
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

i

Exploring the Implementation of
JPEG Compression on FPGA

A Thesis presented in partial fulfilment of the requirements for

the degree of

Masters of Engineering
in

Electronics and Computer Systems Engineering

at Massey University, Palmerston North
New Zealand

Ann Malsha De Silva

2012

SUPERVISORS

Dr Amal Punchihewa

Associate Prof. Donald Bailey

ii

This thesis presents an implementation of JPEG compression on a Field Programmable

Gate Array (FPGA) as the data are streamed from a camera. The goal was to minimise

the usage of logic resources of the FPGA and the latency at each stage of the JPEG

compression. The modules of these architectures are fully pipelined to enable continuous

operation on streamed data. The designed architectures are detailed in this thesis and they

were described in Handel-C. The correctness of each JPEG module implemented on

Handel-C was validated using MATLAB.

The software and hardware based algorithms did result in small differences in the

compressed images as a result of simplifying the arithmetic in hardware. However, these

differences were small, with no discernible difference in image quality between hardware

and software compressed images.

The JPEG compression algorithm has been successfully implemented and tested on

Altera DE2-115 development board. Improvements were made by minimising the

latency, and increasing the performance. Final implementation also showed that

implementing a quantisation module in three stage pipeline fashion and using FPGA

multipliers for 1D-DCT and 2D-DCT can significantly drop the logic resources and

increase the performance speed. The proposed JPEG compressor architecture has a

latency of 114 clock cycles plus 7 image rows and has a maximum clock speed of

55.77MHz. The results obtained from this implementation were very satisfactory.

iii

I would like to take this opportunity to thank some people who made my research

possible. First of all I’d like to express my gratitude towards my supervisors, Dr. Amal

Punchihewa and A/P Donald Bailey for giving me guidance, support, encouragement,

understanding and patience throughout this research as they have broadened my views of

the various technologies available in my work field and provided me with skills I can use

in the field later in my career.

I also like to acknowledge the receipt of a Master of Engineering Scholarship from

Massey University and Graduate Women Manawatu Postgraduate Scholarship from

Graduate Women Manawatu Charitable Trust Inc.

Finally I would like to thank my husband, my parents, sister and my friends for

their support and encouragement throughout this experience.

Thank you all!

iv

Abstract .. ii

Acknowledgements ... iii

Table of Contents .. iv

List of Figures ... ix

List of Tables... xi

Chapter 1: Introduction .. 1

1.1 Background .. 2

1.2 Problem Description and Motivation .. 3

1.3 Aim of the Thesis ... 4

1.4 Scope and Constraints .. 4

1.5 Objectives .. 5

1.6 Proposed Methodology ... 5

1.7 Thesis Structure .. 6

Chapter 2: Field Programmable Gate Arrays (FPGAs) .. 9

2.1 Background .. 10

2.2 FPGA Architecture ... 11

2.3 FPGA Applications .. 12

2.4 Advantages and Disadvantages of using FPGAs ... 13

2.5 Hardware Development .. 14

v

2.5.1 Altera DE2-115 board .. 14

2.6 Software Development ... 16

2.6.1 DK design suite.. 17

2.6.2 Altera’s Quartus II design suite .. 19

2.7 Summary .. 20

Chapter 3: Image Compression .. 22

3.1 Background .. 22

3.2 Advantages and Disadvantages of Image Compression 22

3.3 JPEG Compression ... 23

3.4 Compression Ratio and PSNR .. 25

3.5 Related Work ... 25

Chapter 4: Implementation of Block Processing and Discrete Cosine Transform . 29

4.1 Block Processing .. 29

4.2 Transformation of Streamed Data to Blocks ... 29

4.3 Level Shift .. 31

4.4 Discrete Cosine Transform ... 31

4.4.1 One Dimensional DCT (1D-DCT) ... 33

4.5 Different Approaches to Implement 1D-DCT ... 34

4.6 Proposed DCT Architecture .. 36

4.7 2D-DCT Implementation .. 37

vi

4.7.1 DCT Word Length Optimisation .. 38

4.7.2 Transpose Buffer ... 42

4.8 Summary .. 43

Chapter 5: Implementation of Zigzag Coding and Quantisation 45

5.1 Zigzag Coding .. 45

5.2 Hardware Implementation of Zigzag Buffer ... 46

5.3 Quantisation ... 47

5.4 Hardware Implementation of Quantisation ... 49

5.4.1 Summary ... 50

Chapter 6: Implementation of Entropy Coding ... 53

6.1 Entropy Coding .. 53

6.1.1 DC Differential Coding .. 53

6.1.2 Run length Coding ... 54

6.1.3 Huffman Coding .. 54

6.2 Hardware Design for Huffman Coding ... 56

6.2.1 Huffman Coding Architecture .. 56

6.3 Latency... 59

Chapter 7: Implementation of JPEG Headers ... 61

7.1 JPEG File Format ... 61

7.2 Hardware Implementation of JPEG Headers ... 62

vii

Chapter 8: Simulation Results and Discussion... 64

8.1 System Architecture ... 64

8.2 System Validation and Error Evaluation ... 64

8.3 Simulation Results and Discussion ... 65

Chapter 9: Final Implementation ... 70

9.1 Overview of mapping Handel-C on DE2-115 ... 70

9.2 Results Validation .. 70

9.3 Initial Results ... 71

9.4 Optimization and Discussion .. 72

9.4.1 Image Capture .. 72

9.4.2 Block Processing ... 72

9.4.3 Row DCT and Column DCT Modules ... 73

9.4.4 Transpose Buffer ... 74

9.4.5 Zigzag Buffer ... 74

9.4.6 Quantisation Module .. 76

9.4.7 Huffman Coding .. 76

9.4.8 Final results ... 77

9.4.9 Alternative Approach ... 78

Chapter 10: Overall Conclusion ... 82

10.1 Conclusion ... 82

viii

10.2 Future Work ... 83

References .. 86

Appendix A-1: AC Huffman Table ... 90

Appendix A-2: JPEG Header Specifications .. 94

Application Specific Header ... 94

Frame Header ... 95

Quantisation Table Header ... 96

Scan Header ... 96

Entropy Coded Segment ... 98

Appendix A-3: Abbreviations ... 100

Appendix A-4: Publications and Presentations .. 102

ix

Figure 1.1: Proposed implementation of JPEG compression on FPGA adopted from [11] 6

Figure 2.1: Category of different FPGA [21]. .. 11

Figure 2.2: Basic FPGA architecture [11]. ... 12

Figure 2.3: The DE2-115 board [32]. ... 14

Figure 2.4: Block diagram of DE2-115 [32]... 16

Figure 2.5: Steps of mapping Handel-C on FPGA [34]. ... 19

Figure 3.1: Basic architecture of JPEG compression .. 24

Figure 4.1: Digital image blocks .. 29

Figure 4.2: Addressing done on block processing. ... 30

Figure 4.3: Block diagram of block processing for 16x16 image. 31

Figure 4.4: 2D-DCT basis functions .. 32

Figure 4.5: DCT architecture with 11 multiplications [11]. .. 34

Figure 4.6: DCT architecture with 5 multiplications [11]. .. 35

Figure 4.7: Pipelined implementation of figure 4.6 [11]. .. 35

Figure 4.8: Block diagram of proposed DCT architecture [11]. 36

Figure 4.9: Fixed point DCT implementation. ... 38

Figure 4.10: Effect of different DCT coefficient quantisations with R = 20, and C = 20..40

Figure 4.11: Effect of different row DCT quantisations with N = 9, and C = 20........... 41

Figure 4.12: Effect of different column DCT quantisations with N = 9 and R = 12. 41

x

Figure 4.13: Original Barbara image (Left) and Original Lena image (Right) 42

Figure 5.1: Sequence obtained by zigzag. .. 45

Figure 5.2: Zigzagged coefficients in 64 element vector. ... 45

Figure 5.3: Zigzag buffer architecture. ... 46

Figure 5.4: Addressing of zigzag reordering. ... 47

Figure 5.5: Actual zigzag order that coefficients read out. ... 47

Figure 5.6: MAE for Barbara image for different quality factors.................................. 49

Figure 5.7: Quantisation Module. .. 51

Figure 6.1: Huffman coding architecture. .. 57

Figure 6.2: FIFO buffer bit allocation. ... 58

Figure 7.1: High level file structure. .. 61

Figure 8.1: Overall system architecture for JPEG compression. 64

Figure 8.2: Lena reconstructed image (PSNR 36.67 dB) .. 66

Figure 9.1: New timing diagram for block processing. ... 72

Figure 9.2: Timing diagram for transpose buffer .. 74

Figure 9.3 : Zigzag buffer addressing and timing.. ... 75

Figure 9.4: Comparison between the current approach and an alternative approach. 79

xi

Table 1. Fast algorithms for implementing 1D-DCT. .. 34

Table 2. Propagation of bit width and binary point position. .. 39

Table 3. Standard luminance quantisation table ... 48

Table 4. The relationship between size and amplitude. .. 54

Table 5. Huffman table for luminance DC coefficient differences. 55

Table 6. JPEG file markers. ... 62

Table 7.Latency of each stage .. 65

Table 8. Comparison of software and hardware JPEG compression 68

Table 9. Resource utilisation of 4CE115 FPGA device for initial implementation. 71

Table 10. Comparison between DCT modules. .. 73

Table 11. Comparison between quantisation modules. ... 76

Table 12. Comparison between Huffman coding modules ... 77

Table 13. Resource utilisation for final implementation. .. 77

Table 14. Synthesis results from Agostini et al. [10] .. 79

Table 15. Comparison between two compressors ... 80

Introduction

1

This chapter gives a basic background to this research. It states the problem to be

studied, aim and main objectives. The proposed methodology for implementing

JPEG compression into FPGA is presented.

Chapter 1 Introduction

2

In image processing, image compression can improve the performance of the system

by reducing the cost and time in image storage and transmission without a significant

reduction of the image quality. A monochrome image can be defined over a matrix of

picture elements (pixels), with each pixel represented by 8-bit grey scale value. This

representation of image data could demand large storage and bandwidth to transmit.

The purpose of image compression is to reduce the size of the representation and, at

the same time to preserve most of the information contained in the original image [1].

Image compression can be lossy or lossless. Lossy compression gives a greater

reduction in data volume compared to lossless compression; however only an

approximation to the original image can be reconstructed.

There are several standards for image compression and decompression (CODEC) such

as Joint Photographic Experts Group (JPEG) [2], JPEG2000 [3], Graphic Interchange

Format (GIF) [4], Portable Network Graphics (PNG) [5]. JPEG compression is the

most widely used form of lossy image compression. It’s based on the Discrete Cosine

Transform (DCT). A compressed image in JPEG format can be 10% of the original

size depending on the information contained within the image and compression

quality, which would mean that a 90% decrease in the needed bandwidth [6]. Image

and video codecs are implemented mainly in software as signal processors can

manage operations without incurring too much overhead in computation. These

operations can also be efficiently implemented in hardware [7].

Field Programmable Gate Arrays (FPGAs) are a relatively new technology, which

combines the properties of the traditional hardware and software alternatives. They

can provide speed, performance and flexibility since they implement a parallel and

pipelined version of the algorithm [8]. The latest FPGAs have millions of

reconfigurable gates, capable of running at clock speeds of hundreds of megahertz

(MHz) and therefore these devices are well-suited for graphics and image processing.

FPGA based designs generally comprise a large number of simple processors which

all work in parallel and may compete for memory access or other resources [9].

Chapter 1 Introduction

3

Processing time and power restrictions imposed on dedicated embedded systems make

software compression unviable in many applications. Power efficiency and fast

compression are often performance critical factors. For most digital image codecs,

increasing the compression has been achieved at the cost of increasing the complexity

of the techniques and implementations. These restrictions usually mandate a dedicated

hardware implementation of a JPEG compressor, especially in applications such as

digital cameras, DVD players, traffic controllers, secure ticketing, and many more. As

the JPEG compression process is complex, its design in hardware is demanding [10].

These restrictions have motivated this work.

FPGAs are well suited for many embedded systems applications because they have

several desirable attributes such as, small size, low power consumption, a large

number of I/O ports, and a large number of computational logic blocks [11]. Images

have a high degree of spatial parallelism, thus image processing applications are

ideally suited to implementation on FPGAs which contain large arrays of parallel

logic and registers and can support pipelined algorithms [9].

JPEG is an international standard for still-image compression and it has been widely

used since 1987 [2]. This research is concerned about the implementation of JPEG

compression for grey-scale images in to FPGA in real time as the images are streamed

from the camera. The real time JPEG FPGA is expected to run at 50MHz.

There are many research papers published in conference proceedings and journal

papers about JPEG compression using FPGAs [7, 10, 12, 13]. Unfortunately, as a

result of page limits and space constraints, many of these papers give the results of the

implementation of various sections of the JPEG compression algorithm, but present

relatively few design details. Some researchers only focus on implementing either 2D-

DCT or Huffman coding onto FPGAs [1, 14-17].

This research focuses on implementing JPEG compression by minimising the usage of

logic resources available and minimising the latency at each module of the JPEG

Chapter 1 Introduction

4

compression. The JPEG algorithm was chosen for this research as it is well

established and highly recognisable. The development of design architectures for each

module of JPEG is described in later chapters. The modules of these architectures are

fully pipelined and target to FPGA device implementation using Handel-C. Each

JPEG module was evaluated using MATLAB.

The main aim of this thesis was to explore the implementation of JPEG compression

on to FPGA device as the data are streamed from the camera while minimising:

• the requirement of logic resources of the FPGA and,

• the latency at each stage of the JPEG compression.

The scope of this thesis was limited to JPEG compression only, since it is well defined

and highly recognisable. This thesis only focuses on grey-scale. It can readily be

extended to colour images as the processing on the chrominance components is the

same as for the luminance.

JPEG implementation into FPGA presents a number of problems and constraints:

• Real-time constraints: The input image is streamed from the camera. This

imposes a strict time constraint that depends on the capture frame rate and the

image size. Stream processing demands calculations for one pixel value at each

clock cycle (given a serial input stream).

• Memory bandwidth constraints: In stream processing, memory bandwidth

constraints dictate that as much processing as possible be performed on the data

as they arrive. Small on-chip memory blocks can be accessed in parallel

increasing available bandwidth for temporary storage.

Chapter 1 Introduction

5

The objectives of this thesis were:

1. Identify the optimum number of bits that need to maximise fidelity while
minimising the use of resources and latency at each stage of JPEG
compression.

2. Simulate the proposed system architecture using the hardware description
language, Handel-C.

3. Compile the program using Quartus II program and port the code to FPGA.

4. Test the JPEG compression on FPGA as data are streaming from a camera.

5. Evaluate hardware implementation and compare the results using MATLAB.

6. Optimise the results obtained.

The proposed workflow for implementing JPEG compression onto an FPGA is shown

in Figure 1.1. The basic idea of the methodology is adopted from Figure 4.3 of [11].

