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Abstract 

Efficient Biased Estimation and Applications to Linear Models 

In recent years biased estimators have received a great 

deal of attention because they can often produce more accurate 

estimates in multiparameter problems. One sense in which 

biased estimators are often more accurate is that the mean 

square error is smaller. 

In this work sev�ral param�tric families of estimators are 

examined and good values of the parameters are sought by 

approximate analytical arguments. These parametric values are 

then tested by computing and plotting graphs of the mean square 

error. In this way the risks of various estimators may be seen 

and it is possible to discard some estimators which have large 

risk. 

The risk functions are computed by numerical integration -

a method faster and more accurate thilli the usual simulation 

studies. The advantage of this is that it is possible to 

evaluate a greater number of estimators; however, the method 

only copes with spher·ically symmetric estimators. 

The relationship of biased estimation to the use of prior 

informdtion is made clear. This leads to discussion of 

partially spherically symmetric estimators and the fact that, 

although not uniformly better than spherically symmetric unes, 

they are usually better in a practical sense. 

It is shown how the theoretical results may be applied to 

the linear model. The linear model is discussed in the very 

general case in which it is not of full rank and there are 

linear restrictions on the parameter. A kind of weak prior 

knowledge which is often assumed for such a model makes the 

partially symmetric estimators attractive. 

Distributions of spherically symmetric estimators are 

briefly discussed. 
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Preface 

In recent years it has become apparent -cha1: biased estimators 

often give estimates which are more accurate than unbiased estimators. 

One way of measuring the accuracy of an estimator is by means of its 

mean s4uare error. Steiit wa� the first to show that the usual 

unbiased estimator for the mean of a multivariate normal distribution 

is inadmissible in the sense that there are estimators with smaller 

mean square error. In fact the mean square error of the J an;es-Stein 

estimator which shrinks the usual estimates towards the origin, is 

often very much smaller. Of course, an estimator which is not 

unbiased is biased. This seems <:o be a bad prop�rty of an estimator­

but so, it would seem, is the property of being inadmissible. I n  

fact both words are technical terms and should not be thought of as 

having their everyday u1eanings. There are a variety of ways of 

measuring Lhe bias of an estimator and a variety of ways of measuring 

its mean deviation from the true value. The properties of the 

estimator depend critically on how these things ar·e measured. 

In chapter 1 we review some of the pr·operties of estimators and 

suggest Bayes and em�irical Bayes estimators as tools for finding 

estimators with good properties with respect to repeated sampling. 

Some of the ways of doing so are surveyed and the results suggest the 

form which good estimators might take. These estimators shrink the 

usual estimates towards the origin as does the James-Stein estimator. 

There is little in this chapter which is new. 

Chapter 2 leans heavily on the work of Stein and in particular 

we prove a result which Stein only proves asymptotically. 

I t  is well known that a linear model can be transformed into the 

canonical form for which Stein proved his results.· We show how to 

apply the James-Stein estimator directly to the general linear model 

whether or not of full rank and with or without linear restrictions 

imposed upon it. We then prove the result alluded to above which 

shows that separate shrinkages in several linear subspaces of the 

parameter space are generally better than one over-all shrinkage. The 

result also gives a bound on the loss of mean square error which may 

be incurred by such separate shrinkages. Graphs of the difference 

in risk for shrinkages in two subspaces and the risk for a single 

subspace shrinkage are plotted in three dimensions together with a 
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contour map showing the region of improvement. 

Chapter 3 is closely related to work of Lindley and Smith and to 

work of Tiao and Zellner. The results are again given for the non-

full rank model with linear restrictions. This generalisation poses 

difficulties when stages of prior information are incorporated in a 

natural order. It is in this part of chapter 3 that the novelty 

lies. 

Another approach to estimation, Theil's so called "minimum mean 

square error e�tituation", is the topic of chapter 4. This criterion 

does not lead to an estimator as the statistic calculated depends 

upon unknown parameters. How this statistic itself can be 

estimated, and the properties of the estimators thus obtained, are 

discussed. Some distributional properties of quadratic forms and 

their ratios are derived in a discussion of consistent estimation. 

The resulting estimators belong to a parametric family of estimators. 

The various approaches to estimation of the shrinkage factor suggest 

possible parameter values which are then tested by numerical 

computation of the risk function. Graphs of these are plotted and 

displayed at the end of chapter 5 .  This material is mostly the 

creation of the author. 

Chapter 5 discusses iterative improvement of the estimators of 

chapter 4 .  Although this was originally discussed by Hemmerle, we 

conside� several different and novel approaches and compute and plot 

the risk functions of the resulting estimators. Graphs of the risk 

functions of these estimators are plotted together with the graphs of 

the estimators of chapter 4 .  

The theoretical computation of the risk functions for shrunken 

estimators was postponed until chapter 6 so that it could first be 

seen for what class of estimators this should be done. A wide 

selection of different formulae for the risk are given with the proofs 

arranged in a systematic manner. If only a few of the formulae are 

required then the proofs can be simplified by ignoring certain 

previous results used for computing other forms of the risk. If 

this is done then more elegant proofs than those used given are 

obtained. S ome generalisations to non-spherically symmetric 

estimators are given and these are new. These expressions lead to 

an easier proof of a minim3Xity condition than that given by 

Strawderman in a generalisation of a theorem of Baranchi�, and a 
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non-miuimc:1xi ty theorem of Efron and Morris is generalised to the non­

sphei'ically sywmetric case. 

In chapter 7 some risk estimate domination results of Efron and 

Morris are generalised by using an unbiased estimator for Lhe risk in 

the manner of Efron and Morris. This generalisation is not complete­

ly successful but some results are obtained. 

The distributions of James-Stein and other shrunken estimators 

have never been given. 

the Studentised version. 

Possibly of more use is the distribution of 

In chapter 8 this is shown to be a 

transformation of a multivariate t-distribution. Some of the results 

in chapter 4 on ratios of quadratic forms will lead, with tedious 

computations, to moments of the James-Stein estimator but this was not 

done as the Studentised version is of more value. 

We have not given a complete bibliography of work in the general 

area covered by this work, nor have we referred to every paper in the 

more precise areas in this thesis. The works cited are directly 

related to the development of this work. 

In order to make this work as self contained as possible we have 

given some standard results along with their proofs and have 

appended some general mathematical formulae which have been used 

heavily. 

Equations and theorems have been numbered consecutively within 

each section and are referred to in that section by their numbers. 

When referenced outside their own section their numbers are prefixed 

by the chapter and section number. Diagrams are numbered 

consecutively throughout the whole thesis. 
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C h a p t e r 1 
Poi nt  Es t i mation 

1 . 1  Cri teri a for Choos i ng Esti mato rs 

In this work we shall j ustify the choice of estimators by their 
sampling theory properties . However , one particular sampling theory 
property , that of unbiasedness , shall be of no interest to us . One 
reason for this is that estimators with a small amount of bias are 
often vastly better in terms of mean square error than unbiased 
estimators . We shall use the mean square error of an estimator as a 
criterion , the smaller the mean square error the better , s ince this 
penalises very strongly estimators whi ch tend , on average , to be far 
from correct . The mean square error is the risk funct ion 
corresponding to a quadratic loss function .  Although the loss 
function is often an arbitrary choi ce , quadratic loss is usually 
fairly tractable ( especially when the sampling distribution is 
normal) and behaves in a reasonable manner in that , the greater the 
difference between an estimate and the true value , the greater the 
loss . It  has been argued that a loss function should be bounded , but 
in  the case of a sampling distribution which is normal , quadratic loss 
and any bounded loss functions which approximate it near the true 
parameter value do not give very different results . 

A growing number of statisticians , but sti ll a minority , prefer 
to use Bayesian methods . Given a prior di stribution ,  p ( 8 ) , for the 
parameter e ( which may be proper or improper ) ,  and the likelihood 
function £( 8 J X ) ,  the posterior distribution , f ( 8 J x )� p( 8 )  £( 8 J X )  may 
be  calculated . This posterior distribution should be proper for a 
reasonable point estimator for 8 to be computable from it . 
Possible choices for point estimator are the mean , median or mode of 
the posterior distribution .  Usually the mean is chosen as this 
often leads to admissible estimators when the loss function is quad-
ratic , that is , no estimator has uniformly smaller risk . In the next 
sect ion we shall state the usual definitions and prove this well known 
theorem since it justifies the methods we shall use henceforward . 

1 . 1 . 1  Loss Functi ons a nd Ri s k  Functi ons 

Let x1 , x2 , . . .  , Xn be a sample from a distribution with parameter 
8 ( the parameter , the observations , or both may be scalars or vectors� 
Let the likelihood function be £( 8 J x1 , . . .  , Xn ) and let B ( X1 , . . .  , Xn ) be 
an est imator for 8 .  We  denote the loss  function by [ C B ( X1 , . . .  ,Xn ) , 8 ). 
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Given a prior distribution p ( e) for e the Bayes PostePioP Risk, 

r e ( X1 , . . . ,Xn ) is given by 
r e ( X1 , . . .  ,Xn ) = E ([( S( X1 , . . . ,Xn ) , e) ix1 , . . .  ,Xn ] 

1 2 

where the expe ctation is  t aken with respect to the posterior distri b­
ution of 8 .  

A sampling theorist , hav ing no p rior dis tribution , cannot compute 
this . Instead he may compute the Pisk function� R e( e) ,  given by 

Re (f)) = E [ [ ( e ( \ ' . . .  'X n ) ' e) I e] 

where the expectation is taken with respect to the probability 
distribut ion for x1 , . . .  ,xn given e. 

Taking the expectation over both the sample s pace $ ( X )  and the 
parameter sp ace $ ( 8 )  gives the Bayes Pisk 

It must be noted that some or all of these quantities may not exist , 
a lthough the existence of the Bayes risk implies the existence of the 
other two .  This fol lows from Fubini ' s  theorem which al lows u s  t o  
replace a double integral by repeated single intervals , i n  either 
order , if the fo rmer exists . That is 

R"" = 8 E [Re( 8 ) ] 

= E[E[[Cec x1 , . . .  , xn ) ,  e) l en 
= E [.Q,C ec x1 , . . . , xn ) , e) J 
= E[ E[.Q,( ec x1 , . . .  , xn ) , e) l x1 , . . .  ,xn ] ]  

= E [r e < x1 , . . .  , xn ) J. 
I t  is when the loss function is unbounded or the prior is improper 
that the Ba yes risk may fail  to exist . 

