Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Microbial co-existence and stable equilibria in a mechanistic model of enteric methane production

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mathematics

at Massey University, Manawatū Campus, New Zealand

Yuancheng Wang 2016

Abstract

Globally, 14.5% of all anthropogenic greenhouse gases come from ruminants. One of these is methane, which is produced in the rumen of ruminant animals. Feed is degraded by microbes to produce volatile fatty acids (which are absorbed by the animal) and hydrogen (which is metabolized by methanogens to form methane). The dynamics of hydrogen production and metabolism are subject to thermodynamic control imposed by the hydrogen concentration. Existing models to estimate methane production are based on calculation of hydrogen balances without considering the presence of methanogens and do not include thermodynamic control. In this project, a model is developed based on glucose-hydrogenmethanogen dynamics to estimate methane production and illustrates a co-existence of microbes that employs different fermentation pathways competing for the same food source in the rumen. Glucose was chosen as an example of a fermentable feed component. A thermodynamic term was integrated into a Monod-type model to represent the thermodynamic control of hydrogen concentration on the rates of hydrogen generation and hydrogen metabolism. Results of this model suggest that the microbial community composition and the combination of the different pathways are determined by the rumen environment, biological parameters of the microbes and the feedback imposed by substrate and product concentrations. The mathematical enunciation of this model is therefore consistent with biological expectations. This model could be expanded to include plant polymer degradation rate, feeding level and feeding frequency to explore their effects on methane production. This model could also be integrated into models of whole rumen function to address more complex questions. It would also support experimentation

with animals for understanding factors that control methane formation and to explore methane mitigation strategies.

Acknowledgements

This project would not have been possible without the contributions of people along the journey of this research. My sincere thanks go to my parents for their continuous support. I would like to express my gratitude to my supervisors: Dr. Tammy A. Lynch, Associate Professor Bruce Van Brunt, Dr. Peter H. Janssen and Dr. David Pacheco, for their guidance and inspiration throughout this challenge. I enjoyed learning and working with this team. Thank you for your effort and time on proofreading reports, manuscripts, and this thesis. The visit of Dr. Mark I. Nelson, University of Wollongong, to discuss my works is greatly appreciated. Many thanks to Dr Indrakumar Vetharaniam and Dr Ronaldo Vibart, AgResearch, for valuable feedback on the manuscript. I would like to acknowledge the stipend from the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC) and the combined methane mitigation program of the NZAGRC and the Pastoral Greenhouse Gas Research Consortium. Thanks to the Institute of Fundamental Sciences of Massey University, Manawatū Campus and AgResearch, Grassland Research Centre, for hosting my study. Thanks are also due to the IT, academic and administrative staff at the Institute of Fundamental Sciences and AgResearch for their direct and indirect assistance. The interactions with my office mates and other PhD students including: Ali Ashher Zaidi, Saima Gul, Yang Li, Nick Palevich and Preeti Raju are treasured. It is my privilege to present this work combining all these efforts to you.

Contents

Abstract			i	
Acknowledgements			iii	
1	Bac	kground	1	
	1.1	Methane	1	
	1.2	Ruminants		
		1.2.1 Rumen, it's microbial ecosystem and passage rate	2	
		1.2.2 Hydrogen, methanogens and methane	4	
	1.3	Methane mitigation strategies	7	
		1.3.1 Reducing hydrogen generation rate	8	
		1.3.2 Redirecting the hydrogen away from methanogens	10	
		1.3.3 Methanogens inhibition $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1$		
		1.3.4 Mathematical models and mitigation strategies . 1		
	1.4	Mathematical models of methane production from anthro-		
		pogenic activities		
		1.4.1 Models of a whole-farm	14	
		1.4.2 Models of individual ruminants	15	
		1.4.2.1 Existing empirical models	15	
		1.4.2.2 Existing mechanistic models	17	
		1.4.3 Summary	18	
	1.5	Methanogens growth kinetics	20	
	1.6	Research objectives and outlines	25	
2	HM	model	27	
	2.1	Assumptions	27	

	2.2	Model	l formulation	28
		2.2.1	Comparison of the HM model and the 'standard'	
			theoretical approach \ldots \ldots \ldots \ldots \ldots \ldots	32
	2.3	Stead	y state solutions	34
		2.3.1	Stability of steady state solutions	35
		2.3.2	Estimation of methane production	43
	2.4	Effect	s of changes in hydrogen generation rate	46
	2.5	Effect	s of changes in passage rate	47
		2.5.1	on the reproduction rate of methanogens $\ . \ . \ .$	47
		2.5.2	on steady state hydrogen concentration	49
		2.5.3	Significance of passage rate	51
	2.6	Passag	ge and hydrogen generation rates	52
	2.7	Summ	nary	53
3	The	ermody	ynamic term and $\mathrm{HM}^ heta$ model	55
	3.1	Gibbs	free energy and thermodynamic term	56
	3.2	HM^{θ} i	model	59
	3.3	Effect	s of thermodynamic term	66
	3.4	Summ	nary	71
4	GH	$\mathbf{M}^{ heta}$ mo	odel	73
	4.1	Gluco	se fermentation pathways and glucose fermenters .	74
	4.2	GHM ⁶	θ model	76
		4.2.1	Objectives	76
		4.2.2	Assumptions	77
		4.2.3	Model formulation	79
5	Co-	existe	nce	85
	5.1	Introd	luction	85
		5.1.1	Competitive exclusion principle	85
		5.1.2	Thermodynamic term for co-existence	89
		5.1.3	Outline of the chapter	90
	5.2	One t	ype of glucose fermenter	91
		5.2.1	Analytical results	91
		5.2.2	Parameters	95

