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Abstract

Symplectic integrators for Hamiltonian ODEs have been well studied over the

years and a lot is known about these integrators. They preserve the sym-

plecticity of the system which automatically ensures the preservation of other

geometric properties of the system, such as a nearby Hamiltonian and periodic

and quasiperiodic orbits.

It is then natural to ask how this situation generalises to Hamiltonian

PDEs, which leads us to the concept of multisymplectic integration. In this

thesis we study the question of how well multisymplectic integrators capture

the long-time dynamics of multi-Hamiltonian PDEs. We approach this ques-

tion in two ways—numerically and through backward error analysis (BEA).

As multi-Hamiltonian PDEs possess travelling wave solutions, we wish to see

how well multisymplectic integrators preserve these types of solutions.

We mainly use the leapfrog method applied to the nonlinear wave equation

as our test problem and look for the preservation of periodic travelling waves.

We call the resulting equation the discrete travelling wave equation. It cannot

be solved exactly. Therefore, our analysis begins with numerically solving the

discrete travelling wave equation for simplified nonlinearities.

Next, we mov on to analysing periodic solution for a smooth nonlinearity.

This results in the presence of resonances in the solutions for certain combina-

tions of the parameters. Finally, we use backward error analysis to compare

and back up our results from numerical analysis.
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Chapter 1

Geometric Integration of

Ordinary Differential Equations

This chapter begins with an introduction to ordinary differential equations

and then moves on to the numerical solution of ordinary differential equations.

Next we look at a type of ODE known as a Hamiltonian system. We then look

at the idea of symplecticity, which is a property inherent to all Hamiltonian

ordinary differential equations. The chapter continues by exploring other types

of geometric properties that an ordinary differential equation may possess and

how methods are constructed to preserve such properties. Next, we look at

some numerical experiments using symplectic integrators. Finally, we begin

an introduction to backward error analysis for ordinary differential equations.

1.1 Introduction to Ordinary Differential Equa-

tions (ODEs)

Differential equations are often formed to describe some physical phenomenon.

An ordinary differential equation (ODE) contains only ordinary derivatives

[102] of one or more dependent variables with respect to a single independent
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variable. For example,
d2x

dt2
+ 16x = 0

is an ODE with one dependent variable, x, and one independent variable, t.

Our differential equations will generally be of the form

dy

dt
= f(t, y) and

d2y

dt2
= f(t, y, y′) (1.1)

and are called evolution equations, and represent physical systems. They are

called evolution equations because they contain time t as the independent

variable and so the derivatives are taken with respect to time. A solution then

evolves as time goes by. We seek a solution y(t) of the above equations (1.1).

Some analytical methods are known, but quite often an ODE cannot be solved

exactly and this is when we turn to numerical methods.

A system of ODEs contains two or more equations involving two or more

dependent variables with respect to a single independent variable. For exam-

ple,

du

dt
= f(t, u, v)

dv

dt
= g(t, u, v)

(1.2)

is a system of first order differential equations with dependent variables, u and

v, and independent variable, t.

We will generally be talking about systems of equations and these can be

written more compactly as

ẏ = f(t, y), (1.3)

where y is a vector in RN representing a point in phase space, ẏ is the derivative

of the dependent variables with respect to t, and f(t, y) is a vector-valued

function representing a vector field. In the above system, (1.2), y = (u, v), and

is a point in the phase plane R2.

Normally, we impose some condition or conditions on the solution y(t) of

(1.1) or its derivatives. When these side conditions are given we seek the solu-

tion of an initial value problem (IVP). Imposing initial conditions on equations
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(1.1) respectively, we get

dy

dt
= f(t, y), y(t0) = y0

d2y

dt2
= f(t, y, y′), y(t0) = y0, y

′(t0) = y1

where y(t0) = y0 represents the position of an object at some initial time t0,

and y′(t0) = y1 the velocity at t0.

Autonomous differential equations have no explicit dependence on the in-

dependent variable. That is, the vector field f does not depend on t. Equation

(1.3) can be written as an autonomous first order system of differential equa-

tions:

dy

dt
= f(y).

Any non-autonomous equation (1.3) can be converted to an autonomous

system by raising the dimension by 1 and introducing an additional y-component

whose derivative always equals 1. For (1.3) we get the (N + 1)-dimensional

autonomous system,

dy

dt
= f(yN+1, y)

dyN+1

dt
= 1

1.1.1 Flow Map

The flow map of an ODE is a mapping which takes initial data to later points

along trajectories. That is, the flow map takes any initial point y0 in phase

space and associates the value y(t) of the solution. The map is denoted by ϕt

and therefore defined by,

ϕt(y0) = y(t),

where y(0) = y0.
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1.2 Numerical Solutions of ODEs

Even if it can be shown that a solution of an ODE exists, it might be difficult

or even impossible to find the solution analytically. Therefore, we often have

to be satisfied with finding an approximate solution by a numerical method or

an “integrator”.

This section begins to introduce one-step methods using the Euler method

as an example. The general form of a one-step method is then given, followed

by a brief discussion on multistep methods. Next, an introduction to the types

of errors involved in using a numerical method is given. The Euler method is

then used to show how the truncation error of a method is calculated using a

Taylor series expansion. Next, other examples of one-step methods are given,

followed by a class of one-step methods known as Runge–Kutta integrators.

The errors in Runge–Kutta methods are then described using rooted trees.

Finally, splitting and composition methods are discussed briefly.

The simplest example of a numerical method is Euler’s method. It uses the

idea of approximating values of a function using tangent lines. Euler’s method

for a first order initial value problem y′ = f(t, y), y(t0) = y0, is

yn+1 = yn + hf(tn, yn),

where h is called the step size and tn = t0 + nh, n = 0, 1, 2, . . . .

The repeated use of Euler’s formula for n = 0, 1, 2, . . . produces the y-

coordinates y1, y2, y3, . . . of points on successive tangent lines to the solution

curve at t1, t2, t3, . . . .

If the system is autonomous then Euler’s method simplifies slightly to

yn+1 = yn + hf(yn). (1.4)

Euler’s method is an explicit one-step method. It is explicit since all infor-

mation to find the next approximation is known, and it is a one-step method

since only one previous value is needed to determine the current value. General

one-step methods are written in the following form,

yn+1 = Φh(yn),
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for some mapping Φh : RN → RN .

Implicit methods require solving a system of equations by some iterative

method. An example of an implicit method, for an autonomous system, is the

implicit Euler method,

yn+1 = yn + hf(yn+1). (1.5)

In (1.5), we see that to find the next approximation yn+1, the function needs to

be evaluated at yn+1. Therefore, the approximation yn+1 is defined implicitly

and is found by solving a system of nonlinear equations.

Hence, one step of an implicit method tends to be more computationally

expensive than one step of an explicit method. Despite this, implicit methods

are sometimes preferred because the time step can be larger (for so-called

‘stiff’ systems) and they can have different geometric properties than explicit

methods.

Multistep methods can also be explicit or implicit, but instead of using the

value from one previous step to obtain the current value, they use the values

from several computed steps. This is done in attempt to achieve greater ac-

curacy. The following are examples of explicit and implicit multistep methods

respectively,

yn+2 = yn + 2hf(yn+1), (1.6)

yn+2 =
4

3
yn+1 −

1

3
yn +

2

3
hf(yn+2). (1.7)

Both equations, (1.6) and (1.7), give 2-step methods since the next value,

yn+2, depends on two previous values, yn and yn+1. Equation (1.6) is an

explicit method because the function f is only evaluated at previous time

values (yn+1) that are already computed. On the other hand, (1.7) is implicit

since the function evaluation contains the time value (yn+2) that is currently

being computed.

1.2.1 Errors in Numerical Methods

When using a numerical method we must be aware of the different types of

errors that can be introduced. Accumulation of error could reduce the accuracy
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of the solution we are trying to approximate.

Round-off error [102] is the error due to the calculations being done by a

calculator or computer that can only calculate up to a finite number of digits.

This type of error can be reduced by reducing the number of calculations to

be made.

The other type of error involved comes from using the numerical method

itself to approximate values of the solution. This is called the local truncation

error or sometimes also called the discretisation error, and is introduced at

each step of the method. Using Euler’s method as an example, we can derive

the local truncation error using Taylor’s formula with remainder.

Say we are given an equation,

ẏ = f(t, y), y(t0) = y0,

and want to solve this using Euler’s method,

yn+1 = yn + hf(tn, yn).

Taylor’s formula with remainder is given below,

y(t) = y(a) + y′(a)
t− a

1!
+ · · ·+ yk(a)

(t− a)k

k!
+ yk+1(c)

(t− a)k+1

(k + 1)!

where c is some point between a and t.

If we set k = 1, a = tn, and t = tn+1 = tn + h, we get

y(tn+1) = y(tn) + y′(tn)
h

1!
+ y′′(c)

h2

2!

or y(tn+1) = yn + hf(tn, yn)︸ ︷︷ ︸
yn+1

+y′′(c)
h2

2!
(since y′ = f(t, y))

⇒ yn+1 = yn+1 + y′′(c)
h2

2!
.

Therefore, the local truncation error in yn+1 for Euler’s method is y′′(c)h
2

2!
,

where tn < c < tn+1.

The value of c exists only theoretically and therefore the exact error cannot

be calculated, but an upper bound on the absolute value of the error is Mh2

2!
,

where M = maxtn<t<tn+1 |y′′(t)|.
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Using the Landau ‘big O’ notation, the local truncation error of Euler’s

method, a first order method, is O(h2). The global error of Euler’s method is

O(h). In general, if the error in the numerical method is of order hn and h is

halved, the error is reduced by a factor of about 1
2n

. This means that methods

with higher order do better for a small value of h.

1.2.2 Other One-Step Methods

The implicit Euler method is similar to the explicit Euler method, except that

the function evaluation is done at the value we are trying to estimate. For

ẏ = f(y), implicit Euler is,

yn+1 = yn + hf(yn+1).

The Trapezoidal Rule takes the average of the function evaluation at the pre-

vious value (yn) and current value (yn+1),

yn+1 = yn +
h

2
(f(yn) + f(yn+1)). (1.8)

The implicit midpoint rule averages the function evaluation over the previous

value (yn) and current value (yn+1),

yn+1 = yn + hf

(
yn + yn+1

2

)
. (1.9)

1.2.3 Runge–Kutta Methods

Runge–Kutta (RK) methods are also one-step methods which basically [102]

generalise the Euler method. The slope function f of the Euler method is

replaced in a Runge–Kutta method by a weighted average of slopes over the

interval tn ≤ t ≤ tn+1. That is, a Runge–Kutta method is of the form,

yn+1 = yn + h (b1k1 + b2k2 + · · ·+ bmkm)︸ ︷︷ ︸
Weighted Average

,

where bi, i = 1, 2, . . . ,m, are constants that satisfy b1 + b2 + · · ·+ bm = 1, and

each ki is a function evaluation of f at a selected point.
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By taking m = 1, b1 = 1, and k1 = f(tn, yn), we get the Euler formula,

yn+1 = yn + hf(tn, yn).

Let s be an integer [36] and a21, a31, a32, . . . , as1, as2, . . . , as,s−1, b1, . . . , bs,

c2, . . . , cs be real coefficients. Then the method

k1 = f(t0, y0)

k2 = f(t0 + c2h, y0 + ha21k1)

k3 = f(t0 + c3h, y0 + h(a31k1 + a32k2))

· · ·

ks = f(t0 + csh, y0 + h(as1k1 + · · ·+ as,s−1ks−1))

y1 = y0 + h(b1k1 + · · ·+ bsks),

is called an s-stage explicit Runge–Kutta method (ERK) for ẏ = f(t, y),

y(t0) = y0.

Usually, the ci satisfy the conditions

ci =
i−1∑
j=1

aij. (1.10)

The above method can be written in tableau form

0

c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

.

Let bi, aij, (i, j = 1, . . . , s) be real numbers and let ci =
∑s

j=1 aij be defined

as above. The method

Yi = yn + h
s∑
j=1

aijf(Yj), (1.11)

yn+1 = yn + h

s∑
i=1

bif(Yi), (1.12)
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is called an s-stage Runge–Kutta method. The constant coefficients {bi} and

{aij} completely describe a Runge–Kutta method. When aij = 0 for i ≤ j we

have an explicit (ERK) method. If aij = 0 for i < j and at least one aii 6= 0,

we have a diagonally-implicit Runge–Kutta method (DIRK). If in addition all

diagonal elements are identical we have a singly-diagonally-implicit (SDIRK)

method. In all other cases we have an implicit Runge–Kutta method (IRK).

The coefficients for Implicit Runge–Kutta methods can also be displayed

in a tableau, known as a Butcher tableau after its founder.

c1 a11 . . . a1s

...
...

...
. . .

cs as1 . . . ass

b1 . . . bs

.

1.2.4 Errors for Runge–Kutta Methods

In the years 1963–72 Butcher developed a nice way of analysing the error and

finding the order conditions for Runge–Kutta methods (see [11]) using rooted

trees. The order conditions are derived by comparing successive terms in the

Taylor series expansions of the exact (1.13) and numerical solutions. For the

autonomous problem,

ẏ = f(y), y(t0) = y0, (1.13)

where f : RN → RN is sufficiently differentiable, we firstly compute the higher

derivatives of the solution y at the initial point t0. This is done by repeated

differentiation of the differential equation. Using the chain rule we find that

ÿ =
d

dt
f(y) = f ′(y)ẏ.

Note that f ′(y) = ∂
∂y
f(y) and ẏ = d

dt
y.

Continuing in this way, and also using the product rule and symmetry of partial
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derivatives, we get,

ẏ = f(y)

ÿ = f ′(y)ẏ

y(3) = f ′′(y)(ẏ, ẏ) + f ′(y)ÿ

y(4) = f ′′′(y)(ẏ, ẏ, ẏ) + 3f ′′(y)(ÿ, ẏ) + f ′(y)y(3)

y(5) = f (4)(y)(ẏ, ẏ, ẏ, ẏ) + 6f ′′′(y)(ÿ, ẏ, ẏ)

+ 4f ′′(y)(y(3), ẏ) + 3f ′′(y)(ÿ, ÿ) + f ′(y)y(4),

and so on.

Next we insert ẏ, ÿ, . . . recursively into the above equations, remembering

f = f(y), to get,

ẏ = f

ÿ = f ′f

y(3) = f ′′(f, f) + f ′f ′f

y(4) = f ′′′(f, f, f) + 3f ′′(f ′f, f) + f ′f ′′(f, f) + f ′f ′f ′f,

and so on.

The expressions on the right hand side of the above formulas are called

elementary differentials and can be represented as rooted trees. A tree is a

connected graph which does not contain any cycles. A rooted tree specifies

one of the vertices as the root. Following standard practice the root is placed

at the bottom of the tree.

Definition 1.2.1. (Rooted Trees). The set T of rooted trees τ [37] is defined

recursively as:

•, the graph with only one vertex is in T

If τ1, . . . , τm ∈ T then τ = [τ1, . . . , τm] ∈ T , where τ is the graph obtained

by grafting the roots of τ1, . . . , τm to a new vertex.
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To represent each elementary differential as a rooted tree, each kth derivative

f (k) becomes a vertex with k branches and f becomes a single vertex. For

example the rooted tree of the elementary differential f ′f ′′(f, f) is constructed

by first noting that f ′ is a vertex with one branch (see Figure 1.1).

�� �� ���

����

�����

���

Figure 1.1: First step in the formation of the rooted tree for the elementary

differential f ′f ′′(f, f).

Next, we have the rooted tree for f ′′, which is a vertex with two branches

(see Figure 1.2).
�

�����

���

����

����

���

Figure 1.2: Second step in the formation of the rooted tree for the elementary

differential f ′f ′′(f, f).

Finally, we add a vertex to each branch for (f, f) to get the final rooted

tree for f ′f ′′(f, f) (see Figure 1.3).

The order of τ , the number of vertices, is denoted by |τ |. The coefficients

in front of the elementary differentials in the derivative equations are denoted

by α(τ).
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Figure 1.3: Final step in the formation of the rooted tree for the elementary

differential f ′f ′′(f, f).

Definition 1.2.2. (Elementary Differentials). For a tree [37] τ ∈ T the ele-

mentary differential is a mapping F (τ) : RN → RN , defined recursively by

F (•)(y) = f(y), and

F (τ)(y) = f (m)(y) (F (τ1)(y), . . . , F (τm)(y))

where τ = [τ1, . . . , τm].

Theorem 1.2.1. [37]. The qth derivative of the exact solution is given by

y(q)(t0) =
∑
|τ |=q

α(τ)F (τ)(y0),

where α(τ) are positive integer coefficients (of the elementary differentials).

Let v be a vertex in a tree τ . Say v has a downward, or inward, directed

branch; then the branch is connected to a vertex w of τ called a parent of v.

Similarly, if v has an upward, or outward, directed branch then the branch is

connected to a vertex x of τ called a child of v. For example, in the tree in

Figure 1.4, vertex v has one parent w and two children x and y.

��

�� ��

��

Figure 1.4: Illustration of lower and upper vertices in a rooted tree.

Also, we call some of the vertices leaves. If the order of a tree |τ | > 1, then

a vertex, excluding the root, is a leaf if it has no children. The root is the

vertex without a parent. The leaves are labeled in Figure 1.5 for two trees.
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Figure 1.5: Illustration showing the leaves of rooted trees.

For every tree τ there is a related polynomial denoted by φ(τ) and a con-

stant denoted by γ(τ).

To write out the polynomial φ(τ) we firstly assign labels to each vertex.

The root is labeled i and every other vertex which is not a leaf is given a label

j, k, . . . . For example, a given tree is labeled in Figure 1.6.


�

��

����� �����

	�

�����

�����

��

Figure 1.6: Labeling of a rooted tree τ for the related polynomial φ(τ).

Next, we start from the bottom of the tree and work our way up giving

each label a factor. Starting at the root, we assign i the factor bi. For every

other label at a vertex we assign the factor ajk where j is a parent of k. For

the same tree above see Figure 1.7.

Finally, for each leaf we assign the factor cj where j is a parent of the leaf

(see Figure 1.8).

We now form the product,

bi

(∏
ajk

)(∏
cj

)
,

then sum this product over i, j, k, . . . from 1 to s.
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Figure 1.7: Labeling of a rooted tree τ for the related polynomial φ(τ), with

factors assigned to each label.
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Figure 1.8: Labeling of a rooted tree τ for the related polynomial φ(τ), with

factors assigned to each label and leaf.

14



For the above tree, we get,∑
biaijajlaikc

3
l ck.

Using coefficients from the specific Runge–Kutta method, this gives a series

of order conditions, the set of algebraic conditions on the coefficients of the

method that must be satisfied for the method to be of order p.

In contrast to φ(τ) we form γ(τ) for a particular τ by working from the

top of the tree, the leaves, to the bottom of the tree, the root. First, we assign

each leaf the value 1. Using the same tree as was used in the previous example,

we get the labeling given in Figure 1.9.

	�

	�
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Figure 1.9: Labeling of the leaves of a rooted tree τ for the related polynomial

γ(τ).

Working downwards to the next set of vertices, we assign these with the

sum of the values of the children plus 1. We continue down the tree to the

root until all vertices are given a value (See Figure 1.10).

We now multiply all the values of the vertices to get γ(τ). For the above

tree, we have,

γ = 8.5.4.2.1.1.1.1 = 320.

By expanding the Runge–Kutta method in a Taylor series and comparing

this term by term with the expansion of the exact solution we get conditions

for the coefficient of each elementary differential of order < p to be zero. These

conditions are polynomial equations in the Runge–Kutta coefficients aij, bi and

ci and will ensure that the method has order p.
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Figure 1.10: Labeling of the leaves and other vertices of a rooted tree τ for the

related polynomial γ(τ).

Expansion of the method is more complicated than the exact solution.

Details can be found in [37], [11], and [12]. After finding this expansion we get

the following theorem.

Theorem 1.2.2. [37]. The derivatives with respect to h at h = 0 of the

numerical solution of a Runge–Kutta method are given by

y
(q)
1 |h=0 =

∑
|τ |=q

γ(τ).φ(τ).α(τ)F (τ)(y0),

where α(τ) and F (τ) are the same as in Theorem 1.2.1 and the coefficients

γ(τ) and the elementary weights φ(τ) are obtained from the tree τ as described

earlier.

Comparing this with the exact solution in Theorem 1.2.1 we get the following

theorem.

Theorem 1.2.3. The Runge–Kutta method has order p if and only if

ϕ(τ) =
1

γ(τ)
for |τ | ≤ p.

We give an example of the elementary differentials and the coefficients for

the trees of order three in Table 1.1.
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Graph F (τ) α(τ) γ(τ) σ(τ) φ(τ)
�

f ′′(f, f) 1 3 2
∑

ijk biaijaik

f ′f ′f 1 6 1
∑

ijk biaijajk

Table 1.1: Trees of order 3 with their elementary differentials and coefficients.

1.2.5 Splitting and Composition Methods

For an ODE ẏ = f(y), y ∈ RN , there are three main steps involved in a

splitting method. First, the vector field f is split up into a sum of vector fields

fi,

f(y) =
n∑
i=1

fi(y).

Next, each fi is integrated either exactly or approximately. Finally, the so-

lutions are combined to form an integrator for f . This last step is known

as composition. We give the standard 1st and 2nd order compositions as an

example to clarify the last step.

For these examples, suppose that the vector field f is split into two parts,

f(y) = f1(y) + f2(y).

Let us also say that both f1(y) and f2(y) can be integrated exactly to give

the exact flows ϕf1(t) and ϕf2(t) of the systems ẏ = f1(y) and ẏ = f2(y)

respectively.

Combining these solutions by composition we form the following 1st order

integrator for f(y),

Φh = ϕh,f1 ◦ ϕh,f2 .

Composing the solutions in a slightly different way, we get the 2nd order

integrator,

Φh = ϕh
2
,f1
◦ ϕh,f2 ◦ ϕh

2
,f1
.

The advantages of splitting methods are that they are usually simple and

explicit, and can also preserve a variety of structures. On the other hand,
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higher order splitting methods tend to be costly to implement. Also, the

splitting may sometimes break up an important property that we may want

to preserve.

A couple of examples of Hamiltonian splitting are given in Section 1.8.1.

1.3 Hamiltonian Systems

Hamiltonian systems [46] are common in many branches of applied mathemat-

ics and physical sciences and possess some important structures or geometric

properties [100]. These include symplecticity (see Section 1.4), conservation

laws (see Section 1.5), preservation of Poisson brackets (see Section 1.3.3), and

symmetries (see Sections 1.6 and 1.7). These properties are usually destroyed

when a numerical method is applied to the system, but special numerical

methods can be found to solve such systems while preserving these properties.

These numerical methods are known as geometric integrators. More detail on

geometric integrators is given in Section 1.8.

Hamiltonian systems are of the form

q̇ = Hp(q, p), ṗ = −Hq(q, p),

where the Hamiltonian H = H(q1, ..., qd, p1, ..., pd) : RN × RN → R represents

the total energy of the system; qi, (q ∈ RN), are the position coordinates,

and pi, (p ∈ RN), the momenta for i = 1, ..., N , with N the number of de-

grees of freedom; Hp = (∂H
∂q

)T and Hq = (∂H
∂p

)T are column vectors of partial

derivatives. The Hamiltonian function H(q, p) is a first integral or conserved

quantity (see Section 1.5) of the system.

It is often convenient to use the shorthand notation,

ż = J∇zH(z), (1.14)

where z = (q, p)T , q, p ∈ RN , z ∈ R2N , and J is the 2N × 2N canonical

structure matrix,

J =

(
0 IN×N

−IN×N 0

)
.
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Often the Hamiltonian H of a system can be written in the form,

H(q, p) = T (q, p) + V (q),

where T is the kinetic energy and V is the potential energy. Systems written

in this way can be solved by special methods. References [86, 46] give a good

introduction to Hamiltonian systems and numerical methods for such systems

such as splitting methods. This is shown in Section 1.8.1.

1.3.1 N-Body Newtonian Gravitational Problem

N -body problems involve finding the motion of N bodies in time, given their

initial positions, masses, and velocities. Each body interacts with all other

bodies and the motions are then determined by classical mechanics. The mo-

tion can be cast into a Hamiltonian system: for Newtonian gravitational forces,

q̇i =
1

mi

pi, ṗi = −G
N∑

j=1,j 6=i

mimj

‖qi − qj‖3 (qi − qj), i = 1, 2, . . . , N

with Hamiltonian,

H(p, q) =
1

2

N∑
i=1

1

mi

pTi pi −G
N∑
i=2

i−1∑
j=1

mimj

‖qi − qj‖
,

where pi and qi are the position and momenta vectors of the ith body respec-

tively, G is the gravitational constant, and mi is the mass of the ith body.

1.3.2 Molecular Dynamics

Molecular Dynamics, “in its simplest form”, [53] requires the solution of Hamil-

tonian systems, where the total energy is given by,

H(p, q) =
1

2

N∑
i=1

1

mi

pTi pi +
N∑
i=2

i−1∑
j=1

V (rij) ,

with rij = ‖qi − qj‖ and V (r) a given potential function, that is, the interaction

potential between the ith and jth particle.
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The N particles interact [36] pairwise with potential forces depending on

the distances of the particles.

The equations of motion are

q̇i =
1

mi

pi, ṗi = −
N∑
j=1

V ′(rij)

rij
(qi − qj), i = 1, 2, . . . , N,

where rij = ‖qi − qj‖.
Molecular dynamics simulations are important in the areas of chemistry,

physics, bio-science and engineering. N -body problems, as described in Section

1.3.1, are an example of molecular dynamics. The idea is to construct a model

approximating the trajectories and to use this to obtain knowledge about how

the molecules evolve in time.

Molecular systems generally contain very rapid oscillatory motions and be-

cause of this very small time steps are usually needed. Therefore, molecular

simulations tend to need to be run for extremely long times to gain any infor-

mation about the motion of the particles in time. It is not only the case of

needing small time steps that require the simulations in molecular dynamics to

be run for long times, but the molecules themselves can take a very long time

to thermalise. Thermalisation occurs when the particles reach thermal equi-

librium. They can also exhibit different behaviour on different time scales. An

example where small time steps and long thermalisation time occur is protein

folding, which can take milliseconds (10−3 seconds) to reach thermalisation

with a very small time step of a few femtoseconds (10−15 seconds). In addi-

tion, the force evaluations at each time step are generally complicated and can

therefore slow down the simulation process.

To start the simulation process, arbitrary initial positions and velocities

are chosen. The system is then evolved in time to reach thermalisation. The

positions and velocities are then taken at this stage to be the initial data and

the simulation run again, ignoring the initial simulation that was performed.

The results of simulations are generally gathered over long runs and some-

times also over many initial conditions. These results are then used to study

processes such as conformational changes of large molecules.
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1.3.3 Poisson Systems

Poisson systems are a generalisation of Hamiltonian systems. To motivate this

generalisation we first introduce the canonical Poisson bracket. In a Poisson

system J is replaced with a non constant matrix B(z).

The derivative of a function F (p, q) along the flow of a Hamiltonian system,

ṗ = −∂H
∂q

(p, q), q̇ =
∂H

∂p
(p, q), (1.15)

is given by,

d

dt
F (p(t), q(t)) =

d∑
i=1

(
∂F

∂pi
ṗi +

∂F

∂qi
q̇i

)
=

d∑
i=1

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
. (1.16)

This very symmetric equation motivates the following definition.

Definition 1.3.1. The (canonical) Poisson bracket of 2 smooth functions

F (q, p) and G(q, p) is the function

{F,G} =
d∑
i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
, (1.17)

or in vector notation

{F,G}(z) = ∇F (z)TJ∇G(z),

where z = (q, p) and J =

(
0 I

−I 0

)
.

This Poisson bracket is bilinear, skew-symmetric ({F,G} = −{G,F}), and

satisfies the Jacobi identity,

{{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0,

and Leibniz’s rule,

{F ·G,H} = F · {G,H}+G · {F,H}.

With this notation, the Lie derivative (1.16) becomes

d

dt
F (z(t)) = {F,H}(z(t)).
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If we take [37] F (z) = zi, the mapping that selects the ith component of z, we

see that the Hamiltonian system (1.15) or ż = J∇H(z) can be written as,

żi = {zi, H}, i = 1, . . . , 2d.

The general Poisson bracket in vector notation is given by,

{F,G}(z) = ∇F (z)TB(z)∇G(z).

It is bilinear and is skew-symmetric if B(z) = −B(z)T . If it also satisfies

the Jacobi identity then it is called a Poisson bracket and the corresponding

system

ż = B(z)∇H(z)

is known as a Poisson system.

The Euler rigid body equations are an example of a Poisson system in R3 and

are given by 
ż1

ż2

ż3

 =


0 −z3 z2

z3 0 −z1

−z2 z1 0



z1
I1
z2
I2
z3
I3

 ,
where I1, I2, and I3 are the principal moments of inertia, and

H =
1

2

(
z2

1

I1

+
z2

2

I2

+
z2

3

I3

)
.

Functions [68] C : R2N → R, which are preserved for arbitrary Hamiltonians

H, that is, Ċ = {C,H} = 0, ∀H, are called Casimir functions. For the rigid

body bracket, C = z2
1 + z2

2 + z2
3 is a Casimir.

Solutions of Poisson systems are confined to a level set of the Casimirs, and

each such level set is an example of what is called a symplectic manifold. Thus,

Poisson dynamics look essentially like Hamiltonian dynamics in a nonlinear

space.

1.4 Symplecticity

This section begins with the definition of a symplectic map and that of a

simplified version, a symplectic linear transformation. A geometric interpre-
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tation of symplecticity for 2-dimensional systems is then given. Next we give

the proof that the flow map of a Hamiltonian system is symplectic. Finally,

we introduce the concept of symplecticity in terms of the wedge product of

2-forms.

Definition 1.4.1. A smooth map ψ : R2N → R2N is called symplectic, with

respect to the canonical structure matrix J , if its Jacobian ψ′(z) satisfies,

ψ′(z)TJ−1ψ′(z) = J−1, (1.18)

where J was given by (1.3) and the Jacobian is a matrix given by,

ψ′ij(z) =
∂ψi
∂zj

.

For a linear [53] transformation ψ = Az, the condition of symplecticity

reduces to,

ATJ−1A = J−1,

where A is known as a symplectic matrix.

Equation (1.18) is related to the conservation of areas in phase space. For

systems with one degree of freedom, for example z = (q, p) ∈ R2, symplecticity

corresponds to preservation of area in the (q, p)-plane. We can show this by

taking,

ψ′(z) =

[
a b

c d

]
,

whose determinant is given by |ψ′(z)| = ad− bc.
We now substitute this matrix into (1.18) to get,[

0 ad− bc
bc− ad 0

]
=

[
0 1

−1 0

]
which gives the equivalent conditions ad − bc = 1 and bc − ad = −1. Hence

the determinant of the Jacobian is one, so a symplectic map is equivalent to

preservation of area for systems with one degree of freedom.

In words, taking the area of sets of initial conditions then applying the flow

results in a shape that becomes distorted from the initial sets but whose area
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remains constant. Figure 1.11 demonstrates this. In the background is the

phase portrait of the pendulum and on the left at position A we have a set

of initial conditions forming the shape of a cat face. The cat face A is then

integrated and follows the heteroclinic orbit (see Section 3.1 for a definition).

As the face traces out this orbit it becomes more and more distorted but its

area remains the same as the original cat face at A. Similarly, the cat face at B

follows a periodic orbit, with the cat face areas remaining the same. For higher

dimensions, the flow preserves [23] the sum of the oriented areas projected onto

the (qi, pi)-coordinate planes.

This can be explained in more detail using the differential geometry view

of symplecticity, given below.

Theorem 1.4.1. The flow map ϕ(t) : R2N → R2N of a Hamiltonian system,

ż = J∇zH(z), is symplectic.

Proof. Let A(t) = ϕ′(t) ∈ RN×N be the Jacobian of the flow map and note

that A(t) satisfies the variational equation,

d

dt
A(t) = JHzz(z)A(t),

where Hzz(z) is the symmetric Hessian matrix of H.

A(0) is the identity map, so we get,

AT (0)J−1A(0) = IJ−1I = J−1.

Hence the theorem is true for t = 0 and therefore only need to show that
d
dt

(
AT (t)J−1A(t)

)
= 0.

d

dt

(
AT (t)J−1A(t)

)
=

d

dt
(AT (t))J−1A(t) + AT (t)J−1 d

dt
(A(t))

= AT (t)HzzJ
TJ−1A(t) + AT (t)J−1JHzzA(t)

= −AT (t)HzzA(t) + AT (t)HzzA(t), (since JT = −J)

= 0.
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 !" Philosophy of geometric integration  !

Fig# $#%# Phase portrait and 1ow of the pendulum 7from Hairer and Wanner:# The area of each cat is preservedin time> the manifestation of symplecticity# Energy> whose levels sets are the curves shown> is preserved# Rotationby CDE 77q! p:  ! 7"q!"p:: is a symmetry> while 1ipping upFdown 7p  ! "p: is a reversing symmetry# It has one discrete symmetry and one discrete reversing symmetry 2see Lecture 567 The symmetry92q! p6 !" 2#q!#p69 maps the vector ;eld into itself> the reversing symmetry9 2q! p6 !" 2q!#p69 maps thevector ;eld into minus itself7 Imagining ?owing along one of the solution curves9 you can see that themotion of the re?ected points is constrained7Because this is such a simple system9 preserving any of these three properties gives a geometric inBtegrator with good longBtime behavior for almost all initial conditions7 A picture of its phase portraitwill look very similar to the true phase portrait> weFll see examples of this in Section I7J7 By contrast9standard methods 2e7g7 EulerFs method6 destroy the qualitative phase portrait completely7 !" Philosophy of geometric integrationIn any numerical study9 one should examine any geometric or structural properties of the ODE or its ?ow> design numerical methods which also have these structural properties> and examine the consequences9 hopefully over and above the immediate ones7This encourages us to confront questions of phase space and degrees of freedom> think about the signi;cance of local9 global9 and qualitative errors> and think about the kinds of tools and functions allowed in numerical analysis7For example9 multistep methods do not de;ne a map on phase space9 because more than one initialcondition is required7 They can have geometric properties9 but in a diPerent 2product6 phase space9 whichcan alter the ePects of the properties7 2See Fig7 I7 I76 This puts geometric integration ;rmly into theQsingle stepR camp7 If a system is de;ned on a sphere9 one should stay on that sphereS anything elseintroduces spurious9 nonBphysical degrees of freedom7The direct consequences of geometric integration are that we are studying a dynamical system which is close to the true one9 and in the right class> and

Figure 1.11: Flow of a Hamiltonian system, (the Pendulum), showing preser-

vation of areas. This figure is reproduced from [53].
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Symplecticity can also be introduced using the language of differential

forms, an approach which is both a convenient form of calculation and also of-

fers a geometric insight into the meaning of symplecticity. We will now briefly

sketch this approach.

Definition 1.4.2. A 2-form on R2N is a skew-symmetric bilinear function

ω(ξ, η), where ξ, η ∈ R2N . Bilinearity means that ω is linear in each of its

arguments ξ and η. Skew-symmetry means

ω(ξ, η) = −ω(η, ξ), ∀ξ, η.

For an introduction to differential forms and their derivatives see [1].

The canonical structure matrix J (1.3) introduces the symplectic 2-form

[53] ω on the phase plane R2N . The symplectic 2-form is defined as,

ω(ξ, η) = ξTJ−1η,

where ξ, η ∈ R2d.

As stated earlier, symplecticity is related to preservation of areas in phase

space. Also, the 2-form ω, is geometrically interpreted in this way. For N = 1,

ω(ξ, η) is the oriented area of the parallelogram spanned by ξ, η ∈ R2. See

Figure 1.12.

Figure 1.12: The 2-form ω for d = 1.

For N > 1, ξ, η ∈ R2N are projected down onto the (qi, pi)-planes with

corresponding vectors ξ(i), η(i) ∈ R2, where i = 1, . . . , N . Then ω(ξ, η) is the

sum of the oriented areas of the parallelograms spanned by ξ(i) and η(i).
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If we now apply a transformation, ψ : R2N → R2N , to the symplectic 2-form

ω, then the transformation ψ is symplectic if

ψ∗ω(ξ, η) = ω(ψz(z)ξ, ψz(z)η) = ω(ξ, η).

That is, the symplectic 2-form is invariant under a symplectic map. Introduc-

ing the wedge product of two differentials df and dg as

(df ∧ dg)(ξ, η) = dg(ξ)df(η)− df(ξ)dg(η),

we can express the 2-form ω as,

ω =
∑
i

dpi ∧ dqi.

Or, we can use the following shorthand notation,

ω = dp ∧ dq.

Under the transformation

p̂ = ψ1(p, q),

q̂ = ψ2(p, q),

symplecticity now becomes,

dp̂ ∧ dq̂ = dp ∧ dq.

