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This thesis presents an implementation of JPEG compression on a Field Programmable 

Gate Array (FPGA) as the data are streamed from a camera. The goal was to minimise 

the usage of logic resources of the FPGA and the latency at each stage of the JPEG 

compression. The modules of these architectures are fully pipelined to enable continuous 

operation on streamed data. The designed architectures are detailed in this thesis and they 

were described in Handel-C. The correctness of each JPEG module implemented on 

Handel-C was validated using MATLAB.  

The software and hardware based algorithms did result in small differences in the 

compressed images as a result of simplifying the arithmetic in hardware. However, these 

differences were small, with no discernible difference in image quality between hardware 

and software compressed images. 

The JPEG compression algorithm has been successfully implemented and tested on 

Altera DE2-115 development board.  Improvements were made by minimising the 

latency, and increasing the performance.  Final implementation also showed that 

implementing a quantisation module in three stage pipeline fashion and using FPGA 

multipliers for 1D-DCT and 2D-DCT can significantly drop the logic resources and 

increase the performance speed. The proposed JPEG compressor architecture has a 

latency of 114 clock cycles plus 7 image rows and has a maximum clock speed of 

55.77MHz. The results obtained from this implementation were very satisfactory.  
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Introduction 

1 

This chapter gives a basic background to this research. It states the problem to be 

studied, aim and main objectives. The proposed methodology for implementing 

JPEG compression into FPGA is presented. 
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In image processing, image compression can improve the performance of the system 

by reducing the cost and time in image storage and transmission without a significant 

reduction of the image quality. A monochrome image can be defined over a matrix of 

picture elements (pixels), with each pixel represented by 8-bit grey scale value. This 

representation of image data could demand large storage and bandwidth to transmit. 

The purpose of image compression is to reduce the size of the representation and, at 

the same time to preserve most of the information contained in the original image [1]. 

Image compression can be lossy or lossless. Lossy compression gives a greater 

reduction in data volume compared to lossless compression; however only an 

approximation to the original image can be reconstructed. 

There are several standards for image compression and decompression (CODEC) such 

as Joint Photographic Experts Group (JPEG) [2], JPEG2000 [3], Graphic Interchange 

Format (GIF) [4], Portable Network Graphics (PNG) [5]. JPEG compression is the 

most widely used form of lossy image compression. It’s based on the Discrete Cosine 

Transform (DCT). A compressed image in JPEG format can be 10% of the original 

size depending on the information contained within the image and compression 

quality, which would mean that a 90% decrease in the needed bandwidth [6]. Image 

and video codecs are implemented mainly in software as signal processors can 

manage operations without incurring too much overhead in computation. These 

operations can also be efficiently implemented in hardware [7]. 

Field Programmable Gate Arrays (FPGAs) are a relatively new technology, which 

combines the properties of the traditional hardware and software alternatives. They 

can provide speed, performance and flexibility since they implement a parallel and 

pipelined version of the algorithm [8]. The latest FPGAs have millions of 

reconfigurable gates, capable of running at clock speeds of hundreds of megahertz 

(MHz) and therefore these devices are well-suited for graphics and image processing. 

FPGA based designs generally comprise a large number of simple processors which 

all work in parallel and may compete for memory access or other resources [9]. 
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Processing time and power restrictions imposed on dedicated embedded systems make 

software compression unviable in many applications. Power efficiency and fast 

compression are often performance critical factors. For most digital image codecs, 

increasing the compression has been achieved at the cost of increasing the complexity 

of the techniques and implementations. These restrictions usually mandate a dedicated 

hardware implementation of a JPEG compressor, especially in applications such as 

digital cameras, DVD players, traffic controllers, secure ticketing, and many more. As 

the JPEG compression process is complex, its design in hardware is demanding [10]. 

These restrictions have motivated this work. 

FPGAs are well suited for many embedded systems applications because they have 

several desirable attributes such as, small size, low power consumption, a large 

number of I/O ports, and a large number of computational logic blocks [11]. Images 

have a high degree of spatial parallelism, thus image processing applications are 

ideally suited to implementation on FPGAs which contain large arrays of parallel 

logic and registers and can support pipelined algorithms [9]. 

JPEG is an international standard for still-image compression and it has been widely 

used since 1987 [2]. This research is concerned about the implementation of JPEG 

compression for grey-scale images in to FPGA in real time as the images are streamed 

from the camera. The real time JPEG FPGA is expected to run at 50MHz. 

There are many research papers published in conference proceedings and journal 

papers about JPEG compression using FPGAs [7, 10, 12, 13]. Unfortunately, as a 

result of page limits and space constraints, many of these papers give the results of the 

implementation of various sections of the JPEG compression algorithm, but present 

relatively few design details. Some researchers only focus on implementing either 2D-

DCT or Huffman coding onto FPGAs [1, 14-17]. 

This research focuses on implementing JPEG compression by minimising the usage of 

logic resources available and minimising the latency at each module of the JPEG 
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compression. The JPEG algorithm was chosen for this research as it is well 

established and highly recognisable. The development of design architectures for each 

module of JPEG is described in later chapters. The modules of these architectures are 

fully pipelined and target to FPGA device implementation using Handel-C. Each 

JPEG module was evaluated using MATLAB. 

 

The main aim of this thesis was to explore the implementation of JPEG compression 

on to FPGA device as the data are streamed from the camera while minimising: 

• the requirement of logic resources of the FPGA and, 

• the latency at each stage of the JPEG compression. 

 

The scope of this thesis was limited to JPEG compression only, since it is well defined 

and highly recognisable. This thesis only focuses on grey-scale. It can readily be 

extended to colour images as the processing on the chrominance components is the 

same as for the luminance. 

JPEG implementation into FPGA presents a number of problems and constraints: 

• Real-time constraints: The input image is streamed from the camera. This 

imposes a strict time constraint that depends on the capture frame rate and the 

image size. Stream processing demands calculations for one pixel value at each 

clock cycle (given a serial input stream).  

• Memory bandwidth constraints: In stream processing, memory bandwidth 

constraints dictate that as much processing as possible be performed on the data 

as they arrive. Small on-chip memory blocks can be accessed in parallel 

increasing available bandwidth for temporary storage. 
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The objectives of this thesis were: 

1. Identify the optimum number of bits that need to maximise fidelity while 
minimising the use of resources and latency at each stage of JPEG 
compression. 

2. Simulate the proposed system architecture using the hardware description 
language, Handel-C. 

3. Compile the program using Quartus II program and port the code to FPGA. 

4. Test the JPEG compression on FPGA as data are streaming from a camera. 

5. Evaluate hardware implementation and compare the results using MATLAB. 

6. Optimise the results obtained. 

 

The proposed workflow for implementing JPEG compression onto an FPGA is shown 

in Figure 1.1. The basic idea of the methodology is adopted from Figure 4.3 of [11]. 

First, a fixed point JPEG algorithm has been developed in MATLAB. This serves two 

purposes. First, it identifies the minimum number of bits required to represent each 

stage within the FPGA without introducing significant error. This is important, 

because an FPGA implementation is not restricted to work with the standard 8, 16, or 

32 bit-word lengths used by software. The speed can be increased, and resources 

required can be reduced by minimising the number of bits. Second, it also provides 

ground truth data for bench-testing the resulting FPGA algorithm. 

Then, most of the effort has gone into mapping the algorithm into a form suitable for 

FPGA implementation. The aim was to make the implementation as resource and time 

efficient as possible. The resulting algorithm was implemented using the hardware 

description language, Handel-C [18]. Two software suites were used during the 

hardware implementation: Mentor Graphics’ DK design suite, and Altera’s Quartus II 

design suite. Each stage of the algorithm was validated through simulation by 

comparing the results with the MATLAB results. 
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Finally the implementation was targeted to a Cyclone IV FPGA on an Altera DE2-115 

development board. 

 

Figure 1.1: Proposed implementation of JPEG compression on FPGA adopted from 

[11]. 

 

This thesis explores the implementation of JPEG compression into an FPGA device as 

the data are streaming from the camera. The contents of the thesis are structured as 

follows. 

Develop selected 
algorithms in MATLAB 

Map algorithm to 
hardware 

Implement the design 
using Handel-C 

Compile the design in 
Quartus II 

Place & route on FPGA 

Verify implementation 
on FPGA 

System debug 
Behavioural and 

functional simulation 

Resource / Speed 
optimisation 

Behavioural and 
functional simulation 
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Chapter 1: Introduction 

This chapter introduces several important concepts that are necessary to understand 

the content of this thesis. This gives a basic background on image compression and 

states the problem to be studied. The proposed methodology for implementing JPEG 

compression into FPGA is presented. 

Chapter 2: Introduction to FPGAs 

This chapter describes the basic architecture of FPGA and presents the advantages and 

disadvantages of FPGAs. This chapter also gives details on the hardware and software 

development environments. 

Chapter 3: Introduction to JPEG Compression 

This chapter gives an introduction to JPEG compression and presents the basic 

architecture of JPEG compression. It also presents a basic outline of each block of 

JPEG compression and lists the advantages and disadvantages of image compression. 

The previous work on FPGA implementation of JPEG compression is presented in 

some detail. 

Chapter 4: Implementation of Block Processing and Discrete Cosine Transform 

This chapter investigates the implementation of a low complexity and more elegant 

pipelined DCT architecture for JPEG compression. This chapter presents the basic 

background to DCT transform. Then it presents the proposed architecture and 

compares it with alternative approaches. It also analyses the fixed point word length 

optimization. Finally, it discusses the results obtained through the proposed DCT 

architecture. 

Chapter 5: Implementation of Quantisation and Zigzag Coding 

This chapter gives the basic overview of zigzag coding and quantisation. It discusses 

the hardware implementation; and presents the results after zigzag coding and 

quantisation obtained through the proposed approach. 
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Chapter 6: Implementation of Entropy Coding 

Background of entropy coding is presented in this chapter. It presents the detailed 

implementation and discusses the proposed method of Huffman coding and results 

obtained through this approach. 

Chapter 7: Implementation of JPEG Header 

This chapter gives the details of JPEG headers and their hardware implementation. 

Chapter 8: Simulation Results and Discussion 

This presents the overall system architecture and gives the details of the obtained 

results from the Handel-C simulation and gives the details of testing and validation 

methods. It also compares the results with MATLAB compression. 

Chapter 9: Final Implementation 

This describes the mapping of the Handel-C into the DE2-115 board and presents the 

initial and optimisation results. 

Chapter 10: Overall Conclusion 

This final chapter presents the overall conclusion of this research and suggests 

possible future work. 



 

 

 

 
Field Programmable 

Gate Arrays 
 

2 

This chapter describes the basic architecture of FPGAs. It presents the advantages 

and disadvantages of using FPGAs in applications. It also gives details on the 

hardware and software development environments used in this research.  
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FPGAs are semiconductor devices that can be programmed after manufacturing. 

Instead of being restricted to any predetermined hardware function, an FPGA allows 

you to program product features and functions, adapt to new standards, and 

reconfigure hardware for specific applications even after the product has been 

installed in the field, hence the name "field-programmable". 

Generally, we either implement computations in hardware such as custom VLSI, 

application specific integrated circuits (ASIC), gate arrays or in software running 

processors like DSPs, microcontrollers, embedded microprocessors. However, FPGAs 

combine the speed of hardware with the flexibility of software programming. It has 

brought about something of a revolution in hardware design. Machines based on 

FPGAs have achieved impressive performance [12, 19]. 

Xilinx was the first to introduce FPGAs in 1985. Xilinx and Altera are the current 

FPGA market leaders and long-time industry rivals. Together, they control over 80% 

of the market [20]. Other competitors include Lattice Semiconductor, Actel, 

SiliconBlue Technologies, Achronix, and QuickLogic. 

Commercially there are four main classes of FPGAs available: symmetrical array, 

row-based, hierarchical PLD, and sea-of-gates. In all of these FPGAs the 

interconnections and how they are programmed vary.  Currently there are seven 

technologies in use: static RAM cells, anti-fuse, PROM, EPROM transistors, 

EEPROM transistors, and flash and fuse [21].  
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Figure 2.1: Category of different FPGA [21]. 

