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Abstract

tfficient Biased Estimation and Applications to Linear Models

In recent years biased estimators have received a great
deal of attention because they can often produce more accurate
estimates in multiparameter problems. One sense in wnich
biased estimators are often more accurate is that the mean
square error is smaller.

In this work several parametric families of estimators are
examined and good values of the parameters are sougnht by
approximate analytical arguments. These parametric values are
then tested by computing and plotting graphs of the mean square
error. In this way the risks of various estimators may be seen
and it is possible to discard some estimators which have large
risk.

The risk functions are computed by numerical integration -
a method faster and more accurate than the usual simulation
studies. The advantage of this is that it is possible to
evaluate a greater number of estimators; however, the method
only copes with spherically symmetric estimators.

The relationship of biased estimation to the use of prior
information is made clear. This leads to discussion of
partially spherically symmetric estimators and the fact that,
although not uniformly better than spherically symmetric ones,
they are usually better in a practical sense.

It is shown how the theoretical results may be applied to
the linear model. The linear model is discussed in the very
general case in which it is not of full rank and there are
linear restrictions on the parameter. A kind of weak prior
knowledge which is often assumed for such a model makes the
partially symmetric estimators attractive.

Distributions of spherically symmetric estimators are

briefly discussed.
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Preface

In recent years it has become apparent that biased estiimators
often give estimates which are more accurate than unbiased estimators.
One way of measuring the accuracy of an estimator is by means of its
mean syuare error. Stein was the first to show that the usual
unbiased estimator for the mean of a multivariate normal distribution
is inadmissible in the sense that there are estimators with smaller
mean square error. In fact the mean square error of the Jamess-Stein

estimator which shrinks the usual estimates towards the origin, is

often very much smaller. Of course, an estimator which is not
unbiased is biased. This seems to be a bad property of an estimator-
but so, it would seem, is the property of being inadmissible. In

fact both words are technical terms and should not be thought of as
having their everyday meanings. There are a variety of ways of
measuring the bias of an estimator and a variety of ways of measuring
its mean deviation from the true value. The properties of the
estimator depend critically on how these things are measured.

In chapter 1 we review some of the properties of estimators and
suggest Bayes and empirical Bayes estimators as tools for finding
estimators with good properties with respect to repeated sampling.
Some of the ways of doing so are surveyed and the results suggest the
form which good estimators might take. These estimators shrink the
usual estimates towards the origin as does the James-Stein estimator.
There islittle in this chapter which is new.

Chapter 2 leans heavily on the work of Stein and in particular
we prove a result which Stein only proves asymptotically.

It is well known that a linear model can be transformed into the
canonical form for which Stein proved his results.  We show how to
apply the James-Stein estimator directly to the general linear model
whether or not of full rank and with or without linear restrictions
imposed upon it. We then prove the result alluded to above which
shows that separate shrinkages in several linear subspaces of the
parameter space are generally better than ome over-all shrinkage. The
result also gives a bound on the loss of mean square error which may
be incurred by such separate shrinkages. Graphs of the difference
in risk for shrinkages in two subspaces and the risk for a single

subspace shrinkage are plotted in three dimensions together with a



contour map showing the region of improvement.

Chapter 3 is closely related to work of Lindley and Smith and to
work of Tiao and Zellner. The results are again given for the non-
full rank model with linear restrictions. This generalisation poses
difficulties when stages of prior information are incorporated in a
natural order. It is in this part of chapter 3 that the novelty
lies.

Another approach to estimation, Theil's so called "minimum mean
square error estimation'", is the topic of chapter 4. This criterion
does not lead to an estimator as the statistic calculated depends
upon unknown parameters. How this statistic itself can be
estimated, and the properties of the estimators thus obtained, are
discussed. Some distributional properties of quadratic forms and
their ratios are derived in a discussion of consistent estimation.
The resulting estimators belong to a parametric family of estimators.
The various approaches to estimation of the shrinkage factor suggest
possible parameter values which are then tested by numerical
computation of the risk function. Graphs of these are plotted and
displayed at the end of chapter 5. This material is mostly the
creation of the author.

Chapter 5 discusses iterative improvement of the estimators of
chapter 4. Although this was originally discussed by Hemmerle, we
consider several different and novel approaches and compute and plot
the risk functions of the resulting estimators. Graphs of the risk
functions of these estimators are plotted together with the graphs of
the estimators of chapter 4.

The theoretical computation of the risk functions for shrunken
estimators was postponed until chapter 6 so that it could first be
seen for what class of estimators this should be done. A wide
selection of different formulae for the risk are given with the proofs
arranged in a systematic manner. If only a few of the formulae are
required then the proofs can be simplified by ignoring certain
previous results used for computing other forms of the risk. I
this is done then more elegant proofs than those used given are
obtained. Some generalisations to non-spherically symmetric
estimators are given and these are new. These expressions lead to
an easier proof of a minimaxity condition than that given by

Strawderman in a generalisation of a theorem of Baranchik, and a



vi

non-minimaxity theorem of Efron and Morris is generalised to the non-
spherically symmetric case.

In chapter 7 some risk estimate domination results of Efron and
Morris are generalised by using an unbiased estimator for the risk in
the manner of Efron and Morris. This generalisation is not complete-
ly successful but some results are obtained.

The distributions of James-Stein and other shrunken estimators

have never been given. Possibly of more use is the distribution of
the Studentised version. In chapter 8 this is shown to be a
transformation of a multivariate t-distribution. Some of the results

in chapter 4 on ratios of quadratic forms will lead, with tedious
computations, to moments of the James-Stein estimator but this was not
done as the Studentised version is of more value;

We have not given a complete bibliography of work in the general
area covered by this work, nor have we referred to every paper in the
more precise areas in this thesis. The works cited are directly
related to the development of this work.

In order to make this work as self contained as possible we have
given some standard results along with their proofs and have
appended some general mathematical formulae which have been used
heavily.

Equations and theorems have been numbered consecutively within
each section and are referred to in that section by their numbers.
When referenced outside their own section their numbers are prefixed
by the chapter and section number. Diagrams are numbered

consecutively throughout the whole thesis.
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Chapter 1
Point Estimation

1.1 Criteria for Choosing Estimators

In this work we shall justify the choice of estimators by their
sampling theory properties. However, one particular sampling theory
property, that of unbiasedness, shall be of no interest to us. One
reason for this is that estimators with a small amouﬁt of bias are
often vastly better in terms of mean square error than unbiased
estimators. We shall use the mean square error of an estimator as a
criterion, the smaller the mean square error the better, since this
penalises very strongly estimators which tend, on average, to be far
from correct. The mean square error is the risk function
corresponding to a quadratic loss function. Although the 1loss
function is often an arbitrary choice, quadratic loss is usually
fairly tractable (especially when the sampling distribution is
normal) and behaves in a reasonable manner in that, the greater the
difference between an estimate and the true value, the greater the
loss. It has been argued that a loss function should be bounded, but
in the case of a sampling distribution which is normal, quadratic loss
and any bounded loss functions which approximate it near the true
parameter value do not give very different results.

A growing number of statisticians, but still a minority, prefer
to use Bayesian methods. Given a prior distribution, p(6), for the
parameter 6 (which may be proper or improper), and the likelihood
function 2(6|X), the posterior distribution, £(8|X)= p(8) 2(8|x) may
be calculated. This posterior distribution should be proper for a
reasonable point estimator for 6 to be computable from it.

Possible choices for point estimator are the mean, median or mode of
the posterior distribution. Usually the mean is chosen as this

often leads to admissible estimators when the loss function is quad-
ratic, that is, no estimator has uniformly smaller risk. In the next
section we shall state the usual definitions and prove this well known

theorem since it justifies the methods we shall use henceforward.

1.1.1 Loss Functions and Risk Functions

Let Xl,X X be a sample from a distribution with parameter

g
6 (the parameter, the observations, or both may be scalars or vectors)
Let the likelihood function be 2(6|X1,...,Xn) and let é(Xi,...,Xn) be

an estimator for 6. We denote the loss function by [(é(xl,...,xn),ex
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Given a prior distribution p(8) for 6 the Bayes Posterior Risk,
5 (X1’°°"Xn) is given by

rg (XyseeesX ) = ELL(B(X 5ee X 0,00 [X 50 nX ]

1°°
where the expectation is taken with respect to the posterior distrib-
ution of 6.

A sampling theorist, having no prior distribution, cannot compute
this. Instead he may compute the risk junction, Ré(e), given by

Rg(8) = E[[(e(xl,...,xn), 8)|6]

where the expectation is taken with respect to the probability
distribution for Xl""’xn given 6.
Taking the expectation over both the sample space $(X) and the

parameter space $(6) gives the Bayes risk
Ry =EE[[(B(X,,...,X ),8)[6]].

It must be noted that some or all of these quantities may not exist,
although the existence of the Bayes risk implies the existence of the
other two. This follows from Fubini's theorem which allows us to
replace a double integral by repeated single intervals, in either

order, if the former exists. That is

Rs = E[Ré(e)]

= ELEl[(8(x ,...,%x ), 0)]6]]

= E[2(B(X, ,...,%X ),0)]
n

1°°
= E[E[Z(B(Xl,...,Xn),e)lxi,...,Xn]]

= Elrg(X;5...5x )],
It is when the loss function is unbounded or the prior is improper

that the Bayes risk may fail to exist.

1.1.2 Admissibility
To a sampling theorist, the risk function, being independent of
any prior distribution, can be used for the comparison of estimators.

If 6. and 8 are two estimators and if Ra(8) s R§ (6) Vv 6 € ${0}
1 2 0 2

~

(where ${8} is the parameter space) then 61 is said to dominate 62.

The risk function therefore defines a partial ordering of the set of
estimators for ©. It is not, unfortunately, a total ordering
because there are pairs of estimators 61 and 62 for which ${6} may be
partitioned into subsets S,,S.,S,. in such a way that s1 £

1 20g
s3 # g and Rél(e) <.R§2(8) vV 6 € S,» RQQ(G) < Réi(e) V6 € S,
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and Ré (6) = Ré(e) Ve ES This means that one estimator is not

5
alwayslsuperior to the other. However, a minimal element in the
partial ordering is superior to every other element (estimator) to
which it is comparable. Such an estimator is said to be admissible.
An estimator, él’ is admissible, then, if there is no other estimator

6. for which Ra (8) s Rx (8) V 6 € ${6}.
2 6, 8,

Since ﬁé = E[r*g(xl,...,xn)] (if it exists) it follows that an
admissible estimator has minimal Bayes risk for any prior distribution
for which the Bayes risk exists. Similarly, minimising the Bayes
posterior risk gives minimum Bayes risk and hence gives rise to an
admissible estimator. It s to be noted that this only applies if
there i1s an estimator for which the Bayes risk exists.

The estimator which minimises the Bayes posterior risk is called
the Bayes estimator. If the Bayes risk for the Bayes estimator does
not exist then this estimator is not necessarily admissible, but it
may be. In the case of a p-variate normal distribution, X ~ Np(e,Z)
with Z known and with uniform prior distribution for 6 and loss
function [(6,8) = (é—G)T@-G) the Bayes estimator is the minimum
variance unbiased estimator (also the least squares estimator and
maximum likelihood estimator). This estimator is admissible if p = 1
or p = 2 but not admissible if p 2 3 (as was first shown by Stein
(1955)).

It is clear that, even for a non-Bayesian, a powerful tool for ‘
finding admissible estimators is to assume a prior distribution and ‘
find the corresponding Bayes estimator. In many cases it can be
shown, Fergusson (1967), that an admissible estimator must be a Bayes
estimator or a generalised Bayes estimator (i.e. a Bayes estimator
based on an improper prior distribution). In this case the import-
ance of Bayes estimators to a non-Bayesian is obvious.

The converse problem is finding whether an estimator is a Bayes
estimator and, if so, finding the prior distribution for which it is,
has been discussed by Strawderman (1971). Strawderman and Cohen
(1971) given conditions under which an improper Bayes estimator is
admissible or inadmissible for the case of the multivariate normal
distribution with known variance, while Brown (1966) gives classes of
prior distributions which lead to admissible estimators.

In this brief summary precise details have not been given.
Fergusson (1967) gives more precise proofs of the connection between

admissible estimators and Bayes estimators.
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1.2 Estimators for the Mean of a Multivariate Normal Distribution
under Quadratic Loss

Suppose, for simplicity, that a random variable, X, has a multi-
variate normal distribution X ~ NP(U,OQI) with 02 known. (We use the
symbol Np(u,V) for a p-variate normal distribution with mean p and

dispersion matrix V). On the basis of a sample X .,Xn we wish to

R
estimate Y under the quadratic loss function

[ = AT /e?

The minimum variance unbiased estimator is ﬁ (Xl""’xn) = =
n
Z X. and this minimises the risk among the class of unbiased
i=1
estimators whatever the value of u. This is also the maximum likeli-

i

hood estimator for u.

If we do not wish to restrict ourselves to unbiased estimators
then we cannot uniformly minimise the risk but we can search for
admissible estimators and these are found amongst the Bayes estimators.
We shall therefore choose a prior distribution for u. Now with
bounded loss function and proper prior we are assured of an admissible
estimator. However, our loss function is not bounded and we do not
wish to restrict ourselves to using a proper prior when we have little
prior knowledge as this might weight our estimates unfairly towards the
prior mean.

The most obvious prior distribution for u is, perhaps, the uniform
prior. This leads to the posterior probability distribution for u
being proportional to the likelihood function. Since the likelihood

function is

2(u;X X ) = exp {%072 T ||(x.am)|]*}
s 19---sn p 2 . i

1=1
-2 1 -
= exp {-%0 z ||X.—X|f }exp F-113||X—U|F}
i=1 ? 20
]
where || al| = (aTa) , we have the result that this is symmetric about

~

U = X so that the maximum likelihood estimator coincides with the
posterior mean. This estimator turns out to be admissible in one or
two dimensions but inadmissible in three or more dimensions (Stein(195%)

If we transform our parameters to polar coordinates the uniform
prior distribution becomes a spherically symmetric distribution with

0 T. % | o _ .p-1 o
density of v = ()2 = || ul given by p(r) = r* ~. This is a non-
uniform density and puts a large weighting on large values of || u”.

We might try a prior distribution without this feature. For example,
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the priors, p(r) :rﬁ', a< p-1, overcome this defect to a greater or
lesser extent depending on the value of a. For any value of a this
density for r gives rise to the density for u, p(u) = (UTU)%(a_p+1) =
(uTu)t. If t is negative then a < p-1 and we avoid weighting large
values of U too heavily.

In order to find the Bayes estimator we shall show that, for a
quadratic loss function, the mean of the posterior distribution

minimises the Bayes posterior risk.

We have

o B0 do0-nx)

_ 8 A T ~
= E[E(u()()-u) (1(x)-w) | x)

E[2(1(X)-p) | X]

2{{i(x) - Eln|x]1}.

This is zero if and only if nix) = E[u|X) and this value clearly gives
a minimum.
In the normal distribution case we have

j ...I u(uTu)t exp { —5§;|li—unz}d“

—00

“(X1="‘=Xn) ) [m = T ot n 4= 2
[ o] ato® et - Zpllzulfa
—o0 —00 20
In order that the integral in the denominator should converge we must
have t > - %-(ie a> -1). With this restriction on t we may
~ . i
calculate y as follows. Let v ~ Np(X,%T-I) then, if the density of

v is p(v|X), we have

R
: E[(viv)"]
o 208 = Ew-R)pv|D
5% P o2 P g
Therefore, E[v(vTv)t] = QE[(vTv)t] + %;— j; E[(vTv)t]
X
2 Ellv]1*
% " o2 oX
so that u(xi,...,xn) = X+ = o7 p
EC|| v]|*7]

- 2 &
I v~ N (R, %f 1) then || v]| ~'%; X (p,z)

where z = —33 X% (and ;. — =J% s
20 X O
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Using the properties of hypergeometric functions and moments of X?
distributions given in appendix 2 we obtain

2\t
£t||v || 21 = (QL) (%)‘e ? F, Ber; Byz)

n
0 2t 2 = 2
and = E[[|v]| ]=(Z%)t(%)te 2 [(1 +_g-)1p1(g+t+1;P-+1;z)_1r1(%+t;%;z)]

J

giving us the result that

Lp+t 1}“1(1/2p+'c+1;1/2p+1;z)

W 5aen ) =
%D 1y Gsptt; %ps 2)

Since 1Fl(a;a;z) = ez, the special case t = 0 gives ﬂ = X which is the
well known special case of a uniform prior for u.

If t is a positive integer or if % p+t is a negative integer then
this expression gives a rational function of z. However, for the
former case we do not expect the estimator to perform well, while for
the latter case the estimator is not a Bayes estimator since the
integral does not converge. For other values of t we do not expect to
have a rational function of z.

Now ﬁ is a scalar multiple of X. We shall show that for
- ¥p <t <0 the multiplying factor lies between zero and one.

From the asymptoti? ixpansion for the confluent hypergeometric

I'(b z _a-b

function 1P1(a;b;z) ~TEYy © 2 2Fo(l-a,b-a;;l/z) we obtain

Lp+t 1Fl(l/zp +t+1;%p+132) 2FO(—J/zp-t,-t;;l/z)

Lp 1F1CGap sl ps 2) oo (1Pt ,-t331/2)

z+t(sp+t)
~ — ~ ] as z > ™,
z+t(Lptt-1)
Lp+t

Thus as z + « the multiplying factor tends to 1. Also 0 < <1

%P
so that when z = 0 the multiplying factor lies between zero and one.
We now complete the proof by showing that the multiplying factor is
an increasing function of z. This is a special case of the following

lemma given in Lehman (1959).

Lemma 1 1f for i = 0,1,2,3,... a; > 0 and bi > 0 and if the series
(o] > .
T a.z' converges to A(z) and the series T b,z converges to B(z)
o ACz) =0 - 33
then for z > 0 f(z) = B(z) iS an increasing function of z if g 1s an

. . . : i
increasing function of 1.
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Proof TFor f(z) to be an increasing function of z it is necessary
that £'(z) > 0. Now £'(z) = [A"(2)B(2) - A(2)B'(2)]/[B(2)]? and
so we require that A’(z)B(z) - A(z)B'(z) > 0.

] e . f i1
Now A'(z) B(z) - A(z) B"(z) = ¢ T [ia,b.z'"? L E a.b.z ]
N i i o
1=0 3j=0
®© n n-1
5 L k(ab -a .b )z
20 koo n-k ~ %n-xk
L -
sl 2 E z" 1
n=1 n
where e = 3 k(a, b - a b))+ I k(a, b - a b, )
n 0sk<kn a'kn—k n-k k L n<ksn a'kn-k n-k k
= z k(a, b -a b))+ I (n-k)(a -ab )
0sk<kn %cn« n-k k 0sk<kn mﬁﬂ %(Wk
= T (n-2x)(a b -ab )
Qsk<kxn n-k k %<n*

Now for 0 s k<% n n-2k >0 and n-k > k
thus if a b, > akb for s > k then c¢_ > 0,
s S n

k
ag2 a
However, aSbk > akbs is equivalent to B-> . since bi > C
for all i and the result follows. s k
In our application of this lemma
1 1
- (2p+t)i+1 1 oL (/2P+‘t)i 1
i 1 il b1 - il
(2p)i+1 (/2P)i
a. Lp+ t+i t
so we have = = e E 1+
b. 1 . 1 .
al »pt 1 1p+1
which is an increasing function of i if and only if t < 0. We have

thus shown fhat the multiplying factor lies between zero and one if
- Lp<t<O0. This means that | is a shrinkage of X.

The estimator ﬁ(xl,...,xn) given above may be computed easily
for small values of z, or, using the asymptotic expansion given
previously, for large z. For intermediate values of z the aid of a
computer may be required. It seems desirable to find a more easily
calculated approximation to the shrinkage factor. Let h(z) be the
shrinkage factor. Now as z + 0 and as z > «, h(z) is asymptot-
ically equal to a bilinear function. We shall approximate h(z) by

such a function. We first prove the following lemma.
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® i
I a.z
4=g & - a ta,z
Lemma 2 1f f(z) = and g(z) = ———
T b.s’ botPy2
iEo *
then as z > 0 f(z) ~ g(z) and £'(2) ~ g'(2).
Proof Clearly f(z) ~ g(z).
o o .
2 i(aibj—ajbi)zl+] . ab -ab
Now £f'(z) = oL =0 — : U U asilz %10,
(L b.z3)? (b_+b_z)?
5=0 ] O
ab -ab
and g'(z) = _..1__0_.....2_;1_ ;
(b0+b12)
Thus f'(z) ~ g'(2).

Applying this result to h(z) shows that the first two terms of the
Taylor series in the numerator and denominator approximates h(z) in
value and derivative at z = 0.

A similar lemma for large values of z is as follows.

"EO o a,
Lemma 3 If f(z) ~ 23— and g(2) = =
L g 0

i=0
where the series are asymptotic expansions as z - « then f(z) ~ g(z)
and £'(z) ~ g'(2z) as z » o,
Proof Clearly f(z) ~ g(z).
Now in a similar manner to the previous lemma
23oby =3,y
b2+]blz+boz2

£'(z) ~ > 0 as z > «,

Since g'(z) = 0 the result is proved.

This shows that for large z we may approximate h(z) in value and
first derivative using just the constant terms. The next lemma
gives a bilinear function which approximates another bilinear
function for small z in value and first derivative and approaches a

given constant for large z.

Lemma 4 Let £(z) = 23DPZ .ng glz) = e . Then f(z) ~ g(z) and
c+dz Y+&z A 1 be-ad
f'(z) ~g'(z) asz+>0and g(z) *kas z>> if a==Y,8 = = ——1,
% Bbmad c c kc-a
B =X Y.

¢ kc-a
Proof  We must have B =k¢ to satisfy the condition for large z and

a = %-Y so that f(0) = g(0). In order that f£'(0) = g’(0) we must
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Y.

- 3 g - -
Bave sl = SR, qhus WO = RvEs 2Ly apaw oS820
c? Y2 c c c kc-a
We may now apply these lemmas to the function h(z). In this case
(;’p'H.') 1
1 2
k=1, asiditt | B=ap—® g1, ds=E
P Csp) P
St 2. d [(%pw*t)2 (%P+t)2 /( wprt)
W = s = = = Y/{1-
e have a o5 Y (%p)g e = /]
__hptt [%F+t+1 _ ptt ] y
& p+1 %p

(sptt) Y / [Pp(spt1)]

Taking Y = (%p)2 we obtain as our bilinear approximation to h(z),
(3sp+t) Cop+Coptt)z _

» p+1 + 2
h(z) Gep+1)+(pt+t)z Cep+t) p(3p+1)+(Csptt)z

It is clear that we could use higher order approximations toh(z) but
this bilinear approximation will be quite good; also it is doubtful
whether much improvement can be gained by going beyond biquadratic

approximations.

1.2.1 Other Prior Distributions

The reason that the maximum likelihood estimator tends to over-
estimate the length of p is that it is based on a uniform prior. The
surface of a sphere of radius r is proportional to rp_1 which means
that a uniform prior weights large values of r highly. We overcome
this by using a prior distribution which puts smaller weighting on
large values of r in compensation for this. Stein (1962) calls this
effect '"the surface-volume effect".

If p(u) is the probability density for u then on taking polar

il
coordinates (||ul|,8) we may write 8(8) = ﬂ:ﬂT U so that ||§]] = 1.
The Jacobian of the transformation will be
o [leu  aw e 38
J = s Il = |6 vl 55
STHCE B R
- p-1 _8§_|
> |l 6 55l

We thus have the probability density for (||ul|,8)

-1 : 98
pCllull,0) = panllullPY|| s 128

This proves the transformation law given previously.
Another way to overcome the surface volume effect is to use a
proper prior distribution. In particular we could use a normally

distributed prior. We shall consider a family of prior distributions
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which includes the previous family and the normal family as special

cases. Consider the prior

2

p(u|t) « (uTu)t exp{- L1~ (u—a)T(u-a)}

When t = 0 we obtain the normal prior while, in the limit as T =+ « we
obtain the prior of the last section. The posterior distribution is
given by

p(u) = exp {-%T I M—>_<||2 XURNE exp { —5-%7 | u-a ||*}

T T = -T- 1 T T T
RN exp{ —15[??2(11 U—QXTu +X X)+;7 (0 p-20 p+a a)l}

oAk n q. w5 T =T 4 T
« (up) exp{ %l (= +F)u u-?[—E,—X +2a Jul}
o T o° T
n T 1 "
T .t & . & SZ XTI
« (pu) exp{-% (52—+_?5) ”u-_11+1_ S S, sl |
o2 12

This is of the same form as the posterior which corresponds to the

prior (uTu)t. The coefficient -é%-has been replaced by'E; + -!; and
o T
S 1 n s 1
the vector X has been replaced by = 1 (83'X+-;3'a). Thus the mean
RS

of the posterior distribution is also of the same form as before.
Usually no value of 12 is known but it is possible to estimate
12 from the data (the so-called empirical Bayes estimators). We
shall illustrate this in the next section for the case t = 0.
Alternatively we may choose a prior distribution for T2 (a so-called

two stage Bayesian method).

Consider a prior distribution for 12, p(t1?) « 17%%.  The prior

for u obtained by integrating with respext to 12 is

p(u) « r(uTu)t exp {- 3%t 2| u-ul® ¥ 2052
0

W 2°71r(c-1)

B “U-G“ 2(c-1)
Ol e
« lu-a]) e
2t
llull
In the case in which a = 0 this reduces to p(y) « ”L4|2(C_1_t) which

is of the form previously considered.
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1.2.2 Empirical Bayes Estimators

Instead of choosing a prior for 1% and integrating it is possible
to estimate T?2. This may be done because the variation in the usual
estimates of the ui consists of two components under the random effects
model considered. These components are the variation of the Ui about
their mean and the random variation of the Xi' The within samples sum
of squares estimates 02 while the between samples sum of squares
estimates %; + 12,

Writing Xij for the jth component of the ith sample vector the
random effects model gives
1 ¥ -

D 4 f n
_ . _
[E?I & LR R e - Zl (X5 - X; ]

~
T* =

=l

A 1 § 2
02 = § (X..~%.)
= = | .. .
(p-1)(n-1) 121 421 13 H
This random effects model assumes unknown variance and that each
component of a is the same and can be estimated by ?.. . If we

modify for the case a = 0 and known variance we obtain

~ 1 p - 52
¥ B v
P iz
Using this model the posterior di§tribution for u is
o]
2 2 =
T 1
Plo 2 o] 2
— +T —+T
n n |
. . ntl 5 o2 = |
and the posterior mean 1S e X=11 - mical RS
nT“+0 nT+ o

Substituting the above estimator for T2 gives

2 2
- (1—5" ))‘(
n I X

i=1

=(
"
=
I
%
|
>
1l

|

pd
—J
b

Using our previous notation =z = EEE ?’TR we have
a
Vea-R)x-222 3
2z z

This again is a shrinkage of X where the shrinkage factor is a
bilinear function of z. It is not the same bilinear function which we
derived previously.

When the denominator of a bilinear shrinkage is proportional to z
it turns out to be easier to calculate the risk than for a general

bilinear shrinkage. James and Stein (1960) gave a modified form of
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the above estimator in both the case of known variance and the case
of unknown variance. For the latter case we may substitute 62 for
o?. Since the empirical Bayes estimator is only an approximation
to the full Bayesian estimator it seems reasonable to check whether a
slight modification will give smaller risk. They found that, for
the estimator ﬁl = 222X the risk function which we shall

Z
calculate in chapter 6 1is given by

E[Il(i—%)? -ull*1=p - ua{(p-'z) . n;?a} E[ . ]

P-2+2K

T

where K has a Poisson distribution with parameter %—g if the
o

variance is unknown, while if it is known then the risk is

d e 2 i
E ”(1_?)}("““ _p _u’a{(p‘Q) _a} E[m]

with the same Poisson distribution for K.

The estimator is uniformly better than B if a=%p - 1 in the case
of known variance or if a = %Egi-(%p-l) in the case of unknown
variance. In fact for values of a between zero and twice this value
the estimator is minimax which means that it has uniformly smaller

risk than the maximum likelihood estimator.

1.2.3 Admissibility

For the James-Stein estimator given above the shrinkage factor
will be negative if z < a. Intuitively this would seem to be a bad
thing. The reason the estimator performs well on average is that
there is only a small chance that z < a. If we define a, = a o
az0anda =0 aso0 tren the estimator‘z;; = Eié) X seems
likely to provide an improvement over the James-Stein estimator. In
fact this is so and this proves that the James-Stein estimator is not
admissible. The estimator ﬁ: is the truncated James-Stein estimator
and is not admissible either.

Efron and Morris (1972) have compared the above estimators with
the full Bayes estimators. They quote the loss of efficiency due to
estimating T2 and show that it is small. Thus the James-Stein
estimator is almost admissible in a sense because the proper prior we
have considered gives rise to an admissible estimator.

Our previous estimator based on the prior p(u) « (UTU)t is a
possible candidate for admissibility since the only admissible

estimators are Bayes estimators. Since the Bayes risk does not

exist we cannot guarantee admissibility by this result. A paper of
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Brown (1971) shows which prior distributions lead to admissible
estimators. The proof shows under what conditions a sequence of
admissible estimators based on proper priors converges to an admiss-
ible estimator. Strawderman and Cohen (1971) derive from this the
following simple criterion for the case of known variance. An
improper Bayes estimator is admissible if it is a proper shrinkage
(i.e. shrinkage factor < 1) of the maximum likelihood estimator - the
result applying to estimation of the normal mean under quadratic
loss when the variance is known. This means that our Bayes estimator
previously derived is admissible but not our bilinear approximations
to it.

Some of the above forms of prior knowledge, as well as many other
related methods which lead to Stein-like estimators have been

summarised in a review paper, Zellner and Vandaele (1972).

1.2.4 Unknown Variance

We have already seen how unknown variance may be dealt with
empirically. The full Bayesian procedure of choosing a prior
distribution for o0? leads to rather intractable integrals. Suppose
we use a prior distribution p(0?) « (02)b exp (—é%). We may integ-
rate out the o? fairly easily and we are left with an intractable
integral for u. Alternatively, if we integrate out the p we are left
with an intractable integral for o?. These may be solved numerically
or by asymptotic expansions but the solution does not give easily
computed estimators. An alternative is to use the mode of the
posterior distribution for p and this is more easily computed. We

shall discuss these methods in more detail in chapter 3.

1.2.5 Linear Models

We have described the case of a sample from a multivariate

normal distribution. This is a special case of a linear model since
we may write Xi =W tE; where €~ Np(O,o2 I). We may then write
X1 It El 81
== 158 =)0 where [* | ~ N__(0,0%I)
A 3 : i np
X I € >
. O - | D L D}

For known variance X is a sufficient statistic for p while for

unknown variance
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S =

(Xi—i)T(Xi—i) and X are jointly sufficient for u.
i

1

" eo~—g

1 independently of X. We may

therefore study the problem of a single observed X with distribution

2
Now X ~ N (u,g— I) and S ~ X2
P °’°n n-

X ~ Np(U,OZI) and, if 0% is unknown,an independent variate S with
distribution S ~ X:. The linear model Y = XB + €, € ~ N(0,0% 1)
takes this form if we take our sufficient statistics to be

B = (XTX)_1 XT Y and 8% = YT (I-—X(XTXT1XT)Y. This is the so-

called canonical form of the model. In chapter 2 we shall apply the
methods of this chapter to the linear model in this way as well as

working with the model directly.

1.2.6 Criticism

Estimators obtained in the last few sections have the property
of shrinking each component estimate towards a common value. As we
have discussed the problem the shrinkage is towards zero, but it is
easy to modify the methods to give a shrinkage towards any value or
towards the overall mean. Since the shrinkage factor depends on all
the data the estimate of one particular coordinate is affected by
data concerning other coordinates. In the case we have considered
the distributions of the coordinates are independent and unless we
have prior knowledge that the coordinates are close together it seems
unreasonable to use estimators which have this property.

The reason for the reduction in risk is that if the coordinates
are in fact equal in mean then pooling the data is more efficient
and protects us against any data for one coordinate being an outlier.
If the coordinates are close we are still protected against outlying
data. If all the means really are far apart, little harm will be
done since with high probability the shrinkage will be close to unity.
The main danger is that a minority of coordinates may be atypical of
the rest. Apart from this possibility the shrunken estimators can
at best greatly improve our estimation and at worst do only a little
harm. Unfortunately the possibility of a small number of atypical
components cannot be ignored. This is a criticism of ensemble loss
functions: the James-Stein estimator does what is required of it -
namely gives smaller risk than the usual estimator. In the alarming
case above the majority of components have their components of risk

reduced slightly at the expense of the minority which could have
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unacceptably large components of the risk. A slight modification
due to Efron and Morris (1979) seems to give us the best of both
worlds. At small expense to the ensemble risk a rule which limits
the amount of shrinkage allowed can reduce the individual component
risks to nearly the same value as for the unshrunken estimator.

Critics of shrunken estimators argue that the methods suggest
that we should join separate models together into one so that
estimates in one case improve those for the others. The absurdity
of doing so when the other problems are irrelevant to the problem in
hand is self evident. In order to add weight to this criticism, many
absurd suggestions of this sort have been made, for example, that
baseball batting averages (or even random normal numbers) should be
used to improve prediction of the effectiveness of a drug. Barnard
asks: ''Why should not all our estimation problems be combined into
one grand melée?" In fact, if we do combine them, then our
estimators will hardly differ from the maximum likelihood estimator
and the risk will be smaller by a negligible amount.

It is only in problems in which most of the components have means
which are close together that we obtain a useful reduction in the risk
and only where we believe this to be likely should we use this method.
In order to protect ourselves against one component risk being
increased we should use a limited shrinkage rule. After all, a
patient is interested in his diagnosis and the risk to him and has
less concern for the risk to other patients who happen to have been
examined on the same day.

Later we shall see that a prior distribution which keeps some
component estimators independent of some of the others, in other words
we are not combining the estimation problems, can give an even

greater reduction in ensemble risk than the crude shrunken estimators.
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Chapter 2
Modified James-Stein Estimators Applied to Linear Models

2.1 Introduction
In this chapter we shall discuss the canonical form for the linear
model, which was set up in chapter 1, and extend the James-Stein
estimator so that it does not necessarily shrink the maximum likelihood
estimator towards the origin. In the discussion to Stein(1962),
Lindley suggested shrinking towards the common mean of the coordinates
while Stein(1966) suggested shrinking some components towards one
value and others towads different values. We shall consider estimators
which shrink the usual estimator towards several orthogonal hyperplanes
thus generalising both of these suggestions. We note, however, that
Stein(1955) clearly had this in mind for applications of his ideas.
Having developed these estimators, we shall show how they may be
applied to the linear model. Both the full rank model and the non-full

rank model will be considered as well as restricted linear models.

2.2 Shrinkage of the Maximum Likelihood Estimator Towards a Hyperplane

Suppose X ~ NP(U ,02I) and 5"€%'02X1 (if o2 is known

then we put n = o and S = g?). We shall estimate p under the loss

function [(ﬁ LU ,0%) = Hﬁ -Lﬂ|2/02. We wish to shrink the maximum
likelihood estimator, X, towards the hyperplane Hu* = h where
rank H = r.

We may write X as the sum of three terms as follows
X = Gh + (I -GH)X + G(HX-h)

where HGH = H and GE = (GH)T.
Then Gh 1is the projection of the origin onto the solution space of
Hu* = h (i.e. the hyperplane towards which we are shrinking), (I - GH)X
is the projection of X onto the null space of H (i.e. the parallel
hyperplane Hu* = 0) and G(HX-h) is the projection of X - Gh onto
the column space of HT (i.e. the orthogonal complement of the null
space of H).

The idea is to shrink the component of X -Gh orthogonal to the
null space of H by an amount dependent on X and S without changing
the component of X in the null space of H. This suggests using the

estimator

ﬁ=Y+(1—ﬁF)Z where Y = Gh+(I-GH)X and Z = G(HX-h).

Let E[Y] =n=6h+ (I-GHu, E[Z]) =7 = G(Hy-h) so that, since
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X=Y+Z, W =n+l. Figure 1 shows the relationships among the

variables and parameters defined above.

Figure 1 VariabLes Defined in Reflation to the Maximum Likelihood
‘ Eatimaton

We shall show that the vectors (I -GH)X and G(HX-h) are

indeed orthogonal (in the geometrical sense, i.e. with the inner

product <a ,b>A = aTAb where A is symmetric and positive definite,
a and b are orthogonal if and only if <a ,b>A = 03 We take A=1
in this case). We wish to show that EI _GH)XTG(HX-h) = 0. Now,

if h = Hu then the left hand side is

XT(I - GH)GH(X - u)
= XT(GH - GHGH)(X - u)
= 0

XT(I - GH)TGH(X - u)

which is the required result.
We shall also show that Y and Z are orthogonal in the sense

of being statistically independent. We have -

E[{(I - GH)(X - p)HGH(X - 1)} "]
(I - GH) var X (GH)T

0% (1 - GH)(GH)T

= 02(I - GH)(GH)

= 0.

ELY - n)(Z - 2)7)

Finally we wish to find the distributions of the norms of the

random variables defined above. We have || X H2 N gl X;(%|lu||2)
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since ||X||2 is the sum of squares of independent normal variates.
mso ||z ||%= 272 = [GH(X -w)]T[GH(X - u)]

(x - w (1) aH(X - )

(x - W) TeH(X - u)

and since GH is idempotent ||Z Hz'x ozxi(%||5||2) where

r = rank H = rank GH. Similarly,

{(T - GH)(X - MIT{(I - GH)(X - )}
(X —u)T(I -GH)T(I -GH)(X -v)
(X-—U)T(I -GH)(X -p)

Iy -n|I°

and since I-GH is idempotent of rank p-r, ||[Y-n | ~ ozx;_r .
Also, since (I-GH)GH = 0, or since Y and Z are independent,
HY-—n||2 and ||Z|f are independernt.

In this chapter the only use we make of the risk function is as a
motivation for using the estimator ﬁ and its generalisations. The
proof of the formula for the risk function of the ordinary James-Stein
estimator will therefore not be given here but will be delayed until
chapter 6 where it will be given as a special case of the risk of a
more general class of estimators. Here we shall quote the result. The

= cS

risk function for the estimator My = 1 - | X|| X given in

Stein(1966) is

E[ll(l . “CTS”:,)X - u IIZ] =p - cl2(p-2) - ”;2 C}E[p-21+21(}
where K has a Poisson distribution with parameter %o ||u ”2' This
is the result already given in chapter 1. We now give a slight
generalisation - if X has a singular normal distribution then there
is a matrix, L, such that LX has a normal distribution of the same
rank and with LLT = I, therefore replacing X by LX does not change
the risk function - the risk is the same in the singular case.

(%4
Now, for the estimator 1 we have the risk function

ELllY + oC Iz 1",z - u*]

ELIlY -n+ oCllz|° .92 - ¢ |I°)

EL||Y- nlf1+ 260y -n)"ELoC |12]1* ,9)2 - 21 + ELIloC ||2 | ,9)2 - £|[]
ELIY- nllP1+ Bl o)l 2 1))z -2 II°]

where ¢(||Z|F ,S) = (1 - Trgg—r) Z (the result is also true for

general ¢). The risk function is thus

PY _ [ n+2 [ 1
R(1J s H 902) = p—r+{r"C|L2(r—2) + T CJEI_m
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where K has a Poisson distribution with parameter
3072 || ¢ || = %072 ||GHu- Gh ||© = %072 ||G(Hu - h)||® . Thus we have

(4 2 E _ n+2 1
R(U s H s O ) =SSP = C{?(r‘ 2) - —'n—— C} E[‘—'—'—‘*‘——r_2+2K ].

The minimum value of this is less than p (the risk for the maximum
likelihood estimator) and occurs when c¢ = n %i% so long as r 2 3,
i.e. p2s+3 where s =p-r.

The estimator just developed has the property that for small
values of F the signs of the components of X are reversed.
Intuitively this would seem to be a bad property, and, as we shall
see in chapter 6, it is possible to obtain a slight uniform reduction
in risk by using the positive part shrinkage in which negative values
of the shrinkage factor are replaced by zero. By doing so, the saving
in risk near up = 0 is quite marked. Using this shrinkage we find that
there is no longer a uniformly best value of ¢, but that for
c S 2n %%% the estimator remains minimax. James and Stein suggested
keeping to the value of ¢ which is optimal for the ordinary James-

Stein estimator, while Efron and Morris(1973a,1976) suggested the
r-2 r-0.66
n+2 > " 0-0.66
the minimum, gives an approximate 50% F value if, in fact, u = O.

value c¢ = min(2n ) which, when the second value is
The second value is the minimum when p and n take the values

given in table 1. The resulting estimator is therefore a smoothed
version of a preliminary test estimator. Its risk, while not uniformly
less than that of the ordinary James-Stein estimator, can do much

better and is never much worse.

. n-0.66 n-2

Tabfe 1 Values of n 23 and n =21 §or which = %2 o
" 3. 4 4-5 4-6 | uw-7 | u-13 >3
n 21 | & -14| u-7 Blte il BB m 1-3

% equality 1if r =6 and n =6

Using the program described in chapter 5, the risk functions (as
functions of A = %0'2||p||2) of various estimators of the James-Stein
type and their pasitive part versions were computed. Plots of the
difference in risk between each estimator and the ordinary James-Stein
estimator, and of the difference in risk between the same estimator
and the Efron and Morris estimator are shown in figures 2 to 4. In
these graphs the curves have been labelled according to the point

where they cut the risk axis. The abbreviation JSoa refers to
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DIMENSIOCN=-828 DEGREES OF FREEDUOM=-22328
PLOT NUMBER=8821

-+~

Figure 2a Comparison with the
James-Stein Estimator

From top to bottom at the left

the curves are:

JS+2, JS+1.8, JS+1, JS 1 (the axis)
JS 0.5, JS 1.8, JS 2(same risk as
the maximum likelihood estimator)

DIMENSION=-8238 DEGREES OF FREEDOUM=-22828
PLOT NUMBER=282

-8. 1

; '4'-0-1>—+ -

-2 2
-2. 8.

-2. 4
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-2. 9
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-1
-:.1+
-2l
~1.8 4
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e 2 F— — ¥ 4

1. 2 = i 1

-'~_

Figure 2b Comparison with the
Efron and Morris Positive part
estimator

From top to bottom at the left
the curves are:

JS+2, JS+1.8,JS+1, JS 1, JS+0.5,
JS 0.5, JS 1.8, JS 2(same risk
as the maximum likelihood estimator

Figune 2 Comparnison o4 the Risk Functions of Stein-Like Estimatons
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PLOT NUMBER=~283

{ DIMENSION=-2238 DEGREES OF FREEOOM=280384
B.8

-2.2.1

Figure 3a Comparison with the

s James-Stein Estimator
2.8 From top to bottom at the left
the curves are:
51 JS+2, JS+1.8, JS+1, JS 1(the axis)
JS 0.5, JS 1.8, JS 2(same risk as
-1.2; the maximum likelihocd estimator).
-~1. 4 4
2. 4 DIMENSION=-208 DEGCREES OF FREEOOM=0034 '
2.3 PLOT NUMBER=D04

i
I

Figure 3b Comparison with the
Efrom and Morris Positive part
Estimator

From top to bottom at the left
the curves are:

JS+2, JS+1.8, JS+1, JS 1, JS+0.7,
JS 0.5, JS 1.8, JS 2 (same risk
as the maximum likelihood
estimator).

