
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Integration of Database

Programming and Query Languages

for Distributed Object Bases

Markus Kirchberg

A dissertation presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Information Systems. at Massey University

Supervisor:
Prof. Dr. Klaus-Dieter Schewe

Co-S upervisor:
Associate Prof. Dr. Ray Kemp

Internal Examiner:
Dr. Alexei Tretiakov

Australasia Examiner:
Prof. Dr. Xiaofang Zhou

International Examiner:
Prof. Dr. Bernhard Thalheim

Date of Examination:
July 13, 2007

Abstract

Object-oriented programming is considered advantageous to other programming
paradigms. It is believed to provide more flexibility, simplify development and main­
tenance, better model real-world situations, and is widely popular in large-scale soft­
ware engineering. The idea behind object-oriented programming is that a program is
composed of objects that act on each other. While programming languages mainly
focus on processing, data storage and data sharing only play a minor role . Database
management systems, on the contrary, have been built to support large bodies of ap­
plication programs that share data. In todays database marketplace, relational and
object-relational database systems are dominant . Object-oriented database systems
were originally deemed to replace relational systems because of their better fit with
object-oriented programming. However, high switching costs, the inclusion of object­
oriented features in relational database systems, and the emergence of object-relational
mappers have made relational systems successfully defend their dominance in the DB
marketplace. Nevertheless, during the last few years, object-oriented database systems
have established themselves as a complement to relational and object-relational sys­
tems. They have found their place as embeddable persistence solutions in devices, on
clients , in packaged software, in real-time control systems etc .

In order to utilise the combined power of programming languages and SQL-like data­
base query languages, research has focused on the embedded and integrated approaches.
While embedded approaches are more popular, they suffer from the impedance mis­
match , which refers to an inadequate or excessive ability of one system to accommodate
input from another. This situation worsens when considering the numerous conceptual
and technical difficulties that are often encountered when a relational database system
is being used by a program that is written in an object-oriented language.

Research presented in this thesis addresses the integration of programming lan­
guages, database query languages, object-oriented programming and traditional data­
base concepts . We investigate the stack-based approach to database programming and
querying. The major objectives of our research are to:

- Develop a database architecture that is suitable to integrate database programming
languages, object-oriented programming and more traditional database system fea­
tures;

- Propose an intermediate-level database programming and querying language that
combines the advantages of object-oriented programming and database querying
languages. Before such a powerful language design can be achieved, a number of
conceptual and technical challenges have to be investigated;

- Define a suitable run-time environment, which permits an efficient and effective
evaluation of such an integrated language in a distributed database environment;
and

- Provide proof of concept implementations.

Acknowledgement

I would like to thank Klaus-Dieter Schewe for giving me the opportunity to pursue
an academic career under his supervision. This thesis would not have been possible
without his invaluable input, constant support and understanding.

My thanks also goes to Ray Kemp who kindly agreed to act as eo-supervisor of this
thesis.

Thanks to Massey University and the Department of Information Systems for their
financial support .

Special thanks to Sebastian Link, Sven Hartmann and Faizal Riaz-ud-Din for their
support, useful discussions and their friendship.

I am grateful to my wife Gowri for her love, encouragement and understanding. It
is her support that gave me the strength to complete this work.

Finally, I would like to thank my parents Si grid and Dieter Kirchberg, who have
always been there for me and supported me in every way possible .

111

Table of Contents

1 Introduction 9

1 . 1 Database Systems and Programming Languages 10
1.1. 1 The Impedance Mismatch 14

Objects and RDBMSs. 15
Objects and Object-Relational Databases. 15
Objects and Pure Object Databases. . . . 15

1.1 .2 On the Integration of Programming and Query Languages 16
1.1.3 DBPL vs . Conventional Programming Languages 18

1 .2 Contributions 19
1 . 3 Assumptions . 21
1 .4 Outline 22

2 A Review of DBPLs and Related Concepts 23

2 . 1 The Stack-Based Approach 23
2 .2 Overview of DB Programming Environments 25

2 .2 .1 The Database Programming Language DBPL 25
2 . 2 . 2 The 02 Object Database System 26
2 .2 .3 The Object Base Management System TIGUKAT 26
2 .2 .4 The Parallel Database Programming Language FAD . 27
2 .2 . 5 Additional Relevant Research Results on DBPLs . . 28

3 An Integrated Approach to DB Programming and Querying 3 1

3. 1 A Distributed Object-Oriented Database System . 31
3 . 1 .1 Architecture Overview 32
3 .1 .2 Properties of the OODM 36

Notes on the Choice of the Data Model . 37
3 .1 .3 Fragmentation 37
3 . 1 .4 Linguistic Reflection 38
3 .1 .5 A Simple University Application 39

The Global OODM Database Schema. 39
Distributing the University Database. . 43

3 .1 .6 A Note on the Contribution of the Proposed ODBS 50
3.2 Processing User Requests 50

1

Markus Kirchberg

4 The Database Programming and Query Language iDBPQL 57
4 .1 Language Overview 57
4.2 Basic Language Concepts . 58

4 .2 .1 Challenges 59
4 .2 .2 Conventions 60
4 .2 .3 Literals, Names and Other Rudimentary Language Elements 61

Literals. . . 61
Identifiers. . 61
Comments. 61
Names. . . . 61

4 . 2 .4 Types and Values 62
Primitive Types. 62
The Record Type. 63
Type Definitions. 67
Type Parameters . 68
Collection Types. 69
NULLable Types. . 71
Value Initialisation and Default Values. 72
Sub-typing and Type Conversion. 73
Variables. 74
Default Type Operations. 74
Type Definitions for the University Application . 75

4 .2 . 5 Classes and Objects 78
Structure of a Class 78
Variables and Reference-Types. 80
Methods. 81
(Multiple) Inheritance. 82
Variables, Types, Objects, and Classes. 88
The FINAL and the ABSTRACT Modifiers. 88
The UNION-Type. 89
Special Pre-Defined Classes . 91
Class-Collections. 93
Constraints. 94
Database Schemata and Classes. . 95
Run-Time MetaData Catalogue Entries. 96
Persistence. 97
Class Definitions for the University Application. 98

4 .3 Evaluation Plans 100
4 .3 .1 Challenges 100
4 .3 .2 Components of Evaluation Plans 101
4 .3 .3 Evaluation Blocks and Their Properties . 102
4 .3 .4 Statements 104

Assignment Statements 104
Control Flow Statements. 105
Type Operation Invocation, Method Calls and Object Creation . 107

4 .3 .5 Expressions . 108

2

Markus Kirchberg

Simple Expressions. 108
Parenthesised Expressions. 108
Assignment Expressions. . 108
Type Operation Invocation, Method Calls and Object Creation . 108
Renaming Expressions. 108
Boolean Expressions. 109
Query Expressions. . . 110
Cast Expressions. . . . 114
The SUPER Expression and Keywords THIS and SUPER. 114

4 .4 Simultaneous Processing 117
4 .4 .1 Implicit Inter-Transaction Concurrency 120
4 .4 .2 Support for Explicit Concurrency 120
4 .4 .3 Implications 124

4 .5 Examples 125

5 On the Implementation of iDBPQL
5 .1 MetaData Catalogues and Evaluation Plans

5 . 1.1 Challenges .
5 .1 .2 MetaData Entries and Associated Information

Representing Type Information .
Representing Class Information .
Representing Descriptors.
Representing Other Attributes.
Inheritance Relations.

5 .1 .3 The Representation of Objects and Values
5 .1 .4 The Representation of Evaluation Plans
5 .1 .5 Overview of Annotations

5 . 2 DBS Component Interface Definitions .
5 .2 .1 A Persistent Object Store .

An Object Model for POS . .
Access Methods.
The Architecture of POS. .

1 3 1

131
132
132
134
135
137
137
138
138
141
144
145
145
146
150
150

The Service Interface. 151
POS as a Platform for iDBPQL. . 159

5 . 2 . 2 A Multi-Level Transaction Management System 162
The Service Interface. 165

5 .2 .3 The Remote Communication Module 166
The Database Agent Communication Language (DBACL) . 166

5 .3 The Execution of Evaluation Plans 167
5 .3 .1 Challenges 168
5 .3 . 2 The Run-Time Environment 169

The REE Stack Area. 171
The Environment Stack (ES) . 172
The Result Stack (RS) 174
Operations on Stacks and Queues. . 175
Initialising Result Queues. . 178

3

Binding Behaviour Names to Evaluation P lans. . .
5 .3 .3 The SYSTEMcall , POScall and TMScall Primitives

The SYSTEMcall Primitive.
The POScall Primitive.
The TMScall Primitive.

5 .3 .4 Overview of the Evaluation Process
Machine Instructions.
Unnesting Objects and Values.
The Main Evaluation Routine . .

5 .3 .5 Maintaining the Run-Time Environment
5 .3 .6 Evaluating Individual Statements and Expressions .

Simple Expressions: Literals and Names.
Object Identifiers and Stacks.
Expressions with Unary and Binary Operators.
Boolean Expressions. . .
Renaming Expressions.
Accessing Data Objects.
Accessing Persistent Data: Beyond Direct Access.
More Query Expressions.
Controlling the Flow of Serial Data Processing.
Invocation of Behaviours.
Object Creation and Assignments.
Cast Expressions, SUPER and THIS.

5 .3 .7 Evaluating Statements and Blocks of Statements .
Blocks of Statements. . . .
S imple Transact ions.
Atomic Statement Blocks. .

5 .3 .8 Processing Evaluation Plans

Markus Kirchberg

5 .3 .9 Simultaneous Evaluation of Statements and Expressions

179
179
179
180
180
180
180
181
183
186
187
187
187
188
190
194
195
199
201
209
213
214
215
216
216
217
221
222
222
223
223
224
224
226

5 .3 .10 Distributed Processing of Evaluation Plans . . .
Migrating Objects.
Processing Evaluation Plans on a Remote Node.
Distributed Transactions.

5 .4 Optimisation of the Evaluation Process

6 Proof of Concept
6 .1 Simultaneous Stack-Based Abstract Machines
6 .2 The iDBPQL Prototype System

7 Summary
7.1 Main Contribution
7 .2 Future Plans and Open Problems

Bibliography

4

229

229
231

239

239
241

245

A The Syntax of iDBPQL
A.l The Lexical Syntax of iDBPQL
A.2 The Syntax of MetaData Catalogue Entries

A.2.1 Syntax of DBS MetaData Units . . .
A.2.2 Syntax of Run-Time MetaData Units
A.2.3 Common Syntax of Type-System-Related Definitions
A.2.4 Common Syntax of iDBPQL Types

A.3 The Remaining Syntax of iDBPQL
A.3 .1 Syntax of Evaluation Units .
A .3 .2 Syntax of Evaluation Blocks
A.3 .3 Syntax of Statements
A .3 .4 Syntax of Expressions . . .
A .3 .5 Identifiers, Labels, Values and More .

B The Parentage Database Example

5

Markus Kirchberg

255

255
256
256
256
256
257
258
258
258
258
259
259

2 6 1

List of Figures

2 .1 Relationship Between Data Models and SBQL's Abstract Storage Model
([131 , F igure 1]) . 23

3. 1 Architecture of the Distributed Object-Oriented Database System. . 33
3 .2 HERM Diagram of the University Database. 40
3.3 Relationship between User Requests, Data Models and iDBPQL. . 51

4 . 1 The Type System of iDBPQL. 71
4.2 Union Types, Sub-typing and Inheritance ([53, Figure 1]) . 91

5 . 1 Sample Evaluation Graph for the verifyEnrolment Method. 143
5 . 2 Overview of Embedded References Between Instances of Classes of the

Uni versi tycc Schema Fragment as Considered in Example 5 .3. 149
5 .3 Architecture of the Persistent Object Store. 151
5 . 4 Architecture of the Transaction Management System 163
5 .5 Local Heap with Embedded POS and RCM Shared Memory Areas. 170
5 .6 Logical View of the Environment and Result Stacks. 173
5 .7 Logical View of the Effects of evalMultiES () Evaluation Procedures

on ES. 184
5 .8 Overview of the Evaluation Process of the verifyEnrolment Method

from Figure 5 . 1 . . 186

6 . 1 Overview of a Stack-Based Abstract Machine with Distribution Capa-
bilities . 230

6 .2 Overview of a Local Stack-Based Abstract Machine. 231
6.3 Usage Diagram for the iDBPQL Prototype. 234
6 .4 Evaluation of the Hello World Example. 235
6 . 5 iDBPQL and Internal Representations of the Parentage Database. 236
6 .6 Executing Requests on the Parentage Database. 237

6

List of Tables

4 . 1 The Primitive Types of iDBPQL. 62
4.2 Primitive Types and Their Supported Operations. 64

5 . 1 Modifier Flags and Their Interpretation. 135
5 .2 Internal Object Structure of Instances of Classes Presented in Example

4 . 1 2 . . 140
5 .3 (Binary) Path-Operators that are Supported by POS. 1 52
5 .4 Type Information Mapping to Machine Instructions. 1 8 1
5 .5 Overview of Machine Instructions for Binary Expressions without Side

Effects. 1 89
5 .6 Overview of Machine Instructions for Assignment Expressions with Side

Effects. 1 90
5 . 7 Overview of Additional Boo lean Expressions and their Machine Instruc-

tions . 191

7

List of Tables Markus Kirchberg

8

Chapter 1

Introduction

Programming paradigms and, thus, programming languages (PLs) advocating single or
multiple paradigms have been at the centre of research for many decades. C++ [128]
is one of the prime examples of the object-oriented (00) programming paradigm. It is
often mentioned as the object-oriented programming language (OOPL) that resulted in
programmers and organisations adopting this class of PLs. While C++ is referred to as
an OOPL, it is designed to support elements of the procedural programming paradigm,
the object-based programming paradigm, the object-oriented programming paradigm,
and the generic programming paradigm. It is then up to designers and programmers to
decide how to build a C++ program using those paradigm elements. In contrast , OOPLs
such as Java [46] only support one paradigm, i .e . the object-oriented programming
paradigm. It is claimed by many people that object-oriented programming (OOP) is
advantageous to other programming paradigms in various ways. OOP is believed to
provide more flexibility, simplify development and maintenance, better model real­
world situations, and is widely popular in large-scale software engineering. The idea
behind OOP is that a program is composed of a collection of objects that act on each
other. Each object is capable of receiving messages (i .e . methods) , processing data and
sending messages to other objects.

Programming languages traditionally focus on processing. Apparently, data storage
and data sharing only play a minor role. Long-term data is 'exported' to a file system or
database system (DBS) . DBSs, on the contrary, have been built to support large bodies
of application programs that share data. The emergence of OOPLs have brought those
two concepts closer together, i .e. data is at the centre of attention. evertheless, in
OOPLs, the messages that objects accept are most important while DBSs (in particular
object-relational and object-oriented DBSs) largely evolve around object persistence
and data sharing. This, of course, results in a number of common (i .e . object-related)
concepts being dealt with differently. Such concepts include the degree of encapsulation
(OOPLs adhere to it rigidly while DBSs demand a more relaxed approach to support
ad-hoc querying) , treatment of transient and persistent data, incorporation of types
and classes, inheritance, concurrency, NULL values etc.

In today's database (DB) marketplace, relational DBSs (RDBSs) and object­
relational DBSs (ORDBSs) are dominant. Object-oriented DBSs (ODBSs) were orig­
inally deemed to replace RDBSs because of their better fit with OOP. However, high
switching costs , the inclusion of object-oriented features in RDBSs, and the emergence

9

1 . 1 . DATABASE SYSTEMS AND PROGRAMMING LANGUAGES Markus Kirchberg

of object-relational mappers (ORMs) have made RDBSs successfully defend their dom­
inance in the DB marketplace. ODBSs are now established as a complement, not a
replacement for (object-) relational DBSs. They have found their place as embeddable
persistence solutions in devices, on clients, in packaged software, in real-time control sys­
tems etc. Especially the open source community has created a new wave of enthusiasm
that is fuelling the rapid growth of ODBS installations . Christof Wittig (db4objects,
Inc .) summarises the aim of developing ODBSs in [29]: ' Our mission is to give 00
developers a choice) when it comes to persistence: Relational databases do a great job
in server-centric environments) where the database is "above)) the application and 0 /R
mappers take care of the mapping. However) in resource- constrained environments[. . . })
persistence strategies [. . . } have to look different. There)s no value in mapping objects to
tables - only cost. '.

Traditionally, database management systems (DBMSs) provide support for query
languages (QLs) , most commonly SQU-like languages. It has been common practice
for decades to link both domains (i .e . PLs and DBSs) by embedding QLs into PLs.
Popular examples include programming interfaces such as ODBC2 and JDBC3, which
are both based on SQL. However, this embedded approach suffers from problems col­
lectively known as impedance mismatch (refer to Section 1 . 1 . 1) . Alternative integrated
approaches circumvent these problems. However, the majority of them either represent a
PL with added query constructs (e.g. DBPL [10 , 1 1]) or a QL with added programming
abstractions (e .g. SQL-99 [36] , Oracle PL/SQL [40] , Microsoft SQL Server Transact­
SQL [47]) . Only a few research projects (e.g. LOQIS [129] with its stack-based language
SBQL [131] and TIGUKAT [100]) have attempted a seamless integration of program­
ming and querying languages. In this thesis, we follow this line of research, in particular
we adopt ideas of the stack-based approach (SBA) as proposed in [129, 130, 131] . The
SBA approach has been used successfully to integrate querying constructs and program­
ming abstractions into a uniform database programming language. Unfortunately, there
are a number of issues, which are yet to be addressed by the SBA approach. Not only
does it neglect transactions, concurrent and distributed processing, but it also rejects
any type checking mechanism that originates from type theory. Among other things,
we intend to rectify these shortcomings. We will propose an integrated , object-oriented
DBPL that combines the advantages of OOP and DBS programming.

Before considering the contribution of the research work presented in this thesis in
explicit detail , we will elaborate on our motivation and challenges that have to be faced.

1 . 1 O bject- Oriented Database Systems and Programming

Languages

Object-oriented database systems (ODBSs) first appeared in the 1980s, as both pro­
totype systems and commercial products. Prototype systems developed in the 1980s

1 SQL (i.e. Structured Query Language) is the most popular database language used to create, retrieve and
manipulate data from relational database management systems (RDBMSs).

2 ODBC (i.e. Open Database Connectivity) provides a standard software application programming interface
(API) method for using RDBMSs.

3 JDBC (i.e. Java Database Connectivity) is an API (similar to ODBC) for the Java programming language.
It provides methods for querying and updating data in RDBMSs.

10

1 . 1 . DATABASE SYSTEMS AND PROGRAMMING LANGUAGES Markus Kirchberg

and early 1990s include Avance [18] , ENCORE/ObServer [121] , IRIS [42] , ORlON [62] ,
and Starburst [84] . Commercial products released in that period include GemStone
[24] , 02 [14] , ObjectStore [76] , ONTOS [99] , ORION-2 [63] , and VERSANT [139] . Ini­
tially, ODBSs have been regarded as the solution to the discovery of the limitations
of RDBMSs and the need to manage a large volume of objects with object semantics.
However, most of those systems disappeared again within a few years. Among others,
Kim [60] investigated the reasons for their disappearance and also outlined research
directions to be addressed before being able to build a sophisticated and successful
ODBS. Four major concerns that have contributed to the disappearance of most of
those early developments are :

1 . ' There is no standard object semantics. ' [60, page 6] . Though various (complete)
object-oriented data models have been introduced, the problem, however, was and
still is that there is no consensus on a single model .

2 . ' Object-oriented database systems today are 'pot-boilers '. ' [60, page 6] . Meaning that
the push for object-oriented concepts and the push for solutions to a long list of
deficiencies in conventional DBSs have been translated into object-oriented database
systems. However, most of those issues are orthogonal to object-oriented concepts .

3 . ' The vendors of early systems offered systems which seriously lack in database fea­
tures. ' [60, page 8] . Common database features, such as transaction management
and query optimisation, have not been incorporated.

4 . ' There is apparently no formal foundation for object-oriented database systems. ' [60,
page 8] . A solid theoretical framework only exists in a fragmentary way.

Driven by the demand to research and develop better ODBSs and the failure of those
early developments, a large number of discussion papers emerged. Main discussion ob­
jectives included the definition of characteristics of ODBSs and a recommendation of
the future path of ODBS research. The three most important discussion papers are the
three manifestos. The first manifesto [8] aimed at providing a basis for further discus­
sions. To do so, main features and characteristics of ODBSs have been proposed. These
characteristics are separated in three groups, namely mandatory features, optional fea­
tures, and open choices. Authors of the first manifesto strongly support the opinion
that ODBSs are intended to replace relational technologies. In contrast , authors of the
second manifesto [134] strongly oppose this view. Instead, they revive the relational
model, but still agree with the need for support of object-oriented concepts. They take
the stand that accomplishments gained through the relational model should not be dis­
carded that easily. Instead an extension of relational technologies is what they desire
the database community to focus on. The third manifesto [34] strongly agrees to carry
forward accomplishments gained via the relational model. However, they highlight that
the relational model is more powerful than its current implementations. Thus, some re­
thinking and re-development of existing approaches and implementations is demanded.
The third manifesto can be seen as a push for object-relational database systems.

Considering today's ORDBSs, none of them comes close to the desired character­
istics as outlined in the third manifesto. RDBMS vendors have realised the shortcom­
ings of their products with respect to certain advanced applications. This has led to
an extension of their systems with features adding support for some object-oriented

1 1

1 . 1 . DATABASE SYSTEMS AND PROGRAMMING LANGUAGES Markus Kirchberg

concepts. However, current systems do not use a consistent data model and different
object-oriented features are supported with little standardisation.

In April 1 989, the Object Management Group (OMG) , an international not-for­
profit corporation, was founded. This group has been formed to establish industry
guidelines and detailed object management specifications to provide a common frame­
work for application development. Being frustrated with the lack of progress towards
ODBS standards, ODBS vendors have implemented another consortium, the Object
Data(base) Management Group (ODMG) , in 19914. The ODMG group has 'completed '
its work on object data management standards in 2001 and was disbanded. In 2000 ,
the final release of the ODMG standard, ODMG 3.0 [28] , was published. The ODMG
standard mainly consists of an object model, the object definition language ODL, the
object query language OQL and various object language bindings. Even though the
ODMG standard was developed by the major vendors of ODBSs, it has not been ac­
cepted as a standard for ODBSs. Reasons for this include the fact that ODMG's object
model does not have the mathematical rigour associated with the relational data model
and its relational algebra. Similarly, Java Data Objects (JDO) [55] , another attempt
to standardise data access, has not seen adoption by the mainstream. Instead, recent
research (e.g. [32]) suggests to use the PL itself to query objects and thus make a
separate 00 query standard redundant .

While ORDBSs dominate the present database marketplace, a new wave of enthusi­
asm is fuelling the rapid growth of second-generation, native ODBSs. However, ODBSs
are no longer seen as a replacement of existing RDBSs and ORDBSs. Instead, they are
considered as a complement to such (object-) relational systems. In accordance with [98] ,
applications in which ODBSs tend to provide a better solution than current RDBSs
include:

- Embedded DBMS Applications. Such applications demand super-fast response times
which translates into the requirement of a self-contained, non-intrusive, and easy-to­
deploy persistence solution for objects. Storing objects 'just as they are in memory'
is always the leanest and least intrusive way to implement a persistence solution. Us­
ing a relational or object-relational DBMS requires the overhead of object-relational
mapping, resulting in an increased demand on resources.

- Complex Object Relationships. In such applications, classes define multiple cross­
references among themselves. Considering (object-) relational DBMSs, relationships
among objects are often modelled using foreign keys. Thus, retrieving an object to­
gether with objects it references and also those objects they reference etc. can result
in complicated and difficult-to-maintain code. On the contrary, ODBMSs implement
reachability persistence. That means that any object referenced by a persistent ob­
ject is also persistent. Thus, storing or retrieving objects can be achieved with a
single call . The ODBMS engine handles the details of maintaining the references
when objects are stored, and satisfying them when objects are retrieved.

- 'Deep ' Object Structures. Not all data is easily organised into the tabular form
associated with RDBMSs. Some data is best organised in tree or graph structures

4 Note: Neither OMG nor ODMG are recognised standards groups. Their aim is - or was, in the case of
ODMG - to develop de facto standards that will eventually be acceptable to recognised standards groups
such as ISO/ ANSI .

12

1 . 1. DATABASE SYSTEMS AND PROGRAMMING LANGUAGES Markus Kirchberg

that can be tricky to support in an RDBMS. ODBMSs, however, require no con­
version of the original structure into a DB model and the structure's integrity is
preserved by the DB engine itself.

- Changing Object Structures. Most applications evolve as they age. Hence, the data
structures they support must evolve as well . An ODBMS will typically weather data
structure changes more easily than a RDBMS.

- Developments Including Agile Techniques. ODBMSs fit more flawlessly into agile
development environments than RDBMSs.

- 00 Programs.
- Objects Include Collections. A collection within an object often represents a one-

to-many relationship. Such relationships, modelled by an RDBMS, require an in­
termediate table that serves as the link between the parent object and the objects
in the collection. Meanwhile, ODBMSs treat a collection as just another object .

- Data is Accessed by Navigation Rather Than Query. Considering RDBMSs, naviga­
tion through a tree translates into a sequence of SELECT statements . In an ODBMS,
navigation through the tree is expressed naturally using the constructs of the native
language.

The ODBMS.ORG Panel of Experts [98] reason that this new interest in ODBS
technologies results from the facts that :

1 . ' Object databases [. . .] have long been recognised as a solution to one of the biggest
dilemmas in modern object-oriented programming { . .] the object-relational { . .]
impedance mismatch. ' and

2. 'Now that OOP languages like Java and . NET are finally becoming mainstream,
this problem [i .e. the object-relational impedance mismatch] rests at the heart of
information technology. ' .

Current ODBSs include Cache, db4o, FastObjects, Gemstone/S , GOODS, JADE,
Jasmine, JYD Object Database, Matisse, ObjectDB, Objectivity /DB, ObjectStore,
ozone, TITANIUM, Versant Developer Suite, and VOSS. These systems address many
of the shortcomings of early ODBS developments (e.g. support of core object oriented
concepts and traditional database features) but they are still not based on sound the­
oretical foundations.

This brings us back to the three manifestos mentioned above. These papers, as well
as a large body of corresponding discussion papers, identify desirable characteristics a
system should have in order to be referred to as an ODBS. These characteristics can
be summarised as follows:

- Mandatory object-oriented concepts: Complex objects, object identity, encapsula­
tion, types and classes, class and/or type hierarchies, inheritance, and polymor­
phism (overriding and late binding) ;

- Traditional DB features: Persistence , secondary storage management, transaction
support, concurrency control, recovery, ad-hoc query facility, and schema evolution;
and

- Optional features: Multiple inheritance, type checking or type inferencing, distribu­
t ion, replication, generic update operations, and version management.

13

1 . 1 . DATABASE SYSTEMS AND PROGRAMMING LANGUAGES Markus Kirchberg

Considering these characteristics, they all relate (directly or indirectly) to the lan­
guage(s) an ODBS makes available to their (high- and I or low-level) users . Bringing
our attention back to the early 1980s, the emergence of ODBSs has been

' { . . } due to the simultaneous coming of age of object-oriented programming
and the push for post-relational database technology. The discovery of the limi­
tations of the relational database systems and the need to manage a large volume
of objects with object semantics found in object-oriented programming languages
led to the introduction of commercial object-oriented database systems in the
mid- to late- 1980s. ' [60, page 2] .

Object-oriented programming languages are mainly based on two concepts, encap­
sulation and extensibility. Encapsulation leads to the distinction between the state of
an object (i .e . its associated data) and the behaviour of an object (i .e . the associated
code that operates on the data) . Extensibility corresponds to the ability to re-use and
extend an existing system without modifying it. Extensibility is provided in two ways:
Behavioural extension (i .e . add-on of new programs) and inheritance (i .e . specialisation
of existing objects) . Those object-oriented concepts have evolved over time. They first
appeared in programming languages (e.g. Simula-67 [97] and Smalltalk [45]) , then in ar­
tificial intelligence, and finally in databases. Focusing on DBSs, research into semantic
data models has led to data modelling concepts similar to those embedded in object­
oriented programming and knowledge representation languages. Examples include the
ERM and the HERM [133] . Kim concludes that

' [. . . } object-oriented concepts are the common thread linking frame-based
knowledge representation and reasoning systems, object-oriented programming
(application development) environments, and object-oriented advanced human
interface systems. Therefore, they may be the key to building one type of intelli­
gent high-performance programming system of the foreseeable future . ' [60, page
2] .

Before considering differences in the interpretation of object-oriented concepts in the
DBS community and the OOPL community, we first explain the previously mentioned
term impedance mismatch and also address common approaches to link programming
languages and database languages in greater detail.

1 . 1 . 1 The Impedance Mismatch

The term impedance mismatch refers to an inadequate or excessive ability of one sys­
tem to accommodate input from another. Considering DBMSs, the object-relational
impedance mismatch is often named as one of the central problems of research. It refers
to a set of conceptual and technical difficulties which are often encountered when a
RDBMS is being used by a program written in an OOPL. Robert Greene (Versant
Corp.) highlights in [29] that ' Objects in the language and Relations in the database
have always been at odds, as articulated in the classic problem known as "impedance
mismatch". ' He continues to identify the two fundamental ways in which this mismatch
materialises, i .e . as developer burden and in slower performance and I or resource con­
sumption . While standardisation of mapping has brought relief to the former, the latter

14

1 . 1 . DATABASE SYSTEMS AND PROGRAMMING LANGUAGES Markus Kirchberg

still poses a significant burden . Thus, Robert Greene concludes that ' Object databases,
which don't suffer from the "impedance mismatch" problem, have proven to be a better
solution for certain kinds of applications and have a renewed opportunity to expand
their scope of use. , . Let us consider those impedance related issues in more detail (also
refer to [48]) .

Objects and RDBMSs. Managing objects in RDBMSs requires to:

- 'Map' the object structure (OOPL) to a table structure (SQL) ;
- Create the table using SQL;
- Write SQL code ' inside' OOPL code to create, read, update, and delete objects;
- Explicitly instantiate objects when reading them from the DB; and
- Explicitly control the translation between SQL data types and OOPL data types.

While these steps are necessary for simple objects, the list of conversion tasks grows
much longer when dealing with complex objects, e.g. involving numerous object refer­
ences. Since RDBMSs do not support references (apart from simple foreign key rela­
tionships) , one has to model object references, e.g. by maintaining them in additional
tables.

Objects and Object-Relational Databases. Object-relational DBMSs (ORDBMSs)
can ease some of the conversion tasks required for RDBMSs. They manage the trans­
lation between objects and relational tables transparently. However, programmers still
have to specify which objects are to be made persistent, and how their contents are
mapped to the table . How this is done depends on the particular ORDBMS. Common
tasks include:

- Derivation of those application classes that are to be stored in the DB from a base
persistent class.

- Creation of a descriptor file, which includes mappings of classes to tables and in­
stance variables to columns.

- Creation of a deployment descriptor file, which includes a DB driver class, DB
aliases, DB authentication information etc .

Objects and Pure Object Databases. An ODBMS stores and retrieves objects. The
structure of an object is commonly defined by its class. Relationships between objects -
which would be handled by JOIN operations in RDBMSs- are modelled via references.
This results in a number of distinguishing features of ODBMSs: On one hand, the class
structure is the schema, i .e . associations and relationships are built into the class archi­
tecture. On the other hand , there is the treatment of persistence . ODBMSs provide two
general persistence techniques, which are explicit persistence (e .g. db4objects [102]) and
transparent persistence (e.g. JDO [55]) . With explicit persistence, DB operations (e.g.
storing, retrieving and deleting objects) appear in code. With transparent persistence,
on the contrary, objects are moved to and from the DB invisibly.

15

1 . 1 . DATABASE SYSTEMS AND PROGRAMMING LANGUAGES Markus Kirchberg

1 . 1 .2 On the Integration of Programming and Query Languages

The relationship between query languages and general-purpose programming languages
has been studied for decades. As we have already mentioned, the popular classification
distinguishes between the embedded approach and the integrated approach. While em­
bedded approaches suffer from the impedance mismatch, integrated approaches circum­
vent these problems. The majority of current integrated approaches either represent a
programming language with added QL constructs or a query language with added PL
abstractions. The former approach provides full computational and pragmatic univer­
sality, and clean semantics whereas the latter, commercially more popular one, provides
user friendliness, macroscopic programming, declaritiveness, and data independence.

There are a number of reviews of existing (integrated) database programming lan­
guages (DBI?Ls) . For instance, [79] contains an elaborate analysis of requirements on
the type system underlying object-oriented DBPLs together with a review of existing
DBPLs. The review was written as part of the TIGUKAT project [100] , which aimed
at developing a novel ODBS. TIGUKAT researchers proposed a novel object model
whose identifying characteristics include a purely behavioural semantics and a uniform
approach to objects. Research results of interest to this thesis include a type system for
object-oriented DBPLs [78] and a draft TIGUKAT user (query) language [81] . However ,
research has been terminated (in 1999, to the best of our knowledge) without address­
ing problems arising when including data creation and manipulation statements, and
programming language constructs into a behavioural database language.

Another, from a practitioners point of view, more interesting approach is presented
in [131] . The seamless integration of a query language with a programming language is
investigated . Thus, a foundation of a QL-centralised programming language according
to the traditional paradigms of the programming languages domain is built . Researchers
follow an extended approach to stack-based machines as known from classical PLs such
as Pascal.

This Stack-Based Approach (SEA) includes the SBQL language which is an untyped,
query-centralised language. A number of extensions have been proposed more recently,
introducing types [77] , object roles [54] and views [74] . While the TIGUKAT project
is based upon a powerful type system (resulting in implementation challenges and
performance problems as acknowledged in [78, pages 207-208]) , the SBA approach
rejects any type checking mechanisms that originate from type theory. Instead, a type
system consisting of a metabase, static stacks and type inference rules is proposed.
In addition , SBA lacks of any efforts that aim towards efficient evaluation . Concepts
such as concurrent processing, transactions and distribution are neglected by both
approaches altogether. Considering SBA, on one hand, we can summarise its main
contributions :

- It demonstrates the potential of combining the advantages of programming ab­
stractions and database programming to yield a powerful and universal language
design.

- An abstract machine model originating from the PL-domain has been extended to
suit the evaluation of both, QL constructs and PL abstractions.

- A stack-based query-centralised language SBQL is proposed. Operational semantics
are defined for atomic queries, compound queries, selection, projection, navigation,

16

1 . 1 . DATABASE SYSTEMS AND PROGRAMMING LANGUAGES Markus Kirchberg

path expressions, natural join, quantifiers, bounded variables, transitive closure,
ordering, null values and variants, assignments, and for each statements .

On the other hand, there are a number of shortcomings that must be addressed be­
fore incorporating this SBA approach into a full-fledged database management system.
These shortcomings include:

- It tightly couples SBQL to the persistent object store. A more modular approach
enabling a stack-based language to be used with a variety of object stores is desired.

- It does not aim towards efficiency. Operational semantics of SBQL language con­
structs are only based on basic algorithms. It is desirable to have a number of dif­
ferent implementations for each language construct available from which the most
suitable (e.g. efficient) one can be selected for execution on grounds such as the
objects involved, the configuration of the affected ODBS node(s) , and the current
system load (s) .

- It does not support simultaneous processing. Only a single stack-based machine,
which evaluates all SBQL statements in a serial manner, is defined . It is desirable
to have a collection of these machines that cooperatively execute requests that are
passed down from higher ODBS layers.

- It does not support the concept of transactions. It is desirable to execute operations
in a way that data consistency can be ensured. Thus, transaction support must be
taken into consideration.

- It does not support distribution. It is vital for the success of most systems nowadays
to operate in distributed computing environments, in particular for DBSs. For in­
stance, data should be stored at (or close to) the location it is used most frequently.
Thus, it is desirable to have a network of stack-based machines that cooperatively
(over many locations if necessary) execute DB operations.

- It is not suitable for large databases, as the stacks are main memory based. This
limits the size of objects and also restricts scalability of the ODBS. It is desirable to
support objects of any size. Most importantly, database systems and applications
have to be scalable to adapt 'easily' to changes in business structures, business
demands, customer demands etc.

In addition to the above, we consider the following decision , adopted more recently
in the SBA approach , as unfortunate:

- Widely accepted results originating from type theory are dismissed. In [52, page 1 1 J it
is stated that ' The notion that a type is a (possibly infinite) set of values and that a
variable of that type is constrained to assume values of that type is a misconception
and should be rejected ' . In our opinion, it is desirable to have a sound type system
from which values and (complex) objects are built . A lack of (strong) typing is
likely to result in low reliability and affects the productivity of programmers. The
necessity of typing together with discussions of related issues are underlined by a
large number of researchers, including [1 1 , 25, 79] .

Research results presented in this thesis will address these issues. In addition, a
number of more conceptual (and resulting implementational) challenges have to be
taken into consideration. These are discussed next.

17

1 . 1 . DATABASE SYSTEMS AND PROGRAMMING LANGUAGES Markus Kirchberg

1 . 1 . 3 Database Programming Languages vs. Conventional Programming
Languages

In order to support the majority of desired features and characteristics a system should
have to be referred to as an ODBS (as outlined earlier) , a number of issues have to
be considered that are dealt with differently when considering conventional OOPLs
and languages for ODBSs. These issues include the degree of encapsulation, treatment
of transient and persistent data, the interpretation of the notions of type, class and
inheritance, support of NULL values etc. Among others, [8, 19, 31 , 58, 61] contributed
to the discussion of these issues affecting the design and implementation of object­
oriented DBPLs. We will summarise the main issues next .

Database systems have mainly been built to support large bodies of application pro­
grams that share data. Thus, the main focus was on data. On the contrary, traditional
programming languages have focused on processing. Data storage and sharing only
played a minor role. As mentioned before, the latter has changed with the appearance
of OOPLs. However, differences still remain. While OOPLs evolve around the messages
an object accepts, DBMSs focus on persistence and data sharing (i .e . exposing both
structure and behaviour of objects) . Hence, encapsulation is interpreted differently.
Without relaxing the encapsulation property, support for ad-hoc querying, as known
from relational DBSs , cannot be carried over into an integrated object-oriented data­
base programming language. Atkinson et al. [8] suggests that supporting encapsulation
is essential but that it may be violated under certain conditions.

Another issue to consider is the interpretation of the term class . In fact , we also have
to include the notions of type and inheritance in this discussion. Considering OOPLs,
there is no common approach. While some languages support types, others support
classes or even both with various degrees of closeness (or separation if you prefer) .
There is a large body of research papers that discuss these different approaches. We
will not consider such OOPL issues in detail but rather refer the interested reader to
[25, 26, 30, 91] . Instead, we focus on differences between the ODBS domain and the
OOPL domain with respect to these notions. While types and / or classes serve as data
structuring primitive in both domains, they also serve as means of access to all objects
of a particular type or class in DBMSs. For instance, a user querying a DBMS expects
the ability to access all objects of type or class Person. In particular, ad-hoc querying
makes frequent use of this type of access. Such types or classes can be regarded as
(preferably system-maintained) collections of objects. This is not the case in OOPLs.
In fact , such a property is not desired in OOPLs. Not only does this make garbage
collection almost impossible5 it also has the potential to violate data abstraction. The
latter is true since objects become accessible through the type or class even though
they were meant to be hidden from the user (i .e . only accessible through an abstract
layer) . In addition, a type or class as collection approach does not make sense for all
type or class definitions. Imagine a type or class definition used in numerous application
domains. There might be no meaningful relationship between the respective objects.
Thus, a collection of these objects is not desired.

5 Garbage collection revolves around references. If there are no more references to an object, it can no longer
be accessed. Thus, it is garbage-collected. Having a type or class as collection approach always provides a
means of access to objects without using object references. Thus, we cannot collect garbage in the usual
sense.

· 18

1 .2 . CONTRIBUTIONS Markus Kirchberg

Support of inheritance is an essential feature in both communities. However, there is
no agreement on which types of inheritance are to be supported. While modern OOPLs
commonly support multiple interface inheritance (e.g. Java and C#) , there are numer­
ous discussions on whether multiple implementation inheritance has its advantages.
Most OOPLs (e.g. Java and C#) only support single implementation inheritance. Con­
sidering ODBSs, in particular, schema design, structural properties of multiple super­
types or -classes should be inheritable. Thus, multiple inheritance becomes a necessary
language feature. However, this introduces a number of (mainly) implementational chal­
lenges. Multiple implementation inheritance causes several semantic ambiguities. These
ambiguities (caused by the same class, say A, being inherited over two different paths)
fall into two classes: Replicated inheritance (i .e . two different copies of A's members
are inherited) and shared inheritance (i .e . A is shared between at least two classes,
one from each path) . The former ambiguity can be resolved more easily (i .e . through
renaming) than the latter.

Another issue concerns the life-time of objects. Persistence was always at the core
of DBSs in contrast to the PL-domain. Programming languages tended to rely on file
systems or DBSs to maintain long-term data. This, of course, resulted in a non-uniform
treatment of transient and persistent data. It is commonly accepted that persistence
should be orthogonal (i .e . each object , independent of its type or class, is allowed to
become persistent without explicit translation) [10 , 1 1 , 145] .

Further issues encompass the inclusion of NULL values and the different focus of
concurrency support . The former has only recently found its way into OOPLs, i .e . into
the second release of C#. The latter is commonly centred around transactions in DBMSs
(i .e . competition for resources) and around multi-threading in PLs (i .e . cooperation) .

1 . 2 Cont ributions

Research presented in this thesis is closely related to the development of a distributed
object-oriented database system [72] . The core of the physical system, that is the eval­
uation engine, of this ODBS is of particular interest . We will propose the language
iDBPQL that is used to program the evaluation engine and the corresponding run-time
environment that makes up the evaluation engine and executes iDBPQL programs. In
addition , we will briefly describe two prototype implementations accomplished during
the process of our research as proof of concept.

The fact that presented research results are linked to a bigger research project leads
to our first objective. We must achieve a sufficient degree of independence to ensure
that results are applicable to ODBSs other than our own. The proposed distributed
ODBS makes provisions for this undertaking by following a strictly modular approach.
We have enforced this objective in our approach. Among other things, the proposed
iDBPQL language is not tied to a particular conceptual data model nor is it tied to
a particular persistent object store. However, it cannot be denied that certain design
decisions made for the distributed ODBS have also found their way into the physical
system composed to effectively and efficiently drive this database system.

The first major contribution of this thesis is the proposal of the integrated database
programming and querying language iDBPQL. Driven by the desire to address concep­
tual and implementational challenges faced when integrating object-oriented program-

19

1 .2 . CONTRIBUTIONS Mar kus Kirchberg

ming principles and database environments, we have designed a language that includes
the following properties:

- It distinguishes between values and objects;
- It supports types (with user-defined type operations) that structure values and

classes (exposing both data and behaviour) grouping objects;
- It contains pre-defined collection types such as BAG, SET, LIST as well as the possi-

bility to add user-defined (collection) types;
- It introduces the ability to add the NULL value to any other existing type;
- It supports structural sub-typing;
- It provides a means of name-based access to all objects of (system-maintained)

class-collections;
- It supports (name-based) multiple inheritance;
- It allows for the definition of (static) domain and entity constraints;
- It adds a UNION-type that supports the unification of identical or similar objects ;
- It supports database schemata as collections of class and type definitions with their

corresponding objects and values;
- It allows any language entity to persist;
- It provides a mechanism to model blocks of atomic statements and (local and dis-

tributed) transactions;
- It enables the implementation of all types of behaviour through single concepts,

evaluation plans;
- It contains the usual assignment and control flow statements together with state­

ments supporting collections ;
- It supports common query expressions such as selection, projection, navigation,

ordering and various joins;
- It includes additional expressions such as two types of renaming expressions, quan­

tifier expressions etc . ; and
- It provides a means of specifying simultaneous processing explicitly.

The second major contribution addresses (operational) semantics and the implemen­
tation of the iDBPQL language. We propose its internal representation, a corresponding
run-time environment and interfaces of related ODBS components such as the persistent
object store, the transaction management system and remote communication facilities .
The run-time environment , together with iDBPQL metadata catalogues and ODBS
system interfaces, is then used to specify the evaluation of iDBPQL expressions, state­
ments, blocks, evaluation plans, and entire user requests. This specification is done in
terms of operational semantics. While outlining operational semantics of the iDBPQL
language, implementational challenges that stem from the integration of OOPLs and
DBPLs are addressed .

Our final contribution corresponds to proof of concept implementations. The fea­
sibility and practicality of the presented approach is demonstrated in terms of two
prototype implementations. An initial prototype that extends the SBA approach with
capabilities to process many transactions concurrently and function in a (virtual) par­
allel computing environment is introduced. The second, more sophisticated prototype
implements the proposed run-time environment and processes iDBPQL evaluation plans
in a single-node or distributed database environment.

20

1 .3. ASSUMPTIONS Markus Kirchberg

1 . 3 Assumptions

Throughout the 1980s and early 1990s, object bases have been advocated as the su­
perior database technology that will supersede relational database technologies. While
various object base implementations emerged during that time, these systems did not
'live up to their expectations' . Among others, this failure can be explained by developers
grounding their implementations on ideas that originated from relational technologies .
Apparently, the latter is not a suitable technology for the processing of large sets of
highly structured complex objects . In this thesis, we break with that school of thought
in order to avoid the repetition of the mistakes made in the 1 980s and 1990s. Instead,
we have been looking for alternative (including previously neglected) ways to approach
the integration of object-oriented programming and database technologies. In particu­
lar, research advances in the areas of programming languages, database programming
languages and compiler construction have been beneficial to this research .

The proposal of a new and novel approach for the development of a complete dis­
tributed object-oriented database system is a research problem large enough for a dozen
or more PhD theses. In order to achieve our particular research objectives, we have made
a number of assumptions. These include:

- User requests arrive in a form that is suitable for processing by the underlying
object base engine. That is, concepts such as user interaction , code compilation,
fragmentation and allocation , code optimisation, code rewriting, execution plan
generation etc. are beyond the scope of this thesis . Instead, we adopt a black box
approach and assume that user requests are 'magically' transformed into a suitable
form for request evaluation .

- Restricting our considerations t o the level of request evaluation implies that typical
high-level programming language concepts such as packages or modules, interfaces,
type and class definitions, classes (as code structuring primitives) etc. are left aside.
Those concepts, however, have to be considered when defining suitable high-level
language interfaces.
In order to assist with the readability and understanding of the language part
of this thesis, various syntactically rich language constructs have been introduced
in the proposed language. While it is not common to have a syntactically rich,
intermediate-level language, the final version of the proposed integrated language
will be less rich. But this does not mean that our efforts are wasted. Instead, most
of those richer concepts will find their way into a corresponding high-level language
once the envisioned ODBS environment has been finalised.

- The run-time environment that processes evaluation plans replies on the support by
other database components such as a persistent object store, a multi-level transac­
tion management system, caching mechanisms, and remote communication mecha­
nisms. While we describe the general functionality and service interfaces of corre­
sponding DBS components, it has to be acknowledged that there are still a number
of open research problems, which need to be addressed before those components
reach the necessary degree of maturity.

Assumptions are discussed in greater detail in the respective chapters. An overview
of open research problems can be found at the end of this thesis.

21

1 .4. OUTLINE Markus Kirchberg

1 .4 Outline

The remainder of this thesis is organised in six chapters. Chapter 2 provides an overview
of selected (database) programming and evaluation environments, and related research
contributions that had a significant impact on the ODBS and DBPL research commu­
nities. Subsequently, in Chapter 3, we present our approach to develop a distributed
ODBS that is based on a sound theoretical framework . The main focus is on how an in­
tegrated object-oriented DBPL fits into the envisioned ODBS. To assist this objective,
an overview of how user requests are processed is presented. Chapter 4 proposes the
intermediate-level, integrated database programming and querying language iDBPQL.
The main focus is on the language's design and characteristics. In a nutshell, iDBPQL
consists of metadata catalogues (holding transient and persistent entity definitions) ,
evaluation plans that represent behaviour implementations (such as the user request , a
type operation implementation or a method implementation) , and the iDBPQL library
(containing pre-defined language entities and their implementations) . The internal rep­
resentation of metadata catalogues and evaluation plans is presented in Chapter 5 .
In addition, service interfaces of ODBS components are outlined. These components
are used subsequently when the operational syntax of iDBPQL's language constructs
is presented. In Chapter 6, we discuss two prototype implementations that have been
created to verify the feasibility of the chosen approach and that serve as proof of con­
cept . F inally, Chapter 7 summarises this thesis and also provides an outlook for future
research.

22

Chapter 2

A Review of Database

Programming Languages and

Related Concepts

As previously mentioned, the Stack Based Approach has been used successfully to
seamlessly integrate querying constructs and programming abstractions into a uniform
database programming language. F irst, we introduce this approach in greater detail .
Subsequently, we will address other integrated languages and object-oriented (database)
environments that have made significant contributions to the respective research areas.

2 . 1 The Stack-Based Approach

Subieta et al . [131] investigates the 'seamless' integration of a query language with a
programming language. Thus, a foundation of a QL-centralised programming language
according to the traditional paradigms of the programming language domain is built . An
extended approach to two-stack abstract machines - known from classical programming
languages such as Pascal - is presented. This proposal includes definitions of an abstract
storage model, an abstract machine model , and semantics of query and programming
language operators that are defined through operations on these stacks. F igure 2 . 1
shows the relationship between data models and the abstract storage model.

[Data Model J

j
: Query in the :
: Data Model :

I . I
1 Query Adressmg the 1
1 Abstract Storage Model I
L - - - - - - - - - - - - 1

�
SBQL's Abstract r--L__ Machine Program

Storage Model

: Interpretation of rile Result :
in the Data Model

I
Fig. 2 . 1 . Relationship Between Data Models and SBQL's Abstract Storage Model ([131 , Figure 1]) .

23

2 . 1 . THE STACK-BASED APPROACH Markus ·Kirchberg

In the abstract storage model , objects are defined as triples < id, name, value > ,
where i d i s an internal object identifier, name represents its external identifier, . ancl'
value is either an atomic value, an identifier of another object or a �et of ·objects. ·A
database instance is viewed as a set of objects that satisfy the referential integrity .
constraint .

The abstract machine model introduces two stacks. These are the environment stack
ES and the query result stack QRES. The environment stack deteri:nimis scoping
and binding1 . ES never stores objects directly, instead it only holds (collections of)
references to objects. The query result stack is a storage for intermediate results, used
either for the evaluation of query operators or for the evaluation of arithmetic-style
expressions. Results are represented as tables, which are bags of atomic values and
internal object identifiers.

Semantics of operations are part of the proposed language SBQL (Stack-Based
Query Language) . It is an untyped, query-centralised programming language in the
4GL style. Evaluation of SBQL operations is performed by a single machine. The state
of this machine is defined by the current database instance, ES and QRES. Seman­
tics of SBQL operations are defined using top-down recursion in accordance with the
respective query tree. In particular, semantics are defined for the fol lowing operations:
Atomic queries, compound queries (using both algebraic and non-algebraic operators) ,
selection, projection , navigation, path expressions, natural join, quantifiers, bounded
variables , transitive closure, ordering, null values, variants, assignments, and for each
statements. In addition, remarks are provided on how to deal with procedures, classes,
class inheritance, methods, and encapsulation. As an example, let us consider oper­
ational SBQL semantics for the navigational join [131 , pages 33 and 34] in greater
detail .

EXAMPLE 2 . 1 . SBQL supports only a single join operator, which is the navigational
join. Its operational semantics are defined as follows:

01 procedure evaL (query : string) ;
02 begin
03
04 if query is recognised as q1 t><l Q2 then

11 the ma�n eval procedure

05 begin 11 commence evaLuation of a navigationaL join
06 var RESUL T : Table ; 11 define resu L t variab L e as a tab L e
07 RESULT := 0 ; 11 ini t i a L ise resu L t variab L e
08 eva L (q1) ; I I eva Luate Ql expression
09 for each r E top (QRES) do I I for each row of the resu L t of Ql do
10 begin
1 1 push (ES , nes ted (r)) ; I I open a new scope on ES
12 eva L (q2) ; I I eva Luate q2 expression
13 RESULT : = RESULT U (r. 181 top (QRES)) ; I I join and add t o resu L t
14 pop (QRES) ; I I c anc e L the resu L t of Q2
15 pop (ES) ; I I res tore the previous s t a t e of ES
16 end ;

1 Binding refers to the association between two things, such as the association of values with identifiers.
Binding is closely related to scoping. In fact, scopes decide when binding occurs. In most modern PLs,
the scope of a binding is determined at compile-time (i .e. static scoping) . Alternatively, binding may be
dependent on the flow of execution (i .e . dynamic scoping) .

24

2.2 . OVERVIEW OF DB P ROGRAMMING ENVIRONMENTS Markus Kirchberg

17 pop C QRES) ;
18 push (QRES , RESULT
19 end ;
20 else . . .
2 1 end (* eva L *) ;

) ;
11 cance L the resu L t of ql

11 compose resu L t

r. denotes a single-row table from the row r . 0 denotes the horizontal composition of
bags. D

The SBA approach has been implemented in the LOQIS system [1 29] .
More recently, this SBA approach has been refined (refer [130]) . In contrast to the

earlier approach, it now supports a hierarchy of object store models ranging from a
simple version (called MO) , which covers (nested-) relational and XML-oriented DBSs
to higher-level object store models covering classes and static inheritance (in the model
known as M1) , object roles and dynamic inheritance (in the model known as M2) , and
encapsulation (in the model known as M3) . In addition, a number of extensions have
been proposed introducing types [52 , 77] , object roles [54] and views [74] . However, the
shortcomings outlined in Section 1 . 1 . 2 still apply.

2 . 2 Overview of Existing D atabase Programming

Environments

While the SBA approach is of particular interest to our research, there are numerous
research findings that have influenced the iDBPQL proposal. In this section , we intend
to provide a brief overview of research results that are important to the DBPL research
community and, in particular, to our research.

In general, there are two approaches to develop ODBSs. On one hand, a type system
from an existing OOPL can be adopted and then extended to include concepts vital
for DBSs. On the other hand, research may start by proposing a new, purpose-built
object model . For instance, the former approach has been adopted by the DBPL project
(which is based on Modula-2) , ObjectStore (which is based on C++) and Gemstone
(which is based upon Smalltalk) . The latter approach has been more popular among
research prototypes such as 02 , SBA, TIGUKAT, and iDBPQL.

Persistence is a property not commonly supported by main stream programming
languages. Thus, a large body of research has been devoted to address this shortcoming.

Next , we will introduce selected DB programming environments and important re­
search contributions in more detail .

2 . 2 . 1 The Database Programming Language DBPL

The Database programming language DBPL [1 15] integrates programming abstrac­
tions and querying constructs by extending the Modula-2 [144] system programming
language. Main extensions include the addition of bulk data management (through
a bulk type constructor for ' keyed sets ' or relations) , access expressions (for access­
ing relational variables) , persistent modules (by extending Modula-2 's modularisation
mechanism with a special DATABASE MODULE construct) , and transactions (as special
procedures) .

25

2 .2. OVERVIEW OF DB PROGRAMMING ENVIRONMENTS Markus Kirchberg

While DBPL is not an object-oriented language, it still had a major impact on
the development of object-oriented database languages. It demonstrated the feasibility
and practicality of a database programming language that has been designed to ad­
vocate simplicity and orthogonality. In addition, DBPL supported an implementation
(procedure) type, but without incorporating a notion of methods.

2.2.2 The 02 Object Database System

The 02 object database system [14] has been developed in the late 1980's and 1990's.
Starting from various (research) prototype systems, 02 became one of the most suc­
cessful commercial object base systems by the end of the 1 990's. The main objective
underlying the development of 02 was to build an environment for data intensive ap­
plications that integrates the functionality of a DBMS, a programming language, and
a programming environment .

02 distinguishes between values and objects. Each value has a type, which describes
its structure. Pre-defined primitives are associated with types that may be invoked upon
corresponding values. Besides atomic values, sets, lists and records are supported. Ob­
jects belong to classes, have an identity and encapsulate values and user-defined meth­
ods. A class has a name, a type and a set of methods. Classes and types are partially
ordered according to an inheritance relation. Multiple inheritance is supported. Persis­
tence is user-controlled. An 02 schema consists of classes, types, named objects and
named values. A query language that uses the distinction between objects and values
and the existence of primitives to manipulate structured values has been designed.

The 02 object base contains the 02 object manager [138] that is concerned with
complex object access and manipulation, transaction management, persistence, disk
management , and distribution in the adopted server j workstation environment . The
object manager is divided into four layers :

- A layer that supports the manipulation of objects and values as well as transaction
control;

- A memory management layer;
- A communication layer executing object transfers, execution migration, and appli-

cation downloading; and
- A storage layer, on the server, provides persistence, disk management and transac­

t ion support.

Applications correspond to system processes. For every application there is one
process on the workstation and one (mirror) process on the server. The lock table, the
buffer and the object manager's memory are shared among all processes.

2 .2.3 The Object Base Management System TIGUKAT

The TIGUKAT project [100] has been another attempt at developing a novel ODBMS
that integrates object-oriented concepts with database systems. Characteristics of this
approach include a purely behavioural object model (i .e . user interactions only happen
through behaviour invocations) , a uniform object model (i .e . everything is a first-class
object ; there is no separation between objects and values) , and the vision that this

26

2.2. OVERVIEW OF DB PROGRAMMING ENVIRONMENTS Markus Kirchberg

uniformity property is extended to other system entities such as queries, transactions
etc . Research started by investigating requirements of OOPLs, DBPLs and ODBSs.
The selection of requirements was mainly theory-driven . As a result, numerous desired
properties that are not commonly found in practical systems even within the respective
domain have been added. For instance, support of multi-methods and parametric poly­
morphism together with inclusion polymorphism is uncommon even in today's OOPLs
due to their complexity and associated implementation challenges. Leontiev et al . [79]
outlines all identified requirements in more detail and also proposes ten tests that may
be used to verify whether or not an object-oriented type system satisfies some or all
of the desired properties. Leontiev [78, page 206] already acknowledges the complexity
and difficulty of meeting the outlined set of requirements: '[. . .] the desired combination
of features remains elusive in that no type system, theoretical or practical, exists in a
programming language or proposed, has all the features necessary for the consistent and
uniform treatment of object-oriented database programming. ' . In the same article [78] ,
a corresponding type system is proposed that passes all ten tests . While theoretical
correctness was proven, practical verification or prototyping remained unaccomplished.
Among other things, the complexity of verification algorithms is assumed to be expo­
nential .

The TIGUKAT research project was terminated (in 1 999, to the best of our knowl­
edge) without addressing problems that arise when data creation and manipulation
statements, PL constructs, transactions and distribution are included into the pro­
posed behavioural DBS language. Nevertheless, this research project not only provides
an extensive review of existing database and system programming languages, but it
also influenced our research. In particular, the shape of parts of TIGUKAT's type sys­
tem hierarchy and the adopted approach to class-based object access has affected the
respective concept in the proposed language iDBPQL.

2.2.4 The Parallel Database Programming Language FAD

The Franco-Armenian Data Model (FAD) has been designed for highly parallel da­
tabase systems. Besides query operations, the optimisation of programming language
constructs, in terms of utilising parallelism, is considered to enhance system perfor­
mance . The language FAD is presented in [13] . FAD provides a rich set of built-in
structural data types and operations. It operates on sets and tuples, which can be
nested within each other to an unlimited degree. FAD operators mainly utilise pipelin­
ing and set-oriented parallelism. For instance, a f i lter operator is proposed targeting
sets. In addition, a pump operator, which supports parallelism by a divide and conquer
strategy, targets aggregate functions. Both operators have i nfluenced how iDBPQL
supports simultaneous processing.

FAD was later extended [51] with communication primitives, in particular with
asynchronous message passing mechanisms. The resulting language is called PFAD,
which i s restricted to a shared-nothing, distributed model of execution .

27

2.2. OVERVIEW OF DB PROGRAMMING ENVIRONMENTS Markus Kirchberg

2.2 .5 Additional Relevant Research Results on Database Programming
Languages

The Object Database and Environment (ODE) [2] is based on the C++ [128] object
paradigm. C++ classes are used for both database and general purpose manipulation.
ODE provides its own database programming language 0++ [1] , which allows the
definition, querying and manipulation of ODE databases. Persistence is modelled on
the 'heap ' . In particular, memory is partitioned into volatile and persistent. Volatile
objects are allocated in main memory (on the heap) . Persistent objects are allocated in
the persistent store. An ODE database is a collection of persistent objects. Each object
is identified by a unique object identifier, which is realised as (persistent) pointer to a
persistent object .

PS-Algol [9] is an experimental language, which demonstrates that persistence can
be achieved regardless of type. It is considered to be the first programming language
that supports this orthogonal persistence property.

The support of orthogonal persistence is strongly advocated, especially for DBPLs.
Among others, [10, 1 1] underline this importance. Three principles of persistence are
outlined ' that should govern language design:

- Persistence should be a property of arbitrary values and not limited to certain types.
- All values should have the same rights to persistence.
- While a value persists, so should its description (type). ' [1 1 , page 109]

In addition, [11] also advocates the support of type completeness (i .e . all data types
should be of equal status) and adequate expressive power (i .e . computational power,
database manipulation and database access) .

This need for orthogonal persistence is reinforced in [10] . Technologies required to
support orthogonal persistence are presented. These include a stable and reliable per­
sistent object store, implementing persistence by reachability and type-safe linguistic
reflection as defined in [126] .

Napier88 [93] is a persistent programming system that supports orthogonal per­
sistence and type completeness. In contrast to its predecessor, PS-algol, the Napier88
system consists of its own, special-purpose built N apier88 language and a persistent
environment . As such, it uses objects within the persistent store.

In Napier88, the philosophy that types are sets of values from the value space is
adopted. This is in accordance with research results obtained in type theory (e .g. refer
to [27]) .

Concurrency is provided by threads and semaphores for co-operative and competi­
tive concurrency, and designer transactions.

The Napier88 system is designed as a layered architecture consisting of a compiler,
the Persistent Abstract Machine (PAM) and persistent storage architecture. Multiple
incarnations of persistent stores and activations of the PAM are supported. However,
only one PAM incarnation may work on one persistent store at any one time.

28

2.2 . OVERVIEW OF DB PROGRAMMING ENVIRONMENTS Markus Kirchberg

Fibonacci [5] is an object-oriented database programming language, which is based
on the Galileo language [4] . Its main contribution is the proposal of three orthogonal
mechanisms: Objects with roles, classes and associations.

Objects are encapsulated entities that can only be accessed by method invocation.
Objects are grouped into classes. Internally, objects (e.g. persons) are organised as
acyclic graphs of roles (e.g. students and academic staff members) . An object can only
be accessed through one of its roles. Also, the associated behaviour depends on the role
used to access the object . This enables a person to be both a student and an academic
staff member (without supporting mul tiple inheritance on the level of objects / classes) .
Associations relate objects that exist independently. In fact , they represent modifiable
n-ary symmetric relations between classes.

Considering database functionality, Fibonacci supports common concepts such
as persistence, transactions, queries, and integrity constraints. In addition, a modu­
larisation mechanism is provided enabling the structuring of complex databases in
interrelated units, and for the definition of external schemata.

The Java [46] application programming language has become the most popular
object-oriented language to date. There are numerous languages derived from Java,
such as Orthogonally Persistent Java (PJava) [12] . PJava extends Java by supporting
the three principles of persistence as outlined earlier. Persistence is achieved through
promotion . As the first object of a class is promoted, so is its class and all classes
that are used to define it. Thus, the promotion algorithm maintains reachability
(sub-)graphs.

In addition, research results from our own research group are incorporated in Chap­
ter 3. Findings from other researchers that relate to a particular iDBPQL concept (e.g.
support of NULLable types, union types and simultaneous processing) , related ODBS
components (e.g. the persistent object store and the multi-level transaction manage­
ment system) and further implementation-specific issues are stated when the corre­
sponding concepts are to be discussed.

29

2.2 . OVERVIEW OF DB PROGRAMMING ENVIRONMENTS Markus Kirchberg

30

Chapter 3

An Integrated Approach to

Database Programming and Query

Languages for Distributed Object

Bases

The work presented in this thesis forms part of a bigger research project [72] , which
aims at developing a distributed ODBMS that is based on a sound theoretical frame­
work. In this chapter, we will briefly cover the scope of this research project . After
summarising challenges that have to be faced, we present an overview of the proposed
ODBS architecture and, then, introduce selected concepts that are most relevant to this
thesis in greater detail. In this process, we will see how an integrated, object-oriented
DBPL fits into the envisioned ODBS.

Another aim of this chapter is to provide an overview of how user requests are
processed. Main focus will be on the mapping of such requests to the ODBS component
performing the evaluation [69] .

3 . 1 A D istributed O bject-O riented Database System

The architecture of a distributed ODBS that is based on a sound theoretical framework
is presented in [72] . While a large number of ODBSs have been proposed and imple­
mented, a significant amount of fundamental problems have not been addressed fully.
The latter, together with support for distribution, are the main focus of this research.

As mentioned in Section 1 . 1 , the lack of standard object semantics was and still is
one of the main disadvantages of ODBSs compared to commercially successful (object­
) relational DBSs. Research in the last two decades has investigated complex values (i .e .
data constructed by various type constructors) and references between data - which
in fact lead to infinite, yet finitely representable structures. The Object-Oriented Data
Model (OODM) [1 14] allows these different aspects to be combined. Starting from an
arbitrary underlying type system, a schema is defined as a set of classes, each of which
combines complex values and references . Thus, the theory of that data model can be
tailored according to the underlying type system. This has been utilised in [109] in
order to define a generic query algebra.

31

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM Markus Kirchberg

In order to satisfy the identified needs, it is a natural idea to develop a distributed
database system based on this OODM. The first problem that has to be addressed
is the distribution of the data. The fragmentation and allocation of OODM schemata
have recently been addressed [86 , 87, 1 10] . The result of fragmentation and allocation
will be still an OODM schema, but each class will be allocated to exactly one node ­
or in the case of replication several nodes - of a network. As a consequence, each global
object, which corresponds to the original schema, is represented by one or more local
objects that correspond to the fragmented schemata. The term ' local' simply means
that these objects together with all their sub-objects are physically located in the same
ODBS node.

However, the structure of these local objects is still complex, whereas efficient storage
and retrieval will require the provision of just records stored on pages. This implies a
further decomposition of objects as we move closer to the physical storage. As a result ,
we obtain multiple levels of objects . The existence of multiple levels of objects allows
the exploration of the concept of multi-level transactions [6, 16 , 1 1 1 , 141 , 142] . Multi­
level transaction schedulers take advantage of the fact that many low-level conflicts
become irrelevant , if higher-level operation semantics are taken into account .

The multiple object levels are also reflected in the operational system, which utilises
the ideas of stack-based abstract machines [131] to implement database functionality.
However, these machines have to be extended in a way that they:

- Communicate with each other including communication via remote object calls;
- Run simultaneously;
- Are coupled with the transaction management system, the persistent object store

and the caching module; and
- Reflect the operations on higher levels of the DBS.

A number of additional problems arise. These include the transformation of high­
level queries and operations to the level of stack-based machines. For this, we utilise
linguistic reflection [125, 126] . We provide a macro language, in which the high-level
constructs in transactions such as generic update operations and the high-level algebra
constructs for querying can be formulated. In [124] it has been shown how linguistic
reflection can be used to expand such macros for the case of query algebra constructs .
In [1 13] linguistic reflection has been applied to expand macros for generic update
operations.

Next , we will introduce the architecture of a corresponding distributed ODBS
(DODBS) in more detail. This is then followed by a discussion of some high-level
concepts that are important to this thesis.

3 . 1 . 1 Architecture Overview

In this section, we provide a more detailed overview of the architecture of the dis­
tributed object-oriented database system as introduced in [72] . Figure 3 . 1 illustrates
this architecture. Similar to most modern DBSs, the proposed system has a layered
internal architecture. Each layer has an interface that provides services invoked by the

32

3 . 1 . A DISTRJBUTED OBJECT-ORJENTED DATABASE SYSTEM

� Client Applications I l Client Applications

(local to an ODBS node) I (remote)

� _i 1 t t /////7 \ \ I I
Sharl M\mo/' j· ...)/////s, ...

' , ,
Support of DBS Access Libraries (e.g. Shared Memory, Named Pipes, ...)

DBS User Interfaces (e.g. Dialogue Objects)

Requests (queries I method invocations) on complex jJ. 11
objects that correspond to global schemata

Request Processing Module ._ _ _ 1
I
I

Support of OODM (DB, Schema, Class, Object, . . .) I
I

Fragmentation and Allocation I

Request Evaluation (Parsing, Optimisation, . . .)
I
I
I

Optimised evaluation plans of operations and method calls Jj. 11 I
I

on complex objects that correspond to schema fragments I
I
I

Reflection Module I
I
I

Support of Generic Operations (Generalised Insert, Update, Delete, ...) I
I
I

Evaluation plans with macros on complex li 11 I
I

objects that correspond to schema fragments I (I) � I

Request Evaluation Engine I < Remote Object Calls

Transaction Distribution of (Sub-)Requests I

Management (2) I
Exploration of Parallelism - - ,

System • Evaluation of Queries and Methods
I
I
I

Support of Multi-Level I
Requests of simple, local objects li 11 I

Transactions (i.e. persistent data or methods) I
I

Concurrency Control I

- Local, Distributed Persistent Object Store - - J

and Replicated
Support of Direct, Associative and

Recovery Navigational Access

Requests of records that store simple data Jj. 11
objects or persistent method fragments

Caching Module - - - (3)
Synchronisation Support

Replication M anagement Support of Record and Page Operations

Buffer Management

Requests of pages to be cached in main memory jJ. 11
Storage Manager

Management of Persistent Storage

Requests of (contiguous) disk blocks that make up a page li 11
Persistent Storage

ODBS Node

(I) Distribution of parts of evaluation plans that are scheduled to be executed on remote ODBS nodes

Markus Kirchberg

N

e

t
w
0
r
k

Request Evaluation
Engines (REEs) can
communicate only with
REEs on other ODBS
nodes (in the same
network).

(2) Overlooks (i.e. synchronisation and serialisation of) database operations on local, distributed and replicated resources

(3) Requests to access I store data items (e.g. indices) that are cached (on pages) by the Cache Manager on behalf of a higher level module

Fig. 3 . 1 . Architecture of the Distributed Object-Oriented Database System.

33

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM Markus Kirchberg

layer above it to implement their higher-level services. The DODBS consists of a col­
lection of 0 D BS nodes (or 0 D BS instances) that process client application requests
cooperatively. In Figure 3. 1 , modules (or components or layers if you prefer) are out­
lined together with the core functionality they provide. Also, the linkage between these
modules is shown. Comments are added outlining how requests are passed downwards.
Next , we introduce these modules in more detail starting with the persistent storage:·

The Database (DB) can be seen as a collection of physical objects (i .e . disk blocks)
stored on a collection of persistent storage devices. These objects can be accessed ·

through the Storage Manager, the lowest layer of the distributed DBMS software. It
deals with disk space management and supports efficient access to physical objects.
Thus, a set of routines is provided to enable higher layers to allocate, deallocate, read,
and write pages (i .e . a fixed number of disk blocks) .

The Caching Module (also referred to as the Buffer Manager) maintains those pages
in main memory. It partitions the available main memory into segments that hold
collections of pages of the same fixed size (e.g. 8 KB, 16 KB, 24 KB, or 32 KB) and
the same type (e.g. data pages or index pages) . The collection of these segments are
commonly referred to as the buffer pool. In addition, the caching module employs page
replacement policies that aim to predict which pages are accessed next . Those pages
can then be loaded into / kept longer in main memory. Thus, response times of page
requests decrease if predictions are correct .

Besides page management in main memory, the caching module also supports the
concept of records. Records are arranged on pages. Records that are commonly accessed
together are mapped to the same page (whenever possible) . Since multiple records are
stored on a single page, record operations have to be synchronised. This is done by
using short-term locks (i .e . latches) .

The caching module has two well-defined interfaces: The page interface and the
record interface . The page interface is available to all higher layers. Among others, it
is used to store operational, organisational and auxiliary data (e.g. the transaction log,
navigational access and associative index structures, lower portions of stacks of abstract
machines etc.) persistently. The record interface is used for all (database) data requests.
It is available only to the module on the next higher layer, the Persistent Object Store
(POS) .

POS provides another level of abstraction by supporting storage objects. Storage
objects are constructed from records and have a unique (storage) object identifier.
POS maintains direct physical references between storage objects, and offers object­
related, associative and navigational access to these objects. Access refers to the linkage
between storage objects in order to reconstruct objects of a more complex structure.
Object-related access refers to direct object access using object identifiers. Associative
access means the well-known access via key values. Navigational access is related to the
propagation along physical references. Section 5 .2 . 1 discusses related concepts and also
describes a corresponding prototype implementation in more detail.

The Request Evaluation Engine (REE) resides on top of POS. Actually, it is the
module that executes client application requests as passed down from higher layers .
This module is the focal point of this thesis. The REE employs a large number of agents
that - cooperatively whenever possible - perform the work that applications request.
Agents are realised as threads. The collection of agents that cooperatively evaluate an

34

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM Markus Kirchberg

application request , on a particular DODBS node, belong to the same process. Within
a process, agents are classified according to their role (i .e . master or slave) . The layer
of REEs is the lowest layer in the distributed DBMS that is aware of distribution.

Agents are designed to evaluate requests (i .e . requests formulated in iDBPQL) on
locally or remotely stored objects. They utilise distribution and multi-threading, sup­
port the concept of (distributed) transactions and further optimise the processing of
requests .

The existence of multiple object levels enables us to take advantage of a more
sophisticated Transaction Management System (TMS) . It is based on the multi-level
transaction model [16 , 141 , 142] . The transaction management system controls the
execution of operations performed by REE agents and by POS. Hence, it ensures local
and global serialisability. In general, a TMS consists of two components, the Transaction
Manager and the Recovery Manager. The transaction manager takes advantage of 1)
benefits resulting from the detection of pseudo-conflicts (i .e . conflicts that do not stem
from a higher-level conflict) , and 2) the fact that serialisabili ty of a multi-level schedule
can be achieved by serialising concurrent operations (also called sub-transactions) level­
by-level . Hence, different level-specific concurrency control protocols can be employed.
The recovery manager guarantees atomicity, durability and data consistency. This is
achieved by maintaining local logs reflecting all updates to objects on all levels, by
supporting complete and partial undo-operations of (sub-)transactions, redo-operations
of (sub-) transactions, crash recovery etc. The ARIES/ML recovery mechanism [66, 1 1 1]
is used to provide this functionality. It is an extension of the well-known ARIES recovery
algorithm [92] to multi-level systems. Section 5 .2 .2 discusses related concepts and also
describes a corresponding prototype implementation in more detail .

On the logical level, data is described in terms of a data model. The proposed system
is based on the generic object-oriented data model (OODM) [1 1 4] . It considers objects
as abstractions of real world objects. The OODM distinguishes between values and
objects. Every object consists of a unique, immutable identifier, a set of (type, value)­
pairs, a set of (reference, object)-pairs and a set of methods. The OODM is based
on any arbitrary underlying type system. Types are used to structure values. Classes
serve as structuring primitives for objects having the same structure and behaviour. A
schema is given by a collection of classes. The operations provided by the underlying
type system plus a single join operator allow to define a corresponding generic query
algebra. Section 3 . 1 . 2 introduces the OODM in more detail .

In order to support distribution, certain fragmentation techniques are employed.
These are splitting, horizontal fragmentation and vertical fragmentation. For this pur­
pose, classes are considered. Each class is assigned to exactly one DODBS node - or
in case of replication, to several DODBS nodes - in a network. Hence, fragmentation
decomposes the global objects that correspond to the original schema into several lo­
cal objects that correspond to the fragmented schema. Having fragmentation and a
class / node relationship, we still have to allocate the fragments - including fragmented
methods - to the corresponding DODBS node(s) . Section 3 . 1 .3 discusses fragmentation
techniques in more detail.

Objects resulting from the fragmentation process do not correspond directly to ob­
jects as processed by REE agents. Furthermore, high-level queries, transactions, object
methods etc. need to be translated into a language that can be interpreted by these

35

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM Markus Kirchberg

agents. This conceptual gap between the logical OODM-level and the REEs is bridged
by the Reflection Module . It supports linguistic reflection. A macro language is provided,
in which the high-level constructs in transactions (e.g. generic update operations and
the high-level algebra constructs for querying) are formulated. Section 3 . 1 .4 discusses
reflection in more detail .

The Request Processing Module (RPM) supports the OODM, fragmentation and
allocation as discussed above. In addition, a request optimiser, which produces an
evaluation plan for executing the user request, is employed. This evaluation plan (think
of a blueprint for implementing the user request) is then passed to the reflection module,
which replaces high-level constructs by macros. REEs will then use this evaluation plan
with macros to evaluate the user request.

The internal representation of objects, data distribution, transactions etc . are hidden
from the user. This is realised through user interfaces. In general , transactions started
by a user will involve different operations on various classes. For instance, the work in
[1 1 2] provides a mechanism to integrate the interface with the database. This is done
by defining dialogue classes . Corresponding dialogue objects are defined by extended
views. These dialogue objects can be created anywhere in the network. Initiating an
operation associated with such a dialogue object would result in the execution of a top­
level transaction. In this thesis, we will not directly focus on such high-level interfaces.
Instead, in Section 3 .2 , we will outline our assumptions on how user requests arrive at
a particular ODBS node and how they will then be processed.

3 . 1 .2 Properties of the OODM

In the OODM [1 14] a database schema is a finite set of classes. Based on the fundamental
distinction between general abstractions called values and application-dependent ab­
stractions called objects, the OODM distinguishes classes from types [15] . Types can
basically be seen as denoting sets of values1 . Thus, we provide an underlying type sys­
tem, e.g. t = b I x I (a1 : t 1 , . . . , an : tn) I {t} I [t] I (t) (using abstract syntax) . Here,
b represents any collection of base types including one type ID to be used for object
identifiers, and at least one further type. x represents type variables. (·) , { - } , [·] and (-)
provide constructors for tuple, set , list and multi-set (i .e . bag) types, respectively.

Given any type system, the structural part of a class C is defined by a structure
expression expc , which results from a type without occurrence of ID by replacing all
type variables Xi by references ri : Ci with reference names ri and class names Ci ,
and by the set of super-classes . Therefore, the class names appearing in references and
super-classes must be defined in a schema.

The behavioural part of a class is defined by operations (i .e . methods that may be
invoked on any object of this class or its sub-classes) that are associated with the class.
Such operations are defined using the usual control constructs of imperative languages .

In order to define databases over a given schema, we also need the representation
type Tc for a class C, which is simply obtained from expc by replacing the references
by the type ID . Then, in a database V each class C of the schema is represented by
a value V(C) of type { (id : ID, val : Tc) } (i .e . by a finite set of identifier-value pairs) .

1 This is not completely correct according to the existence of type polymorphism as discussed in [27, 91] .
However, for our purposes here this view suffices.

36

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM Markus Kirchberg

Clearly, we have to require some constraints to be satisfied: Uniqueness of identifiers,
inclusion integrity with respect to super-classes, and referential integrity with respect
to references.

However, there is another important requirement on databases called value­
representability, a necessary and sufficient condition for the existence of generic update
operations and the unique identifiability of objects. To explain this property, assume
that for each (i, v) E V(C) , we expand the value v into a rational tree [33] , i .e . whenever
an identifier i' occurs within v and this identifier corresponds to the reference r : C' ,
then we replace i' in v by the unique value v' such that (i ' , v') E V(C') . This results in
an infinite, yet finitely representable tree . The '!j;-terms in [3] provide an example for
such a finite representation. Value representability requires these rational tree values
to be unique within each class . For formal details, we refer the reader to [1 14] .

