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Abstract 

Trust is a pervasive feature of human social interaction. Much of the recent 
interest in trust has been at the level of individuals and dyads. But trust is 
also important in networks, as it enables the formation and maintenance of 
social cooperation. Understanding this requires an understanding of how 
trust arises, functions, and is maintained within networks of people. 

Developing understandings of how individual behaviours aggregate, and 
how they evolve within an environment that includes other individuals de­
veloping similar behaviours is a difficult task. One way that it may be ap­
proached is through computer simulation using agent-based models. This 
thesis describes the development of two agent-based models of trust. 

Agent-based modelling is a novel method within the discipline of social psy­
chology. The thesis first describes what agent-based modelling is,  describes 
some of the situations in which it might be applicable, discusses how it 
might apply to modelling individuals in a social setting, and discusses the 
experience of developing the model. 

The first model was based on a theoretical cognitive model of behaviour 
within a particular formal game that has been claimed to involve trust, the 
Investor Game. This model showed that a population in which all individu­
als are are pursuing similar optimal strategies does not generate any of the 
interesting behaviours that we would expect to see in real-world interac­
tions involving trust and cooperation. This tends to suggest that modelling 
trust behaviours also requires modelling behaviours that are untrustwor­
thy, and representing a full range of potential behaviours, including out­
hers. 

The second model is based on a more naturalistic setting, on-line peer-to­
peer trading through sites such as New Zealand's Trade Me, or eBay. In 
this model , individual traders carry characteristics that determine their re­
liability and honesty, and attempt to find effective strategies for identifying 
other traders' trustworthiness. This model suggests that, while providing 
traders with minimal guidance on strategies and allowing them to search 
for the best strategies may result in them finding effective strategies, this 
is not the only possible outcome. Somewhat surprisingly, effective trust 
strategies acted to contain unreliability, rather than dishonesty. 
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Foreword 

In a previous life, prior to beginning to study psychology, I was an engineer 
as a designer and consultant in electrical power systems. When I first en­
tered the study of psychology, it was pointed out to me that I'd probably find 
it a little different to engineering. That comment proved somewhat pre­
scient. This thesis in many ways reflects a series of questions that struck 
engineer abroad i n  the social sciences. 

Electrical engineering students spend an entire academic career under­
standing and manipulating systems that are composed of many elements. 
Entering psychology was jumping into a world that was largely dominated 
by the in depth understanding of single entities. Unlike engineering, in 
psychology understanding the individual wasn't simply an essential pre­
cursor to understanding the system. 

Large as the difference in thinking in terms of individuals versus systems 
was, I found that the the most dramatic difference in thinking involved 
time. In fact, to an electrical engineer, time was all but missing in psy­
chology. Almost universally, theory and analyses were entirely static. That 
may not have been entirely strange in itself, but the language that was 
being used to discuss phenomena drew frequently on words like increase, 
change, and intervention. Psychology, as an applied discipline, is largely 
concerned with bringing about change, but the thinking and analysis was 
in terms of static, that is, unchanging, phenomena. 

My interest in trust grew out of an entirely different set of experiences, this 
time as a somewhat absent-minded foreign student in Indonesia. Talking 
to Indonesian people, I was struck at how low their expectations of the 
trustworthiness of their compatriots was. In part that was understand­
able, as the country is plagued with endemic corruption, and petty crime 
like pick-pocketing is common. But at a more personal level, I had the fre­
quent experience of people returning my wallet when I had left it in local 
stores. Even more strikingly, I had left my ATM card in an ATM,  with the 
PIN number punched in. Someone found it, and came across the road to the 
mall in search of me. I wondered how such low levels of generalised trust 
had become entrenched, when individual people had shown an extraordi­
nary degree of honesty. 

From the two puzzles came this thesis. 
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Chapter 1 

Introduction 

This thesis investigates trust located within a social network, through the 

development of two agent-based models, one cognitive and theoretical , and 

one based on more general psychological ideas applied to a naturalistic set­

ting. Agent-based modelling is a form of simulation modelling. Simulation 

modelling, in turn, involves representing real world entities and phenom­

ena in software. In agent-based modelling a number of individuals are 

represented using agents : code segments in a computer programme. An 

agent-based model consists of these agents, along with a further code seg­

ment that represents relevant features of the environment. 

The first of the two models was based on the strategies that individuals ap­

ply to a particular task involving trust that arises in a formal game called 

the Investor Game. These strategies had been identified by previous re­

searchers, using a combination of simulation modelling and experiment 

(Rieskamp, 200 1) .  I was curious to see what would happen when the strate­

gies identified were fitted back into a model , and in particular whether any 

interesting patterns would result from combining a number of agents that 

were behaving in similar ways. Where all of the agents were using the same 

basic strategies, it was difficult to get agents to act sufficiently dishonestly 

that other agents would refuse to trade with them. This model suggested 

that while the strategies represented in the model were well supported, 

they were not sufficient to represent trust in real world situations without 

also representing untrustworthy agents. 

The second model was of traders in an online trading market, such as New 

Zealand's Trade Me auction web site. Traders entered the market with in­

dividual ideas on how to use the information available to decide whether 

or not to trade with each other. As the trading develops, traders learn from 
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their own trading experience, and adopt elements of strategy from other 

more successful traders. This model showed that, while markets can find 

optimal strategies by traders sharing strategy information, this is not nec­

essarily the case. It  also showed that the strategies evolved may be more 

sensitive to unreliable traders than to dishonest traders, despite the lower 

losses that flow on from trades that fail due to failures to communicate or 

to complete a trade. 

Agent-based modelling offers a novel tool for researchers in social psy­

chology. Rather than considering the distribution of characteristics and 

patterns in a population or, conversely, the history of a single individual , 

agent-based modelling allows the researcher to explore the interactions of 

a number of individuals. Within a simulation, agents remain discrete indi­

viduals, retaining and developing individual characteristics, and interact­

ing with other agents. Both the history of their interactions, and the indi­

vidual development of agent individual characteristics can be monitored by 

the modelling programme. 

The process of carrying out research using agent-based modelling, indeed 

of carrying out computer simulation more generally, is different to the pro­

cess when using other research methods. In part, this is because simula­

tion can access different aspects of a social situation. For example, much 

research is concerned with the distribution of, and relationships between ,  

some variables. We have a toolkit of ways to  think about estimating and 

describing the distribution of a variable in a population, and for describing 

and estimating the relationships between these variables. 

There are fewer options, however, if we want to explore how situations de­

velop, and how change happens. The practical difficulties in collecting and 

analysing data over more than a small number of intervals makes it diffi­

cult to explore phenomena in which dynamics are important. Simulation 

is a method that allows us to represent variables, and to observe how they 

may change as a process unfolds in time. 

A second difference between simulation and other methods is also impor­

tant, although less obvious. Simulation forces us to take a perspective on 

social situations that is directed towards systems. Specifically, simulation 

forces us to develop theory about systems and the components of a system. 

This is quite different from much of psychology, where the individual is 

regarded as the source of the mechanisms driving behaviour. 

While much of the focus in psychology is on individuals, systems are com­

mon in psychology. Groups, families, and organisations form some of the 
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most readily identifiable systems in social psychology, and some phenom­

ena are essentially systems phenomena. For example, a group phenomenon, 

group-think, can be seen as a system failure rather than being the failure of 

individual members of a group. Beyond the immediate social environment, 

other aspects of the environment can act as components in a system. Psy­

chology certainly acknowledges the importance of the environment in shap­

ing the individual, for example behavioural psychology identifies the modi­

fication of behaviour by the outcomes encountered in the environment. And 

social psychology is interested in ways that individuals attempt to modify 

their environment, particularly their social environment. 

As agent-based models are based on the direct representation of individ­

uals and their environments, the development of an agent-based model 

demands specific theory on how individuals function in the environments 

that they are likely to encounter. This includes theories on how individu­

als function in their interactions with each other, and in response to their 

environments. But theory is relatively rarely in the form that agent-based 

modellers need for developing such a model. The difference between the 

forms of theory available, and that demanded for simulation modelling is 

such that one of the strengths of agent-based modelling may be in support­

ing and encouraging the creative development of theoretical ideas, and may 

also also lead us to ask different questions in other research. 

An illustration of this is provided by the developers of the game "The Sims", 

a agent-based simulation game. The writers wanted to build the game 

based on research findings, but found that there was little in reported psy­

chological research that could be applied to their game characters (Harris, 

2003).  While there is much literature on relationships and social interac­

tion , most was not directly useful in producing realistic individual agents, 

with realistic relationships and interactions. 

Agent-based modelling may be suited to exploring particular features of 

social situations, but as with any method , agent-based modelling is not 

universally applicable. Rather, it is likely to be most useful in relation 

to research questions in which the effects of nonlinearity are prominent. 

Situations in which nonlinearity is encountered are very common: these 

arise when the combined effects of a number of people acting independently 

are involved, or when system states are developing or changing in time. 

Whilst such situations are very common in social psychology, they cannot 

be investigated using conventional statistical methods, except i n  very rare 

circumstances. Methods for dealing with nonlinearity tend to be somewhat 
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exotic at best, and many are difficult enough to apply to tractable physical 

systems, much less social systems. 

Objectives and Overview 

This first chapter begins by outlining the structure of the thesis. Follow­

ing this introductory chapter, the next three chapters of the thesis provide 

some background on the method that I used for developing the trust mod­

els; a form of simulation modelling called agent-based modelling. 

Agent-based models have potential in modelling nonlinear social systems. 

While some of the dramatic features of chaotic systems are well known, it 

is less well known that all that is required to generate complex behaviour 

in dynamic systems are nonlinearities in the system or even just one of its 

components. Far from being exotic, nonlinearities are pervasive in social 

systems. For example, anywhere it is possible to do, or not do, something, 

or to make a choice between a number of possible options, a nonlinearity is 

introduced. In C hapter 2 I describe the features of nonlinear systems, and 

review some of means of exploring and understanding non linear systems. 

Agent-based modelling is a form of computer simulation modelling and, as 

such, encounters issues in the philosophy of science about what meaning 

and use we might make of modelling generally, and of computer simulation 

in particular. In Chapter 3 I review some of these issues. These issues 

remain unsolved in the philosophy of science. While modelling and sim­

ulation are worthy of investigation in their own right, this is outside the 

scope of this thesis. Rather, the issues are flagged, and possible stances 

considered from the perspective of a modelling practitioner. While I do not 

attempt to enter these arguments, I do state a position about how this form 

of modelling might be located in the setting of psychological research. 

Agent-based models are not familiar to most psychologists, and so in C hap­

ter 4 I describe what agents and agent-based models are. I also describe 

how agent-based models can be realised in software, and review some of 

the software that is available for agent-based modelling. 

In addition to questions about the role of simulation modelling in a gen­

eral sense, there are more specific questions as to what agent-based mod­

elling might mean when used in psychological research. In Chapter 5 I 

explore some of the issues associated with adopting agent-based models as 

research tools. Agent-based models are used with an underlying expecta-
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tion that they can represent real-world systems sufficiently well to enable 

some understanding of them. In this chapter I consider firstly what real­

world entities the individual agents within a model might represent, and 

secondly what the assembled model and its outputs might represent. 

All of the foregoing prefaces the application of agent-based modelling in 

two models of trust in networks of a number of individuals. In Chapter 

6 I present a brief review of literature surrounding trust, in support of 

the development of two models of trust in a small model population. The 

literature review first addresses of some of the ways that trust has been 

conceptualised across a number of disciplines. It goes on to describe some 

of the ways that trust has been investigated in previous work, primarily 

within the discipline of psychology. Finally I summarise some of the theo­

retical approaches that might be useful in developing agent-based models 

of trust. 

In Chapters 7 and 8 I describe two agent-based models that I designed 

and programmed to provide illustrations of the application of agent-based 

modelling. The two models were based on quite different theoretical ap­

proaches to trust. For the first model , described in Chapter 7, I based the 

agent's decision-making in a trust task drawn from game theory directly 

on a cognitive model of decision-making about trust in this game. In this 

model, it proved very difficult to make the agents behave dishonestly and 

mistrustfully. The model produced a homogeneous population of largely 

static and cooperative agents. In the second model, described in Chapter 8, 

I used more general ideas about learning, and set the trust task in a more 

realistic environment, based on an online trading site. 

In Chapter 9 I draw some conclusions about the results from the models. In 

this chapter I also return to reviewing my experiences of using agent-based 

modelling as a method in the light of my experiences of using the technique 

with these two different models. 

Having completed this overview, the main body of my thesis begins with a 

summary of some features of systems that are difficult to address using con­

ventional research methods, and conventional statistical analyses. While 

at a first glance it seems that these features are a scattered collection of 

unrelated characteristics, there is a common genesis underlying them; all 

are a consequence of nonlinearities in components of a system.  In Chap­

ter 2 I summarise and describe some of the features and characteristics of 

dynamic, complex, large nonlinear systems. 
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Chapter 2 

Systems, dynamics, and 

emergence 

The domain of psychology is huge, touching as it does on the entire range 

of human experience. As befits a discipline that has such a catchment, 

many different research methods are used, each with strengths in access­

ing different features. This thesis proposes agent-based modelling as a 

new method that may complement other research methods used in social 

psychology. Agent-based models will be introduced in Chapter 4, but first 

this chapter will outline some particular features that the method might 

address: those surrounding dynamics and systems. 

To an electrical engineer beginning to study psychology, the apparent ab­

sence of thinking in terms of dynamics and systems from some branches of 

psychology was striking. The temporal dimension seemed to be missing al­

most entirely; only appearing by implication in developmental psychology. 

This was a little unnerving in a discipline that is often involved in inter­

vening to generate change and in observing, understanding, and measuring 

change. 

A second thing that seemed to be missing was that there did not seem to be 

a transition in analysis from knowledge at an individual level to knowledge 

about systems of individuals. This was particularly striking in the case of 

social psychology because of its explicit interest in peoples' activities in the 

presence of others. Psychology, a science oriented toward the individual, of­

ten seemed to become much less specific when considering the interactions 

of a number of people. 

These initial impressions were, of course, unfair. There is a body of work 

addressing how social psychology might investigate social situations in 
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which dynamics are important. A collection of methods and examples of dy­

namic systems in social psychology are described in Vallacher and Nowak's 

( 1997) book, for example. Nevertheless, the opportunities for applying 

many of these dynamic analyses remain limited by practical issues, such 

as the need for long runs of data. 

Similarly, there are bodies of work on many different social structures that 

involve a number of individuals, such as families, groups, and organisa­

tions. Nevertheless, while the interactions of a number of people are clearly 

important in these settings, the transition from thinking about individuals,  

through thinking about individuals in their immediate social environment, 

through thinking about individuals as components of larger social entities 

involves sharp changes in theoretical bases. 

These two features - situations in which dynamics are important, and situ­

ations in which the actions of individuals may aggregate into systems of in­

dividuals - seem entirely unrelated. But this is not the case, dynamics and 

aggregation are linked: they are characteristic features of large systems, 

and they become particularly interesting in large systems of nonlinear ele­

ments. 

One dictionary defines systems as "a complex whole; a set of connected 

things or parts; an organized body of material or immaterial things" (Allen, 

1980).  There are important elements within this definition. Systems con­

sist of a number of parts, and are not merely a collection of parts. Rather, 

components are connected together in an organised and complex way. The 

result, the system, may be considered a whole. 

Using this definition,  there are a number of ways that individual people 

might be seen to be located in social systems. Identifiable social structures, 

such as families or organisations, can certainly be seen as systems in that 

they are organised bodies of people. But people are also located in a web 

of social connections, without any structure necessarily being identifiable, 

and that interconnected web can also be seen as a complex whole. Systems 

are ubiquitous in human social life, and therefore in the social sciences, 

with the potential for social systems to arise anywhere that relationships 

exist between a number of individuals. While psychology is often less inter­

ested in systems than in individuals, there are many circumstances when 

we cannot understand individuals independently of the context of systems 

in which they might be located. 

This chapter will first describe some of the features of large nonlinear sys­

tems. Thinking about systems is not necessarily a natural process (Resnick, 
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1994), so some of the general approaches to thinking about and under­

standing systems are described. Two facets of the behaviour of large non­

linear systems are discussed: their behaviour in time, or their dynamics; 

and the implications for the aggregation of individual behaviours. 

Large systems 

Systems arise in many forms, electricity grid, biological cells, organs and 

organisms, city councils, and computer software are all systems. In social 

settings there are, similarly, many examples of systems. Families, markets, 

and crowds of people are all examples where a whole entity exists through 

the complex interconnections of a number of individuals. In the case of 

families and markets, the functioning of individuals may be organised, ei­

ther formally or through informal cultural rules. Less obviously, crowds 

are also organised, not from without, but as a result of each person acting 

in their own interests, but within the constraints provided by their neigh­

bours. For example, where a rapid evacuation of a large number of people 

passes through a constriction, like a doorway, the crowd may form into 

something approximating a semi-circular shape (Bonabeau, 2002). That 

shape has not been imposed on the crowd, but is a result of individual peo­

ple moving within the constraints of building shape and neighbours' loca­

tions ;  it is an example of self-organisation within the system of the crowd. 

In a system, there are at least two levels of aggregation: the individual ; 

and the system. There are, correspondingly, at least two levels at which we 

might understand the behaviour of a system. One approach is to treat the 

system as a black box,  treating it as if it is a single whole entity. Explor­

ing the system then reduces to exploring the characteristics and behaviour 

of that entity. Bonabeau (2002) provides an example of an agent-based 

model of an internet service provider (ISP) market, in which both individ­

ual customers and the ISPs are modelled as agents. In this model , ISPs 

are modelled as having the capacity to generate new product ideas, but the 

internals of how innovation arises within the company is not specified or 

modelled. 

Formal approaches to understanding systems have been relatively recent. 

Over the last century, analyses of systems allowed the understanding and 

control of machines and processes. Analyses of control systems proceed 

by characterising the system in terms of the process that links inputs and 

outputs, and by adding feedback elements to produce a fast and accurate 
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shift to a target output (Power & Simpson, 1978).  As is usual in engineering 

work, control systems theory is particularly concerned with establishing 

predictable and stable operation of the system. In practice, this meant 

that early systems analysis work was concerned with maintaining systems 

within the range of linear operation, so that their behaviour was amenable 

to mathematical analysis. The analyses involved in system design were 

abstract, and entirely general. 

Beyond relatively simple linear systems, as size, dimensions, and nonlin­

earities are added the formal mathematical analysis of systems rapidly be­

comes difficult, then impossible. Nevertheless, the methods of investigat­

ing and understanding more complex systems have been informed by the 

experience of analysing inherently simpler linear systems. 

Other methods have been developed for more complex systems. General 

systems theories (Bertalanffy, 197 1 ;  Checkland, 1999) suggest analysing 

complex systems in terms of inputs, the process that produces outputs from 

those inputs, how the difference between target and actual outputs are 

fed back to producing a correcting action , whether a system will converge 

across a range, or whether it might have a variety of potential outputs. 

Three factors are important in the development of complex behaviours in 

systems. Two may be unsurprising. It is reasonable that we might expect a 

system to show complex behaviours when there are a large number of inter­

acting individuals. Similarly, we might expect complex behaviours when a 

large number of variables influence the behaviour of the system. The third 

factor complicating the behaviour of large and complex systems may be less 

obvious. The presence of nonlinearity in system elements, even in just one 

of the elements in a system, can produce dramatic effects in the system's 

behaviour. 

Very large systems are the rule, rather than the exception in social systems. 

Social systems consist a large number of individuals. These individuals are 

complex, they are affected by a number of variables, and they can generate 

a large number of possible behaviours. The connections between individ­

uals may be much more dense than the elements in, say, a mechanical 

system.  The topology of their connections is not Euclidean; the social links 

between individuals may include links between individuals that would, in  

the absence of  that link, otherwise be  quite distant. The conditions for the 

generation of complex system behaviours exist in social systems. 

The understanding of large complex systems has been constrained by the 

difficulty in analysing them. Relatively recently, the availability of corn-
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puter simulation has allowed access to the analysis of large and complex 

systems, and systems with nonlinear elements. These are otherwise inac­

cessible through traditional mathematical methods, such as the solution 

of differential equations. Simulation analyses have revealed that the be­

haviour of very large systems can be surprising (Gleick, 1988). They can 

generate outcomes that are not immediately obvious if the behaviour of in­

dividual components is extrapolated directly, including chaotic behaviours. 

N onlinear systems 

Non linearity, as the name suggests, means that the relationship between 

two variables cannot be described as a straight line. But not only can the 

relationship not be described in terms of a linear equation, it cannot be 

transformed into a linear equation. In less mathematical terms, nonlin­

ear characteristics exist everywhere there is a discontinuity. For example, 

a step function is a very common nonlinear relationship: below a certain 

input level, one behaviour might result, and above it another quite dif­

ferent behaviour is triggered. Examples of step functions are pervasive in 

human behaviour, for example people change schools, leave a job, have chil­

dren, ask someone to dance, make decisions, and join and identify with new 

groups. Our lives are punctuated by frequent and abrupt changes. 

So pervasive are nonlinearities in the human world it would seem that lin­

ear analyses may have quite a restricted application, but many initially 

nonlinear characteristics can be made linear. One technique, commonly 

used in statistical analyses, is to transform the characteristic so it becomes 

linear. Another is to constrain a system so that it works within the range 

in which all elements have linear characteristics. Any system with at least 

one nonlinear element is a nonlinear system,  but while it can be linearised, 

or held within a linear range it is reasonable to use linear analyses to in­

vestigate the behaviour of the system. 

Where this is not the case, and nonlinearities can come into play within 

large systems, a variety of phenomena can arise that are not accessible 

to linear analyses. These include the appearance of unusual dynamic be­

haviours, including the appearance of patterns from apparent chaos, and 

extreme sensitivity to initial conditions. If the system can reach a state 

where the nonlinearity in this one element comes into play, linear analyses 

may no longer be appropriate and other methods are needed. 
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Superposition 

An important feature of nonlinear systems that has implications for psy­

chological research is that the principle of superposition does not hold for 

nonlinear systems. The principle of superposition says that we can dis­

mantle a linear system, and the set of its inputs to a system into simpler 

subsystems and single inputs. Then we can find the solution for each of 

these simplified subsystems and inputs, and simply add them together. It 

is simple to demonstrate superposition at work in a linear equation, for ex­

ample Y = 4X and an input of X = 10 can alternately be broken up into 

four inputs X = 1 + 2 + 3 + 4. 

We get the same result whether we calculate 

X = 10 : y = 4 X 10 = 40 

or 

X, = 1: Y1 = 4 X 1 = 4 

x2 = 2: Y2 = 4 x 2 = 8 

x3 = 3 : Y3 = 4 x 3 = 12 

Y = 4 + 8 + 12 + Hi = 40 

In contrast, if the element has a nonlinear characteristic, for example a 

step function 

F(x) -{ X< 2.5: Y = 0 

X> 2.5: Y = 2 

We get different results 

X = 10 : Y = 2 and 

X1 =1 yl =0 

x2 = 2: y2 = 0 

x3 = 3 :  y3 = 2 

x4 = 4: y4 =2 

The principle of superposition seems somewhat obscure, but it permits an 

assumption that is very important in research. When we can assume that 

superposition applies, we can i nfer that different constructs and inputs can 

be isolated, and researched separately. The results of different inputs and 
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effects can later be recombined to apply findings in other situations. This 

allows phenomena to be separated, and each researched and analysed in­

dependently. It allows findings to be applied to situations with different 

combinations of features. Superposition allows us to sum the effects of a 

linear combination of inputs, as is done in multiple regression. Along the 

same lines, the principle of superposition allows us to assume that individ­

ual elements can be connected together, producing an assembly or group 

that has characteristics that directly reflect the sum of the individuals and 

their interconnections. 

The presence of non linearity means that the assumptions that are enabled 

by the principle of superposition cannot be made. A second consequence of 

an aggregation that engages nonlinear elements is that the dynamics that 

may be generated have some unusual features. The aggregate effects of the 

behaviours of a number of people cannot simply be added. Where a system 

does operate in a range that puts any individual element into nonlinearity 

it may produce effects in a population, including some that are qualitatively 

different to the characteristics of individuals in that population. 

Levels and aggregation 

Psychology is a discipline that addresses human behaviour at many dif­

ferent levels of aggregation, from cells, through individuals, to systems of 

people: whether families, groups,  teams, tribes or any of a large number of 

social structures. Between these levels are regions of transition, where it 

is no longer useful to think in terms of the individual components, as these 

have merged into a larger system of these units. These larger systems have 

their own characteristic behaviours, that of the system itself. 

From the foundation of thinking about dynamic systems, we can see that 

adding elements to a system corresponds to making incremental changes in 

the system. Where superposition does not apply, these incremental changes 

cannot be reduced to simple additions. Furthermore, these small changes 

to the system can eventually produce profound changes in the system be­

haviour. When this happens the system has developed its own behaviours, 

arising from the collection of individuals that comprise the system, but the 

behaviour of the system is distinctly different from the behaviour of the 

individuals in the system. 

The entire sphere of interest in psychology includes not only discrete indi­

viduals, but also the behaviour of groups and individuals within the setting 
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of groups. A complete understanding might be expected to bridge the tran­

sitions between individuals and group systems. This transition depends on  

understanding the patterns that can emerge as  individuals form into social 

structures. 

Emergence 

The transition between individuals and the social systems and structures 

that may arise from their interactions has been a controversial area in the 

social sciences. Exploring the transition means having to explore the non­

trivial patterns that arise from the interactions of a number of nonlinear 

agents. Non-trivial , in this sense, means that the outcomes may be quite 

different to what we might expect from summing the outcomes from each 

individual independently across the whole population. Some of the pat­

terns arising from large nonlinear systems have characteristics that might 

be described as emergent. 

Emergence is a controversial concept, not in the least because it is defined 

quite differently in different disciplines. One definition, from philosophy, 

is that emergent properties are "genuinely novel properties that are irre­

ducible to, and neither predictable nor explainable in terms of, the prop­

erties of their constituents" (Kim, 1999). This account of emergence has a 

long history in philosophy, and Kim ( 1 999) goes on to say that substantially 

this version is used in scientific writing. More recently, the availability of 

computing power has led to advances in the mathematics of large nonlin­

ear systems. Previously, these were impenetrable to mathematical analysis 

(Franks, 1967,  cited in von Bertalanffy ( 197 1 )) .  The application of comput­

ing power to large nonlinear systems has showed that patterns can appear 

from the apparently random noise that complex systems can generate (Gle­

ick, 1988).  These patterns are unpredictable outcomes, quite different in 

character to the characteristics of the components of the system, and have 

also been classed as emergent. 

One strand in Kim's definition is that emergent properties are unpredictable. 

With some qualifications, nonlinear systems are consistent with this ele­

ment defining emergent properties. There are two related sources of ap­

parent unpredictability in nonlinear systems. Some unpredictability arises 

because large nonlinear systems are extremely dependent on the initial 

conditions, and small differences in the conditions holding either within 

the system, or at the environmental boundaries of the system can produce 
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hugely different outcomes. A further source of apparent unpredictability is 

found in  the complexity of movement that can be generated as the system 

tries to approach a final position that is itself moving in intricate patterns. 

Large nonlinear systems, despite appearing to behave randomly at times, 

are deterministic, but the smallest variation may be sufficient to trigger 

the appearance of a new attractor, with entirely different results. 

A second strand relates to irreducibility. The behaviour of large nonlinear 

systems cannot be reduced to the behaviour of the individual parts. The 

composition of the system depends on all of the parts, and reducing the 

system's complexity by removing parts eliminates the system itself. The 

system that is left may bear little resemblance to the target system. Fur­

ther, we cannot work backwards from what is known about the state of a 

nonlinear system to derive information about the constituent components 

and relationships that go to make up the system. The appearance of new, 

entirely different attractors means that the system can reach a particular 

state via a variety of possible paths, associated with different attractors 

and different histories. 

Although complex systems can produce features that are irreducible and 

unpredictable, there is a point of difference between these features and 

emergence as defined above. The behaviours of large nonlinear are explain­

able in terms of the properties of the constituent components, although that 

explanation is not necessarily simple. If we hold that the definition of emer­

gence requires that the property is not explainable in terms of the proper­

ties of its constituents, unexpected and unpredicted patterns arising from 

chaotic systems should not be classed as emergent, although they remain 

irreducible to these constituent properties, and unpredictable. 

Much of the debate around emergence depends on differences in the def­

initions of what is meant by irreducible or unexplainable. For example, 

water is the classic example of emergent properties. The argument is that 

the properties of water are not reducible to a combination of the proper­

ties of hydrogen atoms and oxygen atoms. This argument applies only to 

the properties of these substances in their elemental form. If we include 

among the properties of hydrogen and oxygen their properties in an ionic 

form, then the properties of water are explainable in terms of the proper­

ties of hydrogen and oxygen ions, the bonds that can form between them, 

and the consequent effect on the geometry of the water molecule. The emer­

gent properties of water can be explained in terms of the properties of the 

components, their assembly, and interrelationships. 
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Kim ( 1999) also notes that there is a second group of concepts associated 

with emergence: these require that an emergent has causal powers. In 

particular, an emergent can influence the behaviour of the elements from 

which it has emerged. This definition places a requirement that emergent 

structures and properties can have a downward causation, from emergent 

to the elements from which it emerges (Kim, 1999). This requirement 

raises some difficulties in how downward causation might occur, and how 

downward causation from the system might be differentiated from the ag­

gregated influence of the individual parts that make up the system. 

Another feature that has been required of an emergent is that it is sta­

ble (Elder-Vass, 2 005) .  Again, this requirement rather depends on how we 

define stable. If stability is only required to be in terms of a pattern ex­

isting for long enough to be detectable, this is a reasonable criterion. If, 

on the other hand,  a more permanent stability is prescribed, this clashes 

with some of the suggested sources of emergence, namely that emergence 

reflects a system that is governed by a strange attractor (Newman, 1996), 

or from a bifurcation from one type of attractor to another (Morcol, 2001 ). 

Neither possibility is conventionally stable in the sense that its stability 

reflects a permanent system state. 

Emergence takes on a slightly different air in the social sciences, in which 

emergentists are pitted against individualists. Social science emergentists, 

arguing that social structure is an emergent quality and is irreducible to 

individuals,  claim that emergent properties depend not only on existing 

individuals,  but on the structure's history arising from the actions of previ­

ous individuals that are no longer in the population (O'Sullivan & Haklay, 

2000; Elder-Vass, 2005). King ( 1999) points out that individualists make 

no claim that they exclude individuals that are no longer in the population 

(King, 1999) ,  and suggests that, far from being two opposing camps, emer­

gentists are individualist (King, 2007),  as the social world as a network of 

individuals linked by social relationships. 

Dynamics of nonlinear systems 

Linear systems produce a limited range of dynamic responses. A linear sys­

tem may be stable, unstable, or marginally stable. A stable linear system, 

when shifted a little away from the stable position, will always change so 

as to return it toward to that stable position. While a stable system moves 

towards a stable position, an unstable linear system will accelerate away 
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M a r g i n a l l y  s t a b l e  p o s i t i o n  

S t a b l e  p o s i t i o n  
U n s t a b l e  p o s i t i o n  

Figure 2 . 1 :  The possible dynamic outcomes of a linear system 

from a corresponding unstable position. A marginally stable system can 

remain at a fixed position until it is perturbed.  Depending on the pertur­

bation, it might subsequently move either toward a stable point, or away 

from an unstable point. For example, this might be illustrated by the mini­

mal system of a ball sitting on a slope (see Figure 2 . 1). In a stable position,  

the ball will not move, and if moved a little from that position, will return 

to the stable position. In an unstable position the ball would continue to 

roll downwards. In a marginally stable position, the ball would remain still 

until moved a little. Depending on the direction in which it is moved, it 

may either move to a stable position ,  or continue on an unstable trajectory. 

In the previous paragraph, I have talked about a stable position, being the 

final state towards which a system moves. In nonlinear systems theory, 

these stable positions are called fixed point attractors (N owak & Lewen­

stein ,  1994). Mathematically, attractors are a set of limit values; theoret­

ically the system perpetually heads towards this limit, but never actually 

reaches it. In practice, practical limitations, such as the precision of mea­

surement eventually stop movement toward the limit, as the distance from 
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X 

dx/dt  

Figure 2.2:  Phase space map of a dynamic system approaching a point 
attractor 

the limit state becomes less than the measurement precision. 

The behaviour of the system can be described through plotting the position 

of the system in time. While this does show the changes in the system 

as we might observe them over time, this plot does not necessarily make 

identifying the attractors easy. The system dynamics can also be described 

through a map of the phase space, in which the position is plotted on one 

axis, and the speed on the other axis. This figure does show the attractors. 

For example, Figure 2.2  shows a phase space plot of a point attractor. The 

corresponding motion of this system in time is shown in Figure 2.3 .  In 

this system, the system repeatedly overshoots the attractor. This appears 

as a damped oscillation in the position plot, and spiral path towards the 

attractor in the phase space map. 

Fixed point attractors, such as are found in linear systems are only one of 

a number of possible attractors. While fixed point attractors are straight­

forward, attractors in nonlinear systems can be much more varied, pro­

ducing a much wider range of potential outcomes. As well as fixed point 
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X 

t i m e  

Figure 2.3 :  Position in time corresponding to the phase space plot in figure 
2 .2  
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attractors, nonlinear systems might have limit cycle attractors, multiperi­

odic and quasi-periodic attractors, or strange attractors, each of which has 

a characteristic geometry. The dynamics of the system are determined by 

the shape of the attractor, and by the path that the system takes in moving 

towards the attractor. 

Limit cycle attractors appear in a phase space map as attractors with a 

closed loop shape. These result in  the system following a periodic oscilla­

tion,  for example the periodic patterns in population numbers as the for­

tunes of predators and prey alternate. Unlike a marginally stable system, 

a small perturbation from a limit cycle will be followed by a trajectory back 

toward the limit cycle (Nowak & Lewenstein,  1994). 

Multiperiodic and quasi-periodic attractors appear in the phase space map 

as toroidal attractors (Nowak & Lewenstein ,  1994). These attractors gen­

erate more complex periodic patterns than the limit cycle attractors. The 

underlying periodic components of the motion around multiperiodic and 

quasi periodic attractors can be extracted using auto-correlation and Fourier 

analyses (Nowak & Lewenstein, 1994). 

Strange attractors have very complex shapes, and may be fractals (Nowak 

& Lewenstein ,  1994). Motion on a strange attractor can generate such 

complex behaviour in the system that it is difficult to differentiate from 

random noise (Nowak & Lewenstein, 1994). 

These four forms of attractor can be found in nonlinear dynamic systems, 

and determine the types of movement that might be generated by these 

systems. While linear systems can generate a few types of motion, nonlin­

ear systems can generate many different forms of motion. A further point 

of difference between linear and nonlinear systems is that, unlike linear 

systems, nonlinear systems can jump from one attractor to another. These 

shifts can result in the system suddenly changing the form of its move­

ment, resulting in a sudden shift in the dynamic behaviour of the system. 

For example a system might suddenly shift from a fixed point attractor to 

a limit cycle. 

It should be noted that, while the movement that they generate might be 

chaotic, large nonlinear systems are deterministic; their dynamics are en­

tirely replicable if, and only if, we can replicate the exact conditions of the 

system and the environment. But very small changes in either the sys­

tem ,  or in its inputs, can lead the system to an entirely different attractor. 

Thus nonlinear systems are very sensitive to small differences either in  the 

system, or in the boundary conditions between the system and the environ-
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ment. This sensitivity means that, although the system is deterministic, 

the behaviour of a nonlinear system is only repeatable if every element of 

the system and environment is identical. This can be done in computation, 

but is impossible to achieve in the real world. 

A final common, and distinctive, feature of nonlinear systems is that they 

can exhibit hysteresis. Hysteresis means that the path in the forward di­

rection , from A to B, differs from the path in the reverse direction from 

B to A. Linear systems, in contrast, are reversible. Hysteresis effects are 

widespread in social systems, for example, where a dyad traverses a rela­

tionship from formation to dissolution, the end position is not the same as 

the beginning position. 

Time: the missing dimension 

As I have said earlier in this chapter, entering the study of psychology from 

another discipline can be surprising. It is almost as if outside developmen­

tal psychology a whole dimension, time, is missing. This dimension is im­

portant in peoples' everyday lives, at least in the modern world .  But despite 

this, time makes a relatively rare explicit appearance in the psychological 

literature. In contrast, in most disciplines outside the social sciences, it is 

almost taken for granted that time is an important dimension. 

There are, of course, some good reasons for the low profile of time in social 

psychology. In a social science setting, it is particularly difficult to collect 

enough sequential data points to allow analysis of a time series. But this 

does not entirely explain the absence of time in other forms. For example, 

research that uses the rate of change of a variable as a construct is rare, 

although this is a more accessible variable as demonstrated by researchers 

who have used the rate of change toward a goal as a variable (Hsee & 

Abelson, 199 1 ;  Lawrence, Carver, & Scheier, 2002). 

While it is relatively rarely used as an explicit variable, time does make a 

less explicit appearance. Any research that calls for observations made at 

a number of different times has an inherent time component, although this 

may not be acknowledged explicitly. Doing so does, however, make the as­

sumption that any systems involved have reached their final stable state. 

Without some knowledge of the likely system dynamics, it is difficult to 

set the appropriate period that should elapse before a second set of obser­

vations is made. Different causal elements are likely to act over different 

time periods, a feature that Bandura notes works in our favour, as makes it 
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possible to separate the elements of a causal network, for example allowing 

us to investigate the linkages in a triadic causation one by one (Bandura, 

1986, p. 25) .  

There may be other reasons that explicit references to time might be miss­

ing in psychology. Much psychological research is carried out over a single 

time step, or a small number of intervals. Research in psychology rarely in­

volves continuous observation of a process. That may act to make thinking 

in terms of time less automatic. Some who do incorporate time in theoris­

ing about psychology take quite radical views in theorising about time. For 

example, Levine (2003) has argued that the assumption that time is linear 

and constant may not be universally appropriate in social psychology. In 

part, his argument is based on the point that processes in psychology tend 

to occur in steps or cycles, rather than being continuous processes. In effect, 

he argues that we might deal with nonlinear characteristics by modifying 

how we think about time. 

The physical sciences do have established techniques for modifying how we 

think about processes that have a time dimension. For example, we are ac­

customed to thinking about our 230V mains power supply in our homes as 

constant, rather than time dependent. But the notation 230 V RMS is actually 

the result of a transformation to remove time dependence in describing a 

sinusoidally alternating voltage that is time dependent, and that can be de­

scribed m athematically by the equation V = 325 sin lOOnt . Techniques like 

this are available in the physical sciences because they have the luxury of 

components, whose behaviour is regular and relatively simple. 

Levine (2003) does not propose ways that we might modify our conceptu­

alisation of time in social psychology other than an arbitrary manner. In 

the sense in which he talks about thinking about time - in terms of steps or 

cycles - time becomes a more qualitative dimension. 

These points about the representation and conceptualisation of time have 

a parallel in some forms of simulation, including agent-based modelling. 

Simulations using digital computers use iterated processes; the simulation 

is inherently carried out in steps. This can leave the simulation unsealed 

with respect to time, or at least unsealed with respect to linear, continu­

ous time. However, if we are able to think about social processes in terms 

of steps and cycles, concerns about whether simulations should be time­

scaled are possibly misplaced. A stepped simulation may be a good way to 

represent a process that proceeds in steps. 

Others argue that incorporating time into our thinking in social psychology 
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inexorably leads to thinking in terms of dynamic systems (Geert, 1997) .  

There are many analogies that might be made between phenomena in so­

cial psychology and features of complex dynamic systems. For example, an 

alternative way to frame the sharp changes that Levine (2003) sees as chal­

lenging linear conceptions of time is to regard these as potential markers of 

nonlinear dynamic phenomena such as bifurcations or catastrophes. If we 

do so, the question in turn becomes one of how these ideas are applied, in 

particular, whether they are applied in a formal sense, or whether they are 

used as descriptive similes. Arguing for the former, Vallacher and Nowak 

( 1997) maintain that while the early stages of use of new ideas might rea­

sonably generate intuitive ideas about potential applications these need to 

be backed up by more formal approaches to using the ideas. Others have 

pointed out that attempts to do so have been relatively unsuccessful. One 

possible reason is that the thinking required does not sit comfortably with 

thinking about social phenomena (Puddifoot, 2000), although it is less than 

clear why thinking in terms of linear regressions is a more natural way of 

thinking in terms of behaviour. One possible hint as to the difficulty lies 

in his comments that the language used by advocates of dynamic systems 

thinking is in terms of physical systems, a criticism that could as validly be 

applied to my own explanation here. As Resnick ( 1994) has noted, systems 

thinking is not entirely natural , and the few visual similes that we have 

tend to be mechanical . A second part of the reason for this is that there 

is no social science equivalent of the language that mathematicians and 

physical scientists have developed for thinking and talking about systems 

and dynamics. The adoption of the language of mechanical systems has not 

been as successful for social scientists as it has, for example, by electrical 

engineers. As a result, the generality of thinking about dynamic systems is 

not yet as recognised as other general systems perspectives have become. 

It is reasonable to say, as Puddifoot (2000) does that the comprehensive 

treatments of the analysis of complex non linear systems presented by pro­

ponents for dynamic systems approaches (Nowak & Lewenstein, 1994) looks 

difficult to implement. Further, depending as some of the methods do on 

long time series of observations, some of the techniques advocated suffer 

exactly the same problems that statistical time series analyses do. That 

is, it is difficult to collect the necessary data in social science settings, no 

matter what analysis you have in mind. 

Nevertheless, there are approaches to thinking about phenomena in ways 

that do acknowledge system dynamics. One method that is underused in 
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data analysis is the use of phase space plots. While these may seem more 

technical analytic tools (Puddifoot, 2000), they are actually an immensely 

simple tool for visualising data, including data that cannot be managed 

using formal analyses. For example, a short series of twelve measurements 

may be sufficient to produce an informative phase space plot. 

As with the example of phase space plots, it may not be that the techniques 

needed for analysis of dynamic systems are any more esoteric than the sta­

tistical methods that are widely used in psychology. Rather, it may be a 

case of using different techniques. For example, where we are exploring 

how a system behaves, exploratory statistical techniques may be more ap­

propriate than hypothesis-testing techniques. An example of this arises in 

the online trading model.  With no obvious pattern in the results, I looked 

for groupings in the results using an exploratory technique - cluster analy­

sis. 

The dangers of thinking about systems in linear terms, and other than 

in systems terms, have been raised by a variety of writers (Bertalanffy, 

197 1 ;  Checkland, 1999; Resnick, 1 994). Equally, there is danger in think­

ing about processes that are located in time as if these were static. While 

some phenomena can be captured by what is effectively a single snapshot, 

or by spotting the differences in a pair of snapshots, not all can . There are 

a number of ways of thinking about systems that have been suggested by 

proponents of dynamic systems thinking. While some of the techniques of­

fered may be difficult to apply directly to real world data, the generality of 

the approach means that the techniques can as validly be applied to data 

obtained from simulations. The alternatives are either to draw on the tech­

niques of systems and dynamic thinking, or to try to capture the sense of 

processes that are in motion through, at most, a pair of static images. 

Summary 

This chapter has described and characterised some of the phenomena that 

we encounter in large nonlinear systems in general. The characteristics of 

social systems are such that these are large nonlinear systems with very 

complex elements. This being the case, collections of interacting individu­

als should be expected to produce phenomena that reflect this fundamental 

nature of the system. 

Despite this, in many situations we can obtain good information and un­

derstanding treating a system as if it is a linear system. This includes good 
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information about how individuals act within a system, and good informa­

tion about particular phenomena. 

There are, however, problems in applying the analytical techniques pro­

posed for complex dynamic systems directly to every situation. There are 

times that systems effects, and dynamics are important, and the simplifi­

cation of linear systems approaches cannot capture effects and phenomena. 