First, a fixed point JPEG algorithm has been developed in MATLAB. This serves two

purposes. First, it identifies the minimum number of bits required to represent each

stage within the FPGA without introducing significant error. This is important,

because an FPGA implementation is not restricted to work with the standard 8, 16, or

32 bit-word lengths used by software. The speed can be increased, and resources

required can be reduced by minimising the number of bits. Second, it also provides

ground truth data for bench-testing the resulting FPGA algorithm.

Then, most of the effort has gone into mapping the algorithm into a form suitable for

FPGA implementation. The aim was to make the implementation as resource and time

efficient as possible. The resulting algorithm was implemented using the hardware

description language, Handel-C [18]. Two software suites were used during the

hardware implementation: Mentor Graphics’ DK design suite, and Altera’s Quartus II

design suite. Each stage of the algorithm was validated through simulation by

comparing the results with the MATLAB results.

Chapter 1 Introduction

6

Finally the implementation was targeted to a Cyclone IV FPGA on an Altera DE2-115

development board.

Figure 1.1: Proposed implementation of JPEG compression on FPGA adopted from

[11].

This thesis explores the implementation of JPEG compression into an FPGA device as

the data are streaming from the camera. The contents of the thesis are structured as

follows.

Develop selected
algorithms in MATLAB

Map algorithm to
hardware

Implement the design
using Handel-C

Compile the design in
Quartus II

Place & route on FPGA

Verify implementation
on FPGA

System debug
Behavioural and

functional simulation

Resource / Speed
optimisation

Behavioural and
functional simulation

Chapter 1 Introduction

7

Chapter 1: Introduction

This chapter introduces several important concepts that are necessary to understand

the content of this thesis. This gives a basic background on image compression and

states the problem to be studied. The proposed methodology for implementing JPEG

compression into FPGA is presented.

Chapter 2: Introduction to FPGAs

This chapter describes the basic architecture of FPGA and presents the advantages and

disadvantages of FPGAs. This chapter also gives details on the hardware and software

development environments.

Chapter 3: Introduction to JPEG Compression

This chapter gives an introduction to JPEG compression and presents the basic

architecture of JPEG compression. It also presents a basic outline of each block of

JPEG compression and lists the advantages and disadvantages of image compression.

The previous work on FPGA implementation of JPEG compression is presented in

some detail.

Chapter 4: Implementation of Block Processing and Discrete Cosine Transform

This chapter investigates the implementation of a low complexity and more elegant

pipelined DCT architecture for JPEG compression. This chapter presents the basic

background to DCT transform. Then it presents the proposed architecture and

compares it with alternative approaches. It also analyses the fixed point word length

optimization. Finally, it discusses the results obtained through the proposed DCT

architecture.

Chapter 5: Implementation of Quantisation and Zigzag Coding

This chapter gives the basic overview of zigzag coding and quantisation. It discusses

the hardware implementation; and presents the results after zigzag coding and

quantisation obtained through the proposed approach.

Chapter 1 Introduction

8

Chapter 6: Implementation of Entropy Coding

Background of entropy coding is presented in this chapter. It presents the detailed

implementation and discusses the proposed method of Huffman coding and results

obtained through this approach.

Chapter 7: Implementation of JPEG Header

This chapter gives the details of JPEG headers and their hardware implementation.

Chapter 8: Simulation Results and Discussion

This presents the overall system architecture and gives the details of the obtained

results from the Handel-C simulation and gives the details of testing and validation

methods. It also compares the results with MATLAB compression.

Chapter 9: Final Implementation

This describes the mapping of the Handel-C into the DE2-115 board and presents the

initial and optimisation results.

Chapter 10: Overall Conclusion

This final chapter presents the overall conclusion of this research and suggests

possible future work.

Field Programmable

Gate Arrays

2

This chapter describes the basic architecture of FPGAs. It presents the advantages

and disadvantages of using FPGAs in applications. It also gives details on the

hardware and software development environments used in this research.

Chapter 2 Field Programmable Gate Arrays

10

FPGAs are semiconductor devices that can be programmed after manufacturing.

Instead of being restricted to any predetermined hardware function, an FPGA allows

you to program product features and functions, adapt to new standards, and

reconfigure hardware for specific applications even after the product has been

installed in the field, hence the name "field-programmable".

Generally, we either implement computations in hardware such as custom VLSI,

application specific integrated circuits (ASIC), gate arrays or in software running

processors like DSPs, microcontrollers, embedded microprocessors. However, FPGAs

combine the speed of hardware with the flexibility of software programming. It has

brought about something of a revolution in hardware design. Machines based on

FPGAs have achieved impressive performance [12, 19].

Xilinx was the first to introduce FPGAs in 1985. Xilinx and Altera are the current

FPGA market leaders and long-time industry rivals. Together, they control over 80%

of the market [20]. Other competitors include Lattice Semiconductor, Actel,

SiliconBlue Technologies, Achronix, and QuickLogic.

Commercially there are four main classes of FPGAs available: symmetrical array,

row-based, hierarchical PLD, and sea-of-gates. In all of these FPGAs the

interconnections and how they are programmed vary. Currently there are seven

technologies in use: static RAM cells, anti-fuse, PROM, EPROM transistors,

EEPROM transistors, and flash and fuse [21].

Chapter 2 Field Programmable Gate Arrays

11

Figure 2.1: Category of different FPGA [21].

Figure 2.2 shows the basic FPGA architecture and it has three major configurable

elements: configurable logic blocks, input/output blocks, and interconnectors. The

configurable logic blocks are arranged in a two-dimensional array, and the

interconnection wires are organised as horizontal and vertical routing channels

between rows and columns of logic blocks. The routing channels contain wires and

programmable switches that allow the logic blocks to be interconnected in many

ways. Each logic gate is connected by user defined routing to each other or

input/outputs, which are the FPGA’s connection to the exterior world.

The FPGA products on the market feature different types of logic blocks. The most

commonly used logic block is a lookup table (LUT), which contains storage cells that

are used to implement a small logic function. Each cell is capable of producing a

single logic value, either 0 or 1 as a function of 3 to 6 input bits (depending on the

device). When a circuit is implemented in an FPGA, the logic blocks are programmed

to realise the necessary functions and the routing channels are programmed to make

the required interconnections between logic blocks.

Chapter 2 Field Programmable Gate Arrays

12

Figure 2.2: Basic FPGA architecture [11].

Complex circuitry can be mapped onto FPGA devices without the requirement for any

expensive machinery or manual effort [22]. In the early days FPGAs only had

relatively small number of gates, so they were only used as a bridge or flexible

interconnect between other parts of a hardware design. However, now there are FPGA

chips with many millions of gates, enabling entire complex systems to be

implemented using reconfigurable logic alone in a single IC. Depending on the

particular device, the program is either burned in permanently or semi-permanently, or

is loaded from an external memory each time the device is powered up.

There are many different FPGAs with different processes. However the basic structure

consists of a semi-regular matrix of logic units. Each unit is one of programmable

logic devices (PLDs), logic gates, RAM blocks or several other types of component.

Since FPGA implements the logic required for an application by building separate

hardware for each function, FPGAs are inherently parallel. This gives them the speed

Chapter 2 Field Programmable Gate Arrays

13

that results from a hardware design while retaining the reprogrammable flexibility of

software at a relatively low cost. These advantages have made FPGAs very popular

for image processing [11], digital signal processing [23], ASIC prototype

development, custom computing [24], software-defined radio [25], aerospace and

defence systems [26], medical imaging [27], speech recognition [28], cryptography

[29], bioinformatics [30], computer hardware emulation, radio astronomy [31] and a

growing range of other areas.

FPGAs are also widely used for system validation including pre-silicon validation,

post-silicon validation, and firmware development. This allows chip companies to

validate their design before the chip is produced in the factory, reducing the time to

market.

Compared to software implementations on DSPs or microcontrollers and discrete

hardware implementation on VLSI, FPGAs have following advantages and

disadvantages.

Advantages:

1. High processing speed comparing to software implementation.

2. Costs of components can be reduced.

3. FPGAs enable rapid prototyping through reprogramming the hardware.

4. Long product life cycle through the ability to change the program to mitigate
the risk of obsolescence.

5. The ability to re-programme in the field while debugging.

6. Shorter time to market.

Disadvantages:

1. Parallel programming is harder to implement complex algorithms compared to
sequential programming.

Chapter 2 Field Programmable Gate Arrays

14

2. In the case of single applications, FPGAs are more expensive than
microcontrollers.

3. Limited library availability, i.e. technology is dependent on FPGA type, vendor

and the hardware platform.

All of the hardware design and implementation for this work was performed on a

Windows 7 workstation equipped with a 3.6GHz Intel core processor and 4GB of

RAM. The workstation uses an Altera DE2-115 development board to implement the

hardware designs.

A photograph of DE2-115 development board is shown in the Figure 2.3. It represents

the layout of the board and indicates the location of the connectors and key

components.

Figure 2.3: The DE2-115 board [32].

Chapter 2 Field Programmable Gate Arrays

15

The ALTERA DE2-115 board has number of devices that can be used to implement

wide range of projects. According to ALTERA [32] the following hardware is

provided on the DE2-115 board:

• Altera Cyclone® IV 4CE115 FPGA device

• Altera Serial Configuration device – EPCS64

• USB Blaster (on board) for programming; both JTAG and Active Serial (AS)
programming modes are supported

• 2MB SRAM

• Two 64MB SDRAM

• 8MB Flash memory

• SD Card socket

• 4 Push-buttons

• 18 Slide switches

• 18 Red user LEDs

• 9 Green user LEDs

• 50MHz oscillator for clock sources

• 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks

• VGA DAC (8-bit high-speed triple DACs) with VGA-out connector

• TV Decoder (NTSC/PAL/SECAM) and TV-in connector

• 2 Gigabit Ethernet PHY with RJ45 connectors

• USB Host/Slave Controller with USB type A and type B connectors

• RS-232 transceiver and 9-pin connector

• PS/2 mouse/keyboard connector

• IR Receiver

• 2 SMA connectors for external clock input/output

• One 40-pin Expansion Header with diode protection

• One High Speed Mezzanine Card (HSMC) connector

• 16x2 LCD module

Chapter 2 Field Programmable Gate Arrays

16

The Cyclone IV FPGA device is the centrepiece of the board and is the reconfigurable

logic that user can target. So to provide the maximum flexibility for the user, all

connections are made through the Cyclone IV FPGA device. Figure 2.4 gives the

block diagram of the DE2-115 board.

Figure 2.4: Block diagram of DE2-115 [32].

In order to use the DE2-115 board, we have to be familiar with the Quartus II

software.

This was used mainly because of the availability and the low cost and it does what it

required to do.

Two software suites were used during software development: Mentor Graphics DK

design suite, and Altera’s Quartus II design suite.

Chapter 2 Field Programmable Gate Arrays

17

The DK development suite supports the development of hardware designs in Handel-

C. It provides a software flow for compilation of algorithms onto FPGA boards.

Handel-C enables FPGA programming using software-like tools and flows. Users can

verify systems in cycle-accurate simulations, and compile code directly into FPGA

logic, creating configuration files to program FPGA boards. This enables rapid system

implementation from software to FPGA hardware platforms.

Handel-C is a high-level hardware description language that allows user control of

sequential and parallel processing, and also operator size and widths [19]. Compile

time support is provided by designing various interfaces which enable the Handel-C

program to communicate with the different parts of the FPGA board, such as the

onboard memory.

Handel-C was originally developed by Celoxica, which was formed out of the

University of Oxford in 1996 to commercialise its research into Handel-C. Handel-C

is a C based language with additional language features for specifying parallel

processes, hardware connections and clock functions [18]. It aims at compiling high-

level algorithms directly to synchronous hardware [33]. Because standard C is a

sequential language, Handel-C has additional constructs to support the parallelisation

of code and to allow fine control over what hardware is generated.

Handel-C can be used to design sequential programs but to gain speed improvement

parallel constructs need to be used. Handel-C generates the required logic gates from

the source code; however it works at the register transfer level. This means that each

assignment is clocked into a register after calculation. Consequently, in Handel-C

each assignment is performed in a single clock cycle.

The main language extension in Handel-C is the par statement. This enables several

statements to be run in parallel. There is also the inclusion of I/O pin constructs, port,

Chapter 2 Field Programmable Gate Arrays

18

and channel construct to enable communication between external interfaces and

parallel process respectively. Channels also allow parallel processes to synchronise

with each other. Data types such as the signal have been added which act like wires in

a hardware design. There are also extensions for bit manipulations including bit

selection and concatenation of variables.

By using fixed point numbers in Handel-C the bit length of each step can be defined to

be different. This gives a great deal of flexibility in design and can save on the amount

of hardware used for registered outputs, as smaller registers can be constructed.

The Electronic Design Interchange Format (EDIF) is a standardised representation of

circuit netlist data, which is independent of specific manufacturers and is designed to

allow the transfer of information between incompatible systems.

In this research, EDIF acts as a link between Handel-C and DE2-115 board. This is

because the Handel-C compiler is able to generate EDIF files, which can be compiled

using Quartus II to give the FPGA configuration file.

The usual languages for programming FPGAs are Verilog or VHDL. As mentioned

earlier, Handel-C is very much like software programming. Unlike VHDL, when

designing, the user does not need to worry about low-level decisions. At the

algorithmic level, which Handel-C is in, it is much faster and more convenient to

describe the systems desired behaviour. For prototyping and for most situations,

Handel-C is the preferred language. But for time critical applications, the user may

decide to program using VHDL instead. It provides an EDA tool stream targeting

FPGA technology and leverages existing knowledge of C programming and

algorithms.

Chapter 2 Field Programmable Gate Arrays

19

Altera’s Quartus II design software is used in conjunction with the Altera DE2-115

development board. It compiles the EDIF netlist from Handel-C into a configuration

file for programming the FPGA. It maps the design to particular resources on the

FPGA and checks that the design meets the timing constraints.

This is a binary file with the extension .sof, generated by the Quartus II Compiler's

Assembler module. This file contains data for configuring all SRAM-based Altera

devices supported by the Quartus II software, using the Programmer.

Figure 2.5 shows the steps involved in producing a .sof file from a Handel-C program.

The resulting file can be loaded directly onto the DE2-115 board.

Figure 2.5: Steps of mapping Handel-C on FPGA [34].

Chapter 2 Field Programmable Gate Arrays

20

Quartus II software delivers the highest productivity and performance for Altera

FPGAs. It delivers superior synthesis and placement and routing, resulting in

compilation time advantages. Compilation time reduction features include:

• Multiprocessor support

• Rapid Recompile

• Incremental compilation

This chapter has presented an overview of FPGAs. The design was targeted to a

Cyclone IV FPGA on Altera DE2-115 development board. Two software suites were

used during software development: Mentor Graphics DK design suite, and Altera’s

Quartus II design suite. Handel-C was adopted as the high-level language for

implementing the JPEG compression system. Altera’s Quartus II design software was

used in conjunction with the Altera DE2-115 development board.

