Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. THE THREE DIMENSIONAL STRUCTURE OF AZURIN, A BLUE COPPER PROTEIN, AT $3^{\rm A}$

RESOLUTION

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University.

GILLIAN E. NORRIS

AZURIN

ACKNOWLEGEMENT

I sincerely thank my supervisors, Dr E.N. Baker and Dr. S.V. Rumball for their help and encouragement throught this work. Thanks are also due to the following:

Dr R.P. Ambler, of the University of Edinburgh, for bacterial cultures.

- Dr G.G. Pritchard, for help with the microbiological aspects of this work.
- Dr G.G. Midwinter, and Mr J.W. McLean for help with the purification procedures.
- Dr K.L. Brown, Chemistry Division, D.S.I.R., Petone, for much help with data collection on the four-circle X-ray diffractometer.
- The Staff of the Chemistry Department, Auckland University, for collection of data on the CAD-4 diffractometer.
- Dr B.F. Anderson, for help with computing, contouring and proofreading.
- Drs. E.W. Ainscough and A.M. Brodie for helpful discussions.
- Mrs H. Baker for help with contouring.
- Mrs J. Trow and my husband, Dr R. Norris, for preparation of diagrams.

Miss K. Stalker for typing.

Finally, I would like to express my appreciation to my husband and family, particular my mother, for their constant help, encouragement and understanding during what must have seemed like an interminable period.

The award of a University Grants Committee Postgraduate Scholarship is gratefully acknowledged.

(i)

Purifications and crystallizations of two electron transfer proteins, azurin and cytochrome c', from Alcaligenes denitrificans and <u>Alcaligenes sp.</u> NClB 11015 have been carried out. The azurin crystals from <u>Alcaligenes denitrificans</u> were found suitable for high resolution X-ray structure analysis. They are orthorhombic, space group C2221 (with marked tetragonal pseudosymmetry), cell dimensions a = 75.0Å, b = 74.1Å, c = 99.5Å, with two molecules per asymmetric unit. A 3° resolution electron density map of azurin was calculated. Four isomorphous heavy atom derivatives, prepared with $KAu(CN)_2$, uranyl acetate, $Hg(NH_3)_2Cl_2$ and $(KAu(CN)_2 + uranyl)$ acetate) (a double derivative) were used to calculate phases by the method of isomorphous replacement, giving an overall figure of merit of 0.614. The polypeptide chain could be followed unambiguously in both protein molecules in the asymmetric unit, with the aromatic sidechains, in particular, readily identifiable because of their distinctive appearance.

Kendrew skeletal models were built for both molecules, the polypeptide chain(consisting of 129 amino acids) being found to be folded into an eight-strand β -barrel, with an additional flap containing a short helix. There is one disulphide bridge within the barrel. The topology of the molecule was found to be the same as that of plastocyanin, and a comparison of the three dimensional structures of azurin and plastocyanin allowed the sequences to be aligned on structural rather than purely statistical grounds. It also established the probability that the two proteins have evolved from a common ancestor.

The copper atom has a highly-distorted tetrahedral co-ordination geometry, forming three shorter bonds (length approximately 2^{A}), with a cysteine thiolate sulphur (Cys 112) and two histidine imidazole

nitrogens (His 46 and 117), as well as a longer bond (approximately 3Å) with a methionine thioether sulphur (Met 121). A surprising result was the closeness of a peptide carbonyl oxygen, that of Gly 45, to the copper atom. At this stage of the structure analysis it is not clear whether it should be regarded as a ligand, or not.

Reduction of the protein crystals with chromous ions was attempted, and the results are discussed in terms of the possible electron transfer mechanism of the protein.

The cytochrome c' crystals from both species of bacteria are hexagonal, space group P 6_122 (or P 6_522), cell dimensions a = b = 54.7Å, $c \sim 185$ Å $\gamma = 120^{\circ}$, with one subunit (molecular weight 14,000) in the asymmetric unit. No structural work has been carried out on these.