		5.2.3	Stability of equilibrium point	96
		5.2.4	Simulation	100
	5.3	Two ty	ypes of glucose fermenters	105
		5.3.1	Analytical results	105
		5.3.2	Simulation	120
	5.4	Genera	alization	135
		5.4.1	Two types of glucose fermenters with generalized	
			glucose fermentation pathways	135
		5.4.2	Three types of glucose fermenter	140
		5.4.3	Multiple types of glucose fermenters	147
6	Disc	cussion	and conclusions	163
	6.1	Thesis	summary	163
		6.1.1	The HM model \ldots	164
		6.1.2	The HM^{θ} model	166
		6.1.3	The $\operatorname{GHM}^{\theta}$ model	168
	6.2	Future	work	171
\mathbf{A}	The	full m	nodel equations	177
	A.1	The H	M model	177
	A.2	The H	$M^{\theta} \mod \dots \dots$	178
	A.3	The G	$\mathrm{HM}^{\theta} \mathrm{model} \ldots \ldots$	179
В	Ferr	nentat	ion pathways	183
С	ATI	P yield	s from glucose fermentation	185
	C.1	Glucos	se uptake	185
	C.2	Ferme	ntation to pyruvate	186
	C.3	Furthe	$ r metabolism of pyruvate \ldots \ldots$	187

List of Figures

1.1	The gastrointestinal tract of an adult cattle. This figure	
	was modified from a raw image from Wikimedia Com-	
	mons, original donated by Pearson Scott Foresman	3
1.2	Rumen fermentation	5
1.3	The phases of microbes growth based on Monod [115]	21
1.4	A plot of Monod model $\mu(S)$	22
2.1	The steady state diagram of the HM model	41
2.2	A typical phase plane for the system when $S_h^{*2} > 0$ and	
	$X_m^{*2} > 0. \dots $	42
2.3	The stable steady state methanogen population for a range	
	of passage rate values with other parameter values in Table	
	2.1	49
2.4	The stable steady state hydrogen concentration for a range	
	of passage rate values with parameter values in Table 2.1	51
2.5	The steady state methane production for a range of pas-	
	sage rate values with other parameter values in Table 2.1	52
2.6	A typical phase plane for the system when $\beta_h < \alpha S_h^{e2}$	53
3.1	The effect of ΔG_{ATP} on the rate of hydrogen metabolism	65
3.2	Thermodynamic term for a range of passage rate values	
	and typical parameter values found in the literature (Ta-	
	bles 2.1 and 3.1)	69
4.1	Flowchart of the $\operatorname{GHM}^{\theta}$ model	84
5.1	Growth rate of a type of glucose fermenter i with a single	
	growth limiting substrate glucose (S_a) .	86

5.2	Growth rates of two types of glucose fermenter i and j	
	that compete for the same single growth limiting sub-	
	strate. (a) No co-existence of glucose fermenter i and j.	
	(b) Co-existence.	88
5.3	The stable steady state population densities of glucose fer-	
	menters and methanogens for a range of passage rate values	.102
5.4	The stable steady state substrate (glucose and hydrogen)	
	concentration for a range of passage rate	102
5.5	The stable steady state butyrate concentration for a range	
	of passage rate values.	103
5.6	The steady state β_h/β_g ratio with one type of glucose fer-	
	menter for a range of passage rate values	104
5.7	Regions of stable survival of glucose fermenter 1 or 2 or	
	both. Note that $S_g^*(1) = \xi_1 + \eta_1 S_B^*$ and $S_g^*(2) = \xi_2 + \eta_2 (S_A^*)^2$.119
5.8	Proportion of X_1^* to total glucose fermenter population	
	$(X_1^* + X_2^*)$ with different combinations of β_g and α	127
5.9	Proportion of the steady state propionate concentration	
	(S_P^*) to the total volatile fatty acids concentrations $(S_A^* +$	
	$S_B^* + S_P^*$) with different combinations of β_g and α	128
5.10	Mole of hydrogen generated per mole of glucose generated	
	with different combinations of β_g and α	128
5.11	The stable steady state population densities of two types	
	of glucose fermenters and methanogens for a constant β_g	
	and a range of passage rate values	131
5.12	The stable steady state VFA concentration with two types	
	of glucose fermenters and methanogens for a constant β_g	
	and a range of passage rate values	133
5.13	The steady state β_h/β_g ratio with two types of glucose	
	fermenters and methanogens for a constant β_g and a range	
	of passage rate values	134
5.14	The stable steady state population densities of glucose fer-	
	menters 1, 2 and 3 and methanogens for a constant β_g and	
	a range of passage rate values	153