Figure 3 Comparison o4 the Risk Functions of Stein-Like Estimators
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l DIMENSION=8319 DEGREES OF FREEDUOM=0228
B. 4

PLOT NUMBER=833

Figure 4a Comparison with the
James-Stein Estimator

From top to bottom at the left
curves are:

JS+2, JS+1.8, JS+1, JS 1 (the axis)
JS+0.5%, JS 0.5%, JS 1.8, JS 2(same
risk as the maximum likelihood
estimator).

“*These curves nearly coincide.

3 DIMENSION=218 DEGREES OF FREEQOM=2228
®e PLOT NUMBER=2B8

m.a.!.

ﬁ.z;

Figure 4b Comparison with the
Efron and Morris positive part
Estimator

From top to bottom at the left
the curves are:

it JS+2, JS+1.8, JS+1, JS 1,
i JS+0.5%, JS 0.5%, JS 1.8, JS 2
—1—31 (same risk as the maximum
_1_4f likelihood estimator).

*These curves nearly coincide .

Figure 4 Comparison of the Risk Functions of Stein-Like Estimatonrs
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8(x,S) = <1 - —ﬂ;?ﬁ;r> X of which the James-Stein estimator is a

special case. For the positive part version of this estimator we have
written JS+a . The value c¢ 1is the value recommended by James and
Stein so for the James-Stein estimator we put a = 1. Although these
result are well known, the author has not seen the graphs plotted
elsewhere.

Since the curves were smoothed using cubic splines, the graphs
tend to have too steep a gradient at U = 0 , the theoretical gradient
being zero. The fit elsewhere is good - that it is not perfect is
shown by the crossing of graphs for the positive part and corresponding
non-positive part estimators: mid way between the points of intersection

the difference is only about 0.01.

2.2.1 Special Cases

If we put h = 0 and take H to have full column rank then the
null space of H and the hyperplane Hu* = h reduce to a single point
(have dimension zero). In this case the estimator ‘K is the James-
Stein estimator and the shrinkage is towards the origin. Stein suggested
choosing the origin at the best prior estimate for each coordinate.
Alternatively, without essentially changing the estimator, we may choose
h such that Gh is the best prior estimate of the mean. In particular,
taking H = Ip and G = Ip s h will be the prior estimate for U. Here
r = p and the hypothesis is My = u2 = = up = uo.

If we do not wish to make p prior estimates then we may follow
the suggestion of Lindley and let the data choose the origin towards
which all coordinates are to be shrunk. We do this by putting h = 0
and H={1 -1 0 +aws O 0]
0 1 -1 » e G 0 0

o 0 0 ... 1 -1]

in which case our prior hypothesis is P P up = Hps My

unknown, and the estimator shrinks each coordinate towards the common
mean. In other words X 1is shrunk towads the line U* = [1,1,...,1]Ta.
In this case r = p-1 and we have a reduction in risk if p = 4. If

P = 3 then the estimator gives no reduction in risk over the maximum
likelihood estimator (in fact it is the maximum likelihood estimator)
while the ordinary James-Stein estimator does. However, when p = 4

neither this estimator nor the James-Stein estimator is uniformly the
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more efficient, The James-Stein estimator being more efficient if Ho
is close to the true mean and less efficient if it is not.
Taking h # 0 gives a hypothesis of the form My =00 + Uy,
with uo unknown and the a, known, towards which we shrink the
maximum likelihood estimator. Since H has full row rank every
generalised inverse is a right inverse satisfying GH = (GH)T which

means that it is the unique Penrose inverse. The Penrose inverse is

G = B [oe 52 « w2 1
-1 p2 ... 2 1
-1 -2 & W 2 1
-1 -2 « o s -(p=2) 1
[ -1 -2« .« . -(p-2) -(p-1)]

. ) T
and taking h = [Otl-a2 s 0y ""’ap-l -a_]

P
ensures that our estimator shrinks the maximum likelihood estimator

2

towards the required line.

Alternatively, we may obtain the same estimator with
. 1

H=1 o o ... 0 -1 G=F'p-1 -1 H s =
0 24 0 &z @ =1 = =8 2 sws -1
0 0 1 % zow 0 = -1 -1 P-1 s -1
0O 0 0 .. 0o -1 ST R
5 O ® sms 1 S0 I B 5 i, . )
_ T
afld & [al—a s 00y . ,ap_l—onp]
or with
o 1~.r1 1 1 1
H=1]1 -1 0 O % s s 0O 0 G = 5 & 12 * plpH
1 1 1 1
1 il -2 O] & x == O 0 —5— E 17 . p(p_+1)
il 1 1
1 1 i =30 . = 10 0 0 -3 19 p(P+1)
1 1 1 1 - 0 0 T -
| 1 . . . p L O . . - p(p+1)-

T
and h={ a0y 5 a1+c12—2a3 L AR .+ap_1 = (p-1)ap] .

2
Whichever form we take for H, GH = I- i%- llT and
Gh = a-a = [a 1.

s O a

1

T
. : '

ne—-ro u

i
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If H splits into several mutually orthogonal submatrices
1 i T,T
= (1, H ]

H with HiHj =0 for i# j then the
shrinkage can be divided into components orthogonal to each of the

5 s+ o+ o+ s HY
null spaces Hi“* = 0. Figure 5 represents the hyperplane in which
Z lies, the axes representing the null spaces of H, and H2 . (In

al
this diagram the hyperplane Hu™ = h is represented as a single point).

Figure 5 Shrinkage of the Maximum Likelihood Estimator towards a
HypenpLane

The points in the diagram labelled a, b and c¢ are respectively
the vector towards which Z shrinks and the components of this vector

in each of the hyperplanes Hlu* = h1 and qu* = hQ.

2.2.2 Generalised Shrunken Estimators

The last special case considered suggests a possible generalisation.
The shrinkage towards each of the hyperplanes Hiu* = hi does not need
to involve the same shrinkage factor in each case. The amount of
shrinkage in the case considered is proportional to the weight of

evidence in the sample for the hypothesis Hy = h (this weight of
n S

F iz
close to the hyperplane Hlu“ h, but far from the hyperplane

evidence being measured by In the case t =2, if Z 1is

HQU* = 0 then the hypothesis Hu‘ = h 1is likely to have little
evidence in its favour and the shrinkage factor will be small. On the
other hand the data provides evidence that H u* = h, and we might

1 1
prefer a larger shrinkage factor towards this hyperplane and a smaller
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shrinkage factor towards the hyperplane HQu* = h2 (which has even
greater evidence in its favour than has the hypothesis Hp* = h).
In the more general case in which t 2 2 we shall split Z into

orthogonal components

2= 2,42, .. .+ 2
where Z.= G,(H.X - h.), H.H:r= 0 for i % j, H.G.H. = H. ,
1 1 1 al | 14 1 a
_ T Ty el T S T
G,H; = (GiHi) , H = [Hl,...,Ht] , h --[h1 s shy ]
and GE [Gl,...,Gt].

We first show that HGH = H and GH = (GH)T. We have

GH = GlHl > B Gth

and each component on the right is symmetric.
Now HGH = [H,G,H, + .Z H,G.H,
i#1

.
.

H,G,H,_ + ) H,G.H,
] ttt 13t T A
but H.G.H. = H.(G.H.)T = H.H:TG. =0
J 11 i I* A5 Sl
and H.G.H. = H. .
1 1 1 1
Thus HGH = H.

We now show that the Zi are mutually orthogonal. We have

272.= (X - b)) 6. 6, (H.X - h,)
i73 1 1 EL 0 ] [
= (X - u) 6,6, H, (X - u.)
i7 71 71 T3] i
where h, = H.u, for each 1.
i 11
Since each GiHi is symmetric
272, = (x - u)eHHT T (X - u,)
ST 1 11737 7 J
=0.
We may thus split X as
t
X = Gh + (I -GHX + ) G,(H.X -h,)
joq 104 i

where the terms after the summation sign are mutually orthogonal. We

shall show that they are also orthogonal to (I - GH)X . We have

XT(I - GH)TG. (H.X - h.) = X(I - GH)G.H,(X - u.) .
1 1 1 t 1 1 t 1

} G.H.G,H, = ] G.H,H. G,
590 13EE

Now GHG.H,
11

|
()
o
oo
()
|
()
=
"o
=
n
()
T
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Thus (I -GH)G.H. = 0 and {(I_GH)X}TG.(H.X—h.) =
1 1 1 1 1

Applying the shrinkage to each component of Z gives the estimator
RS

=Y+ ] {1 -===p!3 where Y = Gh + (I-GH)X.
s \ ||Zi|1 / *
As before we shall let E[Y] = n, E[Z) =z and rankH = r. Also,
5 _ _ _ 1g
putting E[Zi] = Ci and rank}g_ =r, we have 1»r = 5=1 T3 -

We show that Y and the Zi are all independent. Firstly,
cov(Zi,Zj) = cov(G H,X,G, H ] = G,H; varX (GjHj)T

02G.H. H G.
34 T
0 if and only if H. HJ =0 for 1i# j . Secondly,

cov(Y,Zi) = cov{(I-—GH)X,GiHiX} (I - GH) var X (G H. )
= 0%(1 - GH)(G,H,)"
id T
=0 if and only if HiHj =0 for 1i# j
. 2 2 2
As shown previously, |l Y-n |~ 02)(123_r and IIZiII v ozx;i(%||QiH )

the distributions being independent.

We now calculate the risk function for Tﬁ Noting that E[Y-n)=0,

hp 2 C.

= . . = . ° = __J._

E(z,] = ¢; andthat 2.2, =0 we have for ¢;(l2;]I,8)=1 Tz
i

R(Y,1,02) = E[]|Y + 2 6. Cllz Is)z, - )
=t
t
=El|]ly -n+ ) {,( ||zi ||2,S)zi - z,) 1%
i=A1
t 2 2
=ellly -nl’1 + E0) ] o.Cllz. IINs)z, - ¢, 37

i=1

T t 2
+2ely -n) E[ ) {o.( ||zi I ,$)2; - T}

i=1

ELy -n |1 + £ Z {0, Cllz, I, $)Z; - L, }ll

i=A
Sty -nlf1e T stlleyliz, fsz, - o, I
i=1
+ ) E[E[¢.(||z.|| ,s)z.—c.ls]T£[¢.(|Iz.|I2,s)z.-c.ls]
143 SN i 73
ey -nlf] v ) Ellle,Cllz, I59)z; - ¢, |I°]
=1
+ ) ElE[{¢, (]2, IF,s) - 1)z, |s] E[{¢ (Ilz I?.,s) 1}z | s]
1#]
=ellly -n 11+ Z Elll,Cllz; II,S)Zi - By 11
i=1
+ ) E[{9, (||z I%.s) - 1}{¢ ( ||z II,s) - 1}z z]
1#3

EClly -nlf1+ ellle, Nz, 13922, - 2, 1)

i=1
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(This is also true for general ¢.).
it
Thus RG{,u,02) =p-r+ ) {Pi 01[2(ri 2) = Ci]E[

. r.-2+2K,
i=1 a T

2
where the Ki have Poisson distributions with parameter %1|;i[| .

. . . e . n .
Each term in the sum is minimised when ci = EIE-(ri-—Q). With these

values for the ci the risk function becomes

- n
R(UsU,OZ) SR - Py

2] A
(rg ~2) “lr.-2+2K, ]
% i

([ e K

i=1

For general values of the s the risk simplifies to

t
e« p - 3 efate -2 <22 el A ],

L r.-2+2K,
i=1 1 i
Also, the orthogonality of the Zi imply the orthogonality of the Ci
2 I 2 e 2 T
ana el = 1Y g lf = I Negl® + I efc,. heretore
i=1 isd i#j J
2 t 2
Nzl = ¥ llgg I -
i=1

2.2.3 Comparison of James-Stein Estimators

It might be imagined that, since shrunken estimators are not
uniformly better than the maximum likelihood estimator when p = 2,
but can be when p 2 3, the larger the value of p the greater the
gain in efficiency. Unfortunately it is difficult to find a meaningful
basis of comparison between different models. However, the greatest
possible reduction in risk occurs when ||z || = 0 and using the

ordinary James-Stein estimator the risk is

- 2y _ __n _ _ 2p 2n
REM0D =P -5 D =57 * &
= 222
n+2 °

Although this increases with p the reduction in risk over that for
the maximum likelihood estimator is Eégf%l- and this also increases
with p. A fairer basis of comparison is the risk relative to the
risk for the maximum likelihood estimator and this is 2 1%2%2. which
decreases with p.

The above argument seems to suggest that we should make the
dimension of the hyperplane towards which we are shrinking as small as
possible, but since we are comparing different estimators for the same
model the aggument does not apply. In fact, if up 1lies on the

hyperplane and we use the generalised James-Stein estimator then
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t

R(W,u,0%) =p - ] (r;-2) ==
i=1
nr 2tn

P 5wz Toe2

and if t = 1 then we would like r to be as large as possible.
Alternatively, for fixed r we would like t as small as possible.
This argument favours the ordinary James-Stein estimator 7f u Llies
on the hyperplane towards which we are shrinking. To gain maximum
advantage from this estimator we have to make a good prior guess for
U . If our guess is poor then the estimator and its risk differ very
little from the maximum likelihood estimator and the risk for that
estimator.

On the other hand, taking t > 1 may make a saving in risk if
our guess of some coordinates is good even though others have been
guessed badly. This is despite the fact that the potential saving is
not as great. Stein(1955) argued this way, an argument which seems
sensible on intuitive grounds for any estimator which uses prior
information. When the form of the estimator is given we no longer have
to rely on intuitive arguments but may analyse the situation more
precisely. This we shall proceed to do.

We shall write the risk for the generalised James-Stein estimator
in a form which makes comparison with the ordinary James-Stein

estimator easier. We have

- o *i2 ]
R(W,u,0%) = P - =05 I_: (I‘i‘Q)E[r_-:u:sﬁ |
i=1 1 1
o t 2K1
t 2 K
~ n(r-2t) n i ]
nt2 | n+2 Z s _Q)E[T-'?*Ei{'-l
i=1 1 1

(r,-2)%2K.
i i ]
NTRIE 2Ki_|

1
D (pop) + 2B 4 D ol
arz Pt oSt o2t Y on E[ig

Now ﬁ%% is a concave function of x and y when x and y are
positive and therefore

S Skite SR ¢ 131 SRR C.= )Lt S
121 (Pi—2)-+2Ki (r-2t) + 2K (r-2) + 2K -

the latter inequality following from the fact that ﬁ%% is increasing
in x. The equalities hold in the trivial case t =1 and the first

equality also holds, for t # 1, if and only if (i), for each i,
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Ki =0 or (ii) for each i, r, = 2 . This follows from the fact
that i%% is strictly concave. When t # 1 the second equality only

holds if, for each 1, Ki = 0].
2
Now each Ki has a Poisson distribution with parameter %I|£i|]
and we may take them to be independent in which case K has a Poisson
2
distribution with parameter % ||z || . Therefore

n_ . (r-2)x2K |
n+2 [ (r-2) + 2K]

¥ 2yis LB =
R(,u,0%) =2 + n+2 (p-r) +

- | ¥ 2
= == (2t-2) + Rl(ul,u,o )

where Rl(ﬁl,u,az) is the risk function for the estimator with t = 1.

Equality holds if ||C|f

This result is a more precise form of a result of Stein(1966)
which he describes asa crude approximation valid when r and n are
large (Stein took r = p). In fact it is not essential for his

argument to take n to be large. Stein's approximation replaces ri—2

2
I—riXQKi] I‘iX”C H
by r. and E{;T:_EETJ by ;_:TTEIHT then uses the same concavity

2
r, x|l gl ez 117
=
v H[Z5 12 ||

t
argument to show that z
=gl

Doing this ignores the
term —— (2t-2) which is small compared with —~=_r when each r, is

n+2 n+2 a
large. Also the approximations to the expectations are good for large
r. only if ||?;i||2 is small compred with r. or large compared with

. . 5 . 2l .
r., 1in other words the approximation is good when £;||CiH is small

o

or large, but not necessarily for intermediate values. This, therefore
does not answer the question as to which estimator is the better at
values of the Ci neither close to nor far from the origin. Stein's
result does not appear to be very useful.

Our result, on the other hand, shows that
Y 2y _ 7 2 e 0 _
R(Y,u,0%) Rl(ul,u,o ) — (2t -2)

which gives an upper bound on the amount by which U is worse than

ﬁl ; but does not prove that it can ever be better.

Suppose that the average of the r. is k, i.e. k = %;. The

maximum saving in risk over the maximum likelihood estimator is
n
(

= (r-2t) = = (k-2)t . The ratio of this saving to the saving (for
n+2 n+2
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(k-2)t (k-2)t » _ k-2 r

the same value of r ) when t =1 1is === = e

The amount of reduction in savings as a proportion of the single

. . (r-2) - (k-2)t _ 2(t-1) _ 2 kt-k _ 2 r-k
savings 1s = = T

r-2 -2 k r-2  k r-2° L

reduction in savings is less than a proportion —%— of the single
shrinkage savings. Thus, for k = 3, we lose less than 2/3 of the
possible savings, less than 1/2 if k = 4, and, for k = 6, less than
/3 «

We shall now show that there is a potential gain in efficiency.
Suppose that a set U of the 1 are such that Ci for 1 €YU are
(ri—?)X”Ci”2
R

close enough to the origin for

(ri-2) X 2K,
approximation to E[TF;?ET?TEF;] and that for 1 ¢ U, Ci is far

to be a good

enough from the origin for the same approximation to be good. (By
A2.5.1, this is the first term of an asymptotic expansion far from the
origin which also gives accurate results close to the origin). Now

t

Z ||t:i||2 = ||CH2 will be large in this case. Suppose it is large
4=1

enough for the same approximation to be accurate. Let the number of

elements of Y be u. We have

2
- £ 2 n n E (ri-Q)X||Ci”

n+2 n+2 n+2 n+2 159 (ri—2) +||gi||2

Using the fact that for i €Y, ||Li||2 =0 and for i €Y, ”Ci”2 is

large gives
n

v 2 :
R(UaUso ) 3 n+2

- 2PN . D1 - -
(p-r) + n+2 | n+2 2t + n+2 Z (Pi 2)

and if u # t then ||C||2 is large and

v 2y = D 2p D D (po2) =
Ry sus0%) 2 oo (pop) + 5 4 o5 X2 + o (0-2) = p.
Thus

v 2 v 2y: _n _
R(,u,0%) - R @, ,0,0%) 5 - = igfiu (r;-2)  for u+t.

Since this is negative when each r, > 2 this represents a gain in
efficiency of at least 525 for u # t, but a loss of efficiency
of nnT?(Qt—Q) if u=t.

Note that corresponding to each of the terms in which l|ci”2
is large, the component of the risk is the same (to a high degree of
accuracy) as that for the estimator which does no shrinking towards

the corresponding hyperplane. Therefore we obtain approximately the
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same reduction in risk by not shrinking those components. This shows
why a Lindley type shrinkage can often be better than a Stein type
shrinkage, for, if we split one of the hyperplanes into orthogonal
hyperplanes, we can, as just shown, decrease the risk when one of the
components of ;i is large and the other is small.

We shall present graphs of the risk function for the James-Stein
estimator and three dimensional graphs of the difference in risk
between the double and single shrinkage rules. The risk is scaled so
that the maximum reduction over the maximum likelihood estimator is
unity.

For the single shrinkage, the reduction in risk isgiven by the

formula

oo
- r-2 -2 _ -A i
bR E[r—2+2K] B Z i— r- 2+2k = 8T gy eetpaed) .

Using Euler's theorem in appendix 1 for the confluent hypergeometric

function the latter expression is
[==]

; (- 4
koo Kb Cr-1)

1F(15%r-15-2) = -

This formula is slightly more efficient than the other because it
avoids evaluating e_x. It also gives an error estimate since the
error is less than the first neglected term in the expansion. Both
series require a large number of terms for large A and this results
in an exponent overflow condition in finite precision arithmetic. The
second formula has the further disadvatage of causing severe loss of
significant digits when there are far fewer terms than the number
needed to cause exponent overflow. Accordingly we used the latter
series only for A s 20: for larger values of A we could use the
asyptotic expansion (see appendix 1)

TCar-1) -1

1F1(1;%r—1;-k) Qv T2 A 2FO(B—%r,l;;l/k)

[%r—s]k

k=0 (r-1)(-n)k*?

which terminates if r is an even integer greater than 4, but, since
this can require the calculation of many terms if A 1is smaller than
Lr , we preferred the asymptotic expansion A2.5.1 which generalises
Stein(1966),

o (-1)"

Q Qa n

E[a+K] Yoo Z n

n=0 (a+})

where Mo is the nth central moment of the Poisson distribution and
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a = Lr-1. This was taken as far as the term corresponding to n 5.
The reduction in risk was plotted for values of r = 3, 4, 5, 8
and <« - the latter value being interpreted as a limiting value - and
for ¢ = /77; from zero to five. The closer the curve is to the
origin, the smaller is the value of r (called 'degrees of freedom" in

the heading to the graph). The graph is shown in figure 6.

1.0
& 0s Relative Saring in Rek For 3, 4, 5, 8, 20
ﬁ and Degreee of Freedom
¢ 08.
%
; o7
06
0S5
04,
03
02
> \
0.0 |
0.0 1.0 2.0 3.0 4.0 5.0

Root Lambda/r |

Figure 6 Saving in Risk fon James Stein Estimators in Comparison with
the Maximum Likelihood Estimaton

For the difference in risk between the double and single shrinkages,

¢1 - /ll/rl and ¢2 B Ji2/r2 were each evaluated from zero to five.

In order to show the region of improvement, a contour map of the surface
was plotted with the zero contour clearly indicated. Contour spacings
were such that either 10 or 20 contour lines were drawn between zero
and the highest point.

By putting ARi = 0 if r, = 1 or r, = 2 , we can consider the
case of the Lindley type shrinkage. It is clear that in general the
graph has two "wings' near the axes whose height increase with increasing
r.. If r, =1 then the corresponding wing disappears. The central

it 1
region over which the single shrinkage is best, although large, only has
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Figure 7a Contour Map

Figune 7b Pictorial View

Figune 7 Diffenrence in Risk Between Separate Shiinkage and

Combined Shrninkage Estimatons

(dimensions 1 and 3)
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Figune &b Pictorial View

Figune 9 Difference in Risk Between Separate Shrinkage and
Combined Shrinkage Estimatons
(Dimensions 3 and 3)
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Figute 9a Contour Map

Pictorial View

Figure 9b

Figune 9 Difference in Risk Between Separate Shrinkage and

Combined Shrinkage Estimatons

(Dimensions 3 and 5)
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Figure 10a Contour Map

Figure 10b Pictorial View

Risk Between Separnate Shiinkage and

Combined Shrinkage Estimatons

Figure 10 Difference 4in

(Dimensions 10 and 10)
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)

. s = '
Wi /M%‘f_ sl
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Figure 1la Contour Map

e

Figute 11b Pictorial View

Figure 12 Differnence in Risk Between Separate Shiinkage and
Combined Shninkage Estimatons
(Dimensions 7 and 13)
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Figure 12a Contour Map

Figure 12b Pictorial View

Figure 12 Difference 4in Risk Between Separate Shrinkage and
Combined Shrinkage Estimatons
(Dimensions 3 and 17)
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a small region of large imrovement near the origin. The central nearly

plane area is close to the plane AR = 0. These graphs, plotted for

various values of r, and r,, are shown in figures 7 to 12.

2.2.4 Generalised James-Stein Estimators in Practice

We have shown that the lower the dimension of the hyperplane
towards which we shrink the usual estimator, the greater the potential
reduction in risk over that for the maximum likelihood estimator.
However, we have also shown that Lindley type shrinkages towards
higher dimensional hyperplanes and separate shrinkages within certain
orthogonal hyperplanes can give smaller risk in practice. Which
estimator is better is determined by how good is our prior guess of the
mean vector. If we can guess some components more accurately than
others, or using a Lindley type contraction, guess that some components
are close to one another (without guessing their mean), then we will do
better with a componentwise shrinkage. This shows why we should not
combine totally unrelated problems together - the risk is likely to be
greater if we do.

The best procedure seems to be that we choose subspaces in which
the components are liable to be similar in value to one another and
shrink within those spaces, either to a fixed point if we have good
prior knowledge, or towards a common mean if our prior knowledge is not
so good. Furthermore, we can avoid one component of the risk becoming
large by using an Efron and Morris type limited shrinkage rule. This
inflates the ensemble risk by only a small amount while protecting a
few components from being too greatly affected by the majority. We note,
however, that by using small enough groups of components this protection

is not so important.

2.3 General Variance Matrix

Suppose that in our model X has the distribution X ~ Np(u,02V).
It is possible to transform back into canonical form by a transformation
matrix L. We have LX NP(Lu,ozLVLT) in which case we want the loss

function to become

~ A 2
[(Li,Lu,0?) = ||Lh - wu || /0®.
In order that LX have variance matrix o%I, LVLT = I which implies
that V = L_lLT -l (LTL)_1 . Being symmetric and of full rank, A

. -1 T
can always be factorised as V °~ = L L. Now

[(L,1,02) = (f - WTLTLG - w)/o?
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1

G- VG - p)/o?
1’\ _ 2 /02
16 -l

2 T . q ~
where ||x||A = x Ax . We take this to be the loss function for U
as an estimator for uy . In other words we shall consider the model

o2

X NP(U,OZV) s SNV o X independently of X and we use the loss

2
n
function [(ﬁ,u,cz) = ||ﬁ = U|P _1/02 . Although we could repeat the
above theory without transformin; to canonical form it is not necessary
to do so as we may transform the result derived previously.

The hypothesis Hp = h may be written HL_le = h . We shall
apply the previous results to LX . We require a generalised inverse
of HL_1 satisfying the symmetry conditions of section 2.2 . Now if
G 1is a generalised inverse of H then LG 1is a generalised inverse
of HL™! since HLT'LGHL™! = HGHL™? = HL™}. Also LGHL™' is
symmetric if and only if LGHL_l = L_1 THTGTLT and since V_1 = LTL
this is equivalent to  GHV = (GHV)T . If H 1is to be split as
H = [Hf‘, 5 o o ,I{T]T then we similarly take Gi to be a generalised
inverse of Hi with GiHiv symmetric and take G = [G1 5 00¢ ’Gt]
in which case GHV will be symmetric and G will be a generalised
inverse of H.

We may now write

it
X = Gh + (I-GH)X + ] G,(H,X -h.)
. g i
i=1
and premultiplying by L we obtain
-1 x -1
LX = LGh + (I- LGHL ")LX + ) LG, (H,L"'LX - h,).
i=1
Putting +
Y = Gh+ (I-GH)X, Z, = G,(H.,X-h,) and 2= ) 2,
4. 1 i . i
i=1
we observe that LY, LZ and the LZi satisfy the orthogonality
conditions derived previously if (HiL_i)(HjL_l)T =0 for i#j.
The latter condition is equivalent to HiL_lL_lergr = 0 which is
equivalent to HiVH;‘ = 0 for 1 # j. Thus when the matrices Hi

satisfy the orthogonality condition HiVH;1 for 1% j, the

E
decomposition X=Y + z Zi divides X into orthogonal components
- i=1

with respect to the inner product <a,b>v_1 = aTV_lb and LX into

t
orthogonal components LX = LY + Z in with respect to the inner
i=1
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product <a,b> = aTb. They will also be statistically independent.

We may now calculate the risk for the estimator
= )2 ciS
b= ) (1 - —————3———) Z,
i=1 125117 -2

directly using the distributions
2 2 2
Iy - nllv-i v czxzp_r and  ||z|]° -4~ o®x®, Gl _9)
\Y 3 \

or alternatively by using the special case alredy considered. In either

case we have

. [||Y

+

t
2 2
DIERYEN PN ey

t
E D|LY + I e Clluz .oz, - L]J”E]

i=1

t
_ n+2 [ 1 ]
iR- .Z ci{Q(ri—Q) " 'n Ci}ELr.—2+2K.j

1=1 i 1

5 c; S
where ¢i(||Zi” V_1 s S) = 1 - ee——— and Ki has a Poisson
[EATE

distribution with parameter 1/2||Zi||2 _1 - This formula is almost
\"

identical with the special case derived previously. It relies on the

use of the loss function [(ﬁ,u,oz) = ||ﬁ -y ”1_1 /o% . Other

quadratic loss functions will give more complicated formulae for the

risk.

2.4 Generalised James-Stein Estimators for the Parameters of a Linear

Model

In this section we shall change the notation of the previous
section and shall use the symbol X to denote a fixed matrix. We wish
to estimate B in the linear model Y = XRB+ e, e " Nn(O,OZV). We
shall take X to be a matrix of full column rank; Y is the vector of
observations.

Now the usual estimators for B and 0% are

_i T -'1 nN2

B = (xTv'ix) Xy oY and 64 = ;%5-(Y - xi@)Tv'1

(Y - xB)

which are unbiased. These statistics are independent and jointly
sufficient for B, however there is no single sufficient statistic
for B so that no estimator for B may be based on a sufficient
statistic. We may base estimators on both of the above statistics (or

just on B) but there is no need to use the original observed vector Y.
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Accordingly we shall apply the results of section 2.3 to the random

variables éz and 6% . Now B~ NP(B,OZ(XTV_1X)~1)
and 62 n E%_'in—p . We may thus replace X in section 2.3 by é,
S by 62 and n by n-p =v. If we choose a set of hypotheses

concerning B, HiB = hi with H (X va X) 1 ;‘ =0 for i# j then

we are ready to apply the results to our model giving the estimator

. t ciaz )
B=06h+ (I-GH)B + izi (1 - T )Gi(HiS-hi)
Tk 1 1 XTv-l
. T -1,.-1 . . T T,T
where H,G.H, = H, GiHi(X vV "X) is symmetric, h = [h1 ,...,ht] .

T]T

- =
= [6,,...,6,] and H=[H,. . CoHy

. By the result of section 2.3

this estimator has the risk function

t
B oy V+2 ]
R(E,8,0%) = p + i§1 c;l2(r;-2) - 5= c;)E T 240K,

where Ki has a Poisson distribution with parameter

2
—17 | 6.(H.8 - h) || T -1 and r. = rank H, . This has risk uniformly
20 11 1 X'V X 2 1

less than that for the usual estimator, @, when each Cs is such that
2(ri—2)v

s AY) 5 .
0 <c. < —mm— and has a minimum when ¢, = — (r.-2) in which
al VvV +2 1 v+2 i B

case the risk is

o v o (ri_?ii_
R(B,B,0°) = p - ;;5'.X E[p,-2+2K. ]’
= i 1

2.4.1 Geometrical Construction of James-Stein Estimators in Linear

Models
The space in which Y 1lies can be decomposed as the direct sum
T E TO & T% .where T is the error space and T°  is the row

0
space of XT. The vector Y can be written

s

=xB + 6 = x(xXv Iy X ly + (1 -x(xTvixnxTv?

)} 4

with € € TO and XxB € T ] XB being orthogonal to e with respect

to the inner product <a,b> = aTV 1b The usual estimator for XB is

. . . ~ = ~112
the component of Y in the space TO. This gives &% = v ! ”ell -

Using the notation Pu'Y for the projection of the vector Y onto the

subspace U we have e = PT Y and XB P &Y. Since X has full
0

column rank, the equation XB = u has a unique solution if it is

consistent and it follows that we only need to estimate u = XB.

The hypothesis HR = h may be written in terms of y since if X
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has full column rank the equation H = H+X has a solution H+ = HX
where X is any generalised inverse of X ; so that HB = h may be
written as HX p = h. We may therefore estimate u with an estimator
which shrinks the maximum likelihood estimator towards each of the
hyperplanes HiX—u = hi and then, on multiplying by X produce the
corresponding estimator for B.

The hypotheses HiB = hi (or Hix_u = hi) provide a decomposition
of T% into a constant vector XGh and a set of orthogonal subspaces
, T . As in section 2.2 (putting B in place of the vector

t

Tg R
) 8 may be written as

t
Gh + (I-GH)B+ ] G,.(H.B-h,)
pe i1 1

B =
al=A
t
so XB = XGh + X(I-GH)B + ] XG,(H,B-h,)
121 a1\l i
where (I-GH)' X'V IXG,H, = 0 and H G X'V IXG.H. =0 for i+ §
1L 173 i J
which shows that Tg%,TfE, — ,T;E are indeed orthogonal with respect
to the inner product <.,.> -
»TxTy1y

The estimator previously written explicitly can now be written
A

in terms of the projections of Y onto the spaces TO,TS:,T;',...,T‘*.

o t Ci” PTO*Y”\Zl-l
We have p =P ,0 +P .Y + ) <1 - — ) Ppx Y
T T, i=1 v HPT£=Y HV_1 i
where T@ is the hyperplane HX u¥ = h. This gives
2
o | N ¢
B=XP,0 +XP Y + E (1 1! 0 : L ) X P ¥
= + % v = %
T T i=1 v |[x RT?«YHEXTv‘ix T
1

which is the estimator given previously.

This geéﬁetrical view of the estimator E avoids any explicit
mention of computational procedures and, since ¥ s unique even when
X does not have full column rank, allows for generalisation to non-full

rank models.

2.5 Linear Models of Less than Full Rank

We shall now consider the linear model Y = XB + e, e v Nn(O,GZV)
where X does not have full column rank. Although B is not estimable,
certain linear combinations of its elements are. If k = rank X then
there are k linearly independent estimable functions. It is well
known that a non-full rank model can be transformed into a full rank

one by reparametrising in terms of a set of estimable functions. Such
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a procedure is mentioned, for example, in Pringle and Rayner (1971).
We shall expand a little on this.

Let AB be a vector of k linearly independent estimable
functions. This is equivalent to the condition A = TX where T and
A have full row rank k. We wish to reparametrise the model in terms
of B = AB. We shall at first discuss the transformed model in general
whether or not it has full rank. Let the transformed model be
Y = X*8* + e and therefore X%8% = X"AB = XB for all B. This implies
XA = X. In order that both models have the same rank we require that
X and x* have the same column space (we have just shown that the
column space of X 1is a subspace of that of X*) which implies that
x* = XA* for some matrix A¥.

i XTB is estimable in the original model then

ATe = axg = oTx¥8% = A*Tg*  where A*T = oTx*

so that estimable functions in one model correspond to estimable
functions in the other. Also if B° 1is a solution to the normal
equations XTV_lXB = XTV-iY then AR° is a solution to the normal
equations x*Tv'lx*B* = x*Ty"ly  ang conversely if B8*° is a

solution to the latter equations then A*B*° is a solution to the

former. This follows since XTV_1XB = XTV-lY implies

A*TXTV_le = ¥TxTy Yy op X*Tv‘lx*AB = x*Tyv"ly  and conversely
X:':TV—J.X:':B* - X-,';Tv—lY implies ATX*TV-lX:':B - ATX:':TV—lY or
xTvixae* = xTvly |

If HB =h is a testable hypothesis then

H = UX = UX*A = H*A  where H* = Ux*

and the hypothesis may be written as H*B* = h o

In general we wish to preserve the property that if ATB is an

S

~ —
estimator for ATB and B 1is a solution to the equation ATB = 2B
then the corresponding estimator for A*TB* = ATB in the tansformed
~

O /:7,/ oo =
model is XﬁrB" where RB” = AB . If this is so then the loss function

o The s B i 2
*(8*,8%09 = 072 ||8% - 8% I° yp g
[ I HX.\:TV 1%

I R T
0—2(8* _ Sn)Txn‘\Tv j.x*(Bt‘f _ Bn)
o-2(® - )"aTx*Ty-1x*A(E - B)
o-2(F - B) % Ik - B)
o-2 ||B- B]?

18- 81 1 -y,

[(§,8,0%)

so that one loss function transforms to the other. In the case of the
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full rank model this is the loss function already considered.

T T T ™ T
NEIEETLN o = [h1 »h, ,...,ht]

and Hi = AiX for i =1, 2, 3,..., t. In the transformed model the

Now suppose that e - [H;1,H

hypotheses which correspond to the hypotheses HiB = hi will be

H{EB* = hi where H£: = AiX* . The conditions for independence of
the HiBO = hi and of the GiHiBO and (I-GH)R® are
S i =18 peaa
cov(HiBO,HjBO) = Hi(XTV L xTv xxTv i) Hy = 0 End
cov(XG,H,.B%,X(I - GH)B®) = x(I-GH)(xTv‘lx)'xTv'lx(xTv'lx)'Hfbi'TxT= 0;

B® being a least squares solution to the normal equations, Gi being a
generalised inverse of Hi for which XTV_1XGiHi is symmetric and

G = [Gl’ G2, S, Gt] . The matrix Gi gives the projection of BO

onto the plane HiBO = h, the projection being P(B®) = Bo-Gi(HiBO-—hi).
If the former conditionholds for i # j then the latter becomes

F‘G?‘XT = 0.
i1

(T — - - - -
X(1 - 6 HOKV XV I v o
Since the hypotheses are testable we may use the properties of generalised

inverses of XTV_1X to reduce these conditions to
BV HT =0 and %I - 6BV Y HIGIX = 0.
5 j il P 1

Before showing that these conditions are equivalent to the corresponding
conditions for the transformed model and that these conditions are
independent of the generalised inverse used we shall give some useful
formulae and collect together those already given. These will be stated
as a lemma.

Lenma 1 I1f (i) XA = X (ii)  XA® = x¥

-

(iii) AX = H and (iv) AX" =
then
1. H*A = H HA® = B*
2. A*(X*Tv’ix*)'A*T is a generalised inverse of XTV_1X
3. x(xTv o xTvix = x
v, BV IO XV =
5. If G =AG then X6 = X'G* and HG = H'G®
6. G 1is a generalised inverse of H 1is equivalent to G* = AG is

a generalised inverse of B

T, -1 q o c . T -1,v-,T :
78 X'V "XGH 1is symmetric is equivalent to XGH(X'V "X) X is

symmetric

g. ©E o' AC EheR Koy L

& Fe S .
X"G'H is symmetric is equivalent to
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XTV_1XGH is symmetric

9. Similar formulae are true if each starred variable is interchanged

with each corresponding unstarred variable.
Proof 1. H*A = AX*A = AX = H HA™ = AxA™ = ax® = H¥
2. v Ikt Ty Tar Ty Ty 1y

aT =1 s, 0T -1 o - aT -1
= AT Tyt Tyt T Ty

= AT Ty~ Iy
= xvlx.
3. xv ix(xTv o xTvx - xTv'lx,
but V.-1 can be written V_l = PTP where P has full
rank. Thepefore PX(X P PX)7X PIPX = PX
so that x(x'v 1) xTvx = x.

4, Since H=AX, 3. implies
H H(xTv‘lx)_xTv‘lx.
B3 % X & &
5. XG = X"AG = X6 HG = H*AG = H'G
6. HGH = H o H*G*H = H = H*G*HA* = HA® & H'G"H = H®

H'G*H™ = H* © HGH® = H® = HGH'A = H*A ‘= HGH = H.

7. XV lxeH is symmetric implies that if (xTv'lx)' is
symmetric then (XTV_1X)-XTV_1XGH(XTV-1X)_ is symmetric.
This implies that x(x v 0 XV Ixerx v o xT s
symmetric i.e. XGH(XTV_ix)—XT is symmetric. Since this
is invariant to the generalised inverse used (since
H(XTV_1X)_XT = AX(XTV_1X)_XT ) this holds in general.
Conversely, XGH(XTV—:IX)_XT is symmetric implies
xTv‘lxeﬁ(xTv'lx)'xTv'lx is symmetric, i.e. siTv‘lxeﬁ
is symmetric.
8. xTvix*e** = A*T(x™v 'xeH}A*  and
Cxvlken = AT{(x*TvlxeTHE A
so that the symmetry of the parts in brackets implies
the symmetry of the left hand sides.
9. By the symmetry of the conditions the result follows.

We now state a.theorem which shows the equivalence of the
orthogonality conditions in the transformed model with those in the
original model and gives a condition for X(I - GH)R® to be orthogonal
to XGiHiBO.

Theorem 1 1. Hi(XTV_lx)_H;‘ = Hi*(X*TV—lx*)_H;J‘ and is invariant
to the generalised inverse used.

-1 . . 1 -
2. If XWlxg.H, is symmetric then X(I - G,H,) (XY 1X) HIG X! = 0.
i, i i
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Proof 1. Since Hi = invariance follows.

T

A.X and H. = A.X
1 J

J
H. A f(x* V X ) A H:|

H.(X Ty~ X)—H?
i j

Now HE (x*Tvix®)7H,
i j

by lemma 1 (part 2).

2%: X(I - R

G.H.)(xTv‘lx)'H. G, X
1 1

= (X - XP X)(X v x) “H.

T T xT
i 1

= xa H. (X I xT - x6LALxGLH. (XTI xT
ARy 1 1 JLge

= X(G.H, - 6.H,6,H )X v 10X
1l 1 1 1 FN§ 31

:O.

transform to the full rank model and apply the James-Ctein
B* B*.

N t
i G

We now

technique to the estimator for The estimator is

ey Gic

1
j. o e 0 Y,
{ IIG:. (H. H
1

- h, )”2 2T -1 %
b3 de A%
; (Hi B” -h;)

X"V X

with 0 < ¢, < 2 E The optimum

value of ci is

Now writing

s
NE = AGh + A(T-GH)B® + A ]

c.a?
{r- : }
|60 8% «n.j*
i ai 1 1 I XTV—lx
xG,(H,B° - h,) .
6 o i1 Gl
One solution for AR = AR
=
8% = Gh + (1-cH)E° + y
Rk

e (n.g°
J 21
xTy-1x

{ ClG
1 - -h.)
o] 2 3 ?
ll6; (1,8 -h )|

and this generates estimators for all the estimable functions.

For completeness we restate the conditions on Gi and Hi . We

must have 0 for 1i# 3, and

XTV X(3 H

H. (X A X) Hj =

H.G.H. = H,
i1 i
is symmetric (which is equivalent to the symmetry

of XG.H.(X v'lx)'xT ).
1 1

2.6 Restricted Models of Less than Full Rank
We wish to estimate the estimable functions of B

model Y = XB + e,e v Nn(o,ozv)

in the linear
RB = r. If

the restrictions are of the form of a hypothesis which is testable in

under the restrictions

the unrestricted model then they provide a genuine resriction on the
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model. Otherwise they restrict the parameter space and remove some of
the arbitrariness due to the model's not being of full rank. We shall
consider the general case in which some of the restrictions may be of
one type and the rest of the other.