Later in this thesis, I will apply these methods to two different settings 

involving trust. Trust is a phenomenon in which the mechanisms are de­

scribed at an individual level, whether those mechanisms are thought to 

be cognitive, emotional , or personality characteristics. There are, however, 

features at a population level that seem to be related to the characteristics 

of individuals in the population. These will be detailed in Chapter 6. Rela­

tionships across levels like this involve aggregation of the effects generated 

by many individuals, and may need to be understood in this context. At­

tempts to make changes at a population level may need to make provision 

for the aggregated effects of individual level trust decisions and actions. 
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Chapter 3 

Modelling and Simulation 

Modelling 

Before introducing a particular form of modelling, it is worth considering 

how and why we use modelling in science. When we model , the focus of 

interest is not the model itself. Rather, it is some real world situation - in 

the case of social psychology, some real world social phenomenon. These 

may be difficult to understand directly, because they may have any of a 

number of features that make understanding them directly difficult. 

Why do we need to model? 

One thing that can make real world social systems difficult to understand 

is their size. We may be able to track the activities of an individual , but 

as the number of interactions increases, the dimensions and complexity of 

any but the simplest social networks rapidly outstrip our ability to track 

and understand them. 

Another difficulty that can arise for research in social psychology is the 

observability of the system, that is whether or not we can actually make 

the observations that we might need to be able to adequately understand 

what is happening. There may be difficulties in assembling complete in­

formation, even for small groups of people. The detail available from any 

one individual may be limited, and some individuals may not be observable 

at all because we may not have access to them. When we do have access 

to them, large scale measurement may be too expensive, or otherwise im­

practicable. Further, there are other constraints on what can be done in 
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research. For example, it may be unethical or unsafe to collect data, or to 

manipulate a situation experimentally. 

Even if a system is accessible enough to be observable, we can encounter 

features that make understanding the data conceptually difficult. In par­

ticular, large dynamic systems are difficult to understand. This difficulty 

is captured even in the vocabulary surrounding dynamic systems: large 

dynamic systems are also called complex systems, and their seemingly ran­

dom behaviours are described as chaotic .  Small and simple dynamic sys­

tem s  can be awkward enough, because we may have trouble amassing suf­

ficient measurement intervals to permit time series analysis of a system 

that is changing or developing in time. 

Where we cannot directly access, manipulate or comprehend a real-world 

situation through existing techniques, some other strategy is needed if we 

are develop our understanding of it. Modelling is one such strategy. 

What is modelling, and how does it work? 

One view of modelling is that it is a mapping process, in which a model is 

mapped to the real world (Holland, 1998). A model is a restricted likeness 

of a real world object or phenomenon. It represents important features of 

the real-world situation, but in a simplified way. A good model is accessible, 

both in that we can readily collect data from it, and in that its structure 

is easier to understand.  One way to make a phenomenon more readily 

understood is to reduce the complexity. In modelling this means that not 

every detail of the target situation is mapped by the model : a good model 

includes representation of the elements essential to capturing the target 

phenomenon, and excludes the non-essential elements. 

While all models involve simplification , different models vary in how they 

represent their targets. Scale models are one familiar form of model, that 

look like their targets in physical form and layout. But while representing 

the target visually, scale models do not represent their targets in other 

ways. They may be made from quite different materials, and there may be 

no attempt to represent any of the functionality of the target. For example, 

a scale model of the brain looks similar to a biological brain, and shows 

the relative location of major structures, but does not represent any brain 

functions. Scale models are not common in social systems, in part because 

they are difficult to set up, and in part because the characteristics of many 
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social processes may change unpredictably as the number of individuals is 

increased. 

The models used in social psychology are usually much more abstract in 

form than are scale models; many are mathematical models. These are 

notated in the form of mathematical symbols that do not bear the slightest 

resemblance to the individuals whom the model represents. For example, 

a model of children's television viewing might take the form : 

T\ . J-1 = 0 .25 PS + 0 .06H R + O . l l RT - 0 .0  I . - 0 .09V R - 0 .66C'o + 0 .69 (CoC) + 

0 .-!l ( A P)  + O . G8 ( AC) - 0 .8 (AC P)  (Krosnick, Anand, & Hartl , 2003) 

Where TVH is viewing hours, P is punishment style, HR is household rules, 

RT is non-school reading time, V is parental values for self-direction, VR is 

viewing rules, Co is coviewing, C is parent-child contact and A is age. 

There is nothing in the form of this linear equation to suggest that it might 

represent children watching television. Indeed, we need a key to the vari­

ables to even get a hint that it might be a model of television viewing. 

Structurally similar equations could be used to model any of a variety of 

things, from building costs, to crop yields, to oxygen uptake in an athlete. 

The process of statistical data analysis is one in which mathematical mod­

els are derived that optimise the degree of mapping between the model 

and data drawn from the real world. The scientific process does, however, 

involve more than the observation, mapping and replication of real world 

phenomena and data. It also involves interpretation of results, reflecting 

on these, and building theory (Haig, 2005). It generates a form of the model 

that is quite different to the form of the social phenomenon it represents, 

but, nevertheless, such a mathematical equation might be useful in describ­

ing some features of a population ,  and might be used to make predictions 

about individuals drawn from that population. 

The process of statistical analysis has links with both theory and with data 

collected in the real world. Theory guides the form of the mathematical 

functions that we are going use in our statistical analyses,  while data pro­

vide the points in the real world to which these are mapped. The role 

of models in the data analysis role, where data from the real world are 

mapped to mathematical functions is familiar and understood, but the role 

of models in building theory is possibly less familiar . .  

29 



Models and theory 

In saying that models may be useful in developing theory, there is an im­

plication that models are distinct from theories. This is not necessarily a 

given. While the use of models is widespread, their role, meaning, and rela­

tionship to scientific theories is far from clear. Part of the difficulty is that 

models are described as being representative of the real world, or of theory, 

without any clear and universal understanding about what it is to be repre­

sentative (Suarez, 2003). This is, however, not the only issue surrounding 

the use and status of models. Rather there are a number of philosophical 

questions : about what models are; what they mean; how we can learn from 

them; and how they relate to scientific theory (Frigg & Hartmann, 2006). 

One influential stance, the semantic conception of theories, is that theory 

exists as a coherent set of mathematical models (Glennan, 2000). This set 

of models is either in the form of a set of formal logical or mathematical 

statements, or as a set of possible system states and transitions (Suppe , 

1989 , p.4) .  While this view proposes a relationship between theories and 

models,  it only relates to a very specific form of model , a formal mathemat­

ical model of a very particular type (Suppe, 1989, pp. 39-41) ,  or a set of pos­

sible system states. Models that consist a set of very formal , non-linguistic, 

mathematical or logical statements models might readily be seen as possi­

bly having a role in defining a theory. 

Importantly, the semantic conception is specifically a theory about theories, 

and not a theory about models. As such, it has nothing to say about how 

modelling is used in other ways in science. One form of model is regarded 

as a constituent component of theories (Glennan, 2000), but the semantic 

conception does not attempt to account for other types of model, or for other 

the roles of modelling in science beyond theory construction. 

In the case of some models, the suggestion that they may not have a role 

in theory is unsurprising. For example, it would be a stretch to suggest 

that a Matchbox toy forms part of some theory. The Matchbox toy concept 

might go to suggesting that there are models that are not encompassed by 

the semantic conception of theories. Although the semantic approach is 

particularly concerned about models as components of theories, there are 

a number of linkages that can be made. Not only is there a link between 

models and theory, but also between models and real world phenomena, 

and between models and data (Frigg & Hartmann, 2006). Understanding 

how models are used in practice in science requires linking these into some 
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coherent structure and process, but this requires a theory of models, rather 

than a theory of theories. 

An alternative view is that models have a distinctly different role to theo­

ries. One version of this, the mediating models approach (Morrison & M or­

gan, 1999), suggests that models are entities in their own right, like tools 

or instruments. These entities are located between theories and the real 

world, and mediate between these (Morrison & Morgan, 1 999, pp. 10- 1 1) 

through a number of partial commonalities between the model and theory, 

and between the model and the real world .  

Unlike the semantic conception of theory, this approach allows for a wide 

range of possible forms of model, and for a number of different models of 

the same phenomena. Models have a number of points of commonality, and 

different points of commonality may be useful in different circumstances, 

making it possible that different models can apply to the same real world 

phenomena. Under this approach, experiments might also be regarded as 

models of real world phenomena (Gooding & Addis, 2006). 

One of the driving ideas of the mediating models approach is that a theory 

of models should recognise the way that models are used in practice in 

the sciences. In practice, models are dynamic entities, that are shaped as 

they are engaged by the scientists using them. Understanding comes from 

designing the model , and through manipulating and interacting with it. 

Models in practice 

There is little literature that specifies a process for building models. In 

practice, people building models use a mixture of devices: fragments of 

theory, mathematical tools, similes that draw on well-understood processes, 

assumptions and simplifications. The combination and assembly of these 

into a model is a creative, rather than a mechanical process. 

The components, assumptions, and simplifications mean that any model is 

valid only over a restricted range. The model of television viewing above 

was derived with a population drawn from youth in the USA. One conse­

quence of this restricted range of models is that even if a particular model 

is informative, we should expect the scope of its usefulness to be restricted. 

As well as being developed from data derived from particular populations 

and phenomena, models are constructed with particular questions, or a 

particular class of questions, in mind. Within its design range, a good model 
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should map its target well. There should, however be no expectation that 

the model should perform well outside its intended scope. For example, 

where we have developed a static model of a phenomenon, we should not 

use this model for approaching questions that may may be driven by an 

(unrepresented) dynamic process. This may seem obvious, but the meaning 

of a static model is often translated in terms like "for an increase in one unit 

of the IV there is an increase of two units in the DV". We tend to think of 

static models in dynamic terms. 

As noted earlier in this section, psychology has an existing, well-established 

set of modelling techniques. For example, students are taught techniques 

for developing and stating theory using boxes representing constructs and 

arrows linking these. These, combined with the methods of statistical anal­

ysis, have been spectacularly successful in allowing psychology to become 

established as a scientific discipline. But having a constrained set of re­

search tools comes at some cost. Each technique tends to be at its strongest 

when applied to particular forms of relationships in the data, and each 

model works well only within its bounds. With some thought, many re­

search questions can be framed so that they are amenable to investigation 

through one of these techniques, but the other side of the coin is that the 

question asked often becomes determined by the available analytical tools. 

In some cases, research questions remain unasked because we know that 

we cannot analyse them using standard techniques. These unaskable ques­

tions are not especially arcane. For example, we often test whether a 

property differs significantly between two different groups. We do not ask 

whether a property is the same for two groups, because we do not have 

suitable techniques for testing for this. The best we can do is to fail to find 

a difference. There is an asymmetry in how we frame questions.  Having a 

broad and varied repertoire of research methods enables a wider range of 

questions to be asked. 

An advantage of having solid and established techniques for theorising, 

model building, and data analysis is that the understanding and commu­

nicating about these has become part of the basic education in psychol­

ogy. Other forms of modelling do not have this shared understanding, or 

even a shared vocabulary which to describe either their methodology or 

implementation. Aside from the difficulties in communicating results, this 

means that anyone using other modelling approaches must also provide 

much more detail about how the model is designed and assembled. Less fa­

miliar methods invite explicit consideration of the form of modelling used. 
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While this is valuable no matter what method is used, it may mean that 

alternative forms of modelling are judged on different grounds to existing 

methods. 

The mathematical nature of many psychological models is disguised by 

their shorthand expression, reporting isolated, but not meaningless, pa­

rameters. The linear equations behind these mathematical models are 

rarely stated explicitly. In part, the covert nature of mathematics in psy­

chology has developed because the use of a small set of standardised sta­

tistical methods used allows writers to assume that readers will fill in the 

details of the model for themselves. The underlying logic and assumptions 

are well enough established that writers expect that they will be under­

stood by all academic psychologists, and so do not need restatement. 

While it is not unreasonable to assume that informed readers should be 

able to fill in the gaps, the result is that not only the underlying mathe­

matics, but also the modelling itself, is cloaked behind this codified short­

hand presentation. Researchers and readers are able to distance them­

selves from the mathematical nature of many models, possibly insulating 

themselves from concerns that they might otherwise harbour about the 

form these models .  

Although quantitative research in psychology relies on a series of modelling 

steps, much of the modelling carried out in psychology is somewhat covert. 

A common modelling process can be used to illustrate this. This process 

has a number of distinct modelling steps, involving various model forms. It 

begins with a theoretical description, from which a box and arrows model is 

extracted. This model is either described verbally, or as a diagram showing 

linkages between constructs. In the second step, the model is translated 

into a formal mathematical statement of a hypothesised relationship be­

tween constructs. Although this form of modelling is routine practice in 

social psychology, it is not always visible. Parts of the model are often not 

explicitly stated.  For example,  the model may be located in a series of 

statements about hypotheses to be tested, possibly separated by sections of 

justifying commentary. The corresponding mathematical model is rarely 

stated at all ;  usually only the parameters of an equation are reported. 

Sometimes not even these are reported, only the significance of the test. 

In effect, this equates to reporting that the data are not inconsistent with 

some (unstated) mathematical model. 

Part of the difficulty in  identifying theory and modelling in the social sci­

ences arises from misunderstanding the process in physics. This is coupled 
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with a temptation to idealise this misunderstood process. For example, the 

formal and elegantly simple theoretical equation e = mc2 is sometimes as­

sumed to underlie the theory of relativity (Shoemaker, Tankard, & Lasorsa, 

2004). In fact e = mc2 is the result, not the theoretical foundation. The the­

oretical idea that led to special relativity can be described by a simple ver­

bal statement: the speed of light and the rules of physics are constant, and 

hold even when the frame of reference is moving. From this Einstein, de­

veloped an analogy based on moving vehicles, and a mathematical model, 

that reduced to the famous equation. 

Computer Simulation 

Computer simulation is a particular form of modelling. It is used in many 

disciplines, for a diverse range of tasks. A familiar form of computer simu­

lation is as a technological tool, such as the simulations used in laboratory 

demonstrations in  psychology. These simulations do not have scope for ex­

perimental exploration; they are expected to perform a set of tasks in a 

predictable and reliable manner. 

A different use of simulation is as a research tool . In this form, simulations 

have potential for exploration and experimentation, because their design 

allows scope for the model to produce unexpected outcomes. Experiments 

can be generated from these simulations by varying environmental condi­

tions,  or by changing some elements within the model, or by changing the 

concepts being simulated. 

The most unpredictable outcomes generated by computer simulations are 

particularly characteristic of target phenomena with nonlinear character­

istics and , especially, by large systems with such components. Trajectories, 

and therefore outcomes, in nonlinear systems are very dependent on ini­

tial and boundary conditions. The behaviour of simple, solitary, nonlinear 

components may be intuitively manageable, but as components are added 

this rapidly ceases to be the case. The result is that outcomes from nonlin­

ear systems, and especially large nonlinear systems, may not be obvious. 

Beyond this, these non-obvious outcomes can exhibit surprisingly regular 

emergent patterns. In general, nonlinear systems are not tractable through 

analytical techniques. Computer simulations are the primary means of 

exploring nonlinear systems, including large, complex, nonlinear systems. 

They allow many repetitions,  so that initial and boundary conditions can be 

varied to determine how possible outcomes might be distributed, or initial 
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and boundary conditions can be controlled while the model is experimented 

with. For example, a simulation model of the transmission of a belief might 

begin with the initial prevalence of that belief set at 1%, 5%, 10%, and 50% 

of the population. The belief might initially be evenly spread, or there 

might initially be clusters holding to the belief. The belief might be fixed at 

the external boundary to the model . 

Realisation of a model in a simulation allows the researcher to go beyond 

what is already known of a system. Beginning from a base of theoretical 

knowledge, computer simulation may allows us to extend the scope over 

which we might apply that knowledge and to explore the implications of 

theory beyond its immediate reach. In the social psychology setting, this 

means that computer simulation may allow us to extend our knowledge 

about individual psychology and groups, so that the implications of these 

in larger populations might be explored. 

As with modelling more generally, simulation in the social sciences faces 

some particular issues that simulation in other disciplines does not. Sim­

ulation is used widely in the physical sciences and engineering, disciplines 

that have the luxury of deterministic mathematical models of the processes 

being modelled. For example, given the loads on a structure and a knowl­

edge of the strength of the materials, civil engineers can use simulations 

to predict the response of structures to earthquakes. It is also used in the 

biological and ecological sciences, where processes may not be determinis­

tic, but where important parameters occur within a relatively small range 

of possibilities. As another example, lions have a restricted range of possi­

ble reproductive lifespans, reproductive rates, and food consumption. From 

these known quantities ecologists can predict the stability of a population 

of lions. 

The social sciences are less obviously amenable to simulation, at least 

through exclusively mathematical models. Humans generate a complicated 

mix of relevant factors, interactions, confounds and unknowns. Nonethe­

less, computer simulations have been applied to the social sciences since 

the early days of computing. Despite an initial period of high expectations, 

the outcome of some early simulations, notably economic and demographic 

models, was disappointing. These early models failed to generate success­

ful predictive models (Halpin,  1999). From a position of hindsight, this fail­

ure is largely explained by the m athematics of complex nonlinear systems. 

The sensitivity of the models to initial and boundary conditions largely ex­

plains why these models did not produce successful predictions  and, indeed, 
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why it is unreasonable to expect that single runs of these models will pro­

duce reliable predictions under all circumstances (Haag & Kaupenjohann,  

200 1) .  

As with the broader social sciences, computer simulation modelling seems 

to offer much for psychology, but has not been widely used. One factor that 

might restrict uptake of simulation is that there is little familiarity with 

this approach, as computer programming skills are not part of most social 

psychologists' training. 

A second factor might be that computer simulation tends to cross disci­

plinary boundaries. It has been adopted most widely by the disciplines for 

which the primary focus is at a more aggregated level , thus suiting the 

research questions generated in these disciplines. But simulation models 

require theory about individual-level functioning. This can result in sim­

ulations based on individual-level characteristics that are derived from a 

researcher's guess about individual behaviour, but that would not be sup­

ported by evidence from psychology. For example, many economic mod­

els are based on an assumption of individuals making decisions in an ex­

clusively rational way. Thus, in addition to the potential for simulation 

modelling in psychology, there may also be potential for psychology to con­

tribute to modelling in other disciplines. 

A third factor might be a "You can't do that!"  reaction. This reaction, that 

there is something inherently wrong with computer models in psychology, 

possibly has its basis in a confusion between using computers simply as 

tools or using computers as metaphors (Hastie & Stasser, 2000) .  Gigeren­

zer (2000) has noted that we tend to think about psychological phenomena 

in terms of the tools of research, and our tools can act as a covert constraint 

to thinking. The digital computer might be one of the better candidates for 

illustrating this, as it is almost a cliche to use the digital computer as a 

metaphor for the brain and cognitive function (for an example from popu­

lar science writing see (Pinker, 1998)). Further some styles of simulation 

in psychology do use computers as both metaphor and tool. For example, 

neural networks are suggested as good models for understanding some cog­

nitive processes. 

But the computer as metaphor is also recognised as being limited, not in 

the least because digital computers are serial, stand-alone, general purpose 

machines, rather than cyclic, massively parallel, embedded, special pur­

pose machines. Only the simplest brain functions can be modelled directly, 

and even apparently simple mechanical skills, like walking, have proved 
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very difficult artificial intelligence tasks. The widespread accessibility of 

computers has revealed these machines as being profoundly stupid, and 

if a modeller was to claim that the digital computer might provide a good 

metaphor for social behaviour, a sceptical "You can't do that!" response 

would not be so unreasonable. 

While the computer and some types of simulation may provide a useful 

metaphor for some aspects of psychology, other types of simulation, such 

as simulation of the actions of a number of individuals, do not. In these 

forms of simulation, the computer does not provide a metaphor for social 

behaviour. It is simply used in its original role, as a device for automating 

the manipulation of data. Here the computer performs steps that could be 

carried out with a pencil and paper. The speed of the computer's processing 

allows the steps to be applied to large arrays of elements, making the re­

alisation of models of groups and populations practicable. Algorithms are 

written to realise the model, and there is no suggestion that the form of 

simulation might be helpful in understanding the target system. In this 

case, the use of computer simulation raises no concerns about the com­

puter's validity as a metaphor in the model , simply because the computer 

is used only to realise the model and is not itself part of the model . 

Another reason for the slow development of simulation as a research method 

in psychology might be that it does not slot cleanly into any of the most de­

veloped forms of scientific methodology (Hales, 1998; Winsberg, 200 1) .  It 

is neither purely inductive nor deductive, but has elements of each (Hales, 

1998). Simulations may not perform well when measured in terms of their 

predictive capabilities. But while many types of simulation cannot success­

fully predict what will be, they may be able to predict the range of possible 

outcomes (Haag & Kaupenjohann, 200 1 ) .  Although some see this as weaker 

than prediction, other methodologies cannot identify possibilities. 

There are many different types of computer simulation, the choice between 

them depends on the nature of the phenomenon of interest and our knowl­

edge about it. Beyond minimal commonalities (they all use computer hard­

ware and software) there is very little that could be identified as com­

mon among the various computer simulation techniques. They range from 

numerical solutions of analytically identifiable algebraic equations, to ab­

stract representations of theoretical structures such as neural networks. 

While numerical solutions are not especially promising in psychology, some 

of the network models are. Notably, neural networks have become rela­

tively common in models in cognitive psychology and have been applied, 
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more rarely, in other branches of psychology. 

The explicit modelling of a network of connected components is categorised 

as a connectionist model, although some writers reserve this term exclu­

sively for neural networks. In the broader sense, connectionist models in­

clude neural networks, cellular automata, and agent-based models. Agent­

based models are described in detail in Chapter 4. 

Neural networks were originally inspired by the biological model of a net­

work of neurons. While neurons grow and strengthen their interconnec­

tion through a biological process, neural networks simulate this process in 

software. Of connectionist models, neural networks are probably the most 

familiar in psychology, and especially in cognitive psychology. 

A neural network is developed by training it to associate input and output 

patterns. The network is presented a series of input and output patterns,  

and the neural network programme adjusts the weighting on the path of 

interconnections between input and output in such a way that eventually 

the network reproduces the relationships presented in the training models. 

Neural networks can predict outcomes, but in an entirely atheoretic way. 

Training the model is carried out through presenting patterns to the model , 

and beyond the structure and components of the network itself, no other 

theory is applied to the model. As the model has no theoretical base to 

work from, it cannot be expected to respond according to any theoretical 

principles, or to correctly respond to novel combinations that it has not 

encountered in training. 

Neural networks are at their most useful in demonstrating neural function 

in unitary processes, particularly those carried out in highly specialised 

brain structures. For example, neural networks have been successful in 

demonstrating that neural systems can accomplish pattern recognition tasks. 

In this mode their research strength is in providing an existence proof As 

they are atheoretic, they are less helpful in assisting our understanding 

of these tasks than in assuring us that our theories and assumptions can 

work. 

Cellular automata and agent-based models are also connectionist models ,  

but they are fundamentally different to neural networks, as they are theo­

retically based. That is, each cell or agent in the model explicitly behaves 

in accordance with the theorised process that is happening at an individ­

ual level. These individual level representations are collected into a single 

model of a number of individuals, and so cellular automata and agent-based 

models produce a bottom-up representation of the aggregation of that pro-
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cess in a number of individuals. Unlike a neural network which adjusts its 

own connection strengths as part of a learning process, these models are 

programmed by the researcher. 

Cellular automata are variously defined, but a common feature is that at 

each step, the state of each cell is determined by a decision table based on 

a history of its own, and its neighbours previous and current states. Cel­

lular automata can be very simple, and in this form they are of interest to 

a branch of mathematical research that aims to understand how patterns 

develop in generic cellular automata (Sarkar, 2000) .  Among the findings of 

mathematical research into cellular automata is the recognition that cellu­

lar automata can be assembled to produce Turing machines. This means 

that even the simplest members of the family of agent-like machines is a 

very flexible universal computing devices in its own right. 

A second result from the mathematical analysis of cellular automata re­

lates to the possible outcomes from cellular automata. In an extensive ex­

ploration of cellular automata, Wolfram (2002) has identified a very small 

number of possible classes of outcome. While it is not demonstrated that 

this also holds for agent-based modelling, Wolfram's work provides one pos­

sible way to interpret output from agent-based models. 

Formal mathematical analysis generally calls for strict definitions. In the 

case of cellular automata, the definition of cellular automata requires that 

cells are located in a fixed position , on a map with a regular geometry, and 

that the states of each cell are determined from a decision table, and that 

cell states are represented as integers (Sarkar, 2000). But beyond formal 

mathematical analysis, less formal versions of cellular automata have been 

used to represent physical , ecological (Gaylord & Nishidate, 1996) and so­

cial (Hegselmann, 1998) processes. 

Cellular automata have been used for modelling in psychology and the so­

cial sciences. Prominent among these applications are models of the spread 

of patterns of social influence (Nowak, Szamrej ,  & Latane, 1990) and social 

support (Hegselmann, 1998). The potential for application of cellular au­

tomata to the social sciences is,  however, restricted by the incompatible 

almost defining features of cellular automata vis-vis social systems. Indi­

viduals in social networks are not located within neat, homogeneous social 

networks with Euclidean geometries. Further, the behaviours of the in­

dividuals are complex and multidimensioned, and their decision-making 

often cannot be approximated be simple look-up tables. While this restric­

tion may be tolerable for some applications, notably ecology and population 
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dynamics, it is often too restrictive in a social modelling context. 

As the constraints on cellular automaton models are released, they begin to 

resemble simple agent-based models. The next chapter describes this class 

of model , and its realisation in software. 

Simulation models, statistical models and theory 

The way of doing science in psychology has been to take things apart. 

Having a large collection of isolated parts is not especially interesting, as 

what we are usually trying to understand is some whole behaviour pattern. 

There is an implicit assumption that once all of the parts can be isolated , 

the whole can be reassembled from them. A similar problem exists in cog­

nitive science, where models have been developed for cognition, perception 

and movement, but without an integrated approach, models that are other­

wise not unreasonable cannot be formed into a functioning model. Further, 

these models do not incorporate the environment, which itself is an essen­

tial component in the overall system. This has led some researchers to 

take an approach in which the overall system is constructed. Construct­

ing a model that is physically located in the environment both allows and 

requires explicit links to that environment. 

Maybe another possible test for a theory is its potential for reintegration 

into something meaningful .  For example, theories of personality purport to 

provide some description of patterning but attempts to use these as bottom­

up components are relatively rare. 

Foremost among these issues is deciding on a philosophical foundation to 

define the roles that multiagent models might take. In the existing lit­

erature there are attempts to place multiagent models everywhere from 

falsificationist to rationalist to constructionist. Axelrod ( 1997a) has multi­

agent modelling as a "third way of doing science", with the other two being 

inductivist (empirical) and deductionist (rationalist). Along almost identi­

cal lines we have the Wolfram (2002)claim that cellular automata offer "a 

new way of doing science" . 

It seems that whatever agent-based modelling can do, what it cannot do 

is provide accurate, general purpose, falsifiable prediction. This is only to 

be expected where we have systems that include any sort of nonlinearity. 

These are characterised by their sensitivity to initial conditions; a small dif­

ference can make a large difference in outcome. We only need one unknown 

to be slightly different and we will likely seem to falsify the model .This 
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problem is common with other forms of simulation, and for other means of 

analysing complex systems generally. 

In proposing agent-based modelling as a methodology for psychology, we 

should have some ideas as to the way that agent-based modelling might add 

to psychological knowledge. Others working with agent-based modelling 

models, and with social simulation generally, have located simulation in a 

variety of places philosophically, from empirical to constructivist. This has 

implications for the verification and validation of agent-based modelling 

models, particularly where we claim these to be representative of naturally 

occurring processes. 

While some linear processes may exist in psychology, most behaviour is 

inherently nonlinear, most obviously we may or may not do something, a 

nonlinear outcome. In combining these individuals, we would expect that 

the observed of evolving behaviour of a combination of a number of non­

linearly behaving individuals will be complex, and sometimes chaotic. The 

outcomes of such systems is highly dependent on not only the initial condi­

tions, but also on the state of an environment. As a result is is highly un­

likely that we would ever have sufficient knowledge to produce a accurately 

predictive model. These are unlikely to ever produce a model that would 

satisfy a falsificationist approach to science (Haag & Kaupenjohann, 200 1) .  

This is a reasonably active area of publication for many forms of simula­

tion. Similar concerns exist where the simulation uses neural connectionist 

or nonlinear dynamic modelling. Many of issues for agent-based modelling 

are common across all types of simulation in a nonlinear dynamic domain.  

This area is so new that there are issues attached to almost every facet 

of agent-based modelling. Possibly the most fundamental for this work is 

what knowledge we can hope to gain from exploring agent-based models. It 

is highly unlikely that agent-based models will be testable in through the 

usual scientific process of testing model predictions against the real world. 

This is because nonlinear systems are so dependent on initial conditions 

and inputs from the environment that it would be very difficult to produce 

a model that was not disconfirmed in many, or even most, trials. 

This suggests that simulation modelling may not necessarily fit into a re­

alist science. The act of creating a simulation model is an approach that 

explicitly constructs in an attempt to understand things that we observe. 

This is a slightly unnerving situation :  computer simulation and the use of 

mathematical modelling and algorithms are likely to be most comfortabie 

for researchers that routinely use statistical mathematical models, that is 
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for researchers working from a realist philosophy of science. In contrast, 

computer simulation and modelling seems to fit better a constructivist ap­

proach. 

On the other hand, simulation offers an alternative approach that can iden­

tify the possible outcomes of complex and nonlinear systems (Haag & Kau­

penjohann, 200 1) .  Conventional falsificationist science depends on having 

some sort of theory as a starting point. It has little to suggest how we gen­

erate these theories, except as modifications to existing theories that may 

explain a difference between theory and observed behaviour. Testing these 

theories is an eliminative rather than a generative process. 

Simulation allow us to explore possible alternative outcomes (Haag & Kau­

penjohann, 200 1 ) .  In the real world, the range of these possible outcomes 

is often outside our experience; our experience is often limited to a single 

outcome that did eventuate. Similarly, working with simulations allows us 

to access thinking about whole systems, through letting us observe whole 

systems. This type of thinking does not necessarily come naturally, and 

working with computer simulations can provide an opportunity for us to 

develop some intuition about these processes (Resnick, 1994). This means 

that simulation has much to offer as a theoretical tool, as it avoids some of 

the restrictions of our experience and understanding. 

Simulation as a research method 

As noted earlier, simulation does not fit neatly into mainstream research 

methods. There are two major elements that differentiate simulation from 

other research methodologies. One concerns the characteristics of simula­

tion as a research methodology in its own right, whether it is being used 

to estimate solutions to deterministic equations, such as might be used in 

the physical sciences, or to model a fuzzier form of theory in social psychol­

ogy, or to explore the evolutionary development of a faculty in biological 

psychology. 

A second strand concerns the subject matter relevant to simulation in the 

social sciences, and particularly to agent-based modelling. In the social sci­

ences, simulation is of particular interest for its potential in exploring com­

plex and chaotic systems. In the physical sciences, theory is derived from 

a small set of fundamental theoretical relationships that can be combined 

to describe many situations. This can produce very complicated mathemat­

ical representations that are analytically unsolvable. Simulation is often 
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used to produce solutions for these situations. The mathematical expres­

sions involved are, in many cases, linear. So the physical systems for which 

solutions are sought tend to be complicated, but deterministic. 

The situation is quite different in the social sciences. Psychological the­

ories have relatively limited scope; they apply in specific circumstances 

or situations, but small changes in these conditions can produce different 

outcomes. In natural settings many different psychological processes are 

active, or available to be activated.  A small change in the conditions can 

trigger activation of different cognitive processes and behaviours, and there 

is a dynamic interplay between these cognitions and behaviours and the 

environment. This feature of small changes in conditions leading to large 

changes in overall outcome is associated with nonlinear systems, and is 

probably the best known consequence of chaotic, as distinct from compli­

cated, systems. Less well known is that chaotic systems tend to arise out of 

nonlinear systems (Gleick, 1 988) and that psychological systems are inher­

ently nonlinear. Possibly the simplest demonstration of this is that linear 

systems are, by definition, continuous, while an behaviour might, or might 

not occur, and there can be an instantaneous change of behaviour state. 

Experimental controls in psychology serve to constrain both the available 

options, and the environment. This constraint allows us to produce an ap­

proximation of linear behaviour within a particular range. When released 

from experimental constraints, cognitions and behaviours are more free to 

enter ranges where outcomes are no longer so predictable. Unstable states 

become possible ,  as do a variety of different stable states. Exploring the 

range of possibilities that can develop in naturalistic settings becomes a 

more tricky task than understanding how an individual functions in a con­

trolled setting. To do, so we need to use tools that give us access to complex 

and chaotic systems. 

If complete chaos were the only outcome of a complex system, there is little 

that we could learn from studying it. All we would know is that the system 

will collapse into chaos, where it will produce outcomes that, although de­

terministic, approximate randomness. While the mathematics of this is of 

interest to complexity science (Morcol , 200 1) ,  it is of limited interest in the 

social sciences. 

The social sciences in general are based on observing patterns that de­

velop in natural social systems, and trying to understand these patterns. 

An interesting feature of complex systems is that they can , paradoxically, 

produce patterns (Cohen & Stewart, 1995) from very simple rules. These 

43 



outcomes are not direct reflections of the processes generating them, and 

so are not obvious consequences of a large number of individuals execut­

ing processes. These patterns in outcomes are labelled emergent outcomes. 

Emergent outcomes are, in some sense, surprising, although surprise suf­

fers obvious problems when used as a defining characteristic of emergent 

features. 

These features of nonlinear systems, sensitivity to initial conditions and 

surprising outcomes, make predicting the outcomes from nonlinear sys­

tems risky, especially in social systems that are very exposed to a broad 

range of external influences. 

The gold standard for a theory has been its predictive value; a good theory 

should both explain what is known of a phenomenon and be able to predict 

other, previously unobserved, phenomena. This conception of what makes 

a good theory is that it is essentially a stand-alone theory. As such it does 

not require any interface between other good theories functioning in related 

areas (Axelrod, 1 997a). 

A feature of simulation is that it has a different relationship with theory 

from other methods. In simulation, we do not develop theory from an at­

tempt to explain observed real world phenomena. Nor do we develop theory 

as the logical outcome of a predecessor set of given facts. Simulation is nei­

ther purely inductive, nor purely deductive, but may include inductive and 

deductive steps (Axelrod, 1997 a). 

Simulation allow us to explore outcomes and in doing so it allows us to 

develop our intuition about these processes. This means that simulation 

has much to offer as a theoretical tool, as it avoids the restrictions of our 

experience and understanding. 

Halpin ( 1998) has proposed a set of possible routes to theory development 

used in simulation modelling. These are essentially permutations of a se­

quence of activities: Assumptions (theory), Runs, Observations, and Expla­

nations. 

Features of simulation modelling 

Choosing simulation as a research method forces a discipline in being spe­

cific in representing the construct. This is not exclusive to simulation as 

this discipline is also necessary in other forms of modelling. Conventional 

modelling depends on substituting measurable variables for constructs and 

44 



on defining the relationship of the constructs and, in turn, the variables. 

Although rarely explicitly stated as such by researchers in psychology, sta­

tistical models of these relationships usually take the form of mathematical 

equations. Thus there are two components to the representation process in 

statistical analyses: constructs are represented by measurable variables 

and their interrelationship is represented by a mathematical equation. 

Simulation also requires a representation of constructs and their interre­

lationships. The form of representation of constructs in simulation differs 

in a fundamental way from their form in empirical research. In empirical 

models the construct is represented through a variable that can in turn 

be mapped to a tangible measure. Hypothesised relationships are then di­

rectly mapped from the theoretical to the measurable. 

In simulation models the representation of the construct remains theoret­

ical.  The simulated representation of the theoretical construct must be to 

be realised in an algorithmic form and so requires a detailed statement of 

the construct. 

Most models in psychology represent interrelationships in the following 

form: if there are A more units of variable x we expect to find B more units 

of variable y. These statements have nothing to say about how a change in 

x and a change in y are linked, only that they are. At best these models 

specify the direction of causality. 

The representation of interrelationships in agent-based models is much 

more detailed than in statistical models. For example, statistical models 

of trust might assemble a set of variables that theory suggests may be cor­

related with trust, and test whether some function might link these with 

trust at a population level . An agent-based simulation model of trust re­

quires theory that specifies how each individual comes to a point of trust­

ing. This involves theorising what information the individual can obtain,  

how they might assemble that information, and how they might come to a 

decision. Further, an agent-based model might need to specify the credi­

ble variation between individuals for each process. All simulation models 

require a precise definition of the processes linking constructs. The elabo­

ration of these processes is likely to be more detailed than the constructs 

themselves. Further to this, agent-based models using multiple agents also 

require specific statements of the linkages between the individual agents. 

At a conceptual level, the model-building process is common for research 

using conventional methods and for simulation. Theoretical constructs and 

their relationships are converted to a form where they can be manipulated 

45 



and measured. The approaches diverge in the form of detail resulting from 

that conversion. At the realisation stage of their development simulation 

models are quite unlike statistical models, both in form and in the balance 

of constructs and processes represented. 

The models arising from simulation and statistical modelling differ in their 

relationship with theory. Simulation models retain a close relationship 

with theory, and can contribute to the development of the theory. Statis­

tical models disconnect themselves from theory, and their results merely 

allow us either to reject or not reject the theory. Beyond this they do not 

contribute to further development of the theory. 
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Chapter 4 

Agent-based Models 

Agent-based modelling is a computer simulation technique that is charac­

terised by agents. In agent-based modelling, agents are small computer 

programmes that represent discrete elements in a simulation model. Each 

agent has a set of characteristics, and a set of actions that it  can carry 

out. The most obvious use for agents in a social psychological setting, is for 

representing individual people. 

The technique of agent-based modelling promises almost limitless possibil­

ities for a researcher, as agent-based model simulations can incorporate 

anything that can be programmed. Many techniques are readily avail­

able, prepackaged into agent-based modelling packages, as these provide 

access to a variety of artificial intelligence devices for knowledge represen­

tation, manipulation, learning, and decision-making. In a research setting, 

this translates into a very flexible facility for representing psychological 

concepts and processes, allowing us to represent situations that are oth­

erwise impossible to explore through more traditional means, through ex­

plicit simulation of agent interactions and sequences of actions. 

This chapter introduces software agents, and agent-based models. The 

chapter begins by defining agents and agent-based modelling. Agents can 

be assembled and used in a number of ways, and the chapter continues by 

describing the three major ways that software agents can be assembled and 

used: as single agents; as agent-based models ;  and as engineered multia­

gent systems. These are described, and the features of multiagent systems 

are broadly outlined. The features of agent-based models are discussed in 

more detail .  

Having defined what agents and agent-based models are, the chapter goes 

on to describe how these models are constructed, and the uses to which they 
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might be put. This section also identifies and reviews the major software 

packages that are available for constructing agent-based models, and the 

key features that are offered in these packages. 

Agents 

Software agents are computer programmes, or sections of a computer pro­

gramme, that act i n  pursuit of their own goals (Wooldridge, 2002; Jennings, 

Sycara, & Woolridge, 1998), independently of outside direction. This  abil­

ity to act independently suggests that an agent should take action without 

being told what to do. To do this, they need to collect information, and to 

determine a course of action based on this information. Agents are located 

within an environment, often a larger body of programme, from which they 

can gather information. This environment may also accommodate other 

agents. An example of an agent might be given by airfare search agents. 

These agents are located in a virtual environment with access to the Inter­

net, from which they obtain information on airfare pricing. The information 

found is returned to a segment of code that can make comparisons and an 

eventual decision on the best offer. 

The word often used in the agent literature to describe this independent in­

formation collection and action is autonomy (Jennings et al . ,  1998; Wooldridge, 

2002).  In truth, full autonomy is challenging to implement in artificial in­

telligence and so, in practice, there is a wide interpretation as to the degree 

of autonomy required for a segment of code to qualify as an agent. An agent 

may be as simple as an algorithm that collects information and applies a 

programmed action in response to information that is available from the 

environment. E arlier definitions of agents also required that individual 

agents be flexible (Jennings et al . ,  1998), a requirement that demands that 

each agent has a degree of inbuilt adaptiveness. More recent definitions, 

such as that given by Wooldridge (2002 , p. 1 5 )  does not impose a require­

ment of flexibility on individual agents. Rather, he suggests that agents 

are characterised by an ability to perceive conditions in their environment, 

and to respond to environmental conditions by taking appropriate action to 

pursue their goals, including interacting with other agents (2002, p. 23) .  

Within computer science, agent systems are themselves a branch of artifi­

cial intelligence. Artificial intelligence is difficult to define. For example, 

it has been described as "the branch of computer science that is concerned 
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with the automation of intelligent behavior" (Luger, 2002, p. 1 ) .  This defi­

nition does not differentiate psychological and computer science concepts of 

intelligence. Rather, it implies that artificial intelligence should be able to 

emulate naturally occurring intelligent behaviour, leaving open the ques­

tion as to what intelligent behaviour is. 

The definition of naturally occurring intelligent behaviour is in the domain 

of psychology than in the domain of computer science. While not offered 

as an explicit definition of intelligence, Neisser and colleagues ( 1996) point 

to individual differences in ability to "understand complex ideas, to adapt 

effectively to the environment, to learn from experience, to engage in vari­

ous forms of reasoning, to overcome obstacles by taking thought" (Neisser 

et al . ,  1996, p .  77) .  While this is only one of a number of ideas about intel­

ligence that have been generated within the discipline of psychology, it is 

possibly one of the more useful for computer scientists hoping to replicate 

natural abilities and behaviours. 

In contrast to these broader definitions of intelligence, classical artificial 

intelligence has tended to focus on a particular set of abilities. These in­

clude knowledge representation, learning, searching for information, prob­

lem solving and decision-making. For agents, taking appropriate action 

may mean that they need to be able to solve complex problems, or make 

complex decisions. To do so, agents can be complex, possibly incorporating 

artificial intelligence devices. Complex single agent devices may have some 

of these abilities built in, but the computational overhead that they require 

may not be practicable in systems with a number of agents. 

The incorporation of individual artificial intelligence features is not, how­

ever, a necessary feature of agents. Agents may also be quite simple. Very 

simple agents, that have not been provided with artificial intelligence fea­

tures, can be assembled to generate a system that might exhibit some intel­

ligence. Given the right conditions (Bonabeau, Dorigo, & Theraulaz, 1 999, 

p.9), the multiple interactions of simple agents can produce an entity that 

can perform effective searches, and that can self-organise to respond to en­

vironmental conditions. Insect colonies, such as those constructed by ants, 

bees and termites, provide natural examples of systems in which simple 

agents can effectively search for food, and construct complex structures. 

Attempts to construct systems of this type described this as swarm intelli­

gence (Bonabeau et al . ,  1999, p.7) .  
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Single agents and systems of agents 

As the previous section has alluded to, software agents are defined and 

located as a branch of artificial intelligence. Agents are not necessarily 

located in systems of a number of agents. Some are designed to work alone. 

A familiar single agent is the Office Assistant in Microsoft Word. The Office 

Assistant monitors a user's interaction with the Word programme, with the 

purpose of offering appropriate help information. 

Two other types of agent system, agent-based models and multiagent sys­

tems, are assembled from a number of agents. Agent-based models and 

multiagent systems are related, in as much as they are constructed from 

a number of agents. These systems are similar in many ways, for exam­

ple, the definition of agent given in the previous section is drawn from the 

multiagent systems literature. There is also traffic in ideas between the 

users of agent-based models and the designers of multiagent systems: engi­

neers constructing multiagent systems have used explorations of naturally 

occurring social organisation to inspire efficient algorithms (Ray & Liew, 

2003) ,  while the software technology that is used to develop agent-based 

modelling packages is rooted firmly in multiagent systems, and draws on 

developments in intelligent systems. 

The difference between agent-based models and multiagent systems is rooted 

in their purpose. Multiagent systems are designed to distribute simple 

tasks among a number of agents, in order that the whole system can carry 

out a more complex task. That is, multiagent systems are designed to carry 

out some function. This functionality can only be assured if the systems 

are reliable, which in turn depends on them behaving predictably in the 

range of environmental conditions that they might encounter. Agent-based 

modelling systems are, as the name suggests, used for modelling and ex­

perimentation through simulation of the individual elements in a system. 