 

Figure 2.2 shows the basic FPGA architecture and it has three major configurable 

elements: configurable logic blocks, input/output blocks, and interconnectors. The 

configurable logic blocks are arranged in a two-dimensional array, and the 

interconnection wires are organised as horizontal and vertical routing channels 

between rows and columns of logic blocks. The routing channels contain wires and 

programmable switches that allow the logic blocks to be interconnected in many 

ways. Each logic gate is connected by user defined routing to each other or 

input/outputs, which are the FPGA’s connection to the exterior world. 

The FPGA products on the market feature different types of logic blocks. The most 

commonly used logic block is a lookup table (LUT), which contains storage cells that 

are used to implement a small logic function. Each cell is capable of producing a 

single logic value, either 0 or 1 as a function of 3 to 6 input bits (depending on the 

device). When a circuit is implemented in an FPGA, the logic blocks are programmed 

to realise the necessary functions and the routing channels are programmed to make 

the required interconnections between logic blocks. 
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Figure 2.2: Basic FPGA architecture [11]. 

Complex circuitry can be mapped onto FPGA devices without the requirement for any 

expensive machinery or manual effort [22]. In the early days FPGAs only had 

relatively small number of gates, so they were only used as a bridge or flexible 

interconnect between other parts of a hardware design. However, now there are FPGA 

chips with many millions of gates, enabling entire complex systems to be 

implemented using reconfigurable logic alone in a single IC. Depending on the 

particular device, the program is either burned in permanently or semi-permanently, or 

is loaded from an external memory each time the device is powered up. 

There are many different FPGAs with different processes. However the basic structure 

consists of a semi-regular matrix of logic units. Each unit is one of programmable 

logic devices (PLDs), logic gates, RAM blocks or several other types of component. 

 

Since FPGA implements the logic required for an application by building separate 

hardware for each function, FPGAs are inherently parallel. This gives them the speed 
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that results from a hardware design while retaining the reprogrammable flexibility of 

software at a relatively low cost. These advantages have made FPGAs very popular 

for image processing [11], digital signal processing [23], ASIC prototype 

development, custom computing [24], software-defined radio [25], aerospace and 

defence systems [26], medical imaging [27], speech recognition [28], cryptography 

[29], bioinformatics [30], computer hardware emulation, radio astronomy [31] and a 

growing range of other areas. 

FPGAs are also widely used for system validation including pre-silicon validation, 

post-silicon validation, and firmware development. This allows chip companies to 

validate their design before the chip is produced in the factory, reducing the time to 

market. 

 

Compared to software implementations on DSPs or microcontrollers and discrete 

hardware implementation on VLSI, FPGAs have following advantages and 

disadvantages. 

Advantages: 

1. High processing speed comparing to software implementation. 

2. Costs of components can be reduced. 

3. FPGAs enable rapid prototyping through reprogramming the hardware. 

4. Long product life cycle through the ability to change the program to mitigate 
the risk of obsolescence. 

5. The ability to re-programme in the field while debugging. 

6. Shorter time to market. 

Disadvantages: 

1. Parallel programming is harder to implement complex algorithms compared to 
sequential programming. 
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2. In the case of single applications, FPGAs are more expensive than 
microcontrollers. 

3. Limited library availability, i.e. technology is dependent on FPGA type, vendor 

and the hardware platform. 

 

All of the hardware design and implementation for this work was performed on a 

Windows 7 workstation equipped with a 3.6GHz Intel core processor and 4GB of 

RAM. The workstation uses an Altera DE2-115 development board to implement the 

hardware designs.  

 

A photograph of DE2-115 development board is shown in the Figure 2.3. It represents 

the layout of the board and indicates the location of the connectors and key 

components. 

 

Figure 2.3: The DE2-115 board [32]. 
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The ALTERA DE2-115 board has number of devices that can be used to implement 

wide range of projects. According to ALTERA [32] the following hardware is 

provided on the DE2-115 board: 

• Altera Cyclone® IV 4CE115 FPGA device 

• Altera Serial Configuration device – EPCS64  

• USB Blaster (on board) for programming; both JTAG and Active Serial (AS) 
programming modes are supported  

• 2MB SRAM  

• Two 64MB SDRAM  

• 8MB Flash memory  

• SD Card socket  

• 4 Push-buttons  

• 18 Slide switches  

• 18 Red user LEDs  

• 9 Green user LEDs  

• 50MHz oscillator for clock sources  

• 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks  

• VGA DAC (8-bit high-speed triple DACs) with VGA-out connector  

• TV Decoder (NTSC/PAL/SECAM) and TV-in connector  

• 2 Gigabit Ethernet PHY with RJ45 connectors  

• USB Host/Slave Controller with USB type A and type B connectors  

• RS-232 transceiver and 9-pin connector  

• PS/2 mouse/keyboard connector  

• IR Receiver  

• 2 SMA connectors for external clock input/output  

• One 40-pin Expansion Header with diode protection  

• One High Speed Mezzanine Card (HSMC) connector  

• 16x2 LCD module  
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The Cyclone IV FPGA device is the centrepiece of the board and is the reconfigurable 

logic that user can target. So to provide the maximum flexibility for the user, all 

connections are made through the Cyclone IV FPGA device. Figure 2.4 gives the 

block diagram of the DE2-115 board. 

 

Figure 2.4: Block diagram of DE2-115 [32]. 

In order to use the DE2-115 board, we have to be familiar with the Quartus II 

software. 

 

This was used mainly because of the availability and the low cost and it does what it 

required to do.  

 

Two software suites were used during software development: Mentor Graphics DK 

design suite, and Altera’s Quartus II design suite. 
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The DK development suite supports the development of hardware designs in Handel-

C. It provides a software flow for compilation of algorithms onto FPGA boards. 

Handel-C enables FPGA programming using software-like tools and flows. Users can 

verify systems in cycle-accurate simulations, and compile code directly into FPGA 

logic, creating configuration files to program FPGA boards. This enables rapid system 

implementation from software to FPGA hardware platforms. 

 

Handel-C is a high-level hardware description language that allows user control of 

sequential and parallel processing, and also operator size and widths [19]. Compile 

time support is provided by designing various interfaces which enable the Handel-C 

program to communicate with the different parts of the FPGA board, such as the 

onboard memory. 

Handel-C was originally developed by Celoxica, which was formed out of the 

University of Oxford in 1996 to commercialise its research into Handel-C. Handel-C 

is a C based language with additional language features for specifying parallel 

processes, hardware connections and clock functions [18]. It aims at compiling high-

level algorithms directly to synchronous hardware [33]. Because standard C is a 

sequential language, Handel-C has additional constructs to support the parallelisation 

of code and to allow fine control over what hardware is generated. 

Handel-C can be used to design sequential programs but to gain speed improvement 

parallel constructs need to be used. Handel-C generates the required logic gates from 

the source code; however it works at the register transfer level. This means that each 

assignment is clocked into a register after calculation. Consequently, in Handel-C 

each assignment is performed in a single clock cycle. 

The main language extension in Handel-C is the par statement. This enables several 

statements to be run in parallel. There is also the inclusion of I/O pin constructs, port, 



Chapter 2  Field Programmable Gate Arrays 

18 
 

and channel construct to enable communication between external interfaces and 

parallel process respectively. Channels also allow parallel processes to synchronise 

with each other. Data types such as the signal have been added which act like wires in 

a hardware design. There are also extensions for bit manipulations including bit 

selection and concatenation of variables. 

By using fixed point numbers in Handel-C the bit length of each step can be defined to 

be different. This gives a great deal of flexibility in design and can save on the amount 

of hardware used for registered outputs, as smaller registers can be constructed. 

 

The Electronic Design Interchange Format (EDIF) is a standardised representation of 

circuit netlist data, which is independent of specific manufacturers and is designed to 

allow the transfer of information between incompatible systems. 

In this research, EDIF acts as a link between Handel-C and DE2-115 board. This is 

because the Handel-C compiler is able to generate EDIF files, which can be compiled 

using Quartus II to give the FPGA configuration file. 

 

The usual languages for programming FPGAs are Verilog or VHDL. As mentioned 

earlier, Handel-C is very much like software programming. Unlike VHDL, when 

designing, the user does not need to worry about low-level decisions. At the 

algorithmic level, which Handel-C is in, it is much faster and more convenient to 

describe the systems desired behaviour. For prototyping and for most situations, 

Handel-C is the preferred language. But for time critical applications, the user may 

decide to program using VHDL instead. It provides an EDA tool stream targeting 

FPGA technology and leverages existing knowledge of C programming and 

algorithms. 
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Altera’s Quartus II design software is used in conjunction with the Altera DE2-115 

development board.  It compiles the EDIF netlist from Handel-C into a configuration 

file for programming the FPGA. It maps the design to particular resources on the 

FPGA and checks that the design meets the timing constraints. 

 

This is a binary file with the extension .sof, generated by the Quartus II Compiler's 

Assembler module. This file contains data for configuring all SRAM-based Altera 

devices supported by the Quartus II software, using the Programmer. 

Figure 2.5 shows the steps involved in producing a .sof file from a Handel-C program. 

The resulting file can be loaded directly onto the DE2-115 board. 

 

Figure 2.5: Steps of mapping Handel-C on FPGA [34]. 
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Quartus II software delivers the highest productivity and performance for Altera 

FPGAs. It delivers superior synthesis and placement and routing, resulting in 

compilation time advantages. Compilation time reduction features include: 

• Multiprocessor support 

• Rapid Recompile 

• Incremental compilation 

 

This chapter has presented an overview of FPGAs. The design was targeted to a 

Cyclone IV FPGA on Altera DE2-115 development board. Two software suites were 

used during software development: Mentor Graphics DK design suite, and Altera’s 

Quartus II design suite. Handel-C was adopted as the high-level language for 

implementing the JPEG compression system. Altera’s Quartus II design software was 

used in conjunction with the Altera DE2-115 development board. 



 

 

 

 
Image Compression 

3 

This chapter gives an introduction to image compression and outlines its advantages 

and disadvantages. It describes the basic architecture of JPEG compression, giving 

an outline of each step in the JPEG compression algorithm. Previous FPGA 

implementations on JPEG compression by others are presented in some detail. 
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Image compression is used to reduce data by exploiting irrelevance and redundancy of 

the image data in order to be able to store or transmit data in an efficient form. Image 

compression can be lossless or lossy. In image compression, lossless compression is 

where an identical source image can be reconstructed from the compressed data of the 

original image. Lossy compression is a method where the decompressed image is not 

identical to original image but instead is reasonably close to it [35].  

The principles of image compression algorithms are to: 

• reduce the redundancy in the image data and, 

• produce a reconstructed image from the original image while allowing some 

error that is not significant to intended application. 

The goal is to achieve a more efficient representation of image data while preserving 

the essential information contained in the image. 

 

Advantages: 

1. It reduces the data storage requirements. 

2. The rate of input-output operations in a computing device can be greatly 

increased due to the shorter representation of data. 

3. Image compression reduces the cost of backup and recovery of data in 

computer systems by storing the backup of large files in compressed form. 
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Disadvantages: 

1. Image compression generally reduces the reliability of the records because the 

reduction in redundancy leads to increased sensitivity to errors. 

2. Transmission of a compressed image through a noisy communication channel 

is risky because the burst errors introduced by the noisy channel can destroy the 

transmitted image. 

3. Disruption of image properties of a compressed image will result in the 

compressed image being different from the original data. 

4. In many hardware and system implementations, the extra complexity added by 

image compression can increase the system’s cost and reduce the system’s 

efficiency. 

There are several standards for image compression and decompression (CODEC). 

However this research is concerned only on the implementation of JPEG compression 

for grey-scale images using a FPGA.  

 

The Joint Photographic Experts Group proposed the JPEG compression standard [2] 

in 1987 and, since then, this is the most used lossy compression for still photographic 

images. The baseline JPEG compression algorithm is the most basic form of 

sequential DCT based compression. This technique can produce very good 

compression ratios, at the expense of some sacrifice in image quality. By using 

transform coding, quantisation, and entropy coding at 8-bit pixel resolution, a high-

level compression can be achieved. 