Image Compression

3

This chapter gives an introduction to image compression and outlines its advantages

and disadvantages. It describes the basic architecture of JPEG compression, giving

an outline of each step in the JPEG compression algorithm. Previous FPGA

implementations on JPEG compression by others are presented in some detail.

Chapter 3 Image Compression

22

Image compression is used to reduce data by exploiting irrelevance and redundancy of

the image data in order to be able to store or transmit data in an efficient form. Image

compression can be lossless or lossy. In image compression, lossless compression is

where an identical source image can be reconstructed from the compressed data of the

original image. Lossy compression is a method where the decompressed image is not

identical to original image but instead is reasonably close to it [35].

The principles of image compression algorithms are to:

• reduce the redundancy in the image data and,

• produce a reconstructed image from the original image while allowing some

error that is not significant to intended application.

The goal is to achieve a more efficient representation of image data while preserving

the essential information contained in the image.

Advantages:

1. It reduces the data storage requirements.

2. The rate of input-output operations in a computing device can be greatly

increased due to the shorter representation of data.

3. Image compression reduces the cost of backup and recovery of data in

computer systems by storing the backup of large files in compressed form.

Chapter 3 Image Compression

23

Disadvantages:

1. Image compression generally reduces the reliability of the records because the

reduction in redundancy leads to increased sensitivity to errors.

2. Transmission of a compressed image through a noisy communication channel

is risky because the burst errors introduced by the noisy channel can destroy the

transmitted image.

3. Disruption of image properties of a compressed image will result in the

compressed image being different from the original data.

4. In many hardware and system implementations, the extra complexity added by

image compression can increase the system’s cost and reduce the system’s

efficiency.

There are several standards for image compression and decompression (CODEC).

However this research is concerned only on the implementation of JPEG compression

for grey-scale images using a FPGA.

The Joint Photographic Experts Group proposed the JPEG compression standard [2]

in 1987 and, since then, this is the most used lossy compression for still photographic

images. The baseline JPEG compression algorithm is the most basic form of

sequential DCT based compression. This technique can produce very good

compression ratios, at the expense of some sacrifice in image quality. By using

transform coding, quantisation, and entropy coding at 8-bit pixel resolution, a high-

level compression can be achieved.

There are losses of information in the baseline JPEG compression. Losses are due to

the quantisation operation. These losses can be controlled to have an almost

imperceptible influence to the human visual system [36]. One of the advantages of

JPEG is the use of many parameters, allowing the user to adjust the amount of data

Chapter 3 Image Compression

24

lost and thus also the compression ratio over a very wide range. The four basic steps

commonly used in JPEG compression are shown in Figure 3.1.

Figure 3.1: Basic architecture of JPEG compression

Each pixel in an original image is assumed to represent a value between 0 and 255.

The unsigned pixel data of the original image are divided into 8×8 blocks and these

blocks are processed sequentially from left to right and top to bottom.

 The 2D discrete cosine transform (DCT) is applied to each block to create a 8×8block

of frequency components. The DCT transforms a picture from the spatial domain into

the frequency domain. The upper-left corner in each 8×8 block of DCT coefficients is

the DC coefficient and the other 63 values are AC coefficients. They represent the

average pixel value and successive higher-frequency changes within the block. When

a block is processed by the DCT, the high-frequency coefficients appear at the lower-

right corner of the block while low-frequency coefficients appear at the upper-left

corner. It has been shown that the DCT is close to optimal at reducing the correlation

between coefficients, and therefore concentrating the energy into a few significant

coefficients.

Then each of the 64 frequency components in a block are divided by a separate

quantisation coefficient and then rounded to an integer. The quantiser step size is

determined by the acceptable visual quality of image. After quantisation, the 64

quantised coefficients are converted into a one-dimensional sequence by the zigzag

operation. The quantised coefficients are arranged in increasing frequency order. This

is because the energy is usually concentrated into the low frequency coefficients

enabling the insignificant high frequency coefficients to be efficiently compressed by

run length encoding or truncation.

Chapter 3 Image Compression

25

Finally, the coefficients are encoded by Huffman coding. Its idea is to use fewer bits

to represent a symbol which appears more frequently and more bits to represent a

symbol which appears less often. Differential coding is applied to the DC component

prior to entropy coding, where the AC components are directly entropy coded [14].

An end-of-block (EOB) mark is inserted at the end of each block. In this way, each

block of 8×8 pixel values is turned into a smaller block of codewords and the effect of

compression is thus achieved.

Benchmarks in image compression are the compression ratio and peak signal to noise

ratio (PSNR). The compression ratio is used to measure the ability of data

compression by comparing the size of the compressed image to the size of the original

image. A greater compression ratio means better compression.

PSNR is one of the parameters that can be used to quantify image quality. PSNR is

often used to benchmark the level of similarity between the reconstructed image and

the original image. A larger PSNR corresponds to better image quality.

 (3.1)

where is the maximum possible pixel value of the image and is the Mean

Square Error of the compressed image.

The research reported in this thesis has been profoundly influenced by the work of

numerous researchers. Many of these researchers give the results of the

implementation of various sections of the JPEG compression algorithm, but present

relatively few design details [6, 7, 10, 12, 13].

Haralick [37] showed that 2D-DCT computation can be implemented as a sequence of

two 1D-DCTs which is commonly referred to as the separability property. Due to the

Chapter 3 Image Compression

26

wide spectrum of applications in which DCT is used, several researchers have worked

on this topic resulting in a vast amount of literature [14-17, 38-40].

Agostini et al. [16] have implemented a fast pipelined 2D-DCT for JPEG image

compression. This implementation has a latency of 48 clock cycles because they

divided the algorithm into six blocks to share hardware. The structure of the DCT is

less regular than the FFT, making an elegant pipeline less practical.

Kovac and Ranganathan [13] described a fully pipelined single chip VLSI architecture

for JPEG compression. The architecture exploits the principles of pipelining and

parallelism to the maximum extent in order to obtain high speed and throughput.

However they have only given details of their DCT and Huffman coding

implementations. The DCT circuit has a latency of 59 clock cycles and 5 multipliers at

the expense of each coefficient having a different scale factor.

Sun and Lee has proposed a JPEG chip for image compression and decompression in

2002 [12]. Their system was partitioned and fit into two FLEX 10K FPGAs, an

EPF10K100 and an EPF10K70. Placement, routing, and programming of the FPGAs

were done by ALTERA Maxplus II. The main limitation with this design is that the

maximum working frequency is 27MHz and they have achieved this at the complexity

of 411, 745 transistors and 23.264K-bit of memory. Their chip also has a power

consumption of 1W.

Agostini et al. [10] presented a soft IP design of a high performance FPGA based

JPEG compressor. This approach incurs in a minimum latency of 238 clock cycles.

The multiplications were converted to shift-add operations, reducing the use of

hardware resources and increasing the compressor performance. This has been

mapped to Altera FLEX 10KE FPGAs, and it maintains a processing rate of

39.8MHz.

The fact that there are not any research work exist in the literature that describes the

complete architecture for implementing the JPEG compression on FPGAs was the

initial motivation for this research. From the information available it was clear that we

Chapter 3 Image Compression

27

can achieve better speeds by carefully designing a pipelined parallel architecture. Such

architecture is advantageous in that higher clock speeds can be easily obtained by

decreasing the granularity of processing in each stage.

This thesis presents a fully pipelined JPEG compression architecture for FPGA while

minimising the latency at each stage of the JPEG standard and minimising logic

resources. The proposed architecture for DCT is adopted from [11] and it is a simpler

and elegant pipelined design which is based on a first order factorisation by Woods et

al. [40]. This work has also investigated the data-width required at each stage of the

DCT process. The zigzag and the initial Huffman coding architectures for this

research were adapted from [11] and then modified to use the synchronous memory

block on the FPGA. The quantisation architecture described in thesis was

implemented using a signed by unsigned non-restoring divider which was proposed in

[41].

Implementation of

Block Processing and
Discrete Cosine

Transform

4

This chapter describes the transformation from streamed input data to the 8×8

blocks required by the DCT. It also presents implementation of low complexity

pipelined DCT architecture for JPEG compression and compares this with

alternative approaches. It also determines the optimal fixed point word length for the

DCT. Finally it discusses the results obtained through the proposed DCT

architecture and fixed point implementation.

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

29

In many image processing applications, computations are defined on very long

streams of input data. Certain image processing operations involve processing an

image in blocks, rather than processing the entire image at once. With block

processing the image is divided into rectangular blocks, and the operation is

performed on each individual block to determine the values of the pixels in the

corresponding block of the output image.

Figure 4.1: Digital image blocks

JPEG uses block processing to maintain locality of the data to give good compression

(nearby pixel values are highly correlated). As the data are streamed whole rows at a

time, it is necessary to buffer 8 rows of the image before an 8×8 block of data is

available for processing.

To achieve this on a FPGA it is necessary to buffer 16 rows of image. Once the first 8

rows have been written to the buffer, a signal indicates that one row of data blocks are

now available for block processing. The data in these 8 rows are read and processed in

block order while data continues to stream into the buffer for the next 8 rows. The two

sets of 8 rows effectively form a ping-pong buffer with data being written to one and

read from the other. On a FPGA this buffer can be implemented using a dual-port

8x8
block

Digital
Image

Pixel

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

30

RAM block. One port is used to write the values being streaming in, while the second

port is used to read the values in block order. A counter has been used to get the row

address; pixel address and the block address in-order to maintain the correct block.

Rows are assumed to be a power of 2 long. When writing to the block processing, two

counters are used. A 4 bit counter counts the rows, and another counter counts pixels.

The two counters are concatenated to give the memory address for writing. At the end

of every 8th row, a pulse is generated which triggers reading out the data in block

order. For readout, the three least significant bits of the row counter are inserted into

the pixel counter, as shown in the Figure 4.2.

Figure 4.2: Addressing done on block processing.

A synchronisation pulse is generated for the first of each 8 pixels to control the timing

of the DCT. Figure 4.3 shows the block processing for a 16×16 image. Red arrows

indicate how the pixels are written in to the 1st buffer and green arrows indicate how

the pixels are read out in block order.

Row counter Pixel counter

Address

Block address

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

31

Figure 4.3: Block diagram of block processing for 16x16 image.

Before computing the DCT of the 8x8 block, its pixel values are shifted from a

positive range to one centered around zero. For an 8-bit image, each entry in the

original block falls in the range of 0 to 255. Therefore each pixel value is level shifted

by subtracting 128 to produce a data range that is centered on zero, so that the

modified range is in -128 to 127. This step reduces the dynamic range requirements in

the DCT processing stage that follows. This is good for DCT as any symmetry that is

exposed will lead toward better entropy compression.

The DCT is the basis for the JPEG compression standard. This was first introduced in

1974 by Ahmed et al. [42]. The primary purpose of image transformation within an

image coding context is to concentrate the energy into as few components as possible

[11]. This enables efficient compression by allowing quantisation of many

0

7

15

15 70

Start read = 1

Row in address

R
ow

 in
 a

dd
re

ss

Frame out = 1

Sync out = 1

Block End = 1

Chapter 4 Implementati

insignificant elements to zero.

useful for both lossless and los

The DCT is closely related to

has both sine and cosine comp

is achieved by enforcing even

with real rather than complex n

For JPEG, a 2D-DCT algorith

be split into a series of 1D-D

property, there are numerous

based DCT module [43]. The

pixels. After each input block

DCT, the resulting block cont

value of the entire block, a

frequencies that compose the i

of 2D basis functions made up

basis functions where mid gr

lighter and negative coefficien

Figu

ion of Block Processing and Discrete Cosine

. The DCT algorithm is completely reversib

ssy compression techniques.

o the Fourier transform. Whereas the Fouri

ponents, the DCT is made purely from cosine

n symmetry and enables the transform to b

numbers [11].

hm is used, and because the 2D-DCT is sepa

DCTs on the rows, and then on the column

ways to efficiently implement a software

e DCT is applied independently to each 8

k of pixels is transformed to frequency spa

tains a single DC component which is the a

and 63 AC components which represent

input pixel block. The coefficients effectivel

p of the cosine terms. Figure 4.4 represents

rey corresponds to 0, with positive coeffi

nts being darker.

ure 4.4: 2D-DCT basis functions

e Transform

32

ble making it

ier transform

e terms. This

be calculated

arable, it can

ns. With this

or hardware

8×8 block of

ace using the

average pixel

t the spatial

ly scale a set

the 2D-DCT

icients being

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

33

The advantage of the representation in the frequency domain is that, unlike in the

spatial domain before the DCT, not every dimension has the same importance for the

visual quality of the image. Removing the higher frequency components will reduce

the level of detail but the overall structure remains almost the same, since it is

dominated by the lower frequency components. This is essentially why DCT is used

for JPEG compression. The DCT is effective in producing good quality images at low

bit rates and is easy to implement with hardware based algorithms [44].

With the property of separability, a two dimensional DCT can be calculated by taking

the 1-D transform of the rows followed by the 1-D transform of the columns. While

algorithms for direct computation of the 2-D transform can be developed that require

fewer arithmetic operations than the separable transform, the separable algorithm

allows hardware to be reused and results in simpler implementation for streamed data

[11].

The most common DCT definition of a 1-D sequence of length N is:

1

1 2
[] [] cos

0

u x
N

F u f x
x N N

π
α

+
−

=
=

 (4.1)

where ()uα is defined as: 1α = when u = 0, otherwise 2α =

Similarly, inverse transform is defined as:

1
1 2[] []cos
0

u xN
f x F u

N Nu

π
α

+−
=

=
 (4.2)

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

34

There are several fast parallel algorithms for implementing the DCT (see for example

[17, 38, 39, 45]). Table 1 outlines most of the well-known fast algorithms for

performing a 8 element 1D-DCT, listing the number of multiplications and

additions/subtractions each requires.

Table 1. Fast algorithms for implementing 1D-DCT.

Algorithm Number of
Multipliers

Number of adders
/ subtractions

Chen [38] 16 26

Hou [45] 14 30

Cvetkovic [39] 12 29

Loeffler [17] 11 22

The most efficient algorithm is that of Loeffler et al. [17], which is shown in Figure

4.5.

Figure 4.5: DCT architecture with 11 multiplications [11].

The scaled DCT was introduced in 1995 [13] and is shown in Figure 4.6. In this

implementation the number of multiplications has reduced to 5 at the expense of each

coefficient having a different scale factor. For JPEG compression, this scaling can be

taken into account with the quantisation stage by scaling the quantisation step size by

the corresponding amount. Agostini et al. [16] have implemented this on an FPGA for

JPEG image compression. They divided the algorithm into six blocks to share

hardware and therefore they had a latency of 48 clock cycles.

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

35

Figure 4.6: DCT architecture with 5 multiplications [11].

