Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Towards Implementing
RSA-based CP- ABE Algorithm

on Android System

A thesis presented in partial fulfilment of the requirements

for the degree of

Master of Information Sciences

at Massey University, Auckland, New Zealand

Jiaxin Xing

2019

Abstract

Cipher-text-Policy Attribute-Based Encryption (CP-ABE) algorithm has been
proposed to encrypt and decrypt data based on the matching between
attributes and an access policy placed over cipher-text. Using CP-ABE, data
owner can encrypt data along with an access policy to enforce a fine-grained
access control. To improve the efficiency of performance, this study chose a
RSA-based CP-ABE algorithm with an access-tree structure while most
existing CP-ABE has been implemented using ECC. This new RSA-based
CP-ABE algorithm was implemented in the Linux system in another study
while this thesis addresses an implementation strategy on an Android system.
To achieve this goal, a simple encryption application was designed for users
who want to encrypt and decrypt messages through their mobile devices.
This study used Android Studio to create the encryption application. In this
cipher program, users input the message they want to encrypt and get the
encrypted data through the function button named “CIPHER”, and they also
can decrypt the cipher-text in the same way.

There are four main algorithms involved in a CP-ABE scheme. They
respectively are setup, key generation, encryption and decryption. During the
setup process, the CP-ABE scheme uses the RSA algorithm to choose two
prime numbers. These prime numbers are used to a master public key and a
master private key. In the key generation algorithm, a secret key is generated
for a set of attributes using the master private key. In the encryption step, it
creates a cipher-text with an access tree. In the decryption algorithm, if and
only if the attributes for the user’s decryption key satisfies this access policy
is able to decode the encrypted data. This algorithm uses the construction of
lightweight no-paring crypto-system based on RSA, and the construction
supports an expressive monotone tree access structure to implement the
complex access control as a more generic system. By using this algorithm, the
encryption and decryption processes are more efficient and secure.

Acknowledgments

| would like to express my deep and sincere gratitude to my primary research
supervisor Associate Professor Julian Jang-Jaccard of Massey University (New
Zealand) for giving me the opportunity to do this research and providing
invaluable guidance throughout this research and making the CP-ABE projects
possible. Her extensive industry and academic experiences have been
extremely valuable in contributing to the successful completion of my
projects and thesis. It was a great privilege and honor to study under her
guidance. | am extremely grateful for what she has offered me. | would also
like to thank for her kindness and patience during the whole process.

| would also like to express my appreciation to my friends, Mrs. Ping Li,
Yuanyuan Wei and Timothy Raymond Mclintosh for their warm-hearted help
and constant encouragement. | express my special thanks Mrs Ping Li for
providing her RSA-based Access-Tree CP-ABE algorithm to support my thesis. |
would also like to express my special thanks Yuanyuan Wei. She provided me
a lot of help with this study, and supports me all the time.

| am extremely grateful to my parents for their love, caring and sacrifices for
educating me for my future. Finally, my thanks go to all the people who have
supported me to complete the research work directly or indirectly.

Table of Contents

CHAPTER 1. INTRODUCTIONcoovvueneeeensiirennnnnnaeenrrreeeneeseaaeniieeennenennesssireennnannnaenss 1
R 0 Y= = N 1

07 o T | PPN 2

S 0 U o = 3
CHAPTER 2. BACKGROUND TECHNOLOGYoieoiuirasieesrasseasiossrasieesiassrasseasiassrasssasians 4
2.1 Attributes-Based ENcryption (ABE)ccccceereeenereennncerennncereenssceseensessensseessenns 4

2.2 ACCESS STIUCEUIE ..cuuiieeiirieiiiiiiriiiriiiresireeireess et reesraessraessrassssasssrasssrnsssnnnss 5

2.3 CP-ABE......cceeeeiiiiiiiiiineeeiseiriieennessssssssiirennsssssssssstssssnssssssssssssssnsssssssssssasnnnsnes 8
2.3.1 Five Fundamental Algorithms Of CP-ABE.....ccccceeteeenerrennncerrennncenennnennes 11

2.3.2 Security Mode fOr CP-ABE......ccetteeecerrennneereennncereensessensscessensseessenssenses 15

2.4 Rivest-Shamir-AdIeman (RSA)cccccerreeneereenncereennneereenseeeseesseessensseessenssesnes 16
2.4.1 RSA AlZOTTTNM «.ieeeeeeireeneererneneereenseseensneeseensseesennsessenssesssenssssssnnsessnes 18

2.4.2 The SECUrtY OF RSA . iiveecerireencereennereenaseereensseeseenseessensssssenssesssnnsessnes 19
CHAPTER 3. LITERATURE REVIEWicciieiiuirenieesiaiiesiaasranseasiossnasssasiasssassssssasssanss 21
3.1 CP-ABE for Mobile PHR SYSteMcceeeeuneereenniereeenneereenneesensneeseenssesseensnsees 21

3.2 CP-ABE for Mobile Devices in 10Tcccoiiiiirmeenniiciniinnennnesiicinnieeennssssssssseeens 22

3.3 CP-ABE Based Privacy-Preserving User Profile Matching in Mobil Social
NEEWOIKS.....iiveiiiiiniiiiiiiiiiiiiieieiineniinierieneisiienessiesssisstessssssensssssssssssssenssnss 23
CHAPTER 4. REVISIT RSA-based ACCESS-TREE CP-ABE SCHEMEccceoeueeieanenannees 24
0t 1 T Y - 24

4.2 Algorithm Descriptionccceciiiiieiiiiinniiiniiniiniieniiiiseieniiesiesssenes 26

L B Y- ol U 1 3 31
CHAPTER 5. IMPLEMENTATION ..iociioiiesiansrasrasioestasssesiosssssssssssssnsssssssassssssssssasssasss 33
5.1 OVEIVIEW ..euuiiieiiiieiiineiiineiiineiiiassieasiiesssissssiesssssssssssssssssssssssssnsssssssssnssssnsssans 33

5.2 Preparation for CP-ABE.........ccccciiiiieiiiiiineiiiinnienieneieissnsiesissssssssensssssssnssssses 33
5.2.1 Setup ENVIrONMENT coiveiiiiiiiieiiieeiiineiiineiiieiiiniiieiiiasrssssssssassesssens 34

5.2.2 Java Native INterface (JNI)eeuceeeeeereereeeneereenniereennneereenneereenseesennsseseenne 45

5.3 App on Android STUAIOiiiieeiiiiiieiiiiiiniiiiinicnienieireneeneenessenesseseanessnes 47

5.4 Implementation Alorithmccccuiiiiiiiiiiiiiniiniic e sseneneenes 50

Lo 30t Y= 1 | o Y 511

o GV CT=T 01T 1 1 o o [N 56

Lo 305 38 = ol Y7 o1 o 1N 59

LS I 1= Tl Y/ o o [0 o N 633

5.5 RUNNING the APP cceeuriiiiiiiiiiiiiiiniiiirreeicennirrrrneesssessrnessssssssssssssessnssssssssns 69
5.6 App DemMONStration.......cccveeiiiiieiiiiiiiiiiineciiniiriinirssrrss s sesssssssenes 711
5.7 Performance EValuationcccceeeeieeiieeiieeiereeieteeieneeereeereeeressersnsesnssesnnes 742
5.8 LESSONS LEArNEM....ccucieeuiiieniieeerieerteereeereeerenserenserenserssseressersssessssessnsessnnens 74
CHAPTER 6. CONCLUSION.....eecuzsrezsseezssrensseossseosssenssseossseosssenssssnsssenssssassssnssssnsssens 77

REFERENCESccooooeeeeeznzzionnnienennensssannseeeanenssssssnseeensnnassssssseeeassnsssssssseeaessnasssnssneeaanee 79

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4 .
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10 .
Figure 11.
Figure 12 .

Figure 13

Figure 14 .
Figure 15 .
Figure 16 .
Figure 17 .
Figure 18 .
Figure 19 .
Figure 20 .

Figure 21
Figure 22

Figure 23 .
Figure 24 .
Figure 25 .
Figure 26 .
Figure 27 .
Figure 28 .
Figure 29 .
Figure 30 .
Figure 31.
Figure 32.
Figure 33.
Figure 34 .
Figure 35.
Figure 36.
Figure 37.
Figure 38 .

Figure 39

Figure 40 .
Figure 41 .

Attributes based encryption [7] c.cccceeeriiirieeiieenieeieesiee e e 5
Access control tree structure [32]cveeeveiieeieciee e 7
A functional overview of CP-ABE [10]cccveeeeiiieeeiiieee e 9
CP-ABE Implementation [10]........ccociiieeiiieee et 10
Flow Chart of CP-ABE AIZOrTNMc.coviiiiiiiiiiieeieciec et 12
Asymmetric AlZOrTNMoooiiii e 17
An CP-ABE access control structure for PHR data [15].....cccceveeeieeinnnnennnnen. 22
SetUP AlZOITNM ..ceii e e 27
Key generation algorithm........cooovviiiiciieccce e, 28

Encryption algorithm.........cocviiiicee e 29

Decryption algorithmcocviii i 30
Install M4, bisON and fleX ...c..uveeeiiiiiiiiieiiic e 35
. Configure the GIMP lIDraryccveeeeeieeeeeciee e 36

BUIld the GIMP lIDraryoccveeeeciiee ettt 37
Install the GIMP [IDrarycccvveeeeieee et 37

Extract compressed fil€.......couviiieieeiiicieee e 38
Configure the PBC IIDrarycocceeeeecreee ettt 39
BUild the PBC liDrary.......cooccciiieeiee ettt e 39
Install the PBC IIDraryoooccuiiieeeee ettt e 40
TOST COUR. .. ittt e s 40
. Compile file “fO0” aNd FUNccueeieeeieee e 40
. Configure the Libbswabe libraryccccocveveicieeei i 41

Build the Libbswabe library......cccccoovecciiieeiei s 41
Libbswabe sudo make install.........c.ccooiiiiiiiniiiie e 42
Install openssl and glib.........c.ovveeeeeiiiec e 42
BUIIA CP-ABE......ctiiitiitiettesitererte ettt 43
Test CP-ABE SChEMEcoiiiiiiiieiiieeeee ettt e 43
Interface PoiNter [20]oieecieeeieeee e s 46
Interface design WiNAOWccocuveiiiiiiieiceee e 48
NAtiIVE CP-ABE....... ettt 48
Main activity WIdOWoeviieiiieiciee et 49
Build Gradle(Module: app)....c.eecceeeceieciee et 49

= ool oY/ o) {0 o PP UUPPTPTN 62

Steps for USB deDUEEINGcc.veevvvieciieciee ettt 69
Install Android adb tools package on terminal.........ccccceevvciveeicieenennen. 70
. Select deployment target.....cccccveeeccieie i 70

(a) Application interface (b) Hint for empty import (c) import text........ 71
Y SIZE .uutiiiiiiii et e e e s ranes 71

Figure 42 . Number of attributes

Chapter 1. Introduction

The first part of this chapter gives an overview of this study. It introduces the
basic algorithms supported in the new CP-ABE system, and also briefly
explains how CP-ABE scheme works. In the second part, it describes the main
purpose of this project which is to implement the RSA-based CP-ABE scheme
on an Android system. In the last part, it provides a brief description of the
structure of this study.

1.1 Overview

The open source mobile Android system was developed by Google based on
an Android kernel design. The Android operating system has become the
basis of the recent applications that include smart phone, tablet computer,
and smart TV etc. Android system supports a complete ecosystem that
includes from development, installation and usage of applications. Due to it’s
wide use, it is important to provide a secure mechanism to keep the data
system and application that runs on an Android OS.

The Attributes-Based Encryption (ABE) algorithm was first proposed by Amit
Sahai and Brent Waters in Fuzzy Identity-Based Encryption in 2005 [1]. One
year later, Goyal etal., proposed the ABE for Fine-Grained Access Control of
Encrypted Data [2]. Then the first construction of the Chiphertext-Policy
Attributes-Based Encryption (CP-ABE) was provided by John Bethencourt,
Amit Sahai, and Brent Waters in 2007 [3]. In their work, they presented the
first construction of a scheme as CP-ABE, in which, the secret key of the user
is combined with a set number of attributes. Data owners can defines an
access structure over a secret document in such a way that allows the users
to decrypt only if the users’ attributes satisfy the access policy. A more
efficient CP-ABE scheme named RSA-based Access-Tree CP-ABE was
presented by a master student Ping Li [36]. In her research, a no-pairing RSA
algorithm was proposed to improve the efficiency of a CP-ABE scheme that
was also based on the access tree structure. This scheme was implemented
on Linux system. This study aims to provide an implement strategy for the
new CP-ABE scheme on Android system.

Typically, there are four main algorithms of a CP-ABE scheme, which
respectively are setup, key generation, encryption and decryption. In the first
setup algorithm, two prime numbers are picked based on the concept of RSA
algorithm, and new security parameters are produced step by step from
these two primes. After getting all the security parameters, a master public

key as well as a master secret key are created by utilising the security
parameters produced in the setup stage. In the second algorithm, it takes a
set of attributes and the master private key as inputs and then it outputs a
secret key associated with a set of attributes defined by each decoder by
using a hash function for each attribute. In the third algorithm, a Lagrange
polynomial is selected with an up-to-down manner for each node in an access

structure. The algorithm randomly chooses a value from Z; which is

defined in setup algorithm and sets this value as the polynomial of the root
node. Then this algorithm constructs a polynomial for each internal leaf node
in an access tree, such that, an access tree structure is built during this
process. Then, it encrypts the text with the access tree that associated with a
set of attributes. In the last step, it checks the user’s attributes associated
with the secret key with the access policy by calling a recursive algorithm. The
users will be able to access and decode the documents if their attributes
meet the access policy.

This study implements the RSA-based CP-ABE scheme on an Android system
by making an application for Android mobile devices. In order to build up this
app, an Android Studio was used along with a series of tools, such as Java
Native Interface (JNI). Many tools are all used to build a bridge that connects
the native Java methods with the CP-ABE library written in C code.

1.2 Goal

There have been many algorithms to encrypt sensitive data as a way to
provide data privacy. This study chose the RSA-based Access-Tree CP-ABE
scheme that is considered as an efficient and lightweight encryption system
that can run on resource constraint devices such as mobile phones. The
original proposal of RSA-based CP-ABE system was written in C code and was
implemented in the Linux system by another master student Ping Li.
Extending from this, the goal of this study is to implement the RSA-based
CP-ABE on the Android system so that it can be applied to android mobile
devices.

Based on the new features of RSA-based CP-ABE scheme, this study made an
encryption application that can work on an Android mobile device. This app
uses the improved algorithm to encrypt and decrypt messages, and it is
designed as a user interface with three basic functions: input text, encryption
and decryption. In this encryption application, the users input messages that
they want to encrypt in a text box, then click the “CIPHER” button to encrypt
the message. The encrypted text is shown in the second text box that under
the cipher button. After getting the encrypted text, a users can decrypt it by

using the “DECRYPT” button and get the original plain-text message.

To implement the RSA-based Access-Tree CP-ABE algorithm on Android
system, there are a number of mechanisms involved. First of all, a setup of
the development environment needed be built successfully. Some libraries
that supports a CP-ABE algorithm need be installed, such as PBC, GMP and so
on. After preparing those libraries, the CP-ABE algorithm should be compiled
first, and then it is ready to be used in the system. Then, the Android Studio
should be prepared to link the dynamic libraries. For example, the project
should be built under the “C/C++ support” version. In addition, an
Android.mk file is required to make .so libraries work, and other tools inside
Android Studio are also needed to be prepared such as Native Development
Kit (NKD) tools. Those tools can work as a bridge between C language and
Java language. JNI is one of them, and it is a tool for calling functions from
Java to another language. In Android Studio, it needs to import the CP-ABE
libraries as well as to write Java code to link CP-ABE functions with Java
command by JNI. In this way, the encryption application is able to implement
the RSA-based Access-Tree CP-ABE scheme on the Android system.

1.3 Structure

In the beginning of this study, it describes the preliminary understanding of
the encryption algorithm and discuses the advantages of a CP-ABE algorithm.
In the next chapter, it describes the background knowledge required to better
understand the proposed algorithm which includes the description of ABE
algorithm, CP-ABE algorithm and RSA algorithm, which will all be involved in
the RSA-based Access-Tree CP-ABE scheme. The related works are presented
in chapter 3. It introduces the application of the CP-ABE algorithm in three
different fields, and describes the basic working principle for each field.
Chapter 4 revisits the new CP-ABE algorithm and provides in depth
description of the new CP-ABE algorithm. Chapter 5 describes the
implementation process of the new CP-ABE system. In particularly, it
introduces the setup environment that is used for preparing libraries and JNI
function that is used to help the new algorithm run in the Android mobile
devices. It also presents the steps of the application demonstration, and
discusses the lessons learned. In the last chapter, it provides the conclusion.

Chapter 2. Background Technology

This chapter describes the background technology of the RSA-based CP-ABE
scheme. This includes the description of the original ABE scheme where a
CP-ABE is based on the description of a RSA algorithm, and the details of the
original CP-ABE algorithm.

2.1 Attributes-Based Encryption (ABE)

In an ABE system, an encrypted data is associated with a set of attributes. A
user’s private key is associated with an access structure over a set of
attributes. The user’s private key reflects the user’s access policy [6]. This
implies that the user is allowed to decrypt if and only if the set of attributes
of a user’s private key satisfies the access policy.

Comparing with the original ABE scheme, the advanced ABE scheme
improved it’s expressibility, which means that the user’s private key is able to
express any monotone access formula consisting of AND, OR, or threshold
gates [6]. Moreover, when encrypting a message, a user may not be aware of
the attributes. After creating the cipher-text, a new set of attributes may be
used in the system. The core component of the current ABE systems is a
secret-sharing scheme.

The ABE algorithm can encrypt the text from a data owner which correlates
the attributes of the user [2]. The main characteristic of ABE is to reconsider
the concept of a public key. Normally, a receiver decodes an encrypted
message with a public key. In identity-based encryption (IBE) cryptography,
the user’s public key can be any string such as an email address [4]. Thus, the
cipher-text can be decoded only if someone holds the key with the matching
attributes. Generally, the user’s key is issued by a third trusted party. ABE is
basically a one-to-many algorithm that sends a message so that all legitimate
users are able to decode [5]. By contrast, a one-to-one encryption algorithm
has scalability issue as it can only send the message to a single recipient.

L

T

gﬂrilbl-lfﬂ? CS, IT, EE Kae user U
ept: MA, CS, 1T, MK L: credential of U
Desig: PhD, MTech, MSc params, W L = {MA, MSc)
cluster of decryptors
Encryptor
W = MA A (PhD* MSc) U1, L1={MA, MTech}
N U2, L2={CS, MSc}

cr ™ U3, L3={MA, MSc}
Public Channel .