TABLE OF CONTENTS

			Page
Chapter	1.	INTRODUCTION	1
	1.1	The General Co-ordination Chemistry of	1
		Copper	
	1.2	The Biochemistry of Copper	3
	1.3	Types of Copper Centres found in Copper	4
		Proteins	
	1.4	The "Blue" Copper Site	9
	1.5	Azurin	11
	1.6	The Special Requirements of Electron	13
		Transfer Proteins	
	1.7	The Relationship of Azurin to other	18
		Blue Copper Proteins	
	1.8	Recent X-ray Studies on Blue Copper	21
		Proteins	
	1.8.1	Plastocyanin	21
	1.8.2	The Structure of Azurin from	23
		<u>Ps. aeruginosa</u>	
	1.9	Comparative Studies on Azurin	25
Chapter	2.	EXPERIMENTAL	27
	2.1	The Growth of the Bacteria	27
	2.2	The Purification of Azurin	28
	2.3	Crystallization	35
	2.3.1	Crystallization Techniques Used	37
	2.3.2	The Conditions Used for the	41
		Crystallization of Azurin	
	2.3.3	The Crystallization of Azurin	44
		from <u>Alc. sp.</u>	

(iv)

			Page
	2.3.4	The Crystallization of Azurin from	45
		Alc. denitrificans	
	2.4	Characterization of the Crystals of	48
		Azurin from <u>Alc. denitrificans</u>	
	2.5	The Preparation of Heavy Atom	49
		Derivatives	
	2.6	Data Collection	57
	2.6.1	Photographic Data Collection	59
	2.6.2	Diffractometer Data Collection	59
Chapter	3.	RESULTS	70
	3.1	Determination of the Heavy Atom	70
		Parameters	
	3.1.1	The Patterson Function	70
	3.1.2	Difference Fourier Syntheses	74
	3.1.3	Heavy Atom Vectors in the Space	74
		Group C222	
	3.1.4	Refinement of the Heavy Atom	75
		Positions	
	3.1.5	Patterson Syntheses and Refinement	76
		from Projection Data	
	3.1.6	Patterson Syntheses and Refinement	77
		in Three Dimensions	
	3.2	Methods of Phase Determination	95
	3.2.1	The Isomorphous Replacement Method	95
	3.2.2	The Method of Multiple Isomorphous	97
		Replacement	
	3.2.3	The Use of Anomalous Scattering	101
		Information	

			Page
	3.2.4	The Determination of the Absolute	105
		Configuration	
	3.2.5	Phase Calculation	106
	3.3	The Calculation of an Electron	110
		Density Map at 6° Resolution	
	3.4	Calculation of the 3A Map	115
	3.5	Interpretation of the Electron	117
~		Density Map	
	3.6	Regularization of the Co-ordinates	123
	3.7	Breaks in the Main Chain	128
	3.8	Differences in Interpretation	128
	3.9	Other Difficult Regions	130
	3.10	The Nature of the Heavy Atom Sites	131
	3.11	A Comparison of the Two Molecules	137
Chapter	4.	STRUCTURE OF AZURIN	142
	4.1	The Secondary Structure of Azurin	144
	4.1.1	β-Structure	146
	4.1.2	The α -Helix	154
	4.1.3	Turns	155
	4.2	The Tertiary Structure of Azurin	158
	4.2.1	The Copper Site	159
	4.2.2	The Environment of the Copper Site	166
	4.2.3	The Hydrophobic Patch around His 117	169
	4.2.4	Individual Residues of Particular	171
		Interest	
	4.2.5	The Non Polar Core	179
	4.2.6	Internal Polar Sidechains	180

(vii)