5.15	The stable steady state population densities of glucose	
	fermenters 1, 2 and 4 and methanogens for a constant	
	β_g = 1.930 \times 10^{-9} mol ml $^{-1}$ s $^{-1}$ and a range of passage	
	rate values	155
5.16	The stable steady state substrate (glucose and hydrogen)	
	concentration with glucose fermenters $1, 2$ and 4 for a	
	range of passage rate values	155
5.17	The stable steady state acetate and butyrate concentra-	
	tions with glucose fermenters 1, 2 and 4 for a range of	
	passage rate values	156
5.18	The steady state β_h/β_g ratio with glucose fermenters 1, 2	
	and 4 for a range of passage rate values. \ldots \ldots \ldots	157
5.19	The stable steady state population densities of glucose fer-	
	menters 1, 2 and 5 and methanogens for a constant β_g and	
	a range of passage rate values	158

List of Tables

2.1	Parameter values used in the HM model	45
3.1	Parameter values used to calculate θ_m for the HM ^{θ} model.	64
3.2	Equilibrium points of the HM and HM^{θ} models	68
4.1	Additional parameters used in the $\operatorname{GHM}^{\theta}$ model	80
5.1	Competition among X_1 , X_2 and X_3	152
5.2	Competition among X_1 , X_2 and X_4	154
5.3	Competition among X_1 , X_2 and X_5	157
5.4	Competition among X_1 , X_2 , X_3 and X_4	159
5.5	Competition among X_1 , X_2 , X_3 and X_5	159
5.6	Competition among X_1 , X_2 , X_4 and X_5	160
A.1	Parameters used in the HM model	178
A.2	Additional parameters used in the HM^{θ} model	179
A.3	Additional parameters used in the $\operatorname{GHM}^{\theta}$ model	181

Abbreviations

- ADP Adenosine diphosphate
- ATP Adenosine triphosphate
- (used by microbes for maintenance and reproduction)
- VFA Volatile fatty acids (e.g., acetate, propionate and butyrate)
- HM Hydrogen-methanogen dynamics
- HM^{θ} Hydrogen-methanogen dynamics with thermodynamic term
- GHM^{θ} Glucose-hydrogen-methanogen dynamics with thermodynamic term

Nomenclature

Subscript

Substrate	Description
h	hydrogen
g	glucose
A	acetate
P	propionate
В	butyrate

Microbe Description

- m methanogens
- *i* glucose fermenters

Superscript

Notation	Description	

* equilibrium point (steady state solution) of variables

Variables

Notation	Description	Unit
t	time	S
S	substrate concentration	$\mathrm{mol} \ \mathrm{ml}^{-1}$
X	microbe population density	$\mathrm{cell}\ \mathrm{ml}^{-1}$
θ	thermodynamic term	unitless
M	estimated methane production	$\mathrm{rumen}^{-1} \mathrm{d}^{-1}$

Parameters

Rumen environment	Description	Unit
α	passage rate through the rumen	s^{-1}
eta	rate of substrate generation	$mol ml^{-1} s^{-1}$
γ	absorption rate of substrate	s^{-1}

Microbe	Description	Unit
q	maximal rate at which a microbe	mol cell ⁻¹ s ⁻¹
	can metabolize substrate	
K	substrate concentration at half of q	$mol ml^{-1}$
	assuming no thermodynamic feedback	
w	moles of product generated from	unitless
	metabolizing per mole of substrate	
n	ATP gained by microbe from	$\mathrm{mol}_{ATP} \mathrm{mol}^{-1}$
	metabolizing per mole of substrate	
m	maintenance requirement of a microbe	$\mathrm{mol}_{ATP} \mathrm{cell}^{-1} \mathrm{s}^{-1}$
Y	reproduction coefficient of microbe	cell $\operatorname{mol}_{ATP}^{-1}$
μ	reproduction rate of microbe	s^{-1}
d	death coefficient of microbe	s^{-1}

Thermodynamic term	Description	Unit
T	temperature	Κ
${\mathcal R}$	ideal gas constant	$kJ \text{ mol}^{-1} \text{ K}^{-1}$
ΔG_T^o	Gibbs free energy of a chemical reaction	$kJ mol^{-1}$
Ĩ	at T under standard conditions	
ΔG_{ATP}	energy required to generate one unit of ATP	kJ mol_{ATP}^{-1}