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Abstract

Conventional methods for encoding of images and videos is a complex process with high

computational demands. They are designed for application scenarios where the signals

concerned are encoded once and played back many times. However, new applications

such as wireless video sensor networks demand low cost and low power cameras with

limited computing resources. The focus of this thesis is on such image and video coding

systems where the computational burden is shifted from the encoder to the decoder.

Three separate coding schemes have been developed – two for videos and one for

images. Together they form a framework for distributed coding which is based on the

theory of compressed sensing and distributed coding. Compressed sensing is a relatively

new theory for the acquisition of sparse signals that allows the sampling rate to be much

lower than the Nyquist limit. Distributed coding is based on the theorem by Slepian and

Wolf, and Wyner and Ziv. It allows different correlated parts of a signal to be encoded

independently without loss of coding efficiency. The decoding of these separately encoded

parts are then decoded jointly in order to exploit the correlation between them. The main

characteristics of the coding scheme proposed in this thesis are: (1) they do not require

the use of traditional codecs; (2) only compressed sensing measurements are used for

encoding and decoding; (3) no motion estimation and compensation are involved for

videos.

The first proposed coding scheme is for the encoding of whole video frames. The

compressed sensing measurement of individual frames are separately encoded. These

frames are divided into key and non-key frames with the key frames encoded at a higher
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rate than non-key ones. While the key frames are decoded independently, the non-key

ones are decoded with the help of side information generated from the measurements

of the key frames. The most important part of the decoder is a simple, yet effective,

side information generation method which requires only minimal computation. The side

information generated is simply added to the measurements of the non-key frames for use

with any compressed sensing reconstruction algorithm. The other two coding schemes are

block-based coding methods. Each image or frame is divided into non-overlapping image

blocks in a similar way it is done in some existing coding standards. The coding of the

blocks are performed in a distributed manner by classifying them into key blocks and non-

key blocks. An adaptive encoding strategy based on block similarity is also developed.

Experimental analyses using publicly available test images and videos show that the

performances of the simpler codecs proposed are better than other existing compressed

sensing based codecs. The video codecs also out-perform conventional distributed video

codec in terms of simplicity, compression ratio and decoding complexity.

The basis of these coding methods is on the correlation of frames or blocks. This

correlation is established through experimental analyses. These analyses also showed that

the minimum square error between any pair of them can be effectively used as a measure

of correlation. In conjunction with the development of the codecs, a quantization scheme

that is tailored to the statistics of CS measurements has also been proposed. This scheme

yields better results than a uniform quantizer and those used for JPEG. The quantizer

is also robust against different statistics of individual images. Separate experimental

evaluations also show that structurally random matrices are the best sensing matrices

for acquiring images and the sparse reconstruction by separable approximation (SpaRSA)

algorithm produces the best reconstructed image quality.
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Chapter 1

Introduction

Image and video compression and their related applications have advanced substantially

in recent years. Major coding standards such as Joint Photographic Experts Group

(JPEG) [1], Moving Picture Experts Group (MPEG) [2] and H.26x [3] are well devel-

oped and widely deployed. The techniques employed in these standards exploit the

spatial and/or temporal redundancies in the signal for data compression very effectively.

However, this causes the encoding process to be typically 5 to 10 times computationally

more complex than the decoding process [4]. This kind of computationally asymmetrical

systems is suited for applications where the video is encoded once and decoded many

times based on a single camera (sensor). The research described in this thesis is con-

cerned with a new approach to image and video coding where the computational burden

is shifted from the encoder to the decoder. This approach is more suitable for modern

video applications where a network of cameras is deployed.

1.1 Background and Motivation

Conventional video coding systems are developed for applications which typically require

the compressed video sequences to be played back many times. Since compression only

needs to be performed once while decompression (playback) is performed many times, it

is desirable that the decoding/decompression process can be done as simply and quickly
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as possible. Therefore, essentially all current image and video compression schemes, such

as the various JPEG and MPEG standards as well as H.264 [2, 3], involve a complex

encoder and a simple decoder. In order that video encoding can be performed in real

time at frame rates of 30 frames per second or more, the encoding process has to be

performed by specially designed hardware, increasing the cost of cameras.

In the past ten years, there has been much research and development in sensor net-

works where a large number of sensors are deployed [5–8]. For some applications such

as video surveillance and sports broadcasting, these sensors are in fact video cameras.

For such systems, there is a need to re-evaluate conventional strategies for video coding.

If the encoders are made simpler, then the cost of the cameras can be reduced. If tens

or hundreds of cameras are involved, the total system cost of this proposed setup could

be substantially lower compared with deploying current camera systems. Apart from

economics, the cameras used in (wireless) video sensor networks are required to have

low power consumption which in turn limit the amount of computing resources. These

requirements make it difficult for traditional coding methods to provide an acceptable

solution due to its inherit encoding complexity. Thus there is a need for new image and

video coding techniques that shifts the complexity from the encoder to the decoder.

In the past few years, two related new areas of signal acquisition and compression have

arisen. The first one is Distributed Video Coding (DVC) [9]. The distributed approach

allows any redundancy or correlation between video frames to be exploited at the decoder

rather than the encoder, thus reducing the complexity of the encoder. At the same time,

a new theory called Compressed Sensing (CS) has been developed [10–12]. It provides

a completely new approach to data acquisition. In essence, CS tells us that for signals

which possess some “sparsity” properties, the sampling rate required to reconstruct these

signals with good quality can be much lower than the lower bound specified by Shannon’s

sampling theorem. Since image and video signals contain substantial amounts of redun-

dancy, they are sparse signals and CS can potentially be applied. There have been some

studies reported recently on the application of CS to video signals in the literature [13–18].

Although they are mostly preliminary exploratory research, they point to the possibility
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of using CS as a simple encoder for video signals. The simplicity of the encoding process

is traded off by a more complex, iterative decoding process. The reconstruction process

of CS is usually formulated as an optimization problem which potentially allows one to

tailor the objective function and constraints to the specific application. The concept of

CS fits in well with DVC. The use of CS combined with DVC can provide the data rate

reduction required while providing flexibility at the decoder.

1.2 Scope and Objectives

The aim of this thesis is to explore ways by which DVC and CS can be used together in

new image and video coding architectures with the characteristics of simple low-power

encoders coupled and flexible decoders that can be tailored to a specific application. The

encoders must rely only on CS data acquisition techniques; no traditional codec should be

required. For video coding, the simplicity required also dictates that the computationally

expensive process of motion estimation or compensation should not be used. At the same

time, there is no assumption that a feedback channel exist between the decoder and the

encoder. This is because in many applications, such a feedback channel is not physically

possible.

Since CS-based cameras are still in early stages of research and development, the

images and videos that are used for experimentation are acquired in the traditional way.

The CS measurements of these data are computed from the original pixel data. However,

none of the compression systems proposed in this thesis shall assume that the pixel data

are available to the encoders. This make them truly CS-based systems.

Specific objectives of the research are as follows:

• Evaluate the effectiveness of different CS sensing matrices and reconstruction algo-

rithms for image compression.
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• Study the effects of quantization on the reconstruction of image and video signals

acquired using CS and hence develop effective quantization schemes. Current quan-

tization schemes are primarily based on characteristics of discrete cosine transform

and wavelet transforms which may no longer be applicable.

• Study the relationship between CS measurements of adjacent frames in a videos se-

quence. Investigate how this relationship can be used to improve the reconstruction

quality and compression ratio for video coding.

• Study the relationship between CS measurements of neighbouring blocks in an

image. Investigate how this relationship can be used to improve the reconstruction

quality and compression ratio for Intra image and Inter-frame compression.

• Develop an effective CS-based image coder decoder (codec) using a distributed

coding approach.

• Develop an effective CS-based video coder decoder (codec) using a distributed cod-

ing approach.

1.3 Original Contributions

The main contributions of this thesis are summarized as follows:

• Different classes of CS sensing matrices and reconstruction algorithms have been

characterized, in terms of acquisition time, reconstruction time and reconstruction

quality, specifically for image compression.

• A new quantization scheme that is suitable for quantizing CS measurements is

proposed. This scheme is based on the statistical properties of CS measurements

and has been shown to be robust against individual image statistics. It has also been

shown that this scheme performs better than both JPEG and uniform quantization.
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• A distributed inter-frame compressed video sensing codec is proposed. Unlike most

architectures found in the literature, it does not require a feedback channel or mo-

tion estimation. The proposed codec only uses CS measurements to generate side

information needed for decoding non-key frames. The new side information genera-

tion scheme is based on the correlation of CS measurements between video frames.

It is a simple and effective scheme that requires minimal computation at the de-

coder. It also does not require key frames to be decoded first. Experimental results

show that this codec performs well against other CS-based codecs and comparable

with other conventional distributed codecs which have much higher complexity.

• For block-based processing, the impact of block size on CS reconstruction in image

coding is studied. It has been found that a larger block size provides better results at

lower measurement rates but in general as measurement rate increases the difference

is not significant.

• A new distributed CS image codec with adaptive and non-adaptive block encoding

is proposed. The proposed adaptive block classification based on adjacent block

similarity is able to reduce measurement rate. Intra block correlation is used to

generate side information to help decode non-key blocks. This side information

generation scheme is used to improve the reconstruction quality of blocks in both

adaptive and non-adaptive encoding.

• A related distributed block-based video codec with adaptive block encoding is pro-

posed. This codec exploits both intra-frame and inter-frame block correlation to

generate side information. It is shown through experimental comparison that its

performance is better than many other CS-based video codecs.

1.4 Organization of the Thesis

The rest of this thesis is structured as follows.
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In Chapter 2, an overview of the essential elements of the theory of compressed sensing

is presented. A review of the literature on CS-based Image and Video coding is presented

in Chapter 3. The performances of different types of sensing matrices and reconstruction

algorithms for CS are evaluated specifically for full image compression in Chapter 4. A

new quantization scheme for quantizing CS measurement is also proposed in this chapter.

It is used in the codecs proposed in subsequent chapters. In Chapter 5, a distributed

Inter-frame video codec based on CS is presented. It consists of a simple yet effective

side information generation scheme that exploits the correlation of the CS measurements

between frames. A block-based coding approach is adopted in Chapters 6 and 7 for

image and video coding respectively. Both adaptive and non-adaptive measurement

rate assignment schemes are explored. Their performances are evaluated against other

CS-based and conventional distributed techniques reviewed in Chapter 3. Chapter 8

concludes the thesis and suggests some avenues for future work.
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Chapter 2

An Overview of Compressed Sensing

Compressed Sensing (CS), also known as Compressive Sampling, is a theory that is first

developed by Emmanuel Candes, together with Justin Romberg and Terry Tao [10–12,19].

This theory provides a way for sampling continuous signals at a rate much lower than the

Nyquist rate given by Shannon’s sampling theorem. It is applicable to signals that are

sparse in some domain. This implies that signals that are highly compressible, such as

images and videos, can potentially take advantage of CS. It is well known that such signals

posses structures or features which could be exploited for efficient encoding. CS provides

techniques and methods which can be used to acquire those significant features efficiently

without loosing significant information. The signal processing research community has

been attracted by the idea of CS and a large number of papers have been published both

in the theory and applications of CS in the last few years [20]. This chapter provides a

brief survey of the theory and techniques of CS, together with some potential applications.

2.1 Key Elements of Compressed Sensing

Shannon’s uniform sampling theorem [21,22] provides a lower bound on the rate by which

an analogue signal needs to be sampled in order that the sampled signal fully represents

the original. If a signal f(x) contains no frequencies higher than ωmax radians per second,

then it can completely determined by samples that are spaced T = π/ωmax seconds apart.

7



Chapter 2. An Overview of Compressed Sensing

f(x) can be reconstructed perfectly using these samples f(nT ) by

f(x) =
∑
k∈Z

f(kT )sinc(x/T − k) (2.1)

The uniform samples f(nT ) of f(x) may be interpreted as coefficients of some basis

functions obtained by appropriate shifting and rescaling of the sinc function.

For high bandwidth signals such as video, the amount of data generated based on a

sampling rate of at least twice the bandwidth is very high. Fortunately, only a relatively

small number of the discrete cosine transform (DCT) or wavelet transform (WT) of these

signals have significant magnitudes. Therefore, if those coefficients that have magnitudes

smaller than a certain threshold are discarded, then the amount of data that represents

the original signal can be reduced. This is the basic idea exploited by all existing lossy

signal compression techniques.

Another way of putting it is that these signals are sparse in the DCT and WT

domains. Sparsity implies that the information rate of the signal is much lower than

is suggested by its bandwidth. For such signals, instead of acquiring the raw data,

performing an orthogonal transform and then discarding insignificant coefficients, CS

theory suggests that essential information content can be acquired directly, through a

measurement process that is incoherent with the signal. Subsequently, a high quality

signal can be reconstructed from these measurements using appropriate optimization

techniques. These key elements of CS are illustrated in Figure 2.1.

2.1.1 Sparsity

Sparsity is important in CS as it determines how efficient one can acquire signals non-

adaptively. The most common definition of sparsity in the CS literature is as follows. Let

f ∈ Rn be a vector which represents a signal that can be expanded in an orthonormal

basis Ψ = [ψ1, ψ2 . . . ψn] as

f(t) =
n∑

i=1

xiψi (2.2)
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Figure 2.1: Key Elements of Compressed Sensing

where xi = 〈f, ψi〉 are the coefficients of this expansion. In matrix form, (2.2) becomes

f = Ψx (2.3)

If all but a few of the coefficients xi are zero, then f is said to be sparse in a strict sense.

In this case, let S denotes the number of non-zero coefficients with S � n. Then f is

said to be S-sparse. If x is S-sparse and can be approximated by xS, then the error

||f − fS||l2 is small since ||f − fS||l2 = ||x− xS||l2 for an orthonormal basis Ψ.

In practice, most compressible signals have only a few significant coefficients while

the rest have relatively small magnitudes. If we set these small coefficients to zero in the

way that it is done in lossy compression, then we have a sparse signal.
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2.1.2 Incoherence

Consider two different orthonormal bases, Φ and Ψ, both of Rn. The coherence between

these two bases is defined in [19] by

μ(Φ,Ψ) =
√
n · max

1≤k,j≤n
|〈φk, ψj〉| (2.4)

This gives the largest correlation between any two elements of the two bases. It can be

shown that

μ(Φ,Ψ) ∈ [
1,
√
n
]

(2.5)

In CS, a signal that is sparse in Ψ has to be acquired by a sensing (or sampling) domain

Φ which is incoherent with Ψ. A signal is more compressible if it has high sparsity in

Ψ that is less coherent to Φ. Interestingly, random matrices are largely incoherent with

any fixed basis [19].

2.1.3 CS Measurement Acquisition

In CS, the ability of a sensing technique to effectively retain the features of the underlying

signal is very important. The sensing strategy should provide sufficient number of CS

measurements in a non-adaptive manner that are suitable for near perfect reconstruction.

Let f = {f [1], . . . , f [N ]} be a vector of N real-valued samples of a signal. If the

representation of f in a transform domain by x, then

f = Ψx =
N∑
i=1

xiψi (2.6)

where Ψ = [ψ1, ψ2 . . . ψN ] is the transform basis matrix and x = [x1, . . . , xN ] is an N -

vector of coefficients with xi =< f , ψi >.

Suppose a general linear measurement process computes M < N inner products

yj = 〈f , φj〉 between f and a collection of vectors {φj}M1 . Let Φ denote theM×N matrix

10
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with the measurement vectors φj as rows. Then the measurements y = [y1, . . . , yM ] is

given by

y = Φf = ΦΨx = Θx (2.7)

by using (2.6) with Θ = ΦΨ. These measurements are non-adaptive and does not depend

on the structure of the signal if Φ is fixed [12]. The minimum number of measurements

needed to reconstruct the original signal depends on the matrices Φ and Ψ. The following

theorem specifies this relationship [23].

Theorem 1. Let f ∈ RN has a discrete coefficient sequence x in the basis Ψ. Let x be

S-sparse. Select M measurements in the Φ domain uniformly at random. Then if

M ≥ C · μ2 (Φ,Ψ) · S logN (2.8)

for some positive constant C, then with high probability, x can be reconstructed using the

following convex optimization program:

min
x̃

‖x̃‖l1 subject to yk = 〈φk,Ψx̃〉, ∀k ∈ J (2.9)

where J denotes the index set of the M randomly chosen measurements.

This is an important result and provides the requirement for successful reconstruction.

It has the following three implications [19]:

(i) The smaller the coherence between the sensing and basis matrices, the fewer the

number of measurements needed.

(ii) There will be no information loss by measuring any set of M coefficients.

(iii) The signal f can be exactly recovered without assuming any knowledge of the

non-zero coordinates of x or their amplitudes.
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Restricted Isometry Property

There are certain properties a sensing matrix should possess. The most important one is

the Restricted Isometry Property (RIP) [24]. For each integer, S = 1, 2, · · · the isometry

constant δS of a matrix Φ is defined as the smallest number such that

(1− δS)||x||2l2 ≤ (1 + δS)||x||2l2 (2.10)

holds true for all S-sparse vectors f . Matrix Φ is said to obey RIP of order S if δS is not

too close to one. Owing to this property, Φ preserves the Euclidean length of S-sparse

signals. This implies that S-sparse vectors cannot be in the null space of Φ. Suppose S-

sparse signals are acquired with Φ and δ2S is sufficiently less than one. Then all pairwise

distances between S-sparse signals are well preserved in the measurement space bound

given by [19]

(1− δ2S)||x1 − x2||2l2 ≤ ||Φx1 − Φf2||2l2 ≤ (1 + δ2S)||f1 − f2||2l2 (2.11)

RIP is a very important property for estimating the suitability of a sensing matrix

for effective CS encoding. Unfortunately RIP is NP hard to verify for a specific sensing

matrix. There are alternative conditions proposed for estimating the suitability of sensing

matrices. The authors in [25] introduced a simple extension of the RIP, called RIP-p.

It uses the lp-norm instead of the usual l2-norm. Another one is the model-based RIP

proposed in [26] which concerns all x restricted to a specific model. If the model is the

set of S − sparse signals, then it is reduced to the usual RIP.

Designing an effective sensing matrix Φ is an important research problem in CS.

A good sensing matrix should be capable of maintaining the information of the original

signal as well as allowing a small number of measurements for a successful reconstruction.

Therefore it should be incoherent to a variety of sparsifying matrices. It should allows

for fast and efficient computation and is hardware implementation friendly. There has

been many proposals for efficient sensing matrices in the CS literature. In Section 4.1,

a classification of these sensing matrices is made and their relative performances are

evaluated.
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2.1.4 CS Reconstruction

The reconstruction problem involves taking the M measurements y to reconstruct the

length-N signal x that is S-sparse, given the random measurement matrix Φ and the

basis matrix Ψ. Since M < N , this is an ill-conditioned problem.

The conventional approach to solving ill-conditioned problems of this kind is to min-

imize the l2 norm. In this case, it is expressed as

x̂ = argmin ‖x′‖2 such that Θx′ = y (2.12)

However, it has been proven that this l2 minimization can only produce a non-sparse

x̂ [12]. The reason is that the l2 norm measures the energy of the signal and signal

sparsity properties could not be incorporated in this measure.

The l0 norm counts the number of non-zero entries and therefore allows us to specify

the sparsity requirement. The optimization problem using this norm can be stated as

x̂ = argmin ‖x′‖0 such that Θx′ = y (2.13)

There is a high probability of obtaining a solution using only M = S + 1 independent

and identically distributed (i.i.d.) Gaussian measurements [19]. However, the solution

produced is numerically unstable [12].

It turns out that optimization based on the l1 norm is able to exactly recover S-

sparse signals with high probability using only M ≥ cSlog(N/S) i.i.d. Gaussian mea-

surements [10, 11]. The convex optimization problem is given by

ŝ = argmin ‖x′‖1 such that Θx′ = y (2.14)

which can be reduced to a linear program. Algorithms based on Basis Pursuit (BP) [27]

can be used to solve this problem with a computational complexity of O(N3) [10]. BP is

a quadratically constrained l1-minimization problem:

min
x

‖ x ‖l1 subject to ‖ y − θx ‖l2≤ ε (2.15)
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where y is the noisy CS measurements with noise ε. This is the preferred CS reconstruc-

tion formulation as the estimate of noise ε may be known or can be computed.

A second approach to solving the CS reconstruction problem is to formulate the BP

problem as a second order cone program:

min
x

1

2
||y − θx||2l2 + λ||x||l1 (2.16)

This formulation is also known as Basis Pursuit Denoising (BPDN) [28]. It is tractable

due to its bounded convex optimization nature. The term λ||x||l1 , which is also known

as regularization, can be interpreted as a maximum a posteriori estimate in a Bayesian

setting. BPDN is very popular in signal and image processing applications.

The third approach is known as the Least Absolute Shrinkage and Selection Operator

(Lasso) [29]. It involves the minimization of an l2 norm subject to l1 norm constraints:

min
x

||y − θx||l2 subject to ||x||l1 ≤ τ (2.17)

For block-based image and video processing applications, instead of seeking sparsity

in the transform domain, a Total Variation (TV) norm can be used. A total variation of

the image can be expressed as

||X||TV =
∑
i,j

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2 (2.18)

The TV norm uses sparse approximation of the image gradient and is very useful in

avoiding high frequencies artefacts in the image.

There are a number of different algorithms developed to solve these three CS re-

construction problems. Linear Programming (LP) techniques [10,11], greedy algorithms

[30–33], gradient-based algorithms [34, 35], iterative shrinkage algorithms [36, 37], etc.

In Section 4.2, an empirical evaluation of the performances of various reconstruction

algorithms for image reconstruction is provided.
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2.2 Potential Applications

Even though CS theory has only been developed for a few years, it has already been

applied to a number of different applications. Some of them are outlined below.

Magnetic resonance imaging

Magnetic Resonance Imaging (MRI) is one of the most interesting applications of CS.

With MRI, a patient goes through a scanning process by lying still inside MRI machine

for a substantial amount of time. The quality of the images obtained is determined by

how still the patient remains during that time. MRI acquires specific grid points in

2 or 3-dimensional k-space and an inverse transform is used to reconstruct the image.

The medical image is compressible and therefore, by using CS, a small subset of k-space

samples is sufficient to reconstruct the image. This leads to a reduction of the acquisi-

tion time, indirectly leading to higher quality images obtained. Detailed information on

compressed sensing MRI is available in [38, 39] and the references therein.

Imaging

In typical digital cameras, the image sensors are large and expensive. By using CS,

the number of measurements acquired can be made much smaller than the number of

pixels needed, resulting in smaller and cheaper cameras. An example is the single pixel

camera [40] developed by a group at Rice University in the USA. The idea of this camera

is to trade spatial resolution for temporal resolution. The image sensor consists of only a

single pixel but it takes a large number of measurements over a short period of time. An

array of micro-mirrors is placed in front of a conventional optical lens system to focus on

the single-pixel sensor. Each individual micro-mirror can be made to reflect light towards

or away from the sensor. The orientation is randomly changed between measurements.

In this way, each measurement is a random combination of pixels in the entire scene. The

full image is then reconstructed from these measurements based on CS reconstruction

techniques.
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Figure 2.2: CS Camera, [Image Courtesy, InView Corporation [41]]

Recently, InViewCorp has announced a commercial CS camera based on the single-

pixel camera concept [41]. Figure 2.2 shows the architecture of the camera. The image

is focused onto a Digital Micro-mirror Device (DMD). For each measurement, one-half

of the mirrors are directed towards the single photo-detector diode. A reconstruction

algorithm is used to reconstruct the full image. Further details on CS hardware developed

by InViewCorp is available on their website [41] and in research papers [40, 42].

