
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

The Hand Drawn Web Editor

A thesis presented in partial fulfilment of the requirements

for the degree of

Master of Science in Computer Science at Massey University

Meihua Cui

t999

Acknowledgement

Firstly, I would like to thank Professor Chris Jesshope, my thesis supervisor, for helping

me to draft out the contents. This thesis would not have been possible without the patient,

advice and guidance from him.

Next, I would like to express my appreciation to all staff and postgraduate students in the

Department of Computer Science for their assistance and friendship. Thanks go to Mr.

Horia Slusanschi, Ms. Regina Gehne, Ms. Jane Q.Zhao, and Mr. Yongqiu Liu for their

assistance.

I would like to thank Massey University Library for using the facilities for my literature

search.

Lastly, I would like to thank my husband, Jiong Zheng, and my family for their continued

support and encouragement.

Meihua Cui, Bs(InfoSc)

Master of Science (Computer Science) candidate,

Massey Unviersity,

Computer Science,

Institute of Information Science and Technology,

Massey University,

Palmerston North,

New Zealand.

Abstract

The Web is increasingly the most important part of the Internet for many users. Millions

of new Web pages are being posted in the Internet everyday. The Internet has also

become a mass-medium for lecturers distributing the lecture notes.

Most of the Web editors currently available in the market can not provide the users,

especially the lecturers, with a convenient way to handle special scientific symbols or

characters that are not on the keyboard directly. It always takes several steps to insert or

edit those special characters. It slows down the data input dramatically.

Hand Drawn Web Editor (HDWE) is a stand-alone electronic publishing application. It is

designed to provide the user with the integrated environment to edit and browse Html

documents. It can also provide a user with a Hand Drawn Panel (HDP) so that he or she

can input and edit special scientific symbols and characters freely upon the request.

The development environment, frameworks, tools have been discussed in detail. The full

development life cycle has been documented using Rational Rose. Some problems have

been encountered and their solutions have been described.

lll

Table of Contents

Chapter I Introduction 1

1.1 The motivation for Developing Hand Drawn Web Editor (HDWE)1
1.2 Objective of HDWE3
1.3 Object-oriented Programming Languages3
1.3.1 How the Java Language Differs from C and C++4
1.4 The Overview of the Thesis1

Chapter 2 Details of Environment

2.I The Java Phenomenon9
2.lJ What Is Java?9
2.1,2 What Can Java Do?10
2.L3 Java Development Ki1.............13
2.2 Swing14
2.2.1 MVC Architecture15
2.2.2 Swing's PL&F Capabilities18
2.3 Integrated Development Environment19
2.3.1 Symantec Cafe19
2.3.2 SunSoft Java WorkShop20
2.3.3 Microsoft Visual J++2I
2.3.4 Metrowerks CodeWarrior22
2.3.5 Tek - Tools Kawa22

Chapter 3 Design HDWE

3.1 Use Case of the HDWE24
3.1.1 Specifications of HDWE24
3.L2 Rational Rose26
3.1.3 Identifying the Actors for the HDWE27
3.1.4 Identifying the use cases27
3.1.5 Flow of Events for the Edit an openedfile use case28
3.I.6 Use Case Diagrams,.,......29
3.2 HDWE's Architecture32
3.2.1 Notations and Concepts32
3.2.2 HDWE's Classes and Relationships34
3.2.3 Class Diagram36
3.3 The Html package and Java 2D37
3.3.I Swing Text Package37
3.3.2. Java2D45

IV

Chapter 4 Implementation and Result

Problems Encountered With Solutions
lnternationalization
UlCreator Class
Serialization
Content type of the JEditorPane
Applet Insertion
How to check whether a drawing file has been modified or not........64
The Curve class

Example of Use of HDWE

4.1
4.t.1
4.1.2
4.1.3
4.r.4
4.1.5
4.r.6
4.1.1
4.2
4.2.1
4.2.2

HDWE
HDP

50

50
50
53
57

62
59

66
68
68
69

Chapter 5 Conclusions and Further Work

5.1 The pros and cons for using Frameworks72
5.2 Achievement..............74
5.2.1 HDWE14
5.2.2 HDP74
5.3 Further Work75
5.3.1 Implement AppletView Class16
5.3.2 Completely Resolve the Concurrency Problem77
5.3.3 Completely Provide Undo Redo Support for the Whole System.......78
5.3.4 Context Sensitive Help79
5.3.5 Implement all of the Insert Menu Items80
5.3.6 Extend the Function of the HDP81

Appendices82

72

List of Figures

Fig.Z.I

Fig.Z.2

Fig.2.3

Fig.2.4

Fig.3.1

Fig.3.2

Fig.3.3

Fig.3.4

Fig.3.5

Fig.3.6

Fig.3.7

Fig.3.8

Fig.4-1

Fig.4-2

Fig.4-3

Fig.4-4

Fig.A-1

Fig.A-2

Fig.A-3

Fig.A-4

Fig.A-5

Fig.A-6

Fig.A-7

Java program is both compiled and interpreted..................................9

Java Platfoffn10

Model-View-Controller Architecture15

Modified MVC ArchitectureI7

Main Use Case Diagram of HDWE29

Edit an opened file use case Diagram..............30

Insert Applet Use Case Diagram31

The Class Diagram of HDWE36

The Swing Text-Class Hierarch37

A document communivates with its views via a documentEvent.....39

JTextComponent delegate EditorKit to handle the Content..............40

Coordinate System of a Document.............42

HDWE opened an Html document..68

All kinds of primitives..............69

An arbitrary hand drawing document..70

An applet has been inserted into the Html document..........11

Source of the document opened in Fig.A-1.85

Screen snapshot of Tool Bar of Hand Drawn Panel..........................89

Rendering Hint ComboBox of HDP.........90

Color Palette of HDP.....91

Swatches Color Model.......92

HSD Color Model.....92

RGB Color Model.....93

v1

List of Acronyms

API

AWT

GUI

JAR

JDK

JIT

JFC

HDP

HDWE

IDE

MDI

MVC

PI^&F

RMI

VM

Application Programming Interface

Abstract Windowing Toolkit

Graphical User Interface

Java Archive File

Java Developrnent Kit

Just In Time Compiler

Javaru Foundation Classes

Hand Drawn Panel

Hand Drawn Web Editor

Integrated Development Environment

Multiple Document Interface

Model-View-Controller architecture

Pluggable Look and Feel

Remote Method Invocation

Virtual Machine

vll

Chapter 1 Introduction

Chapter I
Introduction

L.L The motivation for Developing Hand Drawn Web

Editor (HDWE)

Many people, especially the lecturers, need to create HTML documents that contain

many special scientific symbols or characters for their students. It is very important to

have a convenient way to insert or edit those symbols into a web page. However,

after examining several web editors currently available in the market, such as

Word97, HotDog, Claris Homepage, HtmlPad, and Internet Editor, we found that it is

very inconvenient for a user to insert or edit special symbols. The following three

examples show how hard it is to handle superscripts, equations, and special characters

using Microsoft Word 97, which is considered to be the most full-fledged text editor:

Example 1.

Superscript is the text that appears slightly higher than the other characters on the

same line. In order to create superscript text or numbers, a user needs tol

1. Select the text the user wants to format as superscript.

2. On the Format menu, click the Font menu item, and then click the Font tab.

3. Select the Superscript check box.

Example 2.

When trying to insert an equation into the document, a user needs to:

1. Click where the user wants to insert the equation.

2. On the lnsert menu, click the Object menu item, and then click the Create New tab.

3. In the Object type box, click Microsoft Equation 3.0.

4. Select or clear the Float over text check box.

5. Click OK.

6. Build the equation by selecting symbols from the Equation toolbar and typing

variables and numbers. From the top row of the Equation toolbar, the user can choose

t-

Chapter I Introduction

from more than 150 mathematical symbols. From the bottom row, the user can

choose from a variety of templates or frameworks that contain symbols such as

fractions, integrals, summations, and so on.

7. To return to Word. click the Word document.

Example 3.

A user can insert special characters, international characters, and symbols by using the

Symbol command on the Insert menu. The user can also insert a character or symbol

by typing the character code on the numeric keypad. In order to quickly insert a

symbol that a user uses frequently, the user may needs to assign the symbol to a

shortcut key.

To insert those symbols that are not on the keyboard, a user needs to:

1.

2.

1

Click where the user wants to insert the symbol.

On the Insert menu, click the Symbol menu item, and then click the Symbols

tab.

Double-click the symbol or character the user wants to insert.

These three examples from Microsoft Word97 show us that, it is very inconvenience

to handle those characters that are not on the keyboard directly. It slows down the data

input - a user has to choose from several menu items or toolbar buttons to perform

insertion or edition and this is time-consuming. However, if the user has been

provided with a draw panel and an interface (from which the user can choose different

kinds of pen style and color), the user can input and edit special symbols and

characters conveniently. On the draw panel, the user can hand write or draw anything

freely, just like traditional blackboard. The user can draw random curves, straight

lines, or other primitives, such as circles, squares, ellipses, rectangles, etc. This is

simple and intuitive. It is because of this that the Hand Drawn Web Editor (HDWE)

was designed and implemented.

-2-

Chapter 1 Introduction

1.2 Objective of HDWE

The major functionality of the HDWE is to provide the user with an integrated

environment to edit and browse Html documents. The HDWE needs to have an html

editor that can be used to edit Html documents, and a browser to display the Html

documents. In the addition, whenever the user wants to insert or edit those special

symbols, the hand draw panel can be activated. After the user finishes the hand

writing, the content of the drawing panel can be automatically embedded into the

Html document as an Applet at a given position with the right size. In HDWE, a hand

drawn object is represented as a Java Applet within a Html document. If the Html

document contains a Java Applet, a Web browser that supports Java can be used for

its display.

1..3 Object-oriented Programming Languages

Although dozens of Object-Oriented languages have been introduced over the past

decade, only a few have gained any significant foothold in the marketplace, that is:

Smalltalk, Eiffel, C++, and Java [98].

Smalltalk, a "foundation" object-oriented language, was originally developed in the

early 1970s to explore OO concepts. Today, versions of Smalltalk are available on

computers of all types, although the use of the language for the development of

products and industry quality systems is limited.

Eiffel is one of a number of "new" object-oriented languages that are robust enough

for industry applications. Like C++ and Smalltalk, Eiffel provides direct support for

class definitions, inheritance, encapsulation, and messaging.

C++ is an object-oriented version of C. It is compatible with C (it is actually a

superset). C++ programs are fast and efficient, qualities which helped make C an

extremely popular programming language. It sacrifices some flexibility in order to

remain efficient.

-3 -

Chapter I Introduction

Java(tm) is a "simple, object-oriented, distributed, interpreted, robust, secure,

architecture-neutral, portable, high-performance, multithreaded, dynamic, buzzword-

compliant, general-purpose programming language" [3]. Java supports programming

for the Internet in the form of platform-independent Java applets. Java is object

oriented from the ground up and draws on the best concepts and features of previous

object-oriented languages, primarily Eiffel, SmallTalk, Objective C, and C++. Java

goes beyond C++ in both extending the object model and removing the major

complexities of C++.

L.3.L How the Java Language Differs from C and C++

It is no secret that the Java language is highly derived from the C and C++ languages.

Because C++ is currently considered the language of choice for professional software

developers, it is important to understand what aspects of C++ Java inherits. Of

possibly even more importance are what aspects of C++ Java doesn't support. Because

Java is an entirely new language, it was possible for the language architects to pick

and choose which features from C++ to implement in Java and how. Listed below is

detailed information about the differences between these languages:

The Preprocessor

The C++ preprocessor basically performs an intelligent search and replace on

identifiers that have been declared using the #define or #typedef directives.

The problem with the preprocessor approach is that it provides an easy way

for programmers to inadvertently add unnecessary complexity to a program.

Java does not have a preprocessor. It provides similar functionality (#define,

#typedef, and so on) to that provided by the C++ preprocessor, but with far

more control.

Pointers

Most developers agree that the misuse of pointers causes the majority of bugs

in C/C++ programming. The Java language does not support pointers. Java

provides similar functionality by making heavy use of references. Java passes

-4-

Chapter I Introduction

all arrays and objects by reference. This approach prevents common errors due

to pointer mismanagement.

Structures and Unions

There are three types of complex data types in C++: classes, structures, and

unions. Java only implements one of these data types: classes. Java forces

programmers to use classes when the functionality of structures and unions is

desired. Although this sounds like more work for the programmer, it actually

ends up being more consistent, because classes can imitate structures and

unions with ease.

Functions

In C, code is organized into functions. C++ added classes and in doing so

provided class methods. However, because C++ still supports C, there is

nothing discouraging C++ prograrnmers from using functions. This results in a

mixture of function and method use that makes for confusing programs. Java

has no functions. Being a pure object-oriented language than C++, Java forces

programmers to bundle all routines into class methods. There is no limitation

imposed by forcing programmers to use methods instead of functions. As a

matter of fact, implementing routines as methods encourages programmers to

organize code better.

Multiple Inheritance

Multiple inheritance is a feature of C++ that allows a prograrnmer to derive a

class from multiple parent classes. Although multiple inheritance is indeed

powerful, it is complicated to use correctly and causes many problems

otherwise. It is also very complicated to implement from the compiler

perspective. Java takes the high road and provides no direct support for

multiple inheritance. A prografirmer can implement functionality similar to

multiple inheritance by using interfaces in Java.

Strings

C and C++ have no built-in support for text strings. The standard technique

adopted among C and C++ prografirmers is that of using null-terminated

-)-

Chapter I Introduction

iurays of characters to represent strings. In Java, strings are implemented as

first class objects (String and StringBuffer), meaning that they are at the core

of the Java language.

The Ktto Statement

The dreaded goto statement is pretty much a relic these days even in C and

C++, but it is technically a legal part of the languages. The goto statement has

historically been cited as the cause for messy, impossible to understand, and

sometimes even impossible to predict code. Java does not provide a goto

statement. The Java language specifies goto as a keyword, but its usage is not

supported. Not including goto in the Java language simplifies the language and

helps eliminate the option of writing messy code.

Operator Overloading

Operator overloading, which is considered a prominent feature in C++, is not

supported in Java. Although roughly the same functionality can be

implemented by classes in Java, the convenience of operator overloading is

still missing. However, in defense of Java, operator overloading can

sometimes get very tricky. No doubt the Java developers decided not to

support operator overloading to keep the Java language as simple as possible.

Automatic Coercions

Automatic coercion refers to the implicit casting of data types that sometimes

occurs in C and C++. For example, in C++ you can assign a float value to an

int variable, which can result in a loss of information. Java does not support

C++ style automatic coercions. In Java, if coercion will result in a loss of data,

a programmer must always explicitly cast the data element to the new type.

Variable Arguments

C and C++ let a prograrnmer declare functions, such as printf, that take a

variable number of arguments. Although this is a convenient feature, it is

impossible for the compiler to thoroughly type check the arguments, which

means problems can arise at runtime. Again Java takes the high road and

doesnt support variable arguments at all.

-6-

Chapter 1 Introduction

C ommand- Line Ar g ument s

The command-line arguments passed from the system into a Java program

differ in a couple of ways from the command-line arguments passed into a

C++ program. First, the number of parameters passed differs between the two

languages. In C and C++, the system passes two arguments to a program: argc

and argv. argc specifies the number of arguments stored in argv. argv is a

pointer to an array of characters containing the actual arguments. In Java, the

system passes a single value to a program: args. args is an array of Strings that

contains the command-line arsuments.

Because of these differences between Java and C++, the process of writing and

debugging applications in C++ can be tedious. A programmer will find it can be

simplified through Java. Java was purposely designed to overcome some of the

pitfalls that make C++ development so difficult -- for example, multithreaded

applications are often easier to write in Java. Also, the programmer never needs to

wolry about forgetting to free dynamically-allocated memory, because Java gives the

programmer a fast, efficient, parallel garbage collector [0].

Purely from a programming point of view, ideally, developers need a single language

and platform that allows them to write applications just once and then deploy them

everywhere. In an attempt to meet this need, Sun has implemented platform-neutral

versions of many APIs. This results in one major benefit to developers: they can focus

on learning Java and its APIs. Then, they can use Java to develop applications that

can run on any platform. As a result, the Java program language has been chosen to

develop the HDWE system.

L.4 The Overview of the Thesis

Chapter2 presents a detailed development environment of HDWE. The features of

the Java programming language and the Java platform are reviewed, and the MVC

(Model-View-Controller) structure and the PL&F (Pluggable Look and Feel) features

of the Swing - the main part of JDK API - are discussed in more detail. Finally, some

third-party's IDEs (Integrated Development Environments) are reviewed.