1.5 Conserved Quantities

A non-constant function [38] I(y) is a first integral, also known as conserved

quantity, constant of motion, or invariant, of the differential equation ẏ = f(y)

if I(y(t)) is constant along every solution, or equivalently, if

∇I(y)T ẏ = 0 ∀y (1.19)

⇒∇I(y)Tf(y) = 0. (1.20)
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Having a first integral is a ‘geometric property’ [53] of a system because

its existence implies that the solutions are to some extent described by the

geometry of the lower dimensional manifolds {y ∈ R2N : I(y) = constant}.
The Hamiltonian of any Hamiltonian system is an example of a first inte-

gral.

For a Hamiltonian system ṗ = −Hq(q, p), q̇ = Hp(q, p), we get

d

dt
H(q, p) = Hp(q, p)

T ṗ+Hq(q, p)
T q̇

= −Hp(q, p)
THq(q, p) +HT

q (q, p)Hp(q, p)

= 0.

Hence H(q, p) is constant along any solution z = (q, p).

In Poisson bracket notation I(q, p) is a first integral of a Hamiltonian system

with Hamiltonian H if and only if {I,H} = 0.

1.6 Symmetries

Consider the ODE ẏ = f(y), y ∈ RN . A diffeomorphism S is a symmetry of f

if

S ′f(y) = f(y) ◦ S. (1.21)

The significance of symmetries for the dynamics includes:

• symmetries map solutions to solutions;

• the fixed set of a symmetry is invariant, which can be useful for finding

special (“symmetric”) solutions; and

• when the system is Hamiltonian and has a symplectic symmetry S, the

system has a lot of other special properties as well.

The linear or affine symmetries of an ODE are those for which the function S

in (1.21) is linear or affine. An example of such a symmetry is given using the
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pendulum,

q̇ = p, (1.22)

ṗ = − sin(q). (1.23)

Setting

y =

[
q

p

]
,

then S(y) = −y is a symmetry of the pendulum equation (1.22).

To see that S is a symmetry of the pendulum we write the mapping out in

full, [
q

p

]
7→

[
−q
−p

]
.

The pendulum (1.22) becomes,

−q̇ = −p,

−ṗ = − sin(−q),

and multiplying both sides of each equation by −1 we get,

q̇ = p,

ṗ = sin(−q) = − sin(q), (since sin(q) is an odd function),

which is just the equations of the original system. In geometric terms, the

symmetry S in this example is just a rotation of the phase space by π. This

can be seen from looking at phase portrait of the pendulum in Figure 1.11

or more easily seen from the exact solution of the pendulum in Figure 1.24.

Also we notice that the phase portrait is symmetric about the lines q = 0 and

p = 0. These reflection symmetries are described in Section 1.7. A composition

of these two reflections gives the π rotation symmetry.
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1.7 Reversible Differential Equations

An ODE ẏ = f(y), y ∈ RN possesses the time-reversal symmetry R, where R

is a diffeomorphism, if it is invariant under{
y → R(y)

t → −t
.

For example, for conservative mechanical systems [36], such as Hamiltonian

systems, this means that inverting the direction of the velocity vector and

keeping the initial position the same does not change the solution trajectory,

but only inverts the direction of motion.

All second order differential equations ü = g(u) written as a first order

system, u̇ = v, v̇ = g(u) are reversible.

It was mentioned in Section 1.6 that the pendulum has two other obvious

symmetries, other than that of the example given in that section. These re-

flection symmetries are time-reversing symmetries. We show that one of these

refections is a time-reversing symmetry for the pendulum (1.22). If we have

the mapping [
q(t)

p(t)

]
7→

[
q(−t)
−p(−t)

]
,

the pendulum, (by the chain rule), becomes,

−q̇(−t) = −p(−t),

ṗ(−t) = − sin(q(−t)),

and multiplying the first equation by −1, we get

q̇(−t) = p(−t),

ṗ(−t) = − sin(q(−t)).

This symmetry corresponds to an up-down flip of the phase portrait. The

left-right flip of the phase portrait can similarly be shown to be a time-reversing

symmetry.
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As seen from the examples in this section and the previous one, a system

may possess more than one symmetry or time-reversing symmetry. The com-

bined set of all symmetries and reversing symmetries of a system is called its

reversing symmetry group. The reversing symmetry group of the pendulum is

a four-element group, the Vierergruppe{
Id, S

([
q

p

])
=

[
−q
−p

]
, R1

([
q

p

])
=

[
q

−p

]
, R2

([
q

p

])
=

[
−q
p

]}
.

1.8 Geometric Integrators

We have seen that ODEs often have geometric properties such as symplecticity,

first integrals, and (reversing) symmetries. All the ODEs with a particular set

of such properties form a class, and may share dynamical features that are

not shared by ODEs not in the class. It is therefore natural to ask, when

solving such a system, whether or not these intrinsic properties are preserved

by the numerical method. This question has been greatly addressed over the

last decade, and methods by which structural properties are preserved now

come under the title of ‘geometric integrators’. Other properties of interest,

not already mentioned include, but are not limited to, preservation of phase

space volume, energy, momentum, and dissipation.

Geometric integrators fall into two main categories [65]. There are inte-

grators which happen to preserve a property when present in any system and

integrators which are intentionally designed to preserve a specific property or

properties common to special classes of systems. For example, the implicit

midpoint rule automatically preserves all quadratic integrals.

More and more interest has grown in methods [80] that are custom-built

to preserve qualitative features of systems of ODEs. This has led to sym-

plectic integrators for Hamiltonian systems, volume-preserving integrators for

divergence free ODEs, integral-preserving integrators for systems containing

first integrals, or constants of motion, as they are sometimes known, and in-

tegrators that preserve both symmetries and time-reversing symmetries. See

[37, 66, 10, 68] for an introduction to geometric integrators.
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Preservation of these geometric properties is important for the long-term

stability of dynamical systems. For general methods, that may not preserve

geometric properties, the small errors tend to accumulate which can lead to

qualitatively wrong results. For example, bounded orbits may become un-

bounded, or dissipation could be introduced. By using special purpose meth-

ods we reduce these errors producing more accurate results.

1.8.1 Symplectic Integrators

A numerical method is called symplectic if [38] the Jacobian of the numerical

flow Φh(pn, qn) = (pn+1, qn+1) satisfies,

Φ′h(p, q)
TJ−1Φ′h(p, q) = J−1.

Or, in wedge product notation,

dpn+1 ∧ dqn+1 = dpn ∧ dqn

is preserved exactly. In other words, the wedge product at one step of the

method is equal to the wedge product at the previous step.

As was previously stated, the flow map of a Hamiltonian system is sym-

plectic. Therefore, when solving such a system, we choose to use a symplec-

tic integrator, thereby preserving the symplectic structure and improving the

qualitative solution compared with a general method. The papers [58, 87] give

introductions to symplecticity and give some examples of symplectic integra-

tors.

The condition for being symplectic is more general than the condition for

being a Hamiltonian flow map. There exist symplectic maps that are not the

flow of any Hamiltonian system. Although this is the case, symplectic methods

impose conditions so restrictive that some integrals of the flow may also be

preserved. For example, symplectic methods [23] exactly conserve a nearby

Hamiltonian and this ensures long-time approximate conservation of energy, a

first integral of a Hamiltonian system. A more detailed explanation for this

is given in Section 1.11.1. Symplectic integrators generally only show this
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desirable behaviour when using fixed step size implementation. The paper [38]

gives an example of symplectic integration using the leapfrog method.

To compare the qualitative results of a symplectic integrator and a non-

symplectic integrator we use the harmonic oscillator as an example. The

Hamiltonian is H(q, p) = 1
2

(p2 + q2), and the equations of motion are,

ṗ = −q, q̇ = p.

In Figure 1.13 we plot the exact solution of the system, along with the solu-

tion from a non-symplectic integrator and a symplectic integrator. The exact

solution (left graph) gives a series of closed or periodic orbits. Comparing the

non-symplectic integrator solution (middle graph) with this exact solution (left

graph), it can be seen that it gives completely wrong behaviour. The exact

solution gives a series of level curves which are periodic, whereas the Euler

method gives a solution which spirals out clockwise from the centre. In this

case, it would be expected that the energy error from this method would grow

very fast and become unbounded. The graph on the left in Figure 1.14 con-

firms this, showing exponential energy error. Now, comparing the symplectic

integrator solution with the exact solution, it can be seen that they both give

a solution with a series of periodic solutions. The symplectic method does not

exactly lie on the orbits of the exact solution, but at least it gives the right

qualitative behaviour. Here, it would be expected that the energy error is

bounded. This is confirmed in the left graph of Figure 1.14, showing approxi-

mate conservation of the energy or Hamiltonian of the system, as expected for

symplectic integrators for Hamiltonian ODEs.
One way of constructing symplectic methods for Hamiltonian systems is

by splitting the Hamiltonian into a sum of simpler Hamiltonians,

H(z) =
k∑
i=1

Hi(z),

such that each Hamiltonian vector field ż = J∇zHi(z) is explicitly solvable.

A symplectic integrator can then be derived by an appropriate composition of

the flow maps. The method is symplectic since the flow map is symplectic and

a composition of symplectic flow maps, produces a symplectic map.
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Figure 1.13: Exact solution of the harmonic oscillator (left), compared with

two numerical solutions, the Euler method - solution spirals out clockwise from

the centre (middle) and a symplectic integrator (right).

Using the harmonic oscillator with Hamiltonian H(q, p) = 1
2

(p2 + q2) as an

example again, the energy H can be split into its kinetic and potential terms,

H = H1 +H2, H1 =
1

2
p2, H2 =

1

2
q2.

Now, H1 and H2 are exactly integrable. The equations of motion for H1

are

ṗ = −∂H1

∂q
= 0

q̇ =
∂H1

∂p
= p,

which has flow map,

ϕt,H1

[(
p

q

)]
=

(
p

q + tp

)
.
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Figure 1.14: Energy error of the Euler method (left) and a symplectic integra-

tor (right) when applied to the harmonic oscillator.

Similarly, the equations of motion of H2 are

ṗ = −∂H1

∂q
= −q

q̇ =
∂H1

∂p
= 0.

So, H2 has flow map,

ϕt,H2

[(
p

q

)]
=

(
p− tq
q

)
.

Since each map is the flow map of a Hamiltonian system, each is symplectic.

Therefore the map,

Φh = ϕh,H1 ◦ ϕh,H2 ,

is symplectic.

This type of splitting into explicitly solvable subproblems may not always

be possible. If it is not possible, but the system still possesses some kind of

partitioning then an effective scheme may still be able to be constructed by
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substituting a symplectic method for the exact flow at some stage. If splitting is

not possible, then symplectic Runge–Kutta and symplectic partitioned Runge–

Kutta methods can be constructed.

The splitting derived above can be used on all systems with a separable

Hamiltonian of the form,

H(q, p) = T (p) + V (q),

where T (p) is the kinetic energy and V (q) the potential energy of the system.

Following the example for the harmonic oscillator, we naturally split the

Hamiltonian into its kinetic and potential parts,

H1(p) = T (p), H2(q) = V (q).

The equations of motion for H1, the kinetic term, are

ṗ = 0,

q̇ = ∇pT (p).

Since p is constant along solutions and q varies linearly in time, the above

equations are completely integrable. The flow map is

ϕt,V (p, q) =

(
p

q + t∇pT (p)

)
.

Similarly, for the potential term, H2, the equations of motion are

ṗ = −∇qV (q),

q̇ = 0

and the flow map is,

ϕt,T (p, q) =

(
p− t∇qV (q)

q

)
.

Now, the composition of these two maps,

Φh = ϕh,T ◦ ϕh,V ,
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where t = h, is a symplectic map.

The splitting methods given above are first order symplectic methods. A

second order symplectic method can also be constructed by the following split-

ting,

H = H1 +H2 +H3,

with,

H1 = T (p)

H2 = V (q)

H3 = T (p).

Taking the composition,

Φh = ϕ 1
2
h,T ◦ ϕh,V ◦ ϕ 1

2
h,T ,

and simplifying we get the well known leapfrog method,

qn+ 1
2

= qn +
1

2
h∇pT (pn)

pn+1 = pn − h∇qV (qn+ 1
2
)

qn+1 = qn+ 1
2

+
1

2
h∇pT (pn+1).

Higher order splitting methods are constructed in [98].

1.8.2 Preserving First Integrals

Numerical integrators used for preserving first integrals tend to be quite costly,

as they are generally implicit, and do not typically give a qualitative solution

as accurate as using simpler and more easily implemented symplectic methods.

However, there are still good reasons for preserving some integrals of a system.

Preserving first integrals [79] is important because of their physical relevance

and also because they can ensure long-term stabilising effects. They also play

a significant role in determining which bifurcations generically occur. In par-

ticular, it is important that a first integral be preserved if the dimension of the
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system is low, if the integration time is very long, or if the integral-surface is

compact.

All methods that are of practical use, such as all explicit and implicit

Runge–Kutta methods, exactly conserve linear invariants, and a specific class

of Runge–Kutta methods exactly conserve quadratic invariants.

Conservation laws for Hamiltonian systems with symmetry [31] are usually

destroyed by a numerical integrator in time. This could possibly lead to physi-

cally impossible solutions or numerical instability. Therefore, for Hamiltonian

systems with symmetry it is important that physically consequential integrals

are preserved when applying a numerical integrator. Integrators that do this

are usually called conserving integrators.

1.8.3 Symmetric and Time-Reversible Integrators

The flow ϕt of an ODE ẏ = f(y), y(t0) = y0 satisfies

ϕ−1
−t = ϕt.

Generally, the map Φh of a numerical integrator [36] does not share this prop-

erty. Those that do are called symmetric integrators. We will see below that

symmetric integrators are useful for constructing integrators that preserve re-

versing symmetries.

It is important to preserve symmetries because non-generic bifurcations

can become generic in the presence of symmetries, and vice versa. In addition,

reversing symmetries give rise to the existence of invariant tori and invariant

cylinders. The adjoint method is important in understanding the concept of

symmetry.

Definition 1.8.1. The adjoint method Φ∗h of an integrator Φh is defined as

Φ∗h = Φ−1
−h.

In words, the adjoint method is the inverse map of the original method with

reversed time step.
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A method which satisfies

Φ∗h = Φh

is called symmetric.

The adjoint method has the same order and same absolute value of the

leading error term as the original method. As an example, the implicit mid-

point (1.9) and the trapezoidal (1.8) method are symmetric methods, whereas

the implicit Euler and the explicit Euler method are not symmetric methods.

We show that the implicit midpoint rule is symmetric and the explicit Euler

method is not symmetric.

For the implicit midpoint method Φh = yn +hf(1
2
(yn + yn+1)). The inverse

Φ−1
h is obtained by swapping yn and yn+1, so the adjoint method Φ−1

−h is,

yn = yn+1 − hf(
1

2
(yn+1 + yn))

⇒ yn+1 = yn + hf(
1

2
(yn + yn+1)),

which is the implicit midpoint method. Hence it is symmetric.

For the explicit Euler method Φh = yn + hf(yn), the adjoint method Φ−1
−h

is

yn = yn+1 − hf(yn+1)

⇒ yn+1 = yn + hf(yn+1),

which is the implicit Euler method, so the explicit Euler method is not symmet-

ric; neither is the implicit Euler method. But the explicit Euler and implicit

Euler method are adjoint methods of each other.

If a method is not symmetric, a symmetric method can easily be con-

structed by composing a half step of the method with a half step of its adjoint

method. The method

Φ̂h = Φ∗1
2
h
◦ Φ 1

2
h, (1.24)

is symmetric. We illustrate this by taking Φh as the implicit Euler method
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and Φ∗h as the explicit Euler method then (1.24) becomes,

yn+ 1
2

= yn +
1

2
hf(yn)

yn+1 = yn+ 1
2

+
1

2
hf(yn+1).

Substituting the first equation into the second equation we get,

yn+1 = yn +
1

2
hf(yn) +

1

2
hf(yn+1)

= yn +
1

2
h(f(yn) + f(yn+1))

which is the implicit midpoint rule. We showed this was a symmetric method

earlier, so the composition of the implicit Euler and the explicit Euler gives

the symmetric implicit midpoint method.

Linear or affine symmetries are preserved by all Runge–Kutta methods,

and linear or affine time-reversing symmetries are preserved by all symmetric

Runge–Kutta methods.

1.9 N-Body Simulations Using a Symplectic

Integrator

Any numerical experiment performed should be reproducible. As an introduc-

tion to symplectic integration the following two sections contain reproductions

of simulations from the literature.

1.9.1 The Leapfrog Method Applied to the Lennard–

Jones Potential

In this numerical experiment we simulate a molecular dynamics system using

the Lennard–Jones potential.

The Lennard–Jones Potential

The Lennard–Jones potential was developed in 1924 to model pairs of un-

charged atoms or molecules. A pair of neutral atoms is subject to two distinct
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forces. At close range two atoms will be strongly repulsive, and at a distance

from each other the two atoms will possess a weak attractive force. As a con-

sequence of the strong repulsive force we would expect that the particles never

collide with each other, since once two particles get close enough to each other

the forces will take over and the particles will repel each other before they get

a chance to touch.

�

�

Figure 1.15: The attractive and repulsive forces of the Lennard–Jones poten-

tial.

The Lennard–Jones potential is given by

ϕL.J.(r) = ε

[( r̄
r

)12

− 2
( r̄
r

)6
]
, (1.25)

where:

• ϕ is the intermolecular pair potential between two particles;

• r is a the atomic separation between two particles;

• ε is the well depth (or energy); and

• r̄ is the equilibrium atomic separation (the value of r at which ϕ′(r) = 0).

The
(
r̄
r

)12
term in (1.25) is the repulsive term and the term

(
r̄
r

)6
is the

attractive term.
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The Simulation

In this experiment, we aim to replicate the two-dimensional Lennard–Jones

experiment given in [53] and study the rearrangement of particles over time.

N is the number of particles to be studied.

The equations of motion for a two-dimensional Lennard–Jones system with

Lennard–Jones potential (1.25) is a molecular dynamics problem given by,

q̇i = pi,

ṗi = −
∑
i 6=j

ϕ′L.J.(rij)

rij
(qi − qj), i = 1, 2, . . . , N,

where rij = ‖qi − qj‖.
In our simulation we take ε = 1 and r̄ = 1, so we get,

ϕL.J.(rij) = r−12
ij − 2r−6

ij ,

and,

ϕ′L.J.(rij) = −12r−13
ij + 12r−7

ij .

The leapfrog method was used to simulate a simplified molecular system con-

sisting of N equal mass particles interacting via a Lennard–Jones potential.

The particles were placed on a regular Cartesian lattice, with each particle

perturbed slightly from its exact lattice position. This was the initial configu-

ration of the particles for the simulation. Next, the simulation was run using

the leapfrog method.

Conclusions

Figure 1.16 gives snapshots of the dynamics of the system with N = 169 par-

ticles at various times during the simulation. After 1 step we see the particles

in their almost lattice positions. By 150 steps we see that the corners of the

lattice are starting to change shape and the four particles in each corner tend

to be forming a more diamond-shaped configuration than a square one. By

the time 200-250 steps have been taken we see triangles forming in the once

42



Cartesian lattice and by 400 steps a triangular lattice takes over the most part

of the original Cartesian lattice.

Once formed, the particles tend to stay at this triangular lattice configu-

ration. We also notice that the triangular lattice configuration is not entirely

uniform with gaps forming amongst particles in the configuration. At 400 and

600 steps we see some of these gaps separating the triangular lattice.
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Figure 1.16: Results of the simulation: Snapshots of the dynamics of the two-

dimensional Lennard–Jones system.

As can be seen from the snapshots of the simulation in Figure 1.16, the

Cartesian lattice is not a stable equilibrium structure for the Lennard–Jones

system. If it were we would expect the particles to oscillate chaotically about

their lattice sites, but instead the system rearranges itself into a more favourable

configuration which is near a triangular lattice. At this energy level, the par-

ticles are mostly held together by the attractive effect of the Lennard–Jones

potential, although it is possible for particles to be ejected occasionally from
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the group.

The energy error for 50000 time steps is plotted in 1.17. The error is

bounded so we expect that our numerical solution is giving good long-time

behaviour.
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Figure 1.17: Energy error of the two-dimensional Lennard–Jones system.

1.9.2 The Outer Solar System

The outer solar system is modeled as an N -body problem using data from

[37]. The model used is based on 6 bodies: The sun and the five outer planets,

Jupiter, Saturn, Uranus, Neptune, and Pluto. See Figure 1.18 for a diagram of

the initial position of the planets. The entire system orbits around the centre

of mass of the system.

The equations of motion of the solar system are

q̇i =
pi
mi

,

ṗi = −
10∑

j=1,j 6=i

Gmimj(qi − qj)
‖qi − qj‖3 , i = 1, 2, . . . , N,

with Hamiltonian,

H(p, q) =
1

2

6∑
i=1

1

mi

pTi pi −G
5∑
i=1

6∑
j=i+1

mimj

‖qi − qj‖
,
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Figure 1.18: The initial position of the outer planets relative to the sun.

where qi ∈ R3 are the positions coordinates of body i, pi ∈ R3 are the momenta,

mi are the masses of each body i, and G = 2.95912208286 × 10−4 is the

gravitational constant (values from [37]).

The masses of the planets are given relative to the mass of the sun, so that

the sun has mass 1. However, in this simulation the mass of the sun is very

slightly greater than 1 to account for the inner planets, which are not included

in the simulation. The initial position for the sun is q1(0) = (0, 0, 0)T and the

initial velocity is q̇1(0) = (0, 0, 0)T . The initial data for the planets is given in

the table in [37]. For the simulation the velocities are converted to momenta.

See Figure 1.19 for the orbits of the planets after the simulation has been run

with a step size of h = 20 days.

When doing any numerical experiment it is important to calculate the

energy in order to determine whether or not the simulation gives qualitatively

correct behaviour. Figure 1.20 gives the energy error for the simulation of

10000 steps. It appears that the energy fluctuates but is bounded, which

is good for our results. In order to confirm that the energy error remains

bounded and does not grow with time, we plot the energy error for a million

steps in Figure 1.21. In this figure we see that the energy does remain bounded

within a narrow band. The total energy of the system in this simulation is

2.2075× 10−5.
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Figure 1.19: Orbits of the outer solar system.
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Figure 1.20: The energy error of the outer solar system after 10000 time steps.
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Figure 1.21: The energy error of the outer solar system after 1000000 time

steps.

We expect the planets to travel around the sun in bounded, close-to-

elliptical orbits as occurs in “real world”. In Figure 1.19 we see that our

simulation does orbit the sun in close to elliptical orbits.

1.10 Conservation Laws

First integrals and symplecticity can both be regarded as types of conservation

laws for ODEs. These laws can be distinguished by where the law is evaluated.

The first type of conservation law, or first integral, is evaluated on solutions

to the system and can be written as

Ht = 0. (1.26)

For Hamiltonian systems (1.26) is conservation of energy where H is the

Hamiltonian. This was already proved in 1.5.

The second conservation law, symplecticity, for an ODE is the differential

conservation law and is evaluated on solutions to the first variation of the
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system. For an ODE the differential conservation law has the form

ωt = 0, (1.27)

where ω is the usual 2-form.

For Hamiltonian ODEs (1.27) is simply conservation of symplecticity, which

is inherent to all Hamiltonian systems. A symplectic method will satisfy a

discrete version of (1.27).

In general, any integrator that preserves a discrete analogue of any of the

conservation laws is said to preserve the same property as the conservation

law. For example, if the conservation law is conservation of energy and energy

is preserved by a numerical method then the method is known as an energy

preserving integrator.

In Section 2.3.1 the analogues of the energy and differential conservation

laws for PDEs will be discussed.

1.11 Backward Error Analysis (BEA)

In this section we introduce backward error analysis for ODEs by first dis-

cussing its beginnings in numerical linear algebra and then make the extension

to numerical integrators. Next, we introduce the form of the modified differ-

ential equation and truncation of the modified equations, which are needed to

begin a formal analysis. We then give an example of a simple ODE integrated

by the explicit Euler method and find the modified equation, displaying the

solution of the modified differential equation at different order truncations.

Finally, we look at the relationship between geometric properties of the ODE

and the modified differential equation. In particular, we look at the modified

Hamiltonian of symplectic integrators for Hamiltonian systems, and give an

example using the symplectic Euler method applied to the pendulum.
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1.11.1 Introduction

Backward error analysis (BEA) is a tool used to analyse the long-time be-

haviour of numerical integrators. The idea began in the field of numerical

linear algebra, with Wilkinson [97] in 1960, and was extended to numerical

integration in the late 80s and early 90s [33, 28, 85, 24, 99].

In numerical linear algebra backward error analysis is used as a way to

calculate the accumulation of rounding errors in a variety of matrix algorithms.

An example of this is Gaussian elimination for solving a linear system of

equations

Ax = b,

where A is an N × N invertible matrix of the coefficients of the unknown

variables, x ∈ RN is a vector of the unknown variables, and b ∈ RN is known.

Quite often “real world” problems have real coefficients, which are ex-

pressed as decimal approximations. In this case, the problem being solved is

only an approximation to the actual problem. That is, A and b themselves

have small measurement errors even before any calculations have been per-

formed.

If the exact problem is being solved and all calculations are performed

exactly then the Gaussian elimination method will produce exact solutions,

but if finite digit arithmetic is used at each step of the Gaussian elimination

method a rounding error is introduced at each step.

Then the resulting solution is the exact solution of a nearby system of

equations.

The idea of backward error analysis can be extended to numerical integra-

tors, whereby a linear system of equations is replaced by a system of differential

equations. Instead of rounding errors in the linear algebra setting, we now get

truncation errors introduced at each step of the method. And the solution

obtained by a numerical method is the exact solution of a nearby system of

differential equations. This nearby system is called the modified differential

equation (MDE). This can be summarised in Figure 1.22, motivated by [37],

where ẏ = f(y) is an ODE with initial value y(t0) = y0, ϕt(y0) is the flow map of
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the ODE, Φh(y) is a numerical method producing approximations y0, y1, y2, . . .

with step size h, and ẏ = f̃h(y) is the modified differential equation.
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Figure 1.22: The MDE as the exact solution of a perturbed problem. This

diagram is reproduced from [37].

If a geometric integrator is used, then the numerical solution is the exact

solution of a perturbed system of differential equations satisfying the same geo-

metric properties. For example, in Section 1.8.1, we said that when a symplec-

tic integrator is applied to a Hamiltonian system we get long-time approximate

conservation of energy (or the Hamiltonian). This approximate conservation

of energy comes from the fact that we are applying a symplectic integrator

to a Hamiltonian system, which itself is symplectic and hence the solution

obtained from the method will be the exact solution of a nearby Hamiltonian

system. Since this nearby system is Hamiltonian, then this system will have its

own Hamiltonian or energy which will be conserved, giving approximate con-

servation of the original Hamiltonian system. The Hamiltonian of the nearby

system is known as the modified Hamiltonian.

Backward error analysis is helpful when studying the qualitative behaviour

of numerical methods and the consequences for long-time simulations. It is

also useful for comparing the value of different methods.

The following sections involve initial value problems for ODEs and their

numerical integrations.
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1.11.2 The Modified Differential Equation (MDE)

The modified differential equation ẏ = f̃h(y) is a formal series in powers of the

step size h and has the form,

ẏ = f(y) + hf2(y) + h2f3(y) + . . . , (1.28)

where f(y) is the original vector field in the ODE and f2(y), f3(y), . . . are

functions to be determined.

Equation (1.28) is generally a divergent infinite series and needs to be trun-

cated before any analysis can be made. Error is introduced by the truncation

of this series, but this can be made exponentially small by ‘optimal truncation’.

The optimal truncation index is found by putting bounds on the coefficient

functions fj(y). The theorem for the existence of an optimal truncation is

given in Theorem 1.11.1. A series possessing these properties is known as an

asymptotic series.

Theorem 1.11.1. Let ẏ = F̃N(y) where F̃N(y) is the N − 1 order truncation

of the modified differential equation (1.28) given by,

F̃N(y) = f(y) + hf2(y) + h2f3(y) + · · ·+ hN−1fN(y),

then there exists an N = N(h) such that the difference between the numerical

solution y1 = Φh(y0) and the exact solution of the truncated modified differen-

tial equation ϕ̃N,h(y0) satisfy,

‖Φh(y0)− ϕ̃N,h(y0)‖ ≤ hc1e
c2/h

where c1, c2 > 0 are appropriate constants.

The proof and details are given in [37].

Note that for a finite truncation of the modified differential equation, as

the number of terms increases in the truncation, the solution of the modified

equation gets closer and closer to the numerical solution, up to the ‘optimal

truncation’.
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A formal backward error analysis begins with the construction and trun-

cation of the modified differential equation and then a study of its properties

in comparison to the original ODE.

To find the unknown functions fi(y), i = 2, 3, . . . in the modified equation

(1.28), the following steps are used.

1. y(t+ h) is expanded in a Taylor series.

2. The modified equation (1.28) and its derivatives are substituted into the

expansion of y(t+ h).

3. Coefficients of like powers of h (from the previous step) are compared to

the numerical method Φh(y) to find fi(y), i = 2, 3, . . ..

Using the above steps, we get

1.

y(t+ h) = y + hẏ +
h2

2!
ÿ +

h3

3!
y(3) + . . .

2.

y(t+ h) = y + hẏ +
h2

2!
ÿ +

h3

3!
y(3) + . . .

= y + h(f(y) + hf2(y) + . . .) +
h2

2!
(f ′(y)(f(y) + hf2(y) + . . .)

+ hf ′2(y)(f(y) + hf2(y) + . . .))

= y + h(f(y) + hf2(y) + . . .)

+
h2

2!
(f(y) + hf2(y) + . . .)(f ′(y) + hf ′2(y) + . . .) + . . .

(1.29)

3. Assume that the numerical method is some expansion of the form,

Φh(y) = y + hf(y) + h2d2(y) + h3d3(y) + . . . (1.30)

The functions di(y) are usually made up of f(y) and its derivatives. For

the explicit Euler method we simply have di(y) = 0 for all i ≥ 2.
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Comparing coefficients of like powers in h in (1.30) and (1.29), we get

from the h terms f(y) = f(y). This always occurs for consistent methods.

We get f2(y) from the h2 terms, f3(y) from the h3 terms, and so on. The

first two functions are given below.

f2(y) = d2(y)− 1

2!
f ′f(y) (1.31)

f3(y) = d3(y)− 1

3!
(f ′′(f, f)(y) + f ′f ′f(y))− 1

2!
(f ′f2(y) + f ′2f(y)).

(1.32)

Notice that f2(y) appears in the formula for f3(y), so that the function

fi(y), i = 2, 3, . . . are defined recursively.

Using the definition of the Lie derivative,

(Dig)(y) = g′(y)fi(y), (1.33)

where f1(y) = f(y) a general formula for all fi(y) can be defined. By using

the Lie derivative (1.33), equations (1.31) and (1.32) can be rewritten as

f2(y) = d2(y)− 1

2!
(D1f1)(y)

f3(y) = d3(y)− 1

3!
(D2

1f1)(y)− 1

2!
(D2f1 +D1f2)(y).

Lemma 1.11.1. If the numerical method has an expansion of the form Φh(y) =

y + hf(y) + h2d2(y) + h3d3(y) + . . . then the functions fi(y), i = 2, 3, 4, . . . of

the modified differential equation (1.28) satisfy

fi(y) = di(y)−
i∑

j=2

1

j!

∑
k1+...+kj=i

(
Dk1 . . . Dkj−1

fkj
)

(y),

where km ≥ 1 ∀m. Notice the right hand side involves only fk(y) where k < j.

A proof can be found in [37].

As a simple example we calculate the modified equation for a specific ODE,

ẏ = y2, y(0) = 1, using the explicit Euler method, Φh(y) = y + hf(y), with

step size h = 0.02. The steps are the same as the above, for the general case,
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except in step 3, we can use the equations (1.2) and (1.3) to find f2(y) and

f3(y) and put d2(y) = 0 and d3(y) = 0 and substitute f(y) = y2 from the ODE

given. We get

f2(y) = −y3

f3(y) = −y4 − 1

3
(2yf2(y) + f ′2(y)y2),

where f3(y) is defined recursively, but can be written out explicitly by substi-

tuting in f2(y) and its derivative, to get

f3(y) =
3

2
y4.

Therefore the modified equation for the explicit Euler method applied to

ẏ = y2 is,

ẏ = y2 − hy3 + h2 3

2
y4 + . . . . (1.34)

The solution of the truncated modified equation (1.34) can now be com-

pared with the numerical solution. This is shown in Figure 1.23 for different

truncations of (1.34). As expected, the solutions of the truncated modified

equation (1.34) get closer to the solution of the Euler method as the number

of terms in the truncation increases. The blue curve gives the truncation af-

ter one term, which is equivalent to the exact solution. The blue curve is far

away from the red curve, which gives Euler’s method. The green curve gives

the truncation after two terms of (1.34) and is much closer to the numerical

solution (red curve) than the blue curve. Truncation after three terms gives

the solution corresponding to the yellow curve, which lies almost exactly on

the numerical solution.

1.11.3 Geometric Properties and the Modified Differ-

ential Equation

All proofs for the following theorems can be found in [37].

Theorem 1.11.2 (Modified Equations of Symmetric Methods). The coeffi-

cient functions of the modified equation of a symmetric method satisfy fi(y) = 0
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Figure 1.23: Comparison of truncated solutions of the modified differential

equation (1.34) and the numerical solution from Euler’s method (red) of the

equation ẏ = y2, y(0) = 1. The blue curve gives the truncation after the 1st

term (or the exact solution), the green curve the truncation after the 2nd term,

and the yellow curve the truncation after the 3rd term.
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whenever i is even, so that the modified differential equation (1.28) has an ex-

pansion in even powers of h.

Theorem 1.11.3 (Modified Equations of Reversible Methods). Let ẏ = f(y)

be a ρ-reversible differential equation and Φh(y) a ρ-reversible method. Then

every truncation of the modified differential equation (1.28) is ρ-reversible.

Theorem 1.11.4 (Modified Equations of Symplectic Methods). If a symplec-

tic method Φh(y) is applied to a Hamiltonian system with a smooth Hamilto-

nian H : R2N → R, then the modified equation (1.28) is also Hamiltonian.

That is, there exist smooth functions Hi : R2N → R, i = 2, 3, . . ., such that

fi(y) = J−1∇Hi(y).

So for numerical methods applied to Hamiltonian systems ẏ = J−1∇H(y)

the corresponding modified differential equation is also Hamiltonian and its

Hamiltonian has the form

H̃(y) = H(y) + hH2(y) + h2H3(y) + . . . .

Figure 1.24 gives the exact solution of the pendulum and its modified

Hamiltonian, truncated up to order h2, for the symplectic Euler Method for

different values of the step size h. The phase portraits are given by the coloured

lines and the symplectic Euler method in black. It is well known that for suf-

ficiently small step sizes, a symplectic integrator for a Hamiltonian ODE gives

good long-time behaviour. The figure on the top left gives the phase portrait

of the exact Hamiltonian of the pendulum. On the top right is the phase

portrait of the modified Hamiltonian for small step size h = 0.1. Here the

solution is almost exactly the same as that for the exact Hamiltonian and the

symplectic Euler method almost matched the modified Hamiltonian. Moving

down to the bottom left, we have the symplectic Euler method and phase

portrait of the modified Hamiltonian for a relatively large step size h = 0.7.

Here the symplectic Euler method is starting to show chaos at the fixed points

(q, p) = (−π, 0) and (q, p) = (−π, 0). Other than that, the method and the

modified Hamiltonian almost match up showing a solution which is getting
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distorted, but still giving the correct qualitative behaviour. Finally, the figure

in the bottom right gives the phase portrait of the modified Hamiltonian and

the symplectic Euler method for large step size h = 1. Here, the method shows

chaos, but the modified Hamiltonian still seems to show the correct qualitative

behaviour. Therefore, the modified Hamiltonian seems to converge for some

values, but not where the numerical method is chaotic.

q

p

Exact Solution of the Pendulum

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 1.24: Solution of the pendulum and its modified Hamiltonian for the

symplectic Euler method.

Theorem 1.11.5 (Modified Equations of First Integrals). Let ẏ = f(y) be a

differential equation with first integral I(y), i.e., ∇I(y)Tf(y) = 0 for all y. If

the numerical method also preserves this first integral, then every truncation

of the modified equation (1.28) has I(y) as a first integral.

The converse is also true. That is, if I(y) is a first integral of the differential

equation ẏ = f(y) and every truncation of the modified equation (1.28) has

I(y) has a first integral, then the numerical method preserves I(y) exactly.
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See [40] for a thorough discussion of geometric properties of modified equa-

tions.

