RSA algorithm is the first algorithm that is applied for data encryption and 
digital signatures [24]. As it is mentioned before, RSA algorithm is a trap-door 
function and the security of this algorithm is based on the difficulty of the 
one way function which means dealing with the problem that decomposes a 
large number into two large prime numbers. 

In the RSA algorithm, it has three processes: key generation algorithm, 
encryption algorithm and decryption algorithm, respectively. Here is the 
description of each process (see Figure 9): 

① Key generation:  

a. Choose large prime numbers: qp,  
b. qpn   

c.   )1)(1(  qpn  
d. Choose   1,...,2,1  ne  ; 

and    1gcd ne，
  

e. Compute d , and  ned mod1
 

Then, the public key is computed as:  
),( enK pub   

and the private key is computed as: 

 dnK pr ,  

② Encryption: 

a. Obtain the public key ),( enK pub   

b. Choose  1,...,1,0  nx n  
c. Compute

 
nxxey e

K pub
mod)(   

d. Send out the message y
 

③ Decryption: 

a. Obtain the cipher-text ny   

b. Use  dnK pr ,
 

to compute nyydx d

K pr
mod)(   

Sometimes, the value x  can be a short integer which is the output of some 
not injective compression function, such as a hash function. Thus, the value 
x  can be defined as a message digest. It is based on that the exponentiation 

modulo n  is a one-way permutation on n  when e  is co-prime to  n . 

Here is a trapdoor function that the permutation can be efficiently inverted 



 

  

19 

by the private key  dn, . Therefore, the RSA system can also be used as a 

digital signature algorithm which is listed below:  
 

When sending a message, the sender: 

a. Create a message digest 

b. Represent this digest as an integer nx   

c. Use private key  dnK pr ,
 

to compute the signature   

 nxs d mod  
d. Send signature s  to the recipient 

When receiving a message, the receiver: 

a. Obtain the public key
 

 enK pub ,
 

of the message owner 

b. Compute integer
  nsv e mod  

c. Independently computes the message digest 'x  of the information 
that has been signed 

d. Computes the expected representative integer 'v  by encoding the  

expected message digest 'x  

e.
 If the verification equation 'vv   holds, the signature is valid, then  
the message is from the owner. 

As it can be seen from the algorithms above, the decryption algorithm and 
signing algorithm both use the private key, those two algorithms are same 
from a mathematical viewpoint. So as the encryption and verification, they 
both use the identical algorithm with the public key, where 

)(mod)()( nxxx edde 
 

 

2.4.2 The Security of RSA 

The security of public key encryption is mainly based on decomposing large 
integers multiplied by two large prime numbers p  and q . This kind 

computation is very difficult, because it is easy to multiply two large prime 
number together but hard to determine the initial number from the total. 
This builds up the security of RSA.  

The public key encryption can be on risk if the large prime 
numbers p and q are found. Obviously, the public key  en,  is known to the 

public. Thus anyone can compute p  and q  by factorizing n , and get 

 n  by computing   )1)(1(  qpn . Once  n  is known, the private 

key  dnK pr ,  can be computed by  ned mod1 . RSA algorithm can 

be secure only if the integer n  is big enough so that the prime numbers p  

and q  are not easy to be found.  



 

  

20 

However, if the integer n  is small, the prime numbers p  and q  are easy 

to know by testing all possible prime numbers in the range of  n,1 . Most 

attackers can't find the two prime numbers p  and q , because it takes so 

long to decompose the product of these two prime numbers which are large 
enough. There is no capability or equipment for most attackers to do so other 
than the state actors that may have access to sufficient computing power.  

Typically, the key length of an RSA key refers to the length of the modulus n  
in bits. More bits mean more secure but more CPU and power while 
encrypting and decoding, which can impact the performance of server. The 
recommended key length for a secure RSA transmission is 2048 bits long. 
According to experts, 2048 bits is more secure that many facilities are 
replacing key lengths of 1024 bits with the minimum of 2048 bits. However, 
RSA is unable to encrypt anything that is larger than it’s modulus n . Thus, 

the key length is usually defined as   8)1(log 256 n . 

 

 

 



 

  

21 

Chapter 3. Literature Review 

This chapter introduces the three related fields of applications that utilises 

CP-ABE scheme. The first filed is described from the PHR system which is used 

for the patient and doctor in a hospital. The second filed describes the 

application of IoT (internet of things) applying CP-ABE as data privacy 

mechanism. The last filed the literature review is conducted is from the 

Privacy-Preserving User Profile Matching in Mobil Social Networks. 

3.1 CP-ABE for Mobile PHR System 

PHR system means Personal Health Record system [11], which is secure to a 

great extent. It only allows patients or health care providers to securely 

access the health information of the patient through the internet. This 

patient’s centered system has massive private data in lots of aspects. For 

example, it contains the health conditions of the patient, the medical history 

of the user and much other private information. The PHR system is exposed 

under the open internet, which means the internet can be a threat to the 

personal information contained in this system. Therefore, the big issue of PHR 

system is to keep it as secure as possible. In order to keep the PHR system 

secure, an efficient mediated cipher-text-policy attribute-based encryption 

(M-CP-ABE) scheme is used to revoke attribute at once and support 

monotonic access structure by using Linear Secret-Sharing Schemes(LSSS). 

Thus, the chance that an unauthorized user accesses to the personal health 

information is reduced in a PHR system. In the other aspect, the developed 

mobile internet allows most users to access the PHR system more 

conveniently via their mobile devices, thus the CP-ABE based PHR system 

suits for the mobile internet. 

CP-ABE scheme is suitable for access control in the PHR system, for it not only 

cuts the encryption cost for PHR data owner but provides agile self-centric 

data access management as well [12][13]. In this CP-ABE scheme, the access 

policy of the user is defined by a set of attributes. A user can access the 

encrypted data if and only if his or her attributes satisfy the access policy 

[14][15]. 



 

  

22 

 

Figure 7. An CP-ABE access control structure for PHR data [15] 

In Figure 7, it presents an access tree policy. The data owner can describe 

users who own the right to access the data by a set of attributes(such as 

personal doctor) without knowing the exact identity of users. For example, a 

user has the attributes of {Medicine institute, Researcher} is able to access 

the PHR data if his or her attributes satisfy with the policy in Figure 7. 

PHR as well as other systems applied the attribute based encryption scheme 

to build the medical care system. However, the performance degradation is 

observed due to expensive bilinear pairing operations have to be run for a 

several times while decoding a message. The heavy computation increases 

the difficulty in the process of mobile PHR data sharing when a PHR user 

accesses to the personal information via a mobile device with limited 

computing resources such as cell phone and smart-watch. 

3.2 CP-ABE for Mobile Devices in IoT 

Lightweight CP-ABE schemes with constant size secret keys and constant-size 

cipher-texts have been proposed for battery-limited mobile devices such as 

cell phone [16]. More and more people using those mobile devices in their 

daily lives. Lightweight CP-ABE scheme is in demand in order to provide data 

privacy solution in such resource constraint devices. 

An RSA-based AND-gate access structure CP-ABE scheme is presented to 

provide constant-size secret keys and cipher-texts with efficiently encrypt and 

decrypt process. In this scheme, a secret key is associated with an attribute 

set A , and a user is able to use the secret key with attribute A  to decrypt 
cipher-texts with the access policy P  if and only if AP . This scheme 

offers constant-size secret keys and cipher-texts without using bilinear maps, 



 

  

23 

and it is suitable for practical deployments on battery-limited devices due to 

the underlying RSA architecture. 

3.3 CP-ABE Based Privacy-Preserving User Profile 

Matching in Mobil Social Networks 

Based on CP-ABE scheme, users are able to offer a preference-profile and find 

other users with matching-profile in decentralized mobile social networks 

while the preference-profile of no one is exposed, and then build a secure 

channel between matched users. This scheme helps to solve the 

privacy-preserving profile matching problem to some extent. It is because it 

offers verifiability with few interactions among users is required. In most 

CP-ABE scheme, when the number of attributes increases, then the size of 

cipher-text and decryption time will increase as well. This situation will 

influence communication and computation efficiency [17]. Therefore, a 

CP-ABE construction that provides receiver anonymity through hidden access 

policy with unchanged cipher-text size and decryption time is need to keep 

both the security and efficiency. This scheme is based on the prime order 

group and relies on asymmetric decision bilinear Diffie-Hellman problem.  

The CP-ABE scheme needs to satisfy with the condition that the profile of the 

matched user must include all the attributes in the preference-profile. Thus, a 

reminder vector which is a data structure and a corresponding algorithm that 

is used to improve matching speed is used to overcome the barrier. This 

CP-ABE construction not only has the capability of privacy-preserving, but 

also provides verifiability that no one can cheat the initiator with the wrong 

matching result. In addition, it also builds a secure channel between matched 

users, and the unmatched user can be excluded soon. In addition, only a 

small amount of interaction is required between the initiator and the 

matching user, since the matching user can determine the matching result 

without the help of the initiator, which is important for reducing computing 

and communication costs.  



 

  

24 

Chapter 4. Revisit RSA-based 

Access-Tree CP-ABE scheme 

The first construction of a CP-ABE with a monotonic “access tree” was 

provided in the work of Bethencourt [3]. In the use of an access tree, the 

internal nodes of the access structure were consisted of threshold gates and 

leaves that associated with descriptive attributes. Most asymmetric 

encryption schemes allow for data encryption with a restrictive policy that 

are unable to efficiently enforce more expressive types of access control. By 

comparison, the access structure of the scheme provided by Bethencourt et 

al. supports AND gate, OR gate and the comparison of numerical attributes. 

For the AND gates can be built as the n-of-n threshold gates, the OR gates can 

be constructed as the 1-of-n threshold gates, and the comparison of 

numerical attributes that belong to more complex access control can be 

solved by converting them into small access tree.  

For decryption, the attributes of the user are associated with the private keys. 

If the receiver wants to decrypt the information asset, then the attributes of 

his or her private key should satisfy the specified policy through an access 

tree structure. In other words, only if the secret key of the user contains all 

the attributes which are assigned to the leaves of the tree, then the user can 

decrypt the data.  

4.1 Model 

Access Structure Definition [3] 

Let  nPPP ,...,, 21  be a set of parties. A collection  nPP
A

,...,12  is monotone 

if B , C : if AB  and CB  then AC . An access structure 

(respectively, monotone access structure) is a collection (respectively, 

monotone collection) A  of nonempty subsets of  nPPP ,...,, 21 . The sets in 

A  are called the authorized sets, and the sets not in A  are called the 
unauthorized sets. 