Notes on the Choice of the Data Model. The advantage of the OODM over other
object models is the orthogonality of the type system, i .e. types can be arbitrarily
nested. In particular, object references can appear deeply inside these nested structures,
whereas in many other approaches, such as the ODMG model [28] , the object model
only supports attributes, which are either linked to types or to classes. In this way
only types with an outermost record-constructor will be supported , and references can
only appear directly inside this outermost constructor. This type orthogonality leads
to a simple and handy, but very powerful structure that can be used equivalently to
object identifiers, the structure of rational trees [33] . In particular, rational trees can be
used to characterise value-representability as a desirable property of schemata, which
becomes necessary for generic updates [1 14] , and they can be used to define generic
query algebras that can be parameterised by the type system [109] . This grounding
in a solid mathematical theory enables one to identify theoretical challenges. Their
solution may tell us which restrictions, for the sake of practical feasibility, should be
requested - instead of starting with such restrictions in the first place.

3 . 1 .3 Fragmentation

In order to support distribution of an object base we have to fragment the underlying
OODM schema. The works in [110] and in [86] generalise horizontal and vertical frag­
mentation from the relational data model to the OODM. In addition, a third kind of
fragmentation called split fragmentation is introduced .

Split fragmentation is based on the simple split operation, which replaces a class
by two new classes, one referencing the other. Suppose the schema contains a class C
and the structure expression exp occurs within the structure expression exp0. Then we
simply add a new class C' with expc' = exp to the schema and replace exp in expc by
a new reference r' : C' .

The generalisation of horizontal fragmentation is also straightforward. According
to the definition of databases for an OODM schema, each class C will be associated

n
with a set of pairs. Hence, we may partition this set into V(C) = U CJcp; (V(C)) with

i=l
disjoint sets CJcp; (V(C)) . The fragments CJcp; (V(C)) are obtained by operations of the
query algebra.

37

3 . 1 . A DISTRIBUTED OBJECT -ORIENTED DATABASE SYSTEM Markus Kirchberg

We then replace C in the schema by n new classes Ci , all with expc; = expc .
However, as there may be classes D referencing C, i .e . r : C occurs within expD ,
we have to replace this reference as well . This is only possible, if the type system
provides a (disjoint) union type constructor so that we can replace r : C in exp D by
(a1 : r1 : C1 , . . . , an : rn : Cn) with new pairwise distinct reference names r1 , . . . , rn .

For vertical fragmentation of a class C we assume that the outermost constructor
in the structure expression expc was the record type constructor, say expc = (a1 :
exp1 , . . . , an : expn) · As for the relational data model , we would like to replace C by new
classes cl , 0 0 0 ' ck with expci = (ai : expiu 0 0 0 ' a� : expin .) such that {al , 0 0 ° ' an } = ' ' k
U { ai , . . . , a�; } holds, and for any database V we can reconstruct V(C) by joining the
i=l
projections nx; (V(C)) .

There are two more problems we have t o b e aware of. The first concerns the han­
dling of references to the class C, say r : C in some expD . The second problem con­
cerns the preservation of value representability. In relation to the first problem, the
easiest solution is to replace r : C in each expD by a new structure expression with
an outermost record constructor and new references r1 , . . . , rk , i .e . replace r : C by
(b1 : r1 : C1 , . . . , bk : rk : Ck) ·

The second problem is a bit more tricky. We must require that at least one of the
new classes Ci is value-representable. As the new classes will use all the same object
identifiers, i .e . we always have (i , vj) E V(Cj) , we could replace r : C simply by r : Cio
choosing one of the new classes that is value-representable. The selected class Cio must
become a super-class for all the other new classes .

As to the operations associated with a class C, the fragmentation of the class will
require to 'fragment ' the operations as well . In the case of vertical fragmentation, each
assignment will lead to several assignments with method calls among them. If the
fragments are allocated to different nodes of the network, these method calls will become
remote object calls.

3 . 1 . 4 Linguistic Reflection

In general , database requests correspond to user-issued transactions and queries. These
transactions and queries will involve the complex operations of the query algebra, e.g.
the generalised join and generic update operations (i .e . insert , update and delete) .
Each of these operations requires the analysis of the schema and the computation of
the required types. It is known that both joins and generic updates are not parametric
operations [113 , 1 24] . In order to realise such complex operations, we apply a technique
called linguistic reflection. We will consider these operations as macros for operations.
Then the purpose of linguistic reflection is to expand these macros and to replace them
by ordinary operations.

The basic idea of linguistic reflection is to use reflection types such as S CH EM Arep ,
CLASSrep, TYPErep , METHODrep, COMMANDrep etc . for the representation of
abstract syntax expressions depicting schemata, classes, types, methods, commands
(method bodies) etc . , respectively. For each of these types, there exists a function raise ,
which associates a true schema, class, type etc . , respectively, with the corresponding
syntactic expression.

38

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM Markus Kirchberg

In particular, the macros for the complex query and update operations will first turn
the classes, types etc . , for which they are to be defined, into values of the corresponding
reflection types. This is the effect of applying the operation drop . Then the computation
will be performed on these values of the representation types. Finally, the result will be
raised, which generates actual (low-level) operations. For technical details of reflection,
we refer the reader to [1 13, 124] .

3 . 1 . 5 A Simple University Application

Let us consider an example of an OODM database schema and corresponding fragmen­
tation specifications. We will continuously revisit and refine this example throughout
the thesis . Among other things, this will demonstrate how the conceptual specifications
are represented and used at the layer of REEs.

EXAMPLE 3 . 1 . Let us consider a simple university application similar to the one in­
troduced in [133, pages 71-75] . The following information should be captured in our
sample database schema:

- A collection of people working or studying at the university. A person has an identi­
fication number uniquely identifying this person. People have a name (consisting of
titles, first name and last name) and an address (with street , city and postal code) .

- A collection of students who are characterised by their student identification num­
bers. A student is also a person. Students have a major and may have a minor
specialisation. They are supervised by at most one academic staff member.

- A collection of academic staff members with their specialisation. Academic staff
members are people. Each staff member is associated with one department (con­
sisting of a unique department name, location and a set of phone numbers) .

- A collection of courses offered by the university and characterised by a unique course
number, and a course name. A course can have different prerequisites .

- A course has a collection of lectures associated per semester (with year and semester
number) . Furthermore, each lecture has a room (with campus, building and room
number) and a lecturer.

- A collection of projects characterised by a unique project identifier, a title, the
beginning, and the end.

- Collections of student enrolments and student records. Students can enrol in a
certain course during a semester. They obtain a final grade upon completion of the
course.

Figure 3 .2 shows the HERM diagram [133] modelling the university database. 0

The Global OODM Database Schema. Now that we have described the university
application informally, we will formulate a corresponding schema using the OODM data
model from Section 3 . 1 . 2 .

EXAMPLE 3 . 2 . Let us continue with Example 3 . 1 . A corresponding OODM database
schema (without behaviour specifications) can be formulated as follows:

39

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM Markus Kirchberg

SIUdentld Specialisation

Rt'Sull

Projcclld Title Begin End

Fig. 3 . 2 . HERM Diagram of the University Database.

SCHEMA University
TYPE NameT (titles : [STRING] , f irstName : STRING , lastName

END NameT
STRING)

TYPE StreetT (name : STRING , numb : STRING) END StreetT
TYPE AddressT (street : StreetT , city : STRING , zipCode : NATURAL

END AddressT
TYPE PersonT (personid : NATURAL NOT NULL , name : NameT NOT NULL ,

addr : AddressT) END PersonT

CLASS PersonC
STRUCTURE PersonT
CONSTRAINT UNIQUE (personid)

END PersonC

TYPE CourseT (cNumb STRING NOT NULL , cName STRING NOT NULL) END CourseT

CLASS CourseC
STRUCTURE

CourseT ,
prerequisites : { CourseC } REVERSE isPrerequisiteOf ,
i sPrerequisiteOf : { CourseC } REVERSE prerequisites

CONSTRAINT UNIQUE (cNumb)
END CourseC

TYPE CampusT
TYPE RoomT

ENUM ("City Centre" , "Lake Side" , "The
(campus : CampusT NOT NULL , building
numb : STRING NOT NULL) END RoomT

40

Oval ")
STRING NOT NULL ,

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM

CLASS RoomC
STRUCTURE RoomT
CONSTRAINT UNIQUE (campus , building , numb)

END RoomC

TYPE YearT INTEGER
ENUM ("first " , " second" , "double ")

Markus Kirchberg

TYPE SemesterCodeT
TYPE SemesterT year : YearT NOT NULL , sCode : SemesterCodeT NOT NULL

END SemesterT

CLASS SemesterC
STRUCTURE SemesterT
CONSTRAINT UNIQUE (year , sCode)

END SemesterC

TYPE PhoneT (phone : STRING) END PhoneT
TYPE Department! = (dName : STRING NOT NULL , locat ion CampusT NOT NULL ,

phones : { PhoneT }) END Department!

CLASS DepartmentC
STRUCTURE

Department! ,
director PersonC ,
maj orStudents { StudentC }
minorStudents { StudentC }
staff { AcademicC }

CONSTRAINT UNIQUE (dName)
END DepartmentC

REVERSE maj or ,
REVERSE minor ,
REVERSE staffMemberOf

TYPE StudentT = (studentld NATURAL NOT NULL) END StudentT

CLASS StudentC !sA PersonC
STRUCTURE

StudentT ,
maj or DepartmentC NOT NULL ,
minor DepartmentC ,
supervisor AcademicC REVERSE supervises

CONSTRAINT UNIQUE (studentld)
END StudentC

TYPE AcademicT = (specialisat ion STRING) END AcademicT

CLASS AcademicC IsA PersonC
STRUCTURE

AcademicT ,
staffMemberOf
lectures
supervises

CONSTRAINT UNIQUE
END AcademicC

DepartmentC REVERSE staff NOT NULL ,
{ LectureC } REVERSE lecturer ,
{ StudentC } REVERSE supervisor
personld , staffMemberOf)

TYPE MonthT NATURAL

41

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM Markus Kirchberg

TYPE DayT NATURAL
TYPE DateT (year : YearT , month : MonthT , day : DayT) END DateT
TYPE Proj ectT = (proj ectid : NATURAL NOT NULL , title : STRING NOT NULL ,

begin : DateT NOT NULL , end : DateT) END Proj ectT

CLASS Proj ectC
STRUCTURE

ProjectT ,
participants : { UNION (AcademicC , PersonC) } ;

CONSTRAINT UNIQUE (proj ect id)
END Proj ectC

TYPE WeekDayT : ENUM ("Monday" , "Tuesday" , "Wednesday" , "Thursday" , "Friday"
TYPE TimeT (hour : NATURAL , minute : NATURAL) END TimeT
TYPE LectureTimeT = (weekDay : WeekdayT NOT NULL , start : TimeT NOT NULL ,

end : TimeT) END LectureTimeT
TYPE LectureT (time : LectureTimeT) END LectureT

CLASS LectureC
STRUCTURE

LectureT ,
course CourseC NOT NULL ,
lecturer AcademicC REVERSE lectures ,
semester SemesterC NOT NULL ,
room RoomC

CONSTRAINT UNIQUE (course , semester)
END LectureC

TYPE EnrolmentT (date DateT) END EnrolmentT

CLASS EnrolmentC
STRUCTURE

lecture : LectureC NOT NULL ,
student : StudentC NOT NULL ,
EnrolmentT

CONSTRAINT UNIQUE (lecture , student
END EnrolmentC

TYPE PassGradesT ENUM "A+" , "A" , "A- " , "B+" , "B" , "B- " , "C+" , "C")
TYPE FailGradesT ENUM "D" , "E")
TYPE MiscGradesT ENUM "DNC" , "Withdrawn")
TYPE GradesT ENUM (PassGradesT , FailGradesT , MiscGradesT
TYPE RecordT = (result : GradesT) END RecordT

CLASS RecordC
STRUCTURE

course
student
RecordT

CourseC NOT NULL ,
StudentC NOT NULL ,

CONSTRAINT UNIQUE (course , student
END RecordC

END University

42

0

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM Markus Kirchberg

Distributing the University Database. Once the OODM schema is finalised, the
database designer and / or database administrator will decide about the fragmentation
and allocation of the global OODM schema. This may be done as described in the
following example.

EXAMPLE 3 . 3 . Let us continue with Example 3 . 2 . Assume, we have three DBS nodes
Nee, NLs and Nro - one at each campus (refer to type CampusT; the index cc refers
to " City Centre" , LS refers to " Lake Side" and TO refers to " The Oval") . Informa­
tion about rooms (i .e . class RoomC) , lectures (i .e . class LectureC) and enrolments (i .e .
class EnrolmentC) relevant to a particular campus should be stored at that campus
only. General information about courses (i .e . class CourseC) and semesters (i .e . class
SemesterC) is to be held at the main campus " City Centre " . Thus, the global OODM
schema is amended as described below:

- Fragment class RoomC horizontally on attribute campus with rp1; specified as follows:

IPlcc campus = "City Centre " ;

tn - campus = "Lake Side " ·, and rlLs =

IPlro campus = "The Oval " .

- Fragment class LectureC horizontally on attribute room with rp2; specified as fol­
lows:

IP2cc = room . campus = "City Centre " ;

I.{J2Ls = room . campus = "Lake Side " ; and

l.fJ2ro room . campus = "The Oval " .

- Fragment class EnrolmentC horizontally on attribute lecture with <p3; specified as
follows:

IP3cc lecture . room . campus = "City Centre " ;

l.fJhs lecture . room . campus = "Lake Side " ; and

l.fJ3ro lecture . room . campus = "The Oval " .

- Move classes SemesterC and CourseC to DBS node Nee·

In addition, information about departments (i .e . class DepartmentC) and staff they
employ (i .e . class AcademicC) is to be stored at the respective campus only. Thus, the
global schema is further amended in the following ways:

43

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM Markus Kirchberg

- Fragment class DepartmentC horizontally on attribute locat ion with rp4; specified
as follows:

<p4cc location = ' 'City Centre " ;

<p4Ls location = "Lake S ide " ; and

<p4ro location = "The Oval " .

- Fragment class AcademicC horizontally on attribute staffMemberOf with rp5; spec­
ified as follows:

<p5cc staffMemberOf . location = "City Centre " ;

<p5Ls staffMemberOf . location = "Lake S ide " ; and

i.p5ro staffMemberOf . location = "The Oval " .

All remaining classes (i .e . PersonC , StudentC, Pro j ectC, and RecordC) are hosted at
the main campus on DBS node Nee ·
As a result , the following schema fragments are present at each of the three ODBS
nodes:

- Node Nee contains the following OODM fragment :

SCHEMA Univers i tycc
IMPORT SCHEMA Univers i tyLs , Univers i tyro

TYPE NameT

TYPE StreetT
TYPE AddressT =

TYPE PersonT =

(t itles : [STRING] , f irstName : STRING , lastName STRING)
END NameT
(name : STRING , numb : STRING) END StreetT
(street : StreetT , city : STRING , zipCode : NATURAL
END AddressT
(personid : NATURAL NOT NULL , name : NameT NOT NULL ,
addr : AddressT) END PersonT

CLASS PersonC
STRUCTURE PersonT
CONSTRAINT UNIQUE (personid)

END PersonC

TYPE CourseT = (cNumb : STRING NOT NULL , cName STRING NOT NULL)
END CourseT

CLASS CourseC
STRUCTURE

CourseT ,
prerequisites : { CourseC } REVERSE isPrerequisiteOf ,
isPrerequisiteOf : { CourseC } REVERSE prerequisites

CONSTRAINT UNIQUE (cNumb)

44

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM

END CourseC

TYPE CampusT ENUM (" City Centre" , "Lake Side " , "The Oval"

Markus Kirchberg

TYPE RoomT (campus : CampusT NOT NULL , building : STRING NOT NULL ,

CLASS RoomCcc
STRUCTURE RoomT

numb : STRING NOT NULL) END RoomT

CONSTRAINT UNIQUE (campus , building , numb)
END RoomCcc

TYPE YearT INTEGER
TYPE Semest erCodeT ENUM ("f irst " = 1 , " second" = 2 , "double" = 12
TYPE SemesterT year : Y earT NOT NULL ,

sCode : Seme s L crT NOT NULL) END §<.:rrtc'St t'rT

CLASS Seme st_erC

STRUCTURE Seme sterT

CONSTRAINT UNIQUE (year , sCode)
END ;>cr-1es L crC

TYPE PhoneT

TYPE DepartmentT

CLASS DepartmentCcc
STRUCTURE

Dep artmenLT ,

director
maj orStudents
minorStudents
s t aff

CONSTRAINT UNIQUE
END Departmen tCcc

phone : STRING) END PhoneT

dName : STRING NOT NULL ,
location : CampusT NOT NULL , phones
END DepartmentT

PersonC ,
{ StudentC } REVERSE maj or ,
{ StudentC } REVERSE minor ,
{ A c ademicCcc } REVERSE s taffMemberOf
(dName)

{ Ph(neT })

TYPE StudentT = (studentld NATURAL NOT NULL) END StudentT

CLASS StudentC !sA PersonC
STRUCTURE

StudentT ,
major UNION (Departmen t Ccc , DepartmentCLs , Dep artmentCro)

NOT NULL ,
minor UNION (DepartmentCcc , Dep artmentCL s, Dep artmentCro) ,
sup ervi s or UNION (A cademicCcc , A cademi cCLs , A cademi cCro)

REVERSE supervises
CONSTRAINT UNIQUE (studentld)

END StudentC

TYPE A cademi cT = (specialisation STRING) END AcademicT

CLASS A cademicCcc IsA PersonC
STRUCTURE

45

3 . 1 . A DISTRIBUTED OBJECT-ORJENTED DATABASE SYSTEM

A c aderni cT ,

s taffMemb erOf
L ec tures

supervises
CONSTRAINT UNIQUE

END A cademi cCcc

TYPE MonthT NATURAL
TYPE DayT NATURAL

DepartmentCcc REVERSE s t aff NOT NULL ,
UNION ({ Lec tureCcc } , { L e c tureCLs } ,
{ L e c tureCro }) REVERSE L e c turer,
{ StudentC } REVERSE supervisor
personid , staffMemberOf)

TYPE Da L eT (year : YearT , month : MonthT , day : DayT
END DateT

Markus Kirchberg

TYPE Proj ectT (proj ectid : NATURAL NOT NULL , title STRING NOT NULL ,
begin : DateT NOT NULL , end : DateT) END Proj ectT

CLASS Proj ectC
STRUCTURE

Proj ectT ,
part i c ip ant : { UNION ({ A cademi cCcc } , { A cademicCL s } , { A cademicCro } , { PersonC }) }

CONSTRAINT UNIQUE (proj ectid)
END Proj ectC

TYPE �eekDayT ENUM ("Monday" , "Tuesday" , " Wednesday" , "Thursday" ,
"Friday")

TYPE Tl:nt'T hour : NATURAL , minute : NATURAL) END T imeT

TYPE Lectur eTiMeT weekDay : WeekDayT NOT NULL ,
start : T imeT NOT NULL , end : Ti meT
END L e c t ureT imeT

TYPE),e c_L_ureT time : LectureTimeT) END Lectur eT

CLASS L e c tureCc:c
STRUCTURE

Lect ur�eT ,

course CourseC NOT NULL ,
L e c turer UNION (A cademi cCcc , A cademi cC�_.s , A c ademicCTo)

REVERSE L e c tures ,
semester SemesterC NOT NULL ,
room RoomCcc

CONSTRAINT UNIQUE (course , semester
END L e c t ureCcc:

TYPE Enrolrnentl = (date DateT) END EnrolmentT

CLASS Enro Lmen tCcc
STRUCTURE

L e c ture : L ec tureCcc NOT NULL,
student : StudentC NOT NULL ,
l;::!lrol_rn�T)._tT

CONSTRAINT UNIQUE (lecture , student
END Enro lmentCc:c:

TYPE PassGradesT : ENUM ("A+" , "A" , "A- " , "B+" , "B" , "B- " , " C+" , "C")

46

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM

TYPE FailGradesT : ENUM ("D " , "E")
TYPE MiscGradesT : ENUM ("ONC " , "Withdrawn"
TYPE GradesT ENUM (PassGradesT , FailGradesT , MiscGradesT
TYPE RecordT = (result : GradesT) END RecordT

CLASS RecordC
STRUCTURE

course
student
RecordT

CourseC NOT NULL ,
StudentC NOT NULL ,

CONSTRAINT UNI QUE
END RecordC

END Univers i tycc

(course , student

Node NLs contains the following OODM fragment:

SCHEMA Univers i tyLs
IMPORT SCHEMA Universi tycc , Universi tyTo

TYPE Campu sT ENUM ("City Centre" , "Lake Side" , "The Oval ")

Markus Kirchberg

TYPE Rt,omT (campus : Campu T NOT NULL , building STRING NOT NULL ,
numb : STRING NOT NULL) END RoomT

CLASS RoomCLs
STRUCTURE RoomT

CONSTRAINT UNI QUE (campus , building , numb)
END RoomCLs

TYPE Phonei
TYPE L'Jpar tmcntT

CLASS Department CL s
STRUCTURE

Dc par Lmen t T ,

director
maj orStudents
minorStudents
s t aff

CONSTRAINT UNIQUE
END DepartmentCLs

phone : STRING) END PhoneT
dName : STRING NOT NULL ,

location : CarnpusT NOT NULL , phones
END DepartmentT

PersonC ,
{ StudentC } REVERSE maj or ,
{ StudentC } REVERSE minor ,
{ Academi cCL s } REVERSE s t affMemb erOf
(dName)

TYPE A cadcmicT = (specialisat ion STRING) END AcadcmicT

CLASS AcademicCLs IsA PersonC
STRUCTURE

A cademicT ,

{ Plwn<..T })

s taffMemberOf DepartmentCLs REVERSE s t aff NOT NULL,
L ectures

supervises
CONSTRAINT UNIQUE

END A cademi cCLs

UNION ({ LectureCcc } , { Lec tureCLs } ,
{ LectureCTo }) REVERSE L e c turer,
{ StudentC } REVERSE supervisor
personid , staffMemberOf)

47

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM Markus Kirchberg

TYPE WeekDayT ENUM ("Monday" , "Tuesday" , "Wednesday" , "Thursday" ,
"Friday")

TYPE T imeT hour : NATURAL , minute : NATURAL) END T i meT

TYPE L e c t ureT imeT weekDay : WeekDayT NOT NULL ,
start : T imeT NOT NULL , end : T imeT

END LectureTimeT

TYPE k?_t;:t_urei time : L e ctureT imeT) END LectureT

CLASS L e c tureCLs
STRUCTURE

LectureT ,
course CourseC NOT NULL ,
� e c turer UNION (A cademi cCcc , A cademicCLs , AcademicCTo)

REVERSE � e c tures ,
semester SemesterC NOT NULL ,
room RoomCLs

CONSTRAINT UNI QUE (course , semester
END Lec tureCu;

TYPE Y e arT INTEGER
TYPE t•1onti!T NATURAL
TYPE DayT NATURAL
TYPE P<l_t.e,_T (year YearT , month : MonthT ,
TYPE EHrrJ lmcntT (date : Dat eT) END Enr o lmentT

CLASS Enro �ment CLs
STRUCTURE

� e c ture : L e c tureCL.'c; NOT NULL ,
student : StudentC NOT NULL ,
Enro lment T

CONSTRAINT UNIQUE (lecture , student
END Enro �mentCu::

END Univers i tyu;

Node Nro contains the following OODM fragment:

SCHEMA Univers i tyTo
IMPORT SCHEMA Universi tycc , Univers i tyLs

day DayT)

TYPE Carnpu-T ENUM ("City Centre" , "Lake Side" , "The Oval")

END @ t eT

TYPE IloomT (campus : CampusT NOT NULL , building STRING NOT NULL ,

CLASS RoomCTo
STRUCTURE RoomT

numb : STRING NOT NULL) END RoomT

CONSTRAINT UNIQUE (campus , building , numb)
END RoomCTo

TYPE Phom. l'
TYPE Q��rt�entr

phone : STRING) END PhoneT

dName : STRING NOT NULL ,
locat ion : CampusT NOT NULL , phones
END D epartrnentT

48

{ P)1o1_1ei })

3 . 1 . A DISTRIBUTED OBJECT-ORIENTED DATABASE SYSTEM

CLASS DepartmentCro
STRUCTURE

Department T ,
director
maj orStudents
minorStudents
s t aff

CONSTRAINT UNIQUE
END DepartmentCro

PersonC ,
{ StudentC } REVERSE maj or ,
{ StudentC } REVERSE minor ,
{ A c ademi cOro } REVERSE s t affMemberOf
(dName)

TYPE A cadem i cT = (specialisation STRING) END A cadem i c T

CLASS Aca demicCro IsA PersonC
STRUCTURE

[l.c_ade m i c T ,

s t affMemb erOf
L ec tures

supervises
CONSTRAINT UNIQUE

END A c ademicCro

Dep artmentCro REVERSE s t aff NOT NULL ,
UNION ({ LectureCcc } , { L e c tureCv..; } ,

{ L e c tureCro }) REVERSE L e c turer,

{ StudentC } REVERSE supervisor
personid , staffMemberOf)

Markus Kirchberg

TYPE '·leekDayT ENUM ("Monday" , "Tuesday" , "Wednesday" , "Thursday" ,
" Friday")

TYPE T imeT hour : NATURAL , minute : NATURAL) END T ime f

TYPE Lect u r e T :jJileT = weekDay : WeekDayT NOT NULL ,
start : TimeT NOT NULL , end : T imeT

END LectureT i meT

CLASS L e c t ureCro
STRUCTURE

Lec t ur er ,

(t ime : L e c t ureTimeT) END L e c L urcT

course CourseC NOT NULL ,
L ec turer UNION (A cademi cCcc , A cademi cCL s , A cademicOro)

REVERSE L ec tures ,
semester SemesterC NOT NULL ,
room RoomCro

CONSTRAI NT UNIQUE (course , semester)
END Lec tureCro

TYPE YearT INTEGER
TYPE MonthT NATURAL
TYPE DayT NATURAL
TYPE Oat eT (year YearT , month : MonthT ,
TYPE Enro lmemtT = (date : DateT) END Enro lmentT

CLASS Enro LmentCro
STRUCTURE

L e c ture : Lec tureCro NOT NULL ,
student : StudentC NOT NULL ,
En r o l ment I

CONSTRAI NT UNIQUE (lecture , student)

49

day DayT) END DateT

3.2 . PROCESSING USER REQUESTS

END Enro LmentCro

END Univers i tyro

Markus Kirchberg

Amendments with respect to the global schema have been highlighted. Identifiers of
replicated types are underlined. Amendments resulting from fragmentation processes
appear in italic text .

3 .1 .6 A Note on the Contribution of the Proposed ODBS

0

In terms of the potential contribution to the ODBS research community, the proposed
architecture corresponds to a first milestone on our way to build a sound ODBS that
is based on a solid theoretical framework. The proposed system meets the majority of
desired features a system should have in order to be considered as an ODBS (refer to
Section 1 . 1 for corresponding details) . The only two concepts that are not yet taken
into account are:

- Support for schema evolution. However, schema evolution is hardly provided by
any DBS nowadays. We strongly think that this issue requires a separate research
initiative;

- Support for version management. We chose not to consider this optional feature at
this stage. Support for this feature can be added once a commercialisation process
of our system gets on its way.

Having introduced the basic concepts underlying distributed ODBSs, we move on
to consider the processing of user requests in such an environment.

3 . 2 Processing User Requests

In a truly distributed DBS (such as the one introduced in Section 3 . 1 . 1) , a high-level
DBS user is not aware of the distributed nature of the system. In fact , data indepen­
dence, network transparency, replication transparency, and fragmentation transparency
are key properties of this type of DBS . Thus, user requests are free of location- and
communication-specific information. Only during the compilation, fragmentation, al­
location, code rewriting, linking and optimisation processes such information is added
(in the form of annotations) .

Let us assume that high-level user requests arrive in the form of DBPQU programs
(or more precise modules) . The request processing module employs a number of compo­
nents that include a DBPQL compiler, code optimisers (performing compile-time code
optimisation and also query optimisation) , code rewriters (e.g. mapping operations on
objects that correspond to the global OODM schema to operations on objects that
relate to OODM schema fragments; such mappings are based on the fragmentation and

2 DBPQL is a high-level database programming and querying language based on the intermediate-level
iDBPQL language introduced in this thesis. DBPQL is a modular language that will support not only
processing of transactions and queries but also provide support for generic requests, type, class and object
creation and manipulation commands etc. We will not introduce DBPQL in detail but only refer to some of
its aspects that relate to / stem from iDBPQL.

50

3 .2. PROCESSING USER REQUESTS Markus Kirchberg

allocation catalogue) , a reflection module (e.g. adding support for genericity by utilising
linguistic reflection) etc . Details about these components and corresponding processes
are beyond the scope of this thesis. Instead, we follow a black box approach. We assume
that RPMs transform incoming user requests (i .e . DBPQL modules) into optimised
evaluation plans, which are then translated into iDBPQL code, an intermediate-level
version of DBPQL. Details about query optimisation and the generation of execution
plans for ODBSs can be found in the literature, e .g. [127] .

iDBPQL code is then evaluated by a collection (or better a network) of agents .
Code evaluation is governed by REEs (there exists one REE instance per ODBS node) .
Agents of REEs are aware of the distributed nature of the DBS, they know about
transactions , utilise simultaneous processing etc . Agent technologies3 are utilised by all
lower-level DBS components. Agents of different components speak different languages
- usually referred to as Agent Execution or Evaluation Language (AEL) . However, they
all use the same (Agent) Communication Language DBA CL [67] . Separating AELs and
DBACL is (kind of) straightforward due the fact that original, high-level user requests
do not contain any location- or communication-speCific information . While REE agents
process evaluation plans formulated in iDBPQL they also interpret annotations that
have been added by RPM 's optimiser. In addition , REE agents also enhance processing
further by utilising concurrent and distributed processing capabilities . We will discuss
such details in Chapter 5 .

(�_D_B-:P_Q_L_�J

.
. .

: DBPQL Module Interface : DBPQL Module Imerface :

: Imported .
: DBPQL Modules :

" / .

: DBPQL Module : � · · ·
. . . . · · · · · · · · · ·

< t��,k· \n.il"'' I ' I''- (lll�"-••L (���k·
'

(lp\lf}lJ-.,1\Jt ljj l ,ti ...'l\ (I Id�· (llllll ,l(ltiiJ

l()lll.' l \) ()ll[l l l l l '-.1\IPII l l.l...' llll'll\,1111111

R�.-tk..._tltlll Supptll \ (tllk l t .tn ... l.tlltlll

: (Optimised) Evaluation Plan :
1 Formulated in iDBPQL Code I
L - - - - - - - - - - - - - - - '

l - - - - - - - - - - - ,

: Run-Time M eta Data I
_ _ _ _ _ _ _ _ _ _ _ I

�""

Fig. 3.3. Relationship between User Requests, Data Models and iDBPQL.

: Collection of :
(global)

: values I objects :

t

Figure 3 . 3 provides a more abstract view of the relationship between DBPQL,
iDBPQL, conceptual data models and associated processes. A high-level user is ex-

3 An agent (or database agent or software agent) can be regarded as a piece of software (most commonly
realised as a thread) that performs one or more relatively simple tasks to fulfil one or more given requests.
Agents may work independently or cooperatively.

51

3.2. PROCESSING USER REQUESTS Markus Kirchberg

posed only to a few of these elements (refer to dotted rectangles in Figure 3 . 3) , which
are as follows:

- A programmer codes a new DBPQL Module together with its DBPQL Module
Interface (s) . Modules are units that can be compiled separately. Thus, they can be
considered as compile-time abstractions that advocate the development of large­
scale programs through the support of import and export (by means of module
interfaces) of services. Hence, information hiding is supported naturally.

- Within a module, DBPQL Module Interfaces of existing DBPQL Modules can be
imported. A database schema can be regarded as just another module interface with
(possibly) a reduced degree of encapsulation. Following our discussions in Section
1 . 1 .3 , we may have regular module interfaces that strictly follow the traditional
PL-interpretation of encapsulation while database schemata expose both structural
properties as well as behaviour. Thus, desired support for ad-hoc querying can be
provided.

- Modules return results as outlined in the corresponding module interface(s) .
DBPQL statements and expressions may produce collections of (global) values and
/ or objects as defined in imported database schemata and local (transient) type
and class definitions.

When processing user requests (i .e . DBPQL modules) code has to be parsed, anal­
ysed , type checked, optimised, fragmented, rewritten etc. As mentioned before, we will
not consider such concepts in detail but only assume that at the end of these processes
the following results are achieved:

- The DBPQL top-level function (i .e . the MAIN function or method) that initiates the
execution is t ransformed into an optimised evaluation plan, which we refer to as
the Main Evaluation Plan . An Evaluation Plan may have an Initialisation Block
(which permits the initialisation of global and local elements before the start of the
evaluation) , it has an evaluation block and it has a number of associated metadata
structures as indicated below.
An Evaluation Block consists of iDBPQL control flow statements, assignments,
expressions (e.g. queries) , method calls (i .e . references to other evaluation plans) ,
and sub-blocks. Concepts such as modules, interfaces, type definitions and their
implementations, classes (as code structuring primitives) , class definitions and their
implementations etc. have been removed. For instance, the linker (part of the black
box) has merged the user's DBPQL module with all DBPQL modules part of the
corresponding import graph.

- One or more schemata from the DBS metadata catalogue are associated with the
main evaluation plan. The DES MetaData catalogue is a collection of compiled da­
tabase schemata together with additional information about the location of schema
fragments, replica management etc.
All schema imports in the user's DBPQL module result in such associations. Due to
fragmentation, a single DBPQL schema import may result in a number of associated
iDBPQL schemata (i .e . schema fragments) .
Schema imports that originate from other modules that the user's DBPQL module
imports may or may not be associated with the main evaluation plan. They may

52

3.2 . PROCESSING USER REQUESTS Markus Kirchberg

only be attached to a single or multiple evaluation plans implementing a particular
type operation or method.

- One or more entries from the run-time metadata catalogue are associated with
each evaluation plan. The Run- Time MetaData catalogue is a collection of type
and class definitions introduced in the source code of the user's DBPQL module or
its imported modules. While DBS metadata catalogue entries describe persistent,
shared data, run-time metadata catalogue entries relate to transient, non-shared
data.

Besides the main evaluation plan, additional evaluation plans are associated with
every non-abstract behaviour specification. Thus, evaluation plans are associated
with type operation signatures and method signatures (static or non-static) . Classes
may have static variables that are declared outside of any method . Such declarations
are captured in an initialisation block associated with the class. When invoking
a method of that class, the corresponding evaluation plan is executed . At first ,
the evaluation plan's initialisation block, which may include a reference to the ini­
tialisation block of its class, is processed. Subsequently, the evaluation block is executed.

An abstract syntax of iDBPQL code that describes metadata entries is presented
in Section 4.2 . Section 4 .3 will introduce an abstract syntax of iDBPQL constructs
that make up evaluation plans. In addition, an iDBPQL library exists that provides
definitions and implementations (i .e . evaluation plans) for all built-in features (e.g.
primitive iDBPQL types, the structured iDBPQL type, iDBPQL type construc­
tors and the NULLable iDBPQL type together with their type operations as well as
built-in iDBPQL class definitions) that form part of iDBPQL as proposed in this thesis.

Finally, we want to underline some important properties of evaluation plans. They
differ significantly from the original user requests, in particular in the following ways:

- iDBPQL code refers to schema fragments (i .e . DBS metadata entries) or transient
types, classes etc. (i .e . run-time metadata entries) . Original (high-level) code frag­
ments have been amended in a way that references to higher-level features (e .g. class
and schema constraints, generic operations etc .) have either been removed or re­
placed by macros (e.g. in case of generic operation support) formulated in iDBPQL
code.

- A user program is translated into one main evaluation plan together with associated
DBS and run-time metadata entries. Metadata entries and references to iDBPQL
library features may have further evaluation plans (again with corresponding meta­
data entries) associated . Thus, the execution of the user program results in an
evaluation of the main evaluation plan together with all evaluation plans that are
encountered during its evaluation .
In fact , every behaviour definition in the DBS and run-time metadata catalogues
is defined in terms of an evaluation plan . Invoking such an evaluation plan from a
remote DBS node will result in:

• The evaluation plan (with some of its corresponding metadata entries) being
transfered (i .e . replicated) to the remote node. The evaluation may then take
place on the remote node; or, alternatively

53

3 .2 . PROCESSING USER REQUESTS Markus Kirchberg

• The evaluation plan is evaluated locally with a subsequent replication of the
results to the remote node.

The exact procedure is determined during run-time based on the nature of behaviour
involved, annotations by the code I query optimiser and some run-time properties.

- Definitions of types, sub-type relations, classes etc. are removed from the evaluation
plans. These definitions are now part of the metadata catalogues. Every identifier
found in the evaluation plan and every statement has a type annotation. The former
has its type associated while the latter has the result type of its execution associated.
Binding (which is executed as late as possible - as typical for object-oriented lan­
guages) is then based on those annotations. Instantiations (of objects, type param­
eters etc .) are also deferred to as late as possible.

- iDBPQL statements and expressions are allocated to DBS nodes (i .e . as anno­
tations) indicating where their evaluation is to be done. It is assumed that this
information is added by a code I query optimiser.

- Evaluation plans consist of blocks . DO . . . ENDDO blocks are used to group statements
together, describe atomic steps consisting of a number of iDBPQL statements,
model local and distributed transactions, declare blocks that may be processed
independently of others or concurrently with others etc. It is assumed that such
block declarations are specified in evaluation plans.
For instance, a high-level DBPQL module may have an implicit support for trans­
actions. It may consider every invocation of a method detailed in a class definition
·of a database schema as a transaction. Horizontal fragmentation may result in the
replacement of a single method call by multiple method calls where results are uni­
fied subsequently. The corresponding sequence of iDBPQL statements has to be
grouped in a DO TRANSACTION . . . END DO block. Otherwise, user transactions may be
lost . Example 3.4 considers such a scenario in more detail.

- Indices and other information used to optimise processing are added (i.e. as an­
notations) to support the evaluation of iDBPQL statements more efficiently. Such
annotations are described in more detail when discussing the execution of evaluation
plans in Chapter 5 .

We will conclude this chapter with a small example . Our aim is to demonstrate the
general principle of the usage of iDBPQL. We will do so using a high-level syntax origi­
nating from our imagination . The iDBPQL syntax will be introduced in the subsequent
chapter in more detail .

EXAMPLE 3 . 4 . Let us use the University schema defined in Example 3.2 . We will
execute a simple request consisting of an import of the University schema and a
selection on class AcademicC. We extract a set of academic staff members that specialise
on the subject 'Database Systems' .

0 1 RUNNABLE MODULE FirstExample {
02
03 IMPORT SCHEMA University ;
04
05 MAIN {
06 SET (AcademicC) rslt ;
07 rslt = AcademicC WHERE (specialisation == "Database Systems") ;

54

3 .2. PROCESSING USER REQUESTS

08 }
09 }

Markus Kirchberg

Mapping this user module to the fragmented schemata from Example 3.3 results in :

- A main evaluation plan, named FirstExample, as detailed in l ines 10 to 18 .
- Associated DBS metadata entries for iDBPQL schemata University cc ,

UniversityLs and Universityro ·
- Associated run-time metadata entries that correspond to types of intermediate re­

sults.
- Associated run-time metadata entries defining the final result type .

10 EVALPLAN FirstExample {
1 1 DO TRANSACTION tr1 /1 a transact ion object is created imp L i ci t Ly
12 rslt 1 = AcademicCcc WHERE (specialisation == "Database Systems") ;
1 3 rslt2 = AcademicCLs WHERE (specialisation = = "Database Systems") ;
14 rslt3 = AcademicCro WHERE (specialisation == "Database Systems ") ;
15 rslt = (rslt 1 . union (rslt2)) . union (rslt3) ;
16 tr1 . commit () ; // exp L ici t transac t ion commi t
17 ENDDO ; // the transaction o bject is des troyed
18 }

Let us assume that the user request is received by the ODBS node Nee · Thus, only
AcademicCLs and AcademicCro definitions refer to remote locati ons. A minimal set
of corresponding annotations is as follows:

- Line 1 1 : Transaction tr1 is marked as read-only and distributed.
- Line 12 : rslt1 has a type annotation referring to the DBS metadata entry

Univers ityee . AcademicCcc ·
- Line 13 : rslt2 has a type annotation referring to the DBS metadata entry

Univers ityL5 . AcademicCLs ·
WHERE has a processing annotation referring to node NLs ·
AcademicCLs has a location annotation referring to node NLs ·

- Line 14: rsl t3 has a type annotation referring to the DBS metadata entry
Univers ityro . AcademicCro ·
WHERE has a processing annotation referring to node Nro .
AcademicCro has a location annotation referring to node Nro ·

- Line 15 : rslt has a type annotation referring to run-time metadata entries speci­
fying types

UNION (Universitycc . AcademicCcc , University£s . AcademicCLs) AS _ i 1
1 / The UNION constructor creates a n e w super-c Lass which corresponds t o the
/1 union set of both specifi ed c L asses . Since bo th c L asses are of identica L
1/ s truc ture , s o is the resu L t ing sup er-c Lass .

UNION (_ i 1 , Universityro . AcademicCro) AS _i2
11 Same as above . One can say that the resu L t ing sup er-c Lass with a L L i ts
11 objects corresponds to the University . AcademicC c Lass as ou t L ined in the
1/ g L o b a L schema in Examp L e 3 . 2 .

55

4.2 . B ASIC LANGUAGE CONCEPTS Markus Kirchberg

types, collection types (including BAG, SET and LIST) and the NULLable type. Types
are later extended to include reference-types and the UNION-type supporting the unifi­
cation of identical or similar objects. Sub-typing is structural (order, types and names
are considered) . While behaviour is not inherited, a sub-type can utilise its super-type's
behaviour through type mapping. Classes are used to group more complex structures.
The structure of a class of objects is defined over existing types, unnamed types (i .e .
types without a behaviour that are defined in the class structure itself) and existing
classes (either as inheritance or as reference) . Classes are templates for creating objects,
expose structural properties, allow for the definition of (reverse) references, may have
associated behaviour (i .e . instance methods, class methods and object constructors -
all of which are represented as an evaluation plan) , support multiple inheritance, and
may have associated, system-maintained collections through which access to all objects
of a class and its sub-classes is possible .

Evaluation plans consist of control flow statements, assignments, expressions,
method calls, and sub-evaluation blocks. Common programming abstractions (e.g.
object creation statements, assignments, conditional statements, various loops and
sub-routines) , and query language constructs (e.g. selection, projection, navigation,
join, and order-by) are supported. The integration of both concepts mainly evolves
around collections. Evaluation blocks are used to group statements together, form
atomic execution units, model local and distributed transactions, support indepen­
dent or multi-threaded processing etc. Simultaneous processing is utilised to enhance
performance. While the transaction management system allows different transactions
to execute simultaneously (i .e . inter-transaction concurrency) , iDBPQL also supports
two expressions that explicitly request simultaneous execution. The latter may occur at
the transaction-level (i .e . inter-transaction concurrency) or at the operation-level (i .e .
intra-transaction con currency) .

In addition, there exists an iDBPQL library , which contains definitions and imple­
mentations for all built-in iDBPQL features .

4 . 2 Basic Language C oncepts

In this section, we outline the fundamental concepts of the iDBPQL language. Rudi­
mentary language elements, values, types, objects, classes, object-oriented concepts, and
schemata are introduced. Initial integration issues have to be faced, e .g . the distinc­
tion of types and classes, the support of adequate types, a class-as-collection approach,
inheritance, persistence etc.

First , we outline the main challenges addressed in this section in greater detail . Sub­
sequently, an abstract syntax of the data model-related part of the iDBPQL language
is proposed. When designing the language, particular attention has been paid to ensure
that readers, who are familiar with modern object-oriented languages, find it easy to
comprehend . While it is not common to have a syntactically rich, intermediate-level
language, the final version of iDBPQL will be less richer than outlined in this thesis.
However, our efforts will not be wasted . Instead, most concepts will find their way into
a corresponding high-level language (which we referred to as DBPQL in Chapter 3)
once the envisioned ODBS environment has been finalised.

58

4.2 . B ASIC LANGUAGE CONCEPTS Markus Kirchberg

4.2 .1 Challenges

In this section, we will examine and address the following challenges:

- Types vs. classes or objects vs. values : There is no common agreement in the OOPL
community on how to support or distinguish between types and classes . Numerous
approaches have been proposed. The same applies to existing DBPLs. For instance,
02 supports both values and objects with types and classes as their respective
structuring primitives. In contrast , TIGUKAT considers everything to be an object ,
which has a class (providing a structural view of its objects) and multiple types
(representing more abstract concepts, i .e . interfaces) .
We follow the approach advocated in [15] that can be found in 02 and the OODM
[1 14] . The concept of interfaces only appears on a higher DBS layer, where the
envisioned DBPQL language resides.

- Support of collection types : Programming languages mainly include structural types
while query languages commonly advocate collections. It is vital that a good mix
of pre-defined structure types and type constructors is provided. In addition, users
should be permitted to define their own types, in particular type constructors. This
is necessary since no language designer can predict which types are desired to satisfy
programmers' needs.
iDBPQL supports common PL types such as structures and arrays as well as col­
lection types such as sets, lists and bags.

- Inclusion of NULL values : DBSs commonly support NULL values for all their sup­
ported types including atomic types. This is not the case in PLs1 , which only support
NULL values for reference-types.
Similar to C#, we provide a NULLABLE < _x > type constructor that adds the NULL
value to any existing type (that does not already support NULL values) specified as
its type argument .

- Relating types : Types are typically arranged in a hierarchy. Creating such hierarchies
may be name-based (i .e . users must explicitly relate types) , structure-based (i .e .
a type's structure defines its place in the hierarchy) , behaviour-based (i .e . only
the type's behaviour defines its place in the hierarchy) or a combination of the
aforementioned approaches.
We support structural sub-typing. Behaviours associated with other types may be
utilised using type mapping.

- The class-as-collection approach : OOPLs enable object access through references
only. DBSs, however, have always supported name-based access to all objects that
belong to a particular entity, e .g. a relation or a class . While the latter approach
is desired, it does not come without its challenges. Not only does it require the
system to implicitly maintain collections associated with classes but it also requires
concepts to be refined, e.g. garbage collection. Corresponding implementation issues
are discussed later. Here, we are more concerned about the effects on the design
of iDBPQL. While collections are associated with classes per default , programmers
are given the choice to deactivate this feature.
iDBPQL supports three types of classes, which are abstract classes, concrete classes
and collection-classes. The latter is the default . Concrete classes are classes in the

1 It should be noted that C# (version 2) has recently added this feature into its language.

59

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

more traditional OOPL sense, have the same properties as collection-classes apart
from associated collections. Thus, objects of concrete classes may only be accessed
by reference.

- Multiple inheritance and its ambiguities : Inheritance is a concept that has resulted
in numerous discussions. Not only are there different types of inheritance, but also
different ways of supporting a chosen approach.
iDBPQL interprets inheritance as specialisation and supports multiple inheritance.
While multiple inheritance is rarely supported in modern OOPLs, it is a strongly
desired property of ODBSs. A class can be regarded as a specialisation of one or
more existing classes, such as a student who is a person, an academic staff member
who is also a person or an academic staff member who is also studying (i .e . is both
a student and a staff member) .
Supporting multiple inheritance, however, does not come without its difficulties.
The basic person-student-staff example already causes ambiguities. For instance,
an academic staff member who is also studying inherits the properties of the person
class over two paths. Any language supporting multiple inheritance must address
related issues. iDBPQL supports primitives that enable programmers to resolve
ambiguities in various ways.

- Provision of a UNION-type : Distribution in database systems is achieved by means
of fragmentation. While iDPBQL operates on a DBS layer that is only aware of
fragmented schemata and class and type definitions, it must support higher DBS
layers to merge results of computations on fragmented schemata. Such results may
then correspond to more global data abstractions, e .g. a global schema.
iDBPQL provides a UNION-type that supports the unification of identical or similar
objects . The resulting (set-union) type behaves like their least common super-type.

- Inclusion of domain and entity constraints : Database systems advocate the support
of a number of (static) constraints such as NOT NULL, CHECK and UNIQUE constraints.
Static means that the respective constraint can be checked by inspecting the most
recent database state . Alternatively, if a sequence of database states has to be evalu­
ated to verify a constraint , we have a dynamic constraint. Due to high performance
overload, commercial database systems do not usually provide a general consistency
enforcement mechanism.
In iDBPQL, constraints transpire in one of the following two forms: Domain con­
straints (i .e . NOT NULL and CHECK constraints) and entity constraints (i .e . UNIQUE
constraints) . Enclosing data manipulation statements into atomic blocks (as intro­
duced later) will result in a delay of the point in time where constraints are verified.

- Transparent persistence : Treating transient and persistent data uniformly is a de­
sired property of every persistence mechanism. In addition, it should be possible
that any data entity irrespective of its type may persist.
iDBPQL does not distinguish between persistent and transient values, types, objects
or classes . Persistence is supported simply by adding a class definition to a schema
or by creating a new object on a persistent class. Persistence is accomplished by
means of reachability.

4.2.2 Conventions

To further ease readability, we will adhere to the following conventions:

60

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

- All iDBPQL keywords are upper-case;
- Comments appear in italic;
- Names identifying type and class definitions start with an upper-case letter and

end with either an upper-case T (for type definitions) or an upper-case C (for class
definitions) ; and

- Variable names, type operation name, method names, label etc. start with a lower­
case letter.

4.2.3 Literals, Names and Other Rudimentary Language Elements

Code written in iDBPQL can be regarded as sequences of keywords, literals, identifiers,
names and operators. First, we introduce fundamental concepts such as literals and
identifiers together with comments and names in more detail. Keywords and operators
are discussed in subsequent sections.

Appendix A . l contains a summary of the corresponding lexical iDBPQL syntax.

Literals. Literals are representations of values of primitive iDBPQL types, the STRING
type and the NULLable type.

The BOOLEAN type has two values, denoted by the literals TRUE and FALSE.
The CHARACTER type has values as defined by the ASCII2 standard . Character literals

are enclosed in single quotes such as ' a ' , ' Q ' , ' \n ' etc.
The STRING type has values that correspond to sequences of character literals en­

closed in quotation marks.
The NATURAL and INTEGER types have corresponding numerical l iterals expressed in

decimal or hexadecimal. Decimal literals are sequences of digits either beginning with a
non-zero digit or consisting of the single zero digit. Hexadecimal literals are sequences
of digits with prefix Ox or OX . For instance, the decimal literal 255 corresponds to the
hexadecimal literals OxFF, OXFF, Oxff , and OXff .

The REAL type has values that correspond to sequences of digits containing a decimal
point and, optionally, an exponent indicator.

The NULLable type extends any existing type with the NULL literal .

Identifiers. An identifier is an unlimited sequence of letters, digits and underscores.
Identifiers must not start with a digit or two underscores . Identifiers beginning with a
single underscore are reserved for type parameters. Identifiers are case sensitive.

Comments. Comments are line-oriented. A comment begins with a pair of slashes I I
and extends to the end of the line.

Names. A name denotes a variable, type operation, class, method, constraint etc.
It can be simple or qualified . A simple name is an identifier. A qualified name is a
sequence of identifiers separated by periods such as obj . Name . firstName, where obj is

2 ASCII code (7) is only supported for the ease of prototyping. Unicode (135) will be used once the prototyping
stage has been completed. Such a transition is easy to accomplish since the first 128 Unicode characters are
the same as the ASCII characters, but with an extra leading zero byte in-front of them.

6 1

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

an instance of class PersonC. In addition to identifiers, qualified names may also contain
any of the following keywords: THIS and SUPER (refer to Section 4.2 .5 for corresponding
details) .

4.2.4 Types and Values

Types3 structure values. Type definitions are used to define the common structure and
the behaviour (i .e . type operations) of all values of a particular type . Sub-typing is
structural. Thus, behaviour is not inherited. Nevertheless, a sub-type can utilise the
behaviour specified for any of its super-types through type mapping. Let us consider
these type-related concepts in more detail starting with primitive types and their built­
in behaviour.

Primitive Types. The primitive types of iDBPQL are: BOOLEAN (abbreviated as BODL) ,
CHARACTER (abbreviated as CHAR) , INTEGER (abbreviated as INT) , NATURAL (abbreviated
as NAT) , and REAL . As indicated in Figure 4 . 1 (on page 71) , INT, NAT and REAL are
considered numeric types . Numeric types together with the CHAR type are ordered types .
In addition , INT, NAT and CHAR are also discrete types . External representations of values
of primitive types are literals as discussed in Section 4.2 .3 . Table 4 . 1 details domains
of values, default values and examples of literals for each of the primitive types of
iDBPQL.

I Primitive Type I Allowed Values

BOO LEAN TRUE, FALSE
CHARACTER any ASCII character

NATURAL any non-negative Integer value
INTEGER any positive Natural number, their

negatives and the number zero
REAL any floating-point number

Table4. 1 . The Primitive Types of iDBPQL.

I Default I
FALSE

'\0'
0
0

0 . 0

Literals

TRUE, FALSE
' a ' ' A ' ' \n '

' ' ' . . .
0 , 1 , 6 , 32 1 , 14542, . . .

-343, - 12, - 1 , 0 , 1 , 542, . . .

- 1 0 . 6E4, . 5E-3, 3 . 1415, . . .

Definition 4 . 1 . A binary SUBTYPE relation i s defined on the set of primitive types. I t
is the smallest relation which i s reflexive, t ransitive and has the fol lowing properties:

1 . SUB TYPE (CHAR , INT) ;
2 . SUBTYPE (NAT , INT) ; and
3. SUBTYPE (INT , REAL) .

0

SUBTYPE (A , B) means that A is sub-type of B. Reflexive means that SUBTYPE
(A , A) holds for each primitive type A. Transitive means that, if SUBTYPE (A ,

3 Types constructed over values, as considered in this section, are also referred to as value-types. In Section
4 .2 .5 we introduce objects and classes. Types containing references to objects are not considered value-types,
they are referred to as reference- or object-types.

62

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

B) and SUBTYPE (B , C) hold, then also SUBTYPE (A , C) . For example, each
Natural number may be used anywhere a floating-point number can be used. Thus, an
implicit type conversion will be applied to convert the Natural number to type REAL. It
also means that type operations of type REAL can be applied to any value of type NAT.

Each primitive type has a number of associated type operations. These are as out­
l ined in Table 4.2. Refer to your preferred book on the programming language C [59] or
C++ [128] for a more detailed introduction into the meaning, side-effects and priorities
of these operations.

The Record Type. Besides primitive types, iDBPQL also supports the specification
of structured values through the record type constructor. Similar to C-like languages,
the keyword STRUCTURE (or abbreviated as STRUCT) is used.

A structure consists of a list of members whose storage is allocated in an ordered
sequence. Each structure definition creates a unique structured type within the respec­
tive scope. As outlined in Syntax Snapshot 4. 1 , the STRUCTURE keyword is optionally
followed by an identifier, which gives a name to the structured type. The identifier can
then be used with the STRUCTURE keyword to declare variables of that type without
repeating a long definition.

Syntax Snapshot 4 . 1 {The iDBPQL Record Type)

StructuredType (" STRUCT" I " STRUCTURE") , [Id] ,
((' { ' , { StructMemberDecl } , ' } ') I StructuredType) ,
[' & ' , Structured Type , [" WITH " , ' { ' , { RenamingExpr } , ' } ']] ;

StructMemberDecl = StructuredType I VariableDecl ;
VariableDecl = ScopeModif ierDecl , Type , Id ;
ScopeModifierDecl = ["PRIVATE" I "PUBLIC" I "READONLY"] ;

D

Let us consider an initial example .

EXAMPLE 4 . 1 . We intend to define a type that holds date values. We can define the
structure of a corresponding myDate type as follows:

01 STRUCTURE myDate {
02 NATURAL day ;
03 NATURAL month ;
04 INTEGER year ;
05 } ;

Now, we are able to create a variable, say bDay, of our new structured type and assign
its value:

10
1 1
12

bDay = (1 3 , 4 , 1976) ; 11 record type assignment

Alternatively, we may create the same structured value by assigning values to individual
members (refer to lines 2 1 to 23) :

63

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

Operator Description 11 BOOLEAN I CHAR I NATURAL I INTEGER I REAL I
(unary operators)
+ (prefix) Plus (positive number) No No Yes Yes Yes
- (prefix) Minus (negative number) No No Yes Yes Yes

++ (prefix) Unary preincrement No Yes Yes Yes Yes
++ (postfix) Unary postincrement No Yes Yes Yes Yes
-- (prefix) Unary predecrement No Yes Yes Yes Yes
-- (postfix) Unary postdecrement No Yes Yes Yes Yes
(arithmetic operators)

+ Addition No Yes Yes Yes Yes
- Subtraction No Yes Yes Yes Yes
* Multiplication No Yes Yes Yes Yes
I Division No Yes Yes Yes Yes
!. Modulus No Yes Yes Yes No

(assignment operator)
= Assignment 11 Yes Yes Yes Yes Yes

(mixed arithmetic and assignment operators)
+= Addition assignment No Yes Yes Yes Yes
-= Subtraction assignment No Yes Yes Yes Yes
*= Multiplication assignment No Yes Yes Yes Yes
I= Division assignment No Yes Yes Yes Yes
!.= Modulus assignment No Yes Yes Yes No

(equality and relational operators)
- - Equal to Yes Yes Yes Yes Yes
! = Not equal to Yes Yes Yes Yes Yes
< Less than No Yes Yes Yes Yes

<= Less than or equal to No Yes Yes Yes Yes
> Greater than No Yes Yes Yes Yes

>= Greater than or equal to No Yes Yes Yes Yes
(logical operators)

&& Logical AND Yes Yes Yes Yes Yes
1 1 Logical OR Yes Yes Yes Yes Yes
! Logical NOT Yes Yes Yes Yes Yes

(bit-manipulating operators)
& Bitwise AND No Yes Yes Yes Yes
I Bitwise OR No Yes Yes Yes Yes

- Bitwise XOR No Yes Yes Yes Yes
<< Bitwise shift left No Yes Yes Yes Yes
>> Bitwise shift right No Yes Yes Yes Yes

- Bitwise complement No Yes Yes Yes Yes
(mixed bit-manipulating and assignment operators)

&= Bitwise AND assignment No Yes Yes Yes Yes
I = Bitwise OR assignment No Yes Yes Yes Yes

- = Bitwise XOR assignment No Yes Yes Yes Yes
<<= Bitwise shift left assignment No Yes Yes Yes Yes
=>> Bitwise shift right assignment No Yes Yes Yes Yes

Table4. 2 . Primitive Types and Their Supported Operations.

64

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

20
2 1 bDay . day = 13 ;
22
23
24

bDay . month = 4 ;
bDay . year = 1976 ; 11 now, we have the same struc tured value as above

D

Records only have a limited number of associated operations. These are as follows:

- Member access through the . (dot) operator (refer to Example 4 . 1 , lines 21 to 23) .
Each member can then be treated according to its type .

- Assignment of a structured value of this record type through the '= ' (assignment)
operator (refer to Example 4 . 1 , line 1 1) .

- Concatenation of two record types through the & operator. This operation declares
a new sub-type implicitly. Concatenations may cause naming clashes. Respective
conventions are outlined in Example 4 . 2 .

EXAMPLE 4 . 2 . Let us define two structured types that can be used together to represent
a machine's Internet Protocol (version 4) address. A class B network address (in decimal
representation) may be defined as follows:

0 1 STRUCTURE myClassBNetworkiD {
02 NATURAL byte! ;
03 NATURAL byte2 ;
04 } ;

Within the network, two more bytes ar.e available to distinguish local machines. Such
a local host identifier (in decimal representation) may be defined as follows:

10 STRUCTURE myLocalHostiD {
1 1 NATURAL byte! ;
12 NATURAL byte2 ;
1 3 } ;

Based on the structure definitions above, we may now define a structure representing
the Internet Protocol (version 4) address. This can be done as follows:

20 STRUCTURE myiPAddress STRUCTURE myClassBNetworkiD & STRUCTURE myLocalHost iD ;

However, there are two obvious naming clashes. Without resolving them, the following
code segment is likely to refer to the wrong member of the concatenated structure
(assume variable ip is of type STRUCTURE myiPAddres s) .

30
3 1
3 2
3 3
34

ip = (156 , 17 , 0 , 250) ;

if (ip . byte1 < 128) {

11 metada t a : STRUCTURE myiPAddress ip ;

11 Which byte1 do we refer t o ?

To avoid naming conflicts, explicit renaming of members i s necessary. An example is
shown next:

65

4 .2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

40 STRUCTURE myiPAddress STRUCTURE myClassBNetworkiD & STRUCTURE myLocalHostiD
41 WITH {
42 myLocalHost iD . byte1 AS byte3 ; // refer t o Sec t ion 4 . 3 . 5 where renaming
43 myLocalHost iD . byte2 AS byte4 ; // expressions are introduced in more detai L .
44 } ;

The corresponding segment of code must then appear as follows:

50
5 1 i p = (156 , 17 , 0 ' 250) ; // metada t a : STRUCTURE myiPAddress ip ;
52
53 if (ip . byte3 < 128) {
54

Thus, naming clashes must be resolved by the programmer.

As a second example, let us consider again the myDate type from Example 4 . 1 . Assume,
we want to define a myPerson type consisting of the person's name and date of birth.
This can be done as follows:

60 STRUCTURE myPerson {
6 1 STRING name ;
62 } & STRUCTURE myDate ;

myPerson has four members, which are name, day, month, and year. The resulting type
is identical to

70 STRUCTURE myPerson {
7 1 STRING name ;
72 NATURAL day ;
73 NATURAL month ;
74 INTEGER year ;
75 }

As a last example, we concatenate the myDate type with itself to form a myDuration
structured type. This will involve renaming at least one type definition name (e.g. the
second component as shown below) and at least half of the members of the new type.
An example is shown next:

80 STRUCTURE myDuration STRUCTURE myDate & STRUCTURE myDate AS myToDate WITH {
8 1 myDate . day AS fromDay ;
82 myDate . month AS fromMonth ;
83 myDate . year AS fromYear ;
84 myToDate . day AS toDay ;
85 myToDate . month AS toMonth ;
86 myToDate . year AS toYear ;
87 }

D

As already indicated in Table 4 . 1 , primitive types have associated default values.
So do record types. A record type's default value is defined recursively based on the
default value of each of its members.

Sub-typing can be extended to include record types as follows:

66

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

Definition 4.2. For record types, the binary SUBTYPE relation is the smallest relation
which is reflexive, t ransitive and has the following properties:

1. SUBTYPE (STRUCT { type1 a1 ; . . . typei ai ; . . . typen an ; } , STRUCT {
type ' 1 a1 ; . . . type ' i ai ; . . . type ' n � ; }) if SUBTYPE (typej , type ' j) for
all j = 1 , . . . , n ;

2 . SUBTYPE (STRUCT A & STRUCT B , STRUCT A) ; and
3. SUBTYPE (STRUCT A & STRUCT B , STRUCT B) .

Where A and B are identifiers, typei member types and ai member names. 0

Type Definitions. Before considering more complex types, we will introduce a means
of specifying new types, i .e . user types. Type definitions are used to define the common
structure and the common behaviour (i .e . type operations) of all values of a particular
user type. Each type has a unique (within the particular scope) type identifier. Type
parameters are supported in order to enable generic definitions. Details about such type
parameters are discussed below. A type's structure definition is given in the form of an
unnamed record type specification. This may be followed by a list of type operations.
The corresponding syntax portion is detailed in Syntax Snapshot 4 .2 .

Syntax S napshot 4 . 2 (iDBPQL Type Definitions)

TypeDef inition

UserTypeDecl

= ScopeModifierDecl , (UserTypeDecl I TypeSynonymDecl) ;

"TYPEDEF" , Id , [' < ' , TypeParameter-List , ' > '] , ["WITH" ,
' { ' , { TypeParaConstrClause } , ' } '] , ' { ' , StructuredType ,
["BEHAVI OUR" , { TypeOpSignature }] , ' } ' ;

TypeSynonymDecl = ScopeModifierDecl , "TYPEDEF " , NoneVoidType , Id ;
TypeParaConstrClause = "SUBTYPE" , ' (' , TypeParameter , ' , ' , Typeid-List , ') ' , ' ; '

0

In Syntax Snapshot 4 .2, TypeOpSignature refers to the specification of the signature
of a (public or private) type operation. It consists of a type operation name, a list of
formal input parameters and a formal output parameter. A type definition may not
declare two type operations with the same signature.

Types with behaviour (i .e . one or more associated type operations) or a non-default
default value (refer below) have an associated evaluation plan , which we will discuss
in more detail in Section 4.3.

Notes:

1. Type definitions are based on the record type . While record types only cover value­
types so far, their definition is later extended to include reference-types as well
(refer to Section 4 .2 .5) .

2. The keyword TYPEDEF has a second purpose. It is used to introduce synonyms for
types which could have been declared some other way. The new type name becomes
equivalent to the original type, i .e . they are sub-types of one another.

EXAMPLE 4 . 3 . Let us consider two examples. First , in line 0 1 an enumeration is
given a synonym PassGradesT. Secondly, in line 02 the INTEGER type is given the
synonymous name MyintType .

67

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

01 TYPEDEF ENUM ("A+" , "A" , "A-" , "8+" , "8" , "8- " , "C+" , "C") PassGradesT ;
02 TYPEDEF INTEGER MylntType ;

Sub-typing can be extended to include user-defined types as follows:

D

Definition 4.3. For user-defined types, the binary SUBTYPE relation is the smallest
relation which is reflexive, transitive and has the following properties:

1 . (for type definitions that are based on the structured type) : SUBTYPE (TYPEDEF
A , TYPEDEF B) if SUB TYPE (a , b) ; and

2. (for type synonym definitions of the form TYPEDEF C D) : SUBTYPE (C , D)
and SUBTYPE (D , C) .

Where A, B, C, and D are identifiers, and a and b are the corresponding underlying
record types of type definitions A and B, respectively. D

Type Parameters. Type parameters are used to define generic types . Such generic
types are instantiated to form parameterised types by providing actual type arguments
that replace the formal type parameters. Let us consider an example.

EXAMPLE 4 . 4 . First , we define a generic type Tcouple < _x , -Y > where _x and -Y
are type parameters.

01 TYPEDEF Tcouple < _ x , _y > {
02 STRUCTURE {
03 PRIVATE _ x first ;
04 PRIVATE _y second ;
05
06
07
08
09
10

}
BEHAVIOUR {

first ()
second ()
isEqual (Tcouple < _x , _y > couple2
!NIT (_ x val 1 , _y val2) ;

1 1 }
12 } ;

x · - '

_y ;
BOOLEAN ;

Once a generic type is defined, it can be instantiated:

20
21 Tcouple < PersonT , PersonT > married ;
22 Tcouple < NameT , INTEGER > productQuant ity ;
23

Instantiations, such as Tcouple < PersonT , PersonT > or Tcouple < NameT ,
INTEGER > are called parameterised types, and PersonT, NameT and INTEGER the re­
spective actual type arguments. D

Type parameters used above are unconstrained , i .e . every possible type may be
passed to either one of the two type parameters of the generic type Tcouple. This
introduces a number of challenges. For instance, it puts the ability to provide strong

68

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

typing at risk. In iDBPQL, we follow a similar approach to current OOPLs such as
Java and C#. For unconstrained type parameters , say MyType < T > , the only type
operations available on values of type T are those defined for every type (as introduced
further below) . Since those type operations always exist , we can guarantee at compile­
time that any type operation requested will succeed (at run-time) .

In addition to unconstrained type parameters, iDBPQL also supports constrained
type parameters . This is done by including a WITH expression (refer to Syntax Snapshot
4 .2) into the type definition. An example is as follows:

EXAMPLE 4 . 5 . Let us redefine the generic type from Example 4 .4 . Type parameters _x
and -Y are now constrained to the type PersonT and any of its sub-types.

01 TYPEDEF Tcouple < _x , _y > WITH {
02 SUBTYPE (_x , PersonT) ;
03 SUBTYPE (_y , PersonT) ;
04 } {
05 STRUCTURE {
06 PRIVATE _x f irst ;
07 PRIVATE _y second ;
08
09
10
1 1
12
13

}
BEHAVIOUR {

f irst ()
second ()
isEqual (Tcouple < _x , _y > couple2
INIT (_x val 1 , _y val2) ;

14 }
15 } ;

x · - '

_y ;
BOOLEAN ;

Considering the instantiations from Example 4 .4 again , Tcouple < PersonT ,
PersonT > married ; will still be valid while Tcouple < NameT , INTEGER >
productQuanti ty ; is not. 0

Collect ion Types. Besides primitive types, the structured type and user-defined types,
iDBPQL also contains the following built-in collection types4 :

- BAG with SET and EMPTYSET as specialisations.
- LIST with ARRAY, EMPTYLIST, STRING, ENUM, and SUBRANGE as specialisations.

The syntax portion specifying built-in collection types is illustrated in Syntax Snap­
shot 4 .3 .

Syntax S napshot 4 . 3 {Built-In iDBPQL Collection Types)

Collect ion Type = (" BAG" , ' < ' , NoneVoidType , ' > ') I
(" SET " , ' < ' , NoneVoidType , ' > ') I
("LIST" , ' < ' , NoneVoidType , ' > ') I (" STRING") I
("ARRAY" , ' < ' , NoneVoidType , ' > ' , ' [' , [NaturalValue] , '] ') I
("ENUM " , ' (' , StringValue , { ' , ' , StringValue } , ') ') I
(" SUBRANGE" , ' < ' , NumericType , ' > ' , " FROM" , NumericValue ,

"TO " , NumericValue) ;

4 Values of collection types are also referred to as collection values whenever it is important to distinguish
between the different types of values supported by iDBPQL. A collection value may be of a value-type or a
reference-type.

69

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

D

Properties of these collection types can be summarised as follows:

- A BAG (also referred to as multi-set) is an unordered collection of elements in
which the elements can have duplicate values. A BAG with no elements is called
the EMPTYSET, which is the default BAG-value. For example, a BAG < INTEGER >
(i .e . a multi-set of Integer values) might contain the collection { 12 , -3 , 3 , 12 ,
-3 , 1 2 , 1 } , which has duplicate elements.

- A SET is an unordered collection of elements in which each element is unique. A
SET with no elements is called the EMPTYSET, which is the default SET-value.

- A LIST is an ordered (but not sorted) collection of elements that allows duplicate
values. It differs from a BAG collection type in that each element in a LIST has an
ordinal position in the collection . The order of the elements in a LIST corresponds
to the order in which values are inserted. A LIST with no elements is called the
EMPTYLIST, which is the default LIST-value.

- An ARRAY is an ordered (but not sorted) collection of elements of a fixed number.
These collections may contain duplicate values and can be accessed by an index. An
ARRAY with no elements is called the EMPTYLIST, which is the default ARRAY-value.

- A STRING is a sequence of CHARACTER values. Strings may be regarded as LIST <
CHARACTER > . A STRING consisting of no characters has the same default value as
a character value.

- An ENUM (i.e. enumeration) is an ordered collection of unique elements of the STRING
type. Enumerations must have at least one element. The value of the first enumer­
ation element is taken as the enumeration's default value .

- A SUBRANGE is a sorted collection of unique elements of a numeric iDBPQL type.
The FROM value is used as the default, which might be the maximum (in case of a
descending subrange) or the minimum (in case of an ascending subrange) .

Figure 4 . 1 provides an overview of all (built-in) types of iDBPQL. Built-in type
constructors have the usual type operations (e.g. refer to [88]) .

Sub-typing can b e extended t o include collection types as follows:

D efinition 4 . 4 . For collection types, the binary SUBTYPE relation is the smallest rela­
t ion which is reflexive, transitive and has the following properties:

1 . SUBTYPE (BAG < _x > , BAG < -Y >) if SUBTYPE (_x , -Y) ;
2 . SUBTYPE (SET < _x > , SET < -Y >) if SUBTYPE (_x , -Y) ;
3 . SUBTYPE (LIST < _x > , LIST < -Y >) if SUBTYPE (_x , -Y) ;
4 . SUBTYPE (ARRAY < _x > [n] , ARRAY < -Y > [n]) if SUBTYPE (_x , -Y

) ;
5 . SUBTYPE (SET < _x > , BAG < _x >) ;
6 . SUBTYPE (EMPTYSET , BAG < _x >) ;
7. SUBTYPE (EMPTYSET , SET < _x >) ;
8 . SUBTYPE (ARRAY < _x > [n] , LIST < _x >) ;
9. SUBTYPE (EMPTYLIST , LIST < _x >) ;

10 . SUBTYPE (EMPTYLIST , ARRAY < _x > [n]) ;

70

4.2 . BASIC LANGUAGE CONCEPTS

atomic_ value

structured_ value

iDBPQL_type

collection_ value

NULLable_ value

object_reference

structured_ object

union_ object

Fig. 4 . 1 . The Type System of iDBPQL.

1 1 . SUBTYPE (STRING , LIST < CHARACTER >) ;
12 . SUBTYPE (CHARACTER , STRING) ;
13 . SUBTYPE (ENUM , LIST < STRING >) ;

Markus Kirchberg

BOO LEAN

ordered_ value

· I numeric value

: . j REAL

. · _- :1 INTEGER

: . j NATURAL

. ·. 1 CHARACTER

discrete_ value

STRUCTURE named types

TYPEDEF named types

BAG < type >

: · j SET < type >

; · j EMPTYSET I type = any
LIST < type >

:. · 1'--:
--;

A=R=RA
=

Y
=====;

-< -"-ty.:_pe_
> _

__,

: · j EMPTYLIST I type = any
:- - 1 STRING I type = CHARACTER
:- · I

:=
===E

=N
UM
==::;

' type = STRING
: · j SUBRANGE j type = llllmeric_value
NULLABLE < basic_type >

REFERENCE

CLASSDEF (un-)named types

UNION < object_ type >

14 . SUBTYPE (SUBRANGE < _z > ' LIST < _z >) ; and
15 . SUBTYPE (SUBRANGE < _z > , _z) .

Where _x, -Y and _z are type parameters with _z being restricted to numeric types, and
n is a Natural number. D

NULLable Types. All types, which we considered so far , have a common property,
i .e . a default value. In databases, however, it is also desired to capture the fact that a
type's value is not known. Thus, we require a mechanism to extend all value-types to
include the NULL value. To do so, we define a NULLABLE type constructor, which has
also recently found its way into the C# programming language [1 1 7] .

NULLable types represent value-types whose variables can be assigned the NULL value.
Otherwise, NULLable types can be used in the same way as the respective type argument .
Thus, we can easily include NULLable types into iDBPQL's sub-type hierarchy. Note:
A new super-type is defined! This implies that the conversion of an ordinary type's

71

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

value to its corresponding NULLable type can be done implicitly. However, the same is
not true vice versa. A cast expression, an explicit call of the default getValue type
operation, or an explicit call of the default getValueOrDefaul t type operation must
be included.

D efinition 4 . 5 . For NULLable and corresponding non-NULLable types, the binary
SUBTYPE relation is the smallest relation which is reflexive, transitive and has the fol­
lowing properties:

1 . SUBTYPE (NULLABLE < _x > , NULLABLE < -Y >) if SUBTYPE (_x , -Y) ;
2 . SUBTYPE (_x , NULLABLE < _x >) ; and
3 . SUBTYPE (NULL , NULLABLE < _x >) .

Where _x and -Y are type parameters. 0

The default value of a NULLable type is, of course, NULL. This , however, requires to
refine how pre-defined operations behave in the presence of NULL values. In iDBPQL, we
adopt respective conventions from SQL [36] . For instance, this means that arithmetic
operations return NULL if one of its operands is NULL. The logical AND (i .e . &&) operator
is extended to return FALSE if one operand evaluates to FALSE and the other to NULL,
and it returns NULL if one operand evaluates to NULL and the other to either TRUE or
NULL. Similarly, the logical OR (i .e . I I) operator is extended to return TRUE if one
operand evaluates to TRUE and the other to NULL, and it returns NULL if one operand
evaluates to NULL and the other to either FALSE or NULL.

Value Initialisation and Default Values. Default values for primitive types, struc­
tured types, built-in collection types, and NULLable types have already been outlined
above. We can, thus, summarise as follows: Each value-type has an implicit default
type initialiser (i .e . INIT () ;) that sets the default value of that type. However, it is
not always desired to use the implicit default . For instance, think of a date value where
day and month values are based on the primitive type NATURAL and year is based on
INTEGER. We desire to initialise each date variable with a valid date value such as (
1 , 1 , 0) (i .e . 1st of January 0) . However, the implicit default for types NATURAL and
INTEGER is 0 resulting in a default date value (0 , 0 , 0) . This can be avoided by
specifying an explicit type initialiser.

In iDBPQL, types always have an implicit type initialiser but at most one explicit
type initialiser. In the event that an explicit type initialiser exists (i .e . a type operation
named INIT with no result type) , no-one but the implementation of that explicit type
initialiser can invoke the implicit type initialiser.

Value initialisation is then realised by invoking the type's (implicit or explicit) ini­
t ialiser. Let us consider an example to demonstrate both approaches.

EXAMPLE 4 . 6 . We will continue with Example 4 . 1 . Consider the following code:

0 1
02
03

bDate = (13 , 4, 1976) ; 11 metadata : STRUCT myDate bDate ;

72

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

First , a new variable (named bDate) is initialised. As we can see in Example 4 . 1 , there
is no explicit type initialiser specified. Thus, when reaching line 02 , the bDate value is (
0 , 0 , 0) . This (implicit) default value has been obtained as follows: bDate is a value
of a structured type. Structured types initialise values of each member to the default
of their respective types. bDate . day and bDay . month are of type NATURAL and, thus,
initialised as 0 (the default value of type NATURAL) . dDate . year is of type INTEGER
and, thus, initialised as 0 (the default value of type INTEGER) .
Let us define another date type, one which has an explicit initialiser .

10 TYPEDEF myNewDate {
1 1 STRUCTURE {
12 NATURAL day ;
13 NATURAL month ;
14 INTEGER year ;
15 }
16
17 BEHAVIOUR {
18 age () : NATURAL ;
19 INIT () ;
20 }
2 1 }

The implementation of the explicit initialiser will override the default value assigned
by the implicit initialiser. For instance, it could set the default date value to (1 , 1 ,
year . INIT ()) . Thus, the defaults for values of day and month are set explicitly
while the default for the year value is derived from its associated type (i .e . the implicit
default mechanism is used) . 0

Sub-typing and Type Conversion. Sub-typing is structural (order, types and names
are considered) . Sub-type relations for primitive types, structured types (i .e . record
types and, thus, more general type definitions) , collection types (with type parameters)
and NULLable types are specified in Definitions 4 . 1 , 4 . 2 , 4 .3 , 4 .4 , and 4 .5 respectively.
Type definitions that do not expose any structural properties have to be sub-typed
explicitly using iDBPQL syntax as outlined in Syntax Snapshot 4 .4 . This approach has
already been used for, e .g. built-in collection types.

Syntax S napshot 4 . 4 {iDBPQL Sub- Type Declarations)

SubTypeDecl = "SUBTYPE" , ' (' , Typeid , ' , ' , Typeid-List , ') ' ;
0

Behaviour is not inherited. Nevertheless, a sub-type can utilise the behaviour spec­
ified for any of its super-types through type mapping.

EXAMPLE 4 . 7 . Let us consider type definitions outlined in Examples 4 . 1 and 4 .6 . Recall
that the following holds:

SUBTYPE (STRUCT myDate , myNewDate) and
SUBTYPE (myNewDate , STRUCT myDate) .