1.11.4 Long-Time Energy Conservation

The basis for thorough statements concerning the long-time behaviour of nu-

merical solutions involves estimating the difference between the numerical so-

lution and the exact solution of the modified differential equation.

We can look at this idea through the study of the long-time energy conser-

vation of symplectic methods applied to Hamiltonian systems ẏ = J−1∇H(y).

We get H̃(yn) = H̃(y0) + O(e
−h0
2h ) and H(yn) = H(y0) + O(hp) over expo-

nentially long times. The drift in energy H̃ remains exponentially small over

exponentially long-time intervals.
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Chapter 2

Multisymplectic Integration of

Partial Differential Equations

In the previous chapter we talked about symplectic integrators for Hamilto-

nian ODEs and how symplectic integrators give good long-time behaviour. We

want to see how these ideas generalise to Hamiltonian PDEs and multisym-

plectic integrators. Before looking at these ideas, an introduction to PDEs in

general is given. Further on in this chapter the construction and behaviour of

multisymplectic integrators is discussed, followed by a case study of Burgers’

equation.

2.1 Introduction to Partial Differential Equa-

tions (PDEs)

Partial differential equations (PDEs) contain one or more dependent variables,

say u, and their partial derivatives with respect to the independent variables.

An ODE contains only one independent variable, whereas a PDE contains two

or more independent variables. An example of a PDE is the wave equation,

∂2u

∂t2
= a2∂

2u

∂x2
(2.1)
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or

utt = a2uxx.

Here u is the dependent variable and x and t are the independent variables, and

u = u(x, t) is a solution satisfying the equation for some values of the indepen-

dent variables x, the spatial variable, and t, the time variable. The space-time

domain of (x, t) and suitable initial/boundary conditions, and function space

in which a solution is sought may also be specified. Zill and Cullen [102] give

an introduction to PDEs and numerical methods for solving them.

Many physical processes not only evolve continuously in time but also in

space, and can be described by PDEs. Also, many fundamental laws of physics,

such as [53] quantum mechanics, electrodynamics, and ideal continuum me-

chanics, can be extended to the Hamiltonian PDE (see Section 2.2) framework.

Very often, initial value problems for PDEs [36] can be conveniently trans-

formed into a system of ODEs by discretising the spatial derivatives. By using

finite difference approximations in the variable x, (the spatial variable), equa-

tion (2.1) becomes,

d2ui
dt2

=
a2

∆x2
(ui+1 − 2ui + ui−1),

where ui(t) ≈ u(t, xi). This procedure is called the method of lines or method

of semi-discretisation in space.

2.2 Hamiltonian PDEs

In this section we introduce one form of Hamiltonian PDEs and give a few

examples of PDEs written in this form.

A Hamiltonian PDE can be written [21] as,

ut = DδH
δu

, (2.2)

where H[u] is the Hamiltonian functional, u is a function, and δH
δu

is the vari-

ational derivative. A functional is a mapping from a function, or set of func-

tions, to a real value and the variational derivative of a functional measures
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how much the functional changes if its argument, the function, changes by an

infinitesimal amount. D is a skew-symmetric operator, that is, D satisfies

〈Dv, w〉 = −〈v,Dw〉 .

This generalises the ODE framework, where the analogous Hamiltonian

ODE system was given in (1.14). We give some examples of Hamiltonian

PDEs written in this way. The KdV equation is given by

ut + 6uux + uxxx = 0

and can be put into the form (2.2) in two different ways, showing that the

operator D is not unique. We get,

KdV I:

D1 =
∂

∂x
, H1 =

∫ ∞
−∞

(
1

2
u2
x − u3

)
dx.

KdV II:

D2 = u
∂

∂x
+

∂

∂x
u+

1

6
∂xxx, H2 = −

∫ ∞
−∞

1

2
u2dx.

The canonical infinite-dimensional Hamiltonian system is,

ut =
δH
δv
, vt = −δH

δu
, (2.3)

where if written in the form (2.2) we have,

D =

[
0 1

−1 0

]
.

The nonlinear wave equation is

utt − uxx = −V ′(u), (2.4)

where V (u) is some [7] smooth function and u is scalar valued.

We can rewrite the nonlinear wave equation in canonical form (2.3) by defining

a new variable

v = ut.
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The wave equation (2.4) now becomes

vt − uxx = −V ′(u)⇒ vt = uxx − V ′(u)

so that the canonical infinite-dimensional Hamiltonian system for (2.4) is

ut =
δH
δv

= v (2.5)

vt = −δH
δu

= uxx − V ′(u), (2.6)

where D is the canonical structure matrix given above and the Hamiltonian

functional is given by

H =

∫ ∞
−∞

(
1

2
v2 +

1

2
u2
x + V (u)

)
dx.

For a Hamiltonian PDE [83] energy is no longer represented by a single func-

tion. Instead, we have two functions, E(z), describing the local energy density,

and F (z), describing the local energy flux, in the system. Together, the energy

density and energy flux describe how the distribution of energy in a PDE varies

over time. The energy density and energy flux are described in more detail in

Section 2.3.1.

2.3 Multi-Hamiltonian PDEs

In this section we introduce multi-Hamiltonian PDEs as a direct extension of

Hamiltonian ODEs and give an example of a PDE in this form. We then discuss

conservation laws of multi-Hamiltonian PDEs and also the multisymplectic

conservation law.

For comparison later in this section, we rewrite the Hamiltonian ODE (1.14)

as,

Kzt = ∇zS(z) (2.7)

where K is some invertible skew-symmetric matrix and S is the Hamiltonian

of the system. If (2.7) is the canonical Hamiltonian ODE then K is just the

inverse of the canonical structure matrix J , given in 1.3.
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When a PDE is transformed to its canonical form, the resulting equations

contain only first order derivatives in time, but the space derivatives can be

of any order. By rewriting a Hamiltonian PDE as a system of equations

containing only first order derivatives in space and time we obtain the general

multi-Hamiltonian form

Kzt + Lzx = ∇zS(z) (2.8)

where z ∈ RN is the state variable, K, L ∈ RN×N are two (constant) skew-

symmetric matrices, S : RN → R is a smooth function, and ∇z is the standard

gradient in RN .

Comparing (2.8) to the Hamiltonian ODE form (2.7), we see that this

multi-Hamiltonian form is a direct extension, where instead of just first order

derivatives with respect to time we also have first order spatial derivatives.

The spatial derivatives introduce a second skew-symmetric matrix L. But, as

we will see in Section 2.3.1, S is no longer represents the Hamiltonian of the

system as it did in the ODE case.

Using the example in the previous section, we can rewrite the wave equa-

tion, (2.4), as a system containing only first order derivatives in space and

time. We define

ut = v, ux = w,

and the wave equation becomes the first order system,

ut = v (2.9)

ux = w (2.10)

vt − wx = −V ′(u). (2.11)

Taking,

z =


u

v

w

 , K =


0 1 0

−1 0 0

0 0 0

 , L =


0 0 −1

0 0 0

1 0 0

 ,
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and S(z) = −V (u) + 1
2
(w2 − v2), we get a multi-Hamiltonian form for the

wave equation (2.4). A Hamiltonian PDE written in this way is called a multi-

Hamiltonian PDE.

Currently, there is no general method for putting a Hamiltonian PDE into

its multi-Hamiltonian form, although the multi-Hamiltonian forms for many

conservative PDEs are known. These include PDEs for [68] nonlinear wave

equations, shallow-water equations, atmospheric flows, fluid-structure interac-

tion and water waves.

2.3.1 Conservation Laws

As was the case for ODEs, PDEs also have two types of conservation law

depending on where the law is evaluated. A conservation law evaluated on

solutions to the system has the form

E(z)t + F (z)x = 0. (2.12)

When (2.12) describes an energy conservation law, the functions E and F

are the energy density and energy flux functions respectively as described in

Section 2.2. The momentum conservation law for PDEs also has the form of

(2.12).

For multi-Hamiltonian PDEs, when S(z) does not depend explicitly on x

or t there are two fundamental conservation laws. Conservation of energy is

associated with translation invariance in time and conservation of momentum

is associated with translation invariance in space. In contrast to Hamiltonian

ODEs, the Hamiltonian function S(z) associated with the multi-Hamiltonian

system will not be conserved in any sense.

The total energy of the system is no longer represented by a single function,

but two functions E(z) and F (z). Together, they describe how the distribution

of energy in a PDE varies over time. Individually, E(z) describes the local

energy density, and F (z), the local energy flux of the system.

The energy and momentum conservation laws are local, which means the

conservation properties do not depend on a specific domain or on the boundary

64



conditions of the PDE.

Theorem 2.3.1. The energy conservation law for a multi-Hamiltonian PDE

is given by,

E(z)t + F (z)x = 0

where

E(z) = S(z) +
1

2
〈zx,Lz〉 , and

F (z) = −1

2
〈zt,Lz〉 .

Proof. We take the inner product of zt with the multi-Hamiltonian PDE (2.8),

〈zt,Kzt + Lzx〉 = 〈zt,∇zS(z)〉

⇒ 〈zt,Kzt〉+ 〈zt,Lzx〉 = 〈zt,∇zS(z)〉

⇒ 〈zt,Lzx〉 = 〈zt,∇zS(z)〉 ,

(due to the skew-symmetry of K, we have 〈zt,Kzt〉 = 0)

⇒ 1

2
〈zt,Lzx〉+

1

2
〈zt,Lzx〉 = S(z)t

⇒ 1

2
〈zt,Lzx〉 −

1

2
〈zx,Lzt〉 = S(z)t

⇒ 1

2
〈zt,Lz〉x −

1

2
〈ztx,Lz〉 − 1

2
〈zx,Lz〉t +

1

2
〈zxt,Lz〉 = S(z)t

⇒ 1

2
〈zt,Lz〉x −

1

2
〈zx,Lz〉t = S(z)t

⇒ S(z)t +
1

2
〈zx,Lz〉t −

1

2
〈zt,Lz〉x = 0.

Setting

E(z)t =

(
S(z) +

1

2
〈zx,Lz〉

)
t

and

F (z)x = −1

2
〈zt,Lz〉x ,

we obtain the energy conservation law.

Theorem 2.3.2. The momentum conservation law for a multi-Hamiltonian

PDE is given by

I(z)t +G(z)x = 0
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where

I(z) = −1

2
〈zx,Kz〉 , and

G(z) = S(z) +
1

2
〈zt,Kz〉 .

Proof. Similar to proof of Theorem 2.3.1 but take the inner product of zx with

Kzt + Lzx = ∇zS(z) instead.

A differential conservation law, which is evaluated on first variations to the

solutions of the system, is given for a PDE by

ωt + κx = 0 (2.13)

where ω and κ are 2-forms defined below for multi-Hamiltonian PDEs.

For Hamiltonian PDEs, the differential conservation law (2.13) is called the

multisymplectic conservation law and is a geometric property of the system.

Every multi-Hamiltonian PDE, a Hamiltonian PDE written in the form

of equation (2.8), where the Hamiltonian has space and time translational

invariance, has conservation laws of energy, momentum, and symplecticity.

For multi-Hamiltonian PDEs symplecticity may vary from position to position

and from time to time. Therefore, multisymplectic conservation laws describe

the conservation of the amount of multisymplecticity at each point in time and

correspond to the local conservation of some quantity, which is evaluated on

solutions to the first variation of the system.

In comparison to Hamiltonian ODEs where a symplectic form ω was de-

fined, Hamiltonian PDEs have two pre-symplectic forms,

ω =
1

2
dz ∧Kdz, κ =

1

2
dz ∧ Ldz. (2.14)

By taking the partial derivatives of these pre-symplectic forms with respect

to t and x respectively and combining these, we obtain the multisymplectic

conservation law.

Theorem 2.3.3. The multisymplectic conservation law is given by,

ωt + κx = 0

66



where ω and κ are defined in (2.14).

Proof. We take the first variation of the system (2.8) to get

Kdzt + Ldzx = S ′′(z)dz (2.15)

where S ′′(z) is the Hessian of S(z).

Now, we take the wedge product of dz with (2.15),

dz ∧ (Kdzt + Ldzx) = dz ∧ S ′′(z)dz

⇒ dz ∧Kdzt + dz ∧ Ldzx = 0 (since S ′′(z) is symmetric)

⇒ 1

2
dz ∧Kdzt +

1

2
dz ∧Kdzt +

1

2
dz ∧ Ldzx +

1

2
dz ∧ Ldzx = 0

⇒ 1

2
dz ∧Kdzt −

1

2
Kdz ∧ dzt +

1

2
dz ∧ Ldzx −

1

2
Ldz ∧ dzx = 0

⇒ 1

2
dz ∧Kdzt +

1

2
dzt ∧Kdz +

1

2
dz ∧ Ldzx +

1

2
dzx ∧ Ldz = 0

⇒ 1

2
(dz ∧Kdz)t +

1

2
(dz ∧ Ldz)x = 0

⇒ ωt + κx = 0.

Note that by local we mean that such conservation properties do not depend

on the specific domain or boundary conditions of the PDE. A local multisym-

plectic conservation law can be made global by integrating over the spatial

boundary conditions. This reduces the multisymplectic conservation law to a

symplectic conservation law, as for Hamiltonian ODEs in Section 1.10.

A table of the different conservation laws for ODEs and PDEs is sum-

marised in 2.1 and will be discussed in more detail in Section 2.5.

2.4 Solving PDEs Numerically

In Section 1.1 we saw that initial conditions were imposed on the ODE. These

initial conditions were needed if the ODE was to be solved by some numerical

method. Extending this to PDEs, where we now have at least two independent
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ODEs PDEs

Conservation law Ht = 0 Et + Fx = 0

Differential conservation law ωt = 0 ωt + κx = 0

Table 2.1: Conservation laws for ODEs and PDEs.

variables, say x and t, then for PDEs modeling dynamical processes we not

only have initial conditions in time t, but we also need boundary conditions

in space x. This gives us an example of boundary conditions for which this

problem is known as an initial-boundary value problem. The added spatial

condition on the PDE can completely change the numerical characteristics of

any method, so much so that it may not be well defined.

As stated in Section 2.1, PDEs can be transformed into a system of ODEs

by discretising the spatial derivatives. Time, t, will now be the only indepen-

dent variable. We can then solve the PDE by integrating the system of ODEs

numerically.

If the PDEs are of the Hamiltonian [86] type, we may want to preserve

this Hamiltonian structure, and therefore the space discretisation should be

carried out in such a way that the resulting system of ODEs is Hamiltonian.

For symplectic discretisation methods [53] we then solve the system of finite-

dimensional Hamiltonian ODEs using an appropriate symplectic integrator.

Example

In Section 2.2 we defined (2.6) the canonical Hamiltonian PDE for the non-

linear wave equation. The spatial derivative can now be discretised using a
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central finite difference approximation to give the system of ODEs

d

dt
ui = vi (2.16)

d

dt
vi =

ui−1 − 2ui + ui+1

∆x2
− V ′(ui). (2.17)

This system of ODEs turns out to be automatically Hamiltonian with

H =
∑
i

1

2
v2
i −

1

2

(
ui+1 − ui

∆x

)2

+ V (ui).

If we take the nonlinearity V ′(u) = sin(u), we get the sine-Gordon equation,

utt = uxx − sin(u) (2.18)

and semi-discretisation,

d

dt
ui = vi

d

dt
vi =

ui−1 − 2ui + ui+1

∆x2
− sin(ui).

This system can now be solved by a symplectic integrator, such as the

leapfrog method, to produce a symplectic discretisation of (2.18). Figure 2.1

gives some snapshots of the solution to (2.18).

Plotting the energy error of the simulation (Figure 2.2) we see that it is

bounded, which is what we expect of a symplectic integrator.

A better method of symplectic discretisation is to discretise H and then

form Hamilton’s equations. This ensures that (2.16) is Hamiltonian. This is

the approach discussed in [62].

2.5 Multisymplectic Integrators

Multisymplecticity is a geometric property of Hamiltonian PDEs, and therefore

when looking for a numerical method to solve such a system we naturally try

to find a discretisation that reflects this property. Based on this idea, Bridges

and Reich [7], and also Marsden and Shkoller [60], introduced the concept of

a multisymplectic integrator.
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Figure 2.1: Snapshots in time of the leapfrog method applied to the semi-

discretisation of the sine-Gordon equation.
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Figure 2.2: Energy error for 50000 time steps of the leapfrog method applied

to the sine-Gordon equation.
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A multisymplectic integrator is one which preserves a discrete version of

the multisymplectic conservation law (2.13). This conservation law can be

preserved by applying symplectic discretisations, such as leapfrog or symplectic

Runge–Kutta methods, in space x and time t. Here discretisations applied in

space and time are treated on an equal footing. In contrast, in Section 2.4

where we formed a symplectic integrator for a PDE, space and time were

treated separately, with time only being explicitly treated by a symplectic

method.

Discretisations are made on a uniform grid {(xi, tn)} ∈ R2, with mesh

length ∆t in the t direction and mesh length ∆x in the x direction. See

Figure 2.3 for a visual representation of the grid. A numerical discretisation

of (2.8) can be written as

K∂tz
n
i + L∂xz

n
i = ∇zS(zni )

where zni = z(xi, tn), and ∂tz
n
i and ∂xz

n
i are discrete approximations to zt and

zx respectively. Here xi makes reference to a specific point on the spatial grid

and tn to a specific point in time.
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Figure 2.3: Uniform grid for multisymplectic discretisations.

A discrete version of the multisymplectic conservation law is

ωn+1
i − ωni

∆t
+
κni+1 − κni

∆x
= 0 (2.19)
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A numerical scheme of the form (2.5) is called a multisymplectic integra-

tor if it satisfies some version of (2.19). Bridges and Reich [7] gives a good

introduction to the multi-Hamiltonian form and multisymplectic integration.

Table 2.1, in Section 2.3.1, summarizes the different conservation laws for

ODEs and PDEs. For ODEs we saw that if a method satisfies a discrete version

of the ODE differential conservation law then it is called a symplectic integra-

tor. Methods which preserve a discrete version of the ordinary conservation

law where H is the total energy of the system are known as energy preserving

methods. For ODEs the most common method for good long-time behaviour is

a symplectic one. A numerical method cannot be both symplectic and energy

preserving.

On the other hand, for PDEs, methods preserving an ordinary conservation

law are the most popular. The paper [30] is an example using this point of

view.

Many well known symplectic integrators, such as the leapfrog method, are

also multisymplectic when applied to a Hamiltonian PDE. For Hamiltonian

ODEs it was found that integration by a symplectic method produces good

energy preservation; energy is not exactly preserved, but the energy error is

bounded, giving good long-time behaviour of the method. So we have a re-

lationship between methods that give good long-time behaviour and discrete

preservation of the symplectic conservation law (1.26). We want to see how

these ideas generalise to multisymplectic methods for Hamiltonian PDEs. For

Hamiltonian PDEs it is not known if preserving a discrete version of the mul-

tisymplectic conservation law provides better qualitative preservation of the

dynamics. It has been shown that over long-time integration, multisymplectic

schemes show excellent local conservation of energy and momentum. Bridges

and Reich [9] gives an introduction to symplectic and multisymplectic inte-

grators for Hamiltonian PDEs. So we look at this question by looking at

preservation of travelling wave solutions of multisymplectic integrators.
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2.5.1 The Preissman Box Scheme

In this section we present an example of a multisymplectic integrator, the

Preissman box scheme. In [2], Ascher and McLachlan use this scheme and

compare it with other methods for the KdV equation. They find that where

other methods develop small wiggles, the Preissman scheme stays smooth.

The Preissman box scheme is formed by concatenating a pair of midpoint

discretisations, one in the t-direction and one in the x-direction. First, we

define the following finite difference and average operators,

Dxz
n
i =

zni+1 − zni
∆x

, Dtz
n
i =

zn+1
i − zni

∆t
, (2.20)

Mxz
n
i =

zni + zni+1

2
, Mtz

n
i =

zni + zn+1
i

2
. (2.21)

By applying finite difference and averages to (2.8) in time first, we get

KDtz
n
i + LMtz

n
i = ∇zS(Mtz

n
i ).

Next, we apply finite difference and averages in space, giving

KMxDtz
n
i + LDxMtz

n
i = ∇zS(MxMtz

n
i ). (2.22)

This is known as the Preissman box or multisymplectic box scheme. Writ-

ing the first step out in full we get

1

∆t
K(zn+1

i − zni ) +
1

2
L(zni + zn+1

i ) = ∇zS(
1

2
(zni + zn+1

i )).

The second step gives

1

∆t
KMx(z

n+1
i − zni ) +

1

2
LDx(z

n
i + zn+1

i ) = ∇zS(
1

2
Mx(z

n
i + zn+1

i ))

⇒ 1

2∆t
K(zn+1

i + zn+1
i+1 − zni − zni+1) +

1

2∆x
L(zni+1 − zni + zn+1

i+1 − zn+1
i )

= ∇zS(
1

4
(zni + zn+1

i+1 + zn+1
i zn+1

i+1 )).

Using stencil notation we get

1

2∆t
K

[
1 1

−1 −1

]
z +

1

2∆x
L

[
−1 1

−1 1

]
z = ∇zS

(
1

4

[
1 1

1 1

]
z

)
.
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Finally, the variables that were introduced to write the PDE in its multi-

symplectic form (2.8) can be eliminated to get a stencil in terms of the original

PDE.

For example, using the multisymplectic form of the nonlinear wave equation

(2.9) and applying the above box scheme we get,

vt − wx = −V ′(u), MxMtv −DxMtw = −V ′(MxMtu)

−ut = −v, −MxDtu = −MxMtv

ux = w, DxMtu = MxMtw.

Now, eliminating the variables v and w we get,

M2
xD

2
t u = D2

xM
2
t u−MxMtV

′(MxMt). (2.23)

Expanding this out and putting it into stencil notation, we get the following

multisymplectic box scheme for the nonlinear wave equation (2.9)

1

4(∆t)2


1 2 1

−2 −4 −2

1 2 1

u = −1

4

[
1 1

1 1

]
V ′

(
1

4

[
1 1

1 1

]
u

)

+
1

4(∆x)2


1 −2 1

2 −4 2

1 −2 1

u.
We now prove that the Preissman box scheme (2.22) satisfies the discrete

multisymplectic conservation law

ωn+1
i+ 1

2

− ωn
i+ 1

2

∆t
+
κ
n+ 1

2
i+1 − κ

n+ 1
2

i

∆x
= 0. (2.24)

First, we take exterior derivatives of both sides of (2.22) to get,

KMxDtdz
n
i + LDxMtdz

n
i = S ′′(MxMtz

n
i )MxMtdz

n
i .

Next, we take the wedge products of both sides with MxMtdz
n
i to annihilate

the nonlinear term of the right hand side. This gives

MxMtdz
n
i ∧KMxDtdz

n
i +MxMtdz

n
i ∧ LDxMtdz

n
i = 0. (2.25)
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We need to rearrange this to show that it takes the form of a discrete

conservation law. First note that

da ∧Kdb = −da ∧KTdb = −Kda ∧ db = db ∧Kda,

which shows that 8 of the 16 terms obtained by expanding the first term in

(2.25) cancel, leaving,

MxMtdz
n
i ∧KMxDtdz

n
i =

1

4∆t

(
dzn+1

i ∧Kdzn+1
i + 2dzn+1

i ∧Kdzn+1
i+1

+dzn+1
i+1 ∧Kdzn+1

i+1 − dzni ∧Kdzni − 2dzni ∧Kdzni+1 − dzni+1 ∧Kdzni+1

)
=

1

4∆t

(
(dzn+1

i + dzn+1
i+1 ) ∧K(dzn+1

i + dzn+1
i+1 )

−(dzni + dzni+1) ∧K(dzni + dzni+1)
)

= Dt(Mxdz
n
i ∧KMxdz

n
i ).

Similarly, by the expanding the 2nd term in (2.25) we get

MxMtdz
n
i ∧ LDxMtdz

n
i = Dx(Mtdz

n
i ∧ LMtdz

n
i ).

Combining these results we get (2.24). Hence the Preissman box scheme is

multisymplectic.

Notice that a multisymplectic method satisfies ‘a’ discrete version of the

multisymplectic conservation law. This implies that there is not a unique

discrete multisymplectic law that has to be satisfied by a multisymplectic in-

tegrator. This is in contrast to Hamiltonian ODEs where there is a specific

symplectic conservation law which must be satisfied for a method to be sym-

plectic. The Preissman box scheme satisfies the above multisymplectic con-

servation law (2.24), but other schemes may satisfy a different version of the

discrete multisymplectic conservation law (2.19).

2.6 Constructions of Multisymplectic integra-

tors

Construction of multisymplectic integrators is not as well understood as that

of symplectic integrators, with most studies using the simplest methods such
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as the box scheme and the leapfrog method. The following subsections give

different approaches to constructing multisymplectic integrators.

2.6.1 Discrete Lagrangian Approach

The discrete Lagrangian approach to constructing multisymplectic integrators

uses multisymplectic geometry. See [32, 60, 59] for a review of multisymplectic

geometry in its Lagrangian form. The paper [59] shows that the existence of

geometric structures and their preservation along solutions can be obtained

directly from the variational principal using multisymplectic geometry. This

paper [59] develops the geometric foundations for multisymplectic momentum

integrators for variational PDEs. Veselov [92, 93] gives a new approach to

symplectic integration where he develops a discrete mechanics based on a dis-

cretisation of Hamilton’s principle. In the paper [59] Veselov’s idea is extended

to discretisations for PDEs in the variational form. This leads naturally to

multisymplectic momentum integrators. This approach cannot in general pre-

serve the Hamiltonian exactly, but under appropriate circumstances conserves

a nearby Hamiltonian up to exponentially small errors, assuming small time

steps.

2.6.2 Gaussian Runge–Kutta Methods

Many higher order Runge–Kutta (RK) methods are based on the concept of

collocation. The idea of collocation is to choose a finite-dimensional space of

candidate solutions and a number of points in the domain. The candidate

solutions are generally polynomials up to a certain degree and the points are

called collocation points. The solution which satisfies the given equation at the

collocation points is then chosen. For ODEs the coefficients in the RK method

are determined by a collocation polynomial, which passes through the nodes

yn of (1.11) and has derivatives matching the ODE at a number of quadrature

points. An r-stage Gaussian RK (GRK) method has quadrature points that
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are the zeros of the shifted Legendre polynomial of degree r,

Pr(x) =
1

r!

dr

dxr
(xr (x− 1)r)

which are in the range (0, 1). GRK methods have order 2r in time.

In [82] Reich introduces GRK methods in this context and applies them

to the nonlinear wave equation (2.4). The paper looks at whether or not

symplectic methods for canonical Hamiltonian ODEs can be generalised to

multi-Hamiltonian PDEs. It was shown that applying GRK methods in space

and time to a multi-Hamiltonian PDE results in a system of equations that

satisfy a discrete multisymplectic conservation law. In [83] Ryland further

investigates discretisations of multi-Hamiltonian PDEs by GRK methods and

shows the GRK methods do not in general lead to useful methods. Not only

must a method satisfy a discrete multisymplectic conservation law to be a

multisymplectic integrator, but the system of discrete equations produced by

a method must form a well-defined integrator. This is the basis of [83]. The

system of equations produced from the Preissman box scheme with periodic

boundary conditions typically only have a solution when the number of grid

points is odd. In addition, Ryland [83] showed that the number of stages also

has to be odd for the discrete equations to have a solution. Therefore, forming

a useful integrator when the number of grid points and number of stages is

odd. For GRK it is shown that there are many things that could go wrong and

cause the system of equations to not be well-defined, resulting in an integrator

that is not yet very useful for multi-Hamiltonian PDEs.

2.6.3 Partitioned Runge–Kutta methods

Systems of the form

q̇ = f(q, p) =
∂H

∂p

ṗ = g(q, p) = −∂H
∂q
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can be solved by partitioned Runge–Kutta (PRK) methods

Qi = q0 + h
s∑
j=1

aijf(Qj, Pj)

Pi = p0 + h
s∑
j=1

âijg(Qj, Pj)

q1 = q0 + h
s∑
j=1

bjf(Qj, Pj)

p1 = p0 + h
s∑
j=1

b̂jg(Qj, Pj)

where q ∈ RN , p ∈ RN .

As with Runge–Kutta methods, such as the GRK method in the previous

section, PRK methods can be used to discretise multi-Hamiltonian PDEs in

space and time. In [43] it was shown that discretisation of a multi-Hamiltonian

PDE in space and time by symplectic PRK methods gives a system of equations

that satisfy a discrete multisymplectic conservation law. As for RK methods,

the equations from the discretisation by a PRK may not form a well-defined

integrator. But Ryland, in [83, 84], gives conditions on the coefficients of

PRK methods such that they give a well-defined integrator when applied to

a multi-Hamiltonian PDE, and gives conditions for when a PRK method is

multisymplectic. For a certain class of multi-Hamiltonian PDEs, the idea is

to apply an explicit symplectic PRK discretisation in each dimension, obtain-

ing a fully explicit, fully discrete system. (Since symplectic RK methods are

implicit the approach cannot be applied to methods such as Gaussian Runge–

Kutta methods, considered previously). The Lobatto IIIA–IIIB class of PRK

methods, of which the leapfrog method is an example, is used to explore this

approach for symplectic PRK methods. The algorithm is then used on vari-

ous well-known multi-Hamiltonian PDEs. The paper [69] uses the generalised

leapfrog method, a Lobatto IIIA–IIIB method with 2 stages, as a multisym-

plectic PRK method and studies the linear stability of this method.
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2.7 Behaviour of Multisymplectic Integrators

Many numerical experiments have been performed on multi-Hamiltonian PDEs

to test the behaviour of multisymplectic integrators. The behaviour of mul-

tisymplectic integrators can be explored by examining the discrete dispersion

relation or looking for the preservation of travelling wave solutions. Most of

the experiments test the behaviour by considering the propagation of a solitary

wave solution or the collision of two or three solitons, which does not give us

very much insight into the overall behaviour of multisymplectic integrators.

2.7.1 The Dispersion Relation

Any time-dependent scalar, linear PDE with constant coefficients on an un-

bounded space domain possesses plane wave solutions

u(x, t) = ei(ξx+ωt), ξ ∈ R

where ξ is the wave number and ω is the wave frequency.

The dispersion relation describes how the frequencies ω in time are related

to the wave numbers ξ in space of a plane wave solution to a linear PDE. There-

fore, for a nonlinear PDE the behaviour of the PDE will only be determined

by the dispersion relation in regions where the linearised PDE is a suitable

approximation to the nonlinear PDE. Fortunately, these are the regions that

we are generally interested in.

A discrete dispersion relation may also be calculated for a numerical in-

tegrator. This is an approximation to the continuous dispersion relation over

a finite set of wave numbers. Properties of the numerical solution of PDEs,

such as the stability, conservation of the sign of the wave group velocity, and

existence of spurious waves, may be determined by comparing the dispersion

relation of the continuous PDE with that of the numerical integrator.

The behaviour of linear PDEs can be well understood from dispersion anal-

ysis. Research into the dispersion relation for multisymplectic integrators ap-

plied to the linearised nonlinear wave equation shows that for higher order
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schemes there is a break in the curve. Figure 2.4 shows the break in the curve

for a 3-stage Lobatto method, which suggests only the bottom half of the

frequencies are handled reliably.

1 2 3 4 5 6

1

2

3

4

5

Figure 2.4: The dispersion relation of the linearised wave equation.

All Lobatto methods have a similar dispersion relation as that given in

Figure 2.4. That is, they only conditionally preserve part of the dispersion

relation. But the solutions from Lobatto methods contain no parasitic waves.

Parasitic solutions give false behaviours, such as oscillations. Gauss methods

unconditionally preserve the entire dispersion relation with no parasitic waves.

2.7.2 Numerical Experiments

Below are some of the numerical experiments that have been performed:

• The Preissman box scheme is applied to the nonlinear Schrödinger and

the sine-Gordon equations and the behaviour of the scheme is analysed

by looking for solitary wave solutions [72].

• The box scheme is derived and applied to the KdV equation and it

is found that the box scheme preserves the dispersion relation [2, 3].

Following on from this result, in [29] it is shown that there are no spurious

reflections.

• The formulation of a six point box scheme is derived for a coupled 1D

nonlinear Schrödinger equation. The behaviour of the method is exam-

ined by considering the interaction of two solitary waves and the energy

error from the simulation [90].
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• Various multisymplectic methods are derived for Klein–Gordon equation

and the collision of two solitons is considered. The behaviour of the

multisymplectic integrator is compared with that of an energy preserving

method [95]. Here the multisymplectic integrator performs better than

the energy-preserving method.

• A six point multisymplectic scheme is derived for the nonlinear Schrödin-

ger equation [17]. The collision of two and three solitons is considered,

along with the propagation of one soliton, for the multisymplectic scheme

and a symplectic scheme. For one and two solitons the multisymplectic

method performs better than the symplectic integrator. For three soli-

tons both methods perform well. The results are based on how well the

integrators preserve local conservation of energy.

• A 10-point multisymplectic scheme is derived for the regularised long-

wave equations from its multi-Hamiltonian form [14]. To examine the

behaviour of the integrator numerical experiments are performed for the

motion of a single solitary wave and for the interaction of two and three

solitary waves. The L2 and L∞ error norms are used to determine the

accuracy of the motion of a single solitary wave. For the accuracy of

the interaction of two or three solitons the analytical invariant values are

used. The results are acceptable in all three cases.

• A 16-point multisymplectic scheme is derived for the Kadomtsev-Petvia-

shvili equation and tested on one soliton and a lump-type solitary wave.

The energy and momentum conservation laws are not preserved by multi-

symplectic integrators and it is not known if backward error analysis can be

applied to find corresponding modified conservation laws. In [71] Moore and

Reich show that for semi-discretised multi-Hamiltonian PDEs the correspond-

ing modified semi-discrete conservation laws of energy and momentum exist.

A multi-Hamiltonian PDE discretised in space yields a semi-discrete energy
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conservation law which is preserved exactly, and that discretised in time yields

a semi-discrete momentum conservation law. Also, no results are known that

use the discrete multisymplectic conservation law directly. The main question

of our research is, does preservation of a discrete multisymplectic conservation

law provide better qualitative preservation of the dynamics? We propose to

look at this question by studying preservation of travelling waves in multi-

Hamiltonian PDEs. We analyse this numerically and also from a backward

error analysis point of view, finding modified equations and the corresponding

modified Hamiltonians.

2.8 Case Study: Numerical Solution of

Burgers’ Equation

In this section we present a numerical experiment inspired by [91]. They

derive a multisymplectic scheme for Burgers’ even though the equation is not

Hamiltonian. They then claim that that the method could cope with shocks

developed from the PDE. This seemed odd so the paper was studied and it was

firstly found to contain a mistake in the derivation of the scheme. Secondly,

they only tested their method for ux = O(ν), in which there are no shocks.

We wish to test our correct scheme for ν very small to see whether or not it

can cope with the formation of shocks.

2.8.1 Burgers’ Equation

The general form of Burgers’ equation is

ut = −uux + νuxx = −V ′(u)x + νuxx, V (u) =
u3

6
,

where ν is the viscosity. When ν 6= 0 Burgers’ equation is a nonlinear second

order parabolic equation. On the other hand, when ν = 0 Burgers’ equation

becomes

ut + uux = 0,
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a first order hyperbolic equation known as the inviscid Burgers’ equation. In

this situation discontinuous solutions called shocks develop.

Burgers’ equation is used in fluid dynamics and in engineering as a simpli-

fied model for turbulence, shock wave formation, and mass transport. These

properties make Burgers’ equation a good model for testing numerical algo-

rithms in flows where severe gradients or shocks are anticipated.

2.8.2 A Multisymplectic Scheme for Burgers’ Equation

Following the work done by Ascher and McLachlan [2] on multisymplectic

schemes for the KdV equation, we find the multisymplectic formulation of

Burgers’ equation. The KdV equation is given by,

ut = V ′(u)x + νuxxx,

where V (u) = α
3
u3 + ρ

2
u2.

While KdV is Hamiltonian, Burgers’ is not, but we still wish to apply the

multisymplectic box scheme to determine if it will produce good results for

non-Hamiltonian PDEs also.

Apart from the reasons in Section 2.8.1 Burgers’ is also a good choice as

a follow on from KdV since when |ν| � 1 the dispersion limit for KdV is the

same as that of Burgers’ [3]. Burgers’ equation can have shocks, whereas the

solution to KdV is always smooth.

The multisymplectic scheme for Burgers’ has been incorrectly formulated

in [91]. The writers do not go through the steps in their formulation and only

give the stencils for the 8-point and 12-point box schemes. Here we give the

correct formulation in full. Our aim is to write Burgers’ equation (2.8.1) in

the multisymplectic form (2.8). Firstly, we define the following finite difference
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and average operators,

Dxu
n
i =

uni+1 − uni
∆x

,

Dtu
n
i =

un+1
i − uni

∆t
,

Mxu
n
i =

uni + uni+1

2
,

Mtu
n
i =

uni + un+1
i

2
.