Access tree T  [3] 

An access structure is represented by T , and each internal node of T  



 

  

25 

expresses a threshold value gate which are described by it’s children and a 
threshold value. If a non-leaf node x  has xnumber _  children and the 

threshold value of node x  is kx , then xnumberkx _0  . The threshold 

gate is an OR gate when kx  equals to one while the threshold gate is an 
AND gate when kx  equals to xnumber _ . A set of attributes and a 

threshold value( 1kx ) are used to describe each leaf node x  of the access 
tree.  

Some functions are defined to make it easy to use access tree: 

① The parent of the node x  in the access tree is defined as 
 )(xparent ; 

② When x  is a leaf node, the attribute associated with x  is defined  
as )(xatt ; 

③ In an access tree, the children of each node are ordering from 1 to  
xnumber _ ; 

④ The function )(xindex  returns a number which is associated with  

the node, and the index values are assigned with nodes in the access 
tree uniquely for a given key in a random manner. 

Satisfying an Access Tree T  [3] 

T  is defined as an access tree with root r , and the subtree of T  rooted at 

the node x  is defined as xT , thus T  is same as rT . If the access tree xT  

is satisfied with a set of attributes  , then it is defined as 1)( xT . If x  is 

an internal node, evaluate )(' xT  for all children 'x  of node x . If and only 

of at least xk  children return 1, then 1)( xT . If x  is a leaf node, then 

1)( xT  if and only if )(xatt . 

Lagrange polynomials [18] 

Lagrange polynomials are used for polynomial interpolation. For a given a set 

of k  points ),(),...,,(),...,,( 00 kkji yxyxyx , where no two jx  values are 

equal, the Lagrange polynomial is the polynomial of lowest degree that 

assumes at each value jx  the corresponding value jy . The interpolating 

polynomial of the least degree is unique. An n degree polynomial in the 
Lagrange form is a linear combination: 



 

  

26 

j

n

i ijnj
ji

j
y

xx

xx
xP    




0 ,0
)()(  

According to the definition, define the Lagrange coefficient Si ,  for ni   

and a set S  of elements in nZ :  

  




ijSjSi
ji

jx
x

,, )(  

Polynomial interpolation is the method to construct the Lagrange polynomial. 
The polynomial )(xP  is called Lagrange interpolation polynomial. Suppose 

that the polynomial )(xP  is in the form as below: 

01

2

2

1

1)( axaxaxaxaxP n

n

n

n  

  

Polynomial interpolation 

Polynomial interpolation is to find a polynomial p  of lowest possible degree 

with the property ii yxP )(  for all },...,1,0{ ni . 

4.2 Algorithm Description 

This RSA-based Access-Tree CP-ABE cryptosystem is constructed with 

no-pairing RSA, and works on a group N  and it’s subgroup written in 

multiplication notation as *

N  or *)/(  n , which is of congruence classes 

of integers modulo N  where qpN  . The generation of key pair is based 

on the integer decomposition. This encryption scheme is also designed to be 
built on discrete logarithm problem. 

 

 

 

 

 

 

 



 

  

27 

① Set Up 

 

Figure 8. Setup algorithm 

During this step, two primes p  and q  are chose via RSA algorithm. By 

multiplying these two primes, the value of N  can be know. According to the 
value of N , )(N  can be computed as )1)(1()(  qpN . Then choose 

system private key k  such that 1))(,gcd( Nk   and RSA public exponent 

ie  such that 1))(,gcd( Nei  . Thus, id  can be computed by satisfying 

))((mod1 Nde ii   corresponding to each attribute niAAi ,...,2,1,  . 

Last, choose a random integer g such that 1),gcd( Ng and 

 2,...,4,3  Ng , then compute the public parameter kgR  . Then gain 

the master secret key MSK and master public key MPK respectively as: 

 nddkNMSK ,...,,),( 1  

 neeRNMPK ,...,, 1  

   1) Choose:  

a. Two RSA primes p  and q ( qp  ), then compute qpN   

b. A system private key k  such that 1))(,gcd( Nk   

c. The RSA public exponent ie  with 1))(,gcd( Nei  , 

then compute id  such that ))((mod1 Nde ii    

with each attribute AAi  , ni ,...,2,1 . 



 

  

28 

d. A random integer g  such that 1),gcd( Ng , 12  Ng , 

then compute the public parameter kgR  .  

2) Generate: 

            a. Master secret key MSK,  nddkNMSK ,...,,),( 1 . 

b. Master public key MPK,  ni eeRNMPK ,...,,, . 

② Key Generate 

 

Figure 9. Key generation algorithm 

During this algorithm, it output a secret key which identifies with a set of 
attributes S  by computing ))(( xattH  for each attribute Sx . Thus, this 

secret key can be assigned as: 

  )(,,))(( xorderiSxdxattHkSK iX   

   1) Input a set of attributes S  

   2) Compute ))(( xattH  for each attribute Sx  

   3) Output a key SK  which identifies with the set of attributes S  

  )(,,))(( xorderiSxdxattrHkSK iX   

 

 

 



 

  

29 

③ Encryption 

 
Figure 10. Encryption algorithm 

This encryption algorithm uses the AES key to encrypt a message M  under 
the access tree T . At the beginning, the encryption algorithm generates an 

access tree by choosing a Lagrange polynomial xq  for each non leaf node x  

in this access tree T , and choosing Y  as the set of leaves in T . Then the 

algorithm chooses NZh  and mY  can be known by computing kh

m gY  . 

These polynomials are chosen in a top down manner starting from the root 

node R . For each node x  in the access tree T , the threshold value xk  of 

the polynomial xq  is set to be one more than the degree xd  of that node, 

which is expressed as 1 xx kd . For the root node R , the algorithm 

chooses a random Ns   and sets sqR )0( . In order to define it 

completely, this algorithm randomly chooses other points Rd  of the 

polynomial 
Rq . For any other node x , it sets ))(()0( )( xindexqq xparentx   

and randomly chooses other points xd  to completely fix xq . After ensuring 

the access structure, then the cipher-text CT  is computed by giving the 
access tree T  as follows: 

  1) Choose a random Ns  , and set sqR )0( , construct a polynomial 

xq  for each non-leaf node x  in the tree T . Let Y  be the set of 

leaves in T . 

  2) Choose a random NZh , and compute: 

s

m

hskh

m MYMRECTgY  :,  

ixx eqxattHEYx  )0())((: , where  Yxxorderi  :)(  



 

  

30 

3) Output the cipher-text: 

  
Yxxm EYETCT


 ,,,  

④ Decryption 

 

Figure 11. Decryption algorithm 

If a set S  of attributes satisfies the access tree T , then the decryption 
algorithm calls the function on the root node R  of the access structure. This 
decryption algorithm specifies the decryption procedure as a recursive 
algorithm. The simple form of the decryption algorithm is presented below: 

First define a function named ),,( xSKCTeDecryptNod  which is a recursive 

algorithm and takes a cipher-text CT , a private key SK  and a node x  in 
access tree T as input. The cipher-text CT is defined as 

}}{,,,{ Yxxm EYETCT  . The private key SK  is associated with the set S  

of attributes. 

   1) Input a cipher-text   
Yxxm EYETCT


 ,,,  

   2) When x  is a leaf node: 

If Si ,  )(xorderi  , then 

)0(
))((

)0())((
),,( x

i

ix q
dxattH

eqxattH
xSKCTeDecryptNod 


  

      If Si , then 



 

  

31 

),,( xSKCTeDecryptNod  

3) When x  is an non-leaf node, define the function 
),,( zSKCTeDecryptNod . It means for all nodes z  that are children of node 

x  calls that function and stores the output as 
zF . Let xs  be an random xk  

size set of child nodes z  such that zF . If no such set exists then the 

node was not satisfied and the function returns  , else: 

   )0()0( , zx sizszz qF , where )(zindexi  ,  xz szzindexs  :)(  

        )0())(( ,)( zx sizparentsz zindexq  

      )0()( , zx sizsz iq  

   )0(xq  

   s  

The last equation 
zF  is obtained by summing the polynomial interpolation. 

Therefore, Lagrange polynomial interpolation can be computed by doing 

multiplication in N  for each node Sx , instead of exponentiating at 

each level. 

Then the function eDecryptNod  is defined, and the decode algorithm can 

be implemented by calling eDecryptNod  function on the root node R  of 

access tree T . If a set S  of attributes satisfies the access tree T , then set 
sRSKCTeDecryptNodA  ),,( . Now the decryption algorithm decodes 

message by computing: 

MgEYE khsA

m   

4.3 Security 

This RSA-based Access-Tree CP-ABE scheme is proven to be secure under 

integer factorization and computational Diffie-Hellman(CDH) assumption. 

Integer factorization, also named as prime factorization, usually used in 

public-key encryption systems to keep the system secure. To use this function, 

a very large number is created by multiplying two prime numbers. This large 

number is used to secure the encryption system. It is easy to create the 

multiplication but not easy to find the prime factorization of the large number. 

This trap door function is used in many security systems. The computational 

Diffie-Hellman assumption is a computational hardness assumption about the 



 

  

32 

Diffie-Hellman problem which is a mathematical problem in cryptography. 

Similar to integer factorization, it uses mathematical operations that are easy 

to compute but difficult to reverse. Systems can be easily broken when it is 

easy to solve the Diffie-Hellman problem. As long as at least one of those two 

problems is hard to solve, the encryption system with very large size keys will 

be secure. 



 

  

33 

Chapter 5 Implementation 

This chapter presents the implementation details of the RSA-based CP-ABE 

scheme. This includes the detailed implementation strategies for the four 

main algorithms of the RSA-based CP-ABE scheme performance evaluation 

and lessons learnt. 

5.1 Overview 

In the beginning, this chapter shows how to implement the RSA-based 

Access-Tree CP-ABE scheme into Android Studio, including the preparation 

and Android compilation environment. To fully compile the RSA-based 

Access-Tree CP-ABE to Android needs supports such as NDK-r9a, Android SDK 

and so on. Then the android.mk is required for compilation and required 

modification of the existing code, and connecting it to the JNI interface. 

Finally, compile of the RSA-based Access-Tree CP-ABE code along with 

dependent libraries is required to make it into the dynamic link library. The 

dynamic link library is now ready to be called by the Android system. 