CT = Ency(msg)

msg = Dec g 13(CT)

Figure 1. Attributes based encryption [7]

For example, let’s assume that Figure 1 is a student database, and the user is
a student in the mathematics department. On the right top of Figure 1, it
shows the encryption process:

* The user (U) sends the credential L to the key generate centre (KGC).

* The credential of user U is the mathematics (MA) department and
master of science (MSc) designation.

* KGC uses parameters and a master key (MK) to verify the credential L,
and sends the secret key with the credentials of the user U(SK_L) back
to user U.

If these attributes are satisfied with W, which indicates that the student
studies in the mathematics department and either he/she is a PhD student or
a MSc student, then the encryption should be done. What happens next is
the message is encrypted into a cipher-text that is sent to each user through
the public channel. When broadcasting a cipher-text, only the groups of
students who satisfy W are able to decode the information asset by using the
secret key based on their credentials. In figure 1 for example, it is clear to see
that the credentials of the user U3 are {MA, MSc} which in turn satisfies the
decryption conditions. This results in user U3 being able to decode the
cipher-text with their secret key and be able to access the original message.

2.2 Access structure

In a security system, there are usually multiple parties that work together to
obtain a resource. Therefore, access structures are used to keep the system

secure. The users who are authorized to access the resource are called the
qualified groups of parties, which in turn are called qualified sets, and the set
of all qualified sets is called the access structure of the system. In other words,
the access structures are used to describe the necessary conditions that are
needed to be able to access the information asset.

At the beginning stages of access structure applied in cryptography, the
information asset was shared among the user’s secretly [8]. Only the groups
of users who are contained in the access structure are able to access the
information asset. Normally, the information asset is a task that participants
can solve together, such as decoding an encrypted message.

The background knowledge of an access structure is introduced below.

Gates

There are usually three types of gates in an access structure in a CP-ABE
algorithm, which respectively are AND gates, OR gates and NOT gates:

* The AND gates allow passing if all the conditions are met.
* The OR gates allow passing if at least one of the conditions is met.

* The NOT gates allow passing if all the conditions are not met.

Threshold [1]

Both the user’s private key and the cipher-text are each associated with a
different set of attributes. If and only if the overlapping part between each
set is at least the same as the globally defined threshold, then the decryption
algorithm is able to work [31].

(n,n) -Threshold

The Shamirs Secret Sharing (SSS) with a variable threshold value t is used by
the AND gates as a (t,n)-scheme. A single AND gates with n attributes is

used, if all shares are required to be present. The (n,n)-Threshold access

structure is the same as the AND gates method because the attributes can be
multi-valued, thus it is called (n,n)-Threshold. However, in most cases, it is

usually just called AND gates.

Tree [2]

This is a method that shares a secret resource in a KP-ABE or CP-ABE scheme.
By using Lagrange interpolation, it can be reconstructed. It not only allows
both AND gates and OR gates, but also permits any threshold gates with SSS
for each node of the tree. The access tree can be easily built up from a textual
representation (such as a boolean formula).

O Root R, 1<k, <num,
. node x,

1<k <num,
num
O E) leaf 3, ati(y)

Figure 2. Access control tree structure [32]

The children of each internal-leaf node and a threshold value are used to
describe a threshold gate represented by each internal-leaf in an access tree
T which is illustrated in Figure 2. The number of child nodes of node X is
presented as numx , and the threshold value of the node X is
kx e[, numx]. It indicates that node x performs the OR operation on all
subsets of kx children of X, and each subset supports an AND operation.
As for the leaf-nodes, each of them is described by an attribute and a
threshold value which is defined as kx=1. When generating a data item, a
tree is created for access control by defining the access rights with the
associated attributes. This means that only the person who owns the
attributes of the data item is able to decode the cipher-texts.

Linear Secret Sharing Scheme (LSSS)

LSSS stands for Linear Secret Sharing Scheme and it works on a matrix that
signed rows with attributes of the policy. Based on this matrix, it creates
shares from a secret element. The output of this scheme is the same as the
access tree structure, although, in most situations, the LSSS approach can be
replaced by the tree approach. However, due to the security games may
depend on a specific approach, thus the security will not be guaranteed after
exchanging [31].

2.3 CP-ABE

By using traditional methods, the difficulty of guaranteeing data security
increases. When storing resources at several locations, the chances that one
of them may become compromised increases dramatically [3]. A CP-ABE
scheme allows sensitive data to be stored in an encrypted form regardless of
whether or not a server is compromised. Moreover, it is able to efficiently
handle more expressive types of encrypted access control [3].

Most existing CP-ABE schemes have a disadvantage of not being able to
satisfy the flexibility and efficiency required by an enterprise’s requirements
of access control. A CP-ABE scheme is limited in some aspects, such as
specifying policies and managing user attributes. In the CP-ABE construction,
the secret key contains the set of attributes of the user. In other words, to
satisfy policies, a user is only able to use possible combinations of attributes
in a single set that is issued in their private keys [33]. The nature of a CP-ABE
scheme influences itself. Due to the decryption privilege is shared by multiple
users with the same attributes, this makes it hard to identify the original key
owner from an exposed key. The commercial applications of CP-ABE are
limited by this situation to some extent [34].

Here are the two main algorithms of the ABE scheme:

» KP-ABE, it combines a set of attributes with every encrypted
message. Then an access structure is associated with each secret
key of the user.

* CP-ABE, a set of attributes is associated with each user’s private key.
An access policy is defined over a message [9].

It is important in a CP-ABE scheme that the person who owns the secret data
is able to determine the access policy. Moreover, the data owner can only
determine the people who have the authority to access the data by
describing their attributes or credentials rather than knowing the certain
identities of the other users.

Generally, the information asset of the owner is in the custody of a
trustworthy server. In order to make sure that only the accredited person is
entitled to obtain the secret message, software checking is applied to control
the access structure. However, identifying every potential recipient, acquiring
and storing their public keys is difficult to do in a large-scale system. Thus, it is
expected to encrypt the data with an incomplete list of intended recipients.
The CP-ABE algorithm is an emerging approach to handle this situation and

ensures the authentication of the user by checking whether the user’s
attributes satisfy the access policy or not. CP-ABE can identify whether the
user is legitimate when performing an operation on the stored data. Access
control policies provide two significant functions, the first one is authorizing
multiple user rights to access an information asset. The second one is making
personal access rights more flexible. The data owner can encrypt the data
without the information of all the receivers by using flexible access policy in a
CP-ABE scheme.

Bethencourt, Sahai and Waters introduced BSW’s scheme as the construction
of a CP-ABE scheme. The function of BSW’s scheme is to present more
expressive models for access control. The private key is combined with strings
that represent an arbitrary number of attributes. For those users who are
able to decrypt the message, there is always a policy that is selectively
specified by the encrypted data party. The only condition for a user to decode
the cipher-texts is that the decryption key meets the access policy.

To provide privacy for the access of confidential data, the CP-ABE system is
required. Here is a simple case of how CP-ABE works. In Figure 1, let’s
suppose that the data owner only wants the users with “MA” and “MSc” to
access the resources and decrypt the documents. Therefore, only the group
of people whose attributes all satisfy the policy is able to access the data. Any
other users without the attributes which can satisfy the access policy are
unable to access those data. For example, the user U2 in Figurel has the
attributes {“CS”, “MSc”’} which does not meet the access policy, thus user U2
will be unable to access the files.

Data
Encrypted Attributes:
@' with Access Bob Dept = Law
Data Q‘ Policy Gender = Male
. —
Owner F e —%‘ - Country = UK
- = Status = Postgraduate
F Ty S 5 :
Access Policy, A: ™. - o, | Alice Attributes:
“Only Undergraduates’ < : *-./ Dept=IT
and Postgraduates ~. - T~ Gender = Female
in the IT department "~ Country = UK

may access this data”

AND

‘v || pc |
Access Tree for A

Status = Postgraduate

\ .
(/ Dave
~ .

~

A
Attributes:
Data Dept =1IT
Users Gender = Male
Country = UK

Status = Undergraduate

Figure 3. A functional overview of CP-ABE [10]

10

This graph gives a detailed explanation of the usage and the basic function of
an access tree in CP-ABE. An access policy A is created by the data owner,
which is “Only Undergraduates and Postgraduates in the IT department may
access this data”. Then the data is encrypted with this access policy. There are
three data users with their own attributes respectively. The attributes of Alice
are {Dept = IT, Gender = Female, Country = UK, Status = Postgraduate}. In the
attributes set of Alice, there shows IT and Postgraduate which meet the
access policy. Therefore, Alice is authorized and she can access the data and
the same goes for Dave. The attributes of Bob are {Dept = Law, Gender =
Male, Country = UK, Status = Postgraduate}. However, as Bob is a
Postgraduate student in the Department of Law, he only satisfies one
condition. Therefore, Bob is unable to access the data.

Data
Encrypted with
Access Policy
C=Enc {PK, M, A}

Bob

DO

Data Owner
Sets up Access
Policy for Data

AED Alice
o Att = {IT, P/G}
(u/G| [P/G |
Access Tree for A SK3
@r Dave
Att = {IT, U/G}

Figure 4. CP-ABE Implementation [10]

Figure 4 shows how CP-ABE can work in daily life. The data owner (DO) wants
to share some documents, then the owner sets up an access policy for their
information asset. When the data owner gets the public key (PK) from the
attribute authority (AA), they can then encode the message (M) by using the
public key (PK) and an access policy (A). Then an encrypted data is kept in a
trusted storage server. The attribute authority (AA) also gives each user a
different secret key, in the example of Figure 4, they are SK1, SK2 and SK3. As
it is shown in Figure 4, there are three users, Bob, Alice and Dave, and their
attributes respectively are {Law, P/G}, {IT, P/G} and {IT, U/G}. In the access tree
for attributes shows that the user should satisfy those conditions. The user
should be in the group of {IT, U/G} or {IT, P/G} respectively. The access tree for
the attributes shows what conditions the users need to meet in order to gain

11

access. In Figure 4, the user needs to be in the group of {IT, U/G} or {IT, P/G}.
Thus, according to the parameters of Figure 4, Alice and Dave meet the
conditions and they can decrypt the documents uploaded by the data owner
respectively with their secret key SK2 and SK3 respectively. However, the
attributes of Bob are {Law, P/G}, which does not meet the access attributes
required. Therefore, due to his attributes, Bob cannot obtain the files from
the data owner with his secret key SK1.

2.3.1 Five Fundamental Algorithms of CP-ABE

Here is the basic description of five fundamental algorithms in a CP-ABE
scheme [3]:

(D set up (input: universal attributes set, security parameter
output: public parameters PK, master secret key MK)

During this process, security parameter and universal attributes set are taken
as the input of this algorithm. Then it outputs the public parameter PK and
master key MK.

@<ey generate (input: MK, attributes S
output: private key SK)

The key generation algorithm inputs MK and a set of attributes S that
describes the key. Then it outputs a private key SK.

@ncrypt (input: PK, message M,
access structure A over the universe of attributes
output: cipher-text CT)

The inputs of the encryption algorithm are the PK, a message M, and an
access structure A over the universe of attributes. Then the message M is
encrypted into the cipher-text CT, and only the receiver whose attributes
satisfy the access structure are able to decrypt the cipher-text.

(4 Decrypt (input: PK, CT[A], SK[S]
output: M)

PK, CT with an access policy A, private key SK (a private key for a set of
attributes S) are the inputs of decryption algorithm, and it decodes the
cipher-text CT into the message M only if the set of attributes S satisfies the

12

access structure A.

(5Delegate (input: SK
output: SK, S~)

If required, a delegate takes the secret key (SK) as an input and return a
secret key (SK) for a given set of attributes (5™).

security parameter

universal attribute set

set up
E] [callcafiey
key generation encryption
decryption

Figure 5. Flow Chart of CP-ABE Algorithm

Figure 5 shows the process of CP-ABE algorithm. Firstly, it uses a setup
algorithm to create a master secret key MK and a public key PK from a
universal attributes set. Then, the key generation algorithm takes a set of
attributes and MK as input and output the assigned secret key SK with this set
of attributes. Meanwhile, PK is used to encrypt the message M with an access
policy A during the encryption algorithm, and it outputs the cipher-text with
A. Finally, the message can be decoded with PK, the satisfied SK[S] and CT[A].

Here is the construction of these five algorithms, but first, it defines some
elements which are used in those algorithms.

* G, : A bilinear group of prime order p
* g:Ageneratorof G,

+ e:G,xG, = G;: The bilinear map

13

* Kk : A security parameter which determine the size of the groups.

* As(x)=11 X1 The Lagrange coefficient A, for ieZ, and

jES,jii i _ j

S which is a set of elements in Zp .

« H:{01] ->G,: A hash function H which models as a random

oracle. This function maps any attribute described as a binary string
to a random group element.

Here are the mathematical formula descriptions of these five algorithms [3]:

@etup algorithm:

Choose: A bilinear group G of prime order p with a generatorg ;
Two random exponents «a,€Z, .

Then get the public key and the master key respectively. Note that f is only
used for delegation procedure:

PK =G,,9,h=g”, f =g"/,e(g,9)"

MK =(8,9)

@Key generate algorithm (master secret key MK and a set of attributes
S):

Choose: arandomteZ, andrandom r; €Z foreach attribute jeS.
Then get the secret key SK as follow:

SK=(D=g“"” VvjeS:D,=g"-H(j)",D';=g")
(3Encryption algorithm(public key PK , message M and access tree T):
Choose: a polynomial q, foreach node X intheaccesstree T;

For the root node R choose:

arandom seZ, andsets gz(0)=s;

d; other points of the polynomial g, randomly.

14
For any other node X:

set 0, (0) = 0 arenyy (INdEX(X)) ;

choose d, other points randomly to define g, completely.

Let Y be the set of leaf nodes in T, then the cipher-text CT is computed
as:

CT =(T,C =Me(g,9)*,C=h*,vyeY:C,=g"?,C', = H(att(y))*")
@Delegate algorithm (secret key SK and a set of attributes é €S)

Choose: random |~’ such that l:k vk e é .

Then a new secret key is computed as:
SK=(D=Df",vkeS: D =D,g"H (k)™ D' = D', g™)
@)ecryption algorithm (cipher-text CT and secret key SK):

This is a recursive algorithm, and it is defined as DecryptNode(CT, SK, x) . If
the node x from accesstree T is aleaf node, then set i=att(x):

If ieS,then
DecryptNode(CT, SK, x) = —S(21:Ca)
LAY e(D,,C")
_elg’-H@)",h*?)
e(g " 1 H (l)qX(O))
=e(g,g) ™
If igS,then

DecryptNode(CT, SK, x) =L

If X is anon-leaf node, for nodes z which are the children of node X, itis
defined as DecryptNode(CT,SK,z). Let F, be the output. Let S, be the

arbitrary K, -sized set of child nodes z which satisfies that F, =1, then

15

F,=]]F", where i=index(z),and S',={index(z):zeS,}

zeS,

- Tetg.orsop

zeS,

[T fe(g. g)r ottt -

zeSy

_ He(g, g)r'qx(i)'Ai‘S'x (0)

zeS,

-0, (0
=e(g,9)"
Else return L.

After the function DecryptNode is defined, now the decryption algorithm
can start with calling function DecryptNode on the root node R of the
access tree T. If and only if this access tree T is satisfied by the set of

attributes S, then set

A= DecryptNode(CT, SK,r) =e(g, 9)"™*® =e(g, g)"

Then the original message is computed as:
c/lecc. Dy/A)=C/letr, g7 fe(g, 0)*) = M
2.3.2 Security Mode for CP-ABE

(Lsetup

The challenger generates the public parameters PK by running the Setup
algorithm, and the adversary receives the public parameters PK .

(2Phase 1

The adversary makes repeated private keys corresponding to the attributes

sets whichare S,,...,S, .

(3Xhallenge

The adversary not only submits two messages M, and M, which have

equal length, but also gives a challenge access structure A* such that none

16

of the sets of attributes §,,...,S, from Phase 1 satisfy the access tree made

by adversary. The challenger flips a random coin b, and encrypts M, under

the access tree structure A’. Then the cipher-text CT" is sent to the
adversary.

(4Phase 2

Phase 1 is repeated with the restriction that none of sets of attributes

S S, satisfy A’ corresponding to the challenge.

g1

(5Guess

The adversary gives a guess b' of b.

In these processes, the advantage of an adversary is defined as Pr[b': b]—% .

Allowing for decryption queries in Phase 1 and Phase 2, the model can be
extended to handle chosen-cipher-text attacks easily.

Therefore, if all polynomial time adversaries have at most a negligible
advantage in the above procedures, then a CP-ABE scheme can be secure.

2.4 Rivest-Shamir-Adleman (RSA)

Rivest-Shamir-Adleman (RSA) is an asymmetric algorithm that uses key pairs
(public keys & private keys) to deal with the message. Public keys can be
exposed to anyone. On the contrary, only the owner of keys holds the private
keys. In other words, there is no need to compromise security of public keys
which can be distributed publicly, but the privacy of private keys.

In order to generate the key pairs safely, cryptographic algorithms based on
mathematical problems to generate one-way functions are needed. It can be
a notion of a trapdoor function which is a mathematical function that
underpins the public key encryption system [23]. For example, the process of
taking a given value A and using the trapdoor function to get another value B
is very easy, however, it is intractable to use trapdoor function to get the
value A from the value B. The reason is that it is easy to “add” points together
and to “multiply” a point by an integer by using the “group law” (trapdoor
function), but it is very difficult to work backward to “divide” a point by a
number. In other words, assuming that it is intractable to factor a large
integer composed of two or more large prime factors, the public key systems
are secure. The greatest common divisor of two numbers can be found by
using the Euclidean algorithm.

17

Alice Bob

Kpub K ub;K r
P P!

y=ewuX) | Y dke (y)=x

Figure 6. Asymmetric Algorithm

As it is shown in Figure6, Alice wants to send message to Bob. In the
beginning, Bob generates both his public key (K ;) and the private key

(K,)- When Alice receives the public key from Bob, she can encrypt the

message x with the public key. After encrypting, Alice sends the encrypted
message y to Bob. By using the private key, Bob can decrypt the message y
into the original message x. This figure explains how the asymmetric
algorithm works. Alice uses the public key which is from Bob to encrypt the
message X, and Bob uses the private key to decrypt the message y. The
security coefficient is improved by using different keys during encryption and
decryption process.

Due to the complex mathematics that RSA algorithm presents, it is safe and
secure. The reason is that it refers to the factorization of prime numbers.
These prime numbers are large enough that is hard to factorize. This trap
door function guarantees the security of this algorithm. Moreover, another
advantage of RSA algorithm is the public key which is public and easy to get
by anyone. This allows distributing keys safely, which is the big issue in
cryptography system.