There are losses of information in the baseline JPEG compression. Losses are due to 

the quantisation operation. These losses can be controlled to have an almost 

imperceptible influence to the human visual system [36]. One of the advantages of 

JPEG is the use of many parameters, allowing the user to adjust the amount of data 
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lost and thus also the compression ratio over a very wide range. The four basic steps 

commonly used in JPEG compression are shown in Figure 3.1. 

 

Figure 3.1: Basic architecture of JPEG compression 

Each pixel in an original image is assumed to represent a value between 0 and 255. 

The unsigned pixel data of the original image are divided into 8×8 blocks and these 

blocks are processed sequentially from left to right and top to bottom. 

 The 2D discrete cosine transform (DCT) is applied to each block to create a 8×8block 

of frequency components. The DCT transforms a picture from the spatial domain into 

the frequency domain. The upper-left corner in each 8×8 block of DCT coefficients is 

the DC coefficient and the other 63 values are AC coefficients. They represent the 

average pixel value and successive higher-frequency changes within the block. When 

a block is processed by the DCT, the high-frequency coefficients appear at the lower-

right corner of the block while low-frequency coefficients appear at the upper-left 

corner. It has been shown that the DCT is close to optimal at reducing the correlation 

between coefficients, and therefore concentrating the energy into a few significant 

coefficients. 

Then each of the 64 frequency components in a block are divided by a separate 

quantisation coefficient and then rounded to an integer. The quantiser step size is 

determined by the acceptable visual quality of image. After quantisation, the 64 

quantised coefficients are converted into a one-dimensional sequence by the zigzag 

operation. The quantised coefficients are arranged in increasing frequency order. This 

is because the energy is usually concentrated into the low frequency coefficients 

enabling the insignificant high frequency coefficients to be efficiently compressed by 

run length encoding or truncation. 
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Finally, the coefficients are encoded by Huffman coding. Its idea is to use fewer bits 

to represent a symbol which appears more frequently and more bits to represent a 

symbol which appears less often. Differential coding is applied to the DC component 

prior to entropy coding, where the AC components are directly entropy coded [14]. 

An end-of-block (EOB) mark is inserted at the end of each block. In this way, each 

block of 8×8 pixel values is turned into a smaller block of codewords and the effect of 

compression is thus achieved. 

 

Benchmarks in image compression are the compression ratio and peak signal to noise 

ratio (PSNR). The compression ratio is used to measure the ability of data 

compression by comparing the size of the compressed image to the size of the original 

image. A greater compression ratio means better compression.  

PSNR is one of the parameters that can be used to quantify image quality. PSNR is 

often used to benchmark the level of similarity between the reconstructed image and 

the original image. A larger PSNR corresponds to better image quality. 

        (3.1) 

where  is the maximum possible pixel value of the image and  is the Mean 

Square Error of the compressed image.  

 

The research reported in this thesis has been profoundly influenced by the work of 

numerous researchers. Many of these researchers give the results of the 

implementation of various sections of the JPEG compression algorithm, but present 

relatively few design details [6, 7, 10, 12, 13]. 

Haralick [37] showed that 2D-DCT computation can be implemented as a sequence of 

two 1D-DCTs which is commonly referred to as the separability property. Due to the 
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wide spectrum of applications in which DCT is used, several researchers have worked 

on this topic resulting in a vast amount of literature [14-17, 38-40]. 

Agostini et al. [16] have implemented a fast pipelined 2D-DCT for JPEG image 

compression. This implementation has a latency of 48 clock cycles because they 

divided the algorithm into six blocks to share hardware. The structure of the DCT is 

less regular than the FFT, making an elegant pipeline less practical.  

Kovac and Ranganathan [13] described a fully pipelined single chip VLSI architecture 

for JPEG compression. The architecture exploits the principles of pipelining and 

parallelism to the maximum extent in order to obtain high speed and throughput. 

However they have only given details of their DCT and Huffman coding 

implementations. The DCT circuit has a latency of 59 clock cycles and 5 multipliers at 

the expense of each coefficient having a different scale factor. 

Sun and Lee has proposed a JPEG chip for image compression and decompression in 

2002 [12]. Their system was partitioned and fit into two FLEX 10K FPGAs, an 

EPF10K100 and an EPF10K70. Placement, routing, and programming of the FPGAs 

were done by ALTERA Maxplus II. The main limitation with this design is that the 

maximum working frequency is 27MHz and they have achieved this at the complexity 

of 411, 745 transistors and 23.264K-bit of memory. Their chip also has a power 

consumption of 1W. 

Agostini et al. [10] presented a soft IP design of a high performance FPGA based 

JPEG compressor. This approach incurs in a minimum latency of 238 clock cycles. 

The multiplications were converted to shift-add operations, reducing the use of 

hardware resources and increasing the compressor performance. This has been 

mapped to Altera FLEX 10KE FPGAs, and it maintains a processing rate of 

39.8MHz. 

The fact that there are not any research work exist in the literature that describes the 

complete architecture for implementing the JPEG compression on FPGAs was the 

initial motivation for this research. From the information available it was clear that we 
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can achieve better speeds by carefully designing a pipelined parallel architecture. Such 

architecture is advantageous in that higher clock speeds can be easily obtained by 

decreasing the granularity of processing in each stage. 

This thesis presents a fully pipelined JPEG compression architecture for FPGA while 

minimising the latency at each stage of the JPEG standard and minimising logic 

resources. The proposed architecture for DCT is adopted from [11] and it is a simpler 

and elegant pipelined design which is based on a first order factorisation by Woods et 

al. [40]. This work has also investigated the data-width required at each stage of the 

DCT process.  The zigzag and the initial Huffman coding architectures for this 

research were adapted from [11] and then modified to use the synchronous memory 

block on the FPGA.  The quantisation architecture described in thesis was 

implemented using a signed by unsigned non-restoring divider which was proposed in 

[41].  



 

 

 

 
Implementation of 

Block Processing and 
Discrete Cosine 

Transform  

4 

This chapter describes the transformation from streamed input data to the 8×8 

blocks required by the DCT. It also presents implementation of low complexity 

pipelined DCT architecture for JPEG compression and compares this with 

alternative approaches. It also determines the optimal fixed point word length for the 

DCT. Finally it discusses the results obtained through the proposed DCT 

architecture and fixed point implementation. 
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In many image processing applications, computations are defined on very long 

streams of input data. Certain image processing operations involve processing an 

image in blocks, rather than processing the entire image at once. With block 

processing the image is divided into rectangular blocks, and the operation is 

performed on each individual block to determine the values of the pixels in the 

corresponding block of the output image. 

 

Figure 4.1: Digital image blocks 

 

JPEG uses block processing to maintain locality of the data to give good compression 

(nearby pixel values are highly correlated). As the data are streamed whole rows at a 

time, it is necessary to buffer 8 rows of the image before an 8×8 block of data is 

available for processing. 

To achieve this on a FPGA it is necessary to buffer 16 rows of image. Once the first 8 

rows have been written to the buffer, a signal indicates that one row of data blocks are 

now available for block processing. The data in these 8 rows are read and processed in 

block order while data continues to stream into the buffer for the next 8 rows. The two 

sets of 8 rows effectively form a ping-pong buffer with data being written to one and 

read from the other. On a FPGA this buffer can be implemented using a dual-port 

8x8 
block 

Digital 
Image 

Pixel 
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RAM block. One port is used to write the values being streaming in, while the second 

port is used to read the values in block order. A counter has been used to get the row 

address; pixel address and the block address in-order to maintain the correct block. 

Rows are assumed to be a power of 2 long. When writing to the block processing, two 

counters are used. A 4 bit counter counts the rows, and another counter counts pixels. 

The two counters are concatenated to give the memory address for writing. At the end 

of every 8th row, a pulse is generated which triggers reading out the data in block 

order. For readout, the three least significant bits of the row counter are inserted into 

the pixel counter, as shown in the Figure 4.2. 

 
Figure 4.2: Addressing done on block processing. 

A synchronisation pulse is generated for the first of each 8 pixels to control the timing 

of the DCT. Figure 4.3 shows the block processing for a 16×16 image. Red arrows 

indicate how the pixels are written in to the 1st buffer and green arrows indicate how 

the pixels are read out in block order. 

Row counter Pixel counter 

Address 

Block address 
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Figure 4.3: Block diagram of block processing for 16x16 image. 

 

Before computing the DCT of the 8x8 block, its pixel values are shifted from a 

positive range to one centered around zero. For an 8-bit image, each entry in the 

original block falls in the range of 0 to 255. Therefore each pixel value is level shifted 

by subtracting 128 to produce a data range that is centered on zero, so that the 

modified range is in -128 to 127. This step reduces the dynamic range requirements in 

the DCT processing stage that follows. This is good for DCT as any symmetry that is 

exposed will lead toward better entropy compression. 

 

The DCT is the basis for the JPEG compression standard. This was first introduced in 

1974 by Ahmed et al. [42]. The primary purpose of image transformation within an 

image coding context is to concentrate the energy into as few components as possible 

[11]. This enables efficient compression by allowing quantisation of many 
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The advantage of the representation in the frequency domain is that, unlike in the 

spatial domain before the DCT, not every dimension has the same importance for the 

visual quality of the image. Removing the higher frequency components will reduce 

the level of detail but the overall structure remains almost the same, since it is 

dominated by the lower frequency components. This is essentially why DCT is used 

for JPEG compression. The DCT is effective in producing good quality images at low 

bit rates and is easy to implement with hardware based algorithms [44]. 

 

With the property of separability, a two dimensional DCT can be calculated by taking 

the 1-D transform of the rows followed by the 1-D transform of the columns. While 

algorithms for direct computation of the 2-D transform can be developed that require 

fewer arithmetic operations than the separable transform, the separable algorithm 

allows hardware to be reused and results in simpler implementation for streamed data 

[11]. 

The most common DCT definition of a 1-D sequence of length N is: 
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Similarly, inverse transform is defined as: 
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There are several fast parallel algorithms for implementing the DCT (see for example 

[17, 38, 39, 45]). Table 1 outlines most of the well-known fast algorithms for 

performing a 8 element 1D-DCT, listing the number of multiplications and 

additions/subtractions each requires. 

Table 1.  Fast algorithms for implementing 1D-DCT. 

Algorithm Number of 
Multipliers 

Number of adders 
/ subtractions 

Chen [38] 16 26 

Hou [45] 14 30 

Cvetkovic [39] 12 29 

Loeffler [17] 11 22 

The most efficient algorithm is that of Loeffler et al. [17], which is shown in Figure 

4.5. 

 

Figure 4.5: DCT architecture with 11 multiplications [11]. 

The scaled DCT was introduced in 1995 [13] and is shown in Figure 4.6. In this 

implementation the number of multiplications has reduced to 5 at the expense of each 

coefficient having a different scale factor. For JPEG compression, this scaling can be 

taken into account with the quantisation stage by scaling the quantisation step size by 

the corresponding amount. Agostini et al. [16] have implemented this on an FPGA for 

JPEG image compression. They divided the algorithm into six blocks to share 

hardware and therefore they had a latency of 48 clock cycles. 
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Figure 4.6: DCT architecture with 5 multiplications [11]. 

These designs are parallel in that they assume that the 8 samples are available 

simultaneously on the input. For stream processing, they can be adapted with one 

input pixel arriving each clock cycle and producing one output value per clock cycle. 

A streamed pipelined architecture of the above design is shown in Figure 4.7. This 

design maintains a throughput of one pixel per clock cycle, and has a latency of only 9 

clock cycles.  

 

Figure 4.7: Pipelined implementation of figure 4.6 [11]. 