Next, we introduce new variables to get the following system for Burgers’

equation (2.8.1)

φx = u,

ux = −1

ν
v,

1

2
φt = w − V ′(u)− v,

wx +
1

2
ut = 0.

Applying the box scheme

KDxMtz + LDtMxz = ∇S(MtMxz)

we get the discretisation

DxMtφ = MtMxu,

DxMtu = −1

ν
MtMxv,

1

2
DtMxφ = MtMxw − V ′(MtMxu)−MtMxv,

DxMtw +
1

2
DtMxu = 0.

Eliminating v, w, and φ from the above discretisation, then adding another

space average operator to each side of the resulting equation we get,

DtM
3
xu = −DxMxV

′(MtMxu) + νD2
xMxMtu.
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Thus, the 8-point box scheme for (2.8.1) written in stencil notation is

1

8(∆t)

[
1 3 3 1

−1 −3 −3 −1

]
u = − 1

2∆x

[
−1 0 1

]
V ′

(
1

4

[
1 1

1 1

]
u

)

+
ν

4(∆x)2

[
1 −1 −1 1

1 −1 −1 1

]
u. (2.26)

We can also derive a 12-point scheme for (2.8.1),

DtM
3
xMtu = −DxMxMtV

′(MtMxu) + νD2
xMxM

2
t u,

and in stencil notation,

1

16(∆t)


1 3 3 1

0 0 0 0

−1 −3 −3 −1

u = − 1

4∆x

[
−1 0 1

−1 0 1

]
V ′

(
1

4

[
1 1

1 1

]
u

)

+
ν

8(∆x)2


1 −1 −1 1

2 −2 −2 2

1 −1 −1 1

u.
The 8-point and 12-point box scheme stencils for Burgers’ are given incor-

rectly in [91] as,

1

8(∆t)

[
1 3 3 1

−1 −3 −3 −1

]
u = − 1

2∆x

[
−1 0 1

]
V ′

(
1

4

[
1 1

1 1

]
u

)

+
1

2(∆x)2

[
1 −2 1

1 −2 1

]
u

and,

1

16(∆t)


1 3 3 1

0 0 0 0

−1 −3 −3 −1

u = − 1

4∆x

[
−1 0 1

−1 0 1

]
V ′

(
1

4

[
1 1

1 1

]
u

)

+
1

4(∆x)2


1 −2 1

2 −4 2

1 −2 1

u
85



respectively. We see that the last term in both the 8-point and 12-point scheme

are wrong. Firstly, they do not include the viscosity ν, or else ν = 2 is fixed.

Secondly, both stencils for the last terms are only 3 grid points wide, but

should be 4.

2.8.3 Solutions to the 8-Point Burgers’ Scheme (2.26)

Figure 2.5 gives snapshots of the solution to the 8-Point Burgers’ scheme for

ν = 1. This is a relatively large value of the viscosity and we see that the

solution does not develop shocks but gradually decays to 1.
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Figure 2.5: Solution to Burgers’ equation at different points in time for ν = 1,

∆x = 0.01, and ∆t = 0.005.

As we decrease the value of the viscosity ν we would expect to see shocks

developing. For ν = 0.0001 we plot the solution, in Figure 2.6, and see the

formation of a shock wave. As this shock wave forms we see that wiggles in
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the solution also develop. If the solution is run for a longer length of time the

wiggles become very large. This shows that the scheme cannot cope with the

shock as [91] incorrectly stated.
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Figure 2.6: Solution to Burgers’ equation at time t = 0.3 for ν = 0.0001,

∆x = 0.01, and ∆t = 0.0001.

For very small values of ν the method will not work unless the time step

∆t is also very small. More analysis needs to be done on the impact that the

interaction between ν, ∆t, and ∆x has on the performance of the method.

Preferably, there would be some critical value of ν∆t
∆x

in which the method fails

to produce good results.

Error analysis needs to still be performed. We also want to see if there is

a critical ratio of ∆x and ∆t for the formation of wiggles. The same analysis

also needs to be applied to other non-Hamiltonian PDEs to see whether mul-

tisymplectic methods give good qualitative behaviour for these types of PDEs
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as well as Hamiltonian PDEs.

This experiment shows that the multisymplectic conservation law does not

help keep the wiggles small.
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Chapter 3

Introduction to Travelling

Waves

In this chapter we introduce travelling waves and give a description of the

different types of travelling waves that exist. We also introduce travelling

waves in semi-discrete and fully discrete systems and give some examples and

properties of these from the literature.

3.1 Travelling Waves

Travelling waves are a type of wave that travels at a constant speed c 6= 0

without changing shape. The most commonly observed type of travelling wave

is that of an ocean wave. They are described mathematically by a smooth

function ϕ. If u(x, t) is a solution to a PDE, then a travelling wave solution

satisfies,

u(x, t) = ϕ(x− ct) = ϕ(ξ). (3.1)

From (3.1) it can be seen that by using travelling wave coordinates, we

condense our independent variables x and t in the PDE to one variable ξ =

x− ct, where c is the wave speed.

There are 3 types of travelling wave solution depending on the solution of the

reduced equation for ϕ:
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• Solitary waves (which may exist when the spatial domain is −∞ < x <

∞)

– Homoclinic orbits (see Figure 3.1)

– Heteroclinic orbits (see Figure 3.2)

• Periodic travelling waves (see Figure 3.7) (which may exist when the

domain is infinite or finite with periodic boundary conditions).

A travelling wave solution ϕ(ξ) is called a solitary wave solution if the

boundary conditions ϕ′(ξ)(±∞) = 0 are satisfied. In other words, ϕ(ξ) ap-

proaches some constant value at the boundaries ξ → ±∞. In Figure 3.1, we

see that ϕ(ξ) approaches the same value as ξ → +∞ and ξ → −∞, and in Fig-

ure 3.2, ϕ(ξ) approaches a different value at each boundary. This determines

whether or not the solitary solution corresponds to a homoclinic or heteroclinic

orbit.

A homoclinic and heteroclinic orbit are plotted in Figures 3.3 and 3.4 re-

spectively. We see that a homoclinic orbit is an orbit which travels from a

fixed point back to that same fixed point. This is equivalent to the values

at the boundaries being the same, that is limξ→−∞ ϕ(ξ) = limξ→∞ ϕ(ξ), so a

homoclinic orbit in the phase portrait corresponds to a solitary wave solution

that approaches the same constant value at the boundaries (see Figure 3.1).

This type of travelling wave is also sometimes called a pulse, but we will call

it a homoclinic travelling wave.

Figure 3.1: Solitary wave corresponding to a homoclinic orbit.
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Figure 3.2: Solitary waves corresponding to heteroclinic orbits.

Figure 3.4 for the heteroclinic orbit shows that this type of orbit travels

from a fixed point to a different fixed point. This is equivalent to the values

at the boundaries being different, that is limξ→−∞ ϕ(ξ) 6= limξ→∞ ϕ(ξ), so a

heteroclinic orbit in the phase portrait corresponds to a solitary wave solution

that approaches different constant values at the boundaries (see Figure 3.2).

This type of wave is also sometimes called a wave front, kink, or anti-kink

solution, but we will refer to it as a heteroclinic travelling wave.

Any orbit of these types gives rise to a (not necessarily stable) soliton

solution for the nonlinear PDE (3.2) given in Section 3.1.1.

There are many mathematical models that produce these two types of

solitary waves. There are two famous models that produce homoclinic trav-

elling wave solutions. These models are the Hodgkin–Huxley model [41] and

the FitzHugh–Nagumo models [61, 19] which both explore excitable cells and

nerve impulses.

The Hodgkin–Huxley model is a set of nonlinear PDEs that approximates

the electrical features of excitable cells, such as neurons and cells in heart

tissue. Hodgkin and Huxley described the model in 1952 [41] to explain the

underlying ionic mechanisms essential for the initiation and propagation of

action potentials in the squid giant axon. The trouble with their solution

was that only projections of the model’s 4-dimensional phase space could be

observed.
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��
Figure 3.3: A homoclinic orbit.

�� ��

Figure 3.4: A heteroclinic orbit

To eliminate this problem, FitzHugh and Nagumo proposed a simpler 2-

dimensional model,

ut = uxx + f(u)− w, wt = ε(u− γw).

The motivation for this simplified model was to theoretically separate the

mathematical properties of excitation and propagation from the electrochem-

ical properties of sodium and potassium ion flow. Also, the simplicity of the

model allows the entire solution to be viewed at once. In addition, the model

is analytic, and therefore many important properties of travelling waves can

be obtained without numerical simulation. Figure 3.5 shows some solutions of

the FitzHugh–Nagumo equation, both of which can be seen to be homoclinic

travelling waves.

Heteroclinic travelling waves are found in chemical kinetics and combus-

tion. Combustion waves are of practical and scientific interest. They represent

simple models for the spread of a reaction in space. Chemical kinetics is the

study of rates of chemical processes. This includes constructing mathemat-

ical models that can describe the features of a chemical reaction. Waves in

chemical kinetics are found in frontal polymerisation, concentration reactions,
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Figure 3.5: FitzHugh-Nagumo travelling wave solutions reproduced from [48].

cold flames, and so on. Figure 3.6 gives some solutions of different 2- and

3-dimensional combustion waves, which are all heteroclinic waves.

Figure 3.6: Combustion travelling wave solutions.

A periodic travelling wave has periodic boundary conditions (see Figure 3.7)

and corresponds to a periodic orbit (see Figure 3.8) of the travelling wave

equation phase portrait. That is, a periodic travelling wave will have the

same value at the initial point and after one period T , that is ϕ(0) = ϕ(T ). A

periodic orbit is an orbit the returns to the same point and in the 2-dimensional
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case circulates a fixed point at its centre.

Figure 3.7: Periodic travelling wave.

�

Figure 3.8: Periodic orbit.

An example of a periodic travelling wave is given by the PDE,

utt = uxx − u.

Substituting travelling wave coordinates (3.1) into the above PDE and

rearranging we get the ODE,

(c2 − 1)ϕ′′ = −ϕ,

which is the harmonic oscillator. We plotted the solution of the harmonic

oscillator in Figure 1.13 and saw that it contained only periodic solutions.

Hence, all travelling waves of this PDE are periodic.
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3.1.1 Travelling Wave Solutions for the Multi-Hamiltonian

Formulation

In this section we give the travelling wave solution of a PDE written in its

multi-Hamiltonian form.

The multi-Hamiltonian form of a PDE given previously in Section 2.3 is,

Kzt + Lzx = ∇zS(z) (3.2)

where K and L are constant skew-symmetric matrices, S(z) is a smooth func-

tion, and z = z(x, t) is a vector of state variables. For travelling wave solutions,

we introduce the travelling wave coordinates,

z(x, t) = ϕ(x− ct) = ϕ(ξ) (3.3)

where ξ = x− ct and c is the wave speed.

It follows that solutions of the form (3.3) satisfy

zt = −cϕ′(ξ), and zx = ϕ′(ξ).

Substituting the above and (3.3) into (3.2) we get the ODE

− cKϕ′(ξ) + Lϕ′(ξ) = ∇S(ϕ(ξ))

⇒ (L− cK)ϕ′(ξ) = ∇S(ϕ(ξ)).

Therefore, by considering travelling wave solutions we reduce a PDE to an

ODE problem. If the skew-symmetric matrix L− cK is nonsingular then the

ODE will be Hamiltonian. If L− cK = 0 then we get a system of N equations

with N unknowns where N is the size of the square matrix K (and L). The

system of equations is given by

∇S(ϕ(ξ)) = 0.

We hope that this will reduce the multisymplectic conservation law from

the PDE type law, ωt + κx = 0, to that of an ODE type law, (κ− cω)ξ = 0.
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3.1.2 Travelling Wave Solutions for the Nonlinear Wave

Equation

We use the nonlinear wave equation as our test problem for studying preser-

vation of travelling waves in multisymplectic discretisations.

For now we look at the PDE in its original form, rather than putting it

into its multi-Hamiltonian form (3.2).

The nonlinear wave equation is given by

utt = uxx − V ′(u) (3.4)

where V ′(u) is some nonlinearity.

Substituting (3.3) into the nonlinear wave equation (3.4) we get

c2ϕ′′(ξ) = ϕ′′(ξ)− V ′(ϕ(ξ))

⇒ (c2 − 1)ϕ′′(ξ) = −V ′(ϕ(ξ)).

This is a Hamiltonian ODE which usually possesses travelling wave solu-

tions. Therefore, we wish to look for travelling wave solutions for multisym-

plectic discretisations of the nonlinear wave equation. Since this is a second

order ODE, we can write it as a first order system to find the Hamiltonian.

The phase portrait can then be drawn and the types of travelling waves the

equation possesses can be determined from the orbits of the phase portrait.

The reduced ODE

(c2 − 1)ϕ′′(ξ) = −V ′(ϕ(ξ)) (3.5)

can be written as a first order system by letting

ψ(ξ) = (c2 − 1)ϕ′(ξ).

Rearranging we get the first order Hamiltonian system,

ϕ′(ξ) =
ψ

c2 − 1

ψ′(ξ) = −V ′(ϕ(ξ))
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with Hamiltonian,

H =
ψ2

2(c2 − 1)
+ V (ϕ).

We can now plot the Hamiltonian, as it is a function of 2 variables, and

by looking at the different types of orbits in the solution we can determine

what types of travelling waves are present in the original PDE. If we choose

V (ϕ) = sin(ϕ) then we get the following phase portrait given by Figure 3.9. It

can be seen that the nonlinear wave equation with sine nonlinearity contains

periodic travelling waves and heteroclinic travelling waves.
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Figure 3.9: Phase portrait of the travelling wave equation of the sine-Gordon

equation.
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3.2 Travelling Wave Solutions in the Litera-

ture

In Section 3.1.1 we saw that by studying travelling wave solutions we reduce a

PDE to a finite-dimensional ODE. Here we look at the types of equations we

get by studying travelling wave solutions of discrete systems.

Most of the work on travelling wave solutions is done on systems which

are discretised only in space, giving an infinite system of ODEs. These types

of equations are known as lattice dynamical systems. Substitution of travel-

ling wave coordinates into a lattice dynamical system results in a differential-

difference equation, which is generally infinite-dimensional. Most of the work

studying travelling waves of lattice dynamical systems looks at the values at

which properties of the discrete lattice introduce behaviour that is not seen in

the continuous problem.

Not as much work has been done on equations involving a discrete time

component as well as a discrete spatial lattice. These types of equations are

called coupled map lattices and can arise naturally or from the discretisation

of PDEs in space and time. Studying travelling waves of a coupled map lattice

results in a difference equation which can be finite or infinite depending on

the parameters in the equation. We expect a coupled map lattice from the

discretisation and substitution of travelling wave coordinates into our PDE.

3.2.1 Lattice Dynamical Systems (LDSs)

Lattice Dynamical Systems (LDSs), also sometimes called Lattice differential

equations (LDEs), are systems of ordinary differential equations (ODEs) that

have a discrete spatial structure. LDSs can arise from discretisations of a

partial differential equation (PDE), but also occur naturally as systems in

their own right. In the latter case, the system can be described as an infinite

array of smaller subsystems. Here, the evolution of the subsystem at one site

depends on the site itself and other sites, but the effect of sites far away is

much weaker. This type of system need not be near a PDE continuum limit,
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and is important in modeling many applications in which a discrete spatial

structure plays a part.

A lattice Λ is a discrete subset of RN which contains finitely or infinitely

many points and possesses some underlying spatial structure. More formally,

LDSs are infinite systems of ODEs, indexed by points in a lattice. A LDS has

the form

u̇ = gη({uξ}ξ∈Λ), η ∈ Λ (3.6)

where the state vector u = {uη}η∈Λ is coordinatised by the lattice Λ, and gη is

some function in these coordinates.

A solution to (3.6) is

u(t) = {uη(t)}η∈Λ .

Many LDS models are found in chemical reaction theory, image processing

and pattern recognition, crystal growth and metallurgy in material science,

wave propagation in excitable media in biology, and electrical circuit theory

[25, 56, 18].

As with PDEs, LDSs involve dynamics with a spatial structure, but in

many cases LDSs exhibit a range of phenomena not found in the associated

PDEs. The following phenomena are all discussed in more detail further on.

Direction dependence, the discreteness-induced Pierls–Nabarro (PN) periodic

potential that can cause lattice pinning and propagation failure, and the de-

struction of translational invariance are a few properties introduced by the

discrete lattice. The PN barrier grows exponentially fast as the natural pa-

rameter, the lattice spacing, of the problem increases. This barrier has been

recognised as chiefly responsible for the resonances and eventual trapping and

pinning of waves. Understanding the effect of discretisation is important when

drawing conclusions from numerical simulations.

Discretisation of the n-dimensional Laplacian for n ≥ 2 introduces direc-

tional dependence into the system. The introduction of directional dependence

can be seen through an example of travelling wave solutions. Take the nonlin-

ear wave equation with 2 spatial variables,

utt = uxx + uyy − V ′(u), (3.7)
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where uxx + uyy is the 2-dimensional Laplacian.

We introduce the travelling wave coordinates,

u(x, t) = ϕ(x · σ − ct) = ϕ(ξ)

where c 6= 0 is the wave speed, σ is a 2-dimensional vector that determines the

direction normal to the wave front and σ satisfies ‖σ‖2 = 1, and

x =

[
x

y

]
.

Substituting these coordinates into the nonlinear wave equation (3.7) and re-

arranging we get the ODE

(c2 − ‖σ‖2)ϕ′′(ξ) = −V ′(ϕ(ξ)), or

(c2 − 1)ϕ′′(ξ) = −V ′(ϕ(ξ)).

Looking at this ODE we see that it does not depend on σ, the direction

vector.

On the other hand, if we discretise (3.7) in space by the leapfrog method

we get a lattice ODE,

üij = α(ui+1,j − 2uij + ui−1,j) + β(ui,j+1 − 2uij + ui,j−1)− V ′(ui)

and upon substituting the travelling wave coordinates,

uij(t) = ϕ(k · σ − ct) = ϕ(ξ),

where σ is defined as above and

σ =

[
σ1

σ2

]
, k =

[
i

j

]
,

we get the differential-difference equation

c2ϕ′′(ξ) = α(ϕ(ξ + σ1)− 2ϕ(ξ) + ϕ(ξ − σ1))

+ β(ϕ(ξ + σ2)− 2ϕ(ξ) + ϕ(ξ − σ2))− V ′(ϕ(ξ))

100



which now involves the variable σ and therefore depends on the direction of

motion of the wave in the lattice.

The effect of spatial discretisation is most evident for wave speed c with

|c| ≈ 0.

Propagation failure is the failure of waves to move along a lattice. This

is due to insufficient amount of energy to overcome the PN potential. This

inability persists over an open set of parameters, that is, the wave speed c will

be zero for a range of values of the parameters (see Figure 3.10). The range

of propagation failure depends on the rational dependence or independence of

the elements of σ. For numerical simulations the solution is piecewise constant

when the elements of σ are rationally dependent. Propagation failure is more

likely to occur for wavefronts with rational slopes, than with irrational slopes.

Propagation failure is well studied for parabolic problems.

Conversely, in lattice pinning a wave has enough energy to get started but

as it moves along the lattice it loses energy as radiation. This slows the wave

down and it eventually comes to rest or ‘pins’.

Discrete models commonly break the translational invariance (TI) of their

corresponding continuous system. Typically, the case for nonlinear waves is

that there are two static wave configurations that are generated from the break-

ing of TI. One of them is centred on a lattice site (higher energy) and one is

centred between two consecutive lattice sites (lower energy). The difference in

energy between these two sites is the PN barrier.

The study of discrete Hamiltonian systems is focused on two areas. Firstly,

the continuum approximation is studied. Here the discrete Hamiltonian re-

duces to a PDE, which can in turn be reduced to an ODE by studying travel-

ling wave solutions. Mathematically, the equation resulting from substituting

travelling wave coordinates into the discrete system is much more complicated

than that of the equivalent ODE obtained for the continuous system. Secondly,

the discrete Hamiltonian system is studied through numerical studies.

In general, no information on the global behaviour of solutions of a PDE

can be derived from the study of its discrete versions even when steps of
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Figure 3.10: Propagation failure for different values of parameters: a versus c

for different values of σ, where a ∈ (0, 1) and c is the wave speed. This figure

is reproduced from [25].
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discretisation size are small.

Over the recent years there has been an increasing number of papers com-

paring the significant differences in the behaviour of PDEs of the continuum

nonlinear field theories and their spatially discrete versions.

In [5], the continuous sine-Gordon (SG) equation is compared with its

discrete version, the Frenkel–Kontorova (FK) model. Studying the continuous

SG model is considered as an acceptable approximation to the system dynamics

of the FK model, because, even though the discreteness introduces phenomena

not exhibited by the continuous system, the main properties of kinks and their

existence as topological states does not depend significantly on the discreteness

of the primary model.

So far, there is no known explicit kink solution of the FK model. As de-

scribed earlier, the discrete lattice introduces the existence of the PN periodic

potential, and a moving kink in the FK model with not enough energy is

subject to propagation failure, becoming trapped between two adjacent lat-

tice sites, while a kink which starts off with enough speed to overcome the

PN barrier is subject to lattice pinning. The translational invariance in the

continuum limit of the FK model, of the kink along a chain, is broken in the

discrete model, where TI occurs only for integer multiples of the size of the

lattice spacing.

In numerical simulations a single-kink solution of the SG equation with

some nonzero initial velocity is chosen as an initial configuration of a kink

then such a construction will never evolve into a steady state. Initially, this

state will transform into a kink with a modified shape and as a result, the kink

will propagate through the chain not freely but with an oscillatory velocity,

caused by the lattice discreteness.

Also, the discreteness of the FK model reduces the kink’s width, which in

turn increases the PN barrier.

The kinks correspond to two homoclinic orbits of the standard map, the

stable and unstable manifolds. In the exactly integrable SG equation these two

manifolds overlap; but in the discrete FK system the manifolds are different,
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being characterised by different energies.

In [49], they find solutions to the discrete Klein-Gordon (KG) system. They

find single pulse solutions which consist of a non-decaying oscillatory tail. The

oscillations are small with respect to the central pulse amplitude (see Fig-

ure 3.11). Solutions without an oscillatory solution may exist for exceptional

values of the parameters, but this situation is not common.

In the small amplitude limit, the pulses possess an exponentially small

oscillatory tail which is close to spatially localised solutions. On the other

hand, in the high-amplitude regime there are good approximations of spatially

localised solutions when the period tends to infinity. That is, for solutions u,

with boundary conditions ϕi(ξ + M) = ϕi(ξ), where M is large the solutions

are good approximations.
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Figure 3.11: Left: A single pulse solution. Right: Zoom on the oscillatory tail

from the solution on the left. This figure is reproduced from [49].

Small amplitude pulsating travelling waves in the KG lattice can be seen

as trajectories of an infinite-dimensional differential equation, lying on a finite-

dimensional centre manifold.
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3.2.2 Coupled Map Lattices (CMLs)

While a lot of work has gone into studying LDSs, there seems to be not so

much on Coupled Map Lattices (CMLs). As well as discrete space, a CML is

a dynamical system that also has discrete time. A natural source of CMLs are

discrete (both in space and time) versions of PDEs of evolution type and arise

while modeling PDEs by computers.

The effect of temporal discretisation is most evident for large wave speeds.

The shape of the solution being step-like corresponds to lurching in the inter-

face motion and is due to either space or time discretisation. Typically, speed

up of the wave is due to time discretisation only, and propagation failure is

due to spatial discretisation only.
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Chapter 4

Travelling Wave Solutions for

Multisymplectic Discretisations

of Wave Equations with

Simplified Nonlinearities

In this chapter we attempt to find travelling wave solutions for the multisym-

plectic discretisation of the non linear wave equation. This is one way to test

the behaviour of a numerical method. Solving a nonlinear equation is difficult,

so we simplify our nonlinearity. The new nonlinearity still resembles the form

of a nonlinear equation, but makes our problem piecewise linear. Although

this makes the problem much simpler to solve, we still had difficulty in solving

it. We then go on to look at a more complicated nonlinearity and finally in the

next chapter a smooth nonlinearity. We begin by making a multisymplectic

discretisation of the general nonlinear wave equation (3.4) and then form our

discrete travelling wave equation (4.4) by the substitution of discrete travelling

wave coordinates.
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4.1 A Multisymplectic Discretisation of the Non-

linear Wave Equation (3.4)

We choose to use the leapfrog method in space and time as our multisymplectic

integrator. This produces the five-point stencil shown in Figure 4.1. The grid

points across the stencil horizontally represent the leapfrog method in space

with grid point spacing ∆x, and those across the stencil vertically represent

the leapfrog method in time with grid point spacing ∆t.
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i
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Figure 4.1: The five-point stenci used in the leapfrog method.

Discretising the nonlinear wave equation (3.4) with the leapfrog method in

space and time we get

1

(∆t)2

(
un+1
i − 2uni + un−1

i

)
− 1

(∆x)2

(
uni+1 − 2uni + uni−1

)
= −V ′(uni )

where ∆t is the time step size and ∆x is the spatial step size. By setting

κ = c∆t and σ = ∆x as in Section 3.1.1 we get

c2

κ2

(
un+1
i − 2uni + un−1

i

)
− 1

σ2

(
uni+1 − 2uni + uni−1

)
= −V ′(uni ). (4.1)

4.1.1 The Discrete Travelling Wave Equation

In this section we present what we refer to as the discrete travelling wave

equation. It is the result of substituting travelling wave coordinates into the

leapfrog discretisation of the nonlinear wave equation given in (4.1).
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We want to look for travelling wave solutions of the discretisation (4.1) so

we define discrete travelling wave coordinates. For a discrete solution z(xi, tn)

we seek travelling wave solutions of the form

z(xi, tn) = ϕ(xi − ctn)

= ϕ(i∆x− cn∆t).

We now let

σ = ∆x, κ = c∆t.

That is, we are seeking solutions of the form

z(xi, tn) = ϕ(i∆x− cn∆t)

= ϕ(iσ − nκ) (4.2)

The ratio σ
κ

becomes important later on in this chapter.

We substitute the discrete travelling wave coordinates,

uni = ϕ(iσ − nκ) = ϕ(ξ) (4.3)

into (4.1) to produce what we call the discrete travelling wave equation

c2

κ2
(ϕ(ξ + κ)− 2ϕ(ξ) + ϕ(ξ − κ))

− 1

σ2
(ϕ(ξ + σ)− 2ϕ(ξ) + ϕ(ξ − σ)) = −V ′(ϕ(ξ)), ξ ∈ R. (4.4)

Here ξ is a real variable, so we have five grid points, ϕ(ξ−σ), ϕ(ξ−κ), ϕ(ξ),

ϕ(ξ+κ), ϕ(ξ+σ), which have to be evaluated at all real values. Therefore, this

equation is really infinite-dimensional, which makes it very difficult to solve

and analyse.

Also, there are two different cases that need to be considered depending on

whether the ratio of κ and σ is rational or irrational. When σ
κ

is rational and

we move the grid points along the length of the grid, at some stage the points

will match up with each other. On the other hand, if σ
κ

is irrational the grid

points will never match up. To demonstrate this see Figure 4.2. Here, the top

part of each ratio shows the five grid points and the bottom part has red dots
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with size κ spacing and blue dots for size σ spacing. For the top two (rational)

ratios we see that the red and blue dots match up at some stage along the

grid points, but for the bottom (irrational) ratio the red and blue dots do not

match up at any point (except the centre grid point) and never will.

Therefore, when σ
κ

= m
n

, where m and n are positive integers, the dis-

crete travelling wave equation can be thought of as a finite (possibly high)

dimensional map. The resulting map will be 2m-dimensional and will have

a corresponding finite-dimensional symplectic conservation law. Otherwise,

the discrete travelling wave equation will be truly infinite-dimensional, with

an infinite-dimensional symplectic conservation law. When σ
κ

is rational the

discrete travelling wave equation (4.4) corresponds to a symmetric multistep

method of degree 2m. Section 6.5 gives more detail on the discrete travelling

wave as a symmetric multistep method.
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Figure 4.2: Grid points of the discrete travelling wave equation (4.4) with

spacing κ (red) and σ (blue).

Note σ ≥ κ for stability.

Boundary conditions can be imposed on the discrete travelling wave equa-

tion corresponding to each type of orbit in the phase portrait,
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• Homoclinic: ϕ(±∞) = ϕ0;

• Heteroclinic: ϕ(+∞) = ϕ+, ϕ(−∞) = ϕ−;

• Periodic: ϕ(T ) = ϕ(0).

We begin our study of the discrete travelling wave equation by choosing a

very simple nonlinearity, the McKean caricature.

4.2 Discrete Travelling Wave Equation with

McKean Nonlinearity

In this section we begin by introducing the McKean caricature and model. We

then use this as the nonlinearity in the nonlinear wave equation and solve this

continuous case for a heteroclinic travelling wave. Next, we briefly discuss the

dynamics of symmetric methods using an example. As we are interested in the

dynamics of the discrete case we next move onto the semi-discrete case and

finally the fully discrete case. After making some conclusions on the discrete

case we look at periodic travelling wave solutions of the discrete travelling wave

equation with McKean nonlinearity.

The McKean caricature (cubic) is a very simplified version of a cubic func-

tion and is given by the formula,

f(x) = −x+ h(x− a) (4.5)

where 0 < a < 1 is a threshold and h is the Heaviside function. It is piecewise

linear function with a discontinuity at x = a. McKean, in 1970 [61], used this

function originally in the McKean model for studying nerve conduction. The

McKean model is given by

ẋ = f(x)− y + I

ẏ = b(x− cy)
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where f(x) is given in (4.5), x is the membrane potential, y is a recovery

variable and a, c are constants.

This model is a piecewise linear caricature of the FitzHugh–Nagumo equa-

tions, which we discussed in Section 3.1. Taking a piecewise nonlinearity al-

lowed McKean to perform explicit calculations, while still preserving the essen-

tial features of neuronal behaviour. Note that the McKean model is dissipative,

whereas the nonlinear wave equation is non-dissipative.

If we use the McKean caricature for the nonlinearity in the nonlinear wave

equation (3.4) (see Figure 4.3) we get a piecewise linear wave equation (with

discontinuity at u = a)

utt = uxx − u+ h(u− a) (4.6)

where a ∈ (0, 1) and

h(u) =

{
0 if u < 0

1 if u > 0.
(4.7)

Hence,

h(u− a) =

{
0 if u < a

1 if u > a.
(4.8)

�
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Figure 4.3: McKean nonlinearity: V ′(u) = u− h(u− a).

4.2.1 The Continuous Case

Firstly, we consider the continuous case with travelling wave solution

u(x, t) = ϕ(x− ct) = ϕ(ξ) (4.9)
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where ξ = x− ct and 0 ≤ |c| < 1.

Upon substituting (4.9) into (4.6) and rearranging, the wave equation be-

comes

(c2 − 1)ϕ′′(ξ) = −ϕ(ξ) + h(ϕ(ξ)− a) (4.10)

where

h(ϕ(ξ)− a) =

{
0 if ϕ(ξ) < a

1 if ϕ(ξ) > a.
(4.11)

Now we have an ODE and can plot the phase portrait (see Figure 4.4) to

determine what types of travelling waves are present in the equation. From

Figure 4.4, we see that (4.10) possesses periodic and heteroclinic travelling

waves. We wish to look at the travelling waves corresponding to a heteroclinic

orbit so we impose the following boundary conditions,

lim
ξ→−∞

ϕ(ξ) = 0, lim
ξ→∞

ϕ(ξ) = 1. (4.12)

φ(ξ)

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4.4: Phase portrait of the travelling wave equation of the nonlinear

wave equation with McKean nonlinearity.

Figure 4.5 gives a travelling wave solution which satisfies the boundary

conditions (4.12). This is what we expect our analytic solution to look like.
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Figure 4.5: Expected travelling wave solution of the nonlinear wave equation

with McKean nonlinearity.

Given that a ∈ (0, 1) and the limits in the boundary conditions (4.12),

there must be a value ξ for which ϕ(ξ) = a. If we choose this value to be ξ∗,

then we get

ϕ(ξ∗) = a.

It is easy to see from Figure 4.5 that if we have any value of ξ less than ξ∗

then ϕ(ξ) will be less than ϕ(ξ∗) = a, and for any value of ξ greater than ξ∗

then ϕ(ξ) will be greater than ϕ(ξ∗) = a. Thus, we get

ϕ(ξ) < a for ξ < ξ∗

ϕ(ξ) > a for ξ > ξ∗.
(4.13)

Substituting (4.13) into the (4.11) we get

h(ϕ(ξ)− a) =

{
0 if ξ < ξ∗

1 if ξ > ξ∗.

Hence,

h(ϕ(ξ)− a) = h(ξ − ξ∗).

Note that due to translational invariance we can take ξ∗ = 0 without loss of

generality. Then h(ϕ(ξ)− a) = h(ξ) for ξ 6= 0.
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The continuous problem (4.10) now becomes,

(c2 − 1)ϕ′′(ξ) = −ϕ(ξ) + h(ξ − ξ∗). (4.14)

Because of the special form of h, the nonlinear travelling wave equation (4.10)

has become, for the form of heteroclinic travelling waves considered here (see

Figure 4.5), the linear equation (4.14). This is the essential reason for consid-

ering the McKean nonlinearity.

We need a preliminary result, before going further, to justify the use of the

Fourier transform to solve the equation.

Lemma 4.2.1. There exists an ε > 0 such that

|ϕ(ξ)| ≤ Keεξ for ξ ≤ 0

for some K > 0.

Proof. See Lemma 4.1 of [13] for the proof.

We seek a solution for equation (4.14), and, based on Lemma 4.2.1, we

apply the change of variables

ϕε(ξ) = e−εξϕ(ξ) (4.15)

where ε > 0 is sufficiently small. Noting that

ϕ(ξ) = eεξϕε(ξ)

ϕ′(ξ) = eεξ(εϕε(ξ) + ϕ′ε(ξ))

ϕ′′(ξ) = eεξ(ε2ϕε(ξ) + 2εϕ′ε(ξ) + ϕ′′ε (ξ))

we get

(c2 − 1)eεξ(ε2ϕε(ξ) + 2εϕ′ε(ξ) + ϕ′′ε (ξ)) = −eεξϕε(ξ) + h(ξ − ξ∗)

which simplifies to

(c2 − 1)(2εϕ′ε(ξ) + ϕ′′ε (ξ)) + ϕε(ξ)(1 + ε2(c2 − 1)) = e−εξh(ξ − ξ∗).
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Applying the Fourier transform,

ϕ̂ε(s) =

∫ ∞
−∞

e−isξϕε(ξ)dξ (4.16)

and using the properties of Fourier transforms, we get

(c2 − 1)(2εisϕ̂ε(s)− s2ϕ̂ε(s)) + ϕ̂ε(s)(1 + ε2(c2 − 1)) =
e−(is+ε)ξ∗

is+ ε

which simplifies to

ϕ̂ε(s) =
e−(is+ε)ξ∗

(is+ ε)R(s− iε)
where RCont(s) = 1− c2s2 + s2.

Next, we take the inverse Fourier transform,

ϕε(ξ) =
1

2π

∫ ∞
−∞

eisξϕ̂ε(s)ds, (4.17)

and remembering the change of variables we applied,

ϕ(ξ) = eεξϕε(ξ),

we get a formula for the solution in the original variables,

ϕ(ξ) =
1

2π

∫ ∞
−∞

eεξeisξϕ̂ε(s)ds

=
1

2π

∫ ∞
−∞

e(is+ε)ξϕ̂ε(s)ds

=
1

2π

∫ ∞
−∞

e(is+ε)ξe−(is+ε)ξ∗

(is+ ε)R(s− iε)
ds.

Taking the limit as ε→ 0 and changing the limits of integration we get

ϕ(ξ) =
1

2π

∫ −iε+∞
−iε−∞

eis(ξ−ξ
∗)

isRCont(s)
ds

=
1

2πi

∫ −iε+∞
−iε−∞

eis(ξ−ξ
∗)

sRCont(s)
ds

where RCont(s) = 1− c2s2 + s2.

The domain of integration is changed slightly in order that residue theory

can be applied to evaluate the improper integral.
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We can factorise RCont(s) to get,

RCont(s) =
(
1− c2

)(
s− i√

1− c2

)(
s+

i√
1− c2

)
.

Now, we have to evaluate the integral

1

2πi

∫ −iε+∞
−iε−∞

eis(ξ−ξ
∗)

(1− c2) s
(
s− i√

1−c2

)(
s+ i√

1−c2

)ds
which we do by residue theory. Firstly, let

f(s) =
1

2πi

eis(ξ−ξ
∗)

(1− c2) s
(
s− i√

1−c2

)(
s+ i√

1−c2

) (4.18)

where s ∈ C.