Suppose XTB is an estimable function and u is an arbitrary
vector in the same dimension as r . We may write

B =R BIE DE(RE - Pl (O R B s

so an estimable function may be written in many ways in the form
VTB + o . In the unrestricted model if f is an estimator for f£(B)
then it is natural to take f + ¢ as an estimator for f(B) + ¢ so
it is only necessary to consider homogeneous linear functions; however
in the restricted case we have shown that it is useful to consider
non-homogeneous linear functions of the form ATB-+Q.
Definition A function ATB+ o is estimable if and only if, for some
c and some vector t (where t and c¢ are not necessarily unique),
we have ATB +a = tTE[Y] + ¢, the condition holding for all
for which RB =r.

In the unrestricted model this corresponds to the usual condition
since ATB + Q= tTE[Y] +c= tTXB + c for all R implies that
AT = tTX and o = c. We shall find a condition for estimability in
the restricted model. The restriction RB = r 1is equivalent to the
condition B=m+ M{ where rank M = dimB - rankR, Rm = r and
RM = 0 with & being arbitrary. One possible value of M is I-R R
and for m is R r where R 1is a generalised inverse of R . Another
choice is (I -R R)Q where Q is such that (I -R R)Q consists of a
maximal set of linearly idependent columns of (I-R R). In any case

M satisfies the equation M = (I-RR)M since RM = 0. Now

ATB + 0o = tTXB + c for all B with RB = r 1is equivalent to

AT(m + ME) + a = tTX(m + ME) + ¢ for all & and this is equivalent to
XTm +a = tTXm + ¢ and ATM = tTXM . Solving the latter gives

T T

AT -t X = QTK where p 1is arbitrary and KM = 0 with

rank K = dimB - rank M. Since R satisfies this condition we may take

K = R giving AT = tTX + pTR. This gives QTRm +a=c¢c or

a=c - pTR . The condition for estimability is therefore AT = tTX + pTR
and this might have been guessed since tTXB is estimable in the
unrestricted model and pTRB is known in the restriced model.

We now wish to state conditions under which testable hypotheses

HiB = hi are orthogonal in the restricted model (they do not need to be



[2.6] 60

orthogonal in the unrestricted model) and conditions on the Gi such
that Gi(HiB - hi) is the deviation from the intersection of the plane
HiB = hi with the plane RB =
Transforming the model to an unrestricted model gives

Y - Xm = XM{ + e. Since M = (I - RR)M the column space of M is a
subspace of that of I-R R and since rankM = rank(I-R R) the
column spaces are equal and I -RR = MK for some matrix K. Thus

AM =0 = AMK =0 = A(I-RR)=0 = A(I-RRM=0 = AM =0

so that AM = 0 is equivalent to A(I - RR) = 0. Let X =XM and

oo
o«

Hi = HiM . In the transformed model Y - Xm = X*E + e we know
conditions for the testable hypotheses H{kgz hi to be orthogonal
and for (1 - G;‘H;%)E to be the projection of £ onto the hyperplane

H£%£ = 0. These conditions are
X v xm HF = 0, H¥eFHF = ]
i 3 i B | i

and the symmetry of

o - ofe  ote of o ule o ot - -
Ty Ix*e*p*  and  xeFu (x*Tvix*)~x*T
1 1l i 8 1

(the latter symmetry conditions being equivalent). We wish to express
these conditions in terms of the original model.
If we put Gi = MG{' we obtain
ot o’ KX * *
H.G. = H.MG.” = H. G, , XG. = XMG.” = X"G. and
i7i Y W i i i
H.G.H.M = H¥G.,"H. = H = H,M which is equivalent to
17171 i7i1 i i

HiGiHi(I-R_R) = Hi(I-R_R) . Conversely, if Gi satisfies the latter

condition and is in the column space of M then Gi = MG *  for some

Gﬁ and H. MG “H.M = H.M whlch is equivalent to H“G H" = H? i
. oT -1ip & L5 dp _ *

Also i e o G Hi =MXV XG H. M so that the symmetry of

X*TV 1X G H is equivalent to the symmetry of MTXTV*1XGiHiM -

a condition which does not depend on M. Also

%T
X’ G H *(x* V X X = XG H, M(MTXTV XM) M XT

so that one is symmetric if and only if the other is. Since the symmetry
conditions in the starred variables are equivalent this is also
independent of M. We shall show this in another way.

Let XFX'V IxM = xM (i.e. MXV IxFx'v lxM = MXv 'xM) and
let F have all its rows and columns in the row and column spaces of M.
Therefore F = MbMT for some @ . This implies that @ is a

generalised inverse of MTXTV_1XM . We show that XFXT is invariant to
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the choice of F . Let Fl and F_ be two matrices satisfying the

conditions with Fi = MGH_MT. ’
Now XMF, XV IxM = XM = X §, xTy " Ixm
which implies XMdﬁ.MTXTV_1XM = XMO, MIx v xm
so that XI‘«N‘)1 MTXT = XM4'>2 MTXT
which gives }(1-"1 XT = XF2 XT .

T

V-1XM}*MT SO we may

write XGiHiM(MTXTV—1XM)_MTXT as XGiAiXFXT which is invariant

to the choice of F.

Now one possible value of F is F = M(MTX

The matrix F 1is useful in the solution of the normal equations

in the restricted model since, in the transformed model,

io = G)MTXTV_j(Y - Xm) where &® is a generalised inverse of
-1
M x"v IXM. Putting 8% =m+ ME®, R = Rm+ RMC = »  and
B = m+ MOM XV (Y - xm)
= m o+ FXVHY - xm)

T

Fx vy 4 (I = FXT

V_1X)m.

Naturally this is not invariant to F unless B is estimable. If AB
is estimable then A = AX + BR and
o} T =l T -1
N™ = AXFX'V Y + A(X - XFX'V "X)m + Br
which is invariant to F. It is also invariant to m, different values
of m giving the same solution. Finally,

T T

AXFX v IXB + A(X - XFX v'lx)m + Br
T 1

= AXFX V_lx(nrfME) + AXm + Br - AXFX'V 1xm
= AXFXTV_1XME + AXm + Br

= AXME + AXm + Br

= AXB + BRR

= N8

E[A8°]

so that AB° is an unbiased estimator for AB. The invariance of the
solution to m may be proved as follows. If m, and m, are two

particular solutions to RB = r then m, - m, = M6 for some 6 . The
difference between estimators ﬂB;j and AB;), where these correspond

to the values m, and m, respectively, is

A(X - xrxTv'lx)Me
A(XM - XFXTV_1XM)6
0.

(o] (o]
1 AB?

AB
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The variance of B° is given by

var Bo = FXTV_l(var Y)V_leFT
= o2rx v tyy IxpT
= o2rx v 1ypT
and var AB° = o2AFX v IxFTAT = o2Arx v ixEA
since AFX = AM@MTX = AXM¢>MTX = AXFXT

is invariant to F and as FT satisfies the conditions on F we
may replace FT by F (in fact we can use a symmetric F ).

Also  AFXTVTIXFA = AXFX v IxMo MTA

AXMQ MTA

= ARAT,

Therefore, var ABO 2 GZAFAT.

We now summarise the conditions on the Hi and Gi which ensure
the orthogonality of HiBO - hi and HjBO - hj and of X(I - GH)R®
and XGiHiBO. The conditions are

HiM(MTxTv'1XM)'MTHj =@ (e H,FH, = 0)

]
and MTXTV_1XGiHiM is symmetric for any matrix M for which
rank M + rank R = dimB and M = (I-RR)M (e.g. M may be taken to
be I -RR).
Now we shall write down the generalised James-Stein value which

corresponds to B°. It is

o o L ci62 -
B® = Gh + (I-GHB" + ) {1 - 5 5 }Gi(HiB -h,)
. & & 0 2 o 2
since ||6* {H*E” - (h, -H.m)} || = ||6,(H.8” - h.) || .
i i at 1 X“TV_1X“ 2 =) a XTV—lX
This follows:from the following:
1, H;8 = h; & h.(m+ ME) = h,
o H.ME = h, - H.m
i i i
& H* £ = h, - H.m
i i i
2. X*6*{H*E® - (h, -H.m)} = XG.(H.ME® - h, + H.m)
i1 i i i1 a1 i

XG. (H.8° - h.) .
1 il 1

2.7 Discussion

The estimators which we have developed in this chapter are based
on the idea of shrinking the maximum likelihood estimator orthogonally
towards several hyperplanes.

We showed that these ideas can be applied directly to the non-
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full rank linear model and to restricted linear models and expresssed
the results in a form which involved only the original parameters.
(Although we did use reparametrisation as a tool for proving these
results, the parametrisation was chosen arbitrarily). The main value
of this is that, no matter how the model is reparametrised, the result
is shown to be the same (or more precisely, invariant to the
transformation used).

From a practical point of view, however, the generalised inverses
or near generalised inverses needed inthe calculation are most easily
calculated by carrying out the transformation (at least in part). Also
it is unlikely that orthogonal hyperplanes will arise in practice
except in simpler models which are nearer to the canonical form. For
both these reasons it seems likely that the estimators will best be
found by reparametrising the model.

A more important consideration is the gain in efficiency that the
James-Stein approach to estimation affords. Some criticism has been
given in the literature based on the mistaken belief that the more
estimation problems which are combined together the greater should be
the efficiency of the James-Stein estimator. We have shown that
combining problems together only to the extent that we use a combined
estimator for the error variance, but otherwise keeping them separate,
is likely to produce a smaller risk than by combining all the problems
together with a single shrinkage factor.

Apart from the high probability of mis-specifying the variance
matrix when unrelated problems are combined (it is clearly dangerous
to assume all variances to be equal) the chance of identifying a
suitable choice of origin on the basis of vague prior knowledge is
poor. By separating the problems, a good choice of origin for one
component problem will lower the risk even when the others are poorly
chosen. This increases the chance of reducing the risk and makes the
method attractive. It might be worth trying to prove that we also may
gain in efficiency by estimating the error variance separately in each
component problem and thus keeping the problems entirely separate. It
seems very likely that this is so.

A further possibility is to let the data decide to what extent
the problems are to be combined. This approach has been discussed by
Efron and Morris(1973b). They introduce a data dependent shrinkage

factor which, under favourable circumstances, gives equal shrinkage
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to all components while, under unfavourable cicumstances, leaves the
problems separate. In general the result will be in between these

two extremes.

In fact, this suggestion of Efron and Morris can often be fitted
into the geralised James-Stein framework when there are at least
three hyperplanes. This can be done by introducing a fourth hyperplane.

For example, if the hypotheses were

Bij = aj for JI= 34 20, ... n. , o= A, 20 ... . T
where
B = [BOo 811 812 Bln1 821 B22 8?n2 . & % Btnt]

then a further prior hypothesis could be Qj =0 for &§ =08, 2% ..t :
The support for the latter hypothesis would determine the extent to

which the combined shrinkage towards B = 0 occurs.
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Ch &*p Eee ®# 3
Bayesian Estimation in the Linear Model

3.1 Introduction

In this chapter we shall show how certain prior distributions for
the parameters of a linear model give rise to estimators of a similar
form to those of the previous chapter - being a shrinkage of the
maximum likelihood estimator towards each of a set of hyperplanes.

This is a generalisation of the estimators in Chapter 1 which were
developed for the estimation of the mean of a multivariate normal
distribution.

This shows a similarity between a Bayesian approach and the James-
Stein approach, but note that the justification - as opposed to the
motivation - of the latter is entirely sampling theoretic.

The major point of this chapter is to show how Bayesian methods
may be applied to non-full rank models.

As we pointed out in Chapter 1, in order to obtain estimators with
good sampling properties we must use estimators which are (at least
approximately) derived from prior distributions. Although necessary
this condition is not sufficient since estimators derived from an
improper prior, although sometimes admissible, can often be improved
upon quite considerably. However, this observation justifies the use
of Bayesian methods even in the absence of strong prior knowledge
(which naturally Jjustifies their use). It is rare that no prior know-
ledge exists, but weak prior knowledge is, by definition, not precise
enough to be incorporated into a prior distribution. Even so, whether
prior knowledge is weak or non-existent, we must try to postulate a
prior distribution if we want our estimators to be good in a sampling
theory sense.

A useful technique for embodying weak prior knowledge is to use a
two stage prior: the first stage is a prior distribution involving
unknown parameters (frequently a proper prior) and the second stage is
a prior distribution for the parameters of the first stage prior.

This technique can be taken to several more stages if desired. A
similar method can be used even with strong prior knowledge based on
past data since there must have been a time before that data was
collected. A weak prior distribution for the parameter of interest,
when combined with the past data, gives rise to a stronger posterior

which is then used as a prior for the current data set. Clearly this
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method can also be applied to several stages - each data set giving
rise to a stronger prior to be applied to the next data set.

The former approach was used by Lindley and Smith (1972) for
estimating the parameter B in the linear model
Y = XB + e, e ~N(0,Z). The parameter vector B was given a
normally distributed prior R ~ N(Ul,Z]) and M was given a uniform

distribution. This guaranteed an exchangeable distribution for the

components of RB. Assuming that I and 21 are known they found
the posterior distribution for B and its mean. In the case where
2

L and Zl were each known up to a multiplicative constant (X = 0~ V,

21 = o? Vl) they found the mode of the posterior distribution and

showed that the parameters 0? and oi could be estimated thus
giving an empirical Bayes estimator for B. Assuming inverse X’
distributions for o° and Oi Lindley and Smith were also able to
find the posterior distribution for B, but in this case the calcul-
ation involves difficult numerical integration.

The latter approach was used by Tiao and Zellner (1964). Using
1> & ~ N(0,1)
with a uniform prior for (B, log o,log 01) where £ = ¢ V and

2

01 = o? V1 with V and V1 known (=I in their paper). Unless the var-

iances are estimated from the data, the unknown variance case gives

the same model they considered past data Y1 = X1 B+ e

rise to similar difficult integrals to those obtained by Lindley and
Smith. Tiao and Zellner, generalising a technique of Fisher, give an
asymptotic expansion for the integral. As Fienberg points out in the
discussion to the Lindley and Smith paper, this integral can also be
simplified using the results of Dickey (1968).

In the next section we shall show that the two approaches are
special cases of the same general scheme and that this scheme leads to

the estimators of chapter 2.

3.2 Posterior Distribution of the Parameter Vector

In order to reconcile the above approaches we show that the
ultimate prior after all previous stages, in the case of known variance
matrix, consists of a normal distribution of the components of the
parameter vector in the direction of some hyperplane and a uniform
distribution perpendicular to it. There is a slight complication
when previous observations are in the form of non-full rank models,
a case which might arise when these observations are of some compon-

ents of the parameter vector only. In this case the prior
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distribution for non-estimable functions must be ignored if it is
improper (a proper prior causes no difficulty). The reason for
ignoring the prior distribution for non-estimable functions is that
an improper prior will give rise to a posterior distribution which

is also improper. The mean of such a posterior will be undefined and
this reinforces our view that the functions are not estimable. Note
that, although it is not usually stated explicitly that non-estimable
components are ignored, the above procedure is in fact the usual one.
Any model can have extra irrelevant parameters added to it, but if
they are irrelevant then it would be better if they were ignored.

This is what this method does - estimates of the other parameters
should be the same whether the irrelevant parameters are included in
or excluded from the model. This can be done by factoring the joint
density into a factor involving the estimable function and a factor
involving the non-estimable functions. The latter is ignored (or, in
the case of a proper prior, it integrates to unity). Two other
approaches achieve the same effect: Box and Tiao (1973) use locally
uniform priors which are proper but approximate a uniform distribution
over the region of interest; Lindley (1965) suggests that a uniform
distribution be regarded as a family of conditional distributions -
uniform on each bounded region - so that for any bounded region we

may condition on it to achieve a proper density. Lindley's approach
is similar to that of Jeffreys (1961) who remarks that an integral
over an infinite range is defined as the limit of a family of integ-
rals over a finite range as the range tends to infinity (however
Jeffreys fails to point out that for improper priors, in contrast to
the case for proper priors, the integrand is repeatedly renormalised
as the range increases).

We shall show the result of using a uniform prior for ¢ on both
the marginal density for 6 and on the posterior density for ¢ given
8 when we consider the linear model 6 = A ¢ + €, €~ Nn(O,Z). We
do not assume that A has full column rank.

We first write the model in terms of just the estimable functions
then we find the marginal and posterior distributions and transform
back to the original coordinates.

Let A be an nxp matrix of rank r, let A be an rxp matrix such
that the components of A¢ form a complete set of estimable functions

(ie there exist matrices T and B for which A = TA and A = BA) and
[A
| M]

let M be a (p-r)xp matrix complementary to A. The matrix is
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of full rank. Let [A M ] be its inverse. We have AA = I,

MM = I, AM =0, M\ =0 and AA+M M=1I. Also

AM = BAM = 0 and AA = BAA” = B. Putting Y, = Ao, ¥, = My and
v - " - -

Y = | 1| we obtain ¢ = Ay, + M Y,. Now A¢ = AN Y, + AM . = By
b, 1 2 1 2 1

so that, as might be expected, the parameters wg are irrelevant.

Thus the model 6 = A¢ +€ may be written as 6 = [B O]JY + € or as

BlIE Bw1 + €

- "|
mlso ATzl = Lﬁ (A~ w1t ATzl [ M) [3]

- [ ] e ]
e

1 [:7s 18 0 A
0 M

LM
ad PA L ap= wEB r By,

wT Bl 378 0 V.

0 0

A similar transformation to this is to be found in Zellner (1971),
but Zellner rewrites the density function instead of rewriting the

model. The following paragraph shows the two approaches to be

equivalent.

We now show that, if we transform ATZ_j'A by a congruence
transformation of the form QT ATZ_lAQ =[g 8] where Q = [Q1 Q2]

A m_5 ) - 1_ [
and QlA z AQ1 = C, then the elements of Q1¢, where [Q:1 0’2]_ = QQ_]’

are a complete set of estimable functions.

We W Qg e AQ, = 0so that AQ, = 0. Also

e} EEpe) E B
so that

A= AQQ +AQ,Q, =AQ Q
Therefore rank 01 = rank Q; = rank A = rank C and the column space of
A is contained in the column space of Ql' However, from the equality
of the ranks, the column spaces are identical and hence there is a

matrix T such that Q; = TA. This establishes the result.

o o e exp {- %(8-20)T £ (6-2¢))

1
Ik

and using a uniform prior p(¢) = P for ¢ we have
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P T -1
p(6,¢) = —mc exp{-%(6-A¢) L™ (8-Ad)} .
(25)*| 2]

Let ¢O be a solution to the normal equations
Az lae® = aTz7le

0.

so that ATZ_l(G - A4°)

We then have

(6 - 86°) - A -2)1Ts7 (6 - 2°) - Ao - ¢°)}
= (0-862)T2710-86%) + (6 -02)ATT T A - ¢°)

(6 - 26) 2726 - Ad)

and
(6 - 86Tz 2(0 - a9°)

67z 1(0 - A¢°)
0Tz 1 - aa"z 1y ATz e
oz - s laaTz T ATz Yle .

This gives p
p(8,) = —— sxpl-%00 42 -z taats A s e
(2m)*"|z] ; G T o
x exp{-%(¢-¢ A Z "A(¢-¢ )} .

1|

© and w2 = M¢o , we have

Also, putting wo = [g]¢° . W;) = A

P
P(6,1) = ———r expl 0" (£ - I AT ) AT TH)6]

I
o x exp{-s(y, 0.2 ) B T B0, -v.0)} .

In order to find the posterior density for ¢ and the marginal
distribution for 6 we integrate with respect to wl and ignore the
irrelevant parameters wQ as we have already explained in section 3.1.
Alternatively consider the distribution of w2 as the limiting form

of a family of proper distributions: we may take the limit after
integrating.'We therefore obtain

r

) RS, R N, TP g |
p(8) = - £  exp[-%8° {7  -Z T A(A ZTTA) A T }e]
) (2m) 2P ) 5% pTr 2
an(wze) . E exp{-%(y, -v.° ) BTz B(y, -v.° )}
F C(em® |8z P v

(2m

or in terms of ¢,

+ expl{35(0-0")" A T A(9-6))

(QH)%P|B A1

Notice that both p(8) and p(¢|6) have the form of a mulivariate

normal distribution with singular precision matrix (Lindley's
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terminology) and that this can be transformed to the product of a
proper multivariate normal distribution and a uniform distribution
(indeed, p(Y|6) is of that form). To see this for p(B) note that

there is an orthogonal matrix P such that

0

-1 n-r

0 0

Pzt - sz s e =

We now show that Lindley and Smith's model is equivalent to one

of the form used by Tiao and Zellner. Putting

c=1-aTz ) als?
we obtain
cTr7lc = Tzl lc
=7 oz ) A

so that the marginal distribution for 6 is of the same form as that
obtained from the linear model 6 =C¢ + €, € v N(0,Z) by taking
the posterior distribution of ¢ given 6 = 0.

In the Lindley-Smith approach the first stage prior is uniform
and gives rise to the marginal distribution which we have just found.
We shall show that, using this marginal distribution as a prior for
another normal distribution, gives a similar posterior. In the Tiao-
Zellner approach we show that the posterior at the next stage has a
similar form.

Let 0

Ap + €, €N Nn(o,z)

and let p(¢) = c exp{-%(¢—a)TQ(¢-a)}

where Q does not necessarily have full rank. Now

p(8,4) = — expl{-%(¢-0)TQ(d-a) + (8-Ad) I 1(0-A9)} .
(2m)="|z|

In order to complete the square for the quadratic expression in ¢,

(0-0)TQ(d-0) + (8-A¢) T (6-Ad) ,

T o,T T.-1 o) o, T.-1 o)
(p-a) Q(o-a) + (d-0 ") A'Z "A(d-¢ ) + (B-Ad ) L “(B-Ad)
-1

where ¢° = (aTx A)_ATZ_lﬁ , we need the following lemma.

Lemma 1 If A and B are two matrices with B and A-B positive
or negative semi-definite and if A and B are symmetric then, for
any generalised inverse, A*-, of A, AA B = B (and hence

AA"(A-B) = A-B ) and BA'B is invariant to the choice of A .

Proof The result is essentially that in example 3.7 of Rao(1973).
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As the proof is not given there we shall prove the result here. We
first show that the null space of A 1is contained in the null

space of B. This follows since

Ax = 0 = xTAx =0
T T
=2 x (A-B)x+ xBx =0
= xTBx = 10
= Bx = 0.

Since the column space of a matrix is the orthogonal complement of
the null space, this shows that the column space of B is contained
in the column space of A . Thus there is a matrix T such that

B = AT . Therefore AA B = AA'AT = AT = B. Also

BAB = B'ATB = T'A" TpT

A"A AT = TTAA_AT TTAT = TIATT = BT

and this does not depend on A .

We can now state and prove the completion of the square result
to which we alluded above. We shall state it as a lemma.

Lemma 2 If G and H are positive semi-definite then
T T
(x-a) G(x-a) + (x-b) H(x-b)

= {x- (G+H) (Ga+Hb)}T(G+ H){x - (G+H) (Ga +Hb)}
+ (b—a)T{G - G(G+H) G}(b-a) .

Proof By lemma 1

(1) (G+H)G+H)G=06G and (G + H)(G+ H)H=H

from which we deduce that

(2) G -G(G+H) G=H(G+H) G and H - H(G+H) H = G(G+H) H.

Now (x-a) G(x-a) + (x-b) H(x-b)
x1(G+H)x - 2% (Ga+Hb) + a'Ga +b Hb
{x - (G+H) (Ga+Hb)} (G +H){x - (G+H) (Ga+Hb)}
+a'Ga + bTHb - (Ga+1{b)T(G+H)‘T (G+H)(G+H) (Ga+Hb)

from (1). Simplifying the constant term we obtain

T

a'Ga + b Hb - (Ga+Hb) (G+H) (Ga+Hb)
= aT{G - G(G+H) Gla + bT{H - H(G+H) H}b - 287G(G + H) THb

using (1). Although this formula has an elegant symmetry, for practical
applications it is more convenient to use (2) to write the constant

term in one of the forms

al{G - G(G+H) Gla + b {G - G(G+H) G} - 2a'{G - G(G+H) G}b
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or al{H - H(G+H)H}a + b {H - H(G+H)H}b - 2a  {H - H(G+H) H}b.
These may also be written

(a—b)T{G - G(G+H) Gl(a-b) , (a—b)T{H - H(G+ H) H}(a-b) ,
(B LCE BN EEE) Br 5= (a-b) G(G + H) H(a-b) .

We now apply this lemma to the quadratic form in ¢ and obtain

(9-2)Q(¢-a) + (8-A9) £~ 1(8-Ad)
= {6 - (Q+Az72A) (Qu + ATz 1ag°))T
x(Q + A2 M6 - (Q+aTz7a) (Qu + ATz 1A0°)
+ (8-802)" 272 (0-20°)
+ (¢°-a)T{ATZ'1A - ATz'lA(Q+-ATz'lA)'ATZ'lA}(¢°—a).
Substituting for ¢O and simplifying the last two terms we obtain
6Tzt - r7laaTz ATz he
v (8-a) T Al(aTs )7 - Qe aTE”
o7zt - s+ ATz ) ATz e
- 20 At - @+ ATz ' 1aTr A
oA AT )T - (e aTr i 1A
7 A+ ATz ) ATz e
- 207zt Sz A+ aTs ) AT A
s ataTiz? -z taq+ ATz ) ATz A
8-a0) {7t - z7laQ+ ATz ') ATz ) (B-m0)

1A)'}ATz'l(e-Aa)

1

87 (

Alternatively,
(6-862)"271(0-26°) = (8-80)T72(6-80) - (°-0) ATz A(4%-0)
so the quadratic form becomes

(0-20)"2"2(0-80) - (6°-0)TaTz"1acq+ ATz 1a) ATz 1ac4%-a)

which again yields the result.

The joint density of 6 and ¢ can now be written as

To-1 - To-1,,0.112
p(0,4) = & exp{-%||¢6 - (Q+A L 7A) (Qu+A T A7) .}
ey P byeaT 24
x exp{-%]|| 6 - Ac 2_ = ol _1}
p{-%|| ||z 151 eaTr ) aTy

We now wish to integrate out the estimable functions of ¢ and ignore
the non-estimable functions. In this context, however, we have not yet
defined the term "estimable function" adequately. We do so now. Let B
and 21 be matrices such that Q = BTZ£4'B. A set of functions will

be said to be estimable if its members are the elements of a vector of

the form (TB + UA)$ . These functions have as a basis those functions
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which are estimable in the original model together with those functions
which become estimable because of the prior distribution. Integrating
over the estimable functions of ¢ and ignoring the others gives the
marginal density for 6 given by

1

p(8) = expl-%(6-80)"{27? - 17 A+ ATz 2a) AT 1) (6800 .

Dividing this into the joint density of 6 and ¢ gives the posterior

density for ¢,

5(6]8) = expl||¢-(Q+ AT 2A) (Qu+ ATz 146 |2 1

QA Tz A
The constant in each case is found by integrating over the estimable
functions only and ignoring the others. Note that the case Q = 0 is
the case of the uniform prior density already considered: in this case
the terms containing a are zero.

We can now apply these results to the linear model. With prior

knowledge as specified by Tiao and Zellner we have the model
Y=XB + €, € v N(0,Z)
and prior observations

4.
bt

XiB t e, Ei'hN(O,Zi) =R, PR .x ,iB.

We shall write Yt+1 =Y, Xt+1 = X and zt+1 =7,

If we suppose we have a prior density for B of the form
T
p(B) « exp{-%(B-a) Q(B-a)} ,
the case Q = 0 giving a uniform prior, then we may apply the last
result repeatedly to obtain

p(BlY,,...,Y,.,Y)
e t t+1 t+1

T.-1 - T.-1 2
« exp[-%||B-(Q+ ) X, LX) (Qu+ § XS L3 xie(Oi)H t1 ]
i=1 S o+ L X;I7 Xg
i=1
where B;{ = (XF‘Ztlx.)—XF‘ZtlY..
i) SR T A S S |
The form of this expression makes it clear that the same result
is obtained by grouping some of the sets of prior observations together
(or together with the current data set) or by taking the olbservations
in a different order. This is true in general when the prior is proper.
In this case it is now established for certain improper prior
distributions. Tiao and Zellner did not do this but, instead, applied
the uniform prior density directly to the full data set of current and

prior observations.
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The posterior mean for B (if the density is proper) is

+
- t+1 T t+1

B = (Q+ ) X,
=1 * i=1

;%) 7(Qu + I X I;7Y.)

where the generalised inverse is, in fact, an inverse. When the
posterior density is improper this determines the estimable functions
uniquely but not the non-estimable functions. In the case of an improper
density, the integral is not defined uniquely, but can be given any
value by choosing a suitable definition of the integral. However, as
noted above, the estimable functions are determined uniquely.

A principle value for the integral f_: f(x) dx is defined to

o g(N)
be P J f(x) dx = 1lim [ f(x) dx where g(.) 1is a monotone
€ Naw J-N

increasing function of N for which limNém g(N) = o, Principle values
may converge to any limit, divergeto +» or -~ or exhibit still more
aberrant behaviour. This may be considered an advantage since the lack
of uniqueness indicates that it is wrong to try to estimate the non-
estimable functions.

Note that if Q = 0 then this is the result given by the usual
sampling theory estimator in Theil(1971) obtained by combining previous
and current observations. It is only applicable when the variance
matrices are all known.

Consider now the same linear model but with prior knowledge a

generalisation of that specified by Lindley and Smith. We have

Y= XB+e g € v N(0,Z)
= A6+ €y > € v N(O,Zt)
6i+1 =-Aiei t € € N N(O,Zi) for i=0, 1,2, ... ,t-1

and p(8,) = exp{-}(8,-a) QB -0)} .

The case of a uniform prior distribution at the final stage, given by
Q = 0, is the case considered by Lindley and Smith.
Lindley and Smith found the posterior distribution of £ given

Y with prior knowledge given by the first stage. This depends on Bt.
By using the second stage prior for et they eliminate this parameter

by integration and obtain a result depending on 6 Repeating this

t-1"
process finally leads to a distribution depending on o (presumed to
be known). To avoid dificulties with improper prior distributions, they

take Q to be of full rank and calculate the limiting posterior
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distribution for B as Q tends to zero. We, on the other hand, meet
the challenge head on. Our approach also works in the reverse order
using each stage of the prior to determine the prior knowledge at the
next stage. Unfortunately the formula for the prior knowledge at each
successive stage does not take quite such a simple form as with the
approach of Tiao and Zellner. In practice, however, only two stages
will usually be needed and rarely will it be necessary to go beyond
three stages.

We now give the marginal distribution for GS after the last s

stages, i.e. the prior at the t-s+1 stage. We have

A a)

—1 -
p(es) « exp{ 6(98 Ag AL B ey

T
—lAS—Q. . -Ala) Q(S)(eS_A
where Q(s) is defined inductively by Q(O) = Q and
-1 -1 T -1 T -1

i+1 -~ Zi+1Ai+1(Q(i) * ATt e) I R

2 i+17i41771i41

Q(i+1) B

Using the notation = B, p(et) is the ultimate prior distribution

et+1

for B . We may now deduce that the posterior distribution for B is
°

given by

1

Tra— - T.-1,,02
p(Bla) = exp{—%llY-(Q(t)+X ZTX)(QpyAy _qe - A ITOXB I

1 Q(t)+xTz‘1x}'

This is the same as the result given by Lindley and Smith since if
Q 1is non-singular then the marginal and conditional distributions of B
may be found by integrating in any order; also the limit of our result as
Q > 0 1is the same as that given by Lindley and Smith. In general we
could allow Q to tend to any singular limit (since if QO is singular
then vé>0, Q= Qoi-GI is positive definite and therefore non-
singular, and we can choose Q as close as we like to QO) so, for the
more general case, it does not matter in which order the integrations are
carried out. Owing to the complicated form of the marginal distributions
adirect proof that the order of integration is unimportant is difficult.

It is worth noting that a combination of the approaches of Lindley
and Smith and of Tiao and Zellner may be used. We may replace the prior
distribution for B used by the latter authors by a multistage prior
of the form used by the former authors. A further extension, which may
be applied to either approach, or to the joint approach, is to replace
the prior distribution

p(B) = exp{-%(B-a) Q(B-)}
by the prior
p(B) « (B78)™C expl{-3(B-a)TQ(B-a)} .
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This will still be an exchangeable prior if a=0 and Q=1 but
exchangeability is lost when prior observations are incorporated. This
is to be expected since the prior observations will not usually give
the same information about each coordinate of the parameter vector. If
the model is of full rank then the effect on the posterior distribution

for B will merely be to multiply it by (BTB)—C.

3.3 Estimation Under Prior Linear Hypotheses

The foregoing theory works just as well if prior data

Yi = XiB toEg €, v N(O,Ei)

h. = H.B + €.

i i i €, v N(O,Zi).

In this case the prior knowledge will be weaker and this will imply
that each Zi is large. The €s reflect the fact that our belief that

hi = HiB is uncertain and we may be in error. We shall impose the
restriction that our prior beliefs are mutually consistent, that is the

T T .. T T
H =[H1 ,HQ,...,Ht]
T

o WsTEgn o h§1] has a solution for B . We shall let the

equation HB = h where and

_ T T
b =y ey,
rank of Hi be r. and the rank of H be 1r, the matrices Hi being
independent so that »r = Zji Bl., .
i=1 "1
Choosing as a prior distribution for R

p(B) = exp{-%(B-a)TQ(B-a)}

(where this might perhaps be the result of multistage prior

information) the posterior distribution will be

p(B|Y,h1,...,ht)

i i
- - ot ) R ;. | g R
« exp{-% ||B - (Q + iZ1 HIDTH, + X270 %) 7(Qa + izl Hy Z77h, + X2 Y|}
where the norm is ||.|| = || .|| t .
Q+ ) Bl o, +xT2 71X
i1 1 1 1

This gives rise to estimators ABO for functions AB which are

estimable in the original model, where

it
B = (Q + 17 (qa + ) HiT E_lhi + x5y |

i=1

n o1+

Bl M, + xT2T

: 1711

1=1
In order to see how the analysis at the end of chapter 1 may have

a parallel in the regression model we shall use a prior distribution

t 1

p(B) « {87(q + Xi=1 Hf‘Zngi ¢ Xz X)BY%:exp{—E(B-a)TQ(B—a)}.



[3.4] 77

The matrix of the quadratic form in B has been chosen so that the prior
probability only depends on the estimable functions relative to the
posterior distribution of £ . Prior knowledge of this form may not be
entirely realistic; however, if it produces admissible estimators and
does not introduce too much non-sample information, then it may be

worthwhile. The posterior distribution in this case will be
3
T -C - N T.-1 T_.-1 2
P(B|Y,h 5. sh ) = (B WB) ™ expl-3||B - ¥ (Qa+i£1Hi Eih + XY IIW}

where W = Q + § lzotm, + x k.

52 114
If W is non-singular then the expectation of B exists, otherwise it
does not. Using the same convention of ignoring the non-estimable
functions that we have used before, we may calculate E[AB] where the
elements of AB are estimable functions relative to the prior
distribution. Defining Bo as in the equation above and defining
z = %DBOTWBO we may use a result of chapter 1 to obtain
Fl(%p+c+1;%p+1;z)

E[AB] = .I'L%P-'-c 1

*sp 1F1(%p+c;%p;z} B

Notice that this is a scalar shrinkage of AR® which, in the case when

a =0, hi =0 for i=1,...,t , is a matrix shrinkage of the maximum
likelihood estimator for AR . It is doubtful whether this double
shrinkage is realistic unless each is mild (i.e. ¢ 1is small and

r = Ziil rank H, is not too large).

3.4 The case of Unknown Variance

When some or all of the variance matrices Z,Zl,...,Zt are unknown
we must either estimate them to produce empirical Bayes estimators or
assume prior distributions for them and integrate them out of the model.
There is clearly not enough information from which to estimate the
variance matrices completely so we shall suppose that I = 0?V  and
Zi = oivi for i=1,2,... ,t. This assumption seems not unreasonable
for the full Bayes estimators as well as for empirical Bayes estimators.
3.4.1 The Empirical Bayes Case

We might base our estimators for the variances on the maximum
likelihood estimators for AB given a set of prior estimates or guesses
of the variances. This scheme could be used iteratively, the new weights
providing a new estimator for AR from which to compute new variance
estimates. We shall not investigate the convergence of this scheme. An

alternative method is to use the theory of MINQUE estimators. However,
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these can lead to negative estimates as can the iterative scheme
outlined above.

We shall only consider the case in which the prior knowledge is
vague and the prior hypotheses are all testable in the original model.
It isalso convenient to suppose the prior hypotheses to be mutually
orthogonal and that the Q of section 3.3 1is zero. Since a non-zero
Q can be considered to be the result of an earlier stage prior
hypothesis, the latter assumption is not very restrictive. With the
assumption of vague prior knowledge an estimate of AB ignoring this
knowledge is a good prior estimate upon which to base estimates of o2
and Oi for i=1,2,...,t. These estimates will then be used to
provide a better estimator for AR . It will not be necessary to proceed
to a second iteration.

Since Z,Zl,...,Zt are unknown we cannot calculate B° . Suppose

we use w,wl,...,wt as estimates of 2_1,251,...,2;1 We may then
calculate an approximation, B, to B® . Let W, be the block diagonal
matrix W, = diag(wl,wg,...,wt) and let I, = diag(Z1 ,22 s e e e s Zt )

With HY 1T,...,HtT], n' = [h

~ — ¥ T . .
the vector B=S (X WY + H W*h) estimates B when the variances are

I T]

= [H PEETER ht and S = XTWX + HTW*H

estimated by fixed matrices W_l, W;l . Since

Y-XB = (I-XS"X'W)Y - XSTH W,h
and
s T - T
h-HE = - HS'X'WY + (I-HS H Wy )h
and since varY = L, varh = I, and cov(Y,h) = 0, we have
var(Y - XB) = (I - XS"X'W)E(I - Wxs™X') + XS_HTW,_,__E*W*HS_XT
~ = D -.T - T el
var(h - HB) = HS X WIWXS H + (I -HS'H W,)I (I-WHSH)
N — =T _ IF =
cov(Y-XB,h-HB) = - (I ~ XS X'W)IWXS H" - XS H' W,Z,(I-WHS H ).
If, in fact, W '—2-1 and W, = 2;1 then these reduce to
var(Y-XxB) = L - xS°X"
var(h-HR) = I, - HS-HT
and - 5 -7
cov(Y-XB,h-HB) = -XS H .

Since we suppose the variance matrices to be known up to a multiplicative
constant we shall suppose that W = aZ-l. Ignoring prior knowledge is

equivalent to taking W, = 0 in which case we obtain

var(Y-XB) = T - aXS™X’ = T - XXz 1x) "%’
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var(h - HR) aHSH' = Ty * Bz ) HT

]
1
e
-+

and N -
cov(Y-XB,h-HR)

1}
o

Now taking I = o?V gives

E[(Y-Xé)Tv_l(Y—Xé)] tr{1 xxv o xTvly = (n-p)o?
and

E[(h-08)T2;} (h-HB)]

tr{l + ozﬁ(xTv'lx)'HTz;l} .

2

The above calculations help us to calculate estimators for 02,02,...,0t

which will be substituted into the expressions for B to provide an
estimator for B.

We now wish to use the orthogonality of the hypotheses and the fact
that I, = 0%v, to calculate E[(hi-Hié)(hj-Hj'é)T] . Clearly when 1i#3

1

this gives Hi(XTZ_ X)_Hj'T which is zero by the orthogonality of the

Hi . If i1 =13 then we obtain the value
T

£+ o2H. (X )T = o%v. + o%H. (X*v Ix)7H!
1 1 1 i g 1l 1

from which we see that
~. T -1 ~ _ 2 2 T -1_.,-..T -1
E[(h,-H,B) Vv (h, HiB)] = 10,0 + 0 tr{(X'V "X) H, V; Hi}
where ni is the number of rows of Hi.

We may now give unbiased estimators for o2 and the oi . They are

sz _ 4 ~. T -1 ~
'I-_l-:I-J-(Y—XB) vV (Y- XR)

Q
I

wnd 32 ;}:—[(hi—HiB)Tvil(hi—Hié) - 62tr{(XTV_1X)_HiTV£1Hi}]
If any of t;e 6; turn out to be negative then the corresponding variance
Oi is likely to be small and an exact restriction is probably required.
Alternatively a different prior distribution might give rise to positive
estimates.

Using these estimates for the variance our empirical Bayes estimator
for B will be given by

t
= = 1
vx+'z = H, V Hi}{g-z—xv X +

B™ = {E}f %
In order to deal with the case of exact restrictions we shall find
the limiting value of this expression as some of the variances tend to
zero. This is a generalisation of a method of Brook and Wallace(1973).
Suppose we let all the variances tend to zero except for those in
the set {o%: i ¢ I} where I < {1, 2, ... , t}. Thus for i € I the
restrictions are not exact. If 1 & I  then HiB is estimable and the

columns of Hf‘ are in the column space of XT and of
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il T. -1 T - .
— X'V X + X ;%-H. V.lH. . We now use the formula for the inverse
o jepog & = -

of the sum of matrices and let 0; -0 for 1€ I. Let

A= 5XV x+.): =7 H, V.°H
HEST 1
a=—12-XTV_1Y+ Y %-HiTv;lhi
i€19;
B = diag :T-Vll for i€ 1, Hj‘ = [H T,HiT, 1 HiT] and
1 u
b o= [0 h .. b T ] where  {i,i,....i} = {1,2,...,t} NI,
- 1,71, 1, 1°72 u

With these definitions we have

: - - - - £ - T
B" = {A” - A Hj‘(B ) + IH A HT‘) 1H A }(a+ H Bh),
Now if a is the largest eigenvalue of B_1 and if B_1 = aC then
B-1 and o tend to zero together and (assuming each Hi has full

row rank)

oI - - - _1 -
Y »~ {A - A H_T(H_A H_T ) "H A lJa
+1m {2 aHTen -2 aH T et v na ) H A en ).
- - oL - - - - - f—
a0
The second term is equal to
lim * A'H_T (ac™t+ H AH Syttt H_A'H_T - H_A‘H_T )Ch_
@0 ST, 1 .
=1limAH (aC " +HAH ) h
a+0 -
= AH (1 ATH ),

T

Therefore g% > A a - A_Hj‘(H_A_H_ )_1(H_A_a - h_).

(We note that A a is the estimator which ignores the exact restrictions).

The rule given resembles a positive part estimator in that negative
estimates of a variance component imply shrinking the estimator for 8
onto the hyperplane corresponding to that component instead of over-

shrinking as would otherwise be the case.

3.4.2 The Bayes Case

Instead of estimating the variance components we may choose a prior
distribution for them and integrate them out of the model. Unfortunately
this requires the use of numerical methods. We shall assume inverse
gamma distributions for the variance components since this distribution
is the conjugate distribution for this problem.

We shall suppose that
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2 2 o a” 1 1 aa?
P(U |u-ga ) = (lﬂu) T'(a) 5 ] exp{— 5 ?—}
(o%)
) o (a)%% L ol
and plogfa,a;) = Co)” g o+ e"P{' E?i_}

all independently of one another and of B.