A major limitation with this method is the resulting architecture. It sacrifices 

regularity to achieve the low number of multipliers. That is generally not a good trade-

off in FPGA design, where highly irregular architectures do not translate into efficient 

implementations, primarily because of increased routing cost. A balance between the 

number of multipliers and quality of architecture is essential for an efficient 

implementation. 
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Modern FPGAs have plentiful multipliers. This enables a simpler and elegant 

pipelined design to be implemented. It is based on a first order factorisation by Woods 

et al. [40]. The main difference with this design is that it uses one level of factorisation 

to reduce the number of multiplications for each coefficient from eight to four. The 

factorisation means that the even and odd samples are calculated separately. 
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Equations (4.3) and (4.4) require 32 multiplications and 32 additions to perform each 

1D transform. This corresponds to 512 multiplication and 512 additions for the full 

8x8 block. This approach does not achieve the lowest number of multiplications but it 

achieves a more efficient solution. The implementation of this approach, which 

directly performs the matrix multiplication, is shown in Figure 4.8. 

 

Figure 4.8: Block diagram of proposed DCT architecture [11]. 
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The whole process is pipelined to operate on streamed input data at one pixel per 

clock cycle. A synchronisation pulse is provided with the first pixel in each row of 

eight. This controls the sequencing of operations of the DCT module. The memory at 

the start holds the first 4 samples, and returns them in reverse order to calculate the 

sum and differences in (4.3) and (4.4). Each multiply and accumulate unit is reset 

every four clock cycles, and calculates a separate output frequency. First, four clock 

cycles calculate the even frequencies using (4.3), and then while the multiplication 

and accumulating is happening with the first 4 elements, the differences for odd 

frequencies are stored in the input shift registers. Then, while the even coefficients are 

being streamed out using registers, the odd coefficients are calculated using (4.4). An 

output synchronisation pulse is provided with the first coefficient of each row to 

control the next stage in the pipeline. This converts the parallel implementation into 

pipelining since we need only one output per clock cycle. 

Fixed point arithmetic is used to simplify the multiplier logic. Scaling the coefficients 

by a power of 2 makes all of the operations integer. 

 ( )round 2B
k kc c′ =  (4.5). 

The number of bits output from the multiply and accumulate is reduced by truncating 

unwanted bits. Initialising the accumulator with an appropriate value converts the 

truncation to rounding. 

In this research, pipelining is used to begin a new DCT operation before the previous 

DCT operation is completed. The multiply and accumulate units are then utilised with 

every clock cycle. The outputs are not in natural order; for JPEG compression, this 

does not matter because the data can be reordered later during the zigzag operation. 

 

The 2-D DCT of a data matrix is defined as, 

  (4.6), 
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where X is the data matrix, M is the matrix of DCT coefficients for implementing a 

1D-DCT, and TM  is the transpose of M. 

With separability, (4.6) can be transformed to (4.7) 

 (4.7). 

This implies the hardware implementation shown in Figure 4.9. The 2-D DCT 

designed in this work was broken in to three main blocks: a first 1-D DCT on the 

rows, a transposition buffer and a second 1-D DCT on the columns. The difference 

between the two 1-D DCT architectures is the number of bits used in each stage of 

pipeline. The transposition buffer stores the results of first 1-D DCT, row-by-row and 

sends these results to the second 1-D DCT, ordered column-by-column. 

 

Figure 4.9: Fixed point DCT implementation. 

The next section of this chapter will describe the process for determining the number 

of bits required to implement the DCT shown in Figure 4.9. 

 

Due to the complications and large number of logic gates needed to perform floating 

point operations in hardware, a fixed point representation was chosen. In FPGAs, it is 

well known that a fixed-point implementation uses significantly less logic than a 
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floating point implementation [46]. Therefore all variables were scaled by a fixed 

power of 2 and represented as signed or unsigned integers. When arithmetic 

operations were performed, operands were explicitly shifted to ensure alignment. By 

using fixed point numbers in Handel-C the bit length of each step can be defined to be 

different. This gives a great deal of flexibility in design and can save on the amount of 

hardware used for both computation and registered outputs. 

During the design stage, the data width of each term was chosen individually to 

minimise the logic usage while keeping the truncation error within a pixel value of 1 

in the reconstructed image, and keeping sufficient bits to avoid overflow. It is 

necessary to determine how many bits are required to represent the DCT coefficients, 

and since a multiplication increases the bit-width of the numbers, the output of the 

multiply and accumulate is an obvious truncation point. Table 2 describes the bit 

allocation for each step in the DCT process. 

Table 2. Propagation of bit width and binary point position. 

 Sign Total bits Binary places 

Input Pixels* signed 8 0 

DCT Coefficients signed N N 

Sum and Difference signed 9 0 

After multiplication signed N+9 N 

After row DCT signed N+11 N 

Want R bits after row DCT. Therefore drop (N+11-R) bits 

After truncation of row DCT signed R R-11 

Sum and Difference  signed R+1 R-11 

Multiplication signed N+R+1 N+R-11 

After column DCT (2D-DCT) signed N+R+2 N+R-11 

Want C bits after 2D-DCT. Therefore drop (N+R+2-C) bits 

After truncation of 2D-DCT signed C C-13 

*Unsigned pixels are offset by 128 before DCT 

N = Number of bits to represent DCT coefficients 

R = Number of bits want after row DCT (1D-DCT) 

C = Number of bits want after column DCT (2D-DCT) 
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First, a large number of bits are assigned to R and C to ensure that these will not 

significantly limit the accuracy of the result (20 bits are sufficient). Then the number 

of bits required to represents DCT coefficients, N, is varied, and the 2D-DCT is 

performed. An inverse DCT is calculated on the result using double precision floating 

point with MATLAB’s inbuilt IDCT function. The difference between the original 

image and the reconstruction is taken to determine the errors introduced through the 

reduced precision arithmetic. 

The results are shown in Figure 4.10 for the Lena image and indicate that 9 bits are 

sufficient for representing the DCT coefficients. Having more than 9 bits will not give 

any significant improvement to the image. 

.  

Figure 4.10: Effect of different DCT coefficient quantisations with R = 20, and  C = 20. 
Arrow shows quantisation which gives less than 1 MAE. 

A similar process was conducted to determine the optimum values for R and C. The 

results of these experiments are shown in Figure 4.11and Figure 4.12. From Figure 

4.11, 12 bits are required to represent the output of the row DCT, and from Figure 

4.12, 14 bits are required to represent the output of the 2-D DCT. 
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Figure 4.11: Effect of different row DCT quantisations with N = 9, and C = 20 Arrow 
shows quantisation which gives less than 1 MAE. 

 

Figure 4.12: Effect of different column DCT quantisations with N = 9 and R = 12 Arrow 

shows quantisation which gives less than 1 MAE. 

Therefore the following Barbara and Lena images are tested using the following bit-

widths: N=9  R=12  C=14 

The reconstructed Barbara image has RMSE of 0.2086 and maximum absolute error 

(MAE) of 0.8982 pixel value on the greyscale pixel range (0 to 255). Lena image has 

RMSE of 0.2095 and MAE of 0.8131 pixel value. These error values show that there 
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is no impact on visual or perceived quality of the reconstructed image and that the 

errors are within the desired one pixel value. These errors are not apparent to human 

eye due to the fact that the difference is too small to see. 

   
Figure 4.13: Original Barbara image (Left) and Original Lena image (Right) 

 

The transpose buffer is used to connect the two 1-D DCT architectures, where the 

results from the first 1-D DCT are stored row-by-row, and read column-by-column by 

the second 1D-DCT. To enable simultaneous read and write access, a dual-port RAM 

block on the FPGA is used. One port is used to write the results of the row transform, 

while the second port is used to read the values in column order. Although the 

memory can be reused, requiring only a 64×12-bit memory, the design is simplified 

by using a 128×12-bit memory. On the Cyclone IV, memory blocks are 9 kbits in size; 

therefore using 128×12-bit memory does not use more memory. This is divided into 

two blocks of 64 entries, with the blocks used in ping-pong mode. The row data is 

written into the first block during the first 64 cycles. Once the eight row DCTs 

computation is completed, the data can be streamed out of the transpose buffer in 

column order for the column DCTs. The address logic to write and read to the buffer 

consists of a counter with 7 bits. When there is an input pixel, the counter increments 

and when it reaches to 64 it sends a signal to start reading from the buffer in column 

order. For reading out, a 7-bit address counter is also used, with bits 0-2 and 3-5 

Original Barbara Image Original Lena Image
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swapped to swap the rows and columns. An output synchronisation pulse is provided 

with the first coefficient of each column to control the column DCT. 

The data for the next 8×8 block can be loaded during the operation of the column 

DCT, creating a pipelined architecture. Thus, the output of row DCT computation is 

transposed for column DCT computation.  

 

The proposed DCT architecture has a latency of 10 clock cycles for each row DCT 

and column DCT. The transpose buffer has a latency of 64 clock cycles. The output of 

the row DCT is rounded to 12 bits. The output of the column DCT process is rounded 

to 14 bits. Since the 2-D DCT samples will be reordered later with the zigzag 

reordering, the fact that the output stream is ordered by column can be corrected later. 



 

 

 

 
Implementation of 

Zigzag Coding and 
Quantisation 

5 

This section gives the basic overview of zigzag coding and quantisation. It discusses 

the hardware implementation for each module; and presents the results after zigzag 

coding and quantisation obtained through the proposed approach. 
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After 2D-DCT processing, zigzag coding is used to transform the 8×8 block into a 

sequential list of 64 values. The zigzag process organises the sequence to have the 

lower frequency components, which are less likely to be zero, in the first part of the 

data stream. This attempts to organise the data to have long runs of zeros, especially at 

the end, making run length coding very efficient [2]. Figure 5.1 and Figure 5.2 below 

show the standard order that coefficients come out after zigzag coding. 

 
Figure 5.1: Sequence obtained by zigzag. 

 

Figure 5.2: Zigzagged coefficients in 64 element vector. 

High 
frequencies 

Low 
frequencies 

DC Component 

0 1 2 63          62 



Chapter 5  Implementation of Zigzag coding and Quantisation 

46 
 

 

Zigzag reordering is achieved by writing the coefficients for a block into a buffer, and 

reading them out again in the required order. The architecture for the zigzag buffer 

(see Figure 5.3) is therefore very similar to the transpose buffer used in the 2-D DCT. 

A dual-port 128×14-bit memory block is split into two 64 entry buffers. On receipt of 

an input synchronisation pulse, 64 DCT coefficients are written to one port of the 

buffer. Once the 64 coefficients have been written, an output synchronisation pulse is 

generated which triggers a readout on the other port in zigzag order in the subsequent 

64 clock cycles. At the same time, the next 8×8 block can be loaded into the second 

buffer. For each 8×8 block, the role of the buffers is swapped in ping-pong mode.  

 
Figure 5.3: Zigzag buffer architecture. 

Figure 5.4 shows how the output addressing is done in the zigzag module. The 

sequential addresses of a counter are converted to zigzag order by a lookup table 

(LUT). The LUT is implemented using a memory block on the FPGA. The LUT 

entries also take into account the non-sequential ordering of the data from the DCTs 

(even/odd grouping of the data from the DCT), and that the coefficients are 

transposed. 
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Figure 5.4: Addressing of zigzag reordering. 

The Figure 5.5 shows the actual zigzag order that coefficients are read out after 

considering the transpose and even and odd grouping from DCT module. This is the 

information stored in the address LUT. 

 
 0 2 4 6 1 3 5 7 

0 0 3 10 21 2 9 20 35 

2 5 12 23 37 7 18 33 48 

4 14 25 39 50 16 31 46 57 

6 27 41 52 59 29 44 55 52 

1 1 8 19 34 4 11 22 36 

3 6 17 32 47 13 24 38 49 

7 15 30 45 56 26 40 51 58 

9 28 43 54 61 42 53 60 63 

Figure 5.5: Actual zigzag order that coefficients read out. 