-7 -

Chapter 1 lntroduction

Chapter3 describes the specification of the HDWE system, and analyzes the use case,

the actor, and the use case diagrams of the HDWE system. The architecture of the

HDWE has been designed using Rational Rose. The main functionality, architecture,

and design patterns of the Html package and the Java 2D package, which are two

main Java API packages that have been used by the HDWE system, are described in

detail.

Chapter4 A lot of problems have been encountered during the implementation of the

HDWE, some of these problems and solutions are discussed in detail in this chapter.

Such as:

o how to use Resource bundles to contain locale-specific objects

o how to create a generalized UI Creator to create UI

o how to implement the Item class so that it can be serialized

o how to set the appropriate content type for the JEditorPane

o how to insert an Applet from the HDP (Hand Drawn Panel) into the current Html

document.

Chapter5 discusses the results, achievements, and the list of the further work needed

to be done. Such as:

o Implements AppletView class

o Extends the functionality of the HDP so that a user can select, resize, zoom in or

out, rotate, stretch or skew.

. Completely resolve the MDI (Multiple Document Interface) concurrency problem

o Completely provide undo redo support for the whole system

o Provides the user with a context sensitive help.

The definition, Pros, and Cons of the Framework are also discussed in this chapter.

-8-

Chapter 2 Details of Environment

Chapter 2

Details of Environment

2.1 The Java Phenomenon

2.1.1 What Is Java?

Java is two things: a programming language and a platform.

2.t.t.l The Java Programming Language

Java is a high-level object-oriented programming language. Java is unusual in that

each Java program is both compiled and interpreted. The compiler translates a Java

program into an intermediate language called Java byte-codes--the platform-

independent codes interpreted by the Java interpreter. With an interpreter, each Java

byte-code instruction is parsed and run on the computer. Compilation happens just

once; interpretation occurs each time the program is executed. Figure 2.1 illustrates

how this works.

%
K,*

Fig.2.l Java program is both compiled and interpreted.

One can think of Java byte-codes as the machine code instructions for the Java Virtual

Machine (Java VM). Every Java interpreter, whether it is a Java development tool or a

Web browser that can run Java applets, is an implementation of the Java VM.

-9-

Chapter 2 Details of Environment

2.1.1.2 The Java Platform

A platform is the hardware or software environment in which a program runs. The

Java platform differs from most other platforms in that it is a software-only platform

that runs on top of other, hardware-based platforms. Most other platfonns are

described as a combination of hardware and operating system.

The Java platform has two components:

The Java Virtual Machine (Java VM)

The Java Application Programming Interface (Java API)

The Java VM is the base for the Java platform and is ported onto various hardware-

based platforms.

The Java API is a large collection of ready-made software components that provide

many useful capabilities, such as graphical user interface (GUI) widgets. The Java

API is grouped into libraries (packages) of related components.

The following figure depicts a Java program, such as an application or applet, that's

running on the Java platform. As the figure shows, the Java API and Virtual Machine

insulates the Java program from hardware dependencies.

Fig.2.2 Java Platform

That extra layer between the application and the hardware and operating system uses

up a lot of the system's performance. As a consequence, Java is never going to be as

fast as compiled language like C. Today, with the existence of highly optimized JITs

(Just in Time Compilers), most Java applications mn with as little as 20-4OVo

overhead compared to traditional optimized C++ code. And in multithreaded

applications, such as applications relying heavily on VO, no measurable performance

difference exists between Java and C++, due to Java's excellent built in support for

multithreading.

Java Virtual Machine

Hardware-Based Platform

- 10-

Chapter 2 Details of Environment

The Java platform supports the Write Once/Run Anywhere model of application

development. Developers can compile their Java program into byte-codes on any

platform that has a Java compiler. The byte-codes can then be run on any

implementation of the Java VM. This, combined with the easy distribution

mechanisms provided by the World Wide Web and intranets, makes Java a powerful

tool for many network based systems.

Java also opens up a lot of security issues. The essence of the problem is that running

programs on a computer typically gives that program access to certain resources on

the host machine. In the case of executable content, the program that is running is

untrusted. If a Web browser downloads and runs Java code and is not careful to

restrict the access that the untrusted program has, it can provide a malicious program

with the same ability to do mischief as a hacker who had gained access to the host

machine. The reason that one gives programs access to resources in the first place is

that in order to be useful a program needs access to certain resources. Thus, an

important part of creating a safe environment for a program to run, is in identifying

the resources and then providing certain types of limited access to these resources.

Java's powerful security mechanisms act at four different levels of the system

architecture. First, the Java language itself was designed to be safe, and Java

compiler ensures that source code does not violate these safety rules. Second, all

byte-codes executed by the run-time are screened to be sure that they also obey these

rules. Third, the class loader ensures that classes do not violate namespace or access

restrictions when they are loaded into the system. Finally, APl-specific security

prevents applets from doing destructive things. The final layer depends on the

security and integrity guarantees from the other three layers.

We have used the Java2 platform to develop the last version of HDWE. The Java 2

platform was released by Sun Microsystems Inc. on Dec 8th 1998. The new release

provides significant performance improvements, a new, flexible security model and a

complete set of APIs.

- 11-

Chapter 2 Details of Environment

2.I.2 Java API

Java API support all of these kinds of programs with packages of software

components that provide a wide range of functionality. The core API is the API

included in every full implementation of the Java platform. The core API gives

prograrnmers the following features:

. The Essentials

Objects, strings, threads, numbers, input and output, data structures, system

properties, date and time, and so on.

. Applets

The set of conventions used by Java applets.

. Networking

URLs. TCP and UDP sockets. and IP addresses.

. Internationalization

Help for writing programs that can be localized for users worldwide. Programs

can automatically adapt to specific locales and be displayed in the appropriate

language.

I Securi\t

Both low-level and high-level, including electronic signatures, public/private key

management, access control, and certificates.

. Software components

Known as JavaEleans, can plug into existing component architectures such as

Microsoft's OLE/COIlOActive-X architecture, OpenDoc, and Netscape's Live

Connect.

. Object serialization

Allows lightweight persistence and communication via Remote Method

Invocation.

. Java Database Connectivitlt (JDBC)

Provides uniform access to a wide range of relational databases.

Java not only has a core API, but also standard extensions. The standard extensions

define APIs for 3D, servers, collaboration, telephony, speech, animation, and more.

-t2-

Chapter2 Details of Environment

2.L.3 Java Development Kit

The Java Development Kit contains the software and tools that a developer needs to

compile, debug, and run applets and applications that the developer has written using

the Java programming language.

The main components of the JDK are:

Runtime Interpreter

Is used to run standalone Java executable programs in compiled, byte-code format.

The runtime interpreter acts as a commandline tool for running Java programs.

Compiler

Is used to compile Java source code files into executable Java byte-code classes.

Applet Viewer

Is a tool that serves as a minimal test bed for final release Java applets.

Debugger

Is a command-line utility that enables you to debug Java applications. It uses the Java

Debugger API to provide debugging support within the Java runtime interpreter.

D ecumentation Gene rato r

Is a tool for generating API documentation directly from Java source code. The

documentation generator parses through Java source files and generates HTML pages

based on the declarations and comments.

Archiver

Is a tool used to combine and compress multiple files into a single archive file, which

is commonly refened to as a JAR file.

Digital Signer

Is a tool that generates digital signatures for archive files. Signatures are used to

verify that a file came from a specified entity, or signer.

-13-

Chapter 2 Details of Environment

Remote Method Invocation Tools

JDK includes three different tools for working with and managing remote method

invocation(RMl). These tools consist of an RMI stub compiler, a remote object

registry tool, and a serial version tool.

Demo Applets and Applications

Examples, with source code, of programming for the Java platform. These include

examples that use Swing and other Java Foundation Classes.

Source Code

Java programming language source files for all classes that make up the Java I.2

platform core API.

Documentation

This directory is created when the JDK documentation is installed. It contains release

documentation, Java API specifications, developer guides, tool documentation,

demos, and links to related documentation.

2.2 Swing

Swing is a new GUI component kit that simplifies and streamlines the development of

windowing components. Windowing components are the visual components, such as

menus, tool bars, dialogs and the like, that are used in graphically based applets and

applications. The Swing component set is part of a new class library called the JavarM

Foundation Classes. or JFC.

Designing a good user-interface toolkit is a complex operation -- especially in this age

of cross-platform programming. To develop programs that can be written just once

and can then run anywhere, programmers need a flexible set of user-interface (UI)

components that are both configurable and extensible, as well as a comprehensive

infrastructure for managing input and output effectively.

-14-

Chapter 2 Details of Environment

Swing addresses this problem using a small set of design techniques that come from

two main sources: the Java Beans model (which addresses the need for component

properties, persistence, and event-based communication), and a new kind of pluggable

look-and-feel (PL&F) mechanism for designing components. With Swing's PL&F

design tools, a developer can create components that not only can be used without

modification on different computer platforms, but even have the same look and feel as

components that were designed specifically for those platforms.

The following section explains the basics of the component architecture called the

model-view-controller architecture. or MVC.

2.2.L

2.2.1.1

MVC Architecture

Classic MVC Architecture

In the classic model-view-controller design, every component is divided into three

parts -- a model part, a controller part, and a view part. These three parts, and their

connection paths, are shown in the following illustration.

Fig.2.3 Model -View-Controller Architecture

Briefly, this is how MVC architecture works in Swing:

1. The model part of an MVC-based component provides information that can be

used to specify the component's value, provided the component has any value

properties. For example, the current value of a scrollbar or a slider control -- as

well as the component's minimum possible value and maximum possible value

-- are stored in the component's model part. (Some components do not have

models.)

-15

Chapter 2 Details of Environment

2. The controller part of an MVC-based component modifies information

maintained by the component's model part in response to input from the user.

For example, the controller part of a menu-item component notifies the

component's model part when a mouse click is detected inside a given menu

item.

3. The view part of an MVC-based component manages the way in which the

object is drawn on the screen. For example, if a user equipped an application

with a Windows-95 style menu bar and then wanted to change that menu bar's

appearance to make it look more like a Solaris-style menu bar, the user would

perform that operation by modifying the view part of his menu-bar

component.

2.2.1.2 Advantages of MVC-Based Architecture

To change the appearance of an MVC-based component, all developers have to

change is its view part. To change the way it responds to user events, all developer

have to change is its controller part. In this way, developers can equip a component

with multiple appearances, multiple behaviors, or both, without disturbing the

component's underlying architecture.

MVC architecture also makes it easy to change or extend the characteristics or

capabilities of any pre-existing view or controller, without disturbing other parts of

the component that is being modified.

Finally, MVC architecture lets a developer design components with appearances and

behaviors that can be changed at any time -- not just at design time, but also

dynamically, while the application that uses developer's component is actually being

executed.

2.2.I.3 Modifying the MVC Architecture

Although classic MVC architecture meets the overall needs of Swing components

quite well, designing completely separate views and controllers for a component can

-16-

Chapter 2 Details of Environment

be a difficult task. The main reason this is true is that the communication paths

between the view part and the controller part of a component can quickly become

quite complex and difficult to manage.

To simplify the communications-path jumble, a modification in the classic MVC

design has been made: combining the view and controller parts of the classic MVC

design into a single element called a view-controller. The following diagram shows

how the view and controller parts of a Swing component are combined to form a

combined view/controller element:

Fig.2.4 Modified MVC Architecture

In the component represented by this diagram, notice that a simple two-way :urow

represents the connection paths between the component's view and component parts.

There is no jumble of arrows here because the view/controller part of the component

handles all communications between the view and controller parts.

Another major benefit of combining a view and a controller into a single view-

controller object is that both the appffrance and the behavior of a component -- that

is, a component's look and feel -- can be managed together, using just one view-

controller object. If Swing used the classical MVC model, which requires a view and

a controller to be two separate elements, the look and feel of each Swing component

would have to be managed separately. That requirement would make it more difficult

to implement Swing's PL&F capabilities.

t7-

Chapter 2 Details of Environment

2.2.2 Swing's PL&F Capabilities

PL&F is the portion of a Swing component's implementation that deals with the

component's appearance (or look), as distinguished from its event-handling

mechanism (its feel), which is delegated to a separate UI delegate.

PL&F is one of the most important capabilities of the Swing toolkit: a feature that

increases the reliability and consistency of applications and applets deployed across

platforms. The PL&F design of the Swing component set provides an easy yet

powerful mechanism for individualizing an application's visual personality without

having to subclass the entire component set used in the application.

By taking advantage of Swing's PL&F capabilities, developers can make it possible

for users of their application to switch the look and feel of the entire application's

graphical user interface at runtime. To switch from one L&F to another, users do not

even have to restart the application. That means that users can always work with a

GUI that is familiar to them, no matter what kind of computer they own, and no

matter what kind of computer they are using.

Typically, if the developer of a program expects the program to be executed on just

one platform -- such as Windows, UND(, or the Macintosh -- the application specifies

the L&F to use, and the program locks down that L&F as soon as it is loaded. If the

program is designed to run on more than one platform, the programmer typically uses

a cross-platform look and feel, such as the Java L&F that comes with Swing. If the

programmer specifies a look and feel that is not available on the user's computer

system, Swing's default behavior is to use the Java L&F.

18-

Chapter 2 Details of Environment

2.3 Integrated Development Environment

Although the JDK is certainly sufficient for professional Java development, the

advanced features of third-party's IDEs can improve productivity significantly. In this

section, the IDEs currently available for Java are discussed in detail.

2.3.1 Symantec Cafe

Symantec Cafe is the first development environment that became widely available for

Java programming after the JDK.

Cafe is a sophisticated IDE that offers an excellent source editor with color

highlighting of syntax, and editor for class and hierarchy modification, and a Studio

tool for interface design. To aid in the design of a class hierarchy, Cafe has a class

editor for navigating through classes and editing class methods, and a hierarchy editor

for viewing and modifying Java class relationships. Changes in the source code that

affect the class hierarchy can be seen as the program is being written, instead of

requiring that it be compiled before changes are reflected in the hierarchy. A

developer can also change the source code from within the class editor - clicking the

function or method within a class brings up its source code in a window the developer

can use to edit the code.

In the source editor, Java syntax is highlighted, making it easier to spot type and other

elrors immediately. The editor also uses the standard Windows cut, copy, and paste

commands.

With Cafe Studio, designing a graphical user interface for the developer's Java

program can be done in a visual, drag-and-drop manner. Studio enables the developer

to develop the dialog boxes and other interface elements visually, and it creates event

handlers for these components automatically. There's also a menu editor with an

active window in which the developer can test the menu.

Cafe provides the option to use Sun's JDK compiler or the Cafe compiler. The Cafe

debugger provides several different ways to temporarily halt the execution of code,

including a quick-breakpoint feature for a one-time run that stops at a specific line.

- 19-

Chapter 2 Details of Environment

The debugger also enables a large amount of control over threads in multithreaded

programs. During debugging, programmers can use a watch view to monitor the

contents of variables.

The environment of Symantec Cafe is highly customizable - all toolbars and palettes

can be resized and placed where a user want them on-screen. Several windows can be

open at the same time, making it possible to view the object hierarchy while entering

source code and using the form editor.

2.3.2 SunSoft Java WorkShop

SunSoft Java WorkShop, the development tool offered by the Java language's home

team, is an IDE written almost entirely in Java. It is one of the most approachable

IDEs for a novice prograrnmer. WorkShop uses a Web interface to offer the

following features: a source editor, class browser, debugger, project management

system, and Visual Java - a tool for the visual design of a graphical interface and an

easier means to create windowing software.

The most striking difference between Java WorkShop and other IDEs is its interface.

Java WorkShop looks more like a Web browser than a programming development

environment.

The WorkShop has a source browser for viewing a class hierarchy, public methods,

and variables. The browser creates HTML pages in the same format as HTML

documentation generated by the JDK's javadoc utility. The WorkShop source editor

works in conjunction with WorkShop's debugger and compilation errors create links

directly into the source editor for fixing. The WorkShop debugger provides

breakpoints and other methods of debugging.

The Visual Java feature provides a way to graphically design an interface, much as

Cafe Studio does. Visual Java enables a developer to develop dialog boxes and other

visual elements and automatically creates event handlers for these components.

-20 -

Chapter 2 Details of Environment

The environment is not customizable in the way Cafe is, but the Web interface makes

it easy to integrate other tools and programs into WorkShop. The program is a

collection of Web pages with Java programs embedded in and around them. The

developer can go to a different page from within Java WorkShop as easily as you can

enter a URL in a Web browser. This approach makes it possible for the developer to

create original pages of Java development tools that can be linked to WorkShop

pages. This arrangement may be unusual for someone accustomed to development

environments written as cohesive, single-independent programs linked together by

HTML pages, which can be modified as individual elements without affecting the

other parts of the whole.

2.3.3 Microsoft Visual J++

Microsoft Visual J++ is Microsoft's answer to a Java development environment.