These differences in  purpose between multiagent systems and agent-based 

models in turn result in differences in how each is designed. 

Multiagent systems 

While the design of multiagent systems may have been inspired by nat­

ural systems, there is no need for them to be representative of any nat­

ural system. The function of individual agents may theoretically even be 

completely abstract, as long as they work together to carry out the over-
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all system's designated task.  Engineered agent systems often use artificial 

intelligence devices. These artificial intelligence devices may have been de­

veloped as attempts to replicate naturally occurring intelligences, but their 

development has been in pursuit of functional devices, rather than an in­

tent to be representative, or to mimic natural phenomena. 

As systems that have been engineered to carry out tasks, multiagent sys­

tems need to be reliable, and their behaviour well understood. This is of­

ten achieved by limiting these systems to small numbers of simple agents, 

restricting communication , limiting cooperation, and implementing cen­

tralised control (Edmonds, 1998). Designers of multiagent systems avoid 

their systems exhibiting the very phenomena that users of agent-based 

models seek - novel and emergent properties (Edmonds, 1 998). 

Agent-based models 

In contrast to multiagent systems, agent-based models are intended to be 

representative, and their very purpose is to explore complex system be­

haviours. Agents are designed to explicitly represent the individual ele­

ments in a naturally occurring system. In a psychological setting those 

individual elements might be the individual people in a population. The 

degree of sophistication of the individual agents in such a model should de­

pend on the representation demands of the model. Agent simplicity is de­

sirable, both for producing a parsimonious research design and for the prac­

ticality of maintaining a computable model with a large number of agents. 

Balancing this, agents need to be sufficiently complex to represent essen­

tial features (Edmonds & Moss, 2005), without being too complex to under­

stand, debug or run.  The segments of code that form individual agents may 

be relatively simple, not much more complex than cellular automata. Even 

models as simple as cellular automata can produce informative results, for 

example, agents that are only a little more complex than cellular automata 

have been used to model the development of support networks among mo­

bile populations of individuals with differing risk profiles (Hegselmann & 

Flache, 1998), the spread of attitudes through a network due to the influ­

ence of neighbours (Latane & N owak, 1994), and the spread of cooperation 

against predators in the presence of freeloaders (Jaffe & Cipriani , 2007). 

In an agent-based model , a number of agents are assembled into a model 

that allows individually functioning agents to interact with each other. 

Structurally, this results in a high degree of interconnection of a number 

5 1  



of elements. High degrees of interconnection are characteristic of three 

types of modelling device: neural networks; agent-based models ;  and cellu­

lar automata. These interconnected models differ in the types of systems 

that they are best suited to modelling. Neural networks are best suited 

to low level processes, for example demonstrating that interconnections be­

tween a large number of very simple neurons can carry out complex pattern 

recognition and learning tasks. Cellular automata are suited to explor­

ing systems in which individuals make simple logical decisions, influenced 

only by their own state and by the state of close neighbours, for example 

an individual may move closer toward others if the population density is 

low and there are vacant neighbouring locations. The definitions of both 

neural networks and cellular automata have rules that force simplicity in 

their elements and that restrict patterns of interaction with neighbouring 

elements. Agent-based models do not have these constraints, they consist 

simply a number of self-directed agents that act autonomously and are in­

terconnected. There are no constraints on the pattern of any interconnec­

tions in agent-based models. 

The usefulness of agent-based models arises in the overall behaviour of 

the system being, to some extent unpredictable. An agent-based model 

typically consists a large number, possibly hundreds, of relatively simple 

agents. The large number of agents and their interconnectedness tend to 

combine to generate systems with complex behaviours. As discussed in 

Chapter 2 ,  these large, interconnected systems of nonlinear elements can 

behave unpredictably, and are not amenable to analytic solutions. Further, 

they are so sensitive to initial conditions, and to conditions at the interfaces 

with the wider environment, that small differences in these can produce 

completely different outcomes. The combination of these means that we 

should expect that social systems with a number of individuals are not 

necessarily amenable to standard analyses. One form of analysis that can 

access these systems is simulation. The availability of powerful computing 

facilities has made simulation of complex systems possible. Agent-based 

model are one form of simulation that can be used to access systems of 

interacting individuals. 

Agent technologies and artificial intelligence offer a tantalising degree of 

sophistication: a number of smart features can be added to models. Many 

agent-based modelling packages include libraries for knowledge represen­

tation, problem solving, and learning. Theoretically, agent-based models 

could also have rich inter-agent communication, but this is a much more 
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challenging technology that is still being developed. The availability of 

these features means that we can represent many features of human cog­

nitive function. 

In a complete model , the agents occupy a virtual environment that con­

sists of the agents themselves as well as a section of programme that forms 

their environment. Within the model , agents and their environments are 

realised through separate segments of code. For example, in  a model of 

traffic in a large city (Bonabeau, 2002), the environment represents the 

transport infrastructure: roads and public transport. This environment is 

occupied by individuals who carry out a range of daily activities that re­

quire movement within the city. In the model , a population of simulated 

citizen agents go about their daily activities in the simulated city environ­

ment, with their movements tracked minute by minute. 

The environment may be also be non-physical. For example, in a model of 

on-line trading, the environment might represent the reputation informa­

tion and transaction management that is made available by on-line trading 

sites, while individual traders are represented by agents. 

In addition to modelling the environment, main body of an agent-based 

model programme manages the social environment through managing the 

interaction of agents, such as allocating turns for the agents to act. An 

example of an agent-based model in which the environment consists only of 

other agents is given by Mosler (200 1 ;  2006), who has constructed a model 

based on the Elaboration Likelihood Model of influence in a small group. In 

this simulation, the environment only contains the five interacting agents 

(Mosler, 2006). 

Agent-based modelling is thus based on simulations of the autonomous be­

haviour of a number of individual agents, interacting within a simulated 

environment. These agents interact with each other; their actions depend, 

in part, on the actions of the other agents that they interact and exchange 

information with. Therefore, these models are inherently social , to the ex­

tent that agent behaviours are located within a context of the actions of 

other agents. The explicit social nature of the model may make these mod­

els a promising candidate for modelling in the social sciences. 

Agent individuality 

Within an agent-based social simulation, the agents may be identical , they 

may have individualised characteristics, or they may be qualitatively dif-
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ferent. Less obviously, agents might also represent larger entities, such as 

organisations.  Other agents might represent largely automated systems, 

such as the auction management system on an internet trading site. 

Identical agents have been used to generate artificial life models. Reynolds' 

( 1987) model provides an example, modelling of the flocking behaviour of 

a group of animals. The agents in this model , which Reynolds dubbed 

boids , were equipped with three simple steering rules: avoid crowding 

other agents ;  move toward the centre of the flock; and move toward the 

average direction of the other agents. The use of identical agents in this 

model demonstrated that flocks of birds do not need a bird in the role of 

leader, rather flocking behaviour arises within a group of identical agents 

that shares these rules. Similar models of the movement of identical agents 

have been applied to building evacuations, showing that the layout of a 

building can lead to bottlenecks in an escape path as people's movement 

becomes disorganised around constrictions in the building layout (Helbing, 

Farkas, & Vicsek, 2000). 

More often , agent-based models use agents that have an identical struc­

ture, but where there is individual variation within that structure. Exam­

ples are provided by the previously mentioned models of social influence 

(Nowak et al . ,  1990),  in which agents carry individual attributes for per­

suasiveness and supportiveness, as well as the attitude status of interest, 

and of the development of social support networks (Hegselmann & Flache, 

1998), in which agents carry different levels of vulnerability. 

Agent-based models also have the flexibility to represent qualitatively dif­

ferent entities. This is seen in a model of a marketplace that includes cus­

tomers, suppliers, and reporters who gather and disseminate reputation 

information (Hahn, Fley, Florian, Spresny, & Fischer, 2007), which is an 

example of a model with qualitatively different agents. In the course of 

this simulation, customers attempted to assess a suitable supplier, using a 

number of criteria. Following the award of a contract, suppliers who did not 

have enough capacity to carry out the contract, could subcontract through 

negotiating with others to meet their obligations, or they could default, 

and possibly spread false reputational information. The reporters inter­

viewed customers and suppliers, collecting reputation information, which 

they could sell to other agents. Each of these types of agent was allocated 

different aims, and was equipped with different abilities .  In this case, the 

agents, might represent corporations, individuals, or a mix of these. 

If the behaviour of a group of agents is well-enough understood,  the group 
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might, in turn, be represented by a single agent. In some cases, a formal de­

scription of the behaviour of the aggregated entity might be derived from 

a formal description of the individual agent's activities (Bosse & Treur, 

2006). Less explicitly, Hales ( 1998) has reported a preliminary investiga­

tion in which a simulation was run that developed an identifiable cultural 

grouping within a population of agents. The agents' behaviour was ob­

served as they developed ways of dealing with these different groupings. 

As noted earlier in this chapter, each agent in an agent-based model can 

be unique: agents can be set up with different initial conditions and differ­

ent individual characteristics. These characteristics can change during a 

run , which means that an agent can develop during a simulation allowing 

individual agents to adapt and learn. Agents can interact with any aspect 

of their environment, including any other agents. This interaction of indi­

viduals is characteristic of social behaviour, and we might regard agents as 

devices that might be used to model individual social beings. 

Artificial societies 

A major purpose of agent-based modelling is to generate models of soci­

eties. This is exemplified by researchers working with agent-based mod­

elling, who note that agent-based models might be described as "artificial 

societies of autonomous agents" (Conte, Gilbert, & Sichman, 1998). Natu­

ral societies are complex dynamic systems of a large number of interacting 

nonlinear elements; a combination has the characteristic that quite gen­

eral outcomes can result from small differences in initial and boundary 

conditions. This means that the same assembly can produce a range of 

possible outcomes, some of which might be qualitatively quite different. 

Artificial societies are not intended to represent existing societies (Gilbert 

& Troitzsch, 1999; Hales, 1998). Rather they provide the means to explore 

the range of outcomes that might possibly arise (Gilbert & Troitzsch, 1999; 

Haag & Kaupenjohann, 2001 )  through the interactions of a set of agents 

with particular characteristics. 

Where some of the possible outcomes are costly, it is useful to know that 

these possibilities exist. It would be even more desirable to understand the 

system dynamics sufficiently to be able to avoid high cost outcomes. For ex­

ample, agent-based models may be useful for understanding the conditions 

under which insurgency might be successful (Doran, 2005).  In other cases, 

a unique or surprising outcome may be possible. For example, networks of 
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alliance and obligation that arise from marriages and birth order senior­

ity in  the context of Tongan social rank can act to generate a stable social 

system founded on unstable shifting relationships (Small, 1999). Such pos­

sible outcomes cannot be accessed through other means, for example using 

statistical models. 

There are three angles that we might take in investigating artificial soci­

eties. Firstly, much agent-based modelling seeks large scale patterns aris­

ing from the actions and interactions of the individual agents within artifi­

cial societies. There are a growing number of studies investigating groups, 

norms, cooperation, and cultures. 

Secondly, artificial societies may also be considered as an aggregated entity. 

For example, using a swarm metaphor, a beehive might provide an example 

of a unit that is self-organising, responsive to its environment, and adapt­

able.  Agent-based modelling can be used to understand how these entities 

work. 

A third possibility is that an agent-based model might be employed to in­

vestigate the development of individual agents. This development may 

arise when agents learn from their interactions with others, resulting in 

changes in the agents themselves. This approach has been used to iden­

tify optimal strategies for formal games. Optimal strategies can some­

times be found through formal mathematics, but they can also be found 

through trial and error, or learned. Agent-based models can demonstrate 

how agents develop optimal strategies. An example of this approach is the 

evolution of a cooperative strategy, identified as "tit-for-tat", in an iterated 

Prisoner's Dilemma game (Axelrod , 1997b). 

Constructing an agent-based model 

While the above describes what agents are, it says nothing about how we 

might construct such a model . The process in some ways parallels other 

research methodologies (see Table 4. 1 ). The end result should add to theory, 

forming the foundation for new experiments and models. In simulation 

modelling the overhead of these new experiments and models is reduced; 

the maj or component of the effort lies in writing the software for the initial 

development of the model , after which parameters might be adjusted, or 

the model modified a little, and the process run again. 

One of the major ways suggested to validate agent-based models is to de-
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Table 4 . 1 :  Parallels Between Conventional and Simulation Research 

Experiment or survey Simulation modelling 

Research question Research question 

Design experiment or survey Design simulation model 
based on theory based on theory 

Carry out experiment or survey Run simulation model 

Collect data Collect data 

Interpret results Interpret results 

velop the models based on sound theoretical bases (Doran, 2006; Moss & 

Edmonds, 2005). This is a challenging task (Doran, 2006), but one for 

which social psychology should be well-placed to contribute. Even in social 

psychology, where there is a lot of theory regarding individual behaviours, 

these are not necessarily in the form that can be readily incorporated di­

rectly into agent-based models. While psychological theories are usually 

stated in verbal terms, it is possible to formulate theories in social psy­

chology in a mathematical form. For example, the theory of social im­

pact has been stated as i = ::1V where i is the expected social impact, s 

is the situation dependent scaling, .V is the number of sources, and I is a 

value that takes account of the decreasing influence of additional sources 

(Nowak et al. ,  1990). While this returns a mathematical form of the rela­

tionship between resulting influence and the number of sources, the result­

ing equation still contains elements (.s and t) that will require the modeller 

to make assumptions, approximations or estimates to produce a computer 

algorithm.  In the above example, I produces the effect of decreasing the ef­

fect of additional influences, thus I must be less than 1 ,  and is often found 

to be in the vicinity of 0.5 (Nowak et al . ,  1990). 

The nature of the theoretical content should guide the nature of cognitive 

processes used by the agents in the model. As noted above, agent-based 

modellers have access to a range of artificial intelligence devices that might 

be applied to agent architectures. Doran (2006) lists these as: 

'sets of variables with associated condition-action rules (incl . 

"fuzzy" rules) 

artificial neural networks 

behaviours and subsumption 

predictive planner and internal model 

logic systems e.g. BDI [belief desire intention] 
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hybrid and/or multilayer' (Doran, 2006) 

The choice of these should take into account the type of process being mod­

elled. For example, artificial neural networks, or subsumption architec­

tures1 might reasonably be associated with low level cognitive processes, 

while a predictive planner might be associated with a high level cognitive 

process. Where both processes are thought to be important, low- and high­

level devices might be combined in a hybrid or multilayer cognitive system. 

Agent-based model construction tools 

While agent based models can be programmed from scratch, this is diffi­

cult. It is also an inefficient use of the researcher's time. For example, 

functions for setting up agents, for setting up and initialising models, and 

recording data are likely to be required in any agent-based model . These 

tasks are standard enough that they can be managed by pre-built libraries 

of routines. Combined with some way of describing the agents, agent-based 

modelling packages provide the libraries for the house-keeping routines as­

sociated with running the models. Typically, these include the management 

of information, controlling the agents' turn taking, and the recording and 

display of information generated. 

There are a large number of agent packages available. Many are suitable 

as general tools for agent-based modelling, including modelling for social 

psychology. Others are designed for more specialised tasks, or with fea­

tures that are specific to a particular discipline. An example is SimBioSys 

(McFadzean, 1994), which describes elements in biological terms and in­

cludes explicit phenotype and genotype classes. 

There is a range of model details that can be implemented in the vari­

ous packages. Some enforce simplicity in agent design, while at the other 

end of the scale there are packages that have facilities for highly sophis­

ticated agent design. This equates to a range from systems that are only 

slightly more flexible than cellular automata, to those that allow for very 

sophisticated agents, of which there may only be a small number before the 

computational task becomes impracticable. 

The simplest, and the first, of the computer based models automated John 

Conway's model, called Life. In Life, the rules define the population density 

1 A form of artificial intelligence in which concrete lower level tasks are collected to 
carry out higher level, more abstract tasks. 
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that i s  needed for a cell to live. Cells are located on a two dimensional grid. 

A living cell needs two or three live neighbours to live, otherwise it dies. 

New cells are born in empty cells with exactly three live neighbours. De­

spite the very simple rules, this model produces complex patterns moving 

through the whole population of cells (Luger, 2002).  These simple models 

are also applicable to some phenomena in psychology, for example as mod­

els of the development of social support networks (Hegselmann, 1998), or 

the effects of influence on attitude distribution (Latane & Nowak, 1994). 

Following on from Life, many packages were developed to model the biol­

ogy, survival, and reproduction of living things in a population. This form of 

modelling falls under a field known as artificial life, although the field also 

includes more explicitly biological models (Luger, 2002). Models within an 

artificial life framework tend to have the agents located within a geograph­

ical environment, represented by various forms of grid,  which may also 

contain resources. Some programmes restrict agents to interacting only 

with their immediate neighbours on the grid. That is, models using these 

packages tends to be located in a Cartesian two-dimensional grid layout. 

This may be appropriate for social systems models that require geographi­

cal settings; traffic behaviour or evacuation models are good examples. It is 

less appropriate for models of social networks to be restricted in this way, 

as they have non-Cartesian network structures: individuals in social net­

works may have relationships with individuals that are quite remote. In 

most programmes, even those that require that agents have a location on 

a grid,  these social networks can still be modelled. Geographical locations 

may be may be included to satisfy the requirements of the programme, but 

with no particular meaning within the model . 

More recently, a number of agent-based modelling programmes, suitable 

for modelling in the social sciences have become available. The first was 

Swarm (Minar, Burkhart, Langton, & Askenazi, 1996). Later programmes 

include Ascape (Parker, 2000), Repast (North, Collier, & Vos,  2006), Net­

Logo (Wilensky, 1999), and SDML (Moss, Gaylard, Wallis,  & Edmonds, 

1998),  with Mason (Luke, Cioffi-Revilla, Panait, & Sullivan, 2004) a newer 

entrant. 

An early package: Swarm 

Swarm was one of the first agent-based modelling packages for general use. 

It was developed at the Santa Fe Institute, where computer models were 
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being used in a broad programme of research into complex dynamic sys­

tems. There was a concern that computer programmes were written anew 

to simulate each new research idea. This meant that computer models de­

veloped in research were difficult to reproduce (Minar et al . ,  1996). Further, 

results generated from the programmes might be artifacts of the software 

design, rather than reflections of the system being modelled (Minar et al. , 

1996).  This is more likely to happen where non-specialist software develop­

ers are writing the programme, and where the programme is not subjected 

to rigorous testing and verification. This situation would apply to most 

researchers in the social sciences. 

Agent-based modelling packages offer a number of advantages. Researchers 

can increase software reliability, because much of the housekeeping work of 

agent management, input, output and data display, at the same time mak­

ing it easier for researchers to develop their models (Tobias & Hofmann, 

2004). 

With a number of packages available, researchers need some criteria for 

selecting an appropriate package to use. Criteria might include ease of 

programming the model , flexibility, the availability of existing libraries, 

traceability, and whether the package has an active development and main­

tenance community. 

Swarm models are written in  Objective-C, which may be a more natural 

fit with agent-based modelling than Java (Railsback, Lytinen, & Jackson, 

2006). That said, Objective-C is not a widely used programming language, 

although a newer Java overlay has recently been added. Swarm is open 

source, which means that the functioning of programme itself is traceable. 

Swarm has been passed to an active development community for continued 

development and maintenance. 

The Java-based packages: Ascape, Repast and Mason 

Ascape, Repast, and Mason are packages for developing agent-based mod­

els in Java. Although Java is a relatively complex language, it is widely 

used, so there are m any resource libraries available for Java. Tutorials and 

support are easily found - an important consideration for researchers who 

will carry out their own agent programming. Ascape was developed at the 

Brookings Institute, but is no longer under active development. It is not an 

open source package, and the software has not been passed to a user com­

munity, and so will have no further development and maintenance. Repast 
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was developed at the University of Chicago. It is open source, and has been 

passed to an active development community. 

Of the Java-based frameworks, Ascape requires that agents be located 

within a grid or lattice. The grid or lattice is, itself, an agent, and contains 

the rules for interactions between the agents. While this is suitable for 

some simulations, it is too restrictive to represent the topologies of many 

social networks, other than those in which homogeneous agents are re­

stricted to interacting with their physical neighbours. Despite Gilbert and 

Bankes' (2002) comment to the contrary, Repast has no such constraint, 

and is more generally applicable to more general social system structures.  

NetLogo 

NetLogo models are written in a variant of the high-level language, Logo. 

Like Ascape, NetLogo locates agents geographically, but NetLogo is flexi­

ble enough to readily allow models of other forms of social network. N etL­

ogo has many high-level data management and display functions built in. 

NetLogo has the unique feature of being able to run a simulation involv­

ing a number of different computers linked in a network. Such a simula­

tion allows a number of people to attempt to cooperatively achieve some 

task by operating their own section of it. This type of modelling, using an­

other Logo based platform (StarLogo), was reported by Resnick ( 1994). In 

Resnick's simulation, a number of participants wrote segments to control 

traffic lights, that were networked to create a city with a number of traffic 

lights. The overall purpose was for the group to control traffic in a city, with 

each participant managing their own sector. 

This multiprocessor approach also has the important feature that the agents 

can function in parallel. Where a programme is run on a single processor, 

agents must function sequentially, rather than in parallel. Most agent­

based modelling programmes use an approach in which the agents take 

turns to act and interact. It is possible that this turn-taking, a require­

ment of the modelling package itself, rather than the model, affects the 

dynamics of a simulation model. 

Summary: Selection of the Repast package 

When looking for an agent-based modelling package with which to carry 

out the modelling work for this thesis, I found that a number of packages 
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were currently available. I wanted a package that was relatively easily 

learned and used, actively supported, and in which the behaviour of the 

package was traceable. Further, I did not want the design of the model 

to be compromised by the requirements of the modelling package. In par­

ticular, it should allow agent interactions with agents who were not near 

neighbours. 

With most packages, agent-based modellers will have to learn both a pro­

gramming language, and the features of the package itself Like most psy­

chology researchers, I am not a professional programmer, although I was 

sufficiently confident with the use of other programming languages to be 

reasonably confident about being able to develop sufficient skills to develop 

models in  one of these languages. I would have to learn one of three pro­

gramming languages: Logo, Objective C, or Java. Logo, used in building 

NetLogo models, is reputed to be an easy programming language to learn, 

although I have not found it particularly easy myself Logo is not widely 

used outside primary school teaching. Similarly, Objective C is not widely 

used. This has disadvantages, both in finding other code libraries to extend 

models written in either of these languages, and in obtaining support for 

learning the language. 

Java is a much more widely used language, and as a result there are many 

resources available, both for learning and for reusable source code. For 

instance, Java libraries are available for agent communication, learning, 

knowledge representation, and decision-making, any of which might be 

useful in agent-based modelling. There is an example of this in the Trading 

Model (Appendix 1 ) .  One section of code, the Stream class, assembles data 

for sending to a file, has been based on code from a Java textbook. 

Of the agent-based modelling packages using Java for programming the 

model , Repast had the most features (Tobias & Hofmann, 2004), and of­

fered the most flexibility at the time that I was starting to develop the 

model. At the time the Mason package was not yet available. Repast 

also offers versions through which models can be developed in the simpler 

higher-level languages, .NET, and Python. Repast has an active develop­

ment and user community, as do Swarm and NetLogo, which means that 

the future of the language is assured. It is also open source, this means 

that the programme listings are distributed with the agent-based mod­

elling package. This has the important advantage for research that the 

behaviour of the programme is  traceable. Last, but not least, it is available 

for a number of operating systems, and it is free (as in beer). The trust 
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models that I developed for this thesis were developed using the Repast 

agent-based modelling package. 

Reasons to use agent-based models 

Agent-based models, and simulation models in general can be put to a va­

riety of uses. As with conventional research approaches, they can be used 

to gain understanding. In the case of agent-based models ,  they are suited 

to developing an understanding of complex processes (Gilbert & Troitzsch, 

1999), that involve a large number of people interacting, and having an 

effect on each other. These processes are difficult, if not impossible, to ob­

serve explicitly. Further, the size of social structures can be such that it is 

difficult to detect what is happening, much less why it is happening. 

Agent-based models can include agents with individual characteristics, so 

diversity can also be modelled directly (Lansing, 2002). This gives a means 

both to understand processes at an individual level and the effects of di­

versity more generally. For instance, it can be difficult to incorporate all 

the dimensions of diversity in a single piece of research using statistical 

models before the dimensions swamp the degrees of freedom available. 

Agent-based models can be used to predict outcomes, but not in a deter­

ministic way (Gilbert & Troitzsch, 1999). That is, agent-based models can 

predict a range of possible outcomes, but cannot make a firm prediction 

about which of these will occur in a particular situation (Haag & Kaupen­

johann, 200 1 ;  Lansing, 2002). This is because the models are large systems 

of interconnected elements, which quite possibly have nonlinear character­

istics. The reasons for this will be given in Chapter 2 .  

The process of generating the agent's description and abilities involves an 

explicit theoretical formulation (Gilbert & Troitzsch, 1999). Much of the 

theory in social psychology is contained in a verbal form, using fuzzy termi­

nology. Programming an agent demands converting a verbal and possibly 

fuzzy theory into an algorithmic form. Effectively, this is a forced formali­

sation of theory. As a result, this formalisation process may expose a need 

to make assumptions about the specifics of theory, which can lead to ideas 

for more conventional research. This process involves working with theory 

in an in depth way. This work with theory continues through the process of 

working with the model. 
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Conclusion 

Agent-based models are devices for computer simulation, that allow the 

simulation of individual elements in a social system. Within a model, 

agents are explicit expressions of theoretical ideas about how the individ­

ual elements function. That is, the representations of individual agents are 

demanding of theory about individuals in social settings. This individual 

level social theory is the natural domain of social psychology, and social 

psychology is the natural source for the theory essential for building valid 

agent-based models. Applying theory to individuals in this way, and mod­

elling the resulting interactions of the individual agents has implications 

that will be further considered in Chapter 5 .  
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Chapter 5 

Agents in psychology 

The previous chapter introduced agent-based modelling as one method by 

which the large complex nonlinear systems that are social systems might 

be researched. This chapter goes on to consider what agents and agent­

based modelling might mean in a social psychological context. The most 

obvious use of agents here is to use them to represent individuals. 

The use of agents to represent individuals is not their only possible use. 

For example, agents have been used to model the individual temples that 

form a decentralised system for managing irrigation water in Balinese rice 

farming (Lansing & Miller, 2003).  They have also been used to model more 

abstract constructs, for example the relationships between people rather 

than the individuals. In my Masters thesis, I used agents to model the ef­

fects of increasing stresses on relationships that might arise as a results of 

increasing income differences. While not explicitly an agent-based model , 

the elements modelled were essentially agents. The agents in this model 

represented the characteristics of the relationships between people, rather 

than the individual people. This approach is similar to approaches using 

equivalent formulations in engineering, for example choosing either a node 

current or loop voltage formulation for analysing electrical circuits. Out­

comes, might be at an individual level,  or at the level of groups, organisa­

tions or the whole population. 

Nevertheless, while single agents may represent other things, in the so­

cial sciences they are most likely to be used to represent individual people. 

In agent-based modelling, these people are located within a network of in­

teracting people. The entirely general characteristics of nonlinear systems 

suggests that the behaviour of a system of individuals often will not be a 

simple summation, either of the behaviours of a number of individuals, or 
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of a number of different behaviours that might be exhibited by any one 

individual. 

This effect of the aggregation ofthe activities of a number of individuals has 

implications for the builders of multiagent systems, who need their agents 

to perform a variety of social tasks: to compete; to negotiate; to communi­

cate; and to cooperate (Wooldridge, 2002).  Those engineering such systems 

need to understand how social networks form and operate, and may need 

to understand the system behaviours that may emerge from the interac­

tions among agents. The aggregated behaviour of networks of interacting 

agents also has implications for cognitive scientists. Sun (2001)  notes that 

as well as builders of multiagent systems needing to understand the social 

science functioning of their devices, cognitive scientists need to understand 

the cognitive processes of individuals who are socially located. 

Social networks are also important in psychology, and techniques exist for 

exploring phenomena in social settings, or associated with numbers of in­

dividuals in groups or larger organisations. These are, however, usually 

located within each of these levels investigating individuals within social 

settings, within groups, and within organisations as single entities, rather 

than as systems. Agent-based systems may provide test beds for exploring 

the phenomena across these levels, from individual perceptions, motiva­

tions, actions and interactions in social settings, and the collective social 

environment formed by a number of individuals. 

This chapter considers the relationship between agent-based models and 

psychology. There are two main aspects to consider here. Firstly, psychol­

ogy might provide a source of sound theory to be used in the design of the 

agents within an agent-based model . Secondly, agent-based models might 

be used as a device for investigation in social psychology. Although this 

second is the primary focus for this thesis, it is listed second here because 

models directed towards enquiry in social psychology are as dependent on 

a sound basis for agent construction as is a model in, say, economics. The 

two are not independent. 

The chapter begins by considering some issues in the use of individuals as 

the basis for a model. Both psychology and sociology have points of concern 

in delineating the relationship between individuals and their environment. 

These have a slightly different flavour in sociological deliberation to that 

in psychology. In sociology the concern relates to the appropriate unit of 

analysis; should structural factors be defined, explained and reduced to 

processes at the the level of individual , or should structural elements be 
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considered as entities with existence and explanatory powers in their own 

right? 

Designing an agent requires thinking about what might lead an agent to 

act , and about what course of action the agent will take. The chapter goes 

on to consider the relationship between the understandings of how individ­

ual people behave as agents from the perspectives of psychology, philosophy 

and computer science. There are some commonalities, in part because the 

theories are all sourced from folk psychological theories of how people gen­

erate an intention to act. 

Agent-based modelling provides the opportunity to represent individual 

characteristics. Where these are factors that might influence the actions 

of the agent, they might be thought of as personality factors. Psychology 

has been concerned with identifying and measuring personality character­

istics. The chapter considers the potential for incorporating these, as well 

as social cognitive perspectives on personality, into models. 

Agents, social structures, and the transition 

between levels 

Agent-based models have been used increasingly widely in sociology, an­

thropology and economics. Agent-based models are, by nature, bottom-up 

models, almost invariably based on modelling individual people. Where a 

model is built using agents that represent individuals, each agent encapsu­

lates theoretical ideas about how individuals function. Whether the overall 

model is psychological, sociological , anthropological or economic, the model 

is built on ideas about the processes at work in individual agents - their 

perceptions, motivations, cognitions, and actions. Individual processes are, 

in general, the legitimate domain of psychology. 

Agent-based models are usually specified and developed at an individual 

level, while outcomes may be at any of a number of different levels, in­

cluding emergent patterns that may be identified as structures. One of 

the things that differentiates the disciplines of psychology and sociology 

is the level at which analysis is carried out. The combination of both in­

dividual components and structural outcomes in one model means that 

an agent-based model may be neither entirely psychological nor entirely 

sociological. Agent-based models have the potential to cross disciplinary 
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boundaries, and this also means that an agent-based model may therefore 

encounter theoretical challenges from within both disciplines. 

Psychology is largely an individualistic science, often investigating people 

in isolation. While this is less often the case in social psychology, which by 

definition is concerned with the psychology of individuals in social settings, 

this too tends toward the individualistic. On the other hand, sociology is 

concerned with society and social interaction, and inhabits a domain that 

ranges from the individual to large social structures. There is a fundamen­

tal debate in sociology between those who maintain that structural features 

are generated by individuals, and would not exist without individuals,  and 

those who maintain that while social structures do not exist independently 

of individuals,  they are not necessarily reducible to an individual level. 

With its tradition of interest in individual behaviour, psychology is a po­

tential source for supportable fundamental theoretical bases to be applied 

to agent-based models. Despite this, agents are rarely explicitly designed 

in terms of explicitly psychological theory. There are a number of possible 

reasons for this.  

Psychological knowledge does not necessarily take a form that allows it 

to be incorporated into a model of an individual. This has been noted by 

the designer of the very popular game The Sims. Hoping to find informa­

tion that would help design realistic human behaviours for his game, he 

found that the psychological literature provided few leads (Harris, 2003). 

In some cases, the design of agents design may even be based on assump­

tions about individual processes that we know to be wrong, for example, an 

assumption that individuals will exhibit rational self-interested behaviour 

that has been applied to some economics modelling. 

A more difficult issue comes when trying to navigate the space between 

the levels of analysis. Doing so encounters fundamental differences in 

the theoretical stance to analysis adopted in the social sciences. This is 

particularly apparent in sociology, where the literature identifies two ex­

treme stances. These concern the related issues of the emergence of social 

structures, and the nature of the individual's interactions with these social 

structures (Archer, 2000; Elder-Vass, 2007 ;  King, 1999). At one extreme, 

individualists might hold that processes within individuals generate and 

drive all social structures, social facts and social actions. Each of these is 

reducible to features located within individuals and, at their most reduced, 

none exist in isolation from individuals. While this stance is identified as 

individualist, it is less clear which theorists, if any, are particularly associ-
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ated with this stance (King, 1999), at least in its extreme form. At the other 

extreme, exemplified by Durkheim (Lehmann, 1993), is a stance that indi­

vidual activity is driven by structural elements and the social structures in 

which the individuals are located. From this position, attempting to under­

stand individuals' actions in terms of their internal psychological processes 

misses the more powerfully determining forces of social structures on the 

individual. 

The bottom up nature of agent-based model construction means that its 

use carries with it an implied, but often unstated, theoretical stance: the 

model is fundamentally individualistic (O'Sullivan & Haklay, 2000). The 

form of the model , in which interacting individuals are represented as a 

system of agents, assumes that the essential components of the system can 

adequately be represented through the individual components (O'Sullivan 

& Haklay, 2000). That said, from the perspective of agent-based modelling, 

it is not entirely clear that the opposing camps of individualism and struc­

turalism are as different as they would seem. Individualism exists across 

a spectrum ranging from methodological individualists, who hold that the 

understanding of social phenomena should be in terms of the individual , to 

ontological individualists, who hold that social phenomena are caused by 

individuals, but who do not require that understanding has to be in terms 

of reduction to the level of individuals (Udehn, 2002). This version of the 

individualist stance is implicit when the position is taken that structure is 

emergent, as it is held that emergent features do arise from the individuals 

(King, 2007) .  A major point of difference comes in relation to the nature of 

social structures. 

Structuralists hold that some important features of social systems are emer­

gent, including people, structures, and culture (Archer, 2000). Here, again,  

we meet a difference in meaning: this time a difference in what is meant 

by emergence. Just as there are differences the various forms of indi­

vidualism in the debate between structuralists and individualists, there 

are differences in what people hold as the tenets of the various forms of 

emergence. In the above context, structuralists maintain that social struc­

tures are emergent features that are not further reducible to individual 

constituent elements. Water is cited as a physical example of the form of 

emergence meant here (Elder-Vass, 2007), as the properties of water cannot 

be reduced to an explanation in terms of the properties of its constituent 

elements, oxygen and hydrogen. 

A second form of emergence is the appearance of patterns and unexpected 
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outcomes from complex systems. This form of emergence takes various 

forms :  the behaviour of a robotic device that is not explicitly programmed, 

but arises as a consequence of the programme interacting with the robot's 

mechanism and the environment (Braitenberg, 1984) is one example, while 

the dynamics of a traffic jam,  located some distance upstream from the 

original obstruction, and remaining long after the obstruction has cleared 

is another example of an emergent phenomenon that we can observe fre­

quently. 

Returning to the water example, the properties of water can be explained 

in terms of the properties of hydrogen and oxygen ions, and their geometry 

when combined in water molecules. Thus an explanation of the physical 

properties of water does depend on an explanation in terms of both prop­

erties of the constituent atoms, and of the bonds between them. Similarly, 

emergent social properties arise, from individuals, and from the interac­

tions between individuals. 

One objection that structuralists have to individualist approaches is that 

they tend to include only the individuals that are present in the popula­

tion .  But social structures and cultural features have also developed in 

history, so the structures tend to incorporate elements that are not ex­

plainable in terms of individuals that exist in the population(Elder-Vass, 

2007 ;  O'Sullivan & Haklay, 2000). Individualists (King, 1999) respond that 

this there is no particular reason that an explanation should be limited to 

individuals who remain in the population 

In addition to a temporal element, there is also an element of direction­

ality in this conception of emergent properties. While a property might 

emerge from a group of individuals interacting, this does not mean that it 

is possible to take analysis in the reverse direction.  That is, we usually can­

not conceptually reduce an emergent properties into constituent individual 

components. 

Finally, an individualistic formulation of social phenomena does not have 

to be restricted to features that exist in the individuals in perfect isolation. 

Rather, it might well include the relationships between individuals, their 

interactions, and the effects of the presence of others on their individual 

behaviours. These are the very materials of social psychology. 

The evolution in agent-based models operates in one direction. Social struc­

tures can emerge from individual agents, but then do not feed back to affect 

the individual agents. This i s  not entirely due to the model deliberately 

excluding influence in this direction. Rather it is a consequence of the diffi-
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culty of the task of automatically detecting any structures that do emerge. 

Incorporating structures, whether emergent or existing independently of 

the agents, depends on them being identified and explicitly written into 

the model. 

Agents, individuals, and the role of the envi­

ronment 

Agent-based models are assembled from a set of individual agents. In a 

modelling task, those agents are selected and designed to represent some­

thing. One obvious thing that individual agents might be used to represent 

is that they might represent individual people. Some of the concerns in 

the social sciences about carrying out analysis at the level of the individ­

ual have been outlined above. This discussion about whether it is more 

appropriate to carry out analysis at the level of individuals, or at the level 

of social structures has primarily arisen from within the discipline of so­

ciology, which inherently straddles the transition between these different 

levels of analysis. 

Analysis at the level of individuals, as opposed to the level of social struc­

tures, is a less controversial approach in a social psychological setting than 

it is in sociology. Nevertheless, the explicit representation of individuals 

and the interactions between them within an agent-based model can come 

packaged with assumptions about individuals that might be of greater con­

cern to psychologists. The definition of agent from computer science, in­

cluding the definition applying to agent-based modelling, is in terms of in­

dividual elements acting independently, in their own interest. 

The word agent also carries a meaning within social psychology. Agents are 

entities that have agency: the ability to determine their own actions, and, 

through these, to attempt to influence their environment. Bandura (200 1 )  

defines a n  agent i n  terms o f  intentional action, stating that someone acts 

as an agent when they "intentionally make things happen by . . .  [their] 

actions" (Bandura, 200 1) .  By this definition, intention forms a key element 

of Bandura's conception of agency. 
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Intentions in agent reasoning 

In his discussion of intention as a component of agency, Bandura (200 1 )  

cites Bratman's ( 1987) model that suggests that people generate planned 

action by following up their desires and beliefs, with an intention to act. 

Under this model, planning proceeds as a series of partial plans, by which 

reasoning about beliefs and desires generates intentions that m ay progress 

to actual action. 

This model of beliefs and desires forming the basis for planned action is, 

in turn, derived from earlier explanations about belief and desires, as pre­

cursors to action. These ideas are described as folk psychology (Malle & 

Knobe, 1997 ;  Sutton & McClure, 200 1 ) ,  or commonsense understandings 

(Bratman, 1987),  as they refer to people's everyday explanations of what 

lies behind another's actions (Kukla & Walmsley, 2006) in terms of infor­

mally defined mental states like beliefs and desires (Stich & Ravenscroft, 

1994). Bandura (200 1 )  maintains that this formulation is insufficient, and 

that human agency also depends on self-directedness to make the move 

from intent to action, and on monitoring and evaluation of our performance 

so that we can use experience to adapt our behaviour. 

A link between belief and intention is made elsewhere in social psychology 

in the theory of reasoned action (Fishbein & Ajzen, 1975) and the subse­

quent theory of planned behaviour (Ajzen, 1985). In these, the link be­

tween beliefs and intentions is modified by attitudes. These theories link 

the intention to follow a particular course of action and the subsequent 

behaviour, although the construct of intention in this model is somewhat 

circularly described as a "subjective probability that . . .  [a person] will per­

form some behavior" (Fishbein & Ajzen, 1975 , p. 288). 

A third branch of social psychological thought in which the link between 

beliefs,  desires, and intentions is raised is in the informal everyday expla­

nations of the actions of other people. The importance of intention in these 

everyday explanations can be illustrated by the use of attributed intention 

as one of the elements in determining culpability under the law (Malle & 

Knobe, 1997;  Kukla & Walmsley, 2006). For example, New Zealand law dis­

tinguishes between common assault (Crimes Act, 1961a) and assault with 

intent to injure (Crimes Act, 1961b) .  Unlike the definition of intention used 

in the theory of reasoned action, intention as used in attribution is inher­

ently social;  intent may be drawn upon by one person to explain another 

person's actions. Malle and Knobe ( 1997) found that when asked whether 

an action was intentional people drew on a common set of criteria. They 
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made attributions of intention when they could infer that a person desires 

a particular outcome, that the person has beliefs about the actions needed 

to obtain it, that the person has an awareness of carrying out the action, 

and that the person has had the skill to carry out the action successfully. 

Their research indicated that desire and belief are necessary, but not suffi­

cient for, inferring intention. Beliefs are therefore linked with intentions in  

people's attributions about others' behaviour. This places desires, beliefs, 

and intentions as resources that are drawn on in informal explanations of 

observed actions. 

Belief Desire Intention (BD I) model 

The linking of desires, beliefs, and intentions is not just explanatory. The 

Belief, Desire, Intention (BDI) model is proposed as the ideal theoretical 

basis for agent devices by some agent theorists (Georgeff, Pell, Pollack, 

Tambe, & Wooldridge , 1999), and has become the dominant model cited 

by those working in multiagent modelling. In this model, beliefs are a rep­

resentation of knowledge about the world, which is possibly incomplete. 

Desires are a representation of the target outcome or goal . Beliefs and de­

sires are used to develop intentions, identifYing the means to work toward 

the desired goal , and eventually a plan of action (Georgeff et al. , 1 999).  

The BDI model , including the name, is based directly on Bratman's ( 1987) 

ideas about how people make and execute plans (Bratman, 1987) ,  through 

making, executing, and reviewing partial plans. 

It has been suggested that the relationship between Bratman's analysis 

and multiagent systems constructed using BDI is less close than the di­

rect application suggested in the multiagent systems literature (Edmonds, 

2002). In part this is because the tasks of making, reviewing, and remak­

ing plans is proving to be a difficult technical challenge for artificial intel­

ligence. While the implementation of BDI in multiagent systems is as yet 

limited, work to develop packages and standards for agent ontologies, and 

the languages and support for BDI logics are developing (Rao, 1996). 

For social psychologists, models based exclusively on beliefs, desires, in­

tentions, and resultant plans are unlikely to capture sufficiently some of 

the more important elements of social cognition. Searle (2001 )  offers a 

wider perspective on reasoning, that makes use of intentional states: men­

tal states that are directed toward some proposition in the world. Desires, 

beliefs, and intentions are examples of intentional states, but these are not 
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privileged alongside other important intentional states, such as emotional 

states (Searle, 200 1) .  Although not explicitly included in Searle's list, at­

titudes might reasonably be added as another intentional state of interest 

in social psychology. An intention to act flows on from a set of intentional 

states, some of which may not be satisfied, giving intention a different sta­

tus to the other intentional states, as it is generated from reasoning about 

these. 

Even this extended form of cognitive model lacks some of the things that we 

may expect of socially located thinking. As Edmonds (2002) has noted, the 

BDI model for agent architecture is one model, based on the ideas of one 

philosopher. But other agent models exist that incorporate both rational 

and reactive processes, and a layer of reflective supervision of the perfor­

mance of these (A. Sloman, 1 998).  Other architectures have been proposed 

that incorporate emotional dimensions such as arousal and pleasure as reg­

ulatory systems (Fromm, 2002). 

Human agents, agency, and social structures 

The individual agent is the basic modelling unit in an agent-based model . 

Within the model, each agent functions independently, and is able to in­

teract with others. Ideally, an agent should have some ability to identify a 

preferred outcome, and to take action to secure that outcome (Wooldridge, 

2002).  I n  short, agents should exhibit some degree of agency: they should 

take intentional and autonomous action to make things happen in their 

environment (Bandura, 200 1 ) . 