 

Quantisation is an extremely important step in the JPEG compression algorithm, as it 

helps to reduce a considerable amount of data, thus reducing the entropy in the input 

data stream. The quantisation is an integer division of all the 2D-DCT coefficients by 

constants and rounding to the nearest integer value. For image compression, different 

transformed coefficients have different visual significance, so different quantisation 

step sizes are used for each coefficient. The JPEG standard suggests a table specifying 

the quantisation step sizes for each coefficient [2] which is shown in Table 3. 
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Table 3. Standard luminance quantisation table 

16 11 10 16 24 40 51 61 
12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 

72 92 95 98 112 100 103 99 

The quantisation step is: 

 round ij
ij

ij

C
Cq

Q
=  (5.1), 

where ijCq  is the output quantized coefficient; ijC  is the input 2-D DCT coefficient; 

and ijQ  is the Quantisation constant from Table 3. 

Quantisation is the operation that introduces information losses in the JPEG 

compression process. This is intended to remove the components less important to the 

visual reproduction of the image. The aim of quantisation is to compress the image as 

much as possible without visible artefacts. Each step size ideally should be chosen as 

the perceptual threshold for the visual contribution of its corresponding cosine basis 

function. Larger quantisation step sizes will result in visual artefacts. 

Typically, a single quality control parameter is used to control image quality and 

compression in an image codec. This quality factor, used to scale the values in the 

quantisation table, effectively adjusting the number of steps in the resulting quantised 

value [43]. Larger quantisation steps will lead to greater distortion and a smaller 

resulting data set. 

According to [11] the quality factor, QF, which varies from 1 to 100 scales the 

standard quantisation table according to: 
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Figure 5.6 shows the maximum error for Barbara image for different quality factors. 

MATLAB was used to obtain these results. It clearly shows that as the quality factor 

increases, the error becomes really small. 

 

Figure 5.6: MAE for Barbara image for different quality factors. 

 

Quantisation is an integer division of each DCT coefficient by the corresponding 

constant, and rounding the result to the nearest integer. The division can be 

implemented very efficiently in hardware as a shift operation if the quantisation 

factors are restricted to powers of 2 [12]. However, this is overly restrictive. 

There are several algorithms which perform division in digital designs, for example, 

standard long division, non-restoring division and SRT division. Each method has its 

own advantages and disadvantages, so it is necessary to select an appropriate divider 
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according to the application. For quantisation, the range of divisor is from 0 to 255, 

and non-restoring algorithms give a good compromise between cost and latency when 

the operator’s size is not large, it is appropriate to use non-restoring algorithm to 

design the divider [47]. 

Therefore, the division was implemented using a signed by unsigned non-restoring 

divider. The algorithm used to implement the division is based on [41]: 

 
1

1
1

if 0
2

1 if 0
i

i i
i

D R
R R

D R
−

−

−

<
= +

+ ≥
 (5.3) 
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1 if 0
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R
q

R
−

−

− <
=

≥
 (5.4) 

where Ri is the partial remainder, D is the divisor, D  is its one’s complement, and qi 

is the ith bit of the quotient. The assumption is that , Otherwise overflow will 

occur. 

This algorithm will initially use the dividend, shifted by the required number of bits as 

the initial remainder, shift it, and based on the sign, will add or subtract the divisor. 

This process is repeated to produce a quotient and remainder. The addition of the 1 as 

part of the 2’s complement does not actually require additional logic because the 2Ri-1 

will leave the least significant bit as 0. The 1 can be inserted instead if qi = 1 [41]. 

The advantage of using non-restoring division over the standard restoring division is 

that a test subtraction is not required. The sign bit determines whether an addition or 

subtraction is used. If there are not enough bits to represent the result then overflow 

occurs. This can easily be detected because the first subtraction should always change 

the sign of the partial remainder. 

 

The zigzag buffer has a latency of 64 clock cycles. The zigzag ordered coefficients are 

then passed in to the quantisation module in order to achieve more compression. 
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The quantisation module is shown in Figure 5.7. It consists of RAM to store the 

quantisation table. Quantisation was implemented assuming the quality factor is 50 

which uses the quantisation values in Table 3 without scaling. 

The inputs to the quantisation module have 14 bits and the output has 8 bits. The 

latency of the quantisation module is one clock cycle. Note that the quantisation table 

is reordered from that shown in Table 3 to account for the zigzag ordering of the data. 

   
Figure 5.7: Quantisation Module. 
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Implementation of 

Entropy Coding 

6 

This chapter describes entropy coding as used by the JPEG compression algorithm. 

It gives the detailed implementation and discusses the proposed method of Huffman 

coding and results obtained through this approach. 



Chapter 6  Implementation of Entropy Coding 

53 
 

 

Each 8×8 block has one DC coefficient, and 63 AC coefficients. Sequences of 

successive zero AC coefficients are run-length encoded to reduce the number of 

symbols which need to be output for each block.  

The final stage of JPEG compression is entropy coding. This assigns a variable length 

code to each symbol in the output stream based on the frequency of occurrence [11]. 

The objective of entropy coding is to use fewer bits to represent a symbol which 

appears more frequently and more bits to represent a symbol which appears less 

frequently. With JPEG compression, the symbols actually encoded are the run-length 

of consecutive zero coefficients, and size of the quantised coefficient. The coefficient 

itself is simply written to the output bit stream (also using a variable number of bits).  

One of the most common forms of entropy coding is Huffman coding. This uses the 

optimum integer number of bits for each symbol. Huffman coding requires a Huffman 

code table to be specified by the application. Since the DC and AC coefficients have 

quite different statistics, a separate Huffman table is used for the DC and AC symbols. 

Each block consists of one DC codeword, and one or more AC codewords. The same 

Huffman tables used to compress an image will be used to decompress it. 

 

Differential coding is used to reduce the entropy of the DC coefficient since adjacent 

blocks are likely to have similar average values. The DC value of the first block is 

passed directly to the Huffman coding module. For subsequent blocks, the value 

coded is the difference between the DC value of the current block and the DC value of 

the previous block.  

 1code i iDC DC DC −= −     (6.1) 

The symbol actually coded is the size of DCcode according to the range in Table 4 [2]. 

This is then followed by the actual coefficient using the required number of bits. 
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The run length encoder receives the sequences from the zigzag module and looks for 

the runs of zeros in the AC coefficients. It counts the zero coefficients between each 

non-zero coefficient. The size of a non-zero coefficient is the number of bits required 

to represent the value. The combined run length and coefficient size jointly make up 

an AC symbol, which is Huffman encoded, and followed by the non-zero coefficient 

[12]. 

Table 4. The relationship between size and amplitude. 

Size Amplitude 

0 0 

1 -1, 1 

2 -3, -2, 2, 3 

3 -7 ~ -4, 4 ~ 7 

4 -15 ~ -8, 8 ~ 15 

5 -31 ~ -16, 16 ~ 31 

6 -63 ~ -32, 32 ~ 63 

7 -127 ~ -64, 64 ~ 127 

8 -255 ~ -128, 128 ~ 255 

9 -511 ~ -256, 256 ~ 511 

10 -1023 ~ -512, 512 ~ 1023 

11 -2047 ~ -1024, 1024 ~ 2047 

 

This is the last step in the encoding process. It packs the data by assigning unique 

variable length codewords for each symbol that can be recovered without loss during 

decompression. The run length encoder and the Huffman encoder modules are 

packaged together to generate one block of codeword for each non-zero coefficient.  
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A DC codeword consists of two parts, the size and the amplitude of the coefficient. 

Table 5 is the Huffman table for the DC coefficient size.  

Table 5. Huffman table for luminance DC coefficient differences. 

Size Bits Code 

0 2 00 

1 3 010 

2 3 011 

3 3 100 

4 3 101 

5 3 110 

6 4 1110 

7 5 11110 

8 6 111110 

9 7 1111110 

10 8 11111110 

11 9 111111110 

Appendix A-1 gives Huffman tables for the AC coefficients which have been 

developed from the average statistics of a large set of 8-bit images [2]. 

Two special symbols are introduced. One is EOB which represents that the remainder 

of the block is zeros. This code can appear at any time in the sequence to indicate that 

the remaining data values are all zeros. The second is ZRL which is used when a run-

length greater than 16 is encountered. Since a maximum run of 15 zeros is allowed, 

the ZRL code represents a block of 16 zeros without a corresponding non-zero 

coefficient. 
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The architecture of the entropy encoder is shown in Figure 6.1. The DC coefficient of 

each block is passed to the Differential Coding module to subtract the DC coefficient 

of the previous block. Then the difference is passed to the size detector. For the AC 

coefficients, the zero-run counter counts the number of successive zeros in the 

streamed output from the zigzag process. If the input coefficient is nonzero, the 

coefficient is sent out to the size detector and the zero-run counter is reset to zero.  

The size detector determines the number of bits required to represent the coefficient. 

Firstly, 1 is subtracted from negative coefficients. Secondly the most significant bits, 

which are identical, are eliminated. The remaining bits form the coefficient value, and 

the number of bits is the size according to Table 4. Lastly the bit counting is 

performed efficiently in a single clock cycle using a multiplexer based successive 

approximation counter. For the 8 bit input coefficient, the counter works as follows: 

 the 5 most significant bits MSBs of the remainder are checked. If all 5 bits are 

same, the 4 least significant bits (LSBs) are selected and a 0 is output, otherwise 

the 4 MSBs are selected and a 1 is output. 

 the process is repeated, checking the 3 MSBs of the result, and selecting either 

the 2 LSBs or 2 MSBs. 

 Finally the process is repeated checking the 2 remaining bits. 

 The three bits output give the size of the coefficient. 
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Figure 6.1: Huffman coding architecture. 
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These results (run length, size and coefficient amplitude) are then stored in FIFO 

buffer which has a depth of 4. This will then be used to determine the Huffman code. 

The FIFO buffer allows the ZRL and EOB codes to be encoded without having to 

pause the incoming coefficient stream. 

 

Figure 6.2: FIFO buffer bit allocation. 

A lookup table based approach has been used to assign the Huffman code for each 

coefficient. The size and run length are looked up in the Huffman table shown in 

Appendix A-1 to determine the corresponding Huffman code (and length of the 

Huffman codeword, which is used for packing the bits into the output). The Huffman 

code is concatenated with the coefficient amplitude to form the codeword for each 

coefficient. Obviously, codewords obtained are variable in length. However, the width 

of the data bus is fixed. A barrel shift is thus used to align the variable-length 

codewords with the remaining bits. The lengths are added to the number of remaining 

bits with the most significant bits used to determine the number of completed bytes. 

The Huffman encoder outputs up to 3 bytes for each symbol. These are saved into 

another FIFO buffer with depth of 256 to enable them to be streamed out 8 bits at a 

time. Any bytes containing all 1s (used in JPEG to indicate an escape code) are 

followed with a byte containing all 0s so that the image will decode correctly. The 

FIFO manages the conversion from a fixed rate stream to a variable rate stream. At the 

end of each image the remaining bits are padded with ones. The Huffman encoder 

input has 8 bits and has an output of 8 bits.  
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Entropy coding module has a minimum latency of 5 clock cycles. Obviously it is 

longer when there are sequences of zero coefficients, or when the resulting codewords 

are more than 8 bits in length. However, as a result of the compression, the number of 

output bytes is fewer than the number at the input. Therefore, the 5 clock cycles 

latency will be used in the final calculation. The 5 clock cycles are used to perform the 

following steps: 

1. Do the run length encoding, size detection and store the results to FIFO buffer. 

2. Extract each coefficient from FIFO. 

3. Do the actual Huffman coding. 

4. Pack each code into bytes. 

5. Packing bytes into output FIFO. 



 

 

 

 
Implementation of 

JPEG Headers 

7 

This chapter gives the details of JPEG headers and discusses the hardware 

implementation of writing the headers to the output. 
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A JPEG file consists of more than just the encoded coefficients. A series of headers 

[2] is used to : 

 identify the fact that the file is JPEG encoded, 

 provide the size of the coded image, 

 provide additional metadata for the image, 

 specify the Quantisation and Huffman tables. 

The headers are prescribed by the JPEG File Interchange Format (JFIF) specifications 

[48]. JFIF is a minimal file format which enables JPEG bit streams to be exchanged 

between a wide variety of platforms and applications. 