1 . 1 . 2 Admi s s i b i l i ty 

To a samp ling theorist , the risk function , being independent of 
any prior distribution , can be used for the comparison of estimators . 
I f  81 and 82 are two estimators and if R§(8) � BB ( e) V e E $ { e} 2 A ( where ${ e} is the parameter space ) then e1 is  said to dominate e2 • 
The risk function therefore defines a partial ordering of the set of 
estimators for e. I t  is not , unfortunately , a total ordering 
because there are pairs of estimators 61 and 82 for whic h $ { e} may be 
partitioned into s ubsets s1 ,s2 ,s 3 in such a way th at s1 * � 
s3 * 0 and Re ( e) < R§ ( e) V e E s1 , R § ( e) < Re ( e) V e E s3 1 2 2 1 
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and Re1 ( 6 ) = Rg( 6 )  V 6 E s2. 
always superior to the other . 

This means that one estimator is  not 
However� a minimal element in the 

partial ordering is superior to every other element ( estimator ) to 
which it is comparable . Such an estimator is said to be admissible . 

An estimator� e 1� is  admiss ible , then , if there is no other estimator 
e 2 for which Re ( 6 )  £ Re (6 ) V 8 E ${6}. 2 1 

Since Rg = E [ rg ( X1 , ... ,Xn)] ( if it exists ) it follows that an 
admissible estimator has min imal Bayes risk for any prior distribution 
for which the Bayes risk exists . S imilarly , minimising the Bayes 
posterior risk gives minimum Bayes risk and hence gives rise  to an 
admissible estimator . It is to be noted that this only applie s  if 

there is an estimator for which the Bayes risk exists .  

The estimator which minimises the Bayes posterior risk is called 
the Bayes estimator. If the Bayes risk for the Bayes estimator does 
not exist then this estimator is  not necessarily admissible , but it 
may be . In the case of a p-variate normal distribution , X� N (8,E) p 
with E known and with uniform prior distribution for 8 and loss 
function [ < e ,e ) = ( e-e )Tffi-6 )  the Bayes estimator is the minimum 
variance unbiased estimator ( also the least squares estimator and 
maximum likelihood estimator ) . This estimator is admissible if  p = 1 
or p = 2 but not admissible if p � 3 ( as was first shown by Stein 
( 1 9 5 5 ) ) .  

It is clear that , even for a non-Bayesian , a powerful tool for 
finding admissible estimators is to assume a prior distribution and 
find the corresponding Bayes estimator . In many cases  it can be 
shown , Fergusson ( 19 67 ) , that an admissible estimator must be a Bayes 
estimator or a generalised Bayes estimator ( i . e .  a Bayes estimator 
based on an improper prior distribution ) . In this case the import-
ance of Bayes estimators to a non-Bayesian is obvious . 

The converse problem is finding whether an estimator is a Bayes 
estimator and ,  if so , finding the prior distribution for which it is , 
has been discussed by Strawderman (197 1 ) . Strawderman and Cohen 
( 197 1 ) given conditions under which an improper Bayes estimator is 
admissible or inadmissible for the case of the multivariate normal 
distribution with known variance , while Brown ( 1966 ) gives classes of 
prior distributions whi ch lead to admissible estimators . 

In this brief summary precise details have not been given . 
Fergusson (1967 ) gives more precise proofs of the connection between 
admissible estimators and Bayes estimators . 
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1 .2 Estimators for the Mean of a Multivariate Normal Dis tribution 

under Qu adra tic Loss 

Suppose , for simplicity , that a random variable , X ,  has a multi ­
variate normal distribution X �  N (�,o2 I )  with o2 known . (We use the p 
symbol N (�,V )  for a p-variate normal distribution wi th mean � and p 
dispersion matrix V ) . On the basis of a sample x1 , . . .  ,Xn we wi sh to 
estimate � under the quadrati c  loss function 

[< 0 ,�) = < 0-�)T(0-�) / o� 
The minimu m variance unbiased estimator is � ( X1 , . . .  ,Xn ) =X= 

1 £ X .  and this minimises the risk among the class of unbiased n i = 1  J. 
estimators whatever the value of �. 
hood estimator for �. 

This is also the max imum likeli-

I f  we do not wi sh to restrict ourselves to unbi ased estimators 
then we cannot uniformly minimise the risk but we can search for 
admissible estimators and these are found amongst the Bayes estimators . 
We shall therefore choose a prior distribution for �. Now with 
bounded loss function and proper prior we are assured of an admissible 
estimator . However , our loss function is  not bounded and we do not 
wish to restrict ourselves to using a proper prior when we have little 
prior knowledge as this might weight our estimates unfairly towards the 
prior mean . 

The most obvious prior distribution for � is , perhaps , the uniform 
prior . This leads to the posterior pro bability distribution for � 
being proportional to the likelihood funct ion . S ince the likelihood 
function is 

l -2 = exp { -:>;2 0 

- 2 = exp {-\a 

n 
L 11 ( X ·-�) W } 

i= 1 J_ 
n 11 - 2 n 11 2 L X . -X 11 } exp {- -2 

X-� 11 } 
i= 1 J_ 20 

where 11 a l l = 
k T 2 ( a  a )  , we have the result that this is sy mmetric about 

� = X so that the maximum likelihood estimator coincides with the 
posterior mean . This estimator turns out to be admissible in one or 
two dimensions but inadmissible in three or more dimensions ( Stein ( 19 5 �) 

If  we transform our parameters to polar coordinates the uniform 
prior distribution becomes a spherically symmetric distribution with 

T k p-1 density of r = (� �) 2 = 11 � 11 given by p (r )  = r . This i s  a non-
uniform density and puts a large weight ing on large values of 11 �� � . 
We might try a prior distribution without this feature . For example , 
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the priors , p ( r )  = ra , a <  p-1 , overcome this defect t o  a greater or 
lesser extent depending on the value of a .  For any value of a this 
d . f . . d . f o"' ( ) ( T )�( a -p+ 1 ) ens�ty or r g�ves r�se to  the ens�ty � · �' p � = � � = 
( �T�)t. I f  t is  negative then a <  p-1 and we avoid weighting large 
values of � too heavily . 

In order to find the Bayes estimat or we shall show that , for a 
quadratic loss function , the mean of the posterior distributi on 
minimises the Bayes posterior risk . 

We have 

E[ C0CX)-�)TC0Cx)-�)lxJ 
� A T A I ] = E0� ( �( X)-�) (�( X)-�) X 

= E[ 2cGc x)-�) 1 xJ 
= 2{0 ( X) - E [�IXJ}. 

This is zero if  and only if  0<x) = E [� l xJ and this value clearly gives 
a minimum . 

In the normal dis tribution case we have roo Joo T t 
� . . . �(� �) 

_oo _oo 

In order that the integral 
have t > - � ( ie a >  -1 ) .  

in the denominator should converge we must 
With this restriction on t we may 

- oz A calculate � as follows . 
\) is p(v I X), we have 

and 

Therefore , 

so that 

0cx1 , . . .  ,x ) . n 

a 1--;::-:-- p ( v X ) oX 
T t E[v (v v) ] 

= 

= 

= 

Let v,..... N ( X-- I )  then , if the density of p ' n  

E[V (VTV)t] 
E[ ( vTv)t] 

-;.(V-X) p ( V  I X). 
a 

If - cr2 v ,..... N ( X  - I )  p ' n then 11 \) 11 X ( p , z )  

where n -T-z = --2 X X ( and :. 
2a 
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Using the properti es of hypergeometric funct ions and moments of X2 
distributi ons given in appendix 2 we obtain 

E [ llv 1 1 2t ] = e�2)t (%A e-z 1F1 <% + t ; � ; z ) 

16 

and a
az E [  jjv jj

2t ] = 0�2 J (�� e-z [<1 + '2pt)1F1 (%+tt1 ;%+1 ; z ) - 1F1 (%tt ;�; z ) ] 
giving us the result that 

�p + t 1 F 1 ( � p + t + 1 ; � p t 1 ; z ) 
� p 1 F 1 ( � p +t ; � p ; z ) 

Since 1F1 ( a ; a ; z )  = e
z , the special case t = 0 gives� = X which is the 

well known special case of a uniform prior for �· 
If t is a positive integer or if � p + t is a negative integer then 

this expression gives a rational function of z .  However , for the 
former case we do not expect the estimator to perform well , while for 
the latter case the estimator is not a Bayes estimator since the 
integral does not converge . For other values of t we do not expect to 
have a rational function of z . 

A Now � is a scalar multiple of X. We shall show that for 
- � p < t < 0 tr.e multiplying factor lies between zero and one . 

From the asymptotic expansion for the confluent hypergeometric 
f ( b )  z a-b function 1F1 ( a ;b ; z )......, rray e z 2F0 ( 1 -a ,b-a ; ; 1/z )  we obtain 

�p +t 
�p 

1 F 1 ( �p +t+1 ;�p+1 ; z )  

1 F 1 (� +t ;� p ; z ) 
2F0 (��p-t , -t ; ; 1 /z ) 

2F 0 ( 1��p-t , -t ;  ;1/z ) 

z + t (�p + t ) 
"""' 1 as z -+ co. 

ztt (�p+t-1 ) 
� +t 

Thus as z -+  co the multiplying factor tends to 1 .  Also 0 < ---- < 1 
�p 

so that when z = 0 the multiplying factor lies between zero and one . 
We now complete the proof by showing that the multiply ing factor is 
an increasing function of z .  
lemma given in Lehman ( 19 5 9 ) . 

This is a special case of the following 

Lerruna 1 I f  for i =  0 , 1, 2 ,3 ,  . . .  a . > 0 and b . > 0 and if the series 1. CO l.i oO • 1. E a . z converges 
i = O 1 to A( z )  and the series E b . z  converges to B ( z )  

i=O 1 a. 
then for z > 0 f( z )  A( z )  · · · f t '  f 'f 1 · = � 1.s an 1.ncreas1.ng unc 1.on o z 1. 1.s an B\Z ) b .  
increasing function of i .  1. 
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Proof . For f( z )  to  be  an in creasin g function of z i t  i s  necessary 
that f ' ( z )  > 0. Now f ' ( z )  = [ A '( z )B( z ) - A ( z )B '( z ) ] / [ B ( z ) ] 2 and 
so  we req uire that A '( z )B ( z ) - A ( z )B ' ( z )  > 0 .  
N ow  A ' ( z ) B( z ) - A ( z )  B '( z )  = 'f' r [ i a .  b . zi+j -1 

i= O j =O � J 
00 n 

. i+j -1  � a .b . z ] 
J � 

n-1 = I i_. k ( �bn-k an-kbk ) z  
n= O  k =O 

00 n-1  = I c z 
n= 1 n 
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where c = n I k ( a b k - a -kbk ) + I k ( a b 
_ k - a -kbk ) 0 � k < � n k n- n � n <k �n k n n 

= I k (a b -k - a -kbk ) + I (n-k ) ( a  kh - �b -k ) 
O �k <�n k n n O �k <�n n- I< n 

= I (n-2k ) ( a  -kbk - ab -k) 
O�k <�n n k n 

N ow for 0 :s; k < � n n - 2k > 0 and n -k > k 

However , a bk >ab is equivalent to s k s 
for all i and the result follows . 