The RSA algorithm can be slow when generating key pairs with large primes.
Besides this, when encrypting large data in the same computer, the RSA
algorithm can also be very slow. For further explanation, the main
computational cost of the RSA algorithm is the modular exponentiation
during the key generation, encryption and decryption process [35]. The
reason is that this algorithm needs a third trusted party to identify the public
keys. During the data transmission, it can be exposed to the middlemen who
is able to temper with the public key system and the algorithm can be
compromised. Thus, a secure implement is difficult due to the slow speed of
signing and decryption. In addition, the RSA algorithm has weaknesses
against certain attacks, such as Brute force as the capacity of supercomputer
advances rapidly.

18

2.4.1 RSA Algorithm

RSA algorithm is the first algorithm that is applied for data encryption and
digital signatures [24]. As it is mentioned before, RSA algorithm is a trap-door
function and the security of this algorithm is based on the difficulty of the
one way function which means dealing with the problem that decomposes a
large number into two large prime numbers.

In the RSA algorithm, it has three processes: key generation algorithm,
encryption algorithm and decryption algorithm, respectively. Here is the
description of each process (see Figure 9):

@(ey generation:

a. Choose large prime numbers: p,qQ
b. n=p-q

c. ¢(n)=(p-H(a-D

d. Choose ee{l2,..,p(n)-1};

and ged(e o(n))=1
e. Compute d,and d-e=1mod ¢(n)

Then, the public key is computed as:
Kpub = (n,E)

and the private key is computed as:
Ky = (n.d)

@ncryption:

a. Obtain the publickey K, =(n,e)
b. Choose xeZ, ={04,..,n—1}
c. Compute Y=g (X)= x*mod n

d. Send out the message y

(3Decryption:

a. Obtain the cipher-text yeZ,
b.Use K, = (n,d) tocompute x= de, (¥)= y’ mod n

Sometimes, the value X can be a short integer which is the output of some
not injective compression function, such as a hash function. Thus, the value
X can be defined as a message digest. It is based on that the exponentiation
modulo n is a one-way permutation on Z, when e is co-prime to ¢(n).

Here is a trapdoor function that the permutation can be efficiently inverted

19

by the private key (n,d). Therefore, the RSA system can also be used as a
digital signature algorithm which is listed below:

When sending a message, the sender:

a. Create a message digest
b. Represent this digest as an integer XeZ,

c. Use private key Ko = (n, d) to compute the signature
s =x*(mod n)
d. Send signature s to the recipient

When receiving a message, the receiver:

a. Obtain the public key K pup = (n,e) of the message owner

b. Compute integer v =s*(mod n)

c. Independently computes the message digest X' of the information
that has been signed

d. Computes the expected representative integer v' by encoding the
expected message digest X'

If the verification equation v=V' holds, the signature is valid, then
€ the message is from the owner.

As it can be seen from the algorithms above, the decryption algorithm and
signing algorithm both use the private key, those two algorithms are same
from a mathematical viewpoint. So as the encryption and verification, they
both use the identical algorithm with the public key, where

x=(x")" =(x")"(mod n)

2.4.2 The Security of RSA

The security of public key encryption is mainly based on decomposing large
integers multiplied by two large prime numbers p and (. This kind

computation is very difficult, because it is easy to multiply two large prime
number together but hard to determine the initial number from the total.
This builds up the security of RSA.

The public key encryption can be on risk if the large prime
numbers p and g are found. Obviously, the public key (n,e) is known to the

public. Thus anyone can compute p and g by factorizing n, and get
@(n) by computing ¢(n)=(p-1)(q—1). Once @(n) is known, the private
key K, :(n,d) can be computed by d-e=1mod qo(n) RSA algorithm can
be secure only if the integer n is big enough so that the prime numbers p
and (are not easy to be found.

20

However, if the integer n is small, the prime numbers p and g are easy
to know by testing all possible prime numbers in the range of (1,n). Most
attackers can't find the two prime numbers p and (, because it takes so

long to decompose the product of these two prime numbers which are large
enough. There is no capability or equipment for most attackers to do so other
than the state actors that may have access to sufficient computing power.

Typically, the key length of an RSA key refers to the length of the modulus n
in bits. More bits mean more secure but more CPU and power while
encrypting and decoding, which can impact the performance of server. The
recommended key length for a secure RSA transmission is 2048 bits long.
According to experts, 2048 bits is more secure that many facilities are
replacing key lengths of 1024 bits with the minimum of 2048 bits. However,
RSA is unable to encrypt anything that is larger than it’s modulus n. Thus,
the key length is usually defined as (Iog 256(N +1))><8.

21

Chapter 3. Literature Review

This chapter introduces the three related fields of applications that utilises
CP-ABE scheme. The first filed is described from the PHR system which is used
for the patient and doctor in a hospital. The second filed describes the
application of loT (internet of things) applying CP-ABE as data privacy
mechanism. The last filed the literature review is conducted is from the
Privacy-Preserving User Profile Matching in Mobil Social Networks.

3.1 CP-ABE for Mobile PHR System

PHR system means Personal Health Record system [11], which is secure to a
great extent. It only allows patients or health care providers to securely
access the health information of the patient through the internet. This
patient’s centered system has massive private data in lots of aspects. For
example, it contains the health conditions of the patient, the medical history
of the user and much other private information. The PHR system is exposed
under the open internet, which means the internet can be a threat to the
personal information contained in this system. Therefore, the big issue of PHR
system is to keep it as secure as possible. In order to keep the PHR system
secure, an efficient mediated cipher-text-policy attribute-based encryption
(M-CP-ABE) scheme is used to revoke attribute at once and support
monotonic access structure by using Linear Secret-Sharing Schemes(LSSS).
Thus, the chance that an unauthorized user accesses to the personal health
information is reduced in a PHR system. In the other aspect, the developed
mobile internet allows most users to access the PHR system more
conveniently via their mobile devices, thus the CP-ABE based PHR system
suits for the mobile internet.

CP-ABE scheme is suitable for access control in the PHR system, for it not only
cuts the encryption cost for PHR data owner but provides agile self-centric
data access management as well [12][13]. In this CP-ABE scheme, the access
policy of the user is defined by a set of attributes. A user can access the
encrypted data if and only if his or her attributes satisfy the access policy
[14][15].

22

Personal

Family
doctor

members

Or\ [Researcher | [M.D. |

Healtheare

sta

L Health science Medicine
[Physician | centre institute

Hospital 2

[Nurse |

Figure 7. An CP-ABE access control structure for PHR data [15]

In Figure 7, it presents an access tree policy. The data owner can describe
users who own the right to access the data by a set of attributes(such as
personal doctor) without knowing the exact identity of users. For example, a
user has the attributes of {Medicine institute, Researcher} is able to access
the PHR data if his or her attributes satisfy with the policy in Figure 7.

PHR as well as other systems applied the attribute based encryption scheme
to build the medical care system. However, the performance degradation is
observed due to expensive bilinear pairing operations have to be run for a
several times while decoding a message. The heavy computation increases
the difficulty in the process of mobile PHR data sharing when a PHR user
accesses to the personal information via a mobile device with limited
computing resources such as cell phone and smart-watch.

3.2 CP-ABE for Mobile Devices in loT

Lightweight CP-ABE schemes with constant size secret keys and constant-size
cipher-texts have been proposed for battery-limited mobile devices such as
cell phone [16]. More and more people using those mobile devices in their
daily lives. Lightweight CP-ABE scheme is in demand in order to provide data
privacy solution in such resource constraint devices.

An RSA-based AND-gate access structure CP-ABE scheme is presented to
provide constant-size secret keys and cipher-texts with efficiently encrypt and
decrypt process. In this scheme, a secret key is associated with an attribute
set A, and a user is able to use the secret key with attribute A to decrypt
cipher-texts with the access policy P if and only if P < A. This scheme
offers constant-size secret keys and cipher-texts without using bilinear maps,

23

and it is suitable for practical deployments on battery-limited devices due to
the underlying RSA architecture.

3.3 CP-ABE Based Privacy-Preserving User Profile
Matching in Mobil Social Networks

Based on CP-ABE scheme, users are able to offer a preference-profile and find
other users with matching-profile in decentralized mobile social networks
while the preference-profile of no one is exposed, and then build a secure
channel between matched users. This scheme helps to solve the
privacy-preserving profile matching problem to some extent. It is because it
offers verifiability with few interactions among users is required. In most
CP-ABE scheme, when the number of attributes increases, then the size of
cipher-text and decryption time will increase as well. This situation will
influence communication and computation efficiency [17]. Therefore, a
CP-ABE construction that provides receiver anonymity through hidden access
policy with unchanged cipher-text size and decryption time is need to keep
both the security and efficiency. This scheme is based on the prime order
group and relies on asymmetric decision bilinear Diffie-Hellman problem.

The CP-ABE scheme needs to satisfy with the condition that the profile of the
matched user must include all the attributes in the preference-profile. Thus, a
reminder vector which is a data structure and a corresponding algorithm that
is used to improve matching speed is used to overcome the barrier. This
CP-ABE construction not only has the capability of privacy-preserving, but
also provides verifiability that no one can cheat the initiator with the wrong
matching result. In addition, it also builds a secure channel between matched
users, and the unmatched user can be excluded soon. In addition, only a
small amount of interaction is required between the initiator and the
matching user, since the matching user can determine the matching result
without the help of the initiator, which is important for reducing computing
and communication costs.

24

Chapter 4. Revisit RSA-based
Access-Tree CP-ABE scheme

The first construction of a CP-ABE with a monotonic “access tree” was
provided in the work of Bethencourt [3]. In the use of an access tree, the
internal nodes of the access structure were consisted of threshold gates and
leaves that associated with descriptive attributes. Most asymmetric
encryption schemes allow for data encryption with a restrictive policy that
are unable to efficiently enforce more expressive types of access control. By
comparison, the access structure of the scheme provided by Bethencourt et
al. supports AND gate, OR gate and the comparison of numerical attributes.
For the AND gates can be built as the n-of-n threshold gates, the OR gates can
be constructed as the 1-of-n threshold gates, and the comparison of
numerical attributes that belong to more complex access control can be
solved by converting them into small access tree.

For decryption, the attributes of the user are associated with the private keys.
If the receiver wants to decrypt the information asset, then the attributes of
his or her private key should satisfy the specified policy through an access
tree structure. In other words, only if the secret key of the user contains all
the attributes which are assigned to the leaves of the tree, then the user can
decrypt the data.

4.1 Model

Access Structure Definition [3]

Let {P,P,,..,P,} be a set of parties. A collection Ac 2R/ is monotone
if VB, C: if BeA and BcC then CeA. An access structure
(respectively, monotone access structure) is a collection (respectively,
monotone collection) A of nonempty subsets of {P,P,,...,P,}. The sets in

A are called the authorized sets, and the sets not in A are called the
unauthorized sets.

Access tree T [3]

An access structure is represented by T, and each internal node of T

25

expresses a threshold value gate which are described by it’s children and a
threshold value. If a non-leaf node x has number _x children and the

threshold value of node X is kx, then 0<kx<number_x. The threshold

gate is an OR gate when kx equals to one while the threshold gate is an
AND gate when kx equals to number x. A set of attributes and a

threshold value(kx=1) are used to describe each leaf node X of the access
tree.

Some functions are defined to make it easy to use access tree:

(D The parent of the node X in the access tree is defined as
parent(x) ;

(2 When X is a leaf node, the attribute associated with x is defined
as att(x);

3 In an access tree, the children of each node are ordering from 1 to
number _ X;

@ The function index(X) returns a number which is associated with

the node, and the index values are assigned with nodes in the access
tree uniquely for a given key in a random manner.

Satisfying an Access Tree T [3]

T is defined as an access tree with root r, and the subtree of T rooted at
the node X is defined as T,,thus T issameas T, . If the access tree T,

is satisfied with a set of attributes y, then it is defined as T,(y)=1.1f X is
an internal node, evaluate T,(y) for all children X' of node X. If and only
of at least k, children return 1, then T (y)=1.If X is a leaf node, then
T,(»)=1 ifandonlyif att(x)ey.

Lagrange polynomials [18]

Lagrange polynomials are used for polynomial interpolation. For a given a set
of k points (Xy, Yo)iees (X1 ¥j)iees (Xc» Yi) » where no two X; values are

equal, the Lagrange polynomial is the polynomial of lowest degree that
assumes at each value X; the corresponding value Y;. The interpolating

polynomial of the least degree is unique. An n degree polynomial in the
Lagrange form is a linear combination:

26

X—XJ-
)Y
X

P(x) = Zin:o (Hosjsn,j¢i

X, —

According to the definition, define the Lagrange coefficient A;; for ieZ,

andaset S ofelementsin Z :

X—]
Ais(X) = Hjes,jiiﬁ

Polynomial interpolation is the method to construct the Lagrange polynomial.
The polynomial P(x) is called Lagrange interpolation polynomial. Suppose
that the polynomial P(X) isin the form as below:

P(x)=a,x"+a, X" +---+a,x’ +a,Xx+a,

Polynomial interpolation

Polynomial interpolation is to find a polynomial p of lowest possible degree
with the property P(x,) =Yy, forall i€{0]1,...,n}.

4.2 Algorithm Description

This RSA-based Access-Tree CP-ABE cryptosystem is constructed with
no-pairing RSA, and works on a group Z, and it’s subgroup written in
multiplication notation as Z, or (Z/nZ)", which is of congruence classes
of integers modulo N where N = p-q. The generation of key pair is based

on the integer decomposition. This encryption scheme is also designed to be
built on discrete logarithm problem.

27

YE S—-} pick d =7}

gcd(e phi_n)=1

- pick e

A
YES

Choose g MSK={phi_n kd}

from -+
3 1o N-2 MPK={N R e}

v NOo NO ¢
i > pick k J v

Figure 8. Setup algorithm

Powered by WFS flowMap

During this step, two primes p and (are chose via RSA algorithm. By

multiplying these two primes, the value of N can be know. According to the
value of N, @(N) can be computed as @(N)=(p-1)(g—1). Then choose

system private key k such that gcd(k,o(N)) =1 and RSA public exponent
e, such that gcd(e,@(N))=1. Thus, d, can be computed by satisfying
e,d, =1(mod @(N)) corresponding to each attribute A €A Vi=12..,n.
Last, choose a random integer g such that gcd(g,N)=1 and
g e{3,4,...,N—2}, then compute the public parameter Rzgk. Then gain
the master secret key MSK and master public key MPK respectively as:

MSK = {p(N),k,d,,...,d, }
MPK ={N,R,e,,..&,}
1) Choose:
a. Two RSA primes p and q(p=(q),thencompute N=p-q
b. A system private key k suchthat gcd(k,@(N))=1

c. The RSA public exponent €; with gcd(e;, o(N)) =1,
then compute d, such that ed, =1(mod ¢(N))
with each attribute A € A, Vi=12,..,n.

28

d. Arandom integer g suchthat gcd(g,N)=1,2<g<N-1,
then compute the public parameter R = gk .

2) Generate:

a. Master secret key MSK, MSK ={p(N),k,d,.,...,d, }.
b. Master public key MPK, MPK ={N,R,e,,....€,}.

@(ey Generate

Start
input S

Y

Compute
H(att(x)) for
each attributes
x belongs to S

Y

End
output SK

Figure 9. Key generation algorithm
During this algorithm, it output a secret key which identifies with a set of
attributes S by computing H(att(x)) for each attribute xeS. Thus, this
secret key can be assigned as:
SK = {k, = H(att(x))/d;,x € S,i = {order(x)}}

1) Input a set of attributes S

2) Compute H(att(x)) for each attribute xeS

3) Output a key SK which identifies with the set of attributes S

SK = {k = H(attr(x))/d;, x e S,i = {order (x)}}

29

(3Encryption

Build the access
tree structure
Set q}i[[):lzs
Y:g kn

encrypt message End
under that tree |——————m={ output the
E=MR"==MY= ciphertext

Powered by WPS flowMap

Figure 10. Encryption algorithm

This encryption algorithm uses the AES key to encrypt a message M under
the access tree T . At the beginning, the encryption algorithm generates an
access tree by choosing a Lagrange polynomial q, for each non leaf node X

in this access tree T, and choosing Y as the set of leaves in T . Then the
algorithm chooses heZ, and Y, can be known by computing Y,, = gkh.

These polynomials are chosen in a top down manner starting from the root
node R.Foreachnode X inthe accesstree T, the threshold value k, of

the polynomial @, is set to be one more than the degree d, of that node,
which is expressed as d, =k, —1. For the root node R, the algorithm
chooses a random seZ, and sets (z(0)=s. In order to define it
completely, this algorithm randomly chooses other points d, of the
polynomial (. For any other node X, it sets 0, (0)= 0 ,enyy (INdeX(X))
and randomly chooses other points d, to completely fix g, . After ensuring

the access structure, then the cipher-text CT is computed by giving the
access tree T as follows:

1) Choose a random seZ,, and set ;(0)=Ss, construct a polynomial
q, for each non-leaf node X in the tree T. Let Y be the set of
leavesin T.

2) Choose a random h e Z,, and compute:
Y =¢g",CT:E=MR"™=MY_

VxeY :E, = H(att(x))-q,(0)-€, where i={order(x):xeY}

30

3) Output the cipher-text:
CT = {T’ E’Ym’{Ex}VXeY}

(4 Decryption

YEs—b—l A=DecryptNode(CT,SKR)=s
Nf NO

End
NO stop decryption

YES

End
A=Fz=s | E/Y A=M |——m=| output the
Message

Fowered by WPS flowMap

Figure 11. Decryption algorithm

If a set S of attributes satisfies the access tree T, then the decryption
algorithm calls the function on the root node R of the access structure. This
decryption algorithm specifies the decryption procedure as a recursive
algorithm. The simple form of the decryption algorithm is presented below:

First define a function named DecryptNode(CT,SK,Xx) which is a recursive

algorithm and takes a cipher-text CT, a private key SK and a node X in
access tree T as input. The ciphertext CT is defined as
CT ={T,E.Y,,.{E,}... }- The private key SK is associated with the set S

of attributes.
1) Input a cipher-text CT = {T, E,Y,.{E, }VXey}
2) When X is a leaf node:

If ieS, i={order(x)}, then

DecryptNode(CT, SK, x) = H (aHtt((;[)t)(X?)X/(dO)e. =0,(0)

If 1¢S5, then

31
DecryptNode(CT, SK, x) =L

3) When x is an non-leaf node, define the function
DecryptNode(CT, SK, z) . It means for all nodes z that are children of node

x calls that function and stores the output as F,.Let S, beanrandom K,
size set of child nodes z such that F, #L. If no such set exists then the
node was not satisfied and the function returns L, else:

F,=>...0,00-A,, (0), where i=index(z), s, ={index(z):zes,|
= Z zes, qparent(z) (indeX(Z)) : Ai,sZ (O)
= Z zes, q, (I) : Ai,sZ (0)

=0,(0)

The last equation F, is obtained by summing the polynomial interpolation.
Therefore, Lagrange polynomial interpolation can be computed by doing
multiplication in Z, for each node xe€S, instead of exponentiating at
each level.

