Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE APPLICATION OF MATRIX THEORY

TO OPTIMAL DESIGN OF EXPERIMENTS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University

Vernon John Thomas

1975

100

Abstract

A development of the theory of optimum experimental design is presented. The notation and proofs are in terms commonly used by statisticians, rather than in the earlier measure theory terms. The D-optimality equivalence theorem is extended to the singular case, and similar results derived for a number of other criteria. Atwood's theorem for special n-tic polynomials is extended to the case where not all parameters are of interest. Finally methods of constructing optimal designs are considered and extended to allow deletion of unsatisfactory points, and some numerical examples are included.

Acknowledgements

I would like to acknowledge, with gratitude, the advice and encouragement of Dr B.S. Weir and the forebearance and sympathy of my wife and family, during the preparation of this thesis.

Table of contents

Abst	ract		ii	
Acknowledgement				
Table of contents			iv	
1.	Intro	duction	1	
	1.1	Purpose	1	
	1.2	General approach	2	
	1.3	Generalized inverses	3	
2.	The g	eneral linear model	4	
	2.1	Background	4	
з.	The e	xperimental situation	5	
	3.1	Specification of the problem	5	
	3.2	The experimental design	5	
	3.3	Derived designs	6	
	3.4	Other options	8	
	3.5	Distribution of errors	8	
	3.6	Explicit model	. 8	
	3.7	Development of a canonical form	10 ,	
	3.8	Summary of canonical form	12	
-	3.9	Simplified model	13	
	3.10	Size of the experiment	14	
4.	Optim	ality and tests of hypothesis	17	
	4.1	General considerations	17	
	4.2	Unbiased tests	17	
	4.3	Locally unbiased tests	18	
	4.4	Similar tests	18	
	4.5	Type D and E tests	18	

		4.6	Invariance	19
		4.7	The F-test	19
		4.8	Wald's theorem	21
	ж. х	4.9	Hsu's theorem	21
		4.10	F-test of type D or E	21
		4.11	Use of the F-test	21
	5.	Design test	n optimality criteria for hypothesis ing	23
		5.1	M-optimality	23
2		5.2	L-optimality	23
	/	5.3	D-optimality	23
	/ .	5.4	E-optimality	24
		5.5	Comparison of criteria	24
			· · · ·	
	6.	Design	n optimality for estimation	25
		6.1	General considerations	25
		6.2	Simplified model	26
		6.3	Response estimation	27
	7.	Genera	al optimality	29
8		7.1	φ-optimality	.29
		7.2	Applications	30
	8.	Appli	cation of φ -optimality to D-optimality	31
÷		8.1	Preliminary results	31
3		8.2	Equivalence theorem	38
·		1.00		
2	9.	Appli crit	cation of φ -optimality to other eria	39
		9.1	General comment	39
		9.2	R-optimality	39
		9.3	B-optimality	40
5			1 N	
	10. D-optima in special cases			
			Special n-tic polynomial	44
		10.2	Atwood's theorem	44

.

11.	Construction of D-optimal designs					
	11.1	Previous work	46			
	11.2	Recalculation of A	46			
	11.3	Explicit results	47			
	11.4	Improvement to det Q	49			
	11.5	All parameters cf interest	50			
12.	2. Construction of B-optimal designs					
	12.1	Improvement of \wedge	52			
13.	Applie	cations	53			
	13.1	Background	53			
	13.2	Linear model	53			
	13.3	Polynomial model	58			
	13.4	Aisle quadratic	59			
		x				
14.	Summan	ry and Conclusions	65			
	,					
15.	Refere	ences	67			
Appen	ndix I	- Generalized inverse calculation	71			
Appendix II - D-optimum aisle quadratic						
Appendix III - Continuity theorem			74			

,

ч.

٥.