These designs are parallel in that they assume that the 8 samples are available

simultaneously on the input. For stream processing, they can be adapted with one

input pixel arriving each clock cycle and producing one output value per clock cycle.

A streamed pipelined architecture of the above design is shown in Figure 4.7. This

design maintains a throughput of one pixel per clock cycle, and has a latency of only 9

clock cycles.

Figure 4.7: Pipelined implementation of figure 4.6 [11].

A major limitation with this method is the resulting architecture. It sacrifices

regularity to achieve the low number of multipliers. That is generally not a good trade-

off in FPGA design, where highly irregular architectures do not translate into efficient

implementations, primarily because of increased routing cost. A balance between the

number of multipliers and quality of architecture is essential for an efficient

implementation.

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

36

Modern FPGAs have plentiful multipliers. This enables a simpler and elegant

pipelined design to be implemented. It is based on a first order factorisation by Woods

et al. [40]. The main difference with this design is that it uses one level of factorisation

to reduce the number of multiplications for each coefficient from eight to four. The

factorisation means that the even and odd samples are calculated separately.

4 4 4 4[0] [0] [7]

[2] [1] [6]2 6 6 2
[4] [2] [5]

4 4 4 4
[6] [3] [4]

6 2 2 6

c c c c
F f f

c c c cF f f

F c c c c f f

F f fc c c c

+
− − +

=
− − +

+− −

 (4.3),

[]
[]
[]
[]

1 3 5 71 [0] [7]

3 [1] [6]3 7 1 5
5 [2] [5]

5 1 7 3
7 [3] [4]

7 5 3 1

c c c c
F f f

c c c cF f f

F c c c c f f

F f fc c c c

−
− − − −

=
− −

−− −

 (4.4)

where 1
cos

2 16k

k
c

π
=

.

Equations (4.3) and (4.4) require 32 multiplications and 32 additions to perform each

1D transform. This corresponds to 512 multiplication and 512 additions for the full

8x8 block. This approach does not achieve the lowest number of multiplications but it

achieves a more efficient solution. The implementation of this approach, which

directly performs the matrix multiplication, is shown in Figure 4.8.

Figure 4.8: Block diagram of proposed DCT architecture [11].

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

37

The whole process is pipelined to operate on streamed input data at one pixel per

clock cycle. A synchronisation pulse is provided with the first pixel in each row of

eight. This controls the sequencing of operations of the DCT module. The memory at

the start holds the first 4 samples, and returns them in reverse order to calculate the

sum and differences in (4.3) and (4.4). Each multiply and accumulate unit is reset

every four clock cycles, and calculates a separate output frequency. First, four clock

cycles calculate the even frequencies using (4.3), and then while the multiplication

and accumulating is happening with the first 4 elements, the differences for odd

frequencies are stored in the input shift registers. Then, while the even coefficients are

being streamed out using registers, the odd coefficients are calculated using (4.4). An

output synchronisation pulse is provided with the first coefficient of each row to

control the next stage in the pipeline. This converts the parallel implementation into

pipelining since we need only one output per clock cycle.

Fixed point arithmetic is used to simplify the multiplier logic. Scaling the coefficients

by a power of 2 makes all of the operations integer.

 ()round 2B
k kc c′ = (4.5).

The number of bits output from the multiply and accumulate is reduced by truncating

unwanted bits. Initialising the accumulator with an appropriate value converts the

truncation to rounding.

In this research, pipelining is used to begin a new DCT operation before the previous

DCT operation is completed. The multiply and accumulate units are then utilised with

every clock cycle. The outputs are not in natural order; for JPEG compression, this

does not matter because the data can be reordered later during the zigzag operation.

The 2-D DCT of a data matrix is defined as,

 (4.6),

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

38

where X is the data matrix, M is the matrix of DCT coefficients for implementing a

1D-DCT, and TM is the transpose of M.

With separability, (4.6) can be transformed to (4.7)

 (4.7).

This implies the hardware implementation shown in Figure 4.9. The 2-D DCT

designed in this work was broken in to three main blocks: a first 1-D DCT on the

rows, a transposition buffer and a second 1-D DCT on the columns. The difference

between the two 1-D DCT architectures is the number of bits used in each stage of

pipeline. The transposition buffer stores the results of first 1-D DCT, row-by-row and

sends these results to the second 1-D DCT, ordered column-by-column.

Figure 4.9: Fixed point DCT implementation.

The next section of this chapter will describe the process for determining the number

of bits required to implement the DCT shown in Figure 4.9.

Due to the complications and large number of logic gates needed to perform floating

point operations in hardware, a fixed point representation was chosen. In FPGAs, it is

well known that a fixed-point implementation uses significantly less logic than a

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

39

floating point implementation [46]. Therefore all variables were scaled by a fixed

power of 2 and represented as signed or unsigned integers. When arithmetic

operations were performed, operands were explicitly shifted to ensure alignment. By

using fixed point numbers in Handel-C the bit length of each step can be defined to be

different. This gives a great deal of flexibility in design and can save on the amount of

hardware used for both computation and registered outputs.

During the design stage, the data width of each term was chosen individually to

minimise the logic usage while keeping the truncation error within a pixel value of 1

in the reconstructed image, and keeping sufficient bits to avoid overflow. It is

necessary to determine how many bits are required to represent the DCT coefficients,

and since a multiplication increases the bit-width of the numbers, the output of the

multiply and accumulate is an obvious truncation point. Table 2 describes the bit

allocation for each step in the DCT process.

Table 2. Propagation of bit width and binary point position.

 Sign Total bits Binary places

Input Pixels* signed 8 0

DCT Coefficients signed N N

Sum and Difference signed 9 0

After multiplication signed N+9 N

After row DCT signed N+11 N

Want R bits after row DCT. Therefore drop (N+11-R) bits

After truncation of row DCT signed R R-11

Sum and Difference signed R+1 R-11

Multiplication signed N+R+1 N+R-11

After column DCT (2D-DCT) signed N+R+2 N+R-11

Want C bits after 2D-DCT. Therefore drop (N+R+2-C) bits

After truncation of 2D-DCT signed C C-13

*Unsigned pixels are offset by 128 before DCT

N = Number of bits to represent DCT coefficients

R = Number of bits want after row DCT (1D-DCT)

C = Number of bits want after column DCT (2D-DCT)

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

40

First, a large number of bits are assigned to R and C to ensure that these will not

significantly limit the accuracy of the result (20 bits are sufficient). Then the number

of bits required to represents DCT coefficients, N, is varied, and the 2D-DCT is

performed. An inverse DCT is calculated on the result using double precision floating

point with MATLAB’s inbuilt IDCT function. The difference between the original

image and the reconstruction is taken to determine the errors introduced through the

reduced precision arithmetic.

The results are shown in Figure 4.10 for the Lena image and indicate that 9 bits are

sufficient for representing the DCT coefficients. Having more than 9 bits will not give

any significant improvement to the image.

.

Figure 4.10: Effect of different DCT coefficient quantisations with R = 20, and C = 20.
Arrow shows quantisation which gives less than 1 MAE.

A similar process was conducted to determine the optimum values for R and C. The

results of these experiments are shown in Figure 4.11and Figure 4.12. From Figure

4.11, 12 bits are required to represent the output of the row DCT, and from Figure

4.12, 14 bits are required to represent the output of the 2-D DCT.

6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

Number of bits to represent DCT coefficient

M
ax

im
um

 A
bs

ol
ut

e
E

rr
or

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

41

Figure 4.11: Effect of different row DCT quantisations with N = 9, and C = 20 Arrow
shows quantisation which gives less than 1 MAE.

Figure 4.12: Effect of different column DCT quantisations with N = 9 and R = 12 Arrow

shows quantisation which gives less than 1 MAE.

Therefore the following Barbara and Lena images are tested using the following bit-

widths: N=9 R=12 C=14

The reconstructed Barbara image has RMSE of 0.2086 and maximum absolute error

(MAE) of 0.8982 pixel value on the greyscale pixel range (0 to 255). Lena image has

RMSE of 0.2095 and MAE of 0.8131 pixel value. These error values show that there

10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

Number of bits to represent after row DCT

M
ax

im
um

 A
bs

ol
ut

e
E

rr
or

10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

Number of bits to represent after column DCT

M
ax

im
um

 A
bs

ol
ut

e
E

rr
or

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

42

is no impact on visual or perceived quality of the reconstructed image and that the

errors are within the desired one pixel value. These errors are not apparent to human

eye due to the fact that the difference is too small to see.

Figure 4.13: Original Barbara image (Left) and Original Lena image (Right)

The transpose buffer is used to connect the two 1-D DCT architectures, where the

results from the first 1-D DCT are stored row-by-row, and read column-by-column by

the second 1D-DCT. To enable simultaneous read and write access, a dual-port RAM

block on the FPGA is used. One port is used to write the results of the row transform,

while the second port is used to read the values in column order. Although the

memory can be reused, requiring only a 64×12-bit memory, the design is simplified

by using a 128×12-bit memory. On the Cyclone IV, memory blocks are 9 kbits in size;

therefore using 128×12-bit memory does not use more memory. This is divided into

two blocks of 64 entries, with the blocks used in ping-pong mode. The row data is

written into the first block during the first 64 cycles. Once the eight row DCTs

computation is completed, the data can be streamed out of the transpose buffer in

column order for the column DCTs. The address logic to write and read to the buffer

consists of a counter with 7 bits. When there is an input pixel, the counter increments

and when it reaches to 64 it sends a signal to start reading from the buffer in column

order. For reading out, a 7-bit address counter is also used, with bits 0-2 and 3-5

Original Barbara Image Original Lena Image

Chapter 4 Implementation of Block Processing and Discrete Cosine Transform

43

swapped to swap the rows and columns. An output synchronisation pulse is provided

with the first coefficient of each column to control the column DCT.

The data for the next 8×8 block can be loaded during the operation of the column

DCT, creating a pipelined architecture. Thus, the output of row DCT computation is

transposed for column DCT computation.

The proposed DCT architecture has a latency of 10 clock cycles for each row DCT

and column DCT. The transpose buffer has a latency of 64 clock cycles. The output of

the row DCT is rounded to 12 bits. The output of the column DCT process is rounded

to 14 bits. Since the 2-D DCT samples will be reordered later with the zigzag

reordering, the fact that the output stream is ordered by column can be corrected later.

Implementation of

Zigzag Coding and
Quantisation

5

This section gives the basic overview of zigzag coding and quantisation. It discusses

the hardware implementation for each module; and presents the results after zigzag

coding and quantisation obtained through the proposed approach.

Chapter 5 Implementation of Zigzag coding and Quantisation

45

After 2D-DCT processing, zigzag coding is used to transform the 8×8 block into a

sequential list of 64 values. The zigzag process organises the sequence to have the

lower frequency components, which are less likely to be zero, in the first part of the

data stream. This attempts to organise the data to have long runs of zeros, especially at

the end, making run length coding very efficient [2]. Figure 5.1 and Figure 5.2 below

show the standard order that coefficients come out after zigzag coding.

Figure 5.1: Sequence obtained by zigzag.

Figure 5.2: Zigzagged coefficients in 64 element vector.

High
frequencies

Low
frequencies

DC Component

0 1 2 63 62

Chapter 5 Implementation of Zigzag coding and Quantisation

46

Zigzag reordering is achieved by writing the coefficients for a block into a buffer, and

reading them out again in the required order. The architecture for the zigzag buffer

(see Figure 5.3) is therefore very similar to the transpose buffer used in the 2-D DCT.

A dual-port 128×14-bit memory block is split into two 64 entry buffers. On receipt of

an input synchronisation pulse, 64 DCT coefficients are written to one port of the

buffer. Once the 64 coefficients have been written, an output synchronisation pulse is

generated which triggers a readout on the other port in zigzag order in the subsequent

64 clock cycles. At the same time, the next 8×8 block can be loaded into the second

buffer. For each 8×8 block, the role of the buffers is swapped in ping-pong mode.

Figure 5.3: Zigzag buffer architecture.

Figure 5.4 shows how the output addressing is done in the zigzag module. The

sequential addresses of a counter are converted to zigzag order by a lookup table

(LUT). The LUT is implemented using a memory block on the FPGA. The LUT

entries also take into account the non-sequential ordering of the data from the DCTs

(even/odd grouping of the data from the DCT), and that the coefficients are

transposed.

Coefficient Stream in

zigzag order
DCT Coefficient

Stream

1st buffer

2nd buffer

Sync_out
high

Sync_in
high

Chapter 5 Implementation of Zigzag coding and Quantisation

47

Figure 5.4: Addressing of zigzag reordering.

The Figure 5.5 shows the actual zigzag order that coefficients are read out after

considering the transpose and even and odd grouping from DCT module. This is the

information stored in the address LUT.

 0 2 4 6 1 3 5 7

0 0 3 10 21 2 9 20 35

2 5 12 23 37 7 18 33 48

4 14 25 39 50 16 31 46 57

6 27 41 52 59 29 44 55 52

1 1 8 19 34 4 11 22 36

3 6 17 32 47 13 24 38 49

7 15 30 45 56 26 40 51 58

9 28 43 54 61 42 53 60 63

Figure 5.5: Actual zigzag order that coefficients read out.

Quantisation is an extremely important step in the JPEG compression algorithm, as it

helps to reduce a considerable amount of data, thus reducing the entropy in the input

data stream. The quantisation is an integer division of all the 2D-DCT coefficients by

constants and rounding to the nearest integer value. For image compression, different

transformed coefficients have different visual significance, so different quantisation

step sizes are used for each coefficient. The JPEG standard suggests a table specifying

the quantisation step sizes for each coefficient [2] which is shown in Table 3.

Address
LUT Counter

Coefficient
Stream

Zigzag

Buffer

Output
Address

Rows

Columns

Chapter 5 Implementation of Zigzag coding and Quantisation

48

Table 3. Standard luminance quantisation table

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

The quantisation step is:

 round ij
ij

ij

C
Cq

Q
= (5.1),

where ijCq is the output quantized coefficient; ijC is the input 2-D DCT coefficient;

and ijQ is the Quantisation constant from Table 3.

Quantisation is the operation that introduces information losses in the JPEG

compression process. This is intended to remove the components less important to the

visual reproduction of the image. The aim of quantisation is to compress the image as

much as possible without visible artefacts. Each step size ideally should be chosen as

the perceptual threshold for the visual contribution of its corresponding cosine basis

function. Larger quantisation step sizes will result in visual artefacts.

Typically, a single quality control parameter is used to control image quality and

compression in an image codec. This quality factor, used to scale the values in the

quantisation table, effectively adjusting the number of steps in the resulting quantised

value [43]. Larger quantisation steps will lead to greater distortion and a smaller

resulting data set.

According to [11] the quality factor, QF, which varies from 1 to 100 scales the

standard quantisation table according to:

Chapter 5 Implementation of Zigzag coding and Quantisation

49

50
, 50

2 ,50
50

ij

ij

ij

Q
round QF

QF
Q

QF
round Q QF

<

=

− ≤

 (5.2)

Figure 5.6 shows the maximum error for Barbara image for different quality factors.