Then the function DecryptNode is defined, and the decode algorithm can
be implemented by calling DecryptNode function on the root node R of
access tree T .Ifaset S of attributes satisfies the access tree T, then set
A= DecryptNode(CT,SK,R) =s. Now the decryption algorithm decodes
message by computing:

E/YmA:E/gkhS:M

4.3 Security

This RSA-based Access-Tree CP-ABE scheme is proven to be secure under
integer factorization and computational Diffie-Hellman(CDH) assumption.
Integer factorization, also named as prime factorization, usually used in
public-key encryption systems to keep the system secure. To use this function,
a very large number is created by multiplying two prime numbers. This large
number is used to secure the encryption system. It is easy to create the
multiplication but not easy to find the prime factorization of the large number.
This trap door function is used in many security systems. The computational
Diffie-Hellman assumption is a computational hardness assumption about the

32

Diffie-Hellman problem which is a mathematical problem in cryptography.
Similar to integer factorization, it uses mathematical operations that are easy
to compute but difficult to reverse. Systems can be easily broken when it is
easy to solve the Diffie-Hellman problem. As long as at least one of those two
problems is hard to solve, the encryption system with very large size keys will
be secure.

33

Chapter 5 Implementation

This chapter presents the implementation details of the RSA-based CP-ABE
scheme. This includes the detailed implementation strategies for the four
main algorithms of the RSA-based CP-ABE scheme performance evaluation
and lessons learnt.

5.1 Overview

In the beginning, this chapter shows how to implement the RSA-based
Access-Tree CP-ABE scheme into Android Studio, including the preparation
and Android compilation environment. To fully compile the RSA-based
Access-Tree CP-ABE to Android needs supports such as NDK-r9a, Android SDK
and so on. Then the android.mk is required for compilation and required
modification of the existing code, and connecting it to the JNI interface.
Finally, compile of the RSA-based Access-Tree CP-ABE code along with
dependent libraries is required to make it into the dynamic link library. The
dynamic link library is now ready to be called by the Android system.

The four important algorithms that are mentioned before, such as set up, key
generation, encryption and decryption, needs to be implemented. So next, it
describes how those four algoriithms are implemented and run in Android
Studio. These algorithms are called by the main application program (named
as mainActivity).

Once it finishes the coding part of this project, then it needs to be imported
into an Android cell phone. This chapter also demonstrates how to install and
run this encryption application on the hardware device, and presents how to
use the functions in this application.

5.2 Preparation for CP-ABE

Implementing the RSA-based Access-Tree CP-ABE algorithm on the Android
platform had a number of issues. The first issue is that this scheme is a
program written in C language while it is required to be implemented on an
Android platform. By using this external functional interface programming
framework, Java code running in a Java virtual machine (VM) is able to call
the native libraries that are written in other languages. Thus, this CP-ABE
scheme written in C language can be used in the Android Studio after making
it as a library. Then it can be called by any class through the defined name of

34

the native method.

To make this CP-ABE construction work, it needs the support of libraries such
as PBC, GMP, M4, bison, flex, libbswabe and so on. It is important step to
prepare the libraries for running the CP-ABE scheme. In addition, there are
some tools in Android Studio that also need to make the algorithm work such
as Android SDK. Here is the list below.

Download:
* M4, bison, flex (support GMP)
* GMP (supports PBC)
* PBC (supports CP-ABE)
* libbswabe (supports CP-ABE)
* openssl, glib (support CP-ABE)

* NDK-r9a (allows C/C ++ code to be compiled into native code)

5.2.1 Setup Environment

It is an important step to build up the environment for the RSA-based
Access-Tree CP-ABE scheme. Before using it, making sure the libraries are
ready to use. First of all, a several libraries need to be installed to make sure
the RSA-based Access-Tree CP-ABE algorithm can be run successfully. For
example, the RSA-based Access-Tree CP-ABE crypto-system needs the PBC
library while PBC requires GMP, and GMP is supported by other three
libraries which are named M4, bison and flex respectively. After preparing
those essential libraries, then the RSA-based Access-Tree CP-ABE scheme can
be installed and run under this environment.

35

M4, Bison and Flex'

useri@workerz: ~

File Edit View Search Terminal Help

useril@worker2:~% sudo apt-get install m4

Reading package lists... Done

Building dependency tree

Reading state information... Done

m4 is already the newest version (1.4.18-1).

0 upgraded, ® newly installed, ©® to remove and 8 not upgraded.
useril@worker2:~$ sudo apt-get install flex

Reading package lists... Done

Building dependency tree

Reading state information... Done

flex is already the newest version (2.6.4-6).

0 upgraded, ® newly installed, ©® to remove and 8 not upgraded.
useril@worker2:~$ sudo apt-get install bison

Reading package lists... Done

Building dependency tree

Reading state information... Done

bison is already the newest wversion (2:3.0.4.dfsg-1buildl).

0 upgraded, 0 newly installed, ©® to remove and 8 not upgraded.
userl@worker2:~$ I

Figure 12. Install M4, bison and flex

M4 is an implementation of the traditional Unix macro processor [21].
Although it has some extensions, it is primarily compatible with SVR4. M4
also has built-in functions for performing integer operations, manipulating
text in various ways, recursion, running UNIX commands, including named
files, etc. Bison is an alternative to yacc, and it is a parser generator that
generates a program to analyze the structure of text files [22]. Flex is an
automatic lexical analyzer that is often used with Bison to mark input data
and provide tokens for Bison [22]. Figure 12 shows how to install m4, flex and
bison. First of all, using command “sudo apt-get install” to install M4, bison
and flex in terminal, and these three libraries are installed successfully. Then
the environment is ready for the GMP library.

GMP?

GMP stands for GNU Multiple Precision which is a portable library written in
C for arbitrary precision arithmetic on integers, rational numbers, and
floating-point numbers [25]. The goal of GMP is to provide the fastest
algorithms possible for all applications that require more precision than the
basic C type directly supports. When operands are larger than the kernel,
Maple uses the GMP library for integer operations. The GMP library is useful
for fast multiple precision operations. The speed of GMP is achieved by using
full words as a basic arithmetic type and complex algorithm, and including

1 Download website: http://ftp.gnu.org/gnu/m4/; http://ftp.gnu.org/gnu/bison/;
http://ftp.gnu.org/gnu/flex/
2 Download website: https://gmplib.org/

http://ftp.gnu.org/gnu/m4/;
http://ftp.gnu.org/gnu/bison/;
http://ftp.gnu.org/gnu/flex/
https://gmplib.org/

36

assembly code optimized for the most common internal loops of many
different CPUs. Maple is much faster when using the GMP library for long
integer operations. The setup of GMP requires three steps which respectively
are configure, make and install, and these three steps are listed below.

userl@worker2: ~/Desktop/libs/gmp-6.1.2

File Edit View Search Terminal Help

config.status: linking mpn/x86_ 64/core2/sublshl_n.asm to mpn/sublshi_n.asm
config.status: linking x86_64/coreisbr/aorrlshi_n.asm to mpn/rsblshi_n. 3
config.status: linking x8 4/coreisbr/rshlaors_n.asm to mpn/rshiladd n. 3
config.status: linking x86_64/coreisbr/rshlaors_n.asm to mpn/rshisub_n. 3
config.status: linking x86_64/coreisbr/aorrlsh2_n.asm to mpn/addlsh2_n. g
config.status: linking X86_64/core2/sublsh2_n.asm to mpn/sublsh2_n.asm
config.status: linking x8 4/coreisbrfaorrlsh2_n.asm to mpn/rsblsh2_n. 3
config.status: linking X8 4/coreisbr/aorrlsh_n.asm to mpn/addlsh_n.asm
config.status: linking x86_64/coreisbr/aorrlsh_n.asm to mpn/rsblsh_n.asm
config.status: linking eneric/add_n_sub_n.c to mpnfadd _n_sub_n.c
config.status: linking x86_64/addaddmul_1msb®.asm to mpn/addaddmul_1msbe
config.status: linking mpn/x86_64/coreibwl/gmp-mparam.h to gmp-mparam.h
config.status: executing libtool commands

configure: summary of build options:

Version: GNU MP 6.1.2

Host type: broadwell-pc-1linux-gnu
ABI: 64

Install prefix: Jusr/local

Compiler: gcc

Static libraries: yes

Shared libraries: yes

Figure 13. Configure the GMP library

The first step of the setup GMP library is a configuration. The GMP library
needs to be configured by executing “./configure” in the terminal, and the
result is shown in Figure 13. Configure is a script that is usually supplied with
the source code. It contains the code that patches and localizes the source
distribution in order to compile and load on the system. In other words,
configure is responsible for preparing the preparatory work of building the
software on the system.

37

useri@worker2: ~/Desktop/libs/gmp-6.1.2

File Edit View Search Terminal Help
r.o mpn/sec_pil_div_qgr.o mpn/sec_pil_div_r.o mpn/sec_add_1.0 mpn/sec_sub_1.o0 mpn
/sec_invert.o mpn/trialdiv.o .libs/libgmp.lax/1lt165-remove.o mpn/and_n.o mpn/and
n_n.o mpn/nand_n.o mpn/ior_n.o mpn/iorn_n.o mpn/nier_n.o mpn/xor_n.o mpn/xnor_n.
o mpn/copyi.o mpn/copyd.o mpn/zero.o mpn/sec_tabselect.o mpn/comb_tables.o mpn/i
nvert_limb.o mpn/sqr_diag_addlshl.o0 mpn/mul_2.o0 mpn/addmul_2.o0 mpn/addlshl_n.o m
pn/sublshl_n.o mpn/rsblshl_n.o mpn/rshladd_n.o mpn/rshilsub_n.o mpn/addlshZ_n.o m
pn/sublsh2_n.o mpn/rsblsh2_n.o mpn/addlsh_n.o mpn/rsblsh_n.o mpnfadd_n_sub_n.o m
pn/addaddmul_1imsb@.o printf/asprintf.o printf/asprntffuns.o printf/doprnt.o prin
tf/doprntf.o printf/doprnti.o printf/fprintf.o printf/obprintf.o printf/obvprint
f.o printf/obprntffuns.o printf/printf.o printf/printffuns.o printf/snprintf.o p
rintf/snprntffuns.o printf/sprintf.o printf/sprintffuns.o printf/vasprintf.o pri
ntf/vfprintf.o printf/vprintf.o printf/vsnprintf.o printf/vsprintf.o printf/repl
-vsnprintf.o scanf/doscan.o scanf/fscanf.o scanf/fscanffuns.o scanf/scanf.o scan
f/sscanf.o scanf/sscanffuns.o scanf/vfscanf.o scanf/vscanf.o scanf/vsscanf.o ran
d/rand.o rand/randclr.o rand/randdef.o rand/randiset.o rand/randlc2s.o rand/rand
lc2x.0 randfrandmt.o rand/randmts.o rand/rands.o rand/randsd.o rand/randsdui.o r
and/randbui.o rand/randmui.o

: link: ranlib .libs/libgmp.a

: link: rm -fr .libs/libgmp.lax

: link: (cd ".libs" && rm -f "libgmp.la" && 1n -s "../libgmp.1la" "1libgmp

: Leaving directory '/home/useri/Desktop/libs/gmp-6.1.2"
: Leaving directory '/home/useri/Desktop/libs/gmp-6.1.2"
sk 1ib mp-6.1.2%

Figure 14. Build the GMP library

After configuring the GMP library, “make” can be invoked to build the
RSA-based Access-Tree CP-ABE scheme. In Figure 14, it shows the second step
of the setup the GMP library that is using “sudo make” command in the
terminal to build the library. The make utility is designed to automatically
build the finished program from its source code according to a series of tasks
defined in a “Makefile”.

user1@worker2: ~/Desktop/libs/gmp-6.1.2
File Edit View Search Terminal Help

r -p 'fusrflocal/include'
Jusr/binfinstall -c -m 644 gmp.h 'fusrflocal/include’
make 1install-data-hook
make[4]: Entering directory '/home/useril/Desktop/libs/gmp-6.1.

CAUTION:

I1f you have not already run "make check", then we strongly
recommend you do so.

GMP has been carefully tested by its authors, but compilers
are all too often released with serious bugs. GMP tends to
explore interesting corners in compilers and has hit bugs
on quite a few occasions.

: Leaving directory '/home/userl/Desktop/libs/gmp-6.
: Leaving directory '/home/userl/Desktop/libs/gmp-6.1.
: Leaving directory '/home/useri/Desktop/libs/gmp-6.1.
1/Desktop/libs/gmp-6.1.
gmp-6.1.25

Figure 15. Install the GMP library

In Figure 15 shows the last step of the setup the GMP library in the local
system that is using “sudo make install” command in the terminal to install

38

the GMP library. The make install command copies the built program,
including it’s libraries and documentation, to the right locations.

PBC3

After installing GMP, the next step is to install the PBC library (Pairing-Based
Cryptography). The PBC library is a GMP-based free C library that performs
the mathematical operations underlying pairing-based crypto-system [26]. It
is designed to be the core of implementations of pairing-based crypto-system.
Therefore, speed and portability are significant goals. For example, some
routines such as elliptic curve generation, elliptic curve arithmetic and pairing
computation are provided by the PBC library. The pairings times are
reasonable due to the GMP library without being written in C. In addition, the
PBC library can also be used to build conventional crypto-system. The process
of setup the PBC library is similar to GMP library. First of all, download this
library and extract it, this is presented in Figure 16.

useri@worker2: ~/Desktop/libs
File Edit View Se
useri@worker2:
pbc-0.5.14/
pbc-0.5.14/announce
pbc-0.5.14/Makefile.am
pbc-0.5.14/quru/
pbc-0.5.14/gurufquadratic_test.c
pbc-0.5.14/quruf19.c
pbc-0.5.14/quru/fsing.c
pbc-0.5.14/guru/fp_test.c
pbc-0.5

poocoocoeoocC

.14/guru/ternary_extension_field_test.c

Figure 16. Extract compressed file

In Figure 16, it shows the process of extracting the compressed PBC library
from the terminal.

3 Download website: https://crypto.stanford.edu/pbc/download.html

https://crypto.stanford.edu/pbc/download.html

39

useri@worker2: ~/Desktop/libs/pbc-0.5.14

File Edit View Search Terminal Help
.status: creating config.h
.status: ecuting depfiles commands
.status: executing libtool commands

build variables

Thu Apr 25 ©1:51:55 EDT 2019
host info: x86_64-unknown-linux-gnu
optimized build: no

-Wall -W -Wfloat-equal -Wpointer-arith -Wcast-align -Wstrict-
prototypes -Wredundant-decls -Wendif-labels -Wshadow -pipe -ffast-math -U__STRIC
SI__ -std=gnu99 -fomit-frame-pointer -03
flex

bison -y

Figure 17. Configure the PBC library

In Figure 17, it shows the results after running command “./configure”, and
the PBC library is configured successfully.

user1@worker2: ~/Desktop/libs/pbc-0.5.14

File Edit View Search Terminal Help

/bin/bash ../libtool --tag=CC --mode=1link gcc -Wall -W -Wfloat-equal -Wpointe

r-arith -Wcast-align -Wstrict-prototypes -Wredundant-decls -Wendif-labels -Wshad

ow -pipe -ffast-math -U__STRICT_ANSI__ -std=gnu99 -fomit-frame-pointer -03 -0

listmnt listmnt.o ../libpbc.la -lgmp

libtool: link: gcc -Wall -W -Wfloat-equal -Wpointer-arith -Wcast-align -Wstrict-

prototypes -Wredundant-decls -Wendif-labels -Wshadow -pipe -ffast-math -U__STRIC

T_ANSI__ -std=gnu99 -fomit-frame-pointer -03 -o .libs/listmnt listmnt.o ../.lib

s/libpbc.so -lgmp

gcc -DHAVE_CONFIG_H -I. -I.. -I../include -Wall -W -Wfloat-equal -Wpointer-ar

ith -Wcast-align -Wstrict-prototypes -Wredundant-decls -Wendif-labels -Wshadow -

pipe -ffast-math -U__STRICT_ANSI -std=gnu99 -fomit-frame-pointer -03 -MT listf

reeman.o -MD -MP -MF .deps/listfreeman.Tpo -c -o listfreeman.o listfreeman.c

mv -f .deps/listfreeman.Tpo .deps/listfreeman.Po

/bin/bash ../libtool --tag=CC --mode=1link gcc -Wall -W -Wfloat-equal -Wpointe

r-arith -Wcast-align -Wstrict-prototypes -Wredundant-decls -Wendif-labels -Wshad

ow -pipe -ffast-math -U__STRICT_ANSI__ -std=gnu99 -fomit-frame-pointer -03 -0

listfreeman listfreeman.o ../libpbc.la -lgmp

libtool: link: gcc -Wall -W -Wfloat-equal -Wpointer-arith -Wcast-align -Wstrict-

prototypes -Wredundant-decls -Wendif-labels -Wshadow -pipe -ffast-math -U__STRIC

T_ANSI__ -std=gnu99 -fomit-frame-pointer -03 -o .libs/listfreeman listfreeman.o
..J/.libs/1libpbc.so -1lgmp

make[2]: Leaving directory '/home/user1/Desktop/libs/pbc-8.5.14/gen’

make[1]: Leaving directory '/home/useri/Desktop/libs/pbc-0.5.14"

Figure 18. Build the PBC library

Figure 18 presents the process of building this library.

40

useri@worker2: ~/Desktop/libs/pbc-0.5.14

File Edit View Search Terminal Help
/pbc_curve.h include/pbc_d_param.h include/pbc_e_param.h include/pbc_field.h inc
lude/pbc_multiz.h include/pbc_z.h include/pbc_fieldquadratic.h include/pbc_f par
am.h include/pbc_g_param.h include/pbc_1i_param.h include/pbc_fp.h include/pbc_te
rnary_extension_field.h include/pbc.h include/pbc_hilbert.h include/pbc_memory.h
include/pbc_mnt.h include/pbc_pairing.h include/pbc_param.h include/pbc_poly.h
include/pbc_random.h include/pbc_singular.h include/pbc_test.h include/pbc_utils
.h "fusrflocal/include/pbc’

: Leaving directory '/home/useri1/Desktop/libs/pbc-0.5.14"

: Leaving directory '/home/useri/Desktop/libs/pbc-0.5.14"
Making install in example

: Entering directory '/home/useri/Desktop/libs/pbc-08.5.14/example’

: Entering directory '/home/user1/Desktop/libs/pbc-8.5.14/example’

: Nothing to be done for 'install-exec-am'.