The four important algorithms that are mentioned before, such as set up, key 

generation, encryption and decryption, needs to be implemented. So next, it 

describes how those four algoriithms are implemented and run in Android 

Studio. These algorithms are called by the main application program (named 

as mainActivity). 

Once it finishes the coding part of this project, then it needs to be imported 

into an Android cell phone. This chapter also demonstrates how to install and 

run this encryption application on the hardware device, and presents how to 

use the functions in this application. 

5.2 Preparation for CP-ABE 

Implementing the RSA-based Access-Tree CP-ABE algorithm on the Android 

platform had a number of issues. The first issue is that this scheme is a 

program written in C language while it is required to be implemented on an 

Android platform. By using this external functional interface programming 

framework, Java code running in a Java virtual machine (VM) is able to call 

the native libraries that are written in other languages. Thus, this CP-ABE 

scheme written in C language can be used in the Android Studio after making 

it as a library. Then it can be called by any class through the defined name of 



 

  

34 

the native method. 

To make this CP-ABE construction work, it needs the support of libraries such 

as PBC, GMP, M4, bison, flex, libbswabe and so on. It is important step to 

prepare the libraries for running the CP-ABE scheme. In addition, there are 

some tools in Android Studio that also need to make the algorithm work such 

as Android SDK. Here is the list below. 

Download: 

• M4, bison, flex (support GMP) 

• GMP (supports PBC) 

• PBC (supports CP-ABE) 

• libbswabe (supports CP-ABE) 

• openssl, glib (support CP-ABE) 

• NDK-r9a (allows C/C ++ code to be compiled into native code) 

5.2.1 Setup Environment 

It is an important step to build up the environment for the RSA-based 

Access-Tree CP-ABE scheme. Before using it, making sure the libraries are 

ready to use. First of all, a several libraries need to be installed to make sure 

the RSA-based Access-Tree CP-ABE algorithm can be run successfully. For 

example, the RSA-based Access-Tree CP-ABE crypto-system needs the PBC 

library while PBC requires GMP, and GMP is supported by other three 

libraries which are named M4, bison and flex respectively. After preparing 

those essential libraries, then the RSA-based Access-Tree CP-ABE scheme can 

be installed and run under this environment.  

 

 

 

 



 

  

35 

M4, Bison and Flex1 

 

Figure 12. Install M4, bison and flex 

M4 is an implementation of the traditional Unix macro processor [21]. 

Although it has some extensions, it is primarily compatible with SVR4. M4 

also has built-in functions for performing integer operations, manipulating 

text in various ways, recursion, running UNIX commands, including named 

files, etc. Bison is an alternative to yacc, and it is a parser generator that 

generates a program to analyze the structure of text files [22]. Flex is an 

automatic lexical analyzer that is often used with Bison to mark input data 

and provide tokens for Bison [22]. Figure 12 shows how to install m4, flex and 

bison. First of all, using command “sudo apt-get install” to install M4, bison 

and flex in terminal, and these three libraries are installed successfully. Then 

the environment is ready for the GMP library. 

GMP2 

GMP stands for GNU Multiple Precision which is a portable library written in 

C for arbitrary precision arithmetic on integers, rational numbers, and 

floating-point numbers [25]. The goal of GMP is to provide the fastest 

algorithms possible for all applications that require more precision than the 

basic C type directly supports. When operands are larger than the kernel, 

Maple uses the GMP library for integer operations. The GMP library is useful 

for fast multiple precision operations. The speed of GMP is achieved by using 

full words as a basic arithmetic type and complex algorithm, and including 

                                                             
1 Download website: http://ftp.gnu.org/gnu/m4/; http://ftp.gnu.org/gnu/bison/; 
http://ftp.gnu.org/gnu/flex/  
2 Download website: https://gmplib.org/ 

http://ftp.gnu.org/gnu/m4/;
http://ftp.gnu.org/gnu/bison/;
http://ftp.gnu.org/gnu/flex/
https://gmplib.org/


 

  

36 

assembly code optimized for the most common internal loops of many 

different CPUs. Maple is much faster when using the GMP library for long 

integer operations. The setup of GMP requires three steps which respectively 

are configure, make and install, and these three steps are listed below. 

 

Figure 13. Configure the GMP library 

The first step of the setup GMP library is a configuration. The GMP library 

needs to be configured by executing “./configure” in the terminal, and the 

result is shown in Figure 13. Configure is a script that is usually supplied with 

the source code. It contains the code that patches and localizes the source 

distribution in order to compile and load on the system. In other words, 

configure is responsible for preparing the preparatory work of building the 

software on the system. 



 

  

37 

 

Figure 14. Build the GMP library 

After configuring the GMP library, “make” can be invoked to build the 

RSA-based Access-Tree CP-ABE scheme. In Figure 14, it shows the second step 

of the setup the GMP library that is using “sudo make” command in the 

terminal to build the library. The make utility is designed to automatically 

build the finished program from its source code according to a series of tasks 

defined in a “Makefile”. 

 

Figure 15. Install the GMP library 

In Figure 15 shows the last step of the setup the GMP library in the local 

system that is using “sudo make install” command in the terminal to install 



 

  

38 

the GMP library. The make install command copies the built program, 

including it’s libraries and documentation, to the right locations. 

PBC3 

After installing GMP, the next step is to install the PBC library (Pairing-Based 

Cryptography). The PBC library is a GMP-based free C library that performs 

the mathematical operations underlying pairing-based crypto-system [26]. It 

is designed to be the core of implementations of pairing-based crypto-system. 

Therefore, speed and portability are significant goals. For example, some 

routines such as elliptic curve generation, elliptic curve arithmetic and pairing 

computation are provided by the PBC library. The pairings times are 

reasonable due to the GMP library without being written in C. In addition, the 

PBC library can also be used to build conventional crypto-system. The process 

of setup the PBC library is similar to GMP library. First of all, download this 

library and extract it, this is presented in Figure 16. 

 

Figure 16. Extract compressed file 

In Figure 16, it shows the process of extracting the compressed PBC library 

from the terminal. 

                                                             
3 Download website: https://crypto.stanford.edu/pbc/download.html  

https://crypto.stanford.edu/pbc/download.html


 

  

39 

 

Figure 17. Configure the PBC library 

In Figure 17, it shows the results after running command “./configure”, and 

the PBC library is configured successfully. 

 

Figure 18. Build the PBC library 

Figure 18 presents the process of building this library. 



 

  

40 

 

Figure 19. Install the PBC library 

The result of installing this library is shown in Figure 19. At this point, the PBC 

environment configuration is completed. 

A test for whether the setup environment is built successfully is followed. 

First, there are some cases in PBC-0.5.14 - example directory, then copy a “.c” 

file and customize the name “foo.c”. Then change the contents into the 

content of Figure 20 below: 

 

Figure 20. Test code 

Compile the file “foo” by using command which is contained in Figure 21 

below: 

 

Figure 21. Compile file “foo” and run 

When it is compiled successfully, run the file “foo” by using command “./foo” 

which is shown in Figure 21 as well. Then it shows the result “this is a test”, 



 

  

41 

and this means that the PBC environment configuration succeeded. 

Libbswabe4 

Libbswabe is a library that implements the core crypto operations. To install 

the Libbswabe library, there need three steps: configure, build and install, 

which are totally same as GMP library. Those steps are shown below: 

 

Figure 22. Configure the Libbswabe library 

Figure 22 shows the result after executing the command “./configure”. 

 

Figure 23. Build the Libbswabe library 

Then run command “sudo make” to build the Libbswabe library, and the 

result of this step is shown in Figure 23. 

                                                             
4 Download website: http://www.verysource.com/code/23755648_1/bswabe.h.html  

http://www.verysource.com/code/23755648_1/bswabe.h.html


 

  

42 

 

Figure 24. Libbswabe sudo make install 

The last step which is shown in Figure 24 is to install the Libbswabe library by 

executing the command “sudo make install”. Then the Libbswabe library is 

ready to be used. 

Openssl and Glib5 

Before installing CP-ABE, the libraries openssl and glib are required. OpenSSL 

is a robust, commercial, and fully functional toolkit for transport layer 

security (TLS) and secure sockets layer (SSL) protocols [27]. It is also a 

universal cryptography library. Glib is a bundle of three low-level system 

libraries. It provides advanced data structures, such as memory chunks, and 

implements functions that provide threads, thread programming and related 

facilities [28]. Glib also includes message passing facilities such as byte order 

conversion. 

 

Figure 25. Install openssl and glib 

Figure 25 shows how to install both libraries openssl and glib by using 

command “sudo apt-get install”.  

RSA-based CP-ABE 

After preparing all libraries, the preparation of the RSA-based Access-Tree 

CP-ABE scheme is ready, now the setup of this scheme runs. It can be done by 

executing “sudo make” as the following figure. 

                                                             
5 Download website: https://openssl.en.softonic.com/; https://sourceforge.net/projects/glib/  

https://openssl.en.softonic.com/;
https://sourceforge.net/projects/glib/


 

  

43 

 

Figure 26. Build CP-ABE 

Figure 26 shows the result after building the RSA-based Access-Tree CP-ABE 

scheme. In order to test whether this algorithm can work or not under the 

environment, run the command “cpabe-setup -h” in the terminal. 

 

Figure 27. Test CP-ABE scheme 

Figure 27 shows the process of setup algorithm in this RSA-based Access-Tree 

CP-ABE scheme. It not only presents the inputs and outputs during this 

algorithm, but some toolkit functions as well. This means that the CP-ABE 

algorithm is running well, and the environment is built successfully. 

 



 

  

44 

Android NDK 

The Android NDK is a set of tools that allows developers to get the most 

performance out of devices [29]. For example, NDK enables developers to call 

functions in C/C++ code in Android system, and it offers platform libraries for 

users to manage native activities and access physical device components, 

such as sensors and touch input [30]. 

The core of the Android NDK is the ndk-build script, and it is responsible for: 

• Automatically browsing the project. 

• Determining what to build. 

• Generating binaries. 

• Copying generated binaries on to an apps project path. 

The NDK also is responsible for linking native shared libraries (.so) against 

other libraries. The native shared libraries are built from the native source 

code and Native static libraries (.a). By using these generated .so files, the 

Application Binary Interface (ABI) is able to understand both when to run the 

application and how the application machine code works with the system. 

ARMABI, MIPS, and x86 are supported by NDK in default. Java Native 

Interface (JNI) that connects between Java and C/C++ is introduced here. 