The special cases of these given by a = 0, a, > 0 (in which case
the normalising constants tend to zero and the distributions become
improper) are the invariant priors given by Jeffreys.

Using the general result of section 3.3 that

0 112
p(B|Y,h_ ,...,h ) = const(o?,{c2Dexp{-%||8-B8" || t - . }
! ¢ T o+ Iz M, + xTz7x
i=1l 1 1
where + .
o _ T -1 I S ) Tl
B-(Q+2Hiziﬁi+xz x)(Qa+zHizihi+xz Y)

i=1 M=
the joint density of B8 , 02 and the 0; is

p(B,oz,{Oi}!Y,h .,ht,u,az,{ai,ai})

e ¢ o.a2
1 o2 1oaa? 1 1%
= ol 8601 - 3% - 3 1 i
2 0+l L2 2 a.+1 S 20 2 i=1 Ui
5 -
(6?) le_(ci)
i=1
L T -1
where S = Q+ ) H.I.'H, #%1°%
6= 1 1 5.
giving the marginal density for B,
p(B[Y,{hi},a,az,{ai,ai})
2 2 2 2
: on2 aa? A4 T aiai do dol...dot
« | oo.| expy-3|B-87| - 5 "3 ) — .
o Jo g 1=1 9% a;+l

2,a+1 L 2Nl
(6®)7 7 [ (02)
igu] =

. : . o . . .
Since the expression for B is not a very simple function of

;5 2 this integral is intractable. In fact

0”305 5+ ++ 50 3
||B-B°||; - gTsg - 287sg® + g°Tsp®
ite
= g%sg - 28T(ca + § W] I7'h, + X270V

i=1
oT L L Te-1 T -1
+B8°°(Q+ ) H, I h,+XIY).
R < B e
i=1
It is the last term which gives rise to the intractibility of the
integral since it contains S~
If we integrate in a different order then we can make the integral

a little more tractable. The joint distribution of Y’hl""’ht’B ,O2
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and 0,,...,0, 1is given by

1 &
p(Y,hl,...,ht,B,oz,oi,...,oila,al,...,at,az,ai,...,ai)
i
1 2 2
= . - exp{—% {uy-xsllz_l + 1 IIng-x;8ll _11}

(02)%n+a+1 r](og)fni+ai+1 i=1 L

ij=1 * 2

{4 ], S
X L
e i1 9% :

where p(B) « exp{-%(B-a)TQ(B-a)}.

Integrating with respect to the variances we obtain the marginal

distribution,

p(Y,hl,...,ht,B|a1,...,a .,ai,a,az)

s,
-(atsn) ‘t(
2 2
fjéuhi‘xiﬂ|b-1*'aiai
3

~(a.+sn.)
) 1 1

t
« P(B)P(a)!:Lr(ai)0|Y—XB|C_1+-aaz)

= f (say).
Usually Q will be taken to be zero in which case p(B) = 1. In this
case this density is a product of multivariate t distributions. If Q
is taken to be non-zero then it is likely to be known only up to an
unknown scale factor in which case this could be integrated in the same
way as the 0; to give another multivariate t factor.
The marginal distribution of £ is not easy to find, if found,

however, then this leads immediately to the conditional density

2 £
.,at) o« .

[...] £y dhy dh, ... dh,

p(BIY,hl,...,h ,0,a%,0 .,Q

2
5 ' 23100

Note that the integral is a multiple integral of dimension Do, t. .40
and the expected value of B is the ratio of two such integrals.

As explained earlier, this may be calculated in one of two ways. The
results of Dickey(1968) reduce the integral to one of dimension t, which
for small t may be found numerically. Alternatively we can use the
method of Tiao and Zellner(1964) which uses an asymptotic expansion for
the integral. Either way the work involved is laborious and a simpler

method is desirable. One approximate method is to use the mode of the

posterior distribution given by clt 0. Taking Q = 0 we have

aB

-1 o
13 _3logf | 2(a+%n){HY-XBH3_1 v aa?} XVl (v-xe)

t -1
1 iy 2 2 T -1 ~
i iZ1 2(ai+6n9“lhi Xislb—1'+aiai} Hy v, (hy X.8)

1
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and this gives a solution satisfying

t o, +3n, i
[ a+?n XX 4 ) T 2 H?‘VjiH']B
||Y—X9|Lj_i+aa2 HE) ||hi-XiB||V_1+ agaf 1 17l
i
9 a,+¥n,
a+ T.=1 1 T,-1
TR ve X Yt L AT e e b
-1 1=1 1%37% L,i 2%

i
This would need to be solved iteratively. The similarity to the
eampirical Bayes solution should be noted. The difference lies in the

variance estimates of the form

il A2 i A2
-2—a-+—n- {”Y—Xe”v_l + Qaz} and *é-a-i-'ﬁ_)-; {”hi-HiB” VT:]- i aiai}
1

which, for small o, would seem likely to have positive bias.

3.5 Comparison with Generalised James-Stein Estimators

When the respective variance matrices are known the Bayes estimators
are of the form of a constant plus a matrix shrinkage of the least
squares estimator. The estimator may also be regarded as a weighted
average of the least squares solution and the exact values satisfying
the hypotheses. Thus the Bayes estimator, like the generalised James-
Stein estimators, shrink the usual estimators towards the prior
hyperplanes. This also applies in the unknown variance case, however,
the estimator is then extremely complicated in contrast to the James-
Stein estimators. On grounds of tractability it seems better to use the

latter, especially since they are "almost admissible'.
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Chapter 4
Minimum Mean Square Error Estimation

4.1 Introduction

In this chapter we shall consider the linear model
Y=XR+te, E[e] =0, vare = 1% where ¥ = g2V

and V is unknown. We shall either suppose g2 to be unknown or

shall take g2 = 1. (There is no need to first study the canonical

form of the model as it is just as easy to deal with the model directly).
We shall compare estimators by using either the mean square error

matrix or the weighted sum of squared errors. Suppose that g%(.) is

an estimator for R and 8* is the corresponding estimate, then the

former is given by
M(g*(.) , ) = E[(8* - p)(g* - @)
and, for a weighting matrix W , the latter is given by
M (B*(.) ,B) = E[(g" - B) W(g* - B)].

Another way of comparing estimators is by using the mean square
error of prediction. Prediction may be performed at the points given
by the matrix X , or at a set of future points. We shall only consider

the former. The mean square error of prediction is given by

E[(XB¥ - XB)(XB* - x8)' ]
X M(B¥(.) ,B) X'.

%
HP(XB () 5 XB)

If X has full column rank then this equality establishes a one-to-one
correspondence between Mp(XB*(.) , XB) and M(B*(.) ,B) and it is
immaterial whether we measure the mean square error in the p-dimensional
B-space or in the n-dimensional Y-space. For the same reason, this also

applies to pfediction of X18 if X1 is a matrix of full column rank.

4.2 Comparison of Estimators

We may say that one estimator is better than another if its mean
square error is smaller than the mean square error of the other. We
shall make this precise in the following definitions.
Definition 4.1 Given two estimators for R ,Bi(.) and Sg(.) , we
say that Bi(.) isat least as good as Bg(.) and write Bi(.) s Bg(.)
if and only if, for all p-vectors ) , ATBT(.) has scalar mean square
error less than that for ATBE(.) as estimators for ATB.
Definition 4.2  Given two estimators for 8,8?(.) and Bg(.) , we
say that B?(.) is at least as good as Bg(.) with respect to a

symmetric positive definite matrix Q if and only if



[4.3] 85

*
q B5C4).

After defining some inequalities for matrices we may rewrite

MQ(Bi(.) ,B) = MQ(sgc.) ,B8). We denote this by Bi(.) s

definition 4.1 in terms of M(.,.).

Definition 4.3 Given two pxp matrices A and B, A is less than

or equal to B (written A = B) if and only if B - A 1is non-negative

definite. _

Definition 4.4 Given two pXp matrices A and B, A is less than

or equal to B with respect to a positive definite matrix Q (written

A SQ B) if and only if tr AQ S tr BQ.

Now ATBi(.) s ATBZ(.) if and only if

(8% -AT8)2] s ELTBS() -]

and this is equivalent to the statement that
N meio L e s T mek) L8 .

Thus an equivalent form of definition 4.1 is Bi(.) S Bg(-) if and
only if M(B3(.),B) s M(B3(.),B).

Also, for a random vector t , E[tTQt] = tr E[ttT]Q. Thus, putting
BT - B and Bg - B in turn for t we see that Bi(.) s B*(.) if and

Q 2
only if M(B(.),B) = MB3C.) L B).

We shall now show that = 1is a stronger partial ordering than
SQ' For all symmetric positive definite matrices Q, A SQ B implies
tr AQ s tr PQ implies A S_ B. It follows by applying the result to

b3 % b3 & F3
M(Bi(.) , B) that 81(.) s 82(.) = 81(.) SQ 82(.).

4.3 Estimators with Minimum Mean Square Error

The usual estimator for B under the model considered is B(.)
where B(Y) = (XTV~1X)_1XTV-1Y. This estimator is the best linear
unbiased estimator and the generalised least squares estimator (which
minimises the residual sum of squares) (Y - XB*)TV_I(Y - XB8%).

If, in addition, we assume a normally distributed error vector
e Nn(O , ) then B(.) is the maximium likelihood'estimator. The
usual estimator also satisfies various other well known and desirable
criteria but we shall show that, in terms of the criteria in definitions
4.1 and 4.2 it may be improved upon.

The following theorem gives two more desirable properties of the
usual estimator. Both results are known, but the first is much more
widely known than the second although the second result is at least

as important.
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Theorem 1 For both of the partial oderings for estimators s and
SQ tte generalised least squares estimator minimises the mean square
error among estimators in the class of linear unbiased estimators and
in the class of linear estimators with bounded mean square error.
Proof Consider the class of estimators of the form R*(.) with
B*(Y) = AY + ¢c. The mean square error is

M(B¥(.) ,B) = E[(AY + c - B)(AY + c -B)]
E[((AX - T)B +c+ Ae)((AX - T)B + c + Ae)']

((AX - I)B + c)((AX - I)B + )T + AZAT

since E[e] = 0 and E[eeT] = .

We shall now show that, for B*(.) to be in either of the classes
considered,we must have ¢ = 0 and AX = I. Firstly, B¥(.) is
unbiased if and only if for all B

E[B*(Y)] = E[AY + c] = AXB +c = B.

This implies that ¢ =0 and AX = I.

Secondly, B*(.) has bounded mean square error if and only if
AX =1 - for,if not, then we may choose A such that
AT(A)( = ) = uT * 0T , and we may choose B = tp in which case
AT(ax -1+ owax -1 o+ o= (e aTo? wnien is
unbounded as a function of t since pTu * 0.

gt

If Q is positive definite then we may write Q = L Aixi and
i

tr MQ = I AT M Ai . Since the Xi form a basis for the column space
i
of Q , there exists 1 such that Ai (AX - 1) #% 0. We conclude that
AX # I implies unboundedness of the mean square error matrix and of
the Q-weighted mean square error.
Now, if AX =1 then M and tr MQ will be minimised if c=0.

-1 T -1

We now show that A = (*TV X) gives the minimum mean square

errorfof estimators in the class {B"(.): B*(Y) = AY and AX = I}.

Let A = (XTV X)1XTV + K and KX = 0.

Since (X' v} X) -1 XTV Tyt = (XTV X)T XT K' = 0 this gives

MB*(.) ,8) = o2 v i xTv v v i xxT vt ot 4 o2k vkt
For either partial ordering this is minimised if K = 0. This completes
the proof.
Note that if D # I then DB(.) has unbounded mean square

error (assuming that D is a non-stochastic matrix).

4.4 \Unrestricted Minimum Mean Square Error Estimation

The importance of the bounded mean square error part of theorem

4.1 is that it shows that no linear estimator may have uniformly smaller
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mean square error than B(.). This is so because, if an estimator were
to dominate é(.) then it would have bounded mean square error and this
would contradict the conclusion of theorem 4.3.1. Therefore, for
uniformly better estimators, we need to consider non-linear estimators.
In the case of normally distributed errors it is necessary to reject
the assumption of unbiasedness since the usual estimator is minimum
variance unbiased.

Theil(1971) attempted to find an estimator of the form B*(.)
where B*(Y) = AY with A such that this gives an estimator with
uniformly minimum mean square error. Although we have just shown this
to be impossible, it is nevertheless interesting to make the attempt.
If we do then it turns out that the optimal value of A depends on
B and I and does not therefore give an estimator for B . However
we do obtain a lower bound on the mean square error of any linear
estimator and also, substituting estimators for B and I into the
expression for A, leads to the discovery of non-linear estimators
which do have uniformly smaller mean square error than the usual
estimator.

The mean square error of B*(.) is
(ax - DBT(ax - DT + aza’

A+ x88 x)A - BB x AT - axge + ggT

(a-88"x" (z+xe8"x") 1) (z+x88Tx) (a-88"x" (z+x88Tx") 1)
+ 887 - 88™x"(z + x88™x") xgp"

=88 - BB X (z+x88 x) txpgl.

and equality holds if

M(B*(.) , B)

The above inequalityTaﬁfo appliesTt?T_z:lQ
A= BB X (Z + (XBB X)) 7).

The only case for which this leads to an estimator for B occurs

if (irz‘lxi% is known and I = 02V with V known. We shall see

this when we have simplified the expression for A. This expression

can be simplified using the formula for the inverse of the sum of

matrices

@ w80y = . aT R ¢ ea e et

Applying this formula gives

8T xT(z + (xpTxH ™

NE
= g X {zt - g xs1 ¢ 8T 2 xe) BT KT
T.T -1
1+ B X I XBR
1 T T -1
= BR X L .
1+ 8 x s lxg
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Substituting this value for A into the formula for the mean square
error gives

M(B%(.) , B) 1x ggt

8eTx" s 1x g

"
™
™

I

Also we obtain

o _ BTXTZ-lxé
B = Al 2 T T B
1+B X I "XB
A T o1 oy=1 Tu=1 . .
where B = (X £ "X) "X Z Y 1is the usual estimator for R.
We shall write D = XTZ-1 X so that
e 35 N
B* = D =Y where Y = D?B and ¥y = D°B.
LWy
T LA
- ote —1/
Now let C = XT‘V . X = 02D. This gives B* = ¢ ° —l—g—ét Y
Tt W

which depends only on Yy, C and é. If y and C are known then
this implies that B* is an estimator for R . If not then B* depends
on the unknown parameters and is not an estimator since it is not an
observable random variable.

Some authors find an apparent contradiction in a random vector
of the form AY depending on B , having minimum mean square error
for B and yet not being equal to B . In fact thereisno difficuliy
since B* is not of minimum mean square error in the class of all
random vectors which depend on B - it has minimum mean square error
in a class of which B <s not a member. To see this note that, unless
Y=XB, BE{B": ¥ =AY} = 3 A(B) such that B =AY = AXB + Ae
which is impossible unless AX = I and e = 0. If, on the other
hand, we consider the wider class {B*: 8% = AY + c} then we find
that B does belong to this class and does have minimum mean square
error.

We next consider the class of estimators of the form

-1 T.-1

B =aB =ax i) %'y, If we substitute a(xrz t

x) 1xTg1

for A 1in the expression for the mean square error then we obtain

1 X)-l XT 2-1 5 2-1 1
1

oAX 5"
+ T o %t
2Dt 4 (a-1)2 BBT .

x(xT g lx2
x - 1)88  {a(x s 1x) 1xTL"

M(B™(.) , B)

1x-I}

This gives a weighted mean square error of

thsx(.),s) = 2t DIW + (a-1)2R W B.
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It is clear that there is no uniform minimum for the former expression

T 1

since  tI M(BY(.),B)t = a?ti DTt + (a-1)? (t' B)Z

) .. (t7 g)?2
has its minimum at o = PR T which is not
£ D"t # (£ B

independent of t . However, for any given W, the latter expression

does have a uniform minimum value of

8Twg tr D1w i B W8
) T at o= =1 T
tr D "W + B WB tr D W + B WB
An important special case occurs when W = D so that
_ 8o 8Tcs
(1— T - T .
p+ B DB po? + B CB

We have now derived two random variables

T T
KX ~ X C A
o3 :——@-ﬁ—.—%—.—_— B and B =_-—§——-_-B-'I‘-_—" B
o2+ B CB po? + B CB
the former being a matrix shrinkage of £ and the latter a scalar

shrinkage.

4.5 More Random Vectors

-1
As noted previously, unless D K

B is known, it is necessary to
substitute estimators for B and 0% into the expressions for A

or o in order to turn BR* into an estimator for B. If we do then
we can no longer be certain that the estimator has smaller mean square
error then the usual estimator. This is because the above proof was
based on the assumption that A and a are non-stochastic. The
following example shows that the mean square error may be either
increased or.reduced by substituting estimators for unknown parameters.

Let X be a univariate random variable with expectation 6. The
variate aX + (1-0)6 has expectation 6 and mean square error
a? var X. Substituting X for 6 gives the estimator X which has
mean square error var X . Thus the mean square error is increased if
|a| < 1 and reduced if |a| > 1.

Returning to our original problem, we see that, when we substitute
estimators for B and 02 we will have to recalculate the mean
square error. A motivation for the use of shrinkage estimators is that
B is too long on average, but, in a sense, has the right direction.
This is clear because, as noted in Brook and Moore(1979), by Jensen's
inequality E[|| B 1121 = (e[| 8|12 = ||E[R]||*> for any norm.
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A scalar shrinkage is therefore indicated. Now, if a scalar shrinkage
of B 1is used in estimating A, then the resulting estimator for
is also a scalar shrinkage of B . Although a scalar shrinkage seems

reasonable we shall also consider matrix shrinkages.

Let us write the expression for 8.‘= as B* = B+ + LB
T T T
where B+ = ———-—-B [')I'B and L= B8 D-E. DRI
1+ B DR 1+ B8 DB
Now, if B =18 +¢ then BB - BB = Be' - eB’
2 2
s a T T _ i ] v
and BB = H(GE - €¢8)DS = H(ﬁﬁE—I)E
- @ e _ 1
where a= (B DR) and 6§ = 3 R .

It is possible to choose 7 and € so that € is orthogonal

to B with respect to the inner product <a,b>C = aT(lb in which

case L B is orthogonal to B and L B = Eg;f (-€). As we have no
information about € (except that, in a sense, B 1is in the right
direction on average) it seems reasonable to set LR to zero and use
the estimate 8% = 8+-

Farebrother(1975) suggested another way of making B* into a
scalar shrinkage. This is done in such a way as to illustrate a
connection between the minimum mean square error estimator and the
ridge regression estimator. We shall present a slight generalisation.

Let Q be a symmetric positive definite matrix and write

. T -1 .
s 8878 (o, o Yo, o )" o,
1+ B8 DB B" QR B QR
-1 T
Putting 8* = (D + TQ ) Dé gives B* = BBT (D-+ %) ) B*.
: B" QB 1+R DB B QB

If Bt is proportional to R then, putting B# = aB, we obtain

T
g% - BB DB g8 o8
= o T + O T T
1+ R DR (1 + BBDB)BR QR
= aB = B*_
In the case B = Mg B* is certainly proportional to R. Although

this is not necessarily so in higher dimensions, B=F may be suggested
as a replacement for R* . This is of the same form as a generalised
ridge regression estimator for B the purpose of which is to give
more stable estimators for R when the X matrix is ill conditioned.

This variate is not orthogonal under orthogonal transformations of the
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parameter space unless Q 1is proportional to D, but in this case

B*

conditioned problems.

= B+ and this leads to numerically unstable estimators in ill

We may divide B* into components as follows:

i T T
F e B B Seme K=(8T8 D _ 1) i +(B$O _ 1) L
B DB 1+8DB B QB  /1+BDB

Now KB = 0 so replacing B* by B in the second term gives
B* z B*. This further supports the idea of using 8¢ as a replacement
for B*.

We have now produced four random variables from each of which we

can construct estimators for B. They are

« _ BBC = x 8T cg A
8" = — B BB — = 1B
o2 + BCB po? + B CB

T 2_1,\
B+=———§-C—§-—-f§ B*=<c+ gc) cB.
o2 + B CB B QB

An interesting way of choosing the shrinkage matrix in ridge
regression was given by Strawderman(1978). He showed that his estimator
is minimax for a different quadratic loss function from those used in
practice. That is he used a form of weighted mean square error, the
weighting matrix being C? instead of C or I. Thus a consequence
of using ridge regression, at least if Strawderman's form is used, is
that the estimator is good for a form of loss function not likely to
be considered by the user.

In the next section we shall discuss the estimation of the

shrinkage factors in the first three of the random vectors given above.

4.6 Estimating the Shrinkage Factor

At each particular value of B and I the mean square errors of
the random vectors in section 4.4 are the minimum attainable with linear
estimators and they are only achieved when the shrinkage happens to
take the ideal value. Estimating the shrinkage will result in a
different value for the mean square error - usually a greater value.
If we are interested in weighted mean square error with weighting
matrix, W = C—1 , then it seems more sensible to study realisations
of 8& We shall, however, consider B* and B+ as well, but, as
B*

no further.

is more appropriate to a study of robustness, we shall consider it

The nalve estimator for the shrinkage factos may be obtained by
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substituting the usual estimators for B and o2 into them. Thus

using B= ¢ x"vly ana 52- H%(Y-xé)Tv'l(Y-xé)
gives the following estimators for B:
"‘-]-_“‘* - éTCé A
B =8 = — 1 AT A B
CB+— (Y -XB) V7" (Y - xB)
n-p
AN - /B\TC,B\ é
BTcB + 2 (v -xB)Tv iy - xB)

n-p

Our aim, of course, is to find the best estimator for R that we
can, and to do so we estimate the shrinkage as accurately as possible.
It is reasonable to suppose that better estimators of the numerator
and denominator of the shrinkage factor will give better estimators
for the shrinkage itself. However, while this may often be true there
may also be efficient estimators for the components which lead to
inefficient estimators for the ratio. Although é(.) and 6%(.) are
unbiased and quite efficient for B and o2 (5%§B5 62(.) is biased
but more efficient for o?), they do not lead to efficient unbiased
estimators for constants of the form B QTC B + Ac? We shall divide
the shrinkage into component parts in a number of ways and try to find
improved estimators for these components. (Later in this chapter we
shall briefly discuss another approach in which the bias in the
numerator is adjusted to compensate for the bias in the denominator
and vice-versa).

In the following expressions for B¥ the parts contained in
square brackets are to be treated as a whole for estimation purposes.
If these parts contain B then this vector is treated as known since
we are only trying to estimate the shrinkage (which, in the form

given in this chapter does not contain B ). ve may write

0 T o~ AT - AT_A T
e‘"=[ 13 ]CB=[8 ca ][B]=[8 cB ]B+ BB gs cs]
o2 +B CB o2 +B CB o2 + BTCB Lo2 + B CB
. _ (881 5. (BTce) . . [87ce) 4, [EBT-B6" ]
[02 + BTCB] (02 + BTCBJ [0? + BTCB] Lo? + BTCB .
(88 /0%) 5. [87cB/o?) (o) 18T cB/o’] g, (68" 88" ]
[1+87CB/0?] [1+87cB/02] [1+87cB/0%] e gTcg |
_ [es"/8%ce) 5 [BTceys cB][ ot g, [eBT-B8T ]
1+[02/87cR] 1+[02 /87 CB) 14[0? /87 CB) L02 +8Tcg
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In addition we may consider the form of the minimum mean square error
variate before simplification and obtain

oo

8% = 88T /021X (v + X[BB /021xT) 1

88T1xT ([02]v + x(88T %72

These have the advantage of treating B in the same way in the
numerator and denominator (B always occurs in the factor BBT and
never in the factor BT‘CB).
We can decompose the scalar shrinkage factor in a similar way
to obtain
< [ 8T cp ]é _I87ce) 5 [8TcB/o®) 4.
o> + el 0%+ gTcB ) [1+8TcB/0%)  1+[0/8"cB]

pl g.

o
|

(Decomposition of B+ leads to the first terms in the last column in
the expressions for the decomposition of B*). In the decompositions
of B* which involve two terms, the first term is B+ and the
second term will be estimated to be zero.

A further class of estimators may be obtained by using the
improved estimators for B +to improve the estimation of the shrinkage
factor. Repeating the process leads to iterating to convergence. We
shall do this in chapter 5.

From now on we shall not differentiate between an estimator and
an estimate leaving it to the context to determine which we mean in
each particular case. We now wish to estimate BBT and similar
expressions. Using ééT we find that E[ééT] = BBT + OZC_l. We shall
find that by removing some of the bias we can reduce the mean square
error. Similar remarks apply to estimation of other expressions such
as BT‘CB and érC B/0? . In the next section we shall discuss this

in detail.

4.6.1 Estimating the Components of the Shrinkage

We first calculate E[ééT]. We have
el Ty vy Ty 2xe ™) = o Tyt o?v + xTeeTx v ixe?

= BST + olc 1.

E[BRT)

It follows that

88T + 021 , ElC = C%RB°C? +0A and

BTCIB + po2.

£[BBTc]
£(8Tc 8]

An unbiased estimator for BBTC is therefore ééTC - B3 and an

unbiased estimator for BTC B is @T(le - pé?
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The former may give estimates which are negative definite and the
latter may give negative estimates. In the latter case the probability
of negative estimates when BT(ZB = 0 1is approximately 0.5 and
tends to zero as BT(38 tends to infinity. It seems reasonable to
replace a negative or negative definite estimate by zero. This gives
a smoothed preliminary test estimator akin to the positive part
version of the James-Stein estimator.

As we shall see, it is possible to find estimators with smaller
mean square error than either the nalve estimators ééTC and éT(Zé
or the unbiased estimators ééTC - 621 and @T‘Cé - p82 . In a

- ; . . 1 1
similar manner we may also discuss estimation of B R | B

BTCB/O2 . 02/8TC8 s BBTC/O2 and BBTC/BTCB . In order to calculate
the mean square errors of the estimators of this section we need to
make some distributional assumptions. We shall suppose that the error
term, e, in ghe linear model is distributed as e ~ N(0,0%V). In this

case (n—p)gy’b in_

independently of B.

When estimating the above functions of the parameters we should
like to use estimators which are consistent. Unfortunately this is
not always possible. In the next section we shall discuss another
concept, relative consistency, which is a more desirable concept and

is often achievable when consistency is not.

4.6.2 Relatively Consistent Estimators
Given a sequence of linear models Y = XB + e , E[le ] =0
n n n n n
var e = 02Vn we wish to estimate B and o?. Graybill(1976) gives
a definition of consistency for this case which is not general enough
for a discussion of consistency of estimation of BTXE\Gglan since
this is not fixed as n increases. Graybill shows that B is mean
square error consistent for R if and only if (Xg\q;lxn)'l + 0 as
n ~ », and that 82 is always mean square error consistent for o2.
T, -1 -1 -
If (X V. "X ) +0 as n =+ », then BTXTV 1y B+o as n » o, We
nn n nn n
shall say that a sequence of estimators {en} is a mean square error
consistent estimator for a sequence of parameters {Gn} if and only
if E[(B_-6)21+0 as n > =,
n n
Clearly this is not a very strict requirement if Gn + 0 as n-—+o,
while it is much stricter if Gn + ®© as n *> «, A sequence of
estimators {én} is said to be relatively consistent for the sequence

of parameters {Gn} if and only if é%-E[(én -8)2] >0 as n > o,

n
It is clear that the two definitions of consistency given above can be
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interpreted as consistency with respect to the loss functions
[B .0 )= (8 -0)% and [(B ,0) = é%'(én - 8. )2,

These definitions easily extend to estimation of vectors and
matrices of parameters by replacing the square by a norm, in the case
of a vector of parameters the Euclidean norm, ||a||= (2 ai)%, and in
the case of a matrix of parameters the Froebenius norm, ||A||= (Z aij)%'

We also define the relative variance of 6n to be

1 ~ ~ 2 . o 1 A
ﬁ?TTFE[”en'-E[en]" ] and@ the relative tias to ke H@gﬂ(g[en] -0)

n
wtere |lo | = | 8] i i

% = if 6 1s a scalar or the
Euclidean or Froebenius norns if B is a vecter or a matrix. It is

almost trivial that a sequence of estimators is relatively mean square
error consistent if and only if the relative variance and relative

btias tend to zero as n > o,

4.6.3 Estimation of BB' CB + Ao
We shall consider the cases A, BE 2 0. The expected value and

variance of b éT(Zé + a 8% are

HbBTC§+a6Q= b§C8+ (a+bp)o? zmm
var(bB' ¢ B + a8")= w708 CB + (2b%p + 2y 0",
These expressions are deduced from the moments of the central and

non-central x? distributions given in appendix 2. The mean square

error will be

2
MSE = ub2g2B CB + (2b2p+%‘f‘—p)o“ + (b-B)2(RTCR)? + (atbp - A)? 0"
+ 2(b-B)(a+ bp -A)02B CB
2

= o“{[zbzp-+§%5 + (attp-A)2] + [2(b-B)(a+ bp-A) + ub2Ix2A

+ (b-B)?xu)?}
gTca

where A = ong B Now, for large A this is minimised by putting

b=B and a = E%§E5'(A -Bp) (the latter minimises the first term

which is already insignificant for large A ). For small A we
require that a ——Egégf (A-bp). It seems reasonable to take b = B

so that the mean square error remains bounded as A + « and this

gives, for small X, a = n?;+2 (A -Bp). If B=0 and A = 1 then
we are estimating c?. Taking b =0 and a = F%%%g gives the well
known result that ——b- 82 has minimum mean sguare error among all

n-p+2
estimators of the form ad? for o2.
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If A=0 and B = 1 then we are estimating BTC B and taking
b=1 and a = E%égﬁ-(A-p) gives smaller mean square error than the

nalve estimator. However, choosing a and b so that the first two
terms in the expression for the mean square error are zero gives
bounded relative mean square error as A -+ 0, otherwise it is

o8- 0 as n =+ o then BT(ZB -+ ®© 3gs n > ™

unbounded. Now, if C~
thus if B # 0 then béTCQ +a8? is relatively consistent for

b érC B+ Ac? if b+ B as n + o, while for B # 0 ordinary mean

square error consistency is not attainable. If B = 0 then we have

consistent estimation and relatively consistent estimation if a -+ A

as mn > o,

4.6.4 Estimation of B CB/0?
Using the moments of the central and non-central ¥?-distribution

in appendix 2 and the independence of B and 8% we obtain

E[b BTcB/62 + al = b 32525-(8Tce/02 +p)+ a Znd

T 2 _ 2.2 2(n-p)? [ (p+2))? Pt }
vark b B GB/e" + ) = Bop p2(n-p-2) | (n-p-2)(n-p-4) K n-p-4 [°

These results are also attainable from the mean and variance of the
non-central F distribution.

We therefore obtain the mean square error

MSE = _______E__sz(n~ )’ { (p+2))? ¢ EERAL L J5tep) ) ( +2)\)+a—2)\}
n-p-2 TﬁjET%TTE:E:ET n-p-4 n-p-2 P

Our estimator is unbiased if b = Bepol and a = -p. Only for this

2

value of b can we minimise the mean square error by a suitable choice
of a, this choice being a = -p. The resulting estimator has
unbounded mean square error as A > © and unbounded relative mean
square error as A > 0. Since A +» ® as n =+ o we have relative

mean square error consistency so long as b + 1 as n » o,

0.805 IEETHEEon of oJEleE

Using appendix 2 again, we obtain

2 AT o~ _ a 1 ._
E[a8“/R°'C R + b] = 52 1F1(1,4p, A) +b and
~p ,aT 2 - .2 n-p+2 il . _
var(ac®/B"CB + b) = a { el Y ey 1F4(25%p5-1)

1

- -(5_—2?- 1F1(1;:|/2p;—>\)2}.

We therefore obtain the mean square error

MSE = ] I]-—"D+2 7 _ 1 2 _a_ - 1 2
4 { n-p (p-2)(p-4) F1 (p-2)2 Po [ * p-2 2 % s 2
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where F, = 1F1(2;%p;-k) and F, = 1F1(1;%p;—k). As A + © we may

apply the asymptotic expansion for the confluent hypergeometric

function and obtain

2
a" )n-pt2 : - = % 55 2
| MSE Y 137 {Tncg Fo(3-%0,2331/2) = JF (2-%p,1531/2) }

: 2
B 1 - oL
* oy {2F0(2 Yp,1;3;1/)) + b 3 } .

For small XA, therefore,
-p+2 1 9, a - 2a
MSE n a2{B-RY - }+(__+)+
a{ n-p (p-2)(p-4) (p-2)* e p(p-2)

1
_('P_2+ b)/)\ + e

Since the final term does not depend on a or b we cannot prevent

the mean square error from being unbounded. The relative mean square

error will tend to 1. For large A we have
2 2
a 1
MSE " 3 5D + {b —ﬁ (1—3)}

2
= {25— + (1—a)2} L. o BGSa) | 2
n-p

LA2 A
This is minimised when b = 0. If we now choose a to minimise the
relative mean square error then we require that a = EQ%EE .

Now if C1>0 as n>w and b0 then MSE~> 0 and the
estimator is mean square error consistent. For relative mean square
error consistency we require that b > 0 and a > 1 faster than
A + o, If interest centres on estimating A02/BTC8 +B with B # 0
then absolute and relative consistency are equivalent if C_1 + 0 as

n > o,

4.6.6 Estimation of % R

We first calculate the mean and variance of % é. We have

A L =y

1 a4 1 ,,.T -1
E[37-8 ] = E—ELE {67-88 + C [

Therefore
n- I'(%(n-p-10)\?] 1 T
var(3 ) = 2R o {22 - seon (SRR} ed”
! I'(%(n-p))
J=(n-p) I'Gs(n-p-1))°

This implies that 643is unbiased for % B if b =

b F
The mean square error of = is
o

_ p2) n- -1 1 T I'(%(n-p-1)) 1 T 1 iy
MSE-b{n—_EE_’—Q-<C + S7 BB )}-21:»4{(5?')' T(zz(n-p STBB + BB,
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For small ) we require b = 0 for a minimum while for large A we

. = -2 P — _1
require b= E;gg“ Vi5(n-p) é?é?n—Pjg) |

T C_1 + 0 as n » « then, for mean square error consistency, we
I' (33(n-p-1))

s + 1 ~>0 -+ oo
I' (3(n-p)) & B

require that E%%g;-bz - 2b n-p

This will be so if b+ 1 as n =+ o,
4.6.7 Estimation of é%-s

Performing similar calculations to those in the last section we

find
1 47 _ n-p 1 1 T, _ (n-p)? g B A
Blgr 1 = (B 6, Bleghyr 8871 = erpatacgy (ov 08"+ )

and the mean square error for é} B is

-2 (n-p)? -1, 1 T n-p 1 T 1 T
MSE = b {(n—p—QT(n—p—"f) [c + = BB ]}-Qb Tr o BB + ST 8B .

For an unbiased estimator we must have b = Eﬁgéz . For minimum mean
. 2 . n-p-4 3
square error we require b = 0 if A is small and b = _;EE- b
A is large.
Under the same conditions as in the last section we obtain a mean

square error consistent estimator.

4.6.8 Means and Variances of Vectors and Matrices

Components of the shrinkage so far considered are scalars. When
1

(8TcR)

expected value and variance of a vector variable, while for estimation

5 . 1
estimating 57 B and

> B for some power t we need the

t

of BBT ,'jk BBT and ———3———-BBT we need the expectation and
° 8Tes)t

variance of a variable matrix. In this section we shall compute the
means and variances of the nalve estimators for the above expressions.

A 1
Noting that E[C% B]1= C%R and var-(ClEE) = 021, we obtain

~ 1
C;EB vN(C?R, 0%I). This suggests the transformation
Y:Ej}, ’é,n=B[Y]=B?,-B so that Y~ N(n,1I).

Now let R? = YTY = 5} BTCB . By an orthogonal transformation we may

o . T &
transform to the variable Z = HY for which E[Zl] = (nn)? and
E[Zi] =0 if i#% 1. This implies that R = 2%z

The above transformation matrix is of the form H where

ol [‘—éTnT Hl] with A =n'n, Hn=o0, Hlﬁf - I and
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T T

1 . . .
}H.Hl = I - Zx N The matrix H1 is arbitrary apart from the
given constraintsand this arbitrariness can be characterised as follows:
H2 is another matrix satisfying the constraints if and only if there

is an orthogonal matrix B such that H2 = BHl' (In fact if H1 and

H, are given then B = HQIig).

When we calculate the variance of a matrix we could follow some
authors in using the "stacking operator'" to turn the matrix into a
vector but it is more convenient to use tensor notation which is
equivalent to working with the elements of the matrix. Thus we require
the variances of the matrix elements and the covariances between them.
For consistency we shall treat vectors in the same manner. We shall
also use the summation convention so that if an expression contains a
repeated subscript then this implies a summation over that subsript.
Since we shall need many subscripts, some letters will have to take a
dual rdle. This will cause no confusion if, when a letter is used as a
subscript, it is not interpreted as taking its other meaning. For
example, the letter p stands for the dimension of the parameter space

but does not have that meaning when used as a subscript.

9.
Now E[——TE—;- =0 if i#1,
(z°2)" -
2.2,
z[_—-ﬂ—- = 0 if i#3j (since i# 3 = i#%1orj+1)
T2t
{(Z )
2,2.2.2; 1
and E = 0 if i,j,k and 1 are not all equal and
(z7z)"

not equal in pairs (since otherwise Zi i#1
occurs to an odd power in the numerator).
The expressions still to be evaluated are: E[R-2t21] s E[R_utzi],
Elr%28], BIRT22) G+ 1), EIR°T222210 # ), E[R™°'28] (1 + 1)

and E[R'Stzizg] d+d, €2, 4¢3

since E[R °t(z2+22)?) = E[R T2%] + 2E[R™®%2222] + E[R®%2}),
a5 1 i3 j

all of the above can be calculated as special cases of the following

two theorems.

Theorem 2 1f U~ Xzs and W~n XZP(A) independently then

atb-c o 1
Janeg, 20,

(U+w)C (a+b—c+1/2r+1/zs)C

2F2(b+%r,a+b—c+%r+%s;%r,

1

a+btis+ir;A).

Theorem 3 If W~ N(p,I) and U~ XZS idependently of W and

if 2b is an iteger then

MASSEY UNIVERSITY
LIBRARY
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Sb=C @ s)_ (o),

aw2b ] 2 "
{ =l = = 2F?(b+3§,a+b—c+15+3gs;lg,a+b+3§s+3§;)\)
(U+W?) (a+b—c+1/2s+15)C . .
if 2b 1is even
227 () T(b+1)
=V = ™" JF,(b+1,atb-c+iths;1),

(a+b—c+%s+1)CF(1%) atb+ls+1;))
if 2b 1is odd.
Note (i) The case when 2b is even in theorem 3 is just the case
when r = 1 of theorem 2.
(ii) If b is an integer then the expression in theorem 2,
and if 2b 1is an integer then the expressions in
theorem 3, can be written as finite sums of confluent

hypergeometric functions.

Proof of theorem & Writing V = W/U we have

awb E[ Ua+b Vb ] i E[Ua+b—c Vb]

l(U+w)CJ Liucaev)3© (1+V)€
1% -1 A 0 1 - | ol
Now p(u,w) = Héi——g—fi e Z l W T
) - _ 1 -
225 P(Ls) k=0 K} KT (3p4k)
du  du 1 0
Also du dw = gu gv du dv = = u du dv
so that Ls-1 -l ® Lr+k  Yr+k-1 _-buv
p(u,v) = = . e ] 2 - .
W T —— wr
225 TI'(ks) x=0 * K T )
_ § li GEsttk-1 k-1 Fau(14v)

v %
o k' PR Ly rguy)

We then have

[ v® wb]_ -\

Ak fw b+kr+k-1 fw a+b-c+br+k-1  -kLu(1+v)
v u e
0 0

= e 2 == — du dv
L(u+w>°J k=0 X* (14v)€ 2P P (1) P (3grai)
[o o) - 1 -
= Ak 2a+b S I'(a+b-ct+¥ss+isr+k) vb+4r+k .
- € ) X' atb+ks+iar+k ey
k=0 0 I'(3%s) T(sr+k) (1+v) =
_ =X f Ai p2tb-c I'(atb-ct¥s+irtk) T(at¥ss) T'(b+iar+k)
R TCss) TCarth) T(arbrls+zr k)
227 (3s)_ Car),

= Y v 2F2(b+%r,a+b—c+%r+%s;%r,a+b+%s+%r;ki
C -—
Xe .

Proof of theorem 3 Writing A = %p®, the probability density of W

- i 2 _ _12
1e»§(wu)= eke/gwe/ﬁw

is p(w) = 75?

3~
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_1 9 ; VK W o
- s o et
Vo k=0 kil
o k
| z (2A)k ol _;sz % Jon Z (2)) 2k+1 e—;ﬁwz
- Vom © ot g T
o 1: .
_ e_x % (A)%i z k+%1 w2k+1 Ak 2
i%0 K20 v2m (2k+i)!
By the duplication formula for the gamma function,
JIT T(2z) = 2°27% T(2) T(z+k)
we obtain .
A 1 i @ Ak w2k+1 o2
plwys e 1 ) g k+zi+% € :
i=0 k=0 "° 2 I'(k+i+%)

(This form of the normal distribution density function is convenient for

calculating non-central moments and for deriving
2

the density of the

non-central ¥° distribution).
1
Putting V = W/U? gives
u 3 1 0
du dw = gE g: dudv = | du dv = u? du dv
— ol 1
ou oV QuE u?
1 1 . 1.,2
»3s-1 -lsu  § 1 @ k 2k+1 —*5W
Now p(u,w) = 31;;——53——- e R) %T k%%;%%’ -
2% T(%s) i=0 k=0 ~° T(k+i+k)
28 tha 5 % ” ; Bk Esthivhtk-1 2kt au(1+v?)
plu,v) = e A = i
i=0 k=0 S PEHK L1y ()
a“d[ 0@ w2 b gy @ gk (o 2b2ktd
EL_—C] = e z )\ z FJ
(U+W?) i=0 k=0 77 J-o (14v°)
atb-ctbstiithtk-1  -hu(1+v?)
x fmu T = du dv
0 2TETREX gy I(ivkstk)
- oA % A%i ; Af_ N s a+b-CI‘(a+b cthsthithtk)
L L k! 2 a+b+¥s +351+l5+k
i=0 k=0 —o (14v?) I'(%s) T(i+ds+k)
x dv
1l o R 3 2b+1
= e-A z = z %T 1-q'—’i-:-%z----—-—-B(b+1»5i+1/2+k,a+1/2s)
i=0 k=0 L 22P7C Plasboctlstlsiel)
I'(3ss) T(i+¥s+k)
_ % 1+ g °z° X° I(avss) T(bvsivsio
= ? o k! T T(at+tb+ksstsitistk)
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oTHD=C it it s e

gehes & = T(%s) T(ivhrk) ‘

which 1i=0 vanishes, while, when 2b is odd the term in which 1 = 1

When 2b 1is even the term in

vanishes. The remaining term in each case is easily seen to be the

required expression and the result is proved.