: Nothing to be done for 'install-data-am'.

: Leaving directory '/home/fuseri1/Desktop/libs/pbc-0.5.14/example’

: Leaving directory '/home/useri/Desktop/libs/pbc-0.5.14/example’
Making install in gen

: Entering directory '/home/useri/Desktop/libs/pbc-0.5.14/gen’

: Entering directory '/home/userl/Desktop/libs/pbc-0.5.14/gen’

: Nothing to be done for 'install-exec-am'.

: Nothing to be done for 'install-data-am'.

: Leaving directory '/home/userl/Desktop/libs/pbc-8.5.14/gen’

: Leaving directory '/home/useri/Desktop/libs/pbc-0.5.14/gen’

Figure 19. Install the PBC library

The result of installing this library is shown in Figure 19. At this point, the PBC
environment configuration is completed.

A test for whether the setup environment is built successfully is followed.
First, there are some cases in PBC-0.5.14 - example directory, then copy a “.c”
file and customize the name “foo.c”. Then change the contents into the
content of Figure 20 below:

#include "pbc.h"
int main(void)

printf("this is a test\n");
return 0|

¥
Figure 20. Test code

Compile the file “foo” by using command which is contained in Figure 21
below:

userl@worker2:~ sktop/ P ple$ gcc -o foo foo.c -I ~/Desktop/l
ibs/pbc-0.5.14/include -L ~ 0.5.14/pbc -Wl,-R ~/Desktop/libs/pb
c-0.5.14/pbc -1 pbc

useri@worker2:~/Desktop/libs/pbc-0.5.14/example$. /foo
this is a test

Figure 21. Compile file “foo” and run

When it is compiled successfully, run the file “foo” by using command “./foo”
which is shown in Figure 21 as well. Then it shows the result “this is a test”,

41

and this means that the PBC environment configuration succeeded.

Libbswabe*

Libbswabe is a library that implements the core crypto operations. To install
the Libbswabe library, there need three steps: configure, build and install,
which are totally same as GMP library. Those steps are shown below:

useri@worker2: ~/Desktop/libs/libbswabe-0.9

File Edit View Search Terminal Help
seril@worker2 .fconfigure
ecki whether to enable bugging... no
for gcc... gcc
whether the C compiler works... yes
for C compiler default output file name... a.out
for suffix of executables...
whether we are cross compiling... no
for suffix of object files... o
whether we are using the GNU C compiler... yes
whether gcc accepts -g... yes
for gcc option to accept ISO C89... none needed
for an ANSI C-conforming const... yes
how to run the C preprocessor... gcc -E
for grep that handles long lines and -e... /bin/grep
for egrep... /binfgrep -E
for ANSI C header files... yes
D E [=

Figure 22. Configure the Libbswabe library

Figure 22 shows the result after executing the command ““./configure”.

useri@worker2: ~/Desktop/libs/libbswabe-0.9
File Edit View Search Terminal Help
useri@workerz:~/ f f sudo make
gcc -c -0 core.o core.c -03 -Wall -I/usr/include/glib-2.8 -Ifusr/1lib/x86_64-1inu
x-gnufglib-2.8/include -Ifusr/include/pbc -I/usr/local/include/pbc -DPACKAGE_NAM
E=\"libbswabe\" -DPACKAGE TARNAME=\"libbswabe\" -DPACKAGE_VERSION=\"8.9\" -DPACK
AGE_STRING=\"libbswabel ©.9\" -DPACKAGE_BUGREPORT=\"bethenco@cs.b ley.edul\" -
DPACKAGE_URL=\"\" -DSTDC_HEADERS=1 -DHAVE_SYS_TYPES H=1 -DHAVE_SYS_STAT H=1 -DHA
E_STDLIB_H=1 -DHAVE_STRING_H=1 -DHAVE_MEMORY_ DHAVE_STRING HAVE_INTT
DINT_H=1
-DHAVE_ALL
RDUP=1 -DHA
E_GMP=1 -DHAVE_PBC=1
gcc -c -0 misc.o misc.c -03 -Wall -I/usr/include/glib-2.® -Ifusr/1lib/x86_64-1inu
x-gnu/fglib-2.8/include -Ifusr/include/pbc -I/usr/local/include/pbc -DPACKAGE_NAM

AGE_STRING=\"libbswabe\ ©.9\" -DPACKAGE BUGREPORT=\"bethenco@cs.b

DPACKAGE_URL=\"\" -DSTDC_HEADERS=1 -DHAVE_SYS_TYPES H=1 -DHAVE_S5\ |
E_STDLIB_H=1 -DHAVE_STRING_H=1 -DHAVE_MEMORY_| -DHAVE_STRINGS_H=1 -DHAVE_INTT

YPES_H=1 -DHAVE_STDINT_H=1 -DHAVE_UNISTD H=1 -DSTDC_HEADERS=1 -DHAVE_STDINT_H=1
-DHAVE_STDLIB_H=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MALLOC=1 -DHAVE_ALL

OCA_H=1 -DHAVE_ALLOCA=1 -DHAVE_VPRINTF=1 -DHAVE_LIBCRYPTO=1 -DHAVE_STRDUP=1 -DHA
E_GMP=1 -DHAVE_PBC=1

rm -f libbswabe.a

ar rc libbswabe.a core.o misc.o

Figure 23. Build the Libbswabe library

Then run command “sudo make” to build the Libbswabe library, and the
result of this step is shown in Figure 23.

4 Download website: http://www.verysource.com/code/23755648 1/bswabe.h.html

http://www.verysource.com/code/23755648_1/bswabe.h.html

42

useril@worker2:~/Desktop/libs/1libbswabe-0.95 sudo make install
./mkinstalldirs -m 755 ,fusrﬂocal,fllb
./mkinstalldirs -m 755 Jfusr/local/include

.finstall-sh -m 755 libbswabe.a fusr/flocal/lib
.finstall-sh -m 644 bswabe.h }usrﬂocaljinclde

Figure 24. Libbswabe sudo make install

The last step which is shown in Figure 24 is to install the Libbswabe library by
executing the command “sudo make install”. Then the Libbswabe library is
ready to be used.

Openssl and Glib®

Before installing CP-ABE, the libraries openssl and glib are required. OpenSSL
is a robust, commercial, and fully functional toolkit for transport layer
security (TLS) and secure sockets layer (SSL) protocols [27]. It is also a
universal cryptography library. Glib is a bundle of three low-level system
libraries. It provides advanced data structures, such as memory chunks, and
implements functions that provide threads, thread programming and related
facilities [28]. Glib also includes message passing facilities such as byte order
conversion.

useril@worker2:~/Des p/libsS sudo apt-get install libssl-dev
Reading package 1is Done

Building dependency tree

Reading state information... Done

libssl-dev is already the newest version (1.1.0g-2ubuntu4.3).
0 upgraded, @ newly installed, ® to remove and 8 not upgraded.

useri@worker2:~/ p/1ibsS sudo apt-get install libglibz.e-dev
Reading package 11 ... Done

Building dependency tree

Reading state information... Done

libglib2.8-dev is already the newest version (2.56.3-Oubuntu®.18.64.1).
® upgraded, ® newly installed, ® to remove and 8 not upgraded.
useri@worker2:~/Desktop/libs5s

Figure 25. Install openssl and glib

Figure 25 shows how to install both libraries openssl and glib by using
command “sudo apt-get install”.

RSA-based CP-ABE

After preparing all libraries, the preparation of the RSA-based Access-Tree
CP-ABE scheme is ready, now the setup of this scheme runs. It can be done by
executing “sudo make” as the following figure.

5 Download website: https://openssl.en.softonic.com/; https://sourceforge.net/projects/glib/

https://openssl.en.softonic.com/;
https://sourceforge.net/projects/glib/

43

useri@worker2: ~/Desktop/libs/cpabe

File Edit View Search Terminal Help
dec.c:362:19: ing: unused variable ‘attrbit’ [-Wu
bit, ai_bi;
dec.c:362:16: w i unused variable ‘i’ [-Wunus
int file_len, i, attrbit, ai_bi;

int file_len,

: variable ‘pub’ set but not used [-Wunu

treecpabe_pub_t *p

In file included from dec.c:5:0:
.h: In function ‘_suck_file’:
ignoring return value of ‘fread’, declared with attr

1t]

ning: ‘squeeze’ defined but not used [-Wunu
static void (char s[], int c)

gcc -0 dec dec.o common.o -03 -Wall -lglib-2.0 -Lfusr/local/lib -1lbswabe -lgmp -
lcrypto -lpbc

Figure 26. Build CP-ABE

Figure 26 shows the result after building the RSA-based Access-Tree CP-ABE
scheme. In order to test whether this algorithm can work or not under the
environment, run the command “cpabe-setup -h” in the terminal.

JAR be$ cpabe-setup -h
ION ...]

Generate system parameters, a public key, and a master secret key
for use with cpabe-keygen, cpabe-enc, and cpabe-dec.

Output will be written to the files "pub_key" and "master key"

unless the --output-public-key or --output-master-key options are

used.

Mandatory arguments to long options are mandatory for short options too.

-h, --help print this message

-v, --version print version information

-p, --output-public-key FILE write public key to FILE

--output-master-key FILE write master secret key to FILE

--deterministic use deterministic "random"” numbers
(only for debugging)

Figure 27. Test CP-ABE scheme

Figure 27 shows the process of setup algorithm in this RSA-based Access-Tree
CP-ABE scheme. It not only presents the inputs and outputs during this
algorithm, but some toolkit functions as well. This means that the CP-ABE
algorithm is running well, and the environment is built successfully.

44

Android NDK

The Android NDK is a set of tools that allows developers to get the most
performance out of devices [29]. For example, NDK enables developers to call
functions in C/C++ code in Android system, and it offers platform libraries for
users to manage native activities and access physical device components,
such as sensors and touch input [30].

The core of the Android NDK is the ndk-build script, and it is responsible for:

» Automatically browsing the project.

* Determining what to build.

» Generating binaries.

* Copying generated binaries on to an apps project path.
The NDK also is responsible for linking native shared libraries (.so) against
other libraries. The native shared libraries are built from the native source
code and Native static libraries (.a). By using these generated .so files, the
Application Binary Interface (ABI) is able to understand both when to run the
application and how the application machine code works with the system.
ARMABI, MIPS, and x86 are supported by NDK in default. Java Native
Interface (JNI) that connects between Java and C/C++ is introduced here.
Android.mk and Application.mk are the two primary files that used to build
the ndk-build script. Respectively, the Android.mk file needs to go in JNI
folder and defines:

* the module including it’s name.

* the build flags (which libraries link to).

» what source files need to be compiled.
As for the Application.mk file, it is the same as the Android.mk that they all
go in the jni directory. The difference is that it describes the native modules
required by the application.
To make the NDK work, download LLDB (a debugger that Android Studio uses

to debug native code) and NDK from the SDK manager. By providing a path to
the ndk-build script file, consequently, Gradle is linked to the native library

45

(.s0). Then Gradle imports source code into the Android Studio project and
package the native library (.so) into the APK by using the build script [30].

Android Studio

Build “com.example.cpabe.NativeCPABE”, then load libraries and define
native method. Put all the libraries generated above into the “libs/armeabi”
directory of the project. Now the environment is ready, and it can be called in
mainActivity.

It is found that three secret key files are generated under the SD card
directory, indicating that the library is loaded normally and the native code
also runs successfully.

The core of CP-ABE scheme is encrypting files, therefore, when clicking the
button, it writes the content in the original input box into
“/sdcard/to_enc.txt”, and then calls the enc method of the native layer to get
the encrypted file. After obtaining the encoded text, use binary to read it into
the second text box. Then click the “DECRYPT” button, and the dec function is
called to get the decoded file, at the same time, the content is read into the
third text box.

5.2.2 Java Native Interface (JNI)

Java Native Interface(JNI) provides a solution for the byte code that Android
compiles from managed code written in Java to interact with native code
written in C or C++ [20]. When an application is unable to be written entirely
in the Java programming language, the JNI allows the programmer to write
native methods to handle situations.

In the situation of this thesis where the RSA-based Access-Tree CP-ABE
written in C programming language can be used in Android Studio by
modifying it to be accessible to Java application. Based on JNI, many library
classes are able to provide functions in a safe and platform-independent
manner to the user. JNI allows a native method to use Java objects just the
same as how Java code uses those objects. Java objects can be created and
be used to perform tasks by a native method. Java application code also can
create objects, and those objects can be inspected and be used by a native
method as well. JNI only can be invoked by applications and signed applets.
JNI allows using dynamic shared libraries to load code, and this is an efficient
way.

46

- . - Array of pointers
INI interface pointer to TNT functione

¥_ . an interface

per-thread TNI Tointer 5

data structure Tointer an interface
\\ function
an interface
function

Figure 28. Interface pointer [20]

The Interface pointer is the basic of JNI function. Figure 20 presents that the
interface pointer is a pointer to an array of pointers. Inside this array, each
pointer points to an interface function which is predefined offset, JNI
namespace is separated from native code, it means that the virtual machine
(VM) is able to provide multiple versions of the JNI menu easily. That is the
superiority of using interface tables.

“System.loadLibrary” is the method that loads native methods [20]. For
example, in a class “NativeCPABE”, it defines the native method “setup”, and
the class initialization method also loads the platform-specific native library
“cpabe”. The code of this example is listed below:

package pkg;
public class NativeCPABE ({
static {
System.loadLibrary (“cpabe”) ;
}
public native double setup (
String pubFile,
String mskFile,

int parameters type);

As it can be seen in the above example, the library name is defined arbitrarily
when loading a library. Nevertheless, there is a standard for the system. It
helps the system to convert the library name to a native library name. With
the classes loaded in a same class loader, all the native methods called by any
number of classes can be stored in a single library. The list of loaded native
libraries for each class loader is maintained by the VM internally [20]. Thus, it
is better to use the native library names that avoid the name clashes. There is
one situation that the VM calls the “System.loadLibrary” with loading no
library. That is the dynamic linking is not supported by the underlying
operating system. To solve this problem, it should prelink all native methods

47
with the VM.

The dynamic linker parses an entry based on its name. The native method
name is composed of the following components:

* The prefix Java_.

* A mangled fully-qualified class name.

({321

* An underscore (“_”) separator.

* A mangled method name.

* Using two underscores (“__”) followed by the mangled argument
signature for overloaded native methods.

INI offers a rich set of accessor functions on global and local references which
means that the programmer can implement Java objects using the same
native methods regardless of how they are represented internally by the VM.
This is the significant reason why many VM implementations support JNI.
Using accessor functions through opaque references is more expensive than
accessing C data structures directly.

Native code is allowed to access the fields and to call the methods of Java
objects through JNI function. JNI function identifies methods and fields by
their symbolic names and type signatures. The two-step process removes the
cost of locating a field or method from the field name and signature.

5.3 App on Android Studio

(T 0overview

There are three main parts of this program: class “NativeCPABE”, class
“mainActivity”, and “activity_main.xml”. These three parts build up the main
body of this app. Because of the code of the RSA-based Access-Tree CP-ABE
algorithm is not written in Java, and it could not be used in Android Studio
directly, therefore, JNI is applied to this program to connect C and Java. Under
the “jniLibs\armeabi” path, the main native library cpabe and its supporting
libraries are stored. These libraries are already been compiled. Thus, the
native library cpabe is ready to be called.

48

(2)nterface Design Window

<EditText

CIPHER

DECRYPT

Design

1310)d%3 3|14

Figure 29. Interface design window

The interface of this app is shown in “activity_main.xml”, and the text boxes
and buttons are stipulated by the code on the left of Figure 29. Not only the
size, position and background, but also the ID of each text boxes and buttons
are defined. The ID is used in the “mainActivity” package to call a text box or
a button.

@mtive CP-ABE package

MainActivity.java NativeCPABE.java 2 activity_main.xml

Figure 30. Native CP-ABE

The Native CP-ABE package showed in Figure is used to load the CP-ABE
library and build up the four main functions of this algorithm: set up, key
generation, encryption and decryption.

49

(4 mainActivity

Figure 31. Main activity widow

In the mainActivity window, the main functions are combined together to
make the project working. In this class, the functions of three text boxes are
built, and link to the text boxes ID made in “activity_main.xml”, such as
encText, showEncText and showDecText. Two functions of two buttons are
defined respectively as well. The encryption button is connected with the
encryption algorithm in nativeCPABE, so that this “CHIPHER” button can call
the encrypt function when it is clicked. The decryption button is the same,
but to call the decrypt function.

@The code of build gradle application module

Figure 32. Build Gradle(Module: app)

In build.gradle, the library “libs” is connected by defining JNI connected it
with native JAVA code.

50

5.4 Implementation Algorithm

Before utilizing for the four main algorithms, there is some preparation to do.
First of all, JNI is required to connect Java and C language. These two
languages are connected by JNI in “build.grandle” where to set the path to
JNI, and it is presented in Figure 44. To define the path as “libs” by using the
code below:

sourceSets {
main {

jnilLibs.srcDirs = ['libs']

Then the RSA-based Access-Tree CP-ABE library is called by the system in the
NativeCPABE class by using “loadLibrary” function. In this class, it also defines
the native methods that need by the other class.

static {

System.loadLibrary ("cpabe") ;

In mainActivity, the paths that save the input file, the encryption file and the
decryption file are defined as below. This means the input text is stored in
“to_enc” file inside the sdcard, the encrypted text is stored in the file named
“to_enc.txt.cpabe”, and the decoded file is stored in the “to_enc.txt.doc” file.
In addition, in this part of code, it also defines the NativeCPABE as ¢ which is
used later.

String inputPath = "/sdcard/to enc.txt";
String encPath = "/sdcard/to_ enc.txt.cpabe";
String decPath = "/sdcard/to_enc.txt.dec";

NativeCPABE c;

The text boxes are built on the interface of this application, and these boxes
are also defined in mainActivity by finding the ID of each box from
activityMain window, and the Native CP-ABE function is called as well.

input = findViewById(R.id.encText) ;
enc = findViewById(R.id.showEncText) ;
dec = findvViewById(R.id.showDecText) ;
c = new NativeCPABE () ;

51

After finishing these steps above, the path of JNI libraries is defined, and the
CPABE scheme written in C is loaded in the system and is ready to be called.
Besides these, the three text boxes where to show the message, the
cipher-text and decoded message respectively are defined as well by
connecting the ID name in the interface design window. The preparation of
those four significant algorithms is done, then they can be used later simply
by using calling function.