Another example of a CS based imaging system is the Massachusetts Institute of

Technology (MIT) random lens imaging device [43].

Seismic Data Acquisition

Seismic data acquisition is an expensive and time consuming process. The process starts

with an explosion on the surface of the earth. The waves resulting from this explosion
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will be reflected from the boundaries of layers. An array of geo-phones capture these

reflections. This process is repeated many times and every time an explosion is made at

a different location. By collecting all these reflections, information of the layers of the

earth can then be estimated. By making use of CS, the number of explosions can be

reduced, making the process faster and cheaper. Details can be found in [44] and the

references therein.

Hyperspectral Imaging

In hyperspectral imaging, several images acquired at different wavelengths. The data

collected consists of a three-dimensional data-cube with two spatial dimensions and one

spectral dimension. Each data-cube entry is called a voxel. A pixel’s spectral signature is

obtained by stacking its voxels in the spectral dimension. These spectral signatures are

then used to identify the type of object being imaged. Thus they are typically used in

satellite imaging for the identification of objects on the ground. Hyperspectral images are

typically compressible (sparse) and therefore CS can potentially be applicable. In [45],

a hyperspectral imaging system is proposed that uses a binary aperture mask with a

multi-pixel array. In [46], another architecture for hyperspectral imaging that combines

multiplexing in the spatial and spectral domain is proposed. InView Corporation [41]

also developed a hardware for hyperspectral imaging based on CS theory.

Radar

Through-the-wall radar (TWR) and inverse synthetic aperture radar (ISAR) are two

radar imaging applications that can potentially benefit from CS. Both applications re-

quire probing targets using radar signals with large bandwidths. Acquisition and pro-

cessing a large number of data samples are required to obtain high resolution images.

Typically the targets of interest are few (sparse) and have larger cross-section than clut-

ter objects. In [47], the authors shows that when there are only a few targets, using CS

based techniques, higher resolution than traditional radar can be obtained. In [48], CS

techniques are applied to indoor radar imaging.
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Other applications

The applications of CS are not just limited to the examples mentioned above. CS has

found applications in other fields including analog to digital converter design, electron

tomography, machine learning, computational biology, and astronomy. More related

literature can be found at the Rice University website [49].

2.3 Summary

In this chapter, an overview of Compressed Sensing is presented. CS provides a way

for signals to be sampled at a much lower rate than suggested by the uniform sampling

theorem. This is achieved by exploiting the sparsity of the signal and incoherence between

sampling and sparsifying domain. These concepts will be used in the research work

presented in this thesis. A number of potential applications of CS, especially related to

imaging, have also been described. With the availability of commercial CS hardware, it is

expected that more and more practical imaging application will be developed in coming

years.
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Chapter 3

A Review of Compressed Sensing
Image and Video Coding

One of the main applications of CS is in imaging as mentioned in Section 2.2. In this

chapter, a more in-depth review of current research in using CS for image and video

coding, which is the focus of this thesis, is presented. Section 3.1 discusses CS based

image coding techniques and Section 3.2 discusses CS based video coding techniques.

Some conventional distributed video coding techniques are also reviewed in Section 3.3

for completeness. Some of the experimental results presented in subsequent chapters will

be compared with those obtained from these conventional techniques.

3.1 Compressed Sensing Image Coding

Image coding techniques based on CS can be broadly classified in two categories – block-

based and full image. There are two specific types of block-based techniques that are of

interest – Distributed and Multi-scale. An overview of these techniques are presented in

this section.

3.1.1 Full Image Coding

In full image coding, the CS measurements of the whole image is acquired using a suitable

sensing matrix Φ. Due to the large dimension of image data, the size of Φ is also large.
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Most researchers do not apply Φ directly to the image data. Instead, a sparsity transform

is first applied to the image data. CS measurements are then obtained by applying Φ to

the transform coefficients.

The first application of CS to image coding is found in [50]. The authors use a

percentage (less than 100%) of CS measurements for image recovery. The images re-

covered from 3M to 5M CS measurements were found to have the same quality as the

ideal M -term wavelet approximation. The main difference is that the CS measurements

are obtained randomly without considering the image structure or the magnitude of its

transform coefficients. A random Fourier matrix is used for sensing. A similar approach

is taken by [33,51] to show the effectiveness of their reconstruction algorithms. The main

disadvantage of this approach is that a transform has to be computed, which increases

the computational burden on the encoder.

A more efficient method known as Structurally Random Matrices (SRM) is proposed

in [52]. First, the image is pre-randomized by random permutation. Then a block-based

sensing matrix is applied to the randomized data. Finally, the CS measurements are

obtained by randomly down sampling the data. SRM is later extended to Scrambled

Block Hadamard Ensemble (SBHE) as a sensing matrix in [53]. This method can be

used with different sparse signals quite effectively as all it needs is pre-randomize the

signal before applying a CS sensing process.

3.1.2 Block Based Coding

Computational burden and memory requirements at the encoder can be reduced by using

block based image coding. Block-based coding has been used extensively in traditional

image and video coding methods. A block-based image coding method based on CS

was first proposed in [54]. The image is divided into non-overlapping blocks and each

image block is sampled independently using an appropriate sensing matrix. The image is

reconstructed using a variant of the Projected Landweber (PL) reconstruction using hard

thresholding and iterative Wiener filtering. This framework was later extended by [55]
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using directional transforms. At the encoder, an image is divided into non-overlapping

blocks and then each block is independently sampled using random Gaussian matrices.

To reconstruct the image at the decoder, it start with an initial solution given by

x(0) = ΦTy (3.1)

where Φ is the sensing matrix and y contains the CS measurements of all the blocks. Then

a Wiener filter is applied to x(0). For each block, the smoothed projected Landweber

(SPL) transform is applied. A sparsifying transform is then applied to the output of

the SPL step. Wiener filtering is incorporated into the basic PL framework to reduce

blocking artefacts. A specific stopping criteria based on the l2 norm is checked at the

end of each iterative step. Different directional sparsifying transforms are used in the

experiments in [55].

Neither of the above block-based schemes consider the fact that different blocks may

have different compressibility. Each image block is encoded at the same measurement

rate. In general, the sparsity of individual block is different. Smoother image blocks have

a higher degree of sparsity, while texture and edges have low level of sparsity.

The approach to block-based CS coding in [56] utilizes the coefficient structure of the

transform. At the encoder, an image is divided into blocks and then a weighting matrix

is applied to the sensing matrix to provide different emphasis on different coefficients. A

2D DCT matrix is used as the sparsifying matrix and the sensing matrix is a random

Gaussian matrix. The weighting matrix is derived from the JPEG quantization table by

taking the inverse of the table entries and adjusting their amplitudes. This scheme is

not very practical as it requires the creation of a weighting matrix which will be different

for each block. Although the authors have suggested that the weighting matrix for other

blocks can be obtained by sub-sampling or interpolating an initial weighting matrix, the

implications are not discussed. Further, a DCT transform is required, which increases

the computational burden at the encoder.

In [57], the idea of randomly permuting the transform coefficients before CS measure-

ments acquisition has been put forward. In an image, different blocks contains different
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amount of information. Smoother blocks have less detailed information and thus natu-

rally have higher sparsity while textures and edges will have more information and thus

have low sparsity. To balance the sparsity between image blocks, a random permuta-

tion is applied to all transform coefficients. First, a 2D DCT is applied to each image

block. The transform coefficients of all the block are then randomly permuted. They are

then reassembled before block-based CS sampling is performed. At the decoder, inverse

random permutation is performed after CS reconstruction of the coefficients. The block

image is subsequently recovered by inverse DCT. This approach still requires sparsity

transformation. Also, if an image is already transformed at the encoder using a DCT

transform, then there is no real benefit in using CS. The encoding delay is high because

DCT has to be applied to all blocks first before random permutation can be applied,

which negates the benefit of block-based encoding.

3.1.3 Multi-scale Coding

Apart from DCT, wavelet transform is the most common transform used in image pro-

cessing and coding. There is an established statistical model of wavelet coefficients that

could be exploited for efficient encoding and decoding. Thus wavelet transform can also

be used as a sparsifying transform for CS encoding. The benefit with this approach is

that CS sampling can be adapted to the structure of the wavelet decomposition. This

technique is generally called multi-scale CS encoding. It was first proposed in [58] where

CS encoding was applied to measure the fine scale properties of the signal. Conventional

linear measurements and reconstruction were used to obtain the coarse-scale properties

of the signal.

A similar approach is adopted in [59] where an image is separated into dense and

sparse components. The dense component is encoded by linear measurements while the

sparse component is encoded by CS. This encoding scheme is illustrated in Figure 3.1. To

obtain dense (ID) and sparse (IS) component, a three level wavelet transform is applied.
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Figure 3.1: Multi Scale Image Coding Scheme [59].

Thus an image I can be expanded as

I =
∑
k

α1j0,kWj0,k +

j2∑
j=j1

∑
k

α2j,kWj,k (3.2)

where Wj0,k and Wj,k are wavelets at different scales. The first term on the right-hand-

side of (3.2) is the coarsest scale j0 which is considered the dense component ID. The

second term is the sparse component IS where j1 is the next scale and j2 is the finest

scale. The CS measurements of IS is obtained using a Gaussian random matrix Φ. In

order to reduced the large memory requirements of a dense random Gaussian matrix, IS

is regrouped into blocks by scales and then sampled on a block-by-block basis. At the

decoder, the dense component is simply reconstructed by the inverse wavelet transform.

To recover IS, a 2D piecewise autoregressive model is used to predict I, denoted by Î.

This prediction effectively serves as side information. The reconstructed dense component

ÎD is used as the starting point for reconstructing IS using CS reconstruction.

Another multi-scale CS image coding is presented in [60]. Block-based CS is deployed

independently within each subband of each decomposition level of the wavelet transform

of the image. If wavelet transform produces L levels of wavelet decomposition, each

subband s at level L is divided into BL×BL blocks and sampled using a sensing matrix Φ.

The baseband is always sampled fully. As different levels have different sparsity, they are
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sampled at different rates. To perform reconstruction, an initial solution x(0) = Ω−1x̂(0)

is obtained by applying the inverse block-based wavelet transform. Then Weiner filtering

is applied to enhance smoothness. After this, wavelet transform is applied again. For

each block of each subband in each decomposition level, the Landweber step is applied

using block-based Φ. A stopping criteria is defined to terminate the algorithm.

A multi-scale CS encoding technique that is based on the Bayesian perspective was

proposed in [61]. With Bayesian Compressive Sensing (BCS), the CS problem is formu-

lated as a linear regression problem with a constraint (prior) that the underlying signal is

sparse. BCS has previously been used for signals and images that are sparse in a wavelet

basis [62]. A quadtree structure of the wavelet coefficients for an image [61] is used, with

each wavelet coefficient generally serving as a parent for four children coefficients. The

wavelet coefficients at the coarsest scale serve as root nodes of the quadtree, with the

finest scale of coefficients constituting the leaf nodes. If a wavelet coefficient at a partic-

ular scale is negligible, then its children are also generally (but not always) negligible. In

CS, wavelet coefficients are not directly observed but projections of these coefficients are

observed. In [62], a hidden markov tree is employed within the CS inversion, explicitly

imposing the belief that if a given coefficient is negligible, then its children coefficients

are likely to be so. Other related Bayesian approaches in a multi-scale framework can be

found in [63,64].

3.1.4 Distributed Coding

Distributed coding is a lossy coding technique which uses side information at the decoder

to improve the quality of reconstruction. This is based on the seminal work of Slepian

and Wolf [65], which is later extended by Wyner and Ziv [66, 67]. Slepian-Wolf coding

is a lossless distributed coding technique. Two statistically dependent sources X and

Y are independently encoded and jointly decoded. Slepian and Wolf proved that the

minimum rate to encode these two correlated sources is the same as that for joint encoding

where the encoder has full knowledge of both X and Y . With an arbitrarily small
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Figure 3.2: Wyner-Ziv Image Coding Scheme [68].

error probability, they can be perfectly reconstructed at the decoder. Wyner and Ziv

extended the Slepian-Wolf theorem to lossy compression with side information (SI) at

the decoder. Source X is encoded without access to Y . At the decoder, side information

Y is available and is used to obtain a reconstruction X̂ of X. This way of coding

is asymmetric as Y is independently encoded and decoded while X is independently

encoded but conditionally decoded. Wyner and Ziv concluded that there is a rate loss

incurred when the SI is not available at the encoder. Their theorem states that when

two jointly Gaussian i.i.d. memoryless random sources are independently encoded and

the mean-squared error distortion measure is used, there is no coding efficiency loss

compared to joint encoding even if the coding process is lossy. The Slepian-Wolf and

Wyner-Ziv theorems suggest that two statistically correlated signals can be compressed

in a distributed manner without loss of coding efficiency.

In [68], the authors used Wyner-Ziv (WZ) coding for distributed image compression

based on CS. The poposed WZ image coding scheme is shown in Figure 3.2. First, random
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projections of the image are obtained by using a scrambled fast Fourier transform. Then

a nested scalar quantization is applied to each measurement. The quantizer consists of

a coarse coset channel coder nested in a fine uniform scalar quantizer. A JPEG decoded

image is used at the decoder, which is also randomly measured using CS and served as

the side information to recover the image. The requirement for a JPEG decoded image

as the side information is not very practical. If the JPEG decoded image is available at

the decoder, then there is no need for the CS decoded one. Encoding the same image

twice will also increase the computational burden at the encoder.

Another distributed approach proposed in [69] first creates two down-sampled images

X1 and X2 from the original image X. The codec architecture is shown in Figure 3.3.

X1 is encoded by H.264 intra-frame coding and X2 is encoded using CS. At the decoder,

the H.264 encoded X1 is decoded using intra-frame decoding to obtain X̂1. The CS

encoded image X2 is reconstructed with the help of side information generated from an

interpolation of X̂1. The main disadvantage of this approach is that it still requires a
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conventional H.264 codec. That defeats the purpose of having a simple encoder using

CS.

None of the above distributed approaches make use of the fact that individual image

blocks have different sparsity. One approach that takes advantage of this can be found

in [70]. Images blocks are classified either as flat or non-flat. Flat blocks are ones with

low frequency contents that can be reconstructed using a lower sampling rate. Non-

flat blocks contain texture and edges and require a higher sampling rate for successful

reconstruction. The mean μi and variance σ2
i of each block i are computed using the

following:

μi =
1

n1 × n2

n1∑
m1=1

n2∑
m2=1

bm1m2 (3.3)

σ2
i =

1

n1 × n2

n1∑
m1=1

n2∑
m2=1

(bm1m2 − μi)
2 (3.4)

where μi and σ
2
i is the mean and variance of each block. n1 ×n2 is the block size of each

image block and bm1m2 is the CS measurements of each image block. Define ti as

ti =

{
1, σ2

i ≥ λσ2

0, σ2
i < λσ2 (3.5)

Here, where σ2 is the variance of the whole image. If ti = 1, the block i is considered

non-flat. Otherwise, the block is flat. The value of λ controls the percentage of non-

flat blocks. To recover the full image, individual blocks are reconstructed from their

CS measurements using the OMP algorithm [31]. Blocking artefacts between flat and

non-flat blocks are reduced by mean filtering. After mean filtering, the adjacent columns

and rows are added to each block and total variation (TV) minimization is performed.

As a result, the computational complexity at the decoder is quite high. Furthermore, in

a real CS image acquisition system, the original image data are not available and so this

method is not applicable.

A somewhat related approach is recently proposed in [71]. Its architecture is shown

in Figure 3.4. An image block is classified as either compressible or incompressible using
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the standard deviation (STD) of its CS measurements. The blocks having bigger STD

are classified as incompressible, and the ones with lower STD are compressible. If the

total adaptive sampling rate is S, then the sampling rate ASi of block i is obtained by

ASi =
Pi

P
× S (3.6)

where

Pi = STD(xi)/(
N∑
i=1

STD(xi + C))

P =
N∑
i=1

Pi

and C is a constant to adjust the sampling rate between image blocks. After adaptively

assigning measurement rate to each image block, further CS is performed using deter-

ministic and random sensing. Principle Component Analysis is used for deterministic
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sensing and the sensing matrix is trained off-line by a sample set. Three CS sensing

matrices formed the full sensing matrix for an image block. This approach is better than

that in [70] since it uses the CS measurements for computing the classification parameter

rather than the original image data. The disadvantage is that the need to pre-sense each

image block. Also, training is required for deterministic sensing which limits the practical

usage of the this scheme.

For effective and simple CS based image coding, it is desirable to use a block-based

strategy which exploits the statistical structure of the image data. In general, the dis-

tributed approach which applies different measurement rates for different blocks provides

much better results. However, it is not easy to estimate the sparsity or compressibility of

an image block without applying a sparsifying transform. A new distributed CS image

coding method is presented in Chapter 6 that overcomes some of these problems.

3.2 Compressed Sensing Video Coding

Research into the use of CS in video coding has started only recently but a number of

different methods have already been proposed in the literature. These methods differ in

various ways. Some encode a whole video frame while others use a block-based approach.

Some use only CS encoding [14, 16, 18, 72–76] while others are hybrid approaches com-

bining conventional coding (MPEG/H.264/AVC) and CS coding [13, 15, 17, 77]. Some

methods involve motion estimation or motion compensation (ME/MC) [14, 74–76, 78]

while others do not. Some methods make use of a feedback channel from the decoder to

the encoder to improve coding efficiency [13,73], while others use an adaptive scheme to

achieve the same [79, 80]. A brief review of the main schemes is presented here.

3.2.1 3D Transform Coding

CS based 3D transform encoding methods typically use a 3D transform on a group of

video frames or applied at the decoder to estimate the correlation between frames. The
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first ever use of 3D transform based CS in video processing is proposed in [18]. Their

approach is based on the single pixel camera [42]. The image is assumed to be changing

slowly enough that a group of one-pixel snapshots constitutes a single frame. 3D wavelets

are used as a sparsity-inducing basis for measurement acquisition. A group of frames is

jointly reconstructed using a matching pursuit algorithm. The correlation between video

frames is exploited purely by the sparsity of the transform. A similar approach is used

in [81] to reconstructs a dynamic MRI volume using a temporal Fourier transform coupled

optionally with a spatial wavelet transforms as 3D sparsity basis.

In [16], 3D transform is used in conjunction with motion estimation at the decoder.

The encoder only takes random CS measurements independently for each frame with

no additional compression. A multi-scale framework has been proposed for reconstruc-

tion which iterates between motion estimation and sparsity-based reconstruction of the

frames. It is centred around the lifting-based invertible motion adaptive transform (LI-

MAT) method for standard video compression [82]. LIMAT uses second generation

wavelets to build a fully invertible transform. To incorporate temporal redundancy, LI-

MAT adaptively apply motion-compensated lifting steps. Let k-th frame of an n frame

video sequence be denoted by xk. The lifting transform partitions the video into even

frames x2k and odd frames x2k+1 and attempts to predict the odd frames from the even

ones using a forward motion compensation operator. Motion between a pair of frames is

estimated by block matching (BM). The BM algorithm divides the reference frame into

non-overlapping blocks. For each block in the reference frame the most similar block of

equal size in the destination frame is found and the relative location is stored as a motion

vector. This approach contrasts with the one in [18] where the reconstruction of a frame

depends only on the individual frames sparsity without taking into account any temporal

motion. Due to the multi-scale framework, the method is computationally intensive since

motion is estimated from the reconstructed frames before CS reconstruction.

Another approach utilizes 3D wavelets and noiselets to apply CS on multiple frames

instead of a single frame [83]. A video is divided into 3D image volumes and their

CS measurements are obtained by two sub-processes. First, a 3D wavelet transform
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Figure 3.5: Architecture of Distributed Compressed Video Sensing [13].

decomposes a volume into multiple decomposition levels. The coarsest scale is maintained

(sampled fully) to form the first set of measurements y1. For the other scales, a 3D noiselet

transform is applied which randomly sub-sample the coefficients to form the second set

of measurements y2. At the decoder, y1 is inverse transformed to reconstruct the coarse

image. Then inverse noiselet transform is applied on y2 to obtain the detailed part of the

image. Then TV minimization is performed on the combined reconstructed image. This

coding method is very computationally expensive and therefore is not very practical for

a resource constraint encoder.

3.2.2 Distributed Coding

Distributed coding is based on the distributed source coding theory of Slepian and

Wolf [65], and Wyner and Ziv [67]. Source statistics is only exploited at the decoder,

not at the encoder as it is done conventionally. Although distributed coding is explicitly

used for Wyner-Ziv coding, in CS it is generally used in the context of shifting the encod-

ing burden to decoder. Therefore, some CS video techniques which uses the distributed

approach may not apply Wyner-Ziv coding at all.

In [13], a framework which is called Distributed Compressed Video Sensing (DISCOS)

is introduced. Figure 3.5 shows the architecture of the DISCOS encoder and decoder.
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Video frames are grouped into group of pictures (GOP) consisting of a key frame and a

number of non-key frames. For a GOP size of 3, first frame is considered as a key frame

while remaining two are considered as non-key frames. Key frames are encoded using tra-

ditional MPEG/H.264 encoding. For non-key frames, both local block-based and global

frame-based CS measurements are acquired. In this way, more efficient frame-based pro-

cessing are supplemented by block CS processing so that temporal block motion can be

estimated. At the decoder, key frames are decoded using a conventional MPEG/H.264 de-

coder. For the decoding of non-key frames, the block-based measurements of a CS frame

along with the two neighbouring key frames are used for generating sparsity-constraint

block prediction. The temporal correlation between frames is efficiently exploited through

the inter-frame sparsity model, which assumes that a block can be sparsely represented

by a linear combination of few temporal neighbouring blocks. This prediction scheme is

more powerful than conventional block-matching as it enables a block to be adaptively

predicted from an optimal number of neighbouring blocks, given its compressed measure-

ments. The block-based prediction frame is then used as the side information to recover

the input frame from its measurements. The measurement vector of the prediction frame

is subtracted from that of the input frame to form a new measurement vector of the

prediction error, which is sparse if the prediction is sufficiently accurate. Thus, the pre-

diction error can be faithfully recovered. The reconstructed frame can then be simply

obtained from the sum of the prediction error and the prediction frame. This scheme

is also related with residual approaches discussed later. The main disadvantage of this

scheme is that it still requires a traditional codec for the key frames. Computational

burden is also high because it requires both block-based and frame-based processing.

In a similar way, DVC and CS are combined in [14] to simultaneously capture and

compress video data. The encoder and decoder designs are shown in Figure 3.6. The

main difference from DISCOS is that both key and non-key frames are CS sampled

and no conventional MPEG/H.26x codec is required. Key frames are encoded with a

higher measurement rate than non-key frames. CS samples of both key frames and

non-key frames are obtained using the SBHE sensing matrix [53]. At the decoder, the
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Figure 3.6: Distributed CS Encoder/ Decoder [14]

key frames are reconstructed using the standard GPSR algorithm [34]. For the non-

key frames, in order to compensate for lower measurement rates, side information is

first generated to aid in the reconstruction. Side information is generated from motion

compensated interpolation from the neighbouring key frames. In order to incorporate

side information, GPSR is modified with a special initialization procedure and stopping

criteria are incorporated. The convergence speed of the modified GPSR has been shown

to be faster and the reconstructed video quality is better than using original GPSR

algorithm.