In a modelling context, agents may be used to represent individuals. If 

agents exhibit agency, there is an implicit assumption that we believe that 

humans act as agents. While an assumption of human agency might seem 

almost an article of faith for psychologists, there is controversy as to the de­

gree to which individuals are able to act with complete independence. The 

alternative extreme to saying that the world should be understood only in 

terms of the actions of the agents is to say that individuals are so embedded 

in  social structures that their actions are forced by those structures.  This 

i s  a more sociological than psychological perspective. These issues about 

agency need at least some consideration in this thesis, as they particularly 

relate to the relative importance of individual agency and social structural 

elements in  generating behaviours. 
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Both individual behaviours and these higher level structural mechanisms 

lie within the scope of analysis of agent-based models. The type of phenom­

e na that are addressed with agent-based models are those that emerge 

from a number of individuals acting independently. Within a model , any 

structures that form an influential part of the target environment should 

also be addressed in an agent-based model. As the model contains both 

individual and environmental components, any concerns about the relative 

roles of individual and structural elements extend to the validity of agent­

models in modelling these phenomena. 

Individual and structural conceptualisations can, at their most extreme, 

collapse to a dichotomy in which either the individual is all , or society is 

all  (Archer, 2000). Carried to such an extreme, all phenomena might be 

explained as structurally determined, with individuals dismissed as mere 

products of these structural forces. In such an extreme privileging of soci­

etal analysis, we miss important features of individual activity. Individu­

als do try to assert some influence to produce preferred outcomes. In doing 

so, their actions may be directed toward any component of their environ­

ment, including the natural and physical world, as well as the social world 

(Archer, 2000, p. 254). Sometimes these actions are highly effective, and 

sometimes they are highly ineffective, or even produce unforeseen and un­

wanted effects. 

Individual conceptualisations can also be developed to an extreme, whereby 

all is explained in terms of individual behaviour, at the most extreme re­

duction, brain and computational structures (Bandura, 2001 ). A strictly 

individual perspective insists that each individual is entirely in control of 

his or her own destiny, and his or her actions will successfully surmount 

any environmental constraint. This view is essentially anarchic, as indi­

viduals will act rationally in pursuit of their own interests. 

The consequences of this dichotomy between individual and structural ap­

proaches are extensive for researchers, as they determine boundaries in our 

framework for understanding phenomena. For example, choosing either 

an individual or a structuralist approach forces the researchers hand in 

choosing "personal agency versus social structure, self-centred agency ver­

sus communality, and individualism versus collectivism" (Bandura, 200 1 ,  

p .  14). 
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Human agents in social psychology 

Four features of human agency have been identified by Bandura ( 1999). 

Firstly, human agents have forethought that allows possible courses of ac­

tion to be identified, their likely consequences evaluated and a plan de­

veloped. Secondly, they can motivate themselves to take action or to sup­

press action. Thirdly, they can carry out actions intentionally. Mter action 

has been taken and outcome obtained, human agents evaluate their own 

performance, and use the insight gained to modify future behaviour. The 

BDI model is consistent with three of these four features of human agency. 

Although not explicitly stated, the evaluative component is not inconsis­

tent with the BDI model outlined above, although adaptive and learning 

systems are more demanding both computationally and technically. In 

summary, agency in artificial intelligence systems, specifically agent-based 

models, are not inconsistent with psychological views of human agency. 

Many psychological theories are concerned with the individual, but are not 

necessarily agentic. For example, neither behavioural nor computational 

explanations of human activity suggest that responses to particular stim­

uli might involve preferred outcomes or deliberative action. Social cogni­

tive theory is explicitly agentic, as it posits humans as active agents in 

their lives (Bandura, 1999) .  Archer (2000) notes that humans exert action 

in a number of distinct environments : a natural , a physical, and a social 

world. Bandura ( 1 999) extends this, so that human action includes acting 

on the environment in agentic ways. He further notes that there are im­

posed, selected, and environments:  some elements of our environments are 

uncontrollable by individuals, but humans have some freedom to choose 

their environment by relocation ,  and they can modify their environment 

through constructing it. Bandura ( 1999, 200 1 )  states that social cognitive 

theory disputes a dichotomous choice between structure and agency, rather 

he suggests that a triad of factors are interlinked with each other: 

1 .  internal cognitive, affective and biological events, 

2. behavioural patterns, and 

3. environment. 

Up to now, the discussion has been based on a broad conception of agency. 

An agent has a preferred outcome, and acts with the purpose of achieving 

that outcome. Agency is about action, rather than about outcome, so an 
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agent may or may not succeed in achieving its aims. Although actions may 

produce outcomes, the actual outcome may depend on other things in the 

environment. The actions taken by agents are purposeful .  

Social cognitive theory as a candidate for re­

search using agents 

Social cognitive theory extends beyond the individual, as it suggests that 

the individual interacts with the environment. Neither social cognitive 

theory, nor artificial intelligence theories, nor most agent models spec­

ify how we might represent the environment. One result is that agent­

based models tend to be focused on modelling in terms of individual agents 

and, as a result, inherit an exclusively individualist formulation by de­

fault . This individual formulation remains unacknowledged (O'Sullivan & 

Haklay, 2000). In some circumstances it may be entirely valid, and in oth­

ers not. For example, a model that demonstrates how reciprocity norms 

can evolve (Axelrod, 1997b) may not need a representation of an informal 

enforcement structure, while a model that demonstrates how behaviour 

might evolve following the breakdown of norm enforcement may well need 

explicit representation of a norm-enforcing social structure. 

While Bandura's ( 1986) formulation of social cognitive theory in terms of a 

triadic reciprocal causation has been around for some time, it seems to have 

been used very little to inform psychological theorising. While this work 

has been cited widely, most draw most strongly on ideas relating agency 

to self-efficacy, rather than the broader issues of human agency and the 

interactions of person, behaviour, and the environment. Removed from the 

systems perspective self-efficacy is a far more accessible construct, which 

may partly explain its popularity as an isolated construct, and Bandura 

himself emphasises self-efficacy as the key determinant of human agency 

(Bandura, 2001) .  But doing so strips a big idea, that of social psychology as 

a dynamic system in which person, behaviour, and environment interact, 

down to a static concept. 

The absence of work calling on the more dynamic aspects of social cogni­

tive theory does not appear to be because this part of Bandura's work is 

disputed. On the contrary, it is sufficiently orthodox to be presented as a 

theory of personality in elementary textbooks. It may be that the inherent 

dynamism ofthe model makes it difficult to incorporate into the static mod-
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els that dominate psychological theory. In contrast, self-efficacy lends itself 

to static measures, and fits readily into static theoretical models, and may 

as a result be more accessible to statistical research techniques.  Accessing 

the more dynamic aspects of social cognitive theory may require techniques 

that can address dynamic processes and the emergence of patterns and in­

teractions. 

Two aspects of social cognitive theory were used in the models in this the­

sis. Firstly, agent-based modelling, through its very nature, allows us to 

represent the characteristics of individuals, their behaviours, and their in­

teractions with other individuals. It can allow modelling agents that are 

actively interacting with their environment. Agent-based modelling pro­

vides a means by which we might access triadic reciprocal causation di­

rectly. Secondly, the trading model is based on observational learning, as 

the agents adopt elements of the strategies of more successful agents. 

Summary 

The first five chapters of this thesis have introduced a form of modelling, 

agent-based modelling that offers promise in researching some social phe­

nomena, specifically those that involve a large number of people interacting 

in nonlinear ways. Agent-based modelling has some implications for how 

we interact with theory. Further, representing people as agents carries 

with it some assumptions about how individuals operate. Those assump­

tions may fit well with some more general theoretical ideas, for example 

they fit social cognitive theory particularly well ,  offering a different way of 

doing research in this theoretical framework. In the next chapter, I turn to 

the phenomena that I wanted to apply agent-based modelling to; how trust 

works within networks of interacting people. The next chapter is a liter­

ature review, largely concerned with reviewing trust as a construct. The 

following chapter carries on to describe the ways that research into trust 

has been carried out, and describing the my construction of two different 

agent-based models of trust. 
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Drawing on psychological theory for building 

agent-based trust models 

When I was in the early stages of constructing a model of trust, I was con­

cerned that the design of the agents should be based on psychological the­

ory. From that starting point, it seemed to me that there were two distinct 

forms of psychological theory that might be used. Firstly, there are theories 

that are entirely specific to trust, that is theories and algorithms about who 

trusts, and how they trust. 

Secondly, there are the more general theories from social and cognitive psy­

chology that might be applied to trust. From social psychology we have 

theories that, in a specific social situation,  people will ,  on average, make 

particular assessments of others, and behave in particular ways. And from 

cognitive psychology and cognitive science there are theories about how 

people gather information and make decisions. 

Whether a specific theory about how trust functions or a more general psy­

chological theory is used, we encounter another difficulty in incorporating 

psychological research into an agent-based model . Despite the vast body of 

psychological knowledge, findings, and devices, much psychological theory 

is not in a form that makes it suitable for direct incorporation into agent­

based models of trust. There are relatively few theoretical ideas, in the 

form that they exist in psychology, that can be applied directly in designing 

individual agents that are well supported by theory. For example, a finding 

that higher educated people are, on average, more trusting might be re­

ported in terms of means and standard deviations, and results from testing 

hypotheses about these means and standard deviations. In some circum­

stances, applying a simple mean to all members of a population might be 

a reasonable representation. At other times, the modeller is likely to want 

to represent diversity in the population in a credible way. It can be diffi­

cult to extract a supportable model of that diversity. While analyses are 

likely to have been carried out on the assumption that the distribution was 

normal, often the only diversity information available is in reported stan­

dard deviations. The shape of the distribution, or even the range of values 

found, is often not reported. Even when using psychological theory that is 

well supported, the modeller is unlikely to have sufficient information to 

be able to incorporate theory directly into the model. This means that the 

modeller will ,  almost certainly, have to use judgement at some point in the 

modelling process. 
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A related issue arises in deciding what inputs are necessary and sufficient 

to produce a reasonable model. This is related to another problem that is 

recognised as extremely difficult for engineers wanting to design comput­

ers with autonomy. How can we predict what components will be necessary 

and sufficient to produce a particular desired outcome? Similarly, in social 

science research, we would like to have some confidence that a model in­

cluded all of the essential components that go into generating a particular 

high level behaviour. One possible answer comes from Wolfram's (2002) 

work in cellular automata. Once sufficient complexity is added to generate 

the first instance of complexity, adding more complexity does not produce 

any different outcomes. Or as he puts it, simple rules may be sufficient. 
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Chapter 6 

Trust 

The foregoing has set out some of the theoretical issues about agent-based 

models as a research method. In this chapter I review the literature on 

trust as a construct, and as it might be relevant to developing agent-based 

models of trust. The two chapters following this one describe the devel­

opment of two models of trust within a network of individuals and, in the 

process, explores some of the more practical issues arising from carrying 

out research using agent-based models. 

Much of the research and analysis into what trust is and how it works is 

concerned with trust as an individual level phenomenon, but there are also 

situations in which features arise that may be founded in trust operating 

in populations. For example, there is a relationship between mean levels 

of generalised trust reported in national surveys and the population level 

outcomes such as economic productivity and health outcomes. In this sit­

uation, data at one level of aggregation seem to be driving outcomes at 

another level of aggregation. One mechanism proposed as possibly link­

ing these is that the economic costs and benefits of trust and distrust are 

important in enabling trade and cooperation and disabling fraud. 

There are some aspects of trust that may be relatively static. For example, 

people may have varying degrees of propensity to trust others that are suf­

ficiently static to be considered a personality characteristic. Other aspects 

of trust are more dynamic: decisions to trust or not are made frequently; 

states of trust may or may not exist at any moment; and these states may 

change rapidly. The dynamics within networks of people interacting in 

ways that engage trust may also be important in determining the results 

of a system's evolution; determining the attractors to which a system may 

be drawn. These dynamics might lead to systems of individuals adopting a 
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culture of trust or distrust through the dynamics of their individual level 

processes and interactions. 

The previous chapters have proposed agent-based modelling as a method 

that can be used to develop understanding of systems that involve dynam­

ics and aggregation .  Constructing such a model depends on understanding 

and representing the processes of trust at an individual level. This chapter 

begins by reviewing the literature in this area. 

Why be interested in trust? 

Trust is a pervasive feature of our daily life: individuals,  businesses, organ­

isations and governments routinely engage trust in their everyday interac­

tions. The variety of entities relying on trust, the variety of relationships in 

which trust appears, and the different circumstances in which it is invoked, 

is reflected in the richness of form and detail of the ideas surrounding trust. 

For example, trust in an intimate relationship takes a different form, and 

has entirely different boundaries, to trust between a government and an 

individual citizen .  

Trust is important at  an individual level, because most social relationships 

call on some degree of trust. This is supported by studies that correlate fac­

tors associated with trust and social relationship factors. For example, high 

levels of trust are related to satisfaction and commitment in relationships 

with partners (Couch, Adams, & Jones, 1996; Couch & Jones, 1997) and 

high levels of mistrust are associated with interpersonal problems (Gurt­

man, 1992). An individual's self-rated propensity to trust is correlated with 

self-disclosure (Bierhoff, 1992),  and people scoring high on trust scales re­

port themselves as being more warm, gregarious and empathetic than do 

people with low scores (Couch et al . ,  1996), while others also think them to 

be more likeable (Rotter, 1980). 

Trust is essential in commerce as much as it is in personal relationships: 

a restaurant takes an order for food without prepayment, with the expec­

tation that at the end of a meal the diner will pay for the food ordered ;  

employees work for a period, with the expectation that the employer will 

pay them at the end of that period. Arrangements in which turns are taken 

to meet obligations, for example the completion of a service and subsequent 

payment on a monthly invoice, are fundamental in normal commerce, and 

essential for a business's ability to function efficiently. Such arrangements 
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depend on trust: the first person to meet their obligation expects that the 

second person will meet theirs. 

In commerce the alternative to relying on trust is to employ active risk 

management strategies, whether by controlling exposure to risk by restrict­

ing the size of transactions, or by investing in a formal contract, verifica­

tion and enforcement procedure. In contrast to enforced compliance, trust 

allows businesses to benefit from cooperation, for example through coor­

dinated marketing efforts and joint ventures. The alternatives to trust 

are expensive in business, whether through lost opportunities, or through 

adding extra dead-weight costs. Overall , trust is recognised as an impor­

tant factor in business efficiency (Lewicki, McAllister, & Bies , 1998).  

The importance and variety of applications of trust has resulted in an ex­

tensive literature on how trust is cued, facilitated and threatened in  dif­

ferent contexts and in different relationships. It is this literature that pro­

vides some guidance as to the features of trust that might be incorporated 

into a simulation model of trust. A subset of this literature, relevant to 

developing a cognitive model of trust, will be assembled in the next section. 

A second set of literature on trust is concerned with generalised trust. 

Whereas the previous set of literature is how trust works in relationships, 

this second set of literature is more concerned with beliefs about trust. 

Generalised trust is generalised to the extent that it is not specific about 

who is trusting whom, with what, and in what situations. It is not about 

indiscriminate trusting, as this is characteristic of gullibility rather than 

of trust. Rather, generalised trust is a non-specific expectation about the 

behaviour of others, and so might be thought of a belief about norms of 

trustworthy behaviour. 

A high expectation of trustworthiness, a high level of generalised trust, has 

been found to correlate with some national performance indicators. This 

suggests that the aggregated effects of trust and trustworthiness may also 

be important. 

Beyond individual relationships, trust has been of interest as one of the 

social devices that allow the institutions of society to function (Putnam, 

1995). At the societal level , trust is important in many arenas: in the de­

velopment of communities; in the maintenance of order; in maintaining the 

legitimacy of governments; and in the efficient operation of economies. In 

this setting trust is identified as an element of social capital : it is one of 

the things, like robust social networks and widely observed social norms, 

that go to make a well-functioning society. The capital part of social cap-
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ital recognises the economic value that can be realised through efficient 

communication, cooperation and interactions. Placed in a wider social en­

vironment, trust moves from being a feature of interpersonal interactions 

to having a broader role in the function and maintenance of society, where 

it is explicitly identified as a component of social capital. 

The loss of social capital in modern societies has been of concern (Putnam, 

1995),  and the more specific role of trust as a component of social capital 

has been highlighted in concerns about the restrictions and costs of rely­

ing on enforcement (Knack & Zak, 2002) or family ties (Fukuyama, 1995), 

rather than on trust. 

A measure of generalised trust is usually extrapolated from a survey ques­

tion that asks whether the respondent believes that, in general, people 

can be trusted. As measured by this variable, generalised trust has been 

significantly correlated with aggregate measures of economic performance 

(Kmwk Rr. 7,ak, 200?.) .  : m n  with participation in democracy and political 

stability (lnglehart, 1997). The economic and political importance of these 

performance outcomes for nations and development has spurred research 

into generalised trust by the World Bank and the OECD. 

Unlike a direct understanding of the mechanisms of trust, generalised 

trust is not obviously related to building an agent-based model. Rather 

than being important in the building process itself, generalised trust is of 

interest because if provides a hint that trust might accumulate beyond in­

dividual interactions. Between the literature on the phenomena of trust 

in individual transactions, and the literature on correlations between at­

titudes to trust and macro-level measures is a gap extending to both the 

mechanism and construct. One possible bridging of this gap is the develop­

ment of an understanding as to how trusting interactions might combine 

to produce the social environment in which individual relationships and 

interactions are embedded. 

Previous research into trust 

In the literature, the term trust is variously used for constructs that are, 

alternatively: an attitude; a virtue; a behaviour; a trait; a conscious ratio­

nal decision;  or the outcome of an unconscious cognitive process. This leads 

to a difficulty for the development of a simulation model of trust - are we 

to simulate an attitude, a behaviour, a personality trait, or a cognitive pro-
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cess? As we might expect, given the diversity of features of trust, research 

into trust has taken a number of approaches. 

Some researchers have been concerned with the development and applica­

tion of trust scales. The development of scales is useful, both in providing 

a measurable quantification of aspects of trust, and also in the theoretical 

effort that is both needed for, and enabled by, the development of scales. 

An early trust scale, the Interpersonal Trust Scale OPT) (Rotter, 1967),  

provides an example of this. This scale actually accesses generalised trust: 

scale questions ask respondents to identify the outcome that they would 

expect in various relatively non-specific situations. Another, later, reported 

trust scale (Couch et al . ,  1996) has three subscales; generalised trust; per­

sonal trust within close relationships; and something that the authors de­

scribe as network trust. Rotter ( 1980) explicitly states that the propensity 

to trust, which we might presume from his research to mean the propensity 

for generalised trust, is a relatively stable personality trait. Scale develop­

ment inherently takes the position that the degree to which individuals 

tend to trust is a measurable individual characteristic (Goto, 1996). 

Scales have been used in correlational studies. For example, Rotter ( 1980) 

applied his scale to studies investigating whether trust was simply another 

name for gullibility. He was able to report (Rotter, 1980) that high trust did 

not appear to be simple gullibility. He notes that the difference possibly 

lies with the use of evidence; gullibility is believing despite being provided 

evidence that suggests that may be unwise, trust is believing in the absence 

of evidence to suggest that this is unwise. 

Measures of trust are also used in survey investigations into the relation­

ships between social , economic, and population indicators. In a series inter­

national surveys, Inglehart ( 1997) found that generalised trust was accom­

panied by reported subjective well-being, political and organisational par­

ticipation, lower levels of income inequality, and low levels of extremism. 

In these surveys, the measure of trust is a single question that is very sim­

ilar to, but less specific than , some of the questions asked in the IPT scale. 

Zak and Knack (200 1 )  used earlier versions of these surveys to generate a 

model predicting mean trust levels in a population using income per head, 

education, corruption, and income inequality. They suggested that levels of 

generalised trust may have a causal role in determining economic perfor­

mance, through the higher costs due to increasing diligence efforts and the 

restriction of economic interaction where diligence measures are not cost 

effective. 

85 



The factors associated with trust have also been explored in experiments 

using vignettes. These have been useful in identifying the sorts of infor­

mation that people use in making trust decisions. For example, Yamagishi 

(200 1 )  extended Rotter's ( 1980) finding that trust is distinct from gullibility 

with a study that used vignettes. The situations described in the vignettes 

were identical, but with added a) two pieces of positive information, b) one 

piece of positive information, c) no added information, d) one piece of neg­

ative information, or e) two pieces of negative information about a person 

to be trusted. High trusters were particularly sensitive to negative infor­

mation,  being less likely than low trusters to trust someone once they were 

given two additional pieces of negative information. As gullibility is a de­

cision to trust despite the presence of negative information, this suggests 

that high trusters may be less gullible than low trusters. Rather, as Rotter 

( 1 980) suggested, they seem to make better use of the available informa­

tion. 

Vignettes have been used to investigate other key factors in trust, the close­

ness of the relationship and the degree of risk involved.  Goto ( 1996) also 

used a trust scale to identify high and low trust participants in an experi­

ment to test the involvement of two other factors that are often identified 

as important in discussions about trust: the closeness of the relationship 

and the degree of risk involved. She found main effects for all three vari­

ables. As might be expected, people were more likely to trust if they were 

high trusters, if the relationship was close, and if the stakes were lower. 

There was also an interaction effect, such that people were less likely to 

trust persons with whom there was a closer relationship when the stakes 

were high, and more likely to trust strangers when the stakes were low. 

Other researchers, beginning with Deutsch ( 1958), have used formal games 

with simple rules to carry out experiments in trust. Formal games have 

very simple moves, and a restricted set of possible moves. This allows the 

game to be analysed formally, and also provides a useful experimental de­

vice for investigating strategic behaviours. In the early stages of applying 

game theory to trust research, Deutsch used the Prisoner's Dilemma in 

his experiments. In the Prisoner's Dilemma, the best individual outcome 

arises when a player defaults, and his opponent does not. No matter which 

way the opponent plays, defaulting produces the best individual outcome, 

and so this strategy is regarded as a stable strategy. Defaulting does not, 

however, produce the overall optimum outcome, as this is achieved when 

both players cooperate. 
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At the time of Deutsch's experiments, few formal games had been defined. 

Subsequently it was recognised that, while trust may be a component of a 

player's decision in the Prisoner's Dilemma, this task more particularly 

concerns cooperation, and the breakdown of cooperation. Furthermore, 

there is no explicit agreement between the players. Rather, cooperation is 

implicitly involved in a preference for the optimal outcome. Later in the de­

velopment of formal games, games that more specifically target trust were 

developed (Camerer, 2003a). Unlike the Prisoner's Dilemma, trust games 

are turn-based games between players with different roles. In trust games, 

the first player makes a decision whether or not to trust the second player. 

Thus only the first player is playing a trust game. The second player then 

decides whether or not to honour that trust. These games have provided 

an experimental device for running experiments in trust. For example, 

Yamagishi and colleagues (Yamagishi , 2001 ;  Kashima, McKintyre, & Clif­

ford, 1998) have used trust games for investigating cultural differences in 

trust between Japanese and American students and their respective expec­

tations about norm enforcement. 

Methods used in trust research 

While they might be reasonably uniform throughout a population, under­

standings of trust are not universal . Cross-national differences in the en­

dorsement of belief that people can be trusted (Inglehart, 1997) and dif­

ferences in the application of trust (Yamagishi , Cook, & Watanabe, 1998; 

Reeves-Ellington ,  2004) suggest that common understandings and behav­

ioural norms around trustworthiness and trust are not arrived at as a mat­

ter of course. Rather, it appears that the specific expression of trust has a 

cultural component. An example of the variety of trust behaviours is pro­

vided by the studies of American and Japanese students by Yamagishi and 

colleagues ( 1998). Removed from a cultural environment where informal 

enforcement of social norms is very strong, to an experimental environ­

ment where there is no sanction against defaulting, Japanese students are 

less trusting and less trustworthy than US students. This extends to the 

function of trust in natural settings, where differences in trust cultures 

can be one element in a mixture of cultural incompatibilities within an or­

ganisation, such as between Bulgarian and American staff at a university 

in Bulgaria (Reeves-Ellington ,  2004). The differing expressions of trust in 

different cultures would suggest that trust and trustworthiness may have 

developed differently in different social environments. 
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The existence of different trust cultures tends to suggest that trust may 

develop differently in different environments, rather than being a univer­

sal norm. Although there is some suggestion that there may be a genetic 

propensity for different degrees of trust (Zak, 2003), it is also likely that the 

social environment determines the development and functioning of trust 

in  individuals within a society. This scope for the development of trust, 

raises the possibility that trust might be influenced or modified by social 

processes. Combined with the relationship of trust between a number of 

important indicators of societal performance, an understanding of the pro­

cesses surrounding the development and loss of trust among the members 

of society is potentially important across a range of social issues. Investi­

gation of change in a large social environment, where the environment is 

itself determined by individual actions, is inherently an investigation of a 

dynamic system. This tends to suggest that dynamic analyses may also be 

useful in investigating trust. 

Many studies of trust are inherently static, placing trust in relation to other 

variables. Formal game experiments may also be of a static nature, as a 

single round of a game is a one-off experiment. This changes when a game 

is repeated, as the players have an opportunity to take risks in order to 

demonstrate that they are prepared to cooperate to reap larger combined 

benefits. Repetitions of the game or, more importantly, expected repetitions 

may change things substantially, and may add a dynamic element. 

How does trust manifest? 

In order to model trust, we need an understanding of how and when a per­

son trusts. One suggestion (Castelfranchi & Falcone, 2000) is that trusting 

is a three-stage process. This process consists an evaluation of the other 

person ,  a decision to trust, and acting on that decision, and this process 

depends on the specifics of person and situation. These are individual cog­

nitive differences in attitudes and in the strategies employed in the assess­

ment process. 

Besides these differences in the cognitive processes of trust, there are other 

sources of the individual differences in people's propensity to trust. There 

are differences correlated with demographic factors, with learned experi­

ences, and with personality traits. 
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Cognitive approaches to trust 

Castelfranchi and Falcone (2000) agree with Hardin (2002) that trust con­

sists only the assessment and decision stages of the three stage process, 

and that trust does not extend to the subsequent actions that may depend 

on trust being established. While Hardin(2002) includes both assessment 

and decision-making as the components of trust, he concentrates almost all 

of his subsequent analysis on the decision-making step. This concentration 

on the decision-making component of trust is particularly characteristic of 

economic and game theoretic models of trust. 

Game studies, in particular, often short-circuit the assessment phase al­

most entirely, as experimental controls often restrict participants from mak­

ing an assessment of their opponent by restricting exactly the sorts of infor­

mation people might draw on to make their assessments. Typically, players 

cannot draw on information about their opponent, as opponents are anony­

mous, unseen, and unheard. In the extreme, although players may have 

been told that they have human opponents, the opponents may be a com­

puter. Approaching trust as a decision-making task tends to result in a 

model of trust that is quite calculative. The result is that these models 

do not seem to capture much of the character of trust, which is not ex­

perienced as a calculative process. Notably, trust also has an emotional 

dimension that is missing in these analyses, that may be inconsistent with 

calculativeness (Williamson, 1993). 

In contrast to game theoretic approaches to trust, philosophers writing 

about trust put assessment in a much more prominent position , relocat­

ing trust as an attitude (Holton, 1994; Lahno,  200 1) that may affect our 

decision-making, rather than just the decision-making process itself. Ex­

plicit consideration of the assessment process allows us to incorporate an 

important feature of trust that is not encompassed in game theoretic ac­

counts of trust. Framing trust as an attitude allows us to suggest that 

beliefs, emotions and actions might all be important in trust. 

Considering trust in terms of assessment and decision making gives us one 

perspective, of trust as a cognitive process. But other factors come into 

trust, notably those associated with individual differences in the propen­

sity to trust. Agent-based modelling allows us to represent individuals as 

batches of identical average individuals, but it also allows us to extend 

the representation of individuals. We can assign each individual agent a 

unique set of characteristics ;  agent-based modelling allows us to represent 
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individual differences explicitly. We can either use a population of identi­

cal individuals,  or we can assign characteristics to each individual agent, 

or to groups of agents. To do this, we need some understanding about how 

trust assessments and decisions are influenced by individual differences, 

and how these differences are distributed. In addition to cognitive models 

of trust, some demographic characteristics have been correlated with trust, 

and dispositional measures of trusting. We can incorporate these factors, 

and others such a group membership, explicitly, and we can allow the fac­

tors to be modified. 

Trust as rational decision-making 

If we accept the view that trust is a process of assessment and decision­

making, it follows that trust is a cognitive process. The nature of that 

cognitive process is,  however, less clear. The usual view of trust is that it 

is necessarily a rational cognitive process (Hardin, 2002) .  While Hardin 

does not define rationality, his arguments are consistent with assumption 

that he means instrumental rationality. Instrumental (or economic) ratio­

nality is based on a core assumption that people have a set of identified 

preferences about outcomes, that they can rank these preferences consis­

tently, and that they will actively attempt to achieve their most preferred 

outcome (Colman, 2003). A model of trust as an instrumentally rational 

process might take this form: a person assesses a situation and the inten­

tions of another person (Hardin, 2002), identifying possible outcomes and 

their value and likelihood. On the basis of these assessments the person 

decides to trust or not trust depending on the assessed likely outcome. 

This view of the cognitive process associated with trust is consistent with 

an assumption that individuals will attempt to optimise their individual 

position. In economics this individual position, the sum value to the indi­

vidual , is called utility. Economists have developed mathematical descrip­

tions of many situations that may involve utility maximisation. Accord­

ing to a utility maximising view, an individual who successfully maximises 

individual utility is exhibiting rational behaviour. In turn, successful op­

timisation may depend on a mathematical or logical solution to a formal 

statement of the problem, and a response consistent with this solution may 

be the only response that would be regarded as rational. 

One form of situation that economists have explored is the theory of formal 

games. These are very simple games that provide an opportunity to carry 
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out experiments in strategic thinking. The very simplicity of the game rules 

limits the possible moves, and restricts the sources of information available 

to players. While formal games are simple, there are many ways that game 

rules can be varied, and the game conditions can be manipulated, to allow 

them to be used as experimental devices. 

Formal games are particularly useful for exploring how people approach 

tasks that call for competition or cooperation, and for investigating how 

people seem to draw on unwritten rules of trust, trustworthiness, and fair­

ness in these tasks. While the strategies being employed cannot be ob­

served directly, researchers infer the strategies that are being employed 

from the observed choices that players make when playing formal games. 

Depending on the specific rules and conditions these strategies might, for 

example, include: bluff and deception; trusting other players; insisting on 

fairness; attempting to negotiate agreements; and punishing defaulters. 

Optimal solutions exist for many formal games, and often solutions amount 

to a recommendation that individual players should always default (Camerer, 

2003b).  Default often makes for a successful individual , one-off, strategy 

because it minimises the potential damage arising if an opponent defects, 

and seizes any opportunities that present if other players do expose them­

selves to exploitation. In these analyses of optimal solutions, attempts at 

cooperation are seen as irrational strategies, because they provide openings 

for exploitation. 

According to this analysis, if players played strictly rationally, in terms 

of seeking an individually optimal result, cooperation would never arise. 

Players would never take the risks necessary for cooperation, and any 

player who did take such a risk would be exploited. According to the formal 

solutions, trust and cooperation are not rational strategies, at least to the 

extent that rationality means utility maximisation. 

Trust as reasoned, but not rational, decision-making 

While mathematically optimal solutions do exist for games, the evidence 

from game experiments suggests that people rarely use these strategies. 

Rather, they tend to find an unexpectedly high proportion of people using 

non-optimal strategies (Camerer, 2003a). This finding holds even when ex­

periments are carried out using business students, who should be familiar 

with the optimal strategies identified by game theory (Camerer, 2003b; Mc­

Cabe, Smith, & LePore, 2000). Economists assume that the use of optimal 
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strategies demonstrates strategic sophistication on the part of the player, 

while other strategies do not (Costa-Gomes, Crawford, & Broseta, 2001 ). 

Selection of other than formally correct solutions is sometimes assumed to 

demonstrate flaws in human reasoning and a failure of rational thinking. 

The frequent use of non-optimal strategies rather than formally correct, op­

timal, rational solutions is reminiscent of patterns of decision-making that 

have been explored by cognitive psychologists. For some particular types of 

problem people tend to choose options that are inconsistent with formally 

correct solutions. For example, people tend to make systematic errors with 

probabilistic data, regardless of their formal training in mathematics and 

statistics (Stanovich & West, 2002). 

There have been a number of alternate interpretations as to why people 

may make apparently incorrect decisions (Stanovich & West, 2002). These 

include: 

1. People may attempt to make rational decisions, but the limited com­

putational resources of the brain and limited availability of informa­

tion from the environment lead to errors (Simon, 1978;  Selten, 2001 ). 

2. People may attempt to make rational choices, but using a form of sta­

tistical reasoning that draws on their existing knowledge to provide 

prior probabilities (McKenzie, 2003). 

3 .  People may make mistakes with artificial problems because we are 

optimised for a different type of problem (Cosmides & Tooby, 1997; 

Gigerenzer, 2000) or because the tasks as presented are framed dif­

ferently to natural tasks. For example, errors made when tasks are 

framed in terms of probabilities disappear when data are presented 

as frequencies rather than probabilities (Gigerenzer, 2000). 

4. Researchers may be making a false assumption about how partici­

pant interpret their experimental tasks, to the extent that partici­

pants may be solving an entirely different problem to that envisaged 

by researchers. 

The last of these is particularly relevant to tasks that may involve cooper­

ation. Formal solutions are derived based on what are the assumed pre­

ferred outcomes. But it may be that game participants' preferred outcomes 

are fundamentally different from these assumed preferences. Specifically, 

formal solutions for games usually assume that the preferred outcome gives 
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the short-term maximum value for the individual, while people may actu­

ally prefer an outcome that gives the maximum value for the whole group, 

or an outcome that gives maximum utility consistent with maintaining re­

lationships. If this is so, it may be that people really are making ratio­

nal , and correct, choices (Stanovich & West, 2002; Van Hezewijk, 2004). If 

the experimenter's assumptions about preferred outcomes are wrong, then 

their assumptions about what is the correct solution will also be wrong. 

Selection of an alternate outcome might, in itself, be seen as being less than 

perfectly rational. Why would anyone prefer a compromise outcome when 

they might pursue an individually optimal outcome? 

One potential reason, a reason that is entirely rational , is that the long­

term application of optimal strategies results in worse outcomes for the 

individual than do non-optimal cooperative strategies. In traditional eco­

nomic games, rational players attempt to maximise their short-term util­

ity. Often this optimal strategy recommends defection. Further, a rational 

player should assume that his opponent is equally rational and knowledge­

able, and will also use optimal strategies. Carried to its logical conclusion, 

optimising strategies reduce to a recommendation that a rational player 

should default, and expect his opponent to do the same. This effectively 

mutates the player's preferred outcome. Through individually attempting 

to obtain maximum gain, players end up attempting to minimise the poten­

tial losses that that might be inflicted on them. Loss minimising strategies 

may protect against the worst case, which is the potential damage that 

might be sustained as a result of a failed attempt at cooperation, but they 

cannot produce the benefits of a cooperative outcome. As a consequence, 

and depending on the situation,  rational decision-making can produce a 

middling outcome at best, and entrenchment of a stable minimum at worst. 

Seen in this light, rational decision-making is not especially rational when 

it precludes cooperation, when cooperation may produce better outcomes 

both collectively and individually. 

The above commentary particularly relates to a choice between coopera­

tion and defection in games, but is as relevant to choices between trust and 

mistrust. While trust and cooperation are not synonymous, or mutually 

dependent, they are closely related concepts (Ullmann-Margalit, 2002). As 

with cooperation, trust offers potential benefits for the truster, but at the 

cost of exposure to damage if the trustee defaults. The concepts are so close 

that the incompatibility of instrumental rationality and cooperation invites 

a challenge to assumptions of trust as a necessarily rational process. At its 
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most stark, trust simply cannot function as an economically rational pro­

cess, for the same reasons that cooperation cannot be economically rational 

(Hollis, 1998). Further, trust is fundamentally irreconcilable with economic 

rationality; optimisation processes are inherently calculative, and this is 

incompatible with trust (Williamson, 1993) .  Trust is irrational , at least to 

the extent that it cannot be rational in the economic sense. This does not 

necessarily mean that there is no reason involved in trust, but the form of 

reason involved may not necessarily be rationality where we take this to 

mean short-term utility maximisation (Hollis, 1998). 

While a view of trust as an other than rational process runs counter to 

some of the trust literature, even economists are concerned about the strict 

optimisation required for economic rationality, for example, (Williamson, 

1993) notes that strict rationality is "mind-boggling". Beyond being mind­

boggling, strict and exclusive rationality can be crippling for decision mak­

ing. People who have fully functioning rational faculties, but damage to 

the brain structures that generate and integrate emotional responses with 

decision-making are able to identify solutions and calculate potential out­

comes, but find it impossible to make decisions, possibly because they find 

it impossible to generate and identify a preference as to outcome (Damasio, 

1994). 

Trust as an attitude with emotional content 

As noted earlier in this chapter, some writers suggest that a sequence of 

events surround trust: an assessment, a decision and an action contingent 

on that assessment and decision. The analysis has, to this point, been 

restricted to the decision-making phase of this process. Thus far, a cog­

nitive formulation of trust has not encompassed assessment of the person 

being trusted in the context of the situation.  As already noted, it is possible 

to consider the assessment component more explicitly. From this vantage 

point, some philosophers have suggested that we consider trust as an at­

titude (Jones, 1996; Lahno, 200 1 )  rather than a decision following from a 

rational analysis. 

Considering trust as an attitude allows us to draw on the social psychology 

of attitudes, and in doing so we gain a location for some of the features 

of trust that are awkwardly left over after assembly of a purely decision­

making model of trust. Saying that trust is an attitude is an explicit ac­

knowledgement that trust is an evaluation of something. In the case of 
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trust, it is an evaluation of the person being trusted.  Attitudes may be de­

veloped through cognitive mechanisms, but this is only one possible deriva­

tion. Notably, as well as a cognitive component, there is a substantial emo­

tional component in forming attitudes, that is notably absent from an ex­

clusively decision-making formulation of trust. 

The emotional content of trust differentiates trust from a purely calcula­

tive assessment, and from reliance more generally. There is a qualitative 

difference between the betrayal of trust and the failure of reliability. For ex­

ample, we feel more distressed by the betrayal of trust than by a breakdown 

in reliability. This may be because trust is an attitude is located within an 

interpersonal interaction, rather than being an attitude directed at some 

inanimate object (Holton, 1994; Lahno, 200 1 ). When we trust someone, 

we make some assessment of their goodwill or shared interest, and we as­

sume that they will select their actions based on these (Baier, 1986; Lahno, 

200 1 ). An assessment and decision to trust carries with it a signal that the 

other is a person (Holton, 1994) and, in turn, being trusted carries with it 

the value of having been recognised as a person (Lahno, 200 1 ) .  

The importance of the emotional content of trust may raise concerns about 

attempting computer simulation of trust. The experience of emotion is one 

of the hard, possibly unsolvable, problems of artificial intelligence. It is 

certainly well beyond current artificial intelligence systems to simulate the 

quality of experiencing an emotion. 

While simulating the quality of an emotion is (currently) impossible, this 

does not preclude a simulating the effects of emotion on decision-making. 

One likely function of emotions is that they are useful in information pro­

cessing. They seem to be important in guiding our attention, and selecting 

which information is relevant, in apply that information ,  in motivation, 

and in selecting preferences. It may also be that emotions are also useful 

in deciding how much analysis to call on in solving a problem. 

An applied example of the simulation of emotion is the provision of an 

emotion interface to artificial decision-making devices. The purpose of this 

work is to try to replicate the efficiency (Chown, Jones, & Henninger, 2002) 

and unpredictability of humans (Henninger, Jones, & Chown, 2003) in an 

agent-based model of a special forces unit. The system designed by Cho 

(2002) uses a neural network to simulate emotions. This neural network 

controls the decision-making system. When emotional arousal is high, 

through fear or confusion, this emotion simulating system overrides the ra­

tional tactical decision-making system, falling back on a simpler strategy, 
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such as fleeing. This model is  based on the idea that emotional responses 

may have a hand in determining the form of reasoning that is applied, im­

plicitly presupposing two different forms of reasoning in humans, although 

the authors do not mention this. 

Trust in a dual-process system 

Researchers in cognitive psychology, however, have explicitly proposed two 

distinct reasoning systems. System 1 is innate and intuitive, and is shared 

by humans and other animals, while System 2 is more analytic, and is an 

exclusively human ability (Evans, 2003) which can act as a check on the 

innate system. These two systems have spectacularly different character­

istics as l isted in review articles by Kahneman (2003) and Evans (2003), 

and a book chapter by Sloman (2002). 

System 1 is efficient in the sense that it produces a result very quickly. 

This may be because it applies parallel processes to information, rather 

than serially assembling pieces of information in a systematic way. It is 

automatic and effortless, and the process is unconscious, at least until the 

outcome reveals itself to us. This may be because System 1 is realised in 

neural network type circuits, which are programmed through association 

of input and output conditions and so are essentially atheoretic. We may 

be unaware of our reasoning process simply because there is no theory be­

hind them. Nevertheless, the patterns developed in in System 1 might be 

modelled as heuristics : simple rules and strategies that use minimal infor­

mation. The slow-learning characteristic of System 1 may also reflect the 

repetition required to incorporate new situations into a neural network. 

System 1 is also associated with the greater involvement of emotion in the 

decision-making process (Kahneman, 2003).  

System 2 i s  much slower, requiring an effortful, sequential, application of 

rules. It is more flexible, allowing analysis through abstract reasoning and 

the generalised application of rules. System 2 is not associated with emo­

tional i nvolvement in decision-making. 

Some difficulties of thinking about trust exclusively in terms of rational 

decision-making have been addressed earlier in this chapter. Further to 

this we might consider the cognitive processes associated with trust in the 

light of the dual-process model of reasoning. Decisions to trust are often 

made in exactly the circumstances in which rational decision-making is dif­

ficult, particularly in  regard to speed,  complexity and the degree of missing 
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information. Situations calling for a dependence on trust can be complex, 

requiring rapid risk assessment and mind-reading of another party's in­

tentions in the face of limited information. While these characteristics may 

freeze rational decision-making processes into indecision, the same infor­

mation might be sufficient to fire up a heuristic and produce a quick result. 

The alternative to trust as a rational decision process is that it arises ini­

tially through a reasoned, but not rational intuitive process. Such a process 

might be intuitive, calling on System 1 to make assessments about whether 

to trust quickly, effortlessly and unconsciously, using emotional content and 

heuristics. While heuristics can provide a very quick and efficient and ac­

curate assessment (Gigerenzer, Todd, & the ABC Research Group, 1999), 

they can also mislead (Kahneman, Slovic, & Tversky, 1982). In the two sys­

tem model, the intuitive system provides a rapid decision-making process, 

and the rational system provides a safety override that allows us to stop 

and take second thought as to whether to trust. 

Evolutionary games 

It should be noted that the earlier discussion on game theory applies to a 

particular conception of game theory: economic game theory. In contrast 

to economic game theory, evolutionary game theories make different as­

sumptions about the criteria for success, and about how optimal strategies 

might have developed. According to evolutionary game theory, a strategy 

is optimal if it was adaptive when it evolved. The development of char­

acteristics through evolution tends to have been best accepted for biologi­

cal structures that are adaptive in the physical environment (Cosmides & 

Tooby, 1992), but for social animals, it seems at least possible that adap­

tation to the social environment may also have been important. This is a 

more controversial proposition, for a number of reasons. Evolutionary psy­

chology suggests that we have evolved particular psychological tendencies. 

While these tendencies might be associated with behaviours that are ob­

servable, many of the brain structures that facilitate them are not readily 

identifiable, and the nature and degree of specialisation proposed for such 

structures is controversial (Fodor, 200 1) .  

Another reason that evolutionary psychology is more controversial than 

biological evolution is that there is no fossil record of behaviours. One 

approach is to use computer simulation to evolve behaviour, often using 

games to define an environment. This approach has some similarity to 

the economic game theory. As economic game theory investigates optimal 
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strategies for access to constrained economic resources, evolutionary game 

theory investigates which strategies are sufficiently successful in natural 

situations. 

