Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

BIOLOGY OF SAMBAR DEER (<u>Cervus unicolor</u> Kerr, 1792) IN NEW ZEALAND WITH PARTICULAR REFERENCE TO DIET IN A MANAWATU FLAX SWAMP

A thesis presented in partial fulfilment of the requirement for the degree of Master of Science in Zoology at Massey University

SIMON DOUGLAS KELTON

1981

SAMBAR HIND, MOUTOA (L. Barnard)

ABSTRACT

This MSc. thesis is the first detailed account of the biology of sambar deer (<u>Cervus unicolor</u> Kerr, 1792) in New Zealand. Observations were made for fifteen months on approximately 35 animals inhabiting flax swamp at Moutoa, southern Manawatu.

Sambar are shy and cautious, mostly nocturnal and prefer dense cover. Methods used to overcome problems of direct observation of sambar are described and their relative effectivenesses are compared. Habitat requirements are also discussed.

Diet of Moutoa deer was determined by analysing monthly faecal samples supported by direct observation of feeding and examination of feeding evidence. A quantitative method of faecal analysis based on the area of plant cuticle present is described. Seasonal changes in diet composition are detailed. Flax and rank grasses comprise the greatest proportion of the diet, while ryegrass was present in low proportions and clover was absent from the faeces. Evidence is presented suggesting sambar deer do not compete with domestic stock for high quality forage.

The eight most frequent forage species found in faeces were sampled seasonally and analysed for Acid Detergent Fibre, energy, nitrogen (crude protein) and water content. There was no correlation between changes in forage quality throughout the year and seasonal changes in diet composition. Other factors involved in forage selection are discussed.

The Moutoa breeding population is viable and had an estimated average age structure of 36% adult males, 46% adult females and 18% juveniles.

In New Zealand sambar appear to breed throughout the year with two peaks of increased rutting activity in June, July and August, and in November.

Evidence is presented that the majority of stags shed their antlers annually, in contrast to the previously accepted belief that they hold antlers for two or more years. Antler-cycle is closely associated with the breeding cycle, most sightings of stags in hard antler occurring from June to November. Examination of available information on breeding and antler cycles in Australian sambar revealed similar cycles to these in New Zealand, whereas in India it appears a single peak in rutting occurs from October to December, with a corresponding antler cycle.

Herds are loosely structured and generally comprise small family groups, commonly a hind, yearling and fawn. Young stags generally form groups of two to four individuals while old stags evidently lead solitary lives except in the breeding season when they were often observed with one or two hinds. Rutting stags are territorial with olfactory and visual cues apparently serving to exclude rivals. Roaring or fighting, apparently common in India during the rut, is rare in New Zealand.

Evidence is presented that some hybridisation with rusa deer (<u>Cervus timorensis</u> Blainville, 1822) occurs in the Bay of Plenty. A comparison of cranial characters between Manawatu and Bay of Plenty deer was inconclusive because of insufficient numbers of skulls. Sexually dimorphic cranial characters are given for animals from the Manawatu area. Sambar deer skulls were aged by counting the number of annuli in the cementum pad of molariform teeth.

·iv

ACKNOWLEDGEMENTS

My supervisor, Dr J.P. Skipworth, deserves my sincerest thanks for his constructive help during all of my research and thesis preparation.

Sincere thanks are also due to Mr and Mrs A.E. Hunter, who manage Moutoa. Without their enthusiastic help and kind hospitality this research would not have been possible.

The New Zealand Forest Service provided \$500.00 towards my travel and often extended their generous help and advice for which I am grateful. In particular I appreciate the help and information given by Dr C. Challies, C.L. Batcheler and M. Douglas (Forest Research Institute, Islam), I. Logan, W. Simmons and J. Sutton (Forest Service, Palmerston North), and H. Vipond, Judy Gamble and J. Knowlton (Forest Service, Rotorua).

Considerable help was also given me by M. Daniel and Dr M. Rudge, (Ecology Division, D.S.I.R.) who gave me the benefit of their own field experience.

The following people also made their own unpublished data available to me : M. Daniel on Rotorua sambar ; Dr M. Draisma, (Deer Advisory Council of Victoria, Australia) on breeding and antler condition of Australian sambar ; J. Rudd (Deerstalkers' Association, Rotorua) on breeding and antler condition of Rotorua sambar.

I am indebted to Dr G. Arnold, D. Drummond, R. McCammon, P. McGregor, Dr E. Minot, Dr T. Moore (all of Massey University) and C.L. Batcheler for statistical assistance and advice on craniometric analysis. In addition Dr E. Minot kindly ran the "Genstat" program for analysing my nutrient data.

Thanks are also due to the following Massey staff : Dr A. Davey for allowing me the use of nutrient analysis equipment, and Mrs Y. Moore and J. Raven for showing me the use of this equipment ; Dr E. Kirk who provided a diamond saw for tooth sectioning ; J. Clouston and staff of the Central Photographic Unit for preparation of photographs ;

Å.

and the illustrator, K. Korndorffer, for the use of the Kroytype lettering machine.