In  our application of this lemma 

since b .  > 0 � 

( �p +t ) . 1 �+ 1 ( �p +t ) .  � 1 a . � 

so we have 

= 

a . � 
b. � 

. ' 
( �p ) i +1 

�. 

�p + t+i 
= 

�p+ i 

b . = ' • I � (�p) . �. 
� 

t 1 = + 
�p + i  

which i s  an increasing function of i if and only if t < 0. We have 
thus shown that the multiplying factor lies between zero and one if  

"' This means that � is a shrinkage of X. 
The estimator � ( X1 , . . •  ,Xn ) given above may be computed easily 

for small values of z ,  or , using the asymptotic expansion given 
previously , for large z .  For intermediate  values of z the aid of a 
computer may be required .  It seems desirable to  find a more easily 
calculated approximation to the shrinkage factor . Let h ( z )  be the 
shrinkage factor . Now as z � 0 and as z � oo� h( z )  is  asymptot-
ically equal to a bilinear function .  W e  shall approximate h ( z )  by 
such a function . We first prove the following lemma . 
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00 L 
Lemna 2 If f( z )  = i=O  

00 L 
i=O 

i a . z  � 
i b . s � 

and g (  z )  = 

then as z � 0 f ( z )  � g ( z )  and f'( z )  � g '( z ) .  
Proof Clearly f( z )  � g( z ) . 

00 00 L L . i+j - 1  � ( a .b . -a . b . ) z  � J J � 

1 8  

Now f '( z )  = i= 1 j = O  
c'i b . zj )2 
j = 0  J 

a1b 0-a0b1 
(bo+b 1z )2 

as z � 0, 

and 
a1b0 - aOb1 

2 ( b0 + b 1z )  
g '( z )  = 

Thus f '( z )  � g '( z ) . 
Applying this result to h ( z ) shows that the first two terms of the 

Taylor series in the numerator and denominator approximates h ( z )  in 
value and derivative at z = 0 .  
A similar lemma for large values of z i s  as follows . 

Lemma 3 If f( z )  � 00 L 
i=O 

-i b . z l. 
and g (  z ) = 

where the seri es are asymptotic  expansions as z � oo then f( z )  � g( z )  
and f '( z )  � g '( z )  as z � 00• 
Proof Clearly f ( z )  � g( z) . 
Now in a similar manner to  the previous lemma 

f I ( Z) 
a0b1 - a1b0 � 0 as z � 00• 2 b2+ b1 z +b0z 

S ince g '( z )  7 0 the result is proved . 
This shows that for large z we may approximate h( z )  in value and 
first derivative using just the constant terms . The next lemma 
gives a bilinear function which approximates another bilinear 
function for small z in value and first derivative and approaches a 
given constant for large z .  

Lemma 4 Let f( z )  = a + bz and g( z )  c + dz 
f'( z ) g '( z )  as z � 0 and g( z )  � k 
B = �b e-ad y. 

c kc-a 

a +  Bz = Y+ oz Then f ( z )  � g ( z) and 
as z � oo if a = � Y o - 1 be-ad y 

c ' - c kc -a ' 

Proof We must have B = k 6 to  satisfy the condition for large z and 
a = � Y so that f( O )  = g( O ) . c In order that f '( O )  = g '( O )  we must 
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be-ad 0Y-ao have = "' 
c2 y2 Thus kYo - �Ye = be-ad Y2 c c2 

We may now apply these lemmas to the function h( z ) . 

a = 1m+t k = 1 ,  � � 
( �+t ) 2 b = ( �)2 

c = 1 ,  d = �+t 1 • "2P 
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and y = �be-ad y .  c kc-a 

In this case 

= 
�+t y - - [(�+t)2 We have a 1 , S - 6 - (1 ) "2P "2P2 

- (�)2 y /(1 -�+t \] 
'2P �) 

= - � [� +t+1 
t �+1 - � ] y 

'2P 
= < �+t ) Y I [ �(�+1 ) ]  

Taking Y = (�)2 we obtain as our bilinear approximation to h ( z ) , 

h ( z )  _ (�t ) (�+1)t( �+t ) z  _ (1 +t ) �+1 + z - �(�+1 )+ (�+t ) z  - '2P �( ;p+1 ) + ( \p+t )z  

I t  is clear that we could use higher order approximations  to  h( z )  but 
this bilinear approximation will be quite good ; also it is doubtful 
whether much improvement can be gained by going beyond biquadratic 
approximations . 

1.2.1  Other Pri or Di s tri buti ons  

The reason that the maximum likelihood estimator tends to over­
estimate the length of � is that it is based  on a uniform prior . The 

p- 1 surface of a sphere of radius r is proportional to r which means 
that a uniform prior weights large values of r highly . We over come 
this by using a prior distribution which puts smaller weighting on 
large values of r in compensation for this . 
effect "the surface-volume effect" .  

Stein ( 1 962 ) calls this 

If  p ( � )  is the probability dens ity for � then 
1 coordinates. < 1 1  � 1 1  , e )  we may write o <e ) = M � so 

The Jacobian of the transformation will be 

J = = I 0 \ 1 1  V 1 1 �� 
= 

We thus have the probability density for ( 1 1  � 1 1  ,8 ) 

P<l l � l l  ,8) = p( � ) ��� �� p-1 1 1 ° l �� 11· 

on tak ing polar 
that 1 1  cS 1 1  = 1 .  

This proves the transformation law given previously . 
Another way to overcome the surface volume effect is to use a 

proper prior distribution . In particular we could use a normally 
distributed prior . We shall consider a family of prior distributions 
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which includes the previous family and the normal family as special 
cases . Consider the prior 

T t T p ( � 1 -r  ) a: ( JJ �)  exp { - � 't- 2 ( JJ -a ) ( JJ -a) } 

When t = 0 we obtain the normal prior while � in the limit as T � oo we 
obtain the prior of the last section . The posterior distribution is  
given by 

p ( JJ) a: exp {-2�2 1 1  ]J- XII2 } ( ]JT ]J)t exp { 
- 2�2 1 1  ]J-a 1 1 2} 

( ]JT JJ)t { 1 r n ( T -T -T- ) 1 ( T 2 T T ) ] } = exp -�L--::-1 ]J ]J-2X JJ + X X +2 JJ ]J- a ]J+a a a T 

This i s  of the same form as the posterior which corresponds to the 
· ( T ) t Th ff " · n h b 1 d b n 1 d prl.or ]J JJ . e coe J.CJ.ent 02 as een rep ace y � + -:;z an 

the vector X has been replaced by 1 
n 1 (JL + T� 

n - 1 (-2x+-2 o.). a T Thus the me an 

of the posterior distribution is also of the same form as before . 
Usually no value of T2 is  known but it is possible to est imate 

T2 from the data ( the so-called empirical Bayes estimators ) .  We 
shall i llustrate this in the next section for the case t = 0 .  
Alternatively we may choose a prior distribution for T 2 ( a  so-called 
two stage Bayesian method ) .  

2 2 -2c Cons ider a prior distribution for T , p ( T  ) a: T 
for )J obtained by integrating with respext to T 2 is  

c-1  
= ( T ) t 2 f( c-1 )  JJ JJ 

1 1 �-all 2 (  c-1) 

a: 11 JJ -a 11 2 ( c - 1  ) 

1 1 � 1 1 2t 

The prior 

In the case in which a = 0 this reduces to p ( V) a: I I JJI I 2 ( c-1-t ) which 
is of the form previously considered . 
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1 .2.2 Empirical Bayes Estimators 

Instead of choosing a prior for T2 and integrating it is possible 
to estimate T2• 
estimates of the 
model considered . 

This may be done because the variation in the usual 
�; consists of two components under the random effects � 

These components are the variation of the �. about � 
their mean and the random variation of the X . . � The within samples sum 
of squares estimates 

2 estimates Q_ + T2 • n 
a2 while the between samples sum of squares 

Writing X .  . for �J random effects model 
the j th component of the ith sample vector the 
gives 

"2 = 1 0 ( p-1 )(n-1) 

n(x. -x � .  

f f i = 1 j = 1 
( X  • •  - X. )2 • �J 1. 

This random effects model as sumes unknown variance and that each 
component of a is the same and can be estimated by x 
modify for the case a = 0 and known variance we obtain 

Using 

"2 1 p - 2 
& 2 

l = - ) X . p L �. n i= 1 
this model the posterior distribution 

2 

( T' 
x ,  ll - N  p 02 

-
+T2 n 

2 .Q_ 1 n 
a2 2 --+ l n 

I) for � is 

and the posterior is nT2 x (1 - 02 
) 

mean = 
nT2 ·+o 2 nT2+ o2 

Substitut ing the above estimator for T2 gives 

Using our previous notation 

( 1 -E.£) x. n - T­X X 
n - T -z = � X X we have 2oL 

t'= ( 1  _E) x = z-� x .  2z z 

X .  

I f  we 

This again is a shrinkage of X where the shrinkage factor is a 
bilinear function of z. 
derived previously . 

I t is not the same bilinear function which we 

When the denominator of a bilinear shrinkage is proportional to z 
it turns out to be easier to calculate the risk than for a general 
bilinear shrinkage . James and Stein ( 19 6 0 ) gave a modified form of 
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the above estimator in both the case of known variance and the case 
of unknown variance . For the latter case we may substitute o2 for 
a2 • Since the empirical Bayes estimator is only an approximation 
to the full Bayesian estimator it seems reasonable to check whether a 
slight modification wi ll give smaller risk . They found that, for 
the estimator - _z-a -X lJ = 1 z the risk function which we shall 
calculate in chapter 6 is given by 

- n�2 a } E[ p-�+2K] 
lJ T lJ 
w where K has a Poisson distribut ion with parameter if the 

variance is unknown , while if it is known then the risk is 
E = p - 4a{(p-2 )  - a} E[ 1 ] p-2+2K 

with the same Poi sson distribution for K . 
The estimator is uniformly better than C if a = � p - 1 in the case 

� 1 of known variance or if a = r=:-;-:;- ( "2 p - 1 ) in the case of unknown '211+1 
variance . In fact for values of a between zero and twice this value 
the estimator is minimax which means that it has uniformly smaller 
risk than the maximum likelihood estimator . 
1 .2 . 3 Admi s s i b i l i ty 

For the James-Stein estimator given above the shrinkage factor 
wi ll be negative if z < a .  Intuitively this would seem t o  be a bad 
thing . The reason the estimator perfo�ms well on average is that 
there is only a small chance that z < a .  If we define a = a if 

. ...... + (z-a) _+ a <::: 0 and a = 0 a � 0 tr.en the est1mator lJ 1 = -- X seems + Z I+ likely to provide an improvement over the James-Stein estimator . In 
fact this is so and this proves that the James-Stein estimator is not 
admissible . The estimator � is the truncated James-Stein estimator 
and is not admissible either . 