Designed to integrate with Microsoft's Visual Studio suite of development tools,

Visual J++ features extensions to the Java class library that are specific to the

Windows platform. Visual J++ supports the look and feel of the popular Visual C++

development environment, as well as most of its advanced features. Visual J++

provides the only real support of any IDE for fully integrating Java with ActiveX.

The Visual J++ editor is very nice and fully supports color syntax highlighting. There

is also a class viewer, which shows all the Java classes that have definitions as well as

the members of those classes, including properties and methods. Visual J++ has a

very powerful graphical Java debugger that supports the dubugging of multiple

applets simultaneously from within a browser. The debugger comes complete with

bytecode disassembly, bytecode-level stepping and tracing, and the ability to assign

values to variables while debugging.

There are some valid concerns over Microsoft's proprietary extensions for Java, but

Microsoft knows it must adhere to the core Java API to lure developers. As long as

the company continues to do that, it can bundle in as many proprietary extensions as it

wants.

-2r -

Chapter 2 Details of Environment

2.3.4 Metrowerks CodeWarrior

Metrowerks CodeWarrior is the only Java IDE that supports three other programming

languages(C, C++, and Pascal) in the same environment. In addition, CodeVarrior

suppoffs all these languages on both the Macintosh and Windows 95AIT platforms.

CodeWarrior ships standard with support for all four languages, meaning that Java

developers have the option of using other languages without purchasing any

additional software.

CodeWanior has been well established in the Macintosh community for some time

now as the standard Macintosh C/C++ development environment. For this reason, it

isn't surprising that it has quickly gained popularity as a Java development

environment - at least on the Mac. The CodeWarrior IDE includes a project manager,

resource editor, text editor, graphical debugger, and class browsers - basically

everything a developer expects in a professional development environment.

2.3.5 Tek - Tools Kawa

Kawa is an integrated development environment from Tek-Tools. As opposed to other

development environments that lean more toward the "application builder" model,

Kawa is indeed for those who like to get their hands into the code. If a developer want

to be close to the code, but he feels going out to the command line is a little too close,

then he should look at Kawa. It puts a GUI on the JDK and provides a lot of features

to help the programmer progftIm more efficiently. All of the flags, compiler options,

and interpreter options of the JDK can be set through Kawa.

The current version of Kawa is 3.13.

switching, (which Kawa has had all

files, manifest files, and generate

environment.

Some of the highlights of this version are JDK

along), RMI compile, the ability to build JAR

Javadoc files from within the development

22

Chapter 2 Details of Environment

Tabbed /Wned work area

The Kawa environment features a tabbed /paned work area. The developer can select

Project view, Package view, Debugger view, and Help view. The package view tab is

particularly nice in that it lets programmer view all the classes in the JDK with real

ease.

Direct access to the Java APIs

A working principle of Kawa seems to be to allow the developer to have as much

direct access to the Java APIs, the messages it generates, etc, as possible. When some

vendors are sticking in their own proprietary code underneath the developer's class

definitions, Kawa does nothing of the kind - "Just the code, ma'am". Another plus of

Kawa is that it is not a resource hog. Contrary to some other IDEs which claim they

run with 48 MByes of ram, but still end up being sluggish with 64, Kawa ran fine

with 32 MBytes of ram.

GUIBuilde

Also, Tek-Tools recently released a GUlBuilder for Kawa. There are two versions,

one to build GUIs based on the AWT, and one that builds GUIs based on Swing. The

GuiBuilder is fairly new, and Tek-Tools will improve it in the coming months.

Among these IDEs mentioned above, Kawa is the only one that be can be freely

downloaded from the Intemet, therefore, Kawa has been chosen to develop the

HDWE.

-23 -

Chapter 3 Analysis and Design HDWE

Chapter 3

Analysis and Design HDWE

3.L Use Case of the HDWE

3.1.1 Specifications of HDWE

The objective of the HDWE is for the users, especially lecturers, to create HTML

documents for their students. This kind of document may contain many special

scientific symbols or characters, for example, mathematical scripts, which are difficult

to typeset. It is very important to have an easy way to insert or edit those characters.

To solve this problem, HDWE is designed to provide the user with a drawing panel on

which he or she can hand write or draw anything freely, just like traditional

blackboard. Using HDWE, the user can draw random curves, straight lines, or other

primitives, such as circles, squares, ellipses, rectangles, etc, using the normal

computer-based drawing tools.

In order to provide the user an integrated environment to edit and browse the html

document, HDWE needs to have an html editor that can be used to edit and browse

html documents. The major functionality of the HDWE is that the user can use it to

edit an html page. The user can perform this task in two modes: with or without tags.

A user can switch between these two modes by selecting the View Source Menu item

from the View Menu. The default mode should be the one that most users prefer - an

html file without tags. A user must be able to perform the normal editing operations:

o Select, select all

o Cut, copy, and paste any portion of the document

o Undo, redo

A user must also be able to insert various html elements into the html page, such as

Applet, Image, Form, URL, Table, Frame, and List. It should be noted that the hand

-24 -

Chapter 3 Analysis and Design HDWE

drawn components are inserted as applets.

HDWE should have a Multiple-Document-Interface, so that it can be used to

manipulate multiple files simultaneously, the file type can be one of text, html, or

hand drawn files. Hand drawn files are created by the Hand Drawn Panel (HDP).

The first two file formats can be handled by the editor panel of HDWE, and the latter

one can be handled by the HDP. That is, there are two user interfaces, one is for

conventional text or Html editing, the other one for hand drawing. The result of the

latter being integrated into the format as is it was an image. The main manipulations

of the HDWE include:

. create a new html file

. open an existing html file - this file may not have been created by HDWE

o save a file

save a file to a different file name

close a file

Because a user may open several files at the same time, the user can close the all these

opened files with saving all at once, or prompt user to decide for each file, or close all

without saving.

In HDWE, the applets are drawings that a user has drawn using HDP. When the user

chooses to insert an applet into the html page, the HDP will be activated. This panel

has its own user interface from which the user can choose different kinds of pen styles

and color. After the user finishes the drawing, he can choose the Insert Applet menu

item from the File menu to insert that drawing into the Html document as an Applet.

A user can create a new hand drawn file, open, save, save as or close the current hand

drawn document.

A user can use the hand drawn panel to draw anything, such as:

o Lines

. Curves

o Rectangles

o Circles

-25 -

Chapter 3 Analysis and Design HDWE

Ellipses

Squares

The user can choose the pen style that is applied to the outline of a shape, draw lines

with any point size and dashing pattern, and apply endcap and join decorations to a

line. The user can also choose the fill style that is applied to a shape's interior, he or

she can fill shapes with solid colors, gradients, and patterns. The user can also choose

the option called "Rendering Hints" that specifies preferences in the trade-offs

between speed and quality. For example, a user can specify whether or not

antialiasing should be used if it is available.

There is a color palette, from which a user can choose foreground and background

colors. The Color palette consists of basic colors, which are those colors the user uses

most frequently, and the other colors (by clicking on the other button) that the user

can choose from an RGB or an HIS selection dialogue. The user can clear all the

drawing items on Panel at once, or can use an eraser to erase one item at a time. After

the user finishes a drawing, it can be inserted into the Html document by selecting the

Insert Applet menu item from the File menu of the HDP.

3,1.2 Rational Rose

Visual modeling is a way of thinking about problems using models organized around

real-world ideas. Models are useful for understanding problems, communicating with

everyone involved with the project. Visual modeling gives developers a graphical

representation of the structure and interrelationships of a system by constructing

models of the design. This blueprint makes explicit the requirements of the project,

ensuring that the final product meets the needs of the end users. By using the common

language of visual modeling:

. communication is improved

o development time is shortened

. complex systems are easily understood and therefore easily constructed

o designs are made cleaner and more maintainable.

-26 -

Chapter 3 Analysis and Design HDWE

Rational Rose [2] is the world's leading visual modeling tool from Rational Software

Corporation, it can be used to object-oriented analysis, modeling, and design. It

allows the developers to define and communicate a software architecture.

We have chosen Rational Rose to analysis, modeling and design HDWE, because it is

the only visual modeling tool available in Massey University.

The behavior of the HDWE, that is what functionality must be provided by the

HDWE, is documented in a use case model that illustrated the HDWE's intended

functions (use cases), its surroundings (actors), and relationships between the use

cases and actors(use case diagrams) [2].

3.L.3 Identifying the Actors for the HDWE.

Actors are not a part of the system - they represent anyone or anything that must

interact with the system. An actor may input or receive information to or from the

system.

Because all HDWE users play the same role in the system, and they use the system in

the same way, they are all represented by the same and only one actor. Thus we define

the user actor - as a person who is using HDWE to maintain their html files.

3.L.4 Identifying the use cases

A use case is a sequence of transaction performed by a system that yields a

measurable result of values for a particular actor. Use cases represent the functionality

provided by the system, that is, what capabilities will be provided to an actor by the

system. The collection of use cases for a system constitutes all the defined ways the

system may be used.

Each use case of the HDWE has been documented with a flow of events. The flow of

events for a use case is a description of the events needed to accomplish the required

behavior of the use case. The flow of events is written in terms of what the system

should do, not how the system does it. Because the edit an opened fiIe use case is the

most important use case, we document its Flow of Events in detail in follow section.

-27 -

Chapter 3 Analysis and Design HDWE

3.1,.5 Flow of Events for the Edit an opened file use case

1. Preconditions

The Create a new file or Open an existing file use case must be executedbefore Edit

an openedfile use case.

2. Main Flow

This use case begins when a user edits an Html document. The user can type in

characters, select, cut, copy, paste, change the font of a document, or can insert

various html tags and objects into the document, such as Applet, Image, Form, URL,

Table, Frame and List. In HDWE, the insert Applet is the most important feature and

we will discuss this in more detail:

If the user selects the Insert Applet menu item, the s-1: Insert Applet subflow is

performed.

If the user selects the Insert Table menu item. the s-2: lnsert Table subflow is

performed.

3. Subflows

s-1: Insert Applet

If the user selects the Insert Applet menu item, the HDP will be activated. The user

can draw or fill circles, ellipses, rectangles and squares by choosing the primitives and

then press-drag-release the mouse on the draw panel. The user can also use the panel

to manipulate the files. After he or she finishes the drawing, the user can insert the

drawing as an applet into the html document by clicking on the Insert button from the

toolbar or selecting the Insert menu item from the File menu of the HDP. The Applet

tag and related content will be inserted into the html document automatically.

s-2: Insert Table

If the user selects the Insert Table menu item from the HDWE, the actionPerformed

method of the insertTableAction class will be performed.

-28 -

Chapter 3 Analysis and Design HDWE

3.1.6 Use Case Diagrams

The main use case diagram of the HDWE is a graphical view of some or all of the

actors, use cases, and their interactions identified for the HDWE, it is a picture of the

HDWE boundary (user actor) and the major functionality provided by the HDWE

(use cases).

3.1.6.1 Main Use Case Diagram

The use cases of the HDWE including:

o Create a new htrnlftle use case

. Open an existing file use case

o Edit an openedfi.le use case

o Save aftIe use case

o Save aftle as use case

. Close a file use case

The main use case diagram of the HDWE is as follows:

Main Use Case Diagram of the HDWE systemFig.3.1

-29 -

Chapter 3 Analysis and Design HDWE

Edit an opened file use case Diagram

Edit an openedftle use case includes sub use cases as follows:

o select portion ofdoc use case

o layout adjustment use case

o cn\ copy, paste use case

c undo, redo use case

o changefont use case

o insert htrnl element use case

The Edit an openedfile use caseDiagram is as follows:

Fig.3.2 Edit an openedftIe use case Diagram

-30-

Chapter 3 Analysis and Design HDWE

3.1.6.3 Insert Applet use case Diagram

Insert Applet use case is a sub use case of insert htrnl element use case, it includes sub

use cases:

o Draw primitives use case

o Fill primitives use case

o Choose pen style use case

o File manipulate use case

o Insert the drawings use case

o Choose rendering hints use case

o Choose colors, erase item use case

The Insert Applet Use CaseDiagram is as follows:

Insen Applet Use CaseDiagram.Fig.3.3

3l

Chapter 3 Analysis and Design HDWE

3.2 The HDWE's Architecture

In this section, a Class Diagram is created using Rational Rose to capture the structure

of the classes that form the HDWE's architecture, and to show the common roles and

responsibilities of the entities that provide the HDWE's behavior.

A Class diagrams contains icons representing classes, and their relationships. The

next section describes the main notations and the concepts.

3.2.L

Class

Notations and Concepts.

A class captures the common structure and common behavior of a set of objects. A

class is an abstraction of real-world items.

Graphical Depiction: A class icon is drawn as a 3-part box, with the class name in the

top part, a list of attributes in the middle part, and a list of operations in the bottom

part.

Generalize/Inherits Relationship

A generalize relationship between classes shows that the subclass shares the structure

or behavior defined in one or more superclasses. The generalize relationship is used to

show a "is-a" relationship between classes.

Graphical Depiction : A generalize relationship is a solid line with an arowhead

pointing to the superclass:

-32 -

Chapter 3 Analysis and Design HDWE

Association Relationship

An association represents a semantic connection between two classes, or between a

class and an interface. Associations are bi-directional; they are the most general of all

relationships and the most semantically weak. For example, an association between

the HandDrawnPanel class and the EditorPanel class means that objects in the

HandDrawnPanel class are connected to obiects in the EditorPanel class.

Graphical Depiction: An association relationship is an oblique or orthogonal line:

Aggregate Relationship

Use the aggregate relationship to show a whole and part relationship between two

classes. The class at the client end of the aggregate relationship is sometimes called

the aggregate class. An instance of the aggregate class is an aggregate object. The

class at the supplier end of the aggregate relationship is the part whose instances are

contained or owned by the aggregate object. Use the aggregate relationship to show

that the aggregate object is physically constructed from other objects or that it

logically contains another object. The aggregate object has ownership of its parts.

Graphical Depiction: An aggregate relationship is a solid line with a diamond at one

end: The diamond end designates the client class.

-33-

Chapter 3 Analysis and Design HDWE

3.2.2 HDWE's Classes and Relationships

In this section, all of the classes of the HDWE that has been designed by the author

will be introduced. The classes from the JDK API, which have been heavily used in

the HDWE system, for instance, the classes come from Swing text package and Java

2D package, will be discussed in section 3.3.

Class Desktop is a container class that used to create a multiple-document interface or

a virtual desktop. HDWE creates EditorFrame objects and add them to the Desktop.

A Desktop object uses an EditorUlCreator object to create its user interface.

Class EditorFrame is a lightweight object that provides many of the features of a

native frame, including dragging, closing, becoming an icon, resizing, title display,

and support for a menu bar. An EditorFrame object is created and added to a

Desktop object. The EditorFrame's contentPane is where the HDWE adds child

components, such as an EditorPanel or a HandDrawnPanel object. A

HandDrawnPanel object is associated with an EditorPanel object, because a

HandDrawnPanel object can only be created by a specific EditorPanel object.

The class EditorPanel contains a JEditorPane which is used to handle the Html

documents. An EditorPanel object is created and added to an EditorFrame object.

An EditorPanel object is associated with a set of actions classes to provide the

responce to the user's actions. The actions include : NewAction, OpenAction,

PrintAction, ReloadAction, SaveAction, SaveAsAction, ViewSourceAction,

CloseAction, CloseAllAction, CIoseAllWithSaveAllAction,

CloseAllWithoutSaveAllAction, UndoHandler, AppletAction, and ExitAction.

A HandDrawnPanel object contains a DrawPanel object which is used to handle the

HDP drawing documents. A HandDrawnPanel object uses a DrawPanelUlCreator

class to create its own user interface. It also cantains a ColorPalette class to provide a

user with a user interface to control the foreground and background of the draw panel

of the HDP. A HandDrawnPanel object is created and added to an EditorFrame

object.

-34-

Chapter 3 Analysis and Design HDWE

Both EditorUlCreator and DrawPanelUlCreator classes are subclasses of the

UlCreator class, which is a general class for creating user interface for an

application.

A ColorPalette object consists of a BasicColorPanel object which contains a set of

ColorButton objects, each of which represents a basic color. A ColorPalette also has

an other button which is used to provide the user with an interface to choose a color

that is not a basic color.

The DrawPanel class is one of the most importance classes in HDP. It provides the

user a canvas to edit an HDP drawing object. Such as hand drawn curves, lines, etc.

An items (a member variable of the DrawPanel object, which is a vector) contains

the content (represented by the Item class) of the DrawPanel.

One of shapes implemented by HDWE is the Curve class, which includes

GeneralPath class as a member variable. The purpose of the Curve class is to

extend the GeneralPath class, so that the user can get and set the points of the curve.

HDWE also provides an AppletReader class to read the hand drawn document. This

is the class that will be sent to the browser with the hand drawn file, so that the

browser can display the viewer the drawing applet using AppletReader class.