I appreciate the invaluable information concerning practical experience with sambar given by C. Fergusson, J. Hargraves, A. Harnett, O. Maher, L. Rowe, R. Rowe, L. Shailer, M. Shailer, P. Smith and W. Wallace.

I also appreciate the help given me by Dr R.A. Fordham and I. McKelvey for the preparation of the skeleton shown in Plate 15; I. McKelvey for helping me erect the Massey hide; L. Barnard for the use of his photographs shown in the frontispiece, Plate 4 and Plate 16, and for helping erect and supplying material for the Coffin hide.

My thanks to N. Haack, P. Lo, Adrienne Pease, Mr and Mrs D.C. Pease, Moyra Roberts and my parents who assisted me in many ways and provided encouragement on innumerable occassions.

Some additional help with the preparation of the script was provided by Dr I. Stringer and Professor B.P. Springett.

Adrienne Pease and my parents helped by proof reading.

Lastly many thanks are due to Mrs J. Evans and Mrs F.S. Wicherts for the setting out and typing of this thesis.

.

		*		Page
	ABSTRACT	ľ		iii
	ACKNOWLI	DGEMENT	rs	v
	TABLE OF	CONTER	ITS	vii
	LIST OF	TABLES		xi
	LIST OF	FIGURES	3	xii
	LIST OF	PLATES		xiv
	PART I	2 4.00 - 2. 20 10	INTRODUCTION	1
		-	INTRODUCTION	
	CHAPTER			1
		1.1	Introductory Description	1
	•	1.2	Taxonomy	3
•		1.3	Distribution	5
		1000 C C C C C	Moutoa	11
		1.5	The Flax Reserve (Main Study Area)	13
		1.6	Climate	18
	PART II		DIET	19
	CHAPTER	2	OBSERVATION	19
		2.1	Direct Observation	19
			2.1.1 Introduction to methods	19
			2.1.2 Daytime observations	21
		8	2.1.3 Night observations	21
		2.2	Indirect Observation (Feeding Sign)	24
			2.2.1 Flax	24
			2.2.2 Poplar and willow	25
		8	2.2.3 Grasses	28
		2.3	Feeding Habits	28
	CHAPTER	3	FAECAL ANALYSIS	32
		3.1	Introduction	32
		3.2	Methods	35
			3.2.1 Collection of faeces	35
			3.2.2 Initial treatment	36
			3.2.3 Nitric acid method of cuticle preparation	36

i

				Page
	e e	3.2.4 3.2.5 3.2.6 3.2.7	Reference cuticle collection Recognition items Analysis procedure Rumen samples	37 37 38 39
	3.3	Results		40
		3.3.1 3.3.2	Rumen analysis Faecal analysis	40 40
CHAPTER	4	NUTRIEN	F ANALYSIS	45
	4.1	Introduc	ction	45
	4.2	Forage (Quality	45
		4.2.1	Defining forage quality	45
		4.2.2	Protein	46
		4.2.3	Energy	46
		4.2.4	Fibre	47
		4.2.5	Moisture content	47
	4.3	Sampling	g Technique	47
	4.4	Analytic	cal Methods	48
		4.4.1	Crude protein determination	48
		4.4.2	Gross energy determination	48
		4.4.3	Acid Detergent Fibre (A.D.F.) determination	- 48
		4.4.4	Moisture content determination	48
	4.5	Results		49
PART II	E	GENERAL	BIOLOGY	58
CHAPTER	5	POPULATI	ION DYNAMICS	58
	5.1	Populat:	ion Size	58
	5.2	1000	Age Composition	59
	5.3		g Biology	60
		5.3.1	India and Sri Lanka	60
	Ξ.	5.3.2	Australia	61
		5.3.3	New Zealand	61
	5.4	Antler (Growth	64
		5.4.1	Introduction	64
er e'		5.4.2	India and Sri Lanka	67
		5.4.3	Australia	67
		5.4.4	New Zealand	69

			Page
	5.5	Rate of Reproduction 5.5.1 Hind reproductive data 5.5.2 Stag breeding age	72 72 72
	5.6	Mortality	72
CHAPTER	6	BEHAVIOUR	74
	6.1,	Introduction	74
	6.2	Animal Activity	74
	6.3	Herd Size and Composition	74
	6.4	Tracking Behaviour	75
	6.5	Intraspecific and Interspecific Aggression	77
	6.6	Sexual Behaviour	78
		6.6.1 Wallows	78
		6.6.2 Rubbing Trees	78
		6.6.3 Roaring	80
	6.7	Communication	82
		6.7.1 Auditory	82
		6.7.2 Visual 6.7.3 Olfactory	83
			83
	6.8	Territoriality	84
CHAPTER	7	GRANIOMETRY	86
	7.1	Introduction	86
	7.2	Skull Material	87
	7.3	Measurements	90
		7.3.1 Crania	90
		7.3.2 Antlers	90
	7.4	Age Determination	92
		7.4.1 Introduction	92
		7.4.2 Method	93
×.	7.5	Results	95
	1. 599 701 5 9 11	7.5.1 Cranial data	95
		7.5.2 Antler data	99
PART IV		DISCUSSION AND CONCLUSIONS	101
CHAPTER	8		101