Efron and Morris (1972 ) have compared the above estimators with 
the full Bayes estimators . They quote the loss of efficiency due to 
estimating T2 and show that it is small . Thus the James-Stein 
estimator is almost admissible in a sense because the proper prior we 
have considered gives rise to an admissible estimator . 

0 · · t b d the pr1'or p(") a: (,,T" ) t ur prev1ous est1ma or ase on � � � 

possible candidate for admissibility since the only admissible 
is a 

estimators are Bayes estimators . Since the Bayes risk does not 
exist we cannot guarantee admissibility by this result . A paper of 
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Brown (1971 ) shows which prior distributions lead to admissible 
estimators . The proof shows under what conditions a sequence of 
admissible estimators based on proper priors converges to an admiss-
ible estimator. Strawderman and Cohen (1971 ) derive from this the 
following simple criterion for the case of known variance . An 
improper Bayes estimator is admiss ible if it is a proper shrinkage 
(i.e. shrinkage factor < 1 ) of the maximum likelihood estimator - the 
result applying to estimation of the normal mean under quadratic 
loss when the variance is known . This means that our Bayes estimator 
previously derived is admissible but not our bilinear approximations 
to it . 

Some of the above forms of prior knowledge , as well as many other 
related methods which lead to Stein-like estimators have been 
summarised in a review paper , Zellner and Vandaele (1972 ) .  

1 . 2 . 4 Un known Va ri ance 

We have already seen how unknown variance may be dealt with 
empirically . The full Bayesian procedure of choosing a prior 
distribution for o2 leads to rather intractable integrals . Suppose 
we use a prior distribution p (o2 ) a: (o2 )b exp (- -7). We may integ­o rate out the o2 fairly easily and we are left with an intractable 
integral for lJ .  Alternatively , if we integrate out the lJ we are left 
with an intractable integral for o2 • These may be solved numerically 
or by asymptotic expans ions but the sol�tion does not give easily 
computed estimators . An alternative is to use the mode of the 
posterior distribution for lJ and this is more easily computed . We 
shall discuss these methods in more detail in chapter 3 .  
1 . 2 . 5  L i near Mode l s 

We have described the case of a sample from a multivariate 
normal distribution . This is a special case of a linear model since 
we may write X .  = lJ + E. where E. � N (O,o2 I ) . We may then write � � � p 

-
x

1 
I E

1 
E

1 

= + where N (O,o2 I )  np 
X I E E n n n 

For known variance X is a sufficient statistic for lJ while for 
unknown variance 
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n 
S = L ( X . -X )T ( X . -X) and X are j ointly sufficient for � . 

. 1 l l l= 
02 Now X� Np (� ,!l I )  and S � X�_ 1  independently of X .  We may 

therefore study the problem of a s ingle observed X with distribution 
X � N (�,02 I) and , if o2 is unknown, an independent variate S with p 
distribution S� X2 • The linear model Y = XB + £, £ � N (O,o2 I)  n 
takes this form if we take our sufficient statistics to be 

This is  the so-
called canonical form of the model . In chapter 2 we shall apply the 
methods of this chapter to the linear model in this way as well as 
working with the model directly . 

1 . 2. 6  Cri t i c i sm 

Estimators obtained in the last few sections have the property 
of shrinking each component est imate towards a common value . As we 
have discussed the problem the shrinkage is towards zero , but it is 
easy to modify the methods to give a shrinkage towards any value or 
towards the overall mean . Since the shrinkage factor depends on all 
the data the estimate of one particular coordinate is affected by 
data concerning other coordinates . In the case we have cons idered 
the distributions of the coordinates are independent and unless we 
have prior knowledge that the coordinates are close together it seems 
unreasonable to use estimators which h�ve this property . 

The reason for the reduct ion in risk is that if  the coordinates 
are in fact equal in mean then pooling the data is more efficient 
and protects us against any data for one coordinate being an outlier . 
If the coordinates are close we are still protected against outlying 
data .  I f  all the  means really are far apart , little harm will be  
done s ince with high probabi lity the shrinkage will be  close to unity . 
The main danger is that a minority of coordinates may be atypical of 
the rest . Apart from this possibility the shrunken estimators can 
at best greatly improve our estimation and at worst do only a little 
harm . Unfortunately the possibility of a small number of atypical 
components cannot be ignored . This is a criticism of ensemble loss 
functions : the James-Stein estimator does what is required of it -
namely gives smaller risk than the usual estimator . In the alarming 
case above the maj ority of components have their components of risk 
reduced slightly at the expense of the minority which could have 
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_unacceptably large components of the risk . A slight modification 
due to Efron and Morris (197 9 )  seems to give us the best of both 
worlds . At small expense to the ensemble risk a rule which limits 
the amount of shrinkage allowed can reduce the individual component 
ri sks to nearly the same value as for the unshrunken estimator . 

Critics of shrunken estimators argue that the methods suggest 
that we should j oin separate models together into one so that 
estimates in one case improve those for the others . The absurdity 
of doing so when the other problems are irrelevant to the problem in 
hand is self evident . In order to add weight to this criti cism , many 
absurd suggestions of this sort have been made , for example , that 
baseball batting averages ( or even random normal numbers ) should be 
used to improve predict ion of the effectiveness of a drug . Barnard 
asks : "Why should not all our estimation problems be combined into 
one grand melee? "  In fact , if we do combine them , then our 
estimators will hardly differ from the maximum likelihood estimator 
and the risk will be smaller by a negligible amount . 

It  is  only in problems in which most of the components have means 
which are close together that we obtain a useful reduction in the risk 
and only where we believe this to be likely should we use this method . 
In order to  protect ourselves against one component risk being 
increased we should use a limit ed shrinkage rule . After all , a 
patient is interested in his diagnos is and the risk to him and has 
less concern for the risk to other pati'ents who happen to have been 
examined on the same day . 

Later we shall see that a prior distribution which keeps some 
component estimators independent of some of the others , in other words 
we are not combining the estimation problems , can give an even 
greater reduction in ensemble risk than the crude shrunken estimators . 
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C h a p t e r 2 

Modi fi ed J ames -Ste i n  E st i mators App l i ed to L i nea r Model s 

2 . 1  I n troducti on 

In this chapter we shall discuss the canonical form for the linear 
model , which was set up in chapter 1 ,  and extend the James-Stein 
est imator so that it does not necessarily shrink the maximum likelihood 
estimator toward s the origin . 1n the discussion to Stein( 1962 ) ,  
Lindley suggested shrinking towards the common mean of the coordinates 
while Stein( 1 966 ) suggested shrinking some components  towards one 
value and others towads different values .  We shall cons ider estimators 
which shrink the usual estimator towards several orthogonal hyperplanes 
thus generalising both of these suggest ions . We note , however , that 
Stein( 1 955 ) clearly had this in mind for applications of his ideas . 

Having developed these estimators , we shall show how they may be 
applied to the linear model .  Both the full rank model and the non-full 
rank model will be considered as well as restricted linear models . 

2 . 2  Shri nkage of  the Maxi mum L i ke l i hood E s t i mator Towa rds a Hyperpl ane 

Suppose and ( if o2 is known 

then we put n = oo and S = o2 ) .  We shall estimate lJ under the loss 
function [ <G , lJ , o2 ) = I l D - l-1  1 1 2 /o2 • We wish to shrink the maximum 
likelihood estimator , X , towards the hyperplane 
rank H = r .  

HlJ �·: = h 

We may write  X as the sum of three terms as follows 

where 

X =  Gh + ( I - GH )X  + G(HX - h ) 

HGH = H and GH = ( GH )T . 

where 

Then Gh is the proj ection of the origin onto the solution space of 
HlJ �·= = h ( i . e .  the hyperplane towards which we are shrinking ) ,  ( I - GH ) X  
is  the proj ection of X onto the null space of  H ( i . e .  the parallel 
hyperplane HlJ * = 0 )  and G( HX - h) is the proj ection of X - Gh onto 
the column space of HT ( i . e .  the orthogonal complement of the null 
space of H ) . 

The idea is to shrink the component of X - Gh orthogonal to the 
null space of H by an amount dependent on X and S without changing 
the component of X in the null space of H 
est imator 

This suggests using the 

Let 

where Y = Gh + ( I  - GH )X 

E [ Y] = n = Gh + ( I - GH )lJ , E[ Z ]  = r,; = G (HlJ - h ) 

and Z = G( HX - h ) .  

so that , s ince 
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X = Y + Z , l..l = n + l;, • Figure 1 shows the relationships among the 
variables and parameters defined above . 

F-<.guJte. 
• 

---.........._ 
------

--- --
- -- ------- ---

-- z 

-----------� 

---;x 
I 

VaJU..a.biu Ve.M.-Yl.e.d -<.11 Re.iatioYl. :to :the. Maximum Uk.e.Uhood 

E6 .:tUna:toJt 

We shall show that the vectors ( I - GH )X and G ( HX - h )  are 
indeed orthogonal ( in the geometrical sense , i . e .  with the inner 

2 7 

T product < a , b> A = a Ab where A is symmetric and positive definite , 
a and b are orthogonal if and only i f  < a  , b> A = 0 ; We take  A = I 
in this case ) .  We wish to show that � I - GH );�-,TG( HX - h )  = 0 .  Now , 
if h = Hu then the left hand side is 

= 
= 

XT( I  - GH ) GH ( X  - u )  
XT (GH - GHGH ) ( X  - u )  

= 0 
which is the required result . 

· We shall also show that Y and Z are orthogonal in the sense 
of being statistically independent . We have · 

E [( Y - n ) ( Z - l;, )  T) = 
= 
= 

E[ { ( I  - GH ) ( X  - jJ ) } { GH ( X  - f.! ) } T] 
( I  - GH ) var X ( GH )T 
a2 ( I  GH ) ( GH )T 

= a2 ( I  GH ) ( GH )  
= 0 . 

Finally we wish to find the distributions of the norms of the 
random variables defined above . We have 1 1 X 1 1 2 rv a2 x2 (� l i l-1 1 1 2 ) p 
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since 1 1 X 1 1 2  is the sum of squares of independent normal variates . 
Also 1 1 Z 1 1 2 = Z T Z = [ GH ( X - u) ) T [ GH ( X  - u )  J 

= ( X - u )  T ( GH ) T GH ( X  - u )  
T = ( X  - u )  GH ( X - u) 

and since GH is idempotent 1 1 Z 1 1 2 "' o2 x�(�  1 1  z: 1 1 2 ) where 
r = rank H = rank GH . Similarly , 1 1 Y - Tl 1 1 2  = { ( I  - GH ) (  X - f.l ) } T { ( I  - GH ) (  X - f.1 ) } 

= ( X  - f.l )  T ( I  - GH ) T ( I  - GH ) ( X  - f.l ) 
= ( X  - f.l ) T ( I - GH ) (  X - f.l ) 

and since I - GH is idempotent of rank 
Also, since ( I - GH ) GH = 0 , or s ince Y 
I IY - Tl 1 1 2 and 1 1 Z 1 1 2 are independent . 