MATLAB was used to obtain these results. It clearly shows that as the quality factor

increases, the error becomes really small.

Figure 5.6: MAE for Barbara image for different quality factors.

Quantisation is an integer division of each DCT coefficient by the corresponding

constant, and rounding the result to the nearest integer. The division can be

implemented very efficiently in hardware as a shift operation if the quantisation

factors are restricted to powers of 2 [12]. However, this is overly restrictive.

There are several algorithms which perform division in digital designs, for example,

standard long division, non-restoring division and SRT division. Each method has its

own advantages and disadvantages, so it is necessary to select an appropriate divider

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Quality Factor

M
ax

im
um

 E
rr

or

Maximum error for a Quality Factor

Chapter 5 Implementation of Zigzag coding and Quantisation

50

according to the application. For quantisation, the range of divisor is from 0 to 255,

and non-restoring algorithms give a good compromise between cost and latency when

the operator’s size is not large, it is appropriate to use non-restoring algorithm to

design the divider [47].

Therefore, the division was implemented using a signed by unsigned non-restoring

divider. The algorithm used to implement the division is based on [41]:

1

1
1

if 0
2

1 if 0
i

i i
i

D R
R R

D R
−

−

−

<
= +

+ ≥
 (5.3)

1

1

1 if 0

1 if 0
i

i
i

R
q

R
−

−

− <
=

≥
 (5.4)

where Ri is the partial remainder, D is the divisor, D is its one’s complement, and qi

is the ith bit of the quotient. The assumption is that , Otherwise overflow will

occur.

This algorithm will initially use the dividend, shifted by the required number of bits as

the initial remainder, shift it, and based on the sign, will add or subtract the divisor.

This process is repeated to produce a quotient and remainder. The addition of the 1 as

part of the 2’s complement does not actually require additional logic because the 2Ri-1

will leave the least significant bit as 0. The 1 can be inserted instead if qi = 1 [41].

The advantage of using non-restoring division over the standard restoring division is

that a test subtraction is not required. The sign bit determines whether an addition or

subtraction is used. If there are not enough bits to represent the result then overflow

occurs. This can easily be detected because the first subtraction should always change

the sign of the partial remainder.

The zigzag buffer has a latency of 64 clock cycles. The zigzag ordered coefficients are

then passed in to the quantisation module in order to achieve more compression.

Chapter 5 Implementation of Zigzag coding and Quantisation

51

The quantisation module is shown in Figure 5.7. It consists of RAM to store the

quantisation table. Quantisation was implemented assuming the quality factor is 50

which uses the quantisation values in Table 3 without scaling.

The inputs to the quantisation module have 14 bits and the output has 8 bits. The

latency of the quantisation module is one clock cycle. Note that the quantisation table

is reordered from that shown in Table 3 to account for the zigzag ordering of the data.

Figure 5.7: Quantisation Module.

Coefficient
Stream ÷

Quantisation
table

Counter

DCT coefficients

Implementation of

Entropy Coding

6

This chapter describes entropy coding as used by the JPEG compression algorithm.

It gives the detailed implementation and discusses the proposed method of Huffman

coding and results obtained through this approach.

Chapter 6 Implementation of Entropy Coding

53

Each 8×8 block has one DC coefficient, and 63 AC coefficients. Sequences of

successive zero AC coefficients are run-length encoded to reduce the number of

symbols which need to be output for each block.

The final stage of JPEG compression is entropy coding. This assigns a variable length

code to each symbol in the output stream based on the frequency of occurrence [11].

The objective of entropy coding is to use fewer bits to represent a symbol which

appears more frequently and more bits to represent a symbol which appears less

frequently. With JPEG compression, the symbols actually encoded are the run-length

of consecutive zero coefficients, and size of the quantised coefficient. The coefficient

itself is simply written to the output bit stream (also using a variable number of bits).

One of the most common forms of entropy coding is Huffman coding. This uses the

optimum integer number of bits for each symbol. Huffman coding requires a Huffman

code table to be specified by the application. Since the DC and AC coefficients have

quite different statistics, a separate Huffman table is used for the DC and AC symbols.

Each block consists of one DC codeword, and one or more AC codewords. The same

Huffman tables used to compress an image will be used to decompress it.

Differential coding is used to reduce the entropy of the DC coefficient since adjacent

blocks are likely to have similar average values. The DC value of the first block is

passed directly to the Huffman coding module. For subsequent blocks, the value

coded is the difference between the DC value of the current block and the DC value of

the previous block.

 1code i iDC DC DC −= − (6.1)

The symbol actually coded is the size of DCcode according to the range in Table 4 [2].

This is then followed by the actual coefficient using the required number of bits.

Chapter 6 Implementation of Entropy Coding

54

The run length encoder receives the sequences from the zigzag module and looks for

the runs of zeros in the AC coefficients. It counts the zero coefficients between each

non-zero coefficient. The size of a non-zero coefficient is the number of bits required

to represent the value. The combined run length and coefficient size jointly make up

an AC symbol, which is Huffman encoded, and followed by the non-zero coefficient

[12].

Table 4. The relationship between size and amplitude.

Size Amplitude

0 0

1 -1, 1

2 -3, -2, 2, 3

3 -7 ~ -4, 4 ~ 7

4 -15 ~ -8, 8 ~ 15

5 -31 ~ -16, 16 ~ 31

6 -63 ~ -32, 32 ~ 63

7 -127 ~ -64, 64 ~ 127

8 -255 ~ -128, 128 ~ 255

9 -511 ~ -256, 256 ~ 511

10 -1023 ~ -512, 512 ~ 1023

11 -2047 ~ -1024, 1024 ~ 2047

This is the last step in the encoding process. It packs the data by assigning unique

variable length codewords for each symbol that can be recovered without loss during

decompression. The run length encoder and the Huffman encoder modules are

packaged together to generate one block of codeword for each non-zero coefficient.

Chapter 6 Implementation of Entropy Coding

55

A DC codeword consists of two parts, the size and the amplitude of the coefficient.

Table 5 is the Huffman table for the DC coefficient size.

Table 5. Huffman table for luminance DC coefficient differences.

Size Bits Code

0 2 00

1 3 010

2 3 011

3 3 100

4 3 101

5 3 110

6 4 1110

7 5 11110

8 6 111110

9 7 1111110

10 8 11111110

11 9 111111110

Appendix A-1 gives Huffman tables for the AC coefficients which have been

developed from the average statistics of a large set of 8-bit images [2].

Two special symbols are introduced. One is EOB which represents that the remainder

of the block is zeros. This code can appear at any time in the sequence to indicate that

the remaining data values are all zeros. The second is ZRL which is used when a run-

length greater than 16 is encountered. Since a maximum run of 15 zeros is allowed,

the ZRL code represents a block of 16 zeros without a corresponding non-zero

coefficient.

Chapter 6 Implementation of Entropy Coding

56

The architecture of the entropy encoder is shown in Figure 6.1. The DC coefficient of

each block is passed to the Differential Coding module to subtract the DC coefficient

of the previous block. Then the difference is passed to the size detector. For the AC

coefficients, the zero-run counter counts the number of successive zeros in the

streamed output from the zigzag process. If the input coefficient is nonzero, the

coefficient is sent out to the size detector and the zero-run counter is reset to zero.

The size detector determines the number of bits required to represent the coefficient.

Firstly, 1 is subtracted from negative coefficients. Secondly the most significant bits,

which are identical, are eliminated. The remaining bits form the coefficient value, and

the number of bits is the size according to Table 4. Lastly the bit counting is

performed efficiently in a single clock cycle using a multiplexer based successive

approximation counter. For the 8 bit input coefficient, the counter works as follows:

 the 5 most significant bits MSBs of the remainder are checked. If all 5 bits are

same, the 4 least significant bits (LSBs) are selected and a 0 is output, otherwise

the 4 MSBs are selected and a 1 is output.

 the process is repeated, checking the 3 MSBs of the result, and selecting either

the 2 LSBs or 2 MSBs.

 Finally the process is repeated checking the 2 remaining bits.

 The three bits output give the size of the coefficient.

Chapter 6 Implementation of Entropy Coding

57

Figure 6.1: Huffman coding architecture.

0-7

0-7

1-8 3

No Yes

8

Size

Size

Huffman Table

Huffman Size Huffman Code

Zero Run
counter

Coefficient
Amplitude

Size
Detector

Coefficient

Remaining Bits

Input Coefficient Stream

Yes No

FIFO Buffer

Run count

DC
Term?

Differential
Coding

6

1-8 6 3

5 1-16

5

1-24

Barrel Shift

0 – 3 bytes output

Coef =
0

Register

Chapter 6 Implementation of Entropy Coding

58

These results (run length, size and coefficient amplitude) are then stored in FIFO

buffer which has a depth of 4. This will then be used to determine the Huffman code.

The FIFO buffer allows the ZRL and EOB codes to be encoded without having to

pause the incoming coefficient stream.

Figure 6.2: FIFO buffer bit allocation.

A lookup table based approach has been used to assign the Huffman code for each

coefficient. The size and run length are looked up in the Huffman table shown in

Appendix A-1 to determine the corresponding Huffman code (and length of the

Huffman codeword, which is used for packing the bits into the output). The Huffman

code is concatenated with the coefficient amplitude to form the codeword for each

coefficient. Obviously, codewords obtained are variable in length. However, the width

of the data bus is fixed. A barrel shift is thus used to align the variable-length

codewords with the remaining bits. The lengths are added to the number of remaining

bits with the most significant bits used to determine the number of completed bytes.

The Huffman encoder outputs up to 3 bytes for each symbol. These are saved into

another FIFO buffer with depth of 256 to enable them to be streamed out 8 bits at a

time. Any bytes containing all 1s (used in JPEG to indicate an escape code) are

followed with a byte containing all 0s so that the image will decode correctly. The

FIFO manages the conversion from a fixed rate stream to a variable rate stream. At the

end of each image the remaining bits are padded with ones. The Huffman encoder

input has 8 bits and has an output of 8 bits.

0 8 9 11 12 17

Coef. Amplitude Coef. Size Zero Run Count

Chapter 6 Implementation of Entropy Coding

59

Entropy coding module has a minimum latency of 5 clock cycles. Obviously it is

longer when there are sequences of zero coefficients, or when the resulting codewords

are more than 8 bits in length. However, as a result of the compression, the number of

output bytes is fewer than the number at the input. Therefore, the 5 clock cycles

latency will be used in the final calculation. The 5 clock cycles are used to perform the

following steps:

1. Do the run length encoding, size detection and store the results to FIFO buffer.

2. Extract each coefficient from FIFO.

3. Do the actual Huffman coding.

4. Pack each code into bytes.

5. Packing bytes into output FIFO.

Implementation of

JPEG Headers

7

This chapter gives the details of JPEG headers and discusses the hardware

implementation of writing the headers to the output.

Chapter 7 Implementation of JPEG Headers

61

A JPEG file consists of more than just the encoded coefficients. A series of headers

[2] is used to :

 identify the fact that the file is JPEG encoded,

 provide the size of the coded image,

 provide additional metadata for the image,

 specify the Quantisation and Huffman tables.

The headers are prescribed by the JPEG File Interchange Format (JFIF) specifications

[48]. JFIF is a minimal file format which enables JPEG bit streams to be exchanged

between a wide variety of platforms and applications.

Figure 7.1 shows the minimum required set of JPEG headers which are required to

decode a baseline JPEG compressed image. Compressed image data consists of only

one image. An image contains only one frame. A frame contains one or more scans

and a scan contains the complete encoding of one or more image components.

Figure 7.1: High level file structure.

Markers are used to define the header segments. Some markers are followed by

particular sequences of parameters, as in the case of table specifications, frame header,

Scan

Frame

Compressed Image data

Start of Image
(SOI)

Frame End of Image
(EOI)

Huffman
Tables

Scan Header Entropy Coded
Segment

Quantisation
Tables

Frame Header Scan

Chapter 7 Implementation of JPEG Headers

62

or scan header [2]. A marker will always begin with the first byte as 0xFF, and the

second byte defines which type of marker it is. Table 6 lists the key markers. When a

marker is associated with a particular sequence of parameters, the marker and its

parameters comprise a “marker segment”.

Table 6. JPEG file markers.

Marker Symbol Description

0xFFD8 SOI Start of image

0xFFE0 APP0 Application specific; used for JFIF
metadata

0xFFDB DQT Define quantisation table

0xFFC0 SOF Start of frame

0xFFC4 DHT Define Huffman table

0xFFDA SOS Start of scan

0xFFD9 EOI End of image

The JPEG File Interchange Format is entirely compatible with the standard JPEG

interchange format; the only additional requirement is the mandatory presence of the

APP0 maker after the SOI marker [48].

Details of each marker are given in Appendix A-2.

In this research, a single quality factor was used, so the quantisation tables and

Huffman tables were fixed. This enabled the pre-initialised headers to be stored in a

memory block. The output byte stream was started by streaming the JPEG headers

while the pipeline was being primed at the start of the image.

At the end of the image, the remaining data bits (making up on incomplete byte) were

flushed by padding with 1s, and an end of image marker code was output. Insertion of

headers takes 328 clock cycles.

Simulation Results and
Discussion

8

This chapter presents the overall system architecture and gives the details of the

obtained results from the Handel-C simulation. It describes the testing and

validation methods for the implementation. It also compares the obtained results

with MATLAB compression results and discusses the outcome.

Chapter 8 Simulation Results and Discussion

64

Figure 8.1 shows the overall system architecture. This shows how the individual

modules in the previous chapters connect together. The system was designed to

compress grey-scale images, and was implemented using Handel-C.

Figure 8.1: Overall system architecture for JPEG compression.

To test the system an incremental design testing approach was used. Each JPEG

module was firstly tested on its own and then checked for the functionality to validate

results in Handel-C simulations. The results were validated using MATLAB and

IrfanView.

When programming hardware, the compile times are significantly longer than with

software. Debugging is also more difficult in hardware because many things happen at

once in parallel, and the timing of the operations is important. For these reasons, the

algorithms were first implemented in MATLAB using fixed point arithmetic. This

gave a dataset which could test-bench the Handel-C implementation. Any differences

in the results indicate an error in the implementation.

Main
Row buffer

Row buffer

Row
DCT

8x8 block

8x8 block

Column
DCT

8x8 block

8x8 block

Zigzag LUT

Address

÷

Huffman
Coding

Compressed
Image

Insertion of Headers

Quantisation table

Transpose buffer Zigzag buffer

Chapter 8 Simulation Results and Discussion

65

Then MATLAB JPEG compression was used as a reference for software compression.

This uses the following MATLAB command and it does not consider the architectural

restrictions, specifications, and rounding that used for hardware implementation.

