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Abstract

Globally, 14.5% of all anthropogenic greenhouse gases come from ru-
minants. One of these is methane, which is produced in the rumen of
ruminant animals. Feed is degraded by microbes to produce volatile fatty
acids (which are absorbed by the animal) and hydrogen (which is metab-
olized by methanogens to form methane). The dynamics of hydrogen pro-
duction and metabolism are subject to thermodynamic control imposed
by the hydrogen concentration. Existing models to estimate methane
production are based on calculation of hydrogen balances without con-
sidering the presence of methanogens and do not include thermodynamic
control. In this project, a model is developed based on glucose-hydrogen-
methanogen dynamics to estimate methane production and illustrates a
co-existence of microbes that employs different fermentation pathways
competing for the same food source in the rumen. Glucose was cho-
sen as an example of a fermentable feed component. A thermodynamic
term was integrated into a Monod-type model to represent the ther-
modynamic control of hydrogen concentration on the rates of hydrogen
generation and hydrogen metabolism. Results of this model suggest that
the microbial community composition and the combination of the dif-
ferent pathways are determined by the rumen environment, biological
parameters of the microbes and the feedback imposed by substrate and
product concentrations. The mathematical enunciation of this model is
therefore consistent with biological expectations. This model could be
expanded to include plant polymer degradation rate, feeding level and
feeding frequency to explore their effects on methane production. This
model could also be integrated into models of whole rumen function to

address more complex questions. It would also support experimentation



with animals for understanding factors that control methane formation

and to explore methane mitigation strategies.
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