		* ÷	Page
	8.1	Requirement for Cover	101
	8.2	Discussion of Forage Quality and Diet Selection	102
	8.3	Discussion of Breeding and Antler Cycles	107
		8.3.1 Australian breeding data	107
		8.3.2 New Zealand breeding data	a 109
		8.3.3 Antler cycling data	111
	8.4	Discussion of Craniometry	113
		8.4.1 Cranial data	113
		8.4.2 Antler data	113
		8.4.3 Antler deformities	114
	8.5	Comments on the Future of Sambar New Zealand	in 115
	8.6	Conclusions	118
APPEN	DICES		121
REFER	ENCES		134

. '

TABLES	×	Page
I.	Classification of sambar deer according to Whitchead (1972)	6
II	Previous works on dietary analysis	34
III	Australian breeding data (a). Based on conception dates of 21 pregnant hinds (from Draisma, 1979)	62
IV	Australian breeding data (b). Based on ages of 60 sambar not more than 30 months of age (Draisma, 1979)	63
. V	Breeding data of New Zealand sambar	65
VI	Early antler growth in sambar stags (Draisma, 1979)	68
VII	Monthly variation of antler condition in Australian sambar. (Combined data from Bentley, 1978; and Draisma, 1979)	70
VIII	Monthly variation of antler condition in New Zealand sambar	71
IX	Cranial measurements (Batcheler and McLennan, 1977)	91
X	Data analysis - Manawatu skulls	98
XI	Data analysis - New Zealand antlers	100
XII	Forage species predominating in the summer and winter diet of Moutoa deer	103
XIII	Means of cuticle area in faeces collected in April, August, November and February, and of individual species over the four combined collection dates	105
XIV	Correlation matrix - Degree of correlation between cuticle area, fibre, energy, nitrogen and water content	106

LIST OF FIGURES

F	IGURE		Page
	1	The world wide distribution of sambar as published by Whitehead (1972)	7
	2	Distribution of sambar in the Manawatu (from Harris, 1966)	9
	3	Distribution of sambar in the Bay of Plenty (from Harris, 1966)	10
	4	Location of Moutoa	1.2
	5	Map of reserve areas at Moutoa	14
	6	The main study area	17
	7	Monthly variation in the four major cuticle components of faeces	42
	8	Monthly variation in five minor cuticle components of faeces	43
	9	Seasonal variation in the content of Acid Detergent Fibre, Energy, Nitrogen and Water in floating sweet grass	50
	10	Seasonal variation in the content of Acid Detergent Fibre, Energy, Nitrogen and Water in reed canarygrass	51
	11	Seasonal variation in the content of Acid Detergent Fibre, Energy, Nitrogen and Water in ryegrass (H ₁)	52
	12	Seasonal variation in the content of Acid Detergent Fibre, Energy, Nitrogen and Water in tall fescue	53
	13	Seasonal variation in the content of Acid Detergent Fibre, Energy, Nitrogen and Water in Yorkshire fog	54
÷	14	Seasonal variation in the content of Acid Detergent Fibre, Energy, Nitrogen and Water in flax	55
	15	Seasonal variation in the content of Acid Detergent Fibre, Energy, Nitrogen and Water in poplar	56

LIST OF FIGURES

FIGURE		Page
16	Chart of tooth eruption in sambar (from Draisma, 1979)	94
17	Relationship between antler condition and rutting activity in Australia	108
18	Relationship between antler condition and rutting activity in New Zealand	110

LIST OF PLATES

PLATE

Page

Frontispiece	Sambar hind, Moutoa (Photograph by L. Barnard)	ii
1	Head of dead sambar hind	2
2	Area of medium density flax and unimproved pasture	15
3	Area of high density flax	15
4	Fully grown hind in dense flax cover (Photograph by L. Barnard)	16
5	Maximum height of tall fescue	20
6	'Massey Hide'	22
7	'Coffin Hide'	22
8	Tree 'hide' (Photograph by I. McKelvey)	23
9	Evidence of feeding on flax	26
10	Stag in poplar nursery	26
11	Sambar damage to young poplar bark	27
12	Sambar hoof print	27
13	Cropped clump of tall fescue	29
14	Moutoa stag in edge of clover/ ryegrass paddock	31
15	Skeleton of adult sambar hind	66
16	Small herd composed of two family groups (Photograph by L. Barnard)	76
17	Typical sambar wallow	79
18	'Rubbing tree'	81
19	Detail of damage caused by antler rubbing	81
20	Head of typical sambar phenotype from Bay of Plenty	88

LIST OF PLATES

	LISI OF FIAIRS	
	3 x .	
PLATE	. 8	Page
21	Possible sambar/rusa hybrid	88
22	Typical rusa phenotype	89
23	Cementum layers in sectioned molar tooth	96