-35-

Chapter 3 Analysis and Design HDWE

3.2.3. Class Diagram

A class diagram has been drawn using Rational Rose for HDWE as in Fig.3.8. This

Class Diagram shows the classes and their relationships in the logical design of the

HDWE system. The class diagram represents the entire class structure of the HDWE

system.

ffi ,::=4s::.W

sl@i -utF ntqtntol -glgl PIFIH

,:l$c
frHi

.:;:;
tfttE

a
:i-i
I

f+.-
:.,.:r.:,'-
F;
I:I

,
_t

d

Class Diagram of HDWE.Fig.3.4

-36-

Chapter 3 Analysis and Design HDWE

3.3 The HtmI and Java 2D Package

Both the Javax.swing.text.html package and the

been heavily used in developing HDWE. This

built into these two packages.

Iava2D package ofJava APIs have

section describes important features

3.3.1

3.3.1.1

Swing Text Package

The Swing text-component hierarchy

The Swing text package includes a comprehensive set of text-related classes to

support various text related activities. These classes get combined into Swing's text

components, with the pieces replaceable with alternative implementations.

The text classes provided in the Swing package subclass from a root class named

JTextComponent. Fig.3.5 shows the Swing text-class hierarchy.

Fig.3.5 Swing Text-Class Hierarchy.

The JEditorPane component is the extensible component that provides a convenient

way to morph into different kinds of support. JEditorPane provides a registration

mechanism that can easily extend the set of text types that it knows how to deal with.

By default, the JEditorPane registration mechanism provides some level of support for

plain text, HTML, and RTF.

D e Ie g at ion of func tionality

Swing's text components delegate most all of their duties to other objects.

Consequently, developers usually can not directly extend a text component in order to

-37 -

Chapter 3 Analysis and Design HDWE

change its behavior. Instead, developers must change the objects that are being

delegated to.

3.3.1.2 Text Commands

In the Swing text API, the text components export most of their capabilities as

commands. Commands are implementations of the Swing Action interface.

Commands are typically bound to keyboard actions, and can also be bound to other

UI mechanisms such as toolbar buttons. menu items. and the mouse.

The Swing text package implements text commands as subclasses of the TextAction

class. When an application executes a text-related command, the TextAction class

tries to find a text component to operate on by examining the value retumed by a

method named ActionEvent.getSource0. If this value is an instance of a

JTextComponent, the component becomes the target of the operation. The action may

also attempt to decode additional information needed from the command string

associated with the ActionEvent.

If this attempt fails, the TextAction class tries to target the currently (or most recently)

focused component. If that attempt also fails, no action is taken.

3.3.1.3 Undo-redo support

Swing's text components do not directly support undo-redo capabilities as that would

tie them to a specific undo-redo policy. But they do support undo/redo indirectly by

supplying their support in Swing's text-component model. Because the view portion

of a text component reflects the state of the component's model, changing the model

with undo/redo causes the views to follow automaticallv.

Documents and undo-redo actions

An object called a Document, defined in Swing's Document interface, is the model for

text components. A document can be shared by multiple components. A document

communicates with its views via a DocumentEvent, as shown in the following

-38-

Chapter 3 Analysis and Design HDWE

diagram. The illustration shows how a document might communicate with two

differentJTextComponent objects, each of which contains a view.

Eq-$-HEq

Fig.3.6 A document communivates with its views via a documentEvent.

Referring to this diagram, suppose that the component shown on the left mutates the

document object. The document responds by dispatching a DocumentEvent to both

component views and sends an UndoableEditEvent to the listening logic, which

maintains a history buffer. If the history buffer rolls back, another DocumentEvent is

sent to both views, causing them to reflect the undone mutation to the document --

that is, the removal of the left component's mutation.

3.3.1.4 PL&F

Swing's text components -- like all other Swing components -- have a PL&F. But it is

more difficult to build PL&F capabilities into text components. The problem is that

there is a certain tension between the content represented inside a PL&F text

component and the user interface that determines the component's overall look and

feel. The user interface is likely to dictate some elements of the component's behavior

and appearance, such as its set of key bindings (largely a matter of feel), its set of

colors, its interaction-related behavior when it is selected, and so on. These features

and functionality are somewhat orthogonal to the look of the component, which is

largely determined by the kind of content that it represents.

The standard UI delegate used by other kinds of Swing components is not sufficient.

A text component needs a second delegate to handle the kind of content that it

displays.

-39 -

Chapter 3 Analysis and Design HDWE

EditorKit

In the Swing text-component package, this second delegate is an implementation of a

class named EditorKit, as illustrated in the following diagram:

Ulillaneger

Fig.3.7 JTextComponent delegate EditorKit to handle the Content.

The EditorKit, is the primary mechanism for extending Swing text components.

Architecturally, the EditorKit is a bundling of the capabilities needed by a text

component for dealing with a particular type of content.

The EditorKit has the following responsibilities:

l. It creates a model (see next heading). Because Swing's EditorKit

implementation knows what kind of content it is describing, it can provide a

model that has a particular set of policies for describing that kind of content.

2. It provides a factory for building views. Rather than providing a view directly,

the EditorKit provides a way of creating views.

3. It provides commands for editing the content. Because the EditorKit

encapsulates functionality that knows how to deal with a particular content

type, it knows what kinds of operations can be performed on that particular

content type.

4. It saves data to a stream. Because different kinds of content can have their

own individual storage formats, the EditorKit is an ideal mechanism for

streaming data.

-40-

1.

2.

3.

4.

Chapter 3 Analysis and Design HDWE

5. It reads from a stream. Again, because different kinds of content can have

their own individual storage formats, the EditorKit is an ideal mechanism for

streaming data.

The TextUI object

The UlManager used by a text component is called a TextUI object. When a TextUI

object is installed into a JTextComponent, its duties are to make sure that a default set

of properties for the type of UI has been plugged into the JTextComponent. The

duties of a TextUI object consist of the following:

It sets the various colors used in a text component, such as the caret color, the

selection background color, the selection foreground color, and the like.

It installs a Caret implementation. In a text component, the caret is an object

used for navigating through the text component. It is responsible for the

component's selection policy.

It installs a suitable set of key bindings (a Keymap) for the UI.

It builds a view of the model. In simple components, this task can be

performed directly. In more complex components it can be delegated to an

EditorKit.

3.3.1.5 The Text-Component Model

At the simplest level, text can be modeled as a linear sequence of characters. To

support internationalization, the Swing text model uses unicode characters. The

sequence of characters displayed in a text component is generally referred to as the

component's content. The interface for the object that holds the content is the

Document interface. When a change is made to the content, the component's view (or

views) needs to be notified of the change.

Because the content of a text component can be quite large and cannot be efficiently

deduced, this notification must include fairly detailed information about whatever

-4t-

Chapter 3 Analysis and Design HDWE

change has taken place. The interface that Swing uses to describe text-change

information is called a DocumentEvent.

The coordinate system

To convey information about changes to a text view

manner, a document must have a coordinate system,

diagram:

(or

as

text views) in a proper

shown in the followine

Posl$on ar Offse{

{\

ItrU trITE tr tr tr trTE trE EtrTtr trtrtl
03

Fig.3.8 Coordinate Svstem of a Document

As the diagram shows, a location in a text document can be referred to as a position,

or an offset. This position is zero-based. It can be used to specify the character's

position between any other two characters.

The Element interface

Structure imposed upon the content is typically associated with some additional

information. To model the structure in this way, Swing uses an object called an

Element to represent a fragment of structure.

As noted earlier, a Document is a text container that supports editing and provides

notification of changes. In other words, it serves as the model in a MVC relationship.

Support is provided to mark up the text in a document with a stmcture that tracks

changes. The unit of structure used in this construct is called an Element.

In Swing text components, views are typically built from an element structure. An

arbitrary set of attributes can be associated with an element. The interface itself is

intended to be free of any policy for structure that is provided, as the nature of the

document structure should be determined by the implementation.

-42-

Chapter 3 Analysis and Design HDWE

The AbstractDocument

The Swing text package provides an abstract implementation of the Document

interface. This implementation is called the AbstractDocument.

A unique feature of the AbstractDocument is that the text-content storage is separate

from the structural modeling of the document. This feature allows a developer to

establish how a document is stored independently of what the document is modeling.

For example, an application can create a model structure designed to support an

HTML document and then independently plug in storage mechanisms based upon

different algorithms.

These text content storage plug-ins must implement the Content

(AbstractDocument.Content) interface. This interface requires that the following three

kinds of behavior be provided:

General editing features: text insertion, text removal, and text retrieval.

Support for marks that represent a position between characters in storage, that

tracks changes made to the text storage. These are provided as an

implementation of the Position interface.

Provide objects that represent the changes made to the storage so that they can

efficiently participate in undo/redo operations. These are provided as an

implementation of the UndoableEdit interface.

3.3.1.6 The View Class

A very important part of the text package is the View class. As its name suggests,

View class represents a view of the text model. It is this class that is responsible

the look of the text component.

By default, a view is very light. It contains a reference to the parent view from which

it can fetch many things without holding state, and it contains a reference to a portion

of the model (the ElemenQ. A view does not have to exactly represent an element in

the model; that is simply a typical, and therefore convenient, mapping. Alternatively,

1.

2.

3.

the

for

-43

Chapter 3 Analysis and Design HDWE

a view can maintain a couple of Position objects to keep track of its location in the

model. This is typically the result of formatting where views have been broken down

into pieces.

The fact that views are closely related to Elements makes it easier to use factories to

produce views. For instance, the inner class HTMLFactory of the HTMLEditorKit

class creates views from elements as follows:

This is intended to enable customization of how views get mapped over a document

model. [n turn, using factories to produce views makes it easier to keep track of the

various parts of views that must be changed when their corresponding models change.

A view has the following responsibilities:

1. It participates in layout.

2. It renders a portion of the model.

3. It translates between the model and view coordinate svstems.

4. It responds to changes from the model.

Elements Views

HTML.Tag.CONTENT InlineView

HTML.Tag.P j avax. swing. text.html.ParagraphView

HTML.Tag.Hl j avax. swing. text. html.ParagraphView

HTML.Tag.UL ListView

HTML.Tag.BODY BlockView

HTML.Tas.IMG ImaeeView

HTML.Tag.HR HRuleView

HTML.Tag.BR BRView

HTML.Tag.TABLE j avax. swing. text. html.TableView

HTML.TaS.FRAME FrameView

-M-

Chapter 3 Analysis and Design HDWE

In HDWE, JEditorPane text component has been used to edit and browse Html

documents. The JEditorPane has exported its capabilities as commands. These

commands have been bound to menus, tool buttons of HDWE. JEditorPane has

delegated its content handling capabilities to an EditorKit class, in HDWE, this is

HTMLEditorKit class. It creates a model - HTMLDocument, which provides general

editing features, such as text insertion, removal and retrieval, which also supports for

marks, and undo/redo operations. HTMLEditorKit also provides a factory

HTMLFactory class for building views, commands for editing the content. It also

saves and reads data to or from a stream. The default TextUI class sets various colors

used in HDWE, installs a Caret, and installs a suitable set of key bindings.

3.3.2

3.3.2.1

Java 2D

Overview of the Java 2D API

The Java 2D API provides enhanced two-dimensional graphics, text, and imaging

capabilities for Java programs through extensions to the Abstract Windowing Toolkit

(AWT). This comprehensive rendering package supports line art, text, and images in a

flexible, full-featured framework for developing richer user interfaces, sophisticated

drawing programs and image editors.

The Java 2D API provides

A uniform rendering model for display devices and printers

A wide range of geometric primitives, such as curves, rectangles, and ellipses and

a mechanism for rendering virtually any geometric shape

Mechanisms for performing hit detection on shapes, text, and images

A compositing model that provides control over how overlapping objects are

rendered

Enhanced color support that facilitates color management

Support for printing complex documents

a

o

O

a

o

a

-45-

Chapter 3 Analysis and Design HDWE

Java 2D Rendering

The basic rendering mechanism is that the drawing system controls when and how

programs can draw. When a component needs to be displayed, its paint or update

method is automatically invoked with an appropriate Graphics context.

The Java 2D API introduces java.awt.Graphics2D, a new type of Graphics object.

Graphics2D extends the Graphics class to provide access to the enhanced graphics

and renderins features of the Java 2D API.

Graphics2D Rendering Context

The collection of state attributes associated with a Graphics2D object is referred to as

the Graphics2D rendering context. To display text, shapes, or images, a user can set

up the Graphics2D rendering context and then call one of the Graphics2D rendering

methods, such as draw or fill. The Graphics2D rendering context contains several

attributes as follows:

o The pen style that is applied to the outline of a shape. This stroke attribute enables

user to draw lines with any point size and dashing pattern and to apply end-cap

and join decorations to a line.

o The fill style that is applied to a shape's interior. This paint attribute enables one to

fill shapes with solid colors, gradients, and patterns.

o The compositing style that is used when rendered objects overlap existing objects.

o The transform that is applied during rendering to convert the rendered object from

user space to device-space coordinates. Optional translation, rotation, scaling, or

shearing transforms can also be applied through this attribute.

o The clip, which restricts rendering to the area within the outline of the Shape used

to define the clipping path. Any Shape can be used to define the clip.

o The font used to convert text strings to glyphs.

o Rendering hints that specify preferences in the trade-offs between speed and

quality. For example, one can specify whether antialiasing should be used, if it's
available.

-46-

Chapter 3 Analysis and Design HDWE

Graphics2D Rendering Methods

The following are general rendering methods that can be used to draw any geometry

primitive, text, or image:

o draw--renders the outline of any geometry primitive, using the stroke and paint

attributes.

o fill--renders any geometry primitive by filling its interior with the color or pattern

specified by the paint attribute.

o drawString--renders any text string. The font attribute is used to convert the string

to glyphs, which are then filled with the color or pattern specified by the paint

attribute.

o drawlmage--renders the specified image.

In addition, Graphics2D supports the Graphics rendering methods for particular

shapes, such as drawOval and fillRect.

3.3.2.2 Coordinate Systems

The Java 2D system maintains two coordinate spaces.

o User space is the space in which graphics primitives are specified.

o Device space is the coordinate system of an output device, such as a screen,

window, or a printer.

User space is a device-independent logical coordinate system: the coordinate space

that your program uses. All geometries passed into Java 2D rendering routines are

specified in user-space coordinates.

When the default transformation from user space to device space is used, the origin of

user space is the upper-left corner of the component's drawing area. The x coordinate

increases to the right, and the y coordinate increases downward.

Device space is a device-dependent coordinate system that varies according to the

target rendering device. Although the coordinate system for a window or the screen

might be very different from that of a printer, these differences are invisible to Java

-47 -

Chapter 3 Analysis and Design HDWE

programs. tn" n""

performed automatically during rendering.

3.3.2.3 Shapes

The classes in the java.awt.geom package define common graphics primitives, such as

points, lines, curves, arcs, rectangles, and ellipses.

With these classes one can create virtually any geometric shape and render it through

Graphics2D by calling the draw method or the fill method.

Rectangular Shapes

The Rectangle2D, RoundRectangle2D, ArcZD, and Ellipse2D primitives are all

derived from RectangularShape, which defines methods for Shape objects that can be

described by a rectangular bounding box. The geometry of a RectangularShape can be

extrapolated from a rectangle that completely encloses the outline of the Shape.

GeneralPath

The GeneralPath class enables user to construct an arbitrary shape by specifying a

series of positions along the shape's boundary. These positions can be connected by

line segments, quadratic curves, or cubic (B6zier) curves.

Areas

With the Area class a user can perform boolean operations, such as union,

intersection, and subtraction, on any two Shape objects. This technique, often referred

to as constructive area geometry, enables the user to quickly create complex Shape

objects without having to describe each line segment or curve.

3.3.2.4 Text

When a developer needs to display text, he can use one of the text-oriented

components, such as the Swing label or text components. When the developer uses a

text component, a lot of the work is done for him--for example, JTextComponent

objects provide built-in support for hit testing and displaying international text.

-48-

Chapter 3 Analysis and Design HDWE

If the developer just wants to draw a static text string, he can render it directly through

Graphics2D by using the drawString method. To specify the font, one can use the

Graphics2D setFont method.

Text La)tout

Before text can be displayed, it must be laid out so that the characters are represented

by the appropriate glyphs in the proper positions. If the developer is using Swing, he

can let Jlabel or JTextComponent manage text layout for him. JTextComponent

supports bidirectional text and is designed to handle the needs of most intemational

applications. On the other hand, if he is not using a Swing text component to

automatically display text, he can use one of two Java 2D mechanisms for managing

text lavout.

