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Abstract

This thesis sought to explore the chemical andipblproperties of a series of cyclotri-
and polyphosphazenes with substituted tridentgémtis coordinated to iron(ll) and
ruthenium(ll). There were two main objective ofstiheésearch i) to graft spin crossover
(SCO) groups to a polymer backbone, potentiallyingak new malleable material, ii)
to demonstrate that ruthenium(Il) complexes candsal to link groups to a

polyphosphazene backbone.

Seven cyclotriphosphazenedL’) and four polyphosphazene'{tL*) ligands were
synthesised with 2,6-di(pyridine-2-yl)pyridine-4{tonate (OTerpy); 4-(2,6-
di{pyridin-2-yl}-pyridine-4-yl)phenolate (OPhTerpy®,6-di(1H-benzimidazol-2-
yl)pyridine-4(1H)-onate (Obbp); and 4-(2,6-difkpyrazol-1-yl}pyridine-4-

yhphenolate (OPhbpp) moieties. These ligands websequently coordinated to either
iron(Il) or ruthenium(ll) and the optical, vibratial, electrochemical and magnetic

properties of the subsequent small molecule coneglexd polymers were measured.

Sixteen iron(ll) complexes were synthesised bytmegéron(ll) salts with the

respective ligand (=L"). Where X-ray crystal structures have been obthieach of

the small molecule iron complexes were homolepiging electronic absorbance,
resonance Raman (rR), magnetic and Mdssbauer speafry, it was shown that the
polymer complex cores in the resulting cross-lingetymers were the same as those of
the small molecule analogues (SMA). In additiorsthtechniques confirmed that the

1P were each determined to be

iron complexes formed with the ligand$ L?, L*F and
low spin (LS), while those formed witi? displayed SCO, and the iron complex formed
with L* remained high spin (HS) for all temperatures wh#eolymeric analogue

remained LS for all measurable temperatures.

Fourteen ruthenium(ll) small molecule complexesensmthesised by reacting
ruthenium complexes of the appropriate co-ligaq8"@',2"-terpyridine (Terpy); 2,6-
di(pyridin-2-yl)-4-phenylpyridine (PhTerpy); 2,6{dH-benzimidzol-2-yl)pyridine
(bbp); and 2,6-di{#-pyrazol-1-yl)pyridine) with the respective ligafid—L*). Using
electronic absorption and rR spectroscopy it wasrdened that only the polymersL
and 1*° formed complexes ([Ruf)(Terpy)]Ch, [Ru(L*)(PhTerpy)]C},

! See pull out sheet for ligand structures.



[Ru(L*™)(Terpy)]Ch and [Ru(Z")(PhTerpy)]Ch) analogous to that of their SMA
(IRu(L))(Terpy)l(PR)z, [Ru(L")(PhTerpy)l(P)z, [Ru(L)(Terpy)](PF)2 and
[Ru(L?)(PhTerpy)](PE),), and are therefore the most suitable for linkgngups to

polyphosphazenes.

Although the ruthenium-bbp-terpy based complexesgut to be unsuitable for
attaching groups to a phosphazene due to the laslirig of metal complex on the
polymer (L), the SMA ([Ru(L)(bbp)](PF)2, [Ru(L*)(bbp)](PF)2,
[Ru(L®)(Terpy)](PR). and [Ru(l®)(PhTerpy)](Pk),) displayed a dependence on the
basicity of the solution. As it was increased, ith&lazole groups were deprotonated
causing a bathochromic shifting of the metal-taiid charge transfer, oxidation

potential and selected vibrational modes.
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