It 7
Y [ Bz )} 1 .
Now E[—-—-——] =B —--—-—-—] = 7y n E[-—-—-—-——] . If in theorem 3
(vTy)t z7z)t 2 (zTz)t
we put a=0, b=%, c=1t and s = p-1 then we obtain
DG e_x
- 1 . .
E[ T t] - T X - 1F1( 2p+1 t, 2p+1 ,)\) n
(e 2 (/2p+/2—t)t
- 1 1
= 1F1(t;1p+1;-x)n .
2 (1/2p+1/2—‘c)t
Also E[ YYT ] _ E[HTZZTH ]
[(YTY)Qt (ZTZ)Qt
. i
i 23 | 0 iy R
T % | /2x "
_ e ﬁT (2°2)
= Zrv S 22
0 E[ ]I H
(z7z2)?t 1
5 Fa
A= e
1 T 1 T 1
= nn E[ ] + (I - =nn) E[ ]
2A (ZTZ)Qt 2 (ZTZ)Qt
%2 2.2 7 &
3l 1 i T
- E[ * ] I + {E[ ] E[ ]}nn ’
(ZTZ)2t 22 (ZTZ)Qt (ZTZ)Qt
Therefore , , )
Zis Z 2
) 1 T i 2 L I 1 1
var( L) = -ty || + e[ =] - ] }
(YTY)t 2 (ZTZ}Qt 22X (ZTZ)Qt (sz)t

In theorem 2 we now put b=1, a=0, ¢c=2t, r=1 and s = p-1

and obtain 21-2t i
79 <X

A
l = g .
E[(ZTZ)2t] - (1-2t+%p)t e 2F2(1%31-2t+%p,%’1+%p,k)

and putting a=1, b=0, ¢c=2t, s =1 and r = p-1 we obtain
2 1-2t 1

= e
(ZTZ)Qt (1-2t¥%p)2t

2F2(—%+%p,1—2t+%p;%p-%,1+%p;l).

We shall calculate the fourth moments of the R_2t Yi . We have
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ER°™h 2 h .zh 2h 2]
Pl pqiq rk r sl's

E[R t22221.
qu"S

-8t

E[RT Y. Y ¥ YZ]

hp hq .h k <7

8t -8t

Let A = E[R™®T z;] , Bl = BR" z;] , & &ER zizi] and
8t

D = E[R™ zizg] where 1% i % 5% 1. We then have

FEE ¥ C E'h h,.h_ h

E[R™ 11713 pk pl

e, 1150 7= Ah .h, 5h +B) h .h .h

1xP17 o1 pi pj DK pZ

rr rr
+ D h_.h_.h + D h_.h_.h
p>2>1 pipi"ak"qz q>g>1 pi"pi"qkql

where I’ means summation over all six rearrangements of the subscripts
1 and p and <ZI" means summation over all three rearrangements in

which p occurs first. Thus

-8t
E[R™ Y ¥Y Y71=Ah, . hyshyyhyg + (B- 3D)p§1hplh REW
Be ), shoyhz + D 7" h .h.h h .
51 K'pl T sgtqsq PP Ok gl

Since this expectation cannot depend on the transformation used to
calculate it we must have B = 3D (the last two terms are invariant to
the transformation used). As a check we shall give a direct proof that

B = 3D. We may write

B = E[R°5Y z;] = E[T*R°%t E[(Zi/T)"ITzll where T2 = zi + zg and

-8t

D = E[R

ziz%] = glT*R™%t E[(Zi/T)z{Zj/T)2|T2]]. Changing to polar
coordinates in the Zi—Zj plane we have cos 6 = Zi/T , sin 6 = Zj/T’

-8t

B = E[T*R™°Y E[cos"6|T2]] and D = E[T*R™°T E[sin?6 cos26|T21].

Now, since the distribution of 2, Zj is spherically symmetric, 6 is

uniformly dlstrlbuted over a circle of radius T . Therefore

27
J cos"6 d6
0

"

Elcos“8]|T?]

2T
[- =i @ cos3e]gTr + 3 J sin20 cos?0 do
0

"

2m
3 J sin%6 cos?6 46
0

3 Elsin?6 cos?6|T?].

Thus B = 3D as required.

1
? R SR that
Now Bys =T Ty and p§1 h Ji, = O =aymm, [soliEha



[4.6.8] 104

8t

- - A L _1
E[R Y. Y Y YE] ryvaih ”3”k“1 t 5y ninj(ékZ o) ”k“z)

+ rearrangements of i, j, k and 1
1 1
B D(<Sij - 37 Ny n )(6 - 5n ”k”z)

+ rearrangements of i, j, k and 1

A-6C+3D
* o e D Seb, £ Bate, 805G

C-D
H M O MG M8 M 8 T O Mg O
+nknzdij).
When t = 0 we have A = 4A% + 12X +3, B=3, C=1+ 22 and D=1
from elementary properties of the le and non-central X21

distributions. This gives, for this value of t,
= + 6.,0.
6 (ngfifeeg + Myl * Nalplsi * DsMlOm + Maizlsk
+ Mg 8yy)
and

cov(Y. Y Y YZ) = (Gikéjz+éizéjk)1-(ninkdjZ+ninzdjk+njnk6iz+njnzdik).

Using theorem 2 with a =0, s=p-1, b=2, r=1 and c = ut
we obtain
,2-lt W,
AE T5?E¥1%57;_ e, 2(2§ 2-4t+3p ;s ,24%p3 )

while putting a=2, s=1, b=0, r=p-1 and c = 4t gives

Pl o
2 2l =k
— — (PG, (o | .
B=8D = i = e 2F2(%p—%,2—4t+ﬁp,ﬁp %,2+43p3A).
Now (p-1)C = J E[RS! zizil = E[R°8t 22 7§ z ]
. 1 1
i>1 i>1

so putting a=1, s=p-1, b=1, r =1 and c¢ = 4t we obtain

22~ Gl (%)
%p-%)Cs e 2F2(1%,2—ut+%p;%,2+%p;l).

(p-1)C = o ur%%p) 5

-bt -4t 2-ut]

As a check note that E[R Zi] + (p-1) E[R Z;] = E[R

L4-8t

and A + (p-1)B + 2(p-1)C + (p-1)(p-2)D = E[R 1.

Putting a =b =0, r+ s =p and c¢c =1 - 2t in theorem 2 we see

1-2t
2-Ut, _ 2 -\
| = (1—2t_+l§12>}2t__1 e 2 (:'L'ir' 3= Qt*’ip 351‘3’5]?,)\)

E[(R
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while putting a=%:=0, r+ s =p and c = 1-2t in theorem 2 yields

2-Lt
L-8t, _ 2 -2 e .
] = (2-4t+%p)ut-2 e QFQ(%r,2—“t+ép,ér,ﬁp,l).

E[R

From theorem Al.4.1 and equation A1.4.31 we may write

o [ul. (b), 2*
i i

2F2(a+u,b;a,c;z) S T Y 1P1(b+1;c+1;z)
1=0 1 Il

i
> [u]i (b)i z
= e

L Tt I gfq(esbierdsez).
1—0 1 1

Using these to simplify our expressions we obtain

E 4 7. gres F.(2t;kp+13-1) + %%ZE%ER A LF, (2tskp+2;-))
P 1 R T P i R B R

-2t
2 . . = ) .1 L.
T5t+p B {1F1(2t,%p+1,-l) (p-2X) 1F1(2t,/2p+1, A)
+ P 1F1(2t;%p;-k)} s

[ zé )2t
B ] = { F (2t;%p+1;—k)} for i+ 1 and
[(ZTZ)zt (1—2t+%p)2t 171
1-2t
To.n -2 2 i
2t-1
2172t (3p) by

- (1—2t+4p)2t {1F1(2t;%P;-k) % = 1F1(2t;%p+1;_k)}

2—2t

. e e 4 5o
= m;{p 1F1(2t,2p, A) + 2 1F1(?t,;5p+1, )\)} 5
From these we derive
72 _ 72
E[—-T-—-lﬁ] + (p-1) E[—-—'T-'-J;'i?] = m%_)‘--{Q A 1F1(2t skptl3-2)
(2°2) (z°2) AR ot

.
+p 1P1(2t,5p, A)}

which verifies the first check.

Rewriting the expressions for A, B, C, D and E[(ZTZ)Q—ut]

gives _
3%2 Lt

_ A . 2(%p+2-4t) X ; .
A= TEE:E:E¥7:; {1F1(ut,4p+2,-A) + —_E%gﬁiﬁT"_ 1F1(ut,%p+3,—k)
(%p+2—ut)2l2
+
(%)2 (%zp+2)2

1F1(ut;%p+u;-l)},

3Ix2

—ut .
= _ .1 .
B] = BID —m—{lf'l(ut,/zpﬁ'Q, )\)}a
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-4t .
= 2 PP (sp+2-4t) A . __ }
= Capt2-81), {1F1(”t’5p+2’ W) Hpae 1 F, (Wt353p+35-2)
and
2-lt
T, \2-U4t 2
E[(Z2°2) ] =
(%p+2—4t)qt_2

1F1(4t—2;1§p;—?\).

(lfzp+2—ut)i 1 (lfzp—ut)i+2 1

N - -
ow Cop+2),  Cgpt2-Ut), )., Co-9t),.

1 (lfzp—ut)2 (%p), (%p—ut)2
® W, T Gpan),, | (Ban,, (%),
(ap-ut),

Let ai = *—75’5—5-5-.— and let Fi lFl(ut;lﬂﬁl;-k)-

i
We may then write
-t
- 2
A = z-l/z—p-_—u-t—')—u: (382F2 + 1283AF3 + uau)\ F'-#) s

H-lt
B =3D-= 3aF
(%sp-bLt e 22
Ut
C = m—rt (a,F, + 2a,)AF,)
and o
E[(ZTZ)Q—ut] = —1——-——-——2 22(%p), a F,(4t-23%p3-1)
Cep-bt) . 2 2 111 2P 3
|
2—1+t , x ‘
= w 2 (1513)2 a, {1F1(Nt—1;3§p;-l}+;§ 1}"1(14-;;_1;;51”1;_1)}
|
)it , , |
= f% > P 134ps - ! 5 |

A P A2
+%1F1(4t,5p+1‘—:')+—1§p—( )2

x 1Fl( bt ;p+2;-A )}
Lt

A ]
v ?gﬁ:ﬁ;j:;-Q a, {(p), F, + 2Csp+1)AF, +NF } .

- )
Now A + (p-1)B « 3pa,F, + 12a3)\F3 + uauk F,

1 (1 -
3pa,F, + 12a,)0F, + 4xa {(3p+2)F, - Cp+2-MF, ]

1 _ _ 1 _1_
{3p + u(ip+2 ut)A}a2F2 4(p-1-Na,F,

and 2C + (p-2)D « pa,F, + ua3)\F3

-t
with the same constant of proportionality T,’i??u—tr s
Lt

With this same constant we have
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A+ (p-1)B + 2(p-1)C + (p-1)(p-2)D
« {p? + 2p + 4(gpr2-ut)a}ayF, + 4{p-1-Cp-1-N)}a AF,
= u{(%p)2-+(%p+2—ut)k}a2F2 + u(%p+x){(%p+1)a2F1 -(%@+1-A)a2f2}
= uCOpti-tt)daF, + uA2a2F2 + 4(Cp+)) Capri-tt)a F,
= 4Cp+A) (ap+i-4t)a,F, + 4Cspti-ut){3p a, F_- Cp-Na,F,} + ud?aF

k 2 1 1 2
e B az{(/zp)QFO + 20Gp+1AF, + X FQ}

2

and this verifies the second check.

,2-tt ,
Now A -6C + 3D = o ” auk Fu
JElE
and C - D= maalf'a 5
thus
-8t gt
BIR — ugvovip N & m{au Engnsmng + ajFa(nm 6, ,4n.m, 849
NNty Mz g
+njnzdik+njnkdiz)

+a2F2(<Sij6kz + Gikéjl + Giléjk)}

This agrees with the special case t = 0. which was calculated earlier.
We shall now write our results in the original coordinate system.
1 s 1
Noting that CéB =Y and C%R = on we may write
;5/\
E[ Ag B t] i E[ ;' t] s1-2t
(B cB) S a)

01—2‘t
= 2 ——— F (t3¥p+1;-0)n

2" (ptls-t) *

1 :
= — 1Fl(t;l/zp+1;-)\) c*B ,
(20°) (%p+%-t)t

% gaTce L yy© 2-Lt
Bl=s—ox|” Hor 2e] ¢
(R"cB) (Y'Y)

-4
02 t

= {1F1(2t;%p+1;—l) I+ é%%%igg 1F1(2t;%p+2;-1)
2 (15p+1-—2t)2t ‘

xnn

1
- .1 e 2
= {lFi(Qt,6P+1a A)o‘I

(202)2t(%p+1—2t)2t
- Pl el 1
+ 51};%12—" (F, (25342323 o BBTci}

Tc%v)z] y E[(uTYYTv)z]
4 (YTy)#t
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TnuTv + (uTn)szU

T
+ (V) 2uTu}
+ agFQ{?(uTv)2 + uTuvTv}].

y-8t
= g [a F (uTann)2 - a3F3{uuTnv

0t T
-y
2 "(3p )y

We therefore obtain

- g ] ) )
El—m—r | * F,(t3;%p+1;-0) 8 ,
(8Tch)® (202) Capist), 11
= AnT 1 i
E ATBE Qt] = 5T {1F1(?t;%p+1;—k)ozc 4
- (B"CR) (202) (sp+1-2t),,
+ l—52._',%i—_i2-1;1}“1(121:',1§p+2;—)\) BBT}
and
TaaT. .55 1 i
E{(gﬁ?ﬁ‘:& : [1F1(ut;%p+2;—x){2(uTc 1,2
1
(R°cR) (202%) (gp+2-4t), +UTC—1uvTC—1v}Oq
+2-4t h .
+ % 1F1(|4t,15p+3,—>\)
x{4uTBvTBuTC—1v+(uTB)ZvTC_lv
+(vT8)2uTC_1u}o2
(Yp+2-ut) -
Oy, 1T (Htiprs-A) (u By 8)2}
2

4.6.9 Estimation of BBBT + Ag? C'l

We know that B@@T + (A-B) 82 ¢! is unbiased for
BBBT + A o? C—l. We shall find the mean square error of the estimator

butBBY + a62uTe v for Bu R8TV + ao?ule ™y .

From the esults of the previous section we have
J - T T - = -
MSE = b2{(p Bv B)2+(u B)2v'C 1v02+uuTBvTBuTc 1v02+(vTB)2uTc 1u02

ale hwTe ot v2wTe vy 204 - (T (B8 +0%c 12

Ty ST - - -

+{bu 88 v+bo?uTe WvracuTe Lv-muTBRTv-ac2uTc " 1v)2
2

+ 28 gyt

c~1yy2

1 1

b2 {(uT8)2v e tvo+2uTBvlRuT ¢ " tvo? + (vR) 2uT e tug?

ate e ve v (uTe vy 26ty
2b?

+{(b—B)uTBBTv+(b+a—A)uTC_1v02}2+ E:ch’(uTC'lv)z.

For large A, (b—B)2(1JT88T\))2 becomes the dominant term and we must
have b = B to achieve a minimum. For small A the dominant terms

- E - =
are {b?2[uTc hwTe™y ¢+ TeW2] ¢ bra-)2ie i) 2)0"

and their sum is minimised for b =0, a = A. If we take b = B to
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minimise the mean square error for large A, then the small A mean

square error is minimised by putting a = ;%;%5 (A - B).

It is also clear that if b = B then this value of a minimises
the mean square error for all values of A . Thus we suggest the

estimator

pAR +=EB= (R=B)6® ToF BB Bach.

n-p+2
Among all estimators of the form BE§§T + aB? this minimises the
mean square error for every bilinear form in the matrix to be estimated
when the corresponding bilinear form in the estimator is used to
estimate it.

If, as n > o, ¢2'5> 0 then an estimator of the form

b@@T + a 62 C-1 is relatively consistent for BB BT + ACJZC_1 if
and only if a 1is bounded and b+ B as n +> « since in this case
the relative mean square error is asymptotically
(b-B)’('Bv'R)? <§__ N
B2 (1" Bv7B)? 2 W

4.6.10 Estimation of Bg'/c?

The estimator bééT/Gz + ac™! will be unbiased if b = Eﬁ%éz

T
2 ; [BB'] . 1 n-p T, 2n-1

and a = -1 since El?ﬁr] = o7 nop2 (BB" + 0°C 7). The mean square
error of the general form of the estimator is
gi_ (n-p)?
o* (n-p-2)(n-p-4)

1 1

vo2+uu T gv T guT e lvg?

1 1

{wTB)2(wTR) 2+ (uTR)2v ™
+(vTB)zuTC'1p02+uTc'1uvTC' vo“+2(uTC-
—(uTBBTv+02uTC'1v)2}

MSE =

v)o*

Waal 2
n-p ., AR n- T -1
+ {(‘n—p-Q b 1/ 52 + (a + ﬁ%b) uC \)} .

2T T
If X is large then the dominant term is (;%;-2 b_i) (]-l gg v)

so that b = Hepes minimises the mean square error. If A 1is small

then the mean square error has the dominant terms

(n-p)? P L, S E——, S (- < n- >2 T -1 .2
R T ST R {p'cTuv e T ve(n CTIV) 2 e a.+5:5§513 (uc 1)

whose sum is minimised when b = 0 and a = 0. On fixing b at the
optimal value for large A we find that the value a 2 -1 is optimal
for small A . Thus we are lead to the unbiased choicefor a and b.

As in the last section we have relative consistency if C_1 > 0,

a 1s bounded and b > 1 as n > o,
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4.6.11 Estimation of g8 /g'CB
The expected value of ééT/éTC@ is

1 D o . T ! o~ 2 '1}
557;%5—{p+2 1F1(1,§p+2,—l)88 + 1F1(1,§p+1, Ao“c

vl s gdl 3.
. 1Fi(l,/zp+2, ) 88T 1Fl(l,/zp+1, ) -
= + C
pt2 o2 P
2 1Fl(l;‘/zp+2;—X) aaT 1F1(1;%;%p+1;—x)
= + C

D+2 gTcR p

-1

T T
st - 1F1(1;"'f2p+1;~l){-%§—- 3 i}c‘l
B'CB g'cg P

the last line using a recurrence relation for the confluent

hypergeometric function.

For small X the bias is =2 C_1 - HBT_E_ and no estimator of
P B CB
BR" -1
the form bAT - + aC can remove the bias. For large A
B°CB

@ﬁT] g8” ge? 1 -1
E[A *u - B F (1-‘/213,1;;1/}\){——-—— - —C }
BTCB BTCB 2A 2°0 T P

B CB
and the bias tends to zero as A = o,

The mean square error of bE-%B—A-\i + auTC-l\) for Ugﬁ is
B CB B CB
- p2{ 1 _ . G [ R O | )
MSE = b {p(p+2) 1}“1(2,/51:-}2, Ml2u'c "v)e +p'C "pv C V]
T T i o2
1 N U.B VB aTeg M(pB)” | T.-1
+ (P'l'? p+l4 1P1(2,/2p+3,—)\)['+o— o Hc V+—02—\) C v

TR 2
. (vOB) s 1u]

- 4 F,(2:%p+u; A)(”TBBTU 1 }
(pt#)(p+6) 1°1 s 02

TwxaT 2
'bz{(g%a 1r1(1;%p+2;-x)3~§§43 +-%j 11 (13%p+135-2) uTC_lv) }

Tzl
+{—ll- F (1;15p+2;—l)u BE N +-E— E (1;%p+1;-A)UTC_lu+auTC_1v
pt2 1°1 o 11 -
_uB8 v}z
T .
B CB
For small A the dominant terms are
b? in. T -1 .2, T -1 T -1 2ab L
m 1F1(2,'@+2,—X){2(U C V) +y C "uv C \)}+ T 1F1(1,'5p+1,—k)
x(utc~1y)?

and their sum is minimised when a = b = 0. For large A we have the

dominant terms
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2

Dol
b’ ' cayfu BB T -1, U BBV
BT (p76) 1F1(2’%p+“"h)("37"') +(a“ Sl e )

2

pligeemi
+ Qb{ o E (1;15p+2;—7\)}i—'§-§—v-+ % F (1;1/2p+1;—)\)uTC_1\)}

pt2 1°1 o 174 TogT
X (auTC_:L\) = 5‘ . )
B CB
Tl a® Ao i s 2
i bz(u B8 v) sl 58 v (aUTC-lv__U 38 v) 5 GBUTC—iv__p 2 v)
B CR B CB B'CcB BCB
TanT 2
= {(b—l) E—%E—B--f anTc™? }.
B"CB

In order to minimise this expression we require that a = 0 and
b = 1. Note that when we have considered the case of large X we
have supposed that it is the length of B causing A to be large.
As C_1 -0, uTBBTV/BTCB > 0 (for fixed R) and the above results
cease to be valid. To investigate the consistency of these estimators
we need to consider the limit of the mean square error as C“1 - 0. In
this case the dominant term is az(uTC-l\))2 and we require a =+ 0 for
consistency and a + 0 faster than 1/A = 0 for relative consistency.
If the latter condition is satisfied then the next most dominant term

must tend to zero and this means that b + 1 as n =»> o for relative

consistency.

4.6.12 Estimation of (p'cg) '8 0=t =1
Taking the expected value of the nalve estimator we have

O—?t

(S I PRS-
(ETC%)t J 2t(3§p+%—t)t
) F,(ts¥p+1; A) B
972 e .

Cp¥et), 11 (gTep)®

When t = 0 this just gives £ showing that B is unbiased for B .

F, (t33p+13-1) B

For no other value of t can we find an estimator of the form
_b

AT At
(B CB)

For small A the bias will be approximately zero if b = 0 and t<1

which minimises the length of the bias vector for all A.

while for large A

[ o R (‘/2p+1—t)t . 1
E"‘ﬁ"_B} ’\J"-T--j'—-—- F (t—fp,t;;l/)\) —Tm o a 8
(BTCB)t (ﬁp+§-t)t 2°0 (BTCB)t

1L+l
CapHat) rpel) Tspriot)

(%p+1-t)t " T(ptl) T(spti-t)

which suggests taking b =
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. _ (T(Cspik))? .
=L d t=1
When t 5 this gives = TOp) T CprD) and when this
. I'(3p) T(%pths) p-1 gl
= - = = 1-— .,
gives b fr%p+1) F(%pé%) 5 D
We shall now consider the mean square error of ——TE——— B.
A ~. T
(B cB)
We have
i} b2 -1
MSE = 1 1(2t Lp+13-A)o?C

2 Qtl _
(20°)° "(3pt+1 Qt)Qt

+1-2t T
+ égﬁ;ﬁr—-1F1(2t,%p+?;—l)88 }

b2 2 and
i {(202)t(1 e 1F1(t;%p+1;—l)} B8

& { - 2 lFl(t;%p+1;—A) - ——TE——;}ZBBT
(202) (%p#/z—t)t (B CB)

2
S weses { b A [1F1(2t;%p+1;-k)c_1

b
(glcg)2t | Capt1-2t),
+1-2t PPN P |
+ %1—— 1F1(2t,/2p+2, )\)02 BB ]

1 2b A" 1
+01-BB 'm 1F1(‘t,’2'p+1;—>\)-52—88 }
If XA is small then for 0 < t < 3 the first term is dominant and
we require b = 03 for t =% the first and third terms are dominant
and we still require b = 0; while for t > % only the third term
is dominant and the mean square error is approximately independent of b.

For large A we have

-1 I'(3sp+1) T(Osptl-t) 1 BBT

B % 1 ,,T
MSE = b%C™" + b —I-BB t BB -2 T(ap+%) I Capri-t) o2

(8Tcg)?t
ag

and the last three terms are dominant. For a minimum we require that

T'(3%p+1) T(Cspth-t) . . T Cep)T (3sp+1
for t = 1 we have b = —EL-.
p—i
-1

For relative consistency we again assume that C © * 0 as n > @
and we therefore consider the case when A is large but B is not. For
all b the estimator will be consistent but the relative mean square

. . 2 F(%p+1) ' (35p+is- t)
error will only tend to zero if b° - F(%p+%) T(Gpr1- t) 1 0 and

this will be so if t = 0.

4.6.13 Summary of Estimators
We now give a summary of possible estimators suggested in the

previous sections for various functions of the parameters. These are
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given in table 2.

Table 2 Estimatons of functions of B and o

113

: Estimat Best Unbiased Minimum Mean
Ll PR Choice Square Error Choice
1 B - I'(s(n-p)) b=F(I/z(n—p)-lz) -
?;B ?;B T'(3(n-p)-%) T(%(n-p))
-1 ey . P
x Gs(np))? | xEEZ2 ((n-p))”
e b . D-p-2 - B-p-l %
oz B 5z B 2 n-p b= n-p
1 b 2 _ (I'((sp1%)) & _ I'CCsp) T'(3sp+1)
“w—xgf | —p—x b |Db° Tt P T TG
(B CB) (B"CR)
~— 8 - B b= - = b= by '
B CB B'cB & &
T AT A b=2B8B If b =B then
BR'CB + Ac? |bB CR + ad? o
a=A-Bp a-= ETEEE-(A - Bp)
T AAT b=2B If b =B then
BRR™ + Ac%I | bRB'C + a8’ .
a=A-B al= ke (A - B)
n-p+2
—p-2 n-p-2
T AT A =H—R——— 1 :_.....E._.
8T bB cB .. b S Il b np then
0'2 62
a=-p a=-p
_ n-p-2 _ n-p-2
1t aaT b = ——=— b = 2oL
BB BB -1 n- n-
0—2 b-gr + acC p p
a=-1 an=s -
o? 82 If a =1 then If a =1 then
T a T it b
B CB B CR =0 b=0 *
AN :1 -
gg” L B8T !
P AT 5 alE 0 #la=0 %
B°CB B"CB
% for large A

In the next section we shall apply these results

of the shrinkage factor.

4.6.14 Estimators for the Shrinkage factor

By substituting the component estimators into the shrinkage factor

BeTc
o2 +BTCB

bBBlc + aB?1

to the estimation

and different rearrangements of this we obtain an estimator

of the form

for the shrinkage factor and this gives
béTCé + a8’
déTC§ + c6?

déTC@ + c 82
rise to an estimator for B of the form

jos )]

This is of
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of the same form as the estimator obtained by substituting the
component estimators into the shrinkage factor ~——£§E¥i—- .
po? + BICB

We may also substitute estimators for BBT and 0% into the
last expression for B* in section 4.6 or an estimator for o2 BBT
into the previous expression in the same section. Putting bééT-+a62C-1

i
for BR  and c8% for 0? gives

é* = (bééT + a82C—1)XT{082V + X(bﬁéT-+a82C—1)XT}_1Y
while putting g% EET + aC_1 for é% BBT gives

B% = (bBBT + a52c ™ HXT{62V + X(bBBT +a52c X"}ty .
Since these are of the same form we shall simplify the former expression.

Let B=c8v & xbBET % as2c1yxT

o2V + ao?XCTixT + DbXRRTX .

"

Using the formula for the inverse of the sum of two matrices we obtain

a7l =51 s B 4+ BTxTs1x8) 18Ty TR ?

where B = co2V + ad?xc ix! .

The same formula gives

= | 1 - 1 . O S
. § e a = A |
= EET'V (Vv = e XC X W T,
Therefore
Tl 4 ;I a N o
X"B = -y (x'v ™" - 5 XV )
i} 1 : el
atc
T -1 _ 1 Tt 1 2 Aod I e U
na K07 = gty V- () B0 iy ol Y
1 { b o N, |
= vy o Cc - CBB C}C XV L
2 -~ ~ )
(ate) (atc)o? + bBTCB

This gives

w
|

AT ~
aaT A2 -1 1 bB CB A
= (bBB' + ab2c™h) —————xy-c{1- } B
KR (a+c)82-+b§TC§

_ bBBTc + ad?1 3
(a+c)62-+b§TCé

__a6® + bBTch 3

52 + 252 + BTCR
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This is a scalar shrinkage estimator of the same form as our other
shrinkage estimators. The suggestion raised by this estimator is that
the values of a and b suitable for estimating EBT by an estimator
of the form bé@T + a0%l should be used and substituted into the
estimator, béTcé + ag?, for BTCB in the scalar form of the shrinkage
factor. A similar interpretation is taken for the function 6%—68‘

It will be seen that this estimator for the shrinkage factor is
democratic in the sense that each R occurring in the factor is
treated in the same way.

Table 3 contains suggested values of a, b, ¢ and d. We do
not, however, recommend all these values. In table 4 the numbers in

square brackets give a simplified form of the same shrinkage factor.

4.6.15 Consistency of Estimators for the Shrinkage Factor

We shall suppose as before that C-1 > 0 a n~> o, In this
: gTcs
case, as n >, X >~ and the ratio ———— > 1, Only if b~ d
2 T
ko“+B°CB

AT » ~o
b?TC?\ 0.0 af ] tend to 1 when c> 0. So long as
dR’ B + co?

the numerator vanishes for larger values of A than does the denominator

as n > o will E[

and we replace the ratio by zero when the numerator vanishes, this
result applies if ¢ = 0. The result follows from the fact that the
value of A exceeds any given bound with arbitrarily small probability
as n > ©,. In considering the matrix shrinkage we observe that, for an
estimator to be consistent, its trace must be consistent for the trace
of the shrinkage matrix. We are thus lead to the case above and we
require that b~ d as n > o (if ¢ < 0 we must replace the factor
by zero for a negative numerator). We shall not investigate the
sufficiency of the condition a ™~ ¢ as n =+ ®, but it is intuitively

clear that the variance will tend to zero if this holds.

4.6.16 Consistency of Estimators for B
We now wish to show that, under the conditions of the previous

bBICB + ab? 3 ; 8 %, &

section, T is consistent for Now, as n = o,
Pa) N ~
dB CR + c6?

in probability if b/d - 1. Intuitively, this gives the result. More

precisely E[;—E;—j—aé } [(22;..:_% = %) é] + % E[é] - B. The last
term tends to zero as n »> ® if and only if b/d > 1. The integrand
of the first term is —-%—é for small A (with small probability) and

ad;;bc Qd;#-c B for large A . This tends to zero as A + = (B fixed).




[4.6.14] 116

TabLe 3 Suggested Coefficients for the Shrinkage Factor

a b c d
-p i} 4 -3 1
-p | 0 1
— L o
n-p+2 P 1 n-p+2 (1-p) L
o
n-p+2 P 1 0 1
-1 g 1-~p 1
— 2D (1=
n-p+2 ! n-p+2 (1-p) 1
5 5 1_n—2-2 b ,
- =2 pl | RS (1) )5 RS (1]
n-p n-p n-p n-p
[n-p-2 p]
Bp2 o ooy B2 Bp 2p_ || n=p-2
n-p p [-p] n-p [1] n-p n-p-2 n-p [1]
1_n—E—Q p
N o TR [ fap BEZ2 i
n-p n-p N=p: _ n-p
[n—p+2 p]
0 1 P 1
0 1 1 1
0 1 1-1/p 1
n-p-2
n-p-2 1= rp © n-p-2
0 (o] - [1] —=E< [1]
- -p n-p n-p
[n-p-2 P]
2
-1 1 N n-pt+2 1
_n-p-2 y
n-p 1 (n-p)(n-p+2) !
-1 Dp-2 0 B-p-2
n-p n-p

liote that we have omitted the estimators in which b # d since these

are not consistent.
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This proves that the bias tends to zero. In a similar way it is seen

that the variance tends to zero.

4.7 Alternative Estimators

When estimating the shrinkage factor we have tried to cope with
the bias in the nalve estimators for the components. Another approach
is to compensate for the bias in the numerator by biasing the

denominator, or vice-versa. We shall consider the general scalar

e
shrinkage of the form _jiﬁﬂif_, . Using the bilinear shrinkage rule.
ko? +B CB
E[bR CR + a8?) gTog
of the previous section we have = = —
E[dB CB + c6?) ko? + B CB

if and only if

(ko2 +87c8)(bg7C8 + (bpra)s?) = BTcB(dTCE + (dprelo?).
This implies b =d, (bpta)k = 0 and bptatbk = dptc. Thus a = -bp,
d=Db and d = b(k-p). With b = 1 this is the unbiased choice for

numerator and denominator. If we wish to accept the bias in the
numerator then we put a = 0. In this case there will be no exact

solution. However, allowing a stochastic choice of values we have

(k+2))(2bX +bp +a) = (2X)%d + (dp+c)x2)
i.e.  (2X\)%(b-d) + (2))(bp+atbk-dp-c) + (bp+a)k = 0

and if b = d then this reduces to

2\ (bpta-c) = -(bpta)k.

The case a = 0 now gives ¢ = bp + %% = bp(géii).'rhis suggests
/\T/\ N
replacing the constant d by the random variable b;)é—ggjig— giving
B°CB

8TcR
(BTCB)2 + (k+p)5"* + pBTCRG?

previously, we are interested in the cases k =1 and k = p.

as an estimator for B . As mentioned

Similarly, accepting the bias in the denominator leads to b = d=1,

c =k and 2A(ptc-k) = -(p+ta)k so that a = (k_2)%3£- K . This suggests

(87cB)? + (2x-p)BTCRE? - pxd"
(BTcB +x6%)

interested in the two cases k =1 and k = p.

as an estimator for B . Again we are

We can easily apply the same approach to other representations of

the shrinkage factor; for example %%;—}—% gives the equation

(k+2X)(2bX

n-p . n-p
oo + bp + a) = 2X(2d)X s +dp + c).



[4.8] e

4.8 Risk Functions for Bilinear Shrinkage Estimators

The computational formulae for the risk have been delayed until
chapter 6 so that the class of estimators of interest may first be
determined. A formula for computing the risk of bilinear shrinkage
estimators is given in theorem 6.7.7 . This formula, when the
hypergeometric functions are computed from recurrence relations, gives
the risk as the sum of a single infinite series. However, the
hypergeometric functions have to be computed by their series expansions
from time to time to avoid numerical instability in the recurrence
formulae.

In the interest of generality, we did not use this formula in the
final computation but based the calculation on the unbiased estimator
for the risk given in equation 6.3.2 . Taking the expectation of the
unbiased risk estimator requires the evaluation of a one-dimensional
integral. This was done numerically. In order to compare the estimators
of this chapter with those of the next, the risk functions of the two
families of estimators are plotted on the same graphs at the end of

chapter 5 (where a description of the program may be found).
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Chapter 5
Iterative Improvement of the Minimum Mean Square Error Estimator

5.1 Introduction

Whenever we estimate the shrinkage factor (scalar or matrix) for
the minimum mean square error variate we arrive at a new estimator
for B. This new estimator can be used to re-estimate the shrinkage
factor. It is of interest to know whether, on repeating the process
indefinitely, we obtain a sequence of estimators which converges to
a limit. If so, does the limit provide a good estimator for B?
Hemmerle(1975) was the first to find a fixed point for the iteration
and he gave conditions under which the fixed points were stable. Later
Vinod(1976) compared the resulting estimator with other estimators by
using a Monte-Carlo simulation. Vinod, in fact, gave two iterations,
one using the usual estimator for the variance at each step in the
iteration, the other basing each estimator for the variance on the
latest estimate for B. In the next section we discuss these iterative

processes.

5.2 Fixed Point Estimators
gglc

— 7 The usual
o2 + B'CR

Consider the matrix shrinkage g¥* =

estimator for 0% is 8% = E%B (y - Xé)TV-l(Y - X@). If we base

. . . %
our estimator for 02 on an improved estimator Bo we may use

2 2
o
(o]

from v

% (Y - XBO*)TV—l(Y = XBOH). We have used a different divisor

n-p to allow for the fact that Bo* is, hopefully, a better
estimator for R than é (if B were known then we would use n as

the divisor). We may combine the two estimation formulae by writing

2% _ 1 a % A Tl A x5
o E(Y-XB— MBO—B))V (Y - XB- MBO— 8))

-~

-1 o 1 % =T ’
(Y - XB) + ﬁ‘(Bo - B) C(S;{- B)

(Y - xB)Ty

"
|~

_ = 2 o) % Sp ol % 2
=55 8° + ﬁ-(BO - B) C(Bo - B)

where, o = 0 gives the usual estimator and o = 1 gives the estimator
based on B;=, so long as W 1is suitably chosen. Replacing n-p by Vv
allows us to use different divisors for 82 (remembering that the
divisor n-p+2 gives minimum mean square error). Vinod refused to use
a different divisor "in deference to the usual practice'", However, we

are estimating g not g? and we have already abandonned ''the usual
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practice" in doing so. The iteration now procedes by substituting
8;‘ for B and ozé: for 0. This gives an estimator B{: which
is substituted for B;E. It is clear that each iteration gives a

e
resulting vector in the same direction as BO ‘

¥ gTcR

Now consider the scalar shrinkage B = —————=— B . Proceeding
po? + B1CB
in the same way we see that, whatever the direction of B;., the first
vector to be substituted for B, all iterates are in the direction
of B.

In either case the value of u should be revised at each step,
but as it is difficult (if at all possible) to choose the best value,
we shall choose 1 after finding the fixed point as a function of u
(and of v and o).

The scalar and vector shrinkages will be combined together by

= : i g’ca ,
considering the shrinkage R~ = S Sl The case k = 1 gives

ko® + B'CB
the matrix shrinkage, while the case k = p gives the scalar shrinkage
provided that we add the extra condition that the initial vector is in
the direction of B.

A fixed point of the iteration can be found by solving the
equation

% O R 3 oA %
(ke? " # B “eBT Y B =87 a8 8

oo oo

Substituting for Oi”" we obtain

{62+ ey grTopr - (1422 ) gaTcg + K2 gTep g = o

We see that one solution is B: = 0 while the other solutions satisfy

the equation:

=T % ut2ka ,=%T.3 kot 4T w5 kv 2
B, CBy utka By CB # ntka B'CB + U+ka LS

Completing the square in this expression gives

Lu AL 1RE & L u T kv~
(1) {B - (1_u+ka )B } C{Boo = (1'u+ka )B} (u+ka) B CB - ke O

Since C is positive definite, this has real roots if and only if

a 1 T b+ka 2kv .
= >
A 56T B ch T Thus, for small A , the only solution
is 8;2 = 0, while there are three solutions for large X. The non-zero

solutions (when they exist) are points on a hyperellipsoid such that

u+ka B and radius

2 a0 % . .
c B. lies on a hypersphere with centre (1- ——

2 2
1( w kv 1%
2 \ptka u+ko ’
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In order that the estimator should be continuous as a function
of é and 82, it seems desirable that, in the one real root case
we use the real parts of the complex roots for our solution. In
other words, if % RS ZEE- then we use (1- U?£; )8 . On the

other hand we might be tempted - especially if k =1 - to use

B;¥ = 0 as a kind of preliminary test estimator.
In the next section we shall discuss how we may choose among the

solutions found.

5.2.1 Sums of Squares Criteria of Choice

Vinod chose the fixed point which minimises the sum of squared
residuals. We shall consider this choice as well as some others. In
particular we might choose the solution with minimum length so as to
minimise the dangﬁr of over-shrinking. Another approach is to maximise
the expected length. If Baf = 0 1is the only solution we might be

interested in the closest approach to a solution of (5.1).

1 2
W = - U =_1_ U A_ kv
e shall let u 1 KT and v 5 (ﬁ:ia' A ﬂ:ia so

that (5.1) may be rewritten
(1) (BF¥-uB) cg*uB) = v.

5.2.2 Least Squares Criterion
In order to find the solution of (5.2.1.1) which minimises the

sum of squared residuals we find a stationary value of

2= (v-xg )TV voxg®) + vl - uB) cBF-uB) - v]

where Yy 1is a Lagrange multiplier. Now

0z _ T -1 % % A
EE? = 2V =XB ) + 2YCB - uB)

208 - 2¢c8 +2vcB - ub)
2C [(1+Y)BY - (1+yu)B]

and
2
*BTz = 2(1+y)C.
asm 3800*
Thus saa?z-g=0 P 8;:=1+Yu§=u3+ 3:3@
. 1+y 1+y

and substituting into the constraint equation gives

[(1+yw) - u(147)2) BTCB = (14y)2 v
© (1-u)? @Tcé = (1+Y)? v.
This gives (1+y)? = (1-u)2% éTcé
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and if we take the positive root for 1+y we obtain a minimum for

the residual sum of squares. This leads to the solution for Qj

¥ = uB +/A"A 3.
8T cB

In view of the fact that

& T gord Uy _ A2 = AT EPN
(Y-XB ) VvV (Y-Xg™) =8+ (g - B) C(B - B)
this value also minimises the distance from B.

5.2.3 Maximum Length Solution

In order to maximise the length of g; we find a stationary

value of
z = g*Tcp + yIBF-ub) e -ub) - v
0z _ & - % s . 3%z _

Now BE S 2CB, + 2YyC(B -uBf) and e il 2(1+v).
© 3B "B

For stationary values,

= (1+Y)_1uy§ = gelf = o e

B 1+y Ty

oo}
: : g B : . : YTy

Substituting this into the constraint equation gives u?B CB = (1+y) v.

For a minimum we require the negative value of 1+y and this gives the

estimator

Bk B ug + /= B
/ BTch

which is the same solution as before and is in the direction of B.

5.2.4 Mean Square Error Criterion

Vinod compromised his principle that '"mean square error is a
better proxy for closeness to the truth than the sum of squared
residuals" slightly by minimising the latter quantity. A suggestion to
minimise the former quantity seemed to be promising but was not
completely successful. It is nevertheless interesting and we now
examine the method.

We wish to minimise the function E[(B® - B)TC (B* - B)] subject
to the constraint (B* - uf)TC (B* - uB) = v. Unfortunately the
expectation does not exist since the constraint cannot be satisfied
if v 1is negative. Two alternative constraints may be considered
(1) (B* - ué)T C(B* -uB) = vy where v, is the positive part of v
(or a smooth version of it)

(1) {8 —u®) T c(8* -uB) - v }8¥= 0.
The first constraint is equivalent to ¥ = ué if v < 0 while, for

v < 0, the latter is equivalent to B% = 0. With consraint (i) and
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Lagrange multiplier Y(Y) we wish to find stationary values of
B T % b AT P B
z = E[(B*-B) C(B"-B) + y{(B" - uB) C(B" - uB) -Vl}]-

This is the usual caculus of variations technique for this kind of

problem. Let 8+(Y,a) be a parametrised class of functions with

B*(Y) = BT(Y,0). For stationary values gg— = 0. This must be true
a=0
for all such classes of funtionms.
upiting OB° _ 38T
riting N we have
a=0
22 Cero 28 c (gt 4 2 38" c(* -ud)]
oa =5 - oa Y T

and if this is zero for each such family of functions then

c(B*-B) + yC(B*~uB) = o.