Here f(s) has 3 singularities,

s0 = 0, s1 =
i√

1− c2
, s2 = − i√

1− c2
.

These singularities are plotted in Figure 4.6 for 0 ≤ c < 1.

��

�

�� � ��
�

��

�� � ��
�

Figure 4.6: The singularities of equation (4.18).

Now, we close the top half plane with a semi-circular region taking the real

axis to at −iε. See Figure 4.7. The singularities enclosed by this region are s0

and s1.
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Figure 4.7: Contour in the upper half plane.

Using the fact that∫ ∞
−∞

f(s)ds = 2πi
n∑
k=0

Ress=skf(s),

we get the solution

ϕ(ξ) = 1− 1

2
e
−(ξ−ξ∗)√

1−c2 , ξ > ξ∗.

Similarly, if we close the bottom half plane, taking minus the sum of the

residues we get,

ϕ(ξ) =
1

2
e

(ξ−ξ∗)√
1−c2 , ξ < ξ∗.

Hence, the explicit analytic solution for the continuous case is

ϕ(ξ) =

 1− 1
2
e
−(ξ−ξ∗)√

1−c2 if ξ > ξ∗

1
2
e

(ξ−ξ∗)√
1−c2 if ξ < ξ∗

(4.19)

Graphing the solution (See Figure 4.8) for c = 0.1 and ξ∗ = 0, we see that

we obtain a heteroclinic travelling wave, which is what we were looking for.

Hence, the continuous problem has a solitary wave solution.

Later, we want to discretise (4.6) with a multisymplectic integrator to see

if we preserve this travelling wave solution in the discrete equation. However,

first we look at the preservation of travelling waves of symmetric methods.
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Figure 4.8: Travelling wave solution (4.19) of (4.6) with c = 0.1 and ξ∗ = 0.

4.2.2 Symmetric PDEs and Symmetric Methods: An

Example

Symmetric methods tend to give good long-time behaviour. Here we will show

that for the preservation of travelling wave solutions this is not always true.

Symmetric methods only preserve symmetric waves. This is important because

the conventional wisdom is that it is sufficient to preserve the symmetry of

differential operators to get qualitatively good results. We chose the symmetric

nonlinear wave equation,

utt = uxx − sin(u)− 2

5
cos(2u) (4.20)

to demonstrate this.

The model ODE,

utt = − sin(u)− 2

5
cos(2u),

was used by in [37] to study non-conservation of energy by symmetric inte-

grators. This ODE is time-reversible, but has non-symmetric orbits. In the

pendulum, utt = − sin(u), almost all orbits are symmetric with respect to the
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reversing symmetry u → −u. It is necessary to break this symmetry to see

the influence of non-symmetric orbits.

Eq. (4.20) has the phase portrait given in Figure 4.9. From this we see that

the continuous solution contains periodic and heteroclinic travelling waves.
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Figure 4.9: The phase portrait of the symmetric PDE (4.20).

We chose one of the heteroclinic orbits and plot the corresponding solution

in Figure 4.10. Note the exact solution giving a heteroclinic travelling wave

here is non-symmetric under x 7→ −x and the exact solution contains no

homoclinic travelling waves.

The 3-stage Lobatto IIIA method is applied to the symmetric PDE (4.20).

This Runge–Kutta method is symmetric, non-symplectic, 4th order in time and

2nd order in space. We look for travelling waves in the simplest setting σ/κ =

1. The results from this method are plotted in Figure 4.11 and shows that

the method has no heteroclinic travelling waves for any ∆x, but it does have

homoclinic travelling waves. These are formed by gluing together a heteroclinic

wave and its reflection a distance log(∆x) apart. To conclude, the symmetric

method has a qualitatively wrong travelling wave structure for all ∆x.

We hope that a multisymplectic integrator performs better than a sym-

metric method in the preservation of travelling waves.
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Figure 4.10: Exact solution of the symmetric PDE (4.20).
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Figure 4.11: Numerical solution of the symmetric PDE (4.20) with a symmetric

method.
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4.2.3 The Semi-Discrete Case

Discretising equation (4.6) in the x direction using the symplectic leapfrog

method we get a lattice dynamical system, the infinite system of ODEs

utt =
uni+1 − 2uni + uni−1

σ2
− uni + h(uni − a). (4.21)

For a travelling wave solution we substitute

ui(t) = ϕ(iσ − ct) = ϕ(ξ) (4.22)

into (4.21) to obtain the differential-difference equation,

c2ϕ′′(ξ) =
1

σ2
(ϕ(ξ + σ)− 2ϕ(ξ) + ϕ(ξ − σ))− ϕ(ξ) + h(ξ − ξ∗).

Now, applying the change of variables (4.15), as was done in the continuous

case, we get

c2 (ϕ′′ε (ξ) + 2εϕ′ε(ξ)) =
1

σ2

(
eεσϕε(ξ + σ)− 2ϕε(ξ) + e−εσϕε(ξ − σ)

)
− (1 + c2ε2)ϕε(ξ) + e−εξh(ξ − ξ∗).

Applying the Fourier transform (4.16) we get,

ϕ̂ε(s) =
e−(is+ε)ξ∗

(is+ ε)R(s− iε)

where

RSemi(s) = 1− c2s2 +
2

σ2
(1− cos(σs)) . (4.23)

Taking the inverse Fourier transform (4.17), we get the solution

ϕ(ξ) =
1

2πi

∫ −iε+∞
−iε−∞

eis(ξ−ξ
∗)

sRSemi(s)
ds (4.24)

where RSemi(s) is given in (4.23).

If this integral exists then the semi-discrete case has an explicit solution.

The integral (4.24) is difficult to evaluate as the zeros of RSemi(s) need to be

found. But these zeros cannot be found algebraically. So an explicit solution ϕ

was not found in this case. Instead we take a Taylor series approximation of the
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cosine function in RSemi(s) and then use residue theory, as for the continuous

case, to give an approximate solution for ϕ(ξ).

Taking a second order Taylor series approximation we get,

RSemi(s) = 1− c2s2 +
2

σ2

(
1−

(
1− (σs)2

2
+

(σs)4

24
+ . . .

))
≈ 1− c2s2 +

2

σ2

(
σ2s2

2

)
= 1− c2s2 + s2.

So, in this semi-discrete case,

RSemi(s) ≈ 1− c2s2 + s2,

which is the same asRCont(s) which we found in the continuous case. Therefore,

an approximation of the semi-discrete solution gives a travelling wave solution

equivalent to the continuous case. To get an idea if this approximation to

the semi-discrete solution is close to the actual solution of this system, we

can take increasingly higher order approximations to the cosine function in

RSemi(s) and apply residue theory by finding the zeros. But as higher order

approximations are taken the number of zeros of RSemi(s) increases and so the

difficulty of finding them becomes increasingly more difficult, so we are almost

back to square one.

We now look at an example of RSemi(s) which has a fourth order approxi-

mation of the cosine function,

RSemi(s) ≈ 1− c2s2 + s2 − σ2s4

12
.

We plot the roots of this approximation for c = 0.7 and σ = 0.5 in Fig-

ure 4.12 on the left. We see that as well as pure imaginary roots we have have

roots on the real line. In Section 4.2.4 we see that roots on the real line pro-

duce wiggles in the solution. On the right of Figure 4.12 the roots of RSemi(s)

are plotted for an 8th order approximation of the cosine term for c = 0.7 and

σ = 0.5.

123



-6 -4 -2 0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5

-8 -6 -4 -2 0 2 4 6 8
-20

-15

-10

-5

0

5

10

15

20

Figure 4.12: The zeros of RSemi(s) with a 4th order cosine approximation on

the left and an 8th order cosine approximation on the right.

4.2.4 The Discrete Case

Our eventual goal is to study travelling wave solutions for multisymplectic

discretisations of the nonlinear wave equation (3.4) with smooth nonlinearity.

For a multisymplectic integration we use the leapfrog method in space and time

and first apply this to our simplified nonlinearity, the McKean cubic. From

(4.4), we get our discrete travelling wave equation with McKean nonlinearity

to be

c2

κ2
(ϕ(ξ + κ)− 2ϕ(ξ) + ϕ(ξ − κ))

− 1

σ2
(ϕ(ξ + σ)− 2ϕ(ξ) + ϕ(ξ − σ)) = −ϕ(ξ) + h(ξ − ξ∗). (4.25)

We have the same difficulties in solving this equation as were discussed in

Section 4.1.1, but hope that the simplified nonlinearity will make this problem

slightly easier to solve, with it now being a linear problem rather than a fully

nonlinear one. We give results for 3 cases in particular: c = 0, σ = κ, and

σ = 2κ.

Using the same procedure as we did for the continuous and semi-discrete

case, we get the solution

ϕ(ξ) =
1

2πi

∫ ∞
−∞

eis(ξ−ξ
∗)

sRDisc(s)
ds (4.26)
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where the function RDisc(s) is now

RDisc(s) = 1− 2c2

κ2
(1− cos(κs)) +

2

σ2
(1− cos(σs)) . (4.27)

Finding the explicit solution ϕ(ξ) for this discrete case all comes down to

analysing the function RDisc(s). Surprisingly, we are actually able to calcu-

late the zeros of the function RDisc(s) directly for rational values of σ
κ
, rather

than making approximations with Taylor series expansions, even though the

function looks more complicated than that for the semi-discrete case.

Case c = 0

First, we can look at, what would seem, a simpler case of RDisc(s) by consid-

ering the steady state solution, c = 0. This is the solution of a travelling wave

with zero velocity. Putting c = 0 in (4.27), we get,

RDisc(s) = 1 +
2

σ2
(1− cos(σs)).

Setting this RDisc(s) = 0 we get two zeros lying on the imaginary axis,

(which are complex conjugates), and all their periodic images. These are given

by

s =
± arccos(1 + 1

2
σ2)± 2nπ

σ

where n = 1, 2, 3, · · · .
We also get a zero at s = 0 from the denominator of the solution (4.26).

The residues are calculated in Mathematica and an explicit solution of (4.25)

is plotted in Figure 4.13. The solution on the left is for σ = 0.1 and the one on

the right is for σ = 0.2. We see that in both cases the solution is monotonic

and piecewise constant. Note that the tail at each end of the solution does not

contain any wiggles.

Case σ = κ

The next simplest thing to do is set σ = κ. This reduces the discrete travelling

wave equation (4.4) to the symplectic leapfrog method applied to the reduced
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Figure 4.13: The solution of (4.25) for c = 0: κ = 0.1 left, κ = 0.2 right.

ODE (3.5). Putting σ = κ in (4.27) we get,

RDisc(s) = 1 +
2

κ2
(1− cos(κs))

(
1− c2

)
.

Setting, RDisc(s) = 0 for the above equation we get two zeros lying on the

imaginary axis as in the previous case for c = 0. The periodic images of these

zeros are also zeros of RDisc(s) for σ = κ. The complete set of zeros of RDisc(s)

for σ = κ is given by,

s =
± arccos

(
1 + k2

2(1−c2)

)
± 2nπ

κ

where n = 1, 2, 3, · · · .
We also get the zero s = 0 from the denominator of the solution (4.26) as

was for the case c = 0. The residues are calculated in Mathematica and an

explicit solution of (4.25) is plotted in Figure 4.14 for fixed κ and two different

value of c. The solution on the left is for c = 0.2 and the one on the right is

for c = 0.9. We see that in both cases the solution is monotonic and piecewise

constant. Note that the tail at each end of the solution does not contain any

wiggles. Also, notice that as c increases the solution becomes steeper.

Case σ = 2κ

The next simplest thing to do is set σ = 2κ, giving the ratio κ
σ

= 1
2
. We now

get,

RDisc(s) = 1− 2c2

κ2
(1− cos(κs)) +

1

2κ2
(1− cos(2κs)) .
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Figure 4.14: The solution of (4.25) for σ = κ: c = 0.2 left, c = 0.9 right.

As was said earlier, the poles of RDisc(s) can be found using Matlab or

Mathematica without making any Taylor series approximations for the cosine

terms. For this case, we get two complex roots and two real roots, plus their

periodic images, see Figure 4.15. The residues are calculated by Mathematica

and an explicit formula for the solutions in terms of Hypergeometric functions,

2F1(a, b; c; z) is found.

�

�150 �100 �50 50 100 150

�1.0

�0.5

0.5

1.0

Figure 4.15: Zeros of RDisc(s) for σ = 2κ and their periodic images.

Definition 4.2.1 (Hypergeometric Function). The hypergeometric function

2F1(a, b; c; z) is a function represented by the hypergeometric series. For |z| < 1
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the function is defined by the series

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

where c 6= 0,−1,−2, . . . and (a)n = a(a + 1)(a + 2) . . . (a + n − 1), (a)0 = 1.

(a)n is called the Pochhammer symbol.

Before plotting the full solution, we give a plot of the sum of the residues

for a real pole and its periodic images in Figure 4.16, and a plot of the sum

of the residues for an imaginary pole and its periodic images in Figure 4.17.

From these plots we see that the wiggles at the boundaries or tails come from

the real poles.
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Figure 4.16: Solution from a real pole for κ
σ

= 1
2

and κ = 0.2, and c = 0.2.

We get the final solution by combining the solution for all the real and

imaginary poles. This function is given in Figure 4.18. Notice, that we get a

piecewise constant solution with wiggles at the tails.

4.2.5 Summary of Results

The solutions in Figure 4.13, Figure 4.14 and Figure 4.18 all have the general

shape of a solitary solution corresponding to a heteroclinic orbit, but contain

wiggles. The solutions are piecewise constant including the wiggles, which are

of order κ2 (or σ2 when c = 0). This is a good sign because as the step size
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Figure 4.17: Solution from an imaginary pole for κ
σ

= 1
2

and κ = 0.2, and

c = 0.2.
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Figure 4.18: Solution of the discrete travelling wave equation with McKean

nonlinearity for σ = 2κ.

129



κ is reduced and tends to zero, the size of the wiggles also tends to zero, but

at a faster rate. The wiggles at the boundaries of the solution come from the

residues of the real poles. Since we do not have any real poles, (except for the

pole at s = 0), for the cases c = 0 and σ = κ these wiggles do not appear

in these solutions. Instead we just get a piecewise constant solution with the

shape of a heteroclinic travelling wave.

Our solution from the discretisation of a multisymplectic integrator is bet-

ter then that of a discretisation with a non-multisymplectic integrator. With

a non-multisymplectic integrator we will not preserve travelling wave solutions

at all, but here we at least get the shape of the travelling wave solution. Even

symmetric methods applied to symmetric PDEs need not preserve travelling

wave solutions as we saw in Section 4.2.2.

Further work can be done on this problem, which includes testing the

approach out on other rational values of κ
σ

to see if similar results are obtained,

and also, use the approach to find the solution for a set of rational values of κ
σ

tending to an irrational.

4.2.6 Periodic Travelling Wave Solutions

In this section we look at periodic travelling wave solutions of the discrete

travelling wave equation with McKean nonlinearity (4.25).

Discrete periodic travelling waves can be sought of by taking the Fourier

series of the discrete difference equation (4.25). We will see that, instead of an

explicit solution in terms of an infinite integral, as occurred for the heteroclinic

travelling wave, the periodic case produces an explicit formula in terms of a

Fourier series. We expect our travelling wave solutions to look similar to the

wave shown in Figure 4.19.

First, we set ξ ∈ [0, 2τ) so our function h(ξ) becomes,

h(ξ) =

{
0 if ξ ∈ [0, τ)

1 if ξ ∈ (τ, 2τ).
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Figure 4.19: Expected periodic travelling wave solution of the nonlinear wave

equation with McKean nonlinearity.

Taking the Fourier Series

ϕ(ξ) =
∞∑

n=−∞

ϕ̃ne
inπ
τ
ξ (4.28)

and

h(ξ) =
∞∑

n=−∞

h̃ne
inπ
τ
ξ

and substituting into the discrete difference equation (4.25) we get,

c2

κ2

(
∞∑

n=−∞

ϕ̃ne
inπ
τ

(ξ+κ) − 2
∞∑

n=−∞

ϕ̃ne
inπ
τ
ξ +

∞∑
n=−∞

ϕ̃ne
inπ
τ

(ξ−κ)

)

− 1

σ2

(
∞∑

n=−∞

ϕ̃ne
inπ
τ

(ξ+σ) − 2
∞∑

n=−∞

ϕ̃ne
inπ
τ
ξ +

∞∑
n=−∞

ϕ̃ne
inπ
τ

(ξ−σ)

)

= −
∞∑

n=−∞

ϕ̃ne
inπ
τ
ξ +

∞∑
n=−∞

h̃ne
inπ
τ
ξ.
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Collecting like terms we get,

c2

κ2

∞∑
n=−∞

ϕ̃ne
inπ
τ
ξ
(
ein

π
τ
κ − 2 + e−in

π
τ
κ
)

− 1

σ2

∞∑
n=−∞

ϕ̃ne
inπ
τ
ξ
(
ein

π
τ
σ − 2 + ein

π
τ
σ
)

+
∞∑

n=−∞

ϕ̃ne
inπ
τ
ξ

=
∞∑

n=−∞

h̃ne
inπ
τ
ξ.

Dividing by ein
π
τ
ξ we get,

∞∑
n=−∞

ϕ̃n

(
c2

κ2

(
ein

π
τ
κ + e−in

π
τ
κ − 2

)
− 1

σ2

(
ein

π
τ
σ + ein

π
τ
σ − 2

)
+ 1

)

=
∞∑

n=−∞

h̃n.

Substituting the exponentials for cosine terms we get the explicit formula,

∞∑
n=−∞

ϕ̃n

(
2c2

κ2

(
cos
(nπκ

τ

)
− 1
)
− 2

σ2

(
cos
(nπσ

τ

)
− 1
)

+ 1

)
=

∞∑
n=−∞

h̃n.

(4.29)

Taking a finite truncation of the Fourier series we get,

ϕ̃n =
h̃n

1− 2c2

κ2

(
1− cos

(
nπκ
τ

))
+ 2

σ2

(
1− cos

(
nπσ
τ

)) .
The coefficients h̃n of the Fourier Series for h(ξ) can be calculated exactly,

h̃n =
1

2τ

∫ 2τ

0

h(ξ)e−in
π
τ
ξdξ

=
1

τ

∫ 2τ

τ

e−in
π
τ
ξdξ

=
1

2τ
· −1

inπ
τ

e−in
π
τ
ξ

∣∣∣∣2τ
τ

=
−1

inπ

(
e−in

π
τ

(2τ) − e−in
π
τ
τ
)

=
1

inπ

(
e−inπ − e−2inπ

)
=

1

inπ
((−1)n − 1) .
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By taking a finite truncation we no longer have an explicit solution for ϕ(ξ),

but a numerical solution of (4.25). As n gets greater the truncation becomes

closer to the explicit solution given by (4.29).

We look for the convergence of ϕ̃n as n→∞, by fixing the parameters τ ,

σ, κ, and c. A plot of the solution for fixed parameters is given in Figure 4.20.

Here we see that we appear to get a piecewise constant solution with the shape

of the periodic travelling wave form (Figure 4.19), which we expect. But if we

zoom in it can be seen that there are wiggles (Figure 4.21) in our numerical

solution. These wiggles are due to the Gibbs phenomenon, which occur while

taking a numerical approximation of the Fourier Series of a piecewise contin-

uously differentiable periodic function. Eventually, as n → ∞ these wiggles

will disappear giving a smooth solution, more like the solution we expect.
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Figure 4.20: Periodic travelling wave solution of the discrete differential-

difference equation (4.25) for parameters τ = 30, σ = 2κ, κ = 0.01, and

c = 0.5.

Even when we choose an irrational value of σ
κ
, such as σ

κ
= 1√

2
, and keep

all the other parameters the same we still get a travelling wave solution the

same as Figure 4.20. But, when we zoom in to look for wiggles in the solution

(Figure 4.22) we see that the wiggles appear random. These wiggles are not

due to the Gibbs phenomenon.

Investigating further, we found that even for some rational values of σ
κ

we
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Figure 4.21: Zoom of Figure 4.20 showing the occurrence of wiggles.
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Figure 4.22: Zoom of solution for irrational r = 1√
2

showing the occurrence of

wiggles.
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can get fairly large wiggles, (see Figure 4.23a), without zooming in. These

wiggles also seem as though they are not due to Gibbs phenomenon. Very

large wiggles can be seen for some irrational values, (see Figure 4.23b), of σ
κ
.
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(a) Large wiggles for a rational ratio of σ

and κ
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(b) Large wiggles for an irrational ratio of

σ and κ

Figure 4.23: Wiggles in the periodic travelling wave solution of the nonlinear

wave equation with McKean nonlinearity.

From our results we conclude that there are no true periodic travelling wave

solutions of the discrete travelling wave equation with McKean nonlinearity.

The McKean cubic worked well in McKean’s work on nerve conduction, but

did not seem to work well for results on preservation of travelling waves in

the nonlinear wave equation. This could be due to the fact that our equation

is non-dissipative whereas the model that McKean used was dissipative. The

discontinuity at x = a could be part of the problem too, so we next use a

nonlinearity that is piecewise linear and continuous.

4.3 Discrete Travelling Wave Equation with

Sawtooth Nonlinearity

Instead of using a discontinuous function such as the McKean cubic, we now

use a piecewise linear function. We still want to approximate a cubic function,

135



so use a sawtooth function as our nonlinearity. We choose,

f(x) =


−x− 2, −2 < x < −1

x, −1 < x < 1

−x+ 2, 1 < x < 2

(4.30)

which is plotted in Figure 4.24.

-2 -1 0 1 2

-1

0

1

Figure 4.24: Sawtooth function (4.30).

With this nonlinearity we can now plot the phase portrait of the reduced

ODE (3.5) with sawtooth nonlinearity (4.30). The phase portrait is given in

Figure 4.25 and shows that the solution of this piecewise linear wave equa-

tion has heteroclinic and periodic travelling waves. We choose to concentrate

on periodic travelling waves for now. But we can approach the heteroclinic

travelling wave if we look at periodic travelling waves with period T →∞.

Using this sawtooth function as the nonlinearity in the discrete travelling

wave equation (4.4) we get a piecewise linear discrete wave equation,

c2

κ2
(ϕ(ξ + κ)− 2ϕ(ξ) + ϕ(ξ − κ))

− 1

σ2
(ϕ(ξ + σ)− 2ϕ(ξ) + ϕ(ξ − σ)) =


−ϕ(ξ)− 2, −2 < ϕ(ξ) < −1

ϕ(ξ), −1 < ϕ(ξ) < 1

−ϕ(ξ) + 2, 1 < ϕ(ξ) < 2

(4.31)

where ξ ∈ R.
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Figure 4.25: Phase portrait of the travelling wave equation of the nonlinear

wave equation with sawtooth nonlinearity.

4.3.1 Analytic Solution

In this section we give the continuous periodic travelling wave solution of the

nonlinear wave equation with sawtooth nonlinearity.

Recall that after substituting travelling wave coordinates the nonlinear

wave equation becomes the nonlinear 2nd order Hamiltonian ODE,

(c2 − 1)ϕ′′(ξ) = −V ′(ϕ(ξ)). (4.32)

For V ′(ϕ(ξ)) we now have the sawtooth function (4.30) so that the nonlinear

2nd order Hamiltonian ODE becomes a piecewise linear 2nd order Hamiltonian

ODE with constant coefficients,

(c2 − 1)ϕ′′(ξ) =


−ϕ(ξ)− 2, −2 < ϕ(ξ) < −1

ϕ(ξ), −1 < ϕ(ξ) < 1

−ϕ(ξ) + 2, 1 < ϕ(ξ) < 2.

(4.33)

For solutions with amplitude greater than one the equation (4.33) can be

simplified.

The simplification is done by drawing the expected periodic solution from

a periodic orbit of the phase portrait and noticing that the right hand side of

(4.33) can be split into five parts instead of three. In Figure 4.26 the phase
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portrait of the nonlinear wave equation with sawtooth nonlinearity and the

expected solution for an orbit are plotted. Also, points on the orbit are plotted

with corresponding points on the expected solution. Note that ϕ(ξ) is on the

x-axis for the phase portrait plot. Choosing a periodic orbit with amplitude

greater than one, (ϕ(ξ) > 1), we trace out the orbit clockwise starting at point

‘a’ and returning back to this point. When ϕ(ξ) = 1 we have four points,

‘b’,‘c’,‘e’, and ‘f’ which correspond to critical values in the expected solution.

For the first critical point we have that in the expected solution there is some

value of ξ∗ ∈ ξ at which ϕ(ξ∗) = 1. The other values of ξ occur symmetrically

along the solution, so that if the period is 2τ we have the 4 points are ξ∗,

τ − ξ∗, τ + ξ∗ and 2τ − ξ∗, as labeled in the graph Figure 4.26b.

At point ‘a’ ϕ(ξ) = 0, travelling along the orbit to point ‘b’, ϕ(ξ) increases

to one, then continues to increase to its maximum value (the amplitude) then

decreases again to ϕ(ξ) = 1 at point ‘c’. The value of ϕ then decreases to zero

at point ‘d’, (we have travelled τ , half the period of the orbit), and continues

to decrease until ϕ(ξ) = −1 at point ‘e’, then continues to decrease until its

minimum value, where it begins to increase again to ϕ(ξ) = −1 at point ‘f’.

We can then travel to point ‘a’ completing one period 2τ of the orbit.
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(a) Phase portrait of the nonlinear wave

equation with sawtooth Nonlinearity
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Figure 4.26: Phase portrait and expected solution of the nonlinear wave equa-

tion with sawtooth nonlinearity.
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The maximum amplitude the solution can take is ϕ(ξ)→ 2 as the solution

approaches the fixed point.

Notice, that for 0 ≤ ξ ≤ ξ∗, we get 0 ≤ ϕ(ξ) ≤ 1, which corresponds to

−V ′(ϕ(ξ)) = ϕ(ξ) since −1 < ϕ(ξ) < 1 from (4.33). For the next interval,

ξ∗ ≤ ξ ≤ τ − ξ∗, we get 1 ≤ ϕ(ξ) ≤ 2, which corresponds to −V ′(ϕ(ξ)) =

−ϕ(ξ) + 2, since 1 < ϕ(ξ) < 2 from (4.33). Doing this for all intervals up to

2τ we get the sawtooth nonlinearity written as,

−V ′(ϕ(ξ)) =



ϕ(ξ), 0 < ξ < ξ∗

−ϕ(ξ) + 2, ξ∗ < ξ < τ − ξ∗

ϕ(ξ), τ − ξ∗ < ξ < τ + ξ∗

−ϕ(ξ)− 2, τ + ξ∗ < ξ < 2τ − ξ∗

ϕ(ξ), 2τ − ξ∗ < ξ < 2τ.

(4.34)

With (4.34) as the right hand side of (4.32) the 2nd order differential equa-

tion (4.32) can now be solved easily by looking at the roots of the auxiliary

(characteristic) equation.

For the intervals, 0 < ξ < ξ∗, τ − ξ∗ < ξ < τ + ξ∗, and 2τ − ξ∗ < ξ < 2τ ,

the differential equation is

(c2 − 1)ϕ′′(ξ) = ϕ(ξ)⇒ (c2 − 1)ϕ′′(ξ)− ϕ(ξ) = 0

with auxiliary equation

(c2 − 1)m2 − 1 = 0.

Solving, we get

m = ± i√
1− c2

.

Therefore, the general solution, for the intervals 0 < ξ < ξ∗, τ − ξ∗ < ξ <

τ + ξ∗, 2τ − ξ∗ < ξ < 2τ , is

ϕ(ξ) = c1 cos

(
ξ√

1− c2

)
+ c2 sin

(
ξ√

1− c2

)
where c1, c2 are different constants for each interval depending on the boundary

conditions at each interval.
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From Figure 4.26b, we impose the boundary conditions

0 < ξ < ξ∗, ϕ(0) = 0, ϕ(ξ∗) = 1

τ − ξ∗ < ξ < τ + ξ∗, ϕ(τ − ξ∗) = 1, ϕ(τ + ξ∗) = −1

2τ − ξ∗ < ξ < 2τ, ϕ(2τ − ξ∗) = −1, ϕ(2τ) = 0

to solve for unknown constants.

For the interval ξ∗ < ξ < τ − ξ∗ we have

(c2 − 1)ϕ′′(ξ) = −ϕ(ξ) + 2⇒ (c2 − 1)ϕ′′(ξ) + ϕ(ξ) = 2

which is a nonhomogeneous equation. So we solve the associated homogeneous

equation first. The auxiliary equation for the homogeneous equation is,

(c2 − 1)m2 + 1 = 0.

Solving, we get

m = ± 1√
1− c2

.

Therefore, the general solution for the homogeneous equation is

ϕ(ξ) = c3e
ξ√

1−c2 + c4e
−ξ√
1−c2

and the particular solution is ϕ(ξ) = 2.

Therefore, the general solution for the nonhomogeneous equation is,

ϕ(ξ) = c3e
ξ√

1−c2 + c4e
−ξ√
1−c2 + 2

where c3, c4 are constants.

From Figure 4.26b, we impose boundary conditions,

ξ∗ < ξ < τ − ξ∗, ϕ(ξ∗) = ϕ(τ − ξ∗) = 1

to solve for c3 and c4.

For the interval, τ + ξ∗ < ξ < 2τ − ξ∗, we have

(c2 − 1)ϕ′′(ξ) = −ϕ(ξ)− 2⇒ (c2 − 1)ϕ′′(ξ) + ϕ(ξ) = −2
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which is again a nonhomogeneous equation. Solving, we get the general solu-

tion,

ϕ(ξ) = c5e
ξ√

1−c2 + c6e
−ξ√
1−c2 − 2

where c5, c6 are constants.

From Figure 4.26b, we impose the boundary conditions

τ + ξ∗ < ξ < 2τ − ξ∗, ϕ(τ + ξ∗) = ϕ(2τ − ξ∗) = −1

to solve for c5 and c6.

Plotted in Figure 4.27 are solutions to the nonlinear wave equation with

sawtooth nonlinearity for different values of ξ∗ and fixed c.
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Figure 4.27: Exact solutions of the nonlinear wave equation with sawtooth

nonlinearity.

We can now find the solution of the discrete travelling wave equation (4.4)

for the sawtooth nonlinearity and compare the results with the analytic solu-

tion given in Figure 4.27.
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4.3.2 Discrete Solution

We now move onto looking at the discrete periodic travelling wave solutions

of the discrete travelling wave equation with sawtooth nonlinearity (4.25).

Let −V ′(ϕ(ξ)) = f(ϕ(ξ)); then the discrete travelling wave equation (4.4)

becomes,

c2

κ2
(ϕ(ξ + κ)− 2ϕ(ξ) + ϕ(ξ − κ))

− 1

σ2
(ϕ(ξ + σ)− 2ϕ(ξ) + ϕ(ξ − σ)) = f(ϕ(ξ)) (4.35)

where f(ϕ(ξ)) is the sawtooth nonlinearity (4.34).

Following Section 4.2.6, we expand both sides of (4.35) in a Fourier series,

obtaining

ϕ̃n

(
2c2

κ2

(
cos
(nπκ

τ

)
− 1
)
− 2

σ2

(
cos
(nπσ

τ

)
− 1
))

= f̃n. (4.36)

Since f(ϕ(ξ)) is a periodic function with fixed period, 2τ , for fixed c and

each of the five intervals in the nonlinearity (4.34), the Fourier coefficients f̃n

can be found explicitly and are given by

f̃n =
1

2τ

∫ 2τ

0

f(ϕ(ξ))e−in
π
τ
ξdξ.

Splitting this equation up over each of the intervals in the nonlinearity

(4.34), we get

f̃n =
1

2τ

[∫ ξ∗

0

ϕ(ξ)e−in
π
τ
ξdξ +

∫ τ−ξ∗

ξ∗
(−ϕ(ξ) + 2)e−in

π
τ
ξdξ+∫ τ+ξ∗

τ−ξ∗
ϕ(ξ)e−in

π
τ
ξdξ +

∫ 2τ−ξ∗

τ+ξ∗
(−ϕ(ξ)− 2)e−in

π
τ
ξdξ +

∫ 2τ

2τ−ξ∗
(ϕ(ξ))e−in

π
τ
ξdξ

]
.

Each of these integrals can be evaluated separately. Taking the first inte-
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gral, and substituting in the Fourier Series, (4.28), for ϕ(ξ), we get∫ ξ∗

0

ϕ(ξ)e−in
π
τ
ξdξ =

∫ ξ∗

0

∞∑
k=−∞

ϕ̃ke
ik π
τ
ξe−in

π
τ
ξdξ

=
∞∑

k=−∞

∫ ξ∗

0

ϕ̃ke
i(k−n)π

τ
ξdξ

=
∞∑

k=−∞

ϕ̃k

[
τ

i(k − n)π
ei(k−n)π

τ
ξ

]ξ∗
0

=
∞∑

k=−∞

ϕ̃k
τ

i(k − n)π

[
ei(k−n)π

τ
ξ∗ − 1

]
.

Evaluating the integrals for each interval we get,

f̃n =
∞∑

n=−∞

ϕ̃n
1

i(k − n)π

(
ei(k−n)π

τ
ξ∗ − e−i(k−n)π

τ
ξ∗ + (−1)(k−n)ei(k−n)π

τ
ξ∗

−(−1)(k−n)e−i(k−n)π
τ
ξ∗
)

+
1

inπ

(
e−in

π
τ
ξ∗ + ein

π
τ
ξ∗

−(−1)ne−in
π
τ
ξ∗ − (−1)nein

π
τ
ξ∗
)
.

Substituting this into (4.36) and solving for ϕ̃n we get,

ϕ̃n = (G−A)−1b (4.37)

where,

g =

(
2c2

κ2

(
cos
(nπκ

τ

)
− 1
)
− 2

σ2

(
cos
(nπσ

τ

)
− 1
))

(4.38)

G = diag(g)

A =
1

i(k − n)π

(
ei(k−n)π

τ
ξ∗ − e−i(k−n)π

τ
ξ∗+ (4.39)

(−1)(k−n)ei(k−n)π
τ
ξ∗ − (−1)(k−n)e−i(k−n)π

τ
ξ∗
)

b =
1

inπ

(
e−in

π
τ
ξ∗ + ein

π
τ
ξ∗ − (−1)ne−in

π
τ
ξ∗ − (−1)nein

π
τ
ξ∗
)
.

The Fourier coefficients (4.37) can be now found in Matlab by solving for ξ∗

and the solution ϕ(ξ) found by the taking the inverse Fourier transform. Dis-

crete numerical solutions can now be plotted and compared with the analytic

solution. These are given in Figure 4.28 and Figure 4.29.
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In the figures it looks like the discrete numerical solutions are very similar

to the analytic solution. This was confirmed by plotting the discrete solutions

over top of the analytic solutions for fixed periods, but varying the ratios

of σ
κ
. In all cases tried, the discrete numerical solutions seem to match the

corresponding analytic solutions. The difference in the analytic and discrete

solutions was not measured as the nature of finding the analytic solution made

this difficult.
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Figure 4.28: Comparison of the analytic solution and the discrete solution of

the nonlinear wave equation with sawtooth nonlinearity, for fixed periods and

fixed c, for rational values of σ
κ
.

So, for the nonlinear wave equation with sawtooth nonlinearity it appears

that discrete periodic travelling wave solutions do exist. We now want to

extend this to smooth nonlinearities and say in general that multisymplectic

integrators preserve travelling wave solutions.

144



�

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

ξ

Analytic Solution with Period = 5.2648: ξ
* = 0.9

φ
( ξ

)

0 1 2 3 4 5 6 7 8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

ξ

Analytic Solution with Period = 8.3727: ξ
* = 0.65

φ
( ξ

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Discrete Solution with Period = 5.2648: ξ

* = 0.89676

ξ

φ
( ξ

)

0 1 2 3 4 5 6 7 8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Discrete Solution with Period = 8.3727: ξ

* = 0.64864

ξ

φ
( ξ

)

Figure 4.29: Comparison of the analytic solution and the discrete solution of

the nonlinear wave equation with sawtooth nonlinearity, for fixed periods and

fixed c, for irrational values of σ
κ
.
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Chapter 5

Numerical Solution of the

Discrete Travelling Wave

Equation with Smooth

Nonlinearity

In this chapter we introduce the sine-Gordon equation. This is the equation

which will be mostly used from now on. We then give the discrete travel-

ling wave equation of the sine-Gordon equation, an equation resulting from

applying the multisymplectic leapfrog method and discrete travelling wave co-

ordinates to it. Because the resulting discrete travelling wave equation proved

difficult to solve analytically, we will show how we solved it numerically for

periodic travelling waves. The numerical solutions sometimes produce what is

known as resonances. We try to predict what combination of the parameters

these resonances occur and what size the resonances are. Our results from this

chapter will be backed up in Chapter 6 by backward error analysis.
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5.1 The sine-Gordon equation

The final choice of nonlinearity is a smooth nonlinear function. We choose the

sine function, so that our nonlinear wave equation becomes the sine-Gordon

equation

utt = uxx − sinu (5.1)

and the ODE from travelling wave coordinate substitution is

(c2 − 1)ϕ′′(ξ) = − sin(ϕ(ξ)) (5.2)

which we can draw the phase portrait for. This is plotted in Figure 5.1. Here we

can see that the solution possesses periodic and heteroclinic travelling waves.