The authors in [84] proposed a novel Wyner-Ziv coding of video using CS. The method

consists of a joint sparse model of block-based CS measurements, quantization and en-

tropy coding. Video frames are divided into key and WZ (non-key) frames. Key frames

are coded using H.264 intra coding. WZ frames are divided into blocks. Two block

sizes of 32× 32 and 16× 16 pixels have been used. Let a WZ frame be divided into Bn

blocks and there are a total of Tn CS measurements for this frame. Then for a given WZ

block Bwz(i) with variance σ(i), the number of measurement Mcs(i) for the block can be

approximated as

Mcs(i) ≈ round

⎡
⎢⎢⎣ σ(i)

Bn∑
i=1

σ(j)

Tn

⎤
⎥⎥⎦ (3.7)
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If Mcs(i) is zero, then the encoder is in SKIP mode otherwise it is in CODE mode.

The CS measurements will be discarded in SKIP mode. At the decoder, key frames are

decoded as H.264 decoding. For a WZ frame, side information is calculated using motion

compensated frame interpolation (MCFI) of decoded key-frames and then reconstructed

using joint sparse model with SI and CS data. This approach is similar to the adaptive

approach (which will be discussed later) to improve coding efficiency of WZ frames. The

problem with this approach is that all the blocks needs to be sampled first before the

total variance can be computed, which limits the benefits of bock-based encoding. It is

also not clear whether the variance of the CS measurements or that of the pixel values

is used. If pixel variance is used then it is impractical because in general, CS acquisition

does not have access to pixel values. On the other hand, if CS variance is used then

there is no need to throw away CS measurements in SKIP mode which has already been

acquired.

Another distributed Wyner-Ziv coding system is proposed in [85] which assumes the

existence of a feedback channel from the decoder to the encoder. Key frames are encoded

and decoded using conventional Intra frame coding. For WZ frames, Wyner-Ziv coding

is performed using Slepian-Wolf coding and syndrome bits are generated. To recover

the WZ frames at the decoder, side information is generated from the reconstructed key

frames using extrapolation. More bits can be requested to improve the reconstruction

quality using a feedback channel. This scheme is not applicable to situations where a

feedback channel does not exist.

The authors in [76] have proposed a distributed video coding architecture using CS.

Wynzer-Ziv coding principles are used at both the encoder and decoder. At the encoder,

video frames are sampled using CS. The measurements of the key frames are first quan-

tized using an M -level uniform quantizer. M bit-planes are then encoded using a rate

compatible LDPCA encoder. At the decoder, the key frames are reconstructed using the

GPSR algorithm. To decode each bit-plane, the buffer sends a small part of accumulated

syndromes of the current bit-plane to the decoder. Side Information is generated from
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adjacent key frames using motion compensated interpolation. The LDPCA decoder re-

quests more accumulated syndrome from the buffer using a feedback channel in case of

bit-plane decoding error. After all bit-planes have been decoded successfully, the decoded

measurements are then de-quantized and used for key frame recovery. The soft input in-

formation for the LDPCA decoder for key frames is based on previous decoded key frames

using a Gaussian model. The coding of non-key frame is similar to that of key frames

but the soft input information of the LDPC decoder is derived from the measurements of

the side information. Since this scheme requires a feedback channel, it cannot be applied

when it does not exist. Moreover, due to iterative decoding of LDPCA, the system delay

will be longer as first the system will decode LDPCA codes and then decoding of CS

measurements will take place.

3.2.3 Dictionary-based Coding

In dictionary-based approaches, a dictionary is formed from reconstructed frames at the

decoder to better reconstruct non-key frames. A dictionary based distributed approach

to CVS has been reported in [17]. Key frames are encoded and decoded using conven-

tional MPEG/H.264 techniques. Non-key frames are divided into non-overlapping blocks

of n × n pixels. Each block is then compressively sampled and quantized. At the de-

coder, key frames are MPEG/H.264 decoded while the non-key frames are dequantized

and recovered using a CS reconstruction algorithm with the aid of a dictionary as side in-

formation. The dictionary is constructed from the decoded key frames. It’s architecture

is shown in Figure 3.7.

Two different coding modes are defined. The first one is called the SKIP mode. This

mode is used when a block in a current non-key frame does not change much from the

co-located decoded key frame. Such a block is skipped for decoding. The decision to

enter SKIP mode is dependent on the mean squared error (MSE) between decoded key

frame block and current CS frame block, which is done using a feedback channel. If

the MSE is smaller than some threshold, the same decoded block is simply copied to
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Figure 3.7: CS based Video Coder [17].

current frame and hence the decoding complexity is minimal. The other coding mode

is called the SINGLE mode. CS measurements for a block are compared with the CS

measurements in a dictionary using the MSE criterion. If it is below some pre-determined

threshold, then the block is marked as a decoded block. A dictionary is created from

the set of spatially neighbouring blocks of previous decoded neighbouring key frames.

A feedback channel is used to communicate with the encoder that this block has been

decoded and no more measurements are required. For blocks that are not encoded by

either SKIP or SINGLE mode, normal CS reconstruction is performed. The problem with

this approach is that a feedback channel is required. Also, to decide whether a block is

to be coded in any mode, decoded blocks in the key frame needs to be CS encoded so

that the Minimum Mean Square criterion using CS measurements can be computed. It

is an extra computation at the decoder. It is also not clear how the threshold for block

selection can be determined. Another dictionary based approach is presented in [72].

The authors proposed the idea of using an adaptive dictionary. The dictionary is learned

from a set of blocks globally extracted from the previous reconstructed neighbouring

frames together with the side information generated from them. Frame are divided

into key frames and CS frames. Frame-based CS measurements are acquired for key
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frames. For CS frames, block-based CS measurements are acquired. At the decoder,

the reconstruction of a frame or a block is performed using the sparse reconstruction

by separable approximation (SpaRSA) algorithm [36]. Adjacent frames in the same

scene of a video are similar. Therefore a frame can be predicted by its side information

which can be generated from the interpolation of its neighbouring reconstructed frames.

The side information It for a CS frame xt is generated from the motion-compensated

interpolation of its previous xt−1 and next reconstructed key frames xt+1. To learn the

dictionary from xt−j, It and xt+j, for each block, 9 training patches from the nearest 8

blocks overlapping this block and this block itself are extracted. After that, the K-SVD

algorithm [86] is applied to the 9 training patches to learn the dictionary Dt. Dt is an over

complete dictionary. By using the learned dictionary, each block bti in xt can be sparsely

represented as a sparse coefficient vector ati ∈ RP×1. This learned dictionary provides

sparser representation for the frame than using the fixed basis dictionary. This work has

been extended to incorporate dynamic measurement rate allocation by incorporating a

feedback channel [73]. Dictionary learning using training patches can significantly slow

down the reconstruction process.

3.2.4 Residue-based Coding

The idea of residue-based approaches is similar to encoding motion information at the

encoder for a conventional codec. Instead of encoding motion, for a non-key frame only

its residue is encoded. An detailed explanation for CS based prediction is provided in [74].

In order to generate a small residue, a prediction for the original frame x must be as close

to the MC prediction as possible. Mathematically it can be expressed as the following

optimization problem:

x̃ = arg min
p∈P (xref )

||x− p||22 (3.8)

where P (xref ) is the set of all ME/MC predictions that can be formed from reference

frame xref . As the original x is not available at the decoder in CS, an approximation
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of it is obtained by using an initial reconstruction x̂. Thus the above optimization now

becomes

x̃ = arg min
p∈P (xref )

||x̂− p||22 (3.9)

Another approach is to use the measurements y and obtain the CS measurements of the

MC frame. In this case, the problem becomes

x̃ = arg min
p∈P (xref )

||y − Φp||22 (3.10)

This approach is known as the single hypothesis approach. For better prediction, an

number of predictions from all the hypotheses can be obtained instead of using a single

prediction.

w̃t,i = argmin
w

||yt,i − ΦHt,iw||22 (3.11)

where i is the block index and t is the temporal frame index. Ht,i is a matrix of dimen-

sionality B2 ×K consisting of all possible blocks in reference frame. In this context, ŵt,i

is a column vector which represents a linear combination of the columns of Ht,i. This

optimization problem can be solve by l1 minimization as is done in [13,17]. Alternatively,

it can be solved using a Tikhonov regularization [87] as proposed in [88].

A different residual CS video coding scheme is proposed in [89]. The architecture is

shown in Figure 3.8. At the encoder, before applying CS encoding to the key frames,

motion compensation is performed between two key frames to provide prediction for the

non-key frames in-between. This prediction is then subtracted from the non-key frames

to create a residue which is then CS encoded. At the decoder, after decoding the key

frames using intra-frame decoding, motion estimation is performed to predict the non-

key frames. This prediction is used in the CS reconstruction of the non-key frames to

improve their quality. Since the method requires motion compensation at both encoder

and decoder, computational demand is high at both ends.

A better residual technique is proposed in [75] which incorporates ME/MC at the

decoder rather than at the encoder. The authors proposed an iterative process of calcu-

lating the residue and then improving it using backward and forward motion estimation.
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A GOP consists of a key frame and some non-key frames. Each frame is CS sampled in

a block by block basis. At the decoder, each key frame is reconstructed from its block-

based CS measurements. For a non-key frame x, an initial reconstruction is performed

using its block-based CS measurements to yield x̂. Then, full search block based ME is

performed using the reconstructed key frame and x̂. This motion compensated prediction

forms the field of motion vectors and produces a motion compensated frame x̂mc. Then

for each block j in the non-key frame, compute the residue yrj by

yrj = yj − ΦBx̂mcj (3.12)

where ΦB is the block sensing matrix. If the MC is accurate, then the reconstructed

residual frame x̂r is sparser than original x. This x̂r is then added to x̂mc to form a new
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approximation x̂. This approximation is of better quality than the initial approximation

created by direct CS reconstruction. This process can be further improved by iteratively

repeating this ME. Instead of using a single key frame for ME, backward and forward

motion estimation can be performed on a GOP for more accurate results. The advantage

in this approach is that all the computation burden is at the decoder, thus keeping the en-

coder simple. This method has been extended by using a multihypothesis approach [88].

Instead of using a single prediction, multiple distinct predictions are created and then

combined to form a composite prediction which provides better results.

Another residual reconstruction technique is specific to dynamic Magnetic Resonance

Imaging (MRI) videos. The strategy is to perform residual reconstruction from a pre-

diction of the current frame. A general assumption specific to MRI videos is that the

content changes very slowly between adjacent frames in comparison for normal videos.

In [90,91], sparsity of the current reconstructed MRI frame is estimated. Then it is used

to predict the sparsity of subsequent frames. Estimation can be performed on the basis

of least squares [91] or based on Kalman filtering [90]. The approach used in [92] is based

on “Modified-CS” [93]. It uses an l1 solution outside the currently known sparsity pat-

tern and then estimate the changes from frame to frame. The main difference between

these approaches and the common video approaches is that they do not perform explicit

ME/MC to improve the residual reconstruction. Instead, kalman filtering, least squares
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or l1 optimization are used to track the changes. They are more suitable for videos with

slow object motions like dynamic MRI.

An approach that explicitly use ME/MC, called focal under determined system solver

in k-t space (k-t FOCUSS), is proposed in [78, 94] for MRI videos. Its architecture is

shown in Figure 3.9. It incorporated ME/MC to improve the reconstruction quality of

non-key frames by residual and motion estimation prediction from available key frames.

Full sampling is used for key frames. A larger GOP size is adopted as motion is very

slow in MRI videos.

3.2.5 Adaptive Coding

In CS based video codecs, usually a small number of pre-determined measurement rates

for each frame or block is use. For example, one measurement rate may be used for key

frames and another for non-key frames. However, if the sparsity of the video frames or

blocks can be determined, then the correct number of CS measurements can be used to

represent them. This is the idea of the adaptive approach.

The architecture of an adaptive block based block-based CS video codec is shown

in Figure 3.10 [15]. With this scheme, each video frame is split into B non-overlapping

blocks each of size n × n = N pixels. A reference frame (or key frame) is sampled

encoded using conventional methods like MPEG, H.264. For a certain GOP size, first

frame is considered as a key frame while remaining frames are considered as non-reference

frames. For non-reference frames, after sampling, a compressed sensing test is applied

to identify sparse blocks. The Bs sparse blocks are each compressively sampled using an

i.i.d. Gaussian measurement matrix and an inverse DCT sensing matrix. The remaining

B − Bs blocks are sampled in the traditional way. Signal recovery is performed by the

OMP algorithm. In reconstructing compressively sampled blocks, all sampled coefficients

with an absolute value less than some constant C are set to zero. Theoretically, if there

are N −K non significant DCT coefficients, then at least M = K+1 samples are needed

for signal reconstruction [19]. Therefore the threshold is set to be T < N−K. The choice
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of values forM,T, and C depends on the video sequence and the size of the blocks. It has

been shown experimentally that up to 50% of saving in video acquisition is possible with

good reconstruction quality. The disadvantage with this approach is that a conventional

codec is required for reference frames. Furthermore, it is difficult to determine a suitable

global threshold.

The adaptive CS based video scheme proposed in [80] used a similar idea of weighting

CS measurements as in [56]. A support set of transform coefficients are obtained by

reconstructing the first frame. Then a weighting matrix is computed which is used to

adaptively locate the significant transform coefficients. As adjacent frames are highly

correlated, it is very likely that their transform coefficients will also be located at the

same locations. The weighting matrix is then used to adaptively sample the next frame.

This approach requires CS reconstruction at the encoder which significantly increases its
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complexity.

Another adaptive architecture is proposed in [79] and shown in Figure 3.11. Each

video frame is divided into non-overlapping blocks of equal sizes. Blocks are classified

into several different types and sampled and reconstructed differently. This framework

can adaptively adjust the number of measurements for each image block according to its

sparsity. The first frame is considered as a reference frame and the blocks in this frame

are sampled and reconstructed using regular CS techniques. For a block k in a non-

reference frame t, initially M0 measurements using a sensing matrix ΦM0 are collected.

These measurements are given by

ykM0,t
= ΦM0x

k
t (3.13)

Then the difference between the CS measurements of the current block and previous

frame block is computed as

ykd = ykM0,t
− ykM0,t−1

(3.14)

Then, l1 norm of ykd is computed and normalized by M0. It is compared with two

thresholds T1 and T2. This block is classified as

(i) a static block if ||ykd ||1/M0 ≤ T1. No more measurements are acquired for this block.
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(ii) a small-change block if ||ykd ||1/M0 ≤ T2. An additional M1 > M0 measurements are

acquired.

(iii) a high dynamics block if ||ykd ||1/M0 > T2. An additional measurements M2 are

acquired.

To determine the value of M2, some frames called “indicator frames” are reconstructed

periodically at the encoder to estimate the sparsity of the current high dynamic block. At

the decoder, static and high dynamic blocks are reconstructed using their respective CS

measurements. For small change blocks, first the block difference x̂kt,t−1 is reconstructed

and then it is added to the reconstructed block k at frame t−1, denoted as x̂kt−1 to obtain

x̂kt = x̂kt−1 + x̂kt,t−1 (3.15)

This scheme can significantly improve CS video coding performance with the added

complexity at the encoder. The disadvantage is this approach that encoder complexity

is increased in terms of memory (to store previous CS measurements) and computation

(to reconstruct indicator frames). Also it is not easy to determine the correct thresholds

for different types of video content.

In [95], a new image/video coding framework is proposed which combines CS with tra-

ditional image/video compression approaches. It considers CS sampling/recovery as more

suitable for image blocks with sparse gradients while conventional DCT based method

is more suitable for complicated image blocks. Therefore, CS is integrated into JPEG

and H.264/AVC coding methods as a new coding mode and rate-distortion optimization

(RDO) is employed for mode selection between the new coding mode and conventional

coding modes. Therefore, each 8 × 8 image block is encoded and decoded in either the

conventional coding modes or the CS coding mode. The sensing operator is a partial

DCT matrix consisting of the top rows of the full DCT matrix and is applied to the

block residue to reduce the bit rate. At the decoder, TV-minimization is used to recover

the block residue from the coded coefficients. This work is later extended to include pixel

domain TV-minimization at encoder to more effectively improve coding efficiency [77].
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3.2.6 Scalable Coding

Scalable Video Coding (SVC) is an extension of the H.264/AVC standard which provides

different coding strategies in different layers for different target audiences [96]. This is

achieved by splitting the video stream into different layers which can be used as temporal,

spatial or quality enhancement. This is motivated by applications which involve different

screen resolutions, bandwidth requirements, decoding time constraints and quality of

service requirements.

Scalable CS coding is first proposed in [97]. A framework of measurement structures

has been developed to improve the reconstructed CS video progressively. Let X be an

n×n pixel video frame and Z be its 2−D DCT coefficients. If z is an N -length column

vector obtained by zig-zag scanning of Z then z = [zT1 z
T
2 · · · zTL ]T . Here zi is a vector

of length ki denoting the i-th video layer with
L∑
i=1

ki = N . The first layer z1 is called

a base layer and other layers are enhancement layers. Overlapping windows are used

to obtain the CS measurements of each layer. Depending on the requirements at the

decoder, a video frame can be reconstructed using the measurements of the base layer

plus any number of enhancement layers. This is an adaptive approach which adaptively

selects significant DCT coefficients arranged in a zig-zag order. Further each video frame

is reconstructed independently without exploiting any correlation among video frames.

In [98], DVC and CS are combined to form a scalable codec. At encoder, frames

are divided into Key frames and WZ frames. For a certain GOP size, first frame is

considered as a key frame while remaining frames are considered as non-key frames. Key

frames are intra coded using conventional H.264/AVC codec. For the WZ frames, a

residue which is the difference between the current frame and the first key frame in a

GOP is computed. Then only the residual is encoded using CS. The measurement rate

of the WZ frames are adjusted according to the available bandwidth. At the decoder,

key frames are reconstructed using conventional H.264/AVC decoder. For WZ frames,

the decoder first requests a small number of measurements according to the available

bandwidth. The residue is then reconstructed which is combined with the reconstructed
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Figure 3.12: Transform Domain Wyner-Ziv video Coding architecture [99].

key frame. Additional measurement can then be subsequently requested to enhance the

reconstruction quality. This approach requires a feedback channel and a conventional

codec which are not applicable to low complexity encoders.

3.3 Conventional Distributed Video Coding

In the previous two sections, different strategies for encoding images and videos are

presented. The distributed approach provides low complexity encoding. Distributed

Video Coding (DVC) is an application of distributed source coding (DSC) which involves

the encoding of two or more dependent random sequences. DSC is based on the Slepian-

Wolf theorem [65] and Wyner-Ziv theorem [66, 67] which has been described earlier in

Section 3.1.4. In this section, three conventional distributed video coding systems that

have been proposed in the literature are discussed. They will provide the benchmark for

performance comparisons with the systems proposed in Chapters 5 and 7.
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3.3.1 Transform Domain Wyner-Ziv Video Coding

The first practical Wyner-Ziv video coding schemes emerged around 2002. One of them

is a system developed at Stanford University, initially developed in the pixel domain [100]

and subsequently reformulated in the transform domain [99]. Figure 3.12 shows a block

diagram of the transform domain system structure.

The encoder divides video frames into key frames and Wyner-Ziv (WZ) frames. Key

frames are encoded by traditional coding methods such as those used in MPEG/H.264.

For each WZ frame, a block-wise discrete cosine transform (DCT) is computed. The

transform coefficients of the whole frame are grouped into bands. These DCT bands are

quantized into different levels according to the specified target quality [99]. They are

then independently encoded, typically using turbo or low density parity check (LDPC)

codes.

At the decoder, key frames are decoded first. Motion estimation is performed by

interpolation. An estimated reference frame is generated which is used as the side infor-

mation for the decoding of WZ frames. The residual statistics between SI and the WZ

frame is modelled by a Laplacian distribution. The decoder decodes all the bit planes in

a DCT band. After that the bit planes are reconstructed by applying inverse DCT.

3.3.2 The PRISM Video Codec

Another DVC system called PRISM (Power-efficient, Robust, hIgh compression Syn-

drome based Multimedia coding) [102] is developed at the University of California, Berke-

ley. The architecture of this system is shown in the Figure 3.13.

At the encoder, video frames are divided into blocks of 8× 8 pixels and a block-wise

DCT is computed. As in the Stanford system, a quantizer is used to adjust the target

quality. The job of the classifier is to classify each block either as a current block or a

predictor block based on their correlation. The prediction can be a co-located block or a
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Figure 3.13: PRISM Video Coding Architecture [101]

motion compensated block. There are three types of coding classes used by PRISM and

sent as the header information:

(i) SKIP coding class – a block is not coded and the predicted block is used as the

current block.

(ii) Entropy coding class – same as traditional intra frame coding.

(iii) Syndrome coding class – Wyner-Ziv coding is used. Only the least significant bits

of the transform coefficients are syndrome coded. It uses a 4-tuple scheme. BCH

(Bose Chaudhuri Hocquenghem) codes are used for the upper part. For each block,

a signature is used as a 16-bit CRC (Cyclic Redundancy Check) checksum.

At the decoder, SI blocks are created using a two step process. The first step deals

with bit-planes encoded by traditional entropy coding and the second is for bit-planes that

are syndrome coded. After obtaining the quantized coefficients a block is reconstructed

with available side information.
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Figure 3.14: Block diagram of the DISCOVER video coding architecture [103].

3.3.3 The DISCOVER Video Codec

Distributed Coding for Video Services (DISCOVER) is a DVC architecture that has been

proposed in [103]. Its architecture is shown in Figure 3.14.

Video frames are first divided into key frames and WZ frames. Key frames are

encoded using traditional video encoding techniques while WZ frames are encoded by

distributed techniques. For each WZ frame, a block-wise transform is computed. The

transform coefficients are then quantized and grouped into frequency bands. They are

channel coded and stored in a buffer. The number of bits needed for encoding from each

bit-plane is estimated. This process is called minimum rate estimation. The job of the

buffer is to provide additional bits for stable decoding using a feedback channel.

The key frames are decoded by conventional intra-frame decoding. The decoded key

frames are then used as the side information for decoding the WZ frames. A motion com-

pensated interpolation is performed for producing the SI for WZ frames. The difference

between a WZ frame and its corresponding SI is modelled using a Laplacian distribution.

This provides a good approximation of the residual distribution. Information bits are
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estimated by incorporating the noise modelled from block 6 in Figure 3.14. These infor-

mation bits are fed into the WZ decoder to decode the WZ frames. A suitable criterion

determines success or failure. If the decoding is not successful, the feedback channel is

used to obtain more bits.

3.3.4 Comparison of DVC Architectures

The similarities and differences between these three DVC systems are summarized as

follows.

(i) Frame Classification

In both the Stanford system and DISCOVER, the input video sequence are divided

into WZ frames and key frames. In PRISM, there is no classification of frames

performed. All video frames are treated similarly.

(ii) Spatial Transformation

In all three architectures, block-based DCT is used. In the Stanford system and

DISCOVER, only the WZ frames are transformed. The transform coefficients of

each frame are grouped according to their values into bands.

In the Stanford and DISCOVER codecs, after Turbo / LDPC decoding, inverse

DCT is performed to decode the WZ frames. In the PRISM codec, a block is

reconstructed from the corresponding SI and quantized bit stream.

(iii) Quantization

In the Stanford system and DISCOVER, each DCT band is uniformly quantized

with a number of levels that depend on the target quality or on the DCT coefficients.

For a given band, bits of the quantized symbols are grouped together, forming bit-

planes, which are then independently turbo encoded or LDPC encoded. In the

PRISM architecture, a scalar quantizer is used.
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(iv) Block Classification

This is only done in PRISM since the other two are frame-based codecs.