5.4.1 Setup

@)efine native function setup in the NativeCPABE class:

public native double setup(
String pubFile,
String mskFile,

int parameters type);

In this setup process, it has three contents. Two of them are strings, these
strings respectively are “pubfile” which stores the public key and “mskfile”
which stores the master key. The other is an integer that presents the security
parameter. This native method defines the function name which is called by
the mainActivity class later.

This native method is defined in the NativeCPABE class where the native
library is loaded. This method is called by the mainActivity class to run the
setup function. To make the function work, this NativeCPABE class is used to
connect the native library named “cpabe” and the native method “setup”.
There is where JNI works. In other words, after loading the native library and
defining the method name, native code is allowed to access the fields and to
call the methods of Java objects through JNI function.

@)all setup function in mainActivity:

c.setup ("sdcard/pub.pub", "sdcard/mskey", K);

After connecting the native code with the native library, then the native
method can be called in the mainActivity class. In this calling function, the
setup algorithm contains the path of public key and master key which are
stored in "sdcard/pub.pub" and "sdcard/mskey" severally into a cell phone.
"K" is a kind of security parameter which usually is the length of key.

Let’s define the security parameter as k, and the performance of attacks is

52

1 . . .
set as 0(2_") . It is easy to see, the bigger the security parameter, the smaller

the chance for an attack. The size of k is usually defined at least 1024 bits. In
this RSA-based Access-Tree CP-ABE algorithm, it chooses a half value of k to
be the size of two prime numbers p and q which is 512 bits for each prime.
After multiplying these two numbers, the size of their product is 1024 bits
which is considered as the lowest key size for the security, and 2048 bits is
recommended.

When calling this function, the Android system calls the native function setup
from the native library “cpabe”. When running this method, according to the
CP-ABE construction written by Li, it generates the master secret key and
public key by using RSA algorithm as well as a series of mathematical
operations based on a chosen secret parameter which is 1024 in this situation.
Then, these outputs are stored into the phone memory according to the
specified path. Then calling the setup method is completed.

(3nlgorithm description:

This algorithm mainly based on the RSA key generation algorithm is
introduced bellow in details:

Algorithm 1 RSA Key Generation Algorithm

[

Procedure KEY GENERATION
Output: public key, private key
RSA keygeneration (pub_ key,priv_key)

2

3 Select a random prime number P with size N/2;
4 Select a random prime number ¢ with size N/2;
5: phi=(p-1)q-1);

6: modulus= Pq ;

7 Select a random € from 1 to phi;

8: if god(e, phi)=1 then

9: pub key=¢€;

10: Select a random d;

11: if d=e"(mod phi) then

12: priv_key::d;

13: return pub key,priv key;

Table 1. RSA pseudo-code [19]

The input of this setup process is security parameter and universal attribute
set. It takes null or document path of attribute universe as the input
argument vector. By using PBC library, randomly choose two numbers p and g
of k/2 bits length:

53

PBC mpz randomb (p, 512) ;
PBC mpz randomb (g, 512) ;

This step follows the first process of RSA key generation algorithm, and
creates two required prime numbers.

mpz nextprime (p,p);

mpz nextprime (q,q);

Set the previous p to the next prime greater than the following p, as well as g.

mpz mul (N,p,q);

By multiplying these two prime numbers p and q, the value of N can be
known as below, and N is 1024 bits length. This step follows the RSA key
generation algorithm to generate the modulu N.

mpz_sub_ui(p,p,1);
mpz_sub_ui(g,q,1);
mpz_mul (phi_n,p,q);

Set the new p as old p minus one, and compute phi_n as new p multiplies
new q which is respectively 1 less than before. This step computes the value
of phi_n which follows the process of RSA key generation algorithm.

mpz_ set (msk->phi n, phi n);

mpz_set (pub->N, N);

Set phi_n into master key, and set N into public key.

In order to compute R, g needs to be found as following steps:

do {
element random(g) ;
element to mpz (mpz g, g);
mpz_gcd(p, mpz g, N);

} while (mpz cmp d(p, 1));

Randomly pick an element g and convert it into multi-precision such as
mpz_g. Find the greatest common factor between mpz_g and N and set it as
p, if p is equal to 1, it means the g which is co-prime with N is found and stops
the loop.

Similar to the process above, select random x with gcd(x, phi_n)=1.

54

do {
PBC mpz random(msk->x, N);

mpz_gcd (g, msk->x, phi n);

}while (mpz cmp d(q, 1));

Find the greatest common factor between msk->x and phi_n and set it as q, if
gis equal to 1, it means x is co-prime with phi_n and stop the loop.

Compute R=gx=0":

element pow mpz (pub->gx, g, msk->x);

Set x into the master key and R into the public key;

Parse attributes stored in the string buffer as follows;

int parse attribute list(char * attrs str) {
squeeze (attrs str, '\n');
if ((substr = strtok(attrs_ str, BLANK))== NULL)
parse_attribute (&attrlist, substr);
while (substr) {
parse_attribute (&attrlist, substr);

substr = strtok (NULL, BLANK) ;

attrlist = g slist sort(attrlist, comp_ string);
n = g _slist length(attrlist);
attrs = malloc((n + 1) * sizeof (char*));
for(ap = attrlist; ap; ap = ap->next)
attrs[i++] = ap->data;
attrs[i] = 0;

First of all, formalize all strings by squeezing out the “\n” and “blank”. Then
store the strings in the list by string comparisons. In the end, get a
fixed-length array of string where the attribute strings are placed in order.

55

There are two parts of this code, first part is to pick the RSA exponent e, and

the second part is to compute the multiplication inverse d.

for (i=0; i< num attrs; i++) |
do {
PBC mpz random(pub->ei[i], N);
mpz_gcd(divisor, pub->ei[i], phi n);
}while (mpz_cmp d(divisor, 1));
mpz_invert (msk->dif[i],

pub->ei[i], msk->phi n);

The process of finding e is similar like g and x. Randomly choose e such that
each of e satisfied gcd(e, phi_n)=1. The difference is that attributes are added
into each e. Once the e is know, it is contained into public key, and d can be

computed by e=*d mod ¢(n) =1.

bepl .
6DBC6BBI2684B84AD7237ETB674C425261D9D708B2A1460CF282ADBB3DDICS 2A217C48161DDC1C81C560ADIBFEBF SETSE7B5CD1207CE3665D1FBE3DBTGFS

EA600568D00ACOSFIOES381D079EBSDDBO77B15E54949B32145481CFC731B8C409BODE2AB6A2475D94575727CBO51A1987 1A7TBEBFOB52455FBC149B2F6DTEFE
P: lnDH(OB5320845H4AD7237E7BO74(42520109D70H52A1400(FZKZADBBBDD‘)(SZAZI'/(-’lHlU DC1C81C560AD98FEBFSE7SE7B5CD1207CE3665D1FB83D876F82A9,
81DO79EBSDDBO77B15E54949832145481CFC731B8C409BODE2AB6A2475D94575727CB0O. 1A19H71A7BEBFOBSZ~1SSFB(14952F007FEB
4F64C6DD8BFC436DFC571C91B7924A11BBE27BCE2D! FB47D54FD7870EFCF875F1EA609712C9E13ET!
6FBBF2102BB9B3C022A082024E33D391A7374B00132D23F18571F 36BD98DID44291EBAESF646ESE42279A51598D425

phi_n = 429C44E39C826A4E6939016614F64C6DDBFC436DFC571C91B7924A11BBE27BCE2DOBAFB47D54FD7870EFCFB75F1EAGA9712COE13E7633E107B92B6OFABO31C

3B1506D342B672AADE17678559A140C153ADD1181AFB1852948AD0O7EF FBO7AF35C6584BB2C7 5B29BDEA7119CA1C31CESA755230A71D157969B8EADIDI746C590
7533689744787196496668973107117790272242966984597939579284350745727130847523272417736344763810782245675515439404665664383834524448

13627275516654564939545246840610701787561740348271173096232017854112294585138768864043878570487459022435378390092635046374890402787202

87223692556525191648389364028409528767270, size = 128

q=3C, x=3CC40A9CA99434 HBZFZD(OAMZOBdAlBOZB77F324(9(H77B§FDH30ESAAOOSO»’-‘BHI(F?BBSSDASSE14229FAlE4FABU0973(5EOF(OD(BBF(HAZEAS'/SFoF?AuE!SD

4B3F5D15999287EBA313F9AE6097F78D5336E37555551B6AC4AB24BF96A9FD37671BC3500BCF3C43F878481651ACCTCF76B6BDOFFCE456CFD2DOB3SACEBDD340A4

q=2, x=405FIFC29A191751A203DAF CCFEBEEBGAF1657ECED613C7C46761EC6DBEFFB01D09312457E831218879B51E7094146BBDC3FBIFAB52B4969626AASEOF13F561

2A174164D9F4F4F9E25AF 3699B62E62A78760EBBCE3376490E23EDS8FEEEQ928B0D9AB90830BCEE3C81BF7CB6BDAS6991A21A883D7B905921F 77BD4F9201D462

q=9, X=3C9D203162A56CFBE@3334F6823DAD70B15873D31DF2605E08D3D007FFBD449D97A99F 2F 9B0446CE3BOBBAAGO40EBOSSEFBF 1D7A3BAFOO6FFF 7576AASBEEADA

384FDE49EB6BBEAGS5495009700648451EEDAE4B5D69FA2C97BE6221A9BD56390D2800C9773D92982E63F384CBE76ED3EF11B7D8272906BD172443FC517BDD927

q=3, x=29A05578AFD44F6DFO2EOAD7537490B8DC65067AC65AC573755E5DADIDEDABEA276524F2FFFO072EF77AA4142BEBBOA4E44244CA148BDAF88BEABIEBIAS52CF

EAF3EA82747D51895E551767C1218CE27FD6OA75FCODO263155616686B897DFEB728215DFCO509ED328BD1BF388799C50AE1268737EOD59C39BD61D58056659

q=11, x=2FDFDOD36FF59D1ABCCC2EAESGETSF35E3FAES2B816ED925F593E6438E9C1354C4D1CEF399501CB2AB2627649C27179595D4712F6F8BBIAGG7BDFBFO73EC29

50295484077DBSE728D2A2D0D22CCF 21ED89303802FF 5C3B567910D1AB4EEA350030F 57B5BD9462206F92E4705A26CBEI15FB4C431FE31799D13CD198CB1BFFES

q=10, x=12DAFA7B7C789DBB83B6CEB2A928BB2492E8045157E6AQ6BFBSBAAE25340F108D65802360590AD30B960D7CBFAIBEEGA38BBB3707337B0DA0S5IE2E16AAICS

2579C4212EDFF22BE5D2A49A2D5AFBDC754B8928FBDA342DC253391E208877AD964435C53661D981998BFEA99142F4628113B2DC8D839CED79FCD2C361FIFDF70

q=1, x=1B6EB641A71DB47F84DFO24B60072DD3FAS7AD1AIDO1AGBEB2DOB1AB79CEECA69DE42509EF@5314ADCE9EN6498BB427 2F40F C22E084E9FBE2FDAAISD51FBCSE

C264657055153A198848DBD7A110C103DDB2B380E3B823EFDEB849DB1B0O7289ABOSCEB1F73F804083A5422B567DO89F4CE101D1847F9AA1FB150366E2A50ADCT

gx = 558246603552774596635760485248908808333368870363105998021576483137457607294490816941526113020974094921161849990117015197257901125

77427279113603980677045934800373366486769659482653474368699018304765339658212567488984474144986184299124047565031692009018882202881338

9927640121154136872415663911909046602802290, size=128

mpz len=128

mpz data buf [JeN9ea+iR f0ode 069 0q+[' 4016 Go0geuss +[Ho>v3eet e

mpz len=1

mpz data buf [YenoeeiBfHodeec00qelf ' solboGolgouss o[Fo>v3eet e

pub len=528

mpz len=128

mpz 6 g otboGoOgouoe of§e>v3eet e

msk

mpz

mpz

msk len=264

Figure 33. Setup

In setup process, it randomly picks the value of p and q and then gets the rest
of elements from these two values. Those elements and their values are
shown in Figure 33 above. As seen in Figure 33, the length of public key

“pub” is 528, and the size of master key is defined as 264.

56

5.4.2 Key Generation

@)efine native function keygen in the NativeCPABE class:

public native double keygen (
String pubFile,
String mskFile,
String prvFile,

String attributes);

In the key generation process, there are four strings involved. They are a
public key, a master key, and a private key respectively. In addition, this
method also has the set of attributes. The content that it has is defined in the
string name. For example, the string “pubFile” contains the public key file,
the rest can be done in the same manner. In addition, the “pubFile”,
“mskFile” and “attributes” these three files are input files, and the “prvFile”
is the output file.

It is same as the setup method, the native library is connected and the native
method name which is just defined. Therefore, the “keygen” method is ready
to be called after the connection between the native library and the native
code is built by JNI.

@all key generation function in mainActivity:

c.keygen (
"sdcard/pub.pub",
"sdcard/mskey",

"sdcard/priv_user.prv",

"Name Gender Title");

In “keygen” algorithm, it uses three paths which are "sdcard/pub.pub",
"sdcard/mskey" and "sdcard/priv_user.prv", respectively, inside a mobile
devise to call or store these key files. Besides these, it requires a set of
attributes which can be several attributes such as “Name”, “Gender” and
“Titles”. For example, this function can define a user Alice who is a female
and belongs to the business team. Thus “Alice”, “female” and “business
team” are the attributes of this user, and a specific private key for Alice is
generated, and her attributes are signed with this private key.

By running this key generation function, a secret key associated with a set of
attributes is built. According to the RAS-based access-tree CP-ABE algorithm
presented by Li, this secret key with a set of attributes is created with the

help of the Secure Hash Algorithm 1 (SHA1).
(3nlgorithm description:

Deserialize public key and master secret key

57

parse_args(argc,argv);

pub = treecpabe pub unserialize (suck file(pub file),1);

msk = treecpabe msk unserialize (suck file(msk file),1);

Allocate and initialize user private key structure.

prv = init prv params (pub) ;

Compute private key

while (*user attrs) {
treecpabe prv comp t c;
element t h attr, inv;
c.attr = *(user_attrs ++);
element init(c.dp, 7Zn);
element init (h attr, Zn);
element init (inv, Zn);
element from string(h attr, c.attr);
element invert(inv, h attr);
element set (c.dp, inv);
element clear (h _attr);
element clear (inv);

g _array append val (prv->comps, C);

Obtain each user attributes in “c.attr”. Initial elements “c.dp”, “h_attr” and
“inv” in the filed Zn. Mapping each user attribute string “c.attr” to one
element hash attribute “h_attr” of the finite group, and invert “h_attr” to
“inv”. Set the value of “inv” into “c.dp”, and clear the elements “h_attr” and
“inv”. Finally, append the generated elements to bytes of array in the private

key structure.

Serialize private key and write into the output file

spit file(out file, treecpabe prv serialize(prv),1l);

58

js@ubuntu

len = 128, mpz

mpz data= 429[44E39C520A4Eb939016614F04CbDDHF(4300F(571(915?924A1138EZTB[EZDOBAFB4TD54FD7870EF(F875F1E
A609712C9E13E7633E107B92B6OFAO031C3F6CF3445EA7022388886FBBF2102BB983C022A082024E33D391A7374B00132D23F
18571F36BD98D9D44291EBAESF646E9E42279A51598D42586A1A7T64E23C823

len = 128, mpz bu

mpz data=429C44E39C826A4E6939016614F64C6D C436DFC571C91B7924A11BBE27BCEZDOBAFB47D54FD7870EFCF875F1E
A6609712C9E13E7633E107B92B60FA0031C3B1506D342B672AADE17670559A140C153ADD1181AFB1852948ADBO7EFFBO7AF35C
6584EB2C75B29BDEA7T119CA1C31CESAT55230A71D157969B8E4D9D9746C590,

msk unserialize

len = 128, mpz buf ¢Fl9°&@f§

mpz data=429C44E39C826A4E6939016614F64C6DD8FC436DFC571C91B7924A11BBE27BCE2ZDOBAFB47D54FD7870EFCF875F1E
A609712C9E13E7633E107B92B60FAO031C3B1506D342B672AADEL17670559A140C153ADD1181AFB1852948ADBO7EFFBOTAF35C

6584BB2C75B29BDEA7119CA1C31CESA755230A71D157969B8E4D9D9746C590,

len = 128, mpz bu od[{BeGeMeSe

mpz data=1B6EB641A71DB47FB84DF024B60072DD3FAS7TAD1ASDO1AGBEB2DOB1ABTIC6EC469DE42509EFO5314ADC69EN6498BB
4272F40FC22EOB4E9FBE2FD4AS5D51FBC56C264657055153A198848DBD7A110C103DDB2B38OE3B823EFDEB849DB1B0O7289ABA
5CEB1F73F804083A5422B567D089F4CE101D1847F9AA1FB150366E2A50ADC1,

inv x = 1E8F6328BF17F12BEFD2CBD582D9007A6F92267F800EBES7EOO3C9823BEEB6C5D804F324B11D4CB869C64DBOF1318
OC7EBA4CT72A50E5762EBE2AO15D3FESBD66 7AEB45CC58DOO5FAEIEBB74779BGEB4CDD77BA6497407A2A075361ABAE198ES7907
4A81E2FBE3E684D0B1101C2C101309091A539AA011D728AC9EECOA238A131

etmp = 7533689744787196496668973107117790272242966984597939579284350745727130847523272417736344763810
78224567551543940466566438383452444813627275516654564939545246840610701787561740348271173096232017854
11229458513876 404387857048745902243537839009263504637489040278720287223692556525191648389364028409
528767270, siz 128

mpz len=128

mpz data bu aZooa,o){—aaa"go

prv key len=423, comps len = 2

Figure 34. Key generation for Sara

As it is shown in Figure above, Key generation function is used to generate
keys for a user such as Sara. It outputs the private key of Sara with her
attributes ‘sysadmin’ and ‘it_department’. The simple attributes are defined,
and these attributes can rewrite later. The length of “sara_priv_key” is 423.

js@ubuntu:~/ L] plusS ./keygen -o kevin_priv_key pub_key master_key business_staff
strategy_team
len = 128, mpz buf:ﬁl‘-lQa&e?%)dej@t’maq
mpz data=429C44E39C826A4E6939016614F64C6DDBFC436DFC571Co1B7924A11BBE27BCE2DOBAFB47D54FD7870EFC
FB75F1EA609712C9E13E7633E107B92B60OFAOO31C3F6CF3445EAT022388886FBBF2102BB983C022A082024E33D391A
?374800132023F18571F30809ﬁ0904429lEBAE5F040E9E422?9A51598D4ZSH 1A764E23(823,

&

14F04C0008FC43ODFC571C9lBT924AllBBEZTBCE2005AFB47054FDT&70EFC
FB75F1EA609712C9E13E7633E107B92B60OFAG031C3B1506D342B672AADEL7670559A140C153ADD1181AFB1852948AD
GO7EFFBO7AF35C6584BB2C75B29BDEA7119CA1C31CESA755230A71D157969B8E4D9D9746C590,
msk unserialize

128, mpz buf=[{JeN 1% SeGeeqe[ly ootheCeleeuee :

mpz data=429C44E39C826A4E693901 4F64C6DDBFC436DFC571C91B7924A11BBE27BCE2DOBAFB47D54FD7870EFC
FB75F1EA609712C9E13E7633E107B92B60FAO031C3B1506D0342B672AADE17670559A140C153ADD1181AFB1852948AD
007EFFBGTAF35C6584BBZC75829BDEﬁ?119CA1C31CE5A755230A710157969BBE4D909746C590,

mpz data:186EBG41#710847F54DF024B&0072003FASTADlAQDGlAOBEBZDOBlABT9C6EC469DE42509EF05314AD(69E
06498BB4272F40FC22EO84E9FBE2FD4A95D51FBC56C264657055153A198848DBD7A110C103DDB2B380E3B823EFDEB8
49DB1BO7289ABO5SCEB1F73F804083A5422B567D089F4CE101D1847F9AALIFB150366E2A50ADCT ,

inv x = 1E8F6328BF17F12BEFD2CBD582D9007A6FS2267FBOOEBES7TEOO3C9823BEEB6CS5D804F324B11D4CB869C64D
BOF13180C7EBA4C72A50E5762EBE2AO15D3FESD667AEB45CC58D005FAELIEBB74779B6EB4CDD7 7BA6497407A2A07536
1ABAE198E979074A81E2FBE3E684DOB1101C2C101309091A539AA011DT28ACOEECOA238A131

etmp = 753368974478719649666897310711779027224296698459793957928435074572713084752327241773634
476381078224567551543940466 4383834524448136272755166545649395452468406107017875617403482711
730962320178541122945851387 6404387857048745902243537839009263504637489040278720287223692556
525191648389364028409528767270, size = 128

mpz len=128

mpz data buf:. o

prv key len=429, c:)mps 1=n

Figure 35. Key generation for Kevin

Then the private key of Kevin is defined in Figure with his attributes
“business_staff” and “strategy_team”, and the length of his private key is
429.