Android.mk and Application.mk are the two primary files that used to build 

the ndk-build script. Respectively, the Android.mk file needs to go in JNI 

folder and defines: 

• the module including it’s name. 

• the build flags (which libraries link to). 

• what source files need to be compiled.  

As for the Application.mk file, it is the same as the Android.mk that they all 

go in the jni directory. The difference is that it describes the native modules 

required by the application. 

To make the NDK work, download LLDB (a debugger that Android Studio uses 

to debug native code) and NDK from the SDK manager. By providing a path to 

the ndk-build script file, consequently, Gradle is linked to the native library 



 

  

45 

(.so). Then Gradle imports source code into the Android Studio project and 

package the native library (.so) into the APK by using the build script [30]. 

Android Studio 

Build “com.example.cpabe.NativeCPABE”, then load libraries and define 

native method. Put all the libraries generated above into the “libs/armeabi” 

directory of the project. Now the environment is ready, and it can be called in 

mainActivity. 

It is found that three secret key files are generated under the SD card 

directory, indicating that the library is loaded normally and the native code 

also runs successfully. 

The core of CP-ABE scheme is encrypting files, therefore, when clicking the 

button, it writes the content in the original input box into 

“/sdcard/to_enc.txt”, and then calls the enc method of the native layer to get 

the encrypted file. After obtaining the encoded text, use binary to read it into 

the second text box. Then click the “DECRYPT” button, and the dec function is 

called to get the decoded file, at the same time, the content is read into the 

third text box. 

5.2.2 Java Native Interface (JNI) 

Java Native Interface(JNI) provides a solution for the byte code that Android 

compiles from managed code written in Java to interact with native code 

written in C or C++ [20]. When an application is unable to be written entirely 

in the Java programming language, the JNI allows the programmer to write 

native methods to handle situations.  

In the situation of this thesis where the RSA-based Access-Tree CP-ABE 

written in C programming language can be used in Android Studio by 

modifying it to be accessible to Java application. Based on JNI, many library 

classes are able to provide functions in a safe and platform-independent 

manner to the user. JNI allows a native method to use Java objects just the 

same as how Java code uses those objects. Java objects can be created and 

be used to perform tasks by a native method. Java application code also can 

create objects, and those objects can be inspected and be used by a native 

method as well. JNI only can be invoked by applications and signed applets. 

JNI allows using dynamic shared libraries to load code, and this is an efficient 

way. 



 

  

46 

 

Figure 28. Interface pointer [20] 

The Interface pointer is the basic of JNI function. Figure 20 presents that the 

interface pointer is a pointer to an array of pointers. Inside this array, each 

pointer points to an interface function which is predefined offset, JNI 

namespace is separated from native code, it means that the virtual machine 

(VM) is able to provide multiple versions of the JNI menu easily. That is the 

superiority of using interface tables. 

“System.loadLibrary” is the method that loads native methods [20]. For 

example, in a class “NativeCPABE”, it defines the native method “setup”, and 

the class initialization method also loads the platform-specific native library 

“cpabe”. The code of this example is listed below: 

  package pkg;   

  public class NativeCPABE {  

       static {  

           System.loadLibrary(“cpabe”);  

       }  

       public native double setup(  

String pubFile,  

                                            String mskFile, 

                                            int parameters_type);  

  }  

As it can be seen in the above example, the library name is defined arbitrarily 

when loading a library. Nevertheless, there is a standard for the system. It 

helps the system to convert the library name to a native library name. With 

the classes loaded in a same class loader, all the native methods called by any 

number of classes can be stored in a single library. The list of loaded native 

libraries for each class loader is maintained by the VM internally [20]. Thus, it 

is better to use the native library names that avoid the name clashes. There is 

one situation that the VM calls the “System.loadLibrary” with loading no 

library. That is the dynamic linking is not supported by the underlying 

operating system. To solve this problem, it should prelink all native methods 



 

  

47 

with the VM. 

The dynamic linker parses an entry based on its name. The native method 

name is composed of the following components: 

• The prefix Java_. 

• A mangled fully-qualified class name. 

• An underscore (“_”) separator. 

• A mangled method name. 

• Using two underscores (“__”) followed by the mangled argument 

signature for overloaded native methods. 

JNI offers a rich set of accessor functions on global and local references which 

means that the programmer can implement Java objects using the same 

native methods regardless of how they are represented internally by the VM. 

This is the significant reason why many VM implementations support JNI. 

Using accessor functions through opaque references is more expensive than 

accessing C data structures directly. 

Native code is allowed to access the fields and to call the methods of Java 

objects through JNI function. JNI function identifies methods and fields by 

their symbolic names and type signatures. The two-step process removes the 

cost of locating a field or method from the field name and signature. 

5.3 App on Android Studio 

① Overview 

There are three main parts of this program: class “NativeCPABE”, class 

“mainActivity”, and “activity_main.xml”. These three parts build up the main 

body of this app. Because of the code of the RSA-based Access-Tree CP-ABE 

algorithm is not written in Java, and it could not be used in Android Studio 

directly, therefore, JNI is applied to this program to connect C and Java. Under 

the “jniLibs\armeabi” path, the main native library cpabe and its supporting 

libraries are stored. These libraries are already been compiled. Thus, the 

native library cpabe is ready to be called. 

 



 

  

48 

② Interface Design Window 

 

Figure 29. Interface design window 

The interface of this app is shown in “activity_main.xml”, and the text boxes 

and buttons are stipulated by the code on the left of Figure 29. Not only the 

size, position and background, but also the ID of each text boxes and buttons 

are defined. The ID is used in the “mainActivity” package to call a text box or 

a button. 

③ native CP-ABE package 

 

Figure 30. Native CP-ABE 

The Native CP-ABE package showed in Figure is used to load the CP-ABE 

library and build up the four main functions of this algorithm: set up, key 

generation, encryption and decryption. 



 

  

49 

④ mainActivity 

 

Figure 31. Main activity widow 

In the mainActivity window, the main functions are combined together to 

make the project working. In this class, the functions of three text boxes are 

built, and link to the text boxes ID made in “activity_main.xml”, such as 

encText, showEncText and showDecText. Two functions of two buttons are 

defined respectively as well. The encryption button is connected with the 

encryption algorithm in nativeCPABE, so that this “CHIPHER” button can call 

the encrypt function when it is clicked. The decryption button is the same, 

but to call the decrypt function.  

⑤ The code of build gradle application module 

 

Figure 32. Build Gradle(Module: app) 

In build.gradle, the library “libs” is connected by defining JNI connected it 

with native JAVA code. 



 

  

50 

5.4 Implementation Algorithm 

Before utilizing for the four main algorithms, there is some preparation to do. 

First of all, JNI is required to connect Java and C language. These two 

languages are connected by JNI in “build.grandle” where to set the path to 

JNI, and it is presented in Figure 44. To define the path as “libs” by using the 

code below: 

  sourceSets { 

          main { 

               jniLibs.srcDirs = ['libs'] 

    } 

  } 

Then the RSA-based Access-Tree CP-ABE library is called by the system in the 

NativeCPABE class by using “loadLibrary” function. In this class, it also defines 

the native methods that need by the other class. 

  static { 

         System.loadLibrary("cpabe"); 

  } 

In mainActivity, the paths that save the input file, the encryption file and the 

decryption file are defined as below. This means the input text is stored in 

“to_enc” file inside the sdcard, the encrypted text is stored in the file named 

“to_enc.txt.cpabe”, and the decoded file is stored in the “to_enc.txt.doc” file. 

In addition, in this part of code, it also defines the NativeCPABE as c which is 

used later. 

  String inputPath = "/sdcard/to_enc.txt"; 

  String encPath = "/sdcard/to_enc.txt.cpabe"; 

  String decPath = "/sdcard/to_enc.txt.dec"; 

  NativeCPABE c; 

The text boxes are built on the interface of this application, and these boxes 

are also defined in mainActivity by finding the ID of each box from 

activityMain window, and the Native CP-ABE function is called as well. 

  input = findViewById(R.id.encText); 

  enc = findViewById(R.id.showEncText); 

  dec = findViewById(R.id.showDecText); 

  c = new NativeCPABE(); 



 

  

51 

After finishing these steps above, the path of JNI libraries is defined, and the 

CPABE scheme written in C is loaded in the system and is ready to be called. 

Besides these, the three text boxes where to show the message, the 

cipher-text and decoded message respectively are defined as well by 

connecting the ID name in the interface design window. The preparation of 

those four significant algorithms is done, then they can be used later simply 

by using calling function. 

5.4.1 Setup 

① Define native function setup in the NativeCPABE class: 

  public native double setup( 

                                    String pubFile,  

                                    String mskFile, 

                                    int parameters_type); 

In this setup process, it has three contents. Two of them are strings, these 

strings respectively are “pubfile” which stores the public key and “mskfile” 

which stores the master key. The other is an integer that presents the security 

parameter. This native method defines the function name which is called by 

the mainActivity class later. 

This native method is defined in the NativeCPABE class where the native 

library is loaded. This method is called by the mainActivity class to run the 

setup function. To make the function work, this NativeCPABE class is used to 

connect the native library named “cpabe” and the native method “setup”. 

There is where JNI works. In other words, after loading the native library and 

defining the method name, native code is allowed to access the fields and to 

call the methods of Java objects through JNI function. 

② Call setup function in mainActivity: 

  c.setup("sdcard/pub.pub", "sdcard/mskey", K); 

After connecting the native code with the native library, then the native 

method can be called in the mainActivity class. In this calling function, the 

setup algorithm contains the path of public key and master key which are 

stored in "sdcard/pub.pub" and "sdcard/mskey" severally into a cell phone. 

"K" is a kind of security parameter which usually is the length of key. 

 Let’s define the security parameter as k, and the performance of attacks is 



 

  

52 

set as )
2

1
(

k
O . It is easy to see, the bigger the security parameter, the smaller 

the chance for an attack. The size of k is usually defined at least 1024 bits. In 
this RSA-based Access-Tree CP-ABE algorithm, it chooses a half value of k to 
be the size of two prime numbers p and q which is 512 bits for each prime. 
After multiplying these two numbers, the size of their product is 1024 bits 
which is considered as the lowest key size for the security, and 2048 bits is 
recommended. 

When calling this function, the Android system calls the native function setup 

from the native library “cpabe”. When running this method, according to the 

CP-ABE construction written by Li, it generates the master secret key and 

public key by using RSA algorithm as well as a series of mathematical 

operations based on a chosen secret parameter which is 1024 in this situation. 