3.3.2.5 Images

The Java 2D API implements a new imaging model that supports the manipulation of

fixed-resolution images stored in memory. A new Image class in the java.awt.image

package, Bufferedlmage, can be used to hold and to manipulate image data retrieved

from a file or a URL. For example, a Bufferedlmage can be used to implement double

buffering--the graphic elements are rendered off-screen to the Bufferedlmage and are

then copied to the screen through a call to Graphics2D drawlmage. The classes

Bufferedlmage and BufferedlmageOp also enable you to perform a variety of image-

filtering operations, such as blur and sharpen. The producer/consumer imaging model

provided in previous versions of the JDK is supported for backward compatibility.

In HDP, Graphics2D has been used to access to the enhanced graphics and rendering

features of the Java2D API. The HDP provides a user with a user interface to set the

rendering context, such as pen styles, colors, and rendering hints. HDP has also used

two kinds of rendering method, they are draw - which renders the outline of any

geometry primitive, and fill - which renders any geometry primitive by filling its

interior with the color or pattern. HDP has also used some corlmon graphics

primitives defined in java.awt.geom package, such as, lines, curves, rectangles, and

ellipses.

-49-

Chapter 4 Implementation and Result

Chapter 4

lmplementation and Result

4.1 Problems Encountered With the Solutions

During implementing the HDWE system, a number of problems have been

encountered, some of these problems and their solutions are discussed in this chapter.

4.t.1 Internationalization

Internationalization Problem

The HDWE needs to display its messages, menu labels, or tool tips in an appropriate

language for people from different countries. Unfortunately the developer of the

HDWE is not multilingual, so translators who can translate these messages into all

kinds of different language are needed. Since the translators are not programmers, the

developer has to move the messages, labels and tips out of the source code and into

text files so that the translators can edit them. The HDWE must be flexible enough so

that it can display the messages in other languages. Therefore, the HDWE needs to be

internationahzed.

Internationalization Concepts

Internationalization is the process of designing an application so that it can be adapted

to various languages and regions without engineering changes.

An intemationalized program has the following characteristics:

With the addition of localized data, the same executable can run worldwide.

Textual elements, such as status messages and the GUI component labels, are not

hard-coded in the program. Instead they are stored outside the source code and

retrieved dvnamicallv.

o Support for new languages does not require recompilation.

-50-

Chapter 4 Implementation and Result

Culturally-dependent data, such as dates and currencies, appear in formats that

conform to the end user's region and language.

It can be localized quickly.

Localization is the process of adapting software for a specific region or language by

adding locale-specific components and translating text. Usually, the most time-

consuming portion of the localization phase is the translation of text. Other types of

data, such as sounds and images, may require localization if they are culturally

sensitive. Localizers also verify that the formatting of dates, numbers, and currencies

conforms to local requirements.

Internationalization Procedures

Because the messages are no longer hard-coded and because the language code is

specified at run time, the same executable can be distributed worldwide. No

recompilation is required for localization. The procedures to internationalize the

HDWE is as follows:

I. Create the Properties Files

A properties file stores the translatable text of the messages to be displayed, it can be

created with any text editor. The default properties file is the English version. Now

that the messages are in the properties file, they can be translated into various

languages. No changes to the source code are required. The French translator may

create a French version of the properties file which contains the same items as the

English version, but where the values associated with each of the keys have been

changed. The keys themselves must not be changed, because they will be referenced

when HDWE fetches the translated text.

2. Define the Locale

The Locale object identifies a particular language and country. It represents a specific

geographical, political, or cultural region. An operation that requires a Locale to

perform its task is called locale-sensitive and uses the Locale to tailor information for

the user. For example, displaying a number is a locale-sensitive operation--the

-51 -

Chapter 4 lmplementation and Result

number should be formatted according to the customs or conventions of the user's

native country, region, or culture. The following statement defines a Locale for which

the language is English and the country is the United States:

alocale = new Locale("en","IJS");

Locale objects are only identifiers. After defining a Locale, it can be passed to other

objects that perform useful tasks, such as formatting dates and numbers. These objects

are locale-sensitive because their behavior varies according to Locale. A

ResourceBundle is an example of a locale-sensitive object.

3. Create a ResourceBundle

Resource bundles contain locale-specific objects. When a program needs a locale-

specific resource, a String for example, that program can load it from the resource

bundle that is appropriate for the current user's locale. In this way, a developer can

write program code that is largely independent of the user's locale isolating most of

the locale-specific information in resource bundles. The ResourceBundle in HDWE is

created as follows:

P rivate static ResourceBundle resources ;
static

{ try
{ r e s o ur c e s = Re s o ur c e B undle. g etB undle (" E dit o r ", Lo c ale. g e t D efault)) ;
]

c atc h (M is s in g Re s o urc e Exc e pt ion mre)
I Sy stem. erc. println(" Editor. prop ertie s not found") ;

System.exit(O);

l
]

The arguments passed to the getBundle method identify which properties file will be

accessed. The first argument, Editor, refers to the Editor.properties file in HDWE

system.

The Locale, which is the second argument of getBundle, specifies which of the Editor

files is chosen. When the Locale was created, the language code and the country code

were passed to its constructor.

-52-

Chapter 4 lmplementation and Result

Now all the developer has to do is get the translated messages from the

ResourceBundle.

4. Fetch the Text.from the ResourceBundle

The properties files contain key-value pairs. The values consist of the translated text

that the program will display. The developer specifies the keys when fetching the

translated messages from the ResourceBundle with the getString method. For

example, to retrieve the objects identified by the String nm key, the developer invokes

getResourceString method, which is as follows:

public String getResourceString(String nm)

{ String str = null;
try
{ str = resources.getString(nm);

l
c atch (M is s ing Re s ource Exc eption mre)
{ sy s t em. o ut. p rintln(" M is s in g Re s o ur c e Exc e p tion" + mr e.) ;
]
return str;

]

The above source code uses the key because it reflects the content of the message.

The key is hard-coded in the program and it must be present in the properties files.

4.1,.2 UlCreator Class

Problem

Both the Desktop class and the HandDrawnPanel class of the HDWE need to create a

user interface. They both need methods to create the menus, menu items, tool bars,

tool buttons, and also need a member of variables to store the name of menu items,

actions, and commands. A class that generalizes these common methods and

attributes should be implemented to create a common user interface for all kinds of

applications. As a result, a general class - UlCreator has been implemented in

HDWE.

-53-

Chapter 4 Implementation and Result

Solution

When a developer constructs a new UlCreator object, he needs to provide a

ResourceBundle which is the locolazation resource for the HDWE, it cantains all

menu item, toolbar button, and tool tips keys and values. The HDWE can fetch each

of them and create the corresponding menu items and buttons. The developer also

needs to provide the actions that are supported by the HDWE and HDP. The Actions

supported by the HDWE are:

private Action[] getActions()
{ Action[] defaultActions =

{ new NewAction(this),
new OpenAction(this),
new SaveAction(this),
new S aveAsAction(this),
new Clos eAction(this),
new Relo adAc tion(thi s),
new P rintAction(this),
new V iew S o urc eAction(thi s),

new Ap pletAction(this),
new ExitAction(this),
new Clo s eAllAction(this),
new C lo s e AllWitho ut S av eAlIAc tion(thi s),

new Clos eAllWithSaveAllAction(this),
undo H andl e r.new U ndoAc tion(),
U ndoH andle r. new Re doAction()

J;
HTMLEditorKit htmlKit = new HTMLEditorKit);
return TextAction.augmentList(htmlKit. getActions(), defaultActions) ;
]

The Actions supported by the HDP are:

private Action[] defaultActions =
{ new NewDrawingAction),

new O p e nD raw in gAction(),
new S av e D raw in gAction(),
new S av e D raw ingAsAction(),
new Clo s eD raw ingAction(),
new P rintD raw in gAction(),
new InsertActiono,
new ExitDrawingAction(),
new UndoAction,
new RedoAction
new LineAction),
new CurveAction),
new EraserAction),
new CircleActionO,

-54-

Chapter 4 Implementation and Result

new FilledCircleAction(),
new EllipseAction),
new F ille dEllip s eAction(),
new SquareAction),
new F illedSquareAction(),
new RectangleAction(),
new F illedRectan gleAction(),

The main methods included in this class are as follows:

o CreateMenubar

Creates the menubar for the application. By default this pulls the definition of the

menu from the associated resource file.

o CreateMenu

Creates a menu for the application. By default this pulls the definition of the

menu from the associated resource file.

o CreateMenultem

This is the hook through which all menu items are created. It registers the result

with the menu item hashtable so that it can be fetched with getMenultem0.

. CreateSubMenu

Creates subMenu for the application.

o CreateToolbar

Creates the toolbar for the application. By default this reads the resource file for

the definition of the toolbar.

o CreateToolbarButton

Creates a button to go inside of the toolbar. This is the hook through which every

toolbar item is created. By default this will load an image resource. In HDWE

system, the image file is located in the images\ directory. Images\ directory is in

the same directory as the UlCreator class.

];

-55-

Chapter 4 Implementation and Result

o GetAction

Fetches the list of actions supported by the HDWE or HDP. This method is

implemented to return the list of actions supported by the embedded JEditorPane

or HandDrawnPanel ausmented with the actions defined locallv.

o GetResource

Fetches the directory of the class.

protected URL getResource(String key)

{ String name = getResourceString(key);
if (name != null)
{ URL url = this.getClass).getResource(name);

return url;
]
return nuII;

]

o GetResourceString

Fetch the locale value of a specific key item.

o Tokenize

Take the given string and chop it up into a series of strings on white space

boundaries. This is useful for trying to get an array of strings out of the resource

file.

The UlCreator class is a general class, as it can be used by any application to

create it's own user interface.

In the HDWE system, both the Desktop class and HandDrawnPanel class need

extra methods to create their own specific user interface, as a result, the

UlCreator class has been extended to a EditortllCreator class and a

DrawpanelUlCreator class.

-56-

Chapter 4 Implementation and Result

4.1.3 Serialization

Problem

The Serializability of a class is enabled by the class that implementing the

java.io.Serializable interface. The serialization interface has no methods or fields and

serves only to identify the semantics of being serializable. Classes that do not

implement this interface will not have any of their state serialized or deserialized. All

subtypes of a serializable class are themselves serializable.

In HDWE, after a user finishes drawing on the HDP, the drawing object needs to be

saved on the hard drive, so that it can be retrieved at a later stage, or can be

transmitted to the remote web browser to be displayed as an applet. This means the

drawing objects on the HDP need be serialized. These drawing objects are lines,

curves, and primitives, all of them are implemented using the Shape interface, which

provides definitions for objects that represent some form of geometric shape. The

Stroke interface allows a Graphics2D object to trace a shape's outline with a marking

pen of the appropriate size and shape. The Paint interface defines how color patterns

can be generated for Graphics2D operations. The RenderingHints class contains

rendering hints that can be used by the Graphics2D class.

The problem comes from the fact that all these classes, that is, Shape, Stroke, Paint,

and the RenderingHints, can not be serialized.

Constriction

Java API provides a mechanism to solve this problem, which is to subclass the non-

serializable classes to be serialized. The precondition for this mechanism is that, the

subtype may assume responsibility for saving and restoring the state of the supertype's

public, protected, and package fields. The subtype may assume this responsibility

only if the class it extends has an accessible no-argument constructor to initialize the

class's state. It is an error to declare a class Serializable if this is not the case. During

deserialization, the fields of non-serializable classes will be initialized using the

public or protected no-argument constructor of the class. A no-argument constructor

-57 -

Chapter 4 Implementation and Result

must be accessible to the subclass that is serializable. The fields of serializable

subclasses will be restored from the stream.

However, most of Java2D classes do not have an accessible no-argument constructor.

As a result, these Java 2D classes can not be subclassed in order to implement

serializattion.

Solution

In HDWE, an Item object is used to store the information about an item on the draw

panel. An item of the draw panel is an object that has been drawn on the draw panel, it

starts from the point the mouse is pressed until the point where the mouse is released.

The information included in the Item class is a shape, rendering context, the

coordinate of the shape, background and foreground color of the shape.

However, all of the classes above listed are not implemented in the Serialization

interface. We need to replace these classes with the classes that can be serialized so

that the state of the items on the draw panel can be stored permanently on hard driver

and can be restored at a later date.

In order to make the Item class serializable, all non-serializable member variables

have been replaced by the serializable objects as follows:

1. Shape has been replaced by a variable of type integer, this is encoded to

represent:

1

2

3

4

LINES

CURVES

ELLIPSES (including circle)

RECTANGLES (including Square)

2. A Vector class has been used to store the points for each shape. This is because

the Vector class implements a growable array of objects. Like an artay, it contains

components that can be accessed using an integer index. However, the size of a

Vector can grow or shrink as needed to accommodate adding and removing items

-58-

Chapter 4 Implementation and Result

after the Vector has been created. And most of all, the Vector class is

serializable.

3. Stroke has been replaced by:

Float width;

Int cap, join;

4. Paint has been replaced by:

int red, green, blue;

5. RenderingHints has been replaced by:

int anti, rend, dith;

Two methods are used to write and read a class's state: The writeobject method is

responsible for writing the state of the object for its particular class so that the

corresponding and the readobjecl method is responsible for reading from the stream

and restoring the class fields.

This resolved the serialization problem of the Item class of HDWE.

4.1.4 Content type of the JEditorPane

Problem

The JBditorPane is a text component for editing various kinds of content. The

following content types can be manipulated by JEditorPane:

o text/plain

Plain text, which is the default the type when the type given is not recognized. The

kit used in this case is an extension of DefaultEditorKit that produces a wrapped

plain text view.

o text/html

HTML text. The kit used in this case is the class

j avax. swing.text.html.HTMlEditorKit which provides html 3.2 support.

-59-

Chapter 4 Implementation and Result

o text/rtf

RTF text. The kit used in this case is the class javax.swing.text.rtf.RTFEditorKit

which provides a limited support for the Rich Text Format.

The JEditorPane class uses implementations of the EditorKit to accomplish its

behavior. It needs to effectively morph into the proper kind of text editor for the kind

of content it is given. The content type that editor is bound to at any given time is

determined by the EditorKit currently installed. If the content is set to a new URL, its

type is needed to determine the EditorKit that should be used to load the content.

Solution

There are several ways to load content into JEditorPane.

1. The setTexr method can be used to initialize the component from a string. In

this case the current EditorKit will be used, and the content type will be

expected to be of this type.

2. The read method can be used to initialize the component from a Reader. If
the content type is html, relative references (e.g. for things like images) can

not be resolved unless the <base> tag is used or the Base property on

HTMLDocument is set. tn this case the current EditorKit will be used. and

the content type will be expected to be of this type.

3. The setPage method can be used to initialize the component from a URL. In

this case, the content type will be determined from the URL, and the registered

EditorKit for that content type will be set.

In HDWE, the setPage method has been used to load the document. At first, the

getContentType method is invoked to get content type of the file that is to be opened,

and then set the appropriate content type for the JEditorPane.

In HDWE, the parameter URL of the getContentType method is the full path directory

name of the file to be opened. This method returns the string that is the name of the

contentType. In the following source code, url.openConnection) returns a

URlConnection object that represents a connection to the remote object referred to by

-60-

Chapter 4 Implementation and Result

the url, and the getContentType) method returns the value of the content-type header

field. The value of the string might be one of: "text / plain", " text / htrnl ",

" text / rft ". The source code is as follows:

public String getContentType(URL url)
{ String contentType = null;

try
{ contentType=url.openConnection0.getContentType0;

]
catch (I OException ioe)

System,out.println("Can not open the connection" +
ioe.getMessage());

]

return contentType;

]

After getting the content type of the URL, the setContentType method of

JEditorPane can be used to set the correct content type for the JEditorPane. It

performs this task by two steps as follows:

calls g et Edito r Kit F o r C ont entTy p e

getEditorKitForContentType method fetches the editor kit to use for the given

type of content. This is called when a type is requested that does not match the

currently installed type. If the component does not have an EditorKit

registered for the given type, it will try to create an EditorKit from the default

EditorKit registry. If that fails, a PlainEditorKit is used on the assumption

that all text documents can be represented as plain text.

calls setEditorKit if an editor kit can be successfully located.

SetEditorKil sets the currently installed kit for handling content, it establishes

the content type of the editor. Any old kit is first deinstalled, then if kit is non-

null, the new kit is installed, and a default document created for it.

In this way, the JEditorKit can set the appropriate content type at run time.

l.

2.

-61 -

Chapter 4 Implementation and Result

4.L.5 Applet Insertion

Problem

When a user edits an Html document, he can insert a drawing object as an applet into

that Html document. The common syntax for the APPLET tag is as follows:

<APPLET

CODEBASE = codebaseURl

ARCHIVE = archivelist

CODE = appletFile ...or... OBJECT = serializedApplet

ALT = alternateText

WIDTH - pixels HEIGHT - pixels>

<PARAM NAME = appletAttributel VALUE = value>

<APPLET>

The mandatory attributes are CODE, WIDTH, and HEIGHT. Some of these

attributes are described as follows:

CODE = applet File

This REQUIRED attribute gives the name of the file that contains the applet's

compiled Applet subclass.