P - r , 1 1  Y - Tl 1 1 2 "' 02 X�-r · 

and Z are independent , 

In this chapter the only use we make of the ri sk function is as a 
motivation for using the estimator � and its generalisations . The 
proof of the formula for the risk function of the ordinary Jarnes-Stein 
estimator will therefore not be given here but will be delayed unt i l 
chapter 6 where i t will be given as a special case of the risk of a 
more general class of estimators . Here we shall quote the result . The 
risk function for the estimator � 1 = ( 1 - ��� W ) x given in 
Stein ( 19 6 6 ) is [ 1 1 ( cS ) 1 1 2 1 { ( ) n+2 } E f 1 l E 1 l l x l l2 X - f.l J = p - c 2 p - 2  - n e l.P-2+ 2K j 
where K has a Poisson distribution with parameter � o-2 1 1 f.1 1 1 2 • This 
is the result already given in chapter 1 . We now give a slight 
generalisation - if X has a singular normal distribution then there 
is a matrix , L ,  such that LX has a normal distribution of the same 
rank and with LLT = I ,  therefore replacing X by LX does not change 
the risk function - the risk is the same in the singular case . 

. ..,; Now , for the est1mator f.l we have the risk funct ion 
E [ I I Y + <t> <  l l z  1 1 2 , s ) z - fl l l 2  J 

= E [ I I Y - n + <t> <  l l z 1 1 2 , s )z - z: 1 1 2 1 
= E [ I I Y - Tl 1 12 1 +  2 E [ Y - n 1 TE [ <f> ( l l z l l 2 ,s )z  - r; 1  + E [ l l <t> <  l l z 1 12 , s ) z - r; WJ 
= E [ I I Y - n 1 1 2 1  + E [ 1 1  <t> <  1 1  z 1 1 2 ,s ) z - r; 1 1 2 1 

where <f> (  1 1  Z 1 1 2 , S ) = ( 1 - I I  �51 !2) Z ( the result is also true for 
general <f> ) . The risk function is thus 
R(� , f.l  , o2 ) = p - r + {r - c 1f 2 ( r-2 ) ·+ n+2 cJlE

f
l 

1 Jl} 
L n r-2+ 2K 
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where K has a Poisson distribution with parameter 
�-2 1 1  z;; 1 1 2 = �-2 I I GHl-t - Gh 1 12 = �o-2 I I G ( HlJ - h ) l l 2 
R(� , lJ , o2 )  = p - c{ 2 (r-2 ) - n�2 c} E[r-;+2 K ] . 

Thus we have 

The minimum value of this is less than 
likelihood estimator ) and occurs when 
i .  e .  p � s + 3 where s = p - r .  

p ( the risk for the maximum 
r-2 c = n n+2 so long as r 0!: 3 , 

The estimator j ust developed has the property that for small 
values of F the signs of the components of X are reversed . 
Intuitively this would seem to be a bad property , and , as we shall 
see in chapter 6 ,  it is possible to obtain a slight uniform reduction 
in risk by using the positive part shrinkage in which negative values 
of the shrinkage factor are replaced by zero . By doing so , the saving 
in risk near ll = 0 is quite marked . Using this shrinkage we find that 
there is no longer a uniformly best value of c , but that for 

r-2 
c � 2n --- the estimator remains minimax . James and Stein suggested n+2 
keeping to the value of c whi ch is optimal for the ordinary James -
Stein 
value 

estimator , while Efron and Morris ( 1973a , 1976 ) suggested the 
c = min ( 2n r-2 n r-0 · 6 6 ) which , when the second value is n+2 ' n-0 . 6 6  

the minimum , gives an approximate 50% F value if , in fact , lJ = 0 .  
The second value is the minimum when p and n take the values 
given in table 1 . The resulting estimator is therefore a smoothed 
version of a preliminary test estimator . Its risk , while not uniformly 
less than that of the ordinary James-Stein estimator , can do much 
better and is never much worse .  
Table. 1 11. � 3 and 

r 3 4 4 - 5 
n 0!: 1 4 - 14 4 - 7 

* equality if r = 6 and n = 6 

Y!. � 1 noli. wiU.c.h 

-1: 4 - 6  4 - 7 
�': 4 - 6 4 - 5 

11.- 0 . 66 11.- 2 
n-0. 66 .

� 2 
n+ 2 

4 - 1 3 � 3  

4 1 - 3 

Using the program described in chapter 5 ,  the risk functions ( as 2 functions of A = �-2 l l l-1 1 1  ) of various estimators of the James-Stein 
type and their pasi. ti ve part versions were computed . Plots of the 
difference in risk between each estimator and the ordinary James-Stein 
estimator , and of the difference in risk between the same estimator 
and the Efron and Morris estimator are shown in figures 2 to 4 .  In 
these graphs the curves have been labelled according to the point 
where they cut the risk axis . The abbreviation JSa refers to 
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D I MENSI ON-008 DEGREES OF FREECOM-0020 

PLOT NUMBER-001 

FigWte. 2a Comparison wi th the 
James-Stein Estimator 

From top to bottom at the left 
the curves are : 
JS+2 ,  JS+1 . 8 ,  JS+ 1 , JS 1 ( the axis ) JS 0 . 5 ,  JS 1 . 8 ,  JS 2 ( sarr.e risk as the maximum likelihood estimator ) 

C I MENSI ON-008 DECREES OF FREEOOM-0020 

PLOT NUMBER-2102 

F .<.gWte. 2 b Compa::oison with the 
Efron and Morris Positive part 
estimator 

From top to bottom at the left 
the curves are : 
JS+ 2 , JS+ 1 . 8 ,JS+ 1 , JS 1 , JS+O . S ,  JS 0 . 5 , JS 1 . 8 , JS 2 ( same risk 
as the maximum likelihood estimator 

F igWte. 2 CompaJr....L6 on o n  the. R-i.-6 k FunmoYL6 o n  Stun -..Uke. E.6.t.i..matoM 
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F�gune 3 

3 1  

D I MENS I ON-00e DEGREES OF FREEOOM-0004 

PLOT NUMBER-003 

F�gune 3a Comparison with the 
James-Stein Estimator 

From top to bottom at the left 
the curves are : 
JS+ 2 , JS+ 1 . 8 , JS+1 , JS  1 ( the axis ) 
JS 0 . 5 ,  JS  1 . 8 ,  JS  2 ( same risk as 
the maximum likelihood estimator ) . 

D I MENS I ON-00e DEGREES OF FREEDOM-0004 
PLOT NUMBER-004 

F�gune 3b 
Efro"'l and 
Es timator 

Comparison wi th the 
Morris Posi tive part 

From top to bottom at the left 
the curves are : 
JS+2 , JS+ 1 . 8 , JS+1 , JS 1 ,  JS+0 . 7 ,  
JS  0 . 5 ,  JS  1 . 8 , JS  2 ( same risk 
as the maximum likelihood 
estimator ) .  
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D :L MENS I ON-Ii!l l li!l  

32 

DEGREES O F  FREEOOM-01i!12B 

PLOT NUMBER-Ii!lli!l� 

l. 2 

F igWte. 4a Comparison with the 
James-Stein Es timator 

from top to bottom at the left 
curves are : 
JS+2 , J S+1 . 8 ,  JS+l , JS  1 ( the axis ) 
JS+ O .  5�', JS 0 .  s �" ,  JS 1 . 8 ,  JS  2 (  same 
risk as the maximum likelihood 
estima-tor) . 
*These curves nearly coincide . 

D I MENS I ON-Ii!l l B  DECREES OF FREEOOM-Ii!lli!I2B 

PLOT NUMBER-Ii!l0e 

FigWte. 4b  Comparison with the 
Efron and Morris positive part 
Estimator 

from top to bottom at the left 
the curves are : 
JS+2 , JS+1 . 8 , JS+ l , JS  1 , 
JS+O . S* ,  JS 0 . 5* ,  JS  1 . 8 , JS  2 
( same risk as the maximum 
likelihood estimator) . 
*These curves nearly coincide . 
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0 ( X , S )  = (1 - I I; ll2 ) X of which the James-Stein estimator is a 

special case . For the positive part version of this estimator we have 
written J S+a . The value c i s  the value recommended by James and 
Stein so for the James-Stein estimator we put a = 1 . Although these 
result are well known , the author has not seen the graphs plotted 
elsewhere . 

Since the curves were smoothed using cubic splines , the graphs 
tend to have too steep a gradient at � = 0 , the theoreti cal gradient 
being zero . The fit elsewhere is good - that it is not perfect is 
shown by the crossing of graphs for the positive part and corresponding 
non-positive part estimators : mid way between the points of intersect ion 
the difference is only about 0 . 01 .  

2 . 2 . 1  Spec i a l  Cases 

If we put h = 0 and take H to  have full column rank then the 
... null space of H and the hyperplane H�" = h reduce to a single point 

( have dimension zero ) . In this case the estimator ..,; � is the James-
Stein estimator and the shrinkage is towards the origin . Stein suggested 
choosing the origin at the best prior estimate for each coordinate . 
Alternatively , without essentially changing the estimator , we may choose 
h such that Gh is the best prior estimate of the mean . In particular , 
taking 
r = p 

H = I and G = I , h will be the prior estimate for p p 
and the hypothesis  is  � 1 = �2 = = �p = �0 . 

� .  Here 

If we do not wish to make p prior . estimates then we may follow 
the suggesti on of Lindley and let the data choose the origin towards 
which all coordinates are to be shrunk . We do this by putting h = 0 
and H = 1 

0 

0 

-1 
1 

0 

0 
- 1  

0 

0 
0 

1 

0 
0 

- 1 
in which case our prior hypothesis is  �1 = �2 = • • •  = �p = �O ' �O 
unknown , and the estimator shrinks each coordinate towards the common 

·'· T mean . In other words X is  shrunk towads the line �" = [ 1 , 1 ,  . • .  , 1 ] a . 
In this case r = p - 1 and we have a reduction in risk if p � 4 .  If 
p = 3 then the estimator gives no reduction in risk over the maximum 
likelihood estimator ( in fact it i s  the maximum likelihood estimator ) 
whi le the ordinary James-Stein estimator does . However , when p � 4 

neither this estimator nor the James-Stein estimator is uniformly the 
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more efficient , The James-Stein estimator being more efficient if �0 
is  close to  the true mean and les s  efficient  if it is not . 