Computer modelling experiments using this approach have demonstrated 

that social norms can evolve, and that this might be a source of altruism. 

Some of these norms are paradoxical if considered in  the light of ratio­

nal theory. For example, reciprocity is so universal a social norm that 

we might want to consider the possibility that reciprocity might be an in­

built behaviour in humans. Computer modelling suggests that such a norm 

can be evolved from an iterated Prisoner's Dilemma, in which a Prisoner's 

Dilemma type game is played repeatedly. This allows the agents to evolve 

strategies (Axelrod, 1997b).  The optimal solution generated by the com­

puter model , based on an evolutionary approach, is quite different to the 

optimal solution produced by another technology, formal mathematics and 

logic. 

An important difference between economic and evolutionary game theory 

is that economic game theory tends to produce an optimal solution, but 

has little to say about how this is reached. In contrast, evolutionary game 

theory is inherently concerned with how an outcome evolves, and so with 

the dynamics of that evolution. Computer models allow the exploration of 

the dynamics of how strategies evolve, and so can address stability as well 

as optimality. This can identify systems in which game theoretic optimal 

solutions are unreachable stable equlibria (Enquist, Arak, Ghirlanda, & 

Wachtmeister, 2002), or in which two non-optimal strategies may reach a 

stable coexistence (Abreu & Sethi , 2003). 

Animals, including humans, encounter a range of situations, both physi­

cal and social. The range and unpredictability of possible situations re­

quire strategies that are sufficiently efficient, generalisable, and successful . 

Adaptive strategies do not have to be optimal in every situation, on every 

dimension. A relatively small set of highly generalisable, simple strategies 

may be adaptive if they can identify and implement a best guess strategy 

very quickly, with the expenditure of few resources. It may be that our 

cognitive facilities are something akin to a station-wagon design. These 

are not optimal for luxury, performance, handling or load capacity but are, 

nevertheless, a successful design because they provide a reasonable solu­

tion for a range of functions.  
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Table 6. 1 :  Sentence lengths in a typical Prisoner's Dilemma Game (player 

1 's sentence: player 2's sentence). For example, if player 1 cooperates and 

player 2 defects, then player 1 is sentenced to 5 years, and player 2 goes free. 

Player 1 

Defect Cooperate 

Player 2 Defect 3 :3  5 :0 
Cooperate 0 :5  1 : 1  

Early game experiments in trust: the Prisoner's Dilemma 

The first psychological experiments in trust were carried out using formal 

games, usually the Prisoner's Dilemma (PD). In the PD game, two players 

must simultaneously decide whether or not to cooperate. If both players 

cooperate, both get a high pay-off (a low sentence). If one player cooperates, 

and the other does not the cooperating player gets a very low pay-off (a 

high sentence) and the defaulter gets a very high pay-off (no sentence) .  If 

neither player cooperates, both get a low pay-off (a moderate sentence).  

The Prisoner's Dilemma produces the greatest total outcome, the welfare 

maximising outcome, if both players co-operate, but the greatest individual 

outcome is achieved if a player defects against a cooperating partner. An 

example of the payoffs in a PD game is shown in Table 6. 1 .  

I n  early research PD was used as a device to investigate trust, and i t  is 

sometimes still interpreted as a trust game. A player makes a cooperative 

move only if he both expects that the other player will attempt to cooperate, 

and if he decides to cooperate rather than take advantage of the other per­

son's cooperation . While cooperation and trust are not synonymous, they 

are closely related (Ullmann-Margalit, 2002). Trust is an essential pre­

requisite to acting cooperatively in the PD. Assessing a cooperative move 

in the PD against a definition of trust as an "accepted vulnerability to an­

other's possible but not expected ill will (or lack of good will)" (Baier, 1986), 

a cooperative moves does involve both an expectation that the other will 

act with good will ,  and an accepted vulnerability to that. But a decision to 

cooperate goes further, as it involves both a decision to accept risk and a 

decision to cooperate (Cook & Cooper, 2003). 

These early researchers assumed that there was no rational optimal strat­

egy for the PD. In the absence of an individually optimal strategy, it was as­

sumed that the most rational strategy was for the players to try to achieve 

the welfare maximising outcome (Deutsch, 1958). The welfare maximis-
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ing optimum requires that players both make cooperative moves. Although 

the PD requires both trust and cooperation, it was initially interpreted as 

being primarily about trust, as all players were assumed to be striving to 

achieve cooperation. 

Other researchers were more concerned that the PD did not separate trust 

and cooperation. This is not entirely unexpected. The close relationship 

between cooperation and trust, and the use of PD in investigating trust 

suggests that they have to some extent been regarded as synonymous. But 

trust and cooperation are not the same thing. A decision to cooperate in 

the PD represents an initial decision to trust and a subsequent decision 

to cooperate. But defecting might represent either mistrust and damage 

limitation, or an expectation that the other will cooperate coupled with a 

decision to exploit this. The PD is particularly exposed to this, because both 

players move in a single step in this game, and so the trust step is neces­

sarily packed with the decision to cooperate. It is difficult for researchers 

to convincingly separate trust from other related concepts, especially coop­

eration in the PD. 

Investor games 

The PD is only one of a number of formal games. More recently a number of 

other games have been devised, the designs of which access different strate­

gies. Experiments in trust have recently been revisited by social psychol­

ogists and behavioural economists exploring a number of related concepts: 

exclusive altruism with no cooperation component; expectations of fairness; 

reciprocity; trust; and the enforcement of norms. This research has used a 

newer set of games, classed as trust games (Camerer, 2003b), that access 

trust. In  these games, trust decisions are split from cooperation decisions. 

This is largely achieved by manipulating the timing of moves made by the 

players. In the PD both players move only once, and that move is made 

simultaneously by both players. 

One such trust game is the Investor Game (Camerer, 2003a; Rieskamp, 

2001 ). In this game, one player takes the role of Investor and the other 

player takes the role of Borrower. The Investor is given an allocation of 

money to invest, and must decide how much to invest with the Borrower, 

and how much to keep. Money that is kept is retained safely for the In­

vestor. Whatever money is passed from the I nvestor is trebled before pass­

ing to the Borrower. At that point the Borrower must decide how much to 

100 



return to the Investor. The maximum total result arises when the Investor 

invests all of the allocation with the Borrower. The Investor determines 

the total value in a round and the Borrower decides how to allocate the 

proceeds. 

In addition to the separation of moves of the Investor and Borrower, there 

is a separation of role. The Investor decides how much to trust the Bor­

rower, and the Borrower's trustworthiness is tested. This game is not usu­

ally played as a single round game; a number of rounds are played, over 

which the Investor and Borrower continue to benefit from their respective 

investments of trust and trustworthiness. 

The Investor Games reduces the degree of confounding of trust and cooper­

ation. In the Prisoner's Dilemma both players are equally exposed to each 

other and both players move together. This is not common in negotiating 

trust, which tend to be sequential , trust decisions and subsequent activ­

ity tends to be asymmetric - one person decides to trust and acts on the 

decision, and the second person then may choose to respect that trust or 

take advantage of it. Unlike the PD, the Investor Game is asymmetric and 

asynchronous. 

These more recent experiments with trust games have been used to ex­

plore variation in the operation of trust across cultures (Yamagishi et al. , 

1998; Yamagishi , 2003), the importance of other factors such as norm en­

forcement (Yamagishi et al. , 1998), the use made of available information 

(Yamagishi, 200 1 )  and the role of perceived fairness (Camerer, 2003a), in­

cluding fairness in the size of investment and returns expected (Rieskamp, 

200 1) .  

While experiments using trust games involve more trust than does the 

Prisoner's Dilemma, they do not isolate trust. In trust games, the first 

to move is given some money, and can decide to keep it all, or to pass some 

or all to the second to move. The second to move receives the investment 

plus a premium, then decides how much to return to the first player. A 

decision by the first player to pay money to another may be a result of a 

trust decision but, equally, it might be due to altruism, or a belief in  equal 

sharing (Cox, 2004) or some combination of these and altruism. In another 

game, called the Dictator Game, the first player is given some money, and 

decides how much to pass to the second player. The second player returns 

nothing, so the game is devoid of any component of trust or reciprocation. 

Using a comparison of player behaviour in the Investor Game and the Dic­

tator Game, Cox (2004) has identified that the trust game does produce 
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different behaviour to the Dictator Game. 

Generalised trust: Traits and norms 

While the previous sections have been concerned with identifying the cog­

nitive mechanisms involved in specific instances of trust, they did not dis­

cuss individual differences in trust. Somewhat paradoxically, individual 

differences in trust tend to be revealed in a construct that is often labelled 

generalised trust. Repeating the definition from the first section of this 

chapter, generalised trust is a non-specific expectation about the behaviour 

of others, and so might be thought of a belief about norms of trustworthy 

behaviour. 

Trust as a disposition 

The inability to differentiate trust and cooperation in early game exper­

iments led to a move away from experimental methods in investigating 

trust (Cook & Cooper, 2003;  Goto, 1996). Rotter ( 1967) developed an Inter­

personal Trust Scale (ITS) and he and others used this and similar scales to 

investigate the correlation of trust with a variety of personality and social 

constructs. This research has produced a body of survey results in which 

interpersonal trust is seen as a dispositional or personality variable. 

While both experimental and dispositional streams of psychological research 

into trust seem compatible with everyday ideas of trust, they did not pro­

duce a coherent picture of trust. Studies incorporating both experimental 

and ITS measures have suggested that trust as represented by the PD and 

the Interpersonal Trust Scale were not correlated, indicating that these ac­

cessed significantly different concepts (MacDonald, Kessel , & Fuller, 1972).  

This i s  not entirely surprising, given that the PD includes features of both 

cooperation and trust. Similar concerns exist with the Interpersonal Trust 

Scale. This asks about trust in a number of specific institutions, alongside 

more general elements of trust. It may be that these streams cannot be 

merged, because both package trust alongside other constructs. It has also 

been suggested that the findings from these research streams cannot be 

merged because they miss essential elements of trust. For example, soci­

ologists might take the view that trust is an irreducible quality of social 

groupings (Lewis & Weigert, 1985) ,  and the complexity of different forms 

of trust and their embeddedness in social relationships might prevent the 

merging of the various streams of trust research. 
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This may be unduly pessimistic. The content of the ITS questions are par­

ticularly concerned with beliefs about trust, rather than about the practice 

of trust. Beliefs are particularly associated with rational thinking (Evans, 

2003), and this tends to position generalised trust as a component that may 

be drawn on when we use System 2. If the practice of trust usually draws 

on a System 1 assessment and heuristic type decision, it may be that it 

bypasses beliefs. If System 2 does process differently to System 1, and has 

been found valuable for its ability to check and override System 1 ,  then 

we should not expect to find System 1 practice necessarily correlated with 

System 2 beliefs. 

Generalised trust 

In economics research generalised trust is discussed in terms of a propen­

sity to trust strangers, and people that we do not know well. This does 

not suggest any discrimination in the application of trust, and so does not 

differentiate between trust and gullibility. In this form, the concept of gen­

eralised trust lacks credibility as, in practice, people are highly unlikely to 

risk a lot on a completely unknown stranger. 

Nevertheless, people do give positive answers to questions like the gener­

alised trust question from the United States' General Social Survey ("GSS 

2000 Codebook.", 2000). This question asks "Generally speaking, would you 

say that most people can be trusted or that you can't be too careful in deal­

ing with people?" Similar questions have been used in international sur­

veys of social opinion such as the World Values Survey ( Inglehart, 1997) .  

In these surveys, this question has been interpreted as accessing gener­

alised trust. Although many people agree with the statement that most 

people might be trusted, most answering this way would not apply this 

universally and indiscriminately. Hardin (2002) claims that generalised 

trust essentially does not make sense. He maintains that we are selective 

about who we trust and with what, and so questions that ask about trust 

that do not specify these parameters do not make sense. Notwithstanding 

these comments, he does discuss individuals having general expectation of 

the trustworthiness of other people, where trustworthiness is the extent 

to which the person being trusted will behave as expected(Hardin,  2002). 

This expectation would appear to have much in common with generalised 

trust as accessed by the GSS question.  Generalised trust might better be 

described as a generalised expectation of the trustworthiness of others. The 

questions in the ITS and the survey questions on generalised trust are so 
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similar as to suggest that they might be accessing the same construct. Thus 

the generalised trust question is accessing peoples beliefs about norms of 

trust and trustworthiness. 

The GSS question on trust has also been criticised for conflating two con­

structs; the question offers trust and caution (Miller & Mitamura, 2003) as 

an either/or bipole. Respondents are allowed two possible responses to the 

generalised trust question: "Most people can be trusted" and "[you] can't 

be too careful." These two responses are differently framed as trusted and 

careful, and they may tap two separate constructs. Rather than answering 

a question about trust, it may be that people are responding to the word 

caution rather than reading the trust and caution clauses as antonym al­

ternatives. 

A further criticism is that many studies accessing generalised trust ei­

ther use a single explicit question about whether, in general, people can 

be trusted or, alternately, questions about generalised trust are bracketed 

with questions on trust in the government and its institutions and with 

questions on optimism. This grouping of questions closely parallels the 

ITS; both produce a multidimensional measure of trust, including trust of 

unspecified people alongside trust of institutions like the government or 

the clergy. More recent psychological measures of trust as a disposition 

have been more uni-dimensional (Couch & Jones, 1997; Omodei & McLen­

nan, 2000) to avoid this problem, but there has been no equivalent move in 

the design of questions on generalised trust. 

Although the design of the generalised trust question raises questions about 

what construct is being tapped, it would seem that people are prepared to 

answer the question. And, in the aggregate, their answers seem to have 

some implications for the welfare of their countries. At the national level, 

the tendency to agree that people can be trusted correlates with other im­

portant national social , political and economic indicators. The mechanism 

by which this may happen remains contentious. Some analysis has been 

done assuming that the cost of a lack of trust is a simple sum of the costs 

of individual transactions (Zak & Knack, 2001) ,  although these authors do 

note that direct economic costs may be one of the lesser consequences of a 

lack of trust in a society. Others suggest that trust only has meaning at 

a societal level (Lewis & Weigert, 1985),  and so cannot be accessed as an 

aggregate of individual decisions. 
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Learning trust 

Despite the heading of this section, it is not at all clear that we can learn to 

trust. Babies and young children are entirely dependent on their parents 

at birth and for many years, and they must be able to trust to survive. This 

being the case, it is likely that our initial state is one of unquestioning trust 

(Baier, 1986) .  There is not much doubt that we can learn distrust from sub­

sequent experience. Erikson identifies learning to trust and distrust as the 

first major developmental task, but learning to distrust is a continually re­

fined: as long as we continue to trust, and continue to provide opportunities 

to test that trust we may find situations in which it is unjustified. 

This learning process is not symmetrical . It is less obvious that we can 

learn to trust by trial and error. If we do not trust, we do not have an 

opportunity to test whether our trust would have been honoured. If we 

distrust we cannot learn trust through experience. We may have, never­

theless, retain opportunities to learn trust through observational learning. 

Another, less obvious, possibility derives from the analysis that suggests 

that trust might best be thought of as an attitude. Attitudes can be changed 

by changing our behaviour, so maybe it is possible that trust can develop 

through behaving as though we trust, even though we may not hold this 

attitude. Baier ( 1986) considers the effect of this situation on the trustee, 

who may respond with increased trustworthiness, but does not extend this 

to considering the possible effects on the truster. 

Summary 

This chapter has described a number of directions from which trust has 

been explored and described. The variety of ideas surrounding trust, and 

of approaches taken to researching trust, highlights that trust is a rich 

concept, having social , emotional , and cognitive dimensions. A key element 

is that, when faced with incomplete knowledge about another's intentions, 

there is a belief that those intentions are benign, and action in accordance 

with that belief. A further key element is that there is a degree of risk 

if these beliefs are wrong. While these are consistent themes in defining 

trust, particularly those concerning risk and a lack of knowledge, the pre­

cise meaning of trust varies across particular situations. For example, trust 

in receiving support from the family is quite different to trusting an anony­

mous postal worker with a package. 

105 



An ability to function under such conditions is useful in enabling coopera­

tive action which has the potential to generate greater overall benefits for 

the cooperating parties. This applies particularly in situations in which the 

person is not well-known to us. In this case we cannot make well-informed 

predictions about that person's likely behaviour based on our past experi­

ence with that person. If we are only prepared to deal with people whom 

we can predict will behave honestly based on personal knowledge, we are 

restricted to cooperating with people whom we know very well ,  such as 

our immediate family. Trust allows humans to benefit from cooperating 

with others outside their immediate family. But, for trust to work the 

individuals that a person is likely to encounter must share the same un­

derstandings of trust, trustworthiness, and social norms. While individu­

ally founded, cooperative action needs shared understandings and norms 

around trust to also develop within networks. 

Placing trust into an agent-based model 

Modelling trust using theory that is specific to trust, I was faced with an 

immediate challenge. As noted earlier, there are a number of possible con­

structs that we might model. Translated to a modelling perspective, the 

possibilities include incorporating trust into agents as a personality factor, 

an attitude, a decision-making task, or as a behaviour. Even with a particu­

lar construct in mind, there is relatively little theory that is explicitly about 

trust. There is even less in such a form that it can be adapted to a trust sim­

ulation task. Trust as a personality factor provides a good example of this. 

While a number of scales that measure trust as a personality factor have 

been proposed, they do not necessarily predict individual behaviour in spe­

cific situations. For example, behaviour in the Prisoner's Dilemma game is 

not correlated with measures of generalised trust (MacDonald et al . ,  1972) .  

For the modeller, this means that if, for example, we have a component 

that specifies the degree of a personality factor generalised trust associated 

with an individual agent, there is little to suggest how this influences the 

individual agent's interaction with other agents and its environment. 

Trust has such an important role in allowing people to act cooperatively 

that it is pervasive feature in social interactions. It sometimes seems to 

me that the extent of this pervasiveness is such that people do not neces­

sarily notice that trust is operating. For example, people who would claim 

that they do not trust anyone don't stop to consider paying for their burger 

before they have received it. Possibly another sign of its pervasiveness is 
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that people tend to have a shared understanding of what trust means in 

practice. 

Despite shared popular understandings about what trust means, there are 

no universally accepted formal academic definitions of what trust is.  This 

is because a diverse range of conditions and elements are required for trust 

to be engaged, and recognised as being trust. As a result of this diver­

sity, rather than a single academic definition , there are a collection of ideas 

about what trust is, each of which makes some assumptions about the sit­

uation to which it applies. 

The diversity in trust as a concept extends to the forms in which trust man­

ifests. This chapter has discussed some of these forms. Any of these various 

forms might be suitable for inclusion in a simulation model, although some, 

such as a disposition to trust as a personality factor, might be more appli­

cable to incorporating trust as a static characteristic within a model that 

addresses something other than trust. An example might be the models of 

the economic costs of varying degrees of prudential activity that are trig­

gered in part as a result of the amount of generalised trust in individuals 

in a population .  

The foregoing has identified some of the ways that trust might occur in 

individuals, that might also be carried into representations within agents. 

These are specific to trust. A model of trust in networks might use any one 

of these in constructing agents. For example, the agents might be equipped 

with a algorithm for making trust decisions that is derived from research 

into the cognitive mechanisms of trust. 

A second approach might be to identify more general ideas from psychology 

that might be incorporated into individual agents. There are a range of pos­

sible candidate theoretical ideas. For example, theories of learning might 

be applied to the learning of which agents can and cannot be trusted. 

The next two chapters describe the development of two models of trust. 

The first is based on a game theoretical finding about strategies that are 

engaged in the Investor Game, extending this model to a population all of 

whom use these strategies. The second is based on a naturalistic model 

in which agents are located in an online auction setting, provided with the 

same information that is provided in real online markets, and with a means 

of exchanging strategy information. 
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Chapter 7 

The Basic Breaking Model 

The first of the two agent-based models of trust that I constructed was 

based on a formal game that involves trust, called the Investor Game. 

Strategy heuristics have been identified for this game, using a combina­

tion of experiment and simulation (Rieskamp, 200 1 ). 

Formal games 

The simplicity of formal games, and the ability to introduce information 

in a controlled way makes these useful devices for experiments in social 

psychology, as the games can be modified to introduce other elements in 

a controlled way for experiments. Game experiments can produce theory 

that is suitable for direct application to a simulation model , in the form 

of strategies, and factors that have been found to modify these strategies. 

One of only a few specific models of trust as individual action has emerged 

from research using formal trust games. 

One attraction of using games is that many games have been analysed 

formally. The task set participants is well understood, and in many cases 

theoretically optimal solutions have been identified. These solutions can 

provide a cognitive baseline: if players were to play the game using entirely 

rational thinking, and thinking only within the immediate context of the 

game, they should use optimal strategies. 

Game theory was initially developed as a class of mathematical problems 

by John von Neumann (Camerer, 2003a, p.2) revolving around the strate­

gic interaction of two players. Von Neumann recognised these games as 

having application in strategic decision-making. In game theory, the games 
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are stripped down and formalised interactions, with small rule sets and 

very restrictive rules. These formal games can be applied to a variety of 

real world situations involving strategy and negotiation. Examples include 

plea bargaining, auction design, the negotiation of pay scales, and the dis­

tribution of the ownership, costs, and benefits of common goods.  

Economics has made wide use of game theory. In this discipline, game the­

ory is a natural fit with the subject, both because of its numerical formula­

tion, and because of economics interest in the production and distribution 

of scarce resources. But game theory has also been applied in other disci­

plines in which strategic interactions arise, including psychology. 

As noted above, optimal solutions can be identified for many games, but in 

experiments using formal games, a substantial proportion of people do not 

play as if they are using optimal strategies. On the assumption that it is 

rational to choose the moves that give an optimal outcome, many players 

appear to use irrational strategies .  One example is provided by the Dictator 

Game. In this game, a player is given an amount of money, and told that he 

may give as much, or as little, as he chooses to the other participant. The 

optimal solution is for the player to offer nothing, thus maximising what 

he keeps. But, rather than keep it all, many human players will give the 

other player at least some of the money (Camerer, 2003a, p.57-58). 

The Ultimatum Game extends the Dictator Game, this time giving the sec­

ond player an opportunity to reject an offer that she finds unsatisfactory. 

The second player can accept the offered amount, or reject it, in which case 

both players gain nothing. The optimal response is to take whatever is of­

fered, as this is better than nothing. Despite this, many players will reject 

offers that are too low. In the Ultimatum Game many first move players 

offer an amount in the 40-50% range (Camerer, 2003a, p. 50-55). This 

suggests not only that players are likely to play in an apparently irrational 

way, but that this is expected by the player making the offer. 

Both games demonstrate situations in which individuals make moves that 

are not optimal, at least in terms of the objects of the game. There are a 

number of possible reasons that people may make these, apparently irra­

tional, choices, including social factors. In the Ultimatum Game example, 

for example, players may be playing in accordance with norms for sharing. 

Further, it appears that in real world settings people can access the gains 

that can accrue from playing cooperatively, although these strategies may 

not be optimal in a formal mathematical sense. This demonstrates an obvi­

ous problem with formal game theoretic solutions, particularly in economic 
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modelling: These tend to assume economically rational behaviour. There is 

little evidence to suggest that this assumption is reasonable. Experiments 

using formal games have served both to demonstrate that people do not ap­

proach games using purely rational thinking, and as one means to explore 

which of other possible approaches people might be using. 

Games can be played either as a one off interaction, or as a series of re­

peated rounds. Repeating the game can result in a drastic change in the 

strategies used by the players. This is particularly pronounced for trust 

games, in which there is a potential benefit from cooperation , and so a pay­

off for demonstrating trustworthiness is possible. 

The Investor Game 

The Investor Game is a game that engages trust for one of the players. In 

this game (Camerer, 2003a, p. 85),  the two players are given $ 10 each. 

The first player, the investor, decides how much to invest with the second 

player, the borrower. This may be any amount, from nothing to the full 

$ 10 .  The borrower receives three times what the investor decides to invest, 

plus $ 10:  an amount between $10  and $40. The borrower then decides how 

much to return to the investor. Again ,  this may be any amount between 

nothing and the full $40. Even if the players are restricted to whole dollar 

amounts, there are a large number of possible outcomes - either investor or 

borrower might finish with any amount between $0 and $40. 

The best overall outcome depends on the investor investing the whole $10 .  

But to  achieve this best overall outcome, the investor must have an  expec­

tation that the borrower will return at least the $10 invested. This involves 

trust on the part of the investor, as he gives the borrower the full amount 

possible, in the face of a risk that the borrower may not not return this. 

Proponents of the Investor Game as a trust game claim that use of this 

game in trust research can isolate trust by removing other cues that may 

affect a decision (Camerer, 2003a, p. 85),  such as looks, gender, and how the 

person communicates. This can make formal games useful as the basis for 

trust experiments, as they can isolate a minimal version of trust, the trust 

decision,  to which other factors may be added. Social psychologists have 

used this ability to test other factors that can influence such a decision. 

Hardin (2002) firmly places trust as a cognitive process, rather than the en­

ablement of a behaviour. More specifically, he identifies trust as an uncon­

scious, as opposed to a conscious, decision process (Hardin ,  2002).  Accord-
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ing to the dual process model (S. A. Sloman, 2002), unconscious decision­

making is characteristic of a heuristic, rather than a rational decision­

making process. This suggests both that we do not deliberate on a decision 

as to whether or not to trust. That decision is likely to be heuristic, rather 

than a rational decision solving some sort of rational evaluation algorithm. 

Unlike the separation of cognitive process and consequent behaviour, the 

distinction between conscious and unconscious process may be less signif­

icant for the model , but more for the form of the decision-making process. 

The formulation of trust as a cognitive process is an appropriate choice for 

a theoretical basis for an agent-based model . 

This model is a representation of a set of heuristics that were identified 

as optimal strategies for the I nvestor Game by Rieskamp (2001) .  These 

were derived from the interactions observed in an Investor Game experi­

ment with human players. Rieskamp (200 1 )  inferred individual strategy 

heuristics through comparing experimental results with a set of strategies 

derived through an agent-based model of the Investor Game. The interac­

tions of people in an Investor Game experiment were clustered, producing 

a set of patterns of interaction among human participants. An agent-based 

model was used to identify a set of optimal strategies, and the patterns of 

interaction generated by agents using these strategies. These two sets of 

patterns were compared,  identifYing patterns generated by humans with 

strategies developed by simulation agents. 

Each agent in the model is allocated one of two optimal investor strategies, 

and one of two optimal borrower strategies. Of these, only the investor 

strategies depend on trust (Camerer, 2003a). Each round investors are 

given an amount of money. Investors decide how much of this to invest with 

the borrower. For each dollar invested, the borrower receives three times 

the amount. The borrower then decides how much to return to the investor. 

For example, if investors are given $ 1  each round, and the investor decides 

to invest all of this, the borrower then receives $3. The borrower then 

decides how much to return. Any more than $ 1  returned represents no 

loss to the investor, but an inequitable share of the profits. All decision 

thresholds are drawn from (200 1) .  

The theoretical profit-maximising solution for one-off interactions is that 

the borrower, if it does get given any money, acts in an untrustworthy man­

ner, keeping the entire of what it is given. This being the expected rational 

strategy for borrowers, the investor does not trust the borrower at all, and 

so keeps all of the money. There is no potential profit for the borrower 
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in demonstrating trustworthiness, as there are no future interactions be­

tween the players in which to collect the benefits of cooperation. 

While entirely rational, this pair of strategies are far from optimal. Both 

players forgo the gains that can be made through cooperating. As described 

above, the game produces $ 1  in total per round. If the investor does invest 

the total available money, a round produces $3 in total, split somehow be­

tween investor and borrower. 

These rational strategies do not hold for repeated (iterated) games, in which 

players do not know how many times they will partner the same player. 

In these games, there is future value for the borrower in demonstrating 

trustworthiness. What the borrower forgoes by returning money in a game 

should be more than covered in subsequent rounds. 

The four strategies can be described in the state diagrams Figures 7 . 1 -7 .4. 

The investor strategies are : 

1 .  Hesitant (Figure 7 . 1 ) . The investor begins cautiously, investing 50% 

of its income for the round (state 1) .  Whatever the outcome of this 

first investment, the investor again invests a second time (state 2). If 

more than 33% is returned, the investor assesses that the investment 

has been reciprocated, the agent remains in state 2. If it is not, the 

investor does not invest in the next round (state 3) ,  after which it 

returns to state 1 .  

Investor Game model 

1 .  Moderately-Grim (Figure 7 .2) .  The investor begins by investing all of 

its income for the round (state 1 ). If more than 33% is returned by the 

borrower, the investor assesses that the borrower has reciprocated. If 

less, the investor assesses that it has been exploited. If the invest­

ment was exploited, the investor refuses to invest any more (state 3) .  

If the investment was reciprocated the investor again invests 100% 

(state 2) .  From this point, if the borrower defaults, the investor re­

verts to state 1, otherwise it remains in state 2 .  

The borrower strategies are: 

1 .  Reactive (Figure 7 .3 ). The borrower assesses whether it has been 

trusted round by round. If the borrower receives more than 1 7% of 
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Start 

Start 

Reciprocated 

Exploited 

Figure 7 . 1 :  Hesitant Strategy State Diagram (Rieskamp, 200 1)  

Exploited 

Reciprocated 

No investment: no opportunity for 
reciprocation or exploitation 

Figure 7 . 2 :  Moderately-Grim Strategy State Diagram (Rieskamp, 200 1 )  
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Start Distrusted 

Distrusted 

Start Trusted 
State 2 

Return 70% 

Distrusted 

Trusted 

Trusted 

Figure 7 .3 :  Reactive Strategy State Diagram (Rieskamp, 200 1 )  

the investor's income, it returns 70% of the total amount received .  

If  the borrower receives less than this, i t  assesses this as  indicating 

mistrust and returns nothing. 

1 .  Half-Back (Figure 7 .4). The first round the borrower returns half of 

the amount received (state 1 ) .  While it continues to receive more than 

12% of the investor's income, it remains in this state. If in subsequent 

rounds it receives less investment, it returns nothing until it is again 

trusted (state 2). If it is subsequently trusted again, it returns to state 

1 ,  and returns the money. 

Camerer (2003a) notes that it is much simpler than the situations in which 

real world trust decisions are made, but claims that this is because the 

model is a pure form of trust decision. It describes a simple set of rules for 

making decisions, and provides no other sources of information for agents 

to draw from, such as appearance, or any interaction beyond passing money 

back and forth. 
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Trusted or 
Start Distrusted 

State 1 
Return 50% 

Trusted 

Trusted or 
Distrusted 

Distrusted 

Figure 7 .4 :  Half-Back Strategy State Diagram (Rieskamp, 2001 )  

It is possible that unexpected patterns might flow on from agents trading 

from this simple set of rules. Patterns arising from a large number of sim­

ple trust interactions is one of the mechanisms by which the richer patterns 

of trust might be generated. If such patterns were emergent, almost by 

definition, we would not be able to predict them until they were observed. 

This model is therefore a pure exploration as to whether patterns do de­

velop from a large number of agents carrying out simple interactions that 

rely on trust for success. 

Building the Investor Game model 

Working with an agent-based model tends to be an iterative process. A sec­

tion of programme code is written, then run.  This acts both to test that the 

programme is doing what we expect it to , and to add elements to the model 

in a step by step manner. Later in the modelling process, this iterative 

process becomes dominated by experimentation.  

The first task was to populate the model, provide the agents with the ba­

sic set of four strategy heuristics, and test that these were working as in­

tended. A quarter of the total agent population is allocated to each of the 

four strategies. Investors pick up a borrower partner and vice versa. In the 
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initial version, each agent remains with the same partner until the end. In 

the final version, they can break unsatisfactory partnerships and remake 

partnerships with other unpartnered agents. 

Each of these strategies has parameters marking the boundaries between 

trust and mistrust, between reciprocity and exploitation, and fixing the 

levels of investment and return that were drawn from Rieskamp (200 1) .  

These were used for the first version of the model . In later versions, vari­

ability was added to these, so that there were individual expressions of the 

strategies. 

The description of the final version of the model that follows includes both 

the individual variation in strategy parameters and the ability for agents 

to break off trading where the partnership is unsatisfactory. The descrip­

tion is divided into two major programme sections: one representing the 

abilities and characteristics of the agents, and one that both represents 

the environment and manages tasks common to all agents. These include 

managing turn taking and communication between the agents, and han­

dling data output. In the listing of the final version of this model provided 

in the appendix, the agent section of the programme is called TrustAgent, 

and the model section is called BasicBreaking. 

An Investor Game model: Basic Breaking 

The Basic Breaking model has four versions, each adding one feature to 

the previous version. There are a number of reasons to work this way. 

Firstly it is helpful in developing and software verification of the model 

and programme. In the initial stages, a minimal model allows the modeller 

to be able to track how the programme works step by step. The programme 

is run with a small number of agents, and output can be gathered after 

each step to ensure that the programme and model is acting as expected 

at each step. The understanding from each step acts as a foundation for 

following steps. 

The first Basic Breaking model , BasicHeuristic, provides the agents with 

the strategies exactly as given by Rieskamp (200 1) .  In this model , the 

agents with the same strategy exercise this in exactly the same way. That 

is, the levels at which investor agents decide that an investment has been 

reciprocated, and borrower agents decide that the investor has trusted 

them are fixed for all agents. 
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BasicRandomised adds some variability, by replacing the fixed threshold 

levels at which agents judge reciprocation and trust to have occurred with 

randomly determined threshold levels, with a mean equal to the level used 

in the BasicHeuristic model. 

Moderately-Grim investors in the BasicHeuristic model can become locked 

in a cycle of distrust. If the borrower either fails to return enough of the 

first investment, or fails to return sufficient for two cycles in a row, the 

Moderately-Grim investor will not invest any more. Either of these results 

in the Moderately-Grim investor refusing to trust this partner again.  This 

version allows Moderately-Grim investors to break partnerships in which 

the borrower does not return enough of the investment. 

While BasicBreaking4 introduced this breaking component, when the model 

was run no breaks were generated. The actions of the agents are such that 

investor agents always provide an initial opening for cooperation, and bor­

rowers always reciprocate. The BasicBreaking4 model allowed only the 

overall number of agents and the proportion using each of the four strate­

gies to be varied. The BasicBreaking5 model allows the decision set-points 

within the strategies to be varied. 

TrustAgent 

This section of the model defines the agent which, in this model , represents 

an individual investor or borrower. Each agent attempts to accumulate 

wealth each round through a successful investment and repayment trans­

action. Each agent has an identifying number and an allocated role (as 

investor or borrower) and corresponding strategy. Each records the total 

wealth that it has accumulated. 

Each agent also has a set of characteristics setting parameters in its decision­

making heuristic. They set the levels at which the agent regards its partner 

as having trusted it (for borrower agents) and at which the agent regards 

its trust having been justified through reciprocity having been satisfied (for 

investor agents). In the first version of the model, this was fixed for each 

agent at the level reported by Rieskamp (200 1) .  In later versions, variation 

was added to allow for agents to have individual variation in these. 
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Table 7 . 1 :  Gains by investors and borrowers at each round, borrower thresh­

olds set at 0. 1 and 0.4. 

I investor I borrower I 
hesitant reactive 2 1  9 

hesitant half-back 15 15 

moderately-grim reactive 2 1  9 

moderately-grim half-back 15 15 

Results 

The results were analysed using the R statistics (Ihaka & Gentleman, 

1996) package. Three analyses were carried out. The first investigated 

the effects of varying the thresholds at which agents determine whether 

they were trusted or whether the partner reciprocated. For this analysis, 

every agent had the same threshold settings. The next analysis randomly 

allocated thresholds for each agent. 

Varying the thresholds, with no randomisation 

The first model used a population of 1 00 agents. The model was run as 

a batch to generate a combination of each of 4 different levels for each of 

3 different threshold values (reciprocity for investors, and trustedness for 

Reactive and Half-Back borrowers).  This produced a total of 64 runs, each 

of which was allowed to run for 10 rounds. For each agent, the reciprocity 

or trustedness decision thresholds were set to 0 . 1 ,  0.4, 0 .7 ,  and 1 .0 .  The 

amounts invested and returned were kept constant, and equal to the fig­

ures in (Rieskamp, 200 1) .  

Results 

There are four strategy combinations: Moderately-Grim and Reactive; Mod­

erately-Grim and Half-Back; Hesitant and Reactive; Hesitant and Half­

Back. For each of these combinations, investor and borrower earnings are 

fixed at each cycle after the first. While thresholds for determining trust 

are low, the total earnings are three times the investment made by the in­

vestor, and the borrower's strategy that determines the distribution of the 

income, as Reactive borrowers return 70% of what they receive, and Half­

Back borrowers return 50% of what they receive. 
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Table 7 .2 :  Gains by investors and borrowers at each round, borrower thresh­

olds set at 0. 7 and 1. 0. 
I investor I borrower I 

hesitant reactive 0 9 
hesitant half-back 0 15 

moderately-grim reactive 2 1  9 
moderately-grim half-back 15 15 

Discussion 

As we might expect from a model in which there is no scope for variation, 

and no scope for dynamic responses, this model produced constant return to 

investor and borrower at each interval. The first interval differed for some 

agent pairings, as the Hesitant strategy begins with a lower investment at 

the first step than the Moderately-Grim strategy. Where the TrustThresh­

old is higher than 0 .5 ,  Hesitant investors never meet the trust threshold of 

borrowers, so pairings with Hesitant investors produce worse outcomes 

Individual variation in strategy realisation 

The second analysis was of the outcomes in a population of 100 agents 

after the 1 00th round. The decision thresholds, and the amounts invested 

and returned, were randomly distributed around the mean figures reported 

by (Rieskamp, 200 1) .  These were applied to a population of 100 agents. 

The BasicBreaking5 model was first used to produce an image of the out­

comes when the agents use strategies based very closely on the strategies 

extracted from the paper. 

Result 

The borrower's strategy has a significant main effect on the gains made 

by borrowers, F( 1 ,  45) = 17 .77 , p < .00 1 ,  such that Half-Back borrowers 

accumulate more, M = 1 386.4 ,  SD = 423.9,  than Reactive borrowers, M 

= 879 .7 ,  SD = 397.0 .  There was no significant main effect of the investor 

partner's strategy on borrower gain,  F( l ,  45) = 0. 1 19, p = 0.732, ns, between 

with Moderately Grim, M =  1 148. 1 ,  SD = 503 .8 ,  and Hesitant partners, M 

= 1 106.8,  SD = 463 .7 .  There is no significant interaction effect, F( l ,  45) = 

0.007 , p  = .932 , ns. 
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There is also a significant main effect on the investors income depending 

on the strategy used by the borrower, F( l ,  45) = 14 .77 ,  p < .00 1 ,  such that 

investors with Reactive partners accumulate more, M =  2 103.4, SD = 655 .6,  

than investors with Half-Back partners, M =  1472. 1 ,  SD = 439 .9 .  Again,  

there was no significant main effect of investor strategy on gains made by 

investors, F( 1 ,  45) = 2.54,  p = . 12 ,  ns, between Moderately Grim investors, 

M =  1669.0 ,  SD = 632.4, and Hesitant investors, M =  1924.6, SD = 634. 1 .  

There i s  again n o  significant interaction effect, F( l ,  45) = 0.003, p = .96,  ns. 

Discussion 

In the strategy described by (Rieskamp, 200 1) ,  Reactive borrowers who 

have been trusted return a mean 0. 7 of the amount received, and Half­

Back borrowers who have been trusted return a mean of 0 .5 of the amount 

received. This corresponds to a ratio of 1 .4: 1 in the returns from Reactive 

and Half-Back partners respectively. Results from the model suggests that 

the ratio of mean returns for investors was 1 . 58 : 1 .  

Despite this model providing for unsatisfactory relationships to be broken 

off, the strategy does not generate any relationship breaks. All investors 

attempt some investment at the first step, and all borrowers reciprocate 

these investments. 

Sensitivity to set-points 

As noted previously, there are a number of constants noted in the strategies 

identified by (Rieskamp, 2001) .  One group sets the size of the original 

investment, and the amounts to be returned. The other group sets the 

levels at which borrowers accept that they have been trusted. The original 

figures were 12% of the investor's income (for Half-Back agents) and 17% of 

the investor's income (for Reactive agents). Investors set the point at which 

they accept that their trust has been reciprocated at 34% of the income 

received by the borrower. Once the investor's investment is tripled, the 

original investment corresponds to a third of the amount received by the 

borrower. The investor requires that this investment be returned before 

accepting that the borrower has reciprocated. 

Within the broad logic of the strategies modelled, there are few ways that 

failures of trust and reciprocity can be generated. The amounts invested 
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and returned can be varied, and the set points at which trust and reci­

procity are determined can be measured. These are alternate ways of 

triggering the same effects, for example if the initial amount invested is 

dropped, eventually it will fall  below the threshold for having been trusted, 

and the same effect occurs if the threshold is raised. These being equiva­

lent, the sensitivity to these constants was explored by varying just one set 

of constants, the set points. 

This model models a series of interactions in a population of 100 agents. A 

10 step run is carried out for each combination of four levels (0. 1 ,  0 .4 ,  0. 7 ,  

1 .0 ) ,  of the three threshold settings (reciprocity for investors, trust thresh­

old for Reactive borrowers, trust threshold for Half-back borrowers), result­

ing in 64 runs of 10 steps each. 

Results 

Two standard step-wise linear regressions were carried out, one with the 

borrowers accumulated gain as dependent variable, and the other with the 

investor's accumulated gain as the dependent variable. The independent 

variables applied to both regression models were the strategy of the bor­

rower, the strategy of the investor, the threshold at which reciprocity is 

determined, the thresholds at which Reactive agents determine that they 

were trusted, and the thresholds at which Half-Back agents determine that 

they are trusted. 

moneyBorrower All variables except the investor's strategy generate 

significant estimated coefficients in the regression on the borrower's money. 

Comparison of the shift in the adjusted R2 score as variables were removed 

showed that removing all variables but three had little effect on the overall 

model. The three remaining variables are strategyBorrower, TrustThresh­

oldHalfBack, and TrustThresholdReactive, corresponding to the borrower's 

strategy, and the thresholds at which borrowers determine trust. Table 7 .3  

lists the estimated regression coefficients for the remaining variables. 

The overall model has an Adjusted R2 of 0. 1 93 .  Although each of the inde­

pendent variables is significant, the overall model explains relatively little 

of the variance in borrowers' incomes. 

money Investor Again all variables have significant estimated coefficients 

when regressed on the gains made by the investor. With all variables in-
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Table 7 .3 :  Linear regression coefficients, variables influencing borrower 

gains. 

I Estimate I Std. Error I t value I p 

( Intercept) 4 1 .819  3 .414 12 .249 < . 00 1  *'''* 

strategy Borrower 4 1 .940 1 .749 23 .973 < . 00 1  '�** 

TrustThresholdHalfBack 19 .779 2 .607 7.587 < . 00 1  *** 

TrustThresholdReactive 28.223 2 .609 10.81 8  28 .223 

Significance codes:  '''** < 0.00 1 

Table 7 .4 :  Linear regression coefficients, variables influencing investor 

gains 

I Estimate I Std. Error I t value I p 

( Intercept) 1 8 1 .981 6.825 26.664 < .001 *** 

Reci proci tyThreshold -36. 2 2 1  3. 898 -9.293 < .001 *** 

strategy Borrower -38.332 2 .615 - 14.657 < .00 1  *** 

strategy Investor 62 .522 2 .615 23 .908 < .001 *** 

TrustThresholdHalfBack -5 1 .86 1 3 .897 -13 .309 < .00 1  *** 

TrustThresholdReactive -78.270 3 .900 -20.07 1 < .001 *** 

Significance codes: *** < 0.00 1 

eluded in the analysis, the adjusted fl2 is 0 .32 .  Removing variables from 

the regression equation steadily reduces the adjusted fl2 , indicating that 

the best overall model incorporates all of the variables. Again ,  while all 

coefficients are highly significant, the model accounts for only a moderate 

proportion of the variance in investor income. Table 7.4 lists the estimated 

regression coefficients for the remaining variables. 