Figure 7.1 shows the minimum required set of JPEG headers which are required to 

decode a baseline JPEG compressed image. Compressed image data consists of only 

one image. An image contains only one frame. A frame contains one or more scans 

and a scan contains the complete encoding of one or more image components. 

 

Figure 7.1: High level file structure. 
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or scan header [2]. A marker will always begin with the first byte as 0xFF, and the 

second byte defines which type of marker it is. Table 6 lists the key markers. When a 

marker is associated with a particular sequence of parameters, the marker and its 

parameters comprise a “marker segment”. 

Table 6. JPEG file markers. 

Marker Symbol Description 

0xFFD8 SOI Start of image 

0xFFE0 APP0 Application specific; used for JFIF 
metadata 

0xFFDB DQT Define quantisation table 

0xFFC0 SOF Start of frame 

0xFFC4 DHT Define Huffman table 

0xFFDA SOS Start of scan 

0xFFD9 EOI End of image 

The JPEG File Interchange Format is entirely compatible with the standard JPEG 

interchange format; the only additional requirement is the mandatory presence of the 

APP0 maker after the SOI marker [48].  

Details of each marker are given in Appendix A-2. 

 

In this research, a single quality factor was used, so the quantisation tables and 

Huffman tables were fixed. This enabled the pre-initialised headers to be stored in a 

memory block. The output byte stream was started by streaming the JPEG headers 

while the pipeline was being primed at the start of the image. 

At the end of the image, the remaining data bits (making up on incomplete byte) were 

flushed by padding with 1s, and an end of image marker code was output. Insertion of 

headers takes 328 clock cycles. 



 

 

 

 

Simulation Results and 
Discussion 

8 

This chapter presents the overall system architecture and gives the details of the 

obtained results from the Handel-C simulation. It describes the testing and 

validation methods for the implementation. It also compares the obtained results 

with MATLAB compression results and discusses the outcome. 
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Figure 8.1 shows the overall system architecture. This shows how the individual 

modules in the previous chapters connect together. The system was designed to 

compress grey-scale images, and was implemented using Handel-C.  

 

Figure 8.1: Overall system architecture for JPEG compression. 

 

To test the system an incremental design testing approach was used. Each JPEG 

module was firstly tested on its own and then checked for the functionality to validate 

results in Handel-C simulations. The results were validated using MATLAB and 

IrfanView. 

When programming hardware, the compile times are significantly longer than with 

software. Debugging is also more difficult in hardware because many things happen at 

once in parallel, and the timing of the operations is important. For these reasons, the 

algorithms were first implemented in MATLAB using fixed point arithmetic. This 

gave a dataset which could test-bench the Handel-C implementation. Any differences 

in the results indicate an error in the implementation. 
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Then MATLAB JPEG compression was used as a reference for software compression. 

This uses the following MATLAB command and it does not consider the architectural 

restrictions, specifications, and rounding that used for hardware implementation.  

I=imread('Lena256.bmp'); 
imwrite(I,'Lena_compress_50.jpg','Quality',50); 

Therefore it generates a good reference to compare the similarity between the software 

compression and hardware compression.  Then the compressed image was decoded 

using IrfanView. IrfanView was used to check that the file compressed by Handel-C 

could be successfully decoded. 

PSNR and MSE were calculated for each compressed image in order to compare the 

error between original image and compressed image. Also the MSE between software 

compression and hardware compression was calculated to check that the two methods 

were giving similar results. 

  

The latency of each step in the process is summarised in Table 7.  

Table 7. Latency of each stage 

 Latency (cycles) 

Header 328 

Block Processing 8 rows 

Row DCT 10 

Transpose Buffer 64 

Column DCT 10 

Quantisation 2 

Zigzag coding 64 

Entropy Coding 5 

JPEG Compressor 154 
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between the compressed images was 0.8335. These results are similar to the previous 

example. Table 8 summarise the results obtained from MATLAB compression and 

Handel-C compression for other test images. 

Table 8. Comparison of software and hardware JPEG compression 

Image 
(256x256) 

Compression Ratio MSE PSNR (dB) 

MATLAB Handel-C MATLAB Handel-C MATLAB Handel-C 

Lena 9.20:1 9.23:1 14.00 13.84 36.67 36.72 

Peppers 9.02:1 9.05:1 15.91 16.03 36.11 36.08 

House 7.94:1 7.94:1 8.48 8.63 38.85 38.77 

Baboon 5.67:1 5.67:1 54.34 54.89 30.78 30.74 

Cameraman 7.72:1 7.96:1 24.94 24.69 34.16 34.21 

Barbara 7.93:1 7.90:1 25.33 25.46 34.09 34.07 

From the Handel-C simulation and MATLAB results it can be seen that the software 

and hardware based algorithms did have small differences in the compressed images 

as a result of simplifying the arithmetic in hardware. However, these differences were 

small, with no discernible difference in image quality between hardware and software 

compressed images. 



 

 

 

 
Final Implementation 

9 

This chapter gives the detailed implementation on the FPGA. The steps involved in 

mapping of the Handel-C into DE2-115 board are described. This chapter presents 

the initial performance results and discusses the issues of initial implementation. It 

also optimises the latency and resources used and presents the results for the final 

implementation. Then it compares the results with an existing implementation from 

the literature. 
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Handel-C was adopted as the high-level language for implementing the JPEG 

compression system. The architecture and behaviour of each module were represented 

using Handel-C. After the function of the design had been tested successfully within 

the Handel-C functional simulator, the design was then targeted to a Cyclone IV 

FPGA on an Altera DE2-115 development board. 

 

In order to map the Handel-C program to FPGA, first the source is compiled to an 

EDIF netlist. Then the EDIF file is compiled using Quartus II to give a configuration 

file for the Altera Cyclone IV 4CE115 FPGA device. The timing analysis that forms 

part of this compilation step checks that the design is capable of running at 50MHz. 

After modifying the design to meet the timing constraints the configuration file was 

loaded on to the DE2-115 board. 

 

A module was written to simulate image capture which streams the image from 

memory, inserting appropriate blanking and providing synchronisation pulses. A 

16×16 image was saved into an internal memory of the FPGA for testing purposes. 

Then the image was passed on to the JPEG compressor and the output from the 

compression is stored into a FIFO buffer for transfer to the PC by RS-232. On the PC 

end, a terminal program saves the transferred image to a file. Then IrfanView and 

MATLAB were used to decode the resulting compressed file and check its validity. 
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The utilisation of the FPGA used on DE2-115 development board for each module is 

shown in Table 9. 

Table 9. Resource utilisation of 4CE115 FPGA device for initial implementation. 

 

Total 
combinational 
functions 
(114480 total) 

Dedicated 
logic 
registers 
(114480 
total) 

Total Logic 
cells(114480 
total) 

Memory 
bits 
(3981312 
total) 

M9Ks 
Latency 
(clock 
cycles) 

Image Capture 79 63 102 2048 1  

Block 
Processing 

235 68 248 2048 16 8 rows 

Row DCT 1578 201 1619 18 1 10 

Transpose 
buffer 

30 14 30 1536 1 64 

Column DCT 1978 252 2034 26 1 10 

Zigzag coding 191 12 178 1792 1 64 

Quantisation 344 28 288 512 1 1 

Huffman 
Coding 

6777 6870 10209 0 0 5 

Headers 52 56 78 2624 1  

FIFO output 43 18 60 8192 1  

JPEG 
compressor 
(including 
block proc to 
Headers) 

11185 
9.8% 

7501 
6.6% 

14684 
12.8% 

8556 
 

225.1% 154 

The initial system used 12.8% of total logic cells, 5.1% of the memory blocks, no 

multipliers and 154 clock cycles plus 8 image rows of latency. The system was not 

capable of running at a speed of 50MHz. The maximum clock speed was only 

23.27MHz.  Then the system was optimised in order to minimise the logic resources, 

minimise the latency, and to maximise the speed. The next section gives details on 

optimisation methods for each module. 
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In this implementation to enable proper testing of the algorithm, the image capture 

module only simulates image capture by streaming an image from memory. It uses 1 

memory block (M9K) to hold the “captured” image into internal memory. In practice, 

the data input would be streamed directly from the camera. 

Similarly, the output FIFO was used purely to hold the compressed image for RS 232 

transmission to the PC for checking. Therefore image capture module and FIFO 

output are not included in the total resource requirements for the compressor. 

 

The latency for initial block processing was 8 rows.  However, it is not necessary to 

wait until all 8 rows are available before beginning the DCT. The first block only 

requires 8 pixels on the 8th row. Since the DCT will start with the first row of the 

block, it is safe to start the DCT when the first pixel in the 8th row arrives. This is 

shown in Figure 9.1. This improved the latency by 1 row to 7 rows of pixels. 

Figure 9.1: New timing diagram for block processing. 

 

 

 

   
Sync out 

Previous 
start_read 
trigger 

New 
start_read 
trigger 
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From Table 9 it can be noted that block processing module uses 16 memory blocks 

(M9Ks). The memory in the table is based on a row length of 16 pixels. Since a 

separate memory is used for each row, the same number of memory blocks would 

handle row lengths up to 1024 pixels. 

 

In the initial implementation Handel-C compiled the multipliers to LUT logic. 

Therefore the next step was to minimise the logic usage by using hardware multipliers 

for the row DCT and column DCT processes since there are plenty of multipliers in 

FPGA. Table 10 shows that after modifying row DCT and column DCT modules, it 

significantly dropped the total logic usage of these modules. 

Table 10. Comparison between DCT modules. 

 

Total 
combinational 
functions 
(114480 total) 

Dedicated 
logic 
registers 
(114480 
total) 

Total 
Logic 
cells 
(114480 
total) 

Memory 
bits 
(3981312 
total) 

M9Ks 
Multiplies  
(532 
total) 

Latency 
(clock 
cycles) 

Initial 
row DCT 
Module 

1578 201 1619 18 1 0 10 

Optimised 
row DCT 
Module 

314 201 353 18 1 8 10 

Initial 
column 
DCT 
Module 

1978 252 2034 26 1 0 10 

Optimised 
column 
DCT 
Module 

376 252 445 26 1 8 10 

Use of on-chip multipliers has been able to significantly drop the total logic cells from 

1619 to 353 for row-DCT module and from 2034 to 445 for column-DCT module. 

This implementation uses 8 multipliers for each DCT module to multiply the 

incoming pixel with DCT coefficient. Each multiplier in the DCT uses 2 multiplier 

blocks on the FPGA. The difference in resources between the row and column DCT is 

because of the wider bit widths. 
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The initial transpose buffer had a latency of 64 clock cycles since it waits until the row 

data is written into the first block during the first 64 cycles. Once the eight row DCTs 

have computed, the data were streamed out of the transpose buffer in column order for 

the column DCTs. But it does not have to wait for the full 64 clock cycles to start to 

read-out. As long as the data in the first column is available when it is needed, read-

out can start earlier. Figure 9.2 shows the previous trigger to read-out the data and 

new trigger. The critical pixel is pixel 0 on the last row. As this is the last pixel in the 

first column, it is possible to begin read-out part way through the previous row. 

 

Figure 9.2: Timing diagram for transpose buffer 

With this new implementation, read-out from the transpose buffer starts when the 

coefficient is written to (6, 2). This way it will save 14 clock cycles. Therefore the 

new transpose buffer has a latency of 50 clock cycles. 

 

The initial zigzag buffer had a latency of 64 clock cycles. This behaved similarly to 

the transpose buffer. Considering the transpose, even and odd grouping from DCT 

module, Figure 9.3 shows the relative timing between writing each coefficient into the 

buffer and reading it out. The green numbers in the top left corners of Figure 9.3 

7 
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indicate the order that coefficients are written to the zigzag buffer and the red numbers 

in the bottom right corners indicate the order that the coefficients are read out from the 

zigzag buffer. The middle black number represents the difference, if the write-in 

address is bigger than the read-out address. The largest difference between these 

represents the minimum latency. In initial implementation, it waited for 64 clock 

cycles before reading. With the new implementation we only need to wait for 34 clock 

cycles and start to read out from the next clock cycle. In other words, when it writes 

the 35th coefficient into the buffer, it will start to readout the 1st coefficient. In this way 

zigzag buffer will save 29 clock cycles. Therefore, the new implementation has a 

latency of 35 clock cycles. 