I=imread('Lena256.bmp');
imwrite(I,'Lena_compress_50.jpg','Quality',50);

Therefore it generates a good reference to compare the similarity between the software

compression and hardware compression. Then the compressed image was decoded

using IrfanView. IrfanView was used to check that the file compressed by Handel-C

could be successfully decoded.

PSNR and MSE were calculated for each compressed image in order to compare the

error between original image and compressed image. Also the MSE between software

compression and hardware compression was calculated to check that the two methods

were giving similar results.

The latency of each step in the process is summarised in Table 7.

Table 7. Latency of each stage

 Latency (cycles)

Header 328

Block Processing 8 rows

Row DCT 10

Transpose Buffer 64

Column DCT 10

Quantisation 2

Zigzag coding 64

Entropy Coding 5

JPEG Compressor 154

Chapter 8

As can be seen, the JPEG he

enough time to process the JP

(which takes 8 rows + 154 clo

Functional testing and timing

own and then checked in an i

Handel-C simulations. The sy

(each row was expanded by 6

clock cycles per row) and t

MATLAB were also used t

successfully decoded. The s

Standard test images were use

the results validated using MA

Figure 8.2: Lena reconstruct

(PSNR 36.67 dB)

Simulation Results and

eader takes 328 clocks cycles to stream out

PEG compression for the first 8×8 block o

ck cycles) as long as the image is wider than

analysis were carried out for each JPEG m

integrated test for the functionality to valida

ystem has been tested using three 16×16

6 clock cycles of blanking to satisfy the min

the results validated using MATLAB. Irf

to check that the resulting compressed fi

system was then modified to test 256×2

ed as benchmarks to test functionality of the

ATLAB.

ted image Figure 8.3: Peppers reconstr

(PSNR 36.08 dB

d Discussion

66

t. This gives

of the image

n 22 pixels.

module on its

ate results in

test patterns

nimum of 22

fanView and

ile could be

256 images.

e design and

ructed image

B)

Chapter 8

Figure 8.4: Baboon reconstruc

(PSNR 30.74 dB)

Figure 8.2 – Figure 8.5 are

compressed using quality fac

using MATLAB. These are c

with the same quality facto

compared with MATLAB’s

differences in the calculation

double precision floating poi

section 4.7.1 are small (much

one side of a quantisation b

differences in the compressed

The mean square error (MSE

Handel-C and MATLAB are 1

dB). These are sufficiently clo

significantly different from th

MSE between the two compre

For the image in Figure 8.3, th

for MATLAB. The MSE of

15.91 from MATLAB (PSNR

Simulation Results and

ted image Figure 8.5: House reconstru

(PSNR 38.77 dB

e 256×256 grey scale images. The imag

tor 50 in Handel-C simulation and then de

ompared with saving the same images from

or. In Figure 8.2, the compression ratio

s 9.20:1. The small difference results

of the DCT using fixed point arithmetic c

int in MATLAB. While the differences c

 less than one pixel value), they can move

boundary to another, resulting in signific

images.

E) between the original and compressed i

14.00 and 13.84 respectively (PSNR 36.67 d

ose to be satisfied that the hardware compre

he software compression in terms of quality

essed images was only 0.8065.

he compression ratios are 9.05:1 for Handel-C

the reconstructed image is 16.03 from H

R of 36.08 dB and 36.11 dB respectively)

d Discussion

67

ucted image

B)

ges are first

ecompressed

m MATLAB

was 9.23:1

from slight

compared to

calculated in

a pixel from

cantly larger

images from

dB and 36.72

ession is not

. Indeed, the

C and 9.02:1

andel-C and

). The MSE

Chapter 8 Simulation Results and Discussion

68

between the compressed images was 0.8335. These results are similar to the previous

example. Table 8 summarise the results obtained from MATLAB compression and

Handel-C compression for other test images.

Table 8. Comparison of software and hardware JPEG compression

Image
(256x256)

Compression Ratio MSE PSNR (dB)

MATLAB Handel-C MATLAB Handel-C MATLAB Handel-C

Lena 9.20:1 9.23:1 14.00 13.84 36.67 36.72

Peppers 9.02:1 9.05:1 15.91 16.03 36.11 36.08

House 7.94:1 7.94:1 8.48 8.63 38.85 38.77

Baboon 5.67:1 5.67:1 54.34 54.89 30.78 30.74

Cameraman 7.72:1 7.96:1 24.94 24.69 34.16 34.21

Barbara 7.93:1 7.90:1 25.33 25.46 34.09 34.07

From the Handel-C simulation and MATLAB results it can be seen that the software

and hardware based algorithms did have small differences in the compressed images

as a result of simplifying the arithmetic in hardware. However, these differences were

small, with no discernible difference in image quality between hardware and software

compressed images.

Final Implementation

9

This chapter gives the detailed implementation on the FPGA. The steps involved in

mapping of the Handel-C into DE2-115 board are described. This chapter presents

the initial performance results and discusses the issues of initial implementation. It

also optimises the latency and resources used and presents the results for the final

implementation. Then it compares the results with an existing implementation from

the literature.

Chapter 9 Final Implementation

70

Handel-C was adopted as the high-level language for implementing the JPEG

compression system. The architecture and behaviour of each module were represented

using Handel-C. After the function of the design had been tested successfully within

the Handel-C functional simulator, the design was then targeted to a Cyclone IV

FPGA on an Altera DE2-115 development board.

In order to map the Handel-C program to FPGA, first the source is compiled to an

EDIF netlist. Then the EDIF file is compiled using Quartus II to give a configuration

file for the Altera Cyclone IV 4CE115 FPGA device. The timing analysis that forms

part of this compilation step checks that the design is capable of running at 50MHz.

After modifying the design to meet the timing constraints the configuration file was

loaded on to the DE2-115 board.

A module was written to simulate image capture which streams the image from

memory, inserting appropriate blanking and providing synchronisation pulses. A

16×16 image was saved into an internal memory of the FPGA for testing purposes.

Then the image was passed on to the JPEG compressor and the output from the

compression is stored into a FIFO buffer for transfer to the PC by RS-232. On the PC

end, a terminal program saves the transferred image to a file. Then IrfanView and

MATLAB were used to decode the resulting compressed file and check its validity.

Chapter 9 Final Implementation

71

The utilisation of the FPGA used on DE2-115 development board for each module is

shown in Table 9.

Table 9. Resource utilisation of 4CE115 FPGA device for initial implementation.

Total
combinational
functions
(114480 total)

Dedicated
logic
registers
(114480
total)

Total Logic
cells(114480
total)

Memory
bits
(3981312
total)

M9Ks
Latency
(clock
cycles)

Image Capture 79 63 102 2048 1

Block
Processing

235 68 248 2048 16 8 rows

Row DCT 1578 201 1619 18 1 10

Transpose
buffer

30 14 30 1536 1 64

Column DCT 1978 252 2034 26 1 10

Zigzag coding 191 12 178 1792 1 64

Quantisation 344 28 288 512 1 1

Huffman
Coding

6777 6870 10209 0 0 5

Headers 52 56 78 2624 1

FIFO output 43 18 60 8192 1

JPEG
compressor
(including
block proc to
Headers)

11185
9.8%

7501
6.6%

14684
12.8%

8556

225.1% 154

The initial system used 12.8% of total logic cells, 5.1% of the memory blocks, no

multipliers and 154 clock cycles plus 8 image rows of latency. The system was not

capable of running at a speed of 50MHz. The maximum clock speed was only

23.27MHz. Then the system was optimised in order to minimise the logic resources,

minimise the latency, and to maximise the speed. The next section gives details on

optimisation methods for each module.

Chapter 9 Final Implementation

72

In this implementation to enable proper testing of the algorithm, the image capture

module only simulates image capture by streaming an image from memory. It uses 1

memory block (M9K) to hold the “captured” image into internal memory. In practice,

the data input would be streamed directly from the camera.

Similarly, the output FIFO was used purely to hold the compressed image for RS 232

transmission to the PC for checking. Therefore image capture module and FIFO

output are not included in the total resource requirements for the compressor.

The latency for initial block processing was 8 rows. However, it is not necessary to

wait until all 8 rows are available before beginning the DCT. The first block only

requires 8 pixels on the 8th row. Since the DCT will start with the first row of the

block, it is safe to start the DCT when the first pixel in the 8th row arrives. This is

shown in Figure 9.1. This improved the latency by 1 row to 7 rows of pixels.

Figure 9.1: New timing diagram for block processing.

Sync out

Previous
start_read
trigger

New
start_read
trigger

Chapter 9 Final Implementation

73

From Table 9 it can be noted that block processing module uses 16 memory blocks

(M9Ks). The memory in the table is based on a row length of 16 pixels. Since a

separate memory is used for each row, the same number of memory blocks would

handle row lengths up to 1024 pixels.

In the initial implementation Handel-C compiled the multipliers to LUT logic.

Therefore the next step was to minimise the logic usage by using hardware multipliers

for the row DCT and column DCT processes since there are plenty of multipliers in

FPGA. Table 10 shows that after modifying row DCT and column DCT modules, it

significantly dropped the total logic usage of these modules.

Table 10. Comparison between DCT modules.

Total
combinational
functions
(114480 total)

Dedicated
logic
registers
(114480
total)

Total
Logic
cells
(114480
total)

Memory
bits
(3981312
total)

M9Ks
Multiplies
(532
total)

Latency
(clock
cycles)

Initial
row DCT
Module

1578 201 1619 18 1 0 10

Optimised
row DCT
Module

314 201 353 18 1 8 10

Initial
column
DCT
Module

1978 252 2034 26 1 0 10

Optimised
column
DCT
Module

376 252 445 26 1 8 10

Use of on-chip multipliers has been able to significantly drop the total logic cells from

1619 to 353 for row-DCT module and from 2034 to 445 for column-DCT module.

This implementation uses 8 multipliers for each DCT module to multiply the

incoming pixel with DCT coefficient. Each multiplier in the DCT uses 2 multiplier

blocks on the FPGA. The difference in resources between the row and column DCT is

because of the wider bit widths.

Chapter 9 Final Implementation

74

The initial transpose buffer had a latency of 64 clock cycles since it waits until the row

data is written into the first block during the first 64 cycles. Once the eight row DCTs

have computed, the data were streamed out of the transpose buffer in column order for

the column DCTs. But it does not have to wait for the full 64 clock cycles to start to

read-out. As long as the data in the first column is available when it is needed, read-

out can start earlier. Figure 9.2 shows the previous trigger to read-out the data and

new trigger. The critical pixel is pixel 0 on the last row. As this is the last pixel in the

first column, it is possible to begin read-out part way through the previous row.

Figure 9.2: Timing diagram for transpose buffer

With this new implementation, read-out from the transpose buffer starts when the

coefficient is written to (6, 2). This way it will save 14 clock cycles. Therefore the

new transpose buffer has a latency of 50 clock cycles.

The initial zigzag buffer had a latency of 64 clock cycles. This behaved similarly to

the transpose buffer. Considering the transpose, even and odd grouping from DCT

module, Figure 9.3 shows the relative timing between writing each coefficient into the

buffer and reading it out. The green numbers in the top left corners of Figure 9.3

7

Column address
2 0

0

7

Row
address

6
Previous
read out
trigger

New read
out trigger

Chapter 9 Final Implementation

75

indicate the order that coefficients are written to the zigzag buffer and the red numbers

in the bottom right corners indicate the order that the coefficients are read out from the

zigzag buffer. The middle black number represents the difference, if the write-in

address is bigger than the read-out address. The largest difference between these

represents the minimum latency. In initial implementation, it waited for 64 clock

cycles before reading. With the new implementation we only need to wait for 34 clock

cycles and start to read out from the next clock cycle. In other words, when it writes

the 35th coefficient into the buffer, it will start to readout the 1st coefficient. In this way

zigzag buffer will save 29 clock cycles. Therefore, the new implementation has a

latency of 35 clock cycles.

Figure 9.3 : Zigzag buffer addressing and timing. The green numbers represent the
clock cycle (relative to the start of the block) that a particular coefficient is written to
the buffer. The red number represents the clock cycle that a coefficient is read out.

New trigger to start read
where the difference is

Chapter 9 Final Implementation

76

The bottleneck in processing speed for the initial implementation was traced to the

divider in the quantisation module. Since the memory is synchronous, the coefficients

are only available at the middle of the clock cycle. Therefore the reading coefficients

from memory will take half a clock cycle rather than the full clock cycle. This was

sped up to the desired clock speed by pipelining the memory read and beginning it one

clock cycle earlier, so that the divisor is available at the start of the clock cycle to do

the division, and then pipelining the division over 4 clock cycles. This also increased

the overall latency by 3 clock cycles.

Table 11. Comparison between quantisation modules.

Total
combinational
functions
(114480 total)

Dedicated logic
registers (114480
total)

Total Logic
cells (114480
total)

Memory
bits
(3981312
total)

M9Ks
Latency
(clock
cycles)

Initial
Quantisation
Module

344 28 288 512 1 1

Optimised
Quantisation
Module

238 82 274 512 1 4

After pipelining the quantisation operation over four clock cycles, it has increased the

number of logic registers from 28 to 82. This is because pipelining required additional

registers between the pipeline stages. However this step speeds up the compressor to

run at 55.77MHz.

From Table 9 it can be noted that the Huffman coding module uses a relatively large

number of logic cells compared to the other modules. This is because of the FIFO

buffers used in this implementation. A short FIFO buffer is used to store the results

from the run count and the size detector to allow up to 3 ZRL codewords to be saved.

Another large FIFO saves up to 3 output bytes for each symbol to enable them to be

streamed out 8 bits at a time. The initial implementation has used registers to create

these two FIFO buffers and those use a large number of logic cells. The logic

Chapter 9 Final Implementation

77

resources are significantly reduced by implementing FIFOs using dual port memory.

Table 12 shows that by using two separate dual port memories (2 M9Ks) for the

FIFOs this has dropped the total logic cells from 10209 to 1317.

Table 12. Comparison between Huffman coding modules

Total
combinational
functions
(114480 total)

Dedicated logic
registers(114480
total)

Total Logic
cells(114480
total)

Memory
bits
(3981312
total)

M9Ks
Latency
(clock
cycles)

Initial Huffman
Module

6777 6870 10209 0 0 5

Optimised
Huffman
Module

1310 136 1317 6728 2 5

Table 13 summarises the FPGA logic usage for the final implementation for each
module.

Table 13. Resource utilisation for final implementation.