0 0 s _ i Yu 2 B o
This gives RB™ = 317 B + i B from which we derive
E A gl Ny A
B” - uB = Ty B - [¥= B

and substituting in the constraint equation gives

(1+7)%v, = (8- uB) c (8- ub).
If vy = 0 then this gives Yy = = and therefore B* = 11@. If VaE 0
then
KX A V1 ~
B"=u81/ — ~ (B - up) .
(B-uB) C(B-uB)

This is not an estimator for R as it depends on. R itself. However,

it can be estimated. Putting é for R we obtain

%o a 1
B* = up e (1-u)B
(% u)28 CR

v
— 1.18 /\Tll\
B"CB

I+

I+

as before.
An alternative, which is now a familiar trick, is to iterate to

convergence. We require that

v4ﬁ-u®Tcw*-uéue*-u@)=tﬁ§(8*-u@

with B* # uB. This is merely the constraint equation so we have
solved nothing.
For constraint (ii) we must use a vector of Lagrange multipliers

and find a stationary value of
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2 = 5[(8* =) ¢ (B*-B) + YT cB*((B*- u)Tc (8- uB) - v}I.
The condition for stationary values is

20(8% -8) + {(B* - uB) c(8¥- uB) - vicy + 2yTcBrc (¥ - uf) = 0
which may be written

8% -8 + H{(8* - uB)T c (8% -uB) —vly + y cB¥(B* - ud) = o.

If v<O0 then B* = 0 from the constraint equation. We wish to
solve for the case when v > 0. In fact 8% = 0 is always a solution
of the constraint equation, but for v > 0 we are interested in
other solutions which are solutions of (6*-11§)TC (R* - uB) = 0

and this gives

”

(1) 8*-8) + y'cg*e*-u) = o.
From these we see that
B* - up)Tce® — g) + yrcg** -up)c*-up) = 0
HYeR v+ (B -u)TC(up -g) +y CBYv= 0
from which we find Yy’ CB* and substitute back into (1) to obtain
8" -8) - {142 B* - uB) cB-ub) (8- ub) = o.
Simplifying we obtain
B* - uB) cB- uB)B* - uB) = v(B- ub).
Finally, we write this as
{B*- uB)B*- ub)lc -vIi}B-ub) = o.

Thus we are lead to the result that B - uf must be an eigenvector
of (B¥- ué)(B*-1lé)T‘C and v its non-zero eigenvalue (the
latter statement is equivalent to the constraint equation).

Now, the only eigenvector of the matrix above, which corresponds
to a non-zero eigenvalue, is B* - uB and thus B* = B. This is
impossible as this value does not satisfy the constraint. Thus,
assuming there is a stationary value other than B* = 0 leads to a
contradiction and therefore B* = 0 is the only stationary value. We

have thus shown that this approach leads nowhere.

5.2.5 Maximising the Expected Length
Consider the constraint in the form (B*-llé)T(l(B* -uf) = ¥ -
We wish to maximise B[Bﬁrc 8*] under this constraint. By the method

of the previous section we obtain
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8% + y(B*-uB) = o

for a stationary value, and this gives

‘!:— -Yu/\— /\_ u ~
R L A

.

Substituting this into the constraint equation gives

AT A
u? B CB = (1+y)2vy
Thus the solutions are
v
& N + T 1
B CB

With the positive sign this agrees with the solution which maximises

the length. It is easily seen that this must be so since, if the
length is maximum for each value of Y, then the expected length

must also be a maximum.

5.3 The Case for which there is No Solution
When the only fixed point of the iteration is B* = 0 we have

%%VT%G . We have already suggested that B* =uf or B” =0

should be taken as the solution according as we reject or accept the
hypothesis B = 0 at about the 50% 1level.

Another argument for using the solution B = uf is that this
gives, in a sense, the closest approach to a solution of (5.2.1.1).
This is the closest apprach to a solution in the sense that it
minimises (B% -IJB)T(Z(B* -uB) - v.

An alternative is to note that, at each iteration, we may write

B? = Bi Bi' If there is no fixed point then we might choose the
closest value to a fixed point in that the derivative of €§+1 with
respect to Bi is unity. Unfortunately this leads to a quartic

equation and as we already have a reasonable solution for this case

we proceed no further. /
Another alternative is to write B% =0, B% and, if we
i+1 i 71
cannot find a solution for which Gi = 1 we maximise Gi. For a
96.
maximum -m?é = 0. We shall omit the subscripts so the quantity to
be minimised is written 2z = = - where
ko,zn + B.. CB“
b £ A~ = A
o?* = Vg2 L (gt - B cg® - B).
H H
e o T o - 2 b3 i~ P 2 % 2 3
(xo?* + 8*Tcp*)chR - 22 g*T e c(g* - B) - 22*TcBcp’

QU

z u

. =
“

|

Now

QL
jos)

(ko?® + g*T cp* )2
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and this is zero when

(xko?* + g*T cg¥)cB = 21—]?- g*Tc Bc(g® - B) + 28%T ¢ Beg*.
This gives B* = hB where
];—"62 + }-‘1?- (h-1)28TcB + 28T cB = 2U—°‘ BTCA(h2-n) + 28" cBh?.
This quadratic equation for h gives
(1 + oo YAhn? = LN )
u u 2p )
Clearly we require the positive root. Now v = %(ulia) X - ufia

and we wish to show that 6 <1 when v < 0. If v < 0 then

fi< 2 +ta)kv and therefore

7 k AY
h* = ITka (a + ET)
x ka " kv uz
u+ka 4(utka) kv(ptka)

. ko p?
T utka L{ptka )?

bka(pt+ka) + p?
4(u+ka)?

(2ka+p)?
T 4(utka)?

_ (+ka)’
- \utka
= =

Thus h > u with equality if v = 0.

Now
) n’ c 8
n28Tc8 + -]gi 8% + k—}?— (h-1)2BT c B

and by the equation for h,

5l - n’ c B
%ﬁéTcé (h%-h) + 28T cB R
i 1
2h(1+}ﬁ) m B
U U
1
<
ko 7ka
P Y ) Y
u( ] T
= 1.

note however that as A =+ 0 , h 1increases. This is not a desirable

property and the solution is not recommended.
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5.4 Stability of Fixed Point Solutions
BT cB

o?* + g4l c gt
1 1

Writing B¥ . = 6B¥ we obtain O = and 6 < 1
i+1 i

if and only if
2% T &% =T | 25
o + Bi CBi - Bi R <0,
. =T % *T | a\a%

T 2% = =
he equation (o“" + Bi CBi Bi CS)Bi 0
was solved in section 5.2. Similar simplification of the inequality
leads to 6 <1 if and only if

(87 -uB) c (8} —uB) - v >0
Thus, if B?TC B >0 then 6 >0 and the iteration converges if
and only if (B? - uB)T(Z(B? -uB) - v > 0. This is because the

components of the successive iterated vectors form a decreasing
sequence bounded below by zero (for positive components - if a
component is negative then its successive iterates form an increasing
sequence bounded above by zero).

Completing the square in the denominator for 6 gives
1 re® - wBiY e (r® - e v 5
o ((8] - wB) C(B] -wB) + w(1-w)B CB + <= (1-w)8%)

ko
H+ka

where w = 2u- 1. Since 0 s w<1 the denominator is

positive and 6 1is continuous as a function of 85% (this is also
clear from the original form of the denominator).

8*T c B
*Tep- =

i+ CR > 0.

Now, if B?TIZB < 0 then R 4
1 B}‘:TCB:': + koz-.': 1
i 2
. . 5 =T . 5 .
Thus, after the first iteration, B” CB 2 0 whatever the starting
value and thus the iteration converges if for some starting value

® < 1. If the iteration has only one fixed point then the limit must

be B* = 0.
[o<]
Furthermore, writing B? = ¢iBg we have
=T . 5 =T . 4
. C o C
R - Bl B % b3 BO B B* e B*
i+1 i o i+l "o

*T & 2 % - 2 ,%T % 2 %
Bi CBi+koi ¢i80 CBO+koi

Thus the absolute value of the shrinkage factor is smaller than

«T .5
Bo CR

«T b3
B CB

(o] (e]

The transfer function from %. to ¢i+1 is shown in the
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graph in figure 13. It is symmetric if o = 0 and almost so for
large values of |¢i|. We have drawn the graph for the case of three
fixed points (if there is only one fixed point then the graph only

crosses the line ¢i+1 = ¢i at the origin).

%:414 P

Pl

-

Pt

¥

Figure 13 Tnransfer Function for Fixed Point 1teration of Bilinear
Shainkage Estimatons

By the continuity of the function, the gradient must be greater
than unity at the middle crossing and less than unity at the others.
The middle solution is therefore unstable and the others are stable.
This is another reason for preferring the positive root in the equation
for Bi (this gives the upper crossing).

Finally note that, after the first iteration, the component of
B? in the direction of R is a shrinkage of B. We see this as

follows. Let Bg = aé + § and let 5rC é = 0. Now

2 *T N
o ¥ 0>i80 CB »
i+l 2 ,%T P 2% o]
¢i80 ¢ Bt:> + %0 i
T T
¢3a’B CcB ) ¢3aB CB
= 8
¢2a2ﬁTC§ + ¢26TC6 4+ ko2 ¥ E ¢2a2§TC§ + ¢26TC § + ko2
i i i i i i il

~

Now the modulus of the shrinkage factor for B is less than unity (but

)
w

note that a = 0 implies Bi =0 if 4> 0).

5.5 Another Fixed Point Iteration

We argued in chapter 4 that we may be able to improve our
estimation of the quadratic expressions in our shrinkage factor. If
this is so then we might find an improved estimator for B by using
an iterative version of the estimators in chapter 4. In that chapter
we suggested estimators of the form ngrc + ao?l for Bérc and
béT(Zg + aB8%?1 for ko? + BT(ZB . In the iterative process to be
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considered we shall substitute B? for ﬁ and 02% for 8% in

these estimators. Thus we take

‘ bBi{B‘;T c+ ao®®*1
B-" - ' - - B
i+l dB:.:T C 8?.6 + CUZ“

3 i

to define our iterative process. There may not be any best values of
a, b, c or d -at a particular step, but some reasonable choice needs
to be made - therefore we should think of these as functions of B?.
However, in view of the complication of choosing these values, we
prefer to keep them fixed but unknown. After finding the fixed points
we shall try to choose these coefficients so as to minimise the risk.
Another problem, which also occurred in chapter 4 , is that the
denominator may vanish if ¢ < 0. To avoid this problem we shall take
b=d and a < c, then we shall set the shrinkage to zero when the
numerator vanishes.

In order to find the fixed points of the iteration we shall, for

the moment, ignore this problem.

5.5:1 Fixed Points
For Bi to be a fixed point we require that
b g**T ¢ + ao?™I

g = B
@ *T b 2%
dg_~CB, + cO

fe. (BT cE* + co?™ ) g* = bg*TcB BF + ac?¥B.

o " Peo
Thus, if a # 0 then B: « B - a result obtained without imposing
any side conditions on our solutions as we had to do with the
previous form of the shrinkage. Substituting the formula for 02*

we obtain

co %T 3 2ca &T » ca AT 2 CV A21,%
{(d+T)BwCBm-(b+ )BwCB"’TB CB+T6}Boo

v
ao =T . % 2a0 % A ad) B . B ad a2
'{Tsm CB, - = B CB+ -8 CB+=—08°}8

Putting Bi = hf we obtain
(@ =2 i - g &2 pieh? @ A 8k
Y] H H
:ﬂXhz QaGXh.{.&X.'..aﬂ
u u 2p
Finally, after simplifying this we obtain

- T s

ca 3 _ 2ca aa 2 ca |, 2a% cVv ao 3y .
(d+u)h (b+_u+u)h + ( +———U+m)h+(u+m)0

which has three solutions for h, one of which must be real. The other
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solutions are comlex conjugates if they are not real. In order to
choose among these roots it seems sensible to use one of the criteria
used in our previous choice of solution. By analogy with that

section we shall choose the largest real root (which is always less

than unity if b = d) or the largest real part among the roots.

5.5.2 Convergence of the Iteration
In order to investigate the manner of the convergence of the
iteration we shall make the assumption that ¢ > 0. We shall relax

this assumtion later. The iterative process is defined by the equation

to
w

- E a
Bivg = Yy By + v B
bs‘;Tcﬁ
where ui = T " = = = =
- v 2 L _/\ ;‘_-_
a gy cBy + 267 + k(B - B) c(g} 8)
DB B el B
and ' = TIJ H - = T %
3 & % eV A2 ca , % ~ % o
c Bi (e Bi B = 8 + (81 -B)c (8i - B)
Now we may write any starting vector Bg as
B§=608 + ¢ 6  where BTcs =0 and 67 cé=BTcE (B + 0).
B':;Tcé
The values of 6 , ¢ and § are 6 = 5
o o o QT‘CB
~ . A 1
8% -0 B) et -8 B)\® .
¢o‘_{ e } and § = 5_-(88 - GOB ).
B CR o
We show by induction that we may write B? = ej_é + ¢. S8 . Assume
this to be so. In that case
Bi+a Yy By + Vi B
= ui(GiB + ¢i6 ) o+ ViB
= (ui ei + Vi)B + us ¢i S .
We thus have the recurrence relation
Oy = U@ * B 0 ™ G -

. . . . . ) £
Thus all iterations give vectors lying in the same plane as B and BO.
Substituting for u. and v, we obtain the following recurrence

relations for Gi and ¢i
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T av .2, ao T
b(8i§+¢i6) cesi i 82+ TT{(91‘1)3+¢15} c{(ei-1)3+¢ié}

i+1 A T 3 CV A2, CQ A T A
d(6i8+¢i6) C(6i8+¢i6) + — 8%+ 7;{(61—1)B+¢i6)} C{(ei—1)8+¢i5}
2 ao 2 ao 2 av
] b8, + T (6, 1)° + 7 o, + ot
2 ca 2 2 ca 2 cV
and
® - b ei ¢i
i+1 2 ca 2 co L2 cV
d ei + T (Bi 1) +4d ¢i + . ¢i + VIS
s
If 6. # 0 then let Y, = =~ so that
1 i Bi
2
v - b %
i+l 2 , ao _4y2 , 806 .2 av
b Gi + g (6i 1)° + il ¢i + s
We shall replace negative values of Gi by zero which means that
i1 and ¢i+1 are also zero if a < 0. If a< 0 and 6i+1> 0

then Iwi+1| > |wi|. Thus if ¢i > 0 then the |wi| form an
increasing sequence and do not tend to zero. Therefore the ¢i

cannot tend to zero and thus cannot converge (zero is the only fixed
value for ¢i). On the other hand, if a > 0 then the b, > 0
and therefore ¢i > 0. If, when a < 0, a fixed point has 6_ > 0
and ¢, = 0 then it cannot therefore be stable. However a modified
process in which we set each ¢i to zero is worth considering. We
may argue, as for the previous iteration, that the middle fixed point
is the only unstable one for the modified iteration (the iteration
needs no modification if a > 0).

We now relax the restriction that ¢ > 0. As suggested earlier,
if the denominator of the shrinkage factor vanishes then so should
the numerator. In this case we replace the shrinkage factor by zero.
This is equivalent to setting ei and ¢i to zero. The previous

arguments are unchanged so long as ei and ¢i remain positive.

5.6 Practical Estimators

In order to use the fixed point estimator of the previous section
we need to solve a cubic equation. This is easily done using a
numerical procedure. If the solutions are all real then we take the
largest root; if two are complex conjugates then we take their real

part or use B: = 0 if we want to accept the hypothesis B = 0.
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5.7 Graphs of Risk Functions for Fixed Point Estimators

Risk functions for the James-Stein estimator and its positive
part version, positive part bilinear shrinkage estimator and the
fixed point estimators were all computed using the formula 6.3.2

which, for the spherically symmetric case becomes

E{%&g v(i2 -v) + (1 +cv) %% ]

¢ v(F) _ p-2 -
— )X , c=55 » ¢

ré(F)

where 8(X,%) (1 =

and the expectation is with respect to the distribution of the usual
F  test statistic for testing B =0 1i.e. F = % Il X|12/S. In

order that the integration should be over a finite range, this
distribution was transformed to a non-central beta distribution using

the transformation U = GHEEBF . The integral was divided into four

ranges, the lower and upper tails and two central areas on either
side of the approximate mode. This ensured more rapid convergence and
made certain that the integration procedure did not miss the narrow
peak which occurs in the beta distribution when Vv or X 1is large.
The procedure used repeated bisection of the interval farthest from
the mode until the convergence criterion was satisfied, and then
repeated the process for the next interval. A maximum of 203
evaluations was allowed in each of the four intervals and the values
of the beta density function were saved for the evaluation of future
risk functions. In certain cases the beta density is unbounded near
U=0 or U=1 so these extreme values were not included in the
range of integration. The range extended close enough to these end
points for an upper bound to the integral over the neglected intervals
to be less than a tolerable error threshold. The central regions
extended to approximately three times the standard deviation either
side of the mean (unless this led to values outside the interval [0,1]).

In order to choose the ranges of integration, the beta density
function was plotted with a wide range of parameter values. On the
same graphs an approximation to the density based on an approximation
to the non-central F distribution given by Searle(1971) and various
points were marked. These points corresponded to the mode and points
of inflection of the approximate density, the transformed inflection
points of the approximate F density, the mean and points one

standard deviation each side for the approximate beta distribution,
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and the transfornation of these points for the non-central T
distribution.

In most cases it was observed that the approximate density and
the true density were almost indistinguishable, and where they
differed visibly the difference was not great. The mode of the
approximate beta distribution was chosen as a cetral value and, as a
measure of width, the standard deviation was multiplied by the mode
divided by the mean. The other curves shown with the graphs of the
density functions in figures 14-19 (which are a selection from the
set of graphs plotted) are the cumulative curves calculated at four
points by two different numerical routines and smoothed by fitting a
piecewise cubic function to the cumulative frequencies and its
derivative. These routines were not subsequently used in the evaluation
of the risk functions.

When evaluating the risk estimate, the derivative of v(F) 1is
required. While this presented no dificulty for most of the estimators,
the derivative was sometimes discontinuous. For the iterated estimators
of this chapter the formula for the derivative of an implicit function
was used.

Initially the cubic equation for the shrinkage factor was solved
using the procedure REALPOLYZEROFINDER in the Burrough's numerals
package. This proved to be too sloww and was replaced by a specially
written procedure which proved to be ten times faster. This procedure
used the well known algebraic solution in the case in which the
equation has two complex roots. For the case of three real roots an
iterative solution, based on the well known trigonometrical solution,
was used. The numerals package was, however, used for the cubic spline
subroutine and for the numerical integration procedure.

The program was written to be used interactively so that
information from earlier plots could be used to help with later plots.
In particular this enabled values for the  parameters in the
estimators to be chosen close to values which had shown promise, and
also enabled the ranges of values for the axes to be chosen interacively.
It was also possible to choose the number of graphs to be plotted per
frame and which graphs to be so plotted. Interactive runs were used in
order to gain experience with the program. Once choices of parameters
etc. had been made the remainder of the computations were done in batch
mode.

The risk function was plotted for seven equally spaced values of
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/A
¢ = ] between zero and three - the number of points and the

range being chosen interactively when the program was run. A cubic
spline was used to smoothly fill in the intermediate values. In cases
in which the risk fluctuates wildly, this cubic spline is a poor fit
and gives graphs which oscillate in the extreme. An aberrant spline
was therefore taken to mean that the estimator was also poor. An
example of this behaviour is shown in figure 27.

ca

For the estimator &(X,S) = (1 -5 )X and its positive part,

the difference between the risk and the James-Stein risk was plotted.
The graph of the differnce between the risk of the estimator in

question and the risk of the Efron and Morris version of the positive
part James-Stein estimator (taking o = min (p—0.66 e

p-2 n-0.66
then plotted. He have already presented these in chapter 2. This

, 2)) was

difference was also used for all the other estimators. The risk for the
James-Stein estimator was found to agree with the risk calculated in
chapter 2 thus verifying the accuracy of both programs (at least when
the shrinkage has zero derivative).

The risk functions for the estimators of chapters 4 and 5 were

plotted for values of p and Vv given in table 4.

Table 4 Values of p and v for which the Risk Functions Have Been

Computed
p 3 3 3 6 6 6 10 10 16 |
v 4 10 20 4 10 20 4 20 40

For each of these values the risk functions of the bilinear

shrinkage estimators %—}—%é;-x for values of a,b,c and d in

table 5 were plotted. On the same graph as each bilinear shrinkage
estimator were plotted the risk functions for the corresponding
iterative versions with o, the weighting factor in the variance
estimate, taking values 0, 0.5 and 1.

As it had been found that changing thg value of u, the divisor
for the variance estimate, had little effect, we kept u = Vv when
running the program in batch mode.

A sample of these graphs is shown in figures 20-49 and a key
to the plotting symbols for these curves is shown in table 6. For
all values of p and v some of the estimators performed comparably

with the Efron and Morris version of the James-Stein estimator, but
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only when p = 3 were any of the estimators uniformly better. In

this case they were significantly better. It is to be noted that only
when p = 3 that the Efron and Morris estimator differs markedly

from the preliminary test level of 50% and this could be an explanation
for the improvement. 1f this is the case then some of the estimators

for other values of p and Vv in table 1 (section 2.2.1) which

improve on the Efron and Morris rule except near the origin, might be

capable of being tuned to give improved estimators everywhere.

Table 5 Values c§ a, b, ¢ and d forn Which Shrhinkage Estimatons
04 Bilinean Type and Thein 1terative Versions were PLotted

a b c d
-P P 0 P
- n
535 P P 0 P
-1 p 1-p P
= =t
P =5 = IP p
n n
Ty P g (2 Fp) P
-Pp P 1-p P
ol
-p P o7 ~ P P
2
-Pb b ng‘P P
n n
o2 P P m“‘P) p
0 P 1 P
1
0 - =
P 5 p
1
0 1
P -5 P
0 j p P
-2
0 e
P o P p
2
_1 o oL
P n+2 p
_ n-2 L
il P n(n+2) P
n
" n-2 p L p

One feature of the graphs is that when the bilinear shrinkage
estimator does well its iterative version usually does well also. This
does not mean that the iterative versions are better although this is

often the case.
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It is not at all clear from these plots which estimator is the
best to use in practice except when p = 3. The Efron and Morris
estimator compares favourably with the more complicated estimators of
this chapter and may be worth considering for its simplicity. On the
other hand, there are estimators of this chapter which sacrifice some
of the saving in risk near the origin to save in risk for larger
values of A . It could be the case that some users would prefer
these. Examples appear in figures 21,22,23,24,25,26,32,37 and Uuu,
Unfortunately there is no consistency from one pair of values of p
and Vv to another in the choice of good values for the parameters

of the estimator.

Table 6 Key to the PRLotting Symbofs in Graphs of Figures 20-49

maximum likelihood estimator

bilinear shrinkage

iterated bilinear shrinkage o =

O, d/0 O

0
iterated bilinear shrinkage o =1
0

iterated bilinear shrinkage o =
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Figure 25 Risk Reduction fon Bilinear and Iternative Bilinear Shrinkage
Estimatons with a=0, b=p, c=p and d=p



15..7]

DIMENSION=-B1S

Figurne 26 Risk Reduction for Bilinear and I1terative Bilinear Shrinkage

DEGREES OF FREEDOM=2204

146

Estimatons with a=0, b=p, c=1 and d=p
DIMENSION-213 DEGRE OF FREEDON~B304 /
24 /
!
1.8, ;
]
/
1l /
/
2. /}'
/
1.a_+‘ !f 'g.f
-2, ] i ,’;" &

-1q

-1.3

-2

Figure 27 Risk Reduction for Bilinear and 1terative Bilinear Shriinkage

Estimators with a=0, b=p, c=

j
i
i
/
]
/
!

V

%—p and d=p




(5. 7] 147

DIMENSION-233 DEGREES OF FREEDOM=2234
24
.31
1}
2.5
[
i -~ = =%
1.8 2.
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Figure 29 Risk Reduction fon Bilinear and Iterntive Bilinear Shrinkage
Estimatons with a=0, b=p, c=1--2% and d=p
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Chapter 6
Risk Functions for Shrunken Estimators

6.1 Introduction
We shall consider the following problem. Given that X o NP(E,OZI)

and S~ % o2 xzn with X and S independent, and given the loss

[(é,i,oz) = o~ 2|| é - “2 we wish to calculate the risk function for
estimators for £ of the form &(X,S) = h(W,S5)X where W = 1-HX“Z.

An estimator of this form will be said to be spherically symngtric. If,
in addition, the shrinkage factor, h(W,S), depends only on the ratio
F = g- then the estimator is invariant to transformations of the form
X > ;X, S + as; a property which we shall call scale invariance.

It is convenient to define g(W,S) = 1 - h(W,S),

v(W,S) = %-F g(w,S) and w(W,S) = v(W,S) - 1 where ¢ = Eég- Lt

-
The estimator &(X,S) may then be written in any of the forms
8(X,8) = h(W,S)X = [1 - g(w,s)]X
= [1 - %a v(W,s)IX = [1 - % &{1 + w(Ww,s)}Ix.

Note We have defined S o %-02 X2n rather than S ~ o2 in because
this allows the case of unknown variance to ba conveniently treated as
a special case by putting S = o2 and formally writing n = =, In
order that the notation be consistent we have defined W = — IX{|2 so
that W~ % xzn(k) where A vk 0-2”5“2. ?

In the next section we collect together some lemmas which will
be useful in deriving some of the many expressions for the risk
function.

6.2 Some Identities Involving Expectations

" The fifst identity is a well known result given, for example, in
Rao(1973) and in Lindley(1965).

Lemma 1 If X 1is a scalar random vagiable for which E[X] exists
then E[X] = a - Ja F(x) dx + J (1 - F(x)) 4dx .

where F(x) is the distribution funciion of X and a 1is a constant.

Proof Integrating by parts we see that

T T T
J x dF(x) = [- x(1 - F(x))]a + J (1 - F(x))dx
a 2
a . [a
and j x dF(x) = [ » F(%) ]—U - F(x) dx
-U J—U
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i (a ML
so that [ x dF(x) a - F(x) dx + J (1 - F(¥)) dx
-U J—U a

+ UFWU) - T(1 - F(T)).

Now T(1 - F(T)) =T { dF(x) = J x dF(x)
J7 T
and this tends to zero as T + « since E[X] exicts.

-U -U
Similarly - U F(U) = - U j dr(x) = I - x dF(x)

- -0

tends to zero as U = «,

The next lemmas are of similar form to this but relate to
particular distributions. At the same time we can calculate the
expectations of more complicated functions than X.

Lemma 2 If X ~ N(£,0%2) and h(.) is absolutely continuous
then Elx h(x)] = EE[h(X)] + E[dd—xh(x)]
so long as h'(X) = é%-h(x) exists almost everywhere and both
of E[XJh(X) and E[h'(X)] are finite.
Proof The density of X is p(x) = A exp{-%0 2(x-£)?}
so that é% p(x) = - 0 2(x-£) p(x) and thus

- 02 p(x) = f(x-£) p(x) dx.

Integrating by parts we obtain

T T T
J (2-£) p(x) h(x) dx = [- 02 p(x) h(x)]_U + [ p(x) h'(x) dx.

-U T J_u

Also E[(X-£) h(¥)] = 1lim [ (x-£) p(x) h(x) dx
0,12 <oy
and E[h'(X)] = lim J p(x) h'(x) dx.
. U,To=/-U
We therefore need to prove that 1lim p(x) h(x) = 0.
x>t
Now J (x-%£) h(x) p(x) dx and J h'(x) p(x) dx
g g

are both finite so that 1lim p(x) h(x) is finite. If this limit is
X
non-zero then we may, without loss of generalitv, suppose that

V x > U, p(x) h(x) > 7 > 0. We then have

4y

T
J (x-£) h(x) p(x) dx = (U-§&) J h(x) p(x) dx =2 (U-g)(T-U)Z.
U U
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Since the left hand side is bounded as T - « it is impossible that
. > 0 since otherwise the right hand side is unbounded.

Similarly, we may show that p(x) h(x) >0 as x> - =,
Lerma 3 If X~ N(£,02) and h(.) is absolutely continuous then,
so long as E[X h(X)] is finite,

E[X h(x)] = £ E[h(X)] + o2 g%E[h(X)].

Proof Differentiating the density function p(x) in the proof of
lemma 2 partially with respect £ we obtain g% p(x) = 5%% p(x).

Therefore E[{X-£) h(X)]

J 02{—3% e TG

= B2 g% J_w p(x) h(x) dx
_ % 9
= g¢ — E[h(X)].

of

The next lemma appears in Efron and Morris(1975). The proof is given
here as Efron and Morris do not prove convergence. This lemma is also
a consequence of (4) below, but that proof assumes that h(.) is
continuous at the origin, whereas this proof does not.
Lem;a 4 If S~ a in (or more generally S ~ y(%n,2a) with n
not necessarily an integer), h(.) is absolutely continuous with
derivative existing almost everywhere then

E[s h(s)] = a n E[h(S)] + 2a E[3 h'(S)]
so long as S h(S) and S h'’{S) both have finite expectation.
Proof The density function of S is p(g) = A s%n_l exp(—é%)
so that é%-(s p(s)) = *n p(s) - %5 s p(s)

and f(s - an) p(s) ds = -2a s p(s).
Integrating by parts we obtain
[ il T it
] (s-an) p(s) h(s) ds = [-2as p(s) h(s)]e + 2a J s p(s) h'(s) ds.
€ €

Dividing the integrals from ¢ to T as the sum of integrals from

€ to an and from an to T we see ihat if these tend to finite
limits as T —+® andas € > 0 then s p(s) h(s) also tend to
finite iimits as s+ 6 and as s > o, If the limits are non-zero
then we may, without loss of generality, assume that they are positive:
if not, consider -h(s). Suppose that %ig s p(s) h(s) = 7>0 so that

there exists U > an for which Vs > U, s p(s) h(s) > 1

T T
and f (s-an) p(s) h(s)ds 2 (U - arl)f p(s) h(s) ds
U U
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T
é ds.
U
Similarly, if lig s p(s) his) = 7>0 then 3 8§ < an
£

such that VvV s < § s p(s) h(s) > 1

which is greater than or equal to (U - an) 1 J

) S
and J (an-é)Ms)h@)dsz(an-é)Jxﬂs)hw)ds
€ - €
§
2 (an- 9§) ZJ éds.
€

In both cases the right hand sides converge by assumption. This
contradicts the assumption that the other limits are non-zero and
proves the lemma.

The next lemma collects together some results for the multivariate
normal distribution whicharemostly generalisations of lemmas 2 and 3.
We shall not find all of them directly useful but, in the order given
the later results are derived from the earlier ones. The first result
is quoted in Efron and Morris(1976); the sixth is adapted from
Stein(196¢€).

Lemma 5  Suppose that X'LNP(E,czl) and h(.) 1is an absolutely
continuous row vector (or scalar) function independent of £. Suppose
also that in each of the following expressions the left hand side is
finite and the last term on the right hand side exists and is finite.
(In expressions involving derivatives of h with respect to X this
implies that the derivative exists almost everywhere). The following
results then apply:

(1) E[X h(x)] = £ E[h(X)] + o2 E[g% h(X)]

(2) EIX h(X)] = € E[R(X)] + 02 == E[L(X)]

3
(3) ElX n(0) = o2 e 2{e* Eh(0]} where ) = %;zllallz

12

(w) E[X n(|[x||3] =gEln(||x]|2] + 202Eix h'(||x]|3]
() Elx h(|ix[|2] =€ ElaC[|x 2] + &3 Eln(]|x ||3]

() Elx n([x]12) = & ™ B {e* Eln(|x ||2]}

(75 E[|x||?h(x) ]

(8) EL]| %2 n(||x |3

§MXhmH-+p&Emun+<#EM2%huﬂ

£"Elx h(||X ||2) + po? E[n(||X[|»)]
+ 202 E[x]|2n'(]]x]|D].

Proof Note first that if any of the above results is true when

h(.) is a scalar then it is also true when h(.) is a row vector.
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We see this by applying the result to each component of h{.). Writing
Ei for the expectation with respect to Xi (the i th component of X)
we have, by lemmas 2 and 3, for scalar h(.):

= 32 _l/ -
Ei[(Xi - Ei)h(X)] =0 Ei[axih\x)] = [h(X)]

jL
E.
Thus, on taking expectations with respect to the other coordinates we
have,
E[(X; - £)h(X)] = o? E; [ = h(X)] = o? EE-E[h(X)]
thus proving (1) and (2). “

Now, for any function f(¢), differentiable with respect to &,

- 9x A A3
gz{e f(e)} = 3¢ © f(g) + e T Be)
S e WD + B 2 7 £(e).

Since E[h(X)] 1is a function of ¢ differentiable with resect to &,
(2) and (3) are equivalent.

Now suppose that a function f(yl, ..,yp) depends only on the length

of y = [yl,...,y ] . Taking polar coordinates 1r,8 where

= [81,...,6p_1] we obtain
(a) a8 &l & B PO since B2 =
dy ~ dr 9y 3y 38 oar 3y 08 ’

Applying this to h(llX”z) which depends only on the length of X we

have e n(lx13 = 2 ondx) = 2xonrckip
and so (1) implies (4).

Also, || X ||? has a non-central x2 distibution which therefore
depends on & only through || £]F= 2 62 and so E[h(|[x|f)] depends
only on X and we may apply (a) to obtain

2 A 3 2] = 572 A | 2
E[h(” X |P)) = ag = E[n(|| z[|)] = £ == Elh(]| x [|*)]

and so (2) implies (5).

By the same argument (3) implies (6) or alternatively we may show
the equivalence of (5) and (6) in the same way that we showed the
equivalence of (2) and (3).

Writing XT h(X) instead of h(X) in (i) we obtain

E[X X' h(X)]

SELE hGD] = o2 E[ﬁ%-(XT h(x))]

"
ad]

E[XT h(X)] + 021 E[h(X)] + o2 E{é%—h(x) X3
[+]

for h a scalar function of X. Taking the trace of both sides of this

expression proves (7).
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We may now prove that (7) implies (8) in the same way that we
showed that (1) implies (4).

One final comment on the proof is necessary. If E[X h(X)]
is finite then so is E[h(X)] and if E[||x]|2h(X)] is finite then
so are E[X X' h(x)], E[X" h(X)] and E[h(X)].

We may now prove some similar results for non-central x? and
F disributions (the degrees of freedom not necessarily being integers).
They are more complicated since the derivatives of the density functions
are related to density functions in the same distributional family but
different numbers of degrees of freedom. Since these densities are
mixtures of the corresponding central densities, we may also derive
expressions relating to expectations with respect to the mixing
distribution which is Pocisson with parameter ).

We first make some remarks concerning the notation for these
mixtures of distributions.

Suppose that T 1is a random variable and for each t there is
a random variable Xt . If w(t) is the density function of T and
pt(x) is the density function of Xt then the joint density
pt(x) m(t) is the density of a random variable (X,T) where the
conditional distribution of X given T = t is pt(x). The marginal
density of X is f pt(x) n(t) dt. We use the notation X, for a

T

random variable with this density. The random variable XT is defined

as follows: vbserve T =t from the density m(t) then observe Xe

from the density pt(x). This variable may be thought of as a mixture

of the Xt random variables with weighting function m(t).

2
X p+2K
variable with a non-central xzp(A) distribution where K has a

With the above notation we may write for a random
Poisson distribution with parameter A. A similar remark applies to
the unweighted non central F distribution (i.e. the ratio of a
non-central x? distribution to an independent central NG
distribution - not divided by their degrees of freedom) which is a
Poisson weighted mixture of unweighted central F distributions.
le may now state and prove a lemma concerning central and
non-central ¥2 distributions.
. 2 = 2 Y . pm
. . W. ~ § t if K
Lemna 6 If U. " ax p+2i * 1Ty l(n) hen, has a

2
Poisson distribuiion with parameter A , Wi = Ui+K and

(9)  EMU} n(u)) = &+ 13 (2a)aE[h(Ui+a)] if either side is finite
A3

)] .

7 . A .
(10) L[n(wi+1 e {e" E h(wi)}

al
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(11) E[wi h(Wi)]

(p + 2i) aE[h(¥. )] + 2aXxE[h(W, )]

it2
~ s T X - 1 -
(12)  E[X h(u, 3] = AElh(U, , )] = XE[RGW, )]
Proof Let the density function of Ui be p? (u) and let the
density of Wi be pi(w). These densities are given by
D
u 2Pt 1exp(— %L) o Kk
o Za -2 v A o
p. (u) = and p.(w) = e " ) ~p.:., (W
o 143 i k;Ok' i+k
(2a) P r(pti)
and the joint density of U, and K 1is given by
2 i+K
N = o"AA O
pi(u,k) =e 5 pi+k(U)'
Since U® p? (w) = (2a)” (%p+i)a p§+a (u) we have
E[US n(u,) 1 = J u? h(u) pS (w) du
1 1 1
0 oo
- - a L ° / (o] \
= (2a (2P+l)a JO h{u) Pi+a (u) du
= & s rs
& (26) (2p+l)0. El“(Ui+a)]
which proves (3).
Now e_;\——a-{ » E[h(w Y1} = 'A—;-’—{of A mh( ) po.. (u) du}
3K e ﬂi J = e %) k_ok—: o u p.+k u u

"
[5p)
=
~
=

which proves (10).

Also  E[W, h(w,)] u h(u) p;_k (uw) du

(c>)

"
o
1
>J
e~ 8
x| >
-l =
—
o 8

(2a)(%p+itk) h(u) p? (u) du

i+it+k

=
nr-~1¢ N8
(@}

o

~ . o b} O -
(2a){¥%p+i) n(u) p. (u) du
4

o . +k+1

-_— I (2a) h(u) p,
S (0

+ =

1+'a+1 (u) du

. -2 i A
= ! ) al r /w. 8
\p+1.l) Elh\ )] T 2a A e _al{e E[h(wi+1)]}

= {p+2i) aE[h{W, )] + 2a)\E[h('w'i+,,)]
<
Proving (11).



[6.2] 165

k"°°

3 = e Y LY J h(u) p§+k (u) du
= 0

Finaily, E[K n(Ui+ T

K

C

)]

E[h(wi+1)] = E[h(Ui+1+K

proving (12).

Note that by (10) 2

. \1= \ _ r
= E[h(wi,J E[h(wi+1;] Elh(wi)]-

The next lemma refers to the unweighted F and non-central F
distributions, or to multiples of them. We note that an unweighted

Fm n(A) distribution is the same as an inverse non-central beta
9

distribution with parameters %m, % A

n and non-centrality parameter A,
and whose density function is

EE-T 1 ok-1
p(u) = e Il
k=0 """ B(Camtk,%n) (1+u)

Lmt¥n+k

Lemma 7  If Fij v a BAXp+i,kn+j) then

0B (Gsp+i)  Cant])

s a -B = o-8
..(a+F.. .. = a — . .
(10) E[Flj(a l]) h( 1])] (”épi'!in"'l‘i'])s E[h(Fl+G,j+G—B)]
;’ 1 3 = F " e 1 -
If Gij a (3p+i,%n+j, ) then Gij Foai,4 wherre K has a

Poisson distribution with parameter A and |
8 TR0 By
a° B E[(Q +1+K)a(2-+])

a-8 w(F
L (%p+%n+i+j)6

I'4 \ a —B n N o
(14} E[Gij(a+Gij) h(uij;] = i+a+K,j+B—a)]' ‘

Proof The probability density of Fij is given by
o a%n+j u%p+i-1
p:.(u) = s —
ij B(%pt+i,ent+]) (atu) PHEHiH]
a {1 . 1 - e
Therefore ————— p?. = Bljp+1+u,4n+1fg_z) §+a 4B (uw
(atw)” 1 BCprim+i) a 2
I]/ . 11 -
_ o8 x2p+1)a\4n+])s_a o )
(%P¥%ﬂ+i+j)8 pi+a,j+8—a ‘
It follows that
~a 1 TR 1 o
F.. _q (spti) CGm+j), (=
E| —3— n(r, |- B i B“fhm)p‘? . (u) du
(a+F..) ij (%p+@n+1+]}8 o ita,j+B-a
Proving (13). ok
e . . N -A A o
T i 3 = T .
he probability density of Gij is pij(U) e kz T pi+k’j(u)
lkk o
and the joint density of (Fi+K,j’h) is pij(u,k)= e FT.pi+k,j(u}'
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Therefgre o
[ €35 FieK,5 |
TV I BN |
, = \B 1] B +}\:]
\a+bij) (atF, +K,j)
. r(3pt+i+K) (%m+])
= Ee h(F, . ) K]]
(§p+§n+l+j+K) ita+K,j+B-a’ ']}
%p+1+K)
( +j) [(§p+%n+1+j+K) h(Fi+a+K,j+B—a)]

proving (14).

6.3 An Unbiased Estimator for the Risk
We shall denote the risk function of the estimator &(X,S) by

RG(E,OZ). The following theorem generalised from Efron and Morris(1976)
gives a formula for the risk of 6(X,S) = (1 - %-é v(W,S)) X 1in terms

of W and S.

Theorem 1 If v(W,S) 1is absolutely continuous with partial
derivatives existing almost everywhere, if c = E—é = %i% and if
each term under the expectation operator in the right hand side of (1)

is finite then

(1) R(g,0?) = p-ua{ [%P—;ZV(Q—V) y W - cus 3‘1}]

oW aS
Proof We may write
Rg(£,0%) = o7 E[“(X -5 - ”2]
i 2.2
: E{O 2|ix-gi|2- 2077 £ X (x-8) + %——HXHZ]

Now using (7) of lemma 6.2.5 appiied to ¥= X - £ (which has zero
expectation) and taking h{Y) = 672 we have the well known result
that E[o72 ||x-€{|2 ] = p.

Using (8) of iemma 6.2.5 where h(X) = B;F and afterwards taking

expectations‘with respect to S we obtain

=2 X T — = X > Ny 2 a i

0T2E [z X (x-0)]= p E[E[F|S]] + A:[}:[ x|l WF}IS]]
(%)

aw F
v 1 X r1 ov
pE[F] 2 QE[?J + 2ELp W aw]

D E[% ] + 2E[W ==

where the second equality is due to the scale invariance of the

operator y 7= and the third is due to the fact that

9y
9 VvV a ,Sv, _ oV Sv _ W av v
PP v "W " wSFWHm O §°
2 UijZ 2 2
Fi i G 1 } = = i c :-9.-
Finally, using lemma 6.2.4 with h(S) et T and a =

and taking expectations with respect to X last we obtain
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o2E L |lx [12)

|
g
9
I
N
92}
el
"
1
~
ap]
~
Q
Hj d
N
w0
3}
d
d

T 38 °F
cp 2] + Y%y o+ MY Y
= B S B’ T W= 5

The last equality follows from the fact that

Si(ﬁ)zsi(v28)=8v2+ 25¢ , 3v
05 T aS W W W oS
v2 2v v
5 2= L ESaEE
|3 F 9S
Combining these terms together gives
R6\£,G ) = p - Ela(p 2'? {2 b2 v+ < W =

- EEEE)L.S v
nr 9S8 ° °

This is true no matter what value we take ¢ to have. It is convenient

to take ¢ = Bég-ﬁgf and c¢ = %-é in which case
r ” 1
22 Y = 1 p_é ’ . SV BV
=p-U £ - £ 3 gl o
R.(E,0) = p & E[?{ 5 v{2-v) + W T cvSs 55 JJ

Note that, for the proof to be valid, each term must have finite

O

expectation since the proof calculatedthe risk as the sum of the
expectations of several terms.