73

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

Thus, type operations specified for myNewDate can be applied to any (converted) STRUCT
myDate value and vice versa. Such sub- and super-type relations are given implicitly.

0
Sub-typing can be extended to include explicit sub-type specifications as follows:

Definition 4 . 6 . For explicit sub-type specifications, the binary SUBTYPE relation is the
smallest relation which is reflexive, transitive and has the following property:

SUBTYPE (A , E1) }
: if SUBTYPE

SUB TYPE (A , En)
(A , [E1 , . . . , En J) .

Where A, E1 , . . . , En are identifiers. 0
Based on sub-typing, we can then define the set of valid type conversions.

Definition 4. 7. A type conversion from type S to type T i s considered to be valid iff
SUBTYPE (S , T) . 0

Valid conversions are either identity conversions (i .e. a conversion from a type to the
same type) or widening conversions (i .e . a conversion from a type to its super-type) .

Variables. The term variable has been used frequently without further explanation.
A variable is declared by specifying its scope, the type of the variable and an identifier
that names the variable. Syntax Snapshot 4. 1 (on page 63) details the corresponding
syntax portion.

A variable of a type, as considered in this section, contains a value of the specified
type. This will be different for reference-types that are introduced later . In addition,
the way variables are declared will also be extended.

As of now, we distinguish between the following three types of variables:

- Type variables , which are declared in a structure definition. In a user-type definition,
they are considered structural members. Their scope may be PUBLIC (i .e . same as
the type) or PRIVATE (i .e . only visible from 'within' the type) .

- Local variables , which are declared in the body of a type operation (i .e . an evaluation
plan) .

- Parameter variables , which are declared in a type operation's or initialiser's param­
eter list . It can be considered as a local variable that is initialised with an argument
value at the time the corresponding type operation or initialiser is invoked.

Default Type Operations. iDBPQL defines a number of default type operations that
may be applied to any existing value-type. These default type operations include (where
_x is an unconstrained type parameter) :

- equals (_x val) : BOOL ; . . . determines whether or not the given value val is
equal to the value of the variable on which the equals type operation5 has been
invoked;

5 The equals type operation and the == type operator can be used synonymously for atomic values, String
values and NULLable values.

74

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

- getValue () : _x ; . . . returns the currently assigned value of the variable on
which the getValue type operation has been invoked;

- getValueOrDefault () : _x ; . . . returns the currently assigned value if it is not
the NULL value. Otherwise, the underlying type's default value is returned;

- hasValue () : BOOL ; . . . determines whether or not a variable contains a value. If
so, TRUE is returned. Only in the case that a variable carries the NULL value, FALSE
is returned;

- ini t () : VOID ; . . . initialises the value of the variable on which the ini t type
operation has been invoked;

- relni t () : VOID ; . . . reinitialises the value of the variable on which the relni t
type operation has been invoked; and

- setValue (_x val) : VO ID ; . . . assigns the provided value val to the variable
of type _x on which the setValue type operation has been invoked.

Type operations hasValue and getValueOrDefault are introduced to support
NULLable types.

Type Definitions for the University Application. Let us conclude this subsection
on types with a summary of all type definitions that form a part of the university
application as detailed in Example 3.3.

EXAMPLE 4 . 8 . We will restrict ourselves to types defined
University cc . All type definitions that appear in University LS
schema fragments are replicas.

11 synonym types
TYPEDEF ENUM (" City Centre" , "Lake Side" , "The Oval") CampusT ;
TYPEDEF INTEGER YearT ;
TYPEDEF ENUM (" f irst " , " second" , "double") SemesterCodeT ;
TYPEDEF NATURAL MonthT ;
TYPEDEF NATURAL DayT ;

m the SCHEMA
and Universityro

TYPEDEF ENUM (" Monday" , "Tuesday" , "Wednesday" , "Thursday" , "Friday") WeekDayT ;
TYPEDEF ENUM ("A+" , "A " , "A- " , "B+" , "B" , " B- " , "C+" , "C ") PassGradesT ;
TYPEDEF ENUM ("D " , "E") FailGradesT ;
TYPEDEF ENUM (" DNC" , "Withdrawn") MiscGradesT ;
TYPEDEF ENUM (PassGradesT , FailGradesT , MiscGradesT) GradesT ;

11 user-defined types
TYPEDEF NameT {

STRUCTURE {
NULLABLE < LIST < STRING
NULLABLE < STRING >
STRING

}
}

TYPEDEF StreetT {
STRUCTURE {

NULLABLE < STRING > name ;
NULLABLE < STRING > numb ;

> > titles ;
f irstName ;
lastName ;

75

4.2 . BASIC LANGUAGE CONCEPTS

}
}

TYPEDEF AddressT {
STRUCTURE {

NULLABLE < StreetT > street ;
NULLABLE < STRING > city ;
NULLABLE < NATURAL > z ipCode ;

}
}

TYPEDEF PersonT {
STRUCTURE {

NATURAL personid ;
NameT name ;
NULLABLE < AddressT > addr ;

}
}

TYPEDEF CourseT {
STRUCTURE {

STRING cNurnb ;
STRING cName ;

}
}

TYPEDEF RoomT {

}

STRUCTURE {

}

CampusT campus ;
STRING building ;
STRING numb ;

TYPEDEF SemesterT {
STRUCTURE {

}
}

YearT year ;
SemesterT sCode ;

TYPEDEF PhoneT {
STRUCTURE { NULLABLE < STRING > phone ; }

}

TYPEDEF DepartmentT {
STRUCTURE {

}
}

STRING dName ;
CampusT locat ion ;
NULLABLE < SET < PhoneT > > phones ;

76

Mar kus Kirchberg

4.2. BASIC LANGUAGE CONCEPTS

TYPEDEF StudentT {
STRUCTURE { NATURAL studentid ; }

}

TYPEDEF AcademicT {
STRUCTURE { NULLABLE < STRING > specialisation ; }

}

TYPEDEF DateT {

}

STRUCTURE {

}

NULLABLE < YearT >
NULLABLE < MonthT >
NULLABLE < DayT >

TYPEDEF Proj ectT {
STRUCTURE {

NATURAL
STRING

year ;
month;
day ;

proj ectld ;
t itle ;

DateT begin ;
NULLABLE < DateT > end ;

}
}

TYPEDEF TimeT {
STRUCTURE {

}
}

NULLABLE < NATURAL > hour ;
NULLABLE < NATURAL > minute

TYPEDEF LectureTimeT {
STRUCTURE {

WeekDayT weekDay ;

}
}

TimeT start ;
NULLABLE < TimeT > end ;

TYPEDEF LectureT {
STRUCTURE { NULLABLE < LectureTimeT > t ime ; }

}

TYPEDEF EnrolmentT {
STRUCTURE { NULLABLE < DateT > date ; }

}

TYPEDEF RecordT {
STRUCTURE { NULLABLE < GradesT > result ; }

}

77

Markus Kirchberg

D

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

4.2 .5 Classes and Objects

Types are used to represent simple concepts, such as structures with few members whose
values are mutable. Classes , on the other hand, are meant to be used to group larger
(i .e . more complex) structures or real-world objects. The structure of a class of objects
is defined over existing types, unnamed types (i .e. types without a behaviour that are
defined in the class structure itself) and existing classes (either as specialisation, i .e .
!sA-relationships / inheritance, or as reference) . Each object is uniquely identified by
a hidden, globally unique object identifier (of a hidden, internal type __ D ID) . We will
now start to consider how classes are specified .

Structure of a Class. Classes can be seen as templates for creating objects. They
specify the features that all objects of a class have in common. These features (also
referred to as class members) include named constants, variables, methods, and simple
constraints. Syntax Snapshot 4 .5 outlines the relevant portion of the iDBPQL syntax.

Syntax Snapshot 4 . 5 {iDBPQL Class Definitions)

ClassDef inition ClassModifierDecl , " CLASSDEF" , Id ,
[' < ' , ClassParameter-List , ' > '] , [" ! sA" , Classld-List] ,
["WITH " , ' { ' , { (ClassParaConstrClause I

PrecedenceClause I RenamingExpr) , ' ; ' } , ' } '] ,
' { ' '

[StructuredType] ,
["BEHAVIOUR" , ' { ' , { MethodSignature } , ' } '] ,
[ConstraintDeclaration] ,

' } ' ;
11 typ i ca l ly, the structured typ e is not ass igned a unique i dent ifier. In this cas e ,
11 w e imp l ic i t ly associate the identifier o f t h e c lass a lso wi th the struc tured
11 type . This is l a ter used when typing query expressions .

ClassParaConstrClause = ClassParameter , " IsA" , Classid-List ;
PrecedenceClause (Id , " IS ACCEPTED FROM" , Id) I

(Id , " COMBINES" , I d , { "AND" , Id }) ;
VariableDecl VarModif ierDecl , Type , Id , ["REVERSE" , Id] ;

11 ext ended version

MethodSignature MethodModif ierDecl , I d , ' (' , [Parameter-List] , ') ' ,
ResultType ;

ConstraintDeclaration = "CONSTRAINT" , [Id] , ' { ' { DomainConstraint
EntityConstraint } , ' } ' ;

DomainConstraint CheckConstraintDecl I NotNullConstraintDecl ;
EntityConstraint UniqueConstraintDecl ;
CheckConstraintDecl "CHECK " , ' (' , Expression , ') ' ;
NotNullConstraintDecl = "NOT NULL" , ' (' , Id-List , ') ' ;
UniqueConstraintDecl

ClassModifierDecl

MethodModif ierDecl

"UNIQUE " , ' (' , Id-List , ') ' ;

[ScopeModif ierDecl] , [StaticModif ierDecl] ,
[ClassCatModifierDecl] , [FinalModifierDecl] ;
[ScopeModif ierDecl] , [StaticModif ierDecl] ,
[AbstractModif ierDecl I FinalModif ierDecl] ;

78

' 0 '

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

VarModif ierDecl [ScopeModifierDecl] , [StaticModifierDecl] ;

Stat icModifierDecl "STATIC" ;
ClassCatModifierDecl = AbstractModifierDecl I "COLLECTION" I "CONCRETE" ;
AbstractModif ierDecl "ABSTRACT" ;
FinalModif ierDecl = "FINAL" ;

0

The CLASSDEF keyword is used to specify classes. While modern object-oriented
programming languages strictly enforce the encapsulation property (and, thus, hide all
structural properties of classes and their corresponding objects) , classes in iDBPQL
are not used primarily as information hiding mechanism. In a higher-level version of
iDBPQL, concepts such as class interfaces and module interfaces may take over this
part as briefly indicated in Section 3 .2 . While access modifiers such as PRIVATE and
PUBLIC are supported, classes are meant to expose structural properties. In fact, the
PUBLIC access modifier is the default for all class definitions and class members. Thus, all
public properties of a class are accessible wherever the respective class is accessible. The
PRIVATE scope modifier restricts member visibility. However, in contrast to conventional
OOPLs, PRIVATE does not limit the view to the class. Instead, it only limits the view
to the class where the member is declared and all its sub-classes (i .e . private and public
properties are inherited) . This is in line with the 'No Paranoia Rule ' as advocated in
[132] and also similarly adopted in the object-oriented programming language Theta
[82] that is designed for the object base Thor [83] . Having a reduced information hiding
mechanism at the class-level but a strong information hiding mechanism at the module­
level allows for more efficient implementations of closely related parts within a module.
In particular, this strategy is advantageous when object-orientation is only taken to
medium granularity6 - as iDBPQL does. It should be noted that iDBPQL does not
fully adhere to the ' No Paranoia Rule ' . Private properties of classes are hidden within
the respective class/sub-class hierarchy. This addresses the criticism of the ' No Paranoia
Rule ' that it is too open, especially for large modules.

Let us consider some initial examples:

EXAMPLE 4 . 9 . We will define classes based on type definitions for the university ap­
plication as outlined in Example 4 .8 . First , the PersonC class is defined . It is based on
the previously defined PersonT value-type as follows:

01 CLASSDEF PersonC {
02 STRUCTURE { PersonT ; }
03 }

Alternatively, we could specify the same class without reusing the existing value-type
PersonT (i .e . the PersonC class is defined over an unnamed structure type) :

10 CLASSDEF PersonC {
1 1 STRUCTURE {
12 NATURAL personid ;

6 Medium granularity of object-orientation means that there is a distinction between objects and values.
Objects correspond to larger abstractions such as real-world objects, whereas values represent Integer values,
or simply structured values.

79

4.2 . BASIC LANGUAGE CONCEPTS

13 NameT name ;
14 NULLABLE < AddressT > addr ;
15 }
16 }

Markus Kirchberg

However, the underlying unnamed type is identical to the PersonT value-type. Thus,
both class definitions are identical. D

All structural class members considered so far are associated with class instances,
i .e . they define the state of objects. We refer to such structural class members as
instance variables . In addition, classes may also contain class variables . There exists
only one copy of a class variable that serves all objects of the class, not one per object
as for instance variables . Per default, variables are instance variables. Class variables
must be declared explicitly using the STATIC keyword.

While classes are regarded as templates for creating objects, objects themselves are
considered instances of classes . They are created using the NEW keyword followed by
the name of the class that the object will be based upon. Object creation results in a
reference to the object being returned (not the actual object) . In iDBPQL, objects are
never accessed or returned directly. Object access is possible only through references
or class-collections that are introduced further below. Each object has an associated
value7 that identifies the object . The type of a (reference-)value is reference-ta-x where
x is the class of the object. Such types are referred to as reference- types or object- types
(Figure 4 . 1 on page 71 details all iDBPQL types including reference-types) . In contrast
to value-types, all reference-types have a common, unique default value, which is the
NULL reference (of type reference-to-nothing) . The NULL value does not denote an object
rather its absence.

Variables and Reference-Types. In Section 4 .2 .4 three types of variables have already
been introduced. Above, instance variables and class variables have been added. Having
introduced reference-types, the concept of a variable has to be extended to cover such
types. Syntax Snapshot 4 .5 details an extended means of declaring variables. Variables
of a primitive type still contain a value of the specified type. In contrast , variables of
a reference-type contain either the NULL value or a value that references an instance of
the specified class or an instance of a sub-class of the specified class .

Variables of a reference-type may have a corresponding reverse variable. Per default ,
all variables are unidirectional (i .e. no such reverse variable exists) . However, variables
of a reference-type may be bidirectional. Thus, a corresponding reverse variable exists .
A reverse variable is of reference-type reference-ta-x where x is the class in which the
bidirectional variable is defined in or a collection over reference- ta-x . A bidirectional
variable must be declared in both classes that refer to one another. Each of the
two declarations must contain the REVERSE keyword followed by the name of the
corresponding reverse variable. While unidirectional variables of a reference-type can
only represent one-to-one and one-to-many associations between classes, bidirectional
variables can represent one-to-one, one-to-many and many-to-many associations.

7 Values associated with objects are also referred to as reference values.

80

4 .2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

Before considering an example consisting of such associations, it has to be noted that
definitions of the structured type, type parameters and the built-in type constructors
(all introduced in Section 4 .2.4) are extended to support variables of both value-types
and reference-types.

EXAMPLE 4 . 1 0 . Again , let us consider the university application . A class representing
departments may be defined as follows:

01 CLASSDEF DepartmentC {
02 STRUCTURE {
03
04
05
06
07
08 }
09 }

DepartmentT ;
PersonC
SET < StudentC >
SET < StudentC >
SET < AcademicCcc

director ;
maj orStudents REVERSE maj or ;
minorStudents REVERSE minor ;

> staff REVERSE staffMemberOf ;

11 exis t ing type defini t ion
11 unidirect iona L reference
11 b idirect iona L reference
11 b idirect iona L reference
11 b i dire c t i onaL reference

This class definition contains members resembling both unidirectional and bidirectional
references. By default, such references are initialised to refer to the NULL value. D

Methods. Besides structural properties, classes contain methods. A method corre­
sponds to a block of iDBPQL statements, i .e . an evaluation plan . As outlined in Syn­
tax Snapshot 4 .5 , methods are declared by specifying method modifiers , the method
name, any method parameters (surrounded by parentheses) , a colon, and the result
type. Method names need not to be unique, however, the method name together with
its method parameters (in number or types) must be.

iDBPQL classes may contain four types of methods. These are:

- Instance methods , which are associated with class instances, i .e . objects. Such meth­
ods rely on the state of the specific object instance, i .e. the behaviour that the
method invokes relies upon its instance's state. Per default, methods are instance
methods.

- Class methods (also referred to as static methods) , which are associated with classes
and not their instances. Such methods do not access instance variables of any object
of the class they are defined in. They only access static members. Most commonly
they take all their data only from method parameters and perform computations
from those parameters, with no reference to instance variables.
Class methods must be declared explicitly using the STATIC keyword.

- Object constructors , which are special instance methods (with no result type) that
are called automatically upon the creation of an instance of a class. Once invoked,
object constructors initialise instance variables (in fact, instance variables inherited
from base-classes as well as instance variables defined in this class) . Similar to other
PLs (e .g. Java, C++ and C#) , object constructors are distinguished from instance
methods by having the same name as the class they are associated with.
The object constructor with an empty argument list must always exist. If not speci­
fied explicitly, it is generated automatically. A system-generated default constructor
is specified as foll-ows:

81

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

0 1 EVALPLAN myNewClassC (VOID) {
02 SUPER () ; // respect ive invoca t i on s emantics are out L ined
03 // Later in Examp Le 4 . 21
04 RETURN (VOID) ;
05 }

(Multiple) Inheritance. Inheritance is a mechanism by which a class (which is then
called sub-class) automatically inherits all the features (except for object constructors)
of one or more other classes (which are then called super-class(es)) . Inheritance may be
interpreted as class extension mechanism (e.g. derive a class modelling females from a
class modelling males) or as class specialisation mechanism (e.g. the female class and the
male class are both derived from a class modelling persons) . The specialisation approach
is often considered more natural , more intuitive and easier to comprehend, e .g . refer to
[136] . It can be viewed as a vehicle for conceptual modelling, which is the interpretation
of inheritance as desired by ODBSs. Thus, classes represent concepts, which may then
be specialised in sub-classes by adding new instance variables , adding new methods and
I or overriding existing methods to support the new instance variables.

Inheritance in iDBPQL is name-based and must be specified when defining a class
using the I sA keyword as indicated in Syntax Snapshot 4 .5 . The I sA keyword is followed
by one (i .e . single inheritance) or more (i .e . multiple inheritance) identifiers of existing
classes (which are also known as the base classes of the newly defined class8) .

A sub-class can override an inherited method, i .e. it provides an alternative im­
plementation for that method (both of which have the identical signature) . A class
that overrides a method can invoke the overridden method using the SUPER keyword .
Corresponding details are discussed further below in Section 4 .3 .5 .

As discussed in Section 1 . 1 .3 and in contrast to most modern OOPLs, DBPLs require
support for multiple inheritance . That is, a sub-class may inherit features of more than
one super-class. Multiple inheritance, however , causes various semantic ambiguities
that have to be addressed. Among others, [1 16] discusses such ambiguities. Multiple
inheritance may result in (two copies I replicas of) a base-class being inherited over
two different paths in the inheritance graph. Thus, naming clashes arise. This type of
multiple inheritance is also known as replicated inheritance and can be dealt with by
forcing the programmer to rename at least one set of features of the doubly derived base
class. iDBPQL supports renaming of class features in a similar manner as it has already
been introduced for record members in Section 4 .2 .4 . More challenging ambiguities arise
when the same base class is inherited over two different paths in the inheritance graph.
This shared inheritance may result in a method of the base class being overridden
in both inheritance paths. Thus, when calling the method on an object of the new
class, it cannot be determined which of the two overridden methods should be invoked.
While some PLs such as Eiffel [89] provide elaborate mechanisms for controlling such
ambiguities, other PLs such as Loops [20] and CLOS [56] compute precedence orders for
super-classes. Originally, iDBPQL followed the latter approach and interpreted the list
of super-classes as a priority list according to which the respective overridden method

8 Inheritance results in all of the class members defined for base-classes to become part of the new class as well.
Because a base-class may itself inherit from another class, which inherited from another class, and so on, a
class may end up with many base-classes. The terms base-class and super-class can be used synonymously.

82

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

is selected. However, this approach is very restrictive since programmers have to prefer
one super-class over another. In line with [1 19] , a more refined approach has been
adopted. Precedence orders may be defined for particular class members. Let us look
at the various ambiguities and the ways iDBPQL offers to address them (refer to the
class definition's WITH clause as outlined in Syntax Snapshot 4 .5 on page 78) .

EXAMPLE 4 . 1 1 . First , we consider replicated inheritance. Example 4 .9 outlined a sim­
ple definition of the PersonC class. We will use this class to define the StudentC class
representing students and a class CoupleC capturing the relationship between a student
and another person . These two new classes may be defined as follows:

001 CLASSDEF PersonC {
002 STRUCTURE { PersonT ; }
003
004 BEHAVIOUR {
005 getAddress () : Addres sT ;
006 PersonC (NameT name) ;
007 PersonC (NameT name , AddressT addr) ;
008 }
009 } ;
010
0 1 1 CLASSDEF StudentC IsA PersonC {
0 12 STRUCTURE {
0 13 StudentT ;
014 AddressT campusAddr ;
0 15 }
016
0 17 BEHAVIOUR {

11 re turns home address
11 object cons truc tor
11 object cons tructor

018 getAddress () : AddressT ; 11 returns campus address
019 StudentC (NameT name , AddressT homeAddr , StudentT stud ,
020 AddressT uniAddr) ; I I object cons tructor
021 }
022 } ;
023
024 CLASSDEF CoupleC IsA StudentC , PersonC {
025
026
027

BEHAVIOUR {
CoupleC (. . .) ;

028 }
029 } ;

11 object constructor

The definition of class CoupleC is not free of ambiguities. This i s a result of the class
PersonC being inherited over two different paths, i .e . as base-class of StudentC and
explicitly as direct super-class. As it is not intended to refer to the same PersonC object ,
all definitions that stem from the PersonC class are replicated causing naming clashes.
The programmer can either rename the properties inherited via the direct super-class
PersonC, rename common properties inherited through the StudentC class or rename
both sets of properties. The former may be done as follows resulting in a definition of
class CoupleC that is free of ambiguities:

030 CLASSDEF CoupleC IsA StudentC , PersonC WITH {
031 PersonC . personid AS partnerid ;

83

4.2. BASIC LANGUAGE CONCEPTS

032 PersonC . name AS partnerName ;
033 PersonC . addr AS partnerAddr ;
034 PersonC . getAddress AS getPartnerAddress ;
035 } {
036
037
038

BEHAVIOUR {
CoupleC (. . .) ;

039 }
040 } ;

Markus Kirchberg

I I obJ·ect constructor

Secondly, there are the ambiguities associated with shared inheritance. Let us illustrate
the problem by adding two more classes, a class representing academic staff members
and a class representing persons who are both students and academic staff members.
Not only will class PersonC be inherited via two paths, but also will the getAddress
method be overridden by both the StudentC class and the AcademicCcc class:

050 CLASSDEF AcademicCcc !sA PersonC {
051 STRUCTURE {
052 AddressT workAddr ;
053 }
054
055 BEHAVIOUR {
056 getAddress () : AddressT ; 11 re turns work address
057 AcademicCcc (NameT name , AddressT homeAddr , AddressT workAddr) ;
058
059 }
060 } ;
061

11 object constructor

062 CLASSDEF StudentAcademicCcc !sA StudentC , AcademicCcc {
063 BEHAVIOUR {
064 StudentAcademicCcc (. . .) ; I I object constructor
065 }
066 }

Obviously, class StudentAcademicCcc inherits the getAddress method from both its
super-classes (but also from its base class PersonC) . Assume, we have a method return­
ing the address of a StudentAcademicCcc s t aca :
070
071 return (staca . getAddress ()) ; 11 me tadata reference : StudentAcademicCcc
072 }

Line 071 causes a problem. The question is which getAddress method has to be in­
voked at run-time? Is it the one inherited from the base class PersonC, from the direct
super-class StudentC or from the direct super-class AcademicCcc? Similar to replicated
inheritance, iDBPQL forces the programmer to specify his/her precedence(s) :

080
081
082
083
084
085
086

CLASSDEF StudentAcademicCcc !sA StudentC , AcademicCcc WITH {
getAddress IS ACCEPTED FROM AcademicCcc ;

} {
BEHAVIOUR {

StudentAcademicCcc (. . .) ; 11 object constructor

}
}

84

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

Now, the method call described in line 071 will invoke the getAddress method as speci­
fied for the AcademicCcc class . The WITH clause permits both renaming and prioritising
of inherited class members. However, the same class member cannot be renamed and
prioritised in the same WITH clause.
Prioritising one method over another is not always applicable or desired. For instance,
we may think of two equals methods that cover all static class members in their
respective classes but not in the sub-class . This is likely the case if replicated inheritance
is mixed with shared inheritance. Choosing one equals method over the other will not
result in a logically correct equals method for the sub-class. To gather such cases,
iDBPQL allows to combine inherited class members (something that is not found in
traditional OOPLs) or override them. The former falls into the category of method
combination and is only possible when considering method prioritisation instead of class
prioritisation. Let us outline a simple example defining one-, two- and three-dimensional
points:

090 CLASSDEF PointC {
091 STRUCTURE {
092 INT x ;
093 }
094 BEHAVIOUR {
095 equals (INT xVal) BOOL ;
096 }
097 }
098
099 CLASSDEF Point2DC !sA PointC AS XPointC , PointC AS YPointC WITH {
100 y AS YPointC . x ; // renaming , i . e . rep L i cated inheri t ance
101 equals (INT xVal , INT yVal) COMBINES XPointC AND YPointC ;
102 } { }
103
104 CLASSDEF Point3DC !sA Point2DC , PointC WITH {
105 z AS PointC . x ; / / renaming , i . e . rep L i cated inheri t ance
106 equals (INT xVal , INT yVal , INT zVal) COMBINES Point2DC AND PointC ;
107 } { }

Two-dimensional (2D) points are defined based on two incarnations of the PointC class
representing one-dimensional (lD) points . Line 91 defines the 2D-equals method as a
combination of the lD-equals method: First , the lD-equals method is applied to the
xVal value and then to the yVal value; the result of the 2D-equals method is a logical
AND of the results of the two lD-equals invocations. Similarly, a three-dimensional
(3D) point is defined through the combination of a 2D point and a lD point. The
corresponding equals method combines the equals method from the Point2DC class
(arguments 1 and 2) and the equals method from the PointC class (argument 3) .
The COMBINES mechanism can be applied to methods with the same name and return
type. However, the latter is restricted to BOOL and VOID. Arguments of all methods
that are combined will be concatenated (i .e . preserving the order) . Thus, the number
of arguments of the resulting combined method is equal to the sum of all arguments of
all methods listed after the COMBINED keyword.
This form of method combination can also be achieved by defining a new equals
method that explicitly calls the corresponding super-class methods, collects their results

85

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

and determines the return parameter of the method. This overriding approach is the
alternative approach to prioritising and combining. The rationale behind introducing
method combination is the fact that it can be utilised during the evaluation . It presents
an opportunity to utilise concurrent evaluation as it will be outlined later in Section
5 .3 .9 . 0

To summarise, multiple inheritance offers programmers three different ways of deal­
ing with possible ambiguities. Renaming can be applied to include features of replicated
classes, prioritisation supports shared inheritance, while , in the absence of renaming and
prioritisation, identical features inherited via two paths can be treated as if they would
have been inherited only once. In the latter case, it is required that inherited features
have not been overridden along their respective inheritance paths. In the absence of ad­
equate renaming, prioritisation specifications and the identity property, iDBPQL code
suspectable to any multiple inheritance ambiguities must be rejected. Despite the fact
that multiple inheritance adds to the complexity of coding, it also offers a powerful
tool to design and implement applications. The following example will outline how the
different ways of dealing with possible ambiguities can be combined:

EXAMPLE 4 . 1 2 . Let us temporarily extend the University schema. We still have stu­
dents and academic staff members who are also persons as well as a class modelling indi­
viduals that are both at the same time students and academic staff members. This leaves
us with the situation outlined in Example 4 . 1 1 . Now, we add two additional classes.
F irstly, there is the UniMernberC class that associates a unique ID and an email account
with each student and each staff member. Secondly, the university offers a complimen­
tary insurance cover for its students and staff members. Class UniinsuranceClientC
models this service. We can define a corresponding schema fragment as follows:

0 1 CLASSDEF PersonC {
02 STRUCTURE { PersonT ; }
03
04 BEHAVIOUR {

getAddress () : AddressT ;
PersonC (NameT name) ;

05
06
07 PersonC (NameT name , AddressT addr) ;
08 }
09 } ;
10
1 1 CLASSDEF UniinsuranceClientC {
12 STRUCTURE {
13 NAT policyid ;
14 }
15 }
16
17 CLASSDEF UniMemberC {
18 STRUCTURE {
19 NAT id ;
20 STRING email
2 1 }
22 }
23

86

11 re turns home address
11 object cons tructor
11 object cons tructor

4.2 . BASIC LANGUAGE CONCEPTS

24 CLASSDEF StudentC IsA PersonC , UniMemberC , UniinsuranceClientC {
25 STRUCTURE {
26 StudentT ;
27 AddressT campusAddr ;
28 }
29 }
30

Markus Kirchberg

3 1 CLASSDEF AcademicCcc IsA PersonC , UniMemberC , UniinsuranceClientC {
32 STRUCTURE {
33 AddressT workAddr ;
34 }
35
36 BEHAVIOUR {
37 getAddress () : AddressT ; // re turns work address
38 AcademicCcc (NameT name , AddressT homeAddr , AddressT workAddr) ;
39 // object constructor
40 }
4 1 } ;
42
43 CLASSDEF StudentAcademicCcc IsA StudentC , AcademicCcc WITH {
44 AcademicCcc . id AS staff id ;
45 AcademicCcc - email AS staffEmail ;
46 getAddress I S ACCEPTED FROM AcademicCcc ;
47 } {
48 BEHAVIOUR {
49
50 }
5 1 }

StudentAcademicCcc (.
.
.) ; /1 object cons tructor

Considering the StudentAcademicCcc class definition, various ambiguities arise that
are being dealt with. Details are as follows:

- Structural features of the PersonC base class are inherited via both paths, in fact ,
they are identical . Thus, only one set of these features is retained , i .e . the features
inherited via the StudentC path.
The same is true for all features inherited from the UnilnsuranceClientC class.

- The getAddress method from class PersonC , however, is refined along both inher­
itance paths. Thus, a renaming expression or a prioritisation clause is expected.
The latter is the case. Thus, invoking the getAddress method on an instance of
class StudentAcademicCcc will result in executing the method inherited via the
AcademicCcc path.

- Two different sets of class members of the UniMemberC class are inherited. It is
important that both sets of members form a part of the StudentAcademicCcc
class. Hence, only renaming is applicable as specified above.

As a result, each StudentAcademicCcc object is a person, a student, an academic staff
member and has one complimentary insurance policy. The getAddress method returns
the work address by default . In addition, the student identifier, student email address,
staff identifier and staff email address are inherited. 0

As mentioned earlier, object constructors are not inherited. Instead, each class
must define its own object constructors. Once invoked, object constructors initialise

87

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

instance variables inherited from base-classes as well as instance variables defined
in the class itself. Thus, at first, object constructors from all super-classes must be
invoked (explicitly) . For this, the SUPER mechanisms is used. Example 4 .21 will later
demonstrate two alternatives of such explicit object constructor invocations.

The I sA keyword in class definitions defines a direct I sA relation between classes.
For a class definition CLASSDEF A IsA E1 , . . . , En we say E1 , . . . , En are direct super-
classes of A or A is a direct sub-class of E1 , . . . , En and define A I sA E1 , . . . , Bn .

Based on this direct I sA relation, sub-typing can be extended to include reference­
types as follows:

Definition 4 . 8 . For reference-types, the binary SUBTYPE relation is the smallest rela­
tion which is reflexive, transitive and has the following properties :

1 . SUBTYPE (A , B) if A IsA B;
2 . SUBTYPE (NULL , A) ; and
3. SUBTYPE (A , OBJECT) .

Where A and E are reference-types, OBJECT is the default super-class of any class (but
itself) that has no I sA clause, and NULL is the default sub-class of any other class . 0

Thus, inheritance by means of specialisation can be seen as being parallel to sub­
typing. Hence, I sA-specialisations imply sub-typing. However, the same is not true vice
versa.

The I sA relation is also used to define the inheritance relation. The inheritance
relation �I sA is defined as the transitive closure over I sA relations (i .e . reachable by
a finite number of I sA steps) which is also reflexive. The inheritance relation forms a
directed acyclic graph (DAG) . This graph has classes as nodes and I sA relationships
as links. Using the inheritance relation , we can say that A is a sub-class of B or B
is a super-class of A iff A � IsA B (i .e . there is a directed path from A to B in the
corresponding DAG) .

Variables, Types, Objects, and Classes. In a nutshell, variables have types and
objects have classes. Every object belongs to the class on which it was created (i .e . its
class) . An object is considered an instance of its class and of all super-classes of its
class.

Types restrict possible values of variables and expressions. While a variable's type
is always declared (i .e . known at compile-time) , the type of an expression is derived
only at run-time. In the event that an expression's run-time value has an associated
reference-type, the value is a reference to an object. This object has a class, which
must be compatible with the corresponding compile-time type (which is then also a
reference-type) . Compatible, here, means that there must be a valid type conversion
between the two reference types (refer to Definition 4 .7) .

The FINAL and the ABSTRACT Modifiers. I n addition t o scope modifiers and the STATIC
modifier, two more modifiers are supported by iDBPQL. These are the FINAL and the
ABSTRACT modifiers.

88

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

The ABSTRACT modifier can precede the CLASSDEF keyword in a class definition
indicating that this class cannot be instantiated. Such abstract classes may only have
other abstract classes as super-classes. However, its sub-classes may or may not be
abstract. Abstract classes are commonly used to specify features that their sub-classes
must implement. Classes that are not abstract are known as concrete classes .

In addition, the ABSTRACT modifier may appear in a method signature preceding
the method name. Such abstract methods have no associated evaluation plan. Concrete
sub-classes must provide their own implementation for such abstract methods. Every
class definition that contains at least one abstract method must be declared ABSTRACT
itself.

Finally, the FINAL modifier may appear in-front of a CLASSDEF keyword in a class
definition, in a variable declaration of a class definition or in a method signature. Any
concrete class may be declared to be FINAL (i .e by specifying this modifier in-front
of the CLASSDEF keyword) implying that it cannot be sub-classed . When the FINAL
keyword appears in a method signature (i .e . preceding the method name) , it implies
that the corresponding method cannot be overridden in any sub-class. Otherwise, if the
FINAL modifier appears in a variable declaration, the corresponding variable becomes
a named constant .

The UNION-Type. UNION-types are introduced as a means of specifying super-types ex­
plicitly based on existing class definitions. Union types for object-oriented programming
have been introduced, among others, in [53] . We adopt this proposal in our iDBPQL
language (with minor modifications) .

The UNI ON-type is applicable to classes and values of reference-types only. Among
other things, it supports the unification of objects of (horizontally) fragmented classes
so that the resulting union corresponds to a global class as it has been defined in a
h igher-level, global database schemata (as later demonstrated in Example 4 .26) .

Syntax S napshot 4 . 6 {The iDBPQL UNION- Type)

Union Type = ScopeModif ierDecl , "UNIONDEF" , [Id] , ' < ' , RefType , ' , ' , RefType , ' > ' ;
0

Syntax Snapshot 4 .6 outlines the syntax of the UNI ON-type. It can be considered as
a set-union of all objects of two classes (identified by their class name or as a reference
value) and it behaves as their least common super-type.

UNION-types can be constructed from any two classes, say A and B. The UNIONDEF <
A , B > denotes the set-union of values of A and B . Thus, it includes only values of A or
B and nothing else. In contrast to classes, UNION-types have no explicit implementation
(i .e. evaluation plan) associated. However , it allows to utilise those methods that both
A and B have in common .

UNION-types only have two associated operations: Case analysis and member access.
These are defined as follows:

- Case analysis is a conditional construct that branches according to the run-time
type of the value. For instance, the following code section invokes std . getAddress
() ; since p holds a value of type StudentC.

89

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

01
02 p = NEW StudentC (. . .) ; I I metadat a : UNIONDEF < StudentC , AcademicCcc > ;
03
04 SWITCH (p) {
05 CASE StudentC AS std : { std . getAddress () ; }
06 CASE AcademicCcc AS aca : { aca . getAddress () ; }
07 }
08

- M ember access allows direct access to common features. However, access is restricted
to variables with the same name and compatible type, and methods that have
identical signatures.

Let us consider an example unifying collections of student and academic staff mem­
ber objects.

EXAMPLE 4 . 1 3 . Consider StudentC and AcademicCcc class definitions from Example
4. 1 1 . Assume, we have defined the union over all StudentC and all AcademicCcc objects.
The resulting union type allows for the following member accesses (refer to l ines 02 to
04 and 06) :

01 11 LocaL variab l e p is of typ e UNIONDEF < StudentC , AcademicCcc >
02 p . personld
03 p . name
04 p . addr
05
06 p . getAddress () ;
07

The only shared static features of both classes, StudentC and AcademicCcc , are those
inherited from their common direct super-class PersonC. The only shared behavioural
feature is the getAddress method that is defined not only in the common direct super­
class PersonC but also overridden in both classes. D

Sub-typing can be extended to include UNION-types as follows:

Definition 4.9. For UNION-types, the binary SUBTYPE relation is the smallest relation
which is reflexive, transitive and has the following properties:

1. SUBTYPE (B , UNIONDEF < B , C >) ;
2 . SUBTYPE (C , UNIONDEF < B , C >) ;
3. SUBTYPE (UNIONDEF < B , C > , A) if SUBTYPE (B , A) and SUBTYPE (

C , A) ; and
4. SUBTYPE (UNIONDEF < D , E > , UNIONDEF < B , C >) if SUBTYPE (D , B

) and SUBTYPE (E , C) .

Where A, B, C and D are reference-types. D

Figure 4 .2 provides an example of corresponding sub-typing and inheritance hier­
archies. A, . . . , G are classes where B, C and D are sub-classes/-types of A; E and F
are sub-classesj-types of B; and G is a sub-classj-types of C. In addition, UNIONDEF

90

4.2 . BASIC LANGUAGE CONCEPTS

D

A, ... , G class names

Markus Kirchberg

x UNION y UNIONDEF < x, y >
- inheritance I sub-type relation

- - +- induced sub-type relation

Fig. 4 . 2 . Union Types, Sub-typing and Inheritance ([53, Figure 1)) .

< B , C > is a sub-type of A and a super-type o f B and C ; and UNIONDEF < F , G
> is a sub-type of UNIONDEF < B , C > and a super-type of F and G. Assume, we
have another UNION-type defined as follows: UNI ONDEF newUnion < A , B > . This is
a special case since B is a sub-class/-type of A. As a result, the UNION-type newUnion
denotes the same set of instances as A.

Special Pre-Defined Classes. iDBPQL has a number of pre-defined, special­
purpose classes. The most important of these are class Obj ect, class Class , class
CollectionClass , and class Transaction.

First , there is the previously mentioned class Obj ect, which is a super-class of every
class but itself. Having such a default super-class allows programmers to write generic
code that deals with objects of any type. The class Obj ect is defined as follows:

01 CONCRETE CLASSDEF Obj ect {
02 BEHAVIOUR {
03
04

clone () : Obj ect ;
equals (Obj ect obj

getClass () : Class ;
isinstance (Class class

) ;

BOOLEAN ;
11 creates and returns a copy of this object

11 det ermines whether o bje c t obj is
11 'e qua L t o ' this one

I I re turns the run-time c L ass of this object
BOOLEAN ;

05
06
07
08
09
10
1 1
1 2

Obj ect
Obj ect STRING strObj) ;

11 det ermines whether this object is
11 an instance of c L ass class

11 object constructor
11 objec t constructor creat ing the object from

11 i ts String representa t ion
11 re turns the objec t 's String representation

13 }
14 }

toString () : STRING ;

In addition, there are some implicitly defined operators on objects. These are: Mem­
ber access through the ' . ' operator and casting. Member access may either correspond
to class / instance variable access or method invocation.

Secondly, there is the class Class that has instances representing iDBPQL classes
within the system. It can be regarded as an (internal) means of keeping track of all
class properties. Since Class objects are constructed automatically, the class C lass has

91

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

only an internal, hidden constructor. The non-hidden portion of class Class is defined
as follows:

20 CONCRETE CLASSDEF Class {
2 1 BEHAVIOUR {
22 getSuperClasses () L IST < Class > ; 11 re turns a L ist of direct

I I super-c Lasses 23
24 hasSubClass (Class class) BOOLEAN ; 11 determines whe ther c Lass class
25 11 is a direct sub-c L ass of this c L ass
26 hasSuperClass (Class class) BOOLEAN ; 11 determines whe ther c Lass class
27 11 is a direct super-c L ass of this c L ass
28 }
29 }

Thirdly, there is the final class CollectionClass that has instances representing
iDBPQL classes, which are also collection-classes. This class extends the class Class
and adds functionality to maintain collection-classes explicitly. The non-hidden portion
of class CollectionClass is defined as follows:

30 CONCRETE FINAL CLASSDEF CollectionClass IsA Class {
31 BEHAVIOUR {
32 contains (Obj ect obj) : BOOLEAN ; 11 determines whe ther object obj is

11 an object of this co L L ection-c L ass
11 determines whe ther object obj is
11 (equaL to ' this co L L ect ion-c L ass

11 determines whe ther the co L L ect ion-c L ass
11 has any ins tances

11 removes object obj from this
11 co L L ection-c L ass

11 returns the numb er of instances of
11 this co L L ection-c L ass

33
34
35
36
37
38
39
40
41

equals (Obj ect obj) BOOLEAN ;

isEmpty () : BOOLEAN ;

remove Obj ect obj) : BOOLEAN ;

42 }
43 }

size () : NATURAL ;

Class Transaction is used to model transactions. It only has an internal object
constructor, which is automatically invoked whenever a transaction block (refer to
Section 4 .3 .3) is encountered .

50 CONCRETE CLASSDEF Transaction
5 1 STRUCTURE {
52 PRIVATE Transid tid ;
53 }
54 BEHAVIOUR {
55 abort () : VOID ;
56 commit () VOI D ;
57 getTransid () : Transid ;
58 isActive () : BOOLEAN ;
59 isAborted () : BOOLEAN ;
60 rollback () : VOID ;
61 }
62 }

{

11 g Lo baL Ly unique transact ion identifier

11 triggers the abort of the transact i on
11 commits the transact i on

11 re turns the transaction 's identifi er
11 determines whether the transact ion is act ive

11 det ermines whe ther the transaction is abort ed
11 ro L Ls b ack the transaction

92

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

Class-Collections. In Section 1 . 1 .3 , we have already indicated that DBSs desire to
have a means of access to all objects of a particular class. To meet this requirement,
iDBPQL supports class-collections. Per default , each concrete class has an associated,
system-maintained collection through which access to all objects of this class and its
sub-classes is possible.

EXAMPLE 4 . 1 4 . Let us consider the PersonC, StudentC, AcadernicCcc , and
StudentAcademicCcc class definitions from Example 4. 1 1 . All four classes are
collection-classes by definition. Thus, accessing class StudentAcademicCcc by name
will return a collection of all instances of that class. In turn, accessing class PersonC
will not only return a collection of all instances of class PersonC but also all instances
of its sub-classes, i .e . StudentC, AcademicCcc and StudentAcademicCcc · The return
type of this collection would be class PersonC. 0

However , this means of access is not always desired. For instance, assume we have
defined a class Enrolrnent!dC of objects uniquely identifying enrolments of a particular
type. This Enrolrnent!dC class may then later be used by classes representing actual
enrolment objects. While it is likely that access to all enrolments of a particular type
is desired (i .e . such classes would be collection-classes) , a class-as-collection type access
to the Enrolment!dC class is not necessary, in fact , in most situations even undesired .
To gather such scenarios, iDBPQL introduces concrete-only classes, which are concrete
classes in the traditional PL-sense. That is, concrete-only classes have no associated,
system-maintained collections. Whenever it will be necessary to distinguish between the
two types of concrete classes, we will refer to them as collection-classes and as collection­
less classes respectively. While collection-classes are created by default , collection-less
classes are defined using the CONCRETE keyword as indicated in Syntax Snapshot 4 .5
(on page 78) .

Since iDBPQL does not use classes as information hiding mechanism, the decision
of whether or not to use a collection-class is mainly a performance issue. Maintaining
collections is costly with respect to processing time. Hence, the default mechanism of
associating collection-classes should be overridden whenever the additional functionality
of direct, name-based access to all class and sub-class instances is not required. As a
rule-of-thumb, classes that are designed to be queried should be defined as collection­
classes relieving the programmer from maintaining such collections explicitly. Classes
that are designed to model more general concepts (e .g. a class representing a hash­
table) , are used across different application domains or are meant only to support a
particular collection-class should be defined as collection-less classes. Examples will
appear throughout the remainder of this thesis .

Earlier in this section, on page 88, we have already outlined how abstract and con­
crete classes appear in the inheritance graph. Having two types of concrete classes re­
quires us to revisit and refine how different types of classes my appear in the inheritance
graph. Abstract classes may only have other abstract classes as super-classes, but can
be sub-classed by all types of classes. Collection-less classes may have abstract classes
or collection-less classes as super-classes and can be sub-classed by both collection­
less classes and collection-classes. Collection-classes may have all types of classes as
super-classes, but must only be sub-classed by collection-classes. Thus, considering the
inheritance graph, we can summarise that abstract classes always appear at the top

93

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

of the hierarchy, collection-less classes at the centre and bottom of the hierarchy, and
collection-classes generally at the bottom of the hierarchy.

The rationale behind those restrictions should be obvious. Assume that a collection­
less class, say Y, would be allowed to sub-class a collection-class, say X. When accessing
class X through the class-as-collection mechanism, we require access to all instances of
the class itself and also to those of its sub-classes (i .e . Y) . While X has an associated
collection, Y has none. This would result in an inability to fulfil the request.

Constraints. While constraints are not common in programming languages, they are
an essential component of database languages. iDBPQL supports two types of explicit
constraints. These are :

- Domain constraints , which only require to validate instance variables of the partic­
u lar object . iDBPQL supports the following three domain constraints:

• The NOT NULL constraint . Variables may be declared to take on a value that is
not the NULL value. Only the support of NULLable types makes it possible that
variables of a value-type may be assigned that value. The NOT NULL constraint
applies to reference values more natural . However, variables of a reference-type
may be of reverse nature. Thus, it is possible that both ends of a reference
expect a non-NULL value. This introduces difficulties during object creation. To
circumvent such problems, iDBPQL supports atomic blocks, which delay the
point in time where constraints are verified and newly created objects become
visible . Corresponding details are discussed in Section 4.3.3.

• The CHECK constraint , which can be used to ensure that a variable's value stays
within a given range, is an element of a pre-defined collection of values (i .e .
the IN clause) , contains a given pattern (i .e. the LIKE clause, or preserves a
particular relation to a constant value or another variable (of the same or a
references class) .

- Entity constraints , which can only be verified when considering all objects that are
instances of the particular class .
iDBPQL supports the UNIQUE constraint , which is a class-level constraint . One or
more structural class members may be declared to be unique.

Constraints are inherited. In contrast to SQL, UNIQUE implies NOT NULL. Thus, a
sub-class may be missing NOT NULL constraints for instance variables that are added to
the class's UNIQUE constraint .

Let us consider a sample class definition that contains domain and entity constraints.

ExAMPLE 4 . 1 5 . Based on the EnrolmentT type definition, we specify a class capturing
properties of course enrolments. This may be done as follows:

01 CLASSDEF EnrolrnentCcc {
02 STRUCTURE {
03 LectureCcc lecture ;
04 StudentC student ;
05 EnrolrnentT ;
06 }

94

4.2 . BASIC LANGUAGE CONCEPTS

07
08 BEHAVIOUR {
09
10
1 1
12 }

verifyEnrolment (VOID) : BOOLEAN ;
PRIVATE checkCrsPreRequisites (VOID) : BOOLEAN ;
EnrolmentCcc (StudentC std , LectureCcc lect) ;

13
14
15

CONSTRAINT {

16 }
17 }

UNIQUE (lecture , student) ;

Markus Kirchberg

11 pub L i c method
11 privat e method

11 object constructor

11 ent i ty constraint

Above, we have two explicit constraints. In addition, the UNIQUE constraint implies that
values of instance variables lecture and student are not NULL. Thus, when creating an
enrolment object , corresponding lecture and student objects must be already known.
The UNIQUE constraint implies that those lecture and student objects must not only be
known but also represent a unique pair in the corresponding class-collection (including
class-collection of all sub-classes) . 0

Database Schemata and Classes. A database schema can be regarded as a collection
of class definitions. This collection must be closed in the sense that all referenced classes,
all super-classes and all non-standard type definitions are also part of the collection .
In addition, all non-abstract behaviour specifications must have associated evaluation
plans describing the implementation of the respective behaviours. Those evaluation
plans must also be closed as defined in Section 4 .3 . Let us consider a more formal
definition for the term schema:

Definition 4 . 1 0 . A schema S corresponds to a collection of type definitions T and
class definitions C where the following properties are met:

- The class-collection C is initialised with all classes classC1 , . . . , classCn that are
added explicitly by a user (using schema manipulation commands of the high-level
language DBPQL) .

- If class classC , defined as CLASSDEF classC I sA supClassC1 , . . . , supClassCn ,
is in C so are all its super-classes supClassC1 , . . . , supClassCn .

- If class classC , with a structure definition containing value-typed variables
va1Type1 var1 ; . . . ; valTypen varn ; , is in C then all types va1Type1 , . . . ,
val Typen must be iDBPQL system types or must be defined in T.

- If class classC , with a structure definition containing reference-typed vari­
ables classC1 var1 ; . . . ; c lassCn varn ; or COLLECTION < c lassC1 > var1 ; . . . ;
COLLECTION < c lassCn > varn ; , is in C so are all referenced class definitions
classC1 , . . . , c lassCn .

- Each non-abstract behaviour specification part of a type definition in T or a class
definition in C must have an associated evaluation plan, which is closed within S.

- If class classC, with a behaviour specification B, is in C then all type definitions
and all class definitions that appear in B must be in T and C respectively.

- If class classC contains CHECK constraints that refer to other classes class 1 , . . . ,
c lassn then class 1 , . . . , classn must also be in C.

95

4.2. BASIC LANGUAGE CONCEPTS Markus Kirchberg

- If type typeT, with a structure definition containing value-typed variables valType1
var1 ; . . . ; val Typen var n ; , is in T then all types val Type1 , . . . , val Typen must be
iDBPQL system types or must also be defined in T.

- If type typeT, with a behaviour specification B , is in C then all type definitions
that appear in B must also be in T.

- C and T must not contain any class definitions or type definitions respectively that
do not meet any of the above criteria.

D

Syntax Snapshot 4 . 7 outlines the corresponding syntax portion that is used subse­
quently to refer to schema definitions. As indicated, schemata represent shared data
that is maintained persistently. A SchemaBlock consists of a list of IMPORTS that are
either used to import whole database schemata (in case of IMPORTS SCHEMA) or indi­
vidual type and class definitions (in case of IMPORTS Id1 . Id2 , where Id1 identifies a
schema and Id2 refers to a class or type definition in schema Id1) .

Syntax Snapshot 4 . 7 {Definition of iDBPQL DBS MetaData Units)

DBSMetaDataUnit = Schema ;
Schema "SCHEMA" , Id , ' { ' , SchemaBlock , ' } ' ;
SchemaBlock = { ImportDeclaration } , { SchemaDef inition } ;
ImportDeclaration = " IMPORTS" , ["SCHEMA"] , Id , [' . ' , Id] , [" AS" , Id] ;
SchemaDef inition = ClassDefinition I ConstantDeclaration I TypeDeclaration ;

0

A sample schema definition (without behaviour specifications) can be found below
at the end of this section. This definition is later extended with behaviour specifications
and their associated evaluation plans.

Run-Time MetaData Catalogue Entries. Besides DBS metadata entries, there are
type and class definitions that are associated with evaluation plans. The life-time of
such entries is bound to the particular evaluation plan or even a smaller unit within.
Syntax Snapshot 4.8 outlines the corresponding iDBPQL syntax portion .

Syntax Snapshot 4.8 (Definition of iDBPQL Run- Time MetaData Units)

RunTimeMetaDataUnit = EvalPlanAnnotat ion I EvalAnnotation ;
EvalPlanAnnotation ClassDef init ion I ConstantDeclaration TypeDeclaration ;
EvalAnnotation
LocalDeclaration

LocalDeclarat ion ;
ConstantDeclaration I TypeDeclaration VariableDecl ;

0

Similar to the definition of schemata, each transient type or class definition must
be closed in the particular scope (i .e . an enclosing context) . While the notion of scope
will only be discussed in more detail later in Section 5 .3 .2 , we will briefly outline what
the closed constraint implies. Given a run-time class definition CLASSDEF c lassC, we
refer to it as closed if the following conditions hold:

- If class classC is defined as CLASSDEF classC IsA supClassC1 , . . . , supClassCn
then all its super-classes supClassC1 , . . . , supClassCn must be visible from the
current scope and also be closed themselves.

96

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

- If class classC has a structure definition containing value-typed variables val Type1
var1 ; . . . ; valTypen varn ; then all types valType1 , . . . , valTypen must be
iDBPQL system types or must be visible from the current scope and also be closed
themselves.

- If class c lassC has a structure definition containing reference-typed variables
classC1 var1 ; . . . ; c lassCn varn ; then all referenced class definitions classC 1 ,
. . . , classCn must be visible from the current scope and also be closed themselves.

- Each non-abstract behaviour specification in class classC must have an associated
evaluation plan. In turn, this evaluation plan is likely to have further associated
run-time and DBS metadata entries. Each of them must be closed within their own
scope.

- If class classC contains CHECK constraints that refer to another classes class 1 , . . . ,
classn then class 1 , . . . , classn must be visible from the current scope and also
be closed themselves.

Given a run-time type definition TYPEDEF typeT, we refer to it as closed if the
following conditions hold:

- If type typeT has a structure definition containing value-typed variables val Type1
var1 ; . . . ; valTypen varn ; then all types valType1 , . . . , valTypen must be
iDBPQL system types or must also be visible from the current scope and also
be closed themselves.

- Each non-abstract behaviour specification in class classC must have an associated
evaluation plan. In turn, this evaluation plan has associated run-time and, possibly
also, DBS metadata entries associated. Each of them must be closed within their
own scope.

Corresponding examples are outlined throughout this thesis. For instance refer to
Examples 4 .8 , 4 . 1 7 and Section 4.5 .

Persistence. In accordance with the definitions of the ' closed ' property of DBS and
run-time metadata entries , we can summarise that :

- Classes (and their objects) and types (and their values) maintained in the DBS
metadata catalogue are persistent;

- Classes (and their objects) and types (and their values) defined in the run-time
metadata catalogue are transient;

- Persistent classes cannot sub-class transient classes, but transient classes may sub­
class persistent classes .

The only means of specifying a 'class-like' construct over persistent classes at run­
time is provided through the UNION-type. However, the UNION-type does not have as­
sociated implementations nor can it have an associated, system-maintained collection.

Apart from the different placement of type and class definitions and the restrictions
on the inheritance graph, there are no further differences with respect to the treatment
of transient and persistent values and objects. For instance, class-collections can be
associated with persistent and transient classes (refer to Example 4 . 1 6) , a NOT NULL
constraint may be associated with an instance variable of a transient class, a UNION-type
may be declared over a persistent and a transient class etc.

97

4.2 . BASIC LANGUAGE CONCEPTS Markus Kirchberg

EXAMPLE 4 . 1 6 . Consider Example 4 . 1 1 and assume that classes PersonC, StudentC
and AcademicC are defined in the DBS metadata catalogues as part of the
Uni versi tycc schema. The StudentAcademicCcc class shall not be persistent . We
will only add it at run-time. As a sub-class of a collection-class, StudentAcademicCcc
must also be a collection-class. Thus, when accessing all objects of class Student , the
result will consist of all objects that have been instantiated on class Student (retrieved
from persistent storage) and on class StudentAcademicCcc (i .e . objects that only exist
in main memory) . However, every other requests performed simultaneously, will not be
able to access StudentAcademicCcc objects (unless it is a transaction originating from
the same main evaluation plan - refer to Section 4.4 .2) . D

Class Definitions for the University Application. Let us conclude this section on
classes with a summary of all class definitions that form a part of the university appli­
cation as detailed in Example 3 .3 .

EXAMPLE 4 . 1 7 . Similar to Example 4 .8 , we will restrict ourselves to classes defined
in the SCHEMA Universitycc - All class definitions that appear in UniversityLs and
Universityro schema fragments are replicas.

CLASSDEF PersonC {
STRUCTURE { PersonT ; }
CONSTRAINT { UNIQUE (personid) ; }

}

CLASSDEF CourseC {
STRUCTURE {

Courser ;
SET < CourseC > prerequisites REVERSE isPrerequisiteOf ;
SET < CourseC > isPrerequisiteOf REVERSE prerequisites ;

}
CONSTRAINT { UNIQUE (cNumb) ; }

}

CLASSDEF RoomCcc {
STRUCTURE { RoomT ; }
CONSTRAINT { UNIQUE (campus , building , numb) ; }

}

CLASSDEF SemesterC {
STRUCTURE { SemesterT ; }
CONSTRAINT { UNIQUE (year , sCode) ; }

}

CLASSDEF DepartmentCcc {
STRUCTURE {

DepartmentT ;
PersonC director ;
SET < StudentC >
SET < StudentC >
SET < AcademicCcc

maj orStudents REVERSE maj or ;
minorStudents REVERSE minor ;

> staff REVERSE staffMemberOf ;
}

98

4.2. B ASIC LANGUAGE CONCEPTS Mar kus Kirchberg

}

CLASS StudentC !sA PersonC {

}

STRUCTURE {
StudentT ;

}

UNIONDEF < UNIONDEF < DepartmentCcc , DepartmentCLs > , DepartmentCTo > maj or ;
UNIONDEF < UNIONDEF < DepartmentCcc , DepartmentCLs > , DepartmentCTo > minor ;
UNIONDEF < UNIONDEF < AcademicCcc , AcademicCLs > , AcademicCTo > supervisor

REVERSE supervises ;

CONSTRAINT {

}

UNIQUE (student ld) ;
NOT NULL (maj or) ;

CLASSDEF AcademicCcc ! sA PersonC {

}

STRUCTURE
AcademicT ;

}

DepartmentCcc staffMemberOf REVERSE staff ;
SET < UNIONDEF < UNIONDEF < LectureCcc , LectureCLs > , LectureCTo >

lectures REVERSE lecturer ;
SET < StudentC > supervises REVERSE supervisor ;

CONSTRAINT {

}

UNIQUE (personld , staffMemberOf) ;
NOT NULL (staff) ;

CLASSDEF Proj ectC {
STRUCTURE {

Proj ectT ;

}

}

SET < UNIONDEF < UNIONDEF < UNIONDEF < AcademicCcc , AcademicCLs > ,
AcademicCTo > , PersonC > > participant ;

CONSTRAINT { UNIQUE (proj ectld) ; }

CLASSDEF LectureCcc {

}

STRUCTURE {
LectureT ;

}

CourseC course ;
UNIONDEF < UNIONDEF < AcademicCcc , AcademicCLs > , AcademicCTo >

lecturer REVERSE lectures ;
SemesterC
RoomCcc room ;

semester ;

CONSTRAINT { UNIQUE (course , semester) ; }

CLASSDEF EnrolmentCcc {
STRUCTURE {

99

4.3. EVALUATION PLANS Markus Kirchberg

}

}

LectureCcc lecture ;
StudentC student ;
EnrolmentT ;

CONSTRAINT { UNIQUE (lecture , student) ; }

CLASSDEF RecordC {
STRUCTURE {

CourseC course ;
StudentC student ;
RecordT ;

}
CONSTRAINT { UNIQUE (course , student) ; }

}

The corresponding inheritance graph has only two entries. Class StudentC is a sub-class
of class PersonC and class AcademicCcc is also a sub-class of class PersonC. 0

4 . 3 Evaluation Plans

User programs and implementations of type operations and methods are formulated as
evaluation plans. As briefly indicated in Section 3 .2 , each evaluation plan consists of an
optional initialisation block, an evaluation block and has several associated metadata
entries . Evaluation blocks contain iDBPQL statements and expressions. Associated
metadata entries link this execution unit with respective transient and persistent data
definitions. Access to (shared) values and objects that are described in the DBS meta­
data catalogue must be governed by transactions. Transactions are described in terms
of blocks. Besides transaction blocks, iDBPQL supports statement blocks and atomic
blocks. The latter delay constraint checking until the end of the block is reached.

Before we discuss evaluation plans and iDBPQL statements and expressions in
greater detail, we will briefly summarise the challenges to be faced when designing
such units of execution.

4.3. 1 Challenges

Main challenges encountered in this section include:

- Provide a means of behaviour specification: An abstraction that captures the user
request's main control flow is desired as much as an abstraction bound to behaviour
specifications, which are associated with types and classes. While (high-level) pro­
gramming languages commonly provide different means of such abstractions (e.g.
functions, procedures, class implementations, main routines etc . that may be asso­
ciated with types, classes, modules, packages or entire programs) to ease a program­
mer' s task, a uniform means of an execution unit is suitable for intermediate-level
languages.
iDBPQL provisions the abstraction of evaluation plans. Evaluation plans form an
implicit hierarchy. For each user request, there exists an evaluation plan from which

100

4.3. EVALUATION PLANS Markus Kirchberg

all processing commences. During the execution of this main evaluation plan, invo­
cations of other behaviours are encountered and their respective evaluation plans
are processed.

- Support of common PL abstractions : It is desired to include programming language
statements and expressions commonly found in current OOPLs.

- Provide a means to access features of super-classes : OOPLs such as Java and C#
provide a SUPER mechanism that simplifies programming significantly. In the pres­
ence of multiple inheritance, the definition of such a mechanism must be refined.
The invocation SUPER () now refers to multiple classes. This is different compared
to most OOPLs that provide such a SUPER mechanism. Most commonly, OOPLs
only support single inheritance where SUPER () invocations refer to the direct
super-class.
iDBPQL contains such a refined SUPER mechanism, which is also used to by-pass
default behaviours associated with object constructors and multiple inheritance.

- Support deferred constraint checking : The presence of constraints always raises per­
formance issues and also complicates object construction and data manipulation.
For instance, in iDBPQL both ends of a bi-directional reference may have an as­
sociated NOT NULL constraint . In this case, object creation is not possible without
violating the constraint for at least one object . While relational database languages
(e.g. SQL) do not permit such cyclic constraints, a general means of deferring con­
straint checking is supported.
In iDBPQL, we introduce a special abstraction, i .e . atomic blocks. Constraint eval­
uation resulting from object creation and data manipulation statements, which are
enclosed in such atomic blocks, is delayed until the end of the corresponding block .

- Transactions : Access and manipulation of shared data must be governed by trans­
actions. Similar to atomic blocks, iDBPQL supports a block concept to model trans­
actions.

- Support of QL constructs : It is desired to include query expressions commonly
found in current QLs. Challenges encompass the integration of query expressions
and programming language abstractions, and the inclusion of query expressions into
a typed language.
In iDBPQL, query expressions always return collections of values and/or object
references or the NULL value. For instance, loop statements have been extended
to include a FOR EACH-variant to better support collections. Result types of query
expressions can either be specified explicitly by defining a corresponding structured
collection type or implicitly in the case of some JOIN expressions.

4.3.2 Components of Evaluation Plans

Evaluation plans serve as evaluation units. As mentioned earlier, they model user re­
quests, behaviour associated with types and classes, and built-in behaviours that form
part of the iDBPQL library. An evaluation plan consists of a unique identifier (unique
within its scope) , an optional initialisation block and an evaluation block. The corre­
sponding syntax portion is outlined in Syntax Snapshot 4 .9 .

S yntax Snapshot 4.9 (iDBPQL Evaluation Plan Syntax)

101

4.3. EVALUATION PLANS

EvaluationUnit = iDBPQLProgram;
iDBPQLProgram = "EVALPLAN" , Id , ' (' , Argument-List , ') ' , [

EvalPlanBlock ;
EvalPlanBlock = [EvalPlaninit] , EvalBlock ;
EvalPlaninit = " INIT" , DoBlock ;
EvalBlock = DoBlock ;

, . , . '

Markus Kirchberg

ReturnType] ,

0

An initialisation block permits the initialisation of elements of the evaluation plan
before the start of the evaluation. For instance, class variables must be initialised.
However, since they are shared among all class instances, they must be initialised only
once. Corresponding routines can be added to an evaluation plan's initialisation block.

Evaluation blocks describe the implementation of a behavioural iDBPQL entity.
Such blocks consists of sequences of iDBPQL statements, which may be subdivided
into further evaluation blocks as introduced in Section 4 .3 .3 and later extended in
Section 4 .4 .2 .

4 .3 .3 Evaluation Blocks and Their Properties

An evaluation block is a language construct that supports the grouping of a sequence
of statements into a (sub-)unit . Such groups may serve special purposes such as mod­
elling atomic steps and transactions. In addition, blocks may have variables associated
that are local to the respective block. Syntax Snapshot 4 . 10 outlines the correspond­
ing iDBPQL syntax portion. Local variable declarations are associated in the form of
metadata references.

Syntax Snapshot 4 . 1 0 {iDBPQL Evaluation Block Syntax)

DoBlock = ((, { , I ("DO " '
Statements , (' } '

"ATOMIC"] , ["TRANSACTION" , Tid])) ,
"ENDDO")) I DoThenBlock ; // L a t er extended

DoThenBlock = "DO " , Statements , ["THEN" , DoBlock] , "ENDDO" ; // L a t er extended
0

{ . . . } blocks, DO . . . END DO blocks and DO . . . THEN . . . END DO blocks are basic
grouping constructs that do not serve any special purpose apart from providing
a grouping of statements. This is different for DO ATOMIC . . . ENDDO blocks and DD
TRANSACTION . . . ENDDO blocks. The former, i .e . atomic blocks, model atomic execution
units . All statements grouped into an atomic block are executed as if they correspond
to a single computational step. As a result, constraint checking associated with any
statement inside an atomic block is delayed until the corresponding ENDDO keyword is
encountered. The same applies to the visibility of effects of object creation and other
data manipulation statements .

The latter, i .e . transaction blocks, are used to model transactions as briefly indi­
cated in Section 3 .2 . A transaction block has an associated identifier that uniquely
identifies the transaction. Transaction identifiers support the specification of multiple
transactions within the same evaluation block. The first appearance of a transaction
identifier associates a new transaction object with the respective block. The transac­
t ion object is implicitly associated with every statement encountered until the block's

102

4.3 . EVALUATION PLANS Markus Kirchberg

ENDDO keyword (refer to line 13 in Example 4 . 1 8 below) or an explicit commit () or
abort () invocations is encountered (refer to line 16 in Example 4 . 1 8 below) . In the
event that there is a sub-block, which corresponds to another transaction block with
a different identifier, the current transaction is suspended and a new transaction ob­
ject is associated with the respective block (refer to line 05 in Example 4 . 18 below) .
The first transaction is continued if the ENDDO keyword of the sub-block is encountered
(refer to l ines 10 and 13 in Example 4 . 18 below) or another sub-block that carries the
same identifier as the first transaction block (refer to line 08 in Example 4 . 1 8 below) is
specified. In the latter case, the second transaction is suspended .

EXAMPLE 4 . 1 8 . This example demonstrates how two transactions can be specified
within the same evaluation plan .

0 1
02 DO TRANSACTION tr1
03 doSomething ;
04
05 DO TRANSACTION tr2 11
06 doSome thing ;
07
08 DO TRANSACTION tr1
09 doSome thing ;
10 ENDDO ;
1 1
12 doSomething ;
1 3 ENDDO ;
14
15 doSome thing ;
16 tr1 . co=it () ; 11
17
18 doSomething ;
19 ENDDO ;
20

11 creates a new transact ion object
11 operations of transact ion tr1

creates a second transac t i on object
11 operations of

11 cont inues wi th
11 operations of

11

11

operations of
11 commi ts

operations of
exp L i c i t commi t of

transact ion tr2

transact ion tr1
transact ion tr1

transact ion tr2
transact ion tr2

transac t ion tr1
transac t ion tr1

11 operations are non-transact iona L

At the moment , this specification results in a forced (or static) interleaving of two
transactions. However, this can be disastrous since forced interleavings would require a
means of guaranteeing conflict freeness (which has to be provided by the programmer,
corn piler or optimiser) . The specification of truly concurrent transactions that originate
from the same evaluation plan is introduced later in Section 4 .4 .2 (refer to Example
4 .24) . The rationale behind supporting interleavings as presented in this example will
then become more obvious. 0

Assume that an evaluation plan with transaction blocks is invoked from within a
transaction block defined in another evaluation plan. In such an event, the outermost
transaction block defines the transaction. Transaction blocks encountered during the
evaluation of other associated evaluation plans are demoted to sub-transactions (as
defined for multi-level transactions [16 , 141 , 142]) .

The following additional properties must b e preserved when accessing persistent
objects and values : Evaluation plans associated with DBS metadata entries must be

103

4.3. EVALUATION PLANS Markus Kirchberg

invoked only from within a transaction block. This is necessary to ensure that access to
shared data is serialised by the transaction management system. The same restriction
applies to DBS metadata references. On the contrary, references to and invocations
of entities located in the run-time metadata catalogue may be enclosed in transaction
blocks but this is not required.

4.3.4 Statements

A statement can be interpreted as a unit of execution. As in most PLs, iDBPQL
statements do not return results (with some exceptions where expressions are permitted
to appear as statements) and are executed solely for their side effects. This is in large
contrast to their internal components, i .e . expressions. Expressions (refer to Section
4 .3 .5) always return a value and often do not have side effects.

Syntax Snapshot 4. 1 1 {iDBPQL Statements)

Statements [Statement , { ' ; ' , Statement }] ;

Statement ControlFlowStmt I DoBlock ExpressionStmt ;

ControlFlowStmt = BreakStmt I ConditionStmt LabelStmt I LoopStmt ReturnStmt I
SwitchStmt I WaitStmt ;

ExpressionStmt = (AssignmentExpr I Creat ionExpr I MethodCallExpr
TypeOpCallExpr) , ' ; ' ;

0

As indicated in Syntax Snapshot 4 . 1 1 , iDBPQL distinguishes between the following
types of statements:

- The empty statement ; , which has no effect;
- Assignment statements , which set or reset the value assigned to a variable;
- Block statements , which group together a sequence of statements as already dis-

cussed in Section 4 .3 .3 ;
- Control flow statements , which regulate the order in which statements are executed;

and
- Expressions with side-effects (e.g. method invocations that create new objects,

which are accessible by means other than object references) .

Assignment statements, control flow statements and expressions with side-effects
that form part of the iDBPQL language are discussed in more detail next .

Assignment Statements. An assignment statement assigns the value of an expres­
sion to a variable. Syntax Snapshot 4 . 12 outlines four types of assignments. These
are: Regular assignments , compound assignments (i .e . arithmetic assignments and
bit-manipulating assignments) , pre-incrementation and pre-decrementation, and post­
incrementation and post-decrementation. Only regular assignments are applicable to
both types of variables, i . e. value-type variables and reference-type variables. The lat­
ter three types are applicable to value-type variables only.

Syntax Snapshot 4 . 1 2 {iDBPQL Assignment Statements}

104

4 .3 . EVALUATION PLANS Markus Kirchberg

AssignmentExpr

CompoundAssignOp =
I nDeCrementOp

Expression , ' = ' Expression)
Expression , CompoundAssignOp , Expression)
Expression , InDeCrementOp) I (InDeCrementOp , Expression) ;

" += " I " -= " I 11 *= " I " /= " I " /.= " I " < <= " I " >>= " ;
"++" I " - - " ·

'
0

In a regular assignment statement, the left-hand side of the assignment operator
must be classified as a variable, while the expression on the right-hand side of the
assignment operator must be classified as a value. Thus, the type of the right-hand
expression must be implicitly convertible to the type of the variable .

Compound assignment statements can be converted easily into regular assign­
ment statements where the left-hand side corresponds to a variable and the right­
hand side can be classified as a value. A compound assignment statement is of
the form: Expression1 , (" +=" I " -= " I " *= " I " / = ' ' I "%= " I " <<= " I " >>= "
) , Expression2 which can be converted into the following regular assignment state­
ment : Expression1 , ' = ' , Expression1 (' + ' I ' - ' I ' * ' I ' / ' I ' % ' I " << "
I " >> ") , Expression2 .

Pre-incrementation and pre-decrementation statements are of the form: ("++" I
" -- ") , Expression. Post-incrementation and post-decrementation statements are
of the form: Expression , (" ++" I " -- ") . Considering these two types of in­
/ decrementations as individual statements, they can be converted into the same regu­
lar assignment expression which is: Express ion , ' = ' , Expression , (' + ' I ' - ') ,
' 1 ' . Pre- and post-de-/incrementations only behave differently when being passed as
arguments or being returned as results.

C ontrol Flow Statements. The evaluation of iDBPQL statements is usually per­
formed in a serial manner resulting in a sequential flow of control. However, similar to
most other PLs , iDBPQL has control flow statements which allow variations in this
sequential order. Syntax Snapshot 4 . 13 provides on overview of these statements. In
addition, Section 4.4 will d iscuss another means of altering the flow of control.

Syntax Snapshot 4 . 1 3 (iDBPQL Control Flow Statements)

ControlFlowStmt = BreakStmt I ConditionStmt I LabelStmt I LoopStmt I
ReturnStmt I SwitchStmt I WaitStmt ;

BreakStmt

ConditionStmt

LabelStmt

LoopStmt
DoWhileLoop
For Each
LoopLoop
WhileLoop

"BREAK" , [Label!d] , ' ; ' ;

" IF " , ' (' , Expression , ') ' , DoBlock ,
{ "ELSEIF" , ' (' , Expression , ') ' , DoBlock } , [" ELSE" , DoBlock] ;

"LABEL" , Labelid , ' : ' , Statement ;

DoWhileLoop I ForEach I LoopLoop I WhileLoop ;
= DoBlock , " WHILE" , ' (' , BooleanExpr , ') ' , ' ; ' ;

"FOR EACH" , Expression , DoBlock ;
"LOOP" , DoBlock ;
"WHILE" , ' (' , BooleanExpr , ') ' , DoBlock ;

105

4 .3. EVALUATION PLANS Markus Kirchberg

ReturnStmt

SwitchStmt
SwitchBlock
CaseBlock

WaitStmt

"RETURN" , ' (' , [Expression] , ') ' , ' ; ' ;

" SWITCH" , ' (' , Expression , ') ' , SwitchBlock ;
' { ' , { CaseBlock } , ["DEFAULT" , ' : ' , DoBlock] , ' } ' ;
"CASE" , Expression , ' : ' , DoBlock ;

"WAIT" , [Labelid] , ' ; ' ;

iDBPQL control flow statements have the following properties:

0

- The LABEL statement may add a prefix to any statement . Such a prefix consists of
the keyword LABEL followed by an identifier followed by a colon . Labels correspond
to reference points which can be utilised by BREAK and WAIT statements.

- The conditional IF-THEN-ELSE statement specifies an execution choice based
on a given condition (i .e . a boolean expression) . If this expression is evaluated
to TRUE the THEN block is processed . Otherwise, the ELSE block is executed.
IF-THEN-ELSEIF-ELSE statements are also supported . Instead of only one alterna­
tive, it is now possible to specify multiple alternatives (each with its own condition) .

- The SWITCH statement allows the value of a variable or expression to control the
execution flow. The SWITCH block consists of labelled CASE blocks. Execution con­
tinues with the block following the label that matches the SWITCH value. If no label
matches, execution continues at the DEFAULT label . In case such a DEFAULT label is
missing, execution of the SWITCH statement terminates.

- The fol lowing loop or iteration-type statements are supported in iDBPQL:
• The WHILE-loop statement and the DO . . . WHILE-loop statement are control flow

statements that allow code to be executed repeatedly based on a given condition.
Only difference being the point in time where the condition is evaluated. WHILE­
loops are only entered in case the condition is evaluated to TRUE. In contrast to
this, DO . . . WHILE-loops only evaluate the condition at the end of each iteration.

• The LOOP-loop statement also allows code to be processed repeatedly. However,
it does not specify a terminal condition. Instead, the loop must contain a BREAK
statement ending the cycle of iterations.

• The FOR EACH statement supports the traversal of values or objects in a collec­
tion . In contrast to more traditional FOR-loops as known from procedural PLs
such as Pascal , FOR EACH-loops do not specify the order in which the values or
objects are considered . Such loops terminate as soon as the last member of the
collection has been evaluated.

- The BREAK statement which may appear within a loop statement or a SWITCH state­
ment . It consists of the keyword BREAK optionally followed by a label and terminated
by a semicolon. A BREAK statement without a label terminates the innermost loop
or SWITCH statement. A BREAK statement with a label terminates the corresponding
labelled statement (which it must form a part of) .

- The RETURN statement which terminates the execution of an evaluation plan. It
consists of the keyword RETURN followed by a possibly empty expression enclosed
in parentheses terminated by a semicolon. Termination means that the execution
should return to the calling evaluation plan. If a non-empty expression is specified ,
the RETURN statement reports the expression's value to the calling evaluation plan .

106

4.3. EVALUATION PLANS Mar kus Kirchberg

- The WAIT statement which synchronises simultaneous execution flows. Section 4 . 4
will introduce corresponding means of specifying simultaneous processing. A WAIT
statement without a label causes the current execution flow to wait until all con­
current execution flows that originated from the current flow have terminated. A
WAIT statement with a label only results in a waiting period until the corresponding
labelled simultaneous execution flow has terminated.

Examples can be found throughout the remaining part of this chapter, e .g . refer to
Examples 4.22 and 4 . 24 as well as Section 4 .5 .

Type Operation Invocation, Method Calls and Object Creation. Behaviour may
be associated with both type definitions and class definitions. The invocation of such
behaviours constitutes a statement . As outlined in Syntax Snapshot 4 . 14 , a type opera­
tion invocation statement consists of a type operation identifier followed by a possibly
empty argument list (enclosed in parentheses) followed by a semicolon. Analogously,
a method call statement consists of a method identifier followed by a possibly empty
argument list (enclosed in parentheses) followed by a semicolon. Considering both types
of behaviour invocation, arguments must correspond to type operation parameters or
method parameters respectively in both type and number.

Syntax S napshot 4 . 1 4 (iDBPQL Expression Statements)

Express ionStmt = (AssignmentExpr I CreationExpr I MethodCallExpr
TypeOpCallExpr) , ' ; ' ;

CreationExpr "NEW" , Class Id , ' (' , [Argument-List] , ') ' ;
MethodCallExpr = Method!d , ' (' , [Argument-List] , ') ' ;
TypeOpCallExpr = TypeOpid , ' (' , [Argument-List] , ') ' ;

0

A behaviour invocation results in the evaluation of the corresponding evaluation
plan implementing the particular type operation or method. Its execution first ini­
tialises the behaviour's parameters with the provided argument values. Subsequently
the evaluation plan's initialisation block is evaluated followed by the evaluation block.

In addition to type operation invocation and method call statements, object creation
statements fall into the class of behaviour invocation statements. An object creation
statement consists of the reserved keyword NEW followed by a class identifier, a possibly
empty argument list (enclosed in parentheses) and a semicolon. While such an usage is
uncommon in traditional OOPLs (typically object creation expressions are found as the
right-hand expression in assignment statements) , object-oriented D BPLs encourage it .
This can be justified by having collections associated with classes. Thus, object access
does not solely rely on object references.

Behaviour invocation statements are the only type of statements that may return
results. For instance, an object creation statement always returns a reference to
the newly created object. However, this reference is discarded at the end of the
execution of the statement. The object will still be available through the corresponding
class-collection (if it exists) .