(v) Turbo/LDPC Coding

Only turbo encoding is used in the Stanford system while DISCOVER makes use

of both turbo and LDPC encoding for coefficient bit-planes. The Turbo/LDPC

decoder receives successive chunks of parity bits from the feedback channel. To

decide whether more bits are needed for the successful decoding, the decoder uses

a simple request stopping criteria which checks that all Turbo/LDPC code parity

check equations are satisfied for the decoded codeword. In DISCOVER, a further

CRC checking is performed to obtain a good reconstruction quality.

(vi) Syndrome Coding and Hash Generation

This is performed in the PRISM codec only. For the syndrome class, only the

least significant bits of the quantized DCT coefficients are syndrome encoded. In

addition, for each block, the encoder sends a 16-bit cyclic redundancy check (CRC)

checksum as a signature of the quantized DCT coefficients. This is needed in order

to select the best candidate block (SI) at the decoder. Candidate blocks are used

for syndrome decoding. A hash signature is generated for each decoded candidate

block. For successful decoding, the generated hash signature is compared with the

CRC hash received from the encoder.

(vii) Side Information Creation

This is an important step in DVC decoding. For both the Stanford and DISCOVER

codecs, SI is created by previously decoded key frames using motion compensated

frame interpolation. This is an estimate for the WZ frames. The better the es-

timate, the smaller the number of parity bits needed for correction. In PRISM,

motion estimation is performed using a reference frame by positioning a window

around the center of block to be decoded.
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(viii) Correlation Noise Modelling

The correlation statistics between side information and WZ frames is modelled by

the Laplacian distribution. This modelling is needed in both the Stanford system

and DISCOVER. Prism does not require this step.

3.4 Summary

In this chapter, a review of CS based Image and Video coding is presented. Different CS

image coding schemes are classified into different categories and then key points in each

category are discussed. Similarly, a classification for different CS video coding schemes is

discussed. The differences with the work done in this thesis and available CS image/video

literature is also discussed.
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Sensing Matrix, Quantization
Matrix and Reconstruction
Algorithms for Image Compression

In a conventional lossy image compression system, an invertible transform is applied to

the image which provides its expansion in terms of transform coefficients. Typically most

of the energy of the signal is concentrated in a relatively small subset of the transform

coefficients. Consequently, when quantization is then applied to the coefficients, a sig-

nificant number of quantized coefficients will be zero and therefore need not be encoded.

After quantization, a lossless compression process called “entropy coding” encodes the

data into a bit stream for storage or transmission. Decompression is performed by inverse

quantization followed by inverse transformation. This process is used in JPEG [1]. The

choice of transformation and the design of the quantization matrix are important factors

in the performance of the compression system.

For a system based on compressed sensing, the process is somewhat different. Instead

of applying a transform to the image, a set of linear measurements is obtained through a

sensing matrix. The number of measurements is typically much smaller than the original

image. Figure 4.1 illustrates this process in block diagram form. Here the measurements y

is obtained by applying a sensing matrix Φ to an image x with a total of N pixels. Φ is an

m×N matrix where m is much smaller than N . Thus the dimension of the measurement
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Figure 4.1: CS Image Compression

vector y = Φx is m. The CS measurements are then quantized and entropy encoded.

At the decoder, inverse quantization is followed by a CS recovery process to reconstruct

the image. In this case, the performance of such a compression system is determined by

the number of measurements, the sensing matrix, the quantization matrix, and the CS

reconstruction algorithm.

In this chapter, the effects of the choice of sensing and quantization matrices, and

the CS reconstruction algorithms are studied in a non-distributed image compression set-

ting. The efficacy of several different sensing matrices are evaluated in terms of encoding

complexity and ease of implementation. A quantization matrix is designed and its perfor-

mance is evaluated. Finally, several different CS reconstruction algorithms are compared

in terms of reconstruction time and reconstruction quality. The results obtained in this
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chapter is then applied to distributed image and video coding in subsequent chapters.

4.1 Choice of Sensing Matrices

In CS imaging applications, the design of efficient sensing (measurement) matrices Φ

is a challenging problem due to data size and computational requirements. There has

been many proposals in literature. Some are deterministic while others are randomly

generated. They can be classified into the following three categories based on their

properties.

Randomly Generated Matrices Randomly generated sensing matrices have entries

that are identically and independently sampled from a probability distribution. A

commonly used distribution is zero-mean, unit variance Gaussian N (0, 1) [104,105].

Another one is the Bernoulli sensing matrix with entries i.i.d. sampled from a bi-

nomial distribution. The Gaussian and Bernoulli matrices have the advantage that

they are incoherent with many basis matrices [11]. Random matrices provides good

recovery performance as they are incoherent with many sparsifying transforms for

imaging application. The limitations of random matrices are high memory require-

ments and the need for the encoder to communicate the matrix to the decoder.

Random matrices can be made to have specific structures to provide better com-

putation and storage efficiency. For example, Toeplitz matrix or diagonal-constant

matrix is a matrix with constant diagonal elements. Results from [106,107] showed

that a sparse signal can be recovered from reduced samples exactly with high proba-

bility when block Toeplitz random matrices are used for sensing. Another approach

is to generate a block-diagonal matrix in which each diagonal matrix is a random

matrix. In this way, random matrices will be less dense and require less memory

compared to full random matrices.

Transform based Matrices Transform based sensing matrices are based on linear

transforms such as discrete Fourier, Hadamard and discrete cosine transforms. Par-

tial Fourier ensemble sensing matrices are introduced in [104]. The sensing matrix Φ
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is obtained by samplingM/2 columns uniformly at random from the N×N discrete

Fourier transform matrix, where M is the down-sampling factor. An alternative

one is the Scrambled Fourier Sensing Matrix which has better performance [108].

Here the columns of N × N discrete Fourier transform matrix are first randomly

permuted and then M/2 columns are selected uniformly at random. In both the

partial and scrambled methods, the sensing matrix is a truncated transform with

only M/2 Fourier coefficients which are randomly chosen. Similarly, block DCT

or block Hadamard transform based sensing matrices can also be used instead of

Fourier transform. The benefit of Hadamard based sensing matrix is that its en-

tries are binary ±1 which is suitable for hardware implementation. A very popular

sensing matrix is the partial block Hadamard transform matrix with randomly per-

muted columns [53]. The benefits of transform based sensing matrices are their fast

computation and that they can be generated at the encoder/decoder without need

of explicit storage.

Binary Sparse Matrices First proposed in [109], binary sparse matrices have a fixed

small number of ones in each column and the remaining entries are zeros. It is well

known that a random “dense” sensing matrix works well in CS applications [104].

In [109], it was shown that, both in theory and in practice, Φ that is binary and

“very sparse” is essentially as good as random Gaussian or Fourier matrices for

linear programming decoding. At the same time, sparse binary matrices provide

additional benefits, such as reduced encoding and decoding time. Experimental

results for sparse recovery using binary sparse matrices are reported in [25,109,110].

4.1.1 Experimental Results

Four standard 8-bit grey-scale images – “Lena”, “Boat”,“Cameraman” and “MRI” –

are used for the evaluation of sensing matrices. These images are down-sampled to a

resolution of 64 × 64 pixels from original dimension of 256 × 256 to reduce the memory

requirements for random Gaussian matrices. The software provided in the l1 − magic
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4.2.a: Lena Acquisiton Time
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4.2.b: Boat Acquistion Time
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4.2.c: Cameraman Acquisition Time
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4.2.d: MRI Acquisiton Time

Figure 4.2: Sensing Matrix Acquisition Time

software package [111] is used for reconstruction using Total Variation minimization (TV).

All experiments run on an Intel Pentium 4 3GHz system, running Windows 7 and

MATLAB 2011. The sensing matrices that are compared include i.i.d. Gaussian, i.i.d.

Bernoulli, Partial Fourier Transform (PFT), Scrambled Fourier Ensemble (SFE), Scram-

bled Block Hadamard Ensemble (SBHE), Binary Sparse and Binary Sparse with ±1. An

image x is represented as an N × 1 column vector where N is the total number of pixels
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in the image. If Φ is the sensing matrix, then CS measurements y is obtained by y = Φx.

The corresponding measurement rate is given by Mr/N . The measurement rate Mr is in

the range of 10% to 70%.

Acquisition Time

In imaging applications, fast acquisition of CS measurements is essential. Figure 4.2

shows the acquisition time for different test images. The acquisition time for transform

based matrices, i.e. SFE,PFT and SBHE, is less than fraction of a second for all test

images. This is due to fact that fast transform methods are available for this type of

matrices. For random Gaussian/Bernoulli matrices, the acquisition times at low measure-

ment rates are similarly low as only a small number of random numbers are generated.

For higher measurement rates, the acquisition time for random matrices increases due

to increase in the size of the measurement matrix. Interestingly, for binary sparse ma-

trices, the acquisition time is quite high in comparison to other sensing matrices. At

low measurement rate, 10% it is quite high for binary sparse matrix having ±1. The

reason for such a high acquisition time is that, after generating the binary sparse matrix,

it needs to be checked for duplicate columns. This experiment suggests that instead of

using a random or sparse matrix, a transform based sensing matrix provides less time in

acquiring CS samples.

Reconstruction Time and Quality

The next experiment evaluates the reconstruction performance for the sensing matrices

in terms of reconstruction time and reconstruction quality. We used Total Variation

(TV) minimization instead of l1 minimization for reconstruction. In Section 2.1, the im-

portance of coherence between the sensing and sparsifying matrices have been discussed.

The various sensing matrices have different coherence with different sparsifying bases.

For a fair comparison, the sparsifying transform is replaced by total variation (TV) min-

imization which uses a sparse approximation of image gradient. The benefit of using TV
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4.3.a: Lena Reconstruction Time
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4.3.b: Boat Reconstruction Time
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4.3.c: Cameraman Reconstruction Time
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4.3.d: MRI Reconstruction Time

Figure 4.3: Sensing Matrix Reconstruction Time

norm for images is to avoid high frequency artefacts. The TV norm of an image is given

by

||X||TV =
∑
i,j

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2 (4.1)

where xi,j is the pixel value of image X at row i and column j.

Figure 4.3 shows the reconstruction times for different sensing matrices. The recon-

struction times for transform based sensing matrices are less than 50 seconds for all test
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4.4.a: Lena Rate Distortion Performance
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4.4.b: Boat Rate Distortion Performance

0 10 20 30 40 50 60 70 80

15

20

25

30

35

40

Measurement Rate (%)

P
S

N
R

 (
d
B

)

 

 

i.i.d Gaussian
i.i.d Bernouli
SFE
PFT
SBHE
Binary Sparse
Binary Sparse (+−)

4.4.c: Cameraman Rate Distortion Performance
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4.4.d: MRI Rate Distortion Performance

Figure 4.4: Sensing Matrix Rate Distortion Performance

images under different measurement rates. Those for random matrices and binary sparse

matrices are quite high in comparison. In particular, for the “Boat” image, at measure-

ment rateMr ≥ 50% the random Gaussian matrix exhibits a much higher reconstruction

time compared with the rest.

Figure 4.4 shows the quality of the reconstructed images in terms of PSNR at different

measurement rates. The reconstruction performances are very similar for all sensing

matrices tested except Partial Fourier (PFT). The performance of PFT is poor because
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it does not use scrambling which provides better results due to randomization process.

This suggests that whether the sensing matrix is random (Gaussian/Bernouli), Sparse

(Binary/± 1) or a scrambled transform based operator, the quality of the reconstructed

images under TV norm is almost identical.

Summary

The Gaussian or Bernoulli matrices offer optimal performance and universality, but they

are impractical for resource limited image encoding applications due to high memory

requirements and high computational complexity. Scrambled Fourier Ensemble (SFE)

and Partial Fourier transform have been used in many CS imaging literature due to their

faster computation time. Partial Fourier does not perform well in terms of reconstruction

performance. SFE performance is good in all performance metrics but its values are not

binary. Binary Sparse matrices provides good reconstruction performance, comparable

to random Gaussian and transform based operators but in our experiments we have

found out that their acquisition time varies for different measurement rates. In terms of

sensing matrix requirement in low complexity encoders, the implementation of random

Gaussian/binary sparse matrices is challenging as they need to be stored explicitly and

required at the decoder for reconstructing data. Scrambled Block Hadamard Ensemble

(SBHE) not only provide similar performance as SFE but its hardware implementation is

simpler due to its binary nature. It also has faster reconstruction time as transform based

operators have fast matrix-vector product implementation than random Gaussian/Binary

Sparse matrices.

4.2 Choice of Reconstruction Algorithms

In CS based compression systems, the decoder need to solve a convex optimization prob-

lem using either sparsity in a transform domain (Wavelet, DCT etc) with l1 norm or

image gradient with the TV norm. These optimization problems are quite challenging

to solve because both the l1 and the TV norms are non-smooth. For image processing
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applications the dimension of problem and its solution span are very large. The recon-

struction problem has been formulated in three equivalent ways, namely, basis pursuit,

basis pursuit denoising and “Lasso”.

Basis Pursuit (BP) is a quadratically constrained l1-minimization problem and it is

given as:

min
x

‖ x ‖l1 subject to ‖ y − θx ‖l2≤ ε (4.2)

where y is the noisy CS measurements with noise ε. This is a preferred CS reconstruction

formulation as the estimate of noise ε may be known or can be computed.

A second approach in CS reconstruction is to formulate the BP problem as a second

order cone program:

min
x

1

2
||y − θx||2l2 + λ||x||l1 (4.3)

This formulation is also known as Basis Pursuit Denoising (BPDN) [28]. It is tractable

due to its bounded convex optimization nature. The term λ||x||l1 , which is also known

as regularization, can be interpreted as a maximum a posteriori estimate in a Bayesian

setting. This makes BPDN very popular for signal and image processing applications.

The third formulation is known as the Least Absolute Shrinkage and Selection Op-

erator (Lasso) [29]. It is the minimization of an l2 norm subject to l1 norm constraints:

min
x

||y − θx||l2 subject to ||x||l1 ≤ τ (4.4)

There are a number of different algorithms developed to solve these three CS recon-

struction problems. Linear programming (LP) techniques have been shown to be effective

in solving such problems with high accuracy [10,11]. However, due to large solution space

in image processing applications, more efficient methods are preferred. Some algorithms

requires fewer iterations or less computation time per iteration and some work only on

sparsity in the l1 norm or the TV norm. They can be broadly classified as greedy algo-

rithms, gradient-based algorithms, and iterative shrinkage algorithms. We will evaluate

their performance in Section 4.2.4 using the following criteria:
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• Reconstruction Time: Due to large dimension of image data, an efficient algorithm

which can provide solution in minimal running time is highly desirable.

• Number of Iterations: An algorithm which can found a solution in a minimum

number of iterations will be very efficient.

• Sparsity Flexibility: CS reconstruction can be formulated differently as shown in

Equations 4.2, 4.3 and 4.4. An algorithm which can provide solution to all three

CS formulations is highly desirable. For example an algorithm which can sup-

port both l1 and TV -norm implementation will be very useful for image and video

applications.

4.2.1 Greedy Algorithms

Greedy algorithms are based on Matching Pursuit (MP) [30] and its variants such

as Orthogonal Matching Pursuit (OMP) [31], Stagewise Orthogonal Matching Pursuit

(StOMP) [32], and Compressive Sampling Matching Pursuit (CoSaMP) [33]. They are

iterative algorithms that decomposes a signal into a linear expansion of functions that

form a dictionary θ. Greedy algorithms starts with an initial solution x̂ = 0 and then

greedily chooses elements of x̂ to assume non-zero magnitudes by iteratively processing

residual errors between measurement vector y and θx̂. At each iteration, algorithm at-

tempts to choose the best approximation for the current residual from the dictionary.

We will briefly discuss two of these greedy algorithms.

Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is the orthogonalized version of a Matching Pursuit

(MP) algorithm. The idea is that at every iteration an element is picked from the

dictionary that best approximates the residual. With OMP, instead of simply taking the

scalar product of the residual and the new dictionary element, the original function is
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fitted to all the selected dictionary elements via a least squares or a projection of the

function orthogonally onto all the selected dictionary atoms.

The algorithm starts with residual r0 = y, i.e. the solution x̂ = 0. At every iteration

i > 0, the column of θ that is most correlated with current residual ri−1 is selected. It

then solves the least square problem for the new signal estimate using only the dictionary

atoms that have been previously selected. A new residual is computed using the most

recent approximation. It continues until a predetermined stopping criteria or a fixed

number of iterations is reached.

Stagewise Orthogonal Matching Pursuit

Stagewise Orthogonal Matching Pursuit (StOMP) is introduced in [32]. It is an improve-

ment on the OMP algorithm. In contrast to OMP, which allows only one dictionary

atom to be added in an iteration, StOMP allows multiple ones to be added in a single

iteration. It is significantly faster than OMP. A sequence of approximations {x0, x1, ...}
are obtained by removing the detected structure from residual vectors r1, r2, ....

StOMP starts with initial solution at zero and initial residual equal to observation as

for OMP. It applies matched filtering to the current residual with θ to obtain a vector of

residual correlations. All the vectors above a threshold are selected using hard thresh-

olding. Then least squares method is applied to find an approximation. The algorithm

then updates the residual and check for a stopping condition. An advantage of using a

thresholding approach is that it can produce good approximation of the original signal

with only a small number of iterations.

4.2.2 Gradient based Algorithms

The gradient projection methods proposed in [34,35] recast Equation 4.3 as a constrained

optimization problem by introducing additional variables. Gradient descent directions,

which are generally easy to compute, are used at each iteration, and are then projected
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onto the constraint set so that each step is feasible. The projection involves only simple

thresholding and can be done very quickly, which leads to fast computation at each

iteration. We will briefly discuss two of the popular gradient based algorithm.

Gradient Projection for Sparse Reconstruction (GPSR)

In [34], a GPSR algorithm is introduced to solve the standard l1 minimization problem

in the unconstrained quadratic form as in Equation 4.3. GPSR uses a penalty term in-

volving the scaled l1 norm of the signal which is added to a least-squares term, resulting

in a problem that can be reformulated as a convex quadratic program with bounded con-

straints. It is a gradient projection solver which uses a special line search and termination

technique to give faster solutions.

GPSR divides original problem into positive and negative parts by splitting x as

x = u − v, u ≥ 0, v ≥ 0. The problem is then converted to the following bounded

constraint quadratic program (BCQP):

min
u,v

1

2
||y − θ(u− v)||2l2 + λ1Tnu+ λ1Tnv

subject to u ≥ 0, v ≥ 0

(4.5)

It can be written as a more standard BCQP:

min
z
cT z +

1

2
zTBz = F (z),

subject to z ≥ 0

(4.6)

where

z =

[
u
v

]
, b = θTy, c = λ12n +

[ −b
b

]

and

B =

[
θTA −θTA
−θTA θTA

]

Here A is the measurement matrix and F (z) is the change of variable. It is important

to use a suitable step size so that an approximation can be reached with a minimum
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number of iterations. GPSR uses backtracking and Barzilai-Borwein methods [112] for

determining the step size. The authors also provided a debiasing approach in which

the computed solution is checked against the least-square objective. The algorithm also

supports warm start in which it will be solved for a range of different values of λ. The

MATLAB code for the algorithm is available online at [113]. One disadvantage of GPSR

is that it does not work for TV minimization.

Nesterov’s Algorithm (NESTA)

In [114], a specialized algorithm for solving CS reconstruction problem called NESTA

is introduced. This algorithm is based on Nesterov’s work on minimizing non-smooth

functions [115]. It makes use of two ideas due to Nesterov. The first one is an accelerated

convergence scheme for first-order methods, giving optimal convergence rates. The second

one is a smoothing technique that replaces the non-smooth l1 norm with a smooth version.

NESTA uses a subtle averaging of sequences of iterates, which improves the convergence

properties of standard gradient-descent algorithms. It can be used to solve both l1 and

TV minimization.

The algorithm minimizes a function f by iteratively estimating three sequences xk, yk

and zk. Step 1 is to compute the gradient∇fμ(x) using Nesterov’s smooth approximation

to the l1 norm. At iteration i, this is given by

∇fμ(x)[i] =
{
μ−1, if ‖x[i]| < μ

sgn(x[i]), otherwise
(4.7)

Step 2 computes the term yk. yk evolve the iteration in the opposite direction of the

gradient. If the sensing matrix is a fast transform and orthogonal, yk can be computed

easily as it only depends on xk and its gradient ∇fμ(xk). Step 3 computes the third

sequence zk which keeps track of the previous gradient directions. It has been proved

in [115] that this additional term helps to improve the convergence properties of the

algorithm.
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The major benefit of NESTA is that it can solve all three formulations of CS. It

supports both l1 and TV norms. The MATLAB code of the algorithm is available

from [116].

4.2.3 Iterative Shrinkage Thresholding Algorithms

If a signal is represented by transformation to a suitable basis, coefficients below some

threshold value can usually be set to zero without affecting the quality of the signal

significantly. This produces a sparser signal and thus is very much applicable to image

and video compression. Iterative shrinkage thresholding algorithms transform the original

optimization problem into a sequence of simpler problems which can be solved efficiently

by shrinking or thresholding small values in the current estimate of the signal x [36,37].

Two-Step Iterative Shrinkage Thresholding (TwIST)

TwIST is first proposed in [37]. It is called “two-step” because each iteration of TwIST

depends on two previous iterations. At each iteration k + 1, the solution is updated to

xk+1 by

xk+1 = (1− α)xk−1 + (α− β)xk + βΨλ(xk + θT (y − θxk)) (4.8)

where Ψλ is a denoising operation. The term θT (y − θxk) is the gradient of the term

1
2
||y − θxk||22. α, β are the parameters of the TwIST algorithm and different criteria for

selecting them is defined in [37].

Sparse Reconstruction by Seperable Approximation (SpaRSA)

SpaRSA is proposed in [36]. It minimizes the function g(x) = f(x) + λc(x) which is

composed of a smooth term f and a separable non-smooth term c. At every step, a

sub-problem in the form of Equation 4.3 is solved. The (k + 1)th iterate is obtained by

solving:

xk+1 ∈ argmin
z

1

2
||z − uk||22 +

λ

αk

c(z) (4.9)
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where

uk = xk − 1

αk

∇f(xk) (4.10)

The authors of [36] uses a separable form for c. Individual components are separated

into a sum of functions of its argument as c(x) =
n∑

i=1

ci(xi), which is an l1 regularizeer

form. The algorithm starts with the initial solution x0 = 0. At each subsequent itera-

tion, it chooses the value of αk from the interval [αmin;αmax]. Then problem 4.9 is solved

to obtain the solution xk+1 of the sub-problem. It then updates αk and the process is

repeated until an acceptable solution is obtained. After finding an acceptable solution

to the sub-problem, the algorithm updates the iteration and check for the stopping con-

dition. If the stopping condition is not satisfied, it will proceed with the next iteration.

SpaRSA supports warm starting and debiasing.