Then, these outputs are stored into the phone memory according to the 

specified path. Then calling the setup method is completed. 

③ Algorithm description: 

This algorithm mainly based on the RSA key generation algorithm is 

introduced bellow in details: 

Algorithm 1 RSA Key Generation Algorithm 

1: Procedure KEY GENERATION 

Output: public key, private key 

2:   RSA_keygeneration(pub_key,priv_key) 

3:   Select a random prime number p  with size 2N ; 

4:   Select a random prime number q  with size 2N ; 

5:     11  qpphi ; 

6:   modulus pq ; 

7:   Select a random e from 1 to phi ; 

8:   if   1,gcd phie  then 

9:      pub_key e ; 

10:   Select a random d ; 

11:   if  phied mod1  then 

12:      priv_key d ; 

13:   return pub_key,priv_key; 

 
Table 1. RSA pseudo-code [19] 

The input of this setup process is security parameter and universal attribute 

set. It takes null or document path of attribute universe as the input 

argument vector. By using PBC library, randomly choose two numbers p and q 

of k/2 bits length: 



 

  

53 

  PBC_mpz_randomb(p,512); 

  PBC_mpz_randomb(q,512); 

This step follows the first process of RSA key generation algorithm, and 

creates two required prime numbers. 

  mpz_nextprime(p,p); 

  mpz_nextprime(q,q); 

Set the previous p to the next prime greater than the following p, as well as q. 

  mpz_mul(N,p,q);  

By multiplying these two prime numbers p and q, the value of N can be 

known as below, and N is 1024 bits length. This step follows the RSA key 

generation algorithm to generate the modulu N. 

  mpz_sub_ui(p,p,1); 

  mpz_sub_ui(q,q,1); 

  mpz_mul(phi_n,p,q); 

Set the new p as old p minus one, and compute phi_n as new p multiplies 

new q which is respectively 1 less than before. This step computes the value 

of phi_n which follows the process of RSA key generation algorithm. 

  mpz_set(msk->phi_n, phi_n); 

  mpz_set(pub->N, N); 

Set phi_n into master key, and set N into public key. 

In order to compute R, g needs to be found as following steps: 

  do { 

  element_random(g); 

  element_to_mpz(mpz_g, g); 

            mpz_gcd(p, mpz_g, N); 

  } while (mpz_cmp_d(p, 1)); 

Randomly pick an element g and convert it into multi-precision such as 

mpz_g. Find the greatest common factor between mpz_g and N and set it as 

p, if p is equal to 1, it means the g which is co-prime with N is found and stops 

the loop. 

Similar to the process above, select random x with gcd(x, phi_n)=1. 



 

  

54 

  do {  

     PBC_mpz_random(msk->x, N); 

        mpz_gcd(q, msk->x, phi_n);   

    }while (mpz_cmp_d(q, 1)); 

Find the greatest common factor between msk->x and phi_n and set it as q, if 

q is equal to 1, it means x is co-prime with phi_n and stop the loop. 

Compute xggxR  : 

  element_pow_mpz(pub->gx, g, msk->x); 

Set x into the master key and R into the public key; 

Parse attributes stored in the string buffer as follows; 

  int parse_attribute_list(char * attrs_str){ 

    squeeze(attrs_str, '\n'); 

    if ((substr = strtok(attrs_str, BLANK))== NULL) 

    parse_attribute(&attrlist, substr); 

    while(substr){ 

    parse_attribute(&attrlist, substr); 

    substr = strtok(NULL, BLANK); 

    } 

    attrlist = g_slist_sort(attrlist, comp_string); 

    n = g_slist_length(attrlist); 

    attrs = malloc((n + 1) * sizeof(char*)); 

    for( ap = attrlist; ap; ap = ap->next ) 

    attrs[i++] = ap->data; 

    attrs[i] = 0; 

  } 

First of all, formalize all strings by squeezing out the “\n” and “blank”. Then 

store the strings in the list by string comparisons. In the end, get a 

fixed-length array of string where the attribute strings are placed in order. 

 

 

 

 



 

  

55 

There are two parts of this code, first part is to pick the RSA exponent e, and 

the second part is to compute the multiplication inverse d. 

  for (i=0; i< num_attrs; i++) { 

  do { 

    PBC_mpz_random(pub->ei[i], N);  

mpz_gcd(divisor, pub->ei[i], phi_n); 

  }while (mpz_cmp_d(divisor, 1)); 

    mpz_invert(msk->di[i], 

    pub->ei[i], msk->phi_n); 

  } 

The process of finding e is similar like g and x. Randomly choose e such that 

each of e satisfied gcd(e, phi_n)=1. The difference is that attributes are added 

into each e. Once the e is know, it is contained into public key, and d can be 

computed by 1)(mod  nde  . 

 

Figure 33. Setup 

In setup process, it randomly picks the value of p and q and then gets the rest 

of elements from these two values. Those elements and their values are 

shown in Figure 33 above. As seen in Figure 33, the length of public key 

“pub” is 528, and the size of master key is defined as 264. 

 



 

  

56 

5.4.2 Key Generation 

① Define native function keygen in the NativeCPABE class: 

  public native double keygen (  

              String pubFile,  

                                      String mskFile,  

                                      String prvFile,  

                                      String attributes);  

In the key generation process, there are four strings involved. They are a 

public key, a master key, and a private key respectively. In addition, this 

method also has the set of attributes. The content that it has is defined in the 

string name. For example, the string “pubFile” contains the public key file, 

the rest can be done in the same manner. In addition, the “pubFile”, 

“mskFile” and “attributes” these three files are input files, and the “prvFile” 

is the output file. 

It is same as the setup method, the native library is connected and the native 

method name which is just defined. Therefore, the “keygen” method is ready 

to be called after the connection between the native library and the native 

code is built by JNI. 

② Call key generation function in mainActivity: 

  c.keygen( 

                "sdcard/pub.pub",  

              "sdcard/mskey",  

              "sdcard/priv_user.prv",  

              "Name Gender Title"); 

In “keygen” algorithm, it uses three paths which are "sdcard/pub.pub", 

"sdcard/mskey" and "sdcard/priv_user.prv", respectively, inside a mobile 

devise to call or store these key files. Besides these, it requires a set of 

attributes which can be several attributes such as “Name”, “Gender” and 

“Titles”. For example, this function can define a user Alice who is a female 

and belongs to the business team. Thus “Alice”, “female” and “business 

team” are the attributes of this user, and a specific private key for Alice is 

generated, and her attributes are signed with this private key.  

By running this key generation function, a secret key associated with a set of 

attributes is built. According to the RAS-based access-tree CP-ABE algorithm 

presented by Li, this secret key with a set of attributes is created with the 



 

  

57 

help of the Secure Hash Algorithm 1 (SHA1). 

③ Algorithm description: 

Deserialize public key and master secret key  

  parse_args(argc,argv); 

  pub = treecpabe_pub_unserialize(suck_file(pub_file),1); 

  msk = treecpabe_msk_unserialize(suck_file(msk_file),1); 

Allocate and initialize user private key structure. 

  prv = init_prv_params(pub); 

Compute private key 

  while (*user_attrs) { 

     treecpabe_prv_comp_t c; 

     element_t h_attr, inv; 

     c.attr = *(user_attrs ++); 

     element_init(c.dp, Zn); 

     element_init(h_attr, Zn); 

     element_init(inv, Zn); 

     element_from_string(h_attr, c.attr); 

    element_invert(inv, h_attr); 

    element_set(c.dp, inv); 

    element_clear(h_attr); 

    element_clear(inv); 

    g_array_append_val(prv->comps, c);  

  } 

Obtain each user attributes in “c.attr”. Initial elements “c.dp”, “h_attr” and 

“inv” in the filed Zn. Mapping each user attribute string “c.attr” to one 

element hash attribute “h_attr” of the finite group, and invert “h_attr” to 

“inv”. Set the value of “inv” into “c.dp”, and clear the elements “h_attr” and 

“inv”. Finally, append the generated elements to bytes of array in the private 

key structure. 

Serialize private key and write into the output file 

  spit_file(out_file, treecpabe_prv_serialize(prv),1); 



 

  

58 

 

Figure 34. Key generation for Sara 

As it is shown in Figure above, Key generation function is used to generate 

keys for a user such as Sara. It outputs the private key of Sara with her 

attributes ‘sysadmin’ and ‘it_department’. The simple attributes are defined, 

and these attributes can rewrite later. The length of “sara_priv_key” is 423. 

 

Figure 35. Key generation for Kevin 

Then the private key of Kevin is defined in Figure with his attributes 

“business_staff” and “strategy_team”, and the length of his private key is 

429. 

 



 

  

59 

5.4.3 Encryption 

① Define native function enc in the NativeCPABE class: 

  public native double enc ( 

                                   String pubFile, 

                                   String jpolicy, 

                                   String inFile); 

In the NativeCPABE class, it defines the basic encryption algorithm structure 

which is three files for this process, such as a public key, access tree policy 

and encrypted message. One thing to point out it that the input message is 

not contained here. It is typed by the user through their mobile phone 

whenever they want to encode a message. Thus, the original message 

encrypted is defined in the mainActivity class and is used when calling 

encryption function. 

Similar to the algorithms described before, this function is defined with the 

native library. The name of this method is defined and the native library is 

loaded, so that it  is connected with the native code and it can be called 

successfully by other class. 

② Set “on click” function to the button “CHIPHER” with encryption method in 

mainActivity window: 

  findViewById(R.id.encBtn).setOnClickListener 

(newView.OnClickListener(){ 

            @Override 

            public void onClick(View view) { try { 

                    if(input.getText().toString(). 

trim().equals("")) { 

                        Toast.makeText(mainActivity.this, 

"please type something", 

Toast.LENGTH_SHORT).show(); 

                    } else { 

         writeFile(inputPath,input.getText().toString().trim()); 

         c.enc("sdcard/pub.pub","Name Gender Title", 

inputPath,encPath); 

                              enc.setText(readFileBinary(encPath));} 

                } catch (IOException e) { 

                    e.printStackTrace();} 

} 

}); 



 

  

60 

First of all, the functional button is linked with the ID of encrypt button 

named “encBtn” which is defined in the activityMain window. Normally, for a 

user, the behavior to activate the encryption function is to click this button 

“CHIPHER”. For the users to input the text on the application, it needs 

IOException. When the application performs certain tasks to access the files, 

at the same time if there are any input or output file operation issues, then 

the IOExceptions are thrown. The developer has to handle the exception. 