107

4.3. EVALUATION PLANS Markus Kirchberg

A special invocation statement is the SUPER call . It consists of the SUPER keyword
followed by a possibly empty argument list (enclosed in parentheses) and a semicolon.
The only arguments that are allowed are class identifiers . Section 4 .3 .5 considers such
calls in more detail . SUPER call statements may appear at the beginning of object
constructor implementations invoking object constructors of all direct super-classes.

4.3.5 Expressions

An expression can be thought of as a combination of literals, identifiers, values, objects,
variables, operators, and behaviours . Expressions are iDBPQL code segments that per­
form computations and produce values. Syntax Snapshot 4 . 1 5 outlines the expressions
of iDBPQL, which we will discuss in more detail next.

Syntax Snapshot 4 . 1 5 {iDBPQL Expressions)

Expression = AssignmentExpr I BinaryTypeOpExpr I BooleanExpr I CastExpr I
CreationExpr I Identifier I Literal I MethodCallExpr I QueryExpr
RenamingExpr I TypeOpCallExpr I UnaryTypeOpExpr I
(' (' , Expression , ') ') ;

0

Simple Expressions. Literals, variable names, class names and constant names are
considered as simple expressions. A literal simply evaluates to the value it denotes .
A variable name denotes the value it stores or references respectively. A class name
denotes the collection associated with it (if any) . A named constant denotes the value
it is initialised with.

Parenthesised Expressions. Any expression can be enclosed in parentheses as speci­
fied in Syntax Snapshot 4 . 16 .

Syntax Snapshot 4 . 1 6 {iDBPQL Parenthesised Expressions)

Expression = ' (' , Expression , ') ' ;
0

Assignment Expressions. Refer to Section 4 .3 .4 where assignment statements are
introduced . In short , an assignment expression is an assignment statement (without
the terminating semicolon) that can be used wherever an expression may be used.

Type Operation Invocation, Method Calls and Object Creation. Refer to Section
4 .3 .4 where type operation invocation, method calls and object creation are introduced .
In short, respective expressions for each corresponding statement (without the termi­
nating semicolon) can be used wherever an expression may be used.

Renaming Expressions. A renaming expression associates an identifier with an ex­
pression . This identifier can then be used to refer to the value of the expression or its
sub-expressions. As indicated in Syntax Snapshot 4 . 17 two types of renaming expres­
sions are supported.

108

4.3 . EVALUATION PLANS Markus Kirchberg

Syntax Snapshot 4. 1 7 {iDBPQL Renaming Expression}

RenamingExpr = Expression , ["GROUP"] , "AS" , Id ;
0

The AS renaming expression associates auxiliary identifiers with non-collection val­
ues. In the event that an expression denotes a collection value, the assigned identifier
moves into the collection identifying the collected values. For instance, the renaming
expression StudentC AS std consists of a class name denoting the collection of all ob­
jects of class StudentC. The assigned identifier std is not associated with the collection
rather it is associated with each StudentC objects in the collection . Such a naming
mechanism has many useful applications including: Cursors in FOR EACH statements ,
iteration variables in loops and queries, variables bound by quantifiers etc. On the other
hand, in case the expression denotes a non-collection value the identifier is associated
with the value.

A GROUP AS renaming expression simply associated an identifier with an expression
(no matter whether it is a collection or not) . This identifier can then be used in place
of the expression. Thus, the identifier has the same value associated as the original
expression.

Note: AS and GROUP AS renaming expressions have only different semantics for col­
lection values.

Boolean Expressions. A boolean expression is an expression that produces a value of
type BOOLEAN. Syntax Snapshot 4 . 18 outlines the types of boolean expressions supported
in iDBPQL.

Syntax Snapshot 4 . 1 8 {iDBPQL Boolean Expressions}

BooleanExpr = EqualityExpr I InCollect ionExpr I InheritanceExpr
InstanceOfExpr I LogicalExpr I NULLExpr I
QuantifierExpr I RelationalExpr ;

EqualityExpr = Expression , ("==" I " ! = ") , Expression ;
InCollectionExpr = Expression , " IN" , Expression ;
I nheritanceExpr = Expression , (" ISSUBTYPEOF" I " ISSUBCLASSOF") , Expression ;
InstanceOfExpr = Expression , " ISINSTANCEOF" , Expression ;
LogicalExpr = (BooleanExpr , ("&&" I " 1 1 ") , BooleanExpr) I

NULLExpr
QuantifierExpr
Relat ionalExpr

(' ! ' , BooleanExpr) ;
= Expression , " IS" , ["NOT"] , "NULL" ;

("EXISTS" I "FOR ANY") , Expression , ' (' , BooleanExpr , ') ' ;
= (Expression , (' < ' I " < =" I ">=" I ' > ' I "LIKE") , Expression) ;

0

An equality expression compares the values of two expressions of compatible types
for equality (i .e . ==) or inequality (i .e . ! =) .

A relational expression compares the values of two expressions o f compatible, or­
dered types. Available comparison operators are: Less than (i .e. <) , less than or equal
to (i .e . <=) , greater than (i .e . >) , and greater than or equal to (i .e . >=) .

A logical expression either negates the boolean value o f the expression using the
logical NOT operator (i .e . !) or combines two boolean expressions. The latter can be

109

4.3. EVALUATION PLANS Markus Kirchberg

achieved through the logical AND (i .e . && or &) , OR (i .e . 1 1 or I) and XOR (i .e . -)
operators.

A NULL expression tests whether the value of the expression is (i .e. IS) or is not (i .e .
IS NOT) equal to NULL.

An IN-collection expression determines whether the value of the left-hand expression
forms a part of the collection resulting from evaluating the right-hand expression.

A quantifier expression consists of the keyword EXISTS (i.e. a generalised OR op­
erator) or FOR EACH (i .e . a generalised AND operator) followed by an expression that
denotes a collection value followed by a condition. The EXISTS quantifier expression is
evaluated to TRUE if the condition evaluates to TRUE for at least one collection mem­
ber. In contrast, the FOR EACH quantifier expression evaluates to TRUE if the condition
evaluates to TRUE for each member of the collection denoted by the expression.

A sub-type expression tests whether or not the type produced by the left-hand side
expression is a sub-type of the type resulting from the evaluation of right-hand side
expression.

An inheritance expression determines whether or not the class produced by the
left-hand side expression is a sub-class of the class resulting from the evaluation of the
right-hand side expression.

An INSTANCEOF expression tests whether the (referenced) object produced by the
left-hand side expression is an instance of the class (or any of its sub-classes) named in
the right-hand side expression.

Query Expressions. Syntax Snapshot 4 . 19 outlines query expressions as supported
by iDBPQL. These query expressions are based on SBQL queries [131] . Queries range
from very simple expressions (e .g. a projection of a collection of values of a structured
type to a collection of one member of the original structured type) to very complex and
deeply nested expressions. Below, we will consider each iDBPQL query expression in
more detail .

S yntax Snapshot 4 . 1 9 (iDBPQL Query Expressions)

QueryExpr

JoinExpr

OrderByExpr

= JoinExpr I OrderByExpr I Proj ectionExpr I SelectionExpr I
UniquenessExpr ;

= Expression , ["NAVIGATIONAL" I " INNER" I
(["NATURAL"] ' ["LEFT" I "RIGHT"] ' ["OUTER"])] ' " JOIN" '
Expression , [" ON" , (PathExpr I BooleanExpr)] ;

= Expression , " ORDER BY" , Expression , ["ASC" I "DESC"] ;
Proj ectionExpr = Expression , ' . ' , Proj ectComponent ;
Proj ectComponent = Expression I

(' (' , Proj ectComponent , { ' , ' , Proj ectComponent } , ') ') ;
SelectionExpr = Expression , " WHERE" , BooleanExpr ;
UniquenessExpr = ("DISTINCT" I "UNIQUE") , Expression ;

0

Query expressions most commonly return collection values, e.g. collections of atu­
ral values, collections of instances of class PersonC etc . These collections may contain
other collection values, structured values, reference values or calculated values. The

110

4.3. EVALUATION PLANS Markus Kirchberg

respective collection type may be any collection type supported by iDBPQL. Less com­
monly, query expressions return a single value which may be a structured value, a
reference value or a calculated value.

Query expressions supported by iDBPQL have the following associated properties:

- A (conditional) selection query expression consists of an expression followed by the
keyword WHERE and a condition. First , the expression is evaluated. For each resulting
value of that expression, it is tested whether or not the condition evaluates to TRUE.
If so, the value is added to the resulting collection.

- A projection query expression consists of an expression followed by the ' . ' (dot)
operator followed by a single projection expression or a list of projection expres­
sions. First , the expression is evaluated . For each resulting value of that expression,
a projected value is generated. If a single (right-hand) projection expression is en­
countered, a collection of values of the type of the projected value is produced.
Otherwise, if there is a list of projection expressions, a collection of a structured
type (that corresponds to the projection list) is computed .
Note: Projection may result in navigation in case a sequence of projection expres­
sions (i .e . a path expression) is specified .

- iDBPQL supports various types of join operations. These are the navigational join,
the natural join, the inner join, the left outer join, the right outer join and the
(full) outer join. All types of join operations have a common structure . A join query
expression consists of a left-hand side expression, one or more keywords specifying
the join type followed by a right-hand side expression. In addition, some join query
expressions may have a condition. Navigational joins and natural joins do not have
such a condition whereas all other join types must have it. The condition specifies
how both expressions are to be joined, i .e . how the results of the evaluation of both
the left-hand side and the right-hand side expressions are to be merged into one
collection value.
The navigational join spans two interconnected classes using path navigation. It
produces a collect ion of pairs of objects where the second object is reachable from
the first object. In contrast to all other join types, the navigational join consists
of a right-hand side expression that corresponds to a path expression . In all other
cases, the evaluation of both the left-hand side expression and the right-hand side
expression results in a collection of a structured type (e.g. a reference value, a class
name, a projected value, a union value or a join value) .
The natural join joins two structured collections where all identically named in­
stance variables have matching values.
The (inner) join merges two structured collections so that the specified condition
(a path expression or boolean expression) is evaluated to TRUE.
All outer joins evaluate the specified condition but differ in the way the result is
produced. The left outer join contains entries from the left-hand side expression's
collection whether or not they had matches in the right-hand side expression's
collection.
The right outer join contains entries from the right-hand side expression' s collection
whether or not they had matches in the left-hand side expression's collection.
The (full) outer join combines the results of the left and right outer joins.

1 1 1

4.3. EVALUATION PLANS Markus Kirchberg

- An order-by expression consists of a left-hand side expression denoting a collection
value followed by the keyword ORDER BY followed by possibly many right-hand side
expressions identifying the instance variables on which the sorting is based upon .
Each of these right-hand side expressions may be followed by the keyword ASC (i .e .
ascending which is the default) or DESC (i .e . descending) specifying the sort order.
If more than one right-hand side expression is specified, the resulting collection is
ordered first by values that correspond to the first expression, then by values that
correspond to the second expression etc.

- Any query expression can be prefixed with the DISTINCT keyword or the UNIQUE
keyword. If such a keyword is specified only those values / objects are selected that
are distinct or unique respectively. DISTINCT and UNIQUE can be used synonymously
for value-types. However, their associated meaning is different for reference-types,
i .e . objects. An expression prefixed with the DISTINCT keyword only returns objects
that have different values on selected variables. UNIQUE means that only those ob­
jects that are different with respect to an associated uniqueness constraint or that
represent different objects are selected (i .e . have different internal object identifiers) .

Let u s consider some initial examples of query expressions.

EXAMPLE 4 . 1 9 . Again, we consider the schema of the university application . First , we
outline simple selection expressions that also include navigation, projection, behaviour
invocations, DISTINCT expressions, and UNIQUE expressions.

01 // metadata reference : NULLABLE < AcademicCcc > myProf ;
02 myProf = (AcademicCcc WHERE ((staffMemberOf . dName ==
03 "Department of Information Systems") && (name . (f irstname , lastname) ==
04 ("Klaus-Dieter" , "Schewe")))) . getMember () ;
05
06 /1 met adata reference : NULLABLE < SET < StudentC > > res 1 ;
07 res 1 StudentC WHERE (supervisor == myProf) ;
08
09 // metadata reference : NULLABLE < BAG < STRING > > res2 , res3 , res4 ;
10 res2 = (StudentC WHERE (supervisor == myProf)) . addr . city ;
1 1 res3 = UNIQUE (StudentC WHERE (supervisor == myProf) . addr . city) ;
12 res4 = DISTINCT (StudentC WHERE (supervisor == myProf) . addr . city) ;
13
14 // metadata reference : NULLABLE < LIST < StudentC > > res5 ;
15 res5 = UNIQUE (StudentC WHERE (maj or . dName ==
16 "Department of Information Systems")) . append (StudentC WHERE
17 minor . dName "Department of Informat ion Systems")) ;
18
19 // me t adata reference : NULLABLE < SET < StudentC > > res6 ;
20 res6 = (StudentC WHERE (maj or . dName == "Department of Information Systems")
2 1) . union (StudentC WHERE (minor . dName ==
22 "Department of Information Systems")) ;
23
24

The first selection expression in lines 02 to 04 retrieves the object (i .e . a reference to
the object) that represents the specified academic staff member. This object is used
subsequently (refer to line 07) to retrieve the set of students the staff member supervises.

112

4.3 . EVALUATION PLANS Markus Kirchberg

In lines 10 to 12 , a similar query expression is executed. First , all objects representing
students who have the staff member as their supervisor are selected. Subsequently, a
projection is performed only retaining the c ity field of the students ' address values.
Differences are:

- Line 10 is evaluated without a uniqueness expression. This expression returns a bag
of STRING values of city names or, in case the staff member does not supervise any
students, the NULL value. In the former case, there are as many result values as
student objects that have the staff member as their supervisor.

- Lines 1 1 and 12 apply a UNIQUE or DISTINCT expression respectively. As a result ,
the number of returned city names decreases. Only unique city names are returned,
i.e. the resulting bag corresponds to a set .

While these first two applications of uniqueness expressions resulted in the same return
value, this will be different when objects are concerned . There might be two objects of
identical values but different internal identifier. In such a case, the DISTINCT expression
would return only one of these objects but the UNIQUE expression would return both.
The final two selection expressions utilise type operations associated with collection
types. In lines 15 to 17 , results of two selections are first con catenated and then filtered
to remove duplicates. While filtering is explicit, it is done implicitly in lines 20 to 22 .

Next, we consider join expressions. While navigational joins return collections of pairs
of objects, inner and outer join operators produce results of a new structured type. A
special means of defining structured types over classes, which eases the ways to how
corresponding result types of joins are specified, is proposed.

30 // me tadata referenc e : NULLABLE < SET < STRUCT { AcademicCcc aca ;
3 1 // DepartmentC dept ; } > > res7 ;
32 res7 AcademicCcc GROUP AS aca NAVIGATIONAL JOIN staffMemberOf GROUP AS dept ;
33
34 // metada t a reference : NULLABLE < SET < STRUCT STRUCT AcademicCcc &
35 // STRUCT DepartmentC > > res8 ;
36 res8 = AcademicCcc AS aca INNER JOIN Department ON aca . staffMemberOf ;
37
38 // me t adat a reference : NULLABLE < SET < STRUCT STRUCT PersonC &
39 // STRUCT PersonC AS person2 WITH { person2 . personid AS person2Id ;
40 // person2 . name AS person2Name ; person2 . addr AS person2Addr ; } > > res9 ;
4 1 res9 = PersonC AS pi INNER JOIN PersonC AS p 2 O N p l . addr = = p2 . addr ;
42
43 // metadata referenc e : NULLABLE < SET < STRUCT { AcademicCcc aca ;
44 // NAT stdNumb ; } > > resA ;
45 resA = AcademicCcc GROUP AS aca NAVIGATIONAL JOIN (
46 (SET < StudentC >) supervises) . count AS stdNumb ;
47
48 // metadata referenc e : NULLABLE < SET < STRUCT { NameT name ;
49 // STRING specialisat ion ; NAT stdNumb ; } > > resB ;
50 resB = (AcademicCcc GROUP AS aca LEFT OUTER JOIN ((SET < StudentC >)
5 1 supervises) . count AS stdNumb) . (name , specialisation , stdNumb) ;
52
53

1 13

4.3. EVALUATION PLANS Markus Kirchberg

The first join expression (i .e . line 32) represents a simple navigational join . The result
is a set of pairings of references of academic staff members and the departments they
work in. Next, in line 36, the same result is computed, but this time the INNER JOIN
operator is used. Instead of a set of pairings of object references, we now obtain a set of
structured values . The structure of values is determined by concatenating the structures
underlying both classes that are joined. The third join expression also computes an
INNER JOIN . However, instead of specifying a boolean expression as join condition, a
path expression is given. Thus, the inner join is similar to a navigational join but a
collection of structured values is computed instead of pairs of object references.
The second set of query expressions demonstrates how grouping can be achieved. Anal­
ogous to SBQL, there is no explicit GROUP BY clause included in iDBPQL. Lines 45 and
46 generate a set of references to staff objects where each are paired with the number of
students they supervise. The last query expression shown in lines 50 and 51 contains the
same grouping. However, this time the LEFT OUTER JOIN operator is used . The inter­
mediate result corresponds to the following metadata reference: NULLABLE < SET <
STRUCT STRUCT AcademicCcc & STRUCT { NAT stdNumb ; } > > . Finally, a projec­
tion is executed extracting values of the three indicated variables only. 0

Further examples are found throughout the remainder of this chapter .

Cast Expressions. A cast expression consists of a parenthesised type or class iden­
tifier followed by an expression (as indicated in Syntax Snapshot 4. 20) . A type cast
converts a non-reference-valued expression to a sub- or super-type. A class cast con­
verts a reference-valued expression to a sub- or super-class.

Syntax Snapshot 4.20 {iDBPQL Cast Expressions}

CastExpr = ' (' , (Typeld I Classld) , ') ' , Expression ;
D

The SUPER Expression and Keywords THI S and SUPER. Instance methods and object
constructors may have associated parameter variables or local variables that have the
same name as an instance member. When using such a name within the instance method
or object constructor, its occurrence refers to the parameter variable or local variable .
The instance member is not visible directly but may be accessed using the prefixed
THIS keyword (followed by a period) . The THIS keyword denotes a value, that is a
reference to the object for which the instance method was invoked or to the object
being constructed. The type of THIS is reference-ta-X where X is the class in which
the keyword THIS occurs .

EXAMPLE 4 . 2 0 . Let us consider the PersonC class from Example 4 .9 again. We add
behaviour specifications as follows:

01 CLASSDEF PersonC {
02 STRUCTURE { PersonT ; }
03
04 BEHAVIOUR {
05 equals (PersonC other) Boolean ;

1 14

4.3. EVALUATION PLANS

06
07 }
08 } ;

PersonC (NameT name , AddressT addr) ;

Markus Kirchberg

/1 object cons t ructor

The class PersonC implements a method equals , which compares two persons. It may
be implemented as follows:

10 EVALPLAN equals (PersonC other) Boolean {
1 1
12 if (THIS == other) {
13 return (TRUE) ;
14 }
15 else {
16 // perform comparison t es t s
1 7
1 8 }
19
20 return (TRUE) ;
2 1 }

If the other person is the same PersonC object as the one for which the equals
method was invoked (i .e . determined by comparing the reference to the other object
to THIS) , comparisons tests can be skipped .

The PersonC class also implements an object constructor that takes two arguments. The
corresponding two parameter variables have the same names as two instance variables.
Accessing those parameter and instance variables in the implementation of the object
constructor is carried out as demonstrated in the following evaluation plan:

30 EVALPLAN PersonC (NameT name , AddressT addr) {
3 1
32
33

personid = . . .
THIS . name = name ;

34 THIS . addr = addr ;
35
36 return (VOID) ;
37 }

// assign unique person identifier

In line 33, THIS . name refers to the instance variable while name refers to the pa­
rameter variable. In line 32, however, personid refers to the instance variable. Since
there is no parameter or local variable with the same name, it is not necessary to say
THI S . personid but the programmer may choose to do so. D

Similarly, the THIS keyword can also be used to directly access members in a
super-class in the exact same situations described above. However, while there is only
one instance member that may have the same name as a parameter variable or local
variable, a class can have multiple direct super-classes. Thus, a class may override an
instance member in each of its super-classes. To identify the particular super-class,
the THIS keyword must be specified with a preceding cast expression. For instance,
consider the expression ((PersonC) THIS) . name located in an evaluation plan
implementing a method of a sub-class of Person. The expression refers to the instance

1 15

4.3 . EVALUATION PLANS Markus Kirchberg

member named name of the current object, but with the current object viewed as
an instance of the super-class PersonC. Thus it can access the instance member
named name that is visible in class PersonC, even if that class member is hidden by a
declaration with the same name in the current class.

While accessing an instance variable of a super-class may be achieved through the
THIS keyword with a preceding cast expression, the same does not apply to method
invocations. Casting does not change the method that is invoked because the instance
method to be invoked is chosen according to the run-time class of the object referred
to by THIS . Casting only checks that the class is compatible with the specified type.
Instead an overridden instance method of a super-class may be accessed by using the
SUPER keyword (optionally with the name of the super-class as first argument) .

EXAMPLE 4 . 2 1 . Let us revisit Example 4 . 1 1 that demonstrated how ambiguities related
to multiple inheritance are to be dealt with. Of particular interest are means to:

- Bypass inheritance mechanisms that override a super-class' s method or prioritise a
method of one super-class over a method of another super-class ; and

- Invoke object constructors in the presence of multiple super-classes.

We start considering the latter first . Assume we want to implement an object construc­
tor for class StudentAcademicCcc . Since object constructors are not inherited, they
must be invoked explicitly at the beginning of the implementation of each new con­
structor. A SUPER () ; call results in the invocation of the object constructor (with
an empty argument list) of each direct super-class in the order as the respective super­
classes appear in the IsA clause.
In the event that invocation in the I sA order is not desired, there must be a sequence
of SUPER (c l assName) ; calls, where className is the name of a direct-superclass.
This sequence must not be broken by any other statements and has to consist of exactly
one SUPER invocation for each direct super-class. SUPER (c l assName) ; invokes the
object constructor of class className that has an empty argument list.
Analogous, object constructors with argument list may be invoked. However, the first
argument of a SUPER call must always be a class name. The first argument passed to
the super-class's constructor will be the second argument of the SUPER call and so on.
The default constructor of class StudentAcademicCcc is as follows:

01 EVALPLAN StudentAcademicCcc {
02 SUPER () ;
03
04 RETURN (VOID) ;
05 }

SUPER () ; first invokes the object constructor of class StudentC followed by an invo­
cation of the object constructor of class AcademicCcc · Note: Only class StudentC will
invoke the object constructor of class PersonC.
Assume, we want to create the underlying PersonC object through a constructor of
class AcademicCcc · In addition, we pass some arguments. This can be done as follows:

1 16

4.4. SIMULTANEOUS PROCESSING Markus Kirchberg

10 EVALPLAN StudentAcademicCcc (NameT name , AddressT homeAddr , AddressT workAddr)
1 1 {
12 SUPER AcademicCcc , name , homeAddr , workAddr) ;
13 SUPER StudentC) ;
14
15
16 RETURN (VOID) ;
17 }

In a similar manner, methods of super-classes may be i nvoked . Examples are as follows:

20
21 SUPER () . getAddress () ; 11 invokes getAddress from c lass StudentC
22 SUPER (StudentC) . getAddress () ; 11 invokes getAddress from c lass StudentC
23 SUPER (AcademicCcc) . getAddress () ; 1 1 invokes getAddress from c lass
24 11 AcademicCcc
25 SUPER (PersonC) . getAddress () ; 11 invokes getAddress from c lass PersonC
26

Thus, by using the SUPER keyword, default mechanism associated with object construc­
tors and multiple inheritance may be overridden. 0

4.4 Simultaneous Processing

Concurrency and, to some degree, also parallelism are supported by the iDBPQL
language . While there are various types of simultaneous processing, e.g. multi­
programming, multi-processing, control parallelism, process parallelism, data paral­
lelism, multi-threading, distributed computing etc. (some of which refer to the same
processing type) , only some of them are supported explicitly, but others are utilised
implicitly.

Before considering the supported types of simultaneous processing in greater detail,
we will briefly outline some advantages and disadvantages of their support and define
their meaning in greater detail.

First , let us consider a more general notion of concurrency, which also covers paral­
lelism. Edsger Dijkstra already defined it as follows: ' Concurrency occurs when two or
more execution flows are able to run simultaneously ' . Thus, it encompasses computa­
tions that execute overlapped in time, and which may permit the sharing of common
resources between those overlapped computations. This results in a number of potential
advantages, which include:

- Reduction in run-time, increase in throughput and decrease in response time;
- Increase in reliability through redundancy;
- Potential to reduce duplication in code; and
- Potential to solve more real-world problems than with sequential computations

alone.

As promising as these advantages may sound, they do not come without potential
drawbacks. The use of shared resources, added synchronisation and communication
requirements lead to a number of disadvantages, which include:

1 1 7

4.4. SIMULTANEOUS PROCESSING Mar kus Kirchberg

- Run-time is not always reduced, i .e . careful planning is required;
- Concurrent computations can be more complex than sequential computations;
- Shared data can be corrupted more easily; and
- Communication between tasks is needed.

As it is already suggested above, simultaneous processing can be achieved in various
ways. For instance, processing may take place at multiple nodes where each node utilises
its own processing powers or at a single node with a multi-processor machine or even at
a single node with only a single-processor machine where CPU time and other resources
are shared (i .e . tasks of different programs are interleaved) . This leads to a variety of
different types of simultaneous processing. Neglecting distribution for a while (which
will be considered separately in Section 5 .3 . 10) , we may utilise concurrent or parallel
processing when:

- Executing multiple programs (i .e . evaluation plans) on a single CPU. This (rudimen­
tary) form of simultaneous processing is commonly referred to as multi-programming
or time sharing and results in interleaved (i . e . concurrent) execution of two or more
programs.

- Executing one or more programs by two or more CPUs within a single computer
system. This form of simultaneous processing is commonly referred to as multi­
processing and results in multiple CPUs working on the same program at the same
time (i . e . in parallel) .
A system can be both multi-processing and multi-programming, only one of the

two, or neither of the two.

Multi-programming, in its rudimentary form, allows context switches of programs
(e.g. when one program reaches an instruction waiting for a peripheral) , but does not
give any guarantee that a program will run in a timely manner. When computer usage
evolved so did multi-programming. As a result, time sharing (i .e . multi-tasking and
multi-threading) emerged. This allows the computer system to guarantee each process
(or thread9 in case of multi-threading) a regular 'slice' of operating time.

When multiple programs, processes or threads are present in memory, an ill-behaved
execution unit may (inadvertently or deliberately) overwrite memory belonging to an­
other execution unit . Thus, it is important that:

- The memory accessible to the running program or process is restricted ; or
- Accesses to the memory accessible to multiple running threads are synchronised.

Execution units that are entirely independent are not difficult to program. Most
of the complexity in time sharing systems comes from the need to share computer
resources between tasks and to synchronise the operation of co-operating tasks.

Multi-processing can take place in various ways. All CPUs may be equal, or some
may be reserved for special purposes. Systems that treat all CPUs equally are called

9 Threads are basically processes that run in the same memory context. Thus, switching between threads that
run in the same memory context, can be achieved more efficiently since it does not involve changing the
memory context.

1 18

4.4. SIMULTANEOUS PROCESSING Markus Kirchberg

symmetric multi-processing (SMP) systems . In systems where all CPUs are not equal,
system resources may be divided in a number of ways, including asymmetric multi­
processing (ASMP) , non-uniform memory access (NUMA) multi-processing , and clus­
tered multi-processing .

In multi-processing, multiple processors can be used within a single system to exe­
cute multiple, independent sequences of instructions in multiple contexts (i .e . multiple­
instruction, multiple-data (MIMD) processing) ; a single sequence of instructions in
multiple contexts (i .e . single-instruction, multiple-data (SIMD) processing) ; and mul­
tiple sequences of instructions in a single context (i .e . multiple-instruction, single-data
(MISD) processing) .

MIMD multi-processing is suitable for a wide variety of tasks in which completely
independent and parallel execution of instructions touching different sets of data can
be put to productive use. Processing is divided into multiple threads, each with its
own state, within a single process or within multiple processes. MIMD does raise issues
of deadlock and resource contention. However, threads may collide in their access to
resources in an unpredictable way that is difficult to manage efficiently.

SIMD multi-processing is well suited to parallel processing, in which a very large
set of data can be divided into parts that are individually subjected to identical but
independent operations. A single instruction stream directs the operation of multiple
processing units to perform the same manipulations simultaneously on potentially large
amounts of data. However, applications must be carefully and specially written to
take maximum advantage of this type of multi-processing, and often special optimising
compilers designed to produce code specifically for this environment must be used. Some
compilers in this category provide special constructs or extensions to allow programmers
to directly specify operations to be performed in parallel (e.g. DO FOR ALL statements in
the version of FORTRAN used on the ILLIAC IV, which was a SIMD multi-processing
supercomputer [90]) .

MISD multi-processing offers mainly the advantage of redundancy, since multiple
processing units perform the same tasks on the same data, reducing the chances
of incorrect results if one of the units fails. Apart from the redundant and fail-safe
character of this type of multi-processing, it has few advantages, and it is very expensive.

iDBPQL mainly utilises time sharing (i .e . concurrency in terms of multi-tasking and
multi-threading) as well as MIMD and SIMD multi-processing (i .e . true parallelism)
[68] . While the transaction management system allows different transactions to exe­
cute simultaneously (i . e . inter-transaction concurrency or parallelism) , iDBPQL also
supports two expressions that explicitly request simultaneous execution . The former is
discussed in Section 4 . 4 . 1 . The latter may happen on the transaction-level (i .e . inter­
transaction concurrency) or the operation-level (i .e . intra-transaction concurrency) .
Section 4 .4 . 2 discusses the support of simultaneous processing i n greater detail . Fi­
nally, individual operations may be implemented in ways that simultaneous processing
is utilised (i .e . intra-operation concurrency) . However, this form of processing is dis­
cussed in detail only in Section 5 .3 .9 .

1 19

4.4. SIMULTANEOUS PROCESSING

4.4.1 Implicit Inter-Transaction Concurrency

Markus Kirchberg

As typical for DBSs, independent transactions are executed simultaneously whenever
possible. The two most commonly considered properties, affecting the degree of in­
terleaving, are serialisability (that is conflict-serialisability) and recoverability. This,
of course, is also the case for transactions in iDBPQL that stem from different user
programs, i .e . originate from different main evaluation plans. The TMS scheduler de­
termines the degree of interleaving of operations of such transactions. Section 5 .2 .2 will
later introduce a corresponding prototype. Transactions that belong to the same main
evaluation plan may be executed serially or interleaved. The programmer has a greater
influence over the mode of execution. Corresponding details are outlined next .

4.4.2 Support for Explicit Concurrency

Inter- and intra-transaction concurrency may be specified explicitly. iDBPQL provides
two different control flow expressions that imply concurrency.

On one hand, it can be specified that a block of statements may be executed inde­
pendently from its surrounding statements (i .e . t ime sharing or MIMD) . Thus, different ,
independent statements are processed at the same time. When specified within a loop
statement, this time sharing or MIMD approach is mixed with SIMD. The general
syntax for such a specification is as follows:

Syntax Snapshot 4 . 2 1 {Independent iDBPQL Blocks}

IndependentDoBlock = " INDEPENDENT" , "DO " , Statement s , "ENDDO" ;
D

Whether or not independent execution results in multi-tasking, single-threaded or
multi-threaded execution is indicated by the compiler and / or decided at execution
time.

EXAMPLE 4 . 22 . Let us consider some examples. First , we consider the simultaneous
execution of two independent statements, which belong to the same transaction (i .e .
utilising intra-transaction con currency) .

0 1 PUBLIC EVALPLAN ViewProfile () {
02 doSomething ;
03
04 LABEL i 1 : INDEPENDENT DO
05 doSomethingindependently ;
06 ENDDD ;
07
08 doSomethingElse ;
09

// imp l ementat ion of a persist ent me thod of
/1 c l ass Universitycc . StudentC

10 WAIT i 1 ; // synchronisa tion of main execution stre am with independent s tream
1 1
12 doMore ;
13 }

From line 0 1 to line 04 execution has been serial . In line 04, an independent execution
block is declared. Together with this execution block declaration (i .e . INDEPENDENT

120

4.4. SIMULTANEOUS PROCESSING Markus Kirchberg

DO) a label is specified. This label is used later to synchronise the independent
execution stream (i .e . the doSomethingindependently block) with the main exe­
cution stream (i .e . doSomethingElse) . Serial execution continues from line 12 onwards.

Secondly, we consider this type of processing when executing two transactions that be­
long to the same request / evaluation plan (i .e . explicit inter-transaction concurrency) .

20 {
21 // consider an eva Luat ion p L an using the University schema
22 INDEPENDENT DO TRANSACTION tr1
23 stNumb = LectureC . countStudents () WHERE (course . cNumb == " 157 . * ") ;
24 trl . commit () ;
25 ENDDO ;
26
27 DO TRANSACTION tr2
28 FOR EACH CourseC AS x {
29 selectedPapers . add (x WHERE x . cNumb == " 157 . * ") ;
30 }
3 1 tr2 . commit () ;
32 ENDDO ;
33
34 }

Transactions tr1 and tr2 are executed concurrently. No synchronisation command
has been specified . Thus, both execution streams are only synchronised at the end of
the corresponding block , i .e . line 34.

Finally, we will utilise the repetitive simultaneous execution of a block of independent
statements on a common data set . In this example, we intend to process all statements
of one iteration in a for each loop simultaneously with all statements of the next
iteration etc .

40
41 FOR EACH StudentC AS x INDEPENDENT DD
42 doSomething ;
43 ENDDO ;
44

The doSomething-block is invoked independently for each object in class StudentC.
Thus, we could also write:

50
51 LABEL i l : INDEPENDENT DO
52 x = StudentC . f irst () ;
53 doSomething ;
54 ENDDO ;
55
56 LABEL i2 : INDEPENDENT DO
57 x = StudentC . next () ;
58 doSomething ;
59 ENDDO ;
60

121

4.4. SIMULTANEOUS PROCESSING Markus Kirchberg

61 LABEL i3 : INDEPENDENT DO
62 x = StudentC . next () ;
63 doSomething ;
64 ENDDO ;
65
66
67 LABEL in : INDEPENDENT DO
68 x = StudentC . last () ;
69 doSomething ;
70 ENDDO ;
7 1
7 2 WAIT i 1 , i2 , i3 , . . . , in ;
73

D

On the other hand, it can be specified that a block of statements is executed concur­
rently while preserving the indicated ordering. This type of processing is particularly
useful when processing collections. Let us consider an example :

EXAMPLE 4 . 2 3 . Assume, we have a database that keeps track of student enrolments.
Students have to apply for course enrolments. They will be approved into a particular
course only if they meet all course pre-requisites . Before the beginning of a new semester
we like to execute a routine that automatically approves applications which meet all
respective course pre-requisites. Subsequently, we have to contact all students whose
applications could not be approved automatically.
This procedure can be done in two subsequent steps. Alternatively, we could utilise
concurrency (to be more precise, pipelining) . This may be achieved as follows:

ForEach s tudent Do in para l l e l
Aut omat ica l ly approve a l l course app l i cat ions .

Then
Comp i l e a l ist of s tudents which have at l eas t one unapproved app l ication .

EndDo

Obviously, it is vital that the execution ordering is preserved . D

In iDBPQL, we support this type of execution. The general syntax for such a spec­
ification is based on the FOR EACH loop statement :

S yntax S napshot 4 . 22 {Concurrent iDBPQL Blocks}

ConcurrentForEachBlock = "FOR EACH" , Expression , "CONCURRENT" , "DO " , Statements ,
{ "THEN" , "DO " , Statements , "ENDDO" , ' ; ' } ,

"ENDDO" , ' ; '
D

The evaluation of the expression results in a collection value. Members of this collec­
tion are made available to the DO-statement first . Once those values have been processed
they are pipelined to the THEN DO-statement. Thus, both statements may execute si­
multaneous while preserving execution ordering.

122

4 .4. SIMULTANEOUS PROCESSING Markus Kirchberg

EXAMPLE 4 . 24 . Let us consider some examples. First , we will call two methods on a
collection of objects. The second method may be invoked on each object on which the
first method has been executed successfully, i .e . objects are pipelined from the first
invocation statement to the second invocation statement .

0 1
02 FOR EACH myCollection CONCURRENT DO
03 myCollection . sort () ; // sorts a � � members in the co � � e c t ion, e . g . a � i s t
04 THEN DO
05 myCollection . eliminateDuplicatesSorted () ; /1 b ased on a sort ed
06 /1 co � � ec t ion, dup � i cates are e � imina t ed by consi dering 'neighbouring '
07 ENDDO ; // co � � ec t ion members
08 ENDDO ;
09

Line 02 indicates the start of a block of statements that is to be executed con­
currently. The two statements in lines 03 and 05 operate on the same collections
and, thus, may execute concurrently as long as the execution order is preserved
per collection object . So, every object that the myCollection . sort () ; statement
releases (i .e . adds to its associated result queue) is passed on (i .e . pipelined) to the
myCollection . eliminateDuplicates () ; statement . As a result, the execution of
both statements may overlap (in a controlled manner) .

Another means of specifying order-preserving, concurrent execution is within a for­
loop. Within a for each-loop the pipelined object is selected explicitly. In addition to
the CONCURRENT DO, we also have an INDEPENDENT DO in this loop.

10
1 1 FOR EACH mydb . SalaryC AS x CONCURRENT DO
1 2 x . addBonus (2 , 000) ;
1 3 THEN DO
14
1 5 Label i1 : INDEPENDENT DO
1 6 x . printPaymentSlip () ;
1 7 ENDDO ;
18
19 extMail . add (x) WHERE x . hasinHouseMailAddress () = = FALSE ;
20
2 1 WAIT i 1 ;
22
23 ENDDO ;
24 THEN DO
25 x . salaryProcessed (date . today () , t ime . now ()) ;
26 ENDDO ;
27 ENDDO ;
28

For each object x in the collection-class mydb . SalaryC, the addBonus method is in­
voked. Subsequently, this object is pipelined to both the execution unit invoking the
printPaymentSlip method as well as to the execution unit that maintains a set of
salary objects that do not satisfy the boolean hasinHouseMailAddress method. Once,

123

4.4. SIMULTANEOUS PROCESSING Markus Kirchberg

both invocations have been completed (refer to the WAIT in line 21) , we can pipeline
the object x to the fourth execution unit invoking the salaryProcessed method.
While both order-preserving examples outlined above only refer to operations within a
single transaction, the same concept can be applied across transactions. Let us demon­
strate this next:

30
3 1 DO TRANSACTION tr1
32 salCol = mydb . SalaryC ;
33
34 DO TRANSACTION tr2
35 FOR EACH salCol AS salObj CONCURRENT DD TRANSACTION tr1
36 salObj . addBonus (2 , 000) ;
37
38 THEN DD TRANSACTION tr2 // imp L i es ordering : tr1 THEN tr2
39 salObj . printPaymentSlip () ;
40 ENDDO ;
41 ENDDO ;
42 ENDDO ;
43 ENDDO ;
44

Here, transaction tr1 obtains the SalaryC collection and adds all bonifications. After
each bonus is added, the objects is handed over to transaction tr2, which prints all
payment slips. 0

4.4.3 Implications

Supporting explicit concurrency has implications on other components of the DBMS
and on the syntax of iDBPQL itself. We will look at the different types of simultaneous
processing and outline their implications:

- Firstly, there is the INDEPENDENT DO statement that applies to sequences of iDBPQL
statements inside a single transaction or, in the event that no transaction is defined,
the entire evaluation plan. Since access to shared data must be from within a trans­
action, the latter case can be neglected since its evaluation will not involve the
transaction management system (only local , non-shared data is accessed) . Consid­
ering the former case, the simultaneous execution only applies to operations within
the same transaction. This, however, will not have implications for other DBMS
components, in particular the transaction management system. According to the
ACID principle, data consistency has to be preserved by each transaction, when
run in isolation, and the programmer is responsible for ensuring this property.

- Secondly, there is the INDEPENDENT DO statement that results in the simultaneous
execution of multiple transactions originating from the same evaluation plan, i .e .
same main execution stream. From the transaction management system's point of
view, these transactions are serialised as any other concurrent transactions (i .e .
those discussed in Section 4 .4 . 1) . However, some syntactical constraints must be
observed when using this type of explicit concurrency. Multi-threaded transactions
must commit or abort before rejoining the main evaluation plan and synchronisation
commands (i .e . WAIT statements) must not form cyclic waiting conditions.

124

4.5 . EXAMPLES Markus Kirchberg

- Thirdly, there is the CONCURRENT DO statement that applies to operations on col­
lections either across transactions, within a single transaction or, in case no trans­
action is defined, the entire evaluation plan. Operations are synchronised implicitly
by pipelining objects that the first operation has released to the second operation
etc . Thus, concurrent access to the same collection object is enabled while access to
the collection members is synchronised . This form of cooperation is different from
the modes of processing traditional DBMSs usually perform. As a consequence, the
transaction management system must not be only able to distinguish serial and
independent (i .e . of operations allowing shared access or operations operating on
unrelated objects) execution of operations within the same transaction but also
the coordinated execution of possibly conflicting operations on the same collection.
Corresponding extensions to transaction models and correctness criteria are pro­
posed in [6] . The suggested transaction model distinguishes between two partial
orderings, which are weak order (i .e . data flow takes place through DBS objects)
and strong order (i .e . external flow of information between operations or transac­
tions) . While the former enables simul tan eo us processing, the latter implies serial
execution. The corresponding correctness criteria, stack-conflict consistency, per­
mits parallel execution of weakly ordered operations given that their serialisation
graph is preserved.

While the support of explicit simultaneous execution requires a more sophisticated
transaction management system, it offers the potential to significantly increase system
performance. For instance, assume that we have two subsequent operations accessing
the same collection. This collection may be of a size that does not fit into the avail­
able main memory. Serial evaluation is likely to result in two consecutive scans, which
degrades system performance. On the contrary, the CONCURRENT DO block enables the
evaluation of both operations with one scan.

4 . 5 Examples

EXAMPLE 4 . 2 5 . First, we will consider a very simple request that does not involve
the run-time or DBS metadata catalogues nor does it invoke any other evaluation plan
during its execution. The popular 'Hello world!' example can be formulated in iDBPQL
as follows:

0 1 EVALPLAN HelloWorld (VOID) STRING {
02 RETURN ("Hello world ! ") ;
03 }

The only metadata reference that is associated with this evaluation plan identifies the
argument of the RETURN statement as a STRING value. D

While this first example does not have any associated metadata catalogue references,
the majority of evaluation plans do. In iDBPQL, one can code requests that do not
involve any persistent data, use persistence only to keep track of the state of objects
(e.g. a user's profile) or take full advantage of the integrated processing and querying
capabilities on non-shared transient and shared persistent objects . While the former

125

4.5. EXAMPLES Markus Kirchberg

two usages correspond to more traditional PL programs, the latter utilises advantages
that result from the integration of DBS languages and OOPLs. While the next Example
4.26 only outlines a more complete specification of one particular class of the university
application , Example 4 .27 contains a few transient requests that access this schema.

EXAMPLE 4 . 2 6 . As a second example, we outline the behaviour specification of a class
definition in a database schema. In fact , we will continue Example 4 . 1 7 and refine
the definition of class EnrolmentCcc · Behaviour specifications are added and their
corresponding evaluation plans are proposed.
First , let us consider the extended EnrolmentCcc class definition:

01 CLASSDEF EnrolmentCcc {
02 STRUCTURE {
03
04
05
06
07

LectureCcc lecture ;
StudentC student ;
READONLY EnrolmentT ;

} //
// the date value can b e vi ewed from the outside of

this c l ass but the same does no t ho ld for modifications

08 BEHAVIOUR {
09
10
1 1

PRIVATE checkCrsPreRequisites (VOID) : BOOLEAN ;
verifyEnrolment (VOID) : BOOLEAN ;
EnrolmentCcc (LectureCcc lect , StudentC std) ; / / object c onstructor

12 }
13
14
15
16

CONSTRAINT {
UNIQUE (lecture , student) ;

}
/1 uniqueness constraint

17 }

For each behaviour specification , there exists an associated evaluation plan, which has
the same modifiers, name and arguments as the behaviour specification . We will con­
sider corresponding evaluation plans next :

First , let us consider the evaluation plan that describes the implementation on the
verifyEnrolment method:

20 EVALPLAN verifyEnrolment (VOID) : BOOLEAN {
2 1 // check whe ther o r not t h e s tudent has already comp l e ted the
22 // corresponding cours e successfu l ly
23 IF (EXISTS (RecordC WHERE ((THIS . student == student) &&
24 (THIS . lecture . course == course)))
25 (result . isValueOf (PassGradesT))) {
26 // the s tudent already has comp l e t e d the course successful ly
27 RETURN (FALSE) ;
28 }
29
30 // check whe ther or no t the s tudent meets a l l c ourse pre-requis i t es
3 1 IF (! checkCrsPreRequisites (VOID)) {
32 // at l eas t one pre-requisi te is not met
33 RETURN (FALSE) ;
34 }
35

126

4.5 . EXAMPLES

36 // a L L pre-requisi t es are met
37 RETURN (TRUE) ;
38 }

Markus Kirchberg

While this evaluation plan is associated with a DBS metadata entry, the plan itself
has further DBS and run-time metadata entries associated. These are as follows:

line 23: RecordC ---t DBSMetadata . Uni versi tycc . RecordC,
THIS . student ---t DBSMetadata . Univers itycc . StudentC , and
student ---t DBSMetadata . Universitycc . StudentC;

line 24: THIS . lecture . c ourse ---t DBSMetadata . University cc . Course and
course ---t DBSMetadata . Uni versi tycc . Course and

line 25: result ---t NULLABLE < DBSMetadata . Universitycc . GradesT > and
PassGradesT ---t DBSMetadata . Universitycc . PassGradesT.

Next, there is the private evaluation plan checkPrerequis i tes that evaluates
whether or not the student meets all course pre-requisites:

40 PRIVATE EVALPLAN checkPrerequisites (VOID) : BOOLEAN {
41 // for each pre-requisite check whether or no t the s tudent has a pass
42 // grade
43 FOR EACH THIS . lecture . course . prerequisites AS preRequCrs DO
44 IF (! EXISTS (RecordC WHERE ((preRequCrs == course) &&
45 (THIS . student == student)))
46 (result . isValueOf (PassGradesT))) {
47 // at L east one missing prerequi s i t e
48 RETURN (FALSE) ;
49 }
50 ENDDO ;
51
52 // a L L pre-requis i t es are me t
53 RETURN (TRUE) ;
54 }

Associated metadata entries are as follows:

line 43: THIS . lecture . c ourse . prerequisites ---t
SET < DBSMetadata . Universitycc . CourseC > ;

line 44: RecordC ---t DBSMetadata . Universitycc . RecordC,
preRequCrs ---t DBSMetadata . Universitycc . CourseC and
course ---t DBSMetadata . Universi tycc . CourseC;

line 45: THIS . student ---t DBSMetadata . Univers itycc . StudentC and
student ---t DBSMetadata . Universitycc . StudentC; and

line 46: result ---t NULLABLE < DBSMetadata . Universitycc . GradesT > and
PassGradesT ---t DBSMetadata . Universitycc . PassGradesT.

Finally, there is the non-default object constructor EnrolrnentCcc , which is imple­
mented as follows:

127

4.5 . EXAMPLES

60 EnrolmentCcc (LectureCcc lect , StudentC std) {
6 1 date . today () ;
62 lecture = lect ;
63 student = std ;
64
65 RETURN (VOID) ;
66 }

Associated metadata entries are as follows:

Markus Kirchberg

line 6 1 : date --+ NULLABLE < DBSMetadata . Universi tycc . DateT > ;
line 62: lecture --+ DBSMetadata . Universitycc . LectureC and

lect --+ DBSMetadata . Universitycc . LectureC; and
line 63: student --+ DBSMetadata . Uni versi tycc . StudentC and

std --+ DBSMetadata . Uni versi tycc . Student C.

Definitions and implementations that are outlined in this example are persistent and
may be shared between applications. The next example will demonstrate this for a
few simple (transient) user requests, which will also access data that is held in the
Univers ity database. D

EXAMPLE 4 . 27 . Let us continue the previous example. First , a simple request is issued
that accesses enrolment objects through its associated class collection.

0 1 EVALPLAN calcEnrolNumb (LectureCcc lect) : NATURAL {
02 // count the number of students enro L L ed in the given Lec ture lect
03 numb = EnrolmentCcc WHERE (lecture == lect) . student . COUNT ()) ;
04 RETURN (numb) ;
05 }

Associated metadata entries are as follows:

line 0 1 : --+ DBSMetadata . EnrolrnentCcc and
numb --+ NAT;

line 03: lecture --+ DBSMetadata . Uni versi tycc . LectureC,
lect --+ DBSMetadata . Universitycc . LectureC and
student --+ DBSMetadata . Universitycc . StudentC and

line 04: numb --+ NAT.

The first unnamed metadata reference corresponds to a schema import . The numb
reference represents a local variable while all other metadata references refer to classes
in the imported schema.

The second request creates a transient class, which provides a more tailored service to
its users. A simple student manager that is designed to enable students to access their
some relevant information more easily is modelled.

128

4.5 . EXAMPLES

10 CLASSDEF StudentMgrC {
1 1 STRUCTURE {
12 Univers itycc . StudentC myDetails ;
13 SET < Universitycc . CourseCcc > shortList ;
14 }
1 5 BEHAVIOUR {

Markus Kirchberg

16 getSelectedCourses (VOID) : SET < Universitycc . CourseCcc > ;
1 7 compileCrsList (VOID) : VOID ;
18 compileCrsList (DepartmentC) : VOID ;
19 enrol (SemesterC sem) : VOID ;
20 StudentMgrC (Universitycc . StudentC . studenti d myid) ;
2 1 }
22 }

The class definition contains several references into the university database. The object
constructor may be implemented as follows:

30 EVALPLAN StudentMgrC (NAT myid) { 11 object cons tructor
3 1 I I re tri eve the s tudent) s StudentC o bject from the database
32 myDetails (StudentC WHERE (studentid == myid)) . getValue () ;
33 shortList = THIS . compileCrsList (VOID) ; 11 compi L e L i s t of recommended
34 } 11 courses

Associated metadata entries are as follows:

line 30: -----t DBSMetadata . Uni versi tycc . EnrolmentCcc ,
myDetails -----t DBSMetadata . Universitycc . StudentC and
shortList -----t SET < DBSMetadata . Univers ity cc . CourseCcc > and

line 33: studentld -----t NAT and
myld -----t NAT.

The statement in line 32 must be executed as a transaction since persistent data is
accessed. If no such transaction blocks are specified, each statement is executed as an
individual transaction . That is, the evaluation plan is automatically transformed into:

40 EVALPLAN StudentMgrC (NAT myid) { 11 o bject cons tructor
41 11 retri eve the s tudent Js StudentC o bject from the database
42 DO TRANSACTION tr1
43 myDetails = (StudentC WHERE (studentid == myid)) . getValue () ;
44 ENDDO ;
45 shortList = THIS . compileCrsList (VOID) ;
46 }

11 compi L e L is t of recommended
11 courses

As a second implementation, we consider the enrol method, which will contain a user­
defined transaction block and utilise simultaneous processing:

50 EVALPLAN enrol (SemesterC sem) : VOID { 11 enro Lment method
5 1 DO TRANSACTION enrolTrans
52 11 retrieve a L L matching Lec ture objects
53 lects = Lecture WHERE ((course IN shortList) AND (semester sem)) ;
54

129

4.5 . EXAMPLES

55 FOR EACH lects AS lect CONCURRENTLY DO
56 // enro l into a l l l ectures
57 lect . enrol (myDetails) ;
58
59 THEN DO
60 11 remove each l ec t ures aft er enro lment was succ essful
6 1 lects . remove (lect) ;
62 ENDDO ;
63 ENDDO ;
64 ENDDO ;
65
66 shortList . discard (VOID) ;
67 }

Associated metadata entries are as follows:

line 50: --+ DBSMetadata . Universitycc . EnrolmentCcc and

Markus Kirchberg

lects --+ SET < DBSMetadat a . Universitycc - LectureCcc > ;

line 53: lects --+ SET < DBSMetadata . Uni versi tycc . LectureCcc > ,

course --+ DBSMetadata . Universitycc . CourseCcc ,
shortList --+ SET < DBSMetadata . Universitycc . CourseCcc > ,
semester --+ DBSMetadata . Universitycc . SemesterC, and
sem --+ DBSMetadata . Universitycc . SemesterC ;

line 55 : lects --+ SET < DBSMetadata . Uni versi tycc . LectureCcc > and
lect --+ DBSMetadat a . Universitycc . LectureCcc ;

line 57: lect --+ DBSMetadat a . Universitycc . LectureCcc and
myDetails --+ DBSMetadata . Universitycc . StudentC; and

line 61 : lects --+ SET < DBSMetadata . Uni versi tycc . LectureCcc > and
lect --+ DBSMetadat a . Universitycc - LectureCcc -

The implementation of the remaining methods is similar to those presented in this
chapter. The same application can also be implemented across all three university
schema fragments . Actually, this may be more realistic and would leave the student a
larger range of available courses to choose from. 0

130

Chapter 5

On the Implementation of iDBPQL

The implementation of the intermediate-level integrated database programming and
querying language iDBPQL is the main concern of this chapter. Section 5 . 1 outlines
the internal representation of metadata catalogues, evaluation plans and annotations
associated with evaluation units. Apart from capturing all properties of iDBPQL en­
t ities, internal representations have to also support the evaluation of user requests in
a concurrent and distributed database environment. Main challenges result from the
requirements of efficient run-time evaluation, orthogonal persistence, concurrency and
distribution. DBS components that support the evaluation process are introduced in
Section 5 .2 . A persistent object store, a multi-level transaction management system
and a remote communication mechanism are proposed. Subsequently, the functionality
of these components is utilised. Section 5 .3 discusses the processing of evaluation plans
in the concurrent and distributed database computing environment . The evaluation
follows a similar idea as the SBA approach [131] . However, a more sophisticated run­
time environment that significantly enhances the capabilities and performance of the
evaluation procedure is proposed . Operational semantics are discussed for the majority
of iDBPQL statements and expression. Finally, Section 5 .4 concludes this chapter by
briefly discussing ways on how to apply code and query optimisation techniques as
known from conventional PLs and relational QLs.

5 . 1 Internal Representation of MetaData Catalogues,

O bjects and Evaluation Plans

In this section, we propose internal representations of entries that are held in metadata
catalogues, objects and values and evaluation plans together with their annotations. It
is our aim to model these concepts in a way that the evaluation procedure, mappings to
and from persistent storage, and distribution of data and/or processing are supported
efficiently.

First , we will discuss corresponding challenges in greater detail . Subsequently, we
present the internal representation of metadata units using pseudo-structures formu­
lated in a C-like syntax [59] . To underline the difference between iDBPQL syntax and
internal representations, we prefix all internal identifiers and names with two under­
scores ' _ _ ' . In a similar manner, we then outline how objects and values are depicted.
The representation of evaluation plans is most challenging. Such plans have to link all

13 1

5 . 1 . METADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

previously introduced concepts and also capture different means of processing. In addi­
tion, evaluation plans must be very flexible with respect to how different operators may
be combined to allow for an efficient execution. The latter is important particularly for
DBSs since query optimisation processes traditionally consider a large number of pos­
sible evaluation plans and only select the most appropriate one for execution. Finally,
we introduce the variety of annotations that may be associated with evaluation graphs.

5. 1 . 1 Challenges

While outlining internal representations of iDBPQL concepts the following challenges
have to be met:

- Capture all properties of metadata entries : It must be ensured that all proper­
ties of pre-defined types, user-defined types, type synonyms, class definitions, and
schemata are preserved. This includes the closed property as outlined in Section
4 .2 . 5 .

- Find a suitable internal representation of evaluation plans : ot only i s i t required
to find a suitable representation that can capture all properties of evaluation plans
as outlined in Section 4 .3 , but it must also include provisions for :

• Specifying different styles of processing. These should include serial, concurrent
and distributed execution of (portions of) evaluation plans.

• Processing statements and expressions efficiently. This includes the possibility
to select the most suitable machine instruction from the list of all available
implementations.

• Supporting code and query expression optimisation processes. A certain degree
of flexibility and modularity that enable code and query optimisers to consider
multiple evaluation plans should be supported.

• Linking evaluation blocks with entries in DBS and run-time metadata cata­
logues. This must also include a means of capturing the declaration and initial­
isation of local variables .

A graph-like representation is used to provide the necessary degree of flexibility
and modularity. Various types of annotations are introduced as a means of linking
evaluation plans and metadata entries and specifying additional information utilised
during the evaluation process.

- Efficient mapping to and from persistent storage : The support of orthogonal persis­
tence implies that every iDBPQL entity may also persist . This should be achieved in
a transient manner. Having an in-memory representation that can easily be reflected
on persistent storage (and vice versa) , will assist with meeting these objectives.

- Support distributed processing : Being able to relocate metadata entries and (portions
of) evaluation plans as efficiently and effortlessly as possible is desired to minimise
corresponding effects during the processing of evaluation plans.

5 . 1 .2 MetaData Entries and Associated Information

Metadata entries are either located in the DBS metadata catalogue or the Run-Time
metadata catalogue. We consider DBS metadata entries first since they do not refer to
run-time entries. The same does not hold vice versa.

132

5 . 1 . METADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

DBS metadata entries are internally represented in the following format :

0 1 _ _ dbsMetaDataCatalogue { 11 DES me tadata cat a L ogue as co L L e c t ion of schemata
02 long _ _ schemaCount ; 11 number of schemat a
03 schemainfo _ _ schemata [_ _ schemaCount] ; 11 array of schema informat ion
04 }

Each value in the __ schemata array must be a __ schemainfo structure that provides
a complete description of a schema in the DBS metadata catalogue:

1 0 schemainfo {
1 1 char *
1 2 long
1 3 _ _ typeSyninfo
14 long
1 5 _ _ typeinfo
1 6 long
1 7 classinfo
1 8 _ _ dag
1 9 }

11 a schema is a c o L L ec t ion of type and c L ass defini t i ons
_ _ name ;
__ typeSynCount ;

I I (simp L e) va L i d schema name
I I number and array of type synonym . . .

_ _ typeSyn [_ _ typeSynCount] ; I I . . . dec L arat ion informat i on
11 number of type defini t i ons

11 array of t ype defini t ion informat ion
_ _ typeCount ;
_ _ types [_ _ typeCount] ;
__ classCount ;
_ _ classes [__ classCount] ;
__ isaRelation ; 11

I I number and array of c L ass . . .
11 defini t ion informat ion

inheritance re Lation (introduced b e L ow)

_ _name uniquely identifies the schema. Each value in the __ typeSyn array must be
a __ typeSyninfo (refer below) , which provides a complete description of the type syn­
onym declaration. Each value in the __ types array must be a __ typeinfo structure
(refer below) , which describes the type definition . Accordingly, a _ _ classes array value
must be a __ class info structure (refer below) , which provides a complete description
of the class definition.

In contrast to DBS metadata entries, run-time metadata entries are not grouped
explicitly. Instead , they are associated with evaluation blocks. This association defines
the visibility (i . e . scope) of the particular metadata entry. Thus, it is only natural to
organise run-time metadata entries according to their association, which results in the
following internal format :

20 _ _ rtMetaDataCatalogue { 11 the Run-Time me t adata cataLogue as co L L e c t ion
2 1 I I of run-t ime scope extension entries
2 2 long __ rtEntryCount ; I I number and array main run-time . . .
23 _ _ rtEntryinfo _ _ rtEntries [_ _ rtEntryCount] ; I I . . . entry informat ion
24 }

Each value in the _ _rtEntries array must be a _ _rtEntryinfo structure that de­
scribes run-time entries. These run-time entries in the _ _rtMetaDataCatalogue are as­
sociated with evaluation blocks . The corresponding _ _rtEntryinfo structure is defined
as follows:

30 __ rtEntryinfo { 11 run-t ime entries as co L L ec t ion of type and
3 1 1 1 c L ass definitions , and L oca L symboLs
32 long _ _ typeSynCount ; I I number and array of type synonym . . .
33 _ _ typeSyninfo _ _ typeSyn [_ _ typeSynCount] ; I I . . . dec L arat ion informat ion
34 long _ _ typeCount ; 11 number of type defini t ions
35 _ _ typeinfo _ _ types [_ _ typeCount] ; 11 array of type defini t ion informat i on
36 long _ _ classCount ; I I number and array of c Lass . . .
37 _ _ classinfo _ _ classes [_ _ classCount] ; I I . . . defini t ion informat i on

1 33

5 . 1 . METADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

38
39
40

long __ symbCount ; 11 number of LocaL symbo L s
_ _ symblnfo
_ _ dag *

_ _ symbols [_ _ symbCount] ; 11 array of LocaL symb o Ls
_ _ isaRelation ; 11 inheri tance re Lation (introduced b e L ow)

41 }

Analogous to the __ schemalnfo structure, each value in the __ typeSyn array must
be a __ typeSyninfo (refer below) , which provides a complete description of the type
synonym declaration. Each value in the __ types array must be a __ typelnfo structure
(refer below) , which describes the type definition. Accordingly, a __ classes array value
must be a __ class lnfo structure (refer below) , which describes the class definition .
In addition, each value in the __ localSymbols array must be a __ symblnfo structure
that completely describes the particular local symbol. A local symbol corresponds to
a variable or constant declaration. At the beginning of the evaluation of a particular
block, the block's local symbols are loaded (onto the environment stack, which we will
only introduce in Section 5 .3) and initialised. This results in local symbols being in the
innermost scope. The internal structure of collections of local symbols is as follows:

50 _ _ symblnfo {
5 1
52
53

char * _ _ name ;
_ _ descriptor _ _ symbolDescriptor ;
long _ _ attribCount ;

54
55 }

_ _ attriblnfo _ _ attributes [_ _ attribCount] ;

11 (simp L e) vaLid name of the symbo L
1 1 vaLid symbo L descriptor

I I number and array of associat ed . . .

11 . . . at tributes , e . g . CONSTANT

_ _name uniquely identifies the symbol within the particular evaluation block.

Representing Type Information. Information about types, which are defined in
the DBS metadata catalogue or at run-time, is represented internally in two different
structures. Firstly, there is the structure capturing type synonyms. Its format is as
follows:

01 _ _ typeSynlnfo {
02 byte _ _ modFlag ;
03 char * __ name ;
04 _ _ descriptor _ _ typeSynDescriptor ;
05 }

11 modifier f L ags as out L ined in Tab L e 5 . 1
11 (s imp L e) va L i d typ e synonym name

/1 va L i d type synonym descrip tor

_ _name uniquely identifier the type synonym in the respective scope. Details about
the __ descriptor structure are discussed further below.

Secondly, there are type definitions that are represented internally in the following
format :

10 __ typelnfo {
1 1 byte

char *
_ _ modFlag ;
_ _ name ;

_ _ descriptor _ _ typeDescriptor ;
long _ _ fieldCount ;
_ _ f ieldlnfo _ _ fields [_ _ f ieldCount] ;
long _ _ typeOpCount ;

11 modifier f L ags as out L ined in Tab L e 5 . 1
I I (simp L e) v a L i d type name

11 vaL id type (paramet er) descriptor
11 number of type variab L es

11 array of type variab L es

12
13
14
15
16
17 _ _ typeOplnfo _ _ typeOps [_ _ typeOpCount] ;

11 number of type operat ions
11 array of type operations

18 }

134

5 . 1 . METADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

_ _name and __ typeDescriptor uniquely identify a type. Each value in the _ _f ields
array must be a _ _ f ieldinfo structure that provides a complete description of a type
variable. No two fields in a type may have the same _ _name and _ _ fieldDescriptor.
The format of the _ _f ieldinfo structure is as follows:

20 __ f ieldinfo {
21 byte _ _ modFlag ; 11 modifier f l ags as out l ined in Tab l e 5 . 1

11 (simp l e) va l i d variab l e name
11 va l i d variab l e descriptor

22
23
24
25
26 }

char * _ _ name ;
_ _ descriptor _ _ varDescriptor ;
long _ _ attribCount ;
_ _ attribinfo _ _ attributes [__ attribCount] ;

I I number and array of associated . . .
1 1 . . . at tri butes, e . g . CONSTANT

Details about the _ _ descriptor and __ attribinfo structures are discussed further
below.

Value Mask

X y 0

X y 1
X y 2

X 1 Z

X 2 Z

X 4 Z

1 y z

2 y z

4 y z

Applies To

__ typeSyninfo, __ typeinfo, _ _f ieldinfo
__ typeOpinfo, __ class info, _..lllethodinfo
__ f ieldinfo
__ typeSyninfo, __ typeinfo, __ f ieldinfo
_ _ typeOpinfo, __ class info, _..lllethodinfo
_ _ classinfo, _....methodinfo
_classinfo
_classinfo
__ classinfo, _....methodinfo
_ _f ieldinfo, _..lllethodinfo
_....methodinf o

Interpretation

PUBLIC modifier

READONL Y modifier
PRIVATE modifier

ABSTRACT modifier
CONCRETE modifier
COLLECTION modifier
FINAL modifier
STATIC modifier
FINAL STATIC modifiers

Where x E { 0, 1 , 2, 4 }, y E { 0, 1, 2, 4 }, and z E { 0, 1, 2 } .

Table5 . 1 . Modifier Flags and Their Interpretation.

In addition to the _ _ fields array, the __ typeinfo structure also contains the
_ _ typeOps array. Its values must be _ _ typeOpinfo structures, which provide complete
descriptions of each of the corresponding type operations. No two operations in a type
may have the same _ _name and __ typeOpDescriptor. The format of the _ _ typeOpinfo
structure is as follows:

30 __ typeOpinfo {
31 byte _ _ modFlag ;

char * _ _ name ;
_ _ descriptor _ _ typeOpDescriptor ;
long _ _ attribCount ;

11 modifi er f l ags as out l ined in Tab l e 5 . 1
11 (simp l e) va l i d type operat i on name

11 val i d type operat ion descrip tor
32
33
34
35 _ _ attribinfo _ _ attributes [_ _ attribCount] ;

I I number and array of associated . . .
11 . . . at tribut es, e . g . INITIALISER

and EVALPLAN 36 }

Representing Class Information. Similarly, information about classes, defined in
the DBS metadata catalogue or at run-time, is represented internally in the following
format :

135

5 . 1 .

0 1
02
03
04
05
06
07
08
09
1 0
1 1
1 2
13 }

METADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

classinfo {
byte
char *

_ _ descriptor

_ _ modFlag ;
_ _ name ;
_ _ classDescriptor ;
_ _ supClassCount ;

11 modifier f L ags as out L ined in Tab L e 5 . 1
I I (simp L e) va Lid c L ass name

/1 vaL i d c L ass (parameter) descriptor
long
_ _ classinfo
long

_ _ supClasses [_ _ supClassCount] ;
_ _ fieldCount ;

_ _ f ieldinfo _ _ f ields [_ _ f ieldCount] ;
long _ _ methodCount ;
_ _ methodinfo _ _ methods [_ _ methodCount] ;
long __ constrCount ;

I I . . .

_ _ classConstrinfo _ _ classConstrs [_ _ constrCount] ;

I I number and array of . . .
I I . . . direct sup er-c L asses

I I number and array of . . .
ins tance and c L ass vari ab L es

11 number of methods
11 array of methods

I I number and array of . . .
I I . . . c L ass- LeveL c ons traints

Each value in the _ _ f ields array, _ _methods array or _ _ classConstrs array must
be a __ f ieldinfo structure (refer above) , _ _methodinfo structure (refer below) or

_ _ constrinfo structure (refer below) respectively. The corresponding structure pro­
vides a complete description of an instance / class variable, method or class constraint .
Considering instance and class variables first , no two field entries may have the same
_ _name and _ _ f ieldDescriptor in a class. Internally, the __ fieldinfo structure is used
to represent structural members of both types and classes. The only difference is that
fields, which belong to a class definition, may be declared STATIC .

In addition to the NOT NULL constraint , class definitions may also contain UNIQUE
and CHECK class-level constraints. To capture these properties, the __ classinfo struc­
ture contains a __ classConstrs array. Its values must be __ classConstrinfo struc­
tures, which provide complete descriptions of the corresponding collection of class-level
constraints. The format of the _ _ classConstrinfo structure is as follows:

20 _ _ classConstrinfo {
2 1 char * _ _ name ; 11 (simp L e) vaLid cons traint name or NULL
22 long _ _ constrCount ; I I number and array of NOT NULL , UNIQUE . . .
23 _ _ constrinfo _ _ constraints [_ _ constrCount] ; I I . . . and CHECK cons traints
24 }

_ _name uniquely identifies the class-level constraint within the class definition. There
may be one class-level constraint without a name. Each value in the __ constraints
array must be a _ _ constrinfo structure that provides a complete description of the
collection of NOT NULL, UNIQUE and CHECK constraints for a particular set of class-level
constraints .

30
3 1
32
33
34
35
36
37 }

constrinfo {
char _ _ type ; 11 ei ther 0 � NOT NULL , 1 � UNIQUE , or 2 � CHECK
long _ _ fieldCount ; 11 number of fi e L ds in the cons traint

11 array of pointers to the fi e L ds
11 that the constraint affects

_ _ attribCount ; I I number and array of associated . . .
__ attributes [__ attribCount] ; 11 . . . at tributes , e . g . EVALPLAN

fieldinfo * _ _ f ields [_ _ fieldCount] ;

long
attribinfo

Besides static class members and class-level constraints, behaviour specifications
have to be captured . As usual, no two class methods may have the same _ _name and
_ _methodDescriptor. The format of the _ _methodinfo structure is as follows:

136

5 . 1 . METADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

40 __ methodinfo {
4 1
4 2
43
44

byte __ modFlag ;
char * __ name ;
__ descriptor __ methodDescriptor ;
long __ attribCount ;

11 modifi er f L ags as out L ined in Tab L e 5 . 1
11 (simp L e) va L i d me thod name

11 vaL i d me thod descript or

45
46 }

__ attribinfo __ attributes [__ attribCount] ;
I I number and array of associated . . .

11 . . . at tributes, e . g . CONSTRUCTOR
I I and EV ALPLAN

Representing Descriptors. A descriptor is a String representation of the type in a type
synonym definition, a constraint or unconstrained type I class parameter specification,
the type of a variable, or the signature of a behaviour specification.

Descriptors for type synonyms and variables have the same format. The type of the
synonym type or variable is encoded in internal form.

Behaviour signatures (i .e . __ typeOpDescriptor from structure __ typeOpinfo and
_....methodDescriptor from structure _....methodinfo) , on the other hand, are of the fol­
lowing format :

(__ parameterDescriptor []) __ returnDescriptor

where __ parameterDescriptor [] represents a possibly empty array of parameters
passed to a type operation or method (using the same format as for variable descrip­
tors) and _ _returnDescriptor represents the type of the corresponding value that is
returned . In the event that the descriptor represents the signature of an object con­
structor, there is no _ _returnDescriptor present.

A type or class parameter has the following format :

(__ parameterDescriptor []) __ constraintDescriptor []

where __ parameterDescriptor [] represents an array of types or classes (using the
same format as for variable descriptors) and __ constraintDescriptor [] represents a
possibly empty array of types or classes that constraint the parameter (again , using
the same format as for variable descriptors) . If the latter array is empty, we have an
unconstrained type parameter.

Representing Other Attributes. Additional attributes may be associated with
the following structures: __ symbinfo , _ _f ieldinfo , __ typeOpinfo , __ constrinfo , and
_....methodinfo . The format of the __ attribinf o structure, together with all pre-defined
attribute types, are as follows:

0 1 __ attribinfo {
02
03
04
05
06
07 }

en urn __ attribType ; 11 pre-defined va Lues are : CHECK , CONSTANT ,

char * __ name ;
__ iDBPQLvalue __ value ;
__ evalPlan * __ code ;

11 CONSTRUCTOR, EVALPLAN , INITIALISER , and NOT NULL
11 op tiona L (simp L e) vaLid name

11 opt i onaL ipBPQL va Lue
11 optiona L reference to an eva Luation p Lan

Whether or not _..name , __ value and I or __ code are used depends on the corre­
sponding attribute type. The NOT NULL attribute type represents the variable-level

137

5 . 1 . METADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

NOT NULL constraint . This attribute type does not use any of the three optional
structure members. The type CONSTANT only has an associated constant value. All
other pre-defined types use the __ code member, which refers to the evaluation plan that
implements the corresponding behaviour. This behaviour corresponds to a user-defined
method, a type operation, a user-defined constructor, the default constructor, a
user-defined type initialiser, or the default type initialiser.

In a future release of iDBPQL, an EXCEPTION attribute will be added. The Java
Virtual Machine [80] uses a similar, less modular, but more complex internal represen­
tation. It already demonstrates how exceptions can be supported.

Inheritance Relations. While inheritance relations are already given implicitly
through the _ _ class info structures, there is also a corresponding in-memory graph, a
DAG, that is maintained to access sub- and super-class information more efficiently.
With each DBS metadata entry, there is an associated __ isaRelation structure member
of type __ dag. The internal structure of this directed graph is not of particular inter­
est. Instead, we only require the following operations to be defined on this implicitly
maintained graph :

0 1 __ classinfo [] * getSubClasses (__ classinfo * class) ;
02 // returns an array of a l l direct sub-c lasses of c l ass class
03 _ _ classinfo [] * getSuperClasses (_ _ classinfo * class) ;
04 // returns an array of a l l direc t super-c lasses of c l ass class
05 boolean isSubClassOf (_ _ classinfo * class! , _ _ classinfo * class2) ;
06 // t es t s whether c l ass class! is a sub-class of c L ass class2
07 boolean isSuperClassOf (_ _ classinfo * class ! , _ _ classinfo * class2) ;
08 // tests whether c l ass class! is a super-cLass of c L ass class2

During run-time, a corresponding DAG is maintained in-memory and associated
with the corresponding run-time metadata entries. It is initialised before the process­
ing of a request's main evaluation plan commences. Subsequently, the DAG is associated
with any run-time metadata entry that is encountered during the request 's evaluation .
If a run-time metadata entry has new class definitions associated, the DAG is updated
accordingly. Updates result in adding new leaves or UNION-types. Similarly, as the exe­
cution of an evaluation plan terminates, class definitions that are local to this block are
removed from the run-time DAG . Such updates result in pruning operations or removal
of UNION-types.

5 .1 .3 The Representation of Objects and Values

In addition to metadata entries , we have to specify how objects and values are rep­
resented. While we outline the internal representation of objects, the representation
of values is not dictated. Instead, it is implementation dependent. Most likely, it is
influenced by the underlying persistent object store (refer to Section 5 .2 . 1) . While an
abstract notation would be sufficient , we, however, will consider a more physical repre­
sentation. By doing so, we can demonstrate more easily how the evaluation component
is linked to an underlying object store. Before we consider values in greater detail, the
internal representation of objects is introduced:

138

5 . 1 . METADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

01 __ obj ect {
02 _ _ DID __ oid ; I I the objec t 's uni que and immutab l e object identifier
03 classlnfo * _ _ class ; 11 reference t o a __ classlnfo struc ture he l d in
04 11 ei ther the run-t ime me tadata cata logue or the DES me tadata cata l ogue
05 char * _ _ name ; I I an ext ernal name
06 _ _ iDBPQL_value _ _ value ; 11 the objec t ' s va lue; i ts s t ructure is determined
07 11 by the objec t 's associated c l ass defini t ion

An object's unique, internal identifier is assigned by the persistent object store (refer
to Section 5 . 2 . 1) if the object is created on a class that resides in the DBS metadata
catalogue. Otherwise, the run-time environment (i .e . the REE component) will assign
an identifier. The rationale behind this approach is simply a more effective means of
using the available pool of OIDs. Objects that are not made persistent have a relatively
short life-span - so do their OIDs. While it would be desirable (from a theoretical point
of view) not to re-use an OlD, the size of the OlD pool, however, is always restricted in
practical systems (e.g. by the number of bytes reserved for the internal representation
of the type __ DID) . Thus, we will be able to release previously allocated (in-memory)
OIDs when it is safe to do so.

An __ iDBPQLvalue is either an atomic iDBPQL value or a complex iDBPQL value.
In the case of the latter, object references may be included. They are represented
persistently using the __ Q ID type. In main memory, references by OlD are replaced by in­
memory pointers to speed up object access. Corresponding pointer swizzling techniques
have been detailed in, among others, [57] .

With respect to values, we only require an additional system routine that determines
the value's current type. The signature of such a routine is defined as follows:

_ _ typelnfo I I __ classlnfo) * typeDf (_ _ iDBPQLvalue val) ;

The typeOf routine returns a pointer to the value's __ typeinfo structure if val
holds a simple, structured, collection-type, or NULLable value. Otherwise, if we deal
with a reference-type value, a pointer to the referenced object 's associated _ _ class info
structure is returned.

In order to relate values to their types, a possible internal representation may be
a pair that consists of an __ iDBPQLvalue value and a pointer to its corresponding
run-time type.

EXAMPLE 5 . 1 . Let us consider a fragment of a user request importing all classes of
the Universitycc schema as outlined in Example 4 . 17. The relevant fragment is as
follows:

01
02 NEW StudentC (["Mr . "] , " Robin" , "Steward") , (("Main Street " , "50A") ,
03 "Palmerston North" , 4412) , DepartmentCcc WHERE
04 (dName == "Department of Information Systems ") , NULL , NULL) ;
05
06 p = (PersonC) PersonC WHERE (
07
08

(name . (lastname , f irstname)

139

(" Steward" , "Robin"))) ;

5 . 1 . METADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

After executing the object creation statement in lines 02 to 04, the corresponding
internal object is represented as follows (variable names in the form of cast information
have been added to ease readability) :

10 _ _ oid (__DID) 87
1 1
1 2

class
name

(__ classlnfo *) DBSMetadata . Universitycc . StudentC
"StudentC"

1 3
1 4
1 5
1 6

value (personld) 433 , (name) (["Mr . "] , "Robin" , " Steward") ,
(addr) (("Main Street " , " 50A") , "Palmerston North" , 4412) ,
(studentiD) 65978462 , (maj or __ DID) 3 , (minor) NULL ,
(supervisor) NULL) ;

The (maj or __ O ID) 3 entry from line 15 implies that the value of structure member
maj or is a reference value, which is represented as an object identifier of value 3.
Subsequently, the selection statement in lines 06 and 07 is evaluated. As a result , a
collection of type SET j PersonC i is returned . It is likely to contain only one value:
(__DID) 87 or its corresponding main memory representation. D

The example above already indicates how inherited class members are added into
the object structure . Let A and B be distinct super-classes of C with CLASSDEF C I sA
A , B. Class members inherited from A appear first, followed by class members of B
and, finally, followed by all local class members.