4.2.4 Experimental Results

The same images as in Section 4.1.1 – “Lena”, “Boat”,”Cameraman” and “MRI” are used

in the evaluation of the reconstruction algorithms here. The dimension of each image is

256 × 256 . All experiments run on Intel Pentium 4 3GHz system, running Windows 7

and MATLAB 2011. l1 norm is used in our analysis as not all algorithms support the use

of the TV norm. Block Hadamard Transform is used as the sensing matrix with a block

size of 32×32 and Wavelet transform is used as sparsifying transform. The measurement

rateMr is in the range of 10% to 70%. The algorithms – StOMP, GPSR, NESTA, TwIST

and SpaRSA are compared. The regularization parameter λ used for all the algorithms

is fixed and it is given in [34] as

λ =
F (y)

16/sqrtMr

(4.11)

where F (y) is the Frobenius norm of measurement vector y. The stopping criterion uses

a threshold to stop the algorithm when the change in the objective function falls below

a threshold. It is also fixed same for all testing algorithms as 10−3.
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4.5.a: Lena
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4.5.b: Boat
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4.5.c: Cameraman
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4.5.d: MRI

Figure 4.5: Reconstruction Times for CS Reconstruction Algorithms

Reconstruction Time

Fast reconstruction time is a desirable feature of any CS reconstruction algorithm for

image and video applications due to large amount of data involved. Figure 4.5 shows

a comparison of the reconstruction times for four test images at various measurement

rates. NESTA is the slowest among the algorithms compared at all measurement rates

even though previous literature suggests that it is very efficient [114]. The performance

of the other gradient-based algorithm, GPSR, is much better. GPSR is able to obtain
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4.6.a: Lena
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4.6.c: Cameraman
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Figure 4.6: Number of Iterations Required for CS Reconstruction

the solution faster when more measurements are available. On the other hand, the re-

construction time for greedy algorithm StOMP increases with measurement rate. This

is understandable as it depends on the inner product of the residual with the dictionary.

As the dictionary size increases, more time is needed to compute this product. The per-

formances of Iterative algorithms TwIST and SpaRSA are very good at all measurement

rates. At higher measurement rates, they are comparable with or better than GPSR.

They generally require more time at low measurement rates but overall SpaRSA consis-

tently performs better than TwIST. Next, the number of iterations each algorithm took
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4.7.a: Lena

0 10 20 30 40 50 60 70 80
15

17

19

21

23

25

27

29

31

33

35

37
38

Measurement Rate (%)
P

S
N

R
 (

d
B

)

 

 

StOMP
TwIST
GPSR
SpaRSA
NESTA
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4.7.c: Cameraman
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4.7.d: MRI

Figure 4.7: Rate-Distortion Performance of CS Reconstruction Algorithms

to find the solution is compared in Figure 4.6. Among the algorithms considered, greedy

algorithm StOMP requires the minimum number of iterations to solve the optimization

problem. SpaRSA perform well at lower measurement rates and its performance is com-

parable with TwIST at higher measurement rates. At higher measurement rates, GPSR

is comparable to TwIST and SpaRSA. Again, NESTA is the worst performer. The much

higher number of iterations is reflected in the longer reconstruction time shown earlier.
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Reconstruction Quality

The quality of the reconstruction images in terms of PSNR is compared in Figure 4.7.

Obviously, the quality improves as the measurement rate increases. All algorithms per-

form similarly except StOMP. The performance of StOMP is much poorer than other

algorithms. NESTA performs marginally better than TwIST,SpaRSA and GPSR but the

difference is not substantial. These results indicate that gradient projection algorithms

and iterative algorithms perform similarly in imaging applications.

Summary

Overall, considering reconstruction quality, number of iterations and reconstruction time,

SpaRSA performs really well. SpaRSA would be the first choice as CS reconstruction

algorithm for image coding. In terms of reconstruction quality, NESTA is excellent at

all measurement rates but its high reconstruction time and number of iterations makes

it unsuitable for imaging applications. TwIST is comparable to SpaRSA algorithm in all

aspects. Another important factor in imaging application is the ability to use of TV norm

and algorithms capable of supporting this norm are highly desirable. The performance

of GPSR is comparable to iterative algorithms. However, since it cannot be used for TV

norm minimization, it is not as useful.

4.3 Design of Quantizer

The quantizer is very important part of the lossy encoding process. An optimal quantizer

should be tailored to the signal concerned and minimize the amount of distortion in

the reconstructed signal [117]. However, for practical reasons, fixed quantizers that are

sub-optimal are always used. In image compression standards, pre-defined quantization

matrices are used. For example, with the JPEG standard [1], the DC and the lower

frequency Discrete Cosine Transform coefficients are finely quantized while the higher

frequency coefficients are coarsely quantized [2]. This is based on the fact that the
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human visual system is less sensitive to errors in the higher frequencies compared to the

lower frequencies. Also, the values of the DCT coefficients tend to be larger at the lower

end of the spectrum. Uniform quantization schemes are also used [3].

While these quantizers are designed based on the knowledge of the human visual

system as well as the distribution of linear transform coefficients for a variety of images,

the CS measurement process is very different from the traditional approaches. The

distribution of CS coefficients is directly related to the measurement matrix used. Due

to the need for satisfying the restricted isometry property as described in Chapter 2,

the i.i.d. Gaussian matrix is often used. In section 4.1, we have discussed different

sensing matrices and evaluated their performance. Our analysis suggests that using a

Scrambled Block Hadamard Ensemble (SBHE) is not only hardware friendly (due to

its binary values) but also provides faster reconstruction. Hence we shall design the

quantizer based on the SBHE as sensing matrix.

4.3.1 Distribution of CS Measurements

The same four images used in Sections 4.1.1 and 4.2.4 are again used here to analyze the

distribution of the values of CS measurements compared with DCT. Figure 4.8 shows

the histograms of the DCT and the CS coefficients of these images. x− axis defines the

coefficient values in DCT and CS measurements while y − axis defines total number of

coefficient having the same values. It can be observed that the CS measurement process

spreads the energy of the coefficients. In contrast to DCT which concentrates the energy

to a small number of coefficients. The DCT coefficient values are concentrated at the

lower end of the frequency spectrum. The majority of the DCT coefficients are zero or

close to zero. On the other hand, the CS measurement values follow a more or less normal

(Gaussian) distribution. This indicates that the quantizer for CS should be different from

those used in the current image coding standards.
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4.8.a: Lena CS Histogram

−250 −200 −150 −100 −50 0 50 100 150 200 250
0

1

2

3

4

5

6
x 10

4

Value of Coefficient

To
ta

l N
um

be
r o

f C
oe

ffi
ci

en
ts

4.8.b: Lena DCT Histogram
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4.8.c: Boat CS Histogram
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4.8.d: Boat DCT Histogram
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4.8.e: Cameraman CS Histogram
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4.8.f: Cameraman DCT Histogram
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4.8.g: MRI CS Histogram
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4.8.h: MRI DCT Histogram

Figure 4.8: CS Measurements and DCT Coefficients Histogram for Test Images
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4.3.2 Proposed Quantization Scheme

Since the CS measurements are normally distributed, it is reasonable to quantize them

using a quantizer that is also normally distributed. Thus the basis of the quantization

matrix is a random matrix R with elements that are Gaussian distributed with zero mean

and unit variance. The average value of the mean and standard deviation of a number

of similar type of images can be used to generate the quantization matrix. R is then

modified by this mean μ and standard deviation σ, giving us the quantization matrix Q

given by

Q = R ∗ σ + μ (4.12)

Equation 4.12 is then used to generate the quantization matrix to quantize CS measure-

ments. TheQ could be generated for any dimension as per image dimension requirements.

As Q is generated with Gaussian distribution, it is possible that there will be few matrix

values close to zero or too high. To obtain appropriate weights, values that are close to

zero are changed to a fixed non-zero constant such as 16 (which is used in the experiments

described below) as done in uniform quantization [3]. Values that are much too high (e.g

¿ 100) are replaced by their square root.

The performance of this quantization scheme is evaluated as part of the model as

shown in Figure 4.1. CS measurements are obtained by a SBHE sensing matrix known

as the structurally random matrix [118]. The sparsifying transform is the Daubechies

9/7 wavelet transform. The images have dimension of 256 × 256 pixels. GPSR [34] is

used for reconstruction. The proposed Gaussian quantization scheme is compared with

the JPEG quantization matrix as defined in the JPEG standard [1], and a uniform quan-

tization matrix [3]. In our experiments, only the mean and standard deviation of the

“Lena” image is used to obtain the Gaussian quantizer. Figure 4.9 shows the PSNR per-

formance at different measurements rates for four test images. It shows that the proposed

Gaussian quantization method produces better results than both the other two quanti-

zation schemes for all measurement rates. It should be pointed out that even though
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4.9.a: Lena
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4.9.b: Boat
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4.9.c: Cameraman

0 10 20 30 40 50 60 70 80
16

18

20

22

24

26

28

30

32

34

Measurement Rate (%)

P
S

N
R

 (
d

B
)

 

 

JPEG Quantization
Uniform Quantization
Proposed Quantization

4.9.d: MRI

Figure 4.9: Quantization Matrix Rate-Distortion Performance

the Gaussian quantization matrix is generated based on the statistics of a one particular

image, it works well for other images with different statistics. It seems to suggest that the

quantizer is quite robust and therefore a fixed quantization matrix can be used. This has

significant practical implications. In order to confirm this, the same quantization matrix

is applied to a number of other images obtained from USC-SIPI Image Database [119].

The results are summarized in Table 4.1 for a measurement rate of 50%. They show

that a fixed Gaussian quantization matrix works well in all cases. Figure 4.10 shows the

visual reconstruction quality of “Lena” image at 50% measurement rate. It shows that
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Table 4.1: Performance Comparison of Quantization Schemes, in PSNR(dB)

Image JPEG Uniform Gaussian

Lena 25.77 28.81 29.57

Boat 25.85 28.83 29.51

Cameraman 24.76 27.15 27.72

MRI 25.72 29.39 30.38

Barbara 25.29 27.83 28.54

Peppers 25.66 29.02 29.55

Goldhill 25.77 28.64 29.22

Mandrill 23.50 24.69 24.82

our proposed quantization scheme produces better results visually than using uniform

and JPEG quantization. In particular, the visual quality is particularly poor for JPEG

quantization.

These results showed that a quantization matrix for CS coefficients can be designed

using random Gaussian distribution. They open up a way to design practical CS codecs

with quantization incorporated.

4.4 Summary

In this chapter, we studied the effects of the sensing matrix, the reconstruction algorithm,

and the quantization matrix for image compression that is based only on CS in the

way that is shown in Figure 4.1. Scrambled Block Hadamard Ensemble matrices have

been found to be the best choice as sensing matrices in terms of structural properties,

reconstruction time and reconstruction performance under different measurement rates.

As for reconstruction algorithms, empirical results shows that for most of the them yields

almost similar reconstruction quality. They only differ in reconstruction time and the

number of iterations. GPSR is a good choice when l1 norm is used.

77



Chapter 4. Sensing Matrix, Quantization Matrix and Reconstruction Algorithms for
Image Compression

4.10.a: Original Lena Image 4.10.b: Reconstructed with JPEG Quanitzation,
PSNR=25.78 dB

4.10.c: Reconstructed with Unifrom Quanitza-
tion, PSNR=28.82 dB

4.10.d: Reconstructed with Proposed Quanitza-
tion, PSNR=29.57 dB

Figure 4.10: Reconstruction visual quality for Lena

A new quantization scheme has been proposed. The quantization matrix is a scaled

random Gaussian matrix. It has been shown to perform better than JPEG and uniform

quantization. Furthermore, it has been shown that such a quantizer is robust with respect

to the statistics of individual images. Thus a fixed quantizer can be applied to different

images. This is important for practical image codecs.
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Chapter 5

Distributed Inter-frame Video
Compressed Sensing

The encoding of video data in conventional video compression standards is a computa-

tionally demanding process mainly because it involves motion estimation to attain higher

compression rates [3]. Decoding these compressed videos, on the other hand, is much

simpler. For modern applications where video acquisition is performed by resource lim-

ited devices such as wireless sensors and decoding is performed by relatively resource

rich computers, a new approach to video encoding and decoding is needed. It basically

requires a low-power, low-complexity encoder while the computational burden is shifted

from the encoder to the decoder.

Research in this direction has been developed along the lines of Distributed Video

Coding (DVC) [9]. DVC is an application of distributed source coding, pioneered by

Slepian and Wolf [65] for lossless coding and also Wyner and Ziv [66] for lossy coding.

Two or more correlated data sources can be encoded independently and yet achieve the

same compression rate as a single optimal encoder with all correlated data as input. This

is achieved by exploiting the correlation between these data sources when they are jointly

decoded. When applied to video coding, consecutive video frames could be treated as

these correlated data sources and be encoded independently. This implies that no motion

estimation need to be performed at the encoder, significantly simplifying the encoding

process.
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A number of DVC schemes that makes use of CS has recently been proposed [13,14,

17, 72]. However, they either require a conventional video codec or a feedback channel

from the decoder for effective operation, thus increasing the complexity of the codecs as

discussed in Chapter 3.

In this chapter, a distributed Compressed Video Sensing (DCVS) codec is proposed.

It is a DVC that only makes use of CS at the encoder. It also does not require a feedback

channel from the decoder. A simple and effective side information generation scheme is

incorporated in the decoder which exploits the correlation between CS measurements of

nearby frames. This technique is based on the fact that CS measurements between video

frames are highly correlated. It is much simpler than other schemes found in the literature

and yet effective without putting extra complexity on the decoder. Side information is

generated directly from CS measurements of the key frames. Thus it does not depend on

the decoded key frames, unlike other DVC techniques. The performance of this DCVS

codec is evaluated with several different types of video sequences. It is compared with

that of other DCVS codecs, distributed video codecs and traditional video codecs.

5.1 Proposed DCVS Codec

Figure 5.1 shows a block diagram of the proposed distributed compressed video sensing

(DCVS) codec. At the encoder, video frames are grouped into group of pictures (GOP)

consisting of a key frame and a number of non-key frames, which are also called Wyner-

Ziv (WZ) frames. Both the key frames and WZ frames are encoded as CS measurements

using an appropriate sensing matrix. No traditional video encoding is involved. Typically,

the measurement rate of non-key frames are much lower than that for key frames. The

CS measurements are then quantized for transmission or storage. At the decoder, the key

frames are reconstructed using its own CS measurements. WZ frames are reconstructed

with the help of side information since their encoding rates are much lower. Side infor-

mation is generated through a process involving a dictionary and the CS measurements

of the current WZ frame. This side information is used to improve the reconstruction
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Figure 5.1: Proposed Video Codec

performance of WZ frames. Details of the encoding and decoding processes are described

below.

5.1.1 Encoder

The encoding process is very simple. It only involves CS encoding and quantization. A

video sequence is first broken up into a sequence of group of pictures. Each GOP consists

of a key frame followed by some non-key WZ frames. Both key and non-key frames are

encoded in a similar way using CS. Given the frame size of each frame as w × h, then

data x of each frame represented as an N ×1 column vector where N is the total number

of pixels in the frame (N = w×h) and aMr×N sensing matrix Φ, the CS measurements

y is obtained by y = Φx. Let the number of measurements for key and non-key frames

be Mk and Mw respectively. Then the corresponding measurement rates are given by

Mk/N and Mw/N . Key frames are encoded with a higher measurement rate than WZ

frames such that Mw < Mk < N .
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The measurements y are then quantized by a Gaussian quantization scheme. This

choice is based on the results presented in Section 4.3.2. Conventionally, different quanti-

zation matrices are used for intra-frame and inter-frame coding. For MPEG, the DC and

the lower frequency Discrete Cosine Transform (DCT) coefficients are finely quantized

while the higher frequency coefficients are coarsely quantized [2]. This design is based

on the fact that the human visual system is less sensitive to errors in higher frequen-

cies than it is for lower frequencies. Also, the values of the DCT coefficients tend to

be larger at the lower end of the spectrum. For the H.264 baseline, main and extended

profiles, the quantization matrix gives equal weight to all coefficients and uses a uniform

quantization scheme [3]. The CS measurement process is very different from orthogonal

transforms such as the DCT. The distribution of CS coefficients is directly related to the

sensing matrix used. Consequently, both uniform quantization and the standard quan-

tization matrices in MPEG do not perform well for compress-sensed images and videos.

As shown in Section 4.3.2, Gaussian quantization performs better than both uniform and

JPEG quantization for CS measurements.

5.1.2 Decoder

At the decoder, key frames are reconstructed from their own CS measurements. CS

reconstruction can be formulated as an l1-minimization problem given by

min
αk

1

2
||yk − θαk||22 + λ||αk||1 (5.1)

where yk is anMk×1 CS measurements of the key frame received at the decoder, θ = ΦΨ

is the measurement matrix with Φ and Ψ being the sensing and sparsifying matrices as

described in Section 4.1 respectively. αk ∈ RN × 1 is the sparse coefficient vector which

is solved by reconstruction algorithm. The key frame x̂k is obtained by x̂k = Ψα̂k where

α̂k is the optimal solution for αk in (5.1). The performance of a number of different CS

reconstruction algorithms have been examined in Section 4.2.

Since WZ frames are encoded at a lower rate, the quality of the reconstructed frames

can only be maintained with the aid of side information which is generated through a
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dictionary. The dictionary consists of inverse quantized CS measurements of the key

frame. Side information is only useful if the CS measurements of the key and WZ

frames exhibit sufficient correlation. Before discussing dictionary and side information

generation, a correlation analysis of the CS measurements between video frames will first

be presented.

5.1.3 Correlation Analysis of CS Measurements

In a video sequence, adjacent frames in same scene are highly correlated with each other.

Therefore we postulate that the CS measurements of such adjacent frames are also highly

correlated even though the CS measurement process is very different from linear trans-

forms such as the DCT. DCT coefficients follows the Laplacian distribution [120]. On

the other hand, the CS measurements follows a more or less normal (Gaussian) distri-

bution. So the CS measurements can be modelled as random Gaussian sources. The

dependence between two random quantities can be measured by Pearson’s correlation

coefficient [121]. It can be obtained by dividing the covariance of two variables by the

product of their standard deviations. For two video frames with CS measurements yt

and yt+1, their correlation coefficient is given by

ρ =

M−1∑
i=0

(yt,i − μyt)
(
yt+1,i − μyt+1

)
√

M−1∑
i=0

(yt,i − μyt)
2 (yt+1,i − μyt+1

)2 (5.2)

Here, M is the number of measurements, yt,i and yt+1,i are the ith measurements, and

μyt and μyt+1 are the mean values of yt and yt+1 respectively.

Six standard QCIF video sequences, namely, “Foreman”,“News”,“Coastguard”, “Stu-

dents”, “Container” and “Hall Monitor” available from [122] have been chosen to evaluate

correlation between adjacent frames. CS measurements of the luminance data are ob-

tained for each frame with a measurement rate of 50%. Each video sequence consists

of 300 frames. They are divided into GOPs with a size of three. The first frame in a
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Figure 5.2: Correlation Analysis for CS Measurements

GOP is considered a key frame, followed by two non-key (WZ) frames. The correlation

coefficient for each WZ frame with each key frame is computed and shown in Figure 5.2.

The correlation median is the median value of all the correlations for a WZ frame with

each key frame. All the video frames show high correlation with a median correlation

coefficient above 0.9. Even for those videos having moderate motion of objects and

camera movements the correlation is very high.

Figure 5.3 shows the correlation between each WZ frame with all other key frames for

the video sequences “Foreman”, “Coastguard” and “Container”. While the correlation

between WZ frames with their corresponding key frames is high, the correlation with

other key frames remain above 0.95. This is particularly so for low motion videos such

as “Container”. This high correlation will be exploited to generate side information to
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5.3.a: Foreman
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5.3.b: Coastguard
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Figure 5.3: Correlation of CS Measurements of WZ frames with Key frames
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improve coding performance of WZ frames.

5.1.4 Correlation and Mean Square Error

The Pearson’s correlation coefficient is a good measure of linear relationships. Another

important measure of the relationship between quantities is the Mean Square Error

(MSE). In this case it is the cumulative squared error between CS measurements of

adjacent frames. For two video frames with CS measurements yt and yt+1, their MSE

value is given by

MSE =
1

M

M−1∑
i=0

(yt,i − yt+1,i)
2 (5.3)

Here, M is the number of measurements, yt,i and yt+1,i are the ith measurements of

yt and yt+1 respectively. MSE between CS measurements of WZ frames and their key

frames of “Foreman” and “News” are shown in Figure 5.4 together with the corresponding

correlation coefficients. It can be observed that, for both videos, whenever the correlation

coefficient is high, MSE is low and vice versa. This relationship suggests that for the

proposed DCVS codec, MSE can be used as a measure of correlation for the purpose of

generating side information for the decoding of WZ frames.

5.2 Side Information Generation

In DVC, WZ frames are encoded at much lower rates than key frames. To compensate for

this, the reconstruction of WZ frames is aided by side information (SI) that is generated

using the key frames at the decoder. SI plays an important role in distributed video

coding. If SI is not accurate, then the rate-distortion (RD) performance will suffer.

Unfortunately, the performance of DVC is not as good as traditional video coding because

SI is generally not as accurate as the reference frame from motion compensated prediction.

In the DVC approach, the correlation between frames is performed at the decoder side.

The decoder has to estimate the motion between a current frame and its reference frames
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5.4.a: Foreman CS Measurements Correlation
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5.4.b: Foreman CS Measurements MSE
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5.4.c: News CS Measurements Correlation
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5.4.d: News CS Measurements MSE

Figure 5.4: Correlation and MSE Comparison of CS Measurements of WZ frames with
Key frames
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without having access to the current frame. This becomes a problem especially in high

motion regions.

The Laplacian distribution is commonly used to model the correlation noise [9, 100,

103]. It provides a good trade-off between model accuracy and complexity [123]. The

distributed compressed video sensing scheme proposed in [14] used the Laplacian distri-

bution to model the correlation between WZ frame and its side information frame. The

statistical dependency between a WZ frameW and its side information SI is modelled as

a virtual correlation channel, where SI is viewed as a noisy version ofW . The probability

density function between W and SI is then modelled using a Laplacian distribution as:

p(W (x, y)− SI(x, y)) =
α

2
e−α|W (x,y)−SI(x,y)| (5.4)

where W (x, y) and SI(x, y) are the (x, y)-th pixel in W and SI respectively. α is the

Laplacian distribution model parameter given by

α =

√
2

σ2
(5.5)

where σ2 is the variance of the residue between the W and SI. Therefore, the more

similar W and SI are, the higher the value of α.

5.2.1 Motion Compensated Interpolation

Motion-compensated interpolation (MCI) is the side information generation method used

in [14, 72]. Figure 5.5 shows a typical encoder/decoder system with interpolation based

side information. Each key frame is encoded by traditional intra frame codecs such as

those for MPEG/H.264. Different approaches to encoding the WZ frames in DVC has

already been discussed in Chapter 3. The side information for a WZ frame is generated

by interpolating the reconstructed key frames. The generated side information is then

used to improve the reconstruction quality of WZ frame. There are three common ap-

proaches used in generating motion compensated interpolation. The simplest approach

is to interpolate neighbouring key frames to estimate the motion, but this generally does
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Figure 5.5: DVC Side Information Generation

not produce good results. The second approach makes use of forward motion estimation

to predict the motion using the previous frame similar to coding of P frames. The best

approach is to use forward and backward motion estimation from previous and future

frames. This is similar to motion estimation used for B-frames in MPEG, H.264/AVC

coding. This process is shown in Figure 5.6.