Discussion 

The positive sign on the estimated coefficient for strategyBorrower (Table 

7 .3 )  i ndicates that borrower gain depends on borrower strategy; on average 

Half-back borrowers made greater gains than did Reactive borrowers. This 

is consistent with the previous ANOVA analysis. The positive sign on the 

estimated coefficients for the borrower thresholds indicates that borrower 

gains increase as borrower thresholds increase. As the borrower thresholds 

increase, the chances of trust being recognised drop, and thus the investor 

may not get any money returned. 

The gains made by investors depend on the outcomes of three stages: the 

amount of the initial investment, the amount returned by the borrower, 

and the subsequent assessment made by the investor that affects the next 
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transaction round .  The regression result for investor income is consistent 

with this.  The three variables of the borrower income are again significant 

variables in setting the investor income, but with the opposite sign. This 

reflects that an increase borrower incomes tends to come at the cost of in­

vestor incomes, as the borrower income is the difference between the total 

amount received and the investor income. 

The relatively low proportion of variance in borrowers' gains explained by 

the model is noteworthy. This may be generated, not by a change in the pro­

cess, which is controlled by the four strategies, but by the individual varia­

tion in the application of these algorithms. The individual constants were 

scattered around the mean, using a normal distribution with a standard 

deviation set at about 20% of the mean. This il lustrates that individual 

variation is a source of noise in its own right. 

The regression shows that for a game of this structure, investors gains de­

pend on both the borrowers strategy and their own. It also depends on the 

levels at which agents determine that trust has been accorded and recipro­

cated. For investors, cooperation depends both on individual strategies and 

on the assessments that both investor and borrower make about whether 

trust has been accorded and reciprocated .  

This is  not symmetric for borrowers, for whom the greatest influences are 

their own strategies and their own assessments as to whether they have 

been trusted. 
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Chapter 8 

The Trading Model 

In looking for theory to apply to an agent-based model of trust, I found an 

almost paradoxical dichotomy: there are an embarrassment of riches in the 

wider research findings of social psychology, many of which are potentially 

applicable to trust, but few specific models of trust. The previous chapter 

described the development of a model that was based on a cognitive model 

that is specific to trust in an abstract setting. 

Empirical research has supported a vast array of theories that in a spe­

cific social situation people will, on average, make particular assessments 

of others, and behave in particular ways. Alongside social psychology, cog­

nitive psychology offers theories about how people gather information and 

make decisions. This chapter describes the development and results from 

a model that is based on more general ideas from social psychology, applied 

to a naturalistic setting. 

Whether calling on a specific theory about how trust functions, or a more 

general psychological theory, I encountered a common difficulty in incorpo­

rating psychological research into an agent-based model . Despite the vast 

body of psychological knowledge and findings, much of this theory is not 

in a form that makes it suitable for direct incorporation into agent-based 

models of trust. There are relatively few theoretical ideas, in the form that 

they exist in psychology, that can be applied directly in developing well­

supported individual agents. For example, a finding that wealthier people 

are, on average, more trusting (Hout, 2003) might be reported in terms of 

means and standard deviations, and the results of hypothesis tests about 

these means and standard deviations. In some circumstances, applying the 

mean value to all members of a population might be a reasonable represen­

tation. At other times, the modeller is likely to want to represent diversity 
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in  the population in a credible way. While analyses have often been carried 

out under the assumption that the distribution was normal, the shape of 

the distribution or even the range of values found, is often not reported. 

Even when using psychological theory that is well supported, without dis­

tribution information, the modeller is unlikely to have sufficient informa­

tion to be able to incorporate theory directly into a model. This means 

that the modeller will ,  almost certainly, have to use judgement, and make 

assumptions at some point in the modelling process. 

Trust in online auctions 

The model described in this chapter is based around trades in an online 

auction market, such as eBay or New Zealand's Trade Me. The sale pro­

cess in these online markets begins with a seller offering an item for sale. 

Prospective buyers must decide whether or not to place a bid. This decision 

can be broken down into two decisions. The first decision corresponds to a 

potential buyer deciding whether or not they are interested in buying the 

item. In the trading model, this is modelled as an entirely random auc­

tion process, in which the seller randomly chooses a selling price, and each 

bidder decides how much they are prepared to bid for it. 

If a trader is interested in buying the item, the trader then has also to 

decide whether or not they are prepared to trust the seller. The purchase 

process usually involves the buyer paying the seller, and the seller makes 

delivery once the payment has been received. It is possible that, having 

received payment, the seller will not behave in accordance with the buyer's 

expectations, and may not deliver the item. Therefore, there is a component 

of risk for the buyer, who may pay the money to a dishonest seller who may 

not deliver the item. Potential buyers are typically provided very little 

information on the seller. The only information that is available is the 

history of previous trading behaviour, the numbers of good and bad trades, 

and the comments made by other traders. There are none of the everyday 

social cues that people might use in face to face trading. 

There is a second source of risk for both buyer and seller, beyond dishonesty. 

Trades can fail if unreliable traders do not communicate, or if they do not 

make payment for an item that they have bid on. In this case, the direct 

costs of trades that fail due to a lack of communication are less than in the 

case of outright fraud or dishonesty. But when a buyer has won an auction, 

the seller has to pay a small commission on the sale, and may have other 
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costs associated with listing the item. If there is no communication, or 

payment is not made, this is lost. In addition to the financial cost is an 

emotional cost in terms of the frustration of efforts to communicate with a 

trader that does not respond, and the loss of an opportunity to sell the item 

to other bidders. 

As previously noted, the providers of online auction service provide guide­

lines that recommend using the available information, but these guidelines 

are minimal, so traders must develop their own strategies for how to use 

this information to make a decision as to whether or not to trust a seller. 

In the absence of specific advice on how to use the available information, 

buyers are left with a number of possibilities. 

At the most extreme, a trader might decide to trust no seller, and bid on 

nothing, or to trust all traders and place bids on desired items, regardless 

of the history. Between these, traders can try to find optimal strategies 

through individual trial and error, participating in trades and trying to 

identify patterns in trades that go wrong. We would expect that a strategy 

developed in this way would be slow and costly to develop. 

An alternative is to extend the sources of experience, by combining per­

sonal experience and drawing on the experience of others, in a form of so­

cial learning. Traders cannot discern much about another's strategy simply 

from following their trades. With a two step trading decision, if no bid is 

made, a potential buyer cannot tell whether this is because others are not 

interested, or because they don't trust the trader. A more likely path is 

that traders communicate elements of their strategy to each other, that is, 

strategy elements are directly communicated between traders. People are 

most likely to share this sort of information with those with whom they are 

friendly. In the model, traders are assumed to have friendly, information 

sharing, relationships with those with whom they have concluded success­

ful trades. 

The Trade Me system auction process 

Typically, participants in online trading act both as buyers and as sellers 

at various times. The environment is clearly defined in terms of its scope, 

population, and the information displayed. The bounds of the environment 

are defined by the website, and the signed up membership. Members may 

be widely dispersed geographically, but are closely located in terms of the 
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environment. All link to the website environment directly, and in exactly 

the same way. 

Information on buyers and sellers is provided to traders only through the 

online service, and the information that is provided is very restricted. Trade 

Me provides information on geographical location, on the total number of 

trades, ratings of individual trades (as positive, neutral, or negative) ,  links 

recording the goods sold, and comments that often provide more detailed 

information about any problems that were encountered. Most commonly, 

negative or neutral comments report failures to communicate, failures to go 

through with the purchase, and failures to deliver the goods as described, 

or a failure to deliver any goods at all. 

A sale transaction begins with a seller offering an item for sale. Potential 

buyers decide whether to bid, and if they do bid, enter a bid price. The sale 

proceeds as a conventional auction, with the highest bidder at the close of 

the auction winning the auction. The people participating in trades remain 

anonymous until a sale agreement is concluded, until which they are iden­

tified only by their chosen nickname. At the conclusion of an auction, Trade 

Me provides buyer and seller with contact information. The buyer contacts 

the seller to arrange payment and delivery or collection of the goods. 

The transaction can fail at any of these steps: the buyer can fail to make 

contact; the seller can fail to respond, the buyer can fail to pay, the seller 

can fail to deliver. While any of these outcomes are undesirable outcomes, 

only two have an actual cost. Where the buyer fails to pay, the seller is still 

liable for the selling fee. Where the seller fails to deliver, the buyer loses 

the dollar value of the agreed price. 

The buyer is the most exposed to dishonest sellers, because it is common for 

goods to be paid for before delivery. For the buyer, in particular, a decision 

as to whether to bid involves an assessment of the trustworthiness of the 

seller. As previously stated, the information that is available before a bid is 

made is minimal. As a result, many of the cues that people might normally 

use to make assessments of other people, and decisions about whether or 

not to trust them are not present. 

The services are relatively new, so the environment is a novel situation, 

particularly for people using these services for the first time. Although 

online trading sites recommend checking feedback information this advice 

is not especially prominent. eBay (nd) is specific about interpreting the 

information provided, while Trade Me (nd) suggests that buyers 
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'Review the member's selling feedback . . . .  This shows other items 

they've sold recently and comments from previous buyers. Sell­

ers may also want to view the member profiles of bidders to 

see how reliable they have been in past transactions. Usually, 

a high feedback score and high percentage is a good sign , but 

you should always check your trading partner's member profile 

to read comments and look for negative remarks.' 

Even with the detail provided, naive traders do not necessarily know how to 

use this information to make a decision as to whether to bid. More experi­

enced traders look for patterns in trading history before deciding whether 

to bid on an item. The development of these trading strategies of more 

experienced traders is not entirely a matter of trial and error, as traders 

share information on their own strategies and may modify their strategies 

in the light of the experiences of other traders. As sites like eBay and 

Trade Me have only been operating for a few years, buyers have developed 

strategies in a relatively short time. In that period, buyers have identi­

fied reputation and previous dealings as the most useful information in 

assessing a prospective trader's trustworthiness and reliability (Strader & 

Ramaswami , 2002). 

Method: Constructing the Trading Model 

In the Trading Model, the agents are provided with similar information 

to that provided by New Zealand's major online auction web site, Trade 

Me (www.trademe.co.nz). In the model , agents act as buyers and sellers 

in a simulated online trading market. The simulation provides potential 

buyers with a similar set of information to that provided by New Zealand's 

Trade Me internet auction web site (Trade Me, 2007). These elements of 

information provided are: the number of completed trades; the number of 

successful (good) trades; the number of times that the seller has failed to 

communicate; failed to pay; and failed to deliver. As trading progresses, a 

history is collated of the outcomes of each trade. 

Each Trader begins with a randomly determined strategy, elements of which 

they can share with other agents. As the simulation runs, it models the dis­

semination of trust strategy information in a population of trader agents. 

Trust strategy information may be exchanged between traders that have 

129 



concluded a successful trade, with the less successful trader randomly adopt­

ing elements of the more successful trader's strategy. This model can be 

used to explore what might happen when friendly agents can communi­

cate information on trust strategies, and whether effective trust strategies 

might be adopted throughout the population through this process. If such 

a strategy is effective, traders should be able to discern trustworthy from 

untrustworthy agents. They should continue to trade with trustworthy 

agents, and decline to trade with untrustworthy agents. Untrustworthy 

agents should have less success selling, the proportion of bad trades should 

fall ,  and the overall happiness of should improve as the happiness cost of 

bad trades falls. If trust is operating effectively, trades with trustworthy 

agents should continue, and the happiness gains accrued from these trades 

should continue. 

This model takes quite a different approach to modelling trust to the Basic 

Breaking Model described in the previous chapter above. Where that model 

was based on a very formal laboratory situation, this is a more recognisable 

real-world situation. In line with this, the psychological theory drawn on 

for the model is not situation specific. Instead of beginning with formal and 

very situation specific algorithm, the agents in the Trading Model simula­

tion are modelled in terms of the information that is available to them , and 

possible ways that they might attempt to adapt to new information as they 

accumulate experience. 

The model assumes that the decision-making process is a basic summation 

of the information that is available, with different pieces of information 

weighted differently. Agents begin with a randomly generated strategy, 

that they can modify as they adapt in response to experience. 

In this situation, learning through purely individual trial and error would 

prove an expensive process. Further, observation would suggest that peo­

ple share strategy tips with friends. For the model, adaptation is assumed 

to occur through a process of observational learning, whereby agents com­

municate some information on their successful strategies to each other. In 

the real world, that information tends to be communicated by friends. In 

the model, friendly relations are assumed following a successful trade, so 

agents may share information on their strategies with other traders that 

they have traded successfully with. 

The model therefore models agents with a decision-making strategy for 

whether to trust or not. This strategy is refined through an observational 

learning process, as agents share information on successful strategies. The 
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model has two components: the agents (Trader) and the main body of the 

programme (TradeMe) 

Trader (agent) 

Trader agents have randomly assigned reliability and honesty character­

istics. These are fixed traits. These are used to calculate the chances of a 

trader failing to communicate (reliability), pay (reliability), or deliver goods 

(honesty). The trader agents have a number of actions that they can carry 

out: a new agent can initialise itself; it can decide whether it has some­

thing for sale; it can decide whether to bid, and how much to bid; it can 

decide whether to go through with the deal; and whether to adopt elements 

of strategy from its trading partner. 

Agent initialises itself: init() 

This initialises the randomly determined characteristics of each trader. 

This sets the fixed values for reliability and honesty, and the initial val­

ues for the weightings for each of bad communications, bad payments, bad 

deliveries, (all of which are failed trades), good trades and the total number 

of trades. 

Agent decides whether it has something to sell: forSalePrice() 

This action randomly generates a decision as to whether to offer something 

for sale. Agents have a 50% probability of offering something for sale. If the 

agent is selling something, this action also randomly generates an asking 

pnce. 

Agent decides whether, and how much it wants to bid: bidToBuy 

(badDeliveries, badCommunications, badPayment, goodTrades, to­

talTrades) 

The TradeMe environment passes five pieces of information to the buyer: 

badDeliveries; badCommunications; badPayment; goodTrades;  totalTrades. 

The buyer calculates an assessment of the seller, using a simple summation 

of the weighted information. 

Assess = tT x I  V eightTT +bC x W eightBC +bPx I V eight B P+bD x I  F eight B D +  
y T  x IV eightCT 
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Where 

tT is the total number of trades that the trader has been engaged in, 

bC is the proportion of bad communications 

bP is the proportion of bad payments 

bD is the proportion of bad deliveries 

gT is the proportion of good trades 

WeightTT is the weight applied to total trades 

Weight BC is the weight applied to the proportion of bad communications 

Weigh t B P  is the weight applied to the proportion of bad payments 

W eightB D is the weight applied to the proportion of bad deliveries 

W PiqhtGT is the weight applied to the proportion of good trades 

If the assessment is negative, the trader will not consider bidding. If the as­

sessment is positive, the trader will randomly generate a decision whether 

to bid,  and the bid price. The buyer also has a 50% probability of bidding. 

Agent decides whether it is going to go through with the deal: com­

municate(), payUp(), delivery() 

These actions return the agent's decision whether or not to communicate, 

to pay, or to deliver respectively. 

Agent decides whether it will adopt elements of others' strategy: 

exchangeStrategy(Trader, partner) 

This action occurs following the completion of a satisfactory trade. If the 

trader's overall happiness is less than that of their partner in a transaction, 

the trader collects the information on the partner's strategy. The trader 

then decides, element by element, whether or not to adopt that element 

from the partner's strategy. There is a 50% chance that the trader will 

adopt any one element. 

TradeMe (the main body of the programme) 

This section carries out two functions. The first function is that the TradeMe 

section forms the environment in which the trader agents operate. In this 
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case, the model simulates an explicitly identifiable environment, the Trade 

Me system. The first function is that it manages the agent-based model 

house-keeping. This consists the initial set up of the model, scheduling the 

actions, running the simulation, and collecting the data and writing it to a 

file. The model has three actions scheduled, running a simulation iteration, 

or step, called TradeStep, outputting data, and stopping the simulation. 

Part of the process of setting up the TradeMe model is initialising the pop­

ulation , and generating each of the agents and initialising the agents to 

generate their individual characteristics. An inherent part of this process 

is the decision about the number of agents in the population. The model 

needed enough agents to have a large range of different initial strategies, 

and enough agents to credibly simulate a market full of strangers. On the 

other hand, the population of the model needs to be small enough that the 

simulation runs in a reasonable time, and small enough that the data files 

generated are manageable for subsequent analysis. The population size of 

100 was chosen as the data files and analysis were still manageable. 

TradeStep()  and sale( )  

The main component of TradeStep is  the sale() function. This generates 

a round of sales. The action first shuffles the agents, to randomise the 

order in which agents are polled to see if they have anything for sale. One 

by one, the agents are asked to run forSalePrice(), then all of the other 

agents are asked to run bidToBuy( ). The top bidder becomes the buyer. 

The programme then alternates polling the bidder for communications, the 

seller for communication, the bidder for whether they will pay, and the 

seller for whether they will deliver. If the transaction fails at any stage, the 

result is recorded against the defaulter, and happiness scores are allocated 

to record satisfaction with the result. Table shows the scores allocated for 

each of the types of outcome. Both buyer and seller are happy with a good 

sale outcome. This is reflected in a happiness score of 10 for a good trade. 

If the deal founders through bad communication by one party, the other 

will be somewhat unhappy, and gets a happiness score of -2. If the buyer 

does not pay, the seller will be a little more unhappy, and gets a happiness 

score of -5 . In both situations the defaulter is presumably neither happy 

nor unhappy, and will get a neutral result. If the buyer pays, but the seller 

fails to deliver, the buyer is likely to be very unhappy. The seller is likely 

to be very happy with this outcome. The buyer gets a score of -20, and the 

seller gets a score of 20.  Table 8. 1 shows the tables with the outcomes for 
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Table 8 . 1 :  Happiness scores for each possible outcome 

I Seller happiness I Buyer happiness I 
Buyer does not communicate -2 0 

Seller does not communicate 0 -2 

Buyer does not pay -5 0 

Seller does not deliver 20 -20 

Good trade 10 10 

both seller and buyers. 

Following the trading round the trader and partner may exchange infor­

mation .  This information exchange is in one direction only, from the trader 

with the greater total happiness score to the trader with the lesser total 

happiness score. This is intended to represent the less successful traders 

learning from the more successful traders. This exchange only occurs when 

the traders have negotiated a good sale. For each of the five weighting com­

ponents, the trader with the lower happiness score has a 50% chance of 

adopting the weighting, so randomly adopts between zero and five of the 

weightings. 

This information sharing is similar to the process used in genetic algo­

rithms. Genetic algorithms are effective techniques for searching for op­

timum strategies. Their development was inspired by the molecular bio­

logical model of genetics. Genetic algorithms have been applied to psycho­

logical models, but in this setting their application has been less explicit 

in terms of what the genetic elements represent. This model adopts one 

feature of the genetic algorithm technique, the transfer of discrete chunks 

of information. 

The trading model is intended to explore the role that observational learn­

ing might have in traders finding an optimal way of using the information 

that they have available on other traders. This form of learning has some 

features in common with genetic algorithms, notably the transfer of in­

formation among successful traders. There are, however, some important 

differences between the information exchange in the trading model and the 

way that information is combined in genetic algorithms. Firstly, while in­

formation is shared between traders who have had a successful interaction, 

information exchange is not restricted to being only between the most suc­

cessful traders. In the early rounds, the most successful traders may be 

the most dishonest traders, as they can make substantial gains from each 

successful delivery default. But information is only exchanged following 
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Table 8 .2 :  Agent characteristics after initialisation round. 
Weights given to scores 

Characteristics Failures to No. of trades 
Agent Reliable Honest Comm. Deliver Pay Good Total 

1 0.78 0.86 0 .81  0 .22 0 .41 0 .65 0 .0060 
2 0 .79 0.69 0 .75 0 .84 0.97 0 .65 0 .0062 
3 0.84 0.67 0 .35 0.65 0 .03 0 .86 0 .0028 
4 0 .71  1 .00 0.09 0.72 0 .76 0 . 15 0 .0068 
5 0.53 0.80 0 .39 0 .95 0 . 1 7  0 .52 0 .0027 
6 0.37 0.97 0 .47 0 .89 0.54 0.54 0 .0027 

a successful trade. Secondly, there is only one generation in this model , 

whereas in genetic algorithms, information is transferred from one gener­

ation of agents to the next. 

Details of a single trading round 

Computer simulation allows us to collect every element of detail at every 

step. While this would generate an overwhelming amount of data if done 

for an entire set of simulation runs, it does allow us to see each decision 

and interaction for a small number of traders, over a small number of trad­

ing rounds. Carrying out an inspection of these has a number of benefits. 

A step by step inspection of the program in action can help provide some 

assurance that it is doing what it should be doing, and so forms part of the 

verification process. It can also provide some hints as to how to proceed in 

the modelling. For example, in some runs strategies that were very sensi­

tive to the total number of trades developed early in the simulation. As a 

result ,  with few previous trading rounds, none of the traders had enough 

trades for any of the others to trust them and trading stopped. 

The results of the initialisation round is shown in Table 8 .2 .  At initialisa­

tion, two of the agents (Agent 5 and Agent 6) have very low reliability, and 

two other agents (Agent 2 and Agent 3)  have moderately low honesty. 

Following the initialisation round, the model carries out a series of trading 

rounds. Each agent is polled as to whether it has anything to sell. The 

order in which the agents are polled is generated randomly, using one of the 

functions of the Repast package. For the agent being polled, the decision 

is effectively a coin toss; if a random number generated from a uniform 

distribution with a range zero to one (Uniform[0 , 1 ] )  is greater than 0 .5 ,  

then the seller has something to  sell, otherwise it  doesn't. Effectively, this 
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is the equivalent of a 50/50 coin toss. The auction round begins with Agent 

2 deciding whether it has something to sell .  

Agent 2 generates a random number (0.57) that is greater than 0.5 so agent 

2 has something for sale. 

If an agent does have something to sell ,  the bidding round follows immedi­

ately after the decision to sell .  In the bidding round, each agent is polled as 

to whether it wants to bid. There are three steps in each agent's decision 

as to whether and how much to bid. First it decides, based on the seller's 

history, and its own strategy, whether it trusts the agent. Next, if the bid­

der does trust the seller, it decides whether or not it is going to bid.  Again 

this decision is effectively a coin toss. If the agent does decide to bid, the 

amount bid is randomly generated from a normal distribution with a mean 

of 20, and a standard deviation of 5. 

At this stage, there have been no trades,  and so none of the agents have a 

trading history. Agents 1 ,  3 ,  4 ,  5 ,  and 6 all decide that they will trust the 

seller, and move on to the second step in the decision-making process .  Only 

one of the agents, Agent 5 ,  decides to bid, and it bids 30.35.  

The auction concludes with the highest (and only) bidder, Agent 5 winning 

the auction. With a sale agreement reached , the two agents enter a phase 

in which they attempt to complete the transaction. 

The first step requires the buyer to initiate contact with the seller. On 

Trade Me, this step provides the seller with the buyer's contact details and 

delivery address. Whether this happens is determined randomly, with the 

decision depending on the random number and the agent's reliability. The 

agent generates a random number from a Uniform[0, 1 ]  distribution. If the 

number is greater than the agent's reliability, the agent fails to communi­

cate. For example, a very reliable agent, with a reliability of 0 .95, would 

have to generate a random number between 0.95 and 1 .0  for a failure of 

communication to happen. Agent 5 is less reliable, and if it generates a 

random number between 0.534 and 1 .0 ,  it will fail to communicate. 

Agent 5 generates a random number (0.50) that is less than its reliability 

(0.534),  and does communicate with the seller. 

The next step requires the seller to return the communication. On Trade 

Me, this would typically involve the seller providing an account number 

to enable the buyer paying. This is determined in the same way that the 

buyer's communication is determined. 
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Table 8.3 :  Agent 2's use of Agent 5's history in making a trust decision. 

Agent 
2 

Agent 
5 

Assess 
-0 .744 

Do not trust 

Weights given to scores 
Failures to 

Comm. l Deliver I Pay 
0 . 75 0 .84 0.97 

No. of trades 
Good I Total 
0.65 0 .0062 

Seller's history 
Failures to No. of trades 

Comm. Deliver Pay Goo� I Total 
1 0 0 1 

Decision result 
Comm. l Deliver I Pay I Good I Total 

-0 . 75 0 NA 0 0.0062 

Agent 2 generates a random number (0.35) that is less than its reliability 

(0 .79),  and does return the communication. 

With communication established, the next step in the sale process requires 

the buyer to pay. There is no gain for the buyer in failing to make payment, 

as the seller does not deliver until the buyer has made payment. Again ,  

this decision as to whether to pay depends on  the reliability of  the buyer, 

and is made in the same way. 

Agent 5 generates a random number (0.65) that is greater than its reliabil­

ity (0 .534), and does not pay up. The sale process stops at this point. Agent 

2 is unhappy about the outcome, and its happiness drops 5 points. Agent 5 

is indifferent to the outcome, so its happiness remains unchanged. A bad 

communication is recorded on Agent 5's trading record, and both Agent 2 

and Agent 5 have a trade added to their total trades record. 

In the next trading round, it happens that Trader 5 has something to sell .  

At this point, Trader 5 has no good trades, and one trade that has failed 

because they did not communicate - a 100% failure rate. At this point, All 

of the traders assess Trader 5 as being untrustworthy. The details of the 

trust assessment calculation for Trader 2 is shown in Table 8 .3 .  

Where a trade is completed with no failures, the agents compare happiness 

scores. The agent with the lowest score carries out the equivalent of a 

coin toss for each element of the trust decision strategy. An example of the 

process is shown in Table 8.4 
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Table 8 .4 :  Adoption of strategy elements by Agent 2. 
Weights given to scores 

Failures to No. of trades 
Agent Happiness Comm. Deliver Pay Good Total 

1 0 0 .81  0.22 0.41 0 .65 0 .0060 
2 -7 0 .75 0.84 0.97 0 .65 0.0062 

Agent 2 randomly adopts elements of Agent 1's strategy 
coin toss 1 0 1 0 0 

New strategy 0 .81  0 .84 0.41 0 .65 0 .0062 

Results 

Data were collected from 25 different runs of the Trading Model, each 

of which consisted 250 auction trading rounds. Experience working with 

the model suggested that in most cases the simulation had settled to a fi­

nal distribution of strategies by about round 250. It is likely that this is 

driven by the dynamics of the model , as these determine the rate at which 

traders exchange strategy information with each other. A new population 

of traders was generated for each run, for each of which honesty and reli­

ability characteristics were randomly generated, as were an initial set of 

strategy weightings. Other model parameters, such as the values placed 

on each type of outcome, were fixed across all 25 runs. 

The results were analysed using the R ( lhaka & Gentleman, 1996) statis­

tics package. 

Dimensions 

This model tracks the activities of a population of agents operating in a 

new market. Each iteration of the model corresponds to a single round of 

trading in this market. This generates longitudinal population data, that 

can be sliced at any step to produce cross-sectional data. A single run of a 

number of trading rounds also generates a trading history for each agent. 

Finally, the model can be run a number of times, each of which run might 

correspond to a new population starting trading in a new m arket. Figure 

8 . 1 shows the structure of the data collected from the model . The differ­

ent populations, starting conditions, and trading histories lead to different 

possibilities as to how a market might develop. And with data collected for 

every individual, at every trading round, across a number different runs, 

the model generates data in a number of different dimensions. 
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Figure 8. 1 :  Structure of results data output by the Trading Model 

At a population level, the model might generate patterns that appear across 

all runs. An example is that the design of this model is such that we would 

expect that the agents reach a consensus on the weightings given the strat­

egy elements. This would be expected because there is no innovation in 

trading strategy, and the direction of transmission is asymmetric; strategy 

elements are always passed from more successful to less successful traders. 

An agent-based model can, in general, be used to investigate two related 

aspects of the behaviour of a network of traders: the stable patterns arising 

within the online market, and the dynamic behaviour of traders in the sys­

tem. In the case of the Trading model, the agent-based model can be used to 

explore the way that strategic information spreads through the population 

of traders under a particular set of assumptions. It is less clear whether 

passing information is allowing a population of traders to maintain trading 

with trustworthy traders, and to identify others. 

The model can also be used to observe the development of strategy patterns 

in time. Sequential data can be collected at a number of intervals through­

out a run.  In the case of the Trading model, each run of the model consisted 

250 trading rounds, with data collected at each trading round. The collec-
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tion of data at every trading round provides a longitudinal history about in­

dividual histories, and about how the system has behaved over time. Thus 

we can collect information on the dynamic behaviour of the system. 

The extent to which resulting strategies are sensitive to individual trader 

characteristics, and to unfolding trading interactions can be explored through 

multiple runs of the model . It is possible that common patterns develop 

across all runs. Alternatively, it is possible that there are a spread of pos­

sible outcomes, some of which may be more likely than others. 

Model validation 

The first step, before analysing the data, was to check that the model was 

behaving as I expected it to, that is, in accordance with its design. A single 

run was used for this verification. 

In the model , reliability and honesty are generated by drawing random 

numbers from a simulated uniform distribution, then taking the fourth 

root of these. The intention was that this would generate a distribution of 

reliability and honesty with a large negative skew: a population that was 

largely reliable and honest. 

The untransformed distributions of honesty and reliability are shown in 

Figure 8 .2  . Both were negatively skewed. This indicates that, as intended, 

the population has a small number of agents with low honesty, and a small 

number of agents with low reliability. The majority of the agent population 

is reliable and honest. 

The chance of bad communications or bad payments occurring during a 

trade is driven by the reliability of the trader. This should lead to a very 

strong correlation between each of these behaviours and reliability. The 

number of trades that fail through bad communications or bad payments 

should also feed through into the number of good trades, as each failed 

trade reduces the possible number of good trades. I expected to find a pos­

itive correlation between the number of good trades and trader reliability. 

While the model is such that there is no happiness cost for each bad com­

munication or bad payment, each does result in an opportunity cost, the 

loss of the potential happiness resulting from a completed good trade. As a 

result, I expected that trader reliability would also be inversely correlated 

with happiness. 

The structure plot matrix (SPLOM) at the 250th round (Figure 8.2)  shows 

that, as expected, there were strong negative correlations between the 
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Figure 8.2 :  Structure plot matrices showing correlations between the out­
come variables 
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number of bad communications and reliability, r( l00)=-.939, p<.00 1 ,  and a 

slightly weaker correlation between the number of bad payments and relia­

bility, r( l00)=-.804, p<.00 1 .  There was also a strong positive correlation be­

tween reliability and the number of good trades, r( 100)=.820, p<.001 ,  and a 

weaker positive correlation between reliability and happiness, r( 100)=.645, 

p<.00 1 .  As expected, the number of trades that failed through bad commu­

nications and bad payments was strongly negatively correlated with the 

traders' reliability, and positively correlated with the number of good trades 

completed by the trader, and this difference in the number of completed 

good trades was reflected in the positive correlation between happiness and 

reliability. 

The model was also written so that the chance of a bad delivery depends 

on the trader's honesty. I expected to find a strong negative correlation be­

tween honesty and the number of bad deliveries. The SPLOM (Figure 8 .2)  

shows a strong negative correlation between the number of bad payments 

and the reliability of the trader, r( l00)=-.842, p<.OO l .  Again the number of 

good trades was reduced by the number of trades that fail for a bad pay­

ment, so good trades were correlated positively with honesty, r( lOO)= .354, 

p<.00 1 ,  and, in turn, with happiness r( lOO)= .407, p<.OO l .  

Exploration of data generated by the model 

Potential for capture of strategy by dishonest traders 

The agents judge the relative success of their strategies by comparing their 

happiness with that of other traders with whom they have completed a 

successful trade. The trader who is less happy may adopt strategy elements 

from the more successful trader. 

The initial model design was based on the assumption that happiness gains 

made from both successful trades and from successful frauds would both 

count when the agents compared strategies. As a successful fraud carries 

a high reward, it was possible that the strategy might become captured by 

less honest traders. If these traders can make large gains from fraud than 

from legitimate trading, they may become the happiest traders, and be­

come influential in disseminating strategy because of their happiness. For 

example, a strategy that benefits dishonest traders might include trusting 

traders despite a history of failed deliveries. 

The model was run 25 times under the condition that the gains from fraud 
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Table 8 .5 :  Per round mean and median values at the 250th trading round. 

Gains from fraud Gains from fraud 
not included included 

M (SD) Median M (SD) Median 

Median happiness 3 .256( .201)  3 .280 4.238(0.206) 4 .216 

Total happiness 325. 7( 19.3)  328.6 425 .8( 18.5) 427 .0  

Bad communications 15 .62( 1 .66) 15 .61  15 .37(0.82) 15 .30 

Bad payments 5 .612(0.235) 5 .628 5 .517(0.228) 5 .556 

Bad deliveries 4. 788(0.332) 4.808 4.87 4(0.264) 4.860 

Good trades 48.07( 1 .65) 48.36 48.42( 1 .62) 48.43 

are included in the happiness score, and 25 times under the condition that 

the gains from fraud are not included in the happiness score. Each run 

represents one single possible history and set of outcomes in a population. 

The final (round 250) per round mean and median values for happiness 

scores and for the types of outcome (bad communications, bad payments, 

bad deliveries, and good trades) is shown in Table 8 .5 .  The overall happi­

ness was higher under the condition that the gains from fraud (bad deliv­

eries) were included, reflecting the inclusion of these gains in the overall 

happiness figures. The numbers of each type of outcome remained the same 

whether or not gains from fraud were included. Most notably, including 

the gains from frauds did not result in a difference in the overall number 

of bad delivery outcomes. This suggested that the least honest traders did 

not influence strategies so that other agents would trust dishonest traders. 

Subsequent analyses were carried out only for the model in which the gains 

from frauds were included in the happiness outcomes. 

Analysis across all 25 runs of the model 

Early and late outcomes Possibly the most basic question that could 

be asked of the data is whether there is a shift in the outcomes throughout 

a simulation run .  This question might be asked of the data from a single 

run, but there is no assurance that this is not just one possible outcome, 

rather than being a sustained pattern, or a likely outcome. The change 

in outcomes across all 25 runs is shown i n  Table 8.6 . The only outcome 

showing a significant change across the whole population is the median 

happiness, with all other outcomes showing small non-significant changes. 
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Table 8.6 :  Difference in overall per round outcomes between round 5 and 

round 250 across 25 runs 

I Outcome I Difference I t(24) p 

median happiness 0 .3936 3.076 .0052 

total happiness 14 .94 1 .538 . 137 

bad communications 0 .08 18 0.235 . 817  

bad payments -0. 1 143 -0.554 . 585 

bad deliveries -0.2742 - 1 .563 .259 

good trades -0.8892 0.997 .329 

Consensus on trust strategy In 25 runs of the model , the population 

of agents found a consensus on all weightings only in one run. Other runs 

reached varying degrees of consensus, from no consensus to consensus on 

all five weightings (see Figure 8 .3  ). Even where consensus on strategies is 

not reached, the number of different strategies being used in the population 

reduces. Overall, across 25 runs, and five strategies, in the great majority 

of cases, the strategies being used in the population had reduced either to 

a consensus or to two different weightings (see Figure 8.4 ). The model 

behaves as expected, with strategy weightings gradually moving toward 

consensus over a number of runs. 

Clustering of runs 

The 25 runs produced a variety of different outcomes and weightings by 

the 250th trading round. The number of dimensions made it difficult to de­

tect whether there were patterns in these outcomes. Clustering techniques 

are useful for identifying runs that are similar. It does this by identifying 

which groups of elements are closest to each other, and identifying these 

with clusters. If the clusters are differentiated, there will be a distance 

between the clusters. K-means clustering begins with a set of randomly 

determined centroids , with each run allocated to the cluster with the near­

est centroid .  Once all runs have been allocated to a cluster, the centroid is 

recalculated. The process continues with reallocation, and recalculating of 

the centroids until there are no more changes in allocation. A clustering 

analysis was carried out on the 25 runs,  in an attempt to identify whether 

sub-groupings of outcomes had formed, and whether these were related ei­

ther to the weightings that were being applied by the agents by the end 

of a simulation run, or to the values of the outcome variables early in the 

simulation run. 
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Figure 8 .3 :  Distribution of the number of times consensus is reached af­
ter 250 rounds, across 25 simulation runs. Consensus can be reached for 
a number of strategies, between between no consensus on strategies and 
consensus on all five strategy elements. 

145 



L 

0 
L[) 

()) 0 
..0 I") E 
:::l 

z 
0 
N 

0 

0 

D i s t ri b u ti o n  o f  t h e  f i n a l  n u m b e r  o f  l e v e l s  

1 . 0 1 . 5  2 . 0  2 . 5  3 . 0  3 . 5  4 . 0  4 . 5  
N u m b e r  o f  l ev e l s  

Figure 8 . 4 :  Distribution o f  the final number o f  strategy levels a t  round 250, 
across 25 runs, each with five different strategies. Most of the strategies 
have reduced so that either the population has reached a consensus on the 
strategies, or to there being two different strategies in the population. 
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Given that cluster analysis is an attempt to find which runs are similar, 

a prerequisite step requires decisions about what things might be similar, 

the clustering variables, and about what defines similarity. In k-means 

clustering, similarity is determined by distance to the cluster centroid. For 

this analysis there were a number of possible clustering variables. The pri­

mary marker of outcome was a single variable, happiness. Happiness is 

directly derived from trading outcomes, with trades that fail ,  and trades 

that succeed, all adding happiness or unhappiness to the overall total. Us­

ing happiness directly as the clustering variable would not differentiate 

these underlying sources of this happiness outcome. 

One alternative was to use the trading outcomes that contribute to generat­

ing the happiness, and unhappiness, that aggregates into a final happiness 

outcome. There are four possible outcomes of a trade: a failure to commu­

nicate, a failure to pay, a failure to deliver, and a completed good trade. Of 

these, the number of good trades was strongly correlated with the num­

ber of failures to communicate, r(23)=-.860, p < 0.00). This suggests that 

the good trades outcome and the bad communications strategy outcomes 

were similar enough that including both in the clustering would amount 

to double-counting the number of bad communications. This left three out­

come variables in the clustering: bad communications, bad payments, and 

bad deliveries. 

Clustering was carried out using k-means clustering on the per round oc­

currence of three outcome variables in the whole population: bad commu­

nications; bad payments; and bad deliveries. As the accumulated number 

of bad trades at the 250th round is inherently larger than the accumulated 

number of bad trades at the 5th round, the raw number of failures was di­

vided by the respective number of rounds to obtain the rate of occurrence of 

the different outcomes, and thereby a comparable result for the early and 

late outcomes. 

The plot of the sum of squares from the k-means clustering (see Figure 8.5 ) 

shows no obvious knee-points to guide the choice of the number of clusters. 

In the absence of a clear indication from the data, the number of clusters 

was selected to be three. This gave a combination of simplicity, reasonable 

cluster sizes, and a coherent story. The centroids of the three clusters are 

as shown in Table 8 .7 .  Figure 8 .6  shows the clusters located in the plane 

formed by the two major principal components. The three centroids were 

strongly differentiated in their location along the axis defined by the first 

component of the principal components analysis, while all three centroids 
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Figure 8 .5 :  Weighted sum of squares for clusters 

Table 8. 7 :  Cluster centroids for the three cluster result 
I Bad communications I Bad Deliveries I Bad Payments I Size I 

Cluster 1 1 .47 -0.99 1 .84 3 
Cluster 2 -0.86 0 .57 -0 . 74 10 
Cluster 3 0 .34 -0.23 0. 16 12 
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were located near the mid-point of the second component. Bad commu­

nications and bad payments were loaded heavily on the first component, 

therefore this component reflects reliability driven trading failures. Bad 

deliveries, reflecting honesty driven trading failures, were loaded heavily 

on the second component. The distribution of the cluster centroids along 

the first component axis suggests that the clusters were differentiated in 

their numbers of reliability driven trading failures. 

Of the three clusters, Cluster 1 was a small set of three runs in which the 

population suffered very high levels of trade failures due to unreliability 

(bad communications and bad payments), and very low levels of trade fail­

ures due to dishonesty (bad deliveries). Cluster 2 had the lowest levels 

of trade failures due to unreliability, and the highest level of trade failures 

due to dishonesty. Cluster 3 contains around half of the runs. It had a mod­

erate level of failures due to unreliability, and a moderate level of failures 

due to dishonesty. 

Outcomes by cluster Boxplots of the number of bad communications 

and bad payments at rounds 5 and 250 are shown in Figure 8. 7 , alongside 

the corresponding boxplots of these outcomes at round 5. The difference 

between the early and late boxplots reflects the effect of strategies being 

transmitted and adopted through the population. For Clusters 2 and 3, the 

early and late outcomes are similar, but Cluster 1 showed a large increase 

in the number of failures due to bad communications between rounds 5 and 

250. 

Boxplots of the number of bad deliveries are shown in Figure 8.8. Again ,  

Cluster 1 showed the biggest shift, with a large drop in the occurrence of 

bad deliveries. 

Figure 8 .8  also shows the numbers of good trades at rounds 5 and 250 of 

the simulation. Unlike the other types of outcome, the number of good 

trades was not directly used in differentiating the three clusters. The num­

ber of good trades is, however, directly restricted by these, as each failed 

trade represents a failed opportunity to complete a good trade. There is  

a clear difference between the three clusters in the number of good trades 

being completed at the end of the simulation .  Cluster 1, with a high rate of 

reliability-driven trading failures and a low rate of dishonesty-driven trad­

ing failures, is the worst performing cluster in terms of good trades com­

pleted. Of the other two clusters, Cluster 2, has the highest number of good 

trades completed. This cluster has the higher rate of dishonesty-driven 
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Outcomes by cluster 
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Figure 8.8 :  The number of bad deliveries (BD) and good trades (GT) gener­
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trading failures, and a lower rate of reliability driven trading failures. The 

difference between the clusters in the number of good trades completed is 

significant, F(2,22) = 10. 75,  p<.00 1 .  There is a corresponding significant 

difference in the total happiness in the cluster populations, F(2 ,22)  = 4. 18, 

p=.029. 

Across the three clusters, the form of the rate of occurrence of good trades is 

the mirror image of the patterns for bad communications and bad payments 

seen in Figure 8 .7 .  This tends to suggest that bad communications and 

bad payments have the greatest influence on the number of good trades 

completed. 

More surprisingly, the numbers of good trades parallels the numbers of 

bad deliveries. This is quite different from the mirror image pattern seen 

with bad communications and bad payments. This tends to suggest that 

bad deliveries do not translate so directly to a reduction in the number 

of good trades. It may be that while a decision not to trade with another 

trader may protect a buyer from a dishonest trader, it may also restrict 

the opportunities for good trades to be completed. A trade that fails due to 

bad delivery may be more than compensated for by other trades that are 

allowed to proceed, in the face of some evidence of previous dishonesty by 

the trader. 

Weightings by cluster The clusterings were based on the outcomes, 

with no direct relationship between these and the weightings of the var­

ious strategy elements. A series of boxplots were also generated to inves­

tigate whether the outcomes might reflect patterns in the weightings on 

the strategy elements. Figure 8.9 shows the median weightings on bad 

communications and on bad payments, again at rounds 5 and 250. The 

weightings on bad communications are similar across all three clusters, 

but the three clusters have quite different median weightings on bad pay­

ments, with Cluster 1 showing a much lower weighting on this element, 

and Cluster 3 showing the highest weighting. There are larger differences 

apparent in the weightings on bad deliveries and on good trades. These are 

shown in the boxplots in Figure 8 . 10 . All three clusters have shown a re­

duction in the weighting on bad deliveries, with Clusters 1 and 3 showing 

the greatest drop, and lowest median values on this weighting. These two 

clusters have the highest weighting on the number of good trades. Cluster 

2, which has generated the highest number of good trades, has the highest 

median weighting on bad deliveries, and lowest median weighting on good 
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Figure 8. 10:  The strategy weightings on bad deliveries (WBD) and good 
trades (WGT) in each cluster early (trading round 5) and late (trading 
round 250) in the simulation runs 

155 



trades. 

The boxplots of the weightings suggest that the difference in outcomes be­

tween the clusters may reflect a difference in the patterns of weightings 

in the clusters. Further, the median weightings have shifted from early to 

late in  the cluster. This suggests that the three clusters may be following 

different patterns of evolution of the weightings. 