-4 -3 -2 -1 0 1 2 3 4

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 5.1: Phase portrait of the travelling wave equation of the nonlinear

wave equation with smooth nonlinearity.

Figure 5.1 shows that there are fixed points at ϕ(ξ) = 0 and ϕ(ξ) = ±π.

So the periodic solutions will have a maximum amplitude approaching π.
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The exact solution can also be found in Mathematica in terms of Jacobi

Amplitude functions.

In Chapter 4 we derived the discrete travelling wave equation (4.4) for the

nonlinear wave equation with a general nonlinearity V ′(u).

For the sine-Gordon equation we get the discrete travelling wave equation,

c2

κ2
(ϕ(ξ + κ)− 2ϕ(ξ) + ϕ(ξ − κ))

− 1

σ2
(ϕ(ξ + σ)− 2ϕ(ξ) + ϕ(ξ − σ)) = − sin(ϕ(ξ)), ξ ∈ R. (5.3)

As we saw in Chapter 4 the discrete travelling wave equation is difficult to

solve analytically, even with simpler nonlinearities. Our sine-Gordon discrete

travelling wave equation (5.3) is no different. Therefore, we will solve it numer-

ically rather than exactly. We saw that the continuous sine-Gordon equation

(5.1) (or (5.2)) contained heteroclinic and periodic travelling waves. We want

to see if these travelling wave are preserved by the discrete travelling wave

equation (5.3), a multisymplectic integrator. In the next section, we derive a

method for numerically solving the discrete travelling wave equation (5.3) for

periodic travelling wave solutions.

5.2 Numerical Method for Periodic Travelling

Wave Solutions

In this section we derive a pseudospectral Newton continuation method to solve

the discrete travelling wave equation (5.3) for the periodic case. In Figure 5.1

we saw that the continuous case has a family of periodic solutions each with a

varying period. We assume this is also true for the discrete case and so initially

fix our solution to be a specific period. Newton’s method is used to solve the

nonlinear part of the equation and this is combined with a continuation phase

which allows us to see snapshots of the solution for increasing period. The

continuation part of the method uses the solution ϕ at a particular parameter

value as an initial estimate in Newton’s method for the parameter at a slightly
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different value, say slightly higher. Then by using each solution for slightly

higher values of the parameter we can keep on continuing to find the solution

until the desired value of the parameter is required.

We will be working in both real space and Fourier space so make the fol-

lowing definitions. Let − sin(ϕ(ξ)) = f(ϕ(ξ)) in the discrete travelling wave

equation (5.3). Then we have

F(ϕ) = ϕ̃n, F−1(ϕ̃n) = ϕ,

F(f) = f̃n, F−1(f̃n) = f,

where F is the Fourier transform.

Discrete periodic travelling waves can be sought by using the discrete

Fourier series (as was done in Sections 4.2.6 and 4.3.2)

ϕ(ξ) =
N∑

n=−N

ϕ̃ne
inπ
τ
ξ

where τ = T
2

and T is the period of the periodic solution.

To solve (5.3) numerically for ϕ as a discrete Fourier series, we use Newton’s

method and a continuation of the period T of the solution. Notice that the

left hand side of (5.3) is linear, but the right hand side is nonlinear. We will

not worry about the right hand side being nonlinear for now as this will be

dealt with later on by Newton’s method. First, we apply the discrete Fourier

series to both sides of (5.3). Most of the work is already done for us as this

was done for the sawtooth nonlinearity in Section 4.3.2, which gives

Gϕ̃n = f̃n (5.4)

where G is given in (4.38).

Equation (5.4) is in Fourier space, but we would prefer to work in real space.

By rewriting the Fourier modes in terms of Fourier transforms, equation (5.4)

becomes,

GF(ϕ(ξ)) = F(f(ϕ(ξ))).

Rearranging, we get

Lϕ(ξ) = f(ϕ(ξ)) (5.5)
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where L = F−1GF is a linear operator.

We have reduced the discrete travelling wave equation (5.3) to a linear

operator applied to ϕ(ξ) on the left hand side, but the right hand side is still

nonlinear.

The solution ϕ of the discrete travelling wave equation is a vector whose

length depends on the number of Fourier modes used for solving the linear

part with the discrete Fourier series.

We choose the number of Fourier modes N that we want to numerically

solve for, then using Matlab we find L where we use the N×N discrete Fourier

transform matrix,

1 1 1 1 · · · 1

1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
... · · · ...

1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1)


,

for F , where ω = e
−2πi
N .

Next, we solve the nonlinear part of (5.5) using Newton’s method,

ϕi+1 = ϕi − (L− diag(f ′(ϕi))−1(Lϕi − f(ϕi)).

To use Newton’s method we found an appropriate initial estimate of the

solution ϕ. Next, we chose values for σ, κ and c, then chose to fix the period

of the solution to T = 2π, initially. Because we are using Newton’s method to

solve for ϕ, we only get a numerical approximation to our discrete travelling

wave equation (5.3), but if we have quadratic convergence of Newton’s method

then this numerical solution should be very close to the exact solution of the

discrete travelling wave equation (5.3).

The numerical solution for the situation described above is given in Fig-

ure 5.2. We see that it is a periodic solution, resembling the sine wave, with

period 2π. This solution was only for one set of values of the parameters, but

we want to look at the periodic solutions for a range of all the parameters.
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Numerical Solution for T=2ππππ, c=1.3, σσσσ=1, κκκκ=0.5

Figure 5.2: Numerical solution ϕ(ξ) of the discrete travelling wave equation

(5.3). ξ is on the x-axis and ϕ on the y-axis.

If we fix c = 1.3, then there are 3 parameters that need to be considered

and controlled:

• T—the period of the solution;

• σ—the spatial step size; and

• κ—related to the time step (κ = c∆t).

Note that for this problem we have c > 1, compared with the wave equa-

tions with McKean and Sawtooth nonlinearity where we had 0 ≤ c < 1.

Now that we have solved for T = 2π we can do a continuation in τ = T
2
. We

keep all other parameters the same, only varying the period T . For example,

we started with τ = π and found a solution ϕ. Next, we may want to find the

solution for τ = π + 0.01. To do this we use the solution ϕ that we found for

τ = π as our initial guess to the solution for τ = π+0.01. Then for τ = π+0.02

we use the solution we found for τ = π + 0.01 as our initial guess, and so on.

Looking at the solutions from doing a continuation in τ , we notice two distinct

types of solution, plotted in Figure 5.3. The first type appears to be smooth

and is shown in Figure 5.3a. We call this the non-resonant case. While the

second type possesses noticeable wiggles in the solution, shown in Figure 5.3b.
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This is known as the resonant case and generally occurs when the frequency

of the period resonates with the step size. Resonances will be discussed in

Section 5.3.
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(a) Non-Resonant Case
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(b) Resonant Case

Figure 5.3: Two cases for numerical solutions of the discrete travelling wave

equation. ξ is on the x-axis and ϕ on the y-axis. (5.3)

We checked the convergence of the solutions obtained from Newton’s method

and they all seemed to show quadratic convergence, except at the resonances,

so our method is very close to giving the exact solution of the discrete travelling

wave equation (5.3).

5.2.1 Checking our Numerical Solution

In addition to quadratic convergence, we would like another way of checking

that our numerical method is giving the correct solution of the discrete travel-

ling wave equation (5.3). This can be done for σ = κ, as the discrete travelling

wave equation (5.3) is now equivalent to finding travelling wave solutions of

the leapfrog method applied to the sine-Gordon equation. In this section we

compare the solutions of the leapfrog method and those of the discrete trav-

elling wave equation (5.3) for σ = κ. If these solutions are the same then we

know that our pseudospectral Newton method is giving accurate solutions of

the discrete travelling wave equation (5.3).
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As we said above, for σ = κ the discrete travelling wave equation (5.3)

is equivalent to the leapfrog method applied to (5.2). The leapfrog method

applied to the pendulum has been well studied. Our reduced ODE (5.2) is

very similar to the pendulum equation, the only difference being the factor

c2 − 1. So we can apply leapfrog to our reduced ODE (5.2) and compare it

with our numerical solution of the discrete travelling wave equation (5.3).

Since we are looking at periodic orbits we choose an initial condition on one

of these orbits. Using our pseudospectral Newton method for T = 2π we get a

solution and find the amplitude of this solution. This is then used as our initial

conditions for the leapfrog method applied to (5.2). First we choose a value

of the step size in which the leapfrog method is known to give qualitatively

correct results for the pendulum equation and compare the leapfrog method

solution with our Newton’s method solution. This is given in Figure 5.4 for

σ = κ = 0.5 and confirms that not only does our method give solutions which

accurately portray the discrete travelling wave equation (5.3) solutions but

also our Matlab program is working correctly.

(a) Orbit of Leapfrog applied to (5.2) (b) Solution of Leapfrog (Red) Applied to

(5.2) and numerical solution of (5.3) (Blue)

Figure 5.4: Left: An orbit for the leapfrog method applied to the reduced

ODE (5.2), and, Right: the corresponding solution in red, with the numer-

ical solution of the discrete travelling wave equation (5.3) for σ = κ = 0.5

superimposed in blue.
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To compare the solutions of the equivalent methods more, we choose a step

size in which it is known resonances occur for the leapfrog method. Resonances

are discussed in Section 5.3. This comparison is given in Figure 5.5 for σ =

κ = 0.8. Here, we see that the orbit is no longer oval shaped, but has some

distortion which corresponds to wiggles in the solution. In this situation the

leapfrog method and the discrete travelling wave equation solution also match

up. Hence, resonances occur in our numerical solution for σ = κ when they

occur for the leapfrog method.

(a) Orbit of Leapfrog applied to (5.2) (b) Solution of Leapfrog (Red) Applied to

(5.2) and numerical solution of (5.3) (Blue)

Figure 5.5: Left: An orbit for the leapfrog method applied to the reduced

ODE (5.2), and, Right: the corresponding solution in red, with the numer-

ical solution of the discrete travelling wave equation (5.3) for σ = κ = 0.8

superimposed in blue.

5.3 Resonance

Resonances occur with all types of vibrations and waves. They come about

when a system is forced at its natural frequency (resonant frequency). Even

small driving forces lead to an accumulation of the amplitude of oscillation

and energy. The frequencies at which resonances in a system occur are called

resonant frequencies. As an example we can consider the pendulum. In the
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absence of any force or friction, the pendulum will oscillate constantly with

a specific frequency (natural frequency) and amplitude. If a force is applied

in time with this natural frequency then the amplitude of the pendulum will

continuously increase.

When the orbits of two orbiting bodies have orbital periods related by a

ratio of two small integers, (we will call this rationally related or resonant),

the bodies apply a regular, periodic gravitational effect on each other. This is

known as an orbital resonance.

Numerical methods can introduce the concept of numerical resonance. For

periodic solutions a resonance can occur, with sufficiently large step size, when

the period of the solution and the step size are rationally related. That is,
T

∆x
= m

n
, where T is the period of the solution, ∆x the step size, and m and n

are positive integers.

Quinlin in [77] predicts where resonances occur for symmetric multistep

methods in terms of their spurious roots. See Section 6.5 for more details.

5.4 Resonances in the Discrete Travelling Wave

Equation

The discrete travelling wave equation (5.3) was solved by a pseudospectral

Newton method with a continuation in the period T . This produces two types

of solutions, as we saw in Section 5.2, Figure 5.3a and 5.3b. The first we

call the non-resonant case, the solution is a smooth periodic wave, and the

second is the resonant case, where wiggles appear in the wave, or the wave

becomes distorted. We would like to know when these resonances occur and

whether or not they represent travelling wave solutions. In this section we

investigate the resonances occurring in the solutions of the discrete travelling

wave equation (5.3) and try to determine whether these occur for a certain

relationship between the parameters, σ, κ and T .
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5.4.1 Initial Results

In this section we give some initial results of our pseudospectral Newton contin-

uation method. We want to show the preservation of travelling waves through

numerical work rather than actually working out theoretical proofs. But will

also use backward error analysis later on to back up our numerical results. In

Figure 5.6 we plot certain frames of a continuation simulation.

Figure 5.6 shows us that as the period increases so does the amplitude of

the wave solution. This is consistent with the phase portrait (Figure 5.1) of the

continuous solution (5.2). The phase portrait shows that as each periodic orbit

gets closer to the heteroclinic orbit the period of the orbit increases and so does

the value of (x, 0). This value corresponds to the amplitude of the periodic

wave solution. Figure 5.6d shows large wiggles in the solution. We want to

find out why these wiggles occur for this combination of the parameters and

what the relationship between the parameters is and whether or not there is a

consistent relationship between the parameters where the wiggles occur. Also,

we want to know the size of the wiggles in Figure 5.6d. This will also tell us

whether or not any of the other frames in Figure 5.6 contain wiggles without

having to zoom in on the solution. We can also run the simulation out to a

longer period. This is given in Figure 5.7.

In Figure 5.7 the continuation is run out to a relatively large period. Here,

as in Figure 5.6, as the period increases the amplitude increases. We also notice

that at large period the amplitude of the wave approaches ϕ = π, the fixed

point, which is also consistent with the phase portrait of (5.2). As the period

increases and the amplitude reaches this fixed point the solution is tending to

a heteroclinic travelling wave.

After these observations we would like to investigate further and to do this

we need to be able to measure the size of the wiggles that appear in some of

the solutions. We construct a way to measure the wiggles in the next section.
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(f) T = 2(π + 0.85) = 7.9832

Figure 5.6: Continuation in T starting with T = 2π for σ = 1, κ = 1√
2
, c = 1.3.
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Figure 5.7: Continuation in T starting with T = 2π for σ = 1, κ = 1√
2
, c = 1.3.
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5.4.2 Measuring the Size of the Resonances

In this section we give our approach to measuring the resonances. It is based

on taking a portion of the the solution vector ϕ then finding the difference

between the maximum and minimum of the second derivative of ϕ over this

part of the vector.

Previously, we saw that there are two types of solutions from the numer-

ical approximation of the discrete travelling wave equation (5.3). There are

smooth solutions and solutions that produce wiggles. The wiggles are clearly

visible in some solutions but in others the solutions produced appear to be

smooth. Upon further inspection though, by zooming in, the wiggles appear.

We clearly need a way of measuring the size of these wiggles so we do not

have to zoom in on every solution to see if they exist. We also want to deter-

mine whether or not they are always finite or if they tend to infinity for some

parameter values. If they tend to infinity then there is definitely no travel-

ling wave solution preserved for those particular parameters, but for the finite

wiggles there could be travelling wave solutions. Finite wiggles are known as

resonances and infinitely sized wiggles are known as instabilities.

To measure the size of the wiggles in the solutions we take a section of

the solution ϕ on either side of τ
2
, see Figure 5.8. For example, if we use 400

Fourier modes to solve the discrete travelling wave equation (5.3) then the

solution ϕ is a vector of length 400 and the period T of ϕ is made up of 400

points. Therefore, if we only take half the solution then the solution from

(0, τ) is made up of 200 points and the solution from (0, τ
2
) is made up of 100

points, so we want to take a part of the vector which includes some elements

on either side of the 100th element of ϕ. For N = 400 we took our section of

the solution to be ϕ(80 : 120). Letting d be this section of the solution ϕ then

we measure the size of the wiggles by

log10(max |d′′| −min |d′′|). (5.6)

We can now analyse our solutions ϕ of the discrete travelling wave equation

(5.3) in more detail. Instead of plotting snapshots of ϕ for increasing periods
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Figure 5.8: A chosen section of the solution ϕ.

as the simulation runs, we can now plot the resonance amplitude (5.6) against

the period T of the solution or some other parameter.

5.4.3 Resonance Results

Now we have a way of measuring the size of the wiggles we can plot this against

the period T as we run a continuation in T
2
. This will help tell us where these

resonances occur for certain combinations of the parameters and also how big

they are.

For the simulation given in Figure 5.6 we can now plot the size of the

resonance as given by (5.6) against the period of the solution. This is given

in Figure 5.9b, in which the major peak showing corresponds to the solution

given in Figure 5.6d and 5.9a.
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Figure 5.9: A short continuation simulation showing one major resonance peak.

The y-axis gives the size of the resonance defined by (5.6).

Next, we plot the resonance for a slightly longer continuation simulation
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in Figure 5.10 and compare it for a rational ratio of σ
κ

and an irrational one.

From this first investigation it seems that the resonances for a rational ratio

of σ
κ

are evenly spaced out over increasing value of T , but for the irrational

ratio, the resonances appear to occur more randomly. From this conjecture,

we would like to see how the resonances for other ratios of σ
κ

are spaced out

over increasing values of T .
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Figure 5.10: Comparison of the resonances for a rational ratio of σ
κ

and an

irrational one. The y-axis gives the size of the resonance defined by (5.6).

We first look at other rational values of σ
κ

and plot a continuation simula-

tions in Figure 5.11. From this, it appears that for all rational ratios of σ
κ

the

resonances are approximately equally spaced out as the period T increases.

This suggests that there is some relationship between the parameters, T , σ,

and κ predicting where the resonances occur.

In Figures 5.11a, 5.11b, and 5.11c a relationship between the parameters

is easy to see. In all three of these plots the resonance spikes occur at integer

values of the period T . The ratios of σ
κ

in these plots are σ
κ

= 1, σ
κ

= 2 and
σ
κ

= 3 respectively. Therefore, we conject that when σ
κ

is an integer value, then

the resonances occur at integer values of the period.

Since the above observation was only based on κ = 0.5, we use a slightly

different value κ to see if what we observed is still true. We use σ = 1.0567

and κ = 0.52835, so that σ
κ

= 2 and plot the results in Figure 5.12. On

the left we have plotted the resonance against the period and see that the

resonances do not occur at integer values of the period T , but if we plot the
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Figure 5.11: Continuation in T starting with T = 2π for different rational

values of σ
κ
. The y-axis gives the size of the resonance defined by (5.6).
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resonances against T
2κ

, as given in the right of Figure 5.12, then we do get the

resonances occurring at integer values of T
2κ

. From these observations we have

the following conjecture.

Conjecture 5.4.1. For σ
κ
∈ Z a resonance will occur if T

2κ
∈ Z.
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Figure 5.12: Continuation simulation for σ = 2κ: resonances plotted against

T and T
2κ

. The y-axis gives the size of the resonance defined by (5.6).

Following this conjecture, we plot the resonances of the remaining 3 plots

of Figure 5.11, that did not have σ
κ
∈ Z, in Figure 5.13. This time we plot

the resonances against T
κ

, instead of T , to see if the conjecture 5.4.1 can be

extended to include all rational values σ
κ
.

Note that we have plotted the resonances against T
κ

instead of T
2κ

, as we

did in Figure 5.12. The resonances will still occur at an integer value if the

conjecture is correct, but instead of resonance at every integer, there will be

one at every second integer.

From Figure 5.13 we see that it is not always true that T
2κ
∈ Z whenever

σ
κ
∈ Q. For Figure 5.13b it is true that T

2κ
∈ Z, but for Figure 5.13a and 5.13c

it is not true. After investigating to find a relationship between the parameters

for rational values of σ
κ
, no simple relationship could yet be found. However,

there does seem to be some pattern for where the resonances occur for rational

values of σ
κ
.

To show more clearly that our conjecture 5.4.1 does not extend to all ra-

tional values of σ
κ

we have plotted the resonances for σ
κ

= m
n

for a fixed value
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Figure 5.13: Continuation in T starting with T = 2π for different rational

values of σ
κ
. The y-axis gives the size of the resonance defined by (5.6).
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of n in Figure 5.14. The plot on the left gives the resonances for n = 1 with

m = 1, 2, 3, 4. Here, we see that plotting against T
2κ

we get the resonance spikes

occurring at every integer value which agrees with the conjecture 5.4.1. On

the other hand for the plot on the right, for n = 2 and m = 3, 5, 7, the same

does not occur. Only the red curve has resonances occurring at integer values

of T
2κ

.
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σ = 0.8, κ = 2σ/3

Figure 5.14: The left plot shows the resonances for σ
κ

= m
n

for the case n = 1

and m = 1, 2, 3, 4 and the plot on the right shows the case n = 2 and m =

3, 5, 7. The y-axis gives the size of the resonance defined by (5.6).

We now take a different approach to studying the relationship between the

resonances and the parameters.

We fix a ratio of σ
κ

and use different values of σ and κ with this ratio to

compare the resonances. We fix σ
κ

= 3
5

and choose rational values of σ and also

irrational ones to see if there is any difference. This is plotted in Figure 5.15,

where the green, red, and blue curves are rational values of σ and the pink

curve is an irrational value of σ. In order of decreasing values of σ are the

green, pink, red, then the blue curve. As expected, generally the greater the

value of σ (and hence κ) the bigger the resonance. Also, as expected, a greater

value of σ produces a resonance at a slightly larger period than a smaller value

of σ.

Figure 5.15 also shows that there still appears to be a relationship between

where the resonances occur and the value of the parameters T , σ and κ.

166



6 7 8 9 10 11 12
-8

-7

-6

-5

-4

-3

-2

T

κ/σ = 3/5

 

 

σ  = 22/25, κ =66/125

σ = 17/20, κ = 51/100

σ = 5/6, κ = 1/2

σ = √3/2, κ = 3√3/10

Figure 5.15: Continuation in T starting with T = 2π for fixed rational values

of σ
κ

for different values of σ. The y-axis gives the size of the resonance defined

by (5.6).
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We finally look at the resonances as the period tends to infinity and ap-

proaches the heteroclinic solution. We run the continuation simulation out to

a very a large period to see what is happening with the pattern of resonances

as the period approaches infinity. For this we plot the resonances against the

logarithm of the period rather than the period itself.

In Figure 5.16 we plot the resonances from T = 2π to T →∞ for different

combinations of σ and κ. The smallest to largest values of σ (and κ) are

given by the red, blue, green, cyan then pink curves. The red, blue and green

curves have irrational ratios of σ
κ
, while the cyan and pink curves have rational

values of σ
κ
, (even though σ is an irrational value—it is not important whether

or not σ itself is rational or irrational, it only matters whether σ
κ

is rational

or irrational). As before, the greater the value of σ (and κ) the larger the

resonances. Also, notice the the base line is higher for the resonances which

have higher values of σ (and κ). It seems that from these simulations that there

is no difference in the ‘randomness’ of the resonances for rational and irrational

ratios of σ
κ
. Also, for solutions with period slightly greater than T = 100 the

resonances suddenly decrease in size for all curves and then increase up to half

way before leveling off. This suggests that as the period T of the solution tends

to infinity, travelling wave solutions exist for all combinations of σ and κ.

Notice that the red and blue curves, in Figure 5.16, have the same value of

σ but the red curve has a smaller value of κ than the blue curve. Even though

the values of σ are the same the blue curve has a higher base line of resonances

than the red curve. The case is the same for the cyan and pink curves, they

have the same value of σ but the cyan curve has a smaller value of κ than

the pink curve and again the pink curve has a higher base line of resonances

than the cyan curve. This suggests that the value of κ has more influence on

the resonances than σ. We could have have already guessed this was the case

in our analysis on the resonances for σ
κ

rational, since for the cases where we

found a relationship it only depended on T and κ, but not σ.

We can confirm that the value of κ has more influence on the resonances

than σ by fixing the value of κ and varying the value of σ instead or vice versa.
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Figure 5.16: Continuation in T tending to infinity starting with T = 2π. The

y-axis gives the size of the resonance defined by (5.6).
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The graph for this is given in Figure 5.17, where the red and green curves have

the same value of σ but different values of κ, and the blue and red curves have

the same value of κ but different values of σ. For different values of κ with σ

fixed, we see that the green curve with a greater value of κ has a higher base

line of resonances than the red curve with a smaller value of κ. On the other

hand, for different values of σ with κ fixed, we see that the base line of the

resonances of the green and blue curve lie at the same level as each other, but

the blue curve has slightly larger resonances overall since it has a larger value

of σ than the green curve.
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Figure 5.17: Continuation in T tending to infinity starting with T = 2π. The

y-axis gives the size of the resonance defined by (5.6).

In Chapter 6 we will back up these observations, on the existence of periodic

travelling wave solutions of the discrete travelling wave equation (5.3), with

results from backward error analysis. We will also combine some of the results

from this chapter with those of Chapter 6 and make a comparison.
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Chapter 6

Backward Error Analysis of the

Discrete Travelling Wave

Equation

In this chapter we give an introduction to linear multistep methods for 1st

order equations before moving on to multistep methods for 2nd order differ-

ential equations. This is the topic we are most interested in for our problem.

Next, we give some more background information on multistep methods begin-

ning with the underlying one-step method, then moving onto backward error

analysis for multistep methods of 2nd order differential equations. Finally,

we give a discussion and results from backward error analysis of the discrete

travelling wave equation, then generalise this to backward error analysis for

multisymplectic integrators of multi-Hamiltonian PDEs.

6.1 Multistep Methods

For one-step methods symplectic methods are known to have desirable numer-

ical characteristics such as near energy preservation over long times and at

most linear error growth for nearly integrable systems. It is these favourable

features that we would also like to see in multistep methods, but the long-time
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behaviour of multistep methods is generally not that great. They often be-

have like non-symplectic and non-symmetric one-step methods and sometimes

exhibit undesired instabilities, extreme behaviour not seen in other methods,

such as increasing oscillations. These types of undesired behaviours are often

due to parasitic solutions.

But it has been noticed that some multistep methods for second order

equations have a much better long-time behaviour. This has been investigated

by various authors to see when this occurs [39, 34, 35, 20].

6.1.1 Linear Multistep Methods for First Order Sys-

tems

For a first order system of differential equations ẏ = f(y) a linear multistep

method is given by
k∑
j=0

αjyn+j = h
k∑
j=0

βjf(yn+j), (6.1)

where αj and βj are real parameters, with αk 6= 0 and |α0|+ |β0| > 0.

The method (6.1) is said to be symmetric if coefficients satisfy

αk−j = −αj, βk−j = βj, ∀j. (6.2)

See Definition 6.1.4 for an equivalent definition of symmetry.

To see how to use the formula (6.1) we expand it for the first step to get

α0y0 + α1y1 + . . .+ αkyk = h(β0f(y0) + β1f(y1) + . . .+ βkf(yk)). (6.3)

Given an initial value y(t0) = y0, we can see from (6.3) that we still need

some starting procedure to find approximations for y1, . . . yk−1. Once these are

found we can find the value of yk that we want to find, then yn for n > k, (6.1)

can be used recursively to find future values.

The starting procedure could be some one-step method to find values for

y1, . . . , yk−1.
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Also, notice that if βk = 0 then the method is explicit, otherwise the method

will be implicit.

The generating polynomials associated with the the coefficients of (6.1) are

defined as

ρ(ζ) =
k∑
j=0

αjζ
j = α0 + α1ζ + α2ζ

2 + . . .+ αkζ
k, (6.4)

σ(ζ) =
k∑
j=0

βjζ
j = β0 + β1ζ + β2ζ

2 + . . .+ βkζ
k. (6.5)

These polynomials are also known as the first and second characteristic poly-

nomials respectively.

The characteristic polynomials (6.4) and (6.5) can be used to define the

degree, consistency, order, stability, convergence, and symmetry of a multistep

method (6.1).

Definition 6.1.1 (Degree). A multistep method (6.1) is of degree k, where k

is the number of steps needed in the method. Hence, it can also be called a

k-step method.

Definition 6.1.2 (Consistency). The method (6.1) is consistent if the char-

acteristic polynomials satisfy

ρ(1) = 0

ρ′(1) = σ(1) 6= 0.

Theorem 6.1.1 (Order). A linear multistep method (6.1) has order p if

ρ(eh)− hσ(eh) = O(hp+1), as h→ 0.

Definition 6.1.3 (Stability). A multistep method (6.1) is stable, also called

zero-stable, if all the roots of ρ(ζ) = 0 satisfy |ζ| ≤ 1, and those on the unit

circle (|ζ| = 1) are simple roots (roots of multiplicity 1).

Due to the consistency condition a stable method must have a zero at ζ = 1.

This zero is called the principal root and all other zeros are spurious roots.

If all roots are inside the unit circle (|ζ| < 1) except ζ = 1 then the method

is said to be strictly stable.
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Theorem 6.1.2 (Convergence). If a method (6.1) is consistent and stable of

order r ≥ 1, then it is convergent of order r for all sufficiently smooth problems.

Definition 6.1.4 (Symmetry). A method (6.1) is symmetric if the inverse of

every zero of ρ(ζ) is also a zero of ρ(ζ). This is equivalent to condition (6.2).

Definition 6.1.5 (Stable and Symmetric). As a consequence of the stabil-

ity and symmetry conditions above, we have that a method (6.1) is a stable

symmetric method if all zeros of ρ(ζ) are simple and lie on the unit circle.

Therefore, a symmetric multistep method cannot be strictly stable.

6.1.2 Example of the Behaviour of Multistep methods

Following an example given in [37], we consider the equations of motion of the

pendulum q̇ = p, ṗ = − sin q, and apply the 2-step explicit Adams method,

yn+2 = yn+1 + h

(
3

2
f(yn+1)− 1

2
f(yn)

)
,

and also the 2-step symmetric explicit midpoint rule,

yn+2 = yn + 2hf(yn+1).

We expect the explicit Adams method to behave similarly to the explicit

Euler method and the symmetric midpoint rule to behave similarly to a one-

step symmetric method or the implicit midpoint rule which is symplectic.

Therefore we expect the second method to give good long-time behaviour.

The explicit Euler method is used to find an approximation for y1. The

results are shown in Figure 6.1 for the first 90 steps. For both methods the

phase portrait is plotted using coloured lines with the numerical solution su-

perimposed with black points joined by lines.

In the explicit Adams method the solution spirals clockwise outwards from

the centre, behaving like the explicit Euler method, as expected. On the other

hand, the explicit midpoint rule exhibits unexpected behaviour. Instead of

remaining close to a periodic orbit of the exact solution, as in the implicit
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Figure 6.1: The explicit Adams method with step size h = 0.5, initial value

(q0, p0) = (0.7, 0) and the explicit midpoint rule with h = 0.4, initial value

(q0, p0) = (0, 1.1), applied to the pendulum.
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midpoint rule, the solution shows increasing oscillations. These types of solu-

tions are known as parasitic solutions.

What is the difference between these two equations? We can investigate

this by first looking at the zeros of the characteristic polynomial ρ(ζ) for each

method.

For the explicit Adams method, the characteristic polynomial is,

ρ(ζ) = ζ2 − ζ = ζ(ζ − 1).

Setting ρ = 0 we get the zeros of the characteristic polynomial are ζ = 0

and ζ = 1. So the explicit Adams method is strictly stable.

For the symmetric explicit midpoint rule, the characteristic polynomial is,

ρ(ζ) = ζ2 − 1.

Setting ρ = 0 we get the zeros of the characteristic polynomial are ζ = 1

and ζ = −1. So this method is stable, but not strictly stable as expected,

since no symmetric multistep method can be strictly stable.

From this example it seems that for a method to behave as expected,

producing no parasitic solutions, the condition of strict stability needs to be

satisfied. As was seen for the explicit symmetric method, methods that are

not strictly stable have the possibility of introducing parasitic solutions. This

will lead to an exponential growth in error in the solution.

In 1956, Dahlquist [22] published a paper in which he noticed that having

zeros of ρ(ζ) on the unit circle can lead to an exponential error growth. So in

terms of stability this fits with what we have seen. Being strictly stable means

that only one zero of ρ(ζ) will be on the unit circle and all the other zeros

will be inside the unit circle. On the other hand being stable, but not strictly

stable, can mean that any number of zeros of ρ(ζ) can appear on the unit circle

as long as they are of multiplicity one. Section 6.3 gives an explanation for

this behaviour of the strictly stable method. Later on, in 1976, Lambert and

Watson studied this idea in detail for multistep methods applied to a second

order linear test problem; see Section 6.2 for more on this.
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6.2 Multistep Methods for Second Order Equa-

tions

In this section we give an introduction to multistep methods for 2nd order

equations.

For a second order differential equation ÿ = f(y) a multistep method is of

the form
k∑
j=0

αjyn+j = h2

k∑
j=0

βjf(yn+j). (6.6)

The method (6.6) is symmetric if the coefficients satisfy

αk−j = αj, βk−j = βj, ∀j. (6.7)

An equivalent definition of symmetry is given by Definition 6.2.4.

The first and second characteristic polynomials ρ(ζ) and σ(ζ) are defined

as before in (6.4) and (6.5).

The consistency, order, stability, convergence, and symmetry conditions

are defined similarly to those for first order multistep methods, by using the

characteristic polynomials.

Definition 6.2.1 (Degree). A multistep method (6.6) is of degree k, where k

is the number of steps needed in the method. Hence, it can also be called a

k-step method.

Definition 6.2.2 (Consistency). A multistep method (6.6) is consistent if the

characteristic polynomials satisfy

ρ(1) = ρ′(1) = 0

σ(1) =
1

2
ρ′′(1) 6= 0.

Theorem 6.2.1 (Order). A multistep method (6.6) is of order p if

ρ(eh)− h2σ(eh) = O(hp+2), as h→ 0.
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Definition 6.2.3 (Stability). A method (6.6) is stable, also called zero-stable,

if all zeros of ρ(ζ) satisfy |ζ| ≤ 1 and those on the unit circle (|ζ| = 1) are at

most double zeros (multiplicity two).

The method is called strictly stable if all zeros, except for ζ = 1, are inside

the unit circle (|ζ| < 1).

Due to the consistency condition, a stable method must have a double zero

at ζ = 1. As with methods for first order equations, this zero is called the

principal root and all other zeros are called spurious roots.

Theorem 6.2.2 (Convergence). If a method (6.6) is consistent and stable of

order r ≥ 1, then it is convergent.

Definition 6.2.4 (Symmetry). If for every zero ζ of ρ(ζ), the inverse ζ−1 is

also a zero, then the method (6.6) is said to be symmetric. See also (6.7).

Definition 6.2.5 (Stable and Symmetric). If all zeros of ρ(ζ) are on the

unit circle and have multiplicity at most two, then (6.6) is a stable symmetric

method.

From the definition of a strictly stable method, we see that symmetric

multistep methods for second order equations cannot be strictly stable, as was

the case for first order methods.

Definition 6.2.6 (S-Stable). A method (6.6) is called s-stable if all zeros of

ρ(ζ) are on the unit circle, and all are simple roots except from the double root

at ζ = 1.

The ‘s’ in s-stable stands for simple roots. All s-stable methods are sym-

metric with an extra condition posed on them, that all roots are simple except

the principal root. This extra condition is known to give s-stable methods

good long-time behaviour.

As was mentioned previously in Section 6.1.2, in 1976 Lambert and Watson

[52] studied the idea of double zeros of ρ(ζ) on the unit and their association

with parasitic solutions. They studied this in detail using the simple linear
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test problem ÿ = −ω2y (the harmonic oscillator) and found that when using

symmetric methods in which the method had all zeros of ρ(ζ) on the unit circle

and all roots simple except for a double root at ζ = 1, then the numerical

solution remained close to a periodic orbit of the exact solution. These types

of methods are now called s-stable, see Definition 6.2.6. The exact solution of

the harmonic oscillator was given in Figure 1.13.

In 1990, Quinlan and Tremaine [78] continued this idea in their paper

studying simulations of the outer solar system. They derived high-order ex-

plicit symmetric methods appropriate for the long-time integration of planetary

orbits.

Soon after this paper was published, Alar Toomre discovered a troubling

aspect of the methods. When plotting the energy error, spikes in energy error

occurred at certain values of the steps per period. These spikes are known as

instabilities and resonances. For an instability the error grows exponentially

with time. A resonance is similar to an instability but the spikes are smaller.

Resonances were described in 5.3 and also appear in our numerical solution of

the discrete travelling wave equation (5.3).

With this discovery, Quinlan [77], in 1999 wrote a paper giving an expla-

nation for why the instabilities and resonances occur and also gave predictions

on where they occur in terms of the spurious roots. We follow this paper in

Section 6.5 to see if we can find a relationship between the resonances in our

problem and the parameters.