59

5.4.3 Encryption

(1 Define native function enc in the NativeCPABE class:

public native double enc (
String pubFile,
String jpolicy,
String inFile);

In the NativeCPABE class, it defines the basic encryption algorithm structure
which is three files for this process, such as a public key, access tree policy
and encrypted message. One thing to point out it that the input message is
not contained here. It is typed by the user through their mobile phone
whenever they want to encode a message. Thus, the original message
encrypted is defined in the mainActivity class and is used when calling
encryption function.

Similar to the algorithms described before, this function is defined with the
native library. The name of this method is defined and the native library is
loaded, so that it is connected with the native code and it can be called
successfully by other class.

(Zrpet “on click” function to the button “CHIPHER” with encryption method in
mainActivity window:

findViewById(R.id.encBtn) .setOnClickListener
(newView.OnClickListener () {
@Override
public void onClick(View view) { try {
if (input.getText () .toString() .
trim() .equals ("")) {
Toast.makeText (mainActivity.this,
"please type something",
Toast.LENGTH SHORT) .show () ;
} else {
writeFile (inputPath, input.getText () .toString().trim());
c.enc ("sdcard/pub.pub", "Name Gender Title",
inputPath, encPath) ;
enc.setText (readFileBinary (encPath)) ;}
} catch (IOException e) {

e.printStackTrace();}

60

First of all, the functional button is linked with the ID of encrypt button
named “encBtn” which is defined in the activityMain window. Normally, for a
user, the behavior to activate the encryption function is to click this button
“CHIPHER”. For the users to input the text on the application, it needs
IOException. When the application performs certain tasks to access the files,
at the same time if there are any input or output file operation issues, then
the I0Exceptions are thrown. The developer has to handle the exception.

During this part, two functions are defined when the user clicks the
encryption button. If there is no input, it shows the message “please type
something” by using the “Toast.makeText” function in Android Studio. If the
user inputs some message, then this message is read from a specific file
named “inputPath” from the input path and turned into strings.

The encryption function uses a public key, a set of attributes and the input
text to generate the cipher-text saved in the “encPath” later. Finally, it shows
the encrypted text in the text box by using “setText”. Refer to CP-ABE
algorithm, an access tree policy is built via encryption function. In this case, it
could be an arbitrary name, male or female and the title of position. These
defined attributes limit the user scope or specify a user identity. In addition,
the input text is be encrypted under those access policy.

(3nlgorithm description:

A. Fill the policy(treecpabe_policy t* p, treecpabe pub t* pub and
element_te):

p—->q = rand poly(p—>k - 1, e);

(13

Call function “_rand_poly(deg, zero_val)” to set up a polynomial of k, —1

degree for the node x. This function sets Q,(0)=s and sets Lagrange

coefficient of rest of the points at random to completely define q,.

For leaf node:

if(p->children->len == 0) {
element init(p->cp, Zn);
element from string(h, p->attr);

element mul (p->cp, h, p->g->coef[0]);

61

Call function “element_from_string” to map the corresponding attribute
“attr” to an element of the group “h”. It produces the hash values
corresponding to the attribute strings by using SHA1 hash algorithm. Each
attribute string is mapped to a 160-bit message digest which is stored in the
data buffer.

For non-leaf node:

for(i = 0; i < p->children->len; i++) {
element set si(r, i + 1);
_eval poly(t, p->q, r);
_fill policy(g ptr array index(p->children, 1), pub, t);

Call function “_eval _ poly(T,,q,(index(x))” to set polynomials for each

child node recursively.

B. Run the encryption algorithm:

parse_args (argc,argv);
pub = treecpabe pub unserialize(suck file(pub file),1);

cph = init cph params (pub) ;

Read public key from file, and initial the cipher-text structure.

element init(m, Zn);

element init (h, Zzn);

element init(s, Zn);

element random(m) ;

element random(h);

element random(s);
element pow zn(cph->cs, pub->gx, s);

element pow zn(cph->cs, cph->cs, h);

element mul (cph->cs, cph->cs, m);

Initialize elements and compute E=M-Y:=M-g”“=M-R"™, and store

the value of E “cs” in array “cph”.

element pow zn(cph->c, pub->gx, h);

(1P 821

Compute Y, =g*", and store the value of Y, “c”inarray “cph”.

62

_fill policy(cph->p, pub, s);

Fill the policy which is mentioned above.

cph buf =

treecpabe cph serialize (cph);

Serialize “cph”.

plt = suck file(in file);
file len = plt->len;
aes buf = aes 128 cbc_encrypt (plt, m);

Use AES algorithm to encrypt the file.

write cpabe outfile(out file,

cph buf,

file len, aes_buf);

Generate the encrypted file “.cpabe”.

./enc pub_key report.pdf

'(business_staff and develop_tteam) or sysadmin

5

attr=business_staff

, attr=develop_tteam

, attr=sysadmin

p children len=2
eSeveze,old o

; ,.CooYTeo[3
mpz data=202C9C28F5C16A9782B2ACODDI7CA4BA46EFBDO9939F111CBC3BES26396979AEO7215E1C14C2A819172A3A4B1EB3A4CTD48EDO
33486C0862AFFSDE7DO3EC6A14013E52FA37EE33045B608ADBC520AD953C9COE27AD92CD3129DDD7EBOADFF798F4A3BD441626BF44C81F

Oﬁfa

Groosflffeesos/10,0Ee
mpz data=202C9C28F5C16A9782B2ACAODDI7C4BA46EFBDO9939F111CBC3BES26396979AEO7215E1C14C2A819172A3A4B1EB3A4CTD48EDA
33486C0862AFFSDE7DO3EC6A13FO4E7ECF7BAF61E46200D1A9221E10B086978BC8532650580D076FF32DA6998469B6371F225A6AC81B13
D50B6D595FBBCB2851072E7B4E485DF2F31DD2CFB4588,
policy = business_staff develop_tteam 2o0f2 sysadmin 1of2
S = 2003585422461699868756481830236499883492423420463115351550084646955119757526145504919100717615541785855711
72534235484790545903830405789804491837451919326820887913326665706393776446648698382198344799985970623457459681
4176963415875446339467 614853061170958020637796114537851593113531966155035618202673569046, size 128
gxs = 74196476470389606459177494129073716722902279974914910944146934066400441469899925777755161623852663908847
29966076141132221931314777433078987020737303988856656876809183792873475200772090441807009358027885409410441336
555937567812112336531259402000250176028002494619048000107933133564161276057492852790406425530
cs = 116572835587228000977992725350614140857477430111568407062019216359001990684248205928686300658313175233921
85995965123081073049654507353945724601117645230405979829206773453334010054425966266530206474000272144440003344
833388060682745886719318450420015613200273484733435643178878018063407662969055441096818015498, size = 128
cph->cs = 1075225028979698622352198496563377332867247132175185028191735104393283082192970063493125160504912277
47118332806710832318818239749734684804937070694846211724609435062238263409074694685748818715048646247580738824
46590166524624947275565392888887891755843605376143346003865785408479225026743761932282330535371539, size 128
m 1842855877787912647118248003003132259114820770100239509520768855561175838123707460106837264820264447451767
39484895826529528609820938549217856314540700710031218499956365220460792958136384750638361243891398981743937283
39254589398192756896965037843282979629113298739029668460883890864668583454925471364794305180, size = 128
, h = 10946422439015996274022535160317545807910581806108099887780072763610138954885737533302501359033218577962
56416731261532354935378417380938052230169903691357786189994300118216128614198237170198407120882604399503075606
3081898698516057746984111091798545766415454524354412049452816937451795281834069860843931581785, siz 28
cph->c = 65538631458813012298350636320055857768164646382556653845233032180907807891716638624013692752885684354
B87082027389567412821119450693612415344328673827539390706865516043916994091310253207630958023420113944598978183
277287768151910142627770031319902349261277010654984414594058269243430861015158736178857663332387, size = 128
p children len = 2

Figure 36. Encryption

Encrypt the file “report.pdf” with the public key and define the attributes as
“business_staff and develop_team” or “sysadmin”.

5.4.4 Decryption

(1 Define native function dec in the NativeCPABE class:

63

public native double dec (
String pubFile,
String prvFile,
String inFile,

String outFile);

The structure of decryption function is defined in the NativeCPABE class. It
defines the four strings of this algorithm. The first one is “pubFile” which
contains the public key. The second one named “prvFile” stores the private
key. The third one called “inFile” presents the cipher-text. The last one is
“outFile” which stores the output of decryption algorithm, and it is the
decoded message. In this method, the “outFile” is the output, and the rest of

them are inputs.

@Set “on click” function to button “DECRYPT” with decryption method in

mainActivity:

findViewById (R.id.decBtn) .setOnClickListener

@Override
public void onClick(View view) {
try {
if (input.getText () .toString() .
trim() .equals ("")) {

Toast.makeText (mainActivity.this,

} else {
writeFile (inputPath,

c.dec ("sdcard/pub.pub",
"sdcard/priv_user.prv",

encPath, decPath) ;

} catch (IOException e) {

e.printStackTrace () ;

(newView.OnClickListener () {

"please type something",

Toast.LENGTH SHORT) .show () ;

input.getText () .toString () .trim());

dec.setText (readFile (decPath));}

64

After the native library is loaded and the native method is defined, then the
native code is able to call the decryption from the native library. In the
decryption method, it is similar to the encryption function. The main function
named decryption is called when the user clicks the decryption button. If the
user wants to decrypt some message saved in “encPath”, and this file is read
by decryption function and it puts the decoded text into “decPath”. Finally, it
shows the decoded text in the last text box by using “setText” function.

The access tree structure is used to check whether the user is able or not to
access the original text. According to the original RSA-based CP-ABE scheme
proposed by Li [36], the decryption algorithm first checks if the access tree of
the user is satisfied with the access tree policy defined by encryption
algorithm. Then it finds the minimal leaves of the access tree to decryption
calculation efficiently. Separately decoding the leaf node and internal node,
and get the decoded text.

@Algorithm description:

There are four processes during this algorithm. The first part is to check if the
secret key satisfies the policy. In order to effective the decryption process, the
second part is to find out k (a threshold value) sets of the smallest size
satisfies the access policy. The third part is the recursive function which is
called by the decryption algorithm. The last part is the decryption process.

A. Check the satisfaction

For leaf node:

if(p->children->len ==) {
for(i = 0; i < prv->comps->len; i++)
if(!strcmp(g_array index (prv->comps,

treecpabe prv comp t, 1i).attr,

p->attr))

p->satisfiable = 1;
p->attri = i;

break;

Use “strcmp” function to compare the string in the decryption key with the
access policy to see whether they are equal or not. If the attribute of private
key is satisfied with the policy, then set the satisfiability as 1 for the leaf node.

65

For non-leaf node:

for(i = 0; i < p->children->len; i++)
_check _sat (g ptr array index

(p->children, i), prv);

for(i = 0; i < p->children->len; i++)
if (((treecpabe policy t*)g ptr array index
(p->children, 1i))->satisfiable)
1++;
if(1 >= p->k)
p->satisfiable = 1;

Compare the value of each child node with the content of a private key,
statistic the satisfiable number of the nodes and set satisfiability as 1 only if
at least the same number as threshold value of children are satisfied. Else,
the decryption function will stop.

B. Find minimal satisfied leaves

For leaf node:

if (p->children->len ==) {

p->min_ leaves = 1;}

Defineaset S, foreachleaf node x suchthat S, ={x}.

For non-leaf node:

for(i = 0; i < p->children->len; i++)
if (((treecpabe policy t*)g ptr array index
(p—>children,i))->satisfiable)
_pick sat min leaves (g ptr array index

(p—>children, i), prv);

¢ = alloca(sizeof (int) * p->children->len);
for(i = 0; i < p->children->len; i++)
cl[i] = i;
cur_comp pol = p;
gsort (c, p->children->len, sizeof(int), leaves cmp int);
p->satl = g array new(0, 0, sizeof(int));
p->min leaves = 0;
1 =20;

66

for(i = 0; i < p->children->len && 1 < p->k; i++)
if (((treecpabe policy t*)g ptr array index
(p—>children, c[i]))->satisfiable)
{
1++;
p->min_leaves += ((treecpabe policy t*)
g _ptr_array index(p->children,c[i]))
->min_ leaves;
k = c[i] + 1;
g_array append val (p->satl, k);
}
assert (1l == p->k);

Define aset S, for eachnode x,andlet k be the threshold value of each
non-leaf node x.Choose k nodes X;,X,,...,X, from the child nodes of x
such that S, (for i=12,., k) are the first k sets of the smallest size, then
S, ={x"x'eS,,i=12,.,k}. For root node r, define a set S which

denotes the set of leaf nodes that are used in order to minimize the number
of computations.

This function inputs a policy that includes an access tree with root and a set
of attributes that are satisfied, then find a set S which is the subset of the
nodes in an access tree such that minimized the number of leaves. It means
non-leaf node has children less than k which is the threshold value of that
non-leaf node. This function uses a recursive algorithm that makes a single
traversal of the access tree.

C. DecryptNode function:

_dec node flatten(element t r, element t exp,
treecpabe policy t* p,

treecpabe prv t* prv)

assert (p->satisfiable);
if(p->children->len == 0)

_dec leaf flatten(r, exp, p, prv);
else

_dec_internal flatten(r, exp, p, prv);

This situation is divided into two types: leaf nodes and non-leaf nodes.

67

For leaf node:

_dec_leaf flatten(element t r, element t exp,
treecpabe policy t* p,
treecpabe prv_t* prv)

c = &(g_array index (prv->comps,
treecpabe prv _comp t,
p->attri));

element mul (s, p->cp, c->dp);

element mul (s, s, exp);

element add(r, r, s);

This function is used to compute polynomial interpolation and add the results
together. By using polynomial interpolation, this function returns the sum
which is the value of random element s.

For non-leaf node:

_dec_internal flatten(element t r,
element t exp,
treecpabe policy t* p,

treecpabe prv t* prv)

for(i = 0; i < p->satl->len; i++)

lagrange coef (t, p->satl,g _array index
(p—>satl, int, 1i));
element mul (expnew, exp, t);
_dec node flatten(r, expnew,
g _ptr array index
(p—>children,
g_array index(p->satl,

int, 1) - 1), prV);

For all nodes z that are children of X, computing the Lagrange coefficient
A, for ieZ, and a set s of elements in Z, as

Ajs (X):Hjes,jﬂ%' Then obtain A, (O):HJ—E&M%. Then compute

“expnew” by multiplying “exp” and “t”, and recursively call DecryptNode
function to pass through all children node.

68

D. Decryption process:

pub treecpabe pub unserialize(suck file(pub file), 1);

prv treecpabe prv _unserialize(suck file(prv_file), 1);
read cpabe file(in file, &cph buf, &file len, &aes buf);

cph = treecpabe cph unserialize(cph buf, 1);

Obtain each files.

_check sat (cph->p, prv);
if(!cph->p->satisfiable) {

return 0;}

Check the satification.

element init(t, 2zn);
_pick sat min leaves (cph->p, prv);

_dec flatten(t, cph->p, prv);

Find the minimized nodes and call function for decryption of the nodes.

element init(m, 2zn);
element pow zn(m, cph->c, t);
element invert(m, m);

element mul (m, m, cph->cs);

1
Compute M =E-——

g

treecpabe cph free (cph);

plt = aes_ 128 cbc decrypt (aes buf, m);
g byte array set size(plt, file len);
g _byte array free(aes buf, 1);

Use AES decryption algorithm to decrypt the message.

spit file(out file, plt, 1);

Output the decoded file.

69

5.5 Running the App

To run the completed application on a mobile device needs three steps:

@In Android Studio, click the app module in the Project window and then
select Run > Run (or click Run in the toolbar).

(Z»et up a device for development

X > acanl ¢ 14:30 o R 74% kM
< Developer options < Developer options
Debugging
Developer options () USB debugging
Enable connecting phone with vivoAssistant

Cancel USB debugging authorization
Desktop backup password
Desktop full backups aren't currently protected
Stay awake
Screen will never sleep while charging

Enable Bluetooth HCI snoop log

Capture all Bluetooth HC| packets in a file
OEM unlock Allow unlocking bootioader

Running
View and ¢

Cancel USB debugging authorization

(a) (b)

Allow USB debugging?
Allow USB debugging?