Total
combinational
functions
(114480 total)

Dedicated logic
registers(114480
total)

Total Logic
cells(114480
total)

Memory
bits
(3981312
total)

M9Ks
(432
total)

Multiplies
(532
total)

Latency
(clock
cycles)

Image
Capture

79 63 102 2048 1 0

Block
Processing

235 68 248 2048 16 0 7 rows

Row DCT 314 201 353 18 1 8 10

Transpose
buffer

36 14 27 1536 1 0 50

Column
DCT

376 252 445 26 1 8 10

Zigzag
coding

206 12 192 1792 1 0 35

Quantisation 238 82 274 512 1 0 4

Huffman
Coding

1310 136 1317 6728 2 0 5

Headers 60 33 62 2624 1 0

FIFO output 43 18 60 8192 1 0

JPEG
Compressor
(including
block proc
to headers)

2775
2.4%

798
0.7%

2918
2.5%

15284

24
5.5%

16
3%

114

Chapter 9 Final Implementation

78

The final JPEG compressor uses 2.5% of logic cells, 5.5% of the memory blocks, 3%

of multipliers and has a latency of 114 clock cycles, plus 7 image rows compared to

the initial system’s 12.8% of logic resources, 5.1% of the memory blocks, no

multipliers and 154 clock cycles, plus 8 image rows of latency. The final

implementation has also improved the maximum speed that it can run at to 55.77MHz

where in the initial implementation the maximum clock speed was only 23.27MHz.

An alternative optimisation that can be considered is to apply the row-DCT directly on

the data as it is streamed from the camera. The block processing can then stream out

the data in column order eliminating the transpose buffer. Figure 9.4 shows the block

diagrams of the current implementation and suggested implementation. This will

reduce the latency by 50 clock cycles from the transpose buffer. Also we can reduce

the latency for the row-DCT by 7 clock cycles because the read-out can start before

the row DCT has finished. With this design we can start processing and reading out at

the 3rd clock cycle. So this will drop the latency by 57 clock cycles and make the

latency of the new system to 56 clock cycles (113 – 50 – 7) plus 7 rows. Even though

it significantly drops the latency, this implementation requires 50% more memory bits

because of the wider data width after the row DCT. The row pixels require only 8 bits

per pixel whereas, after the row-DCT, 12 bits per pixel are required. Which design to

use would depend on whether memory resources or latency is more critical.

Chapter 9 Final Implementation

79

Figure 9.4: Comparison between the current approach and an alternative approach.

Table 14 shows the results from Agostini et al. [10]. This system was implemented on

Altera FLEX10KE device.

Table 14. Synthesis results from Agostini et al. [10]

In Agostini’s implementation it can be seen that the block processing module and

headers module were not implemented because they worked on images saved in

12

50 clock
cycles

10 clock
cycles

10 clock
cycles

7 rows

12 12 8
Block

processing
Row DCT

Column

DCT

Transpose

buffer

8

Number of clock cycles for each module shown in green

Current Implementation

10 clock
cycles

7 rows
-7 clock cycles

10 clock
cycles

12 8 Block

processing
Row DCT

Column

DCT

Alternative approach

Chapter 9 Final Implementation

80

memory and therefore could read the pixels in block order. Considering these factors,

my implementation (1D-DCT module to Huffman Coding module) uses a total of

2608 logic cells and 10612 memory bits. When we compare the results obtained from

the final implementation with the results from Agostini et al. [10] (see Table 15), it

clearly shows that the proposed implementation achieves the minimum latency of 114

clock cycles and with a minimum of 2608 logic cells.

Table 15. Comparison between two compressors

 Logic Cells Memory (bits) Frequency
(MHz)

Latency (clock
cycles)

Our JPEG
Compressor

2608 10612 55.77 114

Agostini el al.
JPEG

Compressor
4568 7436 37.6 238

Even though this implementation uses more memory bits than Agostini’s

implementation, the number of logic cells required for this implementation is less than

that required for Agostini’s implementation. Our system has also increased the speed

to 55.77MHz.

Overall Conclusions

10

This chapter presents the overall conclusion of this research and suggests possible

future work.

Chapter 10 Overall Conclusions

82

This thesis presents the design of an FPGA implementation of a JPEG compressor for

8 bit grey scale images. The main aim of this thesis was to explore the implementation

of JPEG compression onto an FPGA as the data are streaming from the camera while

minimising the logic resource requirement of the FPGA and the latency at each stage

of the JPEG compression. The JPEG compressor architecture for each module is

presented. The JPEG compressor was designed in a fully pipelined fashion. Each

JPEG module was firstly tested on its own and then checked for the functionality to

validate results in Handel-C simulations. Standard test images were used as

benchmarks to test functionality of the design and the results were validated using

MATLAB. IrfanView was also used to check that the resulting compressed file could

be successfully decoded.

From the simulation results it was confirmed that software and hardware based

algorithms did have small differences in the compressed images as a result of

simplifying the arithmetic in hardware. However, these differences were small, with

no discernible difference in image quality between hardware and software compressed

images. The mean square error between MATLAB compressed image and Handel-C

compressed image was less than 0.9 pixel value.

Then the JPEG compression algorithm has been successfully implemented and tested

on Altera DE2-115 development board. The initial implementation used 12.8% of

logic cells, 5.1% of the memory blocks, no multipliers and 154 clock cycles plus 8

image rows of latency. It had a maximum clock speed of 23.27MHz. It was not

capable of running at a speed of 50MHz. The system was then optimised in order to

minimise the logic resources and to maximise the speed. The final JPEG compressor

uses 2.5% of logic cells, 5.5% of the memory blocks, 3% of multipliers and had a

latency of 114 clock cycles, plus 7 image rows. It has also improved the speed that it

can run at to 55.77MHz.

Chapter 10 Overall Conclusions

83

The final implementation also showed that using FPGA multipliers for 1D-DCT and

2D-DCT, pipelining the quantisation module over four clock cycles, using memory

for FIFO buffers in the Huffman coding module, and triggering the read-out at the

correct place for block processing, the transpose buffer and zigzag buffer can

significantly reduce the logic resources and latency. It has also showed that latency

can be further improved to 56 clock cycles at the expense of more logic resources.

The results obtained from this implementation were very satisfactory. This research

confirmed that JPEG compression can be implemented on streamed data from a

camera at a cost of minimum logic cells and at a faster clock speed. Therefore in

future this implementation can be useful for any embedded system image compression

application.

The research work presented in this thesis is a solid foundation for the JPEG

compression on FPGAs for grey scale images and it confirmed that the hardware

implementation for this is possible when data are streaming from the camera.

In future, the proposed architectures for each JPEG module can be used to extend the

current design to colour images and other compression algorithms. Also there are few

optimisations which can be performed to improve the use of logic cell.

Quality Factor: The quantisation tables can be scaled according to a quality factor

selected by the user. This has a direct impact on compression ratios. This will allow a

user to set the desired level of compression for a given application.

Colour images: The hardware described in this thesis is suitable for the luminance

components. A similar circuit would also be required for the chrominance

components. Since the chrominance components are down-sampled, one additional set

of hardware could be used for both chrominance components. Alternatively, if the

clock speed was set 50% higher than the pixel rate, then the luminance hardware

Chapter 10 Overall Conclusions

84

could be reused for all components. Colour images would also require converting the

RGB to YUV, and an increase in the buffer size for the chrominance.

References

 References

86

[1] V. A. M. Prakash and K. S. Gurumurthy, "A Novel VLSI Architecture for
Digital Image Compression using Discrete Cosine Transform and
Quantisation," International Journal of Computer Science and Network
Security, vol. 10, pp. 175-182, September 2010.

[2] International telecommunication union, "Information technology – Digital
compression and coding of continuous-tone still images: Requirements and
guidelines," in ISO/IEC 10918-1 vol. T.81, ed, 1993.

[3] C. Christopoulos, A. Skodras, and T. Ebrahimi, "The JPEG2000 still image
coding system: an overview," IEEE Transactions on Consumer Electronics, ,
vol. 46, pp. 1103-1127, 2000.

[4] Compuserve, "Graphics Interchange Format Specification," ed. Columbus,:
OH: CompuServe, Inc.

[5] T. L. Thomas Boutell, "Portable Network Graphics (PNG) Specification and
Extensions," vol. 1, The Internet Engineering Task Force (IETF), 1996.

[6] S. Gordoni, "Investigation of Hardware JPEG Encoder Implementation and
Verification Methodologies," Department of Electrical and Computer
Engineering, University of California Santa Barbara, 2006.

[7] S. A. K. Jilani and S. A. Sattar, "JPEG Image Compression using FPGA with
Artificial Neural Networks," International Journal of Engineering and
Technology, vol. 2, pp. 252-257, 2010.

[8] J. Ahmad, K. Raza, M. Ebrahim, and U. Talha, "FPGA based implementation
of baseline JPEG decoder," 7th International Conference on Frontiers of
Information Technology, Abbottabad, Pakistan, 2009.

[9] C. Johnston, D. Bailey, and P. Lyons, "A Visual Environment for Real-Time
Image Processing in Hardware (VERTIPH)," EURASIP Journal on Embedded
Systems, vol. 2006, p. 072962, 2006.

[10] L. V. Agostini, I. S. Silva, and S. Bampi, "Multiplierless and fully pipelined
JPEG compression soft IP targeting FPGAs," Microprocess. Microsyst., vol.
31, pp. 487-497, 2007.

[11] D. G. Bailey, Design for Embedded Image Processing on FPGAs: John Wiley
& Sons, 2011.

[12] S.-H. Sun and S.-J. Lee, "A JPEG Chip for Image Compression and
Decompression," The Journal of VLSI Signal Processing, vol. 35, pp. 43-60,
2003.

 References

87

[13] M. Kovac and N. Ranganathan, "JAGUAR: a fully pipelined VLSI architecture
for JPEG image compression standard," Proceedings of the IEEE, vol. 83, pp.
247-258, 1995.

[14] R. Uma, "FPGA Implementation of 2-D DCT for JPEG Image Compression,"
International Journal of Advanced Engineering Sciences and Technologies
(IJAEST), vol. 7, pp. 1-9, 2011.

[15] H. Anas, S. Belkouch, M. El Aakif, and N. Chabini, "FPGA implementation of
a pipelined 2D-DCT and simplified Quantisation for real-time applications," in
International Conference on Multimedia Computing and Systems (ICMCS), pp.
1-6, 2011.

[16] L. V. Agostini, I. S. Silva, and S. Bampi,, "Pipelined fast 2D DCT architecture
for JPEG image compression," in 14th Symposium on Integrated Circuits and
Systems Design, pp. 226-231, 2001.

[17] C. Loeffler, A. Ligtenberg, and G. S. Moschytz, "Practical fast 1-D DCT
algorithms with 11 multiplications," in International Conference on Acoustics,
Speech, and Signal Processing, ICASSP, pp. 988-991, 1989.

[18] Mentor Graphics, "Handel-C Language Reference Manual," version 5.3_2,
Mentor Graphics Corporation, 2010.

[19] D.-U. Lee, "Hardware Compilation and Resource Sharing Optimisations,"
BEng Information Systems Engineering Final year project report, Imperial
College, London, 2001.

[20] B. Bober. (2008, 30th March). Altera and Xilinx Report: The Battle Continues
Available: http://seekingalpha.com/article/85478-altera-and-xilinx-report-the-
battle-continues

[21] B. S. Darade, T. A. Parmar, and A. S. Chauhan, "Programming FPGA's Using
Handel-C," presented at SHAASTRA, T.E. Electronics and Telecomm, 2003.

[22] J. Hawkins, "A Framework for Refining Functional Specification into Parallel
Reconfigurable Hardware Implementations," PhD thesis, Department of
Computer Science, The University of Reading, United Kingdom, 2005.

[23] R. Woods and J. McAllister, FPGA-based implementation of signal processing
systems: John Wiley & Sons, 2008.

[24] M. A. Figueiredo and C. Gloster, "Implementation of a probabilistic neural
network for multi-spectral image classification on an FPGA based custom
computing machine," Vth Brazilian Symposium on Neural Networks, pp. 174-
179, 1998.

 References

88

[25] M. Naghmash, M. F. Ain, and C. Y. Hui, "FPGA Implementation of Software
Defined Radio Model based 16QAM," European Journal of Scientific
Research, vol. 35, pp. 301-310, 2009.

[26] F. C. J. Allaire, FPGA implementation of an unmanned aerospace vehicle path
planning genetic algorithm. Royal Military College: Library and Archives,
Canada, 2007.

[27] R. M. Jiang and D. Crookes, "FPGA implementation of 3D discrete wavelet
transform for real-time medical imaging," 18th European Conference on
Circuit Theory and Design (ECCTD), pp. 519-522, 2007.

[28] Z. Ge, Y. Jinghua, L. Qian, and Y. Chao, "A real-time speech recognition
system based on the Implementation of FPGA," Cross Strait Quad-Regional
Radio Science and Wireless Technology Conference (CSQRWC), pp. 1375-
1378, 2011.

[29] S. A. Kadir, A. Sasongko, and M. Zulkifli, "Simple power analysis attack
against elliptic curve cryptography processor on FPGA implementation,"
International Conference on Electrical Engineering and Informatics (ICEEI),
pp. 1-4, 2011.

[30] H. M. Hussain, K. Benkrid, H. Seker, and A. T. Erdogan, "FPGA
implementation of K-means algorithm for bioinformatics application: An
accelerated approach to clustering Microarray data,"NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), pp. 248-255, 2011.

[31] Y. Abhyankar, C. Sajish, P. Kulkarni, and C. R. Subrahmanya, "Design of a
FPGA based data acquisition system for radio astronomy applications," The
16th International Conference on Microelectronics (ICM), pp. 555-557, 2004

[32] ALTERA, "DE2-115 User Manual," ed: Terasic Technologies Inc, 2003.

[33] I. S. Uzun and A. Amira, "RAPID PROTOTYPING - Framework for FPGA-
based discrete biorthogonal wavelet transforms implementation," IEE
Proceedings on Vision, Image and Signal Processing, vol. 153, pp. 721-734,
2006.

[34] D. Bailey, "Implementing Image Processing Algorithms on FPGAs," in Course
Notes, Massey University: IEEE NZ Central Section Workshop, 2011.

[35] W. Kou, Digital Image Compression: Algorithms and Standards: Springer,
1995.

[36] V. Bhaskaran and K. Konstantinides, Image and Video Compression
Standards: Algorithms and Architectures, 2nd ed. Norwell, MA, USA: Kluwer
Academic Publishers, 1997.

 References

89

[37] R. M. Haralick, "A Storage Efficient Way to Implement the Discrete Cosine
Transform," IEEE Transactions on Computers, vol. C-25, pp. 764-765, 1976.

[38] T. C. Chen, M. T. Sun, and A. M. Gottlieb, "VLSI implementation of a 16×16
DCT," International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 1973-1976, 1988.

[39] Z. Cvetkovic and M. V. Popovic, "New fast recursive algorithms for the
computation of discrete cosine and sine transforms," IEEE Transactions on
Signal Processing, vol. 40, pp. 2083-2086, 1992.

[40] R. Woods, D. Trainor, and J. P. Heron, "Applying an XC6200 to real-time
image processing," IEEE Design & Test of Computers, vol. 15, pp. 30-38,
1998.

[41] D. G. Bailey, "Space Efficient Division on FPGAs," presented at the
Electronics New Zealand Conference (EnzCon'06), Christchurch, NZ, pp. 206-
211, 2006.

