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Abstract 

This thesis sought to explore the chemical and physical properties of a series of cyclotri- 

and polyphosphazenes with substituted tridentate ligands coordinated to iron(II) and 

ruthenium(II). There were two main objective of this research i) to graft spin crossover 

(SCO) groups to a polymer backbone, potentially making a new malleable material, ii) 

to demonstrate that ruthenium(II) complexes can be used to link groups to a 

polyphosphazene backbone. 

Seven cyclotriphosphazene (L1–L7) and four polyphosphazene (L1P–L4P) ligands1 were 

synthesised with 2,6-di(pyridine-2-yl)pyridine-4(1H)-onate (OTerpy); 4-(2,6-

di{pyridin-2-yl}-pyridine-4-yl)phenolate (OPhTerpy); 2,6-di(1H-benzimidazol-2-

yl)pyridine-4(1H)-onate (Obbp); and 4-(2,6-di{1H-pyrazol-1-yl}pyridine-4-

yl)phenolate (OPhbpp) moieties. These ligands were subsequently coordinated to either 

iron(II) or ruthenium(II) and the optical, vibrational, electrochemical and magnetic 

properties of the subsequent small molecule complexes and polymers were measured.  

Sixteen iron(II) complexes were synthesised by reacting iron(II) salts with the 

respective ligand (L1–L7). Where X-ray crystal structures have been obtained, each of 

the small molecule iron complexes were homoleptic. Using electronic absorbance, 

resonance Raman (rR), magnetic and Mössbauer spectroscopy, it was shown that the 

polymer complex cores in the resulting cross-linked polymers were the same as those of 

the small molecule analogues (SMA). In addition, these techniques confirmed that the 

iron complexes formed with the ligands L1, L2, L1P and L2P were each determined to be 

low spin (LS), while those formed with L3 displayed SCO, and the iron complex formed 

with L4 remained high spin (HS) for all temperatures while its polymeric analogue 

remained LS for all measurable temperatures. 

Fourteen ruthenium(II) small molecule complexes were synthesised by reacting 

ruthenium complexes of the appropriate co-ligands (2,2':6',2"-terpyridine (Terpy); 2,6-

di(pyridin-2-yl)-4-phenylpyridine (PhTerpy); 2,6-di(1H-benzimidzol-2-yl)pyridine 

(bbp); and 2,6-di(1H-pyrazol-1-yl)pyridine) with the respective ligand (L1–L4). Using 

electronic absorption and rR spectroscopy it was determined that only the polymers L1P 

and L2P formed complexes ([Ru(L1P)(Terpy)]Cl2, [Ru(L1P)(PhTerpy)]Cl2, 

                                                           
1 See pull out sheet for ligand structures. 
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[Ru(L2P)(Terpy)]Cl2 and [Ru(L2P)(PhTerpy)]Cl2) analogous to that of their SMA 

([Ru(L1)(Terpy)](PF6)2, [Ru(L1)(PhTerpy)](PF6)2, [Ru(L2)(Terpy)](PF6)2 and 

[Ru(L2)(PhTerpy)](PF6)2), and are therefore the most suitable for linking groups to 

polyphosphazenes.  

Although the ruthenium-bbp-terpy based complexes proved to be unsuitable for 

attaching groups to a phosphazene due to the low loading of metal complex on the 

polymer (L3P), the SMA ([Ru(L1)(bbp)](PF6)2, [Ru(L2)(bbp)](PF6)2, 

[Ru(L3)(Terpy)](PF6)2 and [Ru(L3)(PhTerpy)](PF6)2) displayed a dependence on the 

basicity of the solution. As it was increased, the imidazole groups were deprotonated 

causing a bathochromic shifting of the metal-to-ligand charge transfer, oxidation 

potential and selected vibrational modes.  
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