The computer's RSA key fingerprint is:
45:28:07:8D:E9:58:C4:0A:2F 34:3ATF:

Use it to copy data between your computer 08:6E-CF-58

and your device, install apps on your device
without notification, and read log data

Always allow from this computer

OK Cancel
OK Cancel

(c) (d)

Figure 37. (a) Developer options (b)(c)(d) Three steps for USB debugging

70

As it is presented in Figure 37 (a), this process is to open the settings on the
device, and select Developer options. In the debugging part of Developer
options showed in Figure 37 (b)(c)(d), allow USB debugging, and authorize
the computer.

Use apt-get install adb to install the Android adb tools package.

useri@worker2: ~
File Edit View Search Terminal Help

dwor apt-get install adb
. Done

€ g
Building dependency t

Reading state informa ... Done
ady the newest version (1:7.0.0+r33-2).
, B newly installed, @ to remove and 148 not upgraded.
ker2:~S

Figure 38. Install Android adb tools package on terminal

@n the Select Deployment Target window, select the device, and click OK.

Select Deployment Target

droid 6.0, API 23)

on for Future launches

Figure 39. Select deployment target
Android Studio installs the app on the connected device and starts it.

After following these three steps mentioned above, then the application is
ready to be used in a mobile phone.

71

5.6 App Demonstration

This application is designed as an simple interface that contains an input
message text-box, an output cipher message text-box and an output decoded
message text-box. Here are the interfaces of the app below:

CIPHER

DECRYPT

Text here! happyi
CIPHER CIPHER
DECRYPT DECRYPT

(b) (c)

happyf
CIPHER

00 00 05 00

NN NN 1N aQ

DECRYPT

(d)

happy|

CIPHER

00 00 05 00

nNn NN 1N aQ

DECRYPT

happy

(e)

Figure 40. (a) Application interface (b) Hint for empty import (c) import text

(d) Encryption (e) Decryption

The Figure 40 (a) shows the initial interface of the encryption application. On
the top text-box shows “text here!”. The user can input the message that he

72

or she wants to encrypt in that text-box. In the Figure 40 (b), it shows a hint
when the import of the data is empty. The Figure 40 (c) is demonstrating a
user importing a message “happy” in the input text-box. The Figure 40 (d)
shows the encryption process. The user presses the “CIPHER” button to
encrypt the message, and the encrypted text is shown in the second text-box.
In the decryption process showed in Figure 40 (e), the user uses the
“DECRYPT” button to decrypt the cipher-text and the decoded text “happy’ is
shown in the last text-box which is showing the same message as the original
one.

5.7 Performance Evaluation

This thesis evaluates the performance of the RSA-based CP-ABE scheme on
Android platform in two aspects. The one is the performance of varying key
sizes. The other is the performance involved with the number of attributes.
For the first performance, it is assumed that larger the key size will take more
execution time on key generation, encryption and decryption algorithms. The
comparison of the execution time and the key size is analyzed in Table 2
below. In order to get more reliable results, each performance test ran five
times then the average results are used.

Key Size (bit) 512 1024 2048
Key 11 18 39
Generation
Time
(ms) Encryption 8 17 35
Decryption 5 11 18

Table 2. Comparison execution time with key size

In Table 2, it lists the three main algorithms of the CP-ABE scheme; key
generation, encryption and decryption, respectively. The execution times of
these three algorithms are compared for the different key sizes such as 512
bits, 1024 bits and 2048 bits. It can be noticed that the large key size needs
longer execution time. Figure 41 shows the results as a line graph.

73

Time
40 I | y
Key Generation s :]
L 4 Enc HoN c— o
30 yp . |
Decryplion e :
T |
________ | e — - — Lo - - —
20 | 3
|
[
o A
. |
1
0 512 1024 2048

Key Size

Figure 41. Key size

Figure 41 shows that there is a positive linear relationship between the
execution time and the key size. The larger the key size is, the longer time it
takes to run each algorithm. Note that the execution times for both the key
generation and the encryption are similar which are both increased sharply
with the key size 1024. By comparison, the execution time of the decryption
algorithm is smooth in all different key sizes.

The other reason that affects the execution time is associated with the
number of attributes. Assuming that the more attributes, the longer the
execution time it takes. The results are listed below in Table 3.

Number of 1 3 6 9 12
Attributes
Key 18 14 19 17 16
Generation
Time
(ms) Encryption 17 19 20 22 25
Decryption 11 12 13 15 17

Table 3. Comparison execution time with number of attributes

The Table 3 compares the execution time with the number of attributes
during key generation, encryption and decryption processes. It chooses the
five different numbers of attributes which contains 1, 3, 6, 9 and 12 attributes.
The result based on a line graph is shown in Figure 42 below.

74

Time

E1) — ' . :

Key Generation e : :
L Enc HON c— _I _________ __ _ _ _ _ _]

10 ryp | |
Decryption —— : | |

I

|

Number of Attributes

Figure 42. Number of attributes

It can be seen clearly that the execution time of encryption and decryption
algorithms are smoother according to the increasing number of attributes.
Nevertheless, the execution time of the key generation algorithm was not
affected as much by the number of attributes. The reason appears that the
user’s attributes are set during the encryption process, thus it may not affect
the execution time.

5.8 Lessons Learned

During the implementation part, there were a several problems that
prevented from progressing with the thesis. This includes setting devices,
preparing and compiling libraries, linking libraries with native methods and so
on. Starting with the setting issues, it took some effort to make a simulator
work. After downloading a phone simulator, the computer is still unable to
open it. The reason was that the internal setting of the computer about the
virtual device was not set properly. For Intel processor devices, this problem
was solved by enabling the Intel Virtual Technology. This function can be
found in BIOS by pressing key F2 when power the computer on. After
enabling the setting of Intel Virtual Technology, then the simulator was
allowed to work on the development computer. Nevertheless, every time
when Android Studio calling the simulator, errors occurred as following:

Emulator: Process finished with exit code 1!
Emulator: emulator: ERROR: x86 emulation currently requires

hardware acceleration!

There were three ways to solve this problem. The first method was to
download HAXM drivers. The second one was to set the CPU's hardware

75

acceleration switch which allowed the quick start of the device. The last one
was to use a lower version of a virtual device. However, the use of a simulator
did not affect the performance of the application on the mobile device. So it
is recommended that any developers in the similar situation to choose the
right version of the simulator.

Moreover, this cipher app uses C code in Android Studio, thus at the
beginning, the “Include C++ Support” option needs to be selected on a new
project page. Thus the Android Studio could install C code compiler and
libraries. Additional, tools that support the C code was also needed, such as
LLDB (a debugger that Android Studio uses to debug native code) and NDK
(this toolkit allows users to use C and C++ code for Android).

Compiling the CP-ABE library was had an issue on its own. The CP-ABE
algorithm needs other libraries to run, such as PBC, GMP and so on. A series
of libraries were needed to be installed through the terminal. A order of the
libraries to setup the environment for CP-ABE scheme was important, for
example, PBC required GMP, when GMP was supported by M4, bison and flex.
After preparing the environment, the CP-ABE scheme was able to be called.
However, it was still unable to be called by the Android system. Eventually it
was figured that the .c files and .h files were needed to be compiled into a
dynamic library called .so file. But, this dynamic library was not ready to be
called by the Java code. By using the Android.mk file and calling the
NDK-build command to generate the .so file, then the compiled libraries were
ready to be used in the Android system, and then the preparation job was
done.

When the libraries were ready, they were needed to be connected with the
native methods. Thus, JNI function was used to solve this problem. To use JNI
function, the native method was needed to be written as below:

public class NativeClass {
static {
System.loadLibrary (“library name”) ;

}

public native method(content);

System.loadlibary(“library name”) function was used to call the library and
then connect the library with the native methods by defining the native
methods. Then the bridge that connects library and methods was built. Apart
from this, a specified Android.mk file and a generated .so file were needed in
a given path inside the “build.gradle” configuration. Then the dynamic
libraries were able to be loaded in the static block, and the connection

76

between C and Java code was completed.

There are limitations of the implementation provided by this thesis. The
cipher method could only be achieved inside this app. Another limitation of
this project is that it could only encrypt and decrypt text in the same interface
at the same time. In addition, this application assumes that the attributes of
each user satisfies the access policy all the time. In the future, it would be
necessary to build a database that stores the user’s information and needs
more user interfaces such as login to allow only authorized users can use the
app. In addition, instead of using an app to offer a functionality for an
encryption, it would be better to provide a CP-ABE based encryption at the
system level to protect the data, app and the mobile device it self.

77

Chapter 6 Conclusion

CP-ABE scheme has been emerged as a flexible data privacy mechanism by
offering an embedded access control with encryption. As mobile devices are
not suited for complex and high resource demanding computations, a more
efficient and lightweight encryption solution has been demanded.
Lightweight CP-ABE schemes with constant key sizes and constant
cipher-texts regardless of the number of attributes have been hailed as
suitable solution for resource constrained devices such as mobile phones.

In this thesis, we offer an implementation strategy for a lightweight
RSA-based CP-ABE scheme for an Android system. This thesis provides the
implementation details for the four main algorithms of RSA-based CP-ABE
which include setup, key generation, encryption, and decryption, respectively.
In addition, the implementation offers a strategy to integrate a CP-ABE system
written in C language [36] to work with a Java implementation. Our solution
is provided by using the JNI function to connect the C language and Java. In
other words, the functions written in C code can be called in an Android
system written in Java code. Therefore, JNI plays an essential role in our
implementation strategies as it is also used to link the dynamic libraries with
the native method. This allows the RSA-based CP-ABE library to be
implemented for the Android devices successfully. We demonstrate a mobile
app that allows users to encrypt and decrypt data efficiently based on
RSA-based CP-ABE approach.

78

79

References

[1] Sahai, A., & Waters, B. (2005, May). Fuzzy identity-based encryption.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques (pp. 457-473). Springer, Berlin, Heidelberg.

[2] Goyal, V., Pandey, O., Sahai, A., & Waters, B. (2006, October).
Attribute-based encryption for fine-grained access control of encrypted data.
In Proceedings of the 13th ACM conference on Computer and communications
security (pp. 89-98). Acm.

[3] Bethencourt, J., Sahai, A., & Waters, B. (2007, May). cipher-text-policy
attribute-based encryption. In 2007 IEEE symposium on security and privacy
(SP'07) (pp. 321-334). IEEE.

[4] Cheung, B. (2019). Attribute-based Encryption for Healthcare Blockchain.
Retrieved from
http://bennycheung.github.io/attribute-based-encryption-for-healthcare-bloc
kchain

[5] Yu, S., & Shi, L. (2016). cipher-text: Trust Establishment in Wireless Body
Area Networks. Retrieved from
https://www.sciencedirect.com/topics/engineering/cipher-text

[6] Ostrovsky, R., Sahai, A., & Waters, B. (2007, October). Attribute-based
encryption with non-monotonic access structures. In Proceedings of the 14th
ACM conference on Computer and communications security (pp. 195-203).
ACM.

[7] Internetwork Security. (2017, Mar 29). APA referencing: Attribute based
Encryption (ABE) [Video file]. Retrieved from
https://www.youtube.com/watch?v=ZogQMKzoQdw

[8] Daza, V., Herranz, J., Morillo, P., & Rafols, C. (2010). Extensions of access
structures and their cryptographic applications. Applicable Algebra in
Engineering, Communication and Computing, 21(4), 257-284.

[9] Lai, J., Deng, R. H., & Li, Y. (2011, May). Fully secure cipertext-policy hiding
CP-ABE. In International conference on information security practice and

experience (pp. 24-39). Springer, Berlin, Heidelberg.

[10] Moffat, S., Hammoudeh, M., & Hegarty, R. (2017, July). A survey on

http://bennycheung.github.io/attribute-based-encryption-for-healthcare-blockchain
http://bennycheung.github.io/attribute-based-encryption-for-healthcare-blockchain
https://www.sciencedirect.com/topics/engineering/cipher-text

80

cipher-text-policy attribute-based encryption (cp-abe) approaches to data
security on mobile devices and its application to iot. In Proceedings of the
International Conference on Future Networks and Distributed Systems (p. 34).
ACM.

[11] Zuckerman, A. E., & Kim, G. R. (2009). Personal health records.
In Pediatric Informatics (pp. 293-301). Springer, New York, NY.

[12] Hong, H., Chen, D., & Sun, Z. (2016). A practical application of CP-ABE for
mobile PHR system: a study on the user accountability. SpringerPlus, 5(1),
1320.

[13] Abbott, A. A., Fuji, K. T.,, Galt, K. A.,, & Paschal, K. A. (2012). How
baccalaureate nursing students value an interprofessional patient safety
course for professional development. ISRN nursing, 2012.

[14] Price, M., Bellwood, P., Kitson, N., Davies, |., Weber, J., & Lau, F. (2015).
Conditions potentially sensitive to a personal health record (PHR)
intervention, a systematic review. BMC medical informatics and decision
making, 15(1), 32.

[15] Hong, H., Chen, D., & Sun, Z. (2016). A practical application of CP-ABE for
mobile PHR system: a study on the user accountability. SpringerPlus, 5(1),
1320.

[16] Yao, X., Chen, Z.,, & Tian, Y. (2015). A lightweight attribute-based
encryption scheme for the Internet of Things. Future Generation Computer
Systems, 49, 104-112.

[17] Cui, W., Du, C., & Chen, J. (2016). CP-ABE Based Privacy-Preserving User
Profile Matching in Mobile Social Networks. PloS one, 11(6), e0157933.

[18] Lagrange polynomial. (2019). In Wikipedia, The Free Encyclopedia.
Retrieved May 25, 2019, from
https://en.wikipedia.org/wiki/Lagrange polynomial

[19] Ireland, D. (2018, June 9). RSA Algorithm [Online forum contents].
Retrieved from https://www.di-mgt.com.au/rsa alg.html#theauthor

[20] Design Overview (2018). In Oracle, Java Native Interface Specification.
Retrieved June 8, 2019, from
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.htm

l#wp16696

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.html#wp16696
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/design.html#wp16696

81

[21] Vaughan, G, V., & Blake, E. (2016). GNU M4. Retrieved from
https://www.gnu.org/software/m4/

[22] Levine, J. (2009). Flex & Bison: Text Processing Tools. " O'Reilly Media,
Inc.".

[23] Kenekayoro, P. T. (2011). One way functions and public key
cryptography. African Journal of Mathematics and Computer Science
Research, 3(6), 213-216.

[24] Zhou, X., & Tang, X. (2011, August). Research and implementation of RSA
algorithm for encryption and decryption. In Proceedings of 2011 6th
International Forum on Strategic Technology (Vol. 2, pp. 1118-1121). IEEE.

[25] The GNU Multiple Precision Arithmetic Library. (2018). gmplib. Retrieved
from https://gmplib.org/

[26] Lynn, B. (2007). PBC Library. Retrieved from
https://crypto.stanford.edu/pbc/

[27] Cryptography and SSL/TLS Toolkit. (2019). OpenSSL. Retrieved from
https://www.openssl.org/

[28] Glib. (2019). In Wikipedia, The Free Encyclopedia. Retrieved June 9, 2019,
from https://en.wikipedia.org/wiki/GLib

[29] Mullis, A. (2017). Android NDK—Everything you need to know. Retrieved
from
https://www.androidauthority.com/android-ndk-everything-need-know-6776

42/

[30] Getting Started with the NDK. (2019). Developers. Retrieved from
https://developer.android.com/ndk/guides

[31] Artjom B. (2016, February 2). ABE Schemes - Access Structures &
Performance [Online forum comment]. Retrieved from
https://crypto.stackexchange.com/questions/32410/abe-schemes-access-stru
ctures-performance

[32] Hu, C,, Li, H., Huo, Y., Xiang, T., & Liao, X. (2016). Secure and efficient data
communication protocol for wireless body area networks. IEEE Transactions
on Multi-Scale Computing Systems, 2(2), 94-107.

[33] Lakshmi, R. N., Laavanya, R., Meenakshi, M., & Dhas, C. S. G. (2015).

https://gmplib.org/
https://crypto.stanford.edu/pbc/
https://www.openssl.org/
https://www.androidauthority.com/android-ndk-everything-need-know-677642/
https://www.androidauthority.com/android-ndk-everything-need-know-677642/
https://developer.android.com/ndk/guides
https://crypto.stackexchange.com/questions/32410/abe-schemes-access-structures-performance
https://crypto.stackexchange.com/questions/32410/abe-schemes-access-structures-performance

82

Analysis of attribute based encryption schemes. Int. J. Comput. Sci. Eng., 3(3),
1076-1081.

[34] Ning, J., Cao, Z., Dong, X., Wei, L., & Lin, X. (2014, September). Large
universe cipher-text-policy attribute-based encryption with white-box
traceability. In European Symposium on Research in Computer Security (pp.
55-72). Springer, Cham.

[35] Hemalatha, S., & Manickachezian, R. (2014). Dynamic auditing protocol
using improved RSA and CBDH for cloud data storage. International Journal of
Advanced Research in Computer Science and Software Engineering, 4(1).

[36] Ping Li. (2018). Novel Lightweight Ciphertext-Policy Attribute-Based
Encryption for loT Applications(Doctoral dissertation). Massey University,
Auckland, New Zealand.

	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1 Overview
	1.2 Goal
	1.3 Structure

	Chapter 2. Background Technology
	2.1 Attributes-Based Encryption (ABE)
	2.2 Access structure
	2.3 CP-ABE
	2.3.1 Five Fundamental Algorithms of CP-ABE
	2.3.2 Security Mode for CP-ABE

	2.4 Rivest-Shamir-Adleman (RSA)
	2.4.1 RSA Algorithm
	2.4.2 The Security of RSA

	Chapter 3. Literature Review
	3.1 CP-ABE for Mobile PHR System
	3.2 CP-ABE for Mobile Devices in IoT
	3.3 CP-ABE Based Privacy-Preserving User Profile Matching in Mobil Social Networks

	Chapter 4. Revisit RSA-based Access-Tree CP-ABE scheme
	4.1 Model
	4.2 Algorithm Description
	4.3 Security

	Chapter 5 Implementation
	5.1 Overview
	5.2 Preparation for CP-ABE
	5.2.1 Setup Environment
	5.2.2 Java Native Interface (JNI)

	5.3 App on Android Studio
	5.4 Implementation Algorithm
	5.4.2 Key Generation
	5.4.3 Encryption
	5.4.4 Decryption

	5.5 Running the App
	5.6 App Demonstration
	5.7 Performance Evaluation
	5.8 Lessons Learned

	Chapter 6 Conclusion
	References