In the presence of renaming expressions, prioritisation clauses or identical inherited
features, the internal representation is not as straightforward. For instance, let us re­
visit Example 4 . 12 (on page 86) . Here, instances of the StudentC, AcademicCcc and
StudentAcademicCcc classes have the internal structure as outlined in Table 5 .2 .

class StudentC
PersonT __ iDBPQLvalue

id __ iDBPQLvalue
email __ iDBPQLvalue

policyld __ iDBPQLvalue
StudentT __ iDBPQLvalue

campusAddr __ iDBPQLvalue
getAddress () _Jnethodlnfo

class AcademicCcc
PersonT __ iDBPQLvalue

id __ iDBPQLvalue
email __ iDBPQLvalue

policyld __ iDBPQLvalue
workAddr __ iDBPQLvalue

getAddress () _Jnethodlnfo

class StudentAcademicCcc
PersonT __ iDBPQLvalue

id __ iDBPQLvalue
email __ iDBPQLvalue

policyld __ iDBPQLvalue
StudentT __ iDBPQLvalue

campusAddr __ iDBPQLvalue
PersonT ptr to the PersonT value above
staffld __ iDBPQLvalue

staffEmail
policy Id
workAddr

getAddress ()

__ iDBPQLvalue
ptr to the policyld value above
__ iDBPQLvalue
_Jnethodlnfo (from AcademicCcc)

Table5.2. Internal Object Structure of Instances of Classes Presented in Example 4 . 1 2 .

Considering Table 5 .2 , it should be evident how the internal object structure reflects
programmer's decisions dealing with ambiguities that arise in the presence of multiple
inheritance.

140

5 . 1 . METADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

5 . 1 .4 The Representation of Evaluation Plans

An evaluation plan can be regarded as a quadruple consisting of modifiers, a flag indi­
cating the type of the evaluation plan, an external name providing a unique identifier,
and an evaluation graph. In terms of our structure-like notation, an evaluation plan
has the following format :

0 1
02
03
04
05
06

evalPlan {
byte _ _ modFlag
char _ _ type ;

char * _ _ name ;
07
08 }

_ _ evalGraph __ evaluation ;

11 modifier f L ags as out L ined in Tab L e 5 . 1
11 pre-defined va Lues are : M � main evaLuation p L an ,

T � type operat ion, I � type ini t i a L is er,
F � method, and C � object cons tructor

11 va L i d (qua L ified) name
11 eva L uat ion graph as defined in Defini t ion 5 . 1

The value of __ evaluati on must be an __ evalGraph structure, which provides a
complete description of the evaluation of the respective behaviour. The __ evalGraph
structure is specified using a more visual graph representation. This will not only reduce
the complexity of subsequent examples, but will also allow for an easier understanding
of how such behaviour implementations are evaluated and linked to other internal
representations (as introduced previously in this section) .

D efinition 5 . 1 . An evaluation graph __ evalGraph is a quadruple of the form (ROOTn­
ode , { EVALnode } , { subEVALedge } , { ctrlFLO Wedge }) , where:

- ROOTnode is the root node of the evaluation graph from which all processing
commences.

- { EVALnode } is a set of evaluation plan nodes. Each of which describes the pro­
posed implementation of a statement or expression of the iDBPQL language. Evalu-
ation nodes may have one or more internal handles h1 , . . . , hn , a set of rules r1 , . . . , rm
governing the relationships among the handles and various annotations an1 , . . . , ank
including processing annotations, location annotations and metadata references.
Handles, rules and annotations are defined as follows:

• A handle hi associates another evaluation node n with the current node. The
associated node n may either precede the local evaluation (i .e . evaluate a sub­
expression) or succeed the local evaluation . Evaluation nodes associated with
preceding handles must be processed while nodes associated with succeeding
handles may be processed. The set of rules r1 , . • . , r m determines whether or not
a particular succeeding evaluation is carried out .

• A rule ri links one or more preceding handles with one or more succeeding
handles. The following rules are supported 1 :

* Rule 1 : ri : hj1 , • • • , hir then hj. where hj. must not be a preceding node.
hiP . . . , hir must evaluate first before the evaluation of hj. commences. This
first rule models serial evaluation.

1 Assigning rules to evaluation nodes is an intermediate step of the optimisation process. It enables the
capturing of the flow of result values more easily and assists with the decision of which intermediate result
values are pipelined, returned at once or even materialised. In addition, the degree of multi-threading is
determined during this step. Subsequently, machine codes are assigned that support the determined result
passing and processing characteristics.

141

5 . 1 . METADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

* Rule 2 : ri : hh , . . . , hir then hi. else hit where hi. and hit must not be
preceding nodes. As a result, only the node associated with hi. or the node
associated with hit is evaluated, but never both . This second rule models
conditional, serial evaluation.

* Rule 3 : ri : hi1 , . . . , hir pipe hi. where hi. must not be a preceding node. hi1 ,
. . . , hir start evaluating first. As results become available they are pipelined
to his . Once hi. has sufficient input values, it commences its evaluation
while hi1 , . . . , hir continue to forward further results. This third rule models
concurrent evaluation that is synchronised using pipelines .

* Rule 4 : ri : hi1 , . . . , hir pipe hi. else pipe hit where hi. and hit must not
be preceding nodes. This rule combines the second and third rule and models
conditional, concurrent evaluation that is synchronised using pipelines.

* Rule 5: ri : hi1 && . . . && hir . This rule overrides the serial processing mode
of hi1 , . . . , hir . Instead, these handles will be invoked simultaneously, i .e .
sparking new evaluation threads. The evaluation of hil l . . . , hir is considered
successful once all hi, have been terminated .

* Rule 6 : ri : hi1 I I . . . I I hir . This rule overrides the serial processing mode
of hh , . . . , hir . Instead, these handles will be invoked simultaneously, i .e .
sparking new evaluation threads. The evaluation of hii , . . . , hir is considered
successful as soon as one hi, has been terminated.

• An annotation ani is either a processing annotation, a location annotation, a
metadata reference, a machine instruction or a label annotation annotation as
discussed in Section 5 . 1 .5 .

Per default , all handles are treated as preceding handles. This only changes in case
the handle appears on the right-hand side of a rule. Then, the handle is promoted
to a succeeding handle . No handle can be both preceding and succeeding.
If an evaluation node has no handle defined, it represents a terminal node (i .e . a
leave) in the evaluation graph.

- { subEVALedge } is a set of bidirectional evaluation plan edges. Each edge connects
an E VALnode 's preceding handle with another EVALnode. This edge represents a
parent-child relationship where the child node assists with the implementation of
the parent node (i .e . a sub-evaluation is described) . The parent ensures that all
necessary variables are in scope while the child returns the results of its execution.
The subEVALedge may have processing annotation in forward direction informing
the child how to return result values. In backward direction, there must be an
annotation in the form of a _ _returnDescriptor.

- { ctrlFLO Wedge } is a set of directed evaluation plan edges. Each edge connects
the ROOTnode with an EVALnode or two EVALnodes . The edge assists with con­
trolling the flow of the evaluation.
An evaluation graph may have multiple control flows that are evaluated simul­
taneously. ctrlFLO Wedges are also used to synchronise such control flows when
applicable .

0

Let us consider an initial example of the internal representation of an evaluation
graph.

142

5 . 1 . M ETADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

EXAMPLE 5 . 2 . We will revisit Example 4 .26 . Figure 5 . 1 depicts an evaluation graph
that corresponds to the verifyEnrolrnent (VOI D) evaluation plan .

. 0 0

: ROOTnode :
- - - - �- - - - · - - - · - - ·

I

[rule 2]
(jJ (jJ

I I
I

8 : CO - - - - - - - - - �

t:J
COLL<Gn>deT>

RecordC
WHERE

. course

--+-....1.....-..J. U U U U U U UJRETURN I
I I
I

8 : QQ - - - - - - - - - 1

8 "'

Method
Call

D
0

I
I - - :;:.-

I s
m

EVALnode

handle

ctrlFLOWedge

subEV ALedge with
_retumDescriptor

traversal order

Fig. 5 . 1 . Sample Evaluation Graph for the verifyEnrolment Method.

The evaluation of the first IF . . . THEN statement is described by ten evaluation nodes.
Five of these nodes (i . e. nodes with traversal orderings 04, 06, 07, 09, and 10) corre­
spond to leave nodes. Such nodes do not have handles and rules associated. Non-leave
nodes, i .e . nodes with at least one sub-evaluation node, have their corresponding rules,
handles and outgoing evaluation and control flow edges associated. While rules 1 and
2 only indicate serial processing, the node with traversal ordering 03 utilises the third
rule, which implies multi-threaded processing and pipelining. The second IF . . . THEN

143

5 . 1 . METADATA CATALOGUES AND EVALUATION PLANS Markus Kirchberg

statement is less complex to describe. While sub-evaluation edges have their expected
return types associated, additional annotations are outlined next . 0

5 . 1 .5 Overview of Annotations

Nodes and edges of evaluation plans may have one or more of the following types of
annotations attached: Metadata references , processing annotations , descriptor annota­
tions , machine instruction annotations , location annotations , and label annotations.

Metadata references are associated with ctrlFLOWedges. A ctrlFLOWedge that is
attached to the ROOTnode or a handle of an EVALnode, which opens a new evaluation
block, may have an annotation referring to a _ _rtEntryinfo structure. The structure
contains type synonyms, type definitions, class definitions and a list of all declarations
that are local to the evaluation block. These declarations are used later to initialise the
local environment on the respective frame on the evaluation stack before subsequent
statements and expressions are processed.

Each subEVALedge has the following associated annotations:

- In forward direction, a processing annotation that informs the child about the means
by which to return result values may be associated. Per default, results are returned
at once after the evaluation of the child has been terminated. Alternatively, pipelin­
ing may be requested. In the latter event, a result queue will be created enabling
the child to push (blocks of) intermediate result values or object references to the
parent as they are computed.

- In backward direction, there must be an annotation in the form of a
__ returnDescriptor that outlines the type of the expected return value .

An E VALnode may have a machine instruction annotation. The implementation
of iDBPQL offers a number of alternatives for most supported operators. During the
optimisation of evaluation plans, the most suitable machine instruction is associated
with an evaluation node.

In addition to metadata references, ctrlFLO Wedges may also have a processing an­
notation associated. Per default, i .e . in the event that no such annotation is present,
processing proceeds within the same execution unit (i .e . thread) in serial manner. Al­
ternatively, one of the following processing annotations may be specified:

- Serial , which is the default as mentioned above.
- Multi-threaded , which splits the current execution stream into two or more con-

current execution streams, which are evaluated on the same processing unit (i .e.
different threads but same process) .

- Distributed, which implies a relocation of the evaluation to a remote ODBS instance.
If this is the case, there will be another annotation, a location annotation, associated
with the edge.

A location annotation is associated with ctrlFLOWedges if the processing of parts
of the evaluation plan is distributed to a remote node. In addition, the local evaluation
may require access to values or objects that are stored remotely. In such an event , a
location annotation is attached to the corresponding metadata reference. A location

144

5 .2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

annotation consists of a reference to the ODBS instance, which is supposed to continue
with the processing of a portion of the evaluation plan, or holds the desired data entity.

Finally, label annotations are associated with evaluation nodes. Per default , the label
annotation is NULL. However, if a LABEL statement is encountered, the corresponding
identifier is attached to the respective node as label statement. Subsequently, the label
specification may be removed from the evaluation plan .

5 . 2 Interface Definitions of Related D atabase System

C omponents

Before we discuss the evaluation procedure in more detail, we still have to define how the
evaluation component (i .e REE) interacts with other DBMS components. In this sec­
tion, we will introduce the general functionality and service interfaces of corresponding
DBS prototypes that are required during the implementation of the proposed iDBPQL
language. Prototypes include:

- A persistent object store [73] that supports storage, access and maintenance of
persistent database objects. Section 5 .2 . 1 will discuss the corresponding prototype
in more detail .

- A multi-level transaction management system, which ensures that the evaluation of
user requests is (conflict-) serialisable and recoverable . Section 5 . 2 . 2 will discuss the
corresponding prototype in more detail .

- A remote communication mechanism, which is based on the agent communication
language DBACL [67] . Section 5 .2 .3 will discuss the corresponding prototype in
greater detail .

All prototypes are implemented in the programming language C [59] . References to
more detailed documentations are included in the corresponding sections .

5 .2 . 1 A Persistent Object Store

Object stores are primarily popular for their support of persistence and different types
of data access. Atkinson et al. [10] discusses relevant concepts and issues that arise with
respect to object stores, DBSs, DBPLs and persistence.

Research work that has influenced our proposal include the HiPOS system [146] .
Researchers have also focused on object stores that support ODBMSs and persistent
programming languages. An abstract object storage model consisting of a pair
of sets (0, R) where 0 is a set of objects and R is a set of references between
objects is proposed. Our research extends this model by introducing indices and
different types of references into the object model. Accordingly, the object store archi­
tecture, internal concepts and also the service interface differ between both approaches.

The Persistent Objects Store (POS) maintains storage objects and provides a ser­
vice interface that enables access to and storage of these objects to higher-level DBS
components.

A storage object consists of a list of attributes with a globally unique storage object
identifier. Storage objects are classified internally. We distinguish between collections

145

5 .2. DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

and regular storage objects. Collections are introduced to enable higher-level modules
to classify storage objects according to their (logical) structure . In addition to using
collections to related storage objects and attributes referring to other storage objects
(what we call embedded references) , explicit references from one storage object to
another storage object can be specified . Explicit references between two storage objects
are not stored with the storage objects themselves, but in additional structures, e.g. used
for navigation between storage objects or access through indices. These references can
be added to relate storage objects that are commonly accessed together. Considering
ODBMS, embedded references correspond to object references and explicit references
include I s A relationships reflecting the inheritance property.

The remainder of this section is organised as follows: First , we provide definitions
of all relevant concepts. Subsequently, different types of accesses are discussed. Being
familiar with the basic POS-concepts, we then consider the architecture of an object
store. Finally, we introduce the service interface of POS, which consists of operation
signatures that enable the storage of and access to storage objects.

An Object Model for POS. The (abstract) object model of the persistent object
store can be defined as follows:

Definition 5 . 2 . The object store POS is a triple

POS = (0, R, I) , where 0 = {01 , . . . , On } ,

R = < { Ru , . . . , R1kJ , . . . , {Rm1 , . . . , Rmkm } >

and I = { 0 1 , . . . , 01}

where 0 is a set of storage objects , R is a bag of references, I is a set of collection
storage objects that represent indices and n, ki , m, j are positive Integer values denoting
cardinalities of the sets and the bag respectively. D

The separation of 0 and I (which is different to other approaches such as HiP OS
[146]) offers several advantages. Introducing I into POS allows it to independently main­
tain indices. The only action required by a high-level DBS component is to create an
index and associate it with a collection (e.g. representing an iDBPQL collection-class) .
Thus, manipulating such indexed collections allows POS to updates corresponding in­
dices automatically. Without I , the high-level DBS component must explicitly maintain
indices . Treating indices in the same way as other collections enables code and query
optimisers to utilise direct and index-based accesses more uniformly.

Each storage object Oi consists of a list of attributes with a globally unique storage
object identifier OI D . Each attribute, in turn, is a quadruple of the form (type : card
: name : value) , where type is the object 's type, card stores the number of sub-objects
in case the type is a collection type, name is the (external) name of the object , and
v alue holds the (nested) object value. More details about identifiers, supported types
etc. can be found in Section 5 .2 . 1 .

Storage objects are classified internally. We distinguish between collections and reg­
ular storage objects . The physical representation of collections and regular storage ob­
jects is identical. Collections (e .g. indices, a collection containing identifiers of all storage

146

5.2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

objects that correspond to DB collections, or a collection containing identifiers of all
storage objects that correspond to instances of this class) are introduced to enable
higher level modules to classify storage objects according to their (logical) structure.

Definition 5 . 3 . A collection C = (OI D, { OI D1 , . . . , OI Dn }) is a pair of a collection
identifier OI D - just another storage object identifier - and a set of storage object
identifiers 0 I Di in which all storage objects are of the same (logical) structure. 0

In addition to using collections to related storage objects, references from one storage
object to another storage object can be specified . The object store distinguishes between
two types of references. These are embedded references and explicit references. They
are defined as follows:

Definition 5.4. Let POS = (0, R, I) be an object store as introduced in Definition
5 .2 . A reference Refj E R corresponds to a triple of the following form:

Rejj = (name, OI Dk , OI D1) ,

where name is the name of the reference, 0 I Dk i s the identifier of the initial and 0 I D1
the identifier of the terminal storage object (E 0) of the reference . The reference name
name is not required to be unique. However, there should not be any two references
from OI Dk to OI D1 with the same reference name.
An embedded reference Rermb from a regular storage object Ok (with identifier
OI Dk) to another regular storage object 01 (with identifier OI D1) is a reference
that exists in both 0 and R. In 0, Rermb is represented as an attribute of Ok
whose value is the object identifier of 01 . In R , Rermb is represented as the triple
(attribute_name, OI Dk , OI D1) .
An explicit reference is a reference that exists only in R. 0

Embedded references form a part of the object structure in contrast to explicit
references. However, both reference-types are represented in R. Explicit references are
added to link storage objects that are commonly accessed together. They are maintained
in R separately from other references.

EXAMPLE 5 . 3 . Once again , let us consider the University schema fragments from
Example 3 .3 . To demonstrate the POS concepts, we restrict ourselves to the fragment
on ODBS node Nee and its following five classes: PersonC, StudentC, AcademicCcc ,
StudentAcademicCcc , and DepartmentCcc - The remaining classes as well as references
to them are omitted . Furthermore, we assume that there are existing instances for each
of the considered classes (with cardinalities as indicated below) .
The persistent object store POS = (0 , R, I) that captures the considered schema frag­
ment may be comprised of the following objects 0, references R and indices I :

- 0 will include at least the ROOT collection containing references to all local (persis­
tent) schemata. This includes the University cc collection object, which holds all
objects representing schema classes. According to our assumptions, there will be at
least five such collection objects. Each of these represents a collection of instances of
the respective class. Class instances correspond to the largest proportion of storage
objects, i .e . regular storage objects.

147

5.2 . DBS COMPONENT INTERFACE DEFINITIONS

0 = { Oo , 01 , 02 , 03 , 04 , Os , 06 , 01 , Oh, , . . . , Ohp , Oi, ,
ok, , . . . , ok. , oh , . . . , o1, }

Markus Kirchberg

. . . ,

11 the ROOT co L L ec t i on, whi ch contains a L L s chema co L L ec t i ons , is the onLy
11 POS object that has a pre-a L Locat ed DID, i . e . 00
Oo = { 01 }

11 s chema co L L ec t i ons -- each contains further co L L ec t ion objects that represent
11 a L L c Lass-co L L e c t ions of the part icu L ar schema; the onLy s chema c o L L ec t i on
11 shown here corresponds to the Universitycc fragment
01 = { 02 , 03 , 04 , Os , 06 }

11 c Lass-co L L ec t ions -- each contains a L L objects that are ins tances of the
11 part i cu L ar c Lass ; the five c L asses L is t ed correspond to PersonC , StudentC ,
11 AcademicCcc , StudentAcademicCcc , and DepartmentCcc resp e ctive Ly

o2 { oh, , . . . , ohp }
o3 { oi, , . . . , oiq }
04 { 0)1 ' 0 0 0 ' ojr }
Os { Ok" Ok. }
o6 { oh , o1, }

11 regu L ar s torage objects : PersonC ins tances

oh, <)

ohp
11 regu Lar s torage objects : StudentC ins t ances

oi, <)

oiq <)
11 regu L ar s torage objects : AcademicCcc ins t ances
Oh = (584 , (["Prof . " , "Dr . "] , "Klaus-Dieter" , "Schewe") ,

(("PN 3 1 1 , Massey University , Private Bag 1 1 222 " , " ") ,
" Palmerston North" , 4412) , "Database Concepts" , Ot, ,
{ oi,3 , oi43 , ois4 , oi,34 , oi332 , ok, , ok33 })

0}2 ()

Ojr
11 regu L ar s torage o bjects : StudentAcademicCcc instances
Ok, = (653 , ([" Mr . "] , "Markus" , "Kirchberg") , (("Rugby Street" , "78") ,

"Palmerston North" , 4412) , 99003525 , Ot, , Ot1 2 , Oj, , "Database Systems " ,
Ot, , { Oi23 , Ois3 , Oi1 12 })

ok2)

ok.)
11 regu L ar s torage o bjects : DepartmentCcc ins tances
Oh ("Department of Information Systems" , " City Centre" ,

{ " 0800 DEPT IS " , " 06 350 5799" } , Oj, , { . . . } , { . . . } , { . . . })
012 ()

)

R will be comprised of at least two sets of references: R = < R1 , R2 > where R1
is a set of embedded references between storage objects and R2 is a set of explicit

148

5 .2. DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

references between collection storage objects only. While the former captures object
references, the latter models the inheritance forest .

S tudentC - supervisor -----:l•� Ac ademiaC

• � • I
I» §.

ll o· ll 6 c ..., c ...,

11111(supervises -

H � t � r-_,.

s

_

taff ___

s

_

taf

_

fld�:�
-

f

-

Departmen tC,.,__ _
____ minor -

I -11111(----- staftMemberOf -

t
I I

S tudentAc ademi aC

'-----•)loo- Per s one
embedded reference

X - attr ----)loo- Y (a t tr , X , Y)

F ig. 5.2. Overview of Embedded References Between Instances of Classes of the Universitycc
Schema Fragment as Considered in Example 5.3.

R1 { . . . refer to Figure 5 . 2; it indi cates whi ch o bject references are
captured in this set . . . }

R2 { (" !sA" , StudentC , PersonC) , (" !sA" , AcademicCcc , PersonC) ,
(" !sA" , StudentAcademicCcc , StudentC) ,
(" !sA" , StudentAcademicCcc , AcademicCcc) }

- I may be empty or include associative index structures defined on this schema
fragment . Let us assume that we only have one index, i .e . I = { 07 } . The indexed
class is PersonC with index key = (addr . c ity, addr . street) . To capture all
corresponding objects, all instances of its sub-classes must be included in the index
too. R2 can be used to determine the respective sub-classes.

11 Dense index on a L L ins tances of PersonC (and i ts sub-c Lasses)

o1 = { oh, , . . . , ohp , oi, , . . . , oi. , oh , . . . , oj. , ok, , . . . , ok. }
We will later refine this example by outlining how storage objects (together with type
information and additional cardinalities) are mapped to internal data structure. This
is required to demonstrate how simple operations, such as selections involving base
types only, may be passed to POS. On the contrary, the internal representation and
organisation of index structures are not of interest to this thesis. A well-defined interface
u tilising these structures will be sufficient .

0

149

5.2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

Access Methods. Apart from storing storage objects and retrieving storage objects by
identifier (i .e . direct access) , POS offers associative and navigational access to storage
objects.

A ssociative Access. Associative access allows to retrieve a subset of storage objects that
satisfy a certain condition from a collection. Conditions are applied to attribute values
and include the following basic algebraic operators: < , < = , = = , ! =, >=, and > . As a
result, a set of references to all storage objects in the collection satisfying the condition
is returned.

Considering ODBMSs, associative access structures are similar to those commonly
used in ORDBMSs. Examples include Single-Class (SC) and Class-Hierarchy (CH)
indices, H-tree, hierarchy class Chain (hcC) tree, Class-Division (CD) index, nested ,
path and multi indices, access support relations, and Nested-Inherited index (NIX) . The
majority of these approaches are modifications of ORDBMS indices (such as B+ trees
and join indices) and can be used efficiently to implement associative access methods.

Navigational Access. Navigational access allows the retrieval of storage objects that are
connected to a given storage object via references or inverse references. For instance, if
there is a reference from storage object 01 to storage object 02 or vice versa, we say
that 01 and 02 are connected. If 01 is connected to 02 and 02 is connected to 03 ,
01 is also connected to 03 . If there is a reference from 01 to 02 , we call it a direct
reference. Each direct reference defines an inverse reference implicitly, e .g. from 02 to
01 .

Navigation can also be restricted by specifying a condition . Conditions contain path
expressions specifying a minimum and / or maximum number of (direct or inverse)
references (i .e . the navigation depth) to be followed or a list of allowed or disallowed
paths to be or not to be followed.

Examples for ODBMSs include navigation index, ring and spider structures, join
index hierarchies, triple-node hierarchies, and Matrix-Index Coding (MIC) . In [70] , it
is suggested that the navigation index and MIC can be generalised by making them
independent from the coding technique used, i .e . any appropriate coding technique
(e .g. data compression techniques) can be selected to guarantee optimal performance
in different prevailing data and request patterns.

The Architecture of POS. POS implements the basic services outlined above while
meeting the general requirements of data persistence, concurrent access support, sup­
port of multi-level transactions, and support of checkpointing and recovery procedures .
The basic architecture of POS is shown in Figure 5.3. A request manager is instanti­
ated for each higher-level request . The collection manager maintains access structures
that are required for associative access. The navigation manager maintains structures
that support efficient navigation. Both managers are singletons, which are shared by
all request manager instances.

Request managers use the services of the caching module's record interface (i .e. to
access DB objects) , while the collection manager and the navigation manager use the
services of the caching module's page interface (i .e . to ensure persistence for associated
and navigational access structures) . Before proceeding with an operation, a request

150

5 .2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

TMS
(Concurrency Control

and Recovery)

DBMS Component Processing Evaluation Plans

�I V ,- - - �/�c _ C _ ,
I ' · ' I

I Record Interface I

V .:Shared :· .. :· �,_____---+------.,
. p ·

.
t:. :

.: Storage
·· 1 'I i.

1 ", I ' � I ',

I Collection Manager I
� -

Administration
Manager

. ' - . - - . - . - -

'
Caching Module I Page Interface I

Fig. 5 . 3 . Architecture of the Persistent Object Store.

� - :

manager consults with the transaction management system to ensure that (conflict­
) serialisability and recoverability is ensured. The operation proceeds only if permission
is granted.

Object access results in a collection of in-memory references being returned to the
higher-level requester. Persistent, shared objects are made available in the shared mem­
ory area. To do so, each request is accompanied by an Object Store Access Control Block
(OSA CB) . This OSACB control block (refer to Section 5 .2 . 1) contains the transaction
identifier assigned to the high-level operation, a pointer to an empty, uninitialised POS
collection object and variables used for request and object access synchronisation. Upon
completion of a request, the corresponding request manager attaches the result to the
OSACB control block's result collection and signals success (or failure) .

The administration manager assists with checkpointing, recovery and maintenance
of associative and navigational access structures.

The Service Interface. Higher-level DBMS components communicate with POS
through a well-defined service interface. This interface exposes operations that support
all three types of object access. In addition, POS supports the evaluation of simple
expressions. A description of the supported operations and related concepts is provided
next.

151

5.2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

Operator Operand p Operand q Description

fwdNavLen min NAT max NAT specifies minimum and maximum forward navigation depths
bckNavLen min NAT max NAT specifies minimum and maximum backward navigation

depths
navLen max NAT max NAT specifies maximum navigation depths; p and q refer to

forward navigation and backward navigation respectively
fwdNavPath max NAT E PATH [] specifies a maximum forward navigation depth and restricts

the paths to be followed
bckNavPath max NAT E PATH [] specifies a maximum backward navigation depth and

restricts the paths to be followed
path E PATH [] rf_ PATH [] restricts the paths to be followed; p and q refer to lists of

allowed path names and disallowed path names respectively

Table5.3. (Binary) Path-Operators that are Supported by POS.

Types. POS supports primitive types (i .e . CHAR, BDDL, NAT, INT and REAL) , a type DID
that generates globally unique identifiers for storage objects DBJ , the reference-type
REF, the record type REC and various collection types (including LIST, SET and BAG) .

Algebraic Operators. A number of basic algebraic operators are supported by POS.
These are: <, <=, ==, ! =, >=, and > . Such operators are defined in the usual
manner for any primitive data type. In addition, == and ! = are also defined for the
DID type.

Path- Operators. A PATH is a list of String values. POS supports a number of basic
path-operators. Table 5 .3 summarises these path expressions.

The OBJ and REF Data Structures. POS accepts objects of type OBJ and always returns
collections of in-memory references to objects of type DBJ) . The prototype system of
the POS component is implemented in the programming language C. Corresponding
data type definitions are as follows:

- A storage object is implemented as a doubly-linked list . The first element iden­
tifies the list and refers to the first attribute. All subsequent elements of the list
correspond to attributes.

typedef struct objBody_struct {
struct obj Body_struct * prev ;
POS_Obj Type type ;
int
char *
union {

card ;
name ;

11 type of this 'value ' or sub -objec t
11 cardina l i ty ; used for co l l e c t ion objec ts on ly

11 externa l name

CHAR *
NAT
INT
REAL
BOO LEAN
DID

char Atom ;
natAtom ;
intAtom ;
realAtom ;
boo lA tom ;
oid ;

152

5 .2. DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

struct obj Body_struct * attr ;
} value ;
struct obj Body_struct * next ;

} Obj Body ;

typedef struct obj Head_struct {

11 s torage object va Lue

DID oid ;
POS_ObjType type ;
int card ;
char * name ;
ObjBody * value ;

11 uni que, immutab L e o bject identifi er
11 refers to the originaL co L L ec t ion type

11 cardina L i ty
11 ext ernaL name

I I (nest ed) o bject vaLue that matches the specifi ed type
} OBJ ;

- A reference between two storage objects is defined as follows:

typedef struct ref_struct {
char * name ;
DID oidl ;
DID oid2 ;

} REF ;

11 reference name
1 1 identifier of the s t art ing s torage object
1 1 identifier of the t ermina L storage object

Additional Data Structure. Two special-purpose data structures are supported by POS,
which are defined as follows:

- POS supports the evaluation of simple conditions. Such conditions have to be spec­
ified in the following format:

typedef struct cond_struct {
Operator op ; I I a Lgebraic operator; OR mat ching semantics for operand arrays
Operand vall [] ;
Operand val2 [] ;

} Condition ;

typedef union operand_def {
CHAR * name ;
INT pos ;
CHAR * const ;
PATH * path ;

} Operand ;

/1 array of 1 s t operands
11 array of 2nd operands or (null) if unary operator

11 String va Lue or String pat t ern
11 posit ion, e . g . 2nd at tri bute

11 cons tant va Lue
I I path

- An OSACB control block has the following format:

typedef struct osAccCB_struct {
TRANSID transld ;
OBJ * result ;
POS_RequStatus status ;
MUTEX mutex ;
COND_VAR condVar ;

} OSACB ;

11 transac tion identif i er
11 reserved pointer for resu L t va Lue

11 s tatus of reques t execut ion

EXAMPLE 5 . 4 . Let us revisit the object store presented in Example 5.3 . Regular storage
objects and collections storage objects are represented internally as follows:

153

5.2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

11 the ROOT co � � ec t i on, which contains a � � schema co � � ec t i ons; i t is the on�y
11 POS object that has a pre-a � � ocated DID, i . e . 00
00 O : SET : 1 : "RDDT" ---7 DID : O : "Universitycc" : 1

- 1 -2 -3 -4 -5 -6 -7 - s - g

11 - 1 t o -5 refer t o members o f t h e DBJ s t ructure , whi � e -6 t o -g correspond to
11 the ObjBody s truc ture . Details are as follows :
I I - 1 e:. DID oid -6 e:. POS_Obj Type type
11 -2 e:. POS_Obj Type type -7 e:. INT card
I I -3 e:. INT card
11 -4 e:. CHAR * name
11 -5 e:. Obj Body * value

CHAR *
DID

11 � (refer below) represents a doubly linked list

name
value . oid

11 schema c o � � e c t ions -- each contains further c o � �ect ion obJ"e cts that represent
11 a � � c � ass-co � � e c t i ons of the particu � ar schema; the on �y schema co � � ec t ion
11 shown here corresponds to the Universitycc fragment
01 1 : SET : 5 : "Universitycc" ---7 O ID : O : "PersonC" : 2 +-* OID : O : " StudentC" : 3 +-*

D ID : O : "AcademicCcc" : 4 � DID : O : "StudentAcademicCcc" : 5 �
D ID : 0 : "DepartmentCcc" : 6

11 c �ass-co � � e c t i ons -- each contains a � � o bjects that are instances of the
11 part i cu � ar c � ass; the five c � asses � is t ed correspond t o PersonC , StudentC ,
11 AcademicCcc . StudentAcademicCcc , and DepartmentCcc resp e c t ive�y

02 2 : SET : p : "PersonC" ---7 DID : 0 : "PersonC" : h1 � . . . +-* DID : 0 : "PersonC" : hp
03 3 : SET : q : "StudentC" ---7 OID : O : "StudentC" : i 1 +-* . . . � OID : O : "StudentC" : iq
04 4 : SET : r : "AcademicCcc" ---7 DID : 0 : "AcademicCcc" : j1 +-* . . . � DID : 0 : "AcademicCcc" : jr
05 5 : SET : s : "StudentAcademicCcc" ---7 DID : 0 : "StudentAcademicCcc" : k1 � . . . �

DID : 0 : "StudentAcademicCcc" : ks
06 6 : SET : t : "DepartmentCcc" ---7 OID : O : "DepartmentCcc" : h +-* . . . +-*

DID : 0 : "DepartmentCcc" : lt

11 regu �ar s torage o bjects : We res trict ourse �ves to the two instances fu � �y
11 detai �ed in Examp � e 5 . 3
Oj, = j1 : REC : 6 : "AcademicCcc" ---7 NAT : O : "personid" : 584 +-* REC : 3 : "name" ---7

LIST : 2 : "titles" ---7 CHAR : 6 : : "Prof . " � CHAR : 4 : : "Dr . " �
CHAR : 13 : " f irstname " : "Klaus-Dieter" � CHAR : 7 : " lastname" : "Schewe" �
REC : 3 : "addr" ---7 REC : 2 : street ---7
CHAR : 46 : "name " : "PN 3 1 1 , Massey University , Private Bag 1 1 222" �
CHAR : O : "number" : � CHAR : 17 : " city" : "Palmerston North" B
NAT : O : "zipcode " : 4412 B CHAR : 18 : " specialisation" : "Database Concepts " �
DID : O : " staffMemberOf" : Oh B SET : 7 : " supervises " ---7 D ID : O : "StudentC" : 0;13 �
DID : 0 : "StudentC" : 0;43 � D ID : 0 : "StudentC" : 0;84 +-* DID : 0 : " StudentC" : 0;,34 +-*
DID : 0 : "StudentC" : 0;332 � DID : 0 : " StudentAcademicCcc" : Ok, +-*
DID : 0 : "StudentAcademicCcc" : Ok33

Ok, k1 : REC : 10 : "StudentAcademicCcc" ---7 NAT : 0 : "personid" : 653 +-* REC : 3 : "name" --+
LIST : 1 : "titles " ---7 CHAR : 4 : : "Mr . " +-* CHAR : 7 : "firstname " : "Markus" �
CHAR : 10 : " lastname" : "Kirchberg" � REC : 3 : " addr" ---7 REC : 2 : street ---7
CHAR : 46 : "name " : "Rugby Street " B CHAR : O : " number" : " 78 " B
CHAR : 17 : " c ity" : "Palmerston North" +-* NAT : O : "zipcode " : 4412 B
NAT : O : " studentid" : 99003525 +-* DID : O : "maj or" : Oh +-* D ID : O : "minor" : 0t, 2 +-*
D ID : O : " supervisor" : O]I � CHAR : 17 : " specialisation" : "Database Systems" +-*

154

5 .2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

D ID : O : " staffMemberDf " : Oz, f-+ SET : 3 : " supervises" -+ D ID : O : "StudentC" : Oi23 f-+
DID : 0 : " StudentC" : 0i53 f-+ DID : 0 : "StudentC" : 0i112

The representation of the remaining storage objects is analogous. References are rep­
resented using the REF structure as outlined above. 0

Interface Signatures. POS enables higher-level modules to access, insert , update, and
delete storage objects and corresponding references through the following collection of
operations:

- void Retrieve (DSACB * oac , DID oid , BDDL is a) . . . locates the storage ob­
ject that corresponds to the given storage object identifier oid.
If the isa value is TRUE (which only makes sense for collection storage objects) , not
only the given object identifier is considered but also its associated sub-collections.
Thus, explicit references are utilised.
In addition, each attribute (with a value not equal to (null)) that forms a part of
an embedded reference is checked against R. If there is no corresponding reference
in R (i .e . the referenced object has been deleted previously) the attribute value is
set to (null) .

Arguments:

oac - a pointer to an OSACB control block in POS's shared memory area.
oid - the storage object identifier of the storage object to be retrieved .
isa - a boolean value indicating whether or not the inheritance (i .e . sub- and
super-class information added as explicit references) relation should be taken
into consideration.

Effects:

The storage objects with identifier oid wrapped in a collection object or, in the
event that no such object exists, the (null) pointer is assigned to the OSACB
control block's result pointer.

- void FindFromCollection (DSACB * oac , DID c id , BDDL isa , Cond
obj Cond) ; . . . determines a subset of objects that belong to the collection
type storage object with identifier cid. All objects in the subset must meet the
condition ob j Cond.
First, the collection type storage object (say 02 from Example 5 .3) with identifier
c id is located . If the isa value is TRUE, all objects that can be reached using only
forward navigation over explicit references (i .e . 03 , 04 and 05 in Example 5 .3) are
also considered. Each of these collection type storage objects contain attributes
of type DID, i .e . all attribute values correspond to storage object identifiers.
Subsequently, the condition obj Cond is applied to all storage objects that belong to
the located collections (i .e . 02 , 03 , 04 , and 05) . Objects that satisfy the condition
are added to the result list . If no condition is specified all objects that belong to
these collections are added to the result list.

Arguments:

oac - a pointer to an OSACB control block in POS's shared memory area.

155

5.2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

cid - the identifier of a (collection type) storage object .
isa - a boolean value indicating whether or not the inheritance (i .e . sub- and
super-class information added as explicit references) relation should be taken
into consideration.
obj Cond - the condition to be applied to each member of the collection.

Effects:

A collection of all storage objects directly referenced by the collection with
identifier cid that meet the condition obj Cond is assigned to the OSACB
control block's result pointer.

- void FindEnclosure (OSACB * oac , D ID oid , Cond pathCond , Cond
obj Cond) ; . . . determines a subset of objects that can be reached by follow­
ing references in accordance with the path condition pathCond while satisfying the
storage object condition obj Cond.
First , the storage object (e.g. Ok1 from Example 5 .3) with identifier oid is located.
Subsequently, a list of storage objects consisting of all objects 1) that are reachable
from Ok1 by adhering to the path condition pathCond; and 2) that meet the storage
object condition obj Cond is generated.
The path condition adds restrictions to the path of forward and/or backward ref­
erences to be followed. If no path condition is specified all references are followed.
The storage object condition adds restrictions to the storage objects to be returned.
If no storage object condition is specified, all objects obtained while adhering to
the path condition, are added to the result list.

Arguments:

oac - a pointer to an OSACB control block in POS's shared memory area.
oid - the identifier of a storage object that represents the starting point of the
computation of the enclosure.
pathCond - the path condition to be evaluated while following references during
the computation of the enclosure.
obj Cond - the storage object condition to be evaluated while computing the
enclosure.

Effects:

A collection of all storage objects that satisfy both conditions, i .e . the path
condition pathCond and the storage object condition obj Cond, are assigned to
the OSACB control block's result pointer.

- void AddNewObj ect (OSACB * oac , OBJ newObj , REF [] expRefs) ; as-
signs a storage object identifier to the given object newObj and adds the object
to the object store. For each embedded reference in newObj a corresponding entry
is added to R.
In addition, a list of (explicit) references expRefs may be specified. This is the case
only if the new object is a member of a collection type storage object . For instance,
the object newObj may represent a class-collection. Thus, explicit references
correspond to I sA-relationships. Accordingly, POS will update its structure (s)

156

5.2 . DBS COMPONENT INTERFACE DEFINITIONS

maintaining super- and sub-class relationships.

Arguments:

Markus Kirchberg

oac - a pointer to an OSACB control block in POS's shared memory area.
newDbj - the new storage object to be added to the object store.
expRefs - a list of explicit references.

Effects:

The storage object identifier assigned to the newly created object wrapped in
a collection object is assigned to the OSACB control block's result pointer.

- void InsertDbj ect (DSACB * oac , DID colDid , CHAR * name , DID stDid
) ; . . . adds a storage object with an optional external name name and an identifier
stDid to the collection type object identified by colOid. In addition , the storage
object with identifier stDid is added to any index associated with the collection
colD id.

Arguments:

oac - a pointer to an OSACB control block in POS's shared memory area.
colDid - the identifier of an existing collection type storage object to which an
storage object is to be added.
name - a (optional) name of the object to be added to a collection type storage
object (default is (null)) .
stOid - the identifier of an existing storage object that is to be added to the
collection type object with identifier colOid.

Effects:

A boolean value wrapped in a collection object is assigned to the OSACB
control block's result pointer. The boolean value is true in the event that the
insertion was successfully and false otherwise.

- void AddReference (DSACB * oac , REF ref) ; . . . adds an embedded reference
to structures maintaining relationships between storage objects.

Arguments:

oac - a pointer to an OSACB control block in POS's shared memory area.
ref - the reference to be added.

Effects:

A boolean value wrapped in a collection object is assigned to the OSACB
control block's result pointer. The boolean value is true in the event that the
reference was added successfully and false otherwise.

- void DeleteDbj ect (OSACB * oac , DID o id) ; . . . deletes the storage object
with identifier o id from the object store. In addition, all references to and from
this object are deleted too.
This non-cascading approach is to be supported by a service routine, which
periodically deletes objects (and corresponding references) that are no longer used
(i .e . not referenced and not member of any collection) .

157

5.2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

Arguments:

oac - a pointer to an OSACB control block in POS's shared memory area.
oid - the identifier of the storage object to be deleted.

Effects:

A boolean value wrapped in a collection object is assigned to the OSACB
control block 's result pointer. The boolean value is true in the event that the
storage object was deleted successfully and false otherwise .

- void RemoveDbj ect (DSACB * oac , DID colOid , D ID stDid) ; . . . removes
the storage object with identifier stDid from the collection type storage object
with identifier colOid. In addition, the storage object with identifier stOid is
removed from any index associated with the collection colOid. Furthermore, all
associated explicit references are deleted.

Arguments:

oac - a pointer to an OSACB control block in POS's shared memory area.
colDid - the identifier of an existing collection type storage object from which
an storage object is to be removed .
stDid - the identifier of an existing storage object that is to be removed from
the collection type object with identifier colOid.

Effects:

A boolean value wrapped in a collection object is assigned to the OSACB
control block's result pointer. The boolean value is true in the event that the
storage object was removed successfully and false otherwise.

- void DeleteReference (OSACB * oac , REF ref) ; . . . deletes an existing
(embedded) reference from R.

Arguments:

oac - a pointer to an OSACB control block in POS's shared memory area.
ref - the references to be deleted.

Effects:

A boolean value wrapped in a collection object is assigned to the OSACB
control block's result pointer. The boolean value is true in the event that the
reference was deleted successfully and false otherwise.

- void UpdateDbj ect (OSACB * oac , DID oid , OBJ newDbj) . . . replaces the
existing storage object with identifier oid with the new storage object newDbj . The
storage object identifier and the object structure remain unchanged. In addition, it
has to be ensured that all index entries referring to this object are updated.
For each embedded reference, the corresponding references in R need to be updated
(e .g . delete and add) .

Arguments:

158

5 .2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

oac - a pointer to an OSACB control block in POS's shared memory area.
oid - the identifier of the storage object to be updated.
newObj - the new storage object that replaces the existing storage object with
identifier o id.

Effects :
A boolean value wrapped in a collection object i s assigned to the OSACB
control block's result pointer. The boolean value is true in the event that the
update was successful and false otherwise.

POS as a Platform for iDBPQL. iDBPQL distinguishes types and values from
classes and objects. Schemata are defined over classes which expose both structure and
behaviour. Values are only found ' inside' classes (i .e . as object values) . Thus, they never
persist independently. Hence, POS and higher-level DBS components always exchange
objects or collections of objects but never values. Also, iDBPQL associates system­
maintained collections with classes through which access to all objects of this class and
its sub-classes is possible. POS enables to capture such concepts as follows:

- Schemata correspond to collections of class objects. A special ROOT collection, which
keeps track of all existing schemata, is maintained (refer to object 00 in Example
5 .4) .

- Classes correspond to collections of storage objects. The InsertObj ect and
RernoveObj ect operations allow to maintain such collections.

- iDBPQL objects are mapped to regular storage objects. Variables of value types
are represented as POS attributes of some POS type. Variables of a reference-type
are represented as POS attributes of type OlD as well as embedded references in
R.

- Inheritance hierarchies are maintained as explicit references. This is supported by
AddNewObj ect (explicitly) and DeleteObj ect (implicitly) operations.

- An object 's value-type and reference-type variables may be updated through the
Update Obj ect operation.

Object access takes place through iDBPQL expressions, in particular query expres­
sions as outlined in Syntax Snapshot 4 . 19 (on page 1 10) . POS enables direct access
through the Retrieve operation, associative access through the FindFrornCollecti on
operation, and the FindEnclosure operation supports a mixture of both navigational
and associative access. Query expressions that directly affect POS are selections, pro­
jections (using index-only accesses) and navigational joins . The remaining operations
will be implemented by the operational DBS component and only access data using
those three simple operations. We will outline some initial examples next.

EXAMPLE 5 . 5 . Let us consider some iDBPQL requests and their affects on POS. As­
sume, requests stem from a program that imports the University cc schema fragment
from Examples 5 .3 and 5 .4 .

1 . FOR EACH StudentAcadernicCcc AS staca DO all objects of class
StudentAcadernicCcc (which does not have any sub-classes) have to be re­
trieved . Without any hints from the optimiser this can be achieved as follows) :

159

5 .2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

/ / determine the corresponding schema co l l ect ion object
result1 = FindFromCollection ((DSACB *) oac , (DID) 0 , FALSE ,

(Cond) (' == ' , " name " , "Universitycc")) ; /I returns : (D ID) 1

/I determine the corresponding c l ass-co l l ect ion object
result2 = FindFromCollection ((DSACB *) oac , (DID) result 1 , FALSE ,

(Cond) (' == ' , " name" , "StudentAcademicCcc")) ; // returns : (D ID) 5

1/ re trieve a l l objec ts from the c l ass-co l l ection
result3 = Retrieve ((OSACB *) oac , (DID) result2 , TRUE) ;

/I returns : (DID) k1 . . . (DID) ks

/ 1 subsequent ly, wi th each i t erat ion, the next obje c t from the c l ass-co l l ect ion
/ / is re tri eved dire c t ly (i . e . via Retrieve)

2. PersonC WHERE (DepartrnentCcc . director = = THIS) . . . retrieve all PersonC
objects that are directors of a department in the university. This request utilises
backward references since there is no reverse iDBPQL reference defined (assume
the OlD of class PersonC is already known) :

result = FindFromCollection ((OSACB *) oac , (DID) 2 , TRUE ,
(Cond) (BckNavPath , 1 , (PATH) "director")) ;

First , POS locates object 02 . Subsequently, all objects that can be reached from
02 via explicit forward references in R2 are also located . As an intermediate result ,
we now have collection storage objects 02, 03 , 04 , and 05 . Next , the condition is
applied to all objects in those four collections. According to the condition, we add
any object to the result that has an associated, embedded (backward) reference
with label " director" . The result will not be empty as it will contain at least object

ojl ·
Note: Despite using a navigation condition, a FindFrornCollecti on call never re­
sults in navigational access. Instead, it is only tested whether or not the correspond­
ing reference exists in R.

3. PersonC WHERE (addr . c ity = = ' ' Palrnerston North") . . . selects all objects
from PersonC (or any of its sub-classes) that live in " Palmerston North" . Since
there is an index defined on PersonC, we can execute an index only scan to retrieve
all qualifying OIDs.

result = FindFromCollection ((DSACB *) oac , (DID) 7 , FALSE ,
(Cond) (== , (PATH) "addr . city" , "Palmerston North")) ;

4 . std . supervisor . supervises WHERE (std . rnaj or = = maj or) . . . navigates first
from the current student object std to the instance of class AcadernicC that repre­
sents the student's supervisor and then to all StudentC objects that are supervised
by the same academic staff member as student std. Subsequently, a selection that
only chooses students, which are majoring in the same department as student std,
is executed . Assuming that std corresponds to the object with OlD k1 and the
std . rnaj or projection has been evaluated, POS may execute the request as follows:

result = FindEnclosure ((OSACB *) oac , (DID) k1 ,
(Cond) (path , (PATH) " supervisor . supervises " , NULL) ,
(Cond) (== , (PATH) "maj or " , "Department of Information Systems")) ;

160

5.2. DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

5. Assume, a new class is added into the schema. For instance, the
StudentAcademicCcc class does not appear in the original schema as intro­
duced in Example 3 .3 . Let us consider the corresponding POS calls that would add
this new class into the persistent object store:

result1 = AddNewDbj ect ((DSACB *) oac ,
(DBJ) (null) : SET : 0 : " StudentAcademicCcc" -+ (null) ,
(REF []) CHAR : " IsAStudentC" : DID : (null) : DID : 3 -+
CHAR : " IsAAcademicCcc" : DID : (null) : DID : 4) ; // assigns a uni que DID,

// i . e . 5 , crea t es the PDS object , add the exp L ic i t reference to R2 (after
/1 entering the DID in the respective fie L d) and returns the assigned DID

// nex t , insert the new c L ass-co L L ec t ion s torage object into the corresponding
// co L L e c t ion of a L L schema c L asses
result2 = InsertDbj ect ((DSACB *) oac , 1 , " StudentAcademicCcc" , 5) ;

6. NEW StudentAcademicCcc staca = (653 , (["Mr . "] , "Markus " ,
"Kirchberg") , (("Rugby Street" , " 78") , "Palmerston North" , 4412
) , 99003525 , 011 , 0h2 , Oh , " Database Systems " , Oh , { 0i23 , Oi53 , 0i1 12
}) . . . inserts a new StudentAcademicCcc object . In fact , the object with OlD
k1 from Example 5 . 4 is inserted. Creating this new object will result in nine
POS calls. The first creates the regular storage object, the second to eighth calls
add embedded references into R1 , and the ninth call adds the object into the
corresponding collection object associated with the StudentAcademicCcc class.

result1 = AddNewDbj ect ((DSACB *) oac ,

result2

result3

result4

results

result6

result7

results

(DBJ) (null) : REC : 10 : "StudentAcademicCcc" -+ NAT : 0 : "personid" : 653 t-t
REC : 3 : "name" -t LIST : 1 : "t it les" -+ CHAR : 4 : : "Mr . " t-t
CHAR : 7 : " f irstname" : "Markus " t-t CHAR : 1 0 : " lastname" : "Kirchberg" t-t
REC : 3 : "addr" -t REC : 2 : street -+ CHAR : 46 : "name" : "Rugby Street " t-t
CHAR : O : "number " : "78" t-t CHAR : 17 : " city" : "Palmerston North" t-t
NAT : O : "zipcode " : 4412 t-t NAT : O : " studentid" : 99003525 t-t
DID : O : "maj or" : l1 t-t DID : O : "minor" : h2 +-+ D ID : O : " supervisor" : j1 t-t
CHAR : 17 : " specialisation" : "Database Systems " t-t
DID : O : " staffMemberDf " : l1 t-t SET : 3 : " supervises" -+
DID : O : : i23 +-+ D ID : O : : is3 +-+ D ID : O : : i 1 1 2 •
(REF []) ,(null)) ; // assigns a uni que DID, i . e . k1 ,

// creates the PDS o bject and re turns the assigned DID

AddReference ((DSACB *) oac , (REF) CHAR : "maj or" : DID : 1 : OID : l 1) ;

AddReference ((DSACB *) oac , (REF) CHAR : "minor" : DID : 1 : DID : l12) ;

AddReference (DSACB *) oac , (REF) CHAR : " supervisor" : DID : 1 : DID :)1) j

AddReference ((DSACB *) oac , (REF) CHAR : 1 1 staffMemberDf " : DID : 1 : D ID : l 1) j

AddReference ((DSACB *) oac , (REF) CHAR : 1 1 supervises " : D ID : 1 : DID : i23) j

AddReference (DSACB *) oac , (REF) CHAR : " supervises" : DID : 1 : DID : i53) j

AddReference (DSACB *) oac , (REF) CHAR : " supervises " : D ID : 1 : DID : i 1 1 2) j

161

5.2. DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

result9 = InsertObj ect ((OSACB *) oac , 5 , "StudentAcademicCcc" , k1) ;

When inserting the newly created object , POS also updates all indices that are
associated with the respective collection - in the considered example, this results
in object 07 being updated accordingly.

5.2 .2 A Multi-Level Transaction Management System

0

From an internal point of view, users access databases in terms of transactions. Fast
response times and a high transaction throughput are crucial issues for all database
systems. Hence, transactions are executed concurrently. The transaction management
system ensures a proper execution of concurrent transactions. It implements concur­
rency control and recovery mechanisms to preserve the well-known ACID principles .
A further increase in both response time and transaction throughput can be achieved
by employing a more advanced transaction management system, e .g. a system that is
based on the multi-level transaction model [16 , 141 , 142] . This model is counted as
one of the most promising transaction models. It schedules operations of transactions
based on information that is obtained from multiple levels. Since there are usually less
conflicts on higher levels, lower-level conflicts2 can be ignored. Hence, their detection
increases the rate of concurrency. For instance, assume that two higher-level operations
op1 and op2 , which belong to different transactions, increment Integer values A and B,
respectively. Furthermore, let A and B reside on the same physical page. An increment
will be executed as a page read followed by a page write. In the event that scheduling
only considers operations on pages, op1 will have to wait for op2 or vice versa. Con­
sidering both levels, i .e . incrementations and read and write operations, we can allow
op1 and op2 to execute concurrently. The information obtained from the higher-level
indicates that different portions of the page are accessed. Thus, the corresponding read
and write operations do not affect each other. Protecting such individual operations by
short-term locks (i .e . latches) is sufficient .

In [142] the execution of concurrent transactions is described by means of a multi­
level schedule. Level-by-level (conflict-)serialisability is ensured by employing one-level
schedulers, i .e . level-by-level schedulers, on each level. A multi-level schedule is multi­
level (conflict-)serialisable, if all level-by-level schedules are (conflict-)serialisable. How­
ever, [6] outlines two weaknesses of ensuring level-by-level (conflict-)serialisability, these
are:

1 . Scheduling requires information (i .e . input orderings) to be passed down from
higher-level schedulers to lower-level schedulers. This contradicts independence, i .e .
it restricts the modularisation of DBMS components; and

2. The execution of any two conflicting (higher-level) operations cannot be interleaved
on lower levels even though that only a few lower-level operations might be in
conflict.

2 Such conflicts are referred to as pseudo-conflicts, which are low-level conflicts that do not stem from a
higher-level conflict.

162

5.2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

These issues are addressed in [6] . A new correctness criteria, which is referred to
as stack-conflict consistency, is proposed. Stack-conflict consistency supports two cor­
rectness criteria: a weak and a strong order criteria. The weak order criteria allows
conflicting operations to be executed simultaneously as long as the final result is not
affected. The strong order criteria implies serial execution of conflicting operations. For
instance, we assume an update of all sub-objects a, b and c of object A that is to be
followed by a read of values of all sub-objects of A. The common approach (i .e . using
the strong order criteria) only releases the read operation on A for execution once the
update of A has been executed successfully. Using the weak order criteria, read access
sub-objects a, b and c is allowed as soon as their respective updates have succeeded .
Thus, the degree of concurrency is increased without affecting the result of the execu­
tion. Instead of a multi-level schedule, a stack schedule is considered . The outputs of one
schedule are 'plugged' to the inputs of the next . Only a strong ordering is propagated
to all levels, weak ordering might even disappear (i .e . it depends on whether or not
conflicting operations are involved) . Finally, it should be noted that [6] also proves that
level-by-level serialisability is a proper subset of the class of stack-conflict consistent
schedules.

(Multi-Level) Transaction Management System
r - - - - - - - - - - - - - -

1
Recovery Manager

I
L - - - - - - - - - - - - - - � Cl.) Cl.)

Oll u

r - - - - - - - - - - - - �

1 Transaction Manager 1
I

� � �r=============,----------l B £ �-----r==============�
Replica Manager

DB Backups
(on stable I tertiary storage)

(/) .s

Logs

\
\

(on stable storage)

Commit Coordinator

Fig. 5 . 4 . Architecture of the Transaction Management System.

163

serialise (distributed)
transactions as
supported by REE

serialise operations
on local objects as
supported by POS

5.2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

•
The layered system architecture as proposed in Section 3 . 1 . 1 allows to use the multi-

level transaction model in a straightforward manner. Figure 5.4 shows a corresponding
architecture in more detail . Either of the two approaches discussed above (i .e . level-by­
level scheduling and stack scheduling) can be supported using this architecture.

Figure 5 .4 indicates that the transaction management system controls the execution
of operations of the request evaluation engine and POS. Thus, at least a two-level or
two-stack scheduler is employed3 . On each level, a certain concurrency control protocol
is executed. For instance, on the highest level , sequences of iDBPQL operations are
serialised. Such sequences always corresponds to top-level transactions that may execute
only on the local node or across many ODBS instances.

The general approach to concurrency control is the use of locking protocols, es­
pecially strict two-phase locking (str-2PL) . However, locking suffers from some ma­
jor problems affecting transaction throughput. Two of those problems are transaction
deadlocks and the impossibility to accept all (conflict-)serialisable schedules. A hybrid
protocol called FoPL (forward oriented concurrency control protocol with pre-ordered
locking) , which is a provably correct protocol for multi-level transactions, is presented
in [1 1 1] . FoPL does not suffer from any of the two problems that are mentioned above.
A prototype implementation is presented in [65 , 71] . It describes first experimental re­
sults of the basic FoPL protocol in comparison to str-2PL. It shows that FoPL-based
schedulers outperform locking-based schedulers if conflict probabilities do not exceed a
certain threshold.

Since we deal with distributed transactions, guaranteeing serialisability as described
above is not sufficient . Global serialisability and one-copy serialisability [17] have to be
guaranteed when dealing with distributed transactions on replicated objects. In [66] , it
is outlined how str-2PL and FoPL can be used on the global level. Guaranteeing global
serialisability requires the use of a commit protocol, e .g. the optimised two-phase
commit protocol [108] , to ensure atomicity. Additionally, global deadlock detection
mechanisms must be employed if str-2PL is used. FoPL requires only globally unique
timestamps to be assigned at the start of the validation phase. Guaranteeing one-copy
serialisability requires a certain replication schema to be applied [101] . As far as FoPL
is concerned only a few extensions to this replication schema have to be applied. A
comparison of str-2PL and FoPL with respect to their efficiency in the presence of
distributed data is included in [66] . It is outlined that necessary extensions to FoPL
are likely to be much less expensive than extensions to str-2PL.

Since con currency control may force transactions to abort (either fully or partially) ,
recovery mechanisms are provided. So far, only a few research projects have focused on
recovery mechanisms for multi-level transactions [85, 1 07, 143] . However, none of these
approaches comes without major restrictions or disadvantages limiting its practical use.

ARIES/NT [107] is an extension of the popular ARIES algorithm [92] to a very
general model of nested transactions [16] . ARIES/NT is not designed to be used with
multi-level transactions explicitly. In particular, locks are not released after finishing
operations that are not transactions. MLR [85] adapts basic features of ARIES/NT to
support both nested and multi-level transactions. It utilises compensation operations,

3 It is likely that a three-level scheduler is implemented. The third level will serialise operations as supported
by a caching module / buffer manager.

164

5.2 . DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

but unfortunately assumes them to exist in any case, which is not realistic. A simple,
non-ARIES based approach to multi-level recovery is also known as Multi-Level Re­
covery [143] . It aims to ' reconcile performance, simplicity, and a rigid foundation in a
well-understood framework ' [143, page 121] rather than being developed for industrial­
grade systems as ARIES is. There are some similarities to ARIES-based approaches.
Nevertheless, they are more sophisticated. For instance, ARIES-based approaches use
a single technique for all levels whereas the Multi-Level Recovery approach requires
level-specific recovery mechanisms and does not avoid rollbacks of undo actions. A sin­
gle logging technique, however, is superior (i .e . only one log file has to be maintained,
no additional communication mechanisms between level-specific recovery modules are
necessary etc .) .

An alternative approach to multi-level recovery is outlined in [66, 1 1 1] . The
ARIES/ML algorithms preserves the main features of ARIES, is designed to support
multi-level transactions, may be coupled with locking, optimistic or hybrid concur­
rency control protocols, utilises the existence of compensation operations, supports
partial rollbacks and more. Necessary extensions to adapt the ARIES and ARIES/ML
algorithms to a distributed computing environment (without relying on perfectly syn­
chronised clocks) are proposed in [122 , 1 23] .

The Service Interface . The basic service interface of a multi-level transaction man­
agement prototype system is outlined below. Starting from the implementation that is
presented in [65] , a number of extensions have been included in order to provide basic
support for concurrent and distributed processing. Interface operations are defined as
follows:

01 Trans!d openTrans () ; 11 open a new transaction; this rout ine re turns a
02 11 g L o b a L Ly unique transac t i on identifier
03 Trans!d openSubTrans (Trans!d parent!d) ; 11 open a new sub-transaction;
04 11 parent!d i dent ifi es the parent (sub -) transac t ion;
05 11 this routine returns a g L o b a L Ly unique sub-transaction identifier
06 INT execute (TransiD tid , DID obj , Opid op) ; 11 schedu L e the specified
07 11 operat ion t hat is to be executed by the (sub-transac t i on) wi th identifier
08 11 tid; this rou t ine re turns one of the fo L L owing pre-defined
09 11 vaLues : APPROVED , RESTART or MONITOR
10 INT executeWeak (TransiD tid1 , DID obj 1 , Op!d op1 ,
1 1 TransiD tid2 , DID obj 2 , Op!d op2) ; 11 schedu L e the s econd
12 11 operation wi th respect t o the weak order cri t eria; resu L t
1 3 1 1 vaLues are identi c a L t o those of t h e execute operation
14 INT j oin (TransiD tid , Node!d remoteNode) ; 11 the specified node wi L L a Lso
15 11 parti cipate in this transac t i on; this routine returns an acknowLedgement onLy
16 INT transferOwner (TransiD tid , DID obj , Nodeid fromNode , Nodeid toNode) ;
17 I I contro L over the specifi ed o bject is t ransfered from one ODES ins t ance
18 I I t o ano ther
19 INT commit (TransiD tid) ;
20 11 returns one of
2 1 INT abort (TransiD t id) ;
22

11 a commi t pro toco L is ini t i at ed; this rou t ine
the fo L L owing pre-defined vaLues : SUCCESS or RESTART

11 a (sub-) transaction abort is ini t iated; this
11 routine acknowLedges the success of the abort

23 INT setSavePoint (TransiD tid) ; 11 no t imp L emented yet
24 INT rollback (TransiD tid , SaveiD savePt) ; 11 no t imp L emented yet
25 INT getStatus (TransiD tid) ; 11 re turn the current s ta tus of the

165

5.2. DBS COMPONENT INTERFACE DEFINITIONS Markus Kirchberg

26 // (sub-transaction) that corresponds to the given transac t i on i dentifier

An additional administrative interface that permits DBS components to register
operators and their compatibilities, DBS instances etc . is required.

5.2.3 The Remote Communication Module

Object-oriented data communication approaches have come a long way. Microsoft
DCOM and .Net, OMG CORBA, Sun Java/RMI and J2EE are used most commonly
these days. While they are adequate for current needs of most application developers,
more and more attention is drawn to agent communication languages (A CLs) . Accord­
ing to [75] , ACLs stand a level above CORBA (and similar approaches) . Among others,
ACLs handle propositions, rules , and actions instead of simple objects with no seman­
tics associated with them. In addition, agents are able to perceive their environment and
may reason and act both alone (i .e . autonomy) and with other agents (i .e . interoper­
ability) [120] . ACLs define the type of messages that agents exchange. However, agents
do not just exchange messages; they have (task-oriented) 'conversations ' . For instance,
in a DBS they could first negotiate how to execute a given request most efficiently (i .e .
query cost estimation) and then cooperatively process the chosen evaluation plan that
implements the request most efficiently. ACLs are meant to equip agents with the abil­
ity to exchange more complex objects, such as shared plans and goals. At the technical
level, agents still transport messages over the network using a lower-level protocol .

A remote communication module that is based on such an agent-based communi­
cation mechanism [67] will enable agents and , thus, different components of a DODBS
to interact in order to execute user requests more efficiently.

The processing of evaluation plans involves a number of ODBS components. While
the request evaluation engine controls the evaluation process , other components such
as transaction management systems also require communication support . For instance,
commit protocols and deadlock detection mechanisms are prime examples. Originally,
we have intended to rely on a mixture of inter-process and thread communication mech­
anisms and an extended remote object call mechanism [140] . However, our experiences
(with the first prototype system as briefly introduced in Section 6 . 1) have shown that
this level of communication support is not sufficient . For instance, during the optimi­
sation process an evaluation plan has to be selected. In order to do so, a number of
potential plans are considered. Having negotiation and voting capabilities built-in the
basic communication mechanism, such a process can be realised much more efficiently
in contrast to more conventional communication approaches.

The Database Agent Communication Language (DBACL) . DBACL is similar to
KQML (Knowledge Query Manipulation Language) [41] in terms of separating commu­
nication aspects from the language or service interface that ODBS components expose
or use internally. As a result, the communication between ODBS components is wrapped
in a DBACL message. DBACL supports the following types of communication:

- Agent-to-Agent (AtA) , i .e . one agent communicates with another agent;
- Agent-to-AgentList (AtAL) , i .e . one agent communicates with a list of agents; and
- AgentBroadcast (AB) , i .e . a broadcast message is sent to a list of interested agents .

166

5 .3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

Once the required communication type is known, the type of message transmission
is to be decided . DBACL supports the following types of data transmission:

- All-At-Once (AAO) , i .e. messages are only transmitted once they are fully assem­
bled; and

- Stream, i .e . messages are transmitted in chunks. DBACL further distinguishes be­
tween upstream and downstream transmission.

• Upstream transmission allows for task specifications to be provided in multi­
ple messages. For instance, some arguments will be forwarded as they become
available. The first message contains a description of how the remaining data
is provided. Triggers are utilised here. The agent is then given a reference to a
message queue that will be used to provide additional messages.

• Downstream transmission supports that results are returned in chunks. Again,
the agent is given a reference to a message queue that will be used to send result
values (or other forms of reply messages) . When using stream transmission,
triggers have to be specified. A trigger tells an agent when to push or pull the
next message. Push triggers forward data from the source to the destination . In
turn, pull triggers rely on signals from the receiving end.

(Software) pipelining is one of the main applications of stream-based communica­
t ion.

Transmission types can be specified both ways, upstream and downstream. For
instance, an agent can forward a task without providing any of the operational data.
Operational data may then be pulled from the target-agent using triggers. This type of
request is very useful for DBSs, e .g. for join operations. A remote REE can be instructed
to prepare for the execution of a join operation while corresponding input values are
still computed . Those values may then be pulled as required.

There are a number of pre-defined DBACL message types. These include signals,
notifications, broadcasts, votes, negotiations, evaluation requests etc . For instance,
request, vote and negotiation message types support the specification of pre-condition,
post-condition, and completion-condition in addition to the message content . While
triggers result in agents taking actions when some set of communication-related condi­
t ions are met , pre-conditions, post-conditions, and completion-conditions correspond
to instructions that are forwarded in the language of the involved ODBS components.
Thus, two levels of condition-based actioning are supported .

During the evaluation process, services of the remote communication module are
u tilised implicitly. Thus, we will not concern ourselves with a detailed description of
this ODBS component .

5 . 3 The Execution of Evaluation P lans

Evaluation plans describe how the processing of user requests is to be performed. The
main evaluation routine will examine the corresponding evaluation graphs, follow con­
t rol flow edges and recursively execute all expressions that make up individual state­
ments. During this process, services provided by other ODBS modules, such as the

167

5 .3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

persistent object store, the transaction management system and the remote communi­
cation module are utilised .

In this chapter, we describe the evaluation of user requests that are formulated in the
proposed iDBPQL language. First , we summarise the main challenges that have to be
dealt with when designing such an evaluation procedure. Subsequently, a corresponding
run-time environment is proposed. While we introduce a number of additional operators
that mainly target run-time entities , we will also define additional primitives, which
utilise functionalities provided by other ODBS modules. After having presented on
overview of the evaluation process, we will discuss the processing of individual iDBPQL
operators, keywords, expressions, statements, eval blocks and entire evaluation plans
in greater details. Such processes or considered for local evaluations first . While we
begin with the consideration of serial processing, it will not be long until support for
internal multi-threading is added. The provision of a variety of implementation routines
for each iDBPQL language construct enables code and query optimisers to better fine
tune evaluation plans in a way that overall performance is enhanced. Besides serial and
internal multi-threading, the execution of evaluation plans is discussed that involve
explicit simultaneous processing as well as distribution .

5.3. 1 Challenges

Main challenges that are encountered in this section include:

- Definition of a suitable run-time environment. Support of concurrent and dis­
tributed processing, orthogonal persistence and (distributed) transactions requires a
run-time environment can accommodate the processing of multiple tightly coupled,
loosely related or independent execution streams. As such, the run-time environ­
ment underlying the original SBA approach [131] is not suitable. Instead, such an
environment must be adapted to that of modern OOPLs . For instance, we might
consider the Java Virtual Machine environment [80] . However, run-time environ­
ments of OOPLs are no perfect match either since traditional database concepts
such as transaction support and data persistence are not among the core issues that
these languages are concerned with.

- Refinements of the structure of stacks and their associated operations. Enhancing
performance capabilities by supporting different styles of processing affects the
structure and usage of stacks that are assist with naming, scoping and binding,
the storage of intermediate results and the passing of (intermediate) result values.
If, for instance, we consider the desired support of pipelining, we must find a way
to enable two simultaneous execution units to access both the head-end and the
tail-end of a result pipeline. Such patterns of access are not common to stacks. To
overcome this problem, we opted to refine the structure and usage of result stacks.
Stacks no longer store result values directly. Instead, they hold queues of results,
which may be accessed from both ends.

- Linkage with other ODES components. In order to utilise services of other system
components, additional primitives must be defined that hide certain concepts that
are relevant to the particular ODBS components but not to the evaluation process .

- Garbage collection. Simultaneous processing requires that access to objects can be
shared . Thus, we must maintain them in a central location and only place object

168

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

references onto stacks and queues. As a result , the run-time system has to provide
a garbage collection mechanism, which ensures that valuable main memory space
is not taken up by objects that are no longer required.
As previously mentioned, support for name-based access to all class instances com­
plicates this garbage collection process . Only considering the existence of object ref­
erences from environment stacks and result queues and other objects is not longer
sufficient . However, the existence of name binders in addition with shallow and deep
class extents allows us to refine the approach to garbage collection.

- A proposal of operational semantics for iDBPQL constructs. In chapter 4, we have
proposed the syntax of iDBPQL. For each construct of this language corresponding
evaluation routines have to be defined. While semantics for some basic operators,
keywords and expressions can be derived from the SBQL proposal [131] , iDBPQL
is a much more complex language that processing in a concurrent and distributed
database environment .
Support of user-types and a multitude of collection types, object-oriented concepts,
implicit and explicit concurrency, deferred constraints , local and distributed trans­
actions, object migration etc. only include a few of those concepts that have to be
taken into account during the processing of user requests.

5.3.2 The Run-Time Environment

The simple two-stack-based run-time environment underlying the SBA approach [131 J
is not suitable for an environment supporting simultaneous processing. Instead, a shared
memory area, the heap , that consists of the following components is used:

- REE Stack Areas : There exists exactly one REE stack area per user request . Within
this stack area, the processing of the request 's corresponding evaluation plans is
performed. Each individual execution thread has an associated sub-area. At the
beginning of the processing, the main evaluation plan will be associated with the
first sub-area. Further sub-areas will be created as specifications for simultaneous
processing are encountered or inter-operation concurrency is utilised. An REE stack
area is discarded once all sub-areas are destroyed.

- A Main-Memory Object Store , which holds objects that are currently present in
main memory. Such objects always correspond to transient objects. Local persis­
tent objects, migrated objects or remote objects are accessible only through the
embedded shared memory areas that is maintained by the persistent object store
and the remote communication module, respectively.

- An Evaluation Plan Area, which is shared among all REE stack areas. It holds
the collection of evaluation plans that are associated with behaviour specifications
located in the run-time metadata area or evaluation plans that are associated with
DBS metadata behaviour specifications. In the latter case, evaluation plans have
been loaded from persistent storage and prepared for processing.

- A Run- Time MetaData Area that holds the run-time metadata catalogue .
- A DBS MetaData A rea that holds the DBS metadata catalogue.

Figure 5.5 provides on overview of the composition of the local heap together with
embedded shared memory area. Examples of values and objects and their references
are outlined:

169

5.3. THE EXECUTION OF EVALUATION PLANS

REE Stack Areas

ES ES
n, OID - - - I n, OID - - - - - - - - - - - - -' n, value I n, *ptr ' I
n, *ptr

ry
I n, OID - - - - - - - - \

'
' I ' ' . . . I . . . ' '

I ' '
- - - - - - - - - - - - - _ _ _ _ _ _ l _ _ _ _ ... _ _ _ _ '

' '
Main Memory Object Store ' ' ' '

f ' '
OlD ' '

(_obj ec t) ' '
V - _, _ - - - _ \... -

�
' '
' '
' '
' '
' '
'

(_obj ect) ' u '
'
' ' - - -

(_obj ect) t

-

'

p
0 -
s c

Markus Kirchberg

Evaluation Plan Area

Shared Memory Area
of the Persistent

Object Store

X ·

Shared Memory Area of the

_ _ f.> _
Remote Communication

, _- - .,.,. (b .
)

Module \ _o J ec t y
(_obj ect) z

. - - - - · · · - - · - - - -· - - · - - - - - - - - - - - - -

Run-Ti me MetaData Area
J>"

- object references realised as main memory pointers
- - ... object references represented by OIDs

· · · ·t> references to associated metadata entries

DBS MetaData Area

·�

Fig. 5 .5 . Local Heap with Embedded POS and RCM Shared Memory Areas.

- Values reside on stacks and queues that are maintains in REE stack areas.
- Objects t , u and v are physically located in the local main memory object store

and have associated run-time metadata entries. Object v is a local transient object,
which contains three references: One to the transient object t , one to the transient
object u and one to the persistent object x.
References to objects, which are held in the main memory object store, from stacks
and queues in local REE stack areas and references between objects in the main
memory store are represented as main memory pointers.

- Object x is a local persistent object and made accessible in the shared memory
area of the persistent object store. References appear in the form of object identi­
fiers . Special POScall primitives, which facilitates access to persistent objects, are
introduced further below.

- Objects y and z reside in the shared main memory area of the remote communica­
tion module, i .e . these objects are 'on loan' from remote ODBS instances. References
appear in the form of object identifiers. Access to loaned transient and persistent

170

5 .3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

objects is enabled through the remote communication module. When objects are re­
trieved from other nodes, so are their metadata information. Object y is a transient
object . Thus, its metadata information is added to the local run-time metadata cat­
alogue. In contrast, object z is a persistent object that has its associated metadata
information in the DBS metadata catalogue - a new __ s chema entry, which consists
only of the necessary information that are required to process all objects on loan
from this particular schema.

The REE Stack Area. As a new main evaluation plan is ready for processing, the first
REE stack sub-area is created. This sub-area is the run-time component of our approach
that is most similar to the two-stack abstract machine as defined in the SBA approach .
Assuming that we only have one execution stream, the evaluation of iDBPQL code that
makes up the main evaluation plan and all evaluation plans, which are invoked during
processing, are executed in this sub-area. However, it is more common that simultaneous
execution is utilised. Thus, multiple sub-areas exist within each REE stack area.

Every sub-area contains an environment stack (ES) , which consists of frames (in
SBA they correspond to sections) . As its name suggests, the environment stack rep­
resents the environment in which an evaluation plan is executed . Scoping and binding
are the two main tasks performed on this stack.

The environment stack can be regarded as a collection of name binders . These
binders can either appear as singletons or as collections. They associate external names
with transient or persistent entities. A binder is a triple (n , rt, e) , where n is an exter­
nal name, rt is its associated run-time type or class, and e is a transient or persistent
iDBPQL entity (e .g. an object (reference) , a value, a variable, an evaluation plan etc .) .
If we deal with a transient entity, e is a pointer to a memory area within the heap (recall
the use of pointer swizzling techniques to enhance performance) . In contrast , local per­
sistent entities , which are made accessible in the shared memory area of the persistent
object store, and migrated objects or objects located on remote ODBS instances are
referenced using object identifiers (i .e . e is a value of type __ DID) .

Definition 5 . 5 . A name binder (of internal type __ binder) is a triple (n , tr, e) with
the following properties:

- n is a String value of type (char *) . It represents an external name, which is bound
to the entity e.

- tr is a reference a _ _ typelnf o or __ c lass info structure that identifies the run-time
type or class, respectively, of the entity e .

- e i s an iDBPQL entity. The internal type and the value of this entity i s as follows:

_ _ obj ect * _JillllObj ect
{ __ DID __ oid

e =
__ iDBPQLvalue __ value

if referencing a persistent or remote object;
if referencing an object in the heap; and
if holding a simple, structured, collection-type,

or NULLable value.

0

171

5 .3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

Access to information that is captured by name binders is possible through the .
(dot) operator. The identifying name, run-time type or bound entity of the top-most
name binder on ES may be retrieved by executing top (ES) . n, top (ES) . tr or
top (ES) . e, respectively.

The environment stack is divided into frames and sub-frames, which help with scop­
ing and binding. With every behaviour invocation, a new frame is created. Similarly,
whenever a new evaluation block is encountered, a new sub-frame is created. Frames
and sub-frames group all run-time entities that are local to the respective behaviour
implementation or evaluation block, respectively. During the process of binding, the
top-most sub-frame (i .e . the most local (sub-)environment) is considered first . In the
event that a name binder is not found, the next sub-frame or frame4 is visited. This
approach is continued until the bottom of the stack, which describes the global envi­
ronment , is reached . The evaluation of any request that is formulated in iDBPQL will
always be able to locate a binder on ES. Otherwise, the evaluation plan together with
all annotations and references is not well formed and should have been rejected by the
compiler.

Frames have a second stack associated, the result stack (RS) . This is different to
the SBA approach, which only defines one global result stack that holds results in the
form of tables . Having a result stack associated with a particular invocation enables the
sharing and re-use of result values more easily. For instance, if we encounter a sequence
of identical invocations of a static method, we may perform the computation once,
retain the result and then share it among all invocations. Nevertheless, the purpose of
RS remains largely unchanged. It stores intermediate results and assists with passing
of results between frames. RS stores intermediate results in the form of result queues
(RQs) . This is necessary to better support pipelining and simultaneous and distributed
processing. In addition, supporting RQs also allows for a more refined approach to how
results are represented . While the SBA approach restricts results to a representation
that corresponds to a table (or bag) , we support the storage of results in the form
of singletons or different types of collections (i .e . as a bag, set , list or array) . Result
queues are associated with evaluation steps. Each such step may have one or more
corresponding result queues. These queues are used to exchange result values, store
intermediate results or synchronise different forms of processing.

The Environment Stack (ES) . In accordance with traditional programming languages
and the SBA approach , (references to) run-time entities that are available at a given
point in time during the evaluation procedure are maintained on the environment stack.
The availability of these entities is determined by their appearance in the respective
evaluation plan and a set of scoping rules. The latter adhere to the following principles:

1 . A local name is given priority over an inherited, static or global name;
2. The local context of the implementation of a behaviour specification is hidden from

other evaluation plans the former one invokes; and
3 . Nesting of run-time entities is not restricted.

4 While the next sub-frame is always the previous sub-frame, the same is not true for frames. To facilitate the
hiding of local contexts, certain frames are skipped. Corresponding details are outlined below.

172

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

The first principle outlines that name binding results in a search starting from
the top of ES. In the event that the name is located in the top sub-frame of ES,
binding terminates successfully. Thus, the most local entity is bound to the given name.
If the name is not found, the search continues with the next sub-frame and so on
until all sub-frames of the top-most frame are considered. While sub-frames are never
skipped, the same does not apply to frames themselves. The second principle advocates
that entities, which are local to a particular implementation, must be hidden from
the view of other implementations. This relieves programmers from knowing details of
implementations of behaviour specifications that they utilise. As a result , frames are
linked by prevScop e pointers , which chain those frames together that may access one
another's local variables. In the event that a name cannot be located in a particular
frame, the search continues in the next frame encountered along the chain formed by
the associated prevSc ope pointers.