Remark If a = %;- then lemma 4 remains formalily true when n = «
and S = 02 since % X2n converges strongly to 1 as n » «. In this
case the last term is zero (if h'(g2) exists) so that, in the theorem,

¢ = 0. This gives the formula for known variaiice

Rg(£:0%) = p - e E[%{Ei‘?' v(2-v) + W %}]

We will now express the risk function in terms of F and 8.
This will be seen to be a special case of the transformation
v = wsP ¥ = B8 phese det[3 g’]*o.
We let v represent the value of the function uccurri;g in the
shrinkage factor so that we may write v(U,V) = v(W,S) and use

subscripts to demote the variable held constant in partial derivatives.
h!

(2 ISR LA MU A
N aw | _ |3W 3w 30 B W W 30
we have = =
3 U v || B PR A | -
3S BSI 08 3V S S 3V
therefore W(éz) QU)o+ YV al)
oW’ 5 30 V VU
3 53V (SY v(3¥
e 538 BUGGRy + SV(5p)y
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This gives the risk function in terms of U and V

R(£,02) = p - 4 }:[%{P‘—? v(2-v) + (a——Bcv}U(%)

. + (s e v v (2 }]

v aV

As this does not involve & or o2 explicitly this provides an

unbiased estimator for the risk

B oo s -2 - ov ) ) v
Ré(u,v) = p - 42 F{% v(2-v) + (o.-Bcv)U('E\E)V + (Y—(‘Suv)V(a—V) }

If we define r (£,02) = {L-(p - R (£,02))
v <+C )
1 a
and ?6(U,V) 1= (p - R {U,V))

then these give the scaled reductioun in risk over that of the

maximum likelihood estimator and an unbiased estimator of this quantity.
we are particularly interested in the result of putting U = T,

and V=S givenby a=1, B= -1, y= 0 and & =i. We quote the

result as a theorem.

Theorem 2 If v{F,3) 1is absolutely continuous with finite partial

derivatives almost everywhere, if c = %-é ‘-Ei%— and if each term on

the right hand side of {2) has finite expectation then an unbiased

estimator for the scaled reduction in risk over the maximum iikelihood

estimator is given by

- _ A rp—2 _ i OV - oV
(2) f’afr ,S) = ?"l_u"‘ v(2-v) + (1+ cv)F IF (CAVAES '5-5}.

{The special case in which v 1is independent of S - except for the
dependence on S implicit in the dependence of v on F - was given

in Efron and Morris{1976)).

As an application of this result we take v = t so that we have

- 1p-2 ..,
ﬁa(F,S) a5y t(2-t)

which is positive if 0 < t < 2 with a maximum of %&3 at t = 1.
Thus we may achieve a uniform reduction in risk by using this estimator
which is the.James—Stein estimator. In chapter 7 we shall show that there
is no spherically symmetric estimator with uniformly smaller risk
estimator than the James-Stein estimator with t = 1. However, we shall
see in the next section that the positive part James-Stein estimator
does have uniformly smaller risk than the unmodified version. This
demonstrates that we need more powerful results to prove some
domination theorems.

Remark Efron and Morris(1376) showed that when v depends on F
aione the unbiased estimator of the risk is unique. We shall show that

the same is true in the more general case considered here. This follows

from the completeness of S as a function of o2 and from the
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]
completeness of W as a function of A. Suppcse R (F,S) 1is another

unbiased estimator of the risk. We have

BIR (EL8Y - R(By30) = BIRWEISY) = ELR(EE)]
= R(£,0%) - R (g,0%) = o.
Therefore
t % A
E[R (F,S) - R(F,s)) = E[E[R (F,S) - R(F,8) |W}] = o

whlch by the completeness of W (which is independent of S), implies

E[n "(F,S) - R(F,8) |W] = o almost everywhere.

6.4 Explicit Expressions for the Risk

We shali first calculate the risk in terms of W and S. This
will be done in terms of the shrinkage factor h as well as in terms
of g and wv.

2 the dependence on

We note that the risk depends on A and o
& Dbeing only through ). We shall henceforth write the risk as R(),02).
We then have the foliowing formula for the risk:
R(A,02) = o 2 E [|ih(¥,83% - & {|2]
= o2 B[ ||X ||2n2(W,8)] - 20722" EIX h(W,$)] + o~ 2 || ||2.
Now, by 6.2.6 and by 6.2.10,

E[Xh(W,5)) = € ¢ g%-{ex E(L(W,s)]}
=I5 E[h(wl,S)]
where W. 23 2 ) and in particular W =W WV 23 2 )
i o) X pt2i < b o *® 1 p X p+2 :

Thus we have
(1) R(r,02) = po 2 E{W h?(W,S)] - UAE [h(Ww ,S)] + 22,
Substituting h = 1-g in (1) gives
(2) R(2,02) = po 2 E[W - 2Wg(W,8) + Wg2(W,5)] - 2x + 4 Elg(W,,8)]
and since E[W] = E;-(p+2x; by €.2.11 {or by a well known rcsult)
we have
{3) R(A,02) - p + po 2 E[Wg(W,3){g(W,s)-2}] + H-AE{g(Wi,S)].
Using 6.1.1 again we obtain
() R(A,02) = p+po 2 E[Wg{W,s){g(W,s)-2}] + 2po 2 E[w_lg(w_l,s)]
- 2(p-2) Elg(w,s)].
v v S

Substituting g = - we obtain
2

ot

(5) R(A,02) - p+PT E[— v2(W,3)] - 2(p- 2)6}:[: v(W,S)]

+ —ﬁ%—-{E[Sv(W_l,S)] - E[sv(W,3)]}
which we may write as

~2 2
(6) R(A,52) = p + ELr— E[—V\ W,5){viwW,5)-2}] + 2&%3— E[%-V(W,S)]

- 2(p-2) éE[%-v(W,s)] + géé- [Elsv(w P s)] -Elsv(w,s)1}.
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Applying the central case of 6.2.11 with 1 = 0, n and =
2
substituted for p and a respectively, and putting Si ~ %’in-zi
we obtain
a2 _[s? S
(7) R(A,02) = p + Po—;- ELw—v(w,S){v(w,s)—z} + 2p 8%E w v(w,si)]
- 2(p-2) &E{% v(w,S)J B {E[s v(w_i,s)] - E[S v(W,9)]}.
Applying the same formula once more gives
=32 Si Sl
(8) R(X,02) = p + pC E[—ﬁ.- V(W,Si){v(W,Sl)—Q}] + 2pé2z{—ﬁ- v(w,81>J

S 1 ~
- 2(p-2) éE[W v(W,S)J + 2pc{E[v(W_1,81)] - }:[v(w,sl)]}
which is an interesting result sice it does not contain A or o2
explicitly and shows some simiarity with the unbiased risk estimator of
section 6.3. This expression does not however provide an unbiased estimator

for the risk since it contaius S1 and W_1 which may only be transformed

to S and W by transformations involving unknown parameters.

Using €.2.11 again for the cases i =0 and 1 =1 gives

(9) R(A,02) = p + (p-2) &o0? E[% v(W,SQ){v(W,SQ)—Q}]

. Btpado2dal L _ i

+ 2(p-2)o {E[S V(w—l’SQ)] ELS V(W,SQ)]}

2 2
~2r1 i 1I

+ 2(p-2) ¢o {E{W-V(W,SQ)] - E[w-v(w,sl)J}

which, by rearranging terms may be written

(10) R(A,0?) = p + (p-2) éOjE[% V(W,Sl){v(W,Sl)—2}]

bad 1 P4

+ (p-2) 602{5[%-v2(w,82)] = E[%-v2(w,sl)]}.

Now let K have a Poisson distribution with parameter ) and let

. staimye2d el Lo gL
+ 2(p-2)o {E[52 vi{W A,Sn)] L[S2 V(W,SQ)]}

u, = %; X2p+2i . We then have U, . " %; X p+21(A) and from (9) we obtain
(11) R(X,0%) = p + (p-2) &o? [%r v(U,,5,){v(U,,8,)- 2]]

+ 2(p-2)o { [%T (UK_l, ] 3[12 v(U ,S )]}

+ 2(p- 2)00{[%— ] E[%— v(G,,S )]}

whiie from (10) we deduce
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(12) R(A,02) = p + (p-2) &c [ S {v (U, sl)-z}]

U
Yag2dell o _pll
+ 2{p-2) &o { [52 K 1,82)] B[52 v(UK,SQ)]}
+ (p-2) 502{5[%_ 2(UK, 2)] - E[%;_vz(uK,sl)]}.

Computing conditionally on K and taking expectations with respect

to K last and using 6.2.9 we obtain

[

(13) R(A,02) = p + piiElﬁégé%K v(U S ){V(UK—l’SQ)_Q}J

K-1°"2
2 ™ -'2 N 4
+2pe L[Ef%:gi {v(u, ;.80 - vlu, .8}
sl S =
+?I)C{H[V(UK_1,31)] E[V(UK,SI)]}

from equation (11) using the form of the third term occurring in (8).
Similarly from (12) we obtain
= -2
(14) R(A,02) = p + pCE[E-—EQ_Tz-}? v(Uy 4,8 ){V(UK 1,81)—2}]
~[_p-2 2 e Y - v2(U
+ PEL s V(U 48 - v (UK-l’Sl)}]

+ 2pe{E[v(U )] - Elv(u,,5)1} .

K-1°51
In Efron and Morris(1976) a formula for the risk is given which
only applies when the shrinkage is dependent only on F. It may be

derived from (1) using 6.2.12 and 6.2.13. The expression is

(15) R(,02) = E[(n+p+2K)

h2(F) - 4Xh(F) + 2K].

= t B
P

Some of the abuove expressions for the risk have been given before
in the case in which h depends on F alone and a few have been
given in the general case. The following articles contain expressions
similar to fhese, however, they are all written in a form which makes
explicit reference to K. The articles are: Alam(1973), Stein(1966),
Baranchik(1970), Strawderman(1971),(1973) and Sclove, Morris and
Radhakrishnan(1972).

Another expression valid when v only depends on S may be
derived either from (8) or from the risk estimate. The latter is
easier but makes unnecessary assumptions about v. We first give that
derivation and then check the result using (8).

From the risk estimate we have

R(A,02)-p _ 4 _[1 -2 dv
_.__..5%...._2_ BE[?{P—“— v(v-2) - (1+CV)FE }]

_ ¢[p-2 v(v-2) g d .

= El. 3 = - = Bl (1+cv ).
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Integrating the second term by parts and noting that
dp(F) _ p _
dar 2 {P-1,1(F) Po,1

function of Fij , we obtain

(F)} , where pij(F) is the density

_____BR“H;Z)' - }:[P-;;Q-Z‘—"F-‘—?l} - fc-[umv)?p(r)];’
+ é% J: (1+c v)? dpég) dF
= E[B;Z V(§:2) ] + %-E 1,1[(1+cv)2]— %'Eo,l[(1+°V)2]
fjeshgziéggllﬁ- - E{Rég piv=2) ] + By 4l2v] - B ,[29]
WE, Il =e 0’1[\a"']

where Ei j[.] is the expectation with respect to the probability
b

distribution of F.

il
Now the expression in {8) may be written
2
R(A,02)-p _ v(v-2) | . .
55 2 EO,1 = J+ E_1,1[2v] E0’1[2v]

= 2v 2—2 2v
¥ CE&J[F] P E[F]

2
cep Y] R2 g2 =
¢ EO,l[ 3 ] > E[ 3 ] + 5_1’1[2v] Eo’l[2v]
2 2
p=e [v2-2v ] ov] - =
> E[ F | + E—l,l[ v) EO,l[QV] + & EO,i 3
" E 23
p LFL’
This is equivalent to (16) if and only if
= Vz- E—2 V 2 2
Eo,i[?’_ -5STEF) T e By v -2 E DV

Putting a = %p and B = %n this is eqivalent to the equation

[B+aF o] _ 8+1 [v?] 2
Bo,ailar V) =5 FF) * BVl

2

Now when v does not depend explicitly on S we may integrate with

respect to F alone. The condition is then equivalent to the

. B+aF _ B+1 . :
equation  ——= 0’1(F) = =% p(F) + p-l,l(F) which can easily be

checked by writing out the density functions which are of the form

(F) i a+188+j Fa+.1—1
“B(a+i, B+]7k8+a?)

-2 o - JOUE
— F, (atB+ 30+l j—= ;
a+B+i+] S 1(° Bia+ige 138%aF A3
the result following from a recurrence relation for the confluent
hypergeometric function.

Another interesting expression was given by Stein in the

discussion to Efron and Morris(1973b). This is a forerunner of
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Stein's (1973) unbiased estimator for the risk. The formula is
3
E[]| Xtzx log g(x)-€ ||2] = p - El]| 53 log e(xX)|P- (x) E g<x)]
3= 1
valid when o2 = 1.

A similar expresion, namely
E[|| X - h(x) - £ [|3= p + E[|| () [|2] - 20% tr Elzy ' (X)]

may be derived from 6.2.1.

In section 6.6 we wish to derive some sufficient conditions for
domination of one estimator over another. These conditions include a
condition under which E[X] < E[Y] for a pair of random variables

X and Y. The next section therefore considers this problem.

6.5 Some Inequalities Concerning Expectations

The following two lemmas give alternative sufficient conditions
for the inequality E[X] < E[Y]. They are standard results.
Lemma 1 I1f X and Y are random variables, jointly distributed such
that P(X <Y) =1 (i.e. X is stochastically less than Y) then
E[X] < E[Y] and if h(.) is an increasing function then

E[h(X)] < E[h(Y)] if both sides exist.

Proof Writing E[X] in terms of the joint density and noting ‘
that the contribution to the integral from the part of the space for
which X2 Y 1is zero we have E[X] = f X dPXY(x,y) and similarly,
X<Y
E[vY] = [ vy dPXY(x,y). Since over this subset x<y the result
X<Y

follows. The same argument may be applied to h(X) and h(Y)

viz: E[h(X)] = [ h(x) dPy (x,y) <

<Y X <y h(y) 4&p

XYx,y)

since when .x<y, h(x) < h(y). Alternatively we may apply the theorem

to H = h(X) and K = h(Y) {or which P(H<K) =

Lemma 2  1f a random variable X has distribution function PX and

Y has distribution function PY and if Px(u) > PY(u) for almost

all u, then E[X] < E[Y]). Also,if h(.) is non-decreasing then
E[h(X)] = E[h(Y)] with strict inequality if h is strictly increasing
on a set which has non-zero measure in both X and Y. These
inequalities apply so long as the expectations exist.

Proof We have
E[X]

J ) X dPX(x)

0
L)

. J_m Px(x) dx + JO (1—PX(x)) dx.
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This follows from lemma 6.2.1. Using the assumed inequality for the
distribution functions we obtain

oo

0
E[X] < -J PY(x) dx + J {1 - PY(x)) dx
—00 0

J—m y dPY(y)

E[Y].
If H=h(X) and K = h(Y) then P_(u) > P.(u) = P, (v) = P (v)
X Y H K

where v = h(u). The ineguality is strict if, for some set of non-zero
measure bounded above by u, h(x) is strictly increasing. Applying
the above proof to H and K we have E[h(X)] = E[h(Y)]. Strict
inequality clearly applies when h 1is strictly increasing on some
set of non-zero measure in X and Y.

Note that the result of lemma 2 depends only on properties of
the two marginal distributions and not on any assumed joint distribution
of X and Y. However, we shall show that if X and Y are jointly
distributed such that P{X < Y) = 1 then Px(u) > PY(u) for almost
all .

Firstiy, PY(u) P(Y < u)

= P(X< YAY<uvX2YAYc<u)

= P(X<YAY<u)+P(X2YAY<u

= P(X<Y)P(Y<u|X<Y)+PX2Y)P(Y<u|XzY)
=P(Y<u|X<Y)

P(X < u)

Secondly, Px(u)

P(X<YA Y<uv X<uA Y2uv X<ua X=z2Y)

P(X<Y A Y<u) + P(X<u A Y2u) + P(X<u A X2Y)
2 P(X<YA Y<u)
= P(X<Y) P(Y<u|X<Y)
= P(Y<u | X<Y)
= PY(u).
The inequality will be strict if P(X<u A Y=2u) > 0.

Since the condition Y 2 u 1is independent of X this condition
is equivalent to P(X<u) P(Y2u) > 0 which is true if and only if
P(X<u) > 0 and P(Y2u) > 0. This proves the result.

For the reverse connection we need to make some assumptions. It
is not true that if PX(u) > PY(u) then X 1is stochastically less
than Y. It is true, however, that Px(u) > PY(u) impiies that there

exists a joint density of X and Y with PX and PY as the
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marginals for which the result is true. To prove this note that,
given a variate X with distribution function Px(.) we may define

a random variable Y such that PY(Y) = PX(X) at points where Py
is continuous. At points of discontinuity we choose Y = inf 2Z.

PY(Z)zPX(X)

This makes Y functionally dependent on X and it is easy to see
that P(X<Y) = 1. .
In the next section we shall use lemmas 1 and 2 to prove some

theorems on domination of estimators.

6.6 Ordering Among Estimators

2
If S~ 2—-x2

X = (u) for

then, for i < j, Pq (u) > PS
i J

all wu. This is easy to see by examining the density functions.

n+2k

Alternatively we may easily define a joint density for Si and Sj

with PS and PS as the marginal distributicn functions. We do
i ] 2
this as follows. Let Uk k =1,2,...,] be distributed as %T x%.
it
The joint distribution of S, and S. given by S, = z U, and
. 1 3j 1 k=1 k
Sj = Uk will then be such that Si is stochastically less than
k=1

Sj and Si and Sj have the required marginal distributions. A

. s - . _0_ 2 .
similar result applies to Wk N = X p+2k(.X). In this case we take

u, o2 |2 () d il = j

1 D X4 an Uk v D X%y KIE 2PF3h. = 5l
The next theorem is a generalisation of a formula in Strawderman

(1973) which in turn is a generalisation of a formula in Baranchik

(1970). Our proof is simpler than that given by Strawderman.

Theorem 1 If ¢ =v(W,8) =2 and v(.,.) is a non-decreasing

function of the first variable and a non-increasing function of the

second then, with the notation of section 6.4, &(X,S) is a minimax

estimator for €.

Proof We need to show that the risk for 6(X,S) is less than

P since the maximum likelihood estimator, whose risk is p, is

minimax. In 6.4.9 the second term is negative or zero if 0 s v s 2,

Since w_1 is stochastically less than W the third term is negative

or zero if v increases with W. Finally the last term is negative

or zero if v 1is decreasing in S since S2 is stochastically

greater than Sl'

An alternative proof, valid only when the risk estimator exists,

is even simpler. From 6.3.1
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R(S(),o?-) = p - uéE[%{EﬁE—V(Q—V) + W 2—; -cvSs %}]
and under the conditions of the theorem each term under the expectation
operator is negative or zero.
Corollary 1 (Strawderman's theorem). With the notation of the theorem,
if v 1is written as a function of F and S, 0 svs=2 and v is
non-decreasing in T and non-increasing in S then 6(X,S) is
minimax.
Proof Writing v(F,S) = v(g,S) we see that, for fixed S, v is
increasing in F implies that v 1is increasing in W while, for
fixed W, v decreases in S under the conditions of Strawderman's
theorem. Thus the conditicons of Strawdermans theorem imply the
conditions of theorem 1 and the result follows. (Again under more

stringent conditions, this result is deducible from 6.3.2, i.e. from

Rg(A,0%) = p - “GE[%{L;E v(2-v) + (1+ cv)f‘—%:- - cvs g—g}] ).

Corollary 2 (Baranchik's theorem). If v inthe theorem depends only on
F, 0svs=2 and v is a non-decreasing function of F then
§(X,S) is minimax.
Proof This clearly follows from Strawderman's theorem as a special
case. Alternatively, v(F) = v(gJ is clearly non-decreasing in W and
non-increasing in S and the result follows from theorem 1.

Another inequality was given in Stein(1966) and we shall in chapter
7 that it cannot be proved using only the unbiased estimator for the
risk. We shall give a slight generalisation of the result as a theorem.
Theorem 2 Let 6&(X,S) = h(W,S)X. If h(.,.) is negative on a set of
non-zero measure, then, under the assumptions of section 6.4, the
estimator 6+(X,S) = h+(W,S) X , where h+(W,S) = h(W,S) if h(W,S)>0
and h+(W,S)'= 0 if h(W,s) = 0, has smaller risk than &(X,S).
Proof In 6.4.12, if h 1is negative then the first two terms may
be reduced by replacing h by zero.

We now wish to find classes of estimators known not to be minimax.
One obvious such class is obtained by adapting the conditions of
theorem 1. If v(W,S) s 0 or v(W,S) 2 2 and if v(.,.) is
non-decreasing in the second variable and non-increasing in the first,
then &(X,S) is not minimax except %n the trivial cases v(W,S) = 0
or v(W,S) = 2.

Another condition has been given by Efron and Morris(1973a) for the
case in which v depends only on W. Their result is that if v(W) is
non-decreasing and if v(W) > 2 for some W then as § » « the risk

is greater than p. This result was proved by using a prior density for
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(derived from a normal prior distribution for &,

£ v N(0,72)) and showing that the Bayes risk for this prior is
greater than p. This turns out to be equivalent to showing that if
WA~ a XI2> then, for large a, E{-(—P:ﬁz-zi v2(W) - QV(W)] > 0. Efren
and Morris do not prove the latter assertion which in fact holds
under more general conditions on v(.). We shall derive the analogous
result for the case in which v depends on both W and S wunder
more general conditions. Incidently, we conjecture that a sufficient

condition on v(.,.) for this result to hold is that there exist

§ >0, Wy and s such that v(w,s) > 2+8§ for all w > W and
s < s_. We cannot replace § by zero since the estimator with
v(w) = w_l(l + cosw) is not minimax.
In the following theorem we shall give the formula for the Bayes
risk under the prior distribution A ~ i %21 &
Theorem 3 If A A T? xzp then under tphe cgnditions of section 6.4

the Bayes risk of 6(X,S) is

2 W
R(12,02) = e v2 - i,
R(12,0%) = p + =Er EIRVA(N_108,) - oy 5 Mgt

2.
o c 2 i
=p+ EEFT Ev2(W_,,8,) - 2v(W,S,)]

2 2 2
0“(p+21%) .2 _ o 2
Rhess e ® _%— X pt2i ? W=W,, SV X n+2i °
Proof We shall show that if U~ axzr(k) and A b)(zs then

the marginal distribution of U is a{1+2b) er if s =r, and a

. 2 2 . . 1
mixture of a(1+2b) X, and a(1+2b)XP+2 with weights 5 and
2b q _
EFOTY if s = r+2. In general
2
. br+k-1 u - ks-1 A
p(u)_ ozo u exp(- E) I g 2K exp(-=-)
= v 1
k=0 2a) T T o K (20)FT0ss)
1 1
srtk-1 u ] _2b %s+k
i °Z° u exp(- 2a) I'(Css+k) (2b+1)
= ~ T
k=0 (2a)%r'kr(lfzr‘+k) k! (2b)%° T(%s)
1
-1 s Ly o (3 2Bl gl
v exp( Qa) ('ES)k (Ea(1+2b))
- o 1 !
(2a) T TCar)(142b) % k=0 )y e
1
-1
WY exp(- %) 5%

F, (3s34r; )s
(2a) T TCar)(142p) 11 2a(1+2p)

In the special case s = r this reduces to
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1 bl

U exp(-=) U exp (- m—)
DI 2a e ( 2bu ) = 2a(1+2b)
= - = 7
{2a(1+25)Y 7T (3r) 2a(142D)7  foa(1420)}F TCar)
while when s = r+2 the expression gives
1
/21"—1n u - 2bu k
_ “ 06 Yr+k  2a(1¥2D))
p(u) = = Y v
{2a(1+2b)}* TCar)(1+2b) k=0 ~ k!
u%r-l xp (- L ) u(%r+1)_1ex (N -
_ 1 P 2a(1+2p)’ , _2b P 2a(1+2p)
1+2b 1+2b

{2a(1+2b ¥ T (r) (2a(1+25) Y1 D(3re1)

These are the required results.
From 6.4.9 we obtain
- c 2
R(t?,0%) = p + (p-2)0? E[W{VZ(W,SQ)-Q‘:(W,Sl)} + 5= {v(W_;,8,)- v(w,sg)}]

2
where the expectation is with respect tc the distributions

W, gi 4 (A), s. gi 2 and A" li 2 | Putting a = Ei
i P X p;?i > i n X n+2i P X p’ &
s=p, b= %;— and r = p+2i i = 0,-1 in the previous result gives
o S 2 —E. 2 " _ 2 A
R(1%,0°) = p + (p-2)0°E w{v (w,sQ) 2v(w,51)} 5 v(w,uz)

2 2

) 2 21 ]
+ S_Q{F%T V(w—1’82)+ W V(W'SQ)}J

" [ 2 2 1
P+ (p-2) 0 E| V2 (H,5,)-2v(W,5 )} + Exé%r-gg'{v(”_lssz)

-V(W,S2)}]
where the expectation is with respect to

W Eii%;glil.XZP s W_1 v Eiiﬁézlil sz_g and 81 and 82.
Applying 6.2.9 to this expression gives
2(n+2)co?

22 ) = oa oy a2 S 2 ~
R(1°,0°) = p+ (p-2)0 e v (W,SQ) anQ v(W,SQ)
2
2(p-2)0 2
* PWS, v(¥W,8,) 5, prat v(W,S,)

2 [ 2 2 ]
P+ (p-2)0" Big vi(W,S,) - ga%-f v(H,S,))|

+ }:'r—E’P—ZTvZ(w S,) -—LP-Q ’ w'—1v(w s,)
P R et 12720 T e 5, V-1t

[622 262,
pt ELE:%?T v (w—l’SQ) ~ E:é%Y-X(W’Sl) .

We now wish to find sufficient conditions for

2 "
(pt212)c &,

to be positive. The following two theorems give sufficient conditions

S.))

v(W_l, 5

2 - 2
E[v®(W_;,8,) - 2v(W,5)] = E[V?(W_,,S,)

for this to ke so.
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a b 2

r\_,_ o= S )
Theorem 4 1If W_l x2 p-2° 82 =X L+ Tand \Y V(W_l,SQ, then
Pss . "1 . .
a sufficient condition that B ELE - g%-??— V]l >0 for sufficiently
2

large a and small b 1is that there exists & > 0 such that

viw,s) > 1 +~7%? + & for sufficiently large w and small s.

b, Wy
Proof E = E[V? - 2v.- 2(g% = - V]
’ 2b w-l
= var V + E[V](E[V]-2) - = cov (—= ,V)
ac 82
2b ¥4
> var V + E[V]( E[V]-2) - &= fvar — wvar V
ac 32

var V + E[V](E[V]-2) - Z é%ﬁ%%%%- vYvar V .

Now if E[V] > 2 then the above expression is positive if and only if

4(n+p)
n(p-2

This holds for all values of var V if

(var V)% + 2{E[VI(E[V]-2)- }var v + {E[VI(E[v]-2)}% > o.

E[V](ElV]-2)

(4(p+n) )2< 8(p+n)

n(p-2) n(p
which, when E[V] > 2, holds if and onl
2(E+n E(n+2) _ 1
E[V]>1 + 1+(p ) /nQJQ) 1+ -,

We must now show that if v(w,s) > 1 + c + 8§ for large enough w

and small enough s +then E[V] > 1 + /g for large enough a and

small enough b. Let 7 =1 + s - Given € > 0 there are X s Y

o
ax
such that J Py (x) dx < ¢ and fm Pg (y) dy < € and there
0 -1 by0
are X, , Y, - such that v(w,s) > Z + & for W> %, and s > Yy
*1 Y1
Suppose V 2 0. We then have, if a > o and b < —
o Yo
E[V] = 7+ 68 + E[V-7-6]

\

xX oo
1+ 68 + J 1J (v(x,y)—z—d)pW (x)pS (y) dx dy
-1 2

\

0 yl
ax

1+68 + J OJ“ (v(x,Y)—Z—G)pw (X)ps (y) dx dy
0 by -1 2

1+6 + (148){1 - (1-€)?})

(#68)(1-€)?

(1+46)(1-2€)

\

\
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and this is greater than ! if and only if € < 7035 ¢ Now if Vv <O
on some set of non-zero measure then replacing V by V increases E.
We may apply the above result to V+. This completes the proof.
In our application of this theoremwe put a = Oz(BiézE} and b= o2
We then choose b small enough first and then 12 may be chosen so that
a 1is sufficiently large.
Our other thecrem concerns the case in which v(w,s) > 1 <g as

w =+ anéd = - 0.

a o b 2 a 2 b.2
; g 2 W=y gy 2 .
Theorem &  Let W 5 Xp—? > S, = X 4y 0 = X . and 81 =X 42
Let V = V(w-l’SQ) and V= v(w,Si). If v(w,s5) > I where 0 < 1 <

as w>® and s >0 and if v(w,s) 1is bounded above by Zl then for
large enough a and small enough b, E = E[V-?Vl] < 0.

Proof Given € < 0 there are X0 Vg such that

ax ax
j pw(x) dx < j © Py (x) dx < €

0 0 -1
and f Pq (y) dy < fw P. (y) dy < €
by o1 by o2
'® )
and there are X5 Yy suchxfhat l-€ < v(§{y) < 71+e 1if x > Xy and
y <y,. Suppose that a > — and b < — then
1 b y
o o
E = (1-€)® - 2(24€) + ELV - (1-€)*+ 2(2+¢) - 2V,]
X [
> (1-€)% - 2(1+€) + j I {vz(x,y)—(l—e)z}pw (x)pS (y) dx dy
0y, -1 2
X0
+ 2[ j {Zre-v(x,y)}pw(x) Pg (y) dx dy
J
0’y 1
i
’ ax [ @
> (1-e)* -z(z+e)+f °f (v (x,y)-(2-€)*}p, (%) pg (y) dx dy
0 byO -1 2
axo o
+2J [ {Z+e~v(x,y)}pw(x) pg (y) dx dy
0 by 1
o)
> (1-€)* - 2(1+e) - e(1-e)* + 2e(1-1 +€)
>1* -2e1-21- 2% -¢€l® +2¢el - 2¢el, if e<l
= 1? - 21 -€(2® + 21+ 2).
1
If €< -vli:EZF- then this expression is positive
1‘+211+2 ’

2
0 . 0 +
As in the application of thecrem 4 we shall put a = OZ[E—EI—J
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and b = o?.

We shall now summarise these results in a theorem.
Theorem 6  Under the definitions of section 6.4, the estimator 6(,S)
is not minimax if v(w,s) converges to a limit greater than two as
w*>o and s+ 0 or if v(w,s) > 1 + /% + 8 for some & > 0 for
large w and small s.

We remark that tﬁere are analogues of theorems 4 and 5 as a =+ 0
and as b » ® for the case in which v(w,s) < 0 for small w and

large s. However these do not help in a non-minimaxity proof since

a = cinin- and as 1250 a » o which does not approach zero.
However,pwe can state that if v(w,s) < 0 or if v(w,s) > 7¥§ then
the Bayes risk can be reduced. The first assertion can be seen from the
form of the Bayes risk in theorem 3; the second from the fact that in

this case h(w,s) < 0 and by theorem 2, the risk can be reduced.

6.7 Risk Functions for some Special Families of Estimators
A special case of the family cf estimators in this chapter is

given by v(w,s) = t. The risk function will be

2y _ ~ 1
R(A,0°) = p + p(p-2) c t(t-2) E[m:l

where K has a Poisson distribution with parameter A. This result is
given in James and Stein(1960) and easily follows from 6.4.14. The
case t = 1 achieves minimum risk and is the James-Stein estimator.
Values of t between 0 and 2 achieve minimaxity. The value t = 0
gives the maximum likelihood estimator, while t = 2 gives the same
risk. Efron and Morris(1973a) show that in order to dominate the James-
Stein estimator the conditions of theorem must be violated.

Another class of estimators known to be minimax when 0 S t = 2
is the class of estimators given by wv(w,s) =t if w > tcs and

v(w,s) = 7%;- if w £ tcs. This is the class of positive part James-

Stein estimators and its members dominate the corresponding estigator
with v(w,s) = t by virtue of theorem 2. These estimators are non-
comparable for different values of t as can be seenby inspecting
their risk functions for small and large values of A.

We shall now consider an extended family of estimators.

let 6(X,S8) = (1 - g%%)x. The special case d = 0, e = 1 is the
James-Stein estimator already considered. The case d = ¢ gives the

estimator &(X,S) = EJ%?J( given by Alam and Thompson(1964). The
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The risk function for estimators of this class can be written in terms

of hypergeometric functions of two variables and is given in the next

theorem.
Theorem 7  The risk of the estimator 6(X,S) = (1- HIF)X is
~2 2 © sk (atk)
2y _ c‘a =k &_ 2 -2
R(A,0%) = p + R—-—-d {e kZ‘O T e B (L Db e e 1 24)
o k
~A 2 (a+k P
- —_—ae h -
) o T oF g (1.b+1iatbi2tk;l d)}
k=0
A e J\k + k
~ - a
- 2p cOl{e kgo DAl T 2F1(1 b+1;a+b+2+k; 1-—d)
y k
A A k
-e L — oF (1,b¥15atbt14k;1 ——d)
k=0
where a =% and b = 4n.
Proof From 6.4.8 we have
2
RP . 2% ["?]a- 28E ([v]- 28E [v] - 2 =2 &£ f%]
0,1 4.4 @) P 0,0 L
~ F v _ 1 v2 o, F
where v = -d-ﬁ Now F = O.-a;-}:- and F a W

a
d d+r  a (a+r)?

Using the formula in appendix 2

I' Xm :I Y ‘E‘ (a+k)
——| = e "(b)__ F, (n,b+n-m;atb+ntk;1-Y)
L(Y+X)n mEME . 6 ia+b+k5n 2

where X has a non-central inverse beta distribution BQ(a,b,A)
we obtain

2 2 o _k

Rp . cfat 1 A A a+ k 2
P d fe kgo k! a+b+1i+k QF (1,b+13a+b+2+k;1 23)
o .k (atk)
T A 5 .
" © z kT (a+b+1+k) er(?,b+1,a+b+3+k,1 _Fd}}
k=0 2 )
rd
- gca{e‘kozc> ﬁ_iik_ F,(1,b+1;a+b+2+k; 1__d)
k=0 ! atb+1+tk 2°1 a
=9 k
A v A a-1+k
" Z kT a+b+k 2F1(1 b+1ja+b+1+k; 1-—d)
k=0
+ a- ib -\ of 1 ¥ (4 b+1'a+b+1+k°1_§—d)}
a b ° 2ibTk o ArTeeTES i .

k=0

Now using the recurrence relation for the hypergeometric function
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a a
2F1(2,b+1;a+b+3+}<;1 = 5 d) = (atb+2+k) 2P1(1,b+1;a+b+2+k;1 -5 d)

- (atbt+1+k) 2F1(1,b+1;a+b+1+k;1 - % d)

and simplifying gives the result.

As a check we shall show that the James-Stein risk may be obtained
from this by letting d tend to zero. Using Gauss's theorem we see
that the term in %- is of the form %— in the limit so we apply
de 1'Hopital's rule. The derivative of a hypergeometric function is

another one. Applying Gauss's theorem to the derivative gives

k
2 _ ~ ~ Db+l a-1 -A pl A
R(A,0°) = p + pcaa o= 2 == & kzo e
which 1s the result obtained earlier. Note that the minimum occurs at

o =1 giving

& K
24 _ n -A ¢ a-1 L
R(X,0°) = p - (p-2) — e k£0 a-1+k k! °

Unless d 1is very small, in which case the algorithm in theorem 7
may be numerically unstable, this algorithm gives an efficient way to
evaluate the risk. Using a recurrence relation for the hypergeometric
function allows us to calculate each function F(1,b+1ja+b+itk;1 —-;—d)
from the previous two values. Thus, in theory, only the values
F(1,b+1ja+b+1;1 -~ %«i) and F(1,b+1j;a+b+2;1 - E-d) need be
calculated using the series expansion. In practice, errors tend to
accumulate and it is better to calculate new values every about twenty
terms. In addition it is possible to use a recurrence relation to
calculate the hypergeometric functions for different numbers of
degrees of freedom (differing by an even integer) but this is

inefficient in storage and the saving in computation is small.
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Chapter 7
Risk Estimate Optimality of Shrunken Estimators

7.1 Introduction

The unbiased estimator for the risk which we discussed in chapter
6 leads to an optimality property which,in some cases, is easier to
handle mathematically than admissibility. If 61(X,S and 62(X,S)
are two estimators for which unbiased risk estimators exist, and if
the risk estimator for 61(.,.) is uniformly less than that for
62(.,.) then the estimator 61(.,.) dominates the estimator 62(.,.)
in terms of risk estimate and hence also in terms of risk. If no
estimator dominates 61 in terms of risk estimate then 61 is
said to be risk estimate optimal. Efron and Morris(1576) showed that
a certain class of estimators, whose minimaxity was nct previously
known, was in fact a class of minimax estimators. This was done by
using the concept of risk estimate dominance. Thus the risk estimate
is useful for proving certain dominance results, although, as we shall
see, we cannot prove all such results this way. In particular we shall
show that the James-Stein estimator is optimal in terms of risk
estimate so that the positive part version, which dominates it in
terms of risk, cannot be shown to dominate it using the risk estimate
alone. We shall also show that the positive part version of the
James-Stein estimator is risk estimate optimal. These results, which
first appeared in Moore and Brook(1978), will only be shown rigorously
to be true in the class of scale invariant spherically symmetric
estimators.

First we shall discuss the general problem of risk estimate
dominance in the class of estimators for which we have previously

calculated the unbiased risk estimator.

7.2 Risk Estimate Dominance

2
Suppose X n Np(g,o2 I) and S~ %r in independently of X.

We wish to compare the estimators

E(1+W(W,S)) ) X

g’.(X,S) = (1 _ -
and g*f(X’S) R i w ) X

by comparing their risk estimators (which we assume to exist). Using

the transformation U = WQSB, vV = WYSG

of section 6.3 and using the
expression in that section for the unbiased estimator for the risk, we

find that the difference between the risk estimates for g* and g*f
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is proportional to

p-2 = B
5 &f E*(U V) rE f(U V)
= 2{B2 (£2-w*) + (@-Be-Bew) Ut - (a-Be-Bf) U g—
+ (y-6c-8cw) V g—:’; - (Y-8c=-8cf) v -g—%;-
We shall write a = - and b = = in which case
p-2 n+2

_ l 2_ 2 | o aw _ Bf

(1) Af F = (f°- w*) + (ca-Bb-Rbw) U — 35 (aa-Bb-fb f) U — 30
ow of

+ (ya-6b-8bw) V v (ya-8b-6bf) vV = Y

In order for €* to dominate E*f in terms of risk estimate we
require that Af 2 0, the condition being necessary and sufficient.

We are thus lead to the problem of solving the differential inequality

+ (C+Dw) V = o -w o= g(f) +y?, p=20

(2) (A+Bw) U 2% =

U

of 2
=5 + (C+Df) V = BV -

and A = ca-Bb, B = -Bb, C = ya-6b and D= -46b.

where g(f) = (A+Bf) U =—=

The characteristic equations of (2) are

dU _ av = dw

(3) U(A+Bw)  V(C+Dw)  wi+g(H)+y °

Any given function ¢ may be written in terms of U, V and w since
f 1is assumed to be known. In this case, the condition for (3) to have
an integrating factor depending only on w given in Ince(1863) is

of of
(4) (A+Bf) U 56-+ (C+Df) V =~ =

We can show that t? is positive, otherwise the estimator g*f would

- £ g 5 5 t2  real.

dominate the. James-Stein estimator in terms of risk estimate and this
we shall show to be impossible.

In particular (u4) is satisfied by f = t, and any estimator g*f
with f satisfying (4) has the same risk as g*t (where g*t is
the estimator g*f with f = t = constant). This means that it is
easier to compare an estimator with E*t than with any other (apart
from g*f where f satisfies (4)). In particular we may compare
an estimator with the maximum likelihood estimator, gfl or with

the James-Stein estimator, g“o.
Let us choose a, B, y and 6 so that U=W and V =S. We
therefore put o« =1, =0, y=0, 6§ =1 obtaining A=a,b=0,

and C=D=-Db giving the partial differential equation for w
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oW oW _ 2 _ .2
(5) aw W b(1+w) S 3% w t e + Y, P20
which has characteristic equations
daw ds _ dw
aw bS(i+w) T wz-t24y C

Suppose that there are W , S such that w_= w(W_,S ) > t.
o’ o o 0’ o

1

In this case as W 1increases, w increases and S decreases along a
characteristic through (wo,So,wo). For a positive increment dW in

W, dS < 0 and

av o aw _488 o _ltw A
aw wl-tZ bS WZ-t2 :

Assuming t # 0 and integrating these inequalities from (WO,SO,wO)

in the direction of increasing W gives

1 W ] w-|t wo+|tI
= log — = og and
a WO 2|t] wt|t w0—|t|

S w +|t| -
1 o) 1 w- tl o) wo-t
b 1°8 5 = 27T 1°8 A% w -t kg 108 Wl -t2

that is
L 2 WO—|t| L% g%fl' and
wt|t wo+}t HO
2|t
[So) > o [ald ]|t|+1 (edel] I+l
S w -t w t|t
o o
The first equation shows that
+t\=ms
2]t]
w*® as W->W <W (:o )
2 o o—|t|

and the second equation shows that w is unbounded as S + 0 along

a characteristic. They also give bounds on the rate of convergence

wo'ltl /w\zle Wo—l‘t[ w)ﬂil.}

W
= (oo Zmr ey @ M- () e
Tt { v r[t \WD} % W FTEI\W
5, s
and w? > t?2 + (w; - t2) (?§)}) . The case t = 0 1is also easily

solved but we omit the result which is qualitively the same.
Given M > 0 we can find a point (w1’81’”1) on the

characteristic for which w, > M. Consider the level curve through

1
this point. Its equations are (5) and
(6) 0 =dw=22 aw+ ¥ g,

oW kS
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From (5) and (6) we find that

ow ow dw _ 2 2
awm + b(1+W)S§WE§ = wS -t + Y
W a W ow . ow
If %g s T § hen o > 0, otherwise 5W—< 0. However
if %% <0 then there is a level curve between the characteristic
(along which w is increasing) and the line S = S1 so that %%—> 0.
We have thus shown that %% > 0 and, therefore, that there is a

region in the W, S plane for which w > M given by the characteristic

base curve through (Wl,Sl), the part of the W axis for which W > w2

and the part of the line S = S for which W > W_. This implies that

1 il
w > M 1in the region S < Sl’ W > W2. Thus, by theorem 6.6.6 the
estimator &* is not minimax. Now if |[t| = 1 then g* has smaller

risk estimate than the maximum likelihood estimator and is therefore
minimax. Thus E* cannot dominate E*t in terms of risk estimate (or
in terms of risk).