			Page
	4.2.7	The Interface Between the	183
		β -Barrel and the Flap.	
	4.2.8	The Disulphide Bridge	184
	4.2.9	Charged Sidechains	185
	4.2.10	The Distribution of Neutral Polar	186
		Sidechains on the Surface of the	
		Molecule	
	4.3	Intermolecular Contacts	188
Chapte	r 5.	COMPARISON OF AZURIN AND	194
		PLASTOCYANIN	
	5.1	Sequence Homology	194
	5.2	A Comparison of the General	199
		Structure	
	5.3	The Copper Site	201
	5.4	The Hydrophobic Patch	204
	5.5	Asn 47 (Asn 38)	205
	5.6	Conserved Aromatic Residues	206
	5.7	The Distribution of Charged	207
		Sidechains	
	5.8	Conclusions	208
~			
Chapte	er ó.	ELECTRON TRANSFER	211
	6.1	Electron Transfer in Blue Copper Proteins	211
	6.1.1	Experiments with Inorganic Redox	211
		Reagents	
	6.1.2	Evidence for More than One Binding	213
		Site on the Azurin and Plastocyanin	
		Molecules	

(viii)

		Page
6.2	Tentative Identification of the Binding	215
	Sites on Azurin and Plastocyanin	
6.2.1	Structural Interpretation of pH Effects	216
6.2.2	The Use of Chromous Ions as a Probe	217
6.3	Protein-Protein Interactions	219
6.4	Crystallographic Studies on the	221
	Reduction of Azurin	
6.5	The Nature of the Binding Sites	222
6.6	The Significance of the Binding Sites	224
Chapter 7.	CONCLUSIONS	227
Appendix I	Purification and Crystallization of	239
	cytochromes c' From <u>Alc. denitrificans</u>	
	and <u>Alc. sp.</u>	
Appendix II	Computer Programs Used	245
Appendix III	Removal of Cu by KCN	251
Appendix IV	Atomic Co-ordinates	253

Bibliography

LIST OF TABLES

Table		Page
1.1	Copper Proteins and their Functions	4
1.2	The Properties of Some Blue Copper Proteins	7
1.3	The Nature and Number of Copper Atoms in	8
	Copper Proteins	
1.4	Properties of Some Azurins from Different	13
	Bacterial Species	
1.5	Chemical and Spectroscopic Studies on	14
	Azurin	
2.1	Extinction Ratios of Azurin at Various	34
	Stages of Purification	
2.2	A Summary of the Precipitants and their	43
	Concentrations Used in the Crystallization	
	of Azurin from <u>Alc. denitrificans</u> and <u>Alc. sp.</u>	
2.3	Results of the Heavy Atom Soaking Experiments	54
2.4	Preparation of the Heavy Atom Derivatives	58
	Used for Three Dimensional Data Collection	
2.5	Unit Cell Parameters for the Native and Eight	62
	Heavy Atom Derivatives for which Diffractometer	
	Data were Collected	
2.6	Statistics of Intensity Losses for the Native	64
	and Derivative Crystals	
2.7	Reliability Factors for Agreement Between	67
	Friedel Pairs in $\sin^2 \theta$ Ranges	
3.1	Heavy Atom Parameters from Projection	78
	Difference Patterson Syntheses	

(ix)

Table

3.2	Reliability Factors During Heavy Atom	79
	Refinement of the KAu(CN) ₂ Derivative	
3.3	Reliability Factors During Heavy Atom	83
	Refinement of the Uranyl Acetate	
	Derivative	
3.4	Reliability Factors During Heavy Atom	87
	Refinement of the Double Derivative	
3.5	The Refined Heavy Atom Parameters	93
3.6	A Description of the Fitting of Residues	120
	to the Electron Density in Molecule I	
	and II	
3.7	Regularization of the Co-ordinates	128
	for Molecule I and Molecule II	
3.8	The Nature of the Heavy Atom Binding	133
	Sites	
4.1	Intramolecular Hydrogen Bonds, Mainchain -	147
	Sidechain	
4.2	Intramolecular Hydrogen Bonds, Sidechain-	148
	Sidechain	
4.3	Turns Found in the Structure of Azurin	157
	from <u>Alc. denitrificans</u>	
4.4	The Bond Lengths and Angles of the Copper	164
	Co-ordination Sphere in Azurin from <u>Alc</u> .	
	denitrificans	
4.5	The Environment of the Copper Atom in	168
	Azurin from <u>Alc. denitrificans</u>	
4.6	Internal Residues in the β -barrel of Azurin	181