Frames and sub-frames on the environment stack are nested according to block and
behaviour invocation specifications in all evaluation plans that are encountered during
the processing of a user request . The third principle implies that there is no restriction
on the depth of the nesting of these block specifications and behaviour invocations.

Environment Stack

<1.)
8

prevScope J: 1 Sub-Frame

prevScope

prevScope

<1.) I
� �

Sub-Frame

I _ _ _ _ _ _ _ _ _ _ _
1 Sub-Frame

r� :
- - _s.?�!��� - -

- Sub-Frame

I Sub-Frame
<1.) � - - - - - - - - - - -� 1 Sub-Frame

ll.

Fig. 5 . 6 . Logical View of the Environment and Result Stacks.

Result Stack

Figure 5 .6 (left-hand side) provides a logical view of the composition of the environ­
ment stack. At the bottom of the stack, there is the global environment. This includes

173

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

definitions that are imported from the DBS metadata catalogue, type and class defini­
tions associated with the run-time metadata catalogue and other definitions that are
global to the respective user request. The frame above the global environment corre­
sponds to the main evaluation plan. The third frame from the bottom holds entities
that are local to the evaluation plan, which has been invoked during the processing of
the main evaluation plan. Similarly, the fourth and fifth frames (counting from the bot­
tom) hold entities that are local to the corresponding evaluation plan, which has been
invoked during the processing of the behaviour implementation described in the frame
below. In accordance with the second principle, prevScope pointers, which ensure that
local implementation entities remain hidden, are outlined.

Additional pointers are associated with frames. For instance, a pointer that keeps
track of the corresponding THIS object will be added. Corresponding additions are mo­
tivated and outlined throughout the remainder of this chapter. The common rationale
behind the usage of additional pointers is mainly related to performance considerations.

As mentioned earlier, a new frame is created with every behaviour invocation. That
is, a new scope is opened. Parameters supplied during the invocation procedure are
maintained in the frame itself. During the evaluation process, new sub-frames are es­
tablished whenever a new evaluation block is encountered. Since every evaluation plan
consists of at least one evaluation block, every frame has at least one sub-frame. Vari­
ables local to a particular evaluation block are maintained in the respective sub-frame
on ES.

The Result Stack (RS) . A result stack is associated with each frame, i.e. with each
behaviour invocation . Intermediate results as well as the behaviour's return value are
maintained on RS. In fact , each result stack can be regarded as a stack of result queues
as outlined in Figure 5 .6 (right-hand side) . The result queue at the bottom of RS
serves a special purpose. We also refer to it as return result queue. It facilitates the
exchange of values that are returned as the result of a behaviour's invocation. The return
result queue is always present on RS except for frames that correspond to behaviour
implementations with no return type (e.g. object constructors) or with the VOID return
type. All other result queues are associated with the evaluation of individual iDBPQL
statements and expressions.

The size of a result queue is dynamic. Memory is allocated from the heap. In order
to enable two evaluation procedures to exchange result values, the result stack and its
result queues are created , maintained and accessed as follows:

- Upon the invocation of a behaviour implementation, a new scope is opened. That
is, a new frame is placed on top of the environment stack. During this process, a
result stack is initialised. If the behaviour's return descriptor is empty or of type
VOID, then there is no return result queue and the initialisation of RS is complete.
Otherwise, a return result queue is pushed onto RS5 .

- A new result queue is created implicitly with every sub-evaluation or, in the event
that the local evaluation procedure requires storage space for intermediate results,
it is created explicitly.

5 The return result queue is always initialised by the evaluation process that invokes the behaviour. This way,
the calling process retains access to the result queue even after the invoked behaviour has terminated.

174

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

- Each result queue has two handles that regulate access associated. On one hand,
results can be appended to or, in some cases, accessed from the end of the queue,
the tail . On the other hand, results can be accessed from the front of the queue,
the head.
If the result queue was created explicitly, both means of access are available from
the current evaluation procedure. Otherwise, the evaluation procedure that invokes
a behaviour retains the read-only access to the front of the queue. However, write
access by means of appending result values is only available to the procedure that
evaluates the behaviour implementation or the sub-evaluation routine, respectively.

- In order to support pipelining of results, a means of synchronisation between the
corresponding two evaluation procedures is required. This is enabled by means of a
status operator and a special result value that marks the end of the pipelining of
result values.

As we will see next , result queues may be accessed using both stack operators and
queue operators. In the event that a stack operator is invoked upon a result queue,
t he queue is treated as a stack. For implicitly defined queues, there is only one end of
t he queue made accessible to the particular evaluation routine . This available end is
regarded as the top of the (queue-)stack. Otherwise, if both ends are accessible to the
evaluation routine, the tail-end is considered as the top.

RQs have the ability to hold different types of results. For instance, the result of
an evaluation process may just be a simple atomic value, the NULL value, a structured
value, an object identifier, a main memory reference, a bag, a set , a list or an array. In
order to determine the type of a result queue, a header is associated with every queue.
The format of a RQ header is as follows:

- type . . . a reference to a _ _ typeinfo or _ _ classinf o structure held in the run-time
or DBS metadata catalogue;

- pipe . . . a Boolean value that indicates whether or not result values are pipelined;
- eAccStep . . . a Natural value that corresponds to an offset value. Such offset values

are utilised by the eAccess array, which speeds up access-by-position to lists and
arrays (a value of 0 implies that there is no such support) ; and

- eAccess [] . . . an array of pointers to elements held on the result queue. The first
pointer refers to the eAccStepth element, the second pointer to the 2 * eAccStepth

element and so on. The eAccess array is used for lists and arrays to implement
access-by-position more efficiently and also to assist with the evaluation of opera­
tions such as searching, sorting etc.

Access to information maintained in a RQ's header is supported through the ' . '
(dot) operator. Queue elements are maintained according to the respective collection
type. If, for instance, RQ holds a set of object references, it is ensured that no object
is referenced twice from RQ.

Operations on Stacks and Queues. ES, RS and RQ support most of the common
operations defined on stacks (i .e . empty, pop, push and top) and queues (i .e . head, tail ,
prev, and next) . Furthermore, queues may be modified through the following operators:

175

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

moveinfront , moveBehind, swap, cutinfront , cutBehind, append and merge . Details
are as follows:

- void append (q1 , q2) , where q1 and q2 are pointers to result queues. The append
operator simply adds all entities from q2 to the tail of q1 .

- q2 * cutBehind (q1 , e) , where q1 and q2 are result queues and e is a pointer to
an entry on q1 . The cutBehind operator splits the given queue q1 in two parts: All
elements in-front of e remain on q1 . Entry e and all following entries are moved to
the new queue q2 of identical format . The return value of the cutBehind operator
is a pointer to the newly created result queue.

- q2 * cutinfront (q1 , e) , where q1 and q2 are result queues and e is a pointer
to an entries on q1 . Similarly to the cutBehind operator, the cutinfront operator
splits the given queue q1 in two parts. This time, however, all elements following
entry e stay behind . Entry e and all preceding entries are moved to the new queue
q2 and a pointer to this queue is returned as result .

- boo lean empty (s) , where s is either ES, RS or RQ. The empty operator tests
whether or not the given stack or queue is empty.

- e head (q) , where q is a result queue and e is an entry on q similar to the top
operator (with the exclusion of name binders) . The head operator returns the entry
e at the front of q.

- q3 * merge (q1 , q2) , where q1 , q2 and q3 are result queues. The merge operator
initialises a new queue q3 with the contents of q1 , appends q2 and then returns a
pointer to Q3 .

- void moveBehind (q , e1 , e2) , where q is a result queue and e 1 and e2 are
pointers to entries on q. The moveBehind operator takes the entry e1 from queue q
and places it right behind entry e2 .

- void moveinfront (q , e 1 , e2) , where q is a result queue and e 1 and e2 are
pointers to entries on q. The moveinfront operator takes the entry e 1 from queue
q and places it right in-front of entry e2.

- e2 * next (q , e1) , where q is a result queue and e1 and e2 are pointers to entries
on q. The next operator returns e2 that is the entry right behind e 1 .

- e pop (s) , where s is either ES or RQ and e i s an iDBPQL entity. The pop
operator removes the top-most element from s and returns the associated value e.

- e2 * prev (q , e1) , where q is a result queue and e1 and e2 are pointers to entries
on q. The prev operator returns e2 that is the entry right in-front of e1 .

- void push (s , e) , where s is either ES or RQ and e is a name binder or an
iDBPQL entity, respectively. The push operator places e on top of s .

- void swap (q , e1 , e2) , where q is a result queue and e 1 and e2 are pointers to
entries on q. As its name suggests, the swap operator swaps the two queue entries
e1 and e2 .

- e tail (q) , where q is a result queue and e is an entry on q similar to the head
operator. The tail operator returns the entry e at the end of q.

- e top (s) , where s is either ES, RS or RQ and e is an entry on s , e.g . a name
binder, a collection of name binders, an iDBPQL value, a collection of object iden­
t ifiers etc . The top operator returns the top-most element from s .

176

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

When invoked on ES, the top operator accesses name binders. However, such
binders are never returned. Instead, the top operator only returns the associated
value e .

In addition, a number of operators that assist with scoping and binding are defined.
The basic bind, openScope and closeScope operators stem from SBA and have been
refined to suit the more complex run-time environment. Corresponding operators are
as follows:

- p * bind (n) , where n is a name of type (char *) and p is a main-memory
pointer to an entry on ES. The bind operator searches ES until it locates the first
entry that has a name value, which matches n . The search commences from the top
of ES and is governed by the three scoping principles outlined above, i .e . prevScope
pointers are followed.

- p * bindNext (n) , where n is a name of type (char *) and p is a main-memory
pointer to an entry on ES. The bindNext operator complements the bind opera­
tor. In contrast to the bind operator, the bindNext operator does not necessarily
commence its search from the top of ES. It continues from the most recently bound
entry on ES that has a matching name value. In the event that there is no such
bound entry, search commences from the top of ES. Again, the search follows the
three scoping principles outlined above.

- p[] * bindAll (n) , where n is a name of type (char *) and p is an array of
main-memory pointers to entries on ES. The bindAll operator searches ES until
the bottom entry is reached. Finally, it returns pointers to all encountered entries
that have a name value, which matches n . Same as both previous binding operators,
the search follows the three scoping principles outlined above.

- p * bindCrsNext (n) , where n is a name of type (char *) and p is a main­
memory pointer to an entry on ES. The bindCrsNext operator is similar to the
bindNext operator but its visibility is restricted to the first collection of entries
on ES that has a matching binder. The rationale behind this restriction can be
explained by considering the mechanism this operator is meant to support. In order
to realise a cursor on a collection object, the bindCrsNext operator retrieves one
collection member after the other. It terminates once all members of this particular
collection have been visited.
Let us assume that the same collection object is unnested twice and that with each
unnesting, the same external name has been assigned. Subsequently, a loop through
this collection is evaluated. The bindCrsNext operator ensures that only the top­
most unnested collection object is considered . As a result it is avoided that each
collection member is accessed more than once when implementing a cursor.

- p openNewScope (args[]) , where args is an array of arguments supplied to the
respective behaviour invocation and p is a main-memory pointer to the head of a
return RQ on RS. The openNewScope operator places a new frame on top of ES and
the prevScope pointer is adjusted accordingly. The frame itself is initialised and
name binders for the invocation's arguments args are pushed onto ES . During this
process, a result stack is associated with this frame and a return RQ is initialised
as applicable . The result of the openNewScope operator is a pointer to the head of

177

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

the return RQ or, in the event that no such queue is required, the (null) pointer
is returned.

- void closeScope (void) . The closeScope operator removes the top-most
frame from ES. It signals the end of the evaluation of a behaviour implementa­
tion. Only the return RQ remains accessible from the frame, which invoked the
behaviour that resulted in the creation of the now closed frame.

- void openNewSubScope (char * name , char * transFlag) . The
openNewSubScope operator places a new sub-frame on top of ES. If a name
argument is supplied , a named sub-frame is created. Named sub-frames are
introduced to better support the evaluation of loop and switch statements in
combination with the BREAK statement .
The transFlag argument sets a transaction flag to the specified value. Transaction
flags assist with the monitoring of operations performed by individual transactions.
Initially, the value of this flag must be initialised to 11 _ __none 1 1 , which indicates that
no transaction is active. Section 5 .3 . 7 will later introduce how this transaction flag
is utilised. In the meantime, all calls of the openNewSubScope operator will simply
pass on the value that is set for the current sub-frame.

- void closeSubScope (void) . The closeSubScope operator removes the top­
most sub-frame from ES. It signals the end of the processing of an evaluation block.

Result queues require a number of maintenance operations that address the release
and destruction of queues as well as operations that assist with the monitoring of their
status:

- void release (q) , where q is a RQ. The release operator relinquishes the
evaluation routine's access rights to q. In the event that the queue q is not accessible
from any evaluation procedure, it is destroyed and its memory is returned to the
heap's free memory area.

- short status (q) , where q is a RQ. The status operator returns a constant
value from a pool of pre-defined queue states. The following constants are supported:

• FILLED � the result queue contains one or more values.
• EMPTY rv the result queue is empty but further values may be added.
• END � the result queue is empty and no further values will be added, e.g. the

sub-evaluation has terminated.

- wai tOn (q) , where q is a RQ. The wai tOn operator monitors the specified request
queue q. It halts processing of the current evaluation procedure until the status of
q changes from EMPTY to any other status.

Initialising Result Queues. Due to the more complex nature of result queues, we
require a special means of initialisation. As previously mentioned , a metadata reference
is associated with every result queue. Accordingly, elements of the queue are maintained.
The declaration of the format of a result queue can be achieved using either of the
following two alternatives:

- An iDBPQL system type can be specified explicitly; or

1 78

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

- A special primitive _ _returnDescriptor rtype (subEvalEdge * edge) ex­
tracts the expected return type information from the current evaluation plan. In­
stead of an sub-evaluation edge and a return descriptor, we may also specify the
argument in the form of an expression that corresponds to the sub-evaluation edge
and receive a pointer to the metadata entry that is synonym to the return descriptor.

Binding Behaviour Names to Evaluation Plans. In addition to binding names to
values, a mechanism that binds the name and arguments of a behaviour invocation
to the corresponding evaluation plan is required. This binding process will involve the
environment stack as well as entries in at least one metadata catalogue. The signatures
of respective binding routines are as follows:

01 _ _ evalPlan * bindTypeOpEvalPlan (__ typelnfo * rttype , char * name ,
02 __ iDBPQLvalue * args []) ; // returns the evaLuation p L an that
03 // corresponds to the spe cified typ e operation invocation on va Lue val
04 evalPlan * bindMethodEvalPlan (_ _ obj ect * obj , char * name ,
05 __ iDBPQLvalue * args []) ; // returns the eva Luation p L an that
06 /1 corresponds to the specifie d method invocation on object obj

The implementation of the bindTypeOpEvalPlan routine is based on the run-time
type associated with the value on which the type operation was invoked and the argu­
ments provided during the invocation.

Analogously, the implementation of the bindMethodEvalPlan routine considers the
run-time class of the object on with the method was invoked and the arguments pro­
vided during the invocation. Similar to modern OOPLs, this method invocation mech­
anism follows the dynamic (single) dispatch approach.

5.3.3 The SYSTEMcal l , PDScall and TMScall Primitives

In addition to stack operations, we utilise three additional primitives during the evalu­
ation process. These primitives allow the invocation of pre-defined routines and unary
and binary operators supplied by the underlying system language, service interface
operations of the persistent object store (refer to Section 5 .2. 1) and service interface
operations of the transaction management system (refer to Section 5 .2 .2) .

The SYSTEMcall Primitive. Common type operators such as arithmetic and logical
operators and pre-defined routines that operate on additional main-memory structures
may be invoked through the SYSTEMcall primitive . The signature of this primitive is
defined as follows:

void SYSTEMcall_sysOpCode (RQ * queue , void * args []) ;

where sysOpCode is either a pre-defined procedure name or an operator defined in
the underlying system. The argument list args [] depends upon the respective proce­
dure or operator that is invoked.

For example, operators that are utilised from the underlying system include those
outlined in Table 4 .2 (on page 64) . A number of pre-defined procedures, which have
been introduced earlier in this chapter, may be invoked. Such procedures include the
getSubClasses, getSuperClasses , isSubClassOf , and isSuperClassOf routines as­
sociated with the inheritance graph structure _ _ dag.

179

5 .3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

The PDScall Primitive. The service interface of the persistent object store (refer to
Section 5 . 2 . 1) supports a variety of operations on storage objects. To utilise any of these
available POS operations, we introduce a special primitive:

void POScall_posOpCode (RQ * queue , void * args []) ;

where posOpCode is a service routine name as defined in the POS interface . The
number and type of the expected arguments depends on the specified operation code.

The POScall primitive abstracts from more physical concepts that have to be dealt
with when using operators as outlined in the service interface of POS. For instance, the
usage of object store access control blocks and mappings of storage objects to stack /
queue objects (and vice versa) are hidden from evaluation procedures. Corresponding
details of the implementation of this primitive are omitted.

The TMScall Primitive. The service interface of the transaction management system
(refer to Section 5 .2 .2) allows for the monitoring of transactions. In particular access,
creation and manipulation of shared objects is ensured to be serialisable and recover­
able. To utilise any of the TMS interface operations, we introduce a special primitive:

void TMScall_tmsOpCode (RQ * queue , void * args []) ;

where tmsOpCode is a service routine name as defined in the interface of the trans­
action management system. The number and type of the expected arguments depends
on the specified operation code.

Similar to the TMScall primitive , the TMScall primitive abstracts from a number of
conversion tasks. For instance, the execute routine defined in Section 5 .2 .2 expects an
operator name and an array of objects on which this operator executes. A corresponding
TMScall primitive will only require a result queue and an evaluation node as arguments.
The result queue is used to return the reply to the request and the evaluation node is
used to extract all necessary arguments to translate a TMScalLexecute call into the
corresponding TMS execute call . Corresponding details of the implementation of this
primitive are omitted.

5.3.4 Overview of the Evaluation Process

The evaluation of a user request is based upon the corresponding evaluation graph. An­
notations, metadata references and services provided by other ODBS components play
an important role during the evaluation process. Before we consider the main evaluation
procedure in greater detail , we will first outline the internal format of machine instruc­
tions and then consider a routine that supports the unnesting of references, collections
and values.

Machine Instructions. Each iDBPQL statement and expression has one or more
different stack-based implementations associated. These implementations are identified
by unique machine instructions or operation codes (of internal type _ _ opCode) . Machine
instructions are specified as annotations (refer to Section 5. 1 . 5) and encode additional
information :

180

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

- The first two characters refer to the type on which the respective machine instruction
may operate. Table 5 .4 outlines a mapping of iDBPQL types to their internal two­
letter representation.
For instance, an operation code ovxxx implies that it can be applied to all ordered
values, i .e . operation codes chxxx, naxxx, inxxx and rexxx are given implicitly
(where xxx represents the remaining portion of the operator code) .

- At the core or centre of the machine instruction, there is the basic operator name.
It appears in upper-case and may include an operator symbol.
For example, the operation code cvWHEREyyy corresponds to a selection opera­
tor that may be performed upon collections or identifiers representing collections
(where yyy is the suffix of the operator code) . In contrast, a machine instruction
that includes an operator symbol is ovUOP++. This code represents the unary post­
increment operator that may be applied to any ordered value. The ovUOP++ instruc­
tion does not have a suffix.

- An optional suffix (in lower case letters) indicates which particular implementation
is to be used.
For instance, both the machine instructions cvFORANYet and cvFORANYpet refer to
the generalised AND operator that are applicable to collection values. The latter
implementation utilises pipelining (as indicated by the letter p) while the former
processes in serial manner.

Abstract iDBPQL Two-Letter iDBPQL Type Two-Letter
Type Representation Representation

atomic_value av ARRAY < > a<
collect ion_val ue CV BAG < > b<
discrete_value dv BOO LEAN bo
numeric_value nv CHAR eh
ordered_val ue QV CLASSDEF c<
reference_value rv EMPTYLIST el
structured_value sv EMPTY SET es

INT in
LIST < > l<

Other Abstract Two-Letter NATURAL na
iDBP Q L Types Representation NULLABLE < > n<
non-reference_value nr REAL re
nullable values nu SET < > s<
type identifiers ti STRING st
class identifiers ci TYPEDEF t<
independent operators XX UNIONDEF u<

VOID vd

Table5.4. Type Information Mapping to Machine Instructions.

Unnesting Objects and Values. As we have outlined previously, the environment
stack captures run-time entities that are available at a given point in time during the

181

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

evaluation procedure. Run-time entities are represented in the form of name binders.
While we have introduced concepts to access, manipulate and maintain entities on ES,
a mechanism to create name binders is still required. To bridge this gap, the unnest
operator, which corresponds to the nested operator in the SBA approach, is introduced
next . This operator pushes object references and values onto ES and ensures that they
are easily identifiable and accessible by binding these values and references to names.

In addition to creating name binders, the unnest operator enables us to move deeper
into an object 's structure, extract members from collections or resolve object identifiers
/ in-memory references. The unnest operator is defined for values and object identifiers
as follows:

unnest
x, xName

EMPTY SET

(n , rt , v

(n , rt , (__obj ect *) o)

(n1 , rt1 , Vt) , . . . ,
(nj , rtj , Vj

? (n , rt 1 , Vt) , . . . ,
(n , rtj , v j) ?

if x is a value-typed __ iDBPQLvalue that
resides on ES;
if x is an __ iDBPQLvalue of type rt and
x resides on RS and has an associated name n
(e.g. denoting a remote or persistent object,
which is identifier by its OlD);
if x is a reference-type __ iDBPQLvalue of the
form (__DID) v or (__obj ect *) v that
identifies object o with associated (run-time)
class n;
if x is a structured reference-type
__ iDBPQLvalue of the form (v1 , . . . , Vj)
with members named n1 , . . . , nj (e. g.
denoting the value of __ obj ect o that has
members named n 1 , . . . , nj) ;
if x is a reference-type __ iDBPQLvalue of the
form ? Vt , . . . , v j ? where ? denotes a bag,
set, list or array collection with an associated
name n or, if xName ! = NULL, n is xName;
and

{ (x , rt1 , if x is an identifier of a collection-class with
(__obj ect *) o1 objects o1 , . . . Oj .
. . . , (x , rtj ,
(__obj ect *) Oj }

If the unnest operator is invoked on a value that is fully unnested and already
resides on ES, no action is taken. If the value does not yet reside on ES, a correspond­
ing binder is added. This is necessary since collection values are returned individually
when pipelining is utilised . Otherwise, object references, structured values and collec­
tions are unnested by placing binders for their corresponding structural members or
collection members, respectively on ES. In the event that a collection-class identifier is
encountered, a set of binders for all collection members (including those of sub-classes)
are added to ES. This means that access to remote ODBS instances, the local persis­
tent object store and deep extents that are associated with run-time classes may be
necessary.

Besides unnesting iDBPQL values and identifiers, the support of collection classes
requires their class identifiers to be represented on the environment stack. Thus, the
unnest operator is extended to extract the respective information from entries in the

182

5.3 . THE EXECUTION OF EVALUATION PLANS

DBS and run-time metadata catalogues:

unnest (x , xName) = (x . classes [1] . _ _ name , x . classes [1] , r1) , . . . ,

Markus Kirchberg

(x . classes [x . __ classCount] . __ name , x . classes [x . _ _ classCount] , r x ._classCount)

where x represents a __ schemalnfo or _ _rtEntryinfo structure, and xNAME is NULL.
The actual number of binders is smaller or equal to x . __ classCount since binders are
added only for collection-classes. Concrete and abstract classes do not require their
names to be present on ES.

In addition, the unnest operator may be applied to the whole DBS metadata
catalogue . Let x represent the collection of all persistent database schemata, i .e . the
__ dbsMetaDataCatalogue structure. Then, the unnesting is executed by invoking
unnest (__ dbsMetaDataCatalogue . _ _ schemata , NULL) . For efficiency reasons, this
unnesting step is outsourced to the optimiser. A list of binders that associates each
schema's name with an internal reference to the respective __ schemainfo structure
is maintained. Accordingly, textual references to schema names are replaced by their
internal references. Thus, the global environment on ES does not need to include a list
of all known schemata, only those it requires during processing.

As previously mentioned, there are two internal representations of references. On
one hand, we have main memory pointers, which are applicable only to iDBPQL entities
that reside in the local heap. On the other hand, object identifiers are used to represent
references to objects that do not reside in the local heap. Instead, such objects may
reside on an external storage device, in the object store's main memory pool or on
a remote ODBS instance. A collection of values of a reference-type may consists of a
mixture of both types of references . Accordingly, the implementation of the unnesting
routine must be able to deal with the following four cases:

- Access by main memory pointers. This is the most efficient means of access . We
only have to follow the pointer to obtain the respective object .

- Access by OlD with a corresponding __ class info structure that resides in the local
DBS metadata catalogue. Thus, the referenced object resides on a local, external
storage device or in the local object store's main memory pool . In either case, object
access is governed by the object store and requires the usage of the special POScall
primitive as introduced above. Access by OlD is t ranslated into direct access using
POS's Retrieve operation.

- Access by OlD with a corresponding __ class lnfo structure that originates from a
remote ODBS instance. This situation is encountered when accessing distributed
objects. Corresponding details are discussed in Section 5 .3 . 10 . In short, unnesting
a remote object will result in the object being (temporarily) migrated to the local
ODBS node. Migrated objects are maintained in a separate object store, which is
part of the remote communication module.

The Main Evaluation Routine. The semantics of iDBPQL statements, expressions
and various keywords can be expressed in a number of ways, e .g . in the form of ax­
iomatic, denotational or operational semantics. Axiomatic semantics are based on a
formal logic, in particular the first order predicate calculus. Denotational semantics

183

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

are based on recursive function theory and can be considered as the most abstract
semantics description method. Operational semantics provide meaning of keywords,
operators, expressions, statements, type operations and methods in terms of their im­
plementation on a real machine [1 16 , 137] . Having practicability in mind, we adopt
the latter approach and present the meaning of iDBPQL statements, expressions and
various keywords in the form of operational semantics.

From an operational perspective, the main evaluation routine can be regarded as
a recursive execution unit that takes a syntactical iDBPQL entity as its argument.
An evaluation routine operates on an evaluation plan and processes according to the
information associated with the plan's edges and nodes. As we have seen already, an
evaluation plan is given in the form of a graph where directed edges represent the
execution flow and undirected edges indicate sub-evaluations . The style of evaluation
can be described as depth-first traversal where undirected edges are given priority over
directed edges. During evaluation procedures, side effects that affect ES, RS or RQ may
occur. While some of these side effects only impact on local transient data, other side
effects affect shared data. The latter requires particular attention in a DB environment
where data consistency has to be enforced.

iDBPQL supports different styles of processing. Accordingly, different means of eval­
uation routines are supported. Serial execution, internal multi-threading, user-enforced
concurrency and distributed processing are utilised. As a result, there is one main eval­
uation routine that has three main sub-routines. Corresponding details are as follows:

prevScope

"'

�

Environment Stack

: M : . N ' • : l : "' : : :;:; :
' .c ' ' :! ' ' " '
' f- ' . _.2 • • � ' · · ; F ' · � · 3) q7 = evalMu l t i ES (rqMERGEp q5 , q6)

m, (int) 5 � · · : ' �· ·
-:t' ---1-1- 2) q5 = evalMu l t i ES (rqMERGEp q3 , q4)

my, LOID) 8 :. - - : : 1) q3 = evalMu l t iES (rqMERGEp ql , q2)
myt, LOID) 65 : • . :

myth, LOID) 1 33 Visibility of Threads:

Sub-Frame - Thread 1 may bind name myth and all names below myth

- Thread 2 may bind names myth and myt and all names below myth

- Thread 3 may bind names myth, myt and my and all names below myth Sub-Frame

- The main evaluation routine may bind all names on ES (except those that "' - - - - - - - - - - - -
� local to the individual threads)

Sub-Frame

Sub-Frame - Thread I has access to result queues q l , q2 and q3

- Thread 2 has access to result queues q3, q4 and q5

- Thread 3 has access to result queues q5, q6 and q7

Global Environment - The main evaluation routine has access to result queues q l , . . , q7

F ig. 5 .7. Logical View of the Effects of evalMultiES () Evaluation P rocedures on ES.

- void eval (RQ * rq , EVALnode * eNode) . . . is the main evaluation routine.
At the beginning of the processing of a new user request, the root node of the
main evaluation plan is passed as second argument. This main evaluation routine
performs processing in serial manner but may utilise any of the other three multi-

184

5 .3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

threaded or distributed styles of processing.
- void evalMul t iES (RQ * rqOut , _ _ opCode opCode , RQ * rqs ln []) . . . is the

only main sub-evaluation routine that is solely used to make internal processing
more efficient . Hence, a low-level machine instruction together with an array of
arguments (i .e . result queues) are passed as parameters. Once invoked, the specified
machine code is processed as a separate execution thread.
The evalMul t iES routine does not create a new frame or sub-frame on ES. Instead,
it splits the current sub-frame in two parts: One part is used for the main evaluation
stream to continue its processing and the other for its own processing. This splitting
approach allows both parts of the sub-frame to share the same scope . Figure 5. 7
demonstrates this approach. Three different sub-evaluations are performed in the
same sub-frame. Among others, operational semantics for the ORDER BY expression
utilised this style of processing.
However, sharing the same scope imposes a number of restrictions on the type of
sub-evaluations that may be Mul tiES-threaded. Such restrictions include:

• Service routines not accessing environment variables other than those defined
within the routine may safely be Mul tiES-threaded.

• Modification of global or shared variables is not permitted from within MultiES­
threads. However, local variables (e.g. a counter of collection elements) defined
in the same frame may be modified.

Thus, Mul t iES threading is mainly utilised to implement a simultaneous version of
the particular machine code.

- vo id evalThreaded (RQ * rq , EVALnode * eNode) is a main sub-
evaluation routine that branches the processing of an execution stream into
multiple execution streams according to processing annotations that are encoun­
tered when traversing the evaluation graph. Again, multi-threading is utilised .
In contrast to Mul t iES-threaded processing, the ES associated with the original
execution stream is cloned and a copy is given to each thread . Threads then continue
processing independently according to the evaluation graph until they rejoin the
original execution stream or terminate.
The eval Threaded routine is used to delegate sub-evaluations or execute mul­
tiple statements concurrently as indicated by INPEDENDENT DD . . . ENDDD and
CONCURRENT DO . . . END DD blocks.

- void evalDistributed (RQ * rq , EVALnode * eNode) . . . is the last main sub­
evaluation routine. It is similar to eval Threaded but processing continues on a
remote ODBS node instead of another thread .

In order to demonstrate the recursive nature of the evaluation process, we revisit
the sample evaluation graph as shown in Figure 5 . 1 (on page 143) . Figure 5 .8 indicates
the corresponding traversal order (assuming that both IF statements execute the THEN
clause) . init: indicates that necessary scopes on ES, result stacks and all required result
queues are initialised . Evaluation commences once the first leave is reached . Subse­
quently, we backtrack until another unvisited sub-evaluation edge or control flow edge
is encountered. During backtracking those evaluation nodes, which have no unvisited
edges remaining, are processed (as indicated by the eval: prefix) .

185

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

lft'l 111!1 111!1 1111 eval: 11!1 eval : IlD
init: 111.&1 - init: IW::II - init: .w:11 -c·nit: � , . , . , -

', pipe ', pipe ' , __j · · 1111!1 tmt: .w:11 f---- ---=-i
· evaiThreaded: Ill

eval: IlD

�----------�* 1 t�----------� L eval: INI!I eval: � . . � eval: lliJ J
in it: IlD 1 11611 • 1111:11 mlt: 111.11 t-' --==-j

eval: miJ eval: Ill
· init: Ill - init: miJ t---='----i t----'=---j

eval: m eval: m • · · · init: m - init: lll r---='----1 •-----'=---j

evai: mJ

eval: m

eval: 1111 . . lliJ m 1------==-_, tmt: - init:

. . m eval: m m mtt: 1-----'=-J - init:
evai: II

Fig. 5.8 . Overview of the Evaluation Process of the verifyEnrolment Method from Figure 5 . 1 .

5 .3 .5 Maintaining the Run-Time Environment

Garbage collection is the main challenge that has to be addressed when considering the
maintenance of the run-time environment. Persistent objects are of little concern. They
can always be retrieved from persistent storage if they have been cached out. Transient
objects, however, must only be garbage-collected if they are no longer required but as
soon as possible to conserve main memory space.

Since name-based access to class instances is permitted, object references alone can
no longer be used to determine whether or not an object is still accessible . Instead, in­
memory structures that are associated with classes are utilised to determine the point
in time at which an object is garbage-collected. iDBPQL supports collection-classes
and collection-less classes. Instances of collection-less classes can be garbage-collected
in the usual manner since name-based access is not supported. Thus, only instances of
collection-classes may cause difficulties. In order to enable efficient access to all instances
of a class (and its sub-classes) , two special in-memory structures are maintained with
each collection-class. These structures are shallow and deep extents. A shallow class
extent contains references to all instances of the respective class. In turn, a deep class
extent is a collection of object references of the respective class together with references
to all instances of sub-classes (which must also be collection-classes) .

Supporting shallow and deep extents alone is not sufficient for garbage collection. In
addition, some run-time properties of the stack-based evaluation must be utilised. As
mentioned above, the environment of a particular evaluation contains name binders for
all collection-classes that are in scope. Such binders are always found at the beginning
of a frame on ES. This together with the fact that a recursive evaluation approach
is followed, enables us to define a garbage collector. Recursive evaluation means that
those name binders at the beginning of a frame are only removed once processing of the
corresponding evaluation plan terminates . Thus, garbage collection may be achieved as
follows:

- Objects that are instances of collection-less classes are garbage-collected if it is no
longer referenced. In addition, an object can be discarded if it is involved in a cycle
of references where all involved objects have no other references associated other
than those that form the cycle .

186

5.3 . THE EXECUTION OF EVALUATION PLANS Mar kus Kirchberg

- Objects that are instances of collection-classes are garbage collected if no more name
binders to the object's class or any of its super-classes exists in the REE stack area.

5 . 3.6 Evaluating Individual Statements and Expressions

First, we consider operational semantics that describe the evaluation procedure for in­
dividual iDBPQL statements and expressions. For most statements and expressions
that have been introduced in Sections 4 .3 .4 and 4 .3 .5 , we will start off outlining a basic
algorithm. Subsequently, enhanced operational semantics are discussed for a number
of machine instructions that utilise multi-threaded processing. It is our intention to
demonstrate how to enhance processing by providing alternative implementation ap­
proaches for the same iDBPQL statement , expression or keyword . However, a complete
description of the language implementation is beyond the scope of this thesis.

Simple Expressions: Literals and Names. The evaluation of literals and simple
names (i .e . identifiers) does not affect the state of the environment stack. In the event
that a literal is encountered, the value is simply pushed to the result queue and the
evaluation terminates. The corresponding portion of the evaluation routine is as follows:

0 1
0 2 else i f (EVALnode . code i s recognised as a l i t era l v) { / / parse condi t ion
03 push (RQ , v) ; // re turn the l i t era l va lue
04 }
05

While the evaluation of literals does not involve the ES , the evaluation of simple
names accesses the ES, but does not modify its state . Evaluating simple names results
in a search of the ES until the first binder, which has a matching name, is found.
Subsequently, the entity associated with the binder is added to the result queue RQ.

10
1 1 else if (EVALnode . code is recognised as a simp l e name n) {
12 binder * x ; / / ini t i a l is e a pointer t o a name binder
1 3
14
15
16 }
1 7

x = bind (ES , n) ;
push (RQ , x . e) ;

// b ind the given name
/1 re turn the va lue associated wi th the binder

If no matching binder is found on the environment stack, an exception occurs.
The evaluation of qualified names is discussed later since it already involves more so­

phisticated concepts such as navigation, projection, the examination of multiple scopes,
knowledge about super-classes and multiple inheritance etc.

Object Identifiers and Stacks. Object identifiers are an internal concept. Thus, they
may never be returned as part of a result answering a user request . However, this does
not mean that all result values / objects have to be present in main memory. Let us
assume that a result corresponds to a collection of objects (i .e. a collection of references
to objects) . Internally, this may be represented as a collection of object identifiers. In

187

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

the event that an object of this collection is accessed, the run-time environment ensures
that the respective object is made available in main memory. In the worst case, this
results in object migration or a direct access to the persistent object store, which
retrieves the respective object based on its unique OlD.

The rationale behind returning object references over objects includes memory con­
sumption considerations, shared object access and efficiency reasons such as the fact
that not all operations require access to the object. For instance, equality between two
objects can be decided by examining the respective OIDs. Objects are only loaded into
main memory when access to its features is required.

Expressions with Unary and Binary Operators. iDBPQL contains a large number
of pre-defined unary and binary operators over simple expressions. These operators are
defined in the iDBPQL library and associated with system types. Considering unary op­
erators, they are of the form : operator expression or expression operator, where
the result of the expression must be compatible with at least one of the types for which
the operator is defined. The evaluation of such an expression is shown next:

0 1
02 else if EVALnode . code is recognised as the unary operator op on an
03 expression exp) {
04 rtype exp) RQ1 ; 11 ini t i a L ise a resu L t queue that can ho Ld the
05 11 va Lue , which wi L L resu L t from the evaLuation of expression exp
06 eval (RQ1 , exp) ; I I eva Lua t e expression exp
07 SYSTEMcall_op (RQ , head (RQ1)) ; 11 invoke the unary operat or
08 release (RQ1) ; 11 re L e ase the auxi L i ary resu L t queue
09 }
10

Examples of such unary operators (together with their respective machine codes)
include pre-incrementation (i .e . ov++UOP) , post-incrementation (i .e . ovUOP++) , pre­
decrementation (i .e . ov--UOP) , post-decrementation (i .e. ovUOP--) and the logical NOT
operator (i .e . boNOT) .

Furthermore, there are a large number of pre-defined binary operators. Their com­
mon format is expression1 operator expression2 . Binary operators can be grouped
in various ways. On one hand, we can distinguish arithmetic operators, assignment op­
erators, mixed arithmetic and assignment operators, equality and relational operators,
logical operators, bit-manipulating operators, and mixed bit-manipulating and assign­
ment operators. On the other hand, binary operators can be organised according to
their effects (or lack of it) on the environment stack. Operators with side effects include
assignment operators and other operators that are mixed with assignment operators.
The remaining types of operators mentioned above do not have side effects.

Independent of the fact whether or not an operator has side effects , the evaluation
of binary operators is performed as follows:

20
21 else if EVALnode . code is recognised as the binary operator op on
22 expressions exp1 and exp2) {
23 rtype exp1) RQ1 ;
24 rtype exp2) RQ2 ;

188

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

25
26
27
28
29
30

eval (R01 . exp1) ;
eval (RQ2 , exp2) ;
SYSTEMcall_op (RQ ,
release (R02) ;
release (R01) ;

11 eva Lua t e expressi on exp1
11 eva Lua t e expressi on exp2

head (RQ1) , head (RQ2)) ; 11 invoke b inary operat or

3 1 }
3 2

Operation Code

avBOP==
stBOP==
nvBOP==
avBOP ! =
stBOP ! =
nvBOP ! =
avBOP<
stBOP<
nvBOP<
avBOP<=
stBOP<=
nvBOP<=
avBOP>=
stBOP>=
nvBOP>=
avBOP>
stBOP>
nvBOP>
ovBOP+
nvBOP+
ovBOP-
nvBOP-

Comment

== for atomic values
== for String values
== for NULLable values
! = for atomic values
! = for String values
! = for NULLable values
< for atomic values
< for String values
< for NULLable values
<= for atomic values
<= for String values
<= for NULLable values
>= for atomic values
>= for String values
>= for NULLable values
> for atomic values
> for String values
> for NULLable values
+ for ordered values
+ for NULLable values
- for ordered values
- for NULLable values

Operation Code Comment

ovBDP* * for ordered values
nvBDP* * for NULLable values
ovBOPI I for ordered values
nvBOPI I for NULLable values
ovBOP% Modulus for ordered values
nvBOP% Modulus for NULLable values
avBOP&& Logical AND for atomic values
nvBOP&& Logical AND for NULLable values
avBOP I I Logical OR for atomic values
nvBOP I I Logical OR for NULLable values
avBOP& Bitwise AND for atomic values
nvBOP& Bitwise AND for NULLable values
avBOP I Bitwise OR for atomic values
nvBOP I Bitwise OR for NULLable values
avBOP- Bitwise XOR for atomic values
nvBoP- Bitwise XOR for NULLable values
avBOP« Bitwise « for atomic values
nvBOP« Bitwise « for NULLable values
avBOP» Bitwise » for atomic values
nvBOP» Bitwise » for NULLable values
avBQP....., Bitwise, for atomic values
nvBQP....., Bitwise, for NULLable values

Table5 . 5 . Overview of Machine Instructions for Binary Expressions without Side Effects.

Table 5 .5 outlines common expressions with binary operators and their respective
machine instructions. Only those operators, which do not have side effects, are listed .

Considering, for example, the equality operator, sub-typing permits the comparison
of a Natural value with an Integer value. Such a comparison would be invoked using
the inBOP== operator and two Integer values as arguments. The first argument results
from a NAT-to-INT type conversion while the second value is already of type INT.

In the event that an operator has side effects, the state of ES changes after the
SYSTEMcall has been executed. For instance, consider the assignment operator. It
changes the value of the variable identified by expression exp1 and returns an empty
result queue. If this variable holds a persistent value, further actions are taken. In ad­
dition, the assignment operator would have to be executed as part of a transaction.
Corresponding details are addressed separately when transaction support is discussed

1 89

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

Assignment Expression Operation Code Comment

exp1 = exp2 xxBOP= Assignment operator for all values
exp1 += exp2 ovBOP+= += operator for ordered values
exp1 += exp2 nvBOP+= += operator for NULLable values
exp1 - exp2 ovBOP-= -= operator for ordered values
exp1 - exp2 nvBOP-= -= operator for NULLable values
exp1 *= exp2 ovBDP*= *= operator for ordered values
exp1 *= exp2 nvBOP*= *= operator for NULLable values
exp1 I= exp2 ovBOPI= I= operator for ordered values
exp1 I= exp2 nvBOPI= I= operator for NULLable values
exp1 %= exp2 ovBOP%= %= operator for ordered values
exp1 %= exp2 nvBOP%= %= operator for NULLable values
exp1 &= exp2 ovBOP&= &= operator for ordered values
exp1 &= exp2 nvBOP&= &= operator for NULLable values
exp1 I = exp2 ovBDP I = I = operator for ordered values
exp1 I = exp2 nvBDP I = I = operator for NULLable values
exp1 exp2 ovBOP-= � operator for ordered values
exp1 exp2 nvBOP-= � operator for NULLable values

exp1 <<= exp2 ovBOP<<= <<= operator for ordered values
exp1 <<= exp2 nvBOP<<= «= operator for NULLable values
exp1 =>> exp2 ovBOP=>> =>> operator for ordered values
exp1 =>> exp2 nvBOP=>> =» operator for NULLable values

Table5 . 6 . Overview of Machine Instructions for Assignment Expressions with Side Effects .

below.
Table 5 .6 summarises all assignment expressions together with their respective ma­

chine instructions.

Boolean Expressions. Evaluation procedures for unary and binary operators also
apply to boo lean expressions as outlined in Syntax Snapshot 4 . 18 (on page 109) . Only
difference being the result type. We only refine the evaluation procedure for quantifier
expressions and IS*DF expressions. Remaining boolean expressions (as outlined in Table
5. 7) are easy to derive from the operational semantics presented in this section.

The EXISTS quantifier is of the form EXISTS exp (boolExp) . First , the expression
exp is evaluated. Subsequently, for each result value, the boolean condition is consid­
ered . Evaluation terminates as soon as the first positive match is found. Corresponding
operational semantics are as follows:

001
002 11 OpCode : cvEXISTSet � boo L ean EXISTS wi th earLy t ermination
003 else if (EVALnode . code is recognised as boo L ean expressi on cvEXISTSet exp
004 (boolExp)) {
005 boolean RQ1 ; 11 ini t ia L ise a resu Lt queue that ho Lds a Boo L ean vaLue
006 rtype (exp) RQ2 ;
007
008
009

push RQ1 , FALSE) ;
eval RQ2 , exp) ;

11 defau L t resu L t vaLue
11 eva luate the co L L e c t i on expression

190

5 .3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

Boolean Expression

exp1 IN exp2
exp1 ISSUBTYPEOF exp2

exp1 ISSUBCLASSOF exp2
exp1 ISINSTANCEOF exp2

exp IS NULL
exp IS NOT NULL

EXI STS exp (boolExp)

FOR ANY exp (boolExp)

Machine Instructions

cviSIN
t i iSSUBTYPE
c i iSSUBCLASS
c i iSINSTANCE

nuiSNULL
nuNOTNULL
cvEXISTSet
cvEXISTSpet

cvFORANYet
cvFORANYpet

stLIKE

Comment

is-member-of-collection test
is-sub-type-of test
is-sub-class-of test
is-instance-of test
has NULL value test
has value other than NULL test
generalised OR with early termination
generalised OR with pipelining and
early termination
generalised AND with early termination
generalised AND with pipelining and
early termination
pattern matching form String values

Table5. 7. Overview of Additional Boolean Expressions and their Machine Instructions.

010 while ((top (RQ1) == FALSE) && (empty (RQ2) == FALSE)) {
0 1 1 push (ES , unnest (top (RQ2))) ; 11 process next co L L ec t ion vaLue
012 eval (RQ1 , boolExp) ; 11 t est the boo L ean condi t ion
013 if (top (RQ1) == TRUE) { 11 was t es t successfu L ?
0 14 push (RQ , TRUE) ; 11 if successfu L , wri t e resu L t vaLue and
015 } 11 ini t i a L is e t erminat ion
016 pop (ES) ; 11 remove current c o L L ect ion vaLue from s cope
017 pop (RQ2) ; 11 discard intermediate resu L t
018 }
0 19 if (empty (RQ) == TRUE) { 11 were a L L t es t unsuccessfu L ?
020 push (RQ , top (RQ1)) ; 11 if so , return negat ive resu L t
021 }
022 release (RQ2) ;
023 release (RQ1) ;
024 }
025

To further enhance performance of the evaluation of the EXISTS quantifier, simul­
taneous processing can be utilised. Simultaneous execution is synchronised through a
pipeline (i .e . a result queue) . Corresponding operational semantics are as follows:

030
031 11 OpCode : cvEXISTSpet � boo L ean EXISTS with pip e L ining and earLy
032 11 t ermination
033 else if (EVALnode . code is recognised as boo L ean expression cvEXISTSpet exp
034 (boolExp)) {
035 rtype exp) RQ1 ;
036
037

boolean RQ2 ; 11 ini t ia L ise a resu L t queue that ho L ds a Boo L ean vaLue

038 evalThreaded (RQ1 , exp) ; 11 ini t ia L ise concurrent evaLua t i on; resu L ts
039 I I are re turned via RQ1
040 push (RQ2 , FALSE) ; 11 defau L t resu L t vaLue
041 while ((top (RQ2) FALSE) && (state (RQ1) ! = END)) {

191

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

042
043
044
045
046
047
048
049
050
051
052
053
054
055

while (state (RQ1) == EMPTY) {
waitOn (RQ1) ; /1 wai t for next resu L t (s)

}
push (ES , unnest (top (RQ1
eval (RQ2 , boolExp) ;

))) ; /1 process next co l lection va lue
/1 test the boo L ean condi t i on

// was t es t successfu L ?
// if successfu L , wri t e resu L t value and

// ini t i a L ise terminat ion

}

if (top (RQ2) == TRUE) {
push (RQ , TRUE) ;

}
pop (ES) ;
pop (RQ1) ;

if (empty (RQ) == TRUE) {
push (RQ , top (RQ2)) ;

}
056 release RQ2) ;
057 release RQ1) ;
058 }
059

/1 remove current c o L L ec t ion va Lue from scope
/1 discard int ermediate resu L t

/ / were a L L t es t unsuccessfu L ?
// if so , return negative resu L t

Similarly, the FOR ANY quantifier is supported by two implementations: One with
and the other without pipelining. In both cases, the algorithm terminates as soon as
the first boolean expression is evaluated to FALSE. Corresponding operational semantics
are as follows:

060
061 // OpCode : cvFDRANYet � boo Lean FOR ANY wi th earLy t erminat ion
062 else if (EVALnode . code is recognised as boo L ean expression cvFORANYet exp
063 (boolExp)) {
064 boolean RQ1 ;
065 rtype (exp) RQ2 ;
066
067 push (RQ1 , FALSE) ; // defau L t resu L t vaLue
068 eval (RQ2 , exp) ; // eva Luate the co L L e c t ion expressi on
069 while ((empty (RQ) TRUE) && (empty (RQ2) == FALSE)) {
070 push (ES , unnest (top (RQ2))) ; // process next co L L ect ion va Lue
071 eval (RQ1 , boolExp) ; // t est the boo L ean condi t i on
072 if (top (RQ1) == FALSE) { // was t es t successfu L ?
073 push (RQ , FALSE) ; // if no t , wri te resu L t va Lue
074 }
075
076
077
078
079
080

}

pop (ES) ;
pop (RQ2) ;

if (empty (RQ)
push (RQ , TRUE) ;

}
081 release RQ2) ;
082 release RQ1) ;
083 }
084

/1 remove current c o L L ec t ion va Lue from scope
// discard int ermediate resu L t va Lue

TRUE) { // were a l L t ests successfu l ?
1 1 if so , return posi t ive resu L t

085 // OpCode : bFORANYpet � boo L ean FOR ANY with p ip e L ining and earLy
086 /1 t ermination
087 else if (EVALnode . code is recognised as boo L e an expression bFORANYpet exp
088 (boolExp)) {

192

5.3. THE EXECUTION OF EVALUATION PLANS

089 rtype (exp) RQ1 ;
090 boolean RQ2 ;
091

Markus Kirchberg

092 evalThreaded (RQ1 , exp) ; 11 ini t i a l ise concurrent eva luat ion; resu l ts
093 I I are returned via RQ1
094 push (RQ2 , FALSE) ; I I defau l t resu l t value
095 while ((empty (RQ) = = TRUE) && (state (RQ1) ! = END)) {
096 while (state (RQ1) == EMPTY) {
097 waitDn (RQ1) ; 11 wai t for next resu l t (s)
098 }
099
100
101
102

push (ES , unnest (top (RQ1))) ;
eval (RQ1 , boolExp) ;
if (top (RQ2) == FALSE) {

push (RQ , FALSE) ;
103 }

11 process next co l l e c t ion value
11 t est the boo l ean condi t i on

11 was t es t successfu l ?
1 1 if no t , wri t e resu l t value

104
105
106
107
108

pop (ES) ;
pop (RQ1) ;

11 remove current co l l ec t ion value from scope
11 discard intermediate resu l t value

}
if (empty (RQ) TRUE) {

push (RQ , TRUE) ;
11 were a l l tes ts successfu l ?

1 1 if so , return pos i t ive resu l t
109 }
110 release (RQ2) ;
1 1 1 release (RQ1) ;
1 1 2 }
1 13

Other boolean expressions include sub-type , sub-class and instance-of tests. The
respective operational semantics rely on system routines that examine metadata entries
and / or auxiliary structures maintained together with metadata catalogues.

120
121 11 OpCode : t i iSSUBTYPE � b o o l ean ISSUBTYPEOF
122 else if (EVALnode . code is recognised as b o o l ean expression exp1 ISSUBTYPEDF
123 exp2) {
124 rtype exp1) RQ1 ;
125 rtype exp2) RQ2 ;
126
127 eval (RQ1 , exp1) ; 11 eva luate l eft-hand s i de expression
128 eval (RQ2 , exp2) ; 11 eva luate right-hand s i de expression
129 systemCall_isSubTypeOf (RQ , head (RQ1) , head (RQ2)) ; 11 ut i l ise
130 release (RQ2) ; 11 pre-defined rout ine
131 release (RQ1) ;
132 }
133
134 11 OpCode : ciiSSUBCLASS � b o o l ean ISSUBCLASSOF
135 else if (EVALnode . code is recognised as b o o l ean expression exp1 ISSUBCLASSOF
136 exp2) {
137 rtype (exp1) RQ1 ;
138 rtype (exp2) RQ2 ;
139
140 eval (RQ1 , exp1) ; 11 evaluat e l eft-hand s i de expression
141 eval (RQ2 , exp2) ; 11 eva lua t e right-hand s i de expression
142 SYSTEMcall_isSubClassDf (RQ , head (RQ1) , head (RQ2)) ; 11 uti l ise
143 release (RQ2) ; 11 pre-defined rout ine

193

5.3 . THE EXECUTION OF EVALUATION PLANS

144 release (RQ1) ;
145 }
146

11 OpCode : 147
148
149
150
151
152

else if (

rtype
rtype

ciiSINSTANCE � boo L ean ISINSTANCEOF
EVALnode . code is recognised as boo L ean
exp2) {
exp1) RQ1 ;
expz) RQz ;

Markus Kirchberg

express i on exp1 ISINSTANCEOF

153 eval (RQ1 , exp1) ; 11 eva Luate L eft-hand side expression
154 eval (RQz , expz) ; 11 eva Luate right-hand side expression
155 SYSTEMcall_isSubClassOf (RQ , ((__ obj ect *) head (RQ1)) . _ _ class ,
156 head (RQz)) ; 11 u t i Lise pre-defined rout ine
157 release RQ2) ;
158 release RQ1) ;
159 }
160

Renaming Expressions. iDBPQL supports two renaming expressions. These are the
AS and the GROUP AS expressions. An exp GROUP AS id expression is processed simply
by evaluating the expression exp and then adding a new binder to ES. The binder
consists of the identifier as name, the type of the value and the value, which results
from exp's evaluation, as entity.

The evaluation of an exp GROUP AS id expression is more complex. For non­
collection values, there is no difference between a GROUP AS and an AS expression .
However, for collection values, the renaming does not apply to the collection object
itself but to its members. Thus, evaluation is performed by unnesting the value de­
noted by the expression exp and then followed by renaming all collection members.
Corresponding operational semantics are as follows:

01
02 11 OpCode : xxGROUPAS � renaming
03 else if (EVALnode . code is recognised as renaming expression exp GROUP AS
04 id) {
05 rtype exp) RQ1 ;
06
07 eval (RQ1 , exp) ;
08 push (ES , (_ _ binder) (id , typeOf (head (RQ1)) , head (RQ1))) ;
09 release (RQ1) ;
10 }
1 1
12
13
14
15

else if
rtype

I I OpCode : xxAS � renaming
EVALnode . code is recognised as renaming expression exp AS id) {
exp) RQ1 ;

16 eval (RQ1 , exp) ;
17 if (head (RQ1) is a vaLue of a reference-type) {
18 push (ES , unnest (head (RQ 1) , id)) ; 11 unnest co L L e c t i on;
19 } I I assign id as name
20 else {
2 1 push (ES , (_ _ binder) (id , typeOf (head (RQ1)) , head (RQ1))) ;
22 }

194

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

23 release (RQ1) ;
24 }
25

One usage of the AS renaming expressions is that of a cursor in loops such as the
FOR EACH loop. To enable such a loop to access one collection value after the next, the
bindCrsNext stack operator is utilised.

Accessing Data Objects. There are various ways to how objects and values can be
accessed. First , there is a special means of access to all instances of a particular class.
This access by class name is based on the previously introduced unnest operator: .

001
002 11 OpCode : cvCNAME n � object access through c L ass-co L L ec t i on n

003 else if (EVALnode . code is recognised as name-based access to
004 c L ass-co L L ec t ion cvCNAME n) {
005 binder * x ;
006
007
008
009
010
011 }
012

x = bind ES , n) ;
push (ES , unnest (x . e , NULL)) ;
push (RQ , top (ES)) ;
pop (ES) ;

I I find b inder on ES
11 unnest c L ass-co L L e c t ion

11 push references t o resu L t
1 1 return ES t o previ ous s t a t e

Similarly, access by reference, i . e . through a variable holding an object reference, or
by object identifier is executed in a similar manner:

020
021 11 OpCode : rvNAME � object access through reference
022 else if (EVALnode . code is recognised as access through a variab L e of
023 a reference-type rvNAME v) {
024 _ _ binder * x ;
025
026
027
028
029
030
031
032
033
034
035
036

}

x = bind (ES , V) ;
push (ES , unnest (x . e , NULL)) ;
push (RQ , top (ES)) ;
pop (ES) ;

11 OpCode : rvOID � object access through DID
else if (EVALnode . code is recognised as access

push (ES , unnest (aid , NULL)) ;
push (RQ , top (ES)) ;
pop (ES) ;

037 }
038

I I find b inder on ES
11 unnest reference va Lue

11 push references to resu L t
1 1 return ES to previous s t a t e

by identifier rvOID aid) {
11 unnes t object

11 push references t o resu L t
1 1 return ES t o previ ous s t a t e

While the first three variations on data access always return all objects within
a particular collection , specifying a selection with a WHERE clause returns only those
objects that also match the boolean expression . Let us consider operational semantics
of a basic selection algorithm:

195

5.3. THE EXECUTION OF EVALUATION PLANS

040
041 // OpCode : cvWHERE 3:' s e l ec t ion

Markus Kirchberg

042 else if (EVALnode . code is recognis ed as se lect ion exp cvWHERE boolExp) {
043 rtype (exp) RQ1 ;
044 rtype (boolExp) RQ2 ;
045
046
047
048
049
050
051

eval (RQ1 , exp) ;
while (empty (RQ1) == FALSE) {

push (ES , unnest (top (RQ1))) ;
eval (RQ2 , boolExp) ;
if (top (RQ2) == TRUE) {

push (RQ , top (RQ1)) ;
052 }
053 pop (RQ2) ;
054 pop (ES) ;
055 }
056 pop (RQ1) ;
057 }
058

11 eva luate co l l ect ion expression
/1 for each va lue do

11 add value t o ES
11 t e s t b oo l ean expressi on

// if true, add t o resu l t

A more efficient evaluation may be achieved through pipelining. Based on the ap­
proach used for quantifiers, selection can also be achieved by utilising simultaneous
processmg:

060
061 // OpCode : cvWHEREp 3:' s e l ec t i on wi th pip e l ining
062 else if (EVALnode . code is recognised as s e l ec t ion exp cvWHEREp boolExp) {
063 rtype (exp) RQ1 ;
064 rtype (boolExp) RQ2 ;
065
066
067
068
069

evalThreaded (RQ1 , exp) ;
while (state (RQ1) ! = END) {

while (state (RQ1) == EMPTY) {
waitOn (RQ1) ;

070 }
071 push (ES , unnest (top (RQ1))) ;
072 eval (RQ2 , boolExp) ;
073 if (top (RQ2) == TRUE) {
074 push (RQ , top (RQ1)) ;
075 }
076 pop (RQ2) ;
077 pop (ES) ;
078 }
079 pop (RQ1) ;
080 }
081

// wai t for next resu l t (s)

Direct access and selection always return collections of a whole type or class . How­
ever, we might only be interested in one or more members of a particular type or class.
The projection operator supports such a means of access:

090
091 // OpCode : cvPROJ exp1 . exp2 � projection or one-s tep navigation

196

5 .3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

092
093
094

else if
rtype

EVALnode . code is recognised as projec t ion cvPROJ exp1 . exp2) {
exp1) RQ1 ;

095 eval (RQ1 , exp1) ;
096 while (empty (RQ1) == FALSE) {
097 push (ES , unnest (top (RQ1))) ;
098 eval (RQ , exp2) ;
099 pop (ES) ;
100 }
101 pop (RQ1) ;
102 }
103

Let us consider a first example, which also indicates how the evaluation of multiple
expressions will be performed .

EXAMPLE 5 . 6 . Again, we consider the university application. Similar to the boolean
expression specified in the IF statement in Example 4 .26 (lines 23 and 24) , we will
consider the evaluation of a slightly simpler expression:

FOR ANY (RecordC WHERE (THIS . student == student))
(result IN { "A+" , "A" , " A- " , "B+" , "B " , "B-" , "C+ " , "C " })

This expression only evaluates to TRUE if the student has passed all his / her associated
courses successfully.
Assuming that the environment stack has been built up to contain all necessary binders,
the evaluation can be performed as follows:

1 . Evaluate cvFORANYet exp (boolExp) : First , only lines 062 to 067 are processed.
That is, the result stack and a result queue are initialised. Subsequently, the eval­
uation of expression exp commences.

2 . Evaluate exp cvWHERE boolExp: Only lines 42 to 45 are processed before another
sub-evaluation is initiated. The only effect on the run-time environment is the cre­
ation of two new result queues, which will later hold the results the sub-evaluations.

3. Evaluate cvCNAME RecordC : This is the first evaluation that is performed without
any sub-evaluation. However , the unnest routine is likely to involve the persistent
object store. First , a search on the environment stack is executed . The top-down
search will terminate as the first binder that matches the specified collection identi­
fier (i .e . class name RecordC) is located . Subsequently, the corresponding collection
is retrieved (either from the heap, if the binder has an in-memory pointer associ­
ated, or, otherwise, from the persistent object store) . References to all collection
objects are pushed to the result queue, which has been set up by the evaluation
described in Step 2 .
Let us assume that the binder has an associated object identifier. Thus, the unnest
routine invokes the POScalLRetrieve primitive. The result of this invocation,
which is a set of name binders that have identifiers of instances of class RecordC as
their values, is then pushed onto the environment stack. In contrast, if we assume
that the binder has an associated in-memory pointer, the unnest routine pushes a
set of name binders that have in-memory references, OIDs or even a mixtures of

197

5 .3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

both as their values. At last , all object identifies or object references, respectively
are extracted from those binders and pushed to the evaluation's result queue.

4. Continue the evaluation of exp cvWHERE boolExp: As all result values of the rvNAME
sub-evaluation become available, processing of the cvWHERE routine continues. For
each object reference in the result queue, the following steps are executed:
(a) The object reference is pushed to ES. Subsequently, another sub-evaluation is

initiated.
Note: This step is different compared to the SBA approach. Instead of unnesting
the object immediately, we will delay this step. It is left to the corresponding
sub-routine to decide whether or not an unnesting is required. Since this is not
always the case, we are likely to save a few disk I/Os by delaying the unnesting.

(b) Evaluate exp1 rvBOP== exp2 : The equality operator for reference-type expres­
sions evaluates both expressions and then tests for equality of their respective
(reference-type) values. First, the exp1 expression is processed resulting in an­
other sub-evaluation .

(c) Evaluate cvPROJ THIS . student : The evaluation of the THIS keyword would
normally result in a search on ES . Since this is a task that is commonly per­
formed, we maintain a special pointer that always keeps track of the THIS object
within the respective scope. This avoids frequent searches for the current THIS
object .
Using the THIS pointer, we first unnest the corresponding object. The unnested
value is placed on ES . Subsequently, the value of the student variable is pushed
to the result queue (i .e . by means of projecting to its value) and the top element
on ES (i .e . the previously unnested object) is discarded.

(d) Continue the evaluation of exp1 rvBOP== exp2 : As the result of evaluating exp1
is received , a second sub-evaluation that of exp2 is initialised.

(e) Evaluate cvPROJ student : The student variable relates to the object that re­
sides on top of ES, i .e . the current instance of class RecordC. First , the object
has to be unnested. The unnested value becomes the new top element on ES.
Subsequently, the value of the student variable is projected to the respective
result queue and the top element on ES is discarded.

(f) Continue the evaluation of exp1 rvBOP== exp2 : Now, that result values for
both expressions are computed, the equality operator is invoked. This results
in pushing the result of exp1 and the result of exp2 onto ES . Unnesting is not
required since object equality can be verified by looking at the respective object
identifiers. In the event of equality, a TRUE value is pushed to the corresponding
RQ . Otherwise, a TRUE value is returned. Subsequently, the top-two elements are
removed from ES and results of the evaluations of exp1 and exp2 are discarded .

(g) Continue the evaluation of exp cvWHERE boolExp: At the end of each iteration
step, the result queue RQ2 is emptied and the top element on ES is removed.
Continue with Step 4a.

5 . Finish the evaluation of exp cvWHERE boolExp: If the iteration has completed,
the result queue holding all instances of RecordC is discarded and the selection
terminates.

6 . Continue the evaluation of cvFORANYet exp (boolExp) : Now, that the first ex­
pression exp is evaluated , processing continues on line 065. For each object reference

198

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

in the result queue, the following steps are executed:

(a) The object reference is pushed to ES. Subsequently, the boolean expression is
evaluated for the object reference now located on top of the environment stack.

(b) Evaluate exp1 stiN exp2 : This boolean expression tests whether the String
value of exp1 is an element of the collection value of exp2 . First, exp1 is pro­
cessed.

(c) Evaluate result: Processing is similar to Step 4e. The result variable relates
to the object that resides on the top of ES. First , the object is unnested. Sub­
sequently, the value of the result variable is projected to the respective result
queue and the top element on ES is discarded.

(d) Continue the evaluation of exp1 stiN exp2 : As the result of evaluating exp1 is
received, a second sub-evaluation that of exp2 is initialised.

(e) Evaluate { " A+ " , "A " , " A- " , "B+ " , " B " , "B- " , "C+ " , " C " } : The expres­
sion corresponds to a value-type . Thus, a set of String values is returned .

(f) Finish the evaluation of exp1 stiN exp2 : Having results of both expressions,
we may invoke the respective machine operation code that implements an is­
element-of test . If this test is successful, a TRUE value is pushed to the result
stack. Otherwise, the FALSE value is returned. Finally, both result queues, which
have been used to hold result values of sub-evaluations, are destroyed .

(g) Continue the evaluation of cvFORANYet exp (boolExp) : At the end of each
iteration step, it is verified whether or not the sub-evaluation of the boolean
expression was successful. If not, an early termination can be initialised by
pushing the FALSE value to RQ. Otherwise, RQ remains empty. Finally, the top
element on ES is removed and the result queue RQ1 is emptied . Continue with
Step 6a.

7. Finish the evaluation of cvFORANYet exp (boolExp) : As the iteration termi­
nates, it is verified whether or not there was at least one sub-evaluation of the
boolean expression that was not successful . If so, RQ is not empty. Otherwise, a
TRUE value is pushed onto RQ indicating a successful evaluation of the FOR ANY ex­
pression. Finally, RQ2 and RQ1 are destroyed and the evaluation of the considered
expression terminates .

At the end of the evaluation, ES is in the same state as before the evaluation com­
menced . The same applies to the persistent object store. Similarly, no object in mem­
ory has been modified. The only difference is the contents of the result queue, which
contains a single Boolean value that corresponds to the result of the evaluation of the
FOR ANY expression. 0

Accessing Persistent Data: Beyond Direct Access. In order to utilise some of the
additional features of the persistent object store as introduced in Section 5 .2 . 1 , we
support a number of special evaluation routines . These routines only target locally
held data that does not currently reside in the heap and rely on the POScall primitive.

First , we consider various types of selections. Selecting objects from a collection by
OlD or collection name is commonly accompanied by a simple arithmetic or equality
(boolean) expression . Corresponding operational semantics are as follows:

199

5.3. THE EXECUTION OF EVALUATION PLANS

0 1
02
03
04
05

11 OpCode : cvWHEREisbex � se L ec t ion by OID wi th a simp L e
1 1 boo L ean expression
else if (EVALnode . code is recognised as aid cvWHEREisbex

POScall_FindFromCollection (RQ , aid , TRUE , op , vep1 , vep2
06 }
07

Markus Kirchberg

vepl op vep2)) {
) ;

08 11 OpCode : cvWHEREcnsbex � s e L ect ion by name wi th a simp L e boo L ean expression
09 else if (EVALnode . code is recognised as en cvWHEREcnsbex (vep1 op vep2)) {
10 binder * x ;
1 1
12 x = bind ES , en) ; I I find b inder on ES
13 POScall_FindFromCollection (RQ , x . e , TRUE , op , vep1 , vep2) ;
14 }
15

where vcp stands for (simple) value, constant or path .
The TRUE value in the argument list signals that sub-class objects are retrieved.

Example 5 .5 (2) outlines a corresponding POS-level call . When invoking the POScall
primitive, results are pipelined by default . A separate machine code for values of a
reference type is not necessary. In the event that a reference is given, it will be in the
form of an OlD. Otherwise, the collection must already reside in the heap.

The same mechanism may also be applied if the boolean expression consists of a
conjunction or disjunction of boolean expressions. Before we consider such selections in
greater details, we outline how indices may further enhance performance. Example 5 .5
(3) has already indicated that indices correspond to collections. In the event that an
optimiser determines that the processing of a selection is to be performed with the help
of an index, the corresponding OlD takes the place of the original collection name or
expression evaluating to a collection name. Thus, no additional evaluation procedures
for selections that utilise indices are required.

Returning to selections with conjunctions and disjunctions, we may now take ad­
vantage of rearranged query expressions that :

- For selections with conjunctions and an index for each conjunct , execute a cvWHERE*
evaluation for every conjunct (simultaneously) and then perform an intersection6
of all results in the run-time environment;

- For selections with conjunctions, execute a cvWHERE* evaluation for the most selec­
tive conjunct and then evaluate the remaining conjuncts in the run-time environ­
ment; and

- For selections with disjunctions and an index for each disjunct, execute a cvWHERE*
evaluation for every disjunct (simultaneously) and then perform a union7 of all
results in the run-time environment .

Analogously, navigation and navigation with selections that are mapped to the
FindEnclosure operation of the POS service interface may be evaluated in one step:

20

6 Intersections are defined for all collection types.
7 A union operator is defined for each collection type.

200

5 .3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

2 1 / / OpCode : rvNAV � navigat ion s t arting from a reference value
22 else if (EVALnode . code is recognised as rvNAV exp . path) {
23 rtype (exp) RQ1 ;
24
25 eval (RQ1 , exp) ;
26 POScall_FindEnclosure (RQ , head (RQ1) , path) ;
27 }
28
29 // OpCode : rvNAVWHEREsbex � navigat i on fo l l owed by a se l e c t ion
30 // wi th a s imp l e boo l ean expression
31 else if (EVALnode . code is recognised as rvNAVsec exp .path WHERE
32 VCP1 op VCP2)) {
33 rtype exp) RQ1 ;
34
35 eval (RQl , exp) ;
36 POScall_FindEnclosure (RQ , head (RQ1) , path , op , vcp1 , vcp2) ;
37 }
38

First , we have operational semantics, which only result in navigation from a refer­
enced object to one or more objects that can be reached over the given path path. The
second operation code extends the former by restricting the resulting values to those
that also meet the specified boolean selection expression.

More Query Expressions. Operational semantics for the ORDER BY expression are
provided first for general collections. This is a more difficult case as there are numerous
algorithms defined for array-like collections. The basic idea for the serial version of the
ORDER BY evaluation is as follows:

1 . Obtain the collection, which is to be ordered. As a result, we receive a queue of
collection values.

2 . Project the values in the sorting key. In order to ensure that these projected values
can be related to their original collection values, this process outputs a queue of
pairs < key value, collection value > .

3 . Sort the queue of pairs o n the key value field :
(a) Scan the queue from both the tail end and the head end.
(b) Compare the first tail entry with the first head entry, then the second tail entry

with the second head entry and so on.
(c) Rearrange queue entries in a way that we maintain an ordered section of small

values at the head of the queue and an order section of large values at the tail
of the queue.

(d) Once each queue entry has been visited, i .e . when the two scans meet in the
middle of the queue, create three partitions:
- A partition of ordered entries at the head of the queue;
- A partition of ordered entries at the tail of the queue; and
- A partition of remaining unordered entries in the middle of the queue.

(e) Append the tail partition to the head partition .
(f) Restart the sorting on the unordered partition . If the unordered partition is

empty or consists only of one entry, terminate the sorting part of this algorithm.

201

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

(g) At the end of the sorting phase, we obtain k ordered partitions. Subsequently,
a merging phase that creates an ordered queue of pairs < key value, collection
value > is initiated.

4. Discard all key values .
5 . Return a queue of ordered collection values .

Operational semantics for the evaluation of the ascending version of an ORDER BY
expressions is outlined next:

001
002 // OpCode : cvORDERBYa � ascending order-by expression
003 else if (EVALnode . code is recognised as expt cvORDERBYa exp2) {
004 rtype (expt) ROt i // ho L d resu L ts of the L eft-hand side expression
005 struct { rtype (exp2) key ; rtype (expt) val ; } R02 , R02 CJ ;
006 struct { rtype (exp2) key ; rtype (expt) val ; } *dw , *Up , *cand ;
007 rtype (exp2) R03 ;
008
009 push ES , (__ binder) __ cnt , INT , -1)) ; // counters for . . .
0 10 push ES , (__binder) __ j , INT , - 1)) ; // . . . queue parti t ions
0 1 1 eval ROt , expt) ; // eva Luate co L L e c t i on expression, i . e . s t ep 1
012 while (empty (ROt) ! = FALSE) { // for e ach co L L ec t ion va Lue, projec t
0 1 3 push (ES , unnest (head (ROt))) ; // t o their key vaLues and create
0 14 eval (R03 , exp2) ; // pairs of keys wi th vaLues , i . e . s t ep 2
015 push (R02 , (head (R03) , head (ROt))) ;
0 16 pop (R03) ;
0 17 pop (ROt) ;
0 18 }
0 19 release (R03) ;
020 release (ROt) ;
02 1
022 dw = dw_old = head (R02) ; // next , sort R02 on the key va Lue fie L ds
023 up = up_old = tail (R02) ;
024 while ((dw ! = up_old) && up ! = dw_old)) { // step 3a

025 if (dw . key <= up . key) { // s t eps 3b and 3c
026 if (dw . key >= tail (R02) . key) {
027 move (R02 , dw , TAIL) ;
028 move (R02 , up , TAIL) ;
029 }
030 else if (up . key <= head (R02) . key) {
031 move (R02 , up , HEAD) ;
032 move (R02 , dw , HEAD) ;
033 }
034 }
035
036
037
038
039
040
041
042
043
044

else {
if (

move
move

dw . key >= tail (R02)) && (up . key <= head (R02))) {
(R02 , dw , TAIL) ;
(R02 , up , HEAD) ;

}
else if ((dw . key >= tail (R02)) && (up . key > head (R02))) {

move (R02 , dw , TAIL) ;
}
else if ((dw . key < tail (R02)) && (up . key <= head (R02))) {

move (R02 , up , HEAD) ;

202

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
06 1
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
08 1
082
083
084
085
087
086
087
088
089
090
091
092 }
093

}

}
else {

swap (RQ2 , dw , up) ;
}

}
/1 check whe ther dw is c L ose or equaL to up , i . e . step 3d
if ((dw == up) I I ((dw = nextDown (RQ2 , dw)) == up)) {

}

/1 s eparat e top-most and b o t t om-mos t part i t ions and conca t ena t e , i . e .
RQ2 [++bind (__ cnt) . e] = merge (cutlnfront (RQ2 , dw-old) ,

cutBehind (RQ2 , up-old)) ; // s tep 3e
/1 rein i t i a L ise dw , up , dw_old and up_old
dw = dw_old = head (RQ2) ;
up = up_old = tail (RQ2) ;

if (empty (RQ2) == FALSE) {
RQ2 [++bind (__ cnt) . e] = RQ2 ;

// add L as t part i t ion

}

cand = NULL ;
while (TRUE) { // browse part i t ions and merg e , i . e . s t ep 3g

}

bind (__ j) . e = 0 ;
while (bind (__ j) . e <= bind (_ _ cnt) . e) { / / ini t 1st candida t e

}

if (empty (RQ2 [bind (__ j) . e]) == FALSE {
cand = head (RQ2 [bind (__ j) . e]) ;
break ;

}
bind (__ j) . e++ ;

if (cand
break ;

NULL) { // check t ermina L condi t ion

}
while (bind (__ j) . e <= bind (__ cnt) . e) { // compare head e L ements

}

if (empty (RQ2 [bind (__ j) . e]) == FALSE) { // of resu L t queues
if (head (RQ2 [bind (_ _ j) . e]) < cand) {

cand = RQ2 [bind (__ j) . e] ;
}

}
bind (__ j) . e++ ;

push (RQ , cand . val) ; // merge sma L Lest candidate wi th exi s t ing resu L ts ,
pop (s tack to which cand points) ; // i . e . s t eps 4 and 5
cand = NULL ;

pop (ES) ; // discard cnt counter
// discard __ j counter pop (ES) ;

release (RQ2 [J) ;
release (RQ2) ;

Analogously, a descending ORDER BY expression is implemented. Its associated op­
eration code is cvORDERBY d.