During this part, two functions are defined when the user clicks the 

encryption button. If there is no input, it shows the message “please type 

something” by using the “Toast.makeText” function in Android Studio. If the 

user inputs some message, then this message is read from a specific file 

named “inputPath” from the input path and turned into strings. 

The encryption function uses a public key, a set of attributes and the input 

text to generate the cipher-text saved in the “encPath” later. Finally, it shows 

the encrypted text in the text box by using “setText”. Refer to CP-ABE 

algorithm, an access tree policy is built via encryption function. In this case, it 

could be an arbitrary name, male or female and the title of position. These 

defined attributes limit the user scope or specify a user identity. In addition, 

the input text is be encrypted under those access policy. 

③ Algorithm description: 

A. Fill the policy(treecpabe_policy_t* p, treecpabe_pub_t* pub and 

element_t e): 

  p->q = _rand_poly(p->k - 1, e); 

Call function “_rand_poly(deg, zero_val)” to set up a polynomial of 1xk  

degree for the node x. This function sets sqx )0(  and sets Lagrange 

coefficient of rest of the points at random to completely define xq . 

For leaf node: 

  if( p->children->len == 0 ){ 

   element_init(p->cp, Zn); 

   element_from_string(h, p->attr); 

  element_mul(p->cp, h, p->q->coef[0]); 

  } 



 

  

61 

Call function “element_from_string” to map the corresponding attribute 

“attr” to an element of the group “h”. It produces the hash values 

corresponding to the attribute strings by using SHA1 hash algorithm. Each 

attribute string is mapped to a 160-bit message digest which is stored in the 

data buffer. 

For non-leaf node: 

  for( i = 0; i < p->children->len; i++ ){ 

   element_set_si(r, i + 1); 

   _eval_poly(t, p->q, r); 

   _fill_policy(g_ptr_array_index(p->children, i), pub, t); 

  } 

Call function “ ))((,(__ xindexqpolyeval xx ” to set polynomials for each 

child node recursively. 

B. Run the encryption algorithm: 

  parse_args(argc,argv); 

  pub = treecpabe_pub_unserialize(suck_file(pub_file),1); 

  cph = init_cph_params(pub); 

Read public key from file, and initial the cipher-text structure. 

  element_init(m, Zn); 

  element_init(h, Zn); 

  element_init(s, Zn); 

  element_random(m); 

  element_random(h); 

  element_random(s); 

  element_pow_zn(cph->cs, pub->gx, s); 

  element_pow_zn(cph->cs, cph->cs, h); 

  element_mul(cph->cs, cph->cs, m); 

Initialize elements and compute hskhss

m RMgMYME  , and store 

the value of E  “cs” in array “cph”. 

  element_pow_zn(cph->c, pub->gx, h); 

Compute kh

m gY  , and store the value of mY  “c” in array “cph”. 



 

  

62 

  _fill_policy(cph->p, pub, s); 

Fill the policy which is mentioned above. 

  cph_buf = treecpabe_cph_serialize(cph); 

Serialize “cph”. 

  plt = suck_file(in_file); 

  file_len = plt->len; 

  aes_buf = aes_128_cbc_encrypt(plt, m); 

Use AES algorithm to encrypt the file.  

  write_cpabe_outfile(out_file, cph_buf, file_len, aes_buf); 

Generate the encrypted file “.cpabe”. 

 

Figure 36. Encryption 

Encrypt the file “report.pdf” with the public key and define the attributes as 

“business_staff and develop_team” or “sysadmin”. 

 



 

  

63 

5.4.4 Decryption 

① Define native function dec in the NativeCPABE class:  

  public native double dec (  

                                   String pubFile,  

                                   String prvFile,  

                                   String inFile, 

                                   String outFile);  

The structure of decryption function is defined in the NativeCPABE class. It 

defines the four strings of this algorithm. The first one is “pubFile” which 

contains the public key. The second one named “prvFile” stores the private 

key. The third one called “inFile” presents the cipher-text. The last one is 

“outFile” which stores the output of decryption algorithm, and it is the 

decoded message. In this method, the “outFile” is the output, and the rest of 

them are inputs. 

② Set “on click” function to button “DECRYPT” with decryption method in 

mainActivity: 

  findViewById(R.id.decBtn).setOnClickListener 

(newView.OnClickListener(){ 

            @Override 

            public void onClick(View view) { 

                try { 

if (input.getText().toString(). 

trim().equals("")){ 

                        Toast.makeText(mainActivity.this,  

"please type something",  

Toast.LENGTH_SHORT).show(); 

                    } else { 

writeFile(inputPath, 

input.getText().toString().trim()); 

                              c.dec("sdcard/pub.pub", 

"sdcard/priv_user.prv", 

encPath,decPath); 

                              dec.setText(readFile(decPath));} 

                } catch (IOException e) { 

                    e.printStackTrace(); 

} 

} 

        }); 



 

  

64 

After the native library is loaded and the native method is defined, then the 

native code is able to call the decryption from the native library. In the 

decryption method, it is similar to the encryption function. The main function 

named decryption is called when the user clicks the decryption button. If the 

user wants to decrypt some message saved in “encPath”, and this file is read 

by decryption function and it puts the decoded text into “decPath”. Finally, it 

shows the decoded text in the last text box by using “setText” function. 

The access tree structure is used to check whether the user is able or not to 

access the original text. According to the original RSA-based CP-ABE scheme 

proposed by Li [36], the decryption algorithm first checks if the access tree of 

the user is satisfied with the access tree policy defined by encryption 

algorithm. Then it finds the minimal leaves of the access tree to decryption 

calculation efficiently. Separately decoding the leaf node and internal node, 

and get the decoded text. 

③ Algorithm description: 

There are four processes during this algorithm. The first part is to check if the 

secret key satisfies the policy. In order to effective the decryption process, the 

second part is to find out k (a threshold value) sets of the smallest size 

satisfies the access policy. The third part is the recursive function which is 

called by the decryption algorithm. The last part is the decryption process. 

A. Check the satisfaction 

For leaf node: 

  if( p->children->len == 0 ){ 

   for( i = 0; i < prv->comps->len; i++ ) 

    if( !strcmp(g_array_index(prv->comps,  

         treecpabe_prv_comp_t, i).attr, 

         p->attr) ) 

    { 

     p->satisfiable = 1; 

     p->attri = i; 

     break; 

    } 

  } 

Use “strcmp” function to compare the string in the decryption key with the 

access policy to see whether they are equal or not. If the attribute of private 

key is satisfied with the policy, then set the satisfiability as 1 for the leaf node. 



 

  

65 

For non-leaf node: 

  for( i = 0; i < p->children->len; i++ ) 

                 _check_sat(g_ptr_array_index 

(p->children, i), prv); 

  l = 0; 

  for( i = 0; i < p->children->len; i++ ) 

             if(((treecpabe_policy_t*)g_ptr_array_index 

(p->children, i))->satisfiable ) 

  l++; 

  if( l >= p->k ) 

               p->satisfiable = 1; 

Compare the value of each child node with the content of a private key, 

statistic the satisfiable number of the nodes and set satisfiability as 1 only if 

at least the same number as threshold value of children are satisfied. Else, 

the decryption function will stop. 

B. Find minimal satisfied leaves 

For leaf node: 

  if( p->children->len == 0 ){ 

    p->min_leaves = 1;} 

Define a set xS  for each leaf node x  such that }{xSx  . 

For non-leaf node: 

  for( i = 0; i < p->children->len; i++ ) 

                 if(((treecpabe_policy_t*)g_ptr_array_index 

(p->children,i))->satisfiable ) 

_pick_sat_min_leaves(g_ptr_array_index 

(p->children, i), prv); 

 

  c = alloca(sizeof(int) * p->children->len); 

  for( i = 0; i < p->children->len; i++ ) 

c[i] = i; 

  cur_comp_pol = p; 

  qsort(c, p->children->len, sizeof(int), leaves_cmp_int); 

  p->satl = g_array_new(0, 0, sizeof(int)); 

  p->min_leaves = 0; 

  l = 0; 



 

  

66 

  for( i = 0; i < p->children->len && l < p->k; i++ ) 

if(((treecpabe_policy_t*)g_ptr_array_index 

(p->children, c[i]))->satisfiable ) 

{       

l++; 

p->min_leaves += ((treecpabe_policy_t*) 

g_ptr_array_index(p->children,c[i])) 

->min_leaves; 

k = c[i] + 1; 

g_array_append_val(p->satl, k); 

} 

  assert(l == p->k); 

Define a set xS  for each node x , and let k  be the threshold value of each 

non-leaf node x . Choose k  nodes kxxx ,...,, 21  from the child nodes of x  

such that 
ixS (for ki ,...,2,1 ) are the first k  sets of the smallest size, then 

},...,2,1,':'{ kiSxxS
ixx  . For root node r , define a set 

rS  which 

denotes the set of leaf nodes that are used in order to minimize the number 
of computations.  

This function inputs a policy that includes an access tree with root and a set 

of attributes that are satisfied, then find a set S  which is the subset of the 

nodes in an access tree such that minimized the number of leaves. It means 

non-leaf node has children less than k  which is the threshold value of that 

non-leaf node. This function uses a recursive algorithm that makes a single 

traversal of the access tree. 

C. DecryptNode function: 

  _dec_node_flatten( element_t r, element_t exp, 

treecpabe_policy_t* p,  

treecpabe_prv_t* prv) 

  { 

assert(p->satisfiable); 

if( p->children->len == 0 ) 

_dec_leaf_flatten(r, exp, p, prv); 

else 

_dec_internal_flatten(r, exp, p, prv); 

  } 

This situation is divided into two types: leaf nodes and non-leaf nodes. 

 



 

  

67 

For leaf node: 

  _dec_leaf_flatten( element_t r, element_t exp, 

      treecpabe_policy_t* p,  

treecpabe_prv_t* prv) 

c = &(g_array_index(prv->comps,  

treecpabe_prv_comp_t,  

p->attri)); 

element_mul(s, p->cp, c->dp); 

element_mul(s, s, exp); 

element_add(r, r, s); 

This function is used to compute polynomial interpolation and add the results 

together. By using polynomial interpolation, this function returns the sum 

which is the value of random element s . 