Taking h * 0 gives a hypothesis of the form � .  = a .  + �0 , 1 l 
with �O unknown and the ai known , towards which we shrink the 
maximum likelihood estimator . S ince H has full row rank every 
generali sed inverse is a right inverse satisfying GH = ( GH )T whi ch 
means that it is the unique Penrose inverse . The Penrose inverse is 
G = 1 p- 1  p-2 2 1 -p 

-1 p-2 2 1 
-1 -2 2 1 

-1 -2 - ( p-2 )  1 
-1 -2 . - ( p-2 ) - ( p-1 ) 

T and taking h = [a1 -a2 , a2 -a3 , • • •  ,ap_1 - ap] 
ensures that our estimator shrinks the maximum likelihood estimator 
towards the required l ine . 

Alternatively , we may obtain the same estimator with 
H 1 0 0 0 -1 G 1 p-1 -1 -1 - 1 = - -p 

0 1 0 0 -1 -1 p-1 -1 - 1 
0 0 1 0 -1 -1 - 1 p-1 - 1 

0 0 0 0 -1 -1 - 1 -1 p- 1  
0 0 0 1 -1 -1 - 1 -1 . - 1 

and h = [ a1 -ap , a2-ap , . . .  , a  1 - a ]  p- p 
T 

or with 
H = 1 -1 0 0 0 

1 1 - 2 0 0 

1 1 1 -3 . 0 

1 1 1 1 1 

Whichever form we take for 

Gh = a - a = [ a 1 ' . . .  T ' a ] p 

0 G 1 1 1 1 = 2 6 12 . p ( pt1) 
0 1 1 1 1 

2 6 12 . p ( pt1 ) 
0 0 1 1 1 - 3  12 p ( p+1)  

-p 0 0 0 p 
p ( pt 1 ) 

T , a1ta2+ . . .  +ap_ 1 - (p-1 )ap ] . 

H , GH = I - _!_ 1 1 T and p 
1 I a .  1 . p i = 1  1 
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If  H splits into several mutually orthogonal submatrices 
T T T T  1· * J' H = [ H1 , H2 , . , Ht ] with HiHj = 0 for then the 

shrinkage can be divided into components orthogonal to each of the 
null spaces H . lJ �·: = 0 . Figure 5 represents the hyperplane in which 1 

3 5  

Z lies , the axes representing the null spaces of H1 and H2 . ( In 
this diagram the hyperplane Hl-11: = h is  represented as a single point ). 

'b 

\ I \ 
\ !\ -v::t-:oO 

F..tguJte. 5 SlvUn.k.age o 6  :the. Maruum Uk.elihood  u.thnatoJt :towaJtd6 a 

Hype.Jtptane. 

The points in the diagram labelled a , b and c are respectively 
the vector towards which Z shrinks and the components of this vector 
in each of the hyperplanes H ll�·: = h 1 1 
2 . 2 . 2  General i sed S h ru n ken E s t i ma tors 

and 

The last special case considered suggests a possible generalisation . 
The shrinkage towards each of the hyperplanes  �': H . ll = h .  does not need 1 1 
to involve the same shrinkage factor in each case . The amount of 
shrinkage in the case considered is proportional to the weight of 
evidence in the sample for the hypothesis Hll = h ( this weight of 
evidence being measured by n s if pF - ifZlF ) . In the case t = 2 ' 
close to the hyperplane ·'· H ll" 1 = h 1 but far from the hyperplane 

-;': ·'· H2ll = 0 then the hypothesis Hll" = h is  likely to have little 
evidence in its favour and the shrinkage factor will be small .  On 

z 

the 
other hand the data provides evidence that H ll�·: = h 1 1 and we might 
prefer a larger shrinkage factor towards this hyperplane and a smaller 

is  
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* shrinkage factor towards the hyperplane H2� = h2 (which has even 
greater evidence in its favour than has the hypothesis H�* = h ) . 

In the more general case in which t � 2 we shall split Z into 
orthogonal components 

z = z 1 + 

where z -. - G .  ( H . X l l l 
T G . H .  = ( G . H . )  , l l l l 

z2 + . + zt 
h . ) ' T - H . H .  = l l J 

T T T H = [ H1 , • • •  ,Ht ] 

and G = [ G1 , . . .  , Gt ] . 

We first show that HGH = H and 

GH = G1H1 + . . . + GtHt 

' 

and each component on the right is 

Now HGH = 

but H . G . H .  J l l 
and H . G . H . J. l l 

H1G1H1 + I 
i*1 

HtGtHt + I 
ht 
T = H . ( G . H . ) 

= 
J l l 

H . .  l 
Thus H G H = H .  

H1G . H . J. l 

HtG . H . l l 

T = H . H .  G .  J J. l 

0 

= 

for i * j ' H . G . H .  l 
T T T h = [ h1 ' . . .  , ht ] 

l 

GH = ( GH )T . We have 

symmetric . 

0 

l = 

We now show that the Z .  are mutually orthogonal . We have l 
Z .T Z . = ( H . X - h . )TG _T G . (H . X - h . ) . 

l ]  l J. J. ] ] J 

where h .  l 
Since each 

T T T = ( X - u . )  H .  G .  G . H . ( X  u . )  l l l J J J 
= H . u .  for each l J. 
G . H . is symmetric  l J. 

i . 

T Z .  Z .  = ( X l J 
T T T u . )  G . H . H .  G .  ( X  u . )  l l l J J J 

= 0 • 

We may thus split X as 
t 

X = Gh + ( I  - GH ) X  + I G . ( H . X - h . ) 
i= 1 l l l 

H .  ' l 

where the terms after the summation sign are mutually orthogonal . 
shall show that they are also orthogonal to ( I  - GH )X . We have 

XT ( I  T - h . ) XT( I  GH )G . H. ( X u . )  . GH ) G .  ( H  . X  = -l l l t l l t l 
Now GHG . H .  I G . H . G . H . I T T = = G . H . H .  G .  l l j = 1 J J l l j = 1 J J l l 

T T G . H . G . H .  G . H  . . = G . H . H .  G .  = = 
l l l l l l l J. l l 

We 
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Thus ( I - GH ) G . H .  = 0 and { ( I - GH )X}TG . ( H . X - h . ) = 0 • l l l l l 

37 

Applying the shrinkage to each component of Z gives the estimator 
t ( ci S \ 

= Y + 
iL \ 1 -

1 1  zi 1 1 2 J zi where Y = Gh + ( I - GH ) X . 

As before we shall let E [ Y ]  = n , E [ Z ] = s 
putting E [ Z . ] = s . and rank H . = r .  l l l l 

and rank H = r . Also , 
we have r = \' .t 

1 r .  • L J.= l 
We show that Y and the Z . are all independent . l T 

Firstly , 
cov(Z . ,Z . ) = cov( G . H . X , G . H . X ) = G . H . var X ( G . H . )  l ]  l l  J J l l  J J  

= 2 T T a G . H . H .  G .  2 2 J J T = 0 i f  and only if  H . H . = l J 0 for i * j . 
cov(Y , z . )  = cov{ ( I - GH )X , G . H . X } = ( I - GH ) var X l l l 

T ( G . H . ) l l 
= o2 ( I - GH ) ( G . H . )T 

l l 
= 0 if  and only i f  T H . H .  = 0 l J for i * j 

Secondly , 

As shown previously , 1 1  Y - n 1 1 2 "" o2X:,-r and 1 1  zi 1 1 2 "" o2X:, . <�  1 1  s i 1 1 2 ) 
l 

the distributions being independent . 
We now calculate the risk function for � Noting that E [ Y - nJ =  0 ,  2 c . S T E [ Z . ]  = �;; . and that Z . Z . = 0 l l l J we have for et> . ( 1 1  Z . 1 1  , S )  = 1 - J. 2 l l 1 1  zi 1 1  t 

2 2 R(i::J , l1 , 02 ) = E [ 1 1  Y + L cf> . ( 1 1  Z . 1 1  , S )Z . - l1 1 1  ] 
i= 1  l l l 

= E [ 1 1  Y - n + I {et> • < 1 1  z . 1 1 2, s )  z . - c } 1 1 2 J 
i=1  l l l l 

2 t 
2 2 = E [ I I Y - n 1 1  ] + E r l l L {cf> . (  l l z . l l  , S )Z . - s , }  1 1  ] 

i= 1  l l l l 
T t 

2 + 2 E [ Y - n ] E [  L {cf> . (  l l z . 1 1  , s )z . - z;; . } J 
i=1 l l l l 

2 
t 

2 2 = E [ I I Y - n l l J + E [ I I I {ct> . < l l z . l l , s )z .  - s . l l l J 
. i= 1  l l l l 

2 
t 

2 2 = E [ i i Y - n i i J + I E [ l l ct> . < l l z . l i , s ) z . - �;; . 1 1 1 
i= 1  l l l l 

+ L E[ E[ ct> . < l l z . I I2 , S ) Z . -c l s J TE [ !fl . < l l z . l l 2 , s ) z .  -z;; . l s J i:t:j l l l l J J J J 
t 

= E [ 1 1  Y - n 1 1 2 J + L E [ 1 1  et> • < 1 1  z . 1 1 2, s ) z . - z;; . 1 1 2 J 
i= 1 l l l l 

+ I E [ E ( {  <f>. ( 1 1  z .  1 12, s )  - 1 } z . I s ]  T E [ { et>  • ( 1 1  z . 1 12 , s )  - 1 }  z . I s ]  
i:t:j l l l J J J 

2 t 
2 = E [ I ! Y - n 1 1  J + I E [ l l ct> . < l l z . l l  , s )z . - �;; . 1 1 2 1 

i= 1 l l l l 

+ I E[ {cf> . (  l l z .  I I2,S ) - 1H ct> . < l l z . W,s ) - 1 } z ? z . J  i:t:j l l J J l J 
2 

t 
2 = E [ 1 1  Y - n 1 1  J + I E [ 1 1  et> • < 1 1  z . 1 1 2, s)z . - s . 1 1  ]. 

i = 1  l l l l 
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(This is also true for general 
t 

Thus R(]J ,� ,o2 ) = p - r + I i=1 
where the K .  l. have Poisson distributions with parameter 

n Each term in the sum is minimised when ci = n+2 (ri - 2 ) . With these 
values for the c .  the risk function becomes l. 

n t 
2 r 1 l R(tJ ,� ,o2 ) = p - n+2 )1

< ri - 2 )  El r . -2+2K . j 1.= l. l. 
For general values of the c .  the risk s implifies to l. 

Also , 
and 

1 1  z;, 1 1 2 

t "" 2 ) R(� , � ,o = p - I i=1 
the orthogonality of 
1 1  z;, 1 1 2 = 

t 
= I i=1 

t 2 1 1 I z: i 1 1  i = 1 
2 1 1  z;, • 1 1  . l. 