Quinlan then goes on to say how the multistep coefficients should be chosen

to reduce the instability and resonance in problems. Firstly, to avoid the

instabilities the spurious roots of ρ(ζ) should be spread as evenly as possible

on the unit circle. Secondly, to avoid the resonances the spurious roots of ρ(ζ)

should be as far away from the principal root ζ = 1 as possible. But these

two conditions are conflicting: if we have the spurious roots far from ζ = 1

then these roots will be bunched up close to ζ = −1. So a compromise has to

be made. This becomes more difficult the higher the order of the method is,

because higher order methods have more spurious roots.
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Using an example from [37] we can demonstrate how double zeros in the

characteristic polynomial ρ(ζ) affects the error growth. We have worked through

this example independently from [37], but have used their graph. The Kepler

problem,

q̈1 = − q1

(q2
1 + q2

2)3/2
, q̈2 = − q2

(q2
1 + q2

2)3/2
,

with initial values,

q1(0) = 1− e, q2(0) = 0, q̇1(0) = 0, q̇2(0) =

√
1 + e

1− e
,

and eccentricity e = 0.2 is used. The following three methods were applied

with constant step size h = 0.01 for 105 periods:

(A) yn+4 − 2yn+3 + yn+2 = h2(
7

6
f(yn+3)− 5

12
f(yn+2) +

1

3
f(yn+1)− 1

12
f(yn)),

(B) yn+4 − 2yn+2 + yn = h2(
4

3
f(yn+3)− 4

3
f(yn+2) +

4

3
f(yn+1)),

(C) yn+4 − 2yn+3 + 2yn+2 − 2yn+1 + yn

= h2(
7

6
f(yn+3)− 1

3
f(yn+2) +

7

6
f(yn+1)).

All methods are of order 4 and the starting values y1, y2, and y3 are all

computed very accurately. We find the characteristic polynomial ρ(ζ) of each

method in order to find the zeros of ρ, hence the double zeros.

For method (A) we get,

ρ(ζ) = ζ4 − 2ζ3 + ζ2,

which has zeros at ζ = 1(multiplicity two) and ζ = 0(multiplicity two). Since

ζ = 0 is inside the unit circle, method (A) is strictly stable.

For method (B) we get,

ρ(ζ) = ζ4 − 2ζ2 + 1,

which has zeros at ζ = 1(multiplicity two) and ζ = −1(multiplicity two). Since

both ζ = 1 and ζ = −1 are their own inverses, then method (B) is symmetric,

and cannot be strictly stable, but all zeros satisfy |ζ ≤ 1| so (B) is a stable

symmetric method.
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Notice that method (B) has double roots other than the principal root,

namely at ζ = −1.

For method (C) we get,

ρ(ζ) = ζ4 − 2ζ3 + 2ζ2 − 2ζ + 1,

which has zeros at ζ = 1 (multiplicity two), ζ = −i, and ζ = i. Since ζ = 1 is

its own inverse and ζ = −i and ζ = i are inverses of each other, then method

(C) is also symmetric. Also, since all roots are on the unit circle and are

simple except for the double principal root then method (C) is s-stable.

Since method (B) is the only method that has double roots other than

ζ = 1 then we expect this will be the only method that behaves unexpectedly.

Figure 6.2 is reproduced from [37] and shows the energy error for each

of the three methods. To start with all methods behave well with the error

bounded, but as the integration is performed for more steps, longer time period,

method (A) begins to show linear error growth, which continues for the rest

of the simulation. This is what occurs for non-symplectic and non-symmetric

one-step methods, so can be expected also for multistep methods. Method

(B) shows exponential error growth, which is expected from its double zeros.

Finally, for method (C) the error remains bounded for the whole simulation.

It is the only method which satisfies the s-stability condition.

6.3 The Underlying One-Step Method

We begin this section by giving a definition of the underlying one-step method,

then discuss briefly why it is used and its disadvantage.

The underlying one-step method for a multistep method (6.1) is a mapping

y 7→ Φh(y) such that yn = Φn
h(y0) satisfies

k∑
j=0

αjΦ
j
h(y) = h

k∑
j=0

βjf(Φj
h(y)), (6.8)

where Φh(y) is a one-step method.
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Figure 6.2: Energy error for three different linear multistep methods applied

to the Kepler problem, reproduced from [37]. The x-axis gives the number of

periods, and the y-axis gives the energy error.

Hence, the underlying one-step method relates a multistep method to an

identical one-step method. In this way, the multistep method can now be anal-

ysed, more simply, as a one-step method. Therefore, when applying backward

error analysis to the underlying one-step method a lot of good information

on the conservative properties, see Section 6.4.3, of the method can be deter-

mined. The disadvantage of the underlying one-step method is that it tells

us nothing about any parasitic solutions that may appear. To analyse para-

sitic solutions, backward error analysis will have to be directly applied to the

multistep method. This method is used in Section 6.6 for our analysis of the

discrete travelling wave (5.3).

In 1986 Kirchgraber [51] proved that strictly stable linear multistep meth-

ods (6.1) are basically equivalent to one-step methods. The full theorem and

proof are given in [37].

By relating the numerical solution of a multistep method to a one-step

method a good deal of information on the long-time behaviour of the mul-
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tistep method can be extracted. We have the result that, for any starting

approximations y0, y1, . . . , yk−1 which are close to the exact solution, there ex-

ists a y∗0 such that the multistep solution and the one-step solution, given by

y∗n+1 = Φh(y
∗
n) approach each other exponentially fast. This is known as the

asymptotic phase property. Therefore, strictly stable linear multistep methods

have the same long-time behaviour as one-step methods. This now explains

why the explicit Adam’s method in Figure 6.1 gave similar behaviour to the

explicit Euler method a one-step method.

When at least one zero of ρ(ζ), different from ζ = 1, is on the unit circle,

the method is no longer strictly stable, so Kirchgraber’s theorem and proof fail.

Therefore, Kirchgraber’s theorem cannot be applied to symmetric multistep

methods, which are of interest to us.

Even though Kirchgraber’s theorem breaks down for methods which are

not strictly stable, an underlying one-step method for methods satisfying the

stability condition only, called weak stability, can be found as a formal series

in h. Surprisingly, this also provides a good understanding of the long-time

behaviour of multistep methods, but which are weakly stable. We have the

following theorem.

Theorem 6.3.1. Consider a linear multistep method (6.1) in which ζ = 1 is

a single zero of ρ(ζ) = 0, then there exists a one-step method of the form,

Φh(y) = y + hd1(y) + h2d2(y) + . . . (6.9)

that satisfies (6.8). Also, if the multistep method is of order r, then so is the

underlying one-step method.

The formal series Φh(y) is called the underlying one-step method and does

not usually converge. This theorem does not require any stability conditions

and a proof can be found in [37].

Everything so far, on the underlying one-step method, can only be applied

to multistep methods (6.1) for first order equations. To get similar results for

multistep methods (6.6) for second order equations, an approximation for the
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derivative ẏ = v is introduced. Now, the second order equation ÿ = f(y) will

be a system of first order equations for the variables y and v,

ẏ = v,

v̇ = f(y),

so that the results of this section can now easily be applied to each equation

in the system.

Since multistep methods can now be formulated as equivalent one-step

methods, the idea of backward error analysis comes to mind in the study of

the method’s long-time behaviour.

6.3.1 Non-Symplecticity of the Underlying One-Step

Method

A natural definition of symplecticity for multistep methods is that their under-

lying one-step method is symplectic, which means that their truncated modi-

fied equation is Hamiltonian. But it can be shown that the underlying one-step

method of a linear multistep method cannot be symplectic [37]. Even though

this is the case, particular multistep methods can preserve energy over long

times [39, 35].

Definition 6.3.1. A method Φh(y) is called conjugate to symplectic if there

exists a transformation χh(y) which is O(h) close to the identity, such that

χ−1
h ◦ Φh ◦ χh

is a formal symplectic transformation when f(y) in (6.1) or (6.6) is a Hamil-

tonian vector field.

Although the underlying one-step method of a multistep method is not

symplectic, it can be shown that it is conjugate to symplectic when the multi-

step method is symmetric [35]. This is the property that gives certain multi-

step methods their good long-time behaviour. They share this good long-time
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behaviour with symplectic integrators because

(χ−1
h ◦ Φh ◦ χh)n = χ−1

h ◦ Φn
h ◦ χh.

Later, Section 6.5, we will see that the discrete travelling wave equation

(4.4) can be written as a multistep method for certain parameters. The discrete

travelling wave equation (4.4) originates from a PDE which is reduced to a

second order ordinary differential equation through the use of travelling wave

coordinates (3.1), so from now on we will mainly analyse multistep methods

for second order equations.

6.4 Backward Error Analysis for Multistep

Methods for Second Order Differential

Equations

Backward error analysis can be applied to multistep methods in two ways.

Firstly, it can be applied to the underlying one-step method, which we already

know, from Section 1.22, gives us a good understanding of the long-time be-

haviour of the method. For strictly stable methods this is all we need—the

parasitic terms are quickly damped out by the asymptotic phase property. Sec-

ondly, backward error analysis can be applied directly to the multistep method

(6.6) in which case the parasitic terms are not damped quickly enough and ap-

pear in the numerical solution. In this case to get a complete description of the

long-time behaviour, two modified differential equations need to be analysed,

the principal modified equation and the parasitic modified equation. This will

be explained in more detail in Section 6.4.2.

6.4.1 The (Principal) Modified Equation

The principal modified equation, or just modified equation, for a multistep

method (6.6) is found by using the multistep method directly. This avoids the

use of the underlying one-step method, which does not usually converge.
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Theorem 6.4.1. Consider a consistent linear multistep method (6.6) for a

second order equation ÿ = f(y). In the absence of derivative approximations

there exists unique h-independent functions fi(y, ẏ) such that, every solution

of the modified differential equation

ÿ = f(y) + hf2(y, ẏ) + h2f3(y, ẏ) + . . . , (6.10)

satisfies
k∑
j=0

αjy(t+ jh) = h2

k∑
j=0

βjf(y(t+ jh)) (6.11)

up to O(hp) for all p.

If the method is symmetric, then fi(y, ẏ) = 0 for all even i, so that the modified

equation (6.10) has an expansion in even powers of h only.

Proof. Equation (6.11) is of the form

L1y(t) = h2L2f(y)

where L1 and L2 are some linear operators.

To find the linear operators L1 and L2 we let D denote time differentiation,

so that

D(y(t)) = ẏ,

D(f(y(t))) = f ′(y(t))ẏ,

where the dot stands for differentiation with respect to time; the ′ stands for

differentiation with respect to y, or the Jacobian derivative if f is a vector

field.

Expanding y(t+ jh) in a Taylor series and using the derivative D we get

y(t+ jh) = y(t) + jhẏ(t) +
1

2!
(jh)2ÿ(t) + . . .

= y(t) + jhD(y(t)) +
1

2!
(jh)2D(D(y(t))) + . . .

= y(t) + jhD(y(t)) +
1

2!
(jh)2D2(y(t)) + . . .

= (1 + jhD +
1

2!
(jhD)2 + . . .)y(t)

= ejhDy(t).
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Similarly, f(y(t+ jh)) can be expanded in a Taylor series,

f(y(t+ jh)) = ejhDf(y).

Now, equation (6.11) can be written as

k∑
j=0

αje
jhDy(t) = h2

k∑
j=0

βje
jhDf(y).

Note from (6.4) and (6.5) that

ρ(ehD) =
k∑
j=0

αj(e
hD)j =

k∑
j=0

αj(e
jhD),

σ(ehD) =
k∑
j=0

βj(e
hD)j =

k∑
j=0

βj(e
jhD),

so (6.11) can be simplified even more,

ρ(ehD)y(t) = h2σ(ehD)f(y). (6.12)

Hence L1 = ρ(ehD) and L2 = σ(ehD). Rearranging (6.12), we get

y(t) =
h2σ(ehD)

ρ(ehD)
f(y).

Taking the second derivative of each side we get

ÿ(t) =
(hD)2σ(ehD)

ρ(ehD)
f(y).

With the expansion

(hD)2σ(ehD)

ρ(ehD)
= 1 + µ1hD + µ2(hD)2 + . . . ,

the above becomes

ÿ(t) = (1 + µ1hD + µ2h
2D2 + . . .)f(y) (6.13)
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where µ1, µ2, . . . are constant coefficients.

Earlier in the proof we introduced the time derivative D. This can also be

used to differentiate a function of two variables by using the chain rule. That

is,

D(f2(y, ẏ)) =
∂f2(y, ẏ)

∂y
ẏ +

∂f2(y, ẏ)

∂ẏ
ÿ.

Now, a comparison in equal powers of h in (6.13) and (6.10) can be made.

This uniquely defines the coefficient functions fi(y, ẏ).

6.4.2 The Parasitic Modified Equation

Because we have to use a starting procedure to get approximations for y1, . . . ,

yk−1 before we can use our multistep method, this can introduce initial val-

ues not close to the exact solution. If these initial perturbations are not

damped out fast enough then solutions not close to the exact solution will

be produced—parasitic solutions. It was stated in Section 6.3 that these per-

turbations do damp out quickly for strictly stable methods, so these methods

produce behaviours expected of similar one-step methods, whether or not it is

qualitatively correct.

An example of a parasitic solution occurred in Section 6.1.2 and can be

used to explain the above. Here the solution from the symmetric explicit

midpoint rule produced increasing oscillations. We can replot the solution

given in Figure 6.1, but this time with the (principal) modified differential

equation plotted in the background, instead of the exact solution. This is

given in Figure 6.3.

Now, from Figure 6.3 it can be seen that the principal modified differential

equation is not enough to explain the oscillating behaviour of the numerical

solution. The numerical solution behaves like

yn ≈ ỹ(nh) + (−1)nz(nh)

where the term ỹ(x) is the solution from the truncated (principal) modified

differential equation and the term (−1)nz(nh) introduces these oscillations into
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Figure 6.3: The solution of the 2-step symmetric explicit midpoint rule plotted

with the MDE. The blue solution curve corresponds to the same orbit of the

numerical solution (also in blue).
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the numerical solution. This term is known as the solution of the parasitic

modified differential equation.

Here, we do not give theorems and proofs on the parasitic modified equa-

tions because they relate to initial value problems, but these can be found in

[37, 39, 34]. Whereas, our problem, in looking at the behaviour of the discrete

travelling wave equation, involves boundary conditions which restricts us to

travelling wave solutions only. So in this case, we do not need a starting proce-

dure for approximations to y0, y1, . . . , yk−1 which introduce perturbations that

can propagate. Without these perturbations, our problem should not produce

parasitic solutions. Therefore, we only need to study the (principal) modified

equations to get details of the long-time behaviour of the discrete travelling

wave equation, just as was the case for strictly stable methods.

6.4.3 Conservation Properties from the Underlying One-

Step Method

As was previously stated, the underlying one-step method is useful for gaining

insight into the conservative properties of the method. Therefore, it is useful

for statements on symplecticity, the modified Hamiltonian, and quadratic first

integrals.

Theorem 6.4.2. For a consistent symmetric linear multistep method (6.6)

applied to ÿ = −∇U(y), there exists a series of the form

H̃(y, ẏ) =
1

2
ẏT ẏ + U(y) + hH2(y, ẏ) + h2H3(y, ẏ) + . . . (6.14)

which is a formal first integral of the modified equation (6.10)). H̃(y, ẏ) is

called the modified Hamiltonian.

A proof of this theorem is given in [37]. A similar theorem exists for modified

quadratic first integrals of multistep methods. This was first proved for one-

step methods in [16]. Since the underlying one-step method is not symplectic

then symmetric multistep methods do not exactly preserve quadratic first in-
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tegrals, but they nearly preserve such first integrals. This is due to the fact

that symmetric multistep methods are conjugate to symplectic.

6.5 The Discrete Travelling Wave Equation as

a Multistep Method

In this section we show that the discrete travelling wave equation is equivalent

to a multistep method when the ratio σ
κ

is rational. Next, we give a conjecture

on the position of the roots of the first characteristic polynomial, ρ(ζ), of the

discrete travelling wave equation relative to the unit circle.

Theorem 6.5.1. The discrete travelling wave equation,

c2

κ2
(ϕ(ξ + κ)− 2ϕ(ξ) + ϕ(ξ − κ)) (6.15)

− 1

σ2
(ϕ(ξ + σ)− 2ϕ(ξ) + ϕ(ξ − σ)) = −V ′(ϕ(ξ)),

is equivalent to a symmetric multistep method when σ
κ

is rational.

If σ
κ

= m
n

, (m and n are integers, n 6= 0), is rational then the discrete travelling

wave equation (6.15) is a finite (possibly high) dimensional map of dimension

2m.

Proof. We do not give a formal proof but illustrate the proof by an example.

We use σ
κ

= 2
1
, so that σ = 2κ.

Firstly, recall that a multistep method was given for a second order differ-

ential equation of the form

ÿ = f(y), (6.16)

and the nonlinear wave equation upon substituting travellng wave coordinates

was

(c2 − 1)ϕ̈ = −V ′(ϕ). (6.17)

We want our 2nd order ODE (6.17) to be in the same form as (6.16) so

rearrange (6.17) to get,

ϕ̈ = f(ϕ), f(ϕ) =
−V ′(ϕ)

c2 − 1
. (6.18)
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Notice that in (6.15) we have −V ′(ϕ(ξ)) on the right hand side, but we

want this to be f(ϕ) so it is equivalent to the general form of a multistep

method given by (6.6). We can achieve this by dividing both sides of (4.4) by

c2 − 1 and get,

c2

κ2 (ϕ(ξ + κ)− 2ϕ(ξ) + ϕ(ξ − κ))− 1
σ2 (ϕ(ξ + σ)− 2ϕ(ξ) + ϕ(ξ − σ))

c2 − 1
(6.19)

= f(ϕ(ξ)).

Substituting σ = 2κ into (6.19) and moving κ2 to the right hand side we

get,

c2 (ϕ(ξ + κ)− 2ϕ(ξ) + ϕ(ξ − κ))− 1
4

(ϕ(ξ + 2κ)− 2ϕ(ξ) + ϕ(ξ − 2κ))

c2 − 1

(6.20)

= κ2f(ϕ(ξ)).

� ��� � ���� ��� � ��� ����� ��� � ��� ��� � ����
��

	
��� 	
�
�	
��� 	
���	
�

Figure 6.4: Relabeling of the five grid points in (6.15) to match that of a

multistep method (6.6) for σ = 2κ. The grid points are given as red dots with

the spacing between each equal to κ. The labels of the grid points of (6.15)

are in blue and those of (6.6) are in green.

We are coupling five different grid points, which can be renamed in the

form yn+j to match the notation given for multistep methods (6.6). Figure 6.4
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gives the original five grid points in red with the original labeling in blue and

their new labels written in green. Using this new labeling in (6.20) we get(
c2 (yn+3 − 2yn+2 + yn+1)− 1

4
(yn+4 − 2yn+2 + yn)

)
c2 − 1

= κ2f(yn+2).

Expanding we get,

− 1

4(c2 − 1)
yn +

c2

c2 − 1
yn+1 −

4c2 − 1

2(c2 − 1)
yn+2 +

c2

c2 − 1
yn+3 −

1

4(c2 − 1)
yn+4

= κ2f(yn+2)

which is degree 4 and has the same form as a multistep method (6.6) with

step size κ and the symmetry condition (6.7) on the coefficients satisfied. In

general, the step size will be κ
n
.

Note that for a multistep method which involves an odd number of grid

points, symmetry simply means that the coefficient of the centre grid point of

the y approximation can be any value. Then each pair of grid points on either

side of the central grid point both have the same coefficient. Similarly with

the coefficients of the function evaluations at grid points yn.

This can be demonstrated using the discrete travelling wave equation (6.15).

Here there are 5 grid points with the central one ϕ(ξ). Since we have σ ≥ κ

the grid points either side of the central one are ϕ(ξ − κ) and ϕ(ξ + κ) which

have the same coefficient of c2

κ2 . The grid points either side of these ones are

ϕ(ξ − σ) and ϕ(ξ + σ) which also have the same coefficient of −1
σ2 . Since the

function on the right hand side is only evaluated at the central grid point it

does not matter what the coefficient of this function is.

For a multistep method with an even number of grid points the case is

almost similar except there will be two central grid points that will have the

same coefficients for a symmetric method. Then each pair of grid points on

either side of the central ones will have the same coefficients; similarly for the

coefficients of the function evaluations.
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Conjecture 6.5.1. A multistep method corresponding to each rational value

of σ
κ

= m
n

will be consistent, but not in general stable (it is stable for σ = κ).

All methods have m pairs of roots, including a double principal root at ζ = 1.

The number of spurious roots on the unit circle depends on the value of c. We

have 4 different cases,

1. |c| > 1:

• n pairs of roots on the unit circle

– 1 pair of principal roots

– (n− 1) pairs of spurious roots

• (m− n) (spurious) pairs not on the unit circle

2. c = 0:

• m pairs of roots on the unit circle

– 1 pair of principal roots

– (m− 1) pairs of spurious roots

3. 0 < |c| < 1, cm ≤ n:

• m pairs of roots on the unit circle

– 1 pair of principal roots

– (m− 1) pairs of spurious roots

4. 0 < |c| < 1, cm > n—no general pattern found yet.

Note that when the pairs of roots are not on the unit circle, one root of the

pair is inside the unit circle (|ζ| < 1) and the other is outside the unit circle

(|ζ| > 1). Also, as m
n

approaches an irrational number the zeros of ρ approach

the unit circle.

This conjecture was made from observing the results of a Matlab program

which finds the roots of ρ(ζ), the first characteristic polynomial, for the dis-

crete travelling wave equation, and plots them on the unit circle for different
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combinations of the parameters c, m and n. Figures 6.5, 6.6, and 6.7 gives

some examples of the roots of the discrete travelling wave equation for different

parameter values.
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Figure 6.5: Roots of the characteristic polynomial of the discrete travelling

wave equation for c = 1.3—Case 1.

Recall that multistep methods for 2nd order equations are stable only if all

zeros of ρ(ζ) are on the unit circle or inside the unit circle and the roots on

the unit circle are at most double zeros. We proved that the discrete travelling

wave equation was symmetric in Theorem 6.5.1, so, we only have a stable

symmetric method when σ = κ, (since for m = n = 1 we always get a double

root at 1), c = 0 (standing wave), and 0 < |c| < 1 with cm ≤ n. We generally

had c = 1.3 fixed, which does not give a stable symmetric method. This case

was plotted in Figure 6.5 where it can clearly be seen that some of the zeros lie

outside the unit circle. Even though these methods are not stable in the sense

of initial value problems, the periodic boundary conditions we have instead
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Figure 6.6: Roots of the characteristic polynomial of the discrete travelling

wave equation for c = 0.5—Case 3. and 4.
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Figure 6.7: Roots of the characteristic polynomial of the discrete travelling

wave equation for c = 0—Case 2.
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may mean that we do not have to worry about the roots outside the unit

circle. These roots correspond to modes that grow exponentially in space. If

they are periodic and grow exponentially, they must be identically zero. This

phenomenon is exploited in the boundary value methods of Brugnano and

Trigiante.

In [77] Quinlan discovered that the resonances and instabilities occurred at

certain step sizes for stable symmetric multistep methods. He found formulas

to predict at which step sizes these resonances would occur in terms of their

spurious roots. For the resonances the prediction was quite simple:

N ≈ 2πq

θj
, q = 1, 2, 3, . . . , (6.21)

where N is the number of steps per period at which the resonance occurs and

zj = exp(iθj) is a spurious root of ρ(ζ).

For the discrete travelling wave equation with c = 1.3 we tried to follow

this idea of [77], ignoring the spurious roots not on the unit circle, and predict

when the resonances and instabilities we observed in Sections 5.4 and 5.4.1

occur. Unfortunately, the locations of the resonances did not appear to be

simply related to the prediction given in (6.21). We eventually dropped this

approach in favour of the more successful backward error analysis in the next

section.

6.6 Backward Error Analysis of the Discrete

Travelling Wave Equation

The idea now is to apply backward error analysis to the discrete travelling wave

equation (6.15). Since we can think of (6.15) as a symmetric multistep method

we can find the modified differential equation by using a similar method as the

proof of Theorem 6.4.1. Even though the discrete travelling wave equation is

only a symmetric multistep method when σ
κ

is rational, we attempt to find

the modified equations for any ratio of σ
κ
. We use the form of the discrete

travelling wave equation given by (6.19).
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Before stating the theorem, we rename the variables; instead of ϕ(ξ), we

will use y(t) to make it easier to follow the proof of Theorem 6.4.1. The second

order ODE (6.18) becomes,

ÿ = f(y), f(y) =
−V ′(y)

c2 − 1
, (6.22)

and the discrete travelling wave equation (6.19) becomes,

c2

κ2 (y(t+ κ)− 2y(t) + y(t− κ))− 1
σ2 (y(t+ σ)− 2y(t) + y(t− σ))

c2 − 1
(6.23)

= f(y(t)).

Theorem 6.6.1. Consider the discrete travelling wave equation (6.23) for the

second order equation (6.22). There exists functions fi(ϕ, ϕ̇) with (i−1)th order

coefficients of σ and κ such that, every solution of the modified differential

equation

ÿ = f(y) + h2f3(y, ẏ) + h4f5(y, ẏ) + . . . (6.24)

satisfies

c2

κ2
(y(t+ jκ)− 2y(t) + y(t− jκ)) (6.25)

− 1

σ2
(y(t+ jσ)− 2y(t) + y(t− jσ)) = −V ′(y(t))

up to O(hp) for all p, where f(y) is given in (6.22) and h = 1 is used as a

placeholder for separating terms of different orders.

Proof. Following the proof of Theorem 6.4.1, notice that (6.23) has the form

Lκ,σy(t) = f(y(t)) (6.26)

where Lκ,σ is some linear operator depending on the parameters κ and σ.

Expanding y(t+ κ) and y(t− κ) in a Taylor series we get

y(t+ κ) = eκDy(t)

y(t− κ) = e−κDy(t),
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where D is the total derivative, the definition being given in the proof of

Theorem 6.4.1. Similarly,

y(t+ σ) = eσDy(t)

y(t− σ) = e−σDy(t).

Substituting these into (6.23) we get

c2

κ2

(
eκDy(t)− 2y(t) + e−κDy(t)

)
− 1

σ2

(
eσDy(t)− 2y(t) + e−σDy(t)

)
c2 − 1

= f(y(t)).

Taking out the common factor y(t) we get,

c2

κ2

(
eκD − 2 + e−κD

)
− 1

σ2

(
eσD − 2 + e−σD

)
c2 − 1

y(t) = f(y(t))

and now it is easy to see that our linear operator is

Lκ,σ =
c2

κ2

(
eκD − 2 + e−κD

)
− 1

σ2

(
eσD − 2 + e−σD

)
c2 − 1

. (6.27)

We will illustrate the proof by carrying out the required calculations up to

the 4th order term. Firstly, we expand the linear operator (6.27) into a Taylor

series up to the 4th power of h. The form (6.26) of the discrete travelling wave

equation (6.23) can be rearranged and the derivative D taken twice to give

ÿ =
D2

Lκ,σ
f(y).

Substituting the expansion of the linear operator the above now has the

form

ÿ = (1 + µ2(κ, σ)h2D2 + µ4(κ, σ)h4D4)f(y). (6.28)

Here the h2 and h4 terms are used as placeholders for ease of calculation

and comparison. We will set h = 1 at the end of the comparison to the

modified differential equation (6.24). The µi terms come from the expansion

of the linear operator which involves the step size parameters σ and κ. µ2 will

involve combinations of κ and σ of order 2 and µ4 will involve combinations of

order 4. Remember that in (6.13) the µis were constant coefficients.
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Firstly, the derivatives D2f(y) and D4f(y) need to be calculated, as was

shown in the proof of Theorem 6.4.1. This will give expressions involving

f(y) and its derivatives and also derivatives of y. For the second derivatives

of y and greater the modified differential equation (6.24) and its derivatives

are substituted. Next, these expressions are substituted back into (6.28) and

finally, the coefficients of powers of h in this equation and (6.24) are compared,

to give explicit equations for f3(y, ẏ) and f5(y, ẏ).

To show this method, we go through the process of finding f3(y, ẏ) in detail.

First, we find the second derivative of f(y) and then substitute the modified

equation (6.24) for ÿ, giving

D2f(y) = f ′′(y)(ẏ, ẏ) + f ′(y)ÿ

= f ′′(y)(ẏ, ẏ) + f ′(y)(f(y) + h2f3(y, ẏ) + h4f5(y, ẏ) + . . .).

Substituting this back into (6.28) we get

ÿ = 1 + µ2h
2(f ′′(y)(ẏ, ẏ) + f ′(y)(f(y) + h2f3(y, ẏ) + h4f5(y, ẏ) + . . .))

+ µ4h
4D4f(y)

= 1 + µ2h
2f ′′(y)(ẏ, ẏ) + µ2h

2f ′(y)f(y) + µ2h
4f ′(y)f3(y, ẏ)

+ µ2h
6f ′(y)f5(y, ẏ) + . . .+ µ4h

4D4f(y).

Finally, comparing the coefficients of h2 in the above and (6.24), we get

f3(y, ẏ) = µ2f
′′(y)(ẏ, ẏ) + µ2f

′(y)f(y) (6.29)

= µ2(f ′′(y)(ẏ, ẏ) + f ′(y)f(y))

where

µ2 =
σ2 − c2κ2

12(c2 − 1)
.

Notice, that if we were also to compare the coefficients of h4, we would get

a term involving µ2 and f3(y, ẏ) plus terms from D4f(y). Finding D4f(y) and

comparing the coefficients of h4 we get

f5(y, ẏ) = µ2(f ′(y)f3(y, ẏ)) + µ4(f ′(y)2f(y) + 3f ′′(y)f(y)2 + 5f ′′(y)(ẏ, ẏ)f ′(y)

+ 6f (3)(y)(ẏ, ẏ)f(y) + f (4)(y)(ẏ, ẏ, ẏ, ẏ)
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where µ2 was given above and

µ4 =
3c2κ4 + 3σ4 + 2c2(κ4 − 5κ2σ2 + σ4)

720(c2 − 1)2
.

Each fn can be found similarly.

6.6.1 Numerical Validation of the BEA

Before finding and plotting the modified Hamiltonian, we plot the solutions of

our modified equations for the discrete travelling wave equation (6.23). These

can be solved numerically using NDSolve in Mathematica and then the phase

portraits plotted (see Figure 6.8) for different values of the parameters σ and

κ. In Section 6.6.2 we plot the modified Hamiltonian, which is more accurate

than the numerical solution from using NDSolve. For small values of σ and κ

(Figure 6.8, left) the phase portrait looks similar, qualitatively, to the exact

solution, as we would expect. So for σ and κ small it seems that the numerical

solution, the solution of the discrete travelling wave equation, remains close

to the exact solution, as expected. As σ and κ are increased the orbits of

the phase portraits become distorted and stretched compared with the exact

solution.

This can also be seen by plotting orbits, Figure 6.9, of constant period T

and increasing σ and κ, where σ = κ. Plotting orbits with fixed amplitude

gives a slightly more dramatic result.

Next, we begin the comparison of our numerical results with the modified

differential equation. For increasing truncation index, (up to optimal trun-

cation), we expect the solution of the truncated modified equations to get

closer to the numerical solution, (the solution of the discrete travelling wave

equation). First, we plot the solution of all three truncations along with our

numerical result for a fixed set of parameters. Figure 6.10 gives these solutions
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Figure 6.8: Phase portraits of the solution of the modified differential equation

of the discrete travelling wave equation (6.23).

for T = 2π, σ = κ = 0.5, where,

y1 is the solution of ÿ = f(y)

y2 is the solution of ÿ = f(y) + µ2f3(y, ẏ)

y3 is the solution of ÿ = f(y) + µ2f3(y, ẏ) + µ4f5(y, ẏ).

Not much can be seen in Figure 6.10, because the curves all seem close

together. To get a better idea of what is going on we need to find the error of

each of the truncated solutions.

We can check the error of the modified differential equations at each trun-

cation index for σ = κ to see if it is consistent with the order of the method—

recall that we have the leapfrog method when σ = κ. The error is measured by

taking the difference between the numerical solution and each truncation y1, y2

and y3. The error for each of these truncations is given in Figure 6.11. As more

terms are kept in the modified equation we see that the error is decreasing as

expected.

We can also plot the resonances of the numerical solution from Chapter 5

and that of the modified equation on the same axes. This is given in Figure 6.12
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Figure 6.9: Left: Orbits of fixed period T = 2π, for increasing κ = σ. The

blue orbit has very small value of σ = 0 and the black orbit has a large value

of σ = 1.5. The curves in between these have increasing values of σ from the

blue orbit to the black orbit.

Right: Orbits of fixed amplitude equal to 1.6, for increasing κ = σ. The blue

orbit has very small value of σ = 0 and the orange orbit has a large value of

σ = 1.8. The curves in between these have increasing values of σ from the blue

orbit to the orange orbit.
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Figure 6.10: Truncated solutions of the modified differential equation for the

discrete travelling wave equation: y1 is the green curve, y2, the red curve, and

y3 the orange curve. The numerical solution is given by the blue curve.
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Figure 6.11: On the left we show the error (the difference between the numeri-

cal solution and the solution of the modified equation) of the three truncations

of the modified equation for the discrete travelling wave equation: y1-green,

y2-red, y3-orange. On the right is a zoom of the graph on the left.

for a rational ratio of σ
κ

on the left and an irrational one on the right. The

red line is the resonances of the MDE and the blue line the resonances of

the numerical solution. We see that the MDE contains no resonances and so

can conclude that for the 4th order truncation a smooth solution is always

produced.

For a fixed value of T , and c already fixed, we can vary the parameters σ

and κ and plot the resonances on a contour plot. This is given in Figure 6.13

where the value of σ is given on the x-axis and the value of κ is given on the

y-axis. The size of the resonances are measured by taking the 2-norm of the

difference between the numerical solution of the modified differential equation

and the numerical solution of the discrete travelling wave equation (5.3). The

lighter the shading the bigger the resonances are. As expected for small values

of σ and κ the resonances are very small and get larger as the values of these

parameters increase.
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Figure 6.12: Resonances of the numerical solution from Chapter 5 given by the

blue curve. Resonances of the modified differential equation for the discrete

travelling wave equation given by the red curve.
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Figure 6.13: Contour plot of the resonances for T = 2π and c = 1.3. The

lighter the shading the bigger the resonances are.
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6.6.2 The Modified Hamiltonian of the Discrete Trav-

elling Wave Equation

In this section we derive the modified Hamiltonian of the discrete travelling

wave equation. We give reference to a proof that can be followed, but give our

own method of finding the modified Hamiltonian.

Theorem 6.6.2. For the discrete travelling wave equation (6.15) (or (6.23)),

there exists a series of the form

H̃(y, ẏ) = H(y, ẏ) + h2H3(y, ẏ) + h4H5(y, ẏ) + . . .

where H is the Hamiltonian of the original 2nd order ODE (6.22) and h is a

placeholder for separating terms of different orders.

Proof. The modified Hamiltonian of the discrete travelling wave equation (6.15)

can be found by following the proof given in [37] for Theorem 6.4.2. Or it can

be found by our method as follows:

We have the second order modified differential equation (6.24) and split it

into a first order system,

ẏ = p (6.30)

ṗ = f(y) + h2f3(y, p) + h4f5(y, p) + · · · , (6.31)

where f(y) = −V ′(y)
c2−1

.

We assume that the system can be written as[
ẏ

ṗ

]
=

[
0 K̃

−K̃ 0

]
∇H̃ (6.32)

where K̃ is a series with unknowns K3, K5, . . . ,

K̃ = 1 + h2K3 + h4K5 + · · ·

and H̃ is a modified Hamiltonian,

H̃ = H + h2H3 + h4H5 + · · · .
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Expanding out the first row of (6.32) we get

ẏ = K̃
∂H̃

∂p
= (1 + h2K3 + h4K5 + · · · ) ∂

∂p
(H + h2H3 + h4H5 + · · · )

= (1 + h2K3 + h4K5 + · · · )(p+ h2∂H3

∂p
+ h4∂H5

∂p
+ · · · )

= p+ h2

(
∂H3

∂p
+ pK3

)
+ h4

(
∂H5

∂p
+K3

∂H3

∂p
+ pK5

)
+ · · · .

Since ẏ = p from (6.30) then the above equation gives

∂H3

∂p
+ pK3 = 0,

∂H5

∂p
+K3

∂H3

∂p
+ pK5 = 0 (6.33)

⇒K3 = −1

p

∂H3

∂p
. (6.34)

Similarly, expanding the second row of (6.32) we get

ṗ = −K̃ ∂H̃

∂y
= f(y) + h2

(
K3f(y)− ∂H3

∂y

)
+ h4

(
K5f(y)−K3

∂H3

∂y
− ∂H5

∂y

)
+ · · · .

Matching this equation with (6.31) we get

K3f(y)− ∂H3

∂y
= f3(y, p), K5f(y)−K3

∂H3

∂y
− ∂H5

∂y
= f5(y, p) (6.35)

⇒K3f(y)− ∂H3

∂y
= f3(y, p). (6.36)

Substituting K3 from (6.34) into (6.36) we get

−1

p

∂H3

∂p
f(y)− ∂H3

∂y
= f3(y, p)

where f3(y, p) = µ2(p2f ′′(y) + f ′(y)f(y)) and was given in (1.3).