ALT = alternate text

This OPTIONAL attribute specifies any text that should be displayed if the browser

understands the APPLET tag but can not run Java applets.

WIDTH = pixels. HEIGHT = pixels

These REQUIRED attributes give the initial width and height (in pixels) of the applet

display area, not counting any windows or dialogs that the applet brings up.

<PARAM NAME - appletAttributel VALUE = value> . . .

This tag is the only way to specify an applet-specific attribute. Applets access their

attributes with the getParameter) method.

-62-

Chapter 4 lmplementation and Result

The HDP should be able to set the right values for these attributes of the Applet tag,

and should be able to insert the Applet tag with the attributes into the Html document.

Solution

Set the attributes for the Aoplet tag

In HDWE, the value of the CODE attribute is AppletReader.class, which can be used

to render a drawing document as an applet in a Html document. In HDP, two methods

: getAppletwidth and getAppletHeight arc used to get the values for the WIDTH and

HEIGHT attributes, and the PARAM attribute is used to contain a drawing document

file's name, which can be fetched by getFileName) method.

Insert the Applet tag

The default support for Html version 3.2 rs provided by a HTMLEditorKit class in

Java. InsertHTMLTextAction is a static inner class of HTMLEditorKit. It can be

used to insert an arbitrary string of Html into current Html document. A user can

choose the lnsert Applet menu item only from an opened html document. At least

two HTML.Tags need to be supplied. The first Tag, parentTag, identifies the parent in

the document to add the elements to. The second tag, addTag, identifies the first tag

that should be added to the document as seen in the Html string. For example, if the

developer wants to create an action to insert a table into the body. The parentTag

would be HTML.Tag.BODY, addTag would be HTML.Tag.TABLE, and the string

could be something like <table><t><td></td><t></table>.

The source code of InsertAction of the HDP is as follows, it is used to insert the

current drawings into the Html document from which the Insert Applet menu item has

been chosen.

clas s Inse rtAction extends AbstractAction

{ public InsertAction)
{ super(EditorConstants.insertAction);
]

p ublic v o id ac tionP e rfo rme d(ActionEv ent e)
{ if (fileName != null)

{ String htmllnsert = "1applet code=AppletReader.class"+

-63-

Chapter 4 Implementation and Result

" w idth= " + g e tAp pletWidth() +
" height=" + getAppletHeight()+ " > " +
" < p ar am n67ns =fi IeN ame v alue = " + g e t F ile N ame () + " > " +
" alt = " + " Your b row s e r unde r s tands the < ; AP P LET > ; " +
"tag but isn't running the applet, for some reason."+

"Your browser is completely ignoring the <APPLET> tag!"+ "</applet>";

HT M LEdit o r Kit. Ins e rtHTM LTe xtAction emb e d =
new HTMLEditorKit.InsertHTMLTextAction
(" Embed", htmllnsert, HTML.Ta g.B O DY, HTML.Tag.AP P LET) ;

ActionEv ent actionEv ent = new ActionEv ent(t ar g etP ane, I 00 1, " Emb e d") ;
e mb e d. ac t i onP e rfo rme d(ac t i on Ev e nt) ;

]
else

Sy st em. o ut. p rint In(" N o s uch a fil e av ailable. ") ;

]
]

As above code shows, the InsertAction class can get the applet width, height and the

drawing file name as the value of the Applet tag's attributes WIDTH, HEIGHT and

PARAM. And the drawing file can be inserted into the Html document. As a result,

the browser can display the right drawing document with the right size.

4.L.6 llow to check if a drawing file has been modified or not

Problem

When a user tries to create a new drawing document, open a drawing document, close

an opened drawing document, or exit from the HDP, the system should be able to

check to see if the current opened drawing document has been changed since the last

time it was saved. If it has been changed, the user should be asked if he or she wants

to save the changes.

Solution

A member variable - changeFlag in DrawPanel class is used to store this

information. The mechanism to determine whether a change has happened or not is

by checking if the mouse has been dragged in the draw panel.

-64-

Chapter 4 Implementation and Result

The MouseDragged method of DrawPanel class is invoked when a mouse button is

pressed on a component and then dragged. Mouse drag events will continue to be

delivered to the component where the first originated until the mouse button is

released (regardless of whether the mouse position is within the bounds of the

component). In HDWE, this means that the user has modified the content of the

DrawPanel.

If a mouseDragged event has happened, the system will check to see if the

changeFlagb value is true or not, if not, set it to true:

public void mous e D rag ged(M o us eEvent e)

{ if (lchangeFlag)

changeFlas = true;

The implementation of the Close Action is as follows:

if drawPanel has been changed, prompt the user to save the current document;

if user choose yes button, save the document and then clear the drawPanel;

if user choose no button, clear drawPanel;

if user choose cancel button, the system will do nothing;

if drawPanel has not yet been changed, clear drawPanel directly.

Finaly, set ChangeFlag to false.

The source code for it is as follows:

class CloseDrawingAction extends AbstractAction

{ CloseDrawingAction()
{ s uper(Edito rC onstants. clos eD raw ingAction) ;

l
public v oid actionP erformed(ActionEvent e)
{ if (drawPanel.isChanged())

{ int re s ult = J O p tionP ane. show C onfi rmD ialo g(edito rF rame, " S av e it ? ") ;

if (re s ult = = J O ptionP ane.YES _O PTI O N)
{ ifffi.IeName != null)

{ SaveDrawingAction sa = new SaveDrawingAction);
s a. ac t i onP e rfo rme d(e) ;

]
else

-65-

Chapter 4 Implementation and Result

{ S aveD raw ingAsAction s aa = new Sav eDrawin gAsAction() ;
s aa. ac t i onP e rfo rme d(e) ;

]
]

if (result ! = J OptionP ane. CAN CEL_OPTION)
draw P anel. c le arD raw P anel() ;

]
else

dr aw P ane l. c le arD raw P ane l() ;

editorFrame.setTitle(" Untitiled New FiIe.") ;
fileName = nulli

4.1.7 The Curve class

Problem

In HDP, a member variable of the DrawPanel class - items is used to store all of the

drawing items of the DrawPanel. The element of the items vector is an object of the

Item class. An Item object stores information about a geometric object's coordinate

points, background color, foreground color, and rendering hints. As discussed in

section 4.I.3, the Java 2D primitives do not support serialization, all these geometric

objects have to be replaced by the shape codes and the points that construct them. The

constructing points of the geometric object need to be saved in order to initialize the

geometric object from a stream. One of these geometric objects can be an object of as

a GeneralPath class, which represents a geometric path constructed from straight

lines, it can contain multiple subpaths. The problem is that the GeneralPath class

does not provide any method to set or get the points that constructed the

GeneralPath. To remedy this problem, a subclass of the GeneralPath class was

considered. It was found however that the GeneralPath class is a final class. it can

not be extended.

Solution

In order to extend the GeneralPath class to handle points, a new class named Curve

is implemented to contain GeneralPath as a member variable. The Curve class has a

-66-

Chapter 4 Implementation and Result

Vector class to store the points of the GeneralPath class, and the setter and the getter

methods to set or get those points. Some methods of the GeneralPath class such as

IineTo, moveTo have been re-written to handle the points.

The part of the source code of the Curve class is as follows:

/ | - - -- - - - - - -Member Vairable
private Vector points;
private GeneralPath curve ;

I l ---------- Constructors ---------------
public Curve)
{ points = new Vector);

curve = new GeneralPath);
]

public Curve(Vector p)
{ this);

setPoints(p);
c urv e.mov eT o (((D ouble)p o ints. elementAt(0)).flo atValue(),

((D o uble)points. elementAt(I)).floatValue()) ;

for (int i=2;i < p.size0;i+=2)
c urv e. lineTo(((D o uble)points. e lementAt(i)).flo atV alue (),

((D ouble)points. elementAt(i+ I)).floatValue()) ;
]

The lineTo methods of the GeneralPath class has been re-written as follows:

public void lineTo(float xfloat y)

{ curve.lineTo(x,y);
points.addElement(new Double(x)) ;
p oints. addElement(new D ouble (y)) ;

]

The tnoveTo methods of the GeneralPath class has been re-written as follows:

public void moveTo(float xfloat y)
{ curve.moveTo(x,y);

points. addElement(new D ouble(x)) ;
p oints. a"ddElement(new D ouble(y)) ;

]

-67 -

Chapter 4 lmplementation and Result

4.2 Examples of Using of the HDWE System

In this section, some examples of the use of the HDWE and HDP have been given.

4.2.1 HDWE

The Fig.4.1 shows the HDWE has opened an existing Html document. The file name

is shown on the Editor Frame. A user can edit, insert, save, or close this document.

FilB Bn \ter lffit fmmt l.rfrr H".F

Frsr:B^s iIjEGl
i"t

'-rnerrner,r;B; - ;-L-lrriz;igliAF:Fj
nD:Hgrytromehtrl ,t,,, ' , dt

Welcome to Melhua Cul's Homepage

i!;
itn

"Y |ry , , Thls ls a wab page for ltu.3rd asslgnfienl fcr th6'p.p€r'67365; ll prnvldes you g access to Ed€mel :i :
Contracb'dalabase:'This dattbese lsdeslgned,fui recordlng our graduEto stildenld Infomatlon. torti': I

' are nnlcomg to add ar searcb lrformallon In thl- dblAbrsa by cllchng on follo${ng lcons, onloy!, :

*
a.l\./-

Tt lrasget

triime paob

.

ro$lp!F!.

Home Psae

ffi 'IoRooer

&*ffi*. :.]:

ll ffiffi f'se(q Rqqgrg

57.s5 Ass&rr,r?erf lv1€b rpesclffr @sqrd W MY? cti l(ffl)
1

E nail: M,cut(lmass,Bv,ac rq:'.''
,. -t4Yt.

Fig.4.1 HDWE opened an Html document.

-68-

Chapter 4 Implementation and Result

4.2.2 HDP

An snapshot of HDP is shown inFig.4.2, some different primitives have been drawn

using different colors and line styles.

Fig.4.2 All kinds of primitives.

-69-

Chapter 4 Implementation and Result

As the following snapshot (Fig.a-3.) shows, when a user edits an Html document, he

or she may want to insert an arbitrary hand drawing object into that document. The

user can do so by selecting the Insert Applet menu item from the Insert Menu, as a

result, a HDP will be activated to let the user hand draw curves or primitives. After

finishes the drawing, the user can embed this drawing object by clicking on the Insert

Applet tool button on the HDP, or selecting the Insert Applet menu item from the File

menu of HDP.

& Edr " hstr 1$n, nBiNG

i$ffiffiffiffi:li-ryl$l

Fig.4.3 An arbitrary hand drawing document.

-70 -

Chapter 4 Implementation and Result

The following snapshot (Fig.4-4) shows that an applet has been inserted into the

Html document. However, neither Netscape nor Internet Explorer supports Java 2,

and the HtmlEditorKit class in Java has not yet implemented the AppletView class

to display an Applet tag. As a result, the HDWE can not yet run the applet, it only

shows the alternative text of the applet tag. The source file of the Html document

clearly shows that the Applet tag has been successfully inserted into the Html

document.

ff,s :: ErB y!1', hsorl tffnd

DllE';Ej# :ijqa
Amf

--Il",lIE,='i*liE1E

Fig.4.4 An applet has been inserted into the Html document

A full user manual of the HDWE and HDP is given in the Appendix A.

tffior IHF

-tt -

Chapter 5 Conclusions and Further Work

Chapter 5

Conclusions and Further Work

5.1 Comments on using Java API Framework

The Java API framework has been heavily used in developing the HDWE system. The

pros and cons of using a framework are discussed in this section.

Definition

A framework is an object-oriented class hierarchy plus a builrin model of interaction

that defines how the objects derived from the class hierarchy interact with one

another.

This rather simple definition belies the power of frameworks. In practical terms, the

framework approach leverages capital-intensive software investment through reuse,

and provides a much higher-level application programming interface, so that

applications can be developed faster.

A framework is more than a class hierarchy. It is a miniature application complete

with dynamic as well as static structure. It is a generic application a developer can

reuse as the basis of many other applications. A frameworks is also specialized for a

narrow range of application, because each model of interaction is domain-specific,

e.g., designed to solve a nzurow set of problems. A framework is the product of many

iterations in design and evolves over long periods of time.

Cons

The frameworks is designed for a general purpose, which result in the major

limitation of the frameworks - the interactions among object cannot be specified. It is

necessary for the developer to create domain-specific classed by hand, this can be

done by deriving subclasses from these classes.

-72

Chapter 5 Conclusions and Further Work

A second problem is the separation between framework, editor, and resource. Unless

the developer is knowledgeable in these three areas, it is unlikely that the developer

will use the frameworks effectively. Frameworks are not suitable for novice or

inexperienced experts, it is an extremely complex structure, and needs a long learning

curve for a developer to get master it. Due to these deficiencies, enonnous effort

would be attached to the application implementation.

Frameworks also possess their own forms of complexity. The fragile base class

problem, the lack of dynamic interfaces, and the confusion brought on by buzzwords

are a few of the intrinsic complexities of frameworks.

Pros

Reuse through inheritance yields dramatic prograrnmer productivity, and saves

considerable programming time and effort.

Building blocks: objects are in fact self-contained building blocks; hence they are

ideal for a unified theory of composition.

Reuse: frameworks are in fact reusable. And if the developers have a sufficient

supply of application-specific frameworks, then they can build 807o of the world's

application with only 20Vo of. the effort required when starting from scratch.

Testing: components of a framework are assumed to be highly reliable because of

exhaustive testing. After all, they have been reused many times.

-73

Chapter 5 Conclusions and Further Work

5.2 Achievement

A fully working HDWE with the facility to input and display Html document and

hand drawn document has been implemented. The following section describes the

functionality of HDWE and HDP respectively.

5.2.1 HDWE

The HDWE has been implemented to create a new Html document, open an existing

document, save the current document, save the current document with a new name,

closes the current document, close all of the opened documents at once, and exit from

the HDWE.

Using the Edit menu, a user can edit the current document, such as cut, copy, paste,

select all, undo, and redo. The user can also use the View Source menu item to

switch between the source (shows tags) and the target (hide tags) documents, and use

the Reload menu item to close the previous copy of the document without saving it,

and re-open a new copy of that document.

Using the Insert Menu, a user can insert applets, images, forms, URLs, tables, frames,

and lists into the current Html document.

5.2.2 HDP

HDP has been implemented to create a new drawing document, open an existing

drawing document, save the current drawing document, save the current document

with a new name, close the current document, close all of the opened documents at

once, insert the current drawing document from HDP into the current html document,

and can exit from the HDP.

Using the tool buttons provided by HDP, a user can select, draw a line, draw a curve,

erase an item, draw a circle or a filled circle, draw an ellipse or a filled ellipse, draw a

square or a filled square, or draw a rectangle or a filled rectangle.

- 74

Chapter 5 Conclusions and Further Work

A user can use the line style comboBoxes to select the line width, join style, and the

endcap style, or use rendering comboBoxes to control rendering quality, such as

rendering the object with antialiasing, whether the objects to be rendered as quickly as

possible, or the rendering quality be as high as possible, or whether or not the

dithering is enabled.

A user can also use color palette to control the foreground and background color of

the Drawn Panel. The user can choose a commonly used color, or a specific color

from other color panels by clicking on the Other button. It provides the user with

three color choser panels:

Swatches -- for choosing a color from a collection of swatches.

HSB -- for choosing a color using the Hue-Saturation-Brightness color model.

RGB -- for choosing a color using the Red-Green-Blue color model.

The HDWE system uses the Windows Multiple Document lnterface (MDI), so that

user can have several documents opened for editing simultaneously.

5.3 Further Work

Even though the HDWE and HDP have been implemented to edit and display Html

documents and hand drawing documents, there are still many features that could have

been included in both the HDWE and the HDP editing component.

For HDWE. the further work could includes:

r Implement AppletView class

o Completely resolve the concurrency problem.

o Completely provide undo redo support for the whole system.

. Implement all of the insert menu items:

Insert Images

Insert Forms

Insert URLs

Insert Frames

-75

Chapter 5 Conclusions and Further Work

o Context sensitive help

For the HDP. the further work could include:

o Extend the function of the HDP

ln following sections, each aspect of this further work will be discussed in detail.

5.3.1 Implement AppletView Class

An applet is a little application program, which can perform some simple tasks

without having to send a user request back to the server. Java applets can be included

in Html documents, much in the same way an image is included. When the user uses a

Java-compatible browser to view a page that contains a Java applet, the applet's code

is transferred to user svstem and executed bv the browser.