 

Figure 9.3 : Zigzag buffer addressing and timing. The green numbers represent the 
clock cycle (relative to the start of the block) that a particular coefficient is written to 
the buffer. The red number represents the clock cycle that a coefficient is read out. 

New trigger to start read 
where the difference is 
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The bottleneck in processing speed for the initial implementation was traced to the 

divider in the quantisation module. Since the memory is synchronous, the coefficients 

are only available at the middle of the clock cycle. Therefore the reading coefficients 

from memory will take half a clock cycle rather than the full clock cycle. This was 

sped up to the desired clock speed by pipelining the memory read and beginning it one 

clock cycle earlier, so that the divisor is available at the start of the clock cycle to do 

the division, and then pipelining the division over 4 clock cycles. This also increased 

the overall latency by 3 clock cycles. 

Table 11. Comparison between quantisation modules. 

 

Total 
combinational 
functions 
(114480 total) 

Dedicated logic 
registers (114480 
total) 

Total Logic 
cells (114480 
total) 

Memory 
bits 
(3981312 
total) 

M9Ks 
Latency 
(clock 
cycles) 

Initial 
Quantisation 
Module 

344 28 288 512 1 1 

Optimised 
Quantisation 
Module 

238 82 274 512 1 4 

After pipelining the quantisation operation over four clock cycles, it has increased the 

number of logic registers from 28 to 82. This is because pipelining required additional 

registers between the pipeline stages. However this step speeds up the compressor to 

run at 55.77MHz. 

 

From Table 9 it can be noted that the Huffman coding module uses a relatively large 

number of logic cells compared to the other modules. This is because of the FIFO 

buffers used in this implementation. A short FIFO buffer is used to store the results 

from the run count and the size detector to allow up to 3 ZRL codewords to be saved. 

Another large FIFO saves up to 3 output bytes for each symbol to enable them to be 

streamed out 8 bits at a time. The initial implementation has used registers to create 

these two FIFO buffers and those use a large number of logic cells. The logic 
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resources are significantly reduced by implementing FIFOs using dual port memory. 

Table 12 shows that by using two separate dual port memories (2 M9Ks) for the 

FIFOs this has dropped the total logic cells from 10209 to 1317.  

Table 12. Comparison between Huffman coding modules 

 

Total 
combinational 
functions 
(114480 total) 

Dedicated logic 
registers(114480 
total) 

Total Logic 
cells(114480 
total) 

Memory 
bits 
(3981312 
total) 

M9Ks 
Latency 
(clock 
cycles) 

Initial Huffman 
Module 

6777 6870 10209 0 0 5 

Optimised 
Huffman 
Module 

1310 136 1317 6728 2 5 

 

Table 13 summarises the FPGA logic usage for the final implementation for each 
module. 

Table 13. Resource utilisation for final implementation. 

 

Total 
combinational 
functions 
(114480 total) 

Dedicated logic 
registers(114480 
total) 

Total Logic 
cells(114480 
total) 

Memory 
bits 
(3981312 
total) 

M9Ks 
(432 
total) 

Multiplies 
(532 
total) 

Latency 
(clock 
cycles) 

Image 
Capture 

79 63 102 2048 1 0 
 

Block 
Processing 

235 68 248 2048 16 0 7 rows 

Row DCT 314 201 353 18 1 8 10 

Transpose 
buffer 

36 14 27 1536 1 0 50 

Column 
DCT 

376 252 445 26 1 8 10 

Zigzag 
coding 

206 12 192 1792 1 0 35 

Quantisation 238 82 274 512 1 0 4 

Huffman 
Coding 

1310 136 1317 6728 2 0 5 

Headers 60 33 62 2624 1 0  

FIFO output  43 18 60 8192 1 0  

JPEG 
Compressor 
(including 
block proc 
to headers) 

2775 
2.4% 

798 
0.7% 

2918 
2.5% 

15284 
 

24 
5.5% 

16 
3% 

114 
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The final JPEG compressor uses 2.5% of logic cells, 5.5% of the memory blocks, 3% 

of multipliers and has a latency of 114 clock cycles, plus 7 image rows compared to 

the initial system’s 12.8% of logic resources, 5.1% of the memory blocks, no 

multipliers and 154 clock cycles, plus 8 image rows of latency. The final 

implementation has also improved the maximum speed that it can run at to 55.77MHz 

where in the initial implementation the maximum clock speed was only 23.27MHz. 

 

An alternative optimisation that can be considered is to apply the row-DCT directly on 

the data as it is streamed from the camera. The block processing can then stream out 

the data in column order eliminating the transpose buffer. Figure 9.4 shows the block 

diagrams of the current implementation and suggested implementation. This will 

reduce the latency by 50 clock cycles from the transpose buffer. Also we can reduce 

the latency for the row-DCT by 7 clock cycles because the read-out can start before 

the row DCT has finished. With this design we can start processing and reading out at 

the 3rd clock cycle. So this will drop the latency by 57 clock cycles and make the 

latency of the new system to 56 clock cycles  ( 113 – 50 – 7) plus 7 rows. Even though 

it significantly drops the latency, this implementation requires 50% more memory bits 

because of the wider data width after the row DCT. The row pixels require only 8 bits 

per pixel whereas, after the row-DCT, 12 bits per pixel are required. Which design to 

use would depend on whether memory resources or latency is more critical. 
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Figure 9.4: Comparison between the current approach and an alternative approach. 

Table 14 shows the results from Agostini et al. [10]. This system was implemented on 

Altera FLEX10KE device. 

Table 14. Synthesis results from Agostini et al. [10] 
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memory and therefore could read the pixels in block order. Considering these factors, 

my implementation (1D-DCT module to Huffman Coding module) uses a total of 

2608 logic cells and 10612 memory bits. When we compare the results obtained from 

the final implementation with the results from Agostini et al. [10] (see Table 15), it 

clearly shows that the proposed implementation achieves the minimum latency of 114 

clock cycles and with a minimum of 2608 logic cells. 

Table 15. Comparison between two compressors 

 Logic Cells Memory (bits) Frequency 
(MHz) 

Latency (clock 
cycles) 

Our JPEG 
Compressor 

2608 10612 55.77 114 

Agostini el al. 
JPEG 

Compressor 
4568 7436 37.6 238 

Even though this implementation uses more memory bits than Agostini’s 

implementation, the number of logic cells required for this implementation is less than 

that required for Agostini’s implementation. Our system has also increased the speed 

to 55.77MHz. 



 

 

 

 
Overall Conclusions 

10 

This chapter presents the overall conclusion of this research and suggests possible 

future work. 
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This thesis presents the design of an FPGA implementation of a JPEG compressor for 

8 bit grey scale images. The main aim of this thesis was to explore the implementation 

of JPEG compression onto an FPGA as the data are streaming from the camera while 

minimising the logic resource requirement of the FPGA and the latency at each stage 

of the JPEG compression. The JPEG compressor architecture for each module is 

presented. The JPEG compressor was designed in a fully pipelined fashion. Each 

JPEG module was firstly tested on its own and then checked for the functionality to 

validate results in Handel-C simulations. Standard test images were used as 

benchmarks to test functionality of the design and the results were validated using 

MATLAB. IrfanView was also used to check that the resulting compressed file could 

be successfully decoded. 

From the simulation results it was confirmed that software and hardware based 

algorithms did have small differences in the compressed images as a result of 

simplifying the arithmetic in hardware. However, these differences were small, with 

no discernible difference in image quality between hardware and software compressed 

images. The mean square error between MATLAB compressed image and Handel-C 

compressed image was less than 0.9 pixel value. 

Then the JPEG compression algorithm has been successfully implemented and tested 

on Altera DE2-115 development board.  The initial implementation used 12.8% of 

logic cells, 5.1% of the memory blocks, no multipliers and 154 clock cycles plus 8 

image rows of latency. It had a maximum clock speed of 23.27MHz. It was not 

capable of running at a speed of 50MHz. The system was then optimised in order to 

minimise the logic resources and to maximise the speed. The final JPEG compressor 

uses 2.5% of logic cells, 5.5% of the memory blocks, 3% of multipliers and had a 

latency of 114 clock cycles, plus 7 image rows. It has also improved the speed that it 

can run at to 55.77MHz. 
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The final implementation also showed that using FPGA multipliers for 1D-DCT and 

2D-DCT, pipelining the quantisation module over four clock cycles, using memory 

for FIFO buffers in the Huffman coding module, and triggering the read-out at the 

correct place for block processing, the transpose buffer and zigzag buffer can 

significantly reduce the logic resources and latency. It has also showed that latency 

can be further improved to 56 clock cycles at the expense of more logic resources. 

The results obtained from this implementation were very satisfactory. This research 

confirmed that JPEG compression can be implemented on streamed data from a 

camera at a cost of minimum logic cells and at a faster clock speed. Therefore in 

future this implementation can be useful for any embedded system image compression 

application. 

 

The research work presented in this thesis is a solid foundation for the JPEG 

compression on FPGAs for grey scale images and it confirmed that the hardware 

implementation for this is possible when data are streaming from the camera. 

In future, the proposed architectures for each JPEG module can be used to extend the 

current design to colour images and other compression algorithms. Also there are few 

optimisations which can be performed to improve the use of logic cell. 

Quality Factor: The quantisation tables can be scaled according to a quality factor 

selected by the user. This has a direct impact on compression ratios. This will allow a 

user to set the desired level of compression for a given application. 

Colour images: The hardware described in this thesis is suitable for the luminance 

components. A similar circuit would also be required for the chrominance 

components. Since the chrominance components are down-sampled, one additional set 

of hardware could be used for both chrominance components. Alternatively, if the 

clock speed was set 50% higher than the pixel rate, then the luminance hardware 
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could be reused for all components. Colour images would also require converting the 

RGB to YUV, and an increase in the buffer size for the chrominance.  
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Tables below show the default coding for run-length and size for AC 

coefficients (from  [2]). 