Let Wn denote a WZ frame at time n, and let Kn−1 and Kn+1 be the key frames

adjacent to Wn. If the motion contained in three successive frames can be assumed to

be linear, then the motion vectors for Wn can be derived from the motion vectors from

the adjacent two key frames. For forward prediction, if the motion vector of a block bi

in Wn is MVf , then MVf can be derived from the motion vector of the co-located block
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Kn-1 Wn Kn+1

MVn+1

MVb
MVf

MVn+1

bi

Figure 5.6: Motion Compensated Interpolation

in Kn+1 by MVf = MVn+1/2. Using the same method, the backward prediction motion

vector is given by MVb = MVn−1/2. The two motion predicted blocks of bi can then

be computed from Kn−1 and Kn+1. Let Pb represent the prediction value of bi, then

Pb = (P (MVf )+P (MVb))/2 where P (MVf ) and P (MVb) are the predicted values based

on the forward and backward motion vectors respectively. In this way, most blocks of

Wn can be predicted. Different block sizes and search ranges can be used for MCI. In

traditional video standards, motion estimation is performed at the encoder and only the

motion vector is encoded. In DVC, this process is performed at the decoder and is used

to provide side information for decoding WZ frames.

5.2.2 Proposed SI Generation Method

A new SI generation method is used in proposed CS based video codec shown in Fig-

ure 5.1. It has been shown in Section 5.1.3 that CS measurements of adjacent video frames

are highly correlated. Therefore we can directly make use of the CS measurements of key

frames as side information. A dictionary D that consists of the CS measurements of the

key-frames available at the decoder is generated. Starting with an empty dictionary, the

first column of D, denoted D1, is the CS measurements of the first key frame received.

Subsequent columns of D are populated with the CS measurements of the subsequent
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key frames as they are received. Assume that the GOP size is 3, i.e. each key frame is

followed by two WZ frames. When the first two WZ frames are decoded, D has only

one column D1. So D1 is used as the side information to reconstruct these two WZ

frames. When it comes to reconstructing the third WZ frame W3, the dictionary will

have two columns from the two key frames received so far. One of them will be used

as side information for W3. The column in the dictionary that is chosen is the one that

has the highest correlation with W3. Thus we need to compute the Pearson correlation

coefficients

r(i) = corr (W3, Di) , i = 1, 2 (5.6)

and choose the column D1 if r(1) > r(2) or D2 if r(2) > r(1). This process continues

until all the WZ frames are reconstructed. In order to limit the size of the dictionary,

only the measurements of the most recent key frames need to be stored as the most recent

WZ frame will most likely be more correlated with the most recent key frames.

In Section 5.1.4, it has been shown that CS measurement have a low MSE-high

correlation and high MSE-low correlation relationship. Therefore, instead of computing

the correlation coefficient, MSE can be computed instead. In this case, SI will be the

column in D having the minimum MSE.

There are several advantages with this SI generation method. Firstly, it does not

require the key frames to be decoded. In traditional methods such as those using MCI,

it is necessary to reconstruct the key frames first and then interpolated to generate the

SI for decoding WZ frames. In [13] both block based and frame based CS measurements

are combined with decoded key frames to generate the SI. Thus the computational com-

plexity of the proposed method is significantly lower. Secondly, the dictionary does not

need to be learnt, again reducing computational complexity. This is in comparison with,

e.g. [72], where a dictionary is learned from the neighbouring frames of a video frame.

Thirdly, a feedback channel is not required. Some SI generation techniques require a

feedback channel from the decoder to the encoder [17, 73]. Fourthly, no motion estima-

tion is required. Finally, the SI obtained in this way can be directly used by the CS

reconstruction algorithm without any further processing.
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Figure 5.7: Median of Laplacian Distribution Parameter for Two Types of SI

The Laplacian distribution parameter α in Equation 5.5 is computed for the pro-

posed correlation based SI and motion compensated SI. The same video sequences as

in Section 5.1.3 are used. Figure 5.7 shows the median values of α for these videos.

It can be observed that α is substantially larger for side information generated by the

correlation-based method compared with MCI. These results suggest that the proposed

correlation-based side information should perform better than MCI based ones.

5.3 CS Reconstruction with Side Information

The reconstruction of a WZ frame involves the CS measurements yw for this frame and

a column of the dictionary that has the highest correlation with these measurements,

denoted as SI. These two sets of data are combined into a single set of measurements
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βw. If the WZ frame has a CS measurement rate of Mw and the key frames have a

measurement rate of Mk. Then βw represents the updated measurement rate Mw+z for

current WZ frame (where z = k − w) equal to measurement rate of Mk of key frame.

The WZ frame is reconstructed using βw. This process is shown as Algorithm 1.

Algorithm 1 Reconstruction with Side Information
Input:yw, D
Output:Reconstructed WZ Frame, x̂w
for each column i inD do
Calculate r(i) = Correlation(yw, D(i))

end for
Calculate [value, index] = max(r)
SI = D(index)
βw = [yw, SI]
x̂w = Reconstruction(βw)

5.4 Experimental Results

To evaluate the effectiveness of the proposed distributed compressed sensing video codec,

several QCIF (frame size: 172 × 144) video sequences are used [122]. These videos

sequences include slow to fast motion videos. Table 5.1 lists the video sequences used in

the experiments, specifying their length in terms of the number of frames and the type

of content. Those having “low” content type have low spatial details and relatively small

amount of movement. For example, “Akiyo” video has a static background and only

the newscaster’s facial movements. “Medium” content type videos have medium amount

of spatial details and motion. For instance, the “foreman” video has disordered motion

while “harbour”, “coastguard” have slow forward motion. “High” content type videos

have higher spatial details and fast camera and object movements. An example is the

“Soccer” sequence with rapid motion involving soccer players moving around the pitch.

Only the luminance (Y) component is used in the experiments. CS measurements

are obtained using Structurally Random Matrices [52] with Hadamard matrix as the

sensing matrix. Daubechies 9/7 wavelets are used as the sparsifying matrix. The GPSR
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Table 5.1: Video Test Sequences

Video Sequence No: of Frames Content Type
Akiyo 300 Low
Bowing 300 Medium
Bus 150 High
Coastguard 300 Medium
Container 300 Low
Football 260 High
Foreman 300 Medium
Hall Monitor 300 Medium
Harbour 150 Medium
Mobile Calendar 300 High
Mother Daughter 300 Low
News 300 Medium
Silent 300 Medium
Students 300 Medium
Soccer 300 High

algorithm is used for reconstruction so that the results can be fairly compared with the

system proposed in [14] which uses a modified GPSR algorithm with stopping criteria

based on side information. However, any algorithm discussed in Section 4.2 could have

been used for reconstruction instead. Three different GOP sizes – 3, 5 and 8 are used.

The first frame in each GOP is considered a key frame, followed by the respective number

of WZ frames. Different measurement rates (MR) have used to evaluate the proposed

DCVS method. For example, for a GOP size of 3, an average MR of 37% means that

the MRs for the key and non-key (WZ) frames are 50% and 30%, respectively.

The performance of the proposed DCVS codec is compared with three other tech-

niques. The first one is Frame DWT which is a basic CS video codec that does not

exploit any side information in recovering WZ frames. In Frame DWT, all WZ frames

are reconstructed as per their corresponding MR at the decoder. The second one is found

in [14] which uses a relative stopping criteria based on the side information generated

through an efficient frame rate up-conversion tool. The side information is generated us-

ing MCI from previous reconstructed key frames. This technique is labelled as “DCVS”
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in subsequent results. The third technique is motion compensated interpolation without

any relative stopping criteria. This technique is labelled as “MCI” in subsequent results.

All codecs are coded in MATLAB and simulations run on an Intel i5 3.6GHz, Windows

7 Enterprise Edition, 64-bit Operating System in MATLAB R2012b 64-bit with 4GB

RAM. For fair analysis, no other programs were running on the simulation computer

except the operating system and MATLAB.

5.4.1 Reconstruction Complexity Evaluation

The reconstruction complexity for different schemes are evaluated by calculating the

average reconstruction time (in seconds) for key frames and WZ frames. The results for

the six video sequences with three different GOP sizes are shown graphically in Figure 5.8

and tabulated numerically in Table 5.2. It can be observed that using SI generally

improves the reconstruction time regardless of the type of SI used. The proposed SI

scheme performs better than MCI based side information because it does not require

motion estimation. However, its performance is worse than DCVS because DCVS uses

warm start in the GPSR algorithm which reduces the reconstruction time. It also used

a relative stopping criteria based on fixed thresholds to reduce the number of iterations

during reconstruction.

5.4.2 Rate Distortion Evaluation

Rate Distortion (R-D) analysis for CS based codecs are quite different from traditional

coding. R-D curves in the CS video coding literature typically plots Measurement Rate

(MR) against achieved reconstruction quality in terms of PSNR instead of bit rates.

Figure 5.9 shows the R-D curves for four test video sequences (“News”, ”Container”,

“Students” and “Soccer”) using a GOP size of 3. With these four videos, all three content

types are represented. The proposed codec outperforms all the other three codecs for the

slow motion video “Container”. Its performance is comparable to both MCI and DCVS
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5.8.a: GOP Size 3
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5.8.b: GOP Size 5
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5.8.c: GOP Size 8

Figure 5.8: Reconstruction complexity comparison of Video Sequences

97



Chapter 5. Distributed Inter-frame Video Compressed Sensing

for medium motion videos “News” and ”Students”. The same is true for the high motion

video “Soccer”. In fact, in this case MCI could not compensate for the motion present

in the video and its performance is even worse than Frame DWT with no SI for average

measurement rate of above 28%.

Table 5.3 shows R-D performance of all test video sequences at three different mea-

surement rates of 17%, 27%, and 37%. The performance of the proposed codec is better

than MCI and DCVS for all slow motion videos (“Akiyo”, “Bowing”,“Container” and

“Mother Daughter”). For medium motion videos, its performance is better for “News”,

“Silent” and “Students” and comparable to DCVS for “Foreman”, “Coastguard” and

“Harbour”. For high motion videos, the proposed codec performs better at the higher

measurement rate (37%) while comparable at the two lower MRs. These results show that

even though correlation based side information is much simpler to generate, it provides

a reconstruction quality that is similar to or better than MCI.

Similar results are obtained for larger GOP sizes. R-D curves for the four test videos

as in Figure 5.9 are shown with GOP sizes of 5 and 8 in Figures 5.10 and 5.11 respectively.

In general, with increased GOP size, the performance gap between the proposed codec

performance and DCVS and MCI also increases. Tables 5.4 and 5.5 show the PSNR

performance of all video sequences at different MRs for GOP sizes of 5 and 8, respectively.

In terms of Structurally Similarity Index (SSIM) [124], Table 5.6 shows average SSIM

index for GOP size 3, 5 and 8. For slow motion videos SSIM index of propsoed codec

performance is similar or better than other codecs. The proposed codec provides better

results with high motion vidoes “Football” and “Soccer”.

Figure 5.12 shows the visual reconstruction quality for the 89th frame (a WZ frame)

of the “News” video with a WZ measurement rate of 30%. It can be observed that the

proposed scheme produces better visual quality of this reconstructed frame than DCVS

and MCI. Similar observation can be made from Figure 5.13 for the 56th frame (a WZ

frame) of the “Container” video .
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5.9.a: News

15 20 25 30 35 40 45 50 55 60
19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Average Measurement Rate per Frame (%)

A
v
e
ra

g
e
 P

S
N

R
 p

e
r 

fr
a
m

e
 (

d
B

)
 

 

Proposed
DCVS
Frame DWT
MCI

5.9.b: Container
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5.9.c: Students
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5.9.d: Soccer

Figure 5.9: Rate Distortion Curve for GOP Size 3

5.4.3 Performance Comparison with Distributed and Conven-
tional Codecs

In the previous section, the proposed codec is compared with other distributed codecs

that makes use of CS. In this section, it is compared against an efficient distributed video
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5.10.a: News
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5.10.b: Container
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5.10.c: Students
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5.10.d: Soccer

Figure 5.10: Rate Distortion Curve for GOP Size 5

codec called “DISCOVER” [103] as discussed in Section 3.3.3 and existing conventional

video codecs H.264 and H.263+ in terms of compression ratio and bit rates.

The proposed codec that is used for comparison is the same as that used in Sec-

tion 5.4 except for the choice of CS reconstruction algorithm. Previously, GPSR is used
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5.11.a: News

10 15 20 25 30 35 40 45 50 55
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Average Measurement Rate per Frame (%)

A
v
e

ra
g

e
 P

S
N

R
 p

e
r 

fr
a

m
e

 (
d

B
)

 

 

Proposed
DCVS
Frame DWT
MCI

5.11.b: Container
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5.11.c: Students
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5.11.d: Soccer

Figure 5.11: Rate Distortion Curve for GOP Size 8

so that a fair comparison can be made with DCVS. Here, the more efficient SpaRSA

algorithm since it has found to be the best among different reconstruction algorithms

in Section 4.2. The CS measurements are quantized using the quantization scheme de-

veloped in Section 4.3.2. Each CS measurement is allotted 8 bits for quantization. The
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5.12.a: News Original 89th Frame 5.12.b: Reconstructed with Proposed Algorithm,
PSNR=28.45 dB, SSIM Index= 0.82

5.12.c: Reconstructed with DCVS, PSNR=23.66
dB, SSIM Index= 0.67

5.12.d: Reconstructed with MCI, PSNR=23.34 dB,
SSIM Index= 0.59

Figure 5.12: Visual Reconstruction Quality of News 89th Frame for GOP Size 3
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5.13.a: Container Original 56th Frame 5.13.b: Reconstructed with Proposed Algorithm,
PSNR=29.11 dB, SSIM Index= 0.81

5.13.c: Reconstructed with DCVS, PSNR=26.28
dB, SSIM Index= 0.76

5.13.d: Reconstructed with MCI, PSNR=26.23 dB,
SSIM Index= 0.71

Figure 5.13: Visual Reconstruction Quality of Container 56th Frame for GOP Size 3
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quantized CS measurements are then entropy coded using Huffman coding. The com-

pression ratio is then calculated as

Compression Ratio =
Uncompressed Size

Compressed Size
(5.7)

Each raw (uncompressed) pixel requires 8 bits since only the luminance component is

used. Four QCIF videos – “Foreman”, “News”, “Coastguard” and “Hall Monitor” are

used in the experiments. These videos have a frame rate of 30 frames per second. A

GOP size of 3 is used.

Codec Compared

The three codecs chosen to be compared with the proposed codec are DISCOVER, H.264,

and H.263+. DISCOVER has been discussed in detail in Section 3.3.3. The DISCOVER

codec software available from the DISCOVER website [125] is used in our experiments.

H.264 is a video codec standard developed by ITU-T [3]. This coding standard is also

known as H.264/AVC (Advanced Video Coding). It is one of the best known video codecs

available and it supports good video quality under low bit rates. H.264/AVC supports

many profiles. In these experiments, the Main profile which is suitable for a standard

definition TV broadcast is used. Two different coding options are used – H.264 (I-P-P)

in which GOP size 3 is used and H.264 Intra which uses only Intra coding of frames.

H.263+ is a video codec standard developed by ITU-T [126]. This coding standard

is an enhanced version of H.263. Two different coding options for H.263+ are chosen

in these experiments. H.263+ (I-P-P), in which GOP size 3 is used and H.263+ Intra

which uses only Intra coding of frames under different quantization parameters. The

quantization for Intra mode chooses is 8,10,12,14,16,20,24,28 and 32 to obtain different

bit rates and quality. The H.264 and H.263+ codecs used are those provided by the free

software FFmpeg (Fast Forward MPEG) [127]. FFmpeg is a free software which supports

encoding/decoding of several video codecs. It is a command line software which allows

many parameters like bit rate, GOP size, quantization parameters to be set. FFmpeg

encodes the video and return PSNR(Y, U and V separately), bit rate and encoding time

for YUV raw videos.
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5.14.b: Foreman

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

Bit Rate (kbps)

C
o

m
p

re
s
s
io

n
 R

a
ti
o

 

 

H264 (I−P−P)
H264 Intra
H.263+ (I−P−P)
H.263+ Intra
Proposed
Discover

5.14.c: Coastguard
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5.14.d: Hall Monitor

Figure 5.14: Bit Rate vs Compression Ratio for Video Sequences - GOP Size 3

Results

First, the compression ratio that are achieved by the codecs are compared. Figure 5.14

shows the compression ratio under different bit rates for the four test video sequences.

The proposed codec outperforms DISCOVER at all bit rates. However its performance
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5.15.a: News
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5.15.c: Coastguard
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5.15.d: Hall Monitor

Figure 5.15: Bit Rate vs PSNR for Video Sequences - GOP Size 3

against conventional video codecs is not as good due to the efficient intra coding used

by H.264 and H.263+ which produces higher compression. The reconstruction quality

of different codecs at different bit rates are shown in Figure 5.15. The proposed codec

performs better than H.264 Intra, H.263+ Intra and H.263+ (I-P-P) for all four test

videos at all bit rates. For “Foreman” and “Coastguard”, the proposed codec is better
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5.16.a: Foreman
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Figure 5.16: Reconstruction Time Complexity Comparison with DISCOVER

than DISCOVER [103] at higher bit rates. It is important to note that DISCOVER uses

a feedback channel to improve the quality of WZ frames and also uses H.264 Intra coding

for key frames.

The decoding times required by the proposed codec and by DISCOVER are shown
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in Figure 5.16. Different quantization parameters were used in DISCOVER to achieve

different bit rates and quality [128], corresponding Bitrate points on x − axis shows

corresponding bitrates in proposed codec and DISCOVER. Note that conventional codec

are designed in such a way that the encoding process is complex and decoding process is

simple whereas the proposed codec is designed with a different philosophy. Hence their

decoding complexity are not compared.

The decoding time required by the proposed distributed compressed sensing video

codec stays roughly the same at all bit rates. However, that required for DISCOVER

increases as bit rate increases. Furthermore, the decoding time for the proposed codec

is much shorter than DISCOVER at all bit rates. The results are similar as reported on

DISCOVER performance evaluation website [128].

5.5 Summary

In this chapter, a simple but effective distributed video compressed sensing codec is

proposed. The encoding is entirely performed using compressed sensing which can be

implemented with much reduced hardware complexity compared with conventional video

coders. At the decoder, a simple side information generation technique is proposed that

is based on the correlation analysis of CS measurements between video frames. This

technique does not require a feedback channel nor motion estimation that are usually

required by other distributed codecs. It does not even need the key frames to be decoded

before side information can be generated. The proposed technique directly uses CS

measurements of the key frames. The proposed SI technique can easily be integrated with

any CS reconstruction algorithm without need of modification such as those required

by DCVS. Detailed experimental results have been performed using videos with slow,

medium and fast motions. The proposed codec performs comparably with DCVS with

much simpler decoding. It is also better than H.264 Intra, H.263 Intra and H.263 (I-P-

P) in terms of reconstructed video quality. Furthermore, it outperforms DISCOVER in

terms of simplicity, compression ratio and reconstruction complexity.
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Distributed CS Image Compression

In the previous two chapters, CS measurements are acquired for the whole image or the

whole frame of a video. With the desire to reduce the complexity of both the encoder

and decoder, a distributed approach to CS based image compression is considered in this

Chapter. The full image is divided into relatively small blocks and CS measurements for

each block are then acquired. This is a well established idea in traditional image coding.

The advantage is that the size of the measurement matrix for block-based CS acquisition

is much smaller than that for the full image. Also, decoding delay is reduced because

the decoder can start decoding each block as they become available. Furthermore, com-

putational complexity for reconstruction is also reduced due to the smaller block sizes.

Block based CS encoding is first proposed in [54].

Structurally random matrices (SRM) that have been evaluated in Chapter 4.1 can

be effectively used for block-based CS acquisition. The reconstruction strategy together

with the choice of block size are discussed in Section 6.1. Based on that, a distributed

intra image coding scheme is proposed in Section 6.3. Some blocks are designated as key

blocks and others as non-key blocks. The non-key blocks are encoded in reduced rates. At

the decoder, the reconstruction performance of the non-key blocks is improved by using

side information generated from the key blocks. Experimental results are presented in

Section 6.4 to show the effectiveness of proposed distributed image codec.

113



Chapter 6. Distributed CS Image Compression

6.1 Block Based Encoding and Decoding

In Block based CS, an image X with dimension N × N pixels is divided into non-

overlapping blocks of B × B pixels. Let xi represent the i-th block, then its Mr CS

measurements are given by

yi = ΦBxi (6.1)

where ΦB is an Mr ×B2 measurement matrix, yi is the Mb × 1 CS measurement vector.

The measurement rate per block is given by Mb =Mr/B
2. Any sensing matrix discussed

in Section 4.1 can be used. However, structurally random matrices as proposed in [52]

has some advantages. Firstly, SRM does not need to be stored explicitly for CS acqui-

sition or reconstruction which helps to reduce the complexity of the encoders. Secondly,

acquisition using SRM is originally designed to be block based. Hence, SRM will be used

exclusively.

6.1.1 Recovery Methods

There are three approaches by which the full image can be recovered from the block-based

CS measurements. The first one is to reconstruct each block from its CS measurements

independently of the other blocks, using the corresponding sensing and block sparsifying

matrices. This will be referred to as the independent block recovery approach. Another

approach is to place block sparsifying transform in to a block diagonal sparsifying matrix

and then use the block diagonal sparsifying transform to reconstruct the full image [74].

In this approach, instead of reconstructing independent blocks, CS measurements of

all blocks are used to reconstruct full image. The reconstruction performance in block

diagonal and independent block recovery are almost similar [74]. Alternatively, all the

image blocks are reconstructed jointly using a full sparsifying matrix [74]. This approach

will be called joint recovery. In joint recovery, instead of using block sparsifying matrix or

block diagonal sparsifying matrix, a full sparsifying transform is used to reconstruct full

image. CS measurements of each sampled blocks are combined together at the decoder
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6.1.a: Lena Original Image

6.1.b: Lena Independent Block Recovery,
PSNR=28.04dB

6.1.c: Lena Joint Recovery, PSNR=28.23

Figure 6.1: Block Based CS Reconstruction Comparison

and then a full image transform is applied to reconstruct full image. This is more useful

than independent and diagonal reconstruction as full transform provides more sparser

representation and avoided blocking artefacts as well.

Generally speaking, the difference in PSNR between independent and joint recovery

is not significant. An example of the visual qualities for the two recovery approaches is
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shown in Figure 6.1. Blocking artefacts are clearly visible in the independently recovered

image and the jointly recovered one does not have such artefacts. At the decoder, the

image blocks can be recovered as they become available at the decoder and develops an

initial solution. Once all the blocks are available at the decoder, a joint reconstruction

is performed for a visually better results.

6.1.2 Impact of Block Size

A block size of 32×32 or 16×16 is typically employed in previous studies of block based

CS for images [54,55,60]. In [54], the authors conducted an empirical study and suggest

using 32× 32. However, no details of this study were given. In this section, an empirical

study of the impact of block size on the quality of the reconstructed image is performed.

For this study, the publicly available test images “Lena”, “Boat”, “Cameraman” and

“Goldhill” are used. Each of these images has a dimension of 512 × 512 pixels. Four

different block sizes – 64× 64, 32× 32, 16× 16, and 8× 8 are tested. Reconstruction per-

formance is evaluated in terms of PSNR and the structural similarity index (SSIM) [124]

which measures the structural quality. The performance is obtained for measurement

ratesMr ranging from 0.1 to 0.7. The experiment is run five times for each measurement

rate and then the average is computed.