For non-leaf node: 

  _dec_internal_flatten( element_t r,  

                     element_t exp, 

                     treecpabe_policy_t* p, 

                    treecpabe_prv_t* prv ) 

  { 

for( i = 0; i < p->satl->len; i++ ) 

{ 

lagrange_coef(t, p->satl,g_array_index 

(p->satl, int, i)); 

element_mul(expnew, exp, t);  

_dec_node_flatten(r, expnew,  

g_ptr_array_index 

(p->children, 

g_array_index(p->satl, 

int, i) - 1), prv); 

 } 

For all nodes z  that are children of x , computing the Lagrange coefficient 

si ,  for nZi  and a set s  of  elements in nZ  as 

ji

jx
x ijSjSi




  ,, )( . Then obtain 

ji

j
ijSjSi z 


  ,, )0( . Then compute 

“expnew” by multiplying “exp” and “t”, and recursively call DecryptNode 
function to pass through all children node. 

 



 

  

68 

D. Decryption process: 

  pub = treecpabe_pub_unserialize(suck_file(pub_file), 1); 

  prv = treecpabe_prv_unserialize(suck_file(prv_file), 1); 

  read_cpabe_file(in_file, &cph_buf, &file_len, &aes_buf); 

  cph = treecpabe_cph_unserialize(cph_buf, 1); 

Obtain each files. 

  _check_sat(cph->p, prv); 

    if( !cph->p->satisfiable ){ 

   return 0;} 

Check the satification. 

  element_init(t, Zn);  

  _pick_sat_min_leaves(cph->p, prv); 

  _dec_flatten(t, cph->p, prv); 

Find the minimized nodes and call function for decryption of the nodes. 

  element_init(m, Zn); 

  element_pow_zn(m, cph->c, t); 

  element_invert(m, m); 

  element_mul(m, m, cph->cs); 

Compute 
khsg

EM
1

  

  treecpabe_cph_free(cph); 

  plt = aes_128_cbc_decrypt(aes_buf, m); 

  g_byte_array_set_size(plt, file_len); 

  g_byte_array_free(aes_buf, 1); 

Use AES decryption algorithm to decrypt the message. 

  spit_file(out_file, plt, 1);  

Output the decoded file. 

 



 

  

69 

5.5 Running the App 

To run the completed application on a mobile device needs three steps: 

① In Android Studio, click the app module in the Project window and then 

select Run > Run (or click Run in the toolbar). 

② Set up a device for development 

            

(a)                                (b) 

            

(c)                                (d) 

Figure 37. (a) Developer options (b)(c)(d) Three steps for USB debugging 



 

  

70 

As it is presented in Figure 37 (a), this process is to open the settings on the 

device, and select Developer options. In the debugging part of Developer 

options showed in Figure 37 (b)(c)(d), allow USB debugging, and authorize 

the computer. 

Use apt-get install adb to install the Android adb tools package.  

 

Figure 38. Install Android adb tools package on terminal 

③ In the Select Deployment Target window, select the device, and click OK. 

 

Figure 39. Select deployment target 

Android Studio installs the app on the connected device and starts it. 

After following these three steps mentioned above, then the application is 

ready to be used in a mobile phone. 

 

 



 

  

71 

5.6 App Demonstration 

This application is designed as an simple interface that contains an input 

message text-box, an output cipher message text-box and an output decoded 

message text-box. Here are the interfaces of the app below: 

       

(a)                       (b)                       (c) 

    

(d)                      (e) 

Figure 40. (a) Application interface (b) Hint for empty import (c) import text 

(d) Encryption (e) Decryption 

The Figure 40 (a) shows the initial interface of the encryption application. On 

the top text-box shows “text here!”. The user can input the message that he 



 

  

72 

or she wants to encrypt in that text-box. In the Figure 40 (b), it shows a hint 

when the import of the data is empty. The Figure 40 (c) is demonstrating a 

user importing a message “happy” in the input text-box. The Figure 40 (d) 

shows the encryption process. The user presses the “CIPHER” button to 

encrypt the message, and the encrypted text is shown in the second text-box. 

In the decryption process showed in Figure 40 (e), the user uses the 

“DECRYPT” button to decrypt the cipher-text and the decoded text “happy” is 

shown in the last text-box which is showing the same message as the original 

one. 

5.7 Performance Evaluation 

This thesis evaluates the performance of the RSA-based CP-ABE scheme on 

Android platform in two aspects. The one is the performance of varying key 

sizes. The other is the performance involved with the number of attributes. 

For the first performance, it is assumed that larger the key size will take more 

execution time on key generation, encryption and decryption algorithms. The 

comparison of the execution time and the key size is analyzed in Table 2 

below. In order to get more reliable results, each performance test ran five 

times then the average results are used. 

Key Size (bit) 512 1024 2048 

 

Time 

(ms) 

Key 

Generation 

11 18 39 

Encryption 8 17 35 

Decryption 5 11 18 

Table 2. Comparison execution time with key size 

In Table 2, it lists the three main algorithms of the CP-ABE scheme; key 

generation, encryption and decryption, respectively. The execution times of 

these three algorithms are compared for the different key sizes such as 512 

bits, 1024 bits and 2048 bits. It can be noticed that the large key size needs 

longer execution time. Figure 41 shows the results as a line graph. 



 

  

73 

 
Figure 41. Key size 

Figure 41 shows that there is a positive linear relationship between the 

execution time and the key size. The larger the key size is, the longer time it 

takes to run each algorithm. Note that the execution times for both the key 

generation and the encryption are similar which are both increased sharply 

with the key size 1024. By comparison, the execution time of the decryption 

algorithm is smooth in all different key sizes. 

The other reason that affects the execution time is associated with the 

number of attributes. Assuming that the more attributes, the longer the 

execution time it takes. The results are listed below in Table 3. 

Number of 

Attributes 

1 3 6 9 12 

 

Time 

(ms) 

Key 

Generation 

18 14 19 17 16 

Encryption 17 19 20 22 25 

Decryption 11 12 13 15 17 

Table 3. Comparison execution time with number of attributes 

The Table 3 compares the execution time with the number of attributes 

during key generation, encryption and decryption processes. It chooses the 

five different numbers of attributes which contains 1, 3, 6, 9 and 12 attributes. 

The result based on a line graph is shown in Figure 42 below. 



 

  

74 

 

Figure 42. Number of attributes 

It can be seen clearly that the execution time of encryption and decryption 

algorithms are smoother according to the increasing number of attributes. 

Nevertheless, the execution time of the key generation algorithm was not 

affected as much by the number of attributes. The reason appears that the 

user’s attributes are set during the encryption process, thus it may not affect 

the execution time. 

5.8 Lessons Learned 

During the implementation part, there were a several problems that 

prevented from progressing with the thesis. This includes setting devices, 

preparing and compiling libraries, linking libraries with native methods and so 

on. Starting with the setting issues, it took some effort to make a simulator 

work. After downloading a phone simulator, the computer is still unable to 

open it. The reason was that the internal setting of the computer about the 

virtual device was not set properly. For Intel processor devices, this problem 

was solved by enabling the Intel Virtual Technology. This function can be 

found in BIOS by pressing key F2 when power the computer on. After 

enabling the setting of Intel Virtual Technology, then the simulator was 

allowed to work on the development computer. Nevertheless, every time 

when Android Studio calling the simulator, errors occurred as following: 

Emulator: Process finished with exit code 1! 

Emulator: emulator: ERROR: x86 emulation currently requires 

hardware acceleration! 

There were three ways to solve this problem. The first method was to 

download HAXM drivers. The second one was to set the CPU's hardware 



 

  

75 

acceleration switch which allowed the quick start of the device. The last one 

was to use a lower version of a virtual device. However, the use of a simulator 

did not affect the performance of the application on the mobile device. So it 

is recommended that any developers in the similar situation to choose the 

right version of the simulator. 

Moreover, this cipher app uses C code in Android Studio, thus at the 

beginning, the “Include C++ Support” option needs to be selected on a new 

project page. Thus the Android Studio could install C code compiler and 

libraries. Additional, tools that support the C code was also needed, such as 

LLDB (a debugger that Android Studio uses to debug native code) and NDK 

(this toolkit allows users to use C and C++ code for Android).  

Compiling the CP-ABE library was had an issue on its own. The CP-ABE 

algorithm needs other libraries to run, such as PBC, GMP and so on. A series 

of libraries were needed to be installed through the terminal. A order of the 

libraries to setup the environment for CP-ABE scheme was important, for 

example, PBC required GMP, when GMP was supported by M4, bison and flex. 

After preparing the environment, the CP-ABE scheme was able to be called. 

However, it was still unable to be called by the Android system. Eventually it 

was figured that the .c files and .h files were needed to be compiled into a 

dynamic library called .so file. But, this dynamic library was not ready to be 

called by the Java code. By using the Android.mk file and calling the 

NDK-build command to generate the .so file, then the compiled libraries were 

ready to be used in the Android system, and then the preparation job was 

done. 

When the libraries were ready, they were needed to be connected with the 

native methods. Thus, JNI function was used to solve this problem. To use JNI 

function, the native method was needed to be written as below: 

  public class NativeClass {  

       static {  

           System.loadLibrary(“library name”);  

       }  

       public native method(content);  

  }  

System.loadlibary(“library name”) function was used to call the library and 

then connect the library with the native methods by defining the native 

methods. Then the bridge that connects library and methods was built. Apart 

from this, a specified Android.mk file and a generated .so file were needed in 

a given path inside the “build.gradle” configuration. Then the dynamic 

libraries were able to be loaded in the static block, and the connection 



 

  

76 

between C and Java code was completed. 

There are limitations of the implementation provided by this thesis. The 

cipher method could only be achieved inside this app. Another limitation of 

this project is that it could only encrypt and decrypt text in the same interface 

at the same time. In addition, this application assumes that the attributes of 

each user satisfies the access policy all the time. In the future, it would be 

necessary to build a database that stores the user’s information and needs 

more user interfaces such as login to allow only authorized users can use the 

app. In addition, instead of using an app to offer a functionality for an 

encryption, it would be better to provide a CP-ABE based encryption at the 

system level to protect the data, app and the mobile device it self. 



 

  

77 

Chapter 6 Conclusion 

CP-ABE scheme has been emerged as a flexible data privacy mechanism by 

offering an embedded access control with encryption. As mobile devices are 

not suited for complex and high resource demanding computations, a more 

efficient and lightweight encryption solution has been demanded. 