Summary: Outcomes from many runs The previous analyses were 

carried out over a number of different runs, each of which might represent a 

number of possible ways that a market might evolve, or the evolution of dif­

ferent markets. This might be directly related to the real world equivalent 

of the development of different strategies within different online trading 

services with different populations. For example, the development of the 

strategies applied by the traders operating in eBay and Trade Me might 

be quite different, with that difference a result of nothing other than the 

whole population being drawn to different clustering outcomes as a result 

of the chance elements of initial conditions, individual characteristics, and 

the chance encounters of individual trades. 

The results suggested that while there was little indication that the model 

generated any patterns at the highest level of aggregation, at the level of 

a number of runs, this did not mean that the outcomes were homogeneous. 

Reducing the level of aggregation a little, it is possible to identify possible 

clusters of run outcomes that share characteristics not in both the outcomes 

on which the clusters were based, but also in the consensus on strategies 

developed over time. 

Working down in aggregation level , the next step might be to ask whether 

these patterns in clusters might be under-laid with patterns in the histo­

ries of development of the trust strategies in individual runs. In the next 

section,  I look more closely at some individual runs of the model. The runs 

chosen for this level of analysis were the three runs closest to the centroids 

of the three clusters. These runs were: Run 5, closest to the centroid of 

Cluster 1 ;  Run 12 ,  closest to the centroid of Cluster 2; and Run 24, closest 

to the centroid of Cluster 3 .  
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Zooming in: More detail from three runs representative of the three 

clusters 

The cluster analysis carried over the full 25 runs generated a possible 

grouping of the runs into three clusters. These were defined primarily by 

the number of trading failures due to bad communications and to bad pay­

ments, that is trading failures resulting from agent unreliability. There are 

two distinct possibilities as to why trading failures might have differenti­

ated in these clusters. 

Firstly, there might have been chance differences in the reliability and hon­

esty of agents in the agent populations of these different runs. The design 

of the model is such that any such differences would result in generating 

differences in the number of trading failures. This can be controlled for by 

statistically controlling for reliability and honesty. 

Secondly, the clusters might have differed in the strategies that the agents 

have evolved. Any such strategy differences may have affected the number 

of trades being made as agents have decided whether or to to trade with a 

seller. 

Change in the rate of occurrence of various outcome types If the 

development of strategies has the effect of allowing the population of traders 

to identify untrustworthy traders, I would expect a change in the rate of 

occurence of failed trades. The Poisson distribution describes the random 

occurrence of infrequent discrete events that occur at a fixed average rate. 

Poisson regression allows us to estimate the average rate of occurrence of 

the different types of outcome. In order to identify whether there was a dif­

ference between the clusters in the rate of the different types of outcome, 

I constructed a series of Poisson regression models. These modelled the 

number of each type of outcome (bad communications, bad payment, bad 

delivery, good trade), regressed on the cluster, and on reliability (bad com­

munications, bad payment), or honesty (bad delivery), or both (good trade). 

Each cluster was represented by its representative run's value along the 

dimension defined by the first principal component. Thi s  was found during 

the cluster analysis, and was used in generating Figure 8 .6 ,  which shows 

the three clusters separated along this dimension. The weights on the first 

principle component were: 2 .366 for Run 5 ;  -0.8276 for Run 12;  and 0.592 1 

for Run 24. 

The results of these Poisson regressions are shown in Table 8.8 . This ta-
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Table 8 .8 :  Poisson regression results for each type of outcome, regressed on 

the cluster principal component 1 value, reliability, and honesty across Runs 

5, 12, and 24. The regression is carried out across all 250 trading rounds in 

each simulation run. 

Bad communications 
Intercept 

Value principle component 1 (cluster) 
Reliability 
Bad payments 
Intercept 

Value principle component 1 (cluster) 
Reliability 
Bad deliveries 
Intercept 
Value principle component 1 (cluster) 
Honesty 
Good trades 
Intercept 
Value principle component 1 (cluster) 
Reliability 
Honesty 

** significance < . 005,  *** significance <.001 
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I Estimate I p 

1 .43 <.001 *** 

-0.02 1  .003** 

-4.02 <.00 1*** 

-0 .5 1 1  <.00 1*** 

0 .005 =0.689, n.s. 
-2 .919 <.001 *** 

0 .613 <.00 1 *** 

-0.021 = . 109, n.s. 
-4.488 <.00 1 *** 

-2 .92 <.00 1 *** 

-0 .014 <.00 1 *** 

0 . 709 <.00 1 *** 

1 . 9 15 <.00 1 *** 



Table 8 .9 :  Change in Poisson regression coefficients for each outcome type, 

regressed on Cluster, Reliability, and Honesty, between trading rounds 1 -50 

and 200-250. 

Poisson regression coefficients 

Bad Early rounds Late rounds Difference 
communications ( 1-50) (200-250) (95% Cl) 

Cluster -0.02 1 -0.02 1 0.0008 (-0.0305 , 0 .0321)  

Reliability -4. 180 -4.0 19 -0. 162 (-0.483, 0 . 160) 

Honesty NA NA NA 

Bad payments Early rounds Late rounds Difference 
( 1-50) (200-250) 

Cluster -0.010 -0 .008 -0.0026 (-0 .0556, 0.0503) 

Reliability -3. 192 -3.061 -0 . 13 1  (-0 . 738, 0.477) 
Honesty NA NA NA 

Bad deliveries Early rounds Late rounds Difference 
( 1-50) (200-250) 

Cluster 0.030 -0.039 0.0692 (0 .0 137 ,  0 . 1246)* 

Reliability NA NA NA 

Honesty -4.550 -4.561 0.01 17 (-0.703, 0.726) 

Good trades Early rounds Late rounds Difference 
( 1-50) (200-250) Difference 

Cluster -0.024 -0.03 1 0.007 18 (-0 .0 107
' 

0 .025 1)  

Reliability 2.057 1 .226 0.83 1 (0 .533,  1 . 129)* 
Honesty 0 .726 -4.572 5 .297 (4.990, 5 .605)* 

ble shows that, as expected, reliability was a significant predictor of bad 

communications and bad payments, honesty was a significant predictor of 

bad deliveries, and both reliability and honesty were significant predictors 

of the number of good trades. The cluster was a significant predictor of bad 

communications, and of good trades, but was not a significant predictor of 

bad payments or of bad deliveries. Cluster was not as strong a predictor 

as reliability and honesty, but these two characteristics were specifically 

included to drive the numbers of bad trades occurring. In contrast, a differ­

ence between clusters was not specifically designed into the model . 

While this analysis showed that there was a difference between clusters 

in the rate of occurrence of bad communications and good trades, it does 

not show whether this was a result of a change in the rate of occurrence 

of each outcome, possibly as a result of the adoption of more or less ef­

fective strategies. This was investigated through a second set of Poisson 

regressions, carried out over the first and last 50 runs. The differences 

between these were calculated, and a confidence interval of the difference 

constructed. The results are shown in Table 8.9 . The results show that 
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there was no change in the coefficients driving the rate of occurrence of bad 

communications, or bad payments. There was a significant change in the 

cluster coefficient for bad deliveries, such that the number of bad deliveries 

increases most in Cluster 1, less in Cluster 2, and least in Cluster 3 .  

Mean happiness in the three representative runs 

The previous results have suggested that there are differences in outcomes 

from the simulation ,  and that these might be generating three clusters 

with similar outcome patterns. A key question in identifying differences in 

outcome is whether these differences reflect differences in the mean happi­

ness in the population. There was a significant difference in the final mean 

happiness between Run 5,  M =  761 .58 , SD = 198.8768, Run 12, M =  834.3 1 

, SD = 182 .9 162, and Run24, M =  808.64, SD = 194.9946, F(297)=3.676,  p < 

0.05.  At least one run has generated an overall happiness that differs from 

the others significantly. Run 5 has generated an overall lower happiness 

than the other two runs. 

Happiness outcome for individuals within the three representative 

runs 

The analysis above suggests that there is a significant difference in out­

come in the three representative runs, but provides no information on the 

distribution of happiness among the traders. Table 8. 10 shows the changes 

in happiness of four trader agents over the first and last 25 runs, and the 

results of t-tests on the differences. The agents investigated were the most 

and least reliable traders, and the most and least honest traders. Run 12 

has significant changes in the happiness of both the least reliable and the 

least honest traders. 

Analysis of a single run (Run 12) 

The data from the simulation run can provide some indication of the range 

of possible outcomes that might be generated in an online trading environ­

ment in which agents have little guidance as to how to apply information 

to making decisions about whether or not to trust another trader. It is  

also possible to  look at  the data collected from a single run. For exam­

ple, it would be possible to more closely investigate what might happen in 
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Table 8. 10:  Happiness of the most and least reliable traders, and the most 

and least honest traders for Runs 5, 12, and 24, early (Rounds 1 -25) and 

late (Rounds 226-250) in the simulation 

Mean Happiness 
Early Late t(48) p 

Run 5 
most reliable 0 .67 0 .00 0 .257 .78, ns 
least reliable 0 .92 1 .84 -0 . 7 1 1  .48, ns 

most honest 1 .92 0.32 1 . 7 19 .096, ns 

least honest 3 .21  0 .68 1 . 177  .25 ,  ns 
Run 12  

most reliable 4.75 6. 12 -0.597 .55, ns 
least reliable -0 .08 4.64 -2 . 2 13 .03** 

most honest 4.46 4.68 -0. 080 .94, ns 

least honest 6.08 -0.64 2 .723 .009*** 

Run 24 

most reliable 3.92 2.28 0 .591  .558 

least reliable 1 .00 0 .64 0.239 .812  

most honest 6.38 3 .76 0 .748 .458 

least honest 0.29 2 .84 - 1 .030 .309 

""'' p<0.05,  ** p<0 .01  

the worst case scenario,  or in the best case scenario, or in  the most likely 

scenario. 

I chose to carry out an analysis on the representative run (Run 12)  that 

was typical of Cluster, the cluster that produced the best outcomes. I was 

interested in whether the run reached consensus and, if so, how quickly it 

did so. I was also interested in whether the dynamics of that consensus 

development were trivial. 

Dynamics in the evolution of a consensus The adoption of the con­

sensus strategy happened relatively quickly, with a sharp reduction in the 

number of different strategy weightings early in the trading history. Fig­

ure 8 . 1 1  indicates that a consensus on strategies happened within the first 

hundred trading rounds, indicating that agents have passed information 

through the population quickly. While the number of different strategy 

weighting being used in the drops consistently in each round, this does not 

indicate that traders are all moving to a single dominant strategy. Figure 

8. 12 shows the number of agents using each of the different values applied 

to the weighting on bad deliveries. This shows that the relative popularity 

of each weighting changes as the overall strategy develops. Strategies may 
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be relatively popular for a period, but fall out of favour later. Similar plots 

can be constructed for other strategy elements. 

Discussion 

All runs of the Trading Model moved toward a consensus on the trust 

strategies in their populations over the first 250 runs. But while consensus 

were reached, the strategies that were evolved are not necessarily optimal, 

and not all were even particularly effective. Rather, their distribution over 

a number of runs continues to reflect the random uniform distribution of 

the initial strategy generation. 
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There were, however, differences in the outcomes produced in different 

runs. While there was no clear indication as to the ideal number of clus­

ters, grouping the runs into three clusters produces one group in which 

traders suffer a high number of trade failures due to unreliability, and very 

low levels of trade failures due to dishonesty, one group in which there are 

a low number of failures due to unreliability, and a higher level of trade 

failures due to dishonesty, and one group of runs with moderate levels of 

failures caused by either unreliability or dishonesty. These groups were 

most strongly differentiated by the number of trade failures due to unreli­

ability, rather than failures due to dishonesty. 

Perhaps counter-intuitively, the overall happiness is lowest in runs that 

develop the most sensitivity to dishonest traders. It is possible that this 

sensitivity to dishonest traders, while restricting the number of fraudulent 

trades, also constrains the number of good trades. The number of good 

trades is hi!!h lv correl ated with the overall happiness. This is not surpris­

ing, because in the model any loss to a fraudster is exactly equalled by the 

gain made by that fraudster. At a population level, this leaves the deter­

minant of overall happiness being driven by the number of trades that fail 

due to unreliability: that is,  due to a failure to communicate or a failure 

to make payment. The consequence of this is that, at the population level , 

a strategy that identifies possibly unreliable traders may be more effective 

than one that identifies possible fraudsters. The best performing strate­

gies, however, resulted in a drop in number of failures due to unreliability, 

but constrained the activities of the least honest traders, without restrict­

ing lower risk traders. 

The results have implications for real-world online auction markets. Where 

no guidelines are given as to how trading history information might be 

used, people are left to their own devices in developing their individual 

strategies. Learning through individual trial and error runs the risk of be­

ing a slow and expensive process for the individual, as information is only 

gleaned by from a traders own personal trading experiences. A form of 

observational learning allows for the results of many peoples' trading ex­

periences to be incorporated into a trust strategy culture that is specific to 

that trading environment. Each online market may evolve different strate­

gies, some of which might be more effective than others. There is some 

evidence that this may be the case, with a recent announcement by eBay 

that it will no longer provide for auction feedback from sellers. Dishonest or 

unreliable sellers had been diluting the salience of their own bad trades by 
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generating large volumes of false data through comments on buyers. This 

problem does not seem to exist on Trade Me. 

Possible future development of the model 

The Trading Model has scope for further development. In the current 

model the population is static, with no new entrants, or traders leaving 

the population. Partly as a result of this, there are no new weightings en­

tering the market that challenge the existing weightings. There is also a 

lack of experimentation with new weightings among existing traders. Both 

could be introduced into the model . 

The model population is generated in a single batch, which remains fixed 

for the entire simulation. Real markets, including on-line markets, have 

scope for entry and exit of traders. This is a particularly active mechanism 

for dishonest traders in on line trading; having developed a bad reputation 

under one name, they can leave the market very easily, and enter under an 

entirely new name, with no reputation. Further development of the model 

should allow for the exit of participants. This might include those who have 

unsatisfactory trading experiences, represented by a low Happiness score 

in this model, as well as those who have developed a bad reputation . 

The model is driven to a large extent by the way that traders make their 

decisions, and the way that they determine how successful they and others 

have been in trading. In this model, the traders use a simple linear com­

bination of the available data to make a decision as to whether or not to 

bid on any one item. There is scope for development and experimentation 

with both the form of the decision-making function, and with the fitness 

function that is used by the individual traders to determine the success of 

a strategy. 

Further, it is highly unlikely that real world traders use such an explicit 

process to make their decisions. Rather, descriptions as to how to use 

the information tend to use fuzzy terms. For example, the eBay site tells 

traders that "a high Feedback Score and high percentage is a good sign" 

(eBay, 2006). This recommendation is couched in fuzzy terms: scores and 

percentages should be "high", and if they are this is "a good sign". There are 

no indications that help traders translate these fuzzy terms, the meaning 

of which are likely to be bound to the on-line auction environment. Traders 

are not told what would be considered a high percentage. For example, 

while 80% might be considered a high percentage in an exam, it might be 
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regarded as a low percentage of good trades in a trading environment. 

Finally, the model uses the quantity Happiness as the measure of each 

agent's success. This quantity is updated at the completion of each trade. 

In the model , traders judge their own success relative to their partner from 

their relative accumulated Happiness over all trading rounds. This means 

that the effects of strategy refinements are likely to take some time to ap­

pear in the overall Happiness score, especially in later rounds where a sub­

stantial proportion of a total Happiness score might have been assembled 

before the current strategy had been adopted. 

An alternative is to use an incremental measure, rather than a cumula­

tive measure of Happiness. This might be the Happiness at the previous 

round, or over a group of recent trades. It would not be unrealistic to ex­

pect traders to have access to this information, information on the outcome 

of individual past trades is accessible. But using the incremental measure 

has implications for the realism of the the model in terms of who informa­

tion is obtained from.  In reality, traders are likely to exchange information 

within separate networks: social networks of friends, colleagues, and fam­

ily. These sources of information are outside the on-line trading site, and 

information on their success is more likely to be in terms of overall trad­

ing success, rather than in terms of their last trade. In the current model , 

the information source is a trader with whom friendly relations might be 

assumed, following on from an existing trade. The model uses the existing 

network of traders to double as the social network from whom the strategy 

information might be obtained. Individual trading rounds are quite brief, 

and traders do not generally exchange strategy information in the context 

of a trade. Although i nformation on the last trades might be available, it is 

unlikely that strategy information would be available within the context of 

trading. 

Each of these possible modifications to the model adds complexity to the 

model. Doing so raises the need to balance increasing complexity with what 

is possibly a more realistic agent functionality. Further, while each addi­

tion may have the potential to add some element of realism, there is the 

likelihood that the model develops a realism of form, but at the cost of the 

insertion of more detail that may be relatively unsupported.  
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Chapter 9 

Conclusion 

Constructing the agents 

The two agent-based models constructed for this research were designed 

using quite different approaches to using psychological theory for construct­

ing the agents. The BasicBreaking model was designed to directly use 

a game theoretic cognitive model of trust game strategies. The cognitive 

model had itself been generated from a combination of simulation mod­

elling and experimental results. This model was designed at a purely in­

dividual level, using only this cognitive model .  This produced an entirely 

abstract model of trust in a particular game situation. 

Formal trust games are limited in that they are restricted to particular 

types of interaction in which trust is engaged. Specifically, they usually 

target making trust decisions about some externally quantifiable element, 

such as money in one-on-one interactions. In experimental settings, for­

mal games are usually played between participants that do not know each 

other, and cannot identify each other. In practice, players often engage in 

the game-play through a human or computer intermediary. This minimises 

the information that can be applied to a decision, in many cases restricting 

the available information to information on the other player's move. 

The Trader agent was based on a specific real world situation: how agents 

might develop ways to identifY who to trust in an online auction market­

place from the information available. Again the traders in this model must 

work with a limited, and domain specific set of information. Rather than 

the very specific cognitive algorithm of the Basic Breaking model,  this used 

a more generic idea, based on observational learning. In this model , traders 

can learn elements of a strategy for who to trade with and who to avoid 
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from other traders, and that they would selectively adopt the strategies of 

successful traders. 

Validation 

A substantial challenge for agent-based models, and for simulation mod­

elling in general is the question of how to validate the models generated. 

The very characteristic of large nonlinear systems that at once makes them 

generate i nteresting behaviours leads them to generate different results for 

each run. The result is that a successful model may not produce direct and 

testable predictions. Rather, a number of runs of the model may produce 

a range of possible outcomes. Validating the model against data becomes 

a problem because we usually only have a single "run" in real life. Agent­

based modelling can offer a glimpse of the range of possible results, and 

it can give an indication of the relative likeliness of these possible results. 

What it cannot do, except in limited and not especially interesting models, 

is predict which possible result will obtain on any one occasion. 

The Basic Breaking model demonstrated this to some extent. It identified 

pairings that are likely to be most compatible, but the stability of behaviour 

generated when all of the agents are using one of a limited range of strate­

gies that are known to be successful produced a model that is very stable, 

and did not behave in any interesting ways. 

One means proposed for validation of simulation models is through the val­

idation of the bases on which the model was constructed.  If we accept that 

this would, at least, help in the construction of valid models, this leaves us 

in the position of needing solid and validated theories to draw on to build 

the model . This is the domain of social psychology; the development and 

testing of solid and validated theory of individual behaviour in social set­

tings. The challenge for the agent-based modeller is how to translate these 

theories into a form that is usable in the model . One suggestion is that the 

theory should be translated into a formal logic form. This is a controversial 

idea among agent-based modellers. Whether or not the theory is translated 

into a formal logic form, there is a degree of formalisation needed to write 

the software for the model. 

An effect of this need for the at least minimal formalisation of the theory 

is that the very act of constructing an agent-based model is sufficient to 

force the modeller to be very specific about theory. Gigerenzer (2000) has 

suggested that scientific theory is driven by the tools that scientists use. 
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This is apparent when attempting to develop an agent-based model using 

existing theory from social psychology: the modeller needs theory that can 

be translated to a very specific statement. In the example of the Trader 

model, observational learning provided a theoretical base that could readily 

be translated into a model format. Observational learning can be modelled 

if we can identify what is to be learned, and a means that the thing to 

be learned can be observed,  and combine this with some sort of memory 

device. 

That said, in the context of modelling online trading, I needed to be spe­

cific about what was to be learned by the agents. In this case, what is 

to be learned is the strategy by which an agent decides whether or not to 

trade with another agent. This places a much more domain specific re­

quirement for theory, that is not available in the trust literature. Further, 

programming agent behaviours for a population of agents means that we 

need know not only how the characteristic is expressed on average, but 

also the range of possible expressions that we might expect to find in the 

population. This results in a need to have more understanding of how peo­

ple differ, rather than the location of the average. The Basic Breaking 

model, in particular suffered from the population being too homogeneous, 

and the lack of cheaters meant that the agents were never challenged to 

the point where they were triggered to break relationships, even with very 

large deviations in the exact values used as decision-making parameters. 

Agent-based models of trust depend on being able to represent the range of 

deviant behaviours that might be encountered. 

This also applied with respect to the Trader model , which needed some 

distribution of dishonest and unreliable traders. Basically, models of trust 

need cheaters, and so we need to understand cheaters' behaviours as well 

as we might understand successful honest traders' behaviours. While the 

study identified the most popular strategies, and was able to associate 

these with successful strategies, it provided no information on the diver­

sity of strategies. The results generated were in terms of identifying com­

mon strategy clusterings, but modelling on the basis of the findings needed 

a fuller description of the strategy clusters to be able to put the informa­

tion into an agent-based model . Without this, the behaviour of the Basic 

Breaking model was dull,  because all of the agents were all cooperative. 

This need for information on diversity also has a positive side for agent­

based models, particularly in relation to their application. While they pose 

a challenge in terms of the theoretical data required, agent-based mod-
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elling gives us something to do with diversity information. Each agent in  a 

model can be equipped with an individual set of characteristics. 

While the main thrust of Gigerenzer's (2000) argument about tools to the­

ories heuristics is that they can restrict the development of the theory, this 

is not the only possibility. Within the field of artificial intelligence the uni­

directional nature of theoretical influence has been less clear cut. While 

we may draw theoretical ideas from the devices that we are using, ideas 

from psychology are also adopted for use in computing devices, particularly 

software devices. It might be more balanced to see the development of new 

ideas in artificial intelligence and psychology as inspiring different ways 

of thinking in both disciplines. In fact, we might go further and say that 

developing an agent-based model brings a level of specificity that forces 

a different way of thinking about how individuals are characterised, how 

they process information, and how they interact with other individuals. 

The form of the results from an agent-based model 

The output from an agent-based model tends to be in a series of numerical 

data. This can be presented either as a graphical display from within the 

ABM programme, or as an output data table sets can then be analysed 

using external tools. These data sets can be very large. For example, the 

data set generated by the Trader model over a number of runs produces a 

2 . 6MB data set. 

The modeller's task at the analysis stage is to identify patterns in these 

large data sets. Statistical techniques provide useful tools for doing this ,  

but their interpretation in this use is a little different to the usual interpre­

tation in psychology. Hypothesis testing is the dominant analysis used in  

quantitative social psychology. But the logic of  hypothesis testing is that it 

is interpreted as the likelihood that a pattern could have arisen by chance 

in a sample, the alternative being that it reflects a pattern existing in the 

population. The meaning of these statistical analyses is less clear when the 

sampling is of one of a theoretically infinite number of possible runs of the 

model . In a simulation model, it is less clear what is sampled, from what 

population. Is a run a single sample of all possible runs? Or a sample of, 

say 100 agents from an infinite population of possible agents? 

Statistical analyses do remain as a solid and well-founded form of analysis ,  

but we need to consider the logic that we call on to use these in a simulation 

modelling mode. Here we need to find patterns generated by the model , 
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and to do so we might make use of exploratory and descriptive statistical 

techniques, rather than hypothesis testing techniques. 

But there is a further issue with using statistical methods. Returning 

to the fundamental mathematics behind statistical modelling, inferential 

analysis involves proposing a form of mathematical model that may repre­

sent the process underlying the data. That model includes elements rep­

resenting systematic relationships with variables, and an element repre­

senting a random, non-systematic, noise component. For example, mul­

tiple linear regression is used to fit a typical linear equation of the form 

y = 71 .r 1 + J2.r2 + 3:J.r:l + c ,  in which y is a dependent variable, .r 1 , r2 , and 

.r3 are independent variables, and c is a random noise component. Infer­

ence is the process of producing estimates parameters from available data, 

to extract patterns from noise. In this case, patterns are described by the 

overall form of the equation , including derived estimates for 31 , .32 , and . 33 •  

Extracting a pattern from noise presupposes a particular form for the noise 

component. Conventional research provides a number of potential sources 

for this noise: for example it might come from other internal influences on 

the people being researched,  from measurement instruments, or from the 

environment. In contrast, in the case of an agent-based model, the only 

source of noise is from within the model itself Statistical analysis in this 

context cannot be used to eliminate noise that is external to the process. 

Rather it is used to detect patterns within more complex overall result. 

In common with the task of pattern detection in artificial intelligence more 

generally, it may still be difficult to pick up patterns. The use of other 

data visualisation techniques may be helpful . Agent-based modelling pro­

grammes are complete with a set of visualisation tools; for example, Repast 

can generate Quicktime ( .mov) format movies from iterated graphical out­

put, but these do not necessarily translate meaningfully into a paper re­

porting medium. Further, emergence, and the data in general may not be 

suitable for the same form of analysis as patterns develop. The Trading 

Model provides an example of this. It starts with what is,  effectively, a 

set of continuous numerical data. Mter a number of turns, the number 

of strategies is reduced as individuals adopt the strategies of the most suc­

cessful traders, shifting the form of the data to a more non-parametric form 

as the count of individuals adopting each strategy grows. 
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Developing a model, running it, and extract­

ing a result 

The obj ective ofthis work has been to develop an agent-based model of trust 

within a social network. Development of such a model involves a number 

of activities. One of the first activities is to identify the types of phenomena 

that agent-based modelling is best suited to. There are two key charac­

teristics that signal the need for some form of dynamic analysis, and in 

turn simulation to access the dynamics. One of these characteristics is the 

presence of dynamic, time located effects, or development of a phenomenon 

in time. The second characteristic is that the phenomenon is located in a 

system involving the interaction of a number of individuals. 

While either or both of these characteristics might be sufficient to suggest 

that a form of analysis that can address a nonlinear dynamic system, there 

are a number of ways that this might be carried out. It is possible, in 

some instances, to collect time series data directly. If it is not possible 

to collect data directly, there are two options. The problem might be re­

formulated to attempt to avoid the dynamic and aggregation effects. For 

example, we might wait until a system reaches equilibrium before making 

measurements. The difficulty with this approach is knowing when it has 

done so. Finally, we might use simulation modelling to generate dynamic 

data. Agent-based modelling is one of a number of techniques that might 

be used to generate data. 

The choice of method will depend on the characteristics of the phenomenon 

of interest, and on the mechanisms that might lie behind these. Agent­

based modelling is a candidate where theory suggests that the i nteracting 

behaviours of individuals might be important, and when we have theory by 

which we might formulate the behaviours of those individuals. 

Characteristics indicating that a dynamic ap­

proach should be considered 

Dynamics 

Agent-based models provide a means to investigate some features of dy­

namic behaviour, specifically the complex behaviours that emerge from 
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large systems of nonlinear elements. Time is an implicit part of many con­

cepts in social psychology, and may come into play at any time that there is 

change. The likelihood that dynamics come into play is raised in systems of 

a number of individuals. Despite this, time is largely an absent dimension 

in research and theory. In part, this is because when applying statisti­

cal analyses to real data we meet the constraint that it is rare that we 

can generate sufficient data points to meet the assumptions of time series 

analysis. A practical compromise is to reduce the measurement intervals 

to single time period, or a very few intervals, but this tends to make time 

invisible. 

One effect of the relatively low profile of time is that social psychology has 

a strange relationship with time as a construct, especially if we compare 

social psychology with developmental psychology, in which time is an inte­

gral part of theorising. In comparison, in social psychology explicit theories 

about the time dependence of phenomena are limited, and propose that the 

linear conception of time may not always be appropriate in social psychol­

ogy. 

While agent-based models do allow us to explore patterns of phenomena 

that might develop, in general the iteration steps in an agent-based model 

do not map onto a time scale unless the model has been designed explic­

itly to do so. Although they are not explicitly scaled, agent-based models 

do allow us to explore some aspects of the dynamics of systems of individ­

uals. System dynamics exist, at least implicitly, along a time dimension.  

This has been raised as a weakness of dynamic methods in general. On the 

other hand, a lack of time scaling may not necessarily be a disadvantage in 

a social psychology setting. It has been suggested that thinking in terms 

of continuous linear time are not necessarily the most appropriate in social 

psychology, where continuous time is applied to discontinuous processes. 

Agent-based models are often based on a turn-taking basis, a computa­

tional necessity where the model is located in a single serial computation 

process. There are alternatives, notably the ability to use modelling tools 

like N etLogo on a network of computers, or running tools like Repast on 

computer clusters, but these are hardware intensive. 

Agent-based models allow us to investigate the stability of systems, whether 

they find a stable position, and what that stable position might be. Both the 

Basic Breaking and the Trader models generated stable positions. While 

the Basic Breaking model did not generate any interesting behaviour, the 

Trader model produced a stable position on every run. The stability of 
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the model was a consequence of the design of the model , as information 

was passed in one direction only, from more successful to less successful 

traders. 

While each run produced a stable position, there was no particular pattern 

in values of weightings in these stable positions. Although strong attrac­

tors developed for each run ,  as evidenced by the stable outcomes generated, 

the values of the weightings was not a factor in locating these attractors. 

As discussed in Chapter 2 ,  nonlinear dynamic systems can produce a vari­

ety of attractors, including stable point attractors, limit cycles, attractors 

with a number of periodic components, and strange attractors. Neither of 

the models produced other than single point stable attractors. These stable 

outcome positions from the single point attractors in the Trader model were 

not derivable from the starting characteristics of the individual agents. 

These stable point attractor outcomes are less dramatic than some of the 

more exotic phenomena that nonlinear dynamic systems can produce. The 

literature on dynamic systems in social psychology has tended to concen­

trate on demonstrating that the entire range of phenomena that can be 

generated by nonlinear systems are also tractable to analysis, and thus 

amenable to application in research. While it is valuable to have an ac­

cessible survey of methods that can be used to access dynamic behaviours, 

these can seem somewhat daunting. 

One side-effect that concentrating on some of the more complex outcomes 

is that they can make less dramatic, but still important, phenomena seem 

less exciting. This is a shame, because understanding the stability of social 

systems is important to real world outcomes. Understanding the existence 

of system states that are stable, and the robustness of that stability under 

perturbation is key to understanding the risks, benefits, and possible out­

comes that might stem from an intervention. In the setting of the Trader 

model, for example, it appears that if people simply adopt the strategies 

of more successful trader friends, the resulting strategy may not be opti­

mal. Leaving this as the means by which people devise these strategies 

may mean that less than optimal strategies become entrenched, a version 

of magical thinking at a systems level. 

Finally, investigation of dynamic systems in general, and particularly the 

investigation of system behaviour in the presence of the more complex at­

tractors depends on a large volume of data; the more complex the dynam­

ical behaviour, the more data are needed to analyse the behaviour. These 

methods encounter a problem in investigating time-located phenomena in 
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the social sciences: it is very difficult to collect sufficient real-world data 

to investigate these directly. Simulation is one method that allows us to 

generate enough data for analysis. 

Aggregation 

The very nature of agent-based models, as larger models built from a num­

ber of smaller models of individuals, places them at the boundary between 

between the disciplines of sociology and social psychology. Being at this 

boundary, one of the criticisms that agent-based modelling encounters is 

that modelling larger entities at the level of the individual is flawed, as it 

fails to take into account for the effects of structures. 

One of the major claims made by the proponents for analysis at the level 

of structure is that structure is an emergent. In this context, emergent is 

taken to mean that it cannot be understood by being reduced to its parts, 

that it cannot be explained in terms of the properties of its parts, and that 

emergent properties exhibit downward causation. The definition of emer­

gence in terms of irreducibility is understandable as long as there is no 

mechanism that might explain how low level features can combine to pro­

duce emergents. 

Arguments that features of social structure cannot be explained other than 

in their own terms need to be reviewed in the light of the greater under­

standings of complex systems. Relatively recent work in the mathematics 

of complex and chaotic systems has demonstrated that systems can produce 

a rich variety of outcomes, from simple stable positions, through simple os­

cillatory patterns, to immensely complex patterns. While some outcomes 

may be straightforward, others are not obvious combinations of the effects 

of a number of elements. While it is not entirely clear that these phenom­

ena lie behind the development of elements of social structure, it is also far 

from clear that they do not. 

The very nature of agent-based modelling encounters these issues about 

whether the individual or the social structure are the more appropriate 

level of analysis. In part, these might be seen as a specific instance of a 

more general issue as to whether analysis at a component or a systems 

level is more appropriate. The terminology used in agent-based modelling 

tends to lead towards us thinking of agents in terms of individuals, but 

there is no particular reason to suggest that agent-based modelling should 

be restricted to modelling human individuals. For example, there may 

175 



be situations where it is not the individual that is of particular interest, 

rather it is the relationship between individuals that is of interest. This 

is a more explicitly social network oriented element, and more naturally 

leads to thinking in terms of systems than does thinking about individuals 

and the nature of their possible and significant interactions. 

As with the dynamics of social systems, the exploration of potential mecha­

nisms lying behind social structures is very difficult to carry out directly on 

real world systems. Again, simulation provides a means to explore of these 

possible mechanisms. 

Thinking about social psychology 

One of the potential strengths of agent-based modelling is that it demands 

particular ways of thinking about individuals, relationships, and how things 

develop in time. Firstly, even at the design stages, it forces us to think in 

terms of systems. This is  not necessarily a natural way to think about social 

processes, or about systems processes more generally. Moving into systems 

thinking, specifically to systems that contain nonlinear elements, has the 

effect that we cannot ignore the effect that these systems have on our abil­

ity to make predictions. This, in turn, added to the nature of interaction 

with an agent-based model has an effect on how we interact with theory. 

Systems thinking 

Despite requiring specific thinking and theorising at the individual level for 

the construction of the model , building an agent-based model also requires 

thinking in terms of systems, both in the selection of individual charac­

teristics, actions and communications to be represented, and in the work 

in experimenting with the model. This was a factor in making the Basic 

Breaking model dull ;  the algorithms applied were drawn in terms of indi­

vidual behaviours, and interactions that are contained within a dyad. This 

model was deficient both in terms of the individuals and dyads located in 

a network of other players, and in the more specific criteria for generating 

swarm behaviours (Bonabeau et al . ,  1999), particularly in the absence of 

any mechanism for positive feedback. 
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Predictions 

One of the more powerful ideas in the philosophy of science is the idea that 

science progresses by making predictions and by testing these. Thus one 

of the essential components of planning conventional quantitative research 

methods is that the researcher identifies hypotheses, predictions that can 

be tested, and questions based on these. This form of research question 

depends on being able to make predictions that we might reasonably expect 

to be able to test. When working with systems that may generate emergent 

features, and in which outcomes are so dependent on initial conditions, 

making predictions becomes more problematic. Research questions take 

on a different character, more along the lines of "What are the potential 

outcomes when these conditions apply?" The detailed questions that might 

guide searches for patterns are not necessarily obvious before modelling 

is carried out. The results of a simulation run, and the thinking about the 

results and how the system has generated them gives rise to new questions 

and experiments. This interaction with the system, and results is a process 

of theory development. 

Theory 

The active interaction with the model , its behaviour, and the incorporation 

of the understanding of these in the development of the model means that 

engaging with an agent-based modelling serves to make this method both 

theory intensive and theory generative. Further, it adds a different form of 

test for existing theory in social psychology. Attempting to apply theory in 

an agent-based model tests our understanding of the theory, by challenging 

us to work backwards and build something from theoretical elements. It 

also tests whether the theory is open, general, and complete enough to be 

applied and used generatively: can this theory be applied to an individual, 

with meaning, and with effect? This applies both for the simple cognitive 

algorithms, such as those that were used to construct the Basic Breaking 

model, and for bigger theories, such as Social Cognitive Theory. 

While agent-based modelling is not a universal research tool , in particular 

situations it offers the possibility of accessing phenomena that are not oth­

erwise accessible, and for developing understanding in systems contexts. 

This means that agent-based modelling has the potential to be useful in 

social psychology, both in the development of theory, and in providing an 

opportunity to interact with that theory. 
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Summary 

This thesis has reported the development of two agent-based models of 

trust as it operates within networks of individuals. Understanding trust 

in this setting is important, as it enables the formation and maintenance 

of social cooperation. Doing so involves finding a way to address the aggre­

gation and of individual behaviours, where the behaviours are influenced 

by the behaviours of other people in the network. This may result in sys­

tems that generate complex dynamic behaviour that are difficult to address 

using survey and experimental methods, and conventional statistics. 

One way that such systems it may be approached is through computer sim­

ulation using agent-based models. This thesis describes the development of 

two agent-based models of trust. Agent-based modelling is a novel method 

within the discipline of social psychology. The thesis first describes what 

agent-based modelling is, describes some of the situations in which it might 

be applicable, discusses how it might apply to modelling individuals in a so­

cial setting, and discusses the experience of developing the model. 

The first model was based on a theoretical cognitive model of behaviour 

within a formal game that has been claimed to involve trust, the Investor 

Game. This model showed that a population in which all individuals are 

pursuing similar optimal strategies does not generate any of the interest­

ing behaviours that we would expect to see in real-world interactions in­

volving trust and cooperation. This tends to suggest that modelling trust 

behaviours also requires modelling behaviours that are untrustworthy, and 

representing a full range of potential behaviours, including outliers. 

The second model was based on a more naturalistic setting, on-line peer­

to-peer trading through sites such as New Zealand's Trade Me, or eBay. In 

this model, individual traders, represented by agents, carry characteristics 

that determine their reliability and honesty, and attempt to find effective 

strategies for identifying other traders' trustworthiness. They exchange 

information, in a form of social learning, as they attempt to find an opti­

mal trust strategy. This model suggests that, while providing traders with 

minimal guidance on strategies and allowing them to search for the best 

strategies may result in them finding effective strategies, this is not the 

only possible outcome. Somewhat surprisingly, effective trust strategies 

acted to contain unreliability, rather than dishonesty. 

My experience of using agent-based modelling for this research was that 

this is a viable and useful method with potential for wider application in 
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social psychology. It is particularly well suited to providing ways that we 

might apply and explore some of the important theoretical ideas in social 

psychology, such as Bandura's ideas about triadic causality, that are oth­

erwise difficult to address through conventional means. Developing the 

model involves an explicit interaction with theory, as programming the 

model is theory made concrete. 
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Appendix A 

Programme listings 

Basic Breaking Model 

BasicBreaking.j ava 

package basicBreaking; 

/** 

''' Basic Breaking Model 

* Version 1 

''' @author Sue Street 

* @version 1 .0  

* 

* Created 23/2/07 

*/ 

import java. util .Array List; 

import java.text.NumberFormat; 

import java.util . Iterator; 

import uchicago. src .sim. analysis.DataRecorder; 

import uchicago.src .sim.engine.BasicAction; 

import uchicago.src .sim.engine.Schedule; 

import uchicago. src. si m .  engine. Simlni t; 

import uchicago. src.sim.engine. SimModellmpl; 

import uchicago. src. si m .  util .  Si mU tili ties; 

/** 

* @author S.E .Street 
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* @version Minimal R&G 2003 with added relationship breakdown 

* A bare cognitive model of trust from Rieskamp. 

* Recording added recording to a file. 

* Randomised added individual variation. 

* Breaking adds a relationship split if either: 

* the Investor fails to invest enough, or 

* the Borrower fails to return enough. 

* 

* This code uses the RePast tutorial by J.T. Murphy as a foundation 

* http://www.u.arizona.edu/-jtmurphy/H2R/main.htm 

*/ 

public class BasicBreaking extends SimModellmpl{ 

/** Default values for the Rieskamp-Gigerenzer Model 

*/ 

public static final double ITERATIONS = 10 .0 ;  

private double iterations = ITERATIONS; 

private static final int HESITANT= 1 ;  

private static final int MODERATELY_GRIM=2; 

private static final int REACTIVE= 1 ; 

private static final int HALF _BACK=2; 

private int hesitant=HESITANT; 

private int moderatelyGrim=MODERATELY_GRIM; 

private int reactive=REACTIVE; 

private int halffiack=HALF _BACK; 

private static final int NUMAGENTS= 100; 

private int numAgents=NUMAGENTS; 

private int numinvestor; 

private int numBorrower; 

private int numHesitant; 

private int numReactive; 

private static fi nal double RECIPROCITY_MEAN = 0 .34; 

private double reciprocityThreshhold = RECIPROCITY_MEAN; 

private static fi nal double TRUST_THRESHHOLD_MEAN_REACTIVE = 
0 . 17 ;  

private double trustThreshholdReactive = 
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TRUST_THRESHHOLD_MEAN_REACTIVE; 

private static final double TRUST_THRESHHOLD_MEAN_HALFBACK = 
0. 12 ;  

private double trustThreshholdHalfBack = 

TRUST_THRESHHOLD_MEAN_HALFBACK; 

private double threshhold; 

private int idlnvestor; 

private int strategylnvestor; 

private double moneylnvestor; 

private int statelnvestor; 

private int idBorrower; 

private int strategyBorrower; 

private double moneyBorrower; 

private int stateBorrower; 

private Schedule schedule; 

private Array List agentListlnvestor; 

private Array List agentListBorrower; 

private DataRecorder recorder; 

public String getN a me( ){ 

return "Simple trust heuristic with breaking" ; 

public void setup() { 

agentListlnvestor=new ArrayList(); 

agentListBorrower=new ArrayList( ); 

schedule=new Schedule( 1) ;  

public void begin() { 

buildModel() ;  

buildSchedule() ;  

private void buildModel( )  { 

populate() ;  

recorder=new DataRecorder("lhome/sue/models/basicBreaking6/data. txt 

" ,  this); 

recorder.createN umericDataSource("idlnvestor" ,  this, 
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"getldlnvestor") ;  

recorder.createN umericDataSource(" strategy Investor" , 

this, "getStrategylnvestor");  

recorder.createN umericDataSource("money Investor" , 

this, "getMoneylnvestor") ;  

recorder.createN umericDataSource("idBorrower" ,  this, 

"getldBorrower") ;  

recorder.createNumericDataSource("strategyBorrower" , this, "getStrategy­
Borrower") ;  

recorder.createN umericDataSource("moneyBorrower" ,  this, "getMoneyBor­
rower");  

private void buildSchedule() { 

class TrustStep extends BasicAction { 

public void execute() {  

Sim Utilities. shuffle(agentListlnvestor ) ;  

Iterator e = agentListlnvestor.iterator() ;  

while (e.hasNext()) {  

TrustAgent tra=(TrustAgent)e.next() ;  

int  ID=tra.getiDO; 

int p=tra.getPartner() ;  

/** 

* Check first whether the agent has a partner. If not, then try to find one. 

*I 

if (p==O){ 

p=findPartner() ;  

TrustAgent trp = (TrustAgent)agentListBorrower.get(p); 

tra.setPartner(p) ; 

trp.setPartner(ID ) ;  

/** 

* Only go through the transaction step with an agent that has a partner. 