Figure 6.2 shows the PSNR and SSIM for the four test images. For all test images,

a larger block size provides better reconstruction quality in terms of PSNR. At very low

measurement rates, the performance of 8 × 8 block size is the worst. However, as the

MR increases the differences in both PSNR and SSIM are no longer significant for all

block sizes. This results suggests that for a lower MR, a larger block size provides better

results. For moderate MR, i.e. between 0.2 and 0.4, the difference in performance is not

significant and larger block sizes perform slightly better than smaller block ones. Thus

the choice of block size depends very much on the resources available for encoding and

constraints on the processing and storage of CS measurements.
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6.2.c: Boat, PSNR
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6.2.e: Cameraman, PSNR
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6.2.f: Cameraman, SSIM
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6.2.g: Goldhill, PSNR
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Figure 6.2: Rate Distortion Performance of Block Size (64, 32, 16, and 8)
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6.2 Block Similarity Analysis

Consider an image divided into non-overlapping rectangular blocks of pixels. In general,

there are correlations between neighbouring image blocks. If the block size is small,

this correlation is high. For image blocks that are correlated, their CS measurements

are also correlated. An efficient CS encoding strategy can be formulated to reduce the

measurement rate of correlated blocks. This is analogous to exploiting the correlation

between video frames to improve performance in Chapter 5. In this section, image

block correlation will be analysed quantitatively. Three standard 512 × 512 pixel test

images – “Lena”, “Cameraman”, and “Boat”, are used. Each image is divided into non-

overlapping blocks. The CS measurement rate for each block is fixed at 50%. Image

block similarity is measured through the correlation coefficient and Mean Square Error

(MSE).

The comparison between correlation and MSE for image blocks using a block size

of 8 × 8 pixels is shown in Figure 6.3. This is computed for original pixel data and CS

measurement of each block. The maximum correlation of each block with all other blocks

and minimum MSE of each block with all other blocks is plotted. MSE values of CS data

and original image data aligns very well with each other with most of the values being

very close. This indicates that MSE of the CS measurements can be used as a reflection of

the MSE of the original image data. Correlation between CS measurements are very high.

This result suggests that similar image block has low MSE value of CS measurements.

To evaluate the effect of block size on image block similarity, the percentage of correlated

blocks exceeding an MSE threshold is computed for block sizes of 64×64, 32×32, 16×16,

and 8× 8. Figure 6.4 shows the results for the previous three images together with that

for “Goldhill”. As expected, there are more correlated blocks for smaller block sizes.

Blocks with a size of 64× 64 can virtually be considered independent. The percentage of

blocks that can be considered correlated depends on the MSE threshold. If the threshold

is set too high, then most of the blocks in the image will be considered correlated. An

appropriate threshold will need to be determine when block correlation is applied to the

proposed distributed image codec.
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6.3.f: Cameraman, Correlation

Figure 6.3: Block Similarity Analysis of Original Pixel Data and CS measurements with
Correlation Coefficient and MSE
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6.4.d: Goldhill

Figure 6.4: Percentage of Similar Blocks for Block Size (64, 32, 16 and 8)

6.3 Proposed Distributed Image Codec

A distributed image codec is proposed in this section that makes use of the correlation

between neighbouring blocks. Image blocks are classified either as key blocks or non-

key (WZ) blocks. Key blocks are encoded with a higher measurement rate than non-

key blocks similar to the way key frames and non-key frames of a video sequence are

treated in Chapter 5. Two block classification strategies – adaptive and non-adaptive,

are used. They are described in detail in Section 6.3.1 respectively. Side information (SI)

is generated for WZ blocks at the decoder using the CS measurements of Key blocks and

this process is discussed in more detail in Section 6.3.2. Each Key block is reconstructed
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from its own measurements. For each non-key block, reconstruction is performed using

its own CS measurements together with the SI generated. The block diagram of this

codec is shown in Figure 6.5.

6.3.1 Encoder

At the encoder, an image with dimension N × N pixels is divided into non-overlapping

blocks of B ×B pixels. Let xi represent the data for i-th image block with CS measure-

ments yi = ΦBxi. Each image block is classified either as a key block or a non-key (WZ)

block. They are encoded using CS measurement rates of Mk and Mw respectively, where

Mk � Mw. The CS measurements are then quantized using the quantization scheme

proposed in Section 4.3.2 for transmission.

The way by which the image blocks are classified affects the compression ratio as well

as the quality of the reconstructed image. The number of CS measurements required

to reconstruct a signal is dependent on the sparsity of the signal. If a block has high

sparsity then it can be reconstructed with fewer measurements compared with a block

with low sparsity. If a low sparsity block is encoded with a low measurement rate, the

reconstruction quality will be poor. Determining the sparity of an image block is a

challenging problem. Two different block classification schemes are proposed here.

Non-Adaptive Block Classification

The non-adaptive block classification scheme is designed for very low complexity encod-

ing with minimum computation. In this scheme, the blocks are classified sequentially

according to order position in which they are acquired. A group of consecutive M blocks

is referred to as Group of Blocks (GOB). The first block in a GOB is a key block. The

remainingM−1 blocks are WZ blocks. Block sparsity is not considered in this scheme. It

is similar to the concept of Group of Picture (GOP) used in video coding. IfM = 1, then

every block is a key block and is encoded at the same rate. The average measurement

rate (Mav =
Mk+(M−1)×Mw

M
)decreases as M increases.
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Figure 6.5: Proposed Distributed Intra Image Codec
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Adaptive Block Classification

The adaptive block classification scheme can be deployed for encoders with more com-

puting resources. This scheme requires the creation of a dictionary of CS measurements

of key blocks. This dictionary is initially empty. The first block of the image is always a

key block. The CS measurements of this block become the first entry of the dictionary.

For each subsequent image block, the MSE between its CS measurements and the entries

in the dictionary is computed. If any of these MSE’s computed falls below a threshold

λ, then this block is classified as a WZ block and will be encoded at the lower rate.

Otherwise, it is a key block and its measurements are added to the dictionary as a new

entry. In order to reduce the resources required, the number of entries in the dictionary

can be limited to a certain fixed value. When the dictionary is full and a new entry is

needed, the oldest entry will be discarded.

Determining an appropriate value for λ is a tricky problem. In Figure 6.4, it has

been shown that different images has different percentage of similar blocks for the same

threshold value. A common approaches are based on standard deviation (STD) [70, 71].

The main disadvantage of these approaches is that the measurements of all the image

blocks need to be obtained before the total STD can be computed. Here, a more effective

adaptive threshold method is proposed. For each image block i, the threshold is obtained

by

λi = C ·median(|yi|) (6.2)

where yi are the CS measurements of block i and C is a constant. The value of C

controls the relative number of key blocks and WZ blocks. If C > 1, the number of

WZ blocks will be increased. Choosing C < 1 will increase the number of key blocks.

This method is easy to compute and experimental results in Section 6.4 will show that

it is very effective in determining the correlation of blocks. Furthermore, it reduces the

encoding delay compared with STD based methods and therefore is more practical for

real world applications.

The entire encoding process is summarized in Algorithm 2.
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Algorithm 2 Adaptive CS Encoding
Input:yw, D
for each column i inD do
Calculate r[i] =MSE(yw, D)

end for
Calculate τ = min[r]
Estimate λ = C.median(|yw|)
if τ > λ then
yk (Key Block)

else
if τ < λ then
yw (Wz Block)

end if
end if

6.3.2 Decoder

At the decoder, after inverse quantization, the key blocks are reconstructed from their

own CS measurements. For WZ blocks, reconstruction is performed with the help of side

information which is generated through a dictionary. A similar SI generation method to

the one described in Chapter 5 is used here.

It has been shown in Section 6.2 that MSE values between CS measurements of image

blocks are highly correlated. Therefore we can directly make use of the CS measurements

of the key blocks as SI. Starting with an empty dictionary D, it is populated with the

(inverse quantized) CS measurements of the key blocks as they are received. With non-

adaptive block classification, each key block is followed by one or more WZ blocks. For

the WZ blocks in the same GOB, D has only one entry D1. So D1 is used as the SI

to reconstruct this WZ block. For the WZ blocks in the next GOB, the dictionary will

have two entries from the two key blocks received so far. The entry in the dictionary

that is chosen as SI is the one that has the minimum MSE with the current WZ block.

This process continues until all the WZ blocks are reconstructed. With adaptive block

classification, the WZ blocks are reconstructed in a similar way. The only difference is

that the number of WZ blocks following each key block is not fixed.

There are several advantages with this SI generation method. Firstly, it does not
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require the key blocks to be decoded first. Secondly, the dictionary only consists of CS

measurements of key blocks, which are already available for decoding. So it does not need

to be computed or learnt. Most importantly, SI obtained in this way can be directly used

by the CS reconstruction algorithm without any further processing.

6.4 Experimental Results

Twelve test images [129] are used to evaluate the effectiveness of the proposed distributed

CS image codec. They are shown in Figure 6.6. These images are 512 × 512 pixels in

size and contain different content and textures. Visual reconstruction quality of the

reconstructed images is evaluated by the peak signal to noise ratio (PSNR) and the

structural similarity index(SSIM). Compression efficiency of the codec is evaluated by

bits per pixel (bpp). The average measurement rate is the average including both key

and WZ blocks. In Section 6.2, it has been shown that smaller block sizes yield a larger

percentage of correlated blocks. It has also been shown in Section 6.1.2 that in general

block size does not effect performance in CS coding. Therefore, in these experiments a

block size of 8× 8) pixels is used.

Scrambled Block Hadamard Ensemble (SBHE) sensing matrix is used to obtain the

CS measurements and Daubechies 9/7 wavelets are used as the sparsifying matrix. The

SpaRSA [36] algorithm is used as the reconstruction algorithm at the decoder. The

proposed adaptive and non-adaptive approach with SI and without SI at the decoder is

compared with two other techniques. The first one is the encoding of image blocks with

the same measurement rate, i.e. no distinction of key and WZ blocks. It is labelled as

“Fixed Rate” in the results. The second technique is first proposed in [70] and recently

used to classify image blocks as compressible or incompressible [71]. It is labelled as

“STD approach” in the results. The idea is that if the STD of the CS measurements

of an image block is higher than STD of the full image, then the block is classified as

incompressible and more measurements are required for successful reconstruction. [70]

used the original image data to compute the STD, which is not possible in real world
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6.6.a: Lenna 6.6.b: Boat 6.6.c: Camerman 6.6.d: Goldhill

6.6.e: Barbara 6.6.f: Clown 6.6.g: Crowd 6.6.h: Couple

6.6.i: Girl 6.6.j: Man 6.6.k: Mandrill 6.6.l: Peppers

Figure 6.6: Test Images used.

applications. Details of this technique have been discussed in detail in Section 3.1.4.For

adaptive block selection, C = 1 is used. All codecs are coded in MATLAB R2012b and

simulations run on an Intel i5 3.6GHz, Windows 7 Enterprise Edition, 64-bit Operating

System with 4GB RAM. For each measurement rate per image, the experiment is run 5

times and then the average is reported. Figure 6.7 shows the R-D curves for four test

images (“Lenna”, ”Boat”, “Cameraman” and “Couple”). The proposed adaptive sensing

scheme with and without SI at decoder outperforms all other algorithms for all test

images. The non-adaptive scheme without SI is comparable with “Fixed Rate” and “STD

Approach”. The non-adaptive scheme with SI improves the reconstruction quality and

produces better results than “Fixed Rate” and “STD Approach”. Visual reconstruction

quality evaluation for above four images on the basis of structure similarity index [124]
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Table 6.1: Performance Evaluation of Test Images

Image STD
Approach

Fixed
Rate

Non-
Adaptive
(No SI)

Non-
Adaptive
(SI)

Adaptive
(No SI)

Adaptive
(SI)

Boat
MR 38% 35% 35% 35% 35% 35%
PSNR 24.87 25.36 25.14 25.60 26.27 26.62
SSIM 0.81 0.82 0.81 0.83 0.83 0.84

Barbara
MR 35% 35% 35% 35% 37% 37%
PSNR 23.95 23.57 23.62 24.05 24.64 24.89
SSIM 0.81 0.81 0.81 0.83 0.84 0.85

Camera
MR 38% 35% 35% 35% 31% 31%

man PSNR 27.02 27.18 26.78 27.55 28.74 29.21
SSIM 0.87 0.88 0.87 0.89 0.89 0.90

Couple
MR 36% 35% 35% 35% 36% 36%
PSNR 24.99 25.11 24.82 25.40 26.19 26.58
SSIM 0.80 0.81 0.80 0.82 0.83 0.84

Clown
MR 33% 35% 35% 35% 37% 37%
PSNR 26.84 26.01 26.06 26.89 26.66 28.09
SSIM 0.82 0.84 0.85 0.87 0.86 0.89

Crowd
MR 32% 35% 35% 35% 37% 37%
PSNR 25.83 25.00 24.51 25.24 26.20 26.79
SSIM 0.84 0.85 0.84 0.86 0.88 0.89

Girl
MR 37% 35% 35% 35% 31% 31%
PSNR 27.76 28.45 28.04 28.73 28.55 29.20
SSIM 0.83 0.82 0.82 0.84 0.82 0.83

Goldhill
MR 34% 35% 35% 35% 37% 37%
PSNR 26.68 27.01 26.76 27.07 26.53 27.89
SSIM 0.79 0.81 0.81 0.82 0.82 0.84

Lena
MR 36% 35% 35% 35% 32% 32%
PSNR 27.14 27.56 27.55 27.96 28.30 28.88
SSIM 0.86 0.87 0.87 0.88 0.88 0.89

Man
MR 36% 35% 35% 35% 36% 36%
PSNR 25.84 25.98 25.59 26.00 26.70 27.26
SSIM 0.81 0.82 0.81 0.82 0.84 0.85

Mandrill
MR 35% 35% 35% 35% 41% 41%
PSNR 21.01 21.07 21.10 21.12 21.96 22.18
SSIM 0.68 0.68 0.69 0.69 0.75 0.75

Peppers
MR 33% 35% 35% 35% 33% 33%
PSNR 26.83 26.45 26.60 27.48 27.59 28.29
SSIM 0.88 0.87 0.88 0.90 0.89 0.90
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6.7.a: Lenna
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6.7.b: Boat
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6.7.c: Camerman
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6.7.d: Couple

Figure 6.7: Rate-Distortion Performance for Test Images

are shown in Figure 6.8. The visual quality of the adaptive scheme and the non-adaptive

scheme with SI is superior for all test images.

Table 6.1 shows R-D performance of all twelve images averaged for all measurement

rates. Again, the adaptive scheme outperforms all other schemes. The lowest average
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6.8.a: Lenna

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.65

0.68

0.71

0.74

0.77

0.8

0.83

0.86

0.89

0.92

Average Measurement Rate (%)

S
S

I
M

 
I
n

d
e

x

 

 

STD Approach
Adaptive(Proposed, No SI)
Adaptive(Proposed, With SI)
Non−Adaptive(Proposed, No SI)
Non−Adaptive(Proposed, with SI)
Fixed Rate

6.8.b: Boat
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6.8.c: Camerman
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Figure 6.8: SSIM Index for Test Images
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6.9.a: Lenna
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6.9.b: Boat
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6.9.c: Camerman
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6.9.d: Couple

Figure 6.9: Compression Efficiency for Test Images

MR is obtained for “Cameraman”, “Girl”, “Lena” with the adaptive scheme; the PSNR

is more than 1.5dB better than other schemes. However, for an image with less intra

image similarity like “Mandrill”, the adaptive schemes requires a higher number of mea-

surements than other approaches. Using the proposed SI generation method improves

130



Chapter 6. Distributed CS Image Compression

reconstruction performance for both adaptive and non-adaptive encoding.

To evaluate the compression efficiency of the proposed distributed image codec, the

CS measurements are quantized using the quantization scheme developed in Section 4.3.2.

Each CS measurement is allotted 8 bits for quantization. The quantized CS measure-

ments are then entropy coded using Huffman coding. Figure 6.9 shows the PSNR per-

formance of four test images at different bit rates.

The compression efficiency of the adaptive scheme with SI is higher than “Fixed Rate”

and “STD” schemes at the same reconstruction quality. At lower average measurement

rates, the “Fixed Rate” scheme performs better than the adaptive scheme with no SI for

images “Boat” and “Couple”.

6.5 Summary

In this chapter, a new distributed CS image codec has been proposed. It includes two

different block classification schemes. The non-adaptive block classification scheme is

for low complexity, resource constrained encoders. The adaptive alternative is for more

resourceful encoders as it involves block similarity comparisons. At the decoder, a simple

side information generation technique is proposed that is based on the MSE comparison

of CS measurements between image blocks. The proposed SI technique is simple to

implement yet very effective in improving the reconstruction quality of WZ blocks. It can

easily be integrated with any CS reconstruction algorithm without need of modification.

The proposed codec has been shown empirically to outperform “Fixed Rate” and STD

based approaches for all the test images.
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Chapter 7

Distributed Block-based Video
Compressed Sensing

In Chapter 5, a relationship between CS measurements of adjacent video frames has

been established. It is then used to produce the side information for improving the

coding efficiency of the proposed distributed video codec. In Chapter 6, this idea is

extended to image compression with different sampling rates to blocks within an im-

age. In this chapter, the idea developed in Chapter 5 for frame based CS measurements

is extended to block-based CS measurements of a video frame with adaptive encoding.

The proposed video codec exploits both intra-block and inter-block correlation in video

frames. Section 7.1 presents the analysis of intra-frame and inter-frame block correlation.

This analysis forms the basis for the block-based video codec proposed in Section 7.2.

Section 7.3 presents some experimental evaluation of proposed video codec with compar-

isons with other CS-based conventional and distributed video coding methods discussed

in Chapter 3 in terms of visual reconstruction quality, reconstruction time complexity

and compression efficiency.

7.1 Block Correlation Analysis

A study of the correlation between blocks both within a single frame and between adjacent

frames of a video are presented here.
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7.1.1 Intra-frame Block Correlation

When an image is divided into non-overlapping blocks, generally there is a high cor-

relation between neighbouring image blocks. This high correlation can be exploited to

estimate the similarity among image blocks. If the block size is small, this correlation is

high. If the data of the image blocks are correlated, then their CS measurements will also

be correlated. This correlation has been used to design an effective strategy to reduce

the measurement rate of correlated blocks in Chapter 6. A similar analysis is performed

for video frames here.

Three QCIF videos “Foreman”, “’News” and “Hall Monitor” are used for these ex-

periments. Only the first frame of these videos are used in the following analysis. A

video frame is divided into non-overlapping blocks and CS measurement of each block is

obtained using SBHE. The measurement rate of each block is fixed at 50%. Intra-frame

block similarity is measured with both the original pixel data and their CS measurement

using the correlation coefficient and Mean Square Error (MSE). Correlation between each

image block and all other image blocks in the frame are computed and then the maximum

correlation coefficient and the minimum MSE values are plotted. Figure 7.1 shows the

results for a block size of 8× 8 pixels. In terms of MSE, CS measurements and original

pixel data aligns very well with each other. This indicates that the CS measurements

alone can be used to predict image block similarity. The correlation coefficients obtained

using CS measurements are generally very high and do not relate well with those obtained

using the original pixel data. These results suggest that the MSE values calculated using

CS measurements should be used to predict the similarity between image blocks in a

video frame.

To evaluate the effect of block size on block correlation, the percentage of correlated

blocks exceeding an MSE threshold is computed for four different block sizes of 64× 64,

32×32, 16×16 and 8×8 pixels. Figure 7.2 shows the results of the previous three videos

plus “Coastguard”. The smallest block size of 8 × 8 produces more correlated blocks

than all the other block sizes. Blocks with a size of 64 × 64 and 32 × 32 can virtually
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7.1.a: Foreman MSE
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7.1.b: Foreman Correlation
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7.1.c: News MSE
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7.1.d: News Correlation
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7.1.e: Hall Monitor MSE
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7.1.f: Hall Monitor Correlation

Figure 7.1: Intra Block Correlation of Original Pixel Data and CS measurements with
MSE and Correlation Coefficient
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7.2.a: Foreman
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7.2.b: News
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7.2.c: Hall Monitor
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7.2.d: Coastguard

Figure 7.2: Percentage of Similar Blocks for Block Size (64, 32, 16 and 8)

be considered independent in all videos except “Hall Monitor”. This result also suggests

that the percentage of blocks that can be considered correlated depends on the MSE

threshold. If the threshold is set too high, then most of the blocks in the video frame

will be considered correlated. An appropriate threshold will need to be determined when
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Intra-frame block correlation is applied. In the proposed block based video codec, an

adaptive threshold is used to determine intra-frame block correlation.

7.1.2 Inter-frame Block Correlation

In a typical video sequences, adjacent frames are highly correlated and this fact has been

exploited in traditional video codecs like MPEG and H.264 through motion estimation

and motion compensation (ME/MC). In Chapter 5, this inter-frame correlation in the

CS measurement domain using full video frame measurements was used in the video

codec proposed there. Here, the correlation between blocks in adjacent video frames is

analyzed. This correlation can be used to design a effective strategy to further reduce

the sampling rate.

Two video sequences “Foreman” and “Coastguard” are used for the experiments in

this Section. A GOP size of 3 is used. The first frame in a GOP is considered a key

frame and its correlation with the two subsequent frames is computed. Each video frame

is divided into non-overlapping blocks and CS measurements of each block are obtained

using SBHE. The measurement rate is fixed at 50%. Correlation coefficients and MSE

are computed with both the original pixel data and CS measurements.

Figure 7.3 and Figure 7.4 show the maximum correlation coefficients and minimum

MSE values for the “Foreman” video. The results show that MSE values are better

predictors of inter-frame block correlation than the correlation coefficients. This is quite

different from the results obtained from frame-based CS measurements in Section 5.1.3

which shows that both MSE and correlation coefficient are good predictors. reason is

that Figure 7.5 and Figure 7.6 show similar results for the “Coastguard” video sequence.

7.2 Proposed Adaptive Block-based Video Codec

Based on the block correlations established in Section 7.1, a distributed block-based video

coded is proposed. The block diagram of this codec is shown in Figure 7.7.
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7.3.a: Foreman with MSE
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7.3.b: Foreman with Correlation Coefficient

Figure 7.3: Inter Block Correlation of Original Pixel Data and CS measurements between
1st and 2nd frame of Foreman video with MSE and Correlation Coefficient
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7.4.a: Foreman with MSE
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7.4.b: Foreman with Correlation Coefficient

Figure 7.4: Inter Block Correlation of Original Pixel Data and CS measurements between
1st and 3rd frame of Foreman video with MSE and Correlation Coefficient
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7.5.a: Coastguard with MSE
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7.5.b: Coastguard with Correlation Coefficient

Figure 7.5: Inter Block Correlation of Original Pixel Data and CS measurements between
1st and 2nd frame of Coastguard video with MSE and Correlation Coefficient
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7.6.a: Coastguard with MSE
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7.6.b: Coastguard with Correlation Coefficient

Figure 7.6: Inter Block Correlation of Original Pixel Data and CS measurements between
1st and 3rd frame of Coastguard video with MSE and Correlation Coefficient
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Each key frame is reconstructed from its block CS measurements. For each block in a

Non-key frame, first a side information is generated for key blocks using Inter correlation

and for Non-key blocks using both Inter and Intra correlation. Encoder and decoder

details are described below.

7.2.1 Encoder

Video frames are grouped into GOPs consisting of a key frame followed by a number of

non-key (WZ) frames. In Chapter 5 full frame measurements were obtained for both key

and WZ frames. In the current scheme, a block-based sensing strategy is used to further

lower the complexity of the encoder. Each video frame is divided into non-overlapping

blocks of equal sizes. CS measurements are obtained using Structurally Random Matrices

with SBHE as the sensing matrix. The blocks in a key frame are encoded with a higher

measurement rate than those in WZ frames.