203

5 .3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

Operational semantics presented above can be made more efficient in various ways.
For instance, the machine instructions cvORDERBYath and cvORDERBYdth outsource the
merging phase to a simultaneously executing thread. Merging commences as soon as
two intermediate queues are available . If one queue is exhausted , the other queue is
appended to the intermediate result of the merging process. This further reduces the
number of comparisons. Corresponding operational semantics are as follows:

100
101
102
103
104
105
106
107
108

/1 OpCode : cvORDERBYath � ascending order-by
// expression wi th mu l t i- threading
else if (EVALnode . code is recognised as exp1

rtype (exp1) RQ1 ;
struct { rtype (exp2 key ; rtype exp1
struct { rtype (exp2 key ; rtype exp1
rtype (exp2) RQ3 ;

cvORDERBYath exp2) {

val ; } RQ2 , RQ2 [J ;
val ; } *dw , *up ;

109 push (ES , (__ binder) (__ cnt , INT , -1)) ; // queue parti t ion counter
1 10 eval (RQ1 , exp1) ; // eva luate co l l ec t ion expression
1 1 1 while (empty (RQ1) ! = FALSE { // project to a l l key values ; create
1 12 push (ES , unnest (head (RQ1))) ; // pairs of keys wi th va lues
1 13 eval (RQ3 , exp2) ;
1 14 push (RQ2 , (head (RQ3) , head (RQ1))) ;
1 15 pop (RQ3) ;
1 16 pop (RQ1) ;
1 17 }
1 18 release (RQ3) ;
1 19 release (RQ1) ;
120
121 dw = dw_old = head (RQ2) ; // sort RQ2 on the key value fie l ds
122 up = up_old = tail (RQ2) ;
123 while ((dw ! = up_old) && up ! = dw_old)) {
124 if (dw . key <= up . key) {
125 if (dw . key >= tail (RQ2) . key) {
126 move (RQ2 , dw , TAIL) ;
127 move (RQ2 , up , TAIL) ;
128 }
129 else if (up . key <= head (RQ2) . key) {
130 move (RQ2 , up , HEAD) ;
131 move (RQ2 , dw , HEAD) ;
132 }
133 }
134 else {
135 if ((dw . key >= tail (RQ2)) && (up . key <= head (RQ2))) {
136 move (RQ2 , dw , TAIL) ;
137 move (RQ2 , up , HEAD) ;

} 138
139
140
141
142
143
144
145

else if ((dw . key >= tail (RQ2)) && (up . key > head (RQ2))) {
move (RQ2 , dw , TAIL) ;

}
else if ((dw . key < tail (RQ2)) && (up . key <= head (RQ2))) {

move (RQ2 , up , HEAD) ;
}
else {

204

5.3 . THE EXECUTION OF EVALUATION PLANS

146 swap (RQ2 , dw , up) ;
147 }
148 }
149 // check whe ther dw is c l ose or equa l to up

Markus Kirchberg

150 if ((dw == up) I I ((dw = nextDown (RQ2 , dw)) == up)) {
15 1 // separat e t op-mos t and b o t t om-mos t parti t ions
152 RQ2 [++bind (__ cnt) . e] = merge (cutlnfront (RQ2 , dw-old) ,
153 cutBehind (RQ2 , up-old)) ;
154 if (bind (__ cnt) . e == 1) {
155 // de l egate 1 s t merging pass to a MultiES -thread
156 evalMultiES (RQ2 [++bind (cnt) . e] , merge , RQ2 [0] , RQ2 [1]) ;
157 }
158 else if (bind (__ cnt) . e > 1) {
159 // de l egate c onsecutive merging passes to a MultiES -thread
160 evalMultiES (RQ2 [++bind (__ cnt) . e] , merge ,
16 1 RQ2 [bind (__ cnt) . e - 2] , RQ2 [bind (__ cnt) . e - 1]) ;

} 162
163
164
165

/1 reini t i a l ise dw , up , dw_old and up_old
dw = dw_old = head (RQ2) ;

166 }
167 }

up = up_old = tail (RQ2) ;

168 if (empty (RQ2) == FALSE) { // add last parti t i on
169 RQ2 [++bind (__ cnt) . e] = RQ2 ;
1 70 evalMultiES (RQ2 C++bind (__ cnt) . e] , merge , RQ2 [bind (__ cnt) . e - 2] ,
1 7 1 RQ2 [bind (_ _ cnt) . e - 1]) ;
1 72 }
173
174 // scan ordered c o l l ec t ions of (key, va lue) -pairs
175 while ((state (RQ2 [bind (cnt) . e]) ! = END) I I

176 (empty (RQ2 [bind (__ cnt) . e]) ! = TRUE)) {
177 while (state (RQ2 [bind (__ cnt) . e]) EMPTY) { // wait for resu l ts
178 SYSTEMcall_nanosleep () ;
179
180
181
182 }

}
push (RQ , RQ2 [bind (__ cnt) . e] . val) ;
pop (RQ2 [bind (__ cnt) . e]) ;

183 release (RQ2) ;
184 }
185

// add value to resu l ts queue

186 // OpCode : cvDRDERBYath_MERGE � merging thread for the
187 // ascending order-by expression wi th mu l t i-threading
188 else if (EVALnode . code is recognised as cvORDERBYath_MERGE RQ1 RQ2) {
189 struct { rtype (exp2) key ; rtype (exp1) val ; } *cand ;
190
191 cand = NULL ;
1 92 while ((state (RQ1) ! = END) 1 1 (empty (RQ1) == FALSE) 1 1
1 93 (empty (RQ2) FALSE)) { // browse parti t ions and merge
1 94 while (state (RQ1) EMPTY) { // wai t unt i l resu l ts are pip e l ined
1 95 SYSTEMcall_nanosleep () ;

} 196
197
198

if (head (RQ1) == head (RQ2)) {
push (RQ , head (RQ1)) ;

205

11 if ident i c a l , add b o th heads

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223 }
224

}

push (RQ , head (RQ2)) ;
pop (RQ1) ;
pop (RQ2) ;

else if (head (RQ1) < head (RQ2)) {
push (RQ , head (RQ1)) ;
pop (RQ1) ;

}

11 if RQ1 is sma l l er, add i t

else { 11 if RQ2 value is sma l l er, add i t
push (RQ , head (RQ2)) ;
pop (RQ2) ;

}
}
11 append non-empty queue to resu l t queue
if (empty (RQ1) FALSE) {

append (RQ , RQ1) ;
}
else if (empty (RQ2

append (RQ , RQ2) ;
}
pop (ES) ;
release (RQ2 [J) ;
release (RQ2) ;
release (RQ1) ;

FALSE) {

11 discard cnt counter

A second set of enhanced machine codes, i .e . cvORDERBYathlc and cvORDERBYdthlc ,
targets large collections. A new first phase divides the initial result queue o f unordered
collection values into 21 queues that are ordered individually. The value of l is based on
the predicted size of the collection as known to the optimiser. In addition, a new final
merging phase orders the values of all 21 sorted result queues. These queues are sorted
in pairs of two and pipelined to the next merging level until a final ordered result queue
that contains all collection values is obtained.

A third set of operation codes, i.e. cvORDERBYathplc and cvORDERBYdthplc , targets
very large collections that must be sorted portion-by-portion due to exhaustion of main
memory. For such collections, unordered collection values are retrieved in blocks, which
are sorted individually using one of the machine codes outlined above. Once those
collection values have been sorted, the next block of unordered collection values is
considered. Finally, all ordered intermediate collections are merged. This set of codes
better supports the materialisation of intermediate results in order to free space in the
ODBS node's main memory8 .

Furthermore, there are ordering machine instructions (e.g. a<ORDERBYaheap,
a<ORDERBYamerge, a<ORDERBYathmerge , cvORDERBYaextMerge etc.) that better sup­
port arrays by implementing well known sorting algorithms such as variations of heap

8 Consideration with respect to main memory restrictions and materialisation of intermediate results are
beyond the scope of this thesis. We currently experiment with a mixture of explicit and implicit approaches
that materialise intermediate results. In our second prototype (refer to Section 6.2) , the heap is realised
as virtual memory with the help of the page interface of a Caching Module (64]. Evaluation routines may
mark result queues as being ready for materialisation. For instance, this is utilised in the implementation of
operation codes cvORDERBYathplc and cvORDERBYdthplc.

206

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

sort and merge sort . Alternatively, sorting may also be based on an existing ordered
index. Thus, no explicit sorting has to be performed. Corresponding operational
semantics are not shown in detail but they are similar to those presented above.

iDBPQL supports a variety of join expressions. First, we consider the navigational
join. It returns a collection of pairs of object references. For each pair, the second
object is reachable from the first object by the specified path expression. Operational
semantics for this join operation simply retrieve all qualifying starting objects and then
compile pairs of references with all objects that can be reached over the specified path:

230
231 11 OpCode : rvNAVJOIN � navigationaL join
232 else if (EVALnode . code is recognised as exp rvNAVJOIN pathExp) {
233 rtype (exp) RQ1 ;
234 rtype (pathExp) RQ2 ;
235
236 eval (RQ1 , exp) ; 11 eva Luat e co L L e c t i on expression
237 while (empty (RQ1) == FALSE) { 11 for each co L L ec t i on vaLue, eva Luat e
238 push (ES , unnest (top (RQ1))) ; 11 path expression
239 eval (RQ2 , pathExpr) ;
240 while (empty (RQ2) == FALSE) { 11 for each reachab L e vaLue, add
241 push (RQ , (top (RQ1) , pop (RQ2))) ; I I respect ive resu L t pairs
242 }
243
244
245
246

release (RQ2) ;
pop (ES) ;
pop (RQ1) ;

I I restore the previous s t a t e of ES
11 cance L the resu L t of the evaLuat ion of exp

}
247 release (RQ1) ;
248 }
249

Similar to the navigational join, the natural join also has no associated join condi­
tion. Any two objects are joined if all their identically named instance variables have
matching values. Thus, a collection of structured values is returned . Operational se­
mantics are outlined for a basic loop join approach:

250
25 1
252
253
254
255

I I DpCode :
else if (

rtype (
rtype (

rvNATJOINloop � naturaL join imp L emented as Loop join
EVALnode . code is recognised as exp1 rvNATJOINloop exp2) {
exp1) RQ1 , *r ;
exp2) RQ2 , *S i

256 eval (RQ1 , exp1) ; 11 eva Lua t e L eft -hand side expression
257 eval (RQ2 , exp2) ; 11 eva Lua t e L eft-hand side expression
258 while ((r = next (RQ1 , r)) ! = NULL) { 11 Loop through exp1 resuL ts
259 while ((s = next (RQ2 , s)) ! = NULL) { 11 Loop through exp2 resu L ts
260 push (ES , unnest (s)) ; 11 unnes t corresponding objects
261 push (ES , unnest (r)) ;
262 if (the top two e L ements on ES have the same va Lues for a L L common
263 fi e Lds) { 11 match found, perform join next
264 push (RQ , pop (ES) & pop (ES)) ;
265 }

207

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

266 }
267 }
268 release RQ2) ;
269 release RQ1) ;
270 }
271

Inner and outer join expressions rely on an associated join condition to merge object
variables into a structured value. There are two ways to how this join condition can be
specified. On one hand, a boolean expression can be used to test which objects satisfy
a particular join condition. This is the common approach as known from relational
DBSs. On the other hand, a path expression can be given. Thus, the join expression is
similar to a navigational join expression. However, the resulting value is of a different
format . While the navigational join returns a collection of pairs of object references, a
join expression with a path condition returns a collection of structured values .

We restrict ourselves to operational semantics for inner join expressions. Left outer
join, right outer join and (full) outer join expressions can be formulated in a similar
manner. Operational semantics for the inner join with a boolean expressiOn as JOlll
condition can be specified as follows:

280
281 // OpCod e : rviNNJOINloop � inner join imp L emented as Loop join
282 else if (EVALnode . code is recognised as exp1 rviNNJOINloop exp2 ON boolExp)
283
284
285
286
287

{
rtype exp1
rtype exp2
boo lean RQ3 ;

RQ1 , *r ;
RQ2 , * s ;

288 eval (RQ1 , exp1) ; // eva Luate L eft-hand side expression
289 eval (RQ2 , exp2) ; // eva Luate L eft-hand side expression
290 while ((r = next (RQ1 , r)) ! = NULL) { // Loop through exp1 resu L ts
291 while ((s = next (RQ2 , s)) ! = NULL) { // Loop through exp2 resuL ts
292 push (ES , unnest (s)) ; // unnest corresponding objects
293 push (ES , unnest (r)) ;
294 eval (RQ3 , boolExp) ;
295 if (top (RQ3) == TRUE) { I I mat ch found, perform join next
296 push (RQ , pop (ES) & pop (ES)) ;
297 }

pop (RQ3) ; 298 // cance L the resu L t of the evaLuation of boolExp
299
300
301
302
303
304
305

}

}
}
release
release
release

(RQ3) ;
(RQ2) ;
(RQ1) ;

Result values are created through a concatenation operator as outlined in line 296:
pop (ES) & pop (ES) .

The inner join with a path expression is more complicated to evaluate. It is possible
that the path expression (starting from exp1) identifies a larger set of objects than exp2 .

208

5.3 . THE EXECUTION O F EVALUATION PLANS Markus Kirchberg

Thus, we have to double-check, that only such objects, which are reachable from exp1
over path expPath and also members of the collection that results from the evaluation
of exp2 , are considered. Corresponding operational semantics are as follows:

3 10
3 1 1 // OpCode : rviNNJOINpath � inner join wi th path expression
3 12 else if (EVALnode . code is recognised as exp1 rviNNJOINpath exp2 ON pathExp)
3 13 {

}

}
pop (RQ4) ;

}
pop (RQ3) ; I/

}
release RQ4) ;
release RQ3) ;
release RQ2) ;
release RQ1) ;

All join expressions have been implemented with the help of loop joins. This basic
approach leaves numerous possibilities for optimisation. For instance, there are alter­
n ative machine codes that utilise pipelining when retrieving results of left-hand side
and right-hand side expressions, consider blocks of collection values over the whole
c ollection value, rely on sorting or indices etc.

Controlling the Flow of Serial Data Processing. Serial evaluation is directed by a
number of control flow statements. First, we consider conditional and loop statements .
These statements have one or more evaluation blocks associated. Each block will be
evaluated in its own sub-frame. Sub-frames that correspond to loop or the SWITCH
statements may be named. Having an association between blocks and sub-frames eases
the implementation of statements such as the BREAK statement.

Operational semantics for the conditional IF . . . THEN . . . ELSE statement can be
outlined as follows: .

209

5.3 . THE EXECUTION OF EVALUATION PLANS

001
002 // OpCode : xxiFTHEN � condi t i onaL s t a t ement
003 else if (EVALnode . code is recognised as
004 IF boolExp THEN blockStmt ELSE stmt) {
005 boolean RQ1 ;
006

Markus Kirchberg

007
008
009
010
0 1 1

eval (RQ1 , boolExp) ;
if (top (RQ1) == TRUE) {

eval (NULL , blockStmt) ;
else {

eval NULL , stmt) ;

// eva Luate boo L ean expression
/1 if boolExp eva Luates to TRUE , fo L Low the

THEN branch
// if boolExp eva Lua t es to FALSE , fo L Low the

ELSE branch
0 1 2 }
013 release (RQ 1) ;
014 }
015

The evaluation of IF . . . THEN . . . ELSE IF . . . ELSE statements is supported by al­
lowing a statement to appear after the ELSE keyword. This statement may either be
another conditional IF statement or an evaluation block that corresponds to the ELSE
branch .

iDBPQL supports a number of loop statements. The simple, non-terminal loop
statement LOOP can be described as follows:

020
021 // OpCode : xxLOOP � non-terminaL Loop s tatement
022 else if (EVALnode . code is recognised as LOOP DO stmt ENDDO) {
023 openNewSubScope (_ _ labelAnnotation , ES . transFlag) ; 11 named sub-frame
024 while (TRUE) {
025
026
027
028
029

}

eval (NULL , stmt) ;
}
closeSubScope () ;

/1 execute Loop s tatements

/1 remove the Loop sub-frame

The evaluation of terminal loop statements is slightly more complex. The serial
WHILE loop statement has the following operational semantics:

030
03 1 I I OpCode : xxWHILEDO � whi L e L oop s t at ement
032 else if (EVALnode . code is recognised as WHILE boolExp DO stmt ENDDO) {
033 boolean RQ1 ;
034
035
036
037
038
039

openNewSubScope (_ _ labelAnnotation ,
eval (RQ1 , boolExp) ;
while (pop (RQ1) == TRUE) {

eval (NULL , stmt) ;
eval (RQ1 , boolExp) ;

040 }
041
042
043
044

}

release (RQ1) ;
closeSubScope () ;

210

ES . transFlag) ; // named sub-frame
// eva Luat e the Loop condition

/1 Loop whi l e RQ1 ho Lds a TRUE vaLue
// execute Loop s tatements

/1 re-evaLuate the Loop condi tion

// remove the loop sub-frame

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

Non-serial versions of loop statements are discussed further below in Section 5 .3 .9 .
Similarly to the WHILE loop statement , operational semantics for DO . . . WHILE loops

can be formulated as follows:

050
051 // OpCode : xxDOWHILE � do-whi Le L oop s t a t ement
052 else if (EVALnode . code is recognised as DO stmt ENDDO WHILE boolExp) {
053 boolean RQ1 ;
054
055
056
057
058
059
060
061
062

openNewSubScope (_ _ labelAnnotation ,
push (RQ1 , TRUE) ;

ES . transFlag) ; // named sub-frame
// ini t ia L ise RQ1

063 }
064

while (pop (RQ1) == TRUE) {
eval (NULL , stmt) ;
eval (RQ1 , boolExp) ;

}
release (RQ1) ;
closeSubScope () ;

/1 L oop whi L e RQ1 ho Lds a TRUE va Lue
// execu t e Loop statements

/1 re-eva Luate the L o op condi t ion

/1 remove the Loop sub-frame

In contrast to the loop statements discussed above, the FOR EACH loop determines
its point of termination on whether or not all members of a particular collection have
been processed. As already indicated, access to individual collection members is possible
through the AS renaming expression.

070
07 1 // OpCode : xxFOREACH � for each Loop s t atement
072 else if (EVALnode . code is recognised as FOR EACH exp DO smts ENDDO) {
073 rtype (exp) RQ1 ;
074
075 openNewSubScope (_ _ labelAnnotation , ES . transFlag) ; // named sub-frame
076 eval (RQ1 , exp) ; // ob tain the co L L ec t ion on which L o op i s executed
077 while (empty (RQ 1) == FALSE) { // L o op whi L e RQ1 is no t emp ty
078 push (ES , unnest (top (RQ1))) ; // move co L L ec tion memb er into s cope
079 eval (NULL , stmt) ; // execut e L oop s tatements
080 pop (ES) ; /1 restore previous s t a t e of ES
08 1 pop (RQ1) ; /1 discard vaLue at the heap of the L oop co L L e c t ion
082
083
084
085 }
086

}
release (RQ1) ;
closeSubScope () ; /1 remove the L o op sub -frame

Besides the IF . . . THEN . . . ELSE statement , there is a second conditional statement .
Such a SWITCH statement may have a default statement block associated. Operational
semantics for SWITCH statements with and without a default statement block are as
follows:

090
091 // OpCode : xxSWITCH � condi tionaL SWITCH stat ement
092 else if (EVALnode . code is recognised as SWITCH exp { CASE exp1 blockStmt1
093 . . . CASE expn : blockStmtn }) {
094 rtype (exp) RQ1 , RQz ;

2 1 1

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

095
096 openNewSubScope (_ _ labelAnnotation , ES . transFlag) ; 1 1 named sub-frame
097 push (ES , (_ _ binder) (_ _ cnt , INT , 1)) ; 11 CASE-b Lock coun t er
098 eval (RQ1 , exp) ; 11 eva Luate the SWITCH expression
099 while (bind (_ _ cnt) . e <= n) { 11 for each CASE-b L o ck do
100 eval (RQ2 , expbind(-cnt) .e) ; I I evaLuate the current CASE expression
101 if (top (RQo) == top (RQ2)) { 11 t es t whether the CASE
102 I I expression fuLfi Ls the SWITCH expression
103 eval NULL , stmtBlockbind(-cnt) . e) ; 11 eva Lua t e s ta tement b L o ck
104
105
106
107

}
else {

pop (RQ2) ;
bind (_ _ cnt) . e++ ;

108 }
109 }
1 10
1 1 1
1 12
1 13
1 14 }
1 15

pop (ES) ;
release (RQ2) ;
release (RQ1) ;
closeSubScope () ;

11 discard resu L t of the current CASE expressi on
11 increment CASE-b Lock coun t er

11 remove b inder for counter variab L e

1 1 remove the swi t ch sub-frame

1 16 11 OpCode : xxSWITCHDEF � cond i tionaL SWITCH s t a t ement wi th DEFAULT-b Lock
1 17 else if (EVALnode . code is recognised as SWITCH exp { CASE exp1 : blockStmt1
1 18 . . . CASE expn : blockStmtn DEFAULT : blockStmtn+l }) {
1 19 rtype exp) RQ1 , RQ2 ;
120 openNewSubScope (_ _ labelAnnotation , ES . transFlag) ; 11 named sub-frame
121 push (ES , (_ _ cnt , INT , 1)) ; 11 counter to navigat e CASE b L ocks
122 push (ES , (_ _ match , BOOL , FALSE)) ; 11 TRUE if a matching case is found
1 23 eval (RQ1 , exp) ; I I eva Luate the SWITCH expression
1 24 while (bind (__ cnt) . e <= n) { 11 for each CASE-b L o ck do
1 25 eval (RQ2 , expbind(_cnt) . e) ; I I evaLuat e the current CASE expressi on
126 if (top (RQ0) == top (RQ2)) { /1 t es t whe ther the CASE
1 27 I I expression fuLfi Ls the SWITCH expressi on
128 bind _ _ match) . e = TRUE ; 11 matching CASE-b Lock exi s ts
129 eval NULL , stmtBlockbind(_cnt) . e) ; I I evaLuate s ta tement b L o ck

} 130
131
132
133

else {

134 }
}

pop (RQ2) ;
bind (__ cnt) . e++ ;

11 discard resu L t of the current CASE expressi on
11 increment CASE-b L ock count er

135
136
137
1 38
139
140
141
142
143

if (bind (_ _ match) . e == FALSE) {
eval (NULL , blockStmtn+l) ;

11 if no CASE -b L ock mat ched then
11 execu t e the defau L t one

144 }
145

}
pop (ES) ;
pop (ES) ;
release (RQ2) ;
release (RQ1) ;
closeSubScope () ;

11 remove b inder for the _ _ match variab L e
11 remove b inder for counter variab L e

11 remove the swi t ch sub-frame

Besides conditional and loop statements, there are also control flow statements that
interrupt the serial flow of execution. The RETURN statement terminates the processing

212

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

of the current evaluation plan. As a result, all sub-frames that form a part of the top­
most frame, its associated result queues and its result stack are released. Subsequently,
processing continues with the evaluation plan that previously invoked the one that has
just been terminated. After the RETURN statement has been evaluated , the return result
queue is the only structure that remains accessible. Of course, object constructors and
behaviour invocations that have the VOID type as return type do not have such a return
result queue associated .

Alternatively, the continuous execution flow may be interrupted by the BREAK state­
ment . This statement often appears together with the LABEL statement . However, a
LABEL statement is not encountered explicitly during the evaluation procedure. As dis­
cussed earlier, labels are transformed into annotations. Such label annotations appear
in the form of named sub-frames as already indicated above when operational semantics
for loop and the SWITCH statements have been presented. The evaluation of a BREAK ;
statement terminates the processing of the current loop or SWITCH statement. As a
result, the current sub-frame together with its associated result queues are discarded
first . This current sub-frame corresponds to a DO . . . END DO evaluation block. The next
sub-frame , which is also discarded, either corresponds to a loop sub-frame or a switch
sub-frame. Thus, all information that is local to the loop or SWITCH statement is re­
moved. The only data, which remains accessible, must have been previously associated
with binders (or queues) that are located in sub-frames outside the most local loop or
SWITCH statement .

In addition to the BREAK ; statement, there is the BREAK l ab e l id ; statement. If
such a statement is encountered, the procedure, which has been described for the BREAK
statement, is applied until the first loop or SWITCH statement that has a corresponding
sub-frame with name labelld is encountered.

Finally, there is the WAIT [label id] ; statement . Its semantics will be discussed
in greater detail in Section 5.3 .9 .

Invocation of Behaviours. iDBPQL supports three types of behaviours, i .e . type
operations, method calls and object constructors. Such behaviours are implemented
through evaluation plans. For instance, we might have an evaluation plan that imple­
ments a simple type operation, the union over a collection, a static method, an instance
method, an object constructor etc. The general semantics of a behaviour invocation are
similar for all types of behaviours: A new scope (i .e . frame) , which holds the behaviour's
arguments and its local environment, is opened on the environment stack. In addition ,
the run-time type or class of the value or object, respectively, on which the behaviour
was invoked together with the arguments that are provided during the invocation, are
considered to decide which particular evaluation plan is chosen for execution. In par­
ticular, method invocation follows the single dispatch approach as discussed before. To
facilitate the binding of an evaluation plan to a type operation, method invocation or
object constructor the bindTypeOpEvalPlan and bindMethodEvalPlan routines have
been introduced. In contrast to type operation invocations, invocations of instance
methods and object constructors result in the update of the THIS pointer that is asso­
ciated with every frame. The THIS pointer is set to point to the object on which the
method or constructor was invoked.

The treatment of static class methods is different to that of instance methods. The

213

5.3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

evaluation plan to be processed can already be determined at compile time. Thus,
invoking a class method is based upon a binding annotation .

Operational semantics for all types of behaviour invocations are as follows:

01
02 11 OpCode : rvMETHCALLdyn � dynamic invocat ion of an ins t ance method
03 else if (EVALnode . code is recognised as rvMETHCALL methodName (arg1 ,
04 argn) on o bje c t obj {
05 openNewScope (obj) ; 11 create new frame ; obj becomes the THIS object
06 push (ES , unnest ([arg1 , . . . , argn])) ; I I create argument name binders
07 eval (RQ , bindMethodEvalPlan (methodName)) ; 11 eva luate method
08 closeScope () ; I I discard current scope
09 }
10
11 11 OpCode : rvMETHCALLsta � stat ic invocation of a c l ass method
12 else if (EVALnode . code is recognised as rvMETHCALL methodName (arg1 , . . . ,
13 argn) {
14 openNewScope (NULL) ; 11 creat e new frame
15 push (ES , unnest ([arg1 , . . . , argn])) ; I I create argument name binders
16 eval (RQ , _ _ evalPlanAnnotation) ; / 1 evaluate s t a t i c method
17 closeScope () ; I I discard current scope
18 }
19
20 11 OpCode : rvCONSTRCALL � object cons tructor invocation
2 1 else i f (EVALnode . code i s recognised a s rvCDNSTRCALL constrName (arg1 , . . . ,
22 argn) on object obj {
23 openNewScope (obj) ; 11 create new frame; obj b ecomes the THIS object
24 push (ES , unnest ([arg1 , . . . , argn])) ; I I create argument name b inders
25 eval (NULL , bindMethodEvalPlan (constrName)) ; 11 eva luate cons tructor
26
27
28

}
closeScope () ;

29 11 OpCode : nrTYPOPCALL � type operation invocation

11 discard current scope

30 else if (EVALnode . code is recognised as nrTYPOPCALL typOpName (arg1 , . . . ,
3 1 argn) {
32 openNewScope (NULL) ; 11 create new frame
33 push (ES , unnest ([arg1 , . . . , argn])) ; I I create argument name b inders
34 eval (RQ , bindTypeOpEvalPlan (typOpName)) ; 11 evaluate type operation
35 closeScope () ; I I discard current scope
36 }
37

Object Creation and Assignments. Object creation and assignments have side ef­
fects . Creating a new object of a class that resides in the run-time metadata catalogue
will :

- Create a new object in the heap's main memory object store;
- Verify that all associated constraints are met;
- Add a reference to this object (i .e . a main memory pointer) to the shallow and deep

extent of its class; and
- Add a reference to this object to the deep extent of all super-classes of its class that

also reside in the run-time metadata catalogue.

214

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

However, a transient class may also sub-class one or more persistent classes. The
inheritance relation (i .e . the __ dag associated with the main evaluation plan's run-time
metadata entry) bridges this gap between transient and persistent classes. Access by
class name, e.g. to the persistent class PersonC with its persistent sub-classes StudentC
and AcademicCcc , and its transient sub-class StudentAcademicCcc , will result in:

1 . Retrieving references from classes PersonC, StudentC and AcademicCcc to all ob­
jects through the POScalLFindFromCollect ion primitive;

2. Retrieving references from the deep extent of class StudentAcademicCcc to all its
instances; and

3 . Returning the union of the collections resulting from steps 1 and 2 .

Due to the fact that persistent classes never sub-class transient classes, the creation
of a new object of a class that resides in the DBS metadata catalogue is less complex
but it involves the persistent object store. Steps to be performed are as follows:

- Create a new object in the shared memory area of POS. This is achieved by invoking
the POScalLAddNewObj ect primitive;

- Verify that all associated constraints are met; and
- Add a reference to this object (i .e . its OlD) to the collection-class that is maintained

by POS. This is achieved by invoking the POScalLinsertObj ect primitive.

Example 5 .5 (6) outlines corresponding POS-level calls that are executed when
creating a new (persistent) object .

Assignment operations may also affect the persistent object store. In the event that
the value of an object, which resides in POS's shared memory area, is updated, the
POScalLUpdateObj ect primitive must be invoked.

POScall primitives are always encapsulated into a transaction block. Corresponding
details are discussed further below.

Cast Expressions, SUPER and THI S. The evaluation of cast expressions, invocations
that contain the SUPER keyword and the THIS keyword remain to be discussed in greater
detail.

As already mentioned, the evaluation of the THIS keyword takes advantage of a
special THIS pointer that is maintained with every frame. It refers to the name binder
on ES that corresponds to the current object on which evaluation takes place.

The evaluation of a cast expression affects the run-time type of all values that are
returned as the result of the processing of the associated expression. Updating an value's
associated type may trigger type conversion . For instance, when discussing expressions
with binary operators, we have seen the application of such a type conversion from a
Natural value into an Integer value. If a cast expression is associated with a reference
value, it is verified that the value refers to an object whose class is compatible with the
specified cast .

Finally, we turn our attention to the evaluation of invocation statements that con­
tain the SUPER keyword. On one hand, the evaluation plan that implements an object
constructor may begin with a SUPER () ; call or a sequence of SUPER (cName) ;

215

5 .3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

or SUPER (cName , arg1 , . . . , argn) ; calls. Operational semantics are based on se­
mantics of behaviour invocations. The SUPER () ; call will result in a sequence of
object constructor invocations for all direct super-classes in the same order as they are
specified in the current object's inheritance clause. This information is obtained by in­
voking the SYSTEMcalLgetSuperClasses (obj) primitive, where obj is the current
object. If an argument is provided, the first argument always identifies the class (e.g.
class cName) from which an object constructor should be selected for invocation. The
remaining arguments arg1 , . . . , argn determine which of the available constructors
must be invoked . Analogous to the invocation of methods and object constructors, the
bindMethodEvalPlan primitive is utilised for this purpose.

On the other hand, an evaluation plan that implements a method may con­
tain a SUPER () . methodCall (. . .) ; or SUPER (cName) . methodCall (. . .) ;
behaviour invocation statement . Again , operational semantics are based on those for
behaviour invocation . The evaluation routine selects the evaluation plan that corre­
sponds to the specified method of the named class or, if no class name is specified,
the matching method with the highest priority (refer to Section 4 .2 .5 on page 82) . The
method methodCall is invoked on the same object on which the current method was
invoked. Hence, the implementation of a super-class's method is re-used.

5.3 . 7 Evaluating Statements and Blocks of Statements

The processing of a whole statement can be regarded as the evaluation of a sequence of
expressions, which consist of other simpler expressions , operators, keywords and liter­
als. We may execute one expression after the other, utilise pipelining, multi-threading,
distribution or a mixture of those. If intermediate results are returned at once, they
may be materialised to free main memory space. These processes are similar to those
known from relational DBSs [37, 43, 50, 103, 1 18] .

Statements themselves do not return any values. In fact , they are executed for their
side effects. Statements are executed one after the other, multi-threaded or distributed .
First , we will turn our attention to issues arising when processing blocks of statements
that are encapsulated in an evaluation block. We restrict ourselves to regular DO . . .
ENDDO blocks, DO ATOMIC . . . ENDDO blocks and DO TRANSACTION tid . . . ENDDO blocks.
The remaining types of blocks that utilise simultaneous processing are discussed in
Section 5 .3 .9 . Details with respect to distributed evaluation are outlined in Section
5 .3 . 10 .

Blocks of Statements. As outlined in Section 5 . 1 .5 , metadata references are associated
with evaluation blocks. The main two tasks that have to be performed when such a
block is encountered consist of:

1 . Creating a new sub-frame on the environment stack that is used to hold the block's
local environment ; and

2. Add a name binder for each attached metadata reference.

Corresponding operational semantics can be formulated as follows:

216

5.3. THE EXECUTION OF EVALUATION PLANS

01
02 I I OpCode : xxDO � s imp l e s t a t ement b l ock

Markus Kirchberg

03 else if (EVALnode . code is recognised as xxDO stmt ENDDO ; wi th an a t tached
04 metadata anno tation (__ symblnfo *) symbols []) {
05 openNewSubScope (__ labelAnnotation , ES . transFlag) ; 11 named sub-frame
06 while (there exis ts another metadata reference __ cnt in the symbols
07 array) {
08 if (__ symbols [__ cnt] . __ symbolDescriptor corresponds t o a
09 non-reference-type) {
10 11 add a b inder for a vari ab l e of a non-reference-typ e ; i ts value is
11 11 ini t i a l ised using the defaul t type ini t ia l iser
12 push (ES , (_ _ binder) (_ _ symbols [_ _ cnt] . name ,
13 typeOf (_ _ symbols [_ _ cnt]) , bindTypeOpEvalPlan (!NIT))) ;
14 }
15 else {
16 11 add a b inder for a vari a b l e of a reference-type; i ts value is
17 11 ini t i a l ised to NULL; a subsequent invocation of an object
18 11 constructor mus t occur b efore this variab l e is accessed
19 push (ES , (_ _ binder) (_ _ symbols [_ _ cnt] . name ,
20 typeOf (_ _ symbols [_ _ cnt]) , NULL)) ;
21 }
22 }
23 eval (NULL , stmt) ; 1/ execute the s t a t ement (s) enc l osed in this b l ock
24 while (there exists ano ther metadata reference in the symbols array) {
25 pop (ES) ; I I res t ore the s t a t e of ES
26 }
27
28 }
29

closeSubScope () ; 11 remove the top-most sub-frame

The evaluation of all other types of evaluation blocks will have to include these steps
as well.

Simple Transactions. Blocks are used to model transactions. First , we concentrate
on simple transactions that are executed on the local ODBS node within the same
execution thread. The processing of statements, expressions and operators within such
transaction blocks must be monitored. The transaction management system will ensure
that serialisability and recoverability properties are not violated when accessing shared
data.

Access to shared data is possible through the service interface of the persistent
object store. Thus, the unnest operator, the NEW keyword and POScall primitives are
the only operations that can directly access / create shared data. Once a reference to
a shared object has been obtained, this reference is placed on either the environment
stack or in a result queue on a result stack. Subsequent operations on such binders or
intermediate results must also be brought to the attention of the TMS.

EXAMPLE 5. 7 . Let us revisit the extended university application as discussed in Ex­
ample 4 . 1 6 (on page 98) . For instance, consider the following four statements:

01
02 (SET < StudentC >) x = StudentC WHERE (name . lastName = = " Kirchberg") ;

217

5.3. THE EXECUTION OF EVALUATION PLANS

03 (SET < StudentAcademicCcc >) y = StudentAcademicCcc WHERE
04 (name . lastName == "Kirchberg") ;
05 (SET < StudentC >) z = x . UNION (y) ;
06 RETURN (z . COUNT ()) ;
07 }

Markus Kirchberg

The first statement in line 02 results in a collection of references to persistent objects
being placed on the environment stack. The second statement outlined in lines 03 and
04 leaves a collection of references to transient objects on the environment stack. The
third statement creates a union of the two collections that have been generated in the
previous two steps. This unified collection consists of references to both objects held
in the heap and objects maintained by POS. Finally, the number of elements in the
unified collection is returned. With respect to the transaction property, the first, third
and fourth statements affect shared data. The second statement only accesses a locally
maintained collection. D

The state of an object or the value of any object 's instance variables may only be
modified if a reference to the respective object is available. This is naturally true when
an instance method is invoked. However, iDBPQL also permits direct access to struc­
tural class members. Modifying the value of an instance variable , say name . lastName,
of object obj is permitted only if:

- name . lastName succeeds an object reference ref that refers to obj . Thus,
ref . name . lastName is the corresponding code segment; or

- name . lastName is specified in an environment in which the current THIS pointer
refers to object obj .

Thus, modifying the value of a variable that is no longer attached to an object (i .e .
as a result of a projection operation) will have no effect on the state of its former object.

Modifications are always performed on the environment stack. If an update affects
an object, some additional evaluation tasks have to be performed:

1 . The update is executed;
2. Constraints associated with any modified instance variable and all class constraints

are verified; and
3. Depending on whether the object is transient or persistent , the update is reflected

on the main memory object store or POS's shared memory store, respectively.

Similar to object access, modifications of shared objects or collections referencing
shared objects must be synchronised with the transaction management system. Before
we introduce how this synchronisation is achieved, it is outlined how the evaluation
component supports the transact ion concept.

A transaction flag is assigned to each sub-frame on ES. The initial value of this flag
is _ _none . The _ _none-value indicates that no transaction block has been encountered
since the beginning of the processing of the current request or since the execution of
the last transaction was completed. As the first or next DO TRANSACTI ON tid stmt
ENDDO ; block is encountered, the following steps are performed in addition to those
steps that are executed for every evaluation block : The value of the new sub-frame's

218

5 .3. THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

transaction flag is set to the identifier of the transaction. This indicates that every
subsequent evaluation, which involves shared data, must be monitored by the TMS.
Such evaluations are those that create and update persistent objects.

Operational semantics of the xxDOTRANS machine instruction are similar to the se­
mantics of the xxDO operator code. However, additional tasks must be performed at
the beginning and end of the block 's evaluation:

001
002 11 OpCo d e : xxDOTRANS � transact ion s t at ement b L ock
003 else if (EVALnode . code is recognised as xxDOTRANS tid stmt ENDDO ; wi th an
004 a t t ached metadata annot a t ion (__ symblnfo *) symbols []) {
005 INT RQ1 ;
006
007 if (ES . transFlag == " __ none") { I I true if no transaction is act ive
008 TMScall_openTrans (NULL , tid) ; 11 not ify TMS of new transac t i on
009 openNewSubScope (__ labelAnnotation , tid) ; 11 creat e a new transactiona L
0 10 } I I sub-frame
0 1 1 else i f (ES . transFlag == " _ _ approved") { 1 1 true if a sub -transaction i s
0 12 11 encountered; ignore, i ts parent transact ion has been approved by the TMS
0 13 openNewSubScope (__ labelAnnotation , ES . transFlag) ; 11 s ame as for xxDO
0 14 }
0 15 else { 11 true onLy if ano ther transac t i on is active that was exp L ici t Ly
0 16 11 interL eaved in the user reques t ; interrup t ; wi L L b e cont inued L at er
0 17 TMScall_openTrans (NULL , tid) ; 11 not ify TMS of new transac t i on
0 1 8 openNewSubScope (_ _ labelAnnotation , tid) ; 11 create a new transac t i onaL
019 } I I sub-frame
020
021 while (there exis ts another me t adata reference cnt in the symbols
022 array) {
023 if (__ symbols [__ cnt] . __ symbolDescriptor corresponds t o a
024 non-reference-type) {
025 11 add a b inder for a variab L e of a non-reference-type ; i ts vaLue is
026 11 ini t ia L ised using the defau L t type ini t i a L iser
027 push (ES , (__ binder) (__ symbols [__ cnt] . name ,
028 typeOf (__ symbols [__ cnt]) , bindTypeOpEvalPlan (!NIT))) ;
029 }
030 else {
031 11 add a b inder for a variab L e of a reference -type; i ts va Lue is
032 11 ini t i a L ised to NULL ; a subsequent invocati on of an object
033 11 constructor mus t occur b efore this vari ab L e is accessed
034 push (ES , (__ binder) (__ symbols [_ _ cnt] . name ,
035 typeOf (_ _ symbols [__ cnt]) , NULL)) ;
036 }
037 }
038 eval (NULL , stmt) ; 11 execute the s ta tement (s) enc L os e d in this b L ock
039 while (there exists another met adata referenc e in the symbols array) {
040 pop (ES) ; I I rest ore the s t a t e of ES
041 }
042
043
044

if (ES . transFlag " __ none") {

045 }
closeSubScope () ;

11 true if no transact ion is ac t ive
11 same as the xxDO machine ins t ruct ion

046 else if (ES . transFlag == " _ _ approved") { 11 true if a sub - t ransact ion is

219

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

047 // encountered; ignore since parent transact ion is serialised
048 closeSubScope () ; // same as the xxDD machine instruct i on
049 }
050 else { // true if transact ion is s t i l l active; commi t
051 TMScall_commitTrans (RQ1 , tid) ;
052 if (top (RQl) == RESTART) { // tes t whe ther commi t was successfu l
053 res t art transaction or process from savepoint 9 ;
054 }
055
056 }
057 }
058

closeSubScope () ; /1 remove the t op-most sub-frame

Operational semantics show that three different transactional states of a sub-frame
may be encountered. If no transaction is active (i.e. transFlag carries the _..none­
value) , a new transactional sub-frame is created . Every evaluation that is performed in
the sub-frame must be monitored by the TMS. As outlined in greater detail below, this
monitoring process may set the value of the transaction flag of another sub-evaluation
to the __ approved-value. This can only occur when another behaviour is invoked and
the TMS has sufficient knowledge to determine serialisability and recoverability for the
evaluation of the entire behaviour implementation (e .g . compatibility information for
this behaviour has been provided explicitly by the behaviour's programmer or derived
automatically by an internal mechanism10) . Every sub-evaluation performed in a sub­
frame, which has such an __ approved flag, does not have to be monitored by the TMS .
Monitoring continues once the approved behaviour has been evaluated successfully. The
third state relates to situations as discussed in Section 4 .4 .2 . Two or more transactions
may be interleaved explicitly by the programmer. In order to support such a function­
ality, the TMScall primitive filters out repeated openTrans requests that result from
multiple manual interleavings of two or more transactions. This is easy to do since
this primitive already maps user-level transaction identifiers to internal transaction
identifiers.

Accordingly, during the evaluation process, the following additional measures have
to be taken if the top-most sub-frame carries a transaction identifier :

- For each encountered eval (rq , eN ode) , eval Threaded (rq , eN ode) or
evalDistributed (rq , eNode) routine, we execute the following additional op­
erational semantics prior to the respective evaluation routine:

060 {
061 INT RQ1 ;
062
063 TMScall_execute (RQ , ES . transFlag , eNode) ;
064 if (top (RQ1) == APPROVED) { // true if permission is granted
065 if (eNode descri b es the invocat i on of a method or objec t cons tructor)

9 At this point, we omit any discussion of how the recovery manager will interact with the evaluation proce­
dure to correctly abort one or more transactions. Instead, we simply assume that the evaluation plan is al­
tered appropriately at run-time.

10 Means of providing or deriving compatibility information for user-defined behaviours are beyond the scope
of this thesis. However, it should be mentioned that iDBPQL's transaction mechanism functions with and
without the ability of adding such compatibility information.

220

5.3 . THE EXECUTION OF EVALUATION PLANS

066 {

Markus Kirchberg

067 invoke the resp e c t ive eva Luation but enforce a change of the
068 transFlag -vaLue (se t to " _ _ approved") in that b ehaviour 's firs t
069 sub-frame ;
070 }
071 else {
072 invoke the respective eva Luation ;
073 }
074 }
075 else if (top (RQ1) == RESTART) { /1 true if an abort was performed
076 restart transaction or process from s avepoint ;
077 }
078 else if (top (RQ1) == MONITOR) { // true if the body of a behaviour
079 // invocation mus t a Lso be moni t ored; thus , forward current transFlag
080 invoke the respect ive eva Luat ion ;
081 }
082 }

Finally, an evaluation plan may contain one of the method invocations as outlined in
the Transaction class (refer to page 92) . Considering the commit () ; and abort (
) ; call , a transaction is terminated early, i .e . before the end of the respective transaction
block is reached. Operational semantics for the commit method are as follows:

090 {
091 INT RQ1 ;
092
093
094

TMScall_commitTrans (RQ1 , tid) ;
if (top (RQ1) == RESTART) { // t es t whe ther commi t was unsuccessfu L

095 restart transac t i on or process from s avepoint ;
096 }
097 se t the transaction f L ag of the top-mo s t sub-frame to _ _ none ;
098 }

Analogously, the processing of the abort method can be formulated as follows:

100 {
101 TMScall_abortTrans (NULL , tid) ;
102 s e t the trans ac t i on f L ag of the top-mos t sub -frame to __ none ;
103 }

Atomic Statement Blocks. A further type of block statements are atomic blocks.
They facilitate a grouping construct for a number of statements, which are meant to
be executed at once. As a result, an update operation that affects an object is now
performed as follows:

1 . Exclusive access to the affected object is obtained;
2. The update is executed;
3. Constraints associated with any modified instance variable and all class constraints

are deferred to the end of the atomic block; and
4. Depending on whether the object is transient or persistent, the update is reflected

on the main memory object store or POS's shared memory store, respectively.
However, exclusive access to the object is retained until the end of the atomic block
is reached.

221

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

This implies that a new object is not immediately added to a transient class 's shallow
and deep extents nor is it added to a persistent class 's class-collection. These updates
are also deferred to the end of the respective atomic block.

5.3 .8 Processing Evaluation Plans

An evaluation plan consists of an optional initialisation block and an evaluation block.
Both blocks are evaluated in the same manner as discussed in Section 5 .3 .7. The only
difference concerns the treatment of the main evaluation plan . During this first step
of the evaluation of a user request, the environment stack must be initialised and its
global environment has to be generated. Metadata references that describe this global
environment are attached to the evaluation graph's root node of the initialisation block.
This block is evaluated as any other xxDO evaluation block.

The main evaluation plan is processed in its own REE stack area. At first, an
empty environment stack is initialised. Subsequently, the evaluation may commence.
Operational semantics are as follows:

0 1
02 I I OpCode : xxMAIN !:':' main eva Luation p L an
03 else if (EVALnode . code is recognised as xxMAIN initBlock evalBlock) {
04 openNewScope (NULL) ; I I create the first frame on ES
05 eval (NULL , initBlock) ; 11 ini t i a L ise eva Luat i on s t ack
06 eval (RQ , evalBlock) ; 11 commence eva Luati on of the user request
07 closeScope () ; I I discard the Last frame on ES
08 }
09

Discarding the last frame on ES will result in the destruction of the corresponding
REE stack area. Only the return result queue RQ remains present in the heap. This
queue is only removed from the heap when the higher-level component that initiated
the execution of this request terminates or releases its hold on the request queue. The
heap's garbage collector will oversee this process .

5.3.9 Simultaneous Evaluation of Statements and Expressions

Previously, we have already seen how concurrent processing may be utilised to en­
hance the processing of internal operation codes. Recall the usage of the evalMultiES
routine. However, iDBPQL also allows simultaneous processing to be requested ex­
plicitly. In particular, semantics of INDEPENDENT DO . . . ENDDO blocks, FOR EACH exp
CONCURRENT DO . . . END DO loop statements, and WAIT statements remain to be dis­
cussed . Corresponding operation semantics are based on the eval Threaded routine.
It splits the current execution stream into two separate streams. The new stream will
be assigned to a new REE stack area and operates on its own environment stack. This
stack, however, is not empty at the beginning of the processing. Instead, it will be
initialised by cloning the main stream's ES. Thus, both streams continue processing on
identical environments but execute independently on a large scale from then on. The
WAIT statement corresponds to the only means of synchronising processing between two
or more execution threads that originate from a common main execution stream.

Operational semantics of those b locks and statements can be summarised as follows:

222

5.3 . THE EXECUTION OF EVALUATION PLANS

01
02 // OpCode : xxDOINDEP � mu l t i -threaded s t a t ement b l ock

Markus Kirchberg

03 else if (EVALnode . code is recognised as xxDOINDEP stmt ENDDO ;) {
04 evalThreaded (NULL , xxDO stmt ENDDO ;) ;
05 }
06
07 // OpCode : xxFOREACHCONC � mul t i-threaded for each l o op s t a t ement
08 else if (EVALnode . code is recognised as FOR EACH exp CONCURRENT DO stmt THEN
09 blockStmt ENDDO ;) {
10 rtype exp) RQ1 , RQ2 ;
1 1
12 evalThreaded (RQ1 , exp) ;
13 evalThreaded (RQ2 , xxFOREACH RQ1 xxDO stmt ENDDO ;) ;
14 evalThreaded (NULL , xxFOREACH RQ2 blockStmt) ;
15 }
16
17 // OpCode : xxWAIT � wai t s t a t ement
18 else if (EVALnode . code i s recognised as WAIT ;) {
19 while (wai t unt i l a spawned threads have t erminat e d) {
20 SYSTEMcall_nanosleep () ;
21 }
22 }
23
24 // OpCode : xxWAITid � wai t statement wi t h lab e l
25 else if (EVALnode . code is recognised as WAIT labeli d ;) {
26 while (wai t unti l the spawned thread with identifi er labelid has
27 t erminated) {
28 SYSTEMcall_nanosleep () ;
29 }
30 }
31

A different means of simultaneous execution is discussed in Section 5 .3 . 10 . Instead
of utilising multi-threading, sub-evaluations are distributed to other ODBS nodes.

5.3 . 1 0 Distributed Processing of Evaluation Plans

iDBPQL allows evaluation processes to be distributed and data to be transfered for dis­
tributed processing. Figure 5 .5 (on page 170) has already indicated that a second shared
memory may be embedded into the local heap. This area is maintained by the remote
communication module, which facilitates access to remote objects and also supports the
distribution of (sub-)evaluations. Object migration is initialised by the unnest operator
as mentioned in Section 5.3. In order to distribute processing to a remote node, a sep­
arate evaluation routine void evalDistributed (RQ * rq , EVALnode * eNode) ;
is defined. This routine is similar to the eval Threaded routine but processing continues
on a remote ODBS node instead of another local thread.

Migrating Objects. The support of object migration improves the accessibility of
objects and enables load balancing [22] . However, it also requires a more sophisticated
transaction management system. The iDBPQL run-time system supports the tempo-

223

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

rary migration of individual objects. Permanent migration is only possible by changing
the allocation of classes.

Temporary object migration from a remote node to the local node is executed in
four steps:

1 . Ensure that the object is not actively involved in another invocation (otherwise,
wait until the object become available) ;

2 . Notify the remote transaction management system of a temporary transfer of own­
ership of the object (i .e . issue a TMScalLtransferOwner call) ;

3 . Move the requested object (together with its metadata information) to the local
node; and

4. Leave a forwarding reference on the remote node1 1 .

Once an object has been migrated, the local transaction management system takes
over the responsibility of serialising object access. A migrated object is returned as soon
as it is no longer needed on the local node.

Processing Evaluation Plans on a Remote Node. Instead of moving objects to a
remote location , we can also distribute the processing to the location where the object
(or the majority of objects) resides. This occurs whenever a location annotation is en­
countered during the execution of an evaluation plan. Such location annotations are
attached to an evaluation graph's ctrlFLO Wedge. When encountering such an annota­
tion, the following operational semantics are invoked:

0 1
02 else if EVALnode . code is recognised as expression exp wi t h a Lo cation
03 anno tat ion node) {
04 rtype exp) RQ 1 ;
05
06 no t ify the TMS of the impending distributed eva Luation (i . e . issue a
07 TMScall_j oin) if the t op-most frame has a transFlag wi t h vaLue o ther
08 t han __ none ;
09 evalDistributed (RQ1 , exp) ;
10 }
1 1

The evalDistributed routine returns a queue of values or (remote) object refer­
ences.

Note: Remote method invocation is a special case of this evaluation step.

Distributed Transactions. Supporting distribution and object migration has an im­
pact on the processing of transactions. Distributed transactions require the support of
more sophisticated commit protocols such as the two-phase commit protocol [108] . Ob­
ject migration requires extensions to the recovery mechanism. These include, among
others, the necessity that crash recovery procedures may have to involve non-crash
nodes to return a local database to its most recent consistent state. Corresponding ex­
tensions to the popular ARIES and the ARIES/ML recovery mechanisms are proposed
in [122 , 123] .

1 1 A forwarding reference is left in the form of a proxy object [35] .

224

5.3 . THE EXECUTION OF EVALUATION PLANS Markus Kirchberg

Beyond those TMS-specific issues, there are no further actions that have to be
taken during the evaluation process. Let us briefly demonstrate this by considering the
processing of a distributed transaction.

EXAMPLE 5 . 8 . We revisit Example 3 .4 , which contains the following distributed trans­
action :

10
1 1 D O TRANSACTI ON tr1 /1 a transaction object is created imp L i ci t Ly
12 rslt 1 = AcademicCcc WHERE (specialisation == "Database Systems") ;
13 rslt2 = AcademicCLs WHERE (specialisation == "Database Systems") ;
14 rsl t3 = AcademicCro WHERE (specialisation == "Database Systems ") ;
15 rslt = (rslt 1 . union (rslt2)) . union (rslt3) ;
16 tr1 . commit () ; // exp L icit transact i on commi t
17 ENDDO ;
18

Corresponding annotations are outlined in Example 3.4 (on page 54) .

While the evaluation of lines 13 and 14 will be distributed to remote ODBS nodes,
processing may be enhanced further. In accordance with optimisation procedures as
discussed in Section 5.4, the optimiser is likely to rewrite the code segment shown
above as follows :

20
21 DO TRANSACTION tr1
22 INDEPENDENT DO

/1 a transact ion object is created imp L ici t Ly

23 rslt2 = AcademicCLs WHERE (specialisation == " Database Systems ") ;
24 ENDDO ;
25
26 INDEPENDENT DO
27 rslt3 = AcademicCro WHERE (specialisation == "Database Systems ") ;
28 ENDDO ;
29
30 INDEPENDENT DO
3 1 rslt 1 = AcademicCcc WHERE (specialisation = = "Database Systems") ;
32 ENDDO ;
33
34 rslt = (rslt1 . union (rslt2)) . union (rslt3) ;
35 tr1 . commit () ; / / exp L i c i t transact ion commit
36 ENDDO ;
37

Now, distribution and multi-threading are mixed. Thus, the four statements outlined
in lines 23, 27, 3 1 and 34 are executed simultaneously: Lines 23 and 27 utilise both
multi-threading and distribution (i .e . asynchronous distribution) ; line 31 only utilises
multi-threading. The statement in line 34 commences while the three threads are active
but only terminates after all threads have been evaluated . The two consecutive union
operations synchronise processing implicitly due to the fact that these operations cannot
be completed without having received all input values. Internally, the evaluation of
line 34 is further optimised by multi-threading the two union operations. Intermediate
results are pipelined.

225

5.4. OPTIMISATION OF THE EVALUATION PROCESS Markus Kirchberg

When commencing the evaluation of line 2 1 , name binders for the local variables rslt 1 ,
rsl t2, r s l t 3 and rsl t already reside i n the top-most frame on ES. Upon encountering
the DO TRANSACTION tr 1 block, a new sub-frame is pushed onto ES (with transFlag
set to tr1) and a new transaction object is created. Thus, the TMS is informed that
the evaluation of a new transaction begins.
The evaluation of lines 22 to 24 and 26 to 28 is almost identical :

1 . Processing is multi-threaded;
2. The evaluation of the assignment operator is initialised;
3. The evaluation of the right-hand side assignment expression is being distributed

but only after the local TMS is being notified of this step;
4. The respective remote node evaluates the expression. Serialisability and recover­

ability are ensured by its local TMS;
5 . The passing of result values from the remote node to the thread and then from the

thread to the to the main execution stream are implemented through pipelining.
6. The evaluation procedure on the remote node terminates once all result values have

been returned; and
7. The multi-threaded evaluation procedure terminates once the distributed procedure

has terminated.

Similarly, the evaluation described in lines 30 to 32 is executed. However, no distribution
occurs. The local TMS monitors processing.
Once line 34 has been evaluated, all three threads have been terminated . Subsequently,
an explicit commit call is encountered. Thus, the local TMS invokes the commit process
(e.g. using a two-phase commit protocol) . The success or failure of the evaluation of
transaction tr1 is determined by all three involved nodes. 0

5 .4 Notes on t he Optimisation of the Evaluation P rocess

In this chapter, we mainly focused on the evaluation process of user requests . Only
a few enhanced machine codes have been discussed for a selected number of iDBPQL
statements, expressions and operators in greater detail. We like to conclude this chapter
by drawing attention to the potential of how the evaluation process may be optimised .
The majority of query optimisation techniques known from relational DBSs can be car­
ried over to the stack-based approach to request evaluation. For instance, Section 5 .3
has already outlined how selections and sorting may benefit from the used of indices,
how reordering of conjuncts improves the performance of selections, how different eval­
uation plans for the same iDBPQL primitive can be utilised to better process a small,
medium-sized or large collection etc. In addition, the following optimisation techniques
are also applicable [37, 103 , 1 18] :

- Reordering of query expressions. Commutativity properties of selections, joins and
various collection operators (e.g. unions and intersections) and associativity proper­
ties of join operators can be utilised . Selections may be pushed down the evaluation
path etc.

226

5.4. OPTIMISATION OF THE EVALUATION PROCESS Markus Kirchberg

- Pre-evaluate query expressions that are executed repeatedly without having any of
its parameters modified. The performance of evaluations of quantifier expressions
and all types of loops may benefit from this type of optimisation .

- Perform a cost-model based optimisation of evaluation plans.

Furthermore, simultaneous and distributed processing and the pipelining of inter­
mediate results have great influence on performance characteristics. Sections 5 .3 and
5 .3 . 10 have already indicated how these techniques apply to the execution of evaluation
plans formulated in iDBPQL.

In a similar manner, code enhancement approaches as known from OOPLs can be
applied . Corresponding applicable techniques include [1 16, 137] :

- Eliminate redundant value access;
- Perform simple arithmetic calculations at compile time;
- Propagate constant values at compile time;
- Eliminate common sub-expressions;
- Copy propagation;
- Strength reduction ;
- Eliminate useless instructions;
- Eliminate redundancies in basic blocks;
- Improve loops through pre-evaluation of loop invariants, application of pipelining

and loop reordering;
- Re-use intermediate results; and more.

227

5.4. OPTIMISATION OF THE EVALUATION PROCESS Markus Kirchberg

228

Chapter 6

Proof of Concept

During the development of the proposed iDBPQL language and its run-time environ­
ment , two prototype systems have been implemented.

The first prototype corresponds to a feasibility test that has been realised at an
early stage of our research . This prototype can be regarded as an extension of the stack­
based approach [1 29, 131] with capabilities to support multi-threading, distribution and
parallelism. Section 6 . 1 will provide an overview of this system.

Based on our experiences with the first prototype system, the iDBPQL language
and run-time environment has been developed. While support for parallelism has been
dropped , the second prototype has a much more sophisticated run-time system, is built
on top of the persistent object store and processes evaluation plans that are formulated
in the integrated database programming and querying language iDBPQL. An overview
of this proof of concept prototype implementation is presented in Section 6 .2 .

6 . 1 A Prototype of Stack-Based A bstract Machines t hat

Support Multi-Threading, Distribution and Parallelism

The first prototype can be regarded as an attempt to adapt the SBA approach
[1 29, 130, 131] to a computing environment that supports multi-threading, parallel
processing and remote object invocation. To cope with the added complexity, two lev­
els of abstract machines have been defined on each node. These machines are referred
to as Communication Agents (CAs) . Agents on the higher level (refer Figure 6 . 1) are
aware of data distribution . They serve higher-level requests, model transactions, dis­
tribute requests to remote communication agents, utilise parallelism by creating new
agents on the same level, forward the evaluation of sub-requests to the lower level of
communicating agents, compose results as necessary etc. Agents on the lower level (re­
fer Figure 6.2) deal with requests on local objects only. They further utilise parallelism
but are not aware of distribution . Every agent consists of one or more two-stack ab­
stract machines and a communication module. The stack-based machine implements
a simple version of the integrated query and programming language iDBPQL on top
of an environment stack and a result stack. The communication module provides local
and remote communication capabilities. It offers synchronous and asynchronous calls
for both, local and remote requests. If two or more abstract machines exist within the
same communicating agent, multi-threading is utilised . These threads may access the

229

6 . 1 . SIMULTANEOUS STACK-BASED ABSTRACT MACHINES Markus Kirchberg

Controller

T 4

Controller
T 7

s
Q) "' >. Cl)

......
s 0.0
�
= 0 u � "' = � 1-<

E-<

2SAM

Async

CA

CM

ES

LIM

T 4(3) Requests from Higher Layers

I T 7(1)

ji., j < u
�
J:>

·� i5
8 �]
"'
::E ...

. I
£"". A •

I F"' A
Communicating Agent

r-- r-- � �
" � • f-+ u �] 2SAM Engine]
::E :::>
::E 0. u

CM Interface V1 ES RS V1 2SAM f-- '---- f-

Communication Module
r - - - - - � - - - - - - - r - - - - - � - - - - - - -

1 Sync LIM 1 : Async LIM : 1 Sync RIM 1 : Async RIM :
L - - - - - .J - - - - - - - L - - - - - .J - - - - - - -

A A A

-t--
l---1--1---

-

1--\ T V i Remote CA, Same Layer
CA, Same Layer

CA, Local Layer

Two-Stack Abstract Machine M M Main Memory

Asynchronous RIM Remote Invocation Mechanism

Communicating Agent RS Result Stack

Communication Module Sync Synchronous

Environment Stack T Transaction

Master Agents

s ub-Agent

Local Invocation Mechanism TMS Transaction Management System

Fig. 6 . 1 . Overview of a Stack-Based Abstract Machine with Distribution Capabilities.

same result queue in a shared memory area and synchronise their actions through the
use of semaphores.

Due to the unavailability of a true parallel machine, virtual parallelism is utilised
with the help of the PVM-library [44] .

In addition to communicating agents, there exists a Master Agent (MA) on each
participating processing unit . This agent acts as the first point of contact and creates
the first communicating agent that is responsible for overseeing the evaluation of an
incoming (sub-) request.

The first prototype did not support the evaluation of a completely integrated da­
tabase programming and querying language. Only a pre-selected number of object­
oriented concepts, control flow statements, programming language expressions and

230

6 .2 . THE IDBPQL PROTOTYPE SYSTEM Markus Kirchberg

Rq7. 1 (3)

Rq4.3C2) Requests from the D istributed L ay er

I
r'. .� ,.. ... �.,.,.,.,. A"''"" . .. t I n ... · A ...

Communicating Agent

- -
_L _L -1--" " � -f--. u u <C <C 1--1--£ 2SAM Engine £ -

.=: .=:
:::E ::J c.. :::E u

Master Agents

Sub-Agent

T CM Inrerface � ES RS VI - - 2SAM -
r--

Communication Module
- -
I Synchronous LIM

I I Asynchronous LIM
I

I I -
I I -

!
V

CA, Same Layer
Persistent Object Store

2SAM Two-Stack Abstract Machine
CA Communicating Agent
CM Communication Module
ES Environment Stack

LIM
MM
Rq
RS

Fig. 6 . 2 . Overview of a Local Stack-Based Abstract Machine.

r--

Local Invocation Mechanism
Main Memory
Request
Result Stack

query language expressions have been supported. These concepts include: atomic types,
bag, set , list and record type constructors, the notion of (complex) objects, multiple in­
heritance, WHI LE and FOR EACH loops, the conditional I F . .. THEN . . . ELSE statement ,
selection, parallel selection, projection, sorting, parallel sorting, and navigational join .

6 . 2 The iDBPQL P rototype System

The second prototype is a proof of concept implementation of the iDBPQL language
and run-time environment as proposed in this thesis. While corresponding concepts

231

6.2. THE IDBPQL PROTOTYPE SYSTEM Markus Kirchberg

have already been introduced in Chapters 4 and 5, we will only summarise restrictions
of the current prototype, refer to libraries and other prototypes that have been utilised,
and outline how the prototype system may be programmed.

In contrast to the first prototype system, support for parallel processing has been
dropped. Potential performance gains stand in contrast to challenges with respect to
serialising access to and updates of shared data, and ensuring recoverability when using
a multi-level transaction management system. Adding support for parallelism is one of
the items on the list for future work.

The current iDBPQL prototype system contains evaluation routines for all different
types of language constructs. While support for pipelining is generally available , not
all constructs have additional optimised machine codes associated . However, all those
operational semantics as outlined in Section 5 .3 are already available in the prototype
system. The iDBPQL library only contains a minimal set of built-in features. In par­
ticular, primitive types and types that are adopted in a straightforward manner from
the object-oriented programming domain are constrained. The rationale behind those
restrictions can be explained by the fact that adding those features is not a challenging
but only a time-consuming task.

During the processing of evaluation plans, services from a number of additional
ODBS components are utilised. Prototypes for these components have the following
restrictions :

- The persistent object store offers the service interface as outlined in Section 5 . 2 . 1 .
However, associative and navigational access structures only rely on look-up tables.
Thus, affecting the performance of evaluation processes significantly. Furthermore,
data persistence is not supported beyond an invocation cycle of the iDBPQL run­
time system. In particular, all modifications to a given database are discarded when
the iDBPQL run-time system terminates. The rationale behind this restriction is
due to the fact that data consistency cannot be guaranteed without having an
exception mechanism and a fully operational recovery mechanism (refer below) .
As a result , sample databases must be generated either manually or using serial
execution followed by manual verification.

- The transaction management system is based on a prototype, which was developed
at an earlier stage [65, 71) . Extensions have been applied to support weak and
strong operation ordering as proposed by Alonso et . al . [6) . However, the prototype
does not yet support multi-level recovery. While the non-distributed ARIES/ML
recovery mechanism [104 , 1 1 1] has been prototyped, necessary extensions to dis­
tributed systems [122 , 1 23] have yet to be implemented. Similarly, support for weak
and strong operation orderings affect the recovery process. In particular, cascading
aborts may occur without refining the weak operation ordering property further.
This, however, is still an open research issue.

All prototype systems have been implemented in the programming language C [59]
or C++ [128] . The following additional libraries have been utilised:

- The POSIX threads library [23] ;

232

6.2 . THE IDBPQL PROTOTYPE SYSTEM Markus Kirchberg

- The OOSP Shared Memory Allocation library [38] as a utility that simplifies the
usage of shared memory between strongly related processes;

- The OSSP Universally Unique Identifier (UUID) library [39] as a utility to generate
globally unique object identifiers; and

- The Library for Efficient Data types and Algorithms (LEDA) [88] .

Final ly, we want to outline how this second prototype can be programmed . Chapters
4 and 5 presented two low-level representations of evaluation plans. While iDBPQL­
based evaluation plans are more easy to read, an internal representation is required for
the evaluation process to execute efficiently. The latter representation will also be the
one that is used by a higher-level ODBS module. The former, more human friendly
means of programming the prototype is supported only to assist with readability and
testing.

Figure 6 .3 provides an overview of how the prototype system can be programmed .
From a human being's perspective, the best way to use the prototype system is as
follows:

1 . Program the user request in terms of evaluation plans according to the iDBPQL
syntax as presented in Chapter 4 . Each line must start with a unique, monotonically
increasing line number. The main evaluation plan must be the first evaluation plan
that is specified. For instance, the popular 'Hello world!' example can be specified
as follows:

1 EVALPLAN HelloWorld (VOID) STRING {
2 myString = "Hello world ! " ;
3 RETURN (myString) ;
4 }

2 . Add metadata references in-front the corresponding evaluation plan . Metadata ref­
erences must be associated with an evaluation plan's line that opens an evaluation
block, i .e . contains a ' { ' or the DD keyword. Let us consider the ' Hello world! ' ex­
ample again:

1 STRING myString ;

1 EVALPLAN HelloWorld (VOID) STRING {
2 myString = "Hello world ! " ;
3 RETURN (myString) ;
4 }

Here, the local variable declaration STRING myString ; is associated with the first
line of the HelloWorld (main) evaluation plan.
If a metadata definition spans multiple l ines, the second to last lines of the specifi­
cation do not require line numbers. Multiple metadata references may be associated
with the same evaluation plan line.

3. Use the iDBPQL2evalPlan utility that is supplied with the prototype system. Ar­
guments are all file names that make up the user request. Note: It is not necessary
that all evaluation plans of a request are placed into the same file. However, meta­
data references must be in the same file as their associated evaluation plans and

233

6.2 . THE IDBPQL PROTOTYPE SYSTEM Markus Kirchberg

Add a new database:
I . Code database(s) using iDBPQL syntax

2. Run iDBPQL2metaData utility

iDBPQL2metaData
f i l e location: TestArea/dbsMetaData
input f i l e exten s i o n : . idbpql
output f i l e extension: . md

'-------l Code evaluation plans with run-time metadata 1----..J
references (using iDBPQL syntax):

- use monotonically increasing line numbers

- add metadata references infront or behind
corresponding evaluation plan

Convert evaluation plans with metadata references into
internal format; run the iDBPQL2eva!Plan utility:

- plans may be spread over multiple files but the first file
must contain the main evaluation plan

Do you want to run multiple requests, of which
not all are converted yet, concurrently?

Run the prototype and import all required databases

iDBPQL2 evalPlan
f i l e location: TestAre a / requests
input f i l e extens ion: . idbpql
output f i l e extension : . evp

iDBPQLs tartPrototype --databases=ALL i list-of-narnes
f i l e location : TestArea/dbsMetaData
input f i l e extension: .md

.----l Run requests individually, serially or concurrently

iDBPQLrunRequests --serial I concurrent --reque s t l = . . . --delayl= . . . - -request2= . . .
default input f i l e location: TestArea/requests
default input file extens ion: . evp
defau l t output f i l e location : TestArea/results
default output file name : name-of -main-eval-plan
defau l t output f i l e extensi o n : . rl t

Terminate the prototype

iDBPQLstartPrototype

Fig. 6 . 3 . Usage Diagram for the iDBPQL Prototype.

the main evaluation plan must have the same name as and be located in the file
provided as first argument .
Two invocations of the iDBPQL2evalPlan utility with the same input files may
produce different internal representations. Due to the absence of a compiler and
optimiser, a certain degree of randomness has been added to this utility.

4 . The resulting file may be handed over to the run-time system or can be refined
manually. However, refinements require care since the run-time system expects well
formed code without any syntax errors .

Let us consider some examples. First , Figure 6.4 demonstrates how a centralised
version of the iDBPQL prototype system is invoked and the previously described

234

6 .2 . THE IDBPQL PROTOTYPE SYSTEM Markus Kirchberg

I File Edit Settings Help
jt018539 : -/Hassey/Ph . D . /�onstration/iDPBQL_Prototype/TestArea> bin/i DBPQLstartPrototype �
i DBPQL_Prototy pe : Start i n i t i a l isat ion .
. . . Ma i n execution thread of TMS created successf u l l y .
. . . Main execution thread of PDS created successfu l l y (databases : none) .
. . . Ma i n execution thread of REE created successful ly .
. . . I n i t i a l isation successful (continue in background) .

jt018539 : -/Hassey/Ph . D . /De.onstration/iDPBQL_Prototype/TestArea> b i n / i DBPQLrunRequests --request1=requests/He
l l oWor l d . evp
Hel l oWor l d thread created successfu l l y (de l ay : Oms) .
He l l oWor l d : Good-bye (0) > Hel l oWorld_1150341821 . r l t
jt018539 : -/Hassey/Ph . D ./De.onstration/iDPBQL_Prototype/TestArea> bin/i DBPQLrunRequests --request1=requests/He
l l oWor l d . evp --de l a y =100
Hel loWo r l d thread created successfu l l y (de l ay : lOOms) .
Hel loWor l d : Good-bye (0) > Hel loWorl d_1150341828 . r l t
it018539 : -/Hassey/Ph . D . /De.onstration/iDPBQL_Prototype/TestArea> bin/ i DBPQLrunRequests --request1=requests/He
l l oWor l d . evp --de l ay=O
He l l oWor l d thread created successfu l l y (de l ay : Oms) .
He l l oWor l d : Good-bye (0) > Hel l oWor l d_1150341833 . r l t
jt018539 : -/Hassey/Ph . D . /DeMonstration/iDPBQL_Prototype/TestArea> bin/ i DBPQLstopPrototype
iDBPQL_Prototype : Termination request rece ived .
i DBPQLstopPrototype : Request accepted ; bye .
. . . Main execution thread of REE terminated successfu l l y .
. . . Export databases :
. . . Destruction of Object Store successful .
. . . Ma i n execution thread of POS terminated successfu l l y .
. . . M a i n execution thread of TMS terminated successfu l l y .
. . . Termination successfu l ; good-bye (0) .

jt018539 : -/Hassey/Ph . D . /DeMonstration/iDPBQL_Prototype/TestArea> more results/HelloWorld*
.
results/He l l oWor l d_1150341821 . r l t
: : : : : : : : : : : : : :

He l l o wor l d !
: : : : : : : : : : : : : :

results/He l loWor l d_1150341828 . r l t
.

He l l o wor l d !

results/He l l oWorl d_1150341833 . r l t
: : : : : : : : : : : : : :

He l l o wor l d !
jt018539 : -/Hassey/Ph . D . /Demonstration/iDPBQL_Prototype/TestArea> I

Fig. 6 . 4 . Evaluation of the Hello World Example.

HelloWorld evaluation plan is run.
As a second example, let us consider a simple Parentage database. Figure 6.5 out­

lines snapshots of the iDBPQL representation as well as the internal representation
of this database schema. A more complete version of the internal representation of
the Parentage database schema can be found in Appendix B. The internal schema is
represented by a __ schernalnfo structure and each type synonym, type definition and
class definition has an associated __ typeSynlnfo structure, _ _ typelnfo structure or
_ _ class lnfo structure, respectively. Inherited properties are stored with the sub-class .
While the uniqueness constraint is fully represented in the data definition portion , the
check constraint is transformed into an evaluation plan such as:

0 1 EVALPLAN check1 () : BDDLEAN
02 {
03 if ((dateOfDeath IS NULL) OR (bDate <= dateOfDeath)) {
04 RETURN (TRUE) ;
05 }
06 RETURN (FALSE) ;
07 }

Using this Parentage database schema, we may now execute some initial requests.
The top-most snapshot of Figure 6.6 demonstrates the execution of four requests that:

235

6 .2 . THE IDBPQL PROTOTYPE SYSTEM Markus Kirchberg

Id File Edll Selllngs Help
� : -/Massey/Ph . D ./Denonstration/iDPBQL_Prototype/TestArea/dbsHetaData>
01 SCHEMA Parentage {
02 TYPEDEF ENUM (' m ' , ' f ') SexT ;
03 TYPEDEF Name T {
04 STRUCTURE {
05 NULLABLE < L I ST <
06 NULLABLE (STRING
07 STRING
08 }
09 }

CLASSDEF PersonC {
STRUCTURE {

NameT

STRING > > t i tles ;
> f irstName ;

lastName ;

name ;

more Parentage . idbpql

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

READONLY DateT
READONL Y NULLABLE
NULLABLE (SexT >

bDate ; // DateT is defined in the iDBPQL l i brary
< Date T > dateOfDeath ;

sex ;
}
BEHAVIOUR {

}

addDateOfDeath (DateT dod) : VOID ;
getAge () NAT ;
hasKnownParents () BOOLEAN ;
7���i�!n�P;r�n

�O�L�A� ;
BOOLEAN ;

Person[(STRING name , DateT bDate) ;
PersonC (STRING name 1 OateT bDate , SexT

CONSTRA INT {
UNIQUE (name , bDate) ;

sex) ;

CHECK ((dateOfDeath IS NULL) OR (bDate <= dateOfDeath)) ;

32
33
34
35
36
37
38
39
40
41
42
43 }
44

CLASSDEF P arentC I sA Person[(
STRUCTURE {

REAOONLY SET < Person[> c h i ldren ;
}
BEHAVIOUR {

addNewChi ld (PersonC chi l d) VOID ;
ParentC (STRING name , OateT bOate , SET < PersonC
ParentC (STRING name , DateT bOate , SexT sex , SET

45 I I evaluation plans f o l l ow

> chi ldren) ;
< PersonC > chi ldren) ;

46 EVALPLAN Parentage . PersonC . addDateOfDeath (DateT dod) : VOID { c I

GJ@[-I File Edit Selllngs Help
� : -/Massey/Ph . D . /Det��onstration/iDPBQLPrototype/TestArea/dbsHetaData) . . /bin/ i DBPQL2metaData Parentage
. idbpql

schema detected : Parentage
type synonym detected : SexT
type defi n i t i on detected : NameT
class def i n i t i on detected : Person[
new reference to 1 ibrary def i n i t i on : DateT
c l ass def i n i t i on has behav iour
class def i n i t i on has constra int : check1
c l ass definition detected : ParentC
c l ass def i n i t i on i s sub-class (Parent[- > PersonC)
c l ass definit ion has behav iour
behaviour implementation detected : Parentage . PersonC . addDateOfDeath
behaviour implementation detected : Parentage . Person[. getAge
behaviour implementation detected : Parentage . PersonC . hasKnownParents
behaviour implementation detected : Parentage .PersonC . haslivi ngParent
behaviour implementation detected : Parentage . Person[. isAl ive
behaviour implementation detected : Parentage . PersonC . PersonC
behaviour implementation detected : Parentage . PersonC . PersonC
behaviour implementation detected : Parentage . ParentC . addNewChi l d
behaviour implementation detected : Parentage . Parent[. ParentC
behaviour imp l ementation detected : Parentage . Parent[. ParentC
SUCCESS (0) > Parentage . md
� : -/Massey/Ph .D ./Derttonstration/iDPBQLPrototype/TestArea/dbsMetaOata> more Parentage . md
__ schema!nfo

__ name : Parentage
__ typeSynCount : 1
__ typeSy n :

_ _ typeSyninfo (1)
__ modF 1 ag : 000
__ name : SexT
__ typeSynDescr iptor : s<st(" m ' , ' f ")

__ typeCount : 1
__ types :

__ typeinfo (1)
_modFlag : 000
__ name : Name T
__ typeOescri ptor :
__ fieldCount : 3
__ fields :

__ f i e l d l nfo (1)
__ modF l ag : 000
__ name : t i t l es
__ varDescriptor : n< 1 <st
_attribCount : 0
__ attributes : c L. �f
�
i
�e�

l d
�

In
�

f
�o�(�

2
�

) �==�'

Fig. 6.5. iDBPQL and Internal Representations of the Parentage Database.

236

6.2 . THE IDBPQL PROTOTYPE SYSTEM Markus Kirchberg

J File Edit Settings Help
it01853� : · ,-,�oo�/Ph . D . /De.onstration/iDPBQL_Prototype/TestArea> b i n/i DBPQLstartPrototype -database=Paren
tage
i DBPQL_Prototype : Start initial isation .
. . . Ma in execut i on thread of TMS created successfu l l y .
. . . Ma in execution thread of POS created successfu l l y (databases : Parentage) .
. . . Ma in execution thread of REE created successfu l l y .

I n i t i a l isation successful (continue in background) .
it018539 : -/Hassey/Ph . D . /�tration/iOPBQL_Prototype/TestArea> b i n/i DBPQLrunRequests --request1=requests
/PopulateParentageDB . evp
PopulateParentageDB thread created successfu l l y (delay : Oms) .
Popul ateParentageOB : new transact i on (tr lnsert) .
TMS_Ma i n : received openTrans () request (Transld = 2) .
TMS_Ma i n : received comm i t (2) request .
Popul ateParentageDB : Good-bye (0) > PopulateParentageDB_1150358351 . rlt
it018539 : -/Hassey/Ph . D . /Oe.onstration/iDPBQL_Prototype/TestArea> b i n/ iDBPQLrunRequests --concurrent --requ
est1=requests/QueryParentageDB_-_GetA l l . evp --request2=requests/QueryParentageDB_-_L i v i ngGrann i es . evp --re
quest3=requests/QueryParentageDB_-_Mi s s i ngParent . i dbpql
WARN ING : Concurrent evaluation may resu l t in DB incons i s tency (TMS not fu l l y imp lemented) .
QueryParentageDB_-_GetA l l thread created successfu l l y (de l ay : Oms) .
QueryParentageDB_-_GetAl l : new transact i on (trGetA l l) .
QueryParentageDB_-_ L i v i ngGrannies thread created successfu l l y (delay : Oms) .
TMS_Ma i n : received openTrans () request (Transld = 3) .
QueryParentageDB_-_M i s s i ngParent thread created successfu l l y (delay : Oms) .
QueryParentageOB_-_ L i v i ngGrannies : new transact ion (trGrann i es) .
QueryParentageDB_-_Miss ingParent : new transaction (trMissing) .
TMS_Ma i n : received openTrans () request (Transld = 4) .
TMS_Ma i n : received openTrans () request (Transld = 5) .
TMS_Ma i n : received comm i t (3) request .
QueryParentageDB_-_GetA l l : Good-bye (0) > PopulateParentageDB_1150358368 . r l t
TMS_Ma i n : received comm i t (5) request .
TMS_Ma i n : received comm i t (4) request .
QueryParentageDB_-_Miss ingParent : Good-bye (0) > QueryParentageDB_-_M issingParent_1150358370 . r lt
QueryParentageDB_-_L i v i ngGrann ies : Good-bye (0) > QueryParentageDB_-_L i v i ngGranni es_1150358370 . r l t
it018539 : -/Hassey/Ph . D . /�tration/iDPBQL_Prototype/TestArea> b i n/ iDBPQLstopPrototype
iDBPQL_Prototype : Term ination request received .
i DBPQLstopPrototy pe : Request accepted ; bye .
. . . Main execut ion thread of REE terminated successfu l l y .
. . . Export databases : Parentage
. . . Destruction of Object Store successful .
. . . Main execut ion thread of POS terminated successfu l l y .
. . . Main execution thread of TMS termi

, �

n�ate

�

d successfu l l y .
. . . Termination successful ; good-bye (0 .

i t 018539 : -/Hi /i't, . 0 ./Det1100stration/ p, '�' ' ""'"Hr-ea' I

�lngs Help
jt018539 : �/Hassey/Ph . D . /Demonstration/iDPBQL_Prototype/TestArea> more resu l ts/Que �
ry ParentageOB_-_GetAl l_1150358368 . r l t
(([] , Pat , S m i t h) , 25-04-194 7 , (nu l l) , ' m ' , < (([Or] , Chri s , Sm i t h) , 13-0
5-1967) >)
(([] , Pam , S m i t h) , 18-08-1950 , (nu l l) , ' f " , < (([Or] , Chri s , Sm i t h) , 13-0
5-1967) >)
(([Or] , Chr i s , Sm ith) , 1 3-05-1967 , (nu l l) , ' m ' < (([] , Bern i e , S m i t h) , 3
0-01-1984) , (([] , Soph i e , Sm i th) , 23-05-1986)))
(([Ms] , Me l i ssa , Key) , 21-01-1963 , 12-12-2001 , ' f' ' , < (([] , Bern i e , Smith
) , 30-01-1984) , (([] , Soph i e , Sm i t h) , 23-05-1986) >)
(([] , Mon i que , Key) , 18-11-1948 , (nu l l) , (nu l l) , < (([Ms] , Mel issa , Key) ,

21-01-1963) >)
jt018539 : �/Hassey/Ph . D . /Demonstration/iDPBQL_Prototype/TestArea> more resu l ts/Que
ry ParentageOB_-_ L i v i ngGrann i es_1150358370 . r l t
< (([] , Berni e , Smith) , 30-01-1984) , (([] , Soph i e , S m i th) , 23-05-1986) >
jt018539 : �/Hassey/Ph . D . /Demonstration/iDPBQL_Prototype/TestArea> more resu l t s/Que
ryParentageOB_-_Missi ngParent_1150358370 . r l t
{ (([] , Mon i que , Key) , 18-11-1948) }
it018539 : �/Hassey/Ph . D . /Demonstration/iDPBQL_Prototype/TestArea> I

Fig. 6.6. Executing Requests on the Parentage Database.