We have thus shown that, for |t| =1, if w > |t| at some point

then £* does not dominate £*t in terms of risk estimate.

If we wish to give a similar argument for the case [t| > 1 then
we cannot use theorem 6.6.6. Since this is not an important special
case we shall not give a precise argument in the general case in which
w depends on both F and S. We shall give a precise argument for
the spherically symmetric case in the next section. A rough argument
is as follows. It is easily seen that the characteristics meet the W
axis at right angles. Therefore, close to the axis, the characteristic
may be replaced, approximately, by its tangent at S = 0. The solution
of the inequality for S shows that, with the characteristic replaced
by the tangeﬁt, S increases too quickly for the convergence of the
integral of w? with respect to S. Since this occurs for each value
of W greater than w2 the double integral cannot converge. Since a
condition for the existence of the risk estimate is that this integral
should converge the result follows by contradiction. We believe that
this argument can be made precise.

We should also like to show that the existence of a point for
which w < —|t| leads to a contradiction but we have had less success.
Theorem 6.6.6 does not help even when |t| < 1 but the behaviour of w
along the characteristics through the points for which w < —|t|

2

suggests that the double integral for w cannot converge.
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In the next section precise arguments shall be given for the
class of scale invariant estimators, that is in the case for which

w depends only on F.

7.2.1 Risk Estimate Dominance in the Class of Scale Invariant
Estimators

When w depends on F alone the inequality to be solved is

(1) (a+b+bw)F g% = w -t Y, Y = 0.

2

Now, in order that the expectation of w shall not exist, it

is sufficient that w !(F) = O(F-l/b) as F » o or that
w (F) = O(Fl/a) as F » 0. If there is a point F for which
w_=w(F ) > |t|] then L > 0 and therefore & 50 for
o o dr F dr
o

F > FO. It then follows from (1) that

(atb+b w) F 3—‘; 2 w? - t?
for F > FO. Integrating we see that
a+b
w +|t] &2 s .2 \kb
I (ultl o | 2| ] FELE - Fors B S H.
B, wo-[ff wt [ t] wg-tz )

This means that w is unbounded as F > «© and therefore that

-1/b

w I(F) = o(F ) as F » o, This contradicts the existence of the

expectation of w2

and shows that there does not exist Fo such that
w(FO) > |t|. Our solutions assumed that t # 0. It is easy to see that
the same result applies if t = O.

We now wish to see what happens if there exist values of w which

are less than - |t| . There are two possible cases if |[t] < 1-+§
(i) 3 F_ such that -1-2<w(F) < -|t]
o b o

(ii) 3 F  such that -1-=> w(F ).
o b o)

If t 2 1-+§ then only the second case may occur.

In the second case we may argue as previously that w > -® as

F > o and that -w }(F) = O(F_l/b) as F » o (only the signs of w
and %; are changed in this argument).
In the first case, w 1is increasing. We integrate from F < Fo

to FO and obtain

a+b

FO - (wo—|t| w+|‘t|) Q—I_tT

w-|t] wo+]t[

\
T —-—-—_—_t—z—} for F < FO.
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The inequality reverses if w reaches the value -1 —%- as P> o
decreases. This must occur, for, with the direction of the inequality
unchanged the value of w is unbounded below as F - 0. Let
W(Fl) = -1-—%. For F < Fl we cannot continue the solution curve
continuously so case (i) is impossible.

Thus, in order to dominate the shrunken estimator g*t in
terms of risk estimate, we must use gfq where -|t|=ws |t|. Tn
the case of the James-Stein estimator, t =0 and w = 0 1is the only
solution. Therefore no estimator can dominate the James-Stein estimator
in risk estimate. However, we have already seen that the positive part
version of the James-Stein estimator dominates the unmodified version.
Its risk estimate must be sometimes greater and sometimes less.

We now turn our attention to the positive part estimator. We prove
part of the result for Eir in general. In order to dominate Ei:

in risk estimate we require that

dw _ daf 2 2
(a+b+bw)}“dF = (a+b+bf)FdF + wt - f°+ ¢, Y 2 0.

If w? > f? then this implies that

dw df
(a+b+bw)a: > (a+b+bf)a-},- .

Therefore, if W > fo > 0 at Po , then, for F > Fo
(atbtbw)? - (atbtb £)? > (atbtbw )? - (atbtbf )*.
It is easy to see that w - £ > 0 as F >« is only possible if

f+o® as F—+wo If f 1is bounded then inf (w-f) > 0. Now, if

F>FO
-w < —|f| and atbtbw > 0 then
du | asbibf df  df
dr a+b+bw dF dFr
and so, if W < —fo at FO then f - w increases as F
decreases below FO. Finally, if a+btbw < 0, atb+tbf > 0 and
df dw
T >0 then T < 0.
Applying these results to the estimator E*tz = Ei:
where f(F) =t . if F 2 c(1+t)
S %-F -1 F s c(1+t)
we see that, if w > |t| for FO 2 ¢(1+t), then w > |t| for all
F>F ; that, if w_= w(F ) < min (- |t], 1Fr_1) and
o o o (&

a+b+t>wo > 0 then for some Fl < FO, w(Fl) < -1 and, if

W, o= w(FO) < min (- |t|,%~F - 1) and atbtbw < 0  then for all
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B = Fo , w(F) < w(Fo). It now follows from the previous section that,

2 5 t?2 in order to dominate the

for F 2 ¢(1+t), we need .w
estimator g*z in terms of risk estimate. Now if giv dominates
Eﬁ: in risk estimate then it also dominates it in risk and dominates
the maximum likelihood estimator in risk estimate. Thus -1 s w = 1,
However., we have already seen that if w < min (—|ﬂ,%-F - 1) and
atbtbw > 0 then there are values of w < -1. This is a contradiction.
Also if w > %-F -1 for F < Z(1+t) then gfv can be improved
upon in risk by taking the positive part estimator. Now, taking t = 0
we have the contradiction that
+ %t

_ B3 &t
SN SR A

. o, . . % . + D m. O
since the positive part version of gw is gt . Thus the positive
part James-Stein estimator (with t = 0) cannot be improved upon in

risk estimate.

7.3 A Condition for Risk Estimate Dominance over E*t

Efron and Morris(1976) gave a condition for risk estimate
dominance of an estimator, for which an unbiased risk estimate exists,
over the maximum likelihood estimator. We have already given a

condition for risk estimate dominance of such an estimator over &%

In this section we shall give a condition which is similar to that
given by Efron and Morris. The condition is only given for E*w in
the case that w depends only on F.

In order to find the condition we shall solve equation 7.2.1.1

again. Writing ¢ = (w?- t?) F b we find that

ar
atb+bw dw _ 1 do. -1 do
Wt ar C FTAYEF) T F Y OF

where ¢ is.-non-decreasing if w? > t? and non-increasing if w? < t2.

Integrating gives

atb w—lt| b

- b 2 . 42
¢ log F + 2T log T E] +t 3 log (w ;i

The complete solution is therefore that

/ \a+b
- A w=it] Vot 2 ,24y%b
exp ¢ = T \ﬁ } l I (we-t°)

is non-decreasing when w? > t? and non-increasing when w? < t2. We
have already seen that the former case is impossible. Although we shall
not prove it here, it is fairly easy to see that the above condition
implies that if w(F ) = |t| then w(F) = |t| for F> F_ and

that for |t| < E%E N T % if w(Fl) = - |t] them w(F) = - ]tl
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for F < Fl' This result is contained in Moore and Brook(1978) and

slightly generalises the similar theorem in Efron and Morris(1976).
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Chapter 8
Distribution of Studentised Shrunken Estimators
8.1 Introduction

The methods of chapter 4 allow for the computation of the first,
second and fourth moments of the James-Stein estimator in terms of
hypergeometric functions. Similar methods lead to the computation of
the third moment. The computation is complicated by the fact that the
shrinkage factor depends on both X and s (and is homogeneous in
s™! X ) but the other factor is just X. Thus the estimator is neither
a homogeneous function of X nor of s™! X . The Studentised shrunken
estimator, s~? é*, on the other hand, is homogeneous in s™! X . This
makes the computation of the density function almost a triviality
since, putting 2 = s™! £* and T = s~ !X, the distribution of 2 is
just a transformation of the distribution of T (which has a
multivariate t-distribution with parameter \).

If we Studentised the estimator in a different way, by dividing
by the trace of its variance matrix, then we just have a linear
multiple of 2 - the factor being dependent on A. This multiple is
easily found by the methods of chapter 6, but we prefer to define
Studentisation in the former manner.

Noting that the shrinkage factor only depends on the length of
the vector s !X, we find it is easier to work in polar coordinates.

Accordingly, in the next section we transform the mutivariate normal

and t distributions to polar form.

8.2 Polar Coordinates

We first transform the coordinate system (xl,...,xp) to the

system (yl,...,yp) by an orthogonal transformation in such a way
that the yp;axis is in the direction of §. Dividing by o then
gives a coordinate system (21""’Zp) in which the point (&1,...,Ek)

in the original system is given by (0,0,...,0,A) in the
z-coordinates.

We shall transform to polar coordinates through a sequence of

transformations. Let ry=zy
z =1, cos 6O
, 2 1 -T s 61 < m.
22 = r2 sin 61

We then transform the other coordinates successively by the

transformations
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z. = r, sin 6.
i+1 i+1 it
ln <0, s 47
r. =r, b cos 0, el i *
ki i+1 i

for i =2,3,...,p-1. Putting r = rp, we finally obtain the
coordinate system (61,...,8p_1,r) which may be written directly in

terms of (21,...,zp) by the relations

1 = eeosp-1
z, r cos 6p_1 cos 6p_2 wiis COS 6i+ sin ei iE=w 3, sP

il

"

z r cos O cos B ... COS 81.

1 p-1 p-2
Using this sequence of transformations makes it easy to find the
Jacobian of the combined transformation which is
a(zl,...,zp}
3(91,...,9p*1,f3

P2

0 1 2
cos 8l cos 82 cos 83 sa COS

Now the normal density function is given by

p-1
1 2
p(z) E;;;gﬁ-exp {—%(zp—k) + izl z* }

4 = Azp -%ZTZ

—%e e e
(2m)

Transforming to polar coordinates gives

1,2 Ar sin 6 . 2
p(ﬁl,...,e _1,r) = ———lT-e_él e p-1 e—%r

cos 6, cos?8B
P (Qﬁ)ip 2 3

p-2
cos 6p—1'

As might be expected, this factorises into a density involving r and

Gp_l and densities involving 61,82,...,8p_2 . Thus r and 6p_1
are not independent but are independent of the other variables which
are also mutually independent. For each value of r and 6p_1 , the

conditional density is,in fact, uniform over a p-2 dimensional sphere.
Our shrunken estimators shrink in the direction of r and leave all
the 6O-coordinates unchanged.

Having transformed to this coordinate system it is almost a
trivial matter to derive the density function for the non-central X2

distribution. We merely write

Ar sin 6 o
o p-1 - E (Ar)

k=0

and integrate with respect to 0 Our concern here, though,

is the joint density of r and 6
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;5-" L I" 1,1
. i _ T(%i+%) T(%)
Since J . cos 8 dO6 = Ti+1) we have
=72m
D |
B2 [ i R e (2m)®
cos” 0, 4% = T - Tp-1
i-2 ‘-4 2 (2m)2 T'(3p-1)
Writing ¢ = 6p-1 , we obtain the density for r and ¢
':I/ZAZ 1.2 .
p(r,9) = —EES—————~— rp_i N eAr R ¢ cosp—2 d.
2 I'(3%p-%)

It is now an easy matter, in the case of known variance, to
transform r by the shrinkage transformation. Let u = h(r)r and
assume that h(.) 1is one-to-one so that r = f(u) for some function

f(.). The joint density of u and ¢ is then

132
2 _ 1 2 1 3
p(u,¢) S _T“ji'——“‘*— (f(u)P 1 e s(£(u) eAf(u) Sln(bf'(u) cosP 2¢.
2% T (3p-%)
If required it is then possible to multiply by the joint density of
62,...,6p_2 and invert the transformation. However, it is probably

better to leave the density in polar coordinates.

8.3 Unknown Variance

n52

If the variance is unknown and estimated by s then S = =
has a xz—distribution on n degrees of freedom. The joint density

of r,  and S 1is therefore
142
- oA

-1 12 3 _ Iy s
P e ekr e ¢cosp 2, g1 ZS,

p(r,$,8) = ¢S e

b
2% I(3p%) 27 T ()
We require the joint density of %? and ¢, that is, of V/g-r

If we transformed this density back to the original coordinate system
then we would obtain the multivariate non-central t density in

catesian forﬁ. This is already well known. Alternatively, we could

have started with the known form of that density and transformed it

in the manner of the previous section and thus avoiding the integration

with respect to S.

Putting t = /gr we have B(L,S) n and
St2
132 -1 -
e ) n1 .l zp 1 =B 1 2n

1
exp(%n S%tsin ¢)

= i1n- -1
X cosp 2¢ S/zn 1 e s .

P(ts(t’,s) =
2P P (p-%) 2P ()

Expanding exp&% S%'tsin ¢) as a power series we have
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2Nt = k -
_ e 2 n1 2P = A sin ¢ cosp ¢ .p-1+k
P(ta¢,8) s Th Z = Tk t
2= T'(%p=1) 2 T (3m) k=0 ™" n
N S%p+1/zk—1e-1/2(1+t2/n)s )

It is now easy to integrate with respect to S and obtain
12 —
e g\ = Ak sink¢ cos? 2¢
T P
2PHP P 1) (k) k=0 X i

p(t,d)

=1 Wil
P12 by
;%pﬁ%k

X

(1+t?/n
If desired, then this can be transformed back. On putting u = f(t)
we can find the distribution of the shrunken estimator as in the
last gection. The formula is not really suited to analytical

manipulation but can be dealt with numerically.
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Appendix 1
Gamma Beta and Hypergeometric Functions
Al.1 Introduction
In order to make referenced formulae easier to find we list the
main properties of the gamma beta and hypergeometric functions and
various generalisations of the hypergeometric function. Most of these

properties may be found in Erdélyi(1953), Slater(1960) and Slater(1966).

Al1.2 The gamma Function

x(x+1)(x+2)...(x+n-1) z
(x+z) (x+z+1)...(x+z+n-1)

We define (a)Z = 1lim 1lim
X¥*+a nre®
(when the 1imit exists),

[a]z = (a-z+1)z

and rz) -= (1)2_1.
The following properties hold
LI N! z
(1) r(z) = = 1lim N
Z Voo (z+1)(2z+2)...(2z+N-1)

and is analytic except at simple poles at 2=0,-1,-2,-3,...

(2) IF'(z+1)= zT(2)
. I'(x+z)

(3) (a)z -xl-J;ma —IIT;)_
() [a) = 1im I(x+1)

z =& F(x+n-1)
(5) (a)z gt as a-»>®
(6) [a]z v a—Z a~+> o
(7) (a)z+€ = l;m (x)z (x+z)C

x> a
(8) [a) = lim [x] [x+z)
z+C - V4 @

in fact (5) and (7) together with (a)1 = a characterise (a)z
(9) (a) = 1

o
(10) [ad =2 A4

o
(11) (a) = 1 if it exists

-2 a-1
(12) [a]_z = T;{%TZ if it exists
(13): (a)n = (—j)n[—a]n n an integer
(14) [a) = (-1)%(-a) n an integer

n n

(15) (a) = a(a+1)(a+2)...(atn-1) 0= 52%3 5+
(16) [a) = a(a-1)(a-2)...(a-n+1) n=1,2,3...

n
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multiplication rule

3
(17) Flne)l = m I—I I'(z + % )
(2m)

special case - the duplication formula

222—%
(18) r(2z) = i F'(z) T(z+%)
(2m)
(13) (s =vVm
[o 0]
(20) J x21 & g4y = ;%- I'(z) if the real part of 2z 1is positive.
0 a
Stirling's expansion
r-1 B
(-1) r

[e o]
(21) log T(z) v (2-%) logz -z + %log(2m) + )
r=1 2r(2r-1)z

2r-1

as z-o |argz|s m-A
where Br is the »r th Bernouilli number.

1 al 139 571

-z z-% 3
(22) Plz) ~e™ 2" () 1+ 5 +opmyr -TrmosT -~ 77583505

+O(§%~)}-

Al1.3 The Beta Function
The beta function is defined in terms of the gamma function as

B(z,z) = L;%%:g%gl . The following formulae, valid when the

real parts of z and [ are positive, are important

1
(1) B(z,L) = f e - T A

0

x2-1
(2) B(z,r) = fm s (%
' 0 (14x)%%

S

(3) B(z,Z) = QJ singz—1 3] cosx-1 6 de

0

Al1.4 The Hypergeometric Function

We use the term "hypergeometric function" to include certain
generalisations of the Gaussian hypergeometric function defined below.
Within the circle of convergence we define
o (al)r(aQ)r"'(aP)r /5

F . (a 3b. ,b b.;z) = =
0 (bl)r(bg)r...(bQ)r r!

P'Q 153230--3ap3 120227702003

and by analytic continuation outside. We shall often omit the subscripts

Pand Q on F. The radius of convergence is « , 1 or 0 according
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as PsQ, P=Q+1 or P>Q+ 1. In the latter case the series is
an asymptotic expansion as z + 0 of a convergent hypergeometric
series (Slater(1966)) which may be identified with it. The special
cases 2F1(a,b;c;z) and 1F1(a;c;z) are respectively the Gaussian
hypergeometric function and the confluent hypergeometric function. The
latter is a limiting case of the former since

= . -
1F1(a,c,z) = 1lim (a,b,c,b ).

F
b—)oogl
Writing F = F(a,bjc;z), F(a+) = F(at+l,bjc3z), F(a-) = F(a-1,bjc32)

etc. we have the following recurrence relations for the Gaussian

hypergeometric function

(1) {(c-2a)-(b-a)z}F + a(1-z)F(a+) - (c-a)F(a-) = 0
(2) (b-a)F + aF(a+) - bF(b+) = 0
(3) (c-a-b)F + a(1-z)F(a+) - (c-b)F(b-) = 0
(4) c{a-(c-b)z}F - ac(1-z)F(a+) + (c-a)(c-b)zF(c+) = 0
(s) (c-a-1)F + aF(at) - (c-1)F(c-) = 0
(6) (c-a-b)F - (c-a)F(a-) + b(1-z)F(b+) = 0
(7) (b-a)(1-z)F - (c-a)F(a-) + (c-b)F(b-)= 0
(8) c(1-z)F - cF(a-) + (c-b)zF(ct) = 0
(9) {(a-1)-(c-b-1)z}F + (c-a)F(a-) - (c-1)(1-z)F(c-) = 0
(10) {(c-2b)+(b-a)z}F + b(1-2)F(b+) - (c-b)F(b-) = 0
(11) c{b-(c-a)z}F - bc(1-z)F(b+) + (c-a)(c-b)zF(c+) = 0
(12) (c-b-1)F + bF(b+) - (c-1)F(c-) = 0
(13) c(1-z)F - cF(b-) + (c-a)zF(ct) = 0
(14) {(b-1)-(c-a-1)z}T + (c-b)F(b-) - (c-1)(1-z)F(c-) = 0
(15) c{(c-1)-(2c-a-b-1)z}F+ (c-a)(c-b)F(c+) - c(c-1)(1-2)F(c-)= 0

Further recurrence relations deducible from these, but more

easily proved directly are

(16) F(a,b+l;c;z) - F(a,bjcyz) = %? F(a+1,b+1;c+1;2)
(17) F(a+l,bjc3z) - F(a,bjc;z) = %? F(a+1,b+1;c+1;2)
abz

(18) (c-1)F(a,byc-13z) + F(a,b;c;z) - F(a+1,b+1;c+132).

Also
(19) é%—?(a,b;c;z) = %? F(a+1,b+l;c+l;2).

Gauss's theorem

(c-a) (c-b)
L. _ I'(c)T(c-a-b) _ a _ b
(20) F(a’bscgl) - T(C—a)r(c—b) = (C—a—b)a = (C_a_b)b i
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Euler's theorem

(21) F(a,bj;c3z) = (1-z)c-a—b F(c-a,c-bjc;3z).
For the confluent hypergeometric function we have the following

recurrence relations

(22) (c-2a-z)F + aF(a+) - (c-a)F(a-) = 0
(23) c(a+z)F - acF(a+) - (c-a)F(c+) = 0
(2w) (c-a-1)F + aF(a+) - (c-1)F(e-) =0
(25) cF - cF(a-) - zF(ct) = 0
(26) (a-142)F + (c-a)F(a-) - (c-1)F(c-) =0
(27) c(c-1+2)F - (c-a)zF(ct) - c(c-1)F(ec-) = 0.
Also

(28) F(a+1ljc3z) - F(ajcyz) = % F(atljc+l;2)

(29) (c-1)F(ajc-13z) + F(azcyz)

%? F(a+1j;ct132)

(30) il—F(a;c;z)
dz

% F(atl;c+l;2z)

(31) e ®F(ajc;z) = F(c-ajcy-2)

-z I'(c) _a-b 1
(32) e “Flajciz) v &y 2 2Fo(l—a,b—a;;;) as z >

I'(c) _-a 1
ey 2 2F0(1—c+a,a,,;) as z > © ,
The 2P2 function may be written in terms of 1F1
We give the proof as the result is not so well known as the others.

(33) Flajcy-2z)

functions.

We first prove a useful lemma.
©  [ul, k], _ (atu), _ (a+k)
(a)i i _Th)k (a)u

Lemma 1

i=0
Proof Using the definition of the Gaussian hypergeometric

function andGauss's theorem we have

o [u],[x]. ©  (-u).(-k).
l.'l - z 1 -'l
120 a), i: 120 (a 33
_ . _ T'(a)T(atutk)
oFq (~us-k3a31) =y TRy -

This may also be proved by induction if either k or u 1is a positive

integer. In our application to the next theorem k will be a positive

LEiECESy o [u],.(b).z"
- l -I 'I
Theorem 1 F, (atu,bja,c3z) = _Z YT Fq(brisetisz)
1=0 1 1
© (a+u)k (b)k Zk
Proof Falatubiasesa) = ) ==y g7
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© o [u]i[k]i(b)k k

Thus 2F2(a+u,b;a,c;z) = P R %7
k=0 1i=0 i Je ¥ :
BB [u]i[k]i(b)k K
= =
$20 k=i (a)i(C)k i
. .
. 3 [u]i(b)iz ? (b+l)k Ei
- O | - 1
izo (3);{e)gir j2q (etd) &
o [u]i (b)izl
- .Z il (a).(e). 1P1(b+l;c+l;2)'
i=0 pt 1

If u 1is a positive integer then this sum is finte.

Al.5 Hypergeometric Functions of Two Variables
The Gaussian hypergeometric series can be generalised to the case
of two variables in a variety of ways. We shall only give the Appell

series which form one set of generalisations. We define

o (a)m+n(b)m(b')n =
Fl(a;b,b',CQXay) = E (c) 'm' n' % y
m,n=0 mtn )
o (a)m+n(b)m(b')n e
0 ’. ’. = !
F2(a,b,b 5C,yC :xsy) z- (C) (chm! n! ® 3
m,n=0 m n
; (a)m(a')n(b)n(b')n -
F,(a,a’";b,b'5c3x,y) = ! " Y
3 m,n=0 (C)m+n e =
o (a)_. _(b)
g F (aibic.o’ix.v) = z m+n m+n P
MECEORE oSl sy (c) (¢') m!n! yo-
m,n=0 m n
Note that defini
ote a erining © (a)m+n(b)m+n m ki
Folasbsesxsy) = ] —roy—rm
m,n—o m+n
. ©  (a) (a’) (b) (")
Fc(a,a’sb,b;5c,e"3x,y) = ) () () m n! o
m,n:O m n

do not define new functions since the former is equal to

F(a,bjcyx+y) and the latter is equal to F(a,bjc3x)F(a’,b';c’3y).
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Appendix 2
Distributions

A2.1 Introduction

In this appendix we briefly state the definitions of the density
functions we have used and calculate the moments and expected values
of certain random variables for which these values have been quoted

earlier in the thesis.

A2.2 Non-central Beta and Gamma Distributions
The non-central gamma density with parameters o, 8 and
non-centrality parameter A is defined to be the function
o © Ak Xa+k—1 e—x/B
p(x) = e ) T
k= ’

0 8K T (atk)

and is denoted by vy(a,B,A) a notation which will be interpreted as
standing for the distribution or for a random variable with that

distribution. Putting o = *%n and B = 2 gives the non-central vy
distribution denoted by y(n,A) which is the density of the sum of

squares of n independent N(ui,l) variables with % Zi:1 d; = A

The special cases in which each o is zero (i.e. A = 0) are the
central y and ¥? distributions denoted respectively by y(a,B)
2
and ¥ n*
It is clear that the Yy(a,B,A) distribution is the marginal
density of X from the joint distribution

k! Ba+k T(atk)

the conditional desity given K = k being Yy(at+k,B). The marginal

p(x,k) = e

density of K 1is the Poisson distribution with parameter A.

The ratio of independent Y(u,P,A) and Y(Vv,B) variates is the
non-central inverse beta distribution BQ(U,V,B,A) with the density
function

x11+k—1

-)\ofkk
i’
k=0 B(u+k,v)(1+x)

pex) = e H+v+k

which can be interpreted as a marginal density in the same way as the
non-central gamma distribution.
The ratio of independent %-Y(u,B,A) and %—Y(v,B) variates,

has

. . 1, 1,
or, which is the same, the ratio of X (2p,A) and e o,

the density function
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2k etk B Sameked
PG = e L 5T 505 E RE T

where m=2p and n=2v.
(n+mx

If m and n are positive integers then this is the non-central F
distribution denoted by F(m,n,\). We shall use the same notation
regardless of whether m and n are integers. Regarding this as the

marginal density of a joint distribution, we note that the conditional
m+2k

density given K = k 1is the density of - Fm+2k,m where Fa,b
denotes the random variable F(a,b,0).
The transformations y = 2 and y = D = B respectively

1+x m+nx H+VX
transform BQ(U,v,A) and F(2p,2v,A) to the distribution with

density

A ; Ak yu+k-1 (1_y)v-1

; B(utk,v)

plyd = &
which is defined to be the non-central beta distribution denoted by
Bl(u,v,A) or by BR(U,Vv,\).

A2.3 Moments of Non-central Beta and Gamma Distributions

The pth moment about zero of the non-central gamma distribution

f” A
e
0 k

_ -
= e
k

1s

k _a+ptk-1 -x/B
E[xp] X e

nHe~ 8
>¢‘|>/

]
0 X' %K r(atk)

Ak Ba+p+k I'(a+p+k)

0 k! Ba+k I'(atk)

? AE.(Q) (a+p)k
256 k! (a)k

"nes 8

>

gP e~

BP(a) . F.(a+psaz\)

"
w
'O
R
A
~ 8

If p 1is a positive integer then this series terminates at k = p.
The mean and variance are easily seen to be
E[X] = (a+X)B and var(X) = (o+2))R2.
Putting B= 2 and o ='%n gives the mean and variance of the xz(n,x)
distributions respecti;ely as

n+ 2\ and 2n + 8)\.

The pth moment about zero of the Bi(u,v,k) distribution is
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1 % k
A A 1 +p+k-1 v-1
P1 - H+P _
E[xP] = fo e kéo T Sy (1-x)° 7" dx
B\ ? X B(p+ptk,v)
- € = k! B(utk,v)

o _k (ptk)

_=A A
= 8 Z iT'(u+v+k;p

. 5 § l: (utv), (utp) (u)p
Koo K (u)k(u+\)+p)k (u+\J)p
i (u) 5 ' '
= e 2F2(u+\),u+p,u,u+\)+p,)\)-

This does not simplify to a finite sum when p 1is a positive integer.
The pth moment about zero for the 82(u,v,x) distribution is

Im 5 oo A}( 1 xu+p+k-1
e —
0

P
ElX
[x7] kg k! B(u+k,67'(1+x)u+p+k+v-p

dx

= A i A BQutp+k,v-p) if pldw

k! B(utk,v)

o _k (p+k)

T
o k! (v p)p

s k! (p)k

™

= e 1F1(utpsusA)

(1)
TGTE%_ 1F1 (-P3us-2)
P k
(n) o [p]k A

- [v—iip kZO (ujk k!

and this does terminate if p 1is a positive integer.

After a little simplification we find the mean and variance are

1 - 4 (ut))? pt2)
ELx) = o1 ) g Vsl = Eey {(u-l)(v-Q) Y2 j-
This gives the mean and variance of the non-central F distribution as
n 2 A 2n (m+22)? m+L4)
a2 ) . ooyl toaw !

By similar reasoning it is easy to show that, for the Sl(u,V,A)
distribution
(w)_(v)
m 'n

5 o T e [N G (}
(V) o

2F2(u+v,u+m;u,u+v+m+n;k)
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and for the BQ(U,v,A) distribution

E[ Xm ] . (u)m(v)n_m
(1+x)"] G

& oFo (MHV, utms i, utvn;A) .

m
For the Bz(u,v,k) distribution we can also caculate E{—Ji—?d
(d+X)
a result which is helpful for calculating the risk function for the

bilinear shrinkage estimators of chapter 4. We have

m m -n
Rk o EEE
(1+X)n +X

l(d+x)n
© (n) m
{} 2047
r=0 T° (1+x)"

which converges if |[1-d| <1

_ ; (n)r (1-a)% (u)m(v)n+r—m oA
]
r=0 *° (U+v)n+r
X 2F2(u+m,u+v;p,p+v+n+rgx)
-y E B (n)r(u)m(\))n+r_m (u+m)k(u+v)k (1—d)k k
- € z 1 Tr
S e (p+\))n+r (u)k(u+v+n+r)k n k!
. e_A (u)m(\))n_m ? ? (n)r(\)+n—m)r(u+m)k(u+\))k (1-d)F >\k
= 7t L ] o
(u+v5n e (u)k(u+v+n)r+k r! k!
2 (u)m(\))n_m
= e F(n,v+n-m,u+m,u+V ;u,u+v+n;1-d,A)

(u+v)n

Where F 1is oné of the many possible hypergeometric functions of two
variables and of order 2,2 in A and 2,1 in 1-d. By analytic

continuation, the result also holds if |1-d| 2 1. In the case m = 0
the order of the hypergeomtric function reduces to 1,1 in A and 2,1

in 1-d and the case m = 1 may be reduced to the case m = 0 since
E[ : m]:E[ 1m—l] ) dE[ ; m]'
(d+X) (a+x) (d+X)

A2.4 Expectations with Respect to the Joint Density which Gives Rise
to the Non-central Inverse Beta Distribution

Given the joint density

A Ak uu+k-1
p(u,k) = e  —
K Bk, v) (14n) VK
r(6+K)m
we shall find E[TY:ET_ r(U)] in terms of VA BQ(U,V)- We have
n
(8+K) o _k (8+k) ut+k-1
-A A m u
E[———E r(U)] =e ] ——-————rr(U) du
SR k=0 OFRIG Jg B(p+k,n) (1+u)HHVTK
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We thus have
6+K) u-1
J 1_[“ u
r(U) r(u)
l(Y+K) | 0 B(u,v)(i+u)“+v

) {e-)\ 1o }E (6+k)m (U-H))k ( \k}
ey N (Y+k)n (W), 1+u)
(8)
A
= T?Tf e AE[I(V) 3F3(6+m,Y,u+v;6,¥+n,ugfaﬁ)].

For certain special cases, for example if n = 0, the order of the

hypergeometric function is reduced.

A2.5 The Poisson Distribution
The first few central moments of the Poisson distribution (see

Kendal and Stuart(1977-79) are

uo(x) Sl u1(A) (0

uQ(A) = I us(x) = A

Hy(A) = A+ 3?2 Hg(A) = & + 102

Hg(A) = & + 1002 + 3013 M0 = A+ 542 + 105)3

The highest power of A in un(k) is [%n] where the square brackets
indicate the "integer part'" function. The coefficients in these
expansions become large very quickly as n increases.

We wish to calculate E a%?~ for a > 0 which we have already
done exactly as

1 .1 - 1 _
E[E?K ]— 5 € 14 (a3o+13)) = . 1F1(1 a+l;-1)

and asymptotically as
1 1 1
E[E:R] NV (1m0l ).

Stein(1966) gives an approximation which we shall extend to give an

asymptotic expansion. Expanding E%E as
_E_-L1+K>\1
MK T atA +A
_ B E )7 (XA, (Lg)nt (K Bt
T oot a+A a+i a+K

and taking expectations, we have

T
& E[L]z L{ n (-1) ]Jr().) N (—1)n+1 1 E[(K—)\)n+1]}
[a+K]™ a+r 1, (0+0)T (s )" K+a
According to Erd€lyi(1956), a series I ? a ¢ (x) + R (x) is
r=1 r'r n

an asymptotic expansion as x =+ x_ if ¢P+1(x) = °(¢r(X)) as x> X

and R (x) = o(d (x)) as x = x .
n n o
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It is easy to see that the series in (1) does not converge as,

after n terms with n odd the remainder is

o+ A a+A

Since all the other terms are positive the remainder is greater and

/k =X ko—k n+2
and for any ko > a+2A,\ = )> 1 so that (————) > ®© 35 n > o,

tends to infinity also. We wish to show that the series is an

asymptotic expansion for E a%? as A >0 and as A > <,

In terms of Erdélyi's definition this is not strictly true as
pairs of terms of the series are of the same order as A - ». Let us

group the terms in pairs and write

E[giﬁ] _ 0§ { Mor (M) B ) } N 1 [ (x-2)%"*2 7
[ oK reol (osn)2T (as 1) 21 (a+) 2Pt K+a ]
2
=g 4 Lo=1H0)A (a-1+2)+(30-10+3X)A g

(atX)3 (atA)3 T "

For small A it is easy to see that the ratio of adjacent terms is
asyptotically 1/a? which does not tend to zero as A+0. The
expansion is not, in terms of Erdélyi's definition, an asymptotic
expansion near A = 0, but the terms do become rapidly smaller as r
increases if a > 1 (at least until the high order terms in A start
to dominate). We shall show however that Rn + 0 as A > 0. We have
\)

2n+1

(K-2)
2n+1 a

H
R < 1 - 2n+2

0 (o))

and since

2n+2]

ala+d)

u2n+2(k) has A as a factor this tends to zero as A -=>0.

o+
a+K
though it is'not, strictly speaking an asymptotic expansion.

Thus we can caculate E[ ] near A = 0 with this series even

For large A we wish to show that

(a+)) u2r+2(k) - u2r+3(l) i ((a+k) UQP(A) - u2r+1(l))
(ar) 273 F. R (an) 2F71
and that
1 E[ (K-A)Qn+2] ) o( (atd) uy) ) - 1, ) )
(a+k)2n+1 K+a (a+X)2n+1

in which case the expansion will be asymptotic in Erdelyi's sense

as A > o, The first relation is equivalent to - )= o (:L) which
Ar+1 An

is true. We have to show that
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2n+2 2n+2
S ey o(—%) , that is that E[————-—(K'M ] = o()\nﬂ).

l(K+a)A2n+1J B N (K+a)

2n+2 2n+2
| (K=X) (K-2)

Thus the expansion is an asymptotic expansion as A + «. We now wish

+1
2n+1] n )

= E[(K-}) = o(A

to find an upper -bound on the relative error of the expansion. Firstly

Rn > 0 and putting n = 0 shows that E[-i- .

o gt .
Eey s The relative

1 1 :
error E:X-Rn /'E[E:E] is therefore less than

)
|

B E[ (K_A)2n+2 ]
2n+1
(a+)) (a+K)

_(002) 1y ) _ Ugyg) E[ (x-2) 2" ]
(

(o#2) 2013 e
) (a+)) u2n+2(k) - u2n+3(k) “2n+u(k)
(a+A)2n+3 a(a+x)2n+u

We could have replaced a+K by a in the expression for Rn but

preferred to expand to one more term and replace o+K by a in Rn+1'

From either formula we can, in theory, find an upper bound for the
relative error. Using Stein's approximation and the simpler error
formula, we see that the relative error is less than

é%é%%%% (and probably quite close to é%é%%%% ). If a is greater

than 1/3 then an upper bound on the relative error is
3 3 3

o 3
e AT o DA TS B E: giving a crude bound of 5z for all A.

By using better approximations to the relative error bound given
above, we may obtain bounds which are not so crude as this. Note,

however, that this bound is very good for large a.
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Appendix 3
Some Complete Families of Distributions

A3.1 Introduction

As proofs of the completeness of the non-central XZ and F
distributions as functions of the non-centrality parameter do not
appear in many texts on statistics, we append them here. These
results are proved by shdwing that the distributions belong to a
more general complete class of distributions than the exponential

family. We first prove this family to be complete.

A3.2 A Complete Family of Densities

The first result associates some complete families of densities
with a complete family of densities depending on a discrete parameter
and conversely.

e}

k
Theorem 1 Let q(x,w) = a(w) | b(X) £ p(x,k)  where b(k)wX > 0
k=0 3

for all k and for all w in some region (. Suppose that q(x,w)
and {p(x,k)} are density functions on a sample space ${X}.

The family of densities {q(x,w):w € Q} is complete if and only
if the family {p(x,k):k=0,1,2,...} is complete so long as § is

a set with a point of accumulation (e.g. an uncountable set).

Proof 152 Ek[f(x)] exists for all k then
K k

z E [b(x) L £(x) exists for all K
k=0 k ¥

and by the monotone convergence theorem

@ k
E [f(X)] exists on @ and E [f(X)] = a(w) b(k) - E [£(X)].
w w k=0 k! "k
Conversely, .if Ew[f(X)] exists on § then
K wk
a(w) ) b(k) o p(x,k) < q(x,w)
k=0 :
and by the theorem on bounded convergence
oo wk
E[£(X)] = aw) ] b(k) = E[£(x)] and E, [£(X)] exist for
w k=0 k! k k
all k.
Suppose that Ek[f(x)] = 0 for all k implies f(x) = 0.

o k
This implies thatif E [£(X)] = a(w) ) b(k) %%-Ek[f(X)]
w k=0 '

"
o

for we Q and if Q 1is a set with a point of accumulation, then
by the uniqueness theorem for power series (Rudin(1966))

Ek[f(X)] = 0 for all k and therefore f(x) = 0.
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Conversely, suppose that Ew[f(X)] =0 VwEQN implies f(x) = 0.
This implies that if Ek[f(X)] = 0 for all k then

&S k
- w -
Ew[f(X)] = alw) kZO b(k) 35 E[f(X)] =0
and therefore f(x) = 0. This completes the proof.
<) mk
Corollary Let q(x,w) = a(w) Z FT'P(x’k) where p(x,k) > 0 V k
k=0 "'

be a complete family of densities on a parameter space §! which has

a point of accumulation. If b(k)wkp(x,k) > 0 then the density

© k
Qxow) = a,(w) [ b F7 plx,Kk)
k=0 '
is complete on Q.
Proof The p(x,k) can be normalised to be a family of density

functions which will be complete if {q(x,w)} is complete. The
completeness of {(x,w) now follows from the completeness of the

normalised family {p(x,k)}.

A3.3 Applications - The non-central x? and F Distributions

We shall consider the completeness of these densities as functions
of the non-centrality parameter A and shall regard the degrees of
freedom as fixed.

The non-central x? distribution with 2v degrees of freedom
has the density function

_ -1
B DY C Ak x\)+k 1 e 5X
PN e ) S
k=0 7" 2 T'(v+k)
and the non-central F distribution with 2y and 2v degrees of
freedom has the density function
A ; Ak uu+kv\) xu+k—1
k=0

f(x,\) = e

(v+ux}u+v+k

Both of these expressions are of the form

of Yk
-A AT Lk
f(x,0) = e ) S tN(x) p(x) a, .
e O
k=0
. - a(A) .
Introducing a coefficient e before each term gives
k

x k
g(x,}) = a(A) plx) et ] {Atx))
k=0 .

which, according to our corollaries, is complete if and only if

At(x)

f(x,A) is complete. Now g(x,A) = a(}) p(x) e which is a
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member of the exponential family of densities and hence complete if
the parameter space contains an interval.

Incidently, we can now use the thecrem to show that the central
x%, {x?(2v+k):k=0,1,2,...} and central F, {F(2p+k,2v)} are
complete families as fuctions of the parameter k.

The above proof also applies to non-central beta and gamma
distributions, in fact they are slightly easier since the coefficients
are less complicated.

Finally we note that the result in our corollary shows that the
exponential family is complete on any set of parameters which has
a point of accumulation. This follows from the fact that we may
choose our constants in such a way that the two series in the

corollary are identical.
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Appendix 4
Projections and Generalised Inverses

Rao and Mitra(1971) give properties of the generalised inverse of a
matrix and properties of matrices whih are almost generalised
inverses in a sense which we shall make precise.

A matrix G 1is defined to be a generalised inverse of a matrix
A if and only if AGA = A. Ageneralised inverse is not unique
, unless A 1is non-singular in which case G = A_l. We often denote
a generalised inverse of A by the symbol A . The following extra
conditions define the unique Penrose inverse of A:
(1) (1) 6eac=6 (ii) (em' =6  (iii) (a®) = AG.
A generdised inverse satisfying (ii) or (iii) gives a kind of
projection matrix. More general conditions will be given.

Suppose we have a semi-inner product <"°>M defined by

<a,b>M = aTMb where M 1is symmetric and non-negative definite.

This defines a semi-norm ||.|| defined by ||a||M = (<a,a>M)%.

The necessary and sufficient condition for x = Gb to be a
minimum semi-norm solution to the consistent equation Ax = b is
that
(2) (1) AGA = A and (ii) (68)™M = McaA.

One such matrix is given by

(3) G= (M+ AR AT{AM +ATA) AT},

If the column space of A 1is contained in the column space of M
then a simpler solution may be taken to be

(4) G = MaT(aM"AT)".

A minimum semi-norm solution is by definition a projection of
the origin onto the solution space of the equation Ax = b. In
general, a solution minimising ||y-—x||M is defined to be a
projection of y onto the solution space and is given by
(5) X =Gb + (I-GA)y.

Using a semi-norm “'“N in the column space of A we can find
the nearest vector to a solution of inconsistent equations Ax =Db
- "the nearest" being taken to mean that the semi-norm of the
residual, b-Ax 1is to be minimised. The solution is x = Gb
where G satisfies
(6) (ED) NAGA = NA and  (ii) (AG)'N = NAG .

Unless N ispositive definite, condition (i) is weaker than the

condition for a generalised inverse. One form for G is
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(7) G = (ATNA)™ ATN .

The vector AGb 1is the projection of b onto the column space of A.
In general, a projection, z, of y onto the column space of A

is defined to be a vector, z = Ax, for some x, for which

”z - y|k is a minimum. Such a projection is given by =z = PAy

where PA is a matrix for which

(8) pATNPA = NPA : NPAA = NA and rank PA = rank A.

This can always be computed by taking PA = AG where G is a
generalised inverse defined by (6) above.
If N 1is positive definite then the projection is an orthogonal

projection in the sense that <z-—y,A>(>N = 0 for all x.
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