Table		Page
4.7	Conserved Residues between the $\beta\text{-Barrel}$	183
	and the Flap	
4.8	The Surface Charged Residues	185
4.9	The Uncharged Polar Sidechains on the	187
	Molecular Surface of Azurin	
4.10	Possible Intermolecular Hydrogen Bonds	193
5.1	A Comparison of the Number of Residues	200
	in the Eight Strands of the Azurin and	
	Plastocyanin β-Barrels	

(xi)

(xii)

LIST OF FIGURES

Figure		Page
1.1	Proposed Models for Copper Co-ordination	9
	in Blue Copper Proteins	
1.2	Copper Binding Sequences	20
1.3	The Polypeptide Chain Folding of Poplar	22
	Plastocyanin from X-ray Diffraction Studies	
	at 2.7Å Resolution	
1.4	A Schematic Representation of the Topologies	24
	of Azurin and Plastocyanin Showing the	
	Different Folding Patterns.	
2.1	Carboxymethyl-cellulose Chromatography	31
	during the Purification of Azurin	
2.2	Absorption Spectrum of Azurin from	36
	Alcaligenes Denitrificans	
2.3	A Schematic Diagram of the Free Interface	38
	Diffusion Technique	
2.4	A Schematic Diagram of the Microdialysis	39
	Methods Used	
2.5	A Schematic Diagram of the Vapour Diffusion	41
	Arrangements Used in the Crystallization of	
	Azurin	
2.6	Crystals of Azurin from <u>Alc. Sp.</u>	46
2.7	Crystals of Azurin from <u>Alcaligenes</u>	47
	Denitrificans showing Spherulitic Growth	
	Habit	

(xiii)

Figure

D	
Page	

2.8 Crystals of Azurin Used for D	ata 47
Collection	
2.9 Relationship between Crystal	48
Morphology and Crystallograph	ic Axes
2.10 Relationships between Space G	roups 50
C2221 and P4122	
2.11 Precession photographs of hOL	, hk0 51
and Okl of Native Azurin Crys	tals
2.12 Intensity Loss for Three Stan	dard 63
Reflections due to Radiation	Damage to
the Gold Derivative	
2.13 The Average Intensities for R	eflections 68
as a Function of Resolution f	or the
Native and Three Derivative S	ets of
Data	
3.1 A Vector Diagram Illustrating	the Native 71
Protein and Heavy Atom Contri	butions to
the Structure Factor	
3.2 Harker Sections of the Differ	ence Patterson 80
Map for the Gold Derivative	
3.3 Cross-sections of Two Differe	nce Fouriers 82
Showing One of the Uranyl Sit	es
3.4 The Three Harker Sections of	the F ² _{HLE} 85
Difference Patterson Map for	the Uranyl
Derivative	
3.5 A Vector Representation of $F_{\sim H}$, F_{P} and F_{PH} 96

Figure

.

Page

3.6	Harker Construction for a Double	98
	Isomorphous Replacement	
3.7	Vector Diagram Illustrating the Lack	99
	of Closure ϵ of an Isomorphous	
	Replacement Phase Triangle	
3.8	The Assessment of Errors in Isomorphous	100
	Replacement	
3.9	Harker Construction for a Single	102
	Isomorphous Replacement with Anomalous	
	Scattering in the Absence of Errors	
3.10	A Vector Diagram Illustrating the Lack	103
	of Closure in the Anomalous Scattering	
	Method	
3.11	Some Phasing Parameters for Azurin	108
3.12	Variation of Figure of Merit with	108
	Resolution for the Phase Calculations	
	Used in the Structure Determination	
3.13	The Figure of Merit Distribution	109
	Resulting from Phase Calculation using	
	Four Heavy Atom Derivatives	
3.14	Part of the Electron Density Map at $6{\rm \AA}$	111
3.15	Balsa Model at 6Å	113
3.16	The Packing of the Molecules in the	114
	Unit Cell	
3.17	Some Sections of the Electron Density	119
	Map Showing the Aromatic Sidechain of	
	Phe 111	