Key Frame Encoding

Each key frame Xk is divided into B non-overlapping blocks of NB × NB pixels. Let

xki represents the i-th block in this key frame, then its CS measurements yki = ΦBx
k
i

are obtained by using a block-based sensing matrix ΦB. Every block in a key frame is

sampled at a fixed Mk which is higher than that for the blocks in a WZ frame. After

sampling, they are quantized using the quantization scheme proposed in Section 4.3.2.

WZ Frame Encoding

Each WZ frame Xw is divided into non-overlapping blocks in the same way as key frames.

As shown in Section 7.1.1, blocks within a video frame are correlated and this correlation

can be used to reduce the sampling rate.

Blocks within a WZ frame are classified either as a key block or a non-key block. This

decision is made depending on the correlation between the current block and a dictionary
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of all key blocks processed. This dictionary D is initially empty. The first block xw1 is

always considered as a key block and Mkw measurements are acquired. Each subsequent

image block is initially sampled at a rate Mww such that Mww << Mkw. Then the

MSE values between current block and the entries in D are computed. If the minimum

computed MSE falls below a threshold λ, then this block is classified as a WZ block and

no more processing is required for that block. Otherwise, it is considered a key block, and

an additional Mkw −Mww measurements are acquired. These additional measurements

can be obtained from the (Mww +1)-th to the (Mkw)-th rows of the sensing matrix. The

measurements of this block are then added to D. To further lower the complexity, the

maximum size of the dictionary can be limited. The CS measurements are then quantized

using the quantization scheme proposed in Section 4.3.2.

A similar approach to that used in Section 6.3.1 is adopted to determine an effective

threshold λ. This threshold is an adaptive one which depends on the median value of

the CS measurements for that individual block. For each image block i, the threshold is

given by

λi = C ·median(|yi|) (7.1)

where yi are the CS measurements of block i and C is a constant. The value of C controls

the relative number of key blocks and non-key blocks. If C > 1, the number of WZ blocks

will be increased. Choosing C < 1 will increase the number of key blocks. This is a much

simpler and more effective way to classify blocks compared to the STD approaches used

in [70,71]. Furthermore, it reduces the encoding delay and therefore is more practical for

real world applications.

7.2.2 Decoder

The blocks in a key frames are decoded entirely based on their own CS measurements.

These CS measurements first inverse quantized and then reconstructed using a suitable

CS reconstruction algorithm. For blocks in WZ frames, reconstruction is performed
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with the help of side information which is generated through a dictionary D. Initially,

D consists of the CS measurements of the blocks from the key frame, denoted by yki ,

i = 1, 2, . . . , B. To generate side information for a key block in a subsequent WZ frame

with measurements ywk , the MSE values between ywk and all the entries inD that are within

a search window of blocks that are adjacent to the current block are computed. The side

information is the MSI measurements of the entry in D which yields the minimum MSE,

where MSI =Mk −Mkw. The measurements that are used to reconstruct this key block

are its own Mkw measurements plus the MSI measurements of the side information. In

this way, the measurement rate of block is increased to the same as that for a key frame.

After that, the current key block measurements are added to D to be used to account

for intra-frame block correlation.

For a WZ block, the process is similar. By now D would have the measurements of

some of the key blocks in the current WZ frame. When the decoding of the current WZ

frame is complete, existing key block measurements of this WZ frame will be discarded

from D. This process is followed for all WZ frames in a GOP. D can be limited to consists

of only the key frame blocks in a single GOP, or those in some of the previous GOP can

be maintained as well.

This is a simple and effective SI generation method which exploits both intra-frame

and inter-frame block correlations. More importantly, side information is generated di-

rectly in the measurement domain. Hence it does not require the blocks in a key frame

to be decoded first. Furthermore, it can easily be used in conjunction with any CS

reconstruction algorithm without requiring changes.

7.3 Experimental Results

Figure 7.8 shows a first frame of the video sequences that are used for the evaluation

of the distributed block-based video codec in the previous section. These videos are in

QCIF format with a frame size of 172×144 pixels. There are both slow and fast motions

in these videos.
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7.8.a: Akiyo 7.8.b: Bowing 7.8.c: Bus

7.8.d: Coastguard 7.8.e: Container 7.8.f: Football

7.8.g: Foreman 7.8.h: HallMonitor 7.8.i: Harbour

7.8.j: MobileCalendar 7.8.k: Mother Daughter 7.8.l: News

7.8.m: Silent 7.8.n: Soccer 7.8.o: Students

Figure 7.8: Test Videos
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CS measurements of each block in both key or non-key frames are obtained using

Structurally Random Matrices with Scrambled Block Hadamard matrix as the sensing

matrix. The sparsifying matrix is a wavelet transform matrix based on the Daubechies

9/7 wavelet. Only the luminance (Y) component is used in the experiments.

Three different GOP sizes of 3, 5 and 8 are used in the experiments. The first frame

in each GOP is considered a key frame, followed by the respective number of WZ frames.

Measurement rates (MR) of the blocks in the key frames range from 30% to 70%. MRs

for key blocks in a WZ frame range from 10% to 50% and that for WZ blocks are 5% to

45%. In Section 7.1.1, it has been shown that smaller block sizes yield a larger percentage

of correlated blocks. It has also been shown in Section 6.1.2 that in general block size

does not effect performance in CS coding. Therefore, in these experiments a block size

of 8× 8) pixels is used.

The performance of the proposed codec is compared with three other techniques.

All three techniques have been described in Section 3.2.4. The first one uses a multi-

hypothesis approach to search for an optimal block in a key frame to represent a current

block in a WZ frame [88]. This is achieved by finding multiple, distinct ME/MC predic-

tions for a current block and then combined to yield a composite prediction by finding

the optimal solution using Tikhonov regularization. The MATLAB source code of this

codec is obtained from [130]. For comparable results, We have also used the same SPL

transform in our proposed block based adaptive scheme reconstruction. The other two

techniques are the Modified-CS-Residue [93] and the k-t FOCUSS [78,94]. Modified-CS-

Residue does not employ ME/MC at the decoder but it attempts to explicitly track the

sparsity pattern of frame to frame. k-t FOCUSS uses an iterative recovery with ME/MC

of non-key frames from the neighbouring key frames. The MATLAB source codes for

Modified-CS-Residual and k-t FOCUSS are available from [131] and [132] respectively.

Visual reconstruction quality of the reconstructed video sequence is evaluated by the

peak signal to noise ratio (PSNR) and the structural similarity index (SSIM). Compres-

sion efficiency of the codec is indicated by the bit rate. The average measurement rate
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for a video is the average including both key and WZ frames. All codecs are coded in

MATLAB and simulations run on an Intel i5 3.4GHz, Windows 7 Enterprise Edition,

64-bit Operating System in MATLAB R2012b 64-bit with 4GB RAM. For fair analysis,

no other programs were running on the simulation computer except the operating system

and MATLAB.

7.3.1 Measurement Rate Reduction

In first set of experiment, the effect of constant C in Equation 7.1 is examined. As

mentioned in Section 7.2.1, C controls the number of key and non-key blocks in a WZ

frame. If C > 1, the threshold λ will be increased and so there will be more non-key

blocks. The reverse will happend for C < 1. A suitable threshold is highly dependent on

the content of the video frame.

Table 7.1 shows the percentage of CS measurement rate reductions using adaptive

encoding for three different values of C and three different measurement rates for a GOP

size of 3. It is observed that C > 1 generally provides higher measurement rate reductions

as the measurement rate increases. C = 1 also provides good measurement reductions

for all type of videos. For videos consisting of contents which are rich in spatial details

(“Bus”, “Mobile Calendar” and “Harbour”), measurement rate reductions are very low.

This is because intra-frame block correlation is not high in these cases. Also, the higher

the difference in measurement rates between key and non-key blocks, the higher will be

the reduction. Finding an appropriate C for all video content is a challenging problem.

In subsequent experiments, C = 1 is used.

7.3.2 Reconstruction Complexity Evaluation

In the second set of experiments, reconstruction complexity for different schemes are

evaluated by calculating the average reconstruction time (in seconds) for key frames

and WZ frames. Figure 7.9 shows average reconstruction time of six video sequences

with three different GOP sizes. The proposed codec outperforms all other techniques
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significantly. Techniques which explicitly uses ME/MC require more reconstruction time

for all videos. The multi-hypothesis technique is the slowest due to its use of different

ME/MC predictions instead of a single prediction. Reconstruction time for all test videos

averaged for all measurement rates are tabulated numerically in Table 7.2.

7.3.3 Rate Distortion Evaluation

Rate Distortion (R-D) analysis for different test videos are calculated in terms of the

average CS measurement rate and PSNR. Figure 7.10 shows the R-D curves for six test

video sequences (“Foreman”, “Akiyo”, “Container”, “Hall Monitor”, “Mother Daughter”

and “Silent”) using a GOP size of 3. The proposed codec outperforms all the other three

codecs for the videos “Akiyo”, “Container” and “Mother Daughter” which do not have

fast motions. Its performance is comparable to the multi-hypothesis approach for medium

motion videos “Hall Monitor” and “Silent”. At low measurement rates, its performance

with the “Foreman” video is comparable with multi-hypothesis. But as the MR increases

the difference increases. This is due to the better ME/MC with multiple predictions.

Similar results are obtained for larger GOP sizes.

R-D curve for the same videos using GOP sizes of 5 and 8 are shown in Figures 7.11

and 7.12 respectively. In general, with increased GOP size, relative performance among

the four codecs remain unchanged. Table 7.3 shows average R-D performance for lower

measurements rates of all test video sequences for three GOP sizes. The proposed codec

performance is better than all other techniques for all slow motion videos (”Akiyo”,

“Bowing”,”Container” and “Mother Daughter”) for all GOP sizes. For medium motion

videos, its performance is better for ”Students” at GOP sizes of 3 and 8 and for “Hall

Monitor” at GOP sizes 5 and 8. For high motion videos such as “Football”and “Soccer”,

the performance of the proposed codec is comparable to multi-hypothesis (average 1dB

lower) for all GOP sizes. Modified-CS-Residue performance is better in “Coastguard”,

“Bus” and “News” except for GOP size of 8. k-t FOCUSS performs better only for the

“Harbour” video. These results show that even though proposed codec uses a much sim-

pler side information generation technique, the reconstruction quality obtained is similar
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7.9.a: GOP Size 3
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7.9.b: GOP Size 5
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7.9.c: GOP Size 8

Figure 7.9: Reconstruction complexity comparison for GOP Size 3, 5 and 8
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7.10.a: Foreman
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7.10.b: Akiyo

10 15 20 25 30 35 40 45 50 55 60
21

22

23

24

25

26

27

28

29

30

31

32

Average Measurement Rate per Frame (%)

A
ve

ra
ge

 P
S

N
R

 p
er

 fr
am

e 
(d

B
)

 

 

Proposed
Multi Hypothesis
kt−FOCUSS
Modified−CS−Residual

7.10.c: Container
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7.10.d: Hall Monitor
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7.10.e: Mother Daughter
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7.10.f: Silent

Figure 7.10: Rate Distortion Curve for GOP Size 3

to or better than ME/MC techniques. In terms of the SSIM, the results are similar

to the PSNR results. They are shown in Figures 7.13, 7.14 and 7.15 for GOP sizes

of 3, 5 and 8 respectively. For slow motion videos “Akiyo”, “Container” and “Mother

Daughter”, the proposed codec outperforms all other techniques. The performance gap

decreases for larger GOP sizes. For example, with GOP size 8, the performance becomes

comparable to the multi-hypothesis approach. The proposed codec performance is better

than Modified-CS-Residue and k-t FOCUSS for all GOP sizes. Table 7.4 shows average
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7.11.a: Foreman
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7.11.b: Akiyo
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7.11.c: Container
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7.11.d: Hall Monitor
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7.11.e: Mother Daughter
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7.11.f: Silent

Figure 7.11: Rate Distortion Curve for GOP Size 5

SSIM values for all measurement rates for all test videos. Its performance is also not

worse than multi-hypothesis for medium motion videos “News” and “Students”. Fig-

ure 7.16 shows the visual reconstruction quality for the 123rd frame (a WZ frame) of

the “Akiyo” video with an adaptive WZ measurement rate (MR) of 27% (Proposed and

Multi Hypothesis) and non-adaptive WZ MR of 30% (Modified-CS-Residue and k-t FO-

CUSS). It can be observed that the proposed codec produces better visual quality than

the other techniques. Similar observations can be made from Figure 7.17 which shows
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7.12.a: Foreman
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7.12.b: Akiyo
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7.12.c: Container
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7.12.d: Hall Monitor
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7.12.e: Mother Daughter
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7.12.f: Silent

Figure 7.12: Rate Distortion Curve for GOP Size 8

the 24th frame (a WZ frame) of the “Mother Daughter” video.

7.3.4 Performance Comparison with DISCOVER and Other
Conventional Codecs

In the previous section, the proposed codec is compared with other CS-based video

codecs. Here, it is compared against an efficient distributed video codec called “DIS-

COVER” which has been described in Section 3.3.3 and two existing conventional video
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7.13.a: Foreman
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7.13.b: Akiyo
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7.13.c: Container
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7.13.d: Hall Monitor
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7.13.e: Mother Daughter
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7.13.f: Silent

Figure 7.13: SSIM Index for GOP Size 3

coding standards (H.264 and H.263+) in terms of compression ratio and bit rates. H.264

is a video codec standard developed by ITU-T and is also known as H.264/AVC (Ad-

vanced Video Coding) [3]. Two different coding options are used in these experiments:

• H.264 (I-P-P) with GOP size of 3

• H.264 Intra with only intra coding of frames
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7.14.a: Foreman
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7.14.b: Akiyo
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7.14.c: Container
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7.14.d: Hall Monitor
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7.14.e: Mother Daughter
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7.14.f: Silent

Figure 7.14: SSIM Index for GOP Size 5

H.263+ is an enhanced version of the H.263 standard developed by ITU-T [126] Two

different coding options for H.263+ are chosen in these experiment:

• H.263+ (I-P-P) with GOP size 3

• H.263+ Intra which uses only Intra coding of frames under different quantization

parameters. 8, 10, 12, 14, 16, 20, 24, 28 and 32 bit quantization are used to obtain

different bit rates and quality.
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7.15.a: Foreman
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7.15.b: Akiyo
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7.15.c: Container
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7.15.d: Hall Monitor
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7.15.e: Mother Daughter
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Figure 7.15: SSIM Index for GOP Size 8

The H.264 and H.263+ codecs used are those provided by the free software FFmpeg (Fast

Forward MPEG) [127].

The CS measurements are quantized using the quantization scheme developed in

Section 4.3.2. Each CS measurement is allotted 8 bits for quantization. The quantized CS

measurements are then entropy coded using Huffman coding. Each raw (uncompressed)

pixel requires 8 bits since only the luminance component is used.

158



Chapter 7. Distributed Block-based Video Compressed Sensing

7.16.a: Akiyo Original 123rd Frame

7.16.b: Akiyo Proposed Reconstrcution, PSNR=
32.70dB, SSIM Index= 0.89

7.16.c: Akiyo Multi Hypothesis Reconstruction,
PSNR= 31.87dB, SSIM Index= 0.85

7.16.d: Akiyo kt-FOCUSS Reconstruction,
PSNR= 27.42dB, SSIM Index= 0.82

7.16.e: Akiyo Modified CS Residual Reconstruc-
tion, PSNR= 30.59 dB, SSIM Index= 0.83

Figure 7.16: Visual Reconstruction Quality of Akiyo 123rd Frame for GOP Size 3
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7.17.a: Mother Daughter Original 24th Frame

7.17.b: Mother Daughter Proposed Reconstruc-
tion, PSNR= 33.58dB, SSIM Index= 0.88

7.17.c: Mother Daughter Multi Hypothesis
Reconstruction, PSNR= 32.95dB, SSIM In-
dex=0.86

7.17.d: Mother Daughter kt-FOCUSS Recon-
struction, PSNR= 30.49dB SSIM Index= 0.84

7.17.e: Mother Daughter Modified CS Residual
Reconstruction, PSNR= 30.90dB, SSIM Index=
0.83

Figure 7.17: Visual Reconstruction Quality of Mother Daughter 24th Frame for GOP
Size 3
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Four QCIF videos – “Foreman”, “News”, “Coastguard” and “Hall Monitor” are used

in these experiments. These videos have a frame rate of 30 frames per second. A GOP

size of 3 is used.

Results

First, the compression ratio that are achieved by the codecs are compared. Figure 7.18

shows the compression ratio under different bit rates for four test video sequences. The

proposed codec outperforms DISCOVER at all bit rates. However its performance against

conventional video codecs is not as good due to the efficient intra coding used by H.264

and H.263+ which produces higher compression.

The reconstruction quality of different codecs at different bit rates are shown in Fig-

ure 7.19. The proposed codec performs better than H.264 Intra and H.263+ Intra for

all four test videos at all bit rates. Its performance against H.263+ (I-P-P) is better for

“Foreman” video and comparable for the other three videos.

The decoding times required by the proposed codec and by DISCOVER are shown

in Figure 7.20. Different quantization parameters were used in DISCOVER to achieve

different bit rates and quality [128], corresponding Bitrate points on x− axis shows cor-

responding bitrates in proposed codec and DISCOVER. The decoding times required by

the proposed block-based distributed CS video codec stays roughly the same at all bit

rates. However, that required for DISCOVER increases as bit rate increases. Further-

more, the decoding times for the proposed codec are much shorter than that required for

DISCOVER at all bit rates.

The decoding times for the two conventional coding standards will be much shorter.

This is because conventional codecs are designed in such a way that the encoding process

is complex and decoding process is simple whereas the proposed codec is designed with

a different philosophy. Hence their decoding times are not shown here.
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7.18.a: News
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7.18.b: Foreman
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7.18.c: Coastguard
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7.18.d: Hall Monitor

Figure 7.18: Bit Rate vs Compression Ratio for Video Sequences - GOP Size 3

7.4 Summary

In this chapter, a block-based distributed video CS codec is proposed. The encoding

is performed on block by block basis using CS and can be implemented with reduced
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7.19.a: News
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7.19.b: Foreman
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7.19.c: Coastguard
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7.19.d: Hall Monitor

Figure 7.19: Bit Rate vs PSNR for Video Sequences - GOP Size 3

complexity compared with full frame encoding. Furthermore, the sampling rate used to

encode similar blocks in a WZ frame is adaptive, which increases the compression ratio.

At the decoder, a simple side information generation technique is used which exploits

both inter-frame and intra-frame block correlation. The proposed codec does not require
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7.20.a: Foreman
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7.20.c: Coastguard
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Figure 7.20: Reconstruction Time Complexity Comparison with DISCOVER

a feedback channel nor motion estimation as are required by other codecs. It does not

even need the key frames to be decoded before side information can be generated. The

performance of the proposed codec is evaluated using videos with slow, medium and fast

motions. The proposed codec performs comparably with the multi-hypothesis approach
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and outperforms other tested CS codecs. It is also better than H.264 Intra and H.263 Intra

and comparable to H.263 (I-P-P) in terms of reconstructed video quality. Furthermore,

it outperforms DISCOVER in terms of simplicity, compression ratio and reconstruction

complexity.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, a distributed framework for image and video coding that is based on

compressed sensing has been presented. It enables low complexity, resource constraint

encoding to be performed which will lower the cost of the encoders (cameras). Two

new key techniques have been incorported into the encoding process. The first one is

a quantization scheme that is tailored for CS measurements. The second is a new side

information generation scheme which is simple and effective and can easily be integrated

with any CS reconstruction algorithm. The framework includes both whole frame (image)

as well as block encoding. There are also options for using adaptive encoding rates which

controls the quality of the image or video obtained. Frame and block correlations are

exploited to increase the compression ratio without having to perform computationally

expensive operations such as motion estimation either at the encoder or the decoder.

The following conclusions can be drawn from the work presented in this thesis.

(i) The distributed image and video coding schemes presented are able to produce good

quality reconstructed images and videos even though the encoders are extremely

simple. The entire process is based on CS, without the need for motion compensa-

tion and estimation or a feedback channel. The quality of the reconstructed images

and videos is enhanced by using side information. The side information generation
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schemes work in the CS measurement domain without the need to first decode any

previously received frames. Minimal computation is needed for these SI generation

schemes.

(ii) Structurally Random Matrices is the best type of sensing matrices for acquiring

full-image CS measurements. It uses inherent block-based operation which makes

it suitable for acquiring large dimension image and video signals. In particular,

SBHE has been found to be the optimal sensing matrix in our experiments. It is

hardware friendly and has low computational demand.

(iii) In our evaluation of CS reconstruction algorithms for image reconstruction, the

performances of all algorithms tested perform similar in terms of reconstruction

quality except for greedy algorithms. SpaRSA produces the best reconstruction

quality, with the lowest number of iterations and reconstruction time.

(iv) The proposed quantization matrix based on the statistical properties of CS mea-

surements yields better results than a uniform quantizer and those used for JPEG.

This quantizer is also robust against different statistics of individual images.

(v) It is shown that CS measurements of adjacent video frames in frame based CS

encoding are highly correlated. This correlation is used to design a simple and

effective side information generation schemes. The performance of proposed SI

scheme is found to be efficient than MCI. Experimental evaluation of proposed

codec show that proposed codec out-perform existing techniques in simplicity and

has comparable performance in quality.

(vi) The correlation between adjacent video frames can be estimated effectively using

the MSE of their CS measurements.

(vii) MSE is more effective is determining intra-frame and inter-frame block correlation

than correlation coefficient in block-based CS encoding.

(viii) For block-based encoding, block size generally does not affect the CS reconstruction

quality.
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8.2 Further Research

The distributed image and video coding techniques developed in this thesis can be ex-

tended to other imaging applications. The future possibilities for multi-view coding and

hyperspectral imaging are particularly promising.

8.2.1 Multi-view Image/Video Coding

The most obvious avenue for further research is the extension of the present methods

to multi-view image and video coding. In multi-view camera systems, the same scene is

captured from several viewpoints. Not only is there a high correlation among consecutive

video frames from a single camera but also those among from different cameras. This

type of redundancy can potentially be exploited using the techniques presented in this

thesis. CS has great potential for multi-view image and video acquisition by lowering

the memory and computation requirements of the cameras. The proposed SI generation

techniques in this thesis can be extended to lower the measurement rates and improve

the reconstruction quality without putting extra burden on the decoding process.

8.2.2 Hyperspectral Imaging

In hyperspectral imaging, a number of images are acquired simultaneously at different

wavelengths. The data collected essentially forms a three-dimensional data-cube, known

as a voxel, with two spatial dimensions and one spectral dimension. Hyperspectral im-

ages usually have a large number of homogeneous regions. For each data-cube, its neigh-

bouring pixel-vectors will likely share similar spectral characteristics. The difference in

spectral information between two voxels is typically very small and thus they are highly

correlated. This correlation could be exploited to compress hyperspectral data using the

techniques presented here.
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• Yousuf Baig, Edmund M-K. Lai and J.P. Lewis, ”Quantization effects on Com-
pressed Sensing Video” in Proceedings of IEEE 17th International Conference on
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• Yousuf Baig, Edmund M-K Lai and Amal Punchihewa. ”Distributed Video Coding
Based on Compressed Sensing,” in Proceedings of IEEE International Conference
on Multimedia and Expo Workshops (ICMEW), Melbourne, Australia, July 9 - 13,
2012, pp.325-330.

• Yousuf Baig, Edmund M-K. Lai and Amal Punchihewa, ”Low complexity side
information for distributed compressed video coding,” in Proceedings of IEEE In-
ternational Conference on Signal Processing, Communication and Computing (IC-
SPCC), Hong Kong, Aug 12-15, 2012, pp.436-441.

Book chapter
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