237

I

6.2 . THE IDBPQL PROTOTYPE SYSTEM Markus Kirchberg

1 . Populate the Parentage database;
2a. Retrieve all ParentC entries from the Parentage database;
2b. Retrieve a list of (name , dateOfBirth) entries that identify all persons, which

have living grandparents associated .
2c. Retrieve a set of (name , dateOfBirth) entries that identify all persons, which

have only one parent entered in the Parentage database.

The first data population step utilises object constructors to create new person and
parent objects. The three subsequent requests are evaluated concurrently and generate
results as shown in the bottom-most snapshot of Figure 6 .6 .

More examples, demonstration slides, demonstration software , technical reports,
reports on our research progress, relevant research publications, project information
etc. are available on the following Web-site:

http : //dbpql . thekirchbergs . info/

238

Chapter 7

Summary

In this thesis, we have proposed the design and implementation of a intermediate-level ,
object-oriented database programming and querying language iDBPQL. This language
continues the research path leading towards a fully integrated database language that
seamlessly unites the domains of object-oriented programming, database query lan­
guages and traditional database management systems.

The remainder of this final chapter is organised as follows : First, we summarise the
main contribution of this thesis and subsequently, comments on future research plans
are discussed.

7 . 1 Main Contribution

The research contribution of this thesis consists of four inter-related achievements . The
first major contribution consists of the proposed object database architecture and a
demonstration that this architecture is capable to process typical database requests. In
contrast to corresponding research and development efforts of the 1980s and 1990s, our
proposal cannot be considered as a direct extension of relational database technologies.
Instead, we have proposed a novel architecture that recognises research advances
from domains such as programming languages, database programming languages and
compiler construction.

The second major contribution is the proposal of the integrated database program­
ming and querying language iDBPQL. This language has been designed to support
the evaluation of user requests on an internal DBS layer that is commonly referred
to as (request) evaluation engine. iDBPQL is Turing-complete1 [21] and separates the
specification of data definitions from the implementation of behaviours.

Data definitions are associated with metadata catalogues. Internally, a distinction
is made between specifications that correspond to shared, persistent data and specifi­
cations of private, transient run-time entities. iDBPQL further distinguishes between

1 A language is said to be Turing-complete if it fulfils the following property: For each function that can be
calculated with a Turing machine, there exists a program in this language that performs the same function
[21]. Turing-completeness can be verified by providing a mapping from each possible Turing machine to
a program in the language, by demonstrating that there is a program in the language that emulates a
universal Turing machine or by proving that the language is a super-set of a language that is known to be
Turing-complete. iDBPQL can be proven to be a super-set of the Turing-complete Brainfuck language [94] .

239

7. 1 . MAIN CONTRIBUTION Markus Kirchberg

values and objects, where values are (mutable) language entities that are identified by
their value and objects are entities that have an immutable object identifier indepen­
dent of associated values. While types structure values, the concept of classes is utilised
to group objects. Besides commonly supported types such as BOOL, CHAR, INT, NAT,
REAL, the record type, and ARRAY-type, iDBPQL also supports (parameterised) user
types, collection types including BAG, SET and LIST and the NULLable type, which ex­
tends value types with the NULL value. Furthermore, reference-types and a UNION-type
that supports the unification of identical or similar objects are provided. Classes can
be regarded as templates for creating objects, expose structural properties, allow for
the definition of (reverse) references, may have associated behaviour, support multi­
ple inheritance, and may have associated, system-maintained collections through which
access to all objects of a class and its sub-classes is possible.

Behaviour associated with objects and types, and the specification of a user
request 's main execution stream is provided in the form of evaluation plans. Evaluation
plans are comprised of control flow statements, assignments, expressions, method
calls, and evaluation blocks . Common programming abstractions and query language
constructs have been included. The integration of both concepts evolves around
collections. Evaluation blocks are used to group statements together, form atomic
execution units, model local and distributed transactions and support independent
or multi-threaded processing. Data persistence is treated as an orthogonal language
concept. iDBPQL does not distinguish between persistent and transient values, types,
objects or classes. Persistence is supported simply by adding a class definition to a
schema or by creating a new object on a persistent class.

The third major contribution consists of three proposals. First , an internal rep­
resentation of data definitions and evaluation plans is detailed. Metadata entries are
described by modular pseudo-structures, which can (in full or in parts) effectively be
mapped to persistent storage or transfered to a remote ODBS instance. Evaluation
plans, in turn, are represented as graphs with various annotations. Annotations link
behaviour specifications with metadata entries, capture information that is later
utilised to enhance the evaluation or distribute sub-evaluations to remote ODBS
instances. Secondly, general service interfaces of additional ODBS modules, which are
required during the evaluation process, are defined. The definition of these service
interfaces is partly more general than required for the evaluation of requests that are
formulated in iDBPQL. For instance, the persistent object store also supports common
access patterns that are utilised by query languages, which are designed for XML
database systems. Thirdly, a run-time environment that enables the evaluation of
iDBPQL requests is presented. During the processing of user requests, the environment
for a particular evaluation stream is kept in a separate stack area. In addition to
the environment stack, result stacks are maintained for each behaviour invocation .
Individual results are held in result queues, which reside on result stacks. Result
queues are supported to facilitate the pipelining of intermediate results between
two or more evaluation units . The evaluation of user requests is performed by four
evaluation routines, which recursively traverse respective evaluation graphs following
a depth-first approach. These evaluation routines determine whether processing takes
place in serial , multi-threaded or distributed manner. This decision is either based

240

7.2 . FUTURE PLANS AND OPEN PROBLEMS Markus Kirchberg

on annotations or explicitly encoded in the operational semantics of internal machine
instructions. For each iDBPQL statement, expression, operator or keyword there exists
one or more internal machine instruction. While basic operational semantics have been
presented for the majority of language constructs, only a selected number of enhanced
semantics have been presented in greater detail. These more complex semantics have
been selected to demonstrate how different styles of processing can be utilised in the
proposed run-time environment .

The final contribution relates to two prototype systems that have been implemented
as proof of concepts. While the early prototype only corresponds to a feasibility study,
the second prototype closely follows the proposals as presented in this thesis.

Research results presented in this thesis mainly address the database engine that pro­
cesses evaluation plans formulated in the proposed integrated database programming
and querying language iDBPQL. In order to achieve our particular research objectives,
we have made a number of assumptions, which include:

- Concepts that relate to user interaction , code compilation, fragmentation and allo­
cation, code optimisation, code rewriting, execution plan generation etc. are beyond
the scope of this thesis. Instead, we adopt a black box approach and assume that
user requests arrive in a form that is suitable for request evaluation .

- Typical high-level programming language concepts such as packages or modules,
interfaces , type and class definitions, classes (as code structuring primitives) etc.
are omitted . Proposing suitable high-level language interfaces is considered as a
future research step.

- A number of services from supporting database components are utilised. While we
describe the general functionality and service interfaces of corresponding database
components, there are still a number of open research problems that need to be in­
vestigated before those components can be implemented in an effective and efficient
manner. Section 7.2 includes a brief discussion of those open research problems.

7 . 2 Future Plans and Open P roblems

Future research opportunities can be divided into four categories: Developing demon­
stration tools that assist with the promotion of the research results presented in this
thesis, improving the proposed iDBPQL language and run-time system, addressing
issues related to the development of the proposed distributed object-oriented database
system [72] and adapting the iDBPQL language to other database environments such
as XML database systems.

One of the biggest shortcomings of the proposed iDBPQL language is the lack of
an exception mechanism. However, respective approaches as found in current object­
oriented PLs can be adopted to our proposal. In particular, the internal representation
of metadata entities has been designed in a way that support for exceptions can
be added easily. For instance, exceptions that may be associated with a particular
behaviour signature will be captured in the behaviour's __ attribute array. This is

241

7.2. FUTURE PLANS AND OPEN PROBLEMS Markus Kirchberg

an approach similar to the one implemented in the Java programming language [80] .
Considering the run-time system, refining the memory allocation of the heap is one
area of interest . As briefly indicated in Section 5.3, it is our intention to utilise the
nature of stack-based accesses (i .e . generally from the top only) . In order to free
valuable main memory space, certain objects may be cached out to larger but slower
memory devices. Such objects include those that are only referenced from bottom
sections of environment and result stacks as well as objects that reside in the middle
of large result queues. These are less likely to be accessed in the near future when
compared to objects at the top of a stack or at the head and tail of pipelined result
queues. With respect to the prototype systems, adding more enhanced machine codes
and improving the usability are the first shortcomings that have to be addressed.
Other areas of interest include support for true parallelism, batch updates, views etc .

As it has been outlined at the beginning of this thesis , research work presented
in this thesis is related to the development of a distributed object-oriented database
system. As such, it is only natural that future research will focus on the completion of
this project. Currently, there are other PhD research projects active that are concerned
with:

- Support for generic update operations [105] , query compilation and value­
representability [106] ; and

- The investigation of fragmentation, allocation and optimisation techniques for
higher-order data models.

Furthermore, there are a number of open research issues. These include:

- Efficient storage structures and clustering techniques for persistent objects. The
POS prototype mentioned above is a very naive implementation . Research into
clustering techniques for storage objects and compression techniques for indices are
still required.

- Merging of navigational and associative access structures. Uniting these two types
of access structures has the potential to further increase ODBS performance [96] .

- Definition and development of a variety of ways for users to access the ODBS. This
includes a h igh-level version of the DBPQL language.

- DBPQL compilation and code optimisation techniques.
- Definition and development of Database Administrator interfaces. These are re-

quired to enable administrators to fine-tune the system and monitor its perfor­
mance.

XML database systems have moved into the centre of database research in recent
years. Current proposals and implementations either propose an extension of relational,
object-relational or object-oriented systems to also support the storage, querying and
processing of XML documents or advocate the use of a native XML database system.
Among others, IBM has extended their DB2 Universal Database to include native XML
support [95] . Mapping XML documents and queries to non-native XML databases suf­
fers from similar problems as those outline in Section 1 . 1 . 1 . As a result , the tendency
goes towards native XML database systems. When developing native XML databases ,

242

7.2. FUTURE PLANS AND OPEN PROBLEMS Markus Kirchberg

new challenges such as effective internal representations of tree-structured XML doc­
uments, efficient processing of mainly navigation-oriented access and fine-granularity
locking have to be faced . Among others, [49] provides an overview of corresponding
challenges and suggests new research directions that could lead to better XML DBS
architectures.

The proposed iDBPQL system together with the multi-level transaction manage­
ment system and the persistent object store have the potential to support the storage
and processing of XML documents quite naturally. Concepts such as fine granularity
locking, navigational data access, support for bulk data types and user-defined data
types are readily incorporated. For instance, the proposed persistent object store may
model indices on XML documents using both embedded references and explicit refer­
ences . Values of types IDREF and IDREFS map to embedded references while parent-child
relationships would correspond to explicit references.

243

7.2 . FUTURE PLANS AND OPEN PROBLEMS Markus Kirchberg

244

Bibliography

1 . AGRAWAL, R . , DAR, 8 . , AND GEHANI, N . H . The 0++ database programming
language: Implementation and experience. In Proceedings of the 9th International
Conference on Data Engineering (Washington, DC, USA, 1993) , IEEE Computer
Society, pp. 61-70 .

2. AGRAWAL, R . , AND GEHANI, N . H . ODE (object database and environment) :
the language and the data model. I n Proceedings of the international conference
on Management of data (New York, NY, USA, 1 989) , ACM Press, pp. 36-45.

3. AIT-KACI, H . An overview of LIFE. In Proc. Next Generation Information
Systems Technology (1991) , J. W. Schmidt and A. A. Stognij , Eds . , vol . 504 of
LNCS, Springer-Verlag, pp. 42-58.

4. ALBANO, A . , CARDELLI, L . , AND ORSINI, R. GALILEO: a strongly-typed, in­
teractive conceptual language. A CM Transactions on Database Systems (TODS)
1 0, 2 (1985) , 230-260.

5 . ALBANO, A . , GHELLI, G . , AND ORSINI, R. Fibonacci : a programming language
for object databases. The VLDB Journal 4 , 3 (1 995) , 403-444.

6. ALONSO, G . , B LOTT, S . , FESSLER, A . , AND SCHEK , H .- J . Correctness and
parallelism in composite systems. In Proceedings of the 1 6th A GM SIGA CT­
SIGMOD-SIGAR T symposium on Principles of database systems (1997) , ACM
Press , pp. 197-208.

7. AMERICAN NATIONAL STANDARDS INSTITUTE. Coded character set - 7-bit
american national standard code for information interchange, 1986.

8. ATKINSON, M . , BANCILHON , F . , DEWITT, D . , DITTRICH, K . , MAIER, D . ,
AND ZDONIK, S . The object-oriented database system manifesto. I n Proceedings
of the 1st International Conference on Deductive and Object- Oriented Databases
(Kyoto, Japan, 1 989) , pp. 223-240.

9. ATKINSON, M . , CHISHOLM , K . , AND COCKSHOTT, P . PS-algol: an algol with
a persistent heap. A GM SIGPLAN Notices 1 7, 7 (1982) , 24-31 .

10 . ATKINSON , M . , AND MORRISON , R. Orthogonally persistent object systems.
The VLDB Journal 4, 3 (1995) , 319-402 .

11 . ATKINSON, M. P . , AND BUNEMAN, P. Types and persistence in database pro­
gramming languages. A GM Computing Surveys (CSUR) 1 9, 2 (1987) , 105-170.

12. ATKINSON, M . P . , DAYNES, L . , JORDAN, M . J . , PRINTEZIS , T . , AND SPENCE,
S . An orthogonally persistent Java. A GM SIGMOD Record 25, 4 (1996) , 68-75.

13 . B ANCILHON, F . , BRIGGS, T . , KHOSHAFIAN, 8 . , AND VALDURIEZ , P . FAD, a
powerful and simple database language. In Proceedings of 13th International

245

BIBLIOGRAPHY Markus Kirchberg

Conference on Very Large Data Bases (1987) , P. M . Stacker, W. Kent, and
P. Hammersley, Eds . , Morgan Kaufmann, pp. 97-105 .

14 . BANCILHON, F . , DELOBEL, C . , AND KANELLAKIS, P. Building an object­
oriented database system: the story of 02 . Morgan Kaufmann Publishers Inc . ,
1992.

15 . BEERI , C . A formal approach to object-oriented databases. Data fj Knowledge
Engineering 5, 4 (1990) , 353-382.

16 . BEERI , C . , B ERNSTEIN , P . A . , AND GOODMAN, N . A model for concurrency in
nested transactions systems. Journal of the AGM (JA CM) 36, 2 (1989) , 230-269.

1 7. BERNSTEIN , P . A . , AND GOODMAN , N . Serializability theory for replicated
databases. Journal of Computer and System Sciences 31 , 3 (1985) , 355-374.

18 . B J0RNERSTEDT, A . , AND BRITTS, S . AVANCE - an object management sys­
tem. In Proceedings of the Conference on Object-Oriented Systems, Languages and
Applications {OOPSLA), San Diego, California, USA (September 1988) , N. K.
Meyrowitz, Ed . , pp. 206-221 .

19 . BLOOM , T . , AND ZDONIK, S . B . Issues i n the design of object-oriented database
programming languages. In Conference proceedings on Object-oriented program­
ming systems, languages and applications (New York, Y, USA, 1987) , ACM
Press, pp. 441-451 .

20. BOBROW, D . G . , AND STEFIK , M . The Loops manual. Knowledge-Based VLSI
Design Group Memo KB-VLSI-81-13 , Xerox Corp. , January 1983.

2 1 . BRAINERD, W. S . , AND LANDWEBER, L. H . Theory of Computation. John
Wiley & Sons, Inc . , New York, NY, USA, 1974.

22 . BRIOT, J .- P . , GUERRAOUI , R . , AND LOHR, K .- P . Concurrency and distribu­
tion in object-oriented programming. A GM Computing Surveys (CSUR) 30, 3
(1998) , 291-329.

23. BUTENHOF, D . R. Programming with POSIX threads. Addison-Wesley Longman
Publishing Co . , Inc . , 1997.

24. BUTTERWORTH, P . , 0TIS, A . , AND STEIN, J. The GemStone object database
management system. Communications of the AGM 34 , 10 (1991) , 64-77.

25. CARDELLI, L . Typeful programming. In Formal Description of Programming
Concepts, E. J . Neuhold and M. Paul, Eds. Springer-Verlag, Berlin, 1991 , pp. 431-
507.

26. CARDELLI, L. Type systems. A GM Computing Surveys 28, 1 (1996) , 263-264.
27. CARDELLI , L . , AND WEGNER, P . On understanding types, data abstraction,

and polymorphism. A GM Computing Surveys {CSUR) 1 7, 4 (1985) , 471-523.
28. CATELL, R. G . G . , BARRY, D . K . , BERLER, M . , EASTMAN, J . , JORDAN, D . ,

RUSSELL, C . , SCHADOW, 0 . , STANIENDA, T . , AND VELEZ, F . The Object
Data Standard: ODMG 3. 0. Morgan Kaufmann Publishers Inc . , 2000.

29. CooK, W. R. , GREENE, R . , LINSKEY, P . , MEIJER, E . , RuGG , K . , RussELL,
C . , WALKER, B . , AND WITTIG, C . Objects and databases: State of the union
in 2006. Panel at the International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, October 2006.

30. CooK, W. R . , HILL, W . , AND CANNING , P . S . Inheritance is not subtyping.
In Proceedings of the 1 7th A GM SIGPLAN-SIGA CT symposium on Principles of
programming languages (New York, NY, USA, 1990) , ACM Press, pp. 1 25-135.

246

BIBLIOGRAPHY Markus Kirchberg

3 1 . CooK, W. R . , AND IBRAHIM, A . H . Integrating programming languages &
databases: What's the problem? Draft Conference Submission, October 2005.

32 . C ooK , W. R . , AND RosENBERGER, C . Native queries for persistent objects, a
design white paper. Dr. Doob 's Journal (DDJ) (February 2006) .

33 . C oURCELLE, B . Fundamental properties of infinite trees. Theoretical Computer
Science 25 (1983) , 95-169.

34 . DARWEN , H . , AND DATE, C. J. The third manifesto . SIGMOD Rec. 24, 1
(1995) , 39-49.

35. D ICKMAN, P . W. The Bellerophon project: A scalable object-support architec­
ture suitable for a large OODBMS? In Proceedings of the International Workshop
on Distributed Object Management, M. T. Ozsu, U. Dayal , and P. Valduriez, Eds.
Morgan Kaufmann, 1992, pp. 287-299.

36. EISENBERG , A . , AND MELTON, J . SQL: 1999, formerly known as SQL3. BIG­
MOD Rec. 28, 1 (1999) , 131-138.

37. ELMASRI , R . , AND NAVATHE, S . B. Fundamentals of database systems. Addison
Wesley, Pearson Education, Inc. , 2004.

38. ENGELSCHALL , R. S . OSSP shared memory allocation, 2006. [Online; accessed
02-Aug-2006] , http : I lwww . ossp . orglpkglliblmml .

39. ENGELSCHALL, R. S . OSSP universally unique identifier (UUID) , 2006. [Online;
accessed 02-May-2006] , http : I lwww . ossp . orglpkgllib/uuidl.

40. FEUERSTEIN , S . , AND PRIBYL, B. Oracle PL/SQL Programming. O'Reilly &
Associates, Inc . , Sebastopol, CA, USA, 2002 .

4 1 . FININ , T . , FRITZSON , R . , McKAY , D . , AND McENTIRE, R . KQML as an
agent communication language. In Proceedings of the 3rd international conference
on Information and knowledge management (New York, NY, USA, 1994) , ACM
Press, pp. 456-463.

42. FISHMAN , D . H . , ANNEVELINK, J . , C HOW, E . , CONNERS , T . , DAVIS , J. W. ,
HASAN, W . , HocH, C . G . , KENT, W . , LEICHNER, S . , LYNGBAEK, P . , MAH­
BOD, B . , NEIMAT, M . A . , RISCH , T . , S HAN, M . C . , AND WILKINSON, W. K .
Overview of the IRIS dbms. Object-oriented concepts, databases, and applications
(1989) , 219-250.

43. GARCIA-MOLINA, H . , ULLMAN , J . D . , AND WmoM, J. Database System Im­
plementation. Prentice-Hall, 2000.

44. GEIST, A . , BEGUELIN, A . , DONGARRA, J . , J IANG , W . , MANCHEK, R. , AND
SUNDERAM , V. P VM: Parallel virtual machine: a users ' guide and tutorial for
networked parallel computing. MIT Press, Cambridge, MA, USA, 1994.

45. GOLDBERG , A . , AND ROBSON , D . Smalltalk-80: the language and its imple­
mentation. Addison-Wesley Longman Publishing Co. , Inc . , Boston , MA, USA,
1983.

46. GosLING , J . , JoY, B . , STEELE, G . , AND BRACHA , G. The Java™ Language
Specification, Third Edition: The Java Series. Addison-Wesley Professional , 2005.

47. GoULD, L . , ZANEVSKY, A . , AND KLINE, K. Transact-SQL Programming.
O'Reilly Media, Inc . , 1999.

48. GREHAN , R. Introduction to odbms. ODBMS.ORG : Object Da-
tabase Management Systems The Resource Portal for Ed uca-

247

BIBLIOGRAPHY Markus Kirchberg

tion and Research, 2006. [Online; accessed 30-September-2006] ,
http : //www . odbms . org/introduction_rdbms2odbms . htrnl.

49. HARDER, T. XML databases and beyond - plenty of architectural challenges
ahead. In Proceedings of the 9th East European Conference on Advances in
Databases and Information Systems (2005) , J . Eder, H.-M. Haav, A. Kalja, and
J. Penjam, Eds . , vol . 3631 of Lecture Notes in Computer Science, Springer, pp. 1-
16 .

50. HARDER, T . , AND RAHM , E . Datenbanksysteme - Konzepte und Techniken der
Implementierung. Springer, 1999.

5 1 . HART, B . E . , DANFORTH, S . , AND VALDURIEZ, P . Parallelizing a database
programming language. In Proceedings of the 1st international symposium on
Databases in parallel and distributed systems (1 988) , IEEE Computer Society
Press, pp. 72-79 .

52 . HRYNIOW, R . , LENTNER, M . , STENCEL, K . , AND SUBIETA , K . Types and
type checking in stack-based query languages. Tech. Rep. 984, Polish-Japanese
Institute of Information Technology, Warsaw, Poland, March 2005.

53. IGARASHI , A . , AND NAGIRA, H . Union types for object-oriented programming.
In Proceedings of the 21st Annual A GM Symposium on Applied Computing (SA C)
(New York, NY, USA, 2006) , ACM Press, pp. 1 435-144 1 .

5 4 . JODLOWSKI , A . , HABELA, P . , P LODZIEN , J . , AND SUBIETA, K. Objects
and roles in the stack-based approach. In Proceedings of the 13th International
Conference on Database and Expert Systems Applications (2002) , R. Cicchetti,
A. Hameurlain, and R. Traunmiiller, Eds. , vol. 2453 of Lecture Notes in Computer
Science, Springer, pp. 514-523.

55. JORDAN , D . , AND RussELL, C . Java Data Objects. O'Reilly Media, Inc . , 2003.
56. KEENE, S . E. A programmer 's guide to object-oriented programming in Common

LISP. Addison-Wesley Longman Publishing Co. , Inc . , Boston, MA, USA, 1988.
57 . KEMPER, A . , AND KOSSMANN, D . Adaptable pointer swizzling strategies in

object bases: design, realization, and quantitative analysis. The VLDB Journal
4 , 3 (1995) , 5 19-567.

58. KENT, W . The evolving role of database in object systems. In Proceedings of the
8th Bristish National Conference on Databases (BNCOD) (1990) , A. W. Brown
and P. Hitchcock, Eds . , Pitman Publishing, London, pp. 1-9.

59. KERNIGHAN, B . W . , AND RITCHIE , D . M. The C Programming Language.
Prentice-Hall , Inc. , 1978 .

60. KIM, W . Research directions in object-oriented database systems. In Proceed­
ings of the 9th A GM SIGA CT-SIGMOD-SIGART Symposium on Principles of
Database Systems (1990) , ACM Press, pp. 1-15.

6 1 . KIM , W . Object-oriented database systems: Promises, reality, and future. In
Proceedings of the 19th International Conference on Very Large Data Bases (San
Francisco, CA, USA, 1993) , Morgan Kaufmann Publishers Inc . , pp. 676-687.

62. KIM, W . , BALLOU, N . , C HOU , H . -T . , GARZA, J . F . , AND WOELK, D . Fea­
tures of the ORlON object-oriented database system. Object-oriented concepts,
databases, and applications (1989) , 251-282.

248

BIBLIOGRAPHY Markus Kirchberg

63. KIM, W . , BALLOU , N . , GARZA , J . F . , AND WOELK, D . A distributed object­
oriented database system supporting shared and private databases. A CM Trans­
actions on Information Systems 9, 1 (199 1) , 31-51 .

64 . KIRCHBERG, M. Seiten-, systempuffer- und satzverwaltung als grundlage eines
datenbanksystems. Research Report , Clausthal University of Technology Ger­
many. In German, December 1 999.

65. KIRCHBERG , M. Ein experimenteller vergleich von transaktionsschedulern fur
mehrschichten-transaktionen. Master's thesis, Clausthal University of Technology,
Germany, May 2000. In German.

66. K IRCHBERG , M . Exploiting multi-level transactions in distributed database sys­
tems. In Distributed Data f3 Structures 4 : Records of the 4th International Meet­
ing, W. Litwin and G . Levy, Eds . , vol . 14 of Proceedings in Informatics. Carleton
Scientific, 2002, pp. 37-58 .

67 . K IRCHBERG , M. DBAA/ ACL - a database agent architecture and communica­
t ion language. In Proceedings of the IADIS International Conference e-Society
2006 (July 2006) , P. Isaias, M . McPherson, and F. Bannister , Eds . , IADIS Press,
pp. 244-249.

68. K IRCHBERG , M . An integrated database programming and querying language
with support for simultaneous processing. In Proceedings of the 2nd International
Conference on Software Engineering Advances (ICSEA) (2007) , IEEE Computer
Society Press.

69. KIRCHBERG , M . An overview of the object-oriented database programming lan­
guage DBPQL. In Proceedings of the 9th International Conference on Enterprise
Informati�n Systems (ICEIS) (2007) , J. Cardoso, J. Cordeiro, and J. Filipe, Eds. ,
vol . 1 , I STICC Press.

70. KIRCHBERG , M . , KUCKELBERG , A . , SCHEWE, K . -D . , AND TRETIAKOV, A .
On coding navigation paths for in-memory navigation in persistent object stores.
In Proceedings of the 19th Brazilian Symposium on Databases (SBBD) (2004) ,
S . Lifschitz, Ed. , UnB, pp. 259-268.

71 . KIRCHBERG , M . , AND ScHEWE, K . -D . A comparison of multi-level concurrency
control protocols . In Proceedings of the 12th Australasian Database Conference
(ADC} (2001) , M. E. Orlowska and J . F. Roddick, Eds . , vol. 23 of Australian Com­
puter Science Communications: Database Technologies, IEEE Computer Society
Press, pp. 153-160.

72. KIRCHBERG , M . , SCHEWE, K .-D . , TRETIAKOV, A . , AND WANG , B . R. A
multi-level architecture for distributed object bases. Data f3 Knowledge Engi­
neering 60, 1 (January 2007) , 150-184.

73 . KIRCHBERG , M . , AND TRETIAKOV, A . A persistent object store as platform
for integrated database programming and querying languages. Internal Report,
Information Science Research Centre, Massey University, New Zealand, October
2006.

74. KOZANKIEWICZ, H . , AND S UBIETA, K . SBQL views - prototype of updateable
views. In Local Proceedings of the 8th East-European Conference on Advances in
Databases and Information Systems (2004) .

75 . LABROU, Y . , F ININ, T. , AND PENG, Y. Agent communication languages: The
current landscape. IEEE Intelligent Systems 14, 2 (1999) , 45-52 .

249

BIBLIOGRAPHY Markus Kirchberg

76. LAMB, C . , LANDIS , G . , 0 RENSTEIN , J . , AND WEINREB, D . The ObjectStore
database system. Communications of the A GM 34, 10 (199 1) , 50-63.

77. L ENTNER, M . , S TENCEL, K . , AND SUBIETA , K. Semi-strong static type check­
ing of object-oriented query languages. In Proceedings of the 32nd International
Conference on Current Trends in Theory and Practice of Computer Science (SOF­
SEM) (2006) , J . Wiedermann , G . Tel, J . Pokorny, M. Bielikova, and J . Stuller,
Eds. , vol . 3831 of Lecture Notes in Computer Science, Springer, pp. 399-408.

78 . L EONTIEV, Y . Type system for an object-oriented database programming lan­
guage. PhD thesi�, 1999. Adviser-M. Tamer Ozsu and Adviser-Duane Szafron.

79. L EONTIEV, Y . , O zsu , M. T . , AND SzAFRON , D . On type systems for object­
oriented database programming languages. A GM Computing Surveys (CSUR)
34, 4 (2002)

'
409-449.

80. L INDHOLM , T . , AND YELLIN, F . The Java™ Virtual Machine Specification,
Second Edition. Addison-Wesley Longman, Inc . , 1999.

8 1 . LIPKA, A . The design and implementation of TIGUKAT user languages. Tech.
Rep. TR93- l l , Department of Computing Science, University of Alberta, Edmon­
ton, Alberta, Canada, July 1993.

82 . L ISKOV , B . , C U RTIS , D . , DAY, M . , GHEMAWAT , s . , G RUBER, R . , J OH NSON,
P . , AND MYERS , A . C . Theta Reference Manual - Preliminary Version, Febru­
ary 2005. [Online] , http : I lwww . pmg . lcs . mi t . edulpaperslthetaref I .

83. L ISKOV , B . , DAY , M . , AND SHRIRA, L . Distributed object management in
Thor. Distributed Object Management (1993) , 79-91 .

84. L OHMAN, G . M . , LINDSAY, B . , P IRAHESH , H . , AND SCH IEFER, K. B . Exten­
sions to Starburst: objects, types, functions, and rules. Communications of the
A GM 34, 10 (1991) , 94-109.

85. L OMET, D . B . MLR: a recovery method for multi-level systems. In Proceedings
of the A GM SIGMOD international conference on Management of data (1992) ,
ACM Press, pp. 185-194.

86. MA, H . , AND S cHEWE, K.- D . A heuristic approach to horizontal fragmentation
in object oriented databases. In Databases and Information Systems - Selected
Papers from the 6th International Baltic Conference DB&IS'2004 , J. Barzdins
and A. Caplinskas, Eds . , vol . 1 18 of Frontiers in Artificial Intelligence and Appli­
cations. IOS Press, 2005, pp. 20-33.

87. MA, H . , AND S CHEWE, K. -D . Query optimisation as part of distribution design
for complex value data bases. In Proceedings of the 15th European - Japanese Con­
ference on Information Modelling and Knowledge Bases (EJC) (2005) , Y. Kiyoki ,
H. Kangassalo, H . Jaakkola, and J . Henno, Eds. , IOS Press, pp. 269-276 .

88. M EHLHORN, K . , NAHER, S . , S EEL, M . , AND U HRIG , C . The LEDA User
Manual (Version 4 . 2), 2000.

89. MEYER, B . Eiffel: the language. Prentice-Hall, Inc . , Upper Saddle River, NJ ,
USA, 1992.

90. MILLSTEIN , R. E. Control structures in Illiac IV Fortran. Communications of
the A GM 1 6, 10 (1973) , 621-627.

9 1 . M ITCH ELL, J. C . Type systems for programming languages, vol . B of Handbook
of theoretical computer science. MIT Press, 1 990, eh. 8, pp. 365-458.

250

BIBLIOGRAPHY Markus Kirchberg

92. MOHAN , C . , HADERLE, D . J . , L INDSAY, B . G . , PIRAHESH , H . , A N D
S CHWARZ, P . M . ARIES: a transaction recovery method supporting fine­
granularity locking and partial rollbacks using write-ahead logging. A GM Trans­
actions on Database Systems (TODS) 1 7, 1 (1992) , 94-162.

93. M ORRISO N , R . , CONNOR, R . C . H . , K IRBY, G . N. C . , MUNRO , D . S . , ATKIN­
SON , M . P . , CUTTS , Q. 1 . , B ROW N , A. L . , AND D EARLE, A . The Napier88
persistent programming language and environment . In Fully Integrated Data En­
vironments, M. P. Atkinson and R. Welland, Eds. Springer, 1999, pp. 98-154.

94. M ULLER, U . The Brainfuck programming language. As cited by Brian Raiter:
Brainfuck - An Eight-Instruction Turing- Complete Programming Language.
[Online; accessed 02-Dec-2006] , http : I lwww . muppetlabs . coml-breadboxlbf I ,
1993.

95. N ICOLA, M . , AND VAN DER LINDEN , B . Native XML support in DB2 universal
database. In Proceedings of the 31st international conference on Very Large Data
Bases (2005) , VLDB Endowment , pp. 1 164-1 174 .

96. N uSDIN , W. Associative access in persistent object stores. Master's thesis,
Department of Information Systems, Massey University, New Zealand, 2004.

97. NYGAARD, K . , AND DAHL, 0 . - J . The development of the SIMULA languages.
In Proceedings of the 1st A GM SIGPLAN conference on History of programming
languages (New York, NY, USA, 1978) , ACM Press, pp. 245-272.

98. O D B M S . ORG PANEL OF EXPERTS . ODBMS.ORG: Object database manage­
ment systems - the resource portal for education and research, 2006. [Online;
accessed 30-September-2006] , http : I lwww . odbms . orgl.

99. Q NTOLOG IC, INC. ONTOS developer's guide. Burlington, MA, 1991 .
100. O zsu , M . T . , P ETERS, R . J . , SzAFRON , D . , I RANI, B . , LIPKA, A . , AND

MuN'oz, A . TIGUKAT: A uniform behavioral objectbase management system.
YLDB Journal 4 , 3 (1995) , 445-492.

10 1 . Ozsu , M . T . , AND VALDURIEZ , P. Principles of distributed database systems
(2nd ed.) . Prentice-Hall, 1999.

102. PATERSON, J . , EDLICH , S . , HORNING, H . , AND HORNING , R. The Definitive
Guide to db4o. Apress, Berkely, CA, USA, 2006.

103. RAMAKRISHNAN, R . , AND GEHRKE, J . Database Management Systems.
McGraw-Hill Higher Education, 2003 .

104 . RIAZ- UD- DIN, F . An implementation of the ARIES /ML recovery manager. Mas­
ter's thesis, Department of lnformation Systems, Massey University, New Zealand,
February 2002.

105 . RIAZ- UD-DIN, F . , AND SCHEWE , K. -D . A query and update language for ra­
tional tree-type data structures . Internal Report, Information Science Research
Centre, Massey University, New Zealand, December 2006.

106 . RIAZ- UD- DIN, F . , AND ScHEWE, K.- D . A query compiler architecture for
achieving value-representability in object-oriented databases. In Electronic Pro­
ceedings of the International Conference on Innovations in Information Technolo­
gies (IIT) (2006) .

107. ROTHERMEL, K . , AND MOHAN, C . ARIES/NT: a recovery method based on
write-ahead logging for nested transactions. In Proceedings of the 15th interna-

251

BIBLIOGRAPHY Markus Kirchberg

tional conference on Very large data bases (1989) , Morgan Kaufmann Publishers
Inc . , pp. 337-346.

108. SAMARAS, G . , B RITTON , K . , C ITRON, A . , AND MOHAN, C . Two-phase commit
optimizations in a commercial distributed environment . Distributed and Parallel
Databases 3, 4 (1995) , 325-360 .

109. S CHEWE , K . - D . On the unification of query algebras and their extension to
rational tree structures. In Proceedings of the 12th Australasian conference on
Database technologies (200 1) , IEEE Computer Society Press, pp. 52-59.

1 10 . S cHEWE, K .- D . Fragmentation of object oriented and semistructured data. In
Proceedings of the Baltic Conference, BalticDB&IS 2002 (2002) , Institute of Cy­
bernetics at Tallinn Technical University, pp. 253-266.

1 1 1 . SCHEWE, K .- D . , RIPK E , T . , AND D RECHSLER, S . Hybrid concurrency control
and recovery for multi-level transactions. Acta Cybernetica 14, 3 (2000) , 419-453 .

1 12 . S CHEWE , K . -D . , AND S cHEWE, B . Integrating database and dialogue design.
Knowledge and Information Systems 2, 1 (2000) , 1-32.

1 13. S CHEWE , K . - D . , STEMPLE, D . W . , AND THALHEIM, B . Higher-level genericity
in object-oriented databases. In Conference on Management of Data (1994) .

1 14 . ScHEWE, K. -D . , AND T HALHEIM, B . Fundamental concepts of object oriented
databases. Acta Cybernetica 1 1 , 1-2 (1993) , 49-84.

1 15 . ScHMIDT, J . W . , AND M ATTHES, F . The database programming language
DBPL - rationale and report. Tech. rep . , Hamburg, Germany, Germany, 1992.

1 16. ScOTT, M . L. Programming language pragmatics. Morgan Kaufmann Publishers
Inc. , San Francisco, CA, USA, 2000.

1 17. S ESTOFT , P . , AND HANSEN , H . I. C# precisely. MIT Press, Cambridge, MA,
USA, 2004.

1 18 . S ILBERSCHATZ , A . , KORT H , H . F . , AND SUDARSHAN , S . Database Systems
Concepts. McGraw-Hill Higher Education, 2002.

1 19. S IMONS, A . J . H . The theory of classification, part 17 : Multiple inheritance and
the resolution of inheritance conflicts. Journal of Object Technology 4, 2 (March
- April 2005) , 15-26.

1 20. SINGH, M. P . Agent communication languages: Rethinking the principles . Com­
puter 31 , 12 (1998) , 40-47.

1 2 1 . S KARRA , A . H . , ZDON I K , S . B . , AND REISS, S . P . ObServer: An object server
for an object-oriented database system. In On Object- Oriented Database Sys­
tem, K. R. Dittrich, U. Dayal , and A. P. Buchmann, Eds . , Topics in Information
Systems. Springer, 1991 , pp. 275-290.

1 22. S PEER, J . Database recovery: Expanding the ARIES constellation . Master's
thesis, Department of Information Systems, Massey University, New Zealand,
May 2005.

1 23 . S P EER, J . , AND KIRCHBERG , M. D-ARIES: A distributed version of the ARIES
recovery algorithm. In Proceedings of the 9th East-European Conference on
Advances in Databases and Information Systems (2005) , J. Eder, H.-M. Haav,
A. Kalja, and J . Penjam, Eds . , Tallinn University of Technlogy Press, pp. 13-30.

124 . STEMPLE, D . , FEGARAS, L . , S HEARD , T . , AND S OCORRO , A . Exceeding the
limits of polymorphism in database programming languages. In Proceedings of

252

BIBLIOGRAPHY Markus Kirchberg

the international conference on extending database technology on Advances in
database technology (1990) , Springer-Verlag New York, Inc . , pp. 269-285.

125. STEMPLE, D . , AND SHEARD, T. A recursive base for database programming
primitives. Lecture Notes in Computer Science 504 (199 1) , 31 1-332.

126. STEMPLE, D . , SHEARD, T . , AND FEGARAS, L. Reflection: A bridge from pro­
gramming to database languages. In Proc of the Hawaii Conf on System Sciences
(1992) .

127. STRAUBE, D . D . , AND Ozsu , M . T . Query optimization and execution plan
generation in object-oriented data management systems. IEEE Transactions on
Knowledge and Data Engineering 7, 2 (1995) , 210-227.

128. STROUSTRUP , B . The C+ + programming language. Addison-Wesley Longman
Publishing Co . , Inc . , Boston, MA, USA, 1986.

129 . SUBIETA, K. LOQIS: The object-oriented database programming system. Lecture
Notes in Computer Science 504 (1991) , 403-421 .

130 . SUBIETA, K . Theory and Construction of Object- Oriented Query Languages.
Editors of the Polish-Japanese Institute of lnformation Technology, Warsaw, 2004.

13 1 . SUBIETA, K . , BEERI, C . , MATTHES, F . , AND SCHMIDT, J . W. A stack-based
approach to query languages. Tech. Rep. 738 , Institute of Computer Science
Polish Academy of Sciences, Warszawa, Poland, dec 1993.

132 . SzYPERSKI , C . A. Import is not inheritance - why we need both: Modules and
classes. In Proceedings of the European Conference on Object- Oriented Program­
ming (London, UK, 1992) , Springer-Verlag, pp. 19-32 .

133 . THALHEIM, B . Entity-Relationship Modeling - Foundations of Database Technol­
ogy. Springer, 2000.

134. THE COMMITTEE FOR ADVANCED DBMS FUNCTION CORPORATE. Third­
generation database system manifesto. SIGMOD Rec. 1 9, 3 (1990) , 31-44.

135. THE UNICODE CONSORTIUM. The Unicode Standard, Version 4 . 0. Addison
Wesley Professional, 2003 .

136. TORGERSEN , M . Inheritance is specialisation. In Proceedings of the Inheritance
Workshop at ECOOP 2002 (2002) , G . Arevalo , A. Black, Y. Crespo, M. Dao,
E. Ernst, P. Grogono, M. Huchard, and M . Sakkinen, Eds. , vol . 2548 of Lecture
Notes in Computer Science, Springer, pp. 1 17-134.

137. TUCKER, A . B . , AND NOONAN, R. E. Programming Languages: Principles and
Paradigms. McGraw-Hill Higher Education, 2001 .

138 . VELEZ , F . , BERNARD, G . , AND DARNIS , V. The 02 object manager: An
overview. In Proceedings of the 15th International Conference on Very Large
Data Bases (1989) , Morgan Kaufmann Publishers Inc . , pp. 357-366 .

139. VERSANT OBJECT TECHNOLOGY, INC . Versant dbms, 1992.
1 40 . WANG , R . B . , KIRCHBERG , M . , AND SCHEWE, K . - D . OORPC: A commu­

nication mechanism for distributed object bases. In Proceedings of the 3rd In­
ternational Conference on Electronic Commerce Engineering (ICeCE) (October
2003) , Z. Chen, X. Gu, G. Qi, and S. Fang, Eds . , International Academic Pub­
lisher/World Publishing Corporation, pp. 676-680.

1 4 1 . WEIKUM , G . A theoretical foundation of multi-level concurrency control. In Pro­
ceedings of the 5th A GM SIGA CT-SIGMOD symposium on Principles of database
systems (1 986) , ACM Press, pp. 31-43.

253

BIBLIOGRAPHY Markus Kirchberg

142. WEIKUM, G . Principles and realization strategies of multilevel transaction man­
agement . A GM Transactions on Database Systems (TODS) 1 6, 1 (1 991) , 132-180.

143. WEIKUM, G . , HASSE, C . , BROESSLER, P . , AND MUTH , P . Multi-level recov­
ery. In Proceedings of the 9th A GM SIGA CT-SIGMOD-SIGART symposium on
Principles of database systems (1990) , ACM Press, pp. 109-123 .

144 . WIRTH, N . Programming in MOD ULA-2 (3rd corrected ed.) . Springer-Verlag,
New York, NY, USA, 1985.

145 . WoLF, A . L. An initial look at abstraction mechanisms and persistence. In
Implementing Persistent Object Bases, Principles and Practice, Proceedings of
the 4th International Workshop on Persistent Objects (1990) , A. Dearle, G . M.
Shaw, and S . B . Zdonik, Eds . , Morgan Kaufmann, pp . 360-368.

1 46 . ZEZULA, P . , AND RABITTI , F . Object store with navigation acceleration . In­
formation Systems 18, 7 (1993) , 429-459 .

254

Chapter A

The Syntax of iDBPQL

A . l The Lexical Syntax o f iDBP QL

Boo lean
Character
Letter

ZeroDigit
PosDigit
Digit
HexDigit

Hex Indicator
PosNatural
Natural
Integer
Hexal
Fraction
Real

Null

Literal
Ident if ier

New line
WhiteSpace
NonNewlineWS
Comment

Keyword

"TRUE" I "FALSE" ;
? Characters of the ASCII Standard ? ;
' a ' ' b ' ' c ' I ' d ' I
' l ' ' m ' ' n ' I ' o ' I
' w ' ' x ' ' y ' I ' z ' I
' H ' ' I ' ' J ' I ' K ' I
' S ' ' T ' ' U ' I ' V ' I
' 0 ' ;
' 1 ' I ' 2 ' ' 3 ' ' 4 '

ZeroDigit PosDigit ;
Digit I ' a ' I ' b ' I ' c '
' E ' I ' F ' ;
' x ' I ' X ' ;
PosDigit , { Digit } ;
ZeroDigit I PosNatural ;

' e ' I ' f ' I
' p ' I ' q ' I
' A ' I ' B ' I
' L ' I ' M ' I
' W ' I ' X ' I

' 5 ' ' 6 '

I ' d ' I ' e '

ZeroDigit I ([' - '] , PosNatural) ;

' g '
' r '
' C '
' N '
' Y '

' 7 '

I ' f '

' h '
' s '
' D '
' 0 '
' Z ' ;

' 8 ' I

I ' A '

ZeroDigit , Hexindicator , HexDigit , { HexDigit } ;
ZeroDigit I ({ ZeroDigit } , PosNatural) ;
(Integer , ' · ' , Fraction) I

' i ' ' j '
' t ' ' u '
' E ' ' F '
' P ' ' Q '

' 9 ' ;

I ' B ' I ' C '

([Integer] , ' . ' , Fraction , (' e ' I ' E ') , Integer) ;
"NULL" ;

' k '
' v '

' G '
' R '

I ' D '

Boolean I Character I Integer I Hexal I Natural I Null I Real ;
Letter , { Letter I Digit I ' - ' } ;

? a newline character , e . g . ' \n ' ? ;
? all white space characters such as newline , tabulator etc . ? ;
WhiteSpace - Newline ;
"I/ " , { Character - New line } , Newline ;

I

" ABSTRACT" I "AND" I "ARRAY" I " AS" I "ASC" I "ATOMIC" I " BAG"
" BEHAVIOUR" I " BOOL" I "BOOLEAN" I "BREAK" I "CASE" I "CHAR" I

" CHARACTER" I " CHECK" I "CLASSDEF" I "COLLECTION" I "COMBINES"
"CONCRETE" I " CONCURRENT" I " CONST" I "CONSTRAINT" I "DEFAULT"
" DESC" I "DISTINCT" I "DO " I "ELSE" I "ELSEIF" I "ENDDO" I "ENUM"
" EVALPLAN" I "EXISTS" I "FALSE" I "FINAL" I "FOR ANY" I "FOR EACH" I

255

A.2. THE SYNTAX OF METADATA CATALOGUE ENTRIES Markus Kirchberg

Separator
Operator

Token
Lexeme
Syntax

" FROM" I "GROUP " I " IF" I " IMPORTS" I " IN" I " INDEPENDENT" I
" INIT" I " INNER" I " INT" I " INTEGER" I " IS " I " IS ACCEPTED FROM" I
" ISINSTANCEOF" I " ISSUBCLASSOF" I " ISSUBTYPEOF" I " IsA" I " JO IN" I
"LABEL" I "LEFT" I "LIKE" I "LIST" I "LOOP" I "NAT" I "NATURAL" I
" NAVIGATIONAL" I "NEW" I " NOT" I "NULL" I " ON " I "ORDER BY" I
" OUTER" I "PRIVATE" I "PUBLIC" I "READONLY" I "REAL" I "RETURN"
"REVERSE" I "RIGHT" I "SCHEMA" I "SET" I "STATIC" I " STRING" I
" STRUCT" I "STRUCTURE" I " SUBRANGE" I "SUBTYPE" I "SWITCH" I
"THEN" I "TO" I "TRANSACTION" I " TRUE" I "TYPEDEF" I "UNIONDEF"
"UN IQUE" I "WAIT" I "WHERE" I "WHILE" I "WITH" j
' C ' I ') ' I ' : ' I ' ; ' I ' < ' I ' > ' I ' { ' I ' } ' I Whi teSpace ;
' ! ' I " ! = " I ' % ' I "%=" I "&&" I ' & ' I "&= " I ' * ' I " *=" I ' + '
"++" I "+= " I ' - ' I " -- " I " -=" ' · ' I ' / ' I " /= " I ' < ' I " << " I
" <<=" I " <=" I ' = ' " ==" I ' > ' I " >=" I " >> " I " >>=" I ' - ' I " -="
" I =" I " I I " I ' - ' ;

Identif ier I Keyword I Literal I Operator I Separator ;
Comment I Token I WhiteSpace ;
Lexeme , { Lexeme } ;

A . 2 The Synt ax o f MetaData Catalogue Ent ries

A.2. 1 Syntax of DBS MetaData Units

Schema ;
" SCHEMA" , Id , ' { ' , SchemaBlock , ' } ' ;
{ ImportDeclaration } , { SchemaDefinition } ;

DBSMetaDataUnit
Schema
SchemaBlock
ImportDeclaration
SchemaDefinition

" IMPORTS" , [" SCHEMA"] , I d , [' . ' , Id] , ["AS" , Id] ;
ClassDef inition I ConstantDeclaration I TypeDeclaration ;

A.2.2 Syntax of Run-Time MetaData Units

RunTimeMetaDataUnit
EvalPlanAnnotation
EvalAnnotation
LocalDeclaration

EvalPlanAnnotation I EvalAnnotation ;
ClassDef inition I ConstantDeclaration TypeDeclaration ;
LocalDeclaration ;
ConstantDeclaration I TypeDeclaration VariableDecl ;

A.2.3 Common Syntax of Type-System-Related Definitions

ClassDef inition

ClassModif ierDecl

ScopeModif ierDecl
Stat icModif ierDecl
ClassCatModif ierDecl
AbstractModif ierDecl

ClassModif ierDecl , "CLASSDEF" , Id ,
[' < ' , ClassParameter-List , ' > '] , [" IsA" , Classid-List] ,
["WITH" , ' { ' , { (ClassParaConstrClause I

PrecedenceClause I RenamingExpr) , ' ; ' } , ' } '] , ' { ' ,
[StructuredType] ,
["BEHAVIOUR" , ' { ' , { MethodSignature } , ' } '] ,
[ConstraintDeclaration] , ' } ' ;
[ScopeModifierDecl] , [StaticModif ierDecl] ,
[ClassCatModif ierDecl] , [FinalModifierDecl] ;
["PRIVATE" I "PUBLIC"] j
" STATIC" ;
AbstractModifierDecl
" ABSTRACT" ;

256

"COLLECTION" I "CONCRETE" j

A.2 . THE SYNTAX OF METADATA CATALOGUE ENTRIES Markus Kirchberg

FinalModif ierDecl
ClassParaConstrClause
PrecedenceClause

MethodSignature

MethodModif ierDecl

ConstraintDeclarat ion =

DomainConstraint
CheckConstraintDecl
NotNullConstraintDecl
EntityConstraint
UniqueConstraintDecl

" FINAL" ;
ClassParameter , " ! sA" , Classld-List ;
(Id , " IS ACCEPTED FROM" , Id) I
(Id , "COMBINES" , Id , { "AND " , Id }) ;
MethodModif ierDecl , Id , ' (' , [Parameter-List] ,
ResultType ;
[ScopeModifierDecl] , [StaticModifierDecl] ,
[AbstractModif ierDecl I FinalModif ierDecl] ;
"CONSTRAINT" , [Id] , ' { '
{ DomainConstraint I EntityConstraint } , ' } ' ;
CheckConstraintDecl I NotNullConstraintDecl ;
"CHECK" , ' (' , Expression , ') ' ;
"NOT NULL" , ' (' , Id-List , ') ' ;
UniqueConstraintDecl ;
"UNIQUE" , ' (' , Id-List , ') ' ;

') ' , ' . ' . ,

ConstantDeclaration ScopeModif ierDecl , "CONST" , Type , Id , [' = ' Expression] ;

TypeDeclaration
TypeDef inition
UserTypeDecl

TypeDefinition I SubTypeDecl ;
ScopeModif ierDecl , (UserTypeDecl I TypeSynonymDecl) ;
"TYPEDEF" , Id , [' < ' , TypeParameter-List , ' > '] ,

' } ' ;
TypeParaConstrClause
TypeOpSignature

["WITH" , ' { ' , { TypeParaConstrClause } , ' } '] , ' { ' ,
StructuredType , ["BEHAVIOUR" , { TypeOpSignature }] ,
" SUBTYPE" , ' (' , TypeParameter , ' , ' , Typeld-List , ') ' ,
S copeModifierDecl , (Id I " !NIT") ,

' . ' 0 , '

TypeSynonymDecl
SubTypeDecl

VariableDecl

VarModif ierDecl
SimpleConstraint

' (' , [Parameter-List] , ') ' , ' : ' , ResultType ;
" TYPEDEF" , NoneVoidType , Id ;
" SUBTYPE" , ' (' , Typeld, ' , ' , Type Id-List , ') ' ;

VarModif ierDecl , Type , Id , [SimpleConstraint] ,
["REVERSE" , Id] ;
[ScopeModif ierDecl I "READONLY"] , [Stat icModif ierDecl] ;
"NOT NULL" ;

A.2.4 Common Syntax of iDBPQL Types

Type
NoneVoidType
BasicType

AtomType
NumericType
Collect ion Type

NULLableType
Structured Type

StructMemberDecl

NoneVoidType I VoidType ;
BasicType I RefType ;
AtomType I CollectionType NULLableType I StructuredType
Typeld I TypeParameter ;
" BOOL" I "BOOLEAN " I "CHAR" I " CHARACTER" I NumericType ;
" INT" I " INTEGER" I "NAT" I "NATURAL" I "REAL" ;
(" BAG" , ' < ' , NoneVoidType , ' > ') I
(" SET" , ' < ' , NoneVoidType , ' > ') I
(" LIST" , ' < ' , NoneVoidType , ' > ') I (" STRING") I
("ARRAY" , ' < ' , NoneVoidType , ' > ' , ' [' , [NaturalValue] , '] ') I
(" ENUM" , ' (' , StringValue , { ' , ' , StringValue } , ') ') I
(" SUBRANGE" , ' < ' , NumericType , ' > ' , " FROM" , NumericValue ,

" TO" , NumericValue) ;
"NULLABLE" , ' < ' , NoneVoidType , ' > ' ;
(" STRUCT" I " STRUCTURE") , [Id J '
((' { ' , { StructMemberDecl } , ' } ') I StructuredType) ,
[' & ' , StructuredType , ["WITH" , ' { ' , { RenamingExpr } , ' } ']] ;
StructuredType I VariableDecl ;

257

A030 THE REMAINING SYNTAX OF IDBPQL Markus Kirchberg

RefType
Union Type

VoidType

ResultType

Classld I ClassParameter I UnionType ;
ScopeModif ierDecl , "UNIONDEF " , [Id]
' < ' , RefType , ' , ' , RefType , ' > ' ;
"VOID" ;

VoidType I Type ;

A . 3 The Remaining Syntax o f iDBPQL

A.3.1 Syntax of Evaluation Units

EvaluationUnit
iDBPQLProgram

EvalPlanBlock
EvalPlanlnit
EvalBlock

iDBPQLProgram ;
"EVALPLAN" , I d , ' (' , Argument-List , ') ' , [
EvalPlanBlock ;
[EvalPlanlnit] , EvalBlock ;
" !N IT" , DoBlock ;
DoBlock ;

' 0 ' ReturnType] ,

A.3.2 Syntax of Evaluation Blocks

DoBlock

DoThenBlock

((' { ' I ([" INDEPENDENT"] , "DO" , [" ATOMIC"] ,
["TRANSACTION" , Tid])) , Statements , (' } ' I "ENDDO")) I

DoThenBlock ;
"DD" , Statement s , ["THEN " , DoBlock] , "ENDDO" ;

ConcurrentDoBlock = " CONCURRENT" , "DO " , Statements ,
{ "THEN" , "DO " , Statements , "ENDDO" , ' 0 ' , } , "ENDDO" , ' . ' .

A.3.3 Syntax of Statements

Statements
Statement
ControlFlowStmt

BreakStmt
Condit ionStmt

LabelStmt
LoopStmt
DoWhileLoop
For Each
LoopLoop
While Loop
ReturnStmt
SwitchStmt
SwitchBlock
CaseBlock
WaitStmt
ExpressionStmt

[Statement , { ' ; ' , Statement }] ;
ControlFlowStmt I DoBlock I ExpressionStmt ;
BreakStmt I ConditionStmt I LabelStmt I LoopStmt
ReturnStmt I SwitchStmt I WaitStmt ;
"BREAK" , [Label Id] , ' ; ' ;
" IF " , ' (' , Expression , ') ' , DoBlock ,
{ " ELSEIF" , ' (' , Expression , ') ' , DoBlock } , ["ELSE" , DoBlock] ;
"LABEL" , Labelld , ' : ' , Statement ;
DoWhileLoop I ForEach I LoopLoop I WhileLoop ;
DoBlock , "WHILE" , ' (' , BooleanExpr , ') ' , ' ; ' ;
"FOR EACH" , Expression , (DoBlock I ConcurrentDoBlock) ;
"LOOP" , DoBlock ;
"WHILE" , ' (' , BooleanExpr , ') ' , DoBlock ;
"RETURN" , ' (' , [Expression] , ') ' , ' ; ' ;
"SWITCH " , ' (' , Expression , ') ' , SwitchBlock ;
' { ' , { CaseBlock } , ["DEFAULT" , ' : ' , DoBlock] , ' } ' ;
"CASE" , Expression , ' : ' , DoBlock ;
"WAIT " , [Labelld] , ' ; ' ;
(AssignmentExpr I CreationExpr MethodCallExpr I

TypeOpCallExpr) , ' ; ' ;

258

A.3 . THE REM AINING SYNTAX OF IDBPQL M arkus Kirchberg

A.3.4 Syntax of Expressions

Expression

AssignmentExpr

CompoundAssignOp
InDeCrementOp
BinaryExpr
BinaryOperator

BooleanExpr

EqualityExpr
InCollectionExpr
InheritanceExpr
InstanceOfExpr
LogicalExpr

NULLExpr
Quantif ierExpr
Relat ionalExpr
CastExpr
CreationExpr
MethodCallExpr
QueryExpr

JoinExpr

PathExpr
PathComponent
OrderByExpr
Proj ect ionExpr
Proj ectComponent

Select ionExpr
UniquenessExpr
RenamingExpr
TypeOpCallExpr
UnaryExpr

AssignmentExpr I BinaryTypeOpExpr I BooleanExpr I CastExpr I
CreationExpr I Identifier I Literal I MethodCallExpr I
QueryExpr I RenamingExpr I TypeOpCallExpr I UnaryTypeOpExpr I
(' (' , Expression , ') ') ;
(Expression , ' = ' , Expression) I
(Expression , CompoundAssignOp , Expression) I
(Expression , InDeCrementOp) I (InDeCrementOp , Expression) ;
" += " I " -= " I " *= " I " /= " I "/.=" I " <<=" I ">>=1 1 ;
" ++ 11 I " -- " ;
Expression , BinaryOperator , Expression ;
' 'l. ' I " && " I ' & ' I ' * ' I ' + ' I ' - ' I ' . ' I ' I ' I " < < " I " > > " I
' - ' I " 1 1 " I ' - ' ;
EqualityExpr I InCollectionExpr I InheritanceExpr I
InstanceOfExpr I LogicalExpr I NULLExpr I Quant if ierExpr
RelationalExpr ;
Expression , ("==" I " ! = ") , Expression ;
Expression , " IN" , Expression ;
Expression , (" ISSUBTYPEOF" I " ISSUBCLASSOF") , Expression ;
Expression , " ISINSTANCEOF" , Expression ;
(BooleanExpr , ("&&" I " 1 1 ") , BooleanExpr) I
(' ! ' , BooleanExpr) ;
Expression , " IS " , ["NOT"] , "NULL" ;
("EXISTS" I "FOR ANY") , Expression , ' (' , BooleanExpr , ') ' ;
(Expression , (' < ' I " <= " I " >= " I ' > ' I " LIKE") , Expression) ;
' (' , (Typeid I Classid) , ') ' , Expression ;
"NEW" , Class Id , ' (' , [Argument-List] , ') ' ;
Methodid, ' (' , [Argument-List] , ') ' ;
JoinExpr I OrderByExpr I Proj ectionExpr I SelectionExpr
UniquenessExpr ;
Expression , ["NAVIGATIONAL" I " INNER" I (["NATURAL"] ,

["LEFT" I "RIGHT"] , [" OUTER"])] , " JOIN " , Expression ,
[" ON" , (PathExpr I BooleanExpr)] ;
Id , PathComponent , { PathComponent } ;
' . ' , { Id } ;
Expression , " ORDER BY" , Expression , ["ASC" I "DESC"] ;
Expression , ' . ' , ProjectComponent ;
Expression I
(' (' , Proj ectComponent , { ' , ' , Proj ectComponent } , ') ') ;
Expression , "WHERE" , BooleanExpr ;
("DISTINCT" I "UNIQUE") , Expression ;
Expression , ["GROUP"] , "AS" , Id ;
TypeOpid , ' (' , [Argument-List] , ') ' ;
(' + ' I ' - ') , Expression ;

A.3.5 Identifiers, Labels, Values and More

Argument
Argument-List
AtomicValue
Class Id
Class Id-List
ClassParameter

Id ;
Argument , {
Literal ;
Id ;

' ' ' ' Argument } ;

Classid , ["AS" , Id] , { ' ' ' '
Id ;

259

Classid, ["AS" , Id] } ;

A.3 . THE REM AINING SYNTAX OF IDBPQL

ClassParameter-List
Id
Id-List
Labelid
Method Id
Natural Value
NumericValue
Parameter
Parameter-List
StringValue
Tid
Type Id
Type Id-List
TypeOpid
TypeParameter
TypeParameter-List
Value

ClassParameter , { ' , ' , ClassParameter } ;
Identifier ;
Id , { ' , ' , Id } ;
Id ;
Id ;
Natural ;
Integer I Natural I Real ;
Id ;
Parameter , { ' , ' , Parameter } ;
{ Character } ;
Id ;
Id ;
Typeid , {
Id ;
Id ;

' ' ' ' Typeid } ;

TypeParameter , { ' , ' , TypeParameter } ;
AtomicValue I StringValue ;

260

Markus Kirchberg

Chapter B

The Parentage Database Example

Section 6 .2 (refer to Figure 6 .5 on Page 236) briefly introduces a Parentage database.
The example's corresponding schema definition is as follows:

SCHEMA Parentage {
TYPEDEF ENUM (' m ' , ' f ') SexT ;
TYPEDEF NameT {

STRUCTURE {

001
002
003
004
005
006
007
008
009
010

NULLABLE < LIST < STRING > > t itles ;

}
}

NULLABLE < STRING >
STRING

011 CLASSDEF PersonC {
012 STRUCTURE {

f irstName ;
lastName ;

013 NameT name ;
014 READONLY DateT bDate ; // DateT defined in iDBPQL library
015 READONLY NULLABLE < DateT > dateOfDeath ;
016 NULLABLE < SexT > sex ;
017 }
018 BEHAVIOUR {
019 addDateOfDeath (DateT dod) : VOID ;
020 getAge () : NAT ;
021 hasKnownParents () : BOOLEAN ;
022 hasLivingParent () : BOOLEAN ;
023 isAlive () : BOOLEAN ;
024 PersonC (STRING name , DateT bDate) ;
025 PersonC (STRING name , DateT bDate , SexT sex) ;
026 }
027 CONSTRAINT {
028 UNIQUE (name , bDate) ;
029 CHECK ((dateOfDeath IS NULL) OR (bDate <= dateOfDeath)) ;
030 }
031 }
032
033 CLASSDEF ParentC IsA PersonC {
034 STRUCTURE {
035 READONLY SET < PersonC > children ;
036 }

261

037 BEHAVIOUR {
038 addNewChild (PersonC child) : VOI D ;

Markus Kirchberg

039 ParentC (STRING name , DateT bDate , SET < PersonC > children) ;
040 ParentC (STRING name , DateT bDate , SexT sex , SET < PersonC > children) ;
041 }
042 }
043 }

Due to its complexity, the internal representation of this schema has not been de­
tailed in Section 6 .2 . A more complete version of the Parentage database's internal
representation is as follows:

050 11 f ile name : Parentage . md
051 __ schemainfo
052 _ _ name : Parentage
053 _ _ typeSynCount : 1
054 __ typeSyn :
055 _ _ typeSyninfo (1)
056 _ _ modFlag : 000
057 _ _ name : SexT
058 _ _ typeSynDescriptor : s<st (' m ' , ' f ')
059 _ _ typeCount : 1
060 _ _ types :
061 _ _ typeinfo (1)
062 _ _ modFlag : 000
063 _ _ name : NameT
064 __ typeDescriptor :
065 fieldCount : 3
066 fields :
067 _ _ f ieldinfo (1)
068 _ _ modFlag : 000
069 name : titles
070 _ _ varDescriptor : n<l<st
071 attribCount : 0
072 attributes :
073 _ _ fieldinfo (2)
074 _ _ modFlag : 000
075 name : f irstName
076 _ _ varDescriptor : n<st
077 attribCount : 0
078 attributes :
079 _ _ f ieldinfo (3)
080 _ _ modFlag : 000
081 name : lastName
082 _ _ varDescriptor : st
083 attribCount : 0
084 attributes :
085 _ _ typeOpCount : 0
086 _ _ typeOps :
087 classCount : 2
088 classes :
089 classinfo (1)
090 _ _ modFlag : 040
091 name : PersonC

262

092 _ _ classDescriptor :
093 _ _ supClassCount : 0
094 _ _ supClasses :
095 f ieldCount : 4
096 f ields :
097 f ieldlnfo (1)
098 _ _ modFlag : 000
099 name : name
100 _ _ varDescriptor : t<NameT
101 attribCount : 0
102 attributes :
103 _ _ f ieldlnfo (2)
104 _ _ modFlag : 001
105 _ _ name : bDate
106 _ _ varDescriptor : t<DateT
107 attribCount : 0
108 attributes :
109 _ _ f ieldlnfo (3)
1 1 0 _ _ modFlag : 001
1 1 1 name : dateOfDeath
1 12 __ varDescriptor : n<t<DateT
1 1 3 attribCount : 0
1 14 attributes :
1 15 __ f ieldlnfo (4)
1 16 __ modFlag : 000
1 17 name : sex
1 18 __ varDescriptor : t<SexT
1 19 attribCount : 0
120 attributes :
1 2 1 _ _ methodCount : 7
122 _ _ methods :
1 23 __ methodlnfo (1)
1 24 __ modFlag : 000
125 name : addDateDfDeath
126 __ methodDescriptor : (t<DateT dod)vd
127 attribCount : 1
128 attributes :
129 _ _ methodlnfo (2)
130 _ _ modFlag : 000
131 _ _ name : getAge
132 __ methodDescriptor : () na
133 _ _ attribCount : 1
134 attributes :
135 attriblnfo (1)
136 _ _ attribType : EVALPLAN
137 name :
138 value :
139 _ _ code : 5a3ee33c-88b2-44cb-b1c5-3f24202a6fda
140 _ _ methodlnfo (3)
141 _ _ modFlag : 000
142 _ _ name : hasKnownParents
143 _ _ methodDescriptor : () bo
144 __ attribCount : 1

263

Markus Kirchberg

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

_ _ attributes :
__ attribinfo (1)

_ _ attribType : EVALPLAN
__ name :

value :
__ code : 65a002e3-c34f-450d-9b31-df7938df6174

__ methodinfo (4)
_ _ modFlag : 000
_ _ name : hasLivingPa!ent
__ methodDescriptor : () bo
__ attribCount : 1
_ _ attributes :

_ _ attribinfo (1)
_ _ attribType : EVALPLAN

name :
value :

__ code : 9f5027a8-f2e1-468e-b5cb-802a0b4436c8
_ _ rnethodinfo (5)

_ _ modFlag : 000
_ _ name : isAli ve
_ _ methodDescriptor : () bo

attribCount : 1
attributes :
_ _ attribinfo (1)

_ _ attribType : EVALPLAN
__ name :

value :
__ code : a06cb694-e38d-4b14-9998-2ca292470fee

_ _ methodinfo (6)
_ _ rnodFlag : 000
__ name : PersonC
_ _ rnethodDescriptor : (st name , t<DateT bDate)

attribCount : 1
attributes :

attribinfo (1)
_ _ attribType : CONSTRUCTOR
_ _ name :

value :
_ _ code : 04193a34- 1010-422d-9 1f5-a61 1cec75120

_ _ rnethodinfo (7)
_ _ modFlag : 000
_ _ name : PersonC

Markus Kirchberg

__ methodDescriptor : (st name , t<DateT bDate , t <SexT sex)
attribCount : 1
attributes :

attribinfo (1)
_ _ attribType : CONSTRUCTOR

name :
_ _ value :
__ code : 37d848dd-a79c-40f9-b57e-d02f0c05a7a9

constrCount : 1
classConstrs :

classConstrinfo (1)

264

constrCount : 2
constraints :

constrlnfo (1)
_ _ type : 1

fieldCount : 2
fields :

198
199
200
201
202
203
204
205
206
207
208
209
210
2 1 1
212
2 13
2 14
2 15
2 16

f ieldlnfo (1) *name
f ieldlnfo (2) *bDate

_ _ attribCount : 0
attributes :

_ _ constrlnfo (2)
_ _ type : 2

f ieldCount : 0
fields :
attribCount : 1
attributes :

attriblnfo (1)
_ _ attribType : CONSTRAINT
_ _ name : check1

2 1 7 value :
2 1 8 code : 7afcfa51-1910-4ff5-b383-571687c98c8a
2 1 9 classlnfo (2)
220 _ _ modFlag : 040
221 _ _ name : ParentC
222 _ _ classDescriptor :
223 _ _ supClassCount : 1
224 _ _ supClasses :
225 classlnfo (1) *PersonC
226 f ieldCount : 5
227 fields :
228 fieldlnfo (1)
229 _ _ modFlag : 000
230 name : name
231 _ _ varDescriptor : t<NameT
232 attribCount : 0
233 attributes :
234 _ _ f ieldlnfo (2)
235 _ _ modFlag : 001
236 name : bDate
237 _ _ varDescriptor : t<DateT
238 _ _ attribCount : 0
239 attributes :
240 __ fieldlnfo (3)
241 __ modFlag : 001
242 __ name : dateOfDeath
243 __ varDes criptor : n<t<DateT
244 attribCount : 0
245 attributes :
246 __ fieldlnfo (4)
247 __ modFlag : 000
248 __ name : sex
249 __ varDescriptor : t<SexT
250 _ _ attribCount : 0

265

Markus Kirchberg

251 _ _ attributes :
252 _ _ fieldlnfo (5)
253 _ _ modFlag : 001
254 _ _ name : children
255 __ varDescriptor : s<c<PersonC
256 _ _ attribCount : 0
257 attributes :
258 _ _ methodCount : 8
259 methods :
260 methodlnfo (1)
261 _ _ modFlag : 000
262 _ _ name : addDateDfDeath
263 _ _ methodDescriptor : (t<DateT dod) vd
264 _ _ attribCount : 1
265 attributes :
266 _ _ methodlnfo (2)
267 _ _ modFlag : 000
268 _ _ name : getAge
269 __ methodDescriptor : () na
270 attribCount : 1
271 attributes :
272 _ _ attriblnfo (1)
273 _ _ attribType : EVALPLAN
274 name :
275 value :
276 _ _ code : 5a3ee33c-88b2-44cb-b1c5-3f24202a6fda
277 _ _ methodlnfo (3)
278 _ _ modFlag : 000
279 name : hasKnownParents
280 _ _ methodDescriptor : () bo
28 1 _ _ attribCount : 1
282 attributes :
283 attriblnfo (1)
284 _ _ attribType : EVALPLAN
285 name :
286 _ _ value :
287 _ _ code : 65a002e3-c34f-450d-9b31-df7938df6174
288 __ methodlnfo (4)
289 _ _ modFlag : 000
290 _ _ name : hasLivingParent
291 _ _ methodDescriptor : () bo
292 attribCount : 1
293 attributes :
294 __ attriblnfo (1)
295 _ _ attribType : EVALPLAN
296 name :
297 value :
298 _ _ code : 9f5027a8-f2e1-468e-b5cb-802a0b4436c8
299 __ methodlnfo (5)
300 _ _ modFlag : 000
301 _ _ name : isAlive
302 _ _ methodDescriptor : () bo
303 attribCount : 1

266

Markus Kirchberg

304 attributes :
305 attriblnfo (1)
306 _ _ attribType : EVALPLAN
307 name :
308 value :
309 _ _ code : a06cb694-e38d-4b14-9998-2ca292470fee
310 _ _ methodlnfo (6)
3 1 1 _ _ modFlag : 000
312 _ _ name : addNewChild
313 _ _ methodDescriptor : (c<PersonC child) vd
314 __ attribCount : 1
315 _ _ attributes :
316 attriblnfo (1)
3 1 7 _ _ attribType : EVALPLAN
318 name :
319 value :
320 _ _ code : a54d3d13-d276-4059-a954-6f5bfdc3cecc
32 1 __ methodlnfo (7)
322 _ _ modFlag : 000
323 _ _ name : ParentC

Markus Kirchberg

324 _ _ methodDescriptor : (st name , t<DateT bDate , s<c<PersonC children)
325 attribCount : 1
326 attributes :
327 attriblnfo (1)
328 _ _ attribType : CONSTRUCTOR
329 name :
330 value :
331 _ _ code : b8760f92-5af7-4009-8651-6b669386e891
332 _ _ methodlnfo (8)
333 _ _ modFlag : 000
334 _ _ name : ParentC
335 _ _ methodDescriptor : (st name , t<DateT bDate , t<SexT sex , s<c<PersonC
336 children)
337 attribCount : 1
338 attributes :
339 attriblnfo (1)
340 _ _ attribType : CONSTRUCTOR
341 name :
342 value :
343 code : d63cc78b-8e3a-4d63-a3f2-c550dc5d1bff
344 constrCount : 1
345 _ _ classConstrs :
346 classConstrlnf o (1)
347 _ _ constrCount : 2
348 _ _ constraints :
349 constrlnfo (1)
350
351
352
353
354
355
356

_ _ type : 1
f ieldCount :
f ields :

f ieldlnfo
f ieldlnfo

_ _ attribCount :
attributes :

2

(1)
(2)
0

*name
*bDate

267

357 _ _ constrlnfo (2)
358 _ _ type : 2
359 fieldCount : 0
360 fields :
361 _ _ attribCount : 1
362 attributes :
363 _ _ attriblnfo (1)
364 _ _ attribType : CONSTRAINT
365 _ _ name : check1
366 value :
367 code : 7afcfa51-1910-4ff5-b383-571687c98c8a
368 isaRelation :
369 ParentC !sA PersonC

Markus Kirchberg

The internal schema is represented by a __ schemainfo structure and each type syn­
onym, type definition and class definition has an associated __ typeSyninfo structure,
_ _ typeinfo structure or _ _ class info structure, respectively. Inherited properties are
stored with the sub-class. While the uniqueness constraint is fully represented in the
data definition portion, the check constraint is transformed into an evaluation plan such
as:

370 EVALPLAN check! () : BOOLEAN {
371 if ((dateOfDeath IS NULL) OR (bDate < = dateOfDeath)) {
372 RETURN (TRUE) ;
373 }
374 RETURN (FALSE) ;
375 }

268

	20001
	20002
	20003
	20004
	20005
	20006
	20007
	20008
	20009
	20010
	20011
	20012
	20013
	20014
	20015
	20016
	20017
	20018
	20019
	20020
	20021
	20022
	20023
	20024
	20025
	20026
	20027
	20028
	20029
	20030
	20031
	20032
	20033
	20034
	20035
	20036
	20037
	20038
	20039
	20040
	20041
	20042
	20043
	20044
	20045
	20046
	20047
	20048
	20049
	20050
	20051
	20052
	20053
	20054
	20055
	20056
	20057
	20058
	20059
	20060
	20061
	20062
	20063
	20064
	20065
	20066
	20067
	20068
	20069
	20070
	20071
	20072
	20073
	20074
	20075
	20076
	20077
	20078
	20079
	20080
	20081
	20082
	20083
	20084
	20085
	20086
	20087
	20088
	20089
	20090
	20091
	20092
	20093
	20094
	20095
	20096
	20097
	20098
	20099
	20100
	20101
	20102
	20103
	20104
	20105
	20106
	20107
	20108
	20109
	20110
	20111
	20112
	20113
	20114
	20115
	20116
	20117
	20118
	20121
	20122
	20123
	20124
	20125
	20126
	20127
	20128
	20129
	20130
	20131
	20132
	20133
	20134
	20135
	20136
	20137
	20138
	20139
	20140
	20141
	20142
	20143
	20144
	20145
	20146
	20147
	20148
	20149
	20150
	20151
	20152
	20153
	20154
	20155
	20156
	20157
	20158
	20159
	20160
	20161
	20162
	20163
	20164
	20165
	20166
	20167
	20168
	20169
	20170
	20171
	20172
	20173
	20174
	20175
	20176
	20177
	20178
	20179
	20180
	20181
	20182
	20183
	20184
	20185
	20186
	20187
	20188
	20189
	20190
	20191
	20192
	20193
	20194
	20195
	20196
	20197
	20198
	20199
	20200
	20201
	20202
	20203
	20204
	20205
	20206
	20207
	20208
	20209
	20210
	20211
	20212
	20213
	20214
	20215
	20216
	20217
	20218
	20219
	20220
	20221
	20222
	20223
	20224
	20225
	20226
	20227
	20228
	20229
	20230
	20231
	20232
	20233
	20234
	20235
	20236
	20237
	20238
	20239
	20240
	20241
	20242
	20243
	20244
	20245
	20246
	20247
	20248
	20249
	20250
	20251
	20252
	20253
	20254
	20255
	20256
	20257
	20258
	20259
	20260
	20261
	20262
	20263
	20264
	20265
	20266
	20267
	20268
	20269
	20270
	20271
	20272
	20273
	20274