Run/Size Code length Code Word 
0/0 (EOB) 4 1010 
0/1 2 00 
0/2 2 01 
0/3 3 100 
0/4 4 1011 
0/5 5 11010 
0/6 7 1111000 
0/7 8 11111000 
0/8 10 1111110110 
0/9 16 1111111110000010 
0/A 16 1111111110000011 
1/1 4 1100 
1/2  5 11011 
1/3 7 1111001 
1/4  9 111110110 
1/5 11 11111110110 
1/6 16 1111111110000100 
1/7 16 1111111110000101 
1/8 16 1111111110000110 
1/9 16 1111111110000111 
1/A 16 1111111110001000 
2/1 5 11100 
2/2 8 11111001 
2/3 10 1111110111 
2/4  12 111111110100 
2/5 16 1111111110001001 
2/6 16 1111111110001010 
2/7 16 1111111110001011 
2/8 16 1111111110001100 
2/9 16 1111111110001101 
2/A 16 1111111110001110 
3/1 6 111010 
3/2 9 111110111 
3/3 12 111111110101 
3/4  16 1111111110001111 
3/5 16 1111111110010000 
3/6 16 1111111110010001 
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Run/Size Code length Code Word 
3/7 16 1111111110010010 
3/8 16 1111111110010011 
3/9 16 1111111110010100 
3/A 16 1111111110010101 
4/1 6 111011 
4/2 10 1111111000 
4/3 16 1111111110010110 
4/4 16 1111111110010111 
4/5 16 1111111110011000 
4/6 16 1111111110011001 
4/7 16 1111111110011010 
4/8 16 1111111110011011 
4/9 16 1111111110011100 
4/A 16 1111111110011101 
5/1 7 1111010 
5/2 11 11111110111 
5/3 16 1111111110011110 
5/4 16 1111111110011111 
5/5 16 1111111110100000 
5/6 16 1111111110100001 
5/7 16 1111111110100010 
5/8 16 1111111110100011 
5/9 16 1111111110100100 
5/A 16 1111111110100101 
6/1 7 1111011 
6/2 12 111111110110 
6/3 16 1111111110100110 
6/4 16 1111111110100111 
6/5 16 1111111110101000 
6/6 16 1111111110101001 
6/7 16 1111111110101010 
6/8 16 1111111110101011 
6/9 16 1111111110101100 
6/A 16 1111111110101101 
7/1 8 11111010 
7/2 12 111111110111 
7/3 16 1111111110101110 
7/4 16 1111111110101111 
7/5 16 1111111110110000 
7/6 16 1111111110110001 
7/7 16 1111111110110010 
7/8 16 1111111110110011 
7/9 16 1111111110110100 
7/A 16 1111111110110101 
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Run/Size Code length Code Word 
8/1 9 111111000 
8/2 15 111111111000000 
8/3 16 1111111110110110 
8/4 16 1111111110110111 
8/5 16 1111111110111000 
8/6 16 1111111110111001 
8/7 16 1111111110111010 
8/8 16 1111111110111011 
8/9 16 1111111110111100 
8/A 16 1111111110111101 
9/1 9 111111001 
9/2 16 1111111110111110 
9/3 16 1111111110111111 
9/4 16 1111111111000000 
9/5 16 1111111111000001 
9/6 16 1111111111000010 
9/7 16 1111111111000011 
9/8 16 1111111111000100 
9/9 16 1111111111000101 
9/A 16 1111111111000110 
A/1 9 111111010 
A/2 16 1111111111000111 
A/3 16 1111111111001000 
A/4 16 1111111111001001 
A/5 16 1111111111001010 
A/6 16 1111111111001011 
A/7 16 1111111111001100 
A/8 16 1111111111001101 
A/9 16 1111111111001110 
A/A 16 1111111111001111 
B/1 10 1111111001 
B/2 16 1111111111010000 
B/3 16 1111111111010001 
B/4 16 1111111111010010 
B/5 16 1111111111010011 
B/6 16 1111111111010100 
B/7 16 1111111111010101 
B/8 16 1111111111010110 
B/9 16 1111111111010111 
B/A 16 1111111111011000 
C/1 10 1111111010 
C/2 16 1111111111011001 
C/3 16 1111111111011010 
C/4 16 1111111111011011 
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Run/Size Code length Code Word 
C/5 16 1111111111011100 
C/6 16 1111111111011101 
C/7 16 1111111111011110 
C/8 16 1111111111011111 
C/9 16 1111111111100000 
C/A 16 1111111111100001 
D/1 11 11111111000 
D/2 16 1111111111100010 
D/3 16 1111111111100011 
D/4 16 1111111111100100 
D/5 16 1111111111100101 
D/6 16 1111111111100110 
D/7 16 1111111111100111 
D/8 16 1111111111101000 
D/9 16 1111111111101001 
D/A 16 1111111111101010 
E/1 16 1111111111101011 
E/2 16 1111111111101100 
E/3 16 1111111111101101 
E/4 16 1111111111101110 
E/5 16 1111111111101111 
E/6 16 1111111111110000 
E/7 16 1111111111110001 
E/8 16 1111111111110010 
E/9 16 1111111111110011 
E/A 16 1111111111110100 
F/0 (ZRL) 11 11111111001 
F/1 16 1111111111110101 
F/2 16 1111111111110110 
F/3 16 1111111111110111 
F/4 16 1111111111111000 
F/5 16 1111111111111001 
F/6 16 1111111111111010 
F/7 16 1111111111111011 
F/8 16 1111111111111100 
F/9 16 1111111111111101 
F/A 16 1111111111111110 

 

 

 



Appendix A-2  JPEG Header Specifications 

94 
 

The JFIF APP0 marker provides information which is missing from the JPEG 

stream such as, version number, X and Y density, pixel aspect ratio and 

thumbnail. Details of APPO marker as follows [2]: 

APP0 Header (2 Bytes): Defines the application specific header 

Length (2 Bytes): Total length of header 

Application Identifier (5 Bytes): Identifies JFIF through ASCII hex codes, 

0x4A46494600 

Version Identifier (2 Bytes): Specifies major and minor version numbers for 

JFIF (V1.01) 

Density Units (1 Byte): Specifies units used to give pixel density. 

0: density given in pixel  1: density in dots per inch  2: density 

X Density (2 Bytes): Horizontal pixel density 

Y Density (2 Bytes): Vertical pixel density 

X Thumbnail (4 bits): Specifies the horizontal pixel count of the thumbnail 

Y Thumbnail (4 bits): Specifies the vertical pixel count of the thumbnail 

 



Appendix A-2  JPEG Header Specifications 

95 
 

Frame header specifies the source image characteristics, and the parameters 

that apply to all scans with the frame. SOF is the start of frame marker, which 

is unique for each type of JPEG implementation [2]. 

 

 

 

SOF (2 Bytes): Define by unique code 0xFFC0  

Length (2 Bytes): Defines the length for the frame header 

Sample Precision (1 Byte): Define the sample precision used. For baseline, 

this is 8 bits 

Number of lines (Y) (2 Bytes): Specifies the maximum number of lines in the 

source image 

Number of samples per line (X) (2 Bytes): Specifies the maximum number of 

samples per line in the source image 

Components (1 Byte): Specifies number of component in a frame.  

1 for gray scale images  3 for colour images 

Component Identifier (1 Byte): Defines the identification number for the 

frame component that is going to be specified 

Horizontal sampling (4 Bits): Specifies the relationship between the 

component horizontal dimension and maximum image dimension X 

Vertical sampling (4 Bits): Specifies the relationship between the component 

vertical dimension and maximum image dimension Y 

C1 H1 Tq1 

SOF Length Sample 
Precision 

Y X Components Component specification 
parameters 

V1 Cn Hn Tqn Vn 
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Quantisation table selector (1 Byte): Defines which Quantisation table will 

be used for the component 

The Quantisation table header segment is used to define the Quantisation tables 

for luminance components and chrominance components. For this research it 

only uses Quantisation table for luminance components [2]. 

 

 

DQT (2 Bytes): Specifies the beginning of the Quantisation table-specification 

parameters 

Length (2 Bytes): Specifies the length of all Quantisation table parameters 

Element Precision (4 Bits): Specifies the precision of the Quantisation 

element 

0 = 8 bit precision   1 = 16 bit precision 

Table Identifier (4 Bits): Specifies one of four possible destinations at the 

decoder into which the Quantisation table shall be installed 

Quantisation Element (1 or 2 Bytes): Specifies the correct element out of 64 

elements. The Quantisation elements shall be specified in zigzag order 

The scan header segment defines the parameters for the entropy coded data 

segment. These parameters specifies which components are contained in the 

scan, specifies the destinations from which entropy tables to be used with each 

component that are retrieved [2]. 

DQT Length Element 
Precision 

Table 
Identifier 

Quantisation 
Element 
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SOS (2 Bytes): Start of scan marker marks the beginning of the scan 

parameters. 

Length (2 Bytes):  Specifies the length of the scan header in bytes. 

Number of Scan Components (1 Byte): Defines how many image 

components are contained within the current scan. This value is equal to the 

number of sets of scan specifications, which follow in this header segment. 

Csj - Scan Component Selector (1 Byte): This is the header for a specific 

component, which will be followed by that component’s specified tables. This 

will match one of the components identified in the frame header. 

Tdj – DC Entropy Coding Table Selector (4 bits): This will specify one of 

four possible DC entropy coding table destinations from which the entropy 

table needed for decoding of the DC coefficients of component Csj is retrieved. 

Taj – AC Entropy Coding Table Selector (4 bits): This will specify one of 

four possible AC entropy coding table destinations from which the entropy 

table needed for decoding of the AC coefficients of component Csj is retrieved. 

Start of Spectral or Predictor Selection (1 Byte): This is used for other DCT 

based algorithms for selecting the first DCT coefficient in each zigzag order 

which shall be coded in the scan. For the Baseline algorithm, all components, 

0-63, of the DCT are encoded, so this is set to 0. 

SOS Length Number of 
Component

Component 
Specification 

Start of Spectral 
Predictor 

End of Spectral 
Predictor 

Successive Bit 
Approx. High 

Successive Bit 
Approx. Low 

Csj Tdj Taj Cs1 Td1 Ta1 
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End of Spectral Selection (1 Byte): Specifies the last DCT coefficient in each 

block in zigzag order which shall be coded in the scan. This parameter is set to 

63 for baseline algorithm. 

Successive Approximation Bit Position High (4 Bits): This specifies the 

point transform used in the preceding scan. This parameter is set to zero for the 

first scan of each band of coefficients. 

Successive Approximation Bit Position Low (4 Bits): This specifies the point 

transform used before coding the band of coefficients specified by the spectral 

selection. This is set to zero for sequential DCT processes. 

An entropy coded data segment contains the output of an entropy-coding 

procedure. It consists of an integer number of bytes, whether the entropy-

coding procedure used is Huffman or arithmetic [2].  

 

 

DHT (2 Bytes): Specifies the beginning of the Huffman table-specification 

parameters 

Length (2 Bytes): Specifies the length of all Huffman table parameters 

Table Class (4 Bits): Defines the type of the table. 

0= DC table   1 =AC table 

Table Identifier (4 Bits): Specifies one of four possible destinations at the 

decoder into which the Huffman table shall be installed 

DHT Length Table Class Table 
Identifier 

Number of 
Huffman Codes 

Value 
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Number of Huffman Codes of length i (8 Bits): There are 16 length 

categories consisting Huffman codes. This defines the number of codes within 

category i. 

Value (8 Bits): This is the value associate with each Huffman code within each 

length category. 
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AC – Alternative Current 

ASIC – Application Specific Integrated circuit 

CODEC – Coder - Decoder 

DC – Direct Current 

DCT – Discrete Cosine Transform 

DHT – Define Huffman Table 

DPCM – Differential Pulse Code Modulation 

DVD – Digital Versatile Disk 

DQT – Define Quantisation Table 

EDIF – Electronic Design Interchange Format 

EOB – End of Block 

EOI – End of Image 

FPGA – Field Programmable Gate Array 

FIFO – First In - First out 

GIF – Graphic Interchange Format  

IDCT – Inverse Discrete Cosine Transform 

I/O – Input Output 

ITU – International Telecommunication Union 

JFIF – JPEG File Interchange Format 
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JPEG – Joint Photographic Expert Group 

LSB – Least Significant Bit 

LUT – Look Up Table 

MSB – Most Significant Bit 

MSE – Mean Square Error 

PLD – Programmable Logic Device 

PNG – Portable Network Graphics 

PROM – Programmable Read Only Memory 

PSNR – Peak Signal to Noise Ratio 

RAM – Random Access Memory 

ROM – Read Only Memory 

SOF – Start of Frame 

SOI – Start of Image 

SOS – Start of Scan 

SRT Division –  

VHDL – VHSIC hardware description language 

VLSI – Very Large Scale Integration 

ZRL – Zero Run Length 
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• De Silva, A. M., Bailey, D. G., & Punchihewa, A., “Exploring the 

Implementation of JPEG Compression on FPGAs”, 6th International 

Conference on Signal Processing and Communication Systems (ICSPCS), 

Gold Coast, Australia, 12-14 December, 2012 

PRESENTATIONS  

• “Challenges in  Implementing JPEG compression on FPGAs”, EICS 

Seminar, 11th October 2012, to the School of Engineering students and 

staff, at Massey University, Palmerston North 

• “The Implementation of JPEG compression on FPGAs”, IEEE NZ Central 

Section Post-Graduate Presentation Workshop, to the students in Lower 

North Island, 7th  September 2012, at Massey University, Palmerston North 

• “The Implementation of JPEG compression on FPGAs: work-in progress”, 

EICS Seminar, 10th October 2011, to the School of Engineering students 

and staff, at Massey University, Palmerston North 

•  “Exploring the Implementation of JPEG compression on FPGAs”, IEEE 

NZ Central Section Post-Graduate Presentation Workshop, to the students 

in Lower North Island, 1st September 2011, at Victoria University, 

Wellington



 

 
 