So we have

−1

p

∂H3

∂p
f(y)− ∂H3

∂y
= µ2

(
p2f ′′(y) + f ′(y)f(y)

)
, (6.37)

and from this we conclude that H3 has the form

H3 = αf 2(y) + βf ′(y)p2.
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From this we get

∂H3

∂p
= 2βpf ′(y),

∂H3

∂y
= 2αf ′(y)f(y) + βf ′′(y)p2.

Substituting these into the left hand side of (6.37) we get

−2

p
βpf ′(y)f(y)− (2αf ′(y)f(y) + βf ′′(y)p2) = µ2(p2f ′′(y) + f ′(y)f(y)).

Finally, matching coefficients of like terms we get

α =
1

2
µ2, β = −µ2.

So

H3 =
1

2
µ2f

2(y)− µ2f
′(y)p2.

We can find H5 in a similar way. We use the second equations in (6.33)

and (6.35) and substitute what we now know, K3, ∂H3

∂p
, and ∂H3

∂y
into them.

The equation from (6.33) can now be rearranged to give an equation for K5,

which can also be substituted into the equation from (6.35). This equation is

slightly more difficult than the previous one, but we can still make a guess for

H5 then take the partial derivatives and match coefficients of like terms giving

H5 = µ4f(y)2f ′(y) +
1

2
(µ2

2 − 3µ4)f ′(y)2p2 − 2µ4f(y)f ′′(y)p2 − µ4p
4f (3)(y).

And therefore the modified Hamiltonian truncated at order h4 is

H̃ = H + h2

(
1

2
µ2f

2(y)− µ2f
′(y)ẏ2

)
+ h4

(
µ4f

2(y)f ′(y)

+
1

2
(µ2

2 − 3µ4)f ′(y)2ẏ2 − 2µ4f(y)f ′′(y)ẏ2 − µ4ẏ
4f (3)(y)

)
where ẏ = p.

The phase portrait with the above Hamiltonian can now be plotted for

different values of σ and κ and is given in Figure 6.14. On the left for small

values of σ and κ the modified Hamiltonian shows that the discrete travelling

wave equation gives heteroclinic and periodic travelling wave solutions as does

the exact solution. As σ and κ increase the modified Hamiltonian gets distorted
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Figure 6.14: On the left is the modified Hamiltonian with small values of σ

and κ and on the right the modified Hamiltonian with large values of σ and

κ.

as expected, but it still shows that the discrete travelling wave equation still

gives the right qualitative behaviour.

Before going further, we discuss some of the implications of Theorem 6.6.1.

Backward error analysis is a powerful tool for analysing our problem. For

ODEs in the ordinary case backward error analysis reduces (n+1)-dimensional

map to n dimensions. So we get a reduction of the dimension by one. This

reduction of the dimension by one allows conclusions such as the existence

of one modified integral, the energy. But for our problem our method is the

discrete travelling wave equation (6.15) which is an infinite-dimensional map,

discussed in Section 4.1.1. This next theorem will show just how powerful

backward error analysis is for us.

Theorem 6.6.3. The modified differential equation (6.38) for the discrete trav-

elling wave equation, is a second order ODE, which can be rewritten in the

form,

ż = J̃−1(z)∇H̃(z),

since we know the modified equation has a modified Hamiltonian. Here, ż ∈ R2,
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J̃−1 is some 2× 2 symplectic structure matrix which depends on the variables

in z, and H̃(z) is the modified Hamiltonian.

We mentioned earlier that Chartier, Faou, and Murua [16] were the first to

prove that conjugate to symplectic methods preserve modified quadratic first

integrals. Symmetric multistep methods are conjugate to symplectic and so

is the discrete travelling wave equation since it is equivalent to a symmetric

multistep method. Therefore, J̃−1 is a symplectic structure matrix and (6.32)

is a Poisson system.

By use of backward error analysis we get an equation of the form

ÿ = f̃(y, ẏ, σ, κ) (6.38)

where σ and κ are parameters.

That is, BEA has reduced an infinite-dimensional map to a two-dimensional

ODE, a far more spectacular reduction than that of the ordinary case. This

is even more striking in view of the fact that there is no accepted BEA for

fully discrete PDEs in general. This allows us to plot solutions of the modified

equation and the modified Hamiltonian giving us all the information we need.

Thus we see that backward error analysis is exceptionally powerful for this

problem, reducing the difficult, intractable functional equation (6.15) to a sim-

ple planar Hamiltonian ODE. Furthermore, by comparing the phase portraits

of the original system in Figure 5.1 and the modified system in Figures 6.14

and 6.8, we get that any orbits that are structurally stable, that is any orbits

that are also present up to small perturbations in nearby Hamiltonian sys-

tems, are preserved. This includes periodic and heteroclinic travelling waves

for the sine-Gordon equation Figure 5.1, although this result is not specific to

the sine-Gordon equation or its integrability and holds (generically) for any

potential. This preservation holds in the sense of backward error analysis, that

is up to any power of the time and space step sizes.

This situation in the ODE case, analysing the preservation of phase por-

traits by symplectic integrators, has been considered in [67] using the language

of topological equivalence:
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Definition 6.6.1. H ∈ Ck(M,R), k ≥ 2, is a Morse function if its critical

points {x : dH(x) = 0} are isolated, nondegenerate (that is H ′′(x) is non-

singular), and if each level set of H contains at most one critical point. Two

functions H and H̃ ∈ Ck(M,R) are topologically equivalent if there are home-

omorphisms Φ, Ψ such that Ψ ◦ H̃ = H ◦ Φ.

The level sets of two topologically equivalent functions are topologically

equivalent, although they may have a different shape (determined by Φ) and

the level sets may have different values (determined by Ψ).

Definition 6.6.2. A symplectic integrator for the Hamiltonian H is topolog-

ically stable for any step τ on the compact set D if its modified Hamiltonian

H̃ is topologically equivalent to H on D.

Theorem 6.6.4. [76] Let H be a Ck Morse function, and let H̃ be suffi-

ciently close to H in the Ck topology (defined by the ball B(ε) = {H ∈
Ck(M,R) : |DαH(x)| < ε, ∀x ∈ M , ∀ |α| ≤ k}). Then H̃ is topologically

equivalent to H.

Corollary 6.6.1. [67] If the Hamiltonian H is a Morse function on a compact

set, then any symplectic integrator is topologically stable for all sufficiently

small time steps.

Theorem 6.6.5. [67] If H is Ck on a compact set, with all critical points

nondegenerate, and if for each pair of critical points of H with equal values the

corresponding critical points of H̃ have equal values for all sufficiently small

time steps, then for all sufficiently small time steps the symplectic integrator

is topologically stable.

This paper [67] goes on to describe integrators for which these conditions

hold.

Thus we can expect, for example, that if a travelling wave corresponds to

a topologically unstable orbit of the travelling wave equation, then it will not

be preserved by typically multisymplectic integrators. This, however, is an

exceptional case, and even in higher dimensions we can expect that typical
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travelling waves, whose existence is due to preserved features of the travel-

ling wave equation like dimension and linear symmetries, will be preserved by

multisymplectic integrators.

Although the numerical examples given above suggest that the modified

vector field is a very good approximation to the travelling waves, which in

direct numerical calculations do appear to exist, of course this is no substitute

for a rigorous proof of their existence. This could be a very difficult process

involving KAM theory and/or variational techniques and is beyond the scope

of this thesis. Instead, we regard the backward error analysis as suggesting the

mechanism by which travelling waves can be preserved and as a guide to the

development of good numerical methods.

6.7 Backward Error Analysis for Multisym-

plectic Integrations of Multi-Hamiltonian

PDEs

Our results so far are for one multisymplectic integrator applied to one type

of PDE, the nonlinear wave equation, in the form given. We would like to

say something more general for multisymplectic integrators applied to multi-

Hamiltonian PDEs. To do this we need to see if BEA can be applied directly

to a multi-Hamiltonian PDE (2.8) for a multisymplectic integrator. Instead of

beginning with the nonlinear wave equation in its multi-Hamiltonian form, we

begin with the nonlinear Schrödinger equation. The analysis for the nonlinear

Schrödinger equation is much more straightforward than that of the nonlinear

wave equation.

We use the nonlinear Schrödinger equation,

iψt + ψxx + 2 |ψ|2 ψ = 0, ψ ∈ C.

Since ψ ∈ C we begin by letting ψ = p+ iq, which gives

i(pt + iqt) + pxx + iqxx + 2(p2 + q2)(p+ iq) = 0.
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Now, to turn it into a first order system we let px = v and qx = w to get

−qt + vx + 2(p2 + q2)p+ i(pt + wx + 2(p2 + q2)q) = 0.

Next, we split the equation into real and imaginary parts to get the four-

dimensional 1st order system,

px = v

qx = w

−qt + vx = −2(p2 + q2)p

pt + wx = −2(p2 + q2)q.

The multi-Hamiltonian form is

z =


p

q

v

w

 , K =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , L =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


and S = −1

2
(p2 + q2)− 1

2
(v2 + w2).

Substituting travelling wave coordinates into the multi-Hamiltonian PDE

of the nonlinear Schrödinger equation we get

(L− cK)ϕ̇(ξ) = ∇S(ϕ(ξ)) (6.39)

where

(L− cK) =


0 c 1 0

−c 0 0 1

−1 0 0 0

0 −1 0 0

 , (L− cK)−1 =


0 0 −1 0

0 0 0 −1

1 0 0 c

0 1 −c 0

 , ϕ =


ϕ1

ϕ2

ϕ3

ϕ4

 ,
and S = −1

2
(ϕ2

1 + ϕ2
2)− 1

2
(ϕ2

3 + ϕ2
4).

Notice that after substituting travelling wave coordinates we reduce our

skew-symmetric matrices K and L into one matrix L− cK which is also skew-

symmetric. Also notice that L− cK is invertible. This is key to a step further

on.
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For our nonlinear wave problem we applied the leapfrog discretisation then

substituted travelling wave coordinates so we do this in the same order too for

this first order system. But, since there is no general leapfrog discretisation of

a multi-Hamiltonian PDE, we use the Preissman box scheme for this example.

The Preissman box scheme was introduced in Section 2.5.1. We discretise the

multi-Hamiltonian PDE using the Preissman box scheme

(KDtMx + LDxMt)z
n
i = ∇S(MtMxz

n
i ), (6.40)

where for the Preissman box scheme Dt, Dx, Mt, and Mx are given by (2.20)

and (2.21).

The discretisation given by (6.40) can be considered as a general multisym-

plectic discretisation of a multi-Hamiltonian PDE where the discrete approxi-

mations DtMx and DxMt are defined in a way that produces a multisymplectic

integrator. Note that the averages Mx and Mt may or may not exist in other

multisymplectic integrators.

In matrix form (6.40), for the nonlinear Schrödinger equation, becomes
0 −DtMx DxMt 0

DtMx 0 0 DxMt

−DxMt 0 0 0

0 −DxMt 0 0

 zni = ∇S(MtDxz
n
i ).

Substituting travelling wave coordinates into the finite difference and av-

erage operators (2.20) and (2.21), we get the difference equations

Dκ
ξϕ(ξ) = −c(ϕ(ξ)− ϕ(ξ − κ))

κ
, Dσ

ξϕ(ξ) =
ϕ(ξ + σ)− ϕ(ξ)

σ
,

Mκ
ξ ϕ(ξ) =

(ϕ(ξ) + ϕ(ξ − κ))

2
, Mσ

ξ ϕ(ξ) =
ϕ(ξ) + ϕ(ξ + σ)

σ

so that upon substituting travelling wave coordinates in the discretisation

(6.40) we get the system of difference equations,

(KDκ
ξM

σ
ξ + LDσ

ξM
κ
ξ )ϕ(ξ) = ∇S(Mκ

ξM
σ
ξ ϕ(ξ)),
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or in matrix form,
0 −Dκ

ξM
σ
ξ Dσ

ξM
κ
ξ 0

Dκ
ξM

σ
ξ 0 0 Dσ

ξM
κ
ξ

−Dσ
ξM

κ
ξ 0 0 0

0 −Dσ
ξM

κ
ξ 0 0

ϕ(ξ) = ∇S(Mκ
ξM

σ
ξ ϕ).

Applying the D operator, the time derivative, to both sides and moving the

matrix on the left hand side to the right hand side we get,

ϕ̇(ξ) = D


0 0 − 1

DσξM
κ
ξ

0

0 0 − 1
DσξM

κ
ξ

1
DσξM

κ
ξ

0 0 − DκξM
σ
ξ

(DκξM
σ
ξ )2

0 1
DσξM

κ
ξ

DκξM
σ
ξ

(DκξM
σ
ξ )2

0

∇S(Mκ
ξM

σ
ξ ϕ(ξ)).

This last step was possible because L− cK is invertible.

Now, the matrix can be expanded in a Taylor series, then the whole right

hand side can be expanded in a series and the proof that the modified equation

exists follows from the proof of Theorem 6.4.1.

Next, we go back to the nonlinear wave equation and put it into its multi-

Hamiltonian form as was done in Section 2.3. Recall, that for the nonlinear

wave equation we get,

Kzt + Lzx = ∇S(z)

where,

z =


u

v

w

 , K =


0 1 0

−1 0 0

0 0 0

 , L =


0 0 −1

0 0 0

1 0 0

 ,
and S(z) = −V (u) + 1

2
(w2 − v2).

Hence, for the continuous case we have, (after substituting travelling wave

coordinates),

(L− cK) =


0 −c −1

c 0 0

1 0 0

 , ϕ =


ϕ1

ϕ2

ϕ3

 , (6.41)
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and S(ϕ) = −V (ϕ1) + 1
2
(ϕ2

3 − ϕ2
2).

Notice that we have a 3-dimensional problem in this first order formulation,

but our ODE in the original formulation was 2-dimensional.

We want to go back to using the leapfrog discretisation for the nonlin-

ear wave equation in multi-Hamiltonian form, as this was the discretisation

we applied to the nonlinear wave equation in its original form in the previ-

ous two Chapters. The following formulation for leapfrog method applied to

the nonlinear wave equation in its multi-Hamiltonian form can be checked by

applying the discretisation then eliminating the variables. The result is the

leapfrog method applied to the nonlinear wave equation in its original form.

Note, that this is also equivalent to applying the Euler Box scheme then

eliminating the variables.

The multi-Hamiltonian discretisation (6.40) for the leapfrog discretisation

of the nonlinear wave equation becomes,

(KDt + LDx)z
n
i = ∇S(zni ) (6.42)

where for the leapfrog method,

Dtz
n
i =

z
n+ 1

2
i − zn−

1
2

i

∆t
, Dxz

n
i =

zn
i+ 1

2

− zn
i− 1

2

∆x
. (6.43)

We can do a quick check that this discretisation is correct by finding

Dt(Dtz
n
i ) and Dx(Dxz

n
i ) and get

Dt(Dtz
n
i ) =

zn+1
i − zni − zni + zn−1

i

(∆t)2
=
zn+1
i − 2zni + zn−1

i

(∆t)2
,

which is the second order discretisation for the leapfrog method that we used

in Section 4.1.

In matrix form (6.42) becomes
0 Dt −Dx

−Dt 0 0

Dx 0 0

 zni = ∇S(zni ).
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Substituting travelling wave coordinates into the discretisations (6.43) we

get the difference equations,

Dκ
ξϕ(ξ) = −

c(ϕ(ξ + 1
2
κ)− ϕ(ξ − 1

2
κ))

κ
, Dσ

ξϕ(ξ) =
ϕ(ξ + 1

2
σ)− ϕ(ξ − 1

2
σ)

σ
,

(6.44)

so that upon substituting travelling wave coordinates in the discretisation

(6.42) we get the system of difference equations,

(KDκ
ξ + LDσ

ξ )ϕ(ξ) = ∇S(ϕ(ξ)), (6.45)

or in matrix form, 
0 Dκ

ξ −Dσ
ξ

−Dκ
ξ 0 0

Dσ
ξ 0 0

ϕ(ξ) = ∇S(ϕ).

It would be nice if the system of difference equations (6.45) was a direct

analogue of the continuous system of equations (6.39). We notice that the

difference Dκ
ξϕ(ξ) in (6.44) has a −c term that does not occur in Dσ

ξϕ(ξ). We

generalise these differences so that for any parameter γ we have

Dγ
ξϕ(ξ) =

ϕ(ξ + 1
2
γ)− ϕ(ξ − 1

2
γ)

γ
, (6.46)

so that (6.45) becomes

(LDσ
ξ − cKDκ

ξ )ϕ(ξ) = ∇S(ϕ(ξ)),

and in matrix form,
0 −cDκ

ξ −Dσ
ξ

cDκ
ξ 0 0

Dσ
ξ 0 0

ϕ(ξ) = ∇S(ϕ(ξ)), (6.47)

where Dκ
ξϕ(ξ) and Dσ

ξϕ(ξ) are defined by (6.46).

When we did backward error analysis for the nonlinear wave equation in

the usual form given, we expanded the left and right sides of the discrete
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travelling wave equation in a Taylor series and put these expansions in terms

of exponential functions. Then we moved everything except the variable ϕ to

the right hand side. In our first order formulation we encounter a problem

doing this because the matrix (LDσ
ξ − cKDκ

ξ ) is singular and hence cannot be

moved to the right hand side after expansion.

Notice also that the matrix (L−cK) for the continuous case is also singular

and so for any multi-Hamiltonian PDE in which (L − cK) is singular the

discrete version of the matrix will also be singular and therefore a slightly

different method of applying backward error analysis will need to be used.

This method is shown below for the nonlinear wave equation. On the other

hand if (L− cK) is nonsingular then we saw from the previous example of the

nonlinear Schrödinger equation how backward error analysis can be applied

directly to a multi-Hamiltonian PDE and that the proof that there exists a

modified equation follows from the proofs we gave of Theorem 6.4.1.

In the case where (L−cK) is not invertible a change of coordinates is most

likely needed. Before making a change of coordinates check the the matrix

(L − cK) does not contain a row of zeros. If there is a row of zeros then a

variable can be eliminated. Eliminate a variable for each row of zeros that

exist. This should reduce the dimension of the problem back to the same

dimension as the ODE in the original formulation and if the reduced matrix is

now invertible then backward error analysis can be applied directly as in the

nonlinear Schrödinger example.

If the reduced matrix is not invertible or the original matrix is not invertible

then (L−cK) will have to be put in Darboux normal form. The columns of the

change of coordinates matrix are formed from the eigenvectors of the matrix

(L − cK). This will produce a row of zeros which will allow the dimension

to be reduced by 1 leaving the remaining matrix invertible. Backward error

analysis can be then carried out on this coordinate system then changed back

to the original coordinates at the end. We go through this procedure in detail

for the nonlinear wave equation as a multi-Hamiltonian PDE (6.39).

Firstly, we go through the continuous case where (L−cK) is given in (6.41).
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We form the matrix A by letting the eigenvectors of (L− cK) be the columns

of A,

A =


0 (c2 + 1)

1
2 0

−c 0 1

−1 0 −c

 . (6.48)

Now, let ϕ(ξ) = A ˆϕ(ξ) where A is given by (6.48) and substitute this into

(6.39) to get,

(L− cK)A ˆ̇ϕ(ξ) = ∇S(Aϕ̂(ξ)) (6.49)

⇒ AT(L− cK)A ˆ̇ϕ(ξ) = AT∇S(Aϕ̂(ξ))

= ∇T (ϕ̂(ξ))

where,

AT(L− cK)A = (c2 + 1)
3
2


0 −1 0

1 0 0

0 0 0

 .
Or, by writing out the matrices on both sides of (6.49) in full we get,

(c2 + 1)
3
2


0 −1 0

1 0 0

0 0 0

 ˆ̇ϕ =


2cϕ̂3 − (c2 − 1)ϕ̂1

−(c2 + 1)
1
2V ′((c2 + 1)

1
2 ϕ̂2)

2cϕ̂1 + (c2 − 1)ϕ̂3

 .
The variable ϕ̂3(ξ) can now be eliminated to get the 2-dimensional system,[

ˆ̇ϕ1

ˆ̇ϕ2

]
=

−(c2 + 1)−1V ′
(

(c2 + 1)
1
2 ϕ̂2

)
(c2 + 1)

1
2 (c2 − 1)−1ϕ̂1

 .
This system can be transformed back to the original coordinates by taking

ϕ(ξ) = A−1ϕ̂(ξ) then solving for ϕ3 we get, ϕ3 = −1
c
ϕ2. So the first order

Hamiltonian system in original coordinates becomes[
ϕ̇1(ξ)

ϕ̇2(ξ)

]
=

[
−1
c
ϕ2(ξ)

c(c2 − 1)−1V ′(ϕ1(ξ))

]
. (6.50)
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If we let

f(ϕ̂) =

−(c2 + 1)−1V ′
(

(c2 + 1)
1
2 ϕ̂2

)
(c2 + 1)

1
2 (c2 − 1)−1ϕ̂1

 ,
then we look for a modified equation of the form,

ˆ̇ϕ = f(ϕ̂) + h2f3(ϕ̂) + h4f5(ϕ̂) + . . .

where f3(ϕ̂), f5(ϕ̂), . . . are 2-dimensional vector functions to be determined.

For the discrete case, we have the matrix (LDσ
ξ − cKDκ

ξ ) given in (6.47)

and let ϕ(ξ) = Aϕ̂(ξ) where,

A =


0 (c2(Dκ

ξ )2 + (Dσ
ξ )2 0

−cDκ
ξ 0 Dσ

ξ

−Dσ
ξ 0 −cDκ

ξ

 .
Then,

AT(LDσ
ξ − cKDκ

ξ )A ˆ̇ϕ(ξ) = AT∇S(Aϕ̂(ξ))

becomes

(c2(Dκ
ξ )2 + (Dσ

ξ ))
3
2


0 −1 0

1 0 0

0 0 0



ϕ̂1

ϕ̂2

ϕ̂3

 =


ϕ̂1((Dσ

ξ )2 − c2(Dκ
ξ )2) + 2cϕ̂3D

κ
ξD

σ
ξ

−(c2(Dκ
ξ )2 + (Dσ

ξ ))
1
2V ′((c2(Dκ

ξ )2 + (Dσ
ξ )

1
2 )ϕ̂2)

2cDκ
ξD

σ
ξ ϕ̂1 + ϕ̂3(c2(Dκ

ξ )2 − (Dσ
ξ ))

 .
Eliminating ϕ̂3, rearranging and applying the time derivative D to both

sides we get the 2-dimensional discrete system[
ˆ̇ϕ1

ˆ̇ϕ2

]
= D

[
−(c2(Dκ

ξ )2 + (Dσ
ξ ))−1V ′((c2(Dκ

ξ )2 + (Dσ
ξ ))

1
2 ϕ̂2)

(c2(Dκ
ξ )2 + (Dσ

ξ ))
1
2 (c2(Dκ

ξ )2 − (Dσ
ξ ))−1ϕ̂1

]
.

The Taylor series of the right hand side can now be taken to begin the

backward error analysis and find the modified equations as described earlier.

The Hamiltonian can now be found and the phase portrait plotted. This

is given in Figure 6.15, where we see that the travelling wave solutions are
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Figure 6.15: Modified Hamiltonian of the 1st order nonlinear wave system with

change of coordinates.
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preserved. The Hamiltonian could also be changed back to the original coor-

dinates with the same result.

After using this method of putting the matrix (LDσ
ξ −cKDκ

ξ ) into Darboux

normal form it was found that there was a simpler was to apply backward error

analysis to the multi-Hamiltonian PDE for the nonlinear wave equation. First

we look at the continuous system (6.39) and write the system out in full,

−cϕ̇2 − ϕ̇3 = −V ′(ϕ1)

cϕ̇1 = −ϕ2

ϕ̇1 = ϕ3.

Notice, that the last two equations in the system both contain ϕ̇1, which

allows us to eliminate ϕ3 to get the 2-dimensional system,

ϕ̇ =

[
−1
c
ϕ2

c(c2 − 1)−1V ′(ϕ1)

]
= f(ϕ).

Notice, that this equation is the same as (6.50), which we got from putting

the first order system in Darboux normal form then changing the coordinates

back once the dimension of the system was reduced. Hence, this new reduction

is much easier and faster to perform than the change of coordinates. It is the

study of travelling waves that allows us to eliminate one of the variables and

reduce the dimension to the same as the study for the nonlinear wave equation

in its original form.

For the discrete case, we also write the discrete system (6.47) out in full to

get

−cDκ
ξϕ2 −Dσ

ξϕ3 = −V ′(ϕ1)

cDκ
ξϕ1 = −ϕ2

Dσ
ξϕ1 = ϕ3.

We can now eliminate ϕ3, rearrange the equation and apply the time deriva-

tive D to both sides to give the discrete system

ϕ̇ = D

[
0 (cDκ

ξ )−1

−cDκ
ξ (c2(Dκ

ξ )2 − (Dσ
ξ )2)−1 0

][
−V ′(ϕ1)

−ϕ2

]
.
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The 2× 2 matrix on the right hand side can now be expanded in a Taylor

series, then the whole right hand side expanded in a Taylor series. The modi-

fied equation, and hence the modified Hamiltonian, can then be found and the

phase portraits of the modified Hamiltonian plotted. This is plotted in Fig-

ure 6.16 for different values of σ and κ. Both solutions gives periodic travelling

waves and heteroclinic travelling waves, the same as the original problem, but

the solution on the right, for higher values of σ and κ, gives a more distorted

view of the original solution.
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Figure 6.16: Modified Hamiltonians of the leapfrog method applied to the

nonlinear wave equation as a 1st order system for small σ and κ on the left

and large σ and κ on the right.

This backward error analysis was also done for the Preissman box scheme

applied to the nonlinear wave equation in a multi-Hamiltonian form. The

modified Hamiltonian for the Preissman box scheme is given in Figure 6.17

and shows similar results to that of the leapfrog method, the travelling waves

are preserved.

It can be seen that the ideas and methods developed in this thesis also

apply to higher-dimensional wave equations and the preservation of travelling

waves by multisymplectic integrators.
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Figure 6.17: Modified Hamiltonians of the Preissman box scheme applied to

the nonlinear wave equation as a 1st order system for small σ and κ on the

left and large σ and κ on the right.
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Chapter 7

Summary and Conclusions

The main question of this thesis was: Do multisymplectic integrators give bet-

ter preservation of the dynamics than non-multisymplectic methods? We chose

to look at this question through the preservation of travelling wave solutions.

Most of the research previously done on the behaviour of multisymplectic in-

tegrators only considers the propagation of a solitary wave or the collision of

two or three solitons. We attempt to look at the family of travelling wave

solutions.

We choose the nonlinear wave equation as our test problem and show that

for a particular nonlinearity it possesses two types of travelling waves, hete-

roclinic and periodic. All our nonlinearities, for the nonlinear wave equation,

in this thesis possess these two types of travelling wave solutions. We choose

the leapfrog method as our main multisymplectic integrator, which results in

what we call the discrete travelling wave equation.

We show that the discrete travelling wave equation is only finite-dimensional

for σ
κ

rational and for σ
κ

irrational it is infinite-dimensional. This makes the

discrete travelling wave equation very difficult to solve. Boundary conditions

are imposed on the discrete travelling wave equation corresponding to each

type of orbit in the phase portrait.

We attempt to overcome the difficulty of solving the discrete travelling

wave equation by using simplified nonlinearities. We begin with the McKean
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nonlinearity which is piecewise constant with a discontinuity. The phase por-

trait shows that the solution has heteroclinic and periodic travelling waves.

Solving the continuous travelling wave ODE of the nonlinear wave equation

with McKean nonlinearity for heteroclinic waves we get an explicit solution in

terms of an infinite integral. This infinite integral is evaluated using residue

theory resulting in a heteroclinic travelling wave.

We give an example showing that even symmetric methods for symmetric

PDEs need not preserve travelling wave solutions. Symmetric methods only

preserve symmetric travelling waves.

Our goal is to study preservation of discrete travelling waves, so we discre-

tise the nonlinear wave equation with McKean nonlinearity with the leapfrog

method. The discrete travelling wave with this simplified nonlinearity gives

an explicit solution in terms of an infinite integral, which can be solved using

residue theory. We solve this for the 3 cases, c = 0, σ = κ and σ = 2κ.

For c = 0 we get the denominator of the infinite integral gives the zero

s = 0 and a complex conjugate pair lying on the imaginary axis. The periodic

images of the roots on the imaginary axis are also zeros. The solution is the

shape of a heteroclinic wave, which is smooth at the ends, but has a piecewise

constant middle section.

For σ = κ the discrete travelling wave equation is equivalent to applying

the leapfrog method in time directly to the travelling wave ODE. We get the

same results as those for c = 0, but also see that as c increases the solution

becomes steeper.

For σ = 2κ the solution is slightly more complicated. The denominator

of the infinite integral gives the same zeros as those described for c = 0, but

also has two additional zeros plus their periodic images. These are real roots.

The result of solving the infinite integral is an explicit solution in terms of

hypergeometric functions. The solution contains wiggles at each end of the

solution as well as a piecewise constant middle section.

We summarise the results for the McKean nonlinearity:

• The wiggles at the tails of the solution are from the real poles
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• The exponential part of the solution comes from the imaginary poles

• The solutions have the general shape of a solitary wave corresponding to

a heteroclinic orbit, but contain wiggles

• The solutions are piecewise constant including the wiggles

• The wiggles are O(κ2), (or O(σ2) for c = 0)

These results are better than what a non-multisymplectic integrator would

produce or even the results of a symmetric method applied to a symmetric

PDE. Heteroclinic travelling waves are not symmetric, so are not preserved by

symmetric methods.

Next, we move onto looking at the discrete periodic waves of the discrete

travelling wave equation with McKean nonlinearity. To look for discrete pe-

riodic solutions we apply the discrete Fourier series, which gives an explicit

formula in terms of Fourier series. To analyse this we need to take a finite

truncation of this solution, which gives us only a numerical analysis.

We found that the discrete periodic solutions sometimes had large wiggles

for both rational and irrational values of σ
κ

and conclude that no true periodic

travelling wave solutions exist for the discrete travelling wave equation with

McKean nonlinearity.

The McKean nonlinearity worked well in McKean’s study of nerve conduc-

tion, but did not work so well for our problem. One reason for this may be

due to the fact that McKean’s model is dissipative, whereas our problem is

non-dissipative. The discontinuity could also have been part of the problem,

so next we look at a piecewise linear nonlinearity, the sawtooth function, that

does not have a discontinuity.

The phase portrait with the sawtooth nonlinearity once again shows the

continuous solution possesses heteroclinic and periodic travelling waves, but

only periodic travelling wave solutions are looked at. The heteroclinic orbit

can be approached by taking the period T →∞. The second order travelling

wave ODE with sawtooth nonlinearity is solved analytically for periodic waves

by splitting the nonlinearity into 5 parts and solving each part separately.
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The discrete periodic solutions are found using a discrete Fourier series.

These solutions seem to match those of the corresponding analytic solution.

It would have been nice to have been able to measure the difference in the

analytic and discrete solutions for the same parameters, but the method of

finding the analytic solution made this difficult. We conclude that discrete

periodic travelling waves exist for the sawtooth nonlinearity.

We finally move on to a smooth nonlinearity of the nonlinear wave equation.

This nonlinearity gives the sine-Gordon equation in which the travelling wave

ODE has a phase portrait indicating that heteroclinic and periodic travelling

wave solutions exist. We only study the preservation of the periodic travelling

waves.

We describe our pseudospectral Newton continuation method that we use

to numerically solve the discrete travelling wave equation for the discretisation

of the sine-Gordon equation. This method involves using a Fourier series for

the linear part of the discrete travelling wave equation and the Newton method

for the nonlinear part. We fix c so that the only parameters which need to be

controlled are σ, κ and T . The period T is varied through the continuation

part of our method.

Our pseudospectral Newton method produces two types of solution. One

type of solution appears to be smooth, but the other type has wiggles in the

solution. These wiggles are known as resonances and we give a method for

measuring the size of them.

Newton’s method converges quadratically for all solutions except at some

large resonances. We were able to check our numerical simulation against the

case σ = κ as this gives the leapfrog method of the sine-Gordon equation. For

both types of solutions our method for σ = κ agrees with the leapfrog method.

After studying many combinations of the parameters, σ
κ

rational and irra-

tional, we summarise the following main results:

• For σ
κ
∈ Z a resonance will occur if T

2κ
∈ Z

• There seems to be some relationship between the resonances and the

parameters for all σ
κ
∈ Q, but we were unable to find this relationship
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• As the period T → ∞ travelling wave solutions exist for all values of σ
κ

and do not contain any resonances. We could not find any explanation

for this behaviour

• κ has a greater influence on the size and position of the resonances than

σ

In Chapter 6 we studied the preservation of travelling wave solutions through

BEA of multistep methods. We achieve this by showing that the discrete trav-

elling wave equation is equivalent to a symmetric multistep method when σ
κ

is

rational. Normally, for multistep methods, the parasitic modified differential

equation needs to be studied in addition to the principal modified equation. If

the method gives parasitic solutions these will not show up in the study of the

principal modified equation. Our problem is a boundary value problem, rather

than an initial value problem in the normal case, in which we restrict solutions

to (periodic) travelling waves. This damps out any parasitic solutions so we

can fully analyse the discrete travelling wave equation through the principal

modified equation by itself.

We found the 1st characteristic polynomial of the discrete travelling wave

equation and made a conjecture on the number of pairs of roots of the poly-

nomial which lie on the unit circle, (and those which lie inside and outside the

unit circle). This conjecture and the paper by Quinlan [77] lead us back to

predicting when the resonances would occur, but we ended up dropping this

idea in favour of the more successful backward error analysis.

Since we can think of the discrete travelling wave equation as a symmetric

multistep method when σ
κ

is rational we can use the proofs that modified

equations and modified Hamiltonians exist for multistep methods to find the

modified equation and modified Hamiltonian of the discrete travelling wave

equation. We prove that these modified equations exist, not only for σ
κ

rational,

but also for σ
κ

irrational. The resulting modified equations are 2-dimensional

and always produce a smooth solution. We give a numerical validation of

BEA which includes comparing our solutions of the modified equation to the
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numerical solutions we obtained in Chapter 5. This was done for 3 truncations

of the solution of the modified equation for a fixed set of parameters. The

difference between the numerical solution from Chapter 5 and the solution

of each truncation of the modified differential equation was then plotted. As

expected, the modified equation gets closer to the numerical solution at each

increasing truncation index.

We use our own method to prove that a modified Hamiltonian of the dis-

crete travelling wave equation exists and conclude the the discrete travelling

wave equation (for the multisymplectic leapfrog method applied to the sine-

Gordon equation) preserves travelling wave solutions.

It is now that we see how powerful BEA analysis is for our problem. In the

ordinary sense of BEA an (n+1)-dimensional map is reduced to n dimensions.

This reduction of dimension by one allows conclusions such as the existence

of one modified integral, the energy. But for us, BEA reduces an infinite-

dimensional map to a 2-dimensional ODE, a far more spectacular reduction.

This is even more striking in view of the fact that there is no accepted BEA for

fully discrete PDEs in general. That is, BEA reduces the difficult intractable

functional equation, we call the discrete travelling wave equation, to a simple

planar Hamiltonian ODE.

By comparing the orbits of the phase portraits of the original system and

the modified system we got that any orbits that are structurally stable are

preserved. This includes heteroclinic and periodic waves for the sine-Gordon

equation, but the result is not specific to the sine-Gordon equation, or its

integrability, and holds for any potential of the nonlinear wave equation.

We expect that typical travelling waves, whose existence is due to preserved

features of the travelling wave equation, like dimension and linear symmetries,

will be preserved by multisymplectic integrators.

In this thesis, we do not give rigorous proofs of the existence of travelling

waves of multisymplectic integrators but regard BEA as suggesting a mecha-

nism by which travelling waves can be preserved.

To make more general conclusions on the preservation of travelling waves
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for multisymplectic integrations of multi-Hamiltonian PDEs, we applied BEA

analysis directly to these discrete systems. We used the Preissman box scheme

applied to the 1st order nonlinear Schrödinger equation and the leapfrog method

applied to the 1st order nonlinear wave equation to make the following con-

clusions:

• If (L − cK) is invertible, BEA analysis can be directly applied to a

multisymplectic integration of a multi-Hamiltonian PDE, to show that

the modified differential equation exists.

• If (L− cK) is not invertible, then a change of coordinates or an elimina-

tion of variables is needed before BEA can be applied to show that the

modified differential equation exists.

The ideas and methods developed in this thesis also apply to higher-

dimensional wave equations and the preservation of travelling waves by multi-

symplectic integrators.
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