Here is an example of a simple APPLET tag:

<applet code= "AppletReader.class " width= I 00 height= 1 40></applet>

This tells the viewer or browser to load the applet whose compiled code is in

AppletReader.class (in the same directory as the current HTML document), and to set

the initial size of the applet to 100 pixels wide and 140 pixels high.

The default support is provided by the HTMLEditorKit class. But the <appleD tag

has not been supported yet. In order to view a html document including an applet

element, HDWE needs to implement the AppletView class.

The mechanisms to implement the AppletView class is as follows:

The AppletView class needs to implement the view interface for <applet> elements.

This view needs to load the class specified by the classid attribute. If possible, the

Classloader used to load the associated Document can be used. This would typically

be the same as the Classloader used to load the EditorKit. If the documents

Classloader is null, Class.forName can be used instead. If the class can successfully

be loaded, an attempt will be made to create an instance of it by calling

Class.newlnstance. An attempt can also be made to narrow the instance to type

java.awt.Component to display the object.

76

Chapter 5 Conclusions and Further Work

5.3.2 Completely Resolve the Concurrency Problem.

The multiple document interface (MDI) is a specification that defines a user interface

for applications that enable the user to work with more than one document at the same

time. Each document in an MDI application is displayed in a separate child window

within the client area of the application's main window.

The concurrency problem with the MDI is actually the problem of the readers and

writers. which can be described as follows:

A file is accessible by a number of user processes. On some occasions the file

is to be read, which implies that it is not changed, and on other occasions the

file is to be written, i.e. changed. The ground rules of the problem are that

since the resource does not change state whilst being read, it may be read by

any number of processes simultaneously. If any process is in the act of

changing the state of the resource, then that process must have exclusive

access to the resource, i.e. it would not be appropriate for another process

either to be writing at the same time, or indeed reading while the writing was

in progress.

In this problem, the use of a monitor is required to grant (or perhaps deny) access to

the shared resource - a file. In this case it is necessary for the user processes to

indicate not only that they wish to use the resource, but also the mode in which they

wish to do so.

A boolean is required to indicate whether or not the resource has been allocated

exclusively to a process. In addition, a variable is required to indicate whether or not

the resource is being used for reading. Since more than one process may be in the act

of reading the resource, this variable will have to be a counter rather than just a

boolean. Because there are two conditions under which a process may be delayed,

namely an attempt to read and an attempt to write to the resource, it is necessary for

the monitor to include two condition variables that can be named okToRead and

okToWrite.

-77

Chapter 5 Conclusions and Further Work

In designing a monitor to solve the readers and writers problem, a strategic decision

has to be made. This may be stated as - If a number of processes are reading the

resource and a request arrives to write to the resource, this request will be delayed.

The question of strategy is to decide whether or not this request should take priority

over subsequent read requests, which could in principle start immediately, since other

reads are already in progress. The argument for allowing these requests to go ahead is

that it maximises concurrency, or equivalently minimises the total delay. The

disadvantage of this approach is that, in a heavily loaded system, the write operation

may be delayed indefinitely. An additional disadvantage is that a write request

heralds the updating of the information held by the resource, and that delaying the

write operation will mean that more reading of un-updated information will take

place. The correct decision as to which of the two approaches to take will depend on

the precise nature of the information held by the resource, and the frequency with

which the resource is accessed.

5.3.3 Undo Redo Support

HDWE should be able to provide the Undo command in the Edit menu that allows the

effect of the last operation to be undone. Typing text, and any command that changes

the content of the document, should be undoable. But, following actions that cannot

be undone:

o Scrolling and windowing commands

o Text selection

Undo itself (it can be undone with Redo)

Any actions performed prior to the last time the document was saved cannot be

undone.

If a user executes several Undo commands in a row, he or she will undo the most

recent action, and then undo the second most recent action, and so forth. By default,

the user should be able to undo the last 30 actions. The user can also be allowed to

change the default undo limit. To reverse an Undo, the user can use Redo. If the user

has performed several Undos, he or she can reverse each of them by performing an

- 78

Chapter 5 Conclusions and Further Work

equal number of Redos. If the user perform one or more Undos, and then perform an

undoable action, the user will no longer be able to redo any of the Undos.

5.3.4 Context Sensitive Help

HDWE should be able to provide a user with help facilities that are context sensitive.

Enabling the user to select from those topics that are relevant to the actions currently

being performed. Obviously, this reduces the time required for the user to obtain help

and increases the "friendliness" ofthe interface.

As the user moves from program to program, from field to field, he or she may need

help in understanding what he or she should enter in the current field, or even what

the purpose of the current program is. The HDWE system should be able to provide

the user with the appropriate manual to the section that deals with the question

cunently being prompted on the screen. The user should be able to physically do this

on the keyboard by hitting the key that has been designated as the HELP hot key,

usually the F1 function key.

This should gives the user sufficient information to resolve problems without having

to resort to the hard copy manuals, which are generated directly from this online help

text. Once the user has read enough to resolve his or her problem, the user can simply

press the ESC key to return to the exact point in the program that the user was at prior

to activating the help processor.

Every field in every program should have context sensitive help associated with it,

and the entire program too.

This context sensitive help of HDWE should also be supplemented by the HOWDOI

process, which provides a search engine to specific procedures to solve common

problems and answer typical questions.

- 79

Chapter 5 Conclusions and Further Work

5.3.5 Implement all of the Insert Menu Items.

Insert Images

A user should be able to insert an image file into the current Html document. The

procedures could be:

I Position the insertion point where the user want to insert a picture or an image.

2 On the lnsert menu, choose the Image menu item, a file chooser interface will

be activated so that the user can choose an image file.

3 Locate the file that contains the image the user wants to insert.

4 Double click that image file.

Insert Forms

Form is used to present a fill-out form to be used for the user actions such as

registration, ordering, or queries. The forms can contain a wide range of HTML

markup including several kinds of form fields such as single and multi-line text fields,

radio button groups, checkboxes, and menus.

The entire form is a single element enclosed by <FORM> and </FORM>. The

<FORM> tag takes two important attributes, ACTION and METHOD. The HDWE

should be able to provide the user with a user interface to fill in the values of these

attributes.

Insert URLs

Hypertext links are defined with the <A> Anchor element. The HDWE should be able

to provide the user with an interface to insert a hyperlink as follows:

I Select the text or drawing object the user wants to display as the hyperlink,

and then click the URL menu item in the Insert menu. A user interface should

be able to be activated.

2. If the user has any unsaved changes, HDWE should be able to prompt the user

to save the file.

3 In the Link to file or URL box provided by the user interface, enter the path of

the file the user wants the hyperlink to jump to, or click Browse to select from

a list of files.

4 In the Named location in file box, enter the sub-address.

-80

Chapter 5 Conclusions and Further Work

5. Click ok to change selected text or drawing object to a Hyperlink.

Insert Frames

Creating frames

A user should be able to create frame areas in several different ways. For example,

clicking on the certain button will split the currently selected frame horizontally into

two equal frames, and clicking on the other button will split the selected frame

vertically. If a user right-click on the graphical area of the frame editor, a pop-up

menu should be appear, from which the user can choose Split horizontally or

vertically. To create custom-width frame areas, HDWE should provide the user with a

user interface to:

o Move the cursor to the edge of any graphical area in the frame editor.

o Hold down the left mouse key. The cursor changes to a double-headed arrow.

. Drag away from the edge. This will 'pull'the edge of the frame with the mouse,

creating two different frame areas.

5.3.6 Extend the Function of the HDP

The HDP needs to be extended to allows a user to:

1. Select a rectangular or an irregularly shaped area of a drawing object. To

remove the selection box, the user can click outside the box.

2. Copy part of a drawing object by selecting the area to be copied and then

dragging the cursor to define the area to paste.

3. Change the size of a drawing object. If the current picture is bigger than the

new size, it is cut from the right side and bottom to fit within the smaller area.

4. Zoomin or out of a picture.

5. Rotate a picture. A user may select a free-form shape to be rotated.

6. Stretch or skew an item by entering amount into the stretching or skewing

option form.

-81

Appendix A HDWE User Manual

Appendix A HDWE User Manual

A.L Introducing the HDWE

The HDWE is a stand-alone electronic publishing application that can help a user to

design pages for the World Wide Web (WWW). Web pages are written in Hyper

Text Markup Language (HTML) and Cascaded Style Sheet.

HDWE offers many ways to make creating HTML documents easier. If a user is an

experienced HTML author, he can type all the formatting tags directly, or select them

from menus and pop-up lists. If a user is new to HTML, HDWE has screens to let him

insert images, formatting, and hypertext links into the document without having to

learn the HTML language.

4.2 HDWE Features

Supports HTML 3.2 and CSSl.

Windows 95-style interface, Macintosh interface, or cross platform interface.

Provides the Applet draw panel on which a user can draw anything using a pen input

device.

A.3 HDWE Menus

A.3.1 File Menu

New : Opens a new window for editing a new html document. The new

document will be referred to as "Untitled" on the editor frame.

Open: Opens an existing file for editing. The file will appear in its own

window, and its name will be listed on the editor frame.

Save : Saves the current document. If a user has not saved this document

-82 -

Appendix A HDWE User Manual

before, this option has the same effect as choosing the Save As menu

item from the File menu.

Save As : Saves the cunent document with a new name.

Close: Closes the current document. If the document has been changed since

the last time it was saved, the user will be asked if he or she wants to

save the changes.

Preview: Launches the default browser so that the user can see what the

document will be look like to a viewer.

Print: Prints the cunent document to the default printer.

Print Setup: Lets the user change the default printer, and change the setup of the

printer.

Close All: Provides a user with a quick way to close all of the opened documents.

If a document has been changed since the last time it was saved, the

user will be asked if he or she wants to save the changes.

Close & Save All: Saves all the current documents without prompting the user and

then closes all of them.

Close All Without Save All : Closes all opened documents at once without saving or

prompting the user to save.

Exit : Leaves HDWE. If any document has been changed since the last time

it was saved, the user will be asked if he or she wants to save the

changes.

-83-

Appendix A HDWE User Manual

4.3.2 Edit Menu

Cut : Removes highlighted text from the user's document and puts it in the

Clipboard . The text may then be pasted from the Clipboard.

Copy : Takes a copy of highlighted text in the user's document and puts it in

the Clipboard . The text may then be pasted from the Clipboard.

Paste : Inserts the contents of the Clipboard in the user's document. The

information remains in the clipboard, so he or she can use Paste to

insert the same information repeatedly.

Select All: Selects the whole content of current document at once.

Undo : Reverses the last action. For example, if the user accidentally deleted

some text, he or she could use Undo to get it back.

Redo : Reverses the last action. For example, if the user have undone a action

by choosing Undo menu item, the redo can re-do that action.

A.3.3 View Menu

Tool Bar : Provides fast access to commonly-used HDWE functions. It can be

hidden from the View menu.

Format Bar: Provides fast access to commonly-used HDWE font and tag functions.

It can be hidden from the View menu.

Status Bar : HDWE uses the Status bar at the bottom of the screen to tell the user

what it is doing.

View Source : Provides a convenient way to switch between the Source(shows tags)

and target(hide tags) documents.

-84-

Appendix A HDWE User Manual

Reload : Closes the previous copy of the document without saving it, and

re-opens a new copy of that document.

The following figure shows the source content of the html document being opened by

Fis.4-1.

Hb , Eff. , I9l hi€rt FTmd 1.1n4* l{.b
'D'dB ';i ;16 qg

lHl i v iiAmerTyre Md BT

A.3.4 Insert Menu

Applet : Inserts an Applet into the Html document, the applet is resizable and

acts like a white board. The user can draw or erase different styled and

colored lines, curves, primitives, text and images.

Image : Inserts an image into the current document. This will usually be in GIF

or JPG format. The image file can be in the same directory as the

current document.

<lilmF :
<l*trtr

:,
<meta mrtsr*-tb:dtdn$ ql|art€t-xin h{etl5z ltttp-BqrFco{a€fl a-I}!!>
<msla nme=Gsr€rds contenl-&rosolt lrhfd 9?>
<tlUs>tom <rtlds>

$ute nflfia{ffinildr c{!!rent clpfofR lM RtfsrfficRosoFr oFHctoretmrfle
<tt# ':

<bo.u bacl(g'olrd:$dthrhg rlffiStlxEo lirdt-flllilItrD
<p&Fc€oter>
<foil 3&6><blmcoiloto tt€ftua Cl,fs llorilsFqE:<&r<tod;

<p aryFcsr{ell :'
lr lpuld-4$ rrlitf F3At src"m{rslcfsh&9if'l

<p>
<p oggn.caiar)

<ip>

<canlEr>
tt&b celtfo{tmro-l rdd|F{p2 lonbr{ ceI3pocftq{t>
<tr2

<d tFlgh*? !4d0n't0c col$p{F2 rddlFfnl>
<p>

<u|t
<&>

<itrt

Llnl(';<Jb)<tdt>

1d f{lryoll-2ts1d*.34 rtw:ro|1.rrd|on.tq td|lr.?oli>
<F>

doilt l{zF4>
Tlf9 b arwe! p6lFf6the3rdas3iqnmenl forileFper 5-f36tit Fo!ftbrfrar aace*
s to 'gd€rnal Co|lrrds' ddab6e. This ddahse b rhslqn€d tr recor|s|o our qrdrt

r:lBstu&fts'lt'urnalhr.You aro rudcfins to a{d 6c0arctr lldom}adm htfils dcab|c
I bc&khn or folbrhlkd|J. odori

Fig.A.l Source of the document opened in Fig.A.1.

-85-

Appendix A HDWE User Manual

Form

URL

Tables

Frame

Lists

A.3.5

Alignment:

Bold :

Italics :

Underline:

A.3.6

Inserts a form into the current document. Form is used to present a fill-

out form to be used for the user actions such as registration. It takes

two important attributes, Action and Method. The HDWE provides the

user with an interface to fill in these attributes.

Hypertext Targets let the user jump to other specific locations. The

user can jump to a target in the same document, or another document.

Targets are most often used in long a document which is divided into

several sections.

Inserts Table, Table Row or Table Data Cell into the current document.

A user can do so by selecting corresponding sub menu item from the

Table Menu Item.

Inserts a frame or frame set by right-clicking, and then a pop-up menu

will allow the user to choose to split horizontally or vertically.

Inserts ordered list, ordered list item, unordered list, unordered

list item into the current Html document by selecting corresponding

sub menu item from the List menu Item.

Format Menu

Aligns highlighted portion of content to left, right or center.

Changes selected portion of content to the bold style.

Changes selected portion of content to the italics style.

Changes selected portion of content to the underline style.

Window Menu

HDWE uses the Windows Multiple Document Interface (MDI). This means that a

user can have several documents opened for editing simultaneously. The Window

Menu provides some easy ways to manage these documents.

-86-

Appendix A HDWE User Manual

Cascade : Overlaps all opened documents from the top left to the bottom right of

the screen. so that the title bars of all documents are visible.

Tile : Arranges all open documents from top to bottom across the screen. The

height of each document window will be reduced so they all fit in the

screen.

Window List: This lists all the documents a user currently has opened.

A.3.8 Help Menu

Content : Provides the user all the content of help topics.

Search : Provides the user with an index so that the user can find a

specific help topic quickly.

About HDWE: Describes the general information of the HDWE.

A.4 Hand Drawn Panel Menus

A.4.1 Menu Bar

A.4.I.I File Menu

New Drawing: Opens a new window for drawing. The new document will be referred

to as "Untitled" on the editor frame.

Open Drawing:Opens an existing drawing document for editing. The file will be

appeared in its own window, and its name will be listed on the editor

frame.

Save Drawing:Saves the current document. If a user has not saved this document

before, this option has the same effect as choosing the Save As from

the File menu.

-87 -

Appendix A HDWE User Manual

Save As : Saves the current document with a new name.

Close : Closes the current document. If the document has been changed since

the last time it was saved. the user will be asked if he or she want to

save the changes.

Print : Prints the current document to the default printer.

Insert Drawing:Inserts the drawing from HDP into the html document from where the

insert applet menu item has been chosen.

Exit : Leaves HDP. If the drawing document has been changed since the last

time it was saved, the user will be asked if he or she wants to save the

changes.

A.4.1.2 Edit Menu

Cut : Removes highlighted portion of drawing from the user's drawing

object and puts it in the Clipboard . It may then be pasted from the

Clipboard.

Copy : Takes a copy of highlighted portion of drawing from the user's drawing

object and puts it in the Clipboard .It may then be pasted from the

Clipboard.

Paste :Inserts the contents of the Clipboard into user's drawing object. The

information remains in the clipboard, so that the user can use Paste to

insert the same information repeatedly.

Select All :Selects the whole drawing on the Hand Drawn Panel.

Undo :Reverses the last action.