= 

c . { 2 (r . - 2 )  l. l. 
_ n+2 c }E[ 1 ] 

n i r . -2+2K . l. l. 
the z . imply the orthogonality of l. t 2 T I 1 1  z;, i 1 1  + I z;, .  z;, .  Therefore i= 1 i*j l. J 

2 . 2 . 3  Compari s on of  J ames- S te i n  E s t i ma tors 

the 

It might be imagined that , since shrunken estimators are not 
uniformly better than the maximum likelihood est imator when p � 2 

s . l. 

but can be when p � 3 , the larger the value of p the greater the 
gain in efficiency . Unfortunately it is difficult to find a meaningful 
basis of comparison between different mode ls .  However , the greatest 
possible reduction in risk occurs when l l z;, 1 1  = 0 and using the 
ordinary James-Stein estimator the risk is 

..... 2 n 2p 2n R(� ,� ,o ) = P - n+2 ( p-2 ) = n+2 + n+2 
2 p+n = n+2 · 

Although this increases with p the reduction in risk over that for 
the maximum likelihood estimator is n (p-2 ) n + 2  and this also increases 
with p . A fairer basis of comparison is the risk relative to the 
risk for the maximum likelihood estimator and this is 2 l+n/p which n+2 
decreases with p . 

The above argument seems to suggest that we should make the 
dimension of the hyperplane towards which we are shrinking as small as 
possible , but since we are comparing different estimators for the same 
model the ar ument does not apply . In fact , if � lies on the 
hyperplane d we use the generali sed James- Stein estimator then 
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V 2 R(lJ ,lJ,O ) = 
= 

p -

p -

39 

t 
i (r . - 2 )  n 

n+2 i= 1 1 
nr 2tn 
n+2 + --n+2 

and if t = 1 then we would like r to be as large as possible . 
Alternatively , for fixed r we would like t as small as possible . 
This argument favours the ordinary James-Ste in estimator if lJ lies 

on the hyperplane towards which we are shrinking . To gain maximum 
advantage from this estimator we have to make a good prior guess for 
lJ . If our guess is poor then the estimator and its risk differ very 
little from the maximum likelihood estimator and the risk for that 
estimator . 

On the other hand , taking t > 1 may make a saving in risk if 
our guess of some coordinates is good even though others have been 
guessed badly . This is despite the fact that the potential saving is 
not as great . Stein ( 19 5 5 ) argued this way , an argument which seems 
sensible on intuitive grounds for any estimator which uses prior 
information . When the form of the estimator is given we no longer have 
to rely on intuitive arguments but may analyse the situation more 
precisely . This we shall proce ed to do . 

We shall write the risk for the generalised Jarnes-Stein estimator 
in a form which makes comparison with the ordinary James-Stein 
estimator easier .  We have 

t [ r1• - 2 l (v  2 )  n \ ( ) R lJ ,lJ , O  = p - n+2 L ri - 2 E r . -2+2K .j i= 1 1 1 
t [ 2 K .  ] 

= p - n:2 ) ( ri - 2 )E 1 - r . - 2+�K .  1= 1 1 1 
n ( r-2t ) = p - n+2 

n t [ 2 Ki l 
+ n+2 ) 1

< ri - 2 )E r . - 2+2K .j 1= 1 1 
2n n r t ( r . -2 ) X 2 K . l 

= n ( p-r )  + � + - 2t + _E_ EL L 1 1
J n+2 n+2 n+2 n+2 i= 1 (r i - 2 ) + 2Ki 

Now � i s a concave function of x and y when x and y are x+y 
positive and therefore 

t ( r . -2 ) X2K . 
i 1 1 
i=1 ( ri- 2 )  + 2Ki 

S. (r- 2t ) X2K 
( r- 2t ) + 2K 

S. ( r-2 ) X2K (r-2 ) + 2K where 

the latter inequality following from the fact that � x+y 
in X • The equalities hold in the trivial case t = 1 

t 
K = i i= 1 

K . 1 

is increas ing 
and the first 

equality also holds , for t * 1 , if and only if ( i ) ,  for each i ,  
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K . = 0 or ( ii )  for each i , r .  = 2 . This follows from the fact 1 1 
that � x+y is strictly concave . When t :j: 1 the second equality only 

holds if ,  for each i ' K . = 0 .  1 
Now each K . 1 has a Poisson distribution with parameter 

and we may take them to be independent in which case 
2 distribution with parameter � l i s 1 1  . Therefore 

n n n [ (r-2 ) x2K 1 R (]:f , l.] ,o2 ) ::;.  n+2 2t + n+2 ( p-r )  + n+2 E ( r-2 )  + 2Kj 
= n�2 ( 2t-2 ) + R1 (w1 ,l.J ,02 ) 

K has a Poisson 

where R1 (�1 ,l.] ,o2 ) is the risk function for the estimator with t = 1 .  

Equality holds if  1 1  r; 1 1 2 = 0 • 
This result is a more precise form of a result of Stein ( 196 6 )  

which he describes a s  a crude approximation valid when r and n are 
large ( Stein took r = p ) . In fact it is not essential for his 
argument to take n to be large . Stein ' s  approximation replaces 

r . x l l r;  W 
r . - 2 1 

by and r .  
J._ 

rr .  X 2K . 1 
E 1 1 

l r . + 2K . J  
l. then uses the same concavity 

1 J._ 
t 

argument to show that 2 i = 1  
Doing this ignores the 

term n 
- ( 2t-2 )  n+2 which is small compared with n 

n+2 r when each r .  1 
large . Also the approximations to  the expectations are good for large 
r .  1 is  small compred with r .  1 or large compared with 

r . , in other words the approximation is good when 1 :
. 
1 1 r;J2 

1 
is small 

or large , but not necessarily for intermediate values . This , therefore 
does not answer the question as to  which estimator is the better at 
values of the r; .  neither close to nor far from the origin . Stein ' s  1 
result does not appear to be very useful . 

Our result , on the other hand , shows that 
n - ( 2t - 2 )  n+2 

whi ch gives an upper bound on the amount by which 
oJ l-11 ; but does not prove that it can ever be better . 

is  worse than 

r Suppose that the average of the r i is  k , i . e .  k = t . The t 
maximum saving in risk over the maximum likelihood estimator is  
n n -- ( r - 2t ) = -- ( k-2 )t . The ratio of this saving to the saving ( for n+2 n+2 

is  
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the same value of r )  when t = 1 i s  ( k-2 ) t  
r - 2  = ( k-2 ) t  

k t  
r _ k - 2  r 

r-2  - k r-2  · 
The amount of reduction in savings as a proportion of the single 

savings is (r-2 ) - ( k-2 ) t  
r - 2  = 2 ( t - 1 )  

r - 2  
2 kt - k 2 r - k - k r-2 - k r - 2 · 

This 

reduction in savings is less than a proportion � of the single 
shrinkage savings . Thus , for k = 3 we lose less than 2/3  of the 
possible savings , less than 1 /2 if k = 4 , and , for k = 6 , less than 
1 /3 

We shall now show that there is a potential gain in effi ciency . 
Suppose that a set � of the i are such that s .  for i E � are � 

close enough to the origin for to be a good 

approximat ion to [
( r . -2 ) X 2K . 1 

E 
� � 

(r . -2 ) + 2K . J  and that for i ( � , l; .  is far � � � 
enough from the origin for the same approximation to be good . ( By 
A2 . 5 . 1 , this is  the first term of an asymptotic  expansion far from the 
origin which also gives accurate results close to the origin ) . Now 
t L l l l:; i 1 1 2 = 1 1  1;: W will be large in this case . Suppose it is large 

i= 1  
enough for the same approximation to  be accurate . Let the number of 
elements of � be u . We have 

R ()J ,]..l ,o2 ) n .3.£... n n t 
I 

(r . - 2 )  x l l r; . l l 2 � � = ( p-r )  + 2t + -- + --• n+2 n+2 n+2 n+2 i= 1 (ri-2 ) + l l s i W 

Using the fact that for i E �  l l si l l 2 
. , . 0 and for i ( � ' 

large gives 
R(iJ ,1J ,G2 ) - _.E_ ( p-r )  + � + _.E_ 2t + _.E_ L ( r . -2 ) n+2 n+2 n+2 n+2 i( � � 

and if u * t then I l l:; 1 1 2 is large and 

R (... 2 ) • n ( ) .2E._ + _.E_ X2 + n ( 2 )  = 1 ]..1 1 ,]..1 ,a 
· n+2 p-r + n+2 n+2 n+2 r- P · 

Thus 
for u * t . 

l l si l l 

. 

2 is 

Since this is negative when each r .  > 2 this represents a gain in � 
efficiency of at least 
of � ( 2t -2 )  if n+2 u = 

n 
n+2 
t . 

for u * t , but a loss of efficiency 

Note that corresponding to each of the terms in which 
is large , the component of the risk is the same ( to a high degree of 
accuracy ) as that for the estimator which does no shrinking towards 
the corresponding hyperplane . Therefore we obtain approximately the 
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same reduction in risk by not shrinking those components . This shows 
why a Lindley type shrinkage can often be better than a Stein type 
shrinkage , for , if we split  one of the hyperplanes into orthogonal 
hyperplanes , we can ,  as j ust shown , decrease the risk when one of the 
components of is large and the other is small . 

We shall present graphs of the risk function for the James-Stein 
estimator and three dimensional graphs of the difference in risk 
between the double and single shrinkage rules . The ri sk is scaled so 
that the maximum reducti on over the maximum likelihood est imator is 
unity . 

For the single shrinkage , the reducti on in risk i s  given by the 
formula 

�R cr E[r�2�;KJ = e -A � A k r - 2 L.. IT r-2+2k k=O 
= 

Using Euler ' s  theorem in appendix 1 for the confluent hypergeometric 
function the latter expression i s  

= � ( -A )k 1 
1 F 1 ( 1 ; �-1 ; -A )  L.. k ! (1 ) k=O �-1  k 

This formula is  slightly more efficient than the other because it 
-A avoids evaluating e It  also gives an error estimate since the 

error i s  less than the first neglected term in the expansion .  Both 
series require a large number of terms for large A and this results 
in an exponent overflow condition in finite precision arithmetic . The 
second formula has the further disadvatage of causing severe loss  of 
significant digits when there are far fewer terms than the number 
needed to  cause exponent overflow . Accordingly we used the latter 
series only for A ::;; 20 : for larger values of A 
asyptotic  expansion ( see appendix 1 )  

( 1 ' ) r c�-1 ) , - 1 c 1 • •  /' )  1r1 1 ;�-1 ; -A � r c�-2) A 2r0 3-� , 1 , , 1  A 
[ �-3 ]k = I k=O (�-1 ) ( -A )k+i 

we could use the 

which terminates i f  r is an even integer greater than 4 ,  but , s ince 
this can require the calculation of many terms if A i s  smaller than 
� , we preferred the asymptoti c  expansion A2 . 5 . 1  which generalises 
Stein ( 1966 ) , 

00 a 'i' � -- L.. a+A n= O 

n ( - 1 ) � n 

where � i s  the n th central moment of the Poisson distribution and n 
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a = �-1 . This was taken as far as the term corresponding to n = 5 .  
The reduction in risk was plotted for values of r = 3 ,  4 ,  5 ,  8 

and oo - the latter value being interpreted as a limit ing value - and 
for � = IA/r from zero to five . The closer the curve is to the 
origin , the smaller is the value of r ( called "degrees of freedom" in 
the heading to the graph ) .  The graph is shown in figure 6 .  