Lightweight CP-ABE schemes with constant key sizes and constant 

cipher-texts regardless of the number of attributes have been hailed as 

suitable solution for resource constrained devices such as mobile phones. 

In this thesis, we offer an implementation strategy for a lightweight 

RSA-based CP-ABE scheme for an Android system. This thesis provides the 

implementation details for the four main algorithms of RSA-based CP-ABE 

which include setup, key generation, encryption, and decryption, respectively. 

In addition, the implementation offers a strategy to integrate a CP-ABE system 

written in C language [36] to work with a Java implementation. Our solution 

is provided by using the JNI function to connect the C language and Java. In 

other words, the functions written in C code can be called in an Android 

system written in Java code. Therefore, JNI plays an essential role in our 

implementation strategies as it is also used to link the dynamic libraries with 

the native method. This allows the RSA-based CP-ABE library to be 

implemented for the Android devices successfully. We demonstrate a mobile 

app that allows users to encrypt and decrypt data efficiently based on 

RSA-based CP-ABE approach. 



 

  

78 



 

  

79 

References 

[1] Sahai, A., & Waters, B. (2005, May). Fuzzy identity-based encryption. 

In Annual International Conference on the Theory and Applications of 

Cryptographic Techniques (pp. 457-473). Springer, Berlin, Heidelberg. 

[2] Goyal, V., Pandey, O., Sahai, A., & Waters, B. (2006, October). 

Attribute-based encryption for fine-grained access control of encrypted data. 

In Proceedings of the 13th ACM conference on Computer and communications 

security (pp. 89-98). Acm. 

[3] Bethencourt, J., Sahai, A., & Waters, B. (2007, May). cipher-text-policy 

attribute-based encryption. In 2007 IEEE symposium on security and privacy 

(SP'07) (pp. 321-334). IEEE. 

[4] Cheung, B. (2019). Attribute-based Encryption for Healthcare Blockchain. 

Retrieved from 

http://bennycheung.github.io/attribute-based-encryption-for-healthcare-bloc

kchain 

[5] Yu, S., & Shi, L. (2016). cipher-text: Trust Establishment in Wireless Body 

Area Networks. Retrieved from 

https://www.sciencedirect.com/topics/engineering/cipher-text 

[6] Ostrovsky, R., Sahai, A., & Waters, B. (2007, October). Attribute-based 

encryption with non-monotonic access structures. In Proceedings of the 14th 

ACM conference on Computer and communications security (pp. 195-203). 

ACM. 

[7] Internetwork Security. (2017, Mar 29). APA referencing: Attribute based 

Encryption (ABE) [Video file]. Retrieved from 

https://www.youtube.com/watch?v=ZogQMKzoQdw 

[8] Daza, V., Herranz, J., Morillo, P., & Ràfols, C. (2010). Extensions of access 

structures and their cryptographic applications. Applicable Algebra in 

Engineering, Communication and Computing, 21(4), 257-284. 

[9] Lai, J., Deng, R. H., & Li, Y. (2011, May). Fully secure cipertext-policy hiding 

CP-ABE. In International conference on information security practice and 

experience (pp. 24-39). Springer, Berlin, Heidelberg. 

[10] Moffat, S., Hammoudeh, M., & Hegarty, R. (2017, July). A survey on 

http://bennycheung.github.io/attribute-based-encryption-for-healthcare-blockchain
http://bennycheung.github.io/attribute-based-encryption-for-healthcare-blockchain
https://www.sciencedirect.com/topics/engineering/cipher-text


 

  

80 

cipher-text-policy attribute-based encryption (cp-abe) approaches to data 

security on mobile devices and its application to iot. In Proceedings of the 

International Conference on Future Networks and Distributed Systems (p. 34). 

ACM. 

[11] Zuckerman, A. E., & Kim, G. R. (2009). Personal health records. 

In Pediatric Informatics (pp. 293-301). Springer, New York, NY. 

[12] Hong, H., Chen, D., & Sun, Z. (2016). A practical application of CP-ABE for 

mobile PHR system: a study on the user accountability. SpringerPlus, 5(1), 

1320. 

[13] Abbott, A. A., Fuji, K. T., Galt, K. A., & Paschal, K. A. (2012). How 

baccalaureate nursing students value an interprofessional patient safety 

course for professional development. ISRN nursing, 2012. 

[14] Price, M., Bellwood, P., Kitson, N., Davies, I., Weber, J., & Lau, F. (2015). 

Conditions potentially sensitive to a personal health record (PHR) 

intervention, a systematic review. BMC medical informatics and decision 

making, 15(1), 32. 

[15] Hong, H., Chen, D., & Sun, Z. (2016). A practical application of CP-ABE for 

mobile PHR system: a study on the user accountability. SpringerPlus, 5(1), 

1320. 

[16] Yao, X., Chen, Z., & Tian, Y. (2015). A lightweight attribute-based 

encryption scheme for the Internet of Things. Future Generation Computer 

Systems, 49, 104-112. 

[17] Cui, W., Du, C., & Chen, J. (2016). CP-ABE Based Privacy-Preserving User 

Profile Matching in Mobile Social Networks. PloS one, 11(6), e0157933. 

[18] Lagrange polynomial. (2019). In Wikipedia, The Free Encyclopedia. 

Retrieved May 25, 2019, from 

https://en.wikipedia.org/wiki/Lagrange_polynomial 

[19] Ireland, D. (2018, June 9). RSA Algorithm [Online forum contents]. 

Retrieved from https://www.di-mgt.com.au/rsa_alg.html#theauthor 

[20] Design Overview (2018). In Oracle, Java Native Interface Specification. 

Retrieved June 8, 2019, from 

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.htm

l#wp16696 

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.html#wp16696
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.html#wp16696


 

  

81 

[21] Vaughan, G, V., & Blake, E. (2016). GNU M4. Retrieved from 

https://www.gnu.org/software/m4/ 

[22] Levine, J. (2009). Flex & Bison: Text Processing Tools. " O'Reilly Media, 

Inc.". 

[23] Kenekayoro, P. T. (2011). One way functions and public key 

cryptography. African Journal of Mathematics and Computer Science 

Research, 3(6), 213-216. 

[24] Zhou, X., & Tang, X. (2011, August). Research and implementation of RSA 

algorithm for encryption and decryption. In Proceedings of 2011 6th 

International Forum on Strategic Technology (Vol. 2, pp. 1118-1121). IEEE. 

[25] The GNU Multiple Precision Arithmetic Library. (2018). gmplib. Retrieved 

from https://gmplib.org/ 

[26] Lynn, B. (2007). PBC Library. Retrieved from 

https://crypto.stanford.edu/pbc/ 

[27] Cryptography and SSL/TLS Toolkit. (2019). OpenSSL. Retrieved from 

https://www.openssl.org/ 

[28] Glib. (2019). In Wikipedia, The Free Encyclopedia. Retrieved June 9, 2019, 

from https://en.wikipedia.org/wiki/GLib 

[29] Mullis, A. (2017). Android NDK—Everything you need to know. Retrieved 

from 

https://www.androidauthority.com/android-ndk-everything-need-know-6776

42/ 

[30] Getting Started with the NDK. (2019). Developers. Retrieved from 

https://developer.android.com/ndk/guides 

[31] Artjom B. (2016, February 2). ABE Schemes - Access Structures & 

Performance [Online forum comment]. Retrieved from 

https://crypto.stackexchange.com/questions/32410/abe-schemes-access-stru

ctures-performance 

[32] Hu, C., Li, H., Huo, Y., Xiang, T., & Liao, X. (2016). Secure and efficient data 

communication protocol for wireless body area networks. IEEE Transactions 

on Multi-Scale Computing Systems, 2(2), 94-107. 

[33] Lakshmi, R. N., Laavanya, R., Meenakshi, M., & Dhas, C. S. G. (2015). 

https://gmplib.org/
https://crypto.stanford.edu/pbc/
https://www.openssl.org/
https://www.androidauthority.com/android-ndk-everything-need-know-677642/
https://www.androidauthority.com/android-ndk-everything-need-know-677642/
https://developer.android.com/ndk/guides
https://crypto.stackexchange.com/questions/32410/abe-schemes-access-structures-performance
https://crypto.stackexchange.com/questions/32410/abe-schemes-access-structures-performance


 

  

82 

Analysis of attribute based encryption schemes. Int. J. Comput. Sci. Eng., 3(3), 

1076-1081. 

[34] Ning, J., Cao, Z., Dong, X., Wei, L., & Lin, X. (2014, September). Large 

universe cipher-text-policy attribute-based encryption with white-box 

traceability. In European Symposium on Research in Computer Security (pp. 

55-72). Springer, Cham. 

[35] Hemalatha, S., & Manickachezian, R. (2014). Dynamic auditing protocol 

using improved RSA and CBDH for cloud data storage. International Journal of 

Advanced Research in Computer Science and Software Engineering, 4(1). 

[36] Ping Li. (2018). Novel Lightweight Ciphertext-Policy Attribute-Based 

Encryption for IoT Applications(Doctoral dissertation). Massey University, 

Auckland, New Zealand. 


	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1 Overview
	1.2 Goal
	1.3 Structure

	Chapter 2. Background Technology
	2.1 Attributes-Based Encryption (ABE)
	2.2 Access structure
	2.3 CP-ABE
	2.3.1 Five Fundamental Algorithms of CP-ABE
	2.3.2 Security Mode for CP-ABE

	2.4 Rivest-Shamir-Adleman (RSA)
	2.4.1 RSA Algorithm
	2.4.2 The Security of RSA


	Chapter 3. Literature Review
	3.1 CP-ABE for Mobile PHR System
	3.2 CP-ABE for Mobile Devices in IoT
	3.3 CP-ABE Based Privacy-Preserving User Profile Matching in Mobil Social Networks

	Chapter 4. Revisit RSA-based Access-Tree CP-ABE scheme
	4.1 Model
	4.2 Algorithm Description
	4.3 Security

	Chapter 5 Implementation
	5.1 Overview
	5.2 Preparation for CP-ABE
	5.2.1 Setup Environment
	5.2.2 Java Native Interface (JNI)

	5.3 App on Android Studio
	5.4 Implementation Algorithm
	5.4.2 Key Generation
	5.4.3 Encryption
	5.4.4 Decryption

	5.5 Running the App
	5.6 App Demonstration
	5.7 Performance Evaluation
	5.8 Lessons Learned

	Chapter 6 Conclusion
	References