3.18 Some Sections of the Electron Density Map 125 Showing Part of One of the β -strands in Azurin, Residues 96-99 3.19 Photograph of the Kendrew Model 126 3.20 Photograph of the Labquip Model 127 3.21 A Schematic Diagram of the Differences 129 in Interpretation for Residues 67-73 3.22 A Schematic Diagram of the Differences 130 in Interpretation for Residues 76-80 3.23 The Two Main Uranyl Binding Sites on 134 Molecule I and Molecule II The Minor Mercury Site for the Hg(NH₂)₂Cl₂ 3.24 136 Derivative 3.25 The Relative Displacement Between 139 Corresponding Residues in the Two Molecules of the Asymmetric Unit after Superposition. 4.1 A Close View of the Hydrophobic Patch 143 4.2 A Schematic Representation of the Mainchain 145 Hydrogen Bonding in Azurin 4.3 A Schematic Representation of Antiparallel 146 Chain and Parallel Chain Pleated Sheet Structure 4.4 A Stereo Diagram of the β -Structure of 150 Strands I, III and VI

4.5 A View of the Labquip Model Showing the β - 151 sheet Structure of Strands I, III and VI

(xv)

Page

Figure		Page
4.6	A Stereo Diagram of the "Gap" Between Strands	153
	V and VII	
4.7	A Stereo Diagram of the $\alpha-\text{Helix}$	154
4.8	A Stereo Diagram of the $lpha-Carbon$ Positions	158
4.9	Some Sections of the Electron Density Map	161
	Showing the Copper Site	
4.10	A Stereo Drawing of the Copper Binding Site	162
	in Azurin Showing the Five Possible Ligands	
4.11	A Stereo Drawing of the Copper Binding Site	163
	of Both Molecules in the Asymmetric Unit	
4.12	A Schematic Representation of the Hydrogen	167
	Bonding Around the Copper Site	
4.13	A Stereo Diagram of the Sidechains Making	169
	up the Hydrophobic Patch Around the	
	Sidechain of His 117.	
4.14	A Schematic Diagram of the Hydrophobic	171
	Patches on the Two Azurin Molecules in the	
	Crystallographic Asymmetric Unit as they	
	Pack in the Unit Cell	
4.15	A Stereo Diagram Showing the Relative	172
	Orientations of His 35 and His 46	
4.16	A Stereo Diagram of the Environment of	173
	His 35	
4.17	A Stereo Diagram of His 83 and its	175
	Immediate Environment	
4.18	A Schematic Diagram of the Hydrogen Bonds	176
	Formed by Asn 47	

(xvii)

Figure		Page
4.19	A Stereo Diagram of the Environment of	179
	Tyr 108	
4.20	A Stereo Diagram of Residues Making up	180
	the Hydrophobic Core	
4.21	A Stereo Diagram of the Interface	184
	Between the β -Barrel and the Flap	:
4.22	A Schematic Diagram of Molecule I and	189
	its Eight Nearest Neighbours	
5.1	A Stereo Diagram of the Polypeptide	195
	Chains of Azurin and Plastocyanin	
5.2	The Secondary Structure of Azurin Showing	196
	the Deletions in the Sequence Required	
	to Give the Best Alignment with Plastocyanin	
5.3	A Full Sequence Alignment of Azurin and	198
	Plastocyanin	
5.4	A Stereo Diagram of the Polypeptide Chain	201
	between Residues 30 and 40 of Azurin and	
	the Corresponding Residues of Plastocyanin	
5.5	A Stereo Diagram of the Co-ordination	203
	Spheres of Azurin and Plastocyanin	
T-1	Absorption Spectra of cytochrome c'	241
T-2	Photographs of Crystals from Ala	243
7_6	Denitrificans	273
T_3	Photographs of Crustals from Als Cr	243
T-2	inocographs of crystars from Arc. sp.	275

Ł