-88-

Appendix A HDWE User Manual

Redo

4.4.1.3 View Menu

Tool Bar

Content

Search

:Provides fast access to commonly-used Hand

It can be hidden from the View menu.

Drawn Panel functions.

:Reverses the last undo action. For example, if a user have undone a

action, he can redo that action by choosing the Undo menu item from

the Edit Menu.

A.4.1.4 HeIp Menu

:Provides a user with all of the help content of HDP.

:Provides a user with an index so that the user can find a specific help

topic quickly.

About HDP :Describes the general information of the HDP.

A.4.2 Tool Bar

The screen snapshot of Tool bar of Hand Drawn Panel is as follows:

Screen snapshot of Tool Bar of Hand Drawn Panel.

The tool buttons are divided into two sets, the first 8 buttons'functionality has been

described in A.4.1. The rest of the tool buttons provide the user the functionality as

follows:

o Select
o Draw a line
o Draw a curve
o Erase an item
o Enter Text
o Draw a Circle
o Draw a Filled circle
o Draw an ellipse
o Draw a filled ellipse
o Draw a square
o Draw a filled square
o Draw a rectangle
o Draw a filled rectangle

Fig.A.2

-89-

Appendix A HDWE User Manual

A.4.3 Rendering Hint ComboBox

As follows is the snapshot of Rendering Hint ComboBoxes of HDP:

Fig.A.3 Rendering Hint ComboBox of HDP.

The first three comboBox is about Line Styles, a user can select a line width, a join

style, and a endcap style from these three comboBoxes:

l. Line width : is the thickness of the line measured perpendicular to its trajectory.

2. Join Style : is the decoration that is applied where two line segments meet. There

are three join styles: Join_Bevel, Join_Miter, and Join_Round.

3. Endcap Style : is the decoration that is applied where a line segment, there are three

endcap styles: Cap-Butt, Cap_Round, and Rap_Square.

The last three comboBoxes let a user to control Rendering Quality. The user's

preferences are specified as hints through the RenderingHints attribute in the

Graphics 2D context Not all platforms support modification of the rendering mode

so specifying rendering hints does not guarantee that they will be used. When a hint is

set to default, the platform rendering default is used is used.

4.Antialiasing : is a technique used to render objects with smoother-appearing edges.

It can be set to default, on, or off.

On -- rendering is done with antialiasing

Off -- rendering is done without antialiasing

Default -- rendering is done with the platform default antialiasing

mode.

5. Rendering : lets a user to choose whether the objects to be rendered as quickly as

possible, or that the rendering quality be as high as possible. It can be

-90-

Appendix A HDWE User Manual

set to speed, quality and default.

Speed -- Appropriate rendering algorithms are chosen with a

preference for output speed.

Quality-- Appropriate rendering algorithms are chosen with a

preference for output quality.

Default -- The platform default rendering algorithms are chosen.

6. Dithering : lets a user to choose whether or not to dither when rendering the

objects. It can be set to disable, enable and default.

Disable -- do not dither when rendering

Enable -- dither when rendering, if needed

Default -- use the platform default for dithering

A.4.4. Color Palette

As follows is the snapshot of Color Palette of HDP:

3::-T;H FEffiFFffiEE@@
Fig.A.4 Color Palette of HDP.

The Color Palette of HDP is used to control the foreground and background color of

the Drawn Panel. As shown above, each square box represent a commonly used

color. A user can choose one of these colors by simply click it. If a specific color a

user wants is not among these color boxes, the user can choose it from other color

panels by clicking on the Other button. It provides the user with a palette of colors to

choose from. As Fig. 5,6,7 show, the default color chooser provides three chooser

panels:

-91-

Appendix A HDWE User Manual

S'vrdches:

o Swatches -- for choosins a color from a collection of swatches.

o HSB -- for choosing a color using the Hue-Saturation-Brightness color modei.

g E f vlarnnlFT'"'sarnnrFTFf,

Fig.A.5 Swatches Color Model.

cH l__"1
r:s lGoI

::l*[r
u?!-5;

o,,*i)
,, ,

&j0:. j .', :

E E I ganPieTe{gampreTera
:i

!

l.:i

!iilrIffi
Fig.A.6 HSD Color Model.

-92 -

Appendix A HDWE User Manual

r RGB - for choosing a color using the Red-Green-Blue color model.

Fig.A.7 RGB Color Model.

-93 -

Appendix B Bibliography

Bibliography

Books

1. Ian S.Graham, HTML Stylesheet Sourcebook, Wiley Computer
Publishing,l99T .

2. Craig Larman, Applying UML and Patterns, Prentice Hall, 1998.

3. Michael morrison, etal, Java l.I unleashe4 Sams.net Publishing,1997.

4. E.Stephen Mack and Janan Platt, HTML 4.4 SYBEXlnc.,1997.

5. TerryQuatrani, Visual ModelingWith Rational Rose And UML,Addison
Wesley Longman,Inc., 1 998

6. Martin Fowler, Kerndall Scott, UML Distilled, Applying The Standard Object
M o delin g Lan g ua g e, Addison Wesley Longman,Inc., I 998

7 . James J. Odell, Advanced Object-Oriented Analysis & Design Using UML,
SIGS Books & Multimedia.,1998

8. Roger S.Pressman,Software Engineering A Practitioner's Approach, Third
Edition. McGRAW-Hill International Editions.. 1992.

9. Roger S.Pressman,Software Engineering A Practitioner's Approach, Fourth
Edition, McGRAW-Hill International Editions,. I 992.

10. Laura Lemay, Charles L.Perkins, Teach Yourself JAVA 1.1 in 2l Days, Second
Edition, Sams.net Publishing, .1991

11. Russel Winder,Graham Roberts, Developing Java Software,John Wiley &
Sons Ltd,.1998

12. Nancy M.Wilkinson, Using CRC Cards, An Informal Approach to Object-
Oriented Developmenr, SIGS Books & Multimedia.,1995

13. Richard Light, Presenting XML, Sams.net Publishing,.1997

14. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design
Patterns, Elements of Reusable Object-Oriented Sofrtvare, Addison-Wesley
Publishing Company,. 1 994

15. Matthias Felleisen, Daniel P.Friedman, A Little Java, A Few Patterns,
Massachusetts Institute of Technology Press,. 1998

-94-

Appendix B Bibliography

16. Grady Booch: Object-Oriented Analysis and Design with Applications.,
Benj amin/Cummings, I 994

I7. Grady Booch: Object Solutions: Managing the Object-Oriented Project.
Addison-Weslev. 1995

18. Peter Coad und UO*td Yourden: Object-Oriented Analysis. Yourdon, l99l

t9. Peter Coad and Edward Yourden: Object-Oriented Design. Yourdon, 1991

20. James Rumbaugh,Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorenzen: Object-Oriented Modeling and Design Prentice Hall, 1991

2I. Ted Lewis, Larry Rosenstein, Wolfgang Pree, Andre Weinand, Erich Garnma,
Paul Calder, Glenn Andert, John Vlissides & Kurt Shumucker.
S oftb o und, O bj e c t O rient e d Ap pli c ati on F ramew o rks., I 99 5

22. Beck, Kent. "Patterns and Software Development." Dr. Dobb's Journal 19, no.
2 (February 1994): 18.

23. Beck, Kent and Johnson, Ralph. "Patterns Generate Architectures," European
Conference on Object-Oriented Programming O99q.

24. Birrer, Andreas and Eggenschwiler, Thomas. "Frameworks in the Financial
Engineering Domain: An Experience Report," European Conference on
Object-Oriented Programming (I 993): 2I-35.

25. Booch, Grady. "Designing an Application Framework," Dr. Dobb's Journal 19,

no. 2 (February 1994):24.

26. Booch, Grady. Object-Oriented Analysis and Design With Applications.
Redwood City, CA: Benjamin/Cummings, 1994.

27. Campbell, Roy; Islam, Nayeem; Raila, David; and Madany, Peter. "Designing
and Implementing "CHOICES": an ObjecrOriented System in C++,"
Communications of the ACM 36, no. 9 (September 1993): lI7.

28. Coad, Peter. "Object-Oriented Patterns," Communications of the ACM 35, no.
9 (1992): r52.

29. Eggenschwiler, Thomas and Gamma, Erich. "ET++ SwapsManager: Using
Object Technology in the Financial Engineering Domain," OOPSLA 92
Conference Proceedings, ACM SIG Notices 2'7, no. 10 (1992): 166.

30. Frameworks: The Journal of Software Development Using Object Technology.
Software Frameworks Association.

-95 -

Appendix B Bibliography

31. Gamma, Erich; Helm, Richard; Johnson, Ralph; and Vlissades, John. "Design
Patterns: Abstraction and Reuse of Object-Oriented Design," European
Conference on Object-Oriented Programming (I 993) : 406-43 l.

32, Gamma, Erich; Helm, Richard; Johnson, Ralph; and Vlissades, John. Design
Patterns: Elements of Reusable ObjecrOriented Software. Addison-Wesley,
Forthcoming.

33. Goldstein, Neal, and Jeff Alger. Developing Object-Oriented Software for the
Macintosh. Reading, MA: Addison-Wesley, 1992.

34. Johnson, Ralph. "How to Design Frameworks," OOPSLA 93 Tutorial Notes,
1993.

35. Mallory, Jim. "TI Software Speeds Semiconductor Production," Newsbytes
NEw0720001 1 (July 1993).

36. Nelson, Carl. "A Forum for Fitting the Task," IEEE Computer 27, no. 3
(March 1994):104.

31. Shelton, Robert. "The Distributed Enterprise," The Distributed Computing
Monitor 8, no. 10 (October 1993): 3.

38. Stroustrup, Bjarne. The C++ Programming Language. 2d ed. Reading, MA:
Addison-Wesley, 1991.

39. Wilson, Dave. "Designing Object-Oriented Frameworks." Personal Concepts,
Palo Alto. CA 1994.

40. Wong, William. Plug & Play Programming, An Object-Oriented Construction
Kit. M&T Books. 1993.

4I. C. R. Snow, Concurrent Programming, Cambridge Computer Science Texts,
1993.

Web Sites

42. http://fi ms-www.mass ey.ac.nzl -crjessho/html/Neuools.html

43. http://wwwjavaworld.com/javaworld/jw-07-1998/jw-07-java-win32.htrnl

44. http://www.oz.nthu.edu.tw/-u84090 1/proj/node 14.html

45. http://www.oz.nthu.edu.tw/-u84090 1/proj/node 1 9.html

46. http://www.relisoft.com/java/cjava.html

-96-

Appendix B Bibliography

47 . http://www.sm.go.dlr.de/-boblDocu-intern/JavaPG/noMoreC/index.html

48. http:i/www.students.uiuc.edu/-gjkaiser/serious/acmarticle.html

49. http:/lkia.etel.ru/books/javainnet/appe.htm

50. http://www.soft-design.com/softinfo/objects.html

51. http://iamwww.unibe.ch/-scg/OOinfo/FAQ/

52. http://www.clark.net/pubftrowie/OO/ooterms.html

53. http:lljava.sun.com/about.html

54. http://wwwjavaworld.com/javaworld/jw-07-1998/jw-07-java-win32.html

55. http://lcs.www.media.mit.edu/-moux/papers tP AAM96lnodeT.html

56. http:lljava.sun.com/products/jfcltsc/getting_started/getting_started.html
#swin g_comp_architecture

57. http://www.andromeda.com/peoplelddyer/java./Reviews.html#kawa

58. http://www.tek-tools.com/kawa/

59. http://www.tek-tools.com/kawa/reviews.htm

60. http://www.cjug.org/newslkawa.html

61. http:l/java.sun.com/products/jfc/tsc/swingdoc-arch.htm

62. http://www.htw-dresden.de/-beck/JAvA I 1/SWING/mvc.html

63. http;l ljava.sun.com/features/1998/l 1/jdk.html

64. http://www.symantec.com/domain/cafe/vcafese30/index.html

65. http:l ljava.sun.com/pr/19981 I2lpr98 1208-04.html

66. http://java.sun.com/products/jfc/tsc/index.html

67 . http:l ljava.sun.com/products/jfc/tsc/TexUtext/text.html

68. http://java.sun.com/docs/books/tutoriaVindex.html

69. http:l ljava.sun.com./docs/books/tutoiaU2dlindex.html

7 O. http ://j ava. sun.com/docs/books/tutoiall2d/ overview/index.html

-97 -

Appendix B Bibliography

7 L http:l ljava.sun.com/docs/books/tutoriaU2d/overviedrendering.html

72. http://java.sun.com/docs/books/tutorraV2d/overview/coordinate.html

7 3 . http: I / jav a.sun.com/docs/books/tutorraV 2dl overview/shapes.html

7 4. http: / / jav a.sun.com/docs/books/tutorraV 2dl overview/text.html

7 5 . http: I / jav a.sun.com/docs/books/tutonal/ 2dl overview/images. html

76. http:l/java.sun.com/docs/books/tutorial/Zdloverview/printing.html

7 7 . http://bmccarty.apu.edu: 8080/cunicula/cs50 1 il*,cine02/index.htm

7 8. http://www.uwa.edu.au/cwis/howto/forms.html

79. http://www.hut.fi/u/jkorpela/forms/

80. http://www.hut.fi/-jkorpela/HTML3.2l5.25.html

81. http://www.hut.fi/-jkorpela/HTML3.2l

82. http://www.manning.com/Irwis2/index.html

83. http://www.manning.com/Irwis2/Contents.html

84. http://www.manning.com/Irwis2/Preface.html

85. http://www.manning.com/I-ewis2/Chapterl-1.html

86. http://www.developer.ibm.com:8080/library/aixperUfeb95
/aixpert_feb95_boof . html

87. http://www.developer.ibm.com:8080/library/aixperUfeb95
/aixpert_feb9 S_boofframe. html

88. http://hpsalo.cern.cMTaligentDocs/TaligentOnline/DocumentRooUl.0/Docs
/books/DF/DF_2.htmt

89. http:/ftpsalo.cern.ch/TaligentDocs/TaligentOnline/DocumentRoot/1.0/Docs
/books/DF/DF_ 1 3 3.html#tmADING I 95

90. http ://www.mvblind.u ni-linz.ac.atJaster/node I 04.html

9 1 . http://simon.cs. cornell.edu/Info/People/raman/current/phd-thesis
/htmVnode 1 8.html#SECTION002 I 0000000000000000

92. http://www.w3.mag.keio.acjp/TR/l'{OTE-amaya

-98-

Appendix B Bibliography

93. http://kb.indiana.edu/data/adnl.html

94. htp://www.w3.org/Style/

95. http://www.w3.org/TR/REC-html40/struct/dirlang.htrnl#h-8.2. 1

9 6. http://server.htrnlhelp.org/referen celhtnl40lspeciaVbdo.html

97. http://www.mcp.com/sites/1-56830/1-56830-306-8/links.html

98. http://www.eiffel.com/doc/manuals/technology/oo_comparison/

99. http://java.sun.com/docs/books/tutoriaUui/swingComponents
/colorchooser.html

100. http://www.staminasoftware.com/context.htm

1 0 1 . http ://www.vtiscan.com/j dkl .2beta2ldocs/guide/security/spec
/security-spec.doc 1.html

I02. http ://www. swiss. ai. mit. edu/-jbank/j avapaper/j avapaper. html

I 03. http://ei.cs.vt.edu/-wwwbtb/boolc/chap 14lindex.html

IO4. http://www.cs.princeton.edu/sip/j ava-faq.html

105. http://www.nikos.com/javatoys/deep/security/

106. http://www.disordered.org/Java-JIT.html

107 . http://www.omnisoft. se/j ava_performance.html

I 08. http://www.inside-j ava.com/articles/perf/index.htm

109. http://java.sun.com/sfaq/

-99-

	100001
	100002
	100003
	100004
	100005
	100006
	100007
	100008
	100009
	100010
	100011
	100012
	100013
	100014
	100015
	100016
	100017
	100018
	100019
	100020
	100021
	100022
	100023
	100024
	100025
	100026
	100027
	100028
	100029
	100030
	100031
	100032
	100033
	100034
	100035
	100036
	100037
	100038
	100039
	100040
	100041
	100042
	100043
	100044
	100045
	100046
	100047
	100048
	100049
	100050
	100051
	100052
	100053
	100054
	100055
	100056
	100057
	100058
	100059
	100060
	100061
	100062
	100063
	100064
	100065
	100066
	100067
	100068
	100069
	100070
	100071
	100072
	100073
	100074
	100075
	100076
	100077
	100078
	100079
	100080
	100081
	100082
	100083
	100084
	100085
	100086
	100087
	100088
	100089
	100090
	100091
	100092
	100093
	100094
	100095
	100096
	100097
	100098
	100099
	100100
	100101
	100102
	100103
	100104
	100105
	100106