*I 

if(p!=O){  

TrustAgent trp = (TrustAgent)agentListBorrower.get(p-1 ) ;  
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int stateA = tra .getState() ;  

int strategyA = tra.getStrategy(); 

double investMoney = tra.invest(strategyA, stateA); 

int stateP = trp.getState() ;  

int strategyP = trp.getStrategy();  

double threshhold = 0; 

switch(strategy P){ 

case 1 :  

threshhold = trp.getTrustThreshholdReactive( ); 

break; 

case 2: 

threshhold = trp.getTrustThreshholdHalfBack();  

break; 

double back = trp.respond(investMoney, stateP, strategyP, threshhold); 

int statePnew = trp.stateUpdate(investMoney, stateP, strategyP, 

threshhold); 

trp. setState(statePnew); 

int stateAnew = tra.assess(back, investMoney, reciprocityThreshhold,  

strategyA, stateA); 

tra. setState(stateAnew); 

boolean breakFlag = tra.assessRel(stateA, strategyA); 

if (breakFlag){ 

tra. setPartner( 0); 

trp. setPartner( 0); 

tra.setState(O) ;  

trp.setState(O) ;  

idlnvestor=tra.getiDO; 

strategy Investor=tra.getStrategy() ;  

moneylnvestor=tra.getMoney();  

idBorrower=trp.getiD(); 

strategy Borrower=trp.getStrategy() ;  

money Borrower=trp.getMoney() ;  

recorder. record() ; 
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class RunE nd extends BasicAction { 

public void execute(){ 

stop();  

schedule.scheduleActionBeginning(O,  new TrustStep()) ;  

schedule.scheduleActionBeginning(iterations,new RunEnd()); 

schedule. scheduleActionAtE nd(recorder, "wri teToFile" ); 

private void populate ( ) {  

/**Work out the number of  investors and borrowers, 

* then the number of Hesitant Investors and the number of Reactive 

* Borrowers. The remainder of Investors are Moderately Grim and the 

* remainder of Borrowers are Half Back. 

*/ 

numinvestor=numAgents/2 ; 

numHesitant=numinvestor/2; 

int count= l ;  

threshhold = reciprocityThreshhold; 

for(count= l ;  count<=numHesitant; count++){ 

addN ew Investor(hesitant,count, threshhold); 

int c=count; 

for(count=c; count<=numinvestor; count++){ 

addN ew In vestor(moderatelyGrim,coun t, threshhold); 

/* 

* Adds the borrowers. The trust threshhold is different for the 

* different borrower strategies. 

*I 

numBorrower=numAgents-numinvestor; 
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numReactive=numBorrower/2; 

count= l ;  

threshhold = trustThreshholdReactive; 

for(count= l ;  count<=numReactive; count++){ 

addN ew Borrower(reacti ve,coun t, threshhold); 

c=count; 

threshhold = trustThreshholdHalfBack; 

for(count=c; count<=numBorrower; count++){ 

addN ew Borrower(halfBack,count, threshhold);  

/**Should be fully populated by here. 

* Now find partners. Shuffle the list of lnvestors, then work through 

* the list pairing up the Investor with the corresponding Borrower 

* 

*/ 

Si mU tilities.shuffle(agentListinvestor ) ;  

Iterator e = agentListinvestor.iterator( ) ;  

while (e.hasNext( )) {  

TrustAgent tra = (TrustAgent)e.next( ) ;  

int ID=tra.getiDO; 

int p=findPartner( ) ;  

TrustAgent trp = (TrustAgent)agentListBorrower.get(p); 

tra. setPartner( p) ;  

trp.setPartner(ID) ;  

private void addNewinvestor(int s ,  int id, double t){ 

int strategy=s; 

int ID=id; 

threshhold = t;  

TrustAgent a = new TrustAgent(true, strategy, ID, threshhold); 

agentListlnvestor.add(a); 
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private void addNewBorrower(int s, int id, double t){ 

int strategy=s; 

int ID=id; 

threshhold = t; 

TrustAgent a = new TrustAgent(false, strategy, ID, threshhold); 

agen tListBorrower. add( a);  

public Schedule getSchedule() { 

return schedule; 

public String[] getlnitParam(){  

String[] initParams = {"Iterations" ,  "NumAgents" , "ReciprocityThreshhold" 
, "TrustThreshholdReactive" , "TrustThreshholdHalfBack"} ;  

return initParams; 

public double getlterations(){ 

return iterations;  

public void setlterations(double it){ 

iterations=it; 

public int getNumAgents(){ 

return numAgents; 

public void setNumAgents(int na){ 

numAgents=na; 

public double getReciprocityThreshhold(){ 

return reciprocityThreshhold;  

public void setReciprocityThreshhold(double rt) {  

reci proci tyThreshhold=rt; 

public double getTrustThreshholdReactive(){ 

return trustThreshholdReactive; 
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public void setTrustThreshholdReactive(double ttr){ 

trustThreshholdReactive=ttr; 

public double getTrustThreshholdHalfBack() {  

return trustThreshholdHalfBack; 

public void setTrustThreshholdHalfBack(double tth){ 

trustThreshholdHalfBack=tth ; 

public int getldlnvestor(){ 

return idlnvestor; 

public int getStrategy Investor( ){ 

return strategylnvestor; 

public int getStatelnvestor(){ 

return statelnvestor; 

public double getMoneylnvestor(){ 

return moneylnvestor; 

public int getldBorrower() {  

return idBorrower; 

public int getStrategyBorrower( ){ 

return strategyBorrower; 

public int getStateBorrower(){ 

return stateBorrower; 

public double getMoneyBorrower() {  

return moneyBorrower; 

public int findPartner() {  
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int newPartneriD=O; 

Iterator e = agentListBorrower.iterator() ;  

do{ 

TrustAgent trialP = (TrustAgent)e.next() ;  

int checkPartner = trialP.getPartner() ;  

switch (checkPartner){ 

case 0 :  

newPartneriD = trialP.getiD0-1 ;  

break; 

default: 

while((newPartneriD==O)&&(e.hasNext())) ; 

return newPartneriD;  

public static String format(double number, int frac){ 

Number Format N =NumberFormat.getlnstance() ;  

N. setGroupingU sed( false); 

N. setMaxim umFractionDigi ts(frac); 

N.setMinimumFractionDigits(frac);  

String num = N.format(number); 

return num; 

public static void main(String[] args) { 

Simlnit init = new Siml nit( ) ;  

BasicBreaking model = new BasicBreaking();  

ini t . loadModel(model ,""  ,false); 

TrustAgent 

package basicBreaking; 

/** 

* Basic Breaking Model 
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* 

* Version 1 

* @author Sue Street 

* @version 1 .0  

* Created 23/2/07 

*/ 

import uchicago.src.sim. util .Random; 

import java.text.NumberFormat; 

/*''' 

* @author S.E.Street 

* @version Minimal R&G 2003 with added relationship breakdown 

* A bare cognitive model of trust from Rieskamp & Gigerenzer (2003). 

* Recording added recording to a file. 

* Randomised *removed* 

''' Breaking adds a relationship split if either: 

* the Investor fails to invest enough, or 

* the Borrower fails to return enough . 

* 

* This code uses the RePast tutorial by J.T. Murphy as a foundation 

* http://www.u.arizona.edu/-jtmurphy/H2R/main.htm 

*/ 

public class TrustAgent { 

/**Transaction variables declared here 

* 

*/ 

private double dividend; 

private static final double INCOME = 10; 

private double income = INCOME; 

private double invest; 

private double investMoney; 

private double money; 

//Original R&G figure of 3 .0  

private static final double PROFIT_MARGIN = 3.0 ;  
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private double profitMargin = PROFIT_MARGIN; 

private double proportionlnvested; 

/** Personality variables declared here 

* 

* Variables setting bottom line for fairness and trust. 

* Default for investor is at least the investment returned for reciprocity. 

* Default for borrowers is at least 12% (half-back) or 1 7% (reactive) for 
trust 

* to be acknowledged. 

* 

* Now has provision for mean and standard deviation to be fixed for the 
population 

* with individual values drawn from a distribution. 

*/ 

private static final double RECIPROCITY_SD = 0.0;  

private static final double TRUST_THRESHHOLD_SD_REACTIVE = 0.0;  

private static fi nal double TRUST_THRESHHOLD_SD_HALFBACK = 0.0 ;  

private double threshhold; 

private double reciprocityThreshhold; 

private double trustThreshholdReactive; 

private double trustThreshholdHalfBack; 

/** 

* Variables setting investment levels and responses for each state 

*/ 

public static fi nal double INVEST_HESITANT_MEAN_1 = 0 .5 ;  

public static final double INVEST_HESITANT_SD_1 = 0.0 ;  

public double investHesitantl = INVEST_HESITANT_MEAN_1 ;  

public static final double INVEST_HESITANT_MEAN_2 = 1 .0 ;  

public static fi nal double INVEST_HESITANT_SD_2 = 0.0 ;  

public double investHesitant2 = INVEST_HESITANT_MEAN_2; 

public static fi nal double INVEST_HESITANT_MEAN_3 = 0.00;  

public static fi nal double INVEST_HESITANT_SD_3 = 0.00;  

public double investHesitant3 = INVEST_HESITANT_MEAN_3; 

private static fi nal double INVEST_MOD_GRIM_MEAN_1 = 1 .0 ;  

private static fi nal double INVEST_MOD_GRIM_SD_1 = 0 .0 ;  
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private double investModGrim l = INVEST_MOD_GRIM_MEAN_l ;  

private static final double INVEST_MOD_GRIM_MEAN_2 = 1 .0; 

private static final double INVEST_MOD_GRIM_SD_2 = 0.0;  

private double investModGrim2 = INVEST_MOD_GRIM_MEAN_2; 

private static final double INVEST_MOD_GRIM_MEAN_3 = 0.0 ;  

private static final double INVEST_MOD_GRIM_SD_3 = 0.0;  

private double investModGrim3 = INVEST_MOD_GRIM_MEAN_3 ;  

private static final double RETURN_REACT_MEAN_l = 0.0;  

private static final double RETURN_REACT_SD_l = 0.0;  

private double returnReactl = RETURN_REACT_MEAN_l;  

private static final double RETURN_REACT_MEAN_2 = 0 .7 ;  

private double returnReact2 = RETURN_REACT_MEAN_2; 

private static final double RETURN_REACT_SD_2 = 0.0;  

private static final double RETURN_HALF _BACK_MEAN_l = 0 .5 ;  

private static final double RETURN_HALF _BACK_SD_l = 0 .0 ;  

private double returnHalfBackl = RETURN_HALF _BACK_MEAN_l ;  

private static final double RETURN_HALF _BACK_MEAN_2 = 0 .0 ;  

private static final double RETURN_HALF _BACK_SD_2 = 0.0;  

private double returnHalfBack2 = RETURN_HALF _BACK_MEAN_2; 

/** Strategy variables 

*/ 

private static final boolean BORROWER = false; 

private boolean islnvestor = BORROWER; 

private int strategy; 

/** Identity variables 

* 

*/ 

private int ID; 

private int partner; 

/**Transaction state variables 

* 

*/ 

private static final int STATE = 1 ;  

private int state = STATE; 
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/** 

* Initialise a Trust Agent. It begins with no money and no partner. It draws 
a 

* role and strategy from the populate method. 

* @param strategy 

* @param islnvestor 

*I 

public TrustAgent(boolean il ,  int s, int id, double t) { 

ID = id; 

money = 0 ;  

partner = 0 ;  

islnvestor = i l ;  

strategy = s ;  

threshhold = t; 

/** 

* Fire up a random number generator for a Normal distribution mean = 0 ,  
sd = 1 

*/ 

Random.createNormal(O, l ); 

/** 

* Then randomly allocate individual characteristics, based on a mean and 
SD 

* as specified in the constants at the beginning. 

*/ 

if (islnvestor==true){ 

double rand=Random.normal. nextDouble() ;  

reci procityThreshhold=threshhold +(rand *RECIPROCITY _SD ) ;  

if (strategy==l) {  

rand=Random.normal.nextDouble(); 

investHesitantl=INVEST _HE SIT ANT _MEAN_l + 

(rand*INVEST_HESITANT_SD_l) ;  

rand=Random.normal.nextDouble(); 

investHesitant2=1NVEST _HESITANT _MEAN_2 

+(rand *INVEST _HESITANT _SD _2) ;  

rand=Random.normal.nextDouble(); 

investHesitant3=1NVEST _HESITANT _MEAN_3 
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+(rand*INVEST_HESITANT_SD_3); 

} 

else{ 

rand=Random. normal.nextDouble() ;  

investModGriml=INVEST_MOD_GRIM_MEAN_l 

+(rand*INVEST_MOD_GRIM_SD_l) ;  

rand=Random.normal.nextDouble( ) ;  

investModGrim2=INVEST_MOD_GRIM_MEAN_2 

+(rand*INVEST _MOD_ G RIM_SD _2); 

rand=Random. normal .nextDouble(); 

investModGrim3=INVEST_MOD_GRIM_MEAN_3 

+(rand*INVEST_MOD_GRIM_SD_3); 

} 

} 

else{ 

11 These are the borrowers 

double rand; 

if(stra tegy== 1 ){ 

rand=Random.normal .nextDouble(); 

trustThreshholdReactive=threshhold 

+rand*TRUST_THRESHHOLD_SD_REACTIVE; 

rand=Random.normal .nextDouble(); 

returnReactl=RETURN_REACT_MEAN_l 

+(rand*RETURN_REACT_SD_l ); 

rand=Random.normal.nextDouble() ;  

returnReact2=RETURN_REACT _MEAN_2 

+(rand*RETURN_REACT_SD_2); 

} 

else{ 

rand=Random. normal. nextDouble() ;  

trustThreshholdHalfBack=threshhold 

+rand*TRUST_THRESHHOLD_SD_HALFBACK; 

rand=Random. normal .nextDouble() ;  

returnHalfBackl=RETURN_HALF _BACK_MEAN_l 

+(rand*RETURN_HALF _BACK_SD_l) ;  
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rand=Random. normal .  nextDouble() ;  

returnHalfBack2=RETURN_HALF _BACK_MEAN_2 

+(rand*RETURN_HALF _BACK_SD_2); 

} 

} 

/** 

* Allow model to access money held by this agent 

* @return money 

*/ 

public double getMoney() { 

return money; 

/** 

* Allow model to access this agent's strategy 

* @return strategy 

*/ 

public int getStrategy() { 

return strategy; 

/** 

* Allow model to access role ( Investor or Borrower) 

* @return islnvestor 

*I 

public boolean getRole() { 

return islnvestor; 

/** 

* Allow model to identify this agent 

* @return ID 

*/ 

public int getiD() { 

return ID; 

/** 
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* Allow model to identify this agent's partner 

* @return partner 

*/ 

public int getPartner() { 

return partner; 

* Allow model to set the agent's partner in initialisation 

* @return partner 

*I 

public void setPartner(int p) { 

partner = p;  

/** 

* Allow model to access and set the agent's state 

*I 

public int getState( ){ 

return state; 

public void setState(int s){ 

state=s; 

public double getTrustThreshholdReactive( ){ 

return trustThreshholdReactive; 

public double getTrustThreshholdHalfBack( ){ 

return trustThreshholdHalfBack; 

public double getReciprocityThreshhold( ) {  

return reciprocityThreshhold; 

/** 

* Invest carries out the first step of the interaction cycle. It activates a 
method 

* for either a Hesitant (investHesitant) or a Moderately grim (investMod­
eratelyGrim) 
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* investor. 

* 

* @return Amount to be invested with the borrower 

*I 

public double invest(int strat, int s) { 

strategy = strat; 

state = s ;  

switch (strategy) { 

case 1 : 

investMoney = investHesitant(state); 

break; 

case 2 :  

investMoney = investModeratelyGrim(state) ;  

return investMoney; 

/** 

* The Hesitant Investor decides how much to invest 

* @return investedMoney 

*/ 

public double investHesitant(int s) { 

state = s ;  

switch (state) { 

case 1 : 

invest = investHesitantl ;  

break; 

case 2 :  

invest = investHesitant2; 

break; 

case 3 :  

invest = investHesitant3 ; 

double invMon = invest * income; 

return inv M on; 
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/** 

* The Moderately Grim Investor decides how much to invest 

* @return investedMoney 

*/ 

private double investModeratelyGrim(int s) { 

int state = s; 

switch (state) { 

case 1 : 

invest = investModGriml ;  

break; 

case 2 :  

invest = investModGrim2; 

break; 

case 3 :  

invest = investModGrim3; 

double invMon = invest ''' income; 

return invMon; 

/** 

* Once the Investor has completed the investment decision, the Borrower 

* assesses whether or not it has been trusted, and on the basis of this and 

* its current state the Borrower decides how much to return to the Investor. 

* The difference between the amount received and the dividend returned is 
added 

* to the Borrower's wealth 

* @param investedMoney 

* @return dividend 

*/ 

public double respond(double inv, int s, int strat, double t) { 

investMoney = inv; 

state = s; 

strategy = strat; 

threshhold = t; 

double received = profitMargin * investMoney; 
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proportionlnvested = investMoney I income; 

switch (strategy) { 

case 1 :  

dividend = respondReactive(received, proportionlnvested, threshhold); 

break; 

case 2 :  

dividend = respondHalfBack(received, proportionlnvested, threshhold, 

state);  

double kept = received - dividend; 

money += kept; 

return dividend; 

public int stateUpdate(double inv, int s, int strat, double t) { 

investMoney = inv; 

state = s; 

strategy = strat; 

double threshholdH = t; 

proportionlnvested = investMoney I income; 

switch (strategy) { 

case 1 :  

state = 1 ;  

break; 

case 2 :  

state = stateHalfBack(proportionlnvested, threshholdH, state); 

return state; 

I** 
* @param received 

* @return dividend 

*I 
private double respondReactive(double r, double pi, double tTR) { 

double received = r; 

double proportionlnvested = pi; 
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double trustThreshholdReactive = tTR; 

double d = 0 ;  

if (proportion Invested >= trustThreshholdReactive) { 

d = returnReact2; 

} else { 

d = returnReactl ;  

dividend = d * received; 

return dividend; 

/** 

* @param received 

* @return dividend 

*/ 

private double respondHalfBack(double r, double pi, double tTH, int s) { 

double received = r; 

double proportioninvested = pi ; 

double threshholdH = tTH;  

int  state = s ;  

boolean t = true; 

if (proportioninvested < threshholdH) { 

t = false; 

if ( state == 1) { 

if ( t) { 

dividend = received * returnHalfBackl ;  

} else { 

dividend = received * returnHalfBack2; 

if ( state == 2) { 

dividend = received * returnHalfBackl ;  

return dividend; 
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private int stateHalfBack(double pi,  double tTH,  int s) { 

double proportionlnvested = pi;  

double threshholdH = tTH; 

int state = s ;  

boolean t = true; 

if (proportionlnvested < threshholdH) { 

t = false; 

if (state == 1) { 

if (t) { 

state = 1 ;  

} else { 

state = 2 ;  

if (state == 2) { 

state = 1 ;  

return state; 

/** 

*I 
public int assess(double b, double i, double rT, int strat, int s) { 

double back = b; 

double investMoney = i ;  

double reciprocityThreshhold = rT; 

int state = s ;  

int strategy = strat; 

double returnRatio = back I investMoney; 

boolean reciprocated = false; 

if (returnRatio >= reciprocityThreshhold) { 

reciprocated = true; 

switch (strategy) { 
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case 1 : 

state = assessHesitant(reciprocated,  state) ;  

break; 

case 2 :  

state = assessModeratelyGrim(reciprocated, state); 

money += back; 

return state; 

/** 

* Investor assesses whether the investment was reciprocated and adjusts 
state 

* if a change is required 

* @param reciprocated 

* @param state 

* @return state 

*I 

private int assessModeratelyGrim(boolean r, int s) { 

int state = s ;  

boolean reciprocated = r; 

if (state == 1) { 

if (reciprocated) { 

state = 2;  

} else { 

state = 3 ;  

i f  (state == 2) { 

if (reciprocated) 

state = 2 ;  

else 

state = 1 ;  

i f  (state = =  3 )  
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state = 3 ;  

return state; 

private int assessHesitant(boolean r, int s) { 

state = s ;  

boolean reciprocated = r ;  

i f  (state ==  1 )  

state = 2 ;  

i f  (state == 2 )  { 

if (reciprocated) 

state = 2 ;  

else 

state = 3 ;  

if (state = =  3 )  

state = 1 ;  

return state; 

public boolean assessRel(int s ,  int strat){ 

int state=s;  

int strategy = strat; 

boolean breakFlag = false; 

if (state == 3) {  

switch(strategy){ 

case 1 :  

breakFlag = false; 

break; 

case 2 :  

breakFlag = true; 

return breakFlag; 

public static String form(double number, int frac){ 

NumberFormat N = NumberFormat.getlnstance(); 
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N.setMaximumFractionDigits(frac); 

N.setMinimumFractionDigits(frac);  

String num = N.format(number); 

return num; 

Trading model 

TradeMel l.java 

package tradeMe 1 1 ; 

/** 

* TradeMe Version 1 1 .  File output to 

''' file output<tick#> .txt at each tick. 

* Fixes V10 problem with the information exchange 

* in the strategy sharing - was not sharing it into 

* the correct variable. 

* Version 1 1  

* @author Sue Street 

* @version 1 1 .0 

* 

'�/ 

import java.io.IOException; 

import j ava. util .Array List; 

import java.util . Iterator; 

import uchicago.src .sim.engine.BasicAction; 

import uchicago. src. sim.engine. Schedule; 

import uchicago. src.sim.engine. Simlni t; 

import uchicago.src.sim.engine.SimModellmpl; 

import uchicago. src. si m .  util . Si mU tili ties; 

public class TradeMe 1 1  extends SimModellmpl{ 

private double buyPrice = 0.0; 

private double happyGoodTrade = 10.0 ;  
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private double happySuccessfulCon = 20.0;  

private double unhappyBadComms = 2.0;  

private double unhappyBadDelivery = 20.0; 

private double unhappyBadPayment = 5 .0 ;  

private double neutralHappy = 0 .0 ;  

private double sellerHappiness = 0 .0 ;  

private double buyerHappiness = 0.0 ;  

private int tradersNumAgents = 100; 

private int ID; 

private Schedule schedule; 

private ArrayList agentListTraders; 

/** 
* Sets name as required by SimpleModel 

*I 
public String getN ame(){  

return "Trade Me Version 1 1 " ;  

/** 
* Initialises model, tearing down the agents and schedules from 

* previous runs. Required by SimpleModel 

*I 
public void setup(){ 

agentListTraders = new ArrayList( ) ;  

schedule = new Schedule( l) ;  

/** 
* Builds the model and schedule for this run. 

* @throws IOException 

*/ 
public void begin(){ 

buildModel() ;  

buildSchedule() ;  

/** 
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* Adds agents to the model. Initialises and sets variables for the Data 
Recorder 

*I 
private void buildModel(){ 

populate(); 

/** 
* Schedule a sale round at each iteration 

* and data output at the end of every lOOth run .  

* Stop the simulation after 500  runs. 

*/ 
private void buildSchedule( ) {  

class TradeStep extends BasicAction{ 

public void execute(){ 

sale( ) ;  

try { 

outputResult( ) ;  

} catch (IOException e) { 

class OutputResult extends BasicAction { 

public void execute(){ 

try { 

outputResult() ;  

} catch (IOException e) { 

class EndOfRun extends BasicAction{ 

public void execute(){ 

stop( ); 

schedule.scheduleActionBeginning(O,  new TradeStep()) ;  
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schedule.scheduleActionAtlnterval( lOO,  new OutputResult()); 

schedule. scheduleActionAt(500, new EndOfRun()); 

/** 

* Shuffle the agents then step through each agent to see if 

* they have something to sell . Then for each seller step 

* through each buyer for bids. Buyers cannot see previous 

* bid. Seller may reject buyers, based on reputation. 

*I 

private void sale(){ 

Si mU tili ties. s huffie( agen tListTraders);  

Iterator iterateSeller = agentListTraders.iterator() ;  

while (iterateSeller.hasNext( ))  { 

Trader seller = (Trader) iterateSeller.next() ;  

/* 

* Each agent is polled to see if they have something to sell. If the asking 
price 

* is greater than zero, then the selling price is initialised and the bid pro­
cess 

* starts. If the agent has nothing to sell then jump to the next agent. 

*/ 

double askingPrice = seller.forSalePrice() ;  

Trader buyer = seller; 

/* 

* Collect the seller's trading history to pass to the buyer. 

*I 

int bD = seller.getBadDelivery() ;  

int bC = seller.getBadCommunication(); 

int bP = seller.getBadPayment() ;  

int gT = seller.getGoodTrade() ;  

int tT = seller.getTotalTrades() ;  

boolean haveBuyer = false; 

if (askingPrice > 0 .0) { 

double sellingPrice = 0 .0 ;  

I* 
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* If there is an item for sale then step through all agents to obtain bids. 

* If the bid beats the previous highest bid, this becomes the highest bid. 

* Currently does not treat asking price as a reserve price. 

*/ 

SimUtilities. shuffle(agentListTraders) ;  

Iterator iterateBuyer = agentListTraders.iterator( ); 

while (iterateBuyer.hasNext()) { 

Trader bidder = (Trader) iterateBuyer.next() ;  

/* 
* Buyer decides how much to bid and whether to bid based on the 

* trading history 

*/ 

double bid = bidder.bidToBuy(bD, bC, bP, gT, tT); 

if (bid > sellingPrice) { 

sellingPrice = bid; 

buyer = bidder; 

buyer. setBough tlnLastRound( true); 

haveBuyer = true ; 

seller.setTotalTrades(seller.getTotalTrades()+ 1 ) ;  

buyer.setTotalTrades(buyer.getTotalTrades0+1) ;  

11 double lap = getTickCount() ;  

11 System.out.println(lap+" "+seller.getld()+" "+seller.getTotalTrades( )+" " 

+buyer.getld()+" "+buyer.getTotalTrades()) ;  

if (haveBuyer) { 

saleResult(buyer, seller); 

buyer.exchangeStrategy(seller ) ;  

seller. exchangeStra tegy(buyer) ; 

/** 
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* Assess outcome of the sale for buyer and seller. Seller is happy if trade is 
completed 

* or if buyer pays and seller does not deliver. If either fails to communicate, 
seller fails 

* to deliver or buyer fails to pay then other party is unhappy according to 
parameters set, 

* and the failure to perform is recorded against the agent that fails to meet 
obligations. 

* 

* @param buyer 

':' @param seller 

*/ 

private void saleResult(Trader buyer, Trader seller){ 

if ( !buyer.communicate( )) { 

11 Seller is unhappy at the lack of communication 

sellerHappiness = -unhappyBadComms; 

seller.setOverallHappiness(seller.getOverallHappiness()+sellerHappiness) ;  

11 Buyer is neither happy nor unhappy, and gets a bad communication 
recorded 

buyerHappiness = neutralHappy; 

buyer. setHa ppy With Transaction(buyer Happiness); 

buyer. setOverallHa ppiness(buyer.getOverallHappiness( ) + buyer Happiness); 

buyer. setBadCommunication(buyer.getBadCommunication() + 1 ) ;  

} else i f  ( ! seller.communicate()) { 

11 Seller is neither happy nor unhappy, and gets a bad communication 
recorded 

sellerHappiness = neutralHappy; 

seller. setOverallHappiness(seller.getOverallHappinessO+sellerHappiness); 

int noBadComms = seller.getBadCommunication() + 1 ;  

seller.setBadCommunication(noBadComms); 

I/ Buyer is unhappy at the lack of communication 

buyerHappiness = -unhappyBadComms; 

buyer. setHa ppy With Transaction(buyer Happiness); 

buyer. setOverallHa ppiness 

(buyer.getOverallHappiness( ) + buyer Happiness); 

} else if ( !buyer. payUp())  { 
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I/ Seller is unhappy at lack of payment 

sellerHappiness = -unhappyBadPayment; 

seller.setOverallHappiness(seller.getOverallHappiness()+sellerHappiness);  

//Buyer is neither happy nor unhappy, but gets a bad payment report 

buyerHappiness = neutralHappy; 

buyer. setOverallHa ppiness(buyer.getOverallHa ppiness( ) + buyer Happiness); 

buyer.setBadPayment(buyer.getBadPayment( ) + 1) ;  

} else if ( ! seller. delivery( )) { 

11 Seller is happy as payment received but no goods delivered 

sellerHappiness = happySuccessfulCon; 

seller. setOverallHappiness(seller.getOverallHappiness()+sellerHappiness);  

seller. setBadDelivery(seller.getBadDelivery() + 1 ) ;  

11 Buyer is unhappy as  payment was paid but no goods received 

buyerHappiness = -unhappyBadDelivery; 

buyer.setHappyWithTransaction(buyerHappiness); 

buyer. setOverallHa ppiness(buyer.getOverallHa ppiness() + buyer Happiness);  

} else { 

/1 The trade goes through cleanly - both buyer and seller are happy with a 
good trade 

sellerHappiness = happyGoodTrade; 

seller. setOverallHa ppiness(seller.getOverallHa ppiness( )+seller Ha ppi ne ss);  

buyerHappiness = happyGoodTrade; 

buyer. setHappyWithTransaction(buyerHappiness) ;  

buyer.setOverallHappiness(buyer.getOverallHappiness( ) + buyerHappiness);  

buyer.setGoodTrade(buyer.getGoodTrade() + 1 ); 

seller. setGoodTrade(seller.getGoodTrade() + 1 ) ;  

/** 

* Fill the simulation with the number of agents set in the 

* parameters. 

*I 

private void populate() {  

for(int i = 1 ;  i<=tradersNumAgents; i++H 

addN ewTrader(i) ;  
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private void addNewTrader(int id){ 

ID=id; 

Trader a =  new Trader(ID); 

agentListTraders.add(a);  

a.init() ;  

public Schedule getSchedule() {  

return schedule; 

public void outputResult() throws IOException{ 

double time=getTickCountO+ 1000; 

Stream fout = new Stream("output"+time+".txt") ;  

fout.println(" Happiness, Reliability, Honesty, badComms, 

badPay, badDel, goodTrade, "+ 

"TotTrades, WeightBadComms, WeightBadPay, WeightBadDel , WeightGood­
Trade, WeightTotTrades") ;  

Iterator iterator = agentListTraders.iterator() ;  

while (iterator.hasNext( )){  

Trader trader = (Trader) iterator.next( ) ;  

int tiD = trader.getld( ) ;  

String stiD = Stream.format(tiD, 3) ;  

double h WT = trader.getOverallHappiness(); 

String shWT = Stream. format(hWT, 9, 0) ;  

double r = trader.getReliability() ;  

String sr = Stream.format(r, 1 1 , 4) ;  

double h H  = trader.getHowHonest() ;  

String shH = Stream.format(hH, 7 ,  4); 

int bC = trader.getBadCommunication() ;  

String sbC = Stream.format(bC, 8) ;  

int bP = trader.getBadPayment() ;  

String sbP = Stream.format(bP, 6) ;  

int bD = trader.getBadDelivery() ;  

String sbD = Stream.format(bD, 6) ;  
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int gT = trader.getGoodTrade() ;  

String sgT = Stream.format(gT, 9) ;  

double gTT = trader.getTotalTrades() ;  

String sgTT = Stream.format(gTT, 9 ,  1) ;  

double wBC = trader.getWeightBadComm(); 

String swBC = Stream.format(wBC, 14, 4) ;  

double wBP = trader.getWeightBadPay( );  

String swBP = Stream.format(wBP, 12, 4) ;  

double wBD = trader.getWeightBadDel( ) ;  

String swBD = Stream.format(wBD, 12,  4) ;  

double wGT = trader.getWeightGoodTrade( ) ;  

String swGT = Stream.format(wGT, 15,  6) ;  

double wTT = trader.getWeightTotalTrades( ) ;  

String swTT = Stream.format(wTT, 15,  4); 

fout.println(stiD+",  "+shWT+" ,  "+sr+", "+shH+" ,  "+sbC+", "+sbP+", "+sbD+" ,  
"+sgT 

+" ,  "+sgTT+" ,  "+swBC+",  "+swBP+" ,  "+swBD+" , "+swGT+" ,  "+swTT); 

fout.close() ;  

public String[ ] getlnitParam() {  

String[] initParams = { "tradersNumAgents" , "unhappyBadComms", 

"unhappy BadDelivery" ,  "unhappy BadPayment" ,  

"neutralHappy" , "happyGoodTrade" , "happySuccessfulCon" 

} ; 

return initParams; 

public void setBuyPrice(double d) { 

buyPrice = d; 

public double getBuyPrice() { 

return buyPrice; 

public void setTradersNumAgents(int i) { 

tradersNumAgents = i ;  
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public int getTradersNumAgents() { 

return tradersN umAgents; 

public double getUnhappyBadComms() { 

return unhappyBadComms; 

public void setUnhappyBadComms(double d) { 

unhappyBadComms = d ;  

public double getUnhappyBadDelivery() { 

return unhappy BadDeli very; 

public void setUnhappyBadDelivery(double d) { 

unhappyBadDelivery= d;  

public double getUnhappyBadPayment() { 

return unhappyBadPayment; 

public void setUnhappyBadPayment(double d) { 

unhappyBadPayment= d;  

public double getN eutralHappy() { 

return neutralHappy; 

public void setNeutralHappy(double d) { 

neutralHappy = d;  

public double getHappyGoodTrade() { 

return happyGoodTrade; 

public void setHappyGoodTrade(double d) { 

happyGoodTrade = d;  

public double getHappySuccessfulCon() { 
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return happySuccessfulCon; 

public void setHappySuccessfulCon(double d) { 

happySuccessfulCon = d; 

public static void main(String[] args) throws IOException { 

Simlnit init = new Simlnit(); 

TradeMe l l  model = new TradeMe l l() ;  

init. loadModel(model , " " ,false); 

Trader.java 

package tradeMe 1 1 ;  

/** 

* TradeMe Version 1 1 . File output to 

* file output<tick#> .txt at each tick. 

''' Fixes V10 problem with the information exchange 

* in the strategy sharing - was not sharing it into 

* the correct variable. 

* 

* Version 1 1  

* @author Sue Street 

* @version 1 1 .0  

* 

*/ 

import uchicago.src.sim. util .Random; 

public class Trader 

private double askingPrice; 

private double biddingPrice; 

private double reliability; 

private boolean honesty; 

private double tradeResult; 
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private int badDelivery; 

private int badPayment; 

private int badCommunication; 

private double happyWithTransaction; 

private double howHonest; 

private int goodTrade; 

private int totalTrades; 

private boolean boughtlnLastRound; 

private double overallHappiness;  

private int ID;  

/* TradeMe8 adds an interaction so that traders can exchange 

* weighting information after a successful trade. There is no 

* exchange of information after an unsuccessful trade. 

* This is probably less realistic than that traders exchange 

* strategic information with their friends, but the essence remains 

* that the information is adopted from more successful traders. 

*I 

private double weightBadComm = 0 .0 ;  

private double weightBadDel = 0 .0 ;  

private double weightBadPay = 0 .0 ;  

private double weightGoodTrade = 0 .0 ;  

private double weightTotalTrades = 0 .0 ;  

public Trader(int id)  { 

ID=id; 

askingPrice = 0 .0 ;  

biddingPrice = 0 .0 ;  

reliability = 1 .0 ;  

honesty = true; 

tradeResult = 0 .0 ;  

badDeli very = 0 ;  

badCommunication = 0 ;  

happyWithTransaction = 0 .0 ;  

howHonest = 0 .9 ;  

goodTrade = 0 ;  
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totalTrades = 0;  

boughtlnLastRound = false; 

overallHappiness = 0.0;  

/* New variables initialised to zero. They will be assigned a 

* random weighting in the initialisation process. 

'''I 

weightBadComm = 0.0;  

weightBadDel = 0.0;  

weightBadPay = 0.0 ;  

weightGoodTrade = 0.0 ;  

weightTotalTrades = 0.0 ;  

public void setAskingPrice(double d) { 

askingPrice = d ;  

public double getAskingPrice( ) { 

return askingPrice; 

public void setReliability(double d) { 

reliability = d; 

public double getReliability( ) { 

return reliability; 

public void setHonesty(boolean bool) { 

honesty = bool; 

public boolean getHonesty() { 

return honesty; 

public void setTradeResult(double d) { 

tradeResult = d; 

public double getTradeResult() { 

return tradeResult; 
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public void setBadDelivery(int i )  { 

badDelivery = i ;  

public int  getBadDelivery() { 

return badDelivery; 

public void setBadPayment(int i) { 

badPayment = i ;  

public int getBadPayment() { 

return badPayment; 

public void setBadCommunication(int i)  { 

badCommunication = i ;  

public int getBadCommunication( ) { 

return badCommunication; 

public void setHappyWithTransaction(double d) { 

happyWithTransaction = d; 

public double getHappyWithTransaction() { 

return happyWithTransaction; 

public void setHowHonest(double d) { 

how Honest = d; 

public double getHowHonest() { 

return how Honest; 

public void setGoodTrade(int i) { 

goodTrade = i ;  

public int  getGoodTrade() { 
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return goodTrade; 

public void setTotalTrades(int i){ 

totalTrades = i ;  

public int getTotalTrades(){ 

return totalTrades; 

public void setBoughtinLastRound(boolean bool) { 

boughtinLastRound = bool ; 

public boolean getBoughtinLastRound() { 

return boughtinLastRound; 

public void setOverallHappiness(double d) { 

overallHappiness = d;  

public double getOverallHappiness( ) { 

return overallHappiness ; 

public void setld(int i) { 

ID = i ;  

public int getld() { 

return ID; 

public double getWeightBadComm() {  

return weightBadComm; 

public void setWeightBadComm(double d){ 

weightBadComm=d; 

public double getWeightBadDel() {  

return weightBadDel; 
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public void setWeightBadDel(double d){ 

weightBadDel=d; 

public double getWeightBadPay(){  

return weightBadPay; 

public void setWeightBadPay(double d){ 

weightBadPay=d; 

public double getWeightGoodTrade(){ 

return weightGoodTrade; 

public void setWeightGoodTrade(double d){ 

weightGoodTrade=d; 

public double getWeightTotalTrades(){ 

return weightTotalTrades; 

public void setWeightTotalTrades(double d){ 

weightTotalTrades=d; 

public double forSalePrice() { 

Random.createNormal((double) 20, (double) 5) ;  

Random.createUniform((double) 0 ,  (double) 1 ) ;  

double d =  Random.uniform.nextDouble() ;  

if ( ! (d > 0 .5)) 

askingPrice = 0. 0 ;  

else 

askingPrice = Random.normal.nextDouble() ;  

return askingPrice; 

public double bidToBuy(int bD, int bC, int bP, int gT, int tT) { 

double badD = (double)bD I (double)tT; 

double badC = (double)bC I (double)tT; 

double badP = (double)bP I (double)tT; 
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double goodT= (double)gT I (double)tT; 

double sellerAssessment = (weightTotalTrades*totalTrades 

+weightGoodTrade*goodT 

-weightBadComm*badC 

-weightBadPay*badP 

-weightBadDel *badD); 

if(sellerAssessment<O.O){ 

biddingPrice=O. 0; 

else{ 

Random.createNormal((double) 20, (double) 5) ;  

Random.createUniform((double) 0, (double) 1 ) ;  

double d = Random.uniform.nextDouble( ); 

if ( ! (d > 0.5))  

biddingPrice = 0 .0 ;  

else 

biddingPrice = Random.normal.nextDouble( ) ;  

return biddingPrice; 

public void init() { 

askingPrice = 0 .0 ;  

biddingPrice = 0 .0 ;  

Random.createUniform((double) 0 ,  (double) 1 ) ;  

reliability = Random.uniform. nextDouble() ;  

/* 

* Fourth root the reliability to make the distribution 

* more weighted to high reliability 

*/ 

reliability = Math.pow(reliability, 0 .25 ); 

how Honest = Random. uniform.nextDouble(); 

/* 

* Fourth root the honesty to make the distribution more 

* weighted to high honesty 

*/ 
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howHonest = Math.pow(howHo:riest, 0.25) ;  

/* 

* Assign a random weight of each reputation element for each agent. 

* NOTE this is set up for 100 runs; the weighting on the number of 

* of total trades being weighted 1/100th 

* 

* Each of these random elements adds a set of assumptions - assumptions 

* in particular about the distribution of characteristics in a population. 

* This tends to be something that is relatively unreported. 

*/ 

weightBadComm = Random. uniform.nextDouble(); 

weightBadDel = Random. uniform.nextDouble() ;  

weightBadPay = Random. uniform.nextDouble(); 

weightGoodTrade = Random.uniform.nextDouble(); 

weightTotalTrades = Random.uniform.nextDouble( )/100.0;  

public boolean payUp( ) { 

Random.createUniform((double) 0 ,  (double) 1 ); 

double d =  Random.uniform.nextDouble() ;  

boolean bool ; 

if (d >= reliability) 

bool = false; 

else 

bool = true; 

return bool; 

public boolean communicate() { 

Random.createUniform((double) 0 ,  (double) 1 ); 

double d = Random.uniform.nextDouble(); 

boolean bool ; 

if (d >= reliability) 

bool = false; 

else 

bool = true; 

return bool; 
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public boolean delivery() { 

Random.createUniform((double) 0, (double) 1 ) ;  

double d = Random. uniform.nextDouble() ;  

boolean bool ; 

if (d >= how Honest) 

bool = false; 

else 

bool = true; 

return bool ; 

/**Randomly exchange information with partners reporting a 

* greater level of happiness upon completion of a successful 

* trade. The less happy trader has a 50% chance of adopting 

* each individual element of the strategy. 

* 

* @param partner 

:::; 

public void exchangeStrategy(Trader partner){ 

if ( overallHa ppiness<partner.getOverallHappiness() ) {  

double altWbC=partner.getWeightBadComm(); 

double altWbD=partner.getWeightBadDel() ;  

double altWbP=partner.getWeightBadPay() ;  

double altWgT=partner.getWeightGoodTrade( ) ;  

double altWtT=partner.getWeightTotalTrades() ;  

Random.createUniform((double) 0, (double) 1 ) ;  

double d =  Random.uniform.nextDouble() ;  

if (d>0.5) {  

weightBadComm = altWbC; 

d = Random .  uniform.nextDouble() ;  

if (d>0.5) {  

weightBadPay = altWbP;  

d = Random .uniform. nextDouble(); 
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if (d>0.5){  

weightBadDel = altWbD;  

d = Random.uniform.nextDouble() ;  

if (d>0.5){  

weightGoodTrade = altWgT; 

d = Random.uniform.nextDouble() ;  

if  (d>0.5){ 

weightTotalTrades = altWtT; 

public void setModel(TradeMel l  trademe) { 

Stream.java 

package tradeMe l l ;  

import java.io.File Writer; 

import j ava.io.IOException; 

import java.io.PrintWriter; 

import java. text.DecimalFormat; 

public class Stream { 

/* Adapted from The Stream class by J M Bishop and B Worrall 

* May 2000 

* 

* Constructors 

* ----

* public Stream (String filename) 

* 

* Output 

* 

* public void println - for Objects, String, int, double, char 
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* public void print - for Objects, String, int, double, char 

* public void close() 

* 

* Output - class methods 

* ------

* public String format (int number, int align) 

* public String format (double number, int align, int frac) 

*/ 

private PrintWriter out; 

public Stream(String filename) throws IOException { 

out = create(filename); 

private PrintWriter create(String filename) throws IOException { 

return new PrintWriter(new FileWriter(filename)); 

private static DecimalFormat N = new DecimalFormat() ;  

private static final String spaces = 
" " ; 

public static String format(double number, int align, int frac) { 

N.setGroupingUsed(false); 

N.setMaximumFractionDigits(frac); 

N. setMinim umFractionDigi ts(frac);  

String num = N.format(number); 

if (num.length() < align) 

num = spaces.substring(O,align-num .length()) + num; 

return num; 

public static String format(int number, int align) { 

N. setGrou ping U sed(false); 

N. setMaximumFractionDigi ts( 0) ;  

String num = N.format(number); 

if (num.length() < align) 

num = spaces.substring(O,align-num. length()) + num; 

return num; 

public void println(Object s) { 
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out. println(String. valueOf(s) ); 

out. flush() ;  

public void println(String s)  { 

out. println(s);  

out. flush(); 

public void println(int s) { 

out. println(s); 

out. flush() ;  

public void println(double s) { 

out. println(s);  

out.flush() ;  

public void println(char s) { 

out. println(s) ; 

out. flush() ;  

public void print(Object s)  { 

out.print(String.valueOf(s)); 

out.flush() ;  

public void print(String s)  { 

out. print(s) ; 

out.flush();  

public void print(int s) { 

out. print(s) ;  

out. flush() ;  

public void print(double s) { 

out. print(s) ; 

out. flush() ;  
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public void print(char s) { 

out. print(s); 

out. flush(); 

public void close( ) throws IOException { 

if (out != null) 

out. close() ;  

public void flush( ) { 

out. flush() ;  
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