[42] N. Ahmed, T. Natarajan, and K. R. Rao, "Discrete Cosine Transform," IEEE
Transactions on Computers, vol. C-23, pp. 90-93, 1974.

 [43] I. E. G. Richardson, Video Codec Design: Developing Image and Video
Compression Systems: Wiley, 2002.

[44] R. C. González and R. E. Woods, Digital Image Processing: Pearson/Prentice
Hall, 2008.

[45] H. Hsieh, "A fast recursive algorithm for computing the discrete cosine
transform," IEEE Transactions on Acoustics, Speech and Signal Processing,
vol. 35, pp. 1455-1461, 1987.

[46] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, "The Multiple Wordlength
Paradigm," The 9th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM '01), pp. 51-60, 2001.

 [47] J. P. Deschamps and G. Sutter, "Decimal division: Algorithms and FPGA
implementations," VI Southern Programmable Logic Conference (SPL), pp.
67-72, 2010.

[48] E. Hamilton, " JPEG File Interchange Format (Version 1.02)," 1992.

[49] K. Sakiyama, P. Schaumont, I. Verbauwhede, "Finding the best system design
flow for a high-speed JPEG encoder," Asia and South Pacific Design
Automation Conference (ASP-DAC 2003), pp. 577-578, Kitak Yushu, Japan,
January 2003.

Appendix A-1 AC Huffman Table

90

Tables below show the default coding for run-length and size for AC

coefficients (from [2]).

Run/Size Code length Code Word
0/0 (EOB) 4 1010
0/1 2 00
0/2 2 01
0/3 3 100
0/4 4 1011
0/5 5 11010
0/6 7 1111000
0/7 8 11111000
0/8 10 1111110110
0/9 16 1111111110000010
0/A 16 1111111110000011
1/1 4 1100
1/2 5 11011
1/3 7 1111001
1/4 9 111110110
1/5 11 11111110110
1/6 16 1111111110000100
1/7 16 1111111110000101
1/8 16 1111111110000110
1/9 16 1111111110000111
1/A 16 1111111110001000
2/1 5 11100
2/2 8 11111001
2/3 10 1111110111
2/4 12 111111110100
2/5 16 1111111110001001
2/6 16 1111111110001010
2/7 16 1111111110001011
2/8 16 1111111110001100
2/9 16 1111111110001101
2/A 16 1111111110001110
3/1 6 111010
3/2 9 111110111
3/3 12 111111110101
3/4 16 1111111110001111
3/5 16 1111111110010000
3/6 16 1111111110010001

Appendix A-1 AC Huffman Table

91

Run/Size Code length Code Word
3/7 16 1111111110010010
3/8 16 1111111110010011
3/9 16 1111111110010100
3/A 16 1111111110010101
4/1 6 111011
4/2 10 1111111000
4/3 16 1111111110010110
4/4 16 1111111110010111
4/5 16 1111111110011000
4/6 16 1111111110011001
4/7 16 1111111110011010
4/8 16 1111111110011011
4/9 16 1111111110011100
4/A 16 1111111110011101
5/1 7 1111010
5/2 11 11111110111
5/3 16 1111111110011110
5/4 16 1111111110011111
5/5 16 1111111110100000
5/6 16 1111111110100001
5/7 16 1111111110100010
5/8 16 1111111110100011
5/9 16 1111111110100100
5/A 16 1111111110100101
6/1 7 1111011
6/2 12 111111110110
6/3 16 1111111110100110
6/4 16 1111111110100111
6/5 16 1111111110101000
6/6 16 1111111110101001
6/7 16 1111111110101010
6/8 16 1111111110101011
6/9 16 1111111110101100
6/A 16 1111111110101101
7/1 8 11111010
7/2 12 111111110111
7/3 16 1111111110101110
7/4 16 1111111110101111
7/5 16 1111111110110000
7/6 16 1111111110110001
7/7 16 1111111110110010
7/8 16 1111111110110011
7/9 16 1111111110110100
7/A 16 1111111110110101

Appendix A-1 AC Huffman Table

92

Run/Size Code length Code Word
8/1 9 111111000
8/2 15 111111111000000
8/3 16 1111111110110110
8/4 16 1111111110110111
8/5 16 1111111110111000
8/6 16 1111111110111001
8/7 16 1111111110111010
8/8 16 1111111110111011
8/9 16 1111111110111100
8/A 16 1111111110111101
9/1 9 111111001
9/2 16 1111111110111110
9/3 16 1111111110111111
9/4 16 1111111111000000
9/5 16 1111111111000001
9/6 16 1111111111000010
9/7 16 1111111111000011
9/8 16 1111111111000100
9/9 16 1111111111000101
9/A 16 1111111111000110
A/1 9 111111010
A/2 16 1111111111000111
A/3 16 1111111111001000
A/4 16 1111111111001001
A/5 16 1111111111001010
A/6 16 1111111111001011
A/7 16 1111111111001100
A/8 16 1111111111001101
A/9 16 1111111111001110
A/A 16 1111111111001111
B/1 10 1111111001
B/2 16 1111111111010000
B/3 16 1111111111010001
B/4 16 1111111111010010
B/5 16 1111111111010011
B/6 16 1111111111010100
B/7 16 1111111111010101
B/8 16 1111111111010110
B/9 16 1111111111010111
B/A 16 1111111111011000
C/1 10 1111111010
C/2 16 1111111111011001
C/3 16 1111111111011010
C/4 16 1111111111011011

Appendix A-1 AC Huffman Table

93

Run/Size Code length Code Word
C/5 16 1111111111011100
C/6 16 1111111111011101
C/7 16 1111111111011110
C/8 16 1111111111011111
C/9 16 1111111111100000
C/A 16 1111111111100001
D/1 11 11111111000
D/2 16 1111111111100010
D/3 16 1111111111100011
D/4 16 1111111111100100
D/5 16 1111111111100101
D/6 16 1111111111100110
D/7 16 1111111111100111
D/8 16 1111111111101000
D/9 16 1111111111101001
D/A 16 1111111111101010
E/1 16 1111111111101011
E/2 16 1111111111101100
E/3 16 1111111111101101
E/4 16 1111111111101110
E/5 16 1111111111101111
E/6 16 1111111111110000
E/7 16 1111111111110001
E/8 16 1111111111110010
E/9 16 1111111111110011
E/A 16 1111111111110100
F/0 (ZRL) 11 11111111001
F/1 16 1111111111110101
F/2 16 1111111111110110
F/3 16 1111111111110111
F/4 16 1111111111111000
F/5 16 1111111111111001
F/6 16 1111111111111010
F/7 16 1111111111111011
F/8 16 1111111111111100
F/9 16 1111111111111101
F/A 16 1111111111111110

Appendix A-2 JPEG Header Specifications

94

The JFIF APP0 marker provides information which is missing from the JPEG

stream such as, version number, X and Y density, pixel aspect ratio and

thumbnail. Details of APPO marker as follows [2]:

APP0 Header (2 Bytes): Defines the application specific header

Length (2 Bytes): Total length of header

Application Identifier (5 Bytes): Identifies JFIF through ASCII hex codes,

0x4A46494600

Version Identifier (2 Bytes): Specifies major and minor version numbers for

JFIF (V1.01)

Density Units (1 Byte): Specifies units used to give pixel density.

0: density given in pixel 1: density in dots per inch 2: density

X Density (2 Bytes): Horizontal pixel density

Y Density (2 Bytes): Vertical pixel density

X Thumbnail (4 bits): Specifies the horizontal pixel count of the thumbnail

Y Thumbnail (4 bits): Specifies the vertical pixel count of the thumbnail

Appendix A-2 JPEG Header Specifications

95

Frame header specifies the source image characteristics, and the parameters

that apply to all scans with the frame. SOF is the start of frame marker, which

is unique for each type of JPEG implementation [2].

SOF (2 Bytes): Define by unique code 0xFFC0

Length (2 Bytes): Defines the length for the frame header

Sample Precision (1 Byte): Define the sample precision used. For baseline,

this is 8 bits

Number of lines (Y) (2 Bytes): Specifies the maximum number of lines in the

source image

Number of samples per line (X) (2 Bytes): Specifies the maximum number of

samples per line in the source image

Components (1 Byte): Specifies number of component in a frame.

1 for gray scale images 3 for colour images

Component Identifier (1 Byte): Defines the identification number for the

frame component that is going to be specified

Horizontal sampling (4 Bits): Specifies the relationship between the

component horizontal dimension and maximum image dimension X

Vertical sampling (4 Bits): Specifies the relationship between the component

vertical dimension and maximum image dimension Y

C1 H1 Tq1

SOF Length Sample
Precision

Y X Components Component specification
parameters

V1 Cn Hn Tqn Vn

Appendix A-2 JPEG Header Specifications

96

Quantisation table selector (1 Byte): Defines which Quantisation table will

be used for the component

The Quantisation table header segment is used to define the Quantisation tables

for luminance components and chrominance components. For this research it

only uses Quantisation table for luminance components [2].

DQT (2 Bytes): Specifies the beginning of the Quantisation table-specification

parameters

Length (2 Bytes): Specifies the length of all Quantisation table parameters

Element Precision (4 Bits): Specifies the precision of the Quantisation

element

0 = 8 bit precision 1 = 16 bit precision

Table Identifier (4 Bits): Specifies one of four possible destinations at the

decoder into which the Quantisation table shall be installed

Quantisation Element (1 or 2 Bytes): Specifies the correct element out of 64

elements. The Quantisation elements shall be specified in zigzag order

The scan header segment defines the parameters for the entropy coded data

segment. These parameters specifies which components are contained in the

scan, specifies the destinations from which entropy tables to be used with each

component that are retrieved [2].

DQT Length Element
Precision

Table
Identifier

Quantisation
Element

Appendix A-2 JPEG Header Specifications

97

SOS (2 Bytes): Start of scan marker marks the beginning of the scan

parameters.

Length (2 Bytes): Specifies the length of the scan header in bytes.

Number of Scan Components (1 Byte): Defines how many image

components are contained within the current scan. This value is equal to the

number of sets of scan specifications, which follow in this header segment.

Csj - Scan Component Selector (1 Byte): This is the header for a specific

component, which will be followed by that component’s specified tables. This

will match one of the components identified in the frame header.

Tdj – DC Entropy Coding Table Selector (4 bits): This will specify one of

four possible DC entropy coding table destinations from which the entropy

table needed for decoding of the DC coefficients of component Csj is retrieved.

Taj – AC Entropy Coding Table Selector (4 bits): This will specify one of

four possible AC entropy coding table destinations from which the entropy

table needed for decoding of the AC coefficients of component Csj is retrieved.

Start of Spectral or Predictor Selection (1 Byte): This is used for other DCT

based algorithms for selecting the first DCT coefficient in each zigzag order

which shall be coded in the scan. For the Baseline algorithm, all components,

0-63, of the DCT are encoded, so this is set to 0.

SOS Length Number of
Component

Component
Specification

Start of Spectral
Predictor

End of Spectral
Predictor

Successive Bit
Approx. High

Successive Bit
Approx. Low

Csj Tdj Taj Cs1 Td1 Ta1

Appendix A-2 JPEG Header Specifications

98

End of Spectral Selection (1 Byte): Specifies the last DCT coefficient in each

block in zigzag order which shall be coded in the scan. This parameter is set to

63 for baseline algorithm.

Successive Approximation Bit Position High (4 Bits): This specifies the

point transform used in the preceding scan. This parameter is set to zero for the

first scan of each band of coefficients.

Successive Approximation Bit Position Low (4 Bits): This specifies the point

transform used before coding the band of coefficients specified by the spectral

selection. This is set to zero for sequential DCT processes.

An entropy coded data segment contains the output of an entropy-coding

procedure. It consists of an integer number of bytes, whether the entropy-

coding procedure used is Huffman or arithmetic [2].

DHT (2 Bytes): Specifies the beginning of the Huffman table-specification

parameters

Length (2 Bytes): Specifies the length of all Huffman table parameters

Table Class (4 Bits): Defines the type of the table.

0= DC table 1 =AC table

Table Identifier (4 Bits): Specifies one of four possible destinations at the

decoder into which the Huffman table shall be installed

DHT Length Table Class Table
Identifier

Number of
Huffman Codes

Value

Appendix A-2 JPEG Header Specifications

99

Number of Huffman Codes of length i (8 Bits): There are 16 length

categories consisting Huffman codes. This defines the number of codes within

category i.

Value (8 Bits): This is the value associate with each Huffman code within each

length category.

Appendix A-3 Abbreviations

100

AC – Alternative Current

ASIC – Application Specific Integrated circuit

CODEC – Coder - Decoder

DC – Direct Current

DCT – Discrete Cosine Transform

DHT – Define Huffman Table

DPCM – Differential Pulse Code Modulation

DVD – Digital Versatile Disk

DQT – Define Quantisation Table

EDIF – Electronic Design Interchange Format

EOB – End of Block

EOI – End of Image

FPGA – Field Programmable Gate Array

FIFO – First In - First out

GIF – Graphic Interchange Format

IDCT – Inverse Discrete Cosine Transform

I/O – Input Output

ITU – International Telecommunication Union

JFIF – JPEG File Interchange Format

Appendix A-3 Abbreviations

101

JPEG – Joint Photographic Expert Group

LSB – Least Significant Bit

LUT – Look Up Table

MSB – Most Significant Bit

MSE – Mean Square Error

PLD – Programmable Logic Device

PNG – Portable Network Graphics

PROM – Programmable Read Only Memory

PSNR – Peak Signal to Noise Ratio

RAM – Random Access Memory

ROM – Read Only Memory

SOF – Start of Frame

SOI – Start of Image

SOS – Start of Scan

SRT Division –

VHDL – VHSIC hardware description language

VLSI – Very Large Scale Integration

ZRL – Zero Run Length

Appendix A-4 Publications and Presentations

102

PUBLICATIONS

• De Silva, A. M., Bailey, D. G., & Punchihewa, A., “Exploring the

Implementation of JPEG Compression on FPGAs”, 6th International

Conference on Signal Processing and Communication Systems (ICSPCS),

Gold Coast, Australia, 12-14 December, 2012

PRESENTATIONS

• “Challenges in Implementing JPEG compression on FPGAs”, EICS

Seminar, 11th October 2012, to the School of Engineering students and

staff, at Massey University, Palmerston North

• “The Implementation of JPEG compression on FPGAs”, IEEE NZ Central

Section Post-Graduate Presentation Workshop, to the students in Lower

North Island, 7th September 2012, at Massey University, Palmerston North

• “The Implementation of JPEG compression on FPGAs: work-in progress”,

EICS Seminar, 10th October 2011, to the School of Engineering students

and staff, at Massey University, Palmerston North

• “Exploring the Implementation of JPEG compression on FPGAs”, IEEE

NZ Central Section Post-Graduate Presentation Workshop, to the students

in Lower North Island, 1st September 2011, at Victoria University,

Wellington