1.0 

0.2 

� OtiVQ Saving i n  Rlek � l 41 51 81 20 
and oo D Qgr'QQe of: F I"QQdom 

3.0 4.0 5.0 Root Lambda/�" 
F-i.gWte. 6 Sa.v-i.n.g -i.n. RUk. 6oJt Jamu Stun E.6thna.toM -<.n. Compa.Jt-i..6 on. will 

the. Ma.xhnum uk.e.iJ..hood E.6timatoJt 

For the difference in risk between the double and single shrinkages, 
and were each evaluated from zero to five . 

In order to  show the region of improvement ,  a contour map of the surface 
was plotted with the zero contour clearly indicated . Contour spacings 
were such that either 10 or 2 0  contour lines were drawn between zero 
and the highest point . 

By putting t.R . = 0 if r .  = 1 or r .  = 2 ,  we can consider the 1 1 1 
case of the Lindley type shrinkage . It is clear that in general the 
graph has two "wings" near the axes whose height increase with increasing 
ri . If r1 = 1 then the corresponding wing disappears . The central 
region over which the single shrinkage is best , although large , only has 
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FigU!l.e. 7a Contour Map 

--

----------- - -- ----
--

F�gu�e. 7b �Zctoria l View 

F �gUll. e. 7 V�n 6 eJte.nc.e. �n TU6 k. Be..twe.e.n Se.pa.Jto.te. Sh!Unk.age. and 

Comb�ne.d Sh�nk.age. E�timato� 

l c:Ume.M�o� 1 and 3 )  
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FigWte. Ba Contour Map 

Figune. Bb Pictorial Vie� 

Figune. 9 Vi6 6e.Ae.nce. in Ri6 k B�e.e.n Se.panate. Shkinkage. and 

Combine.d Shninkage. E� timato� 

(Vime.n6ion6 3 and 3 )  
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Contour Map 

F�gUh� 9b  Pic torial View 

,r 
, ,  I 

-------

----

FigWle. 9 V� 6 6Vt�nc.� �n R-W k Be.twe.e.n S�paJz.a..t� Sh!Unkag� and 

Comb�n�d Sh!Unkag� E6 -tlmato� 

( V-UncJt6�o n,� 3 and 5 ) 
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F�gune 1 0a Contour Map 

- - -----

--------�-

F�gune J Ob Pictorial View 

F�gune 1 0  V�6 6�ence �n � k  B�een Sepanate S�nkage and 

Comb�ned Sh.JUnkage E6tima-toM 

I V�men-6�on-6 1 0  and 1 0 )  
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Figune 1 1 a Contour Map 

-----------

Figune 1 1 b Pictorial View 

Figune 1 2  Vi nneJte11c.e in 1U6 k.  Be-tween SepaJ!.iUe Sh!U.nk.age and 

Combined Shft.{_nk.age EJ.> .t<.ma;toM 

I VimeMioM 7 and 1 3 )  

48  



[ 2 . 2 . 3 ] 

i 

I ! 
I I [/ I 

i 
i 

F�g�e 1 2a Contour Map 

- - ----- -

F�g�e 1 2b Pictorial View 

' 
F�g�e 1 2  Vi66e�en�e in Rihk B�Uween SepaP�e Shninkag2 and 

Combined Sh�nkage  E�timato� 

( Vime�io� 3 and 1 7 ) 
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a small region of large imrovement near the origin . The central nearly 
plane area is close to the plane l'!R = 0 . These graphs , plotted for 
various values of and r2 , are shown in figures 7 to  1 2  . 

2 . 2 . 4  Genera l i sed J ames-Ste i n E st i mators i n  P ra cti ce 

We have shown that the lower the dimensi on of the hyperplane 
towards which we shrink the usual estimator , the greater the potential 
reduction in risk over that for the maximum likelihood estimator . 
However , we have also shown that Lindley type shrinkages towards 
higher dimensional hyperplanes and separate shrinkages within certain 
orthogonal hyperplanes can give smaller risk in practice . Whi ch 
estimator i s  better is  determined by how good i s  our prior guess of the 
mean vector . If  we can guess some components more accurately than 
others , or using a Lindley type contraction , guess that some components 
are close to one another ( without guessing their mean ) ,  then we will do 
better with a componentwise shrinkage . This shows why we s hou ld not 

combine tota l ly unre lated prob lems together - the risk is like ly to be 

greater if we do. 

The best proce dure seems to be that we choose subspaces in whi ch 
the components are liable to be similar in value to one another and 
shrink within those spaces , either to a fixed point if we have good 
prior knowledge , or towards a common mean if our prior knowledge is not 
so good . Furthermore , we can avoid one component of the risk becoming 
large by using an Efron and Morri s type limited shrinkage rule . This 
inflates the ensemble risk by only a small amount while protecting a 
few components from being too greatly affected by the maj ority .  We note , 
however � that by using small enough groups of components this protection 
i s  not so important . 

2 . 3  General  Vari ance Ma tri x 

Suppose that in our model X has the distribution X � N ( � ,o2 V ) . p 
It  i s  possible to transform back into canonical form by a transformation 
matrix  L . We have LX � N ( L� ,o2 LVLT ) in whi ch case we want the loss p 
function to become 

[ < L0 , L� ,o2 )  = I i LO - L� 1 12 /o2  
In order that LX have variance matrix o2 I , LVL T = I which implies 
that V = L-l LT - 1 

= ( LTL ) -1 . Being symmetric and of full rank , v-1 

can always be factori sed as v-1 = LT L . Now 
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where 

A T -1 A 2 = ( � - � ) V ( � � ) /o 
= 1 1  0 - � 1 1�-1 /02 

1 1  x l l\ = xT Ax . We take this to be the loss function for 

5 1 

as an estimator for � . In other words we shall consider the model 
o2 X � N ( � , o2 V )  , S � -- x2 independently of X and we use the loss p n n 

function [ < 0 ,� ,o2 )  = 1 1 0 - � I I 2V_1 /o2 • Although we could repeat the 
above theory without transforming to canonical form it is not necessary 
to do so as we may transform the result derived previously . 

The hypothesis H� = h may be written HL -iL� = h . We shall 
apply the previ ous results to LX . We require a generalised inverse 
of HL-1 satisfying the symmetry conditions of section 2 . 2 . Now if 
G is a generalised inverse of H then LG is a generalised inverse 
of HL - i  slnce HL -iLGHL -i = HGHL -i = HL -i . Also LGHL - i  is 
symmetric if and only if LGHL-1 = 1-1 THTGTLT and since v-1 = LTL 
this is equivalent to GHV = ( GHV )T . If H is to be split as 

T T T H = [ H1 , . , Ht ] then we similarly take Gi to be a generalised 
inverse of H .  with G . H . V symmetric and take G = [ G1 , . . .  , Gt ] l l l in which case GHV will be symmetri c and G will be a generalised 
inverse of H . 

We may now write 
t 

X = G h  + { I - G H ) X + I i= 1 
and premultiplying by L we obtain 

L X  = L G h + ( I - LGHL-1 ) L X + 
Putting 

G .  ( H .  X h . )  l l l 

t L L G . ( H . L-1L x  - h . ) . 
i= 1 l l l 

t 
y = G h  + ( I - GH ) X , Z . = G . ( H . X  - h . )  l l l l and z = I i= 1 

z .  l 
we observe that LY , LZ and the 
conditions derived previously if 

LZ . satisfy the orthogonality l 
( H . L-1 ) ( H . L-i )T = 0 for i * j . l J 

The latter condition is equivalent to H . L-iL- i T H !  = 0 l J which is 
equivalent to H . VH _T = 0 for i l J 
satisfy the orthogonality condition 

t 

* j . Thus when the matrices H .  l 
T H . VH . for i * j , the l J 

decomposition X = y + I z . l divides X into orthogonal components 
i= 1 

with respect to the inner product 

orthogonal components LX = LY + 

<a ,b> -1 V t L LZ .  i= 1 l 

and LX into 

with respect to the inner 
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product T <a ,b> = a b . They will also be statistically independent . 
We may now calculate the risk for the estimator 

directly using the distributions 
and 

or alternatively by using the special case alredy considered . In either 
case we have 

E [I I Y + it cf> . ( l l z . l l 2 -1 , s )z . - l.l 1 1 2 -1 J l l V l V 

where 

t 
= p - I i= 1 

c . { 2 ( r . -2 )  
l l 

cp . < l l z . l l 2 -1 l l V s )  = 1 -

n+2 c }Ef 1 l n i l r . -2+2K .j 
c .  s 

l 

1 1  zi 1 1 2v-1 

l l 

and K . 
l 

has a Poisson 

distribution with parameter � 1 1  Zi 1 1 2 - 1 . This formula is almost V 
identical with the special case derived previously . It relies on the 
use of the loss function l ( )l ,  lJ ,cr2 ) = 1 1 0 - lJ 1 1 2 _1 /cr2 • Other V 
quadratic loss functions will give more complicated formulae for the 
risk . 
2 . 4  Genera l i s ed Jame s - S te i n Es t i mators for the  Pa ramete rs of a L i nea r 

Model  

In this section we shall change the notation of the previous 
section and shall use the symbol X to denote a fixed matrix . We wish 
to estimate 8 in the linear model Y = X 8 + e , e "' N ( 0 ,cr2 V )  • We n 
shall take X to be a matrix of full column rank ; Y is the vector of 
observations . 

Now the usual estimators for 8 and cr2 are 
and &2 = --1-- (Y - XS )TV-1 ( Y  - XS ) n-p 

which are unbiased . These statistics are independent and j ointly 
sufficient for 8 , however there is no single sufficient statistic 
for 8 so that no estimator for 8 may be based on a sufficient 
statistic . We may base estimators on both of the above statistics ( or 
j ust on � )  but there is no need to use the original observed vector Y . 
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Accordingly we shall apply the results of section 2 . 3  to the random 
variables B and o2 • Now B rv N ( S ,o2  ( XTv-1x ) -1 ) 

02 p A and 62 rv -- x2  We may thus replace X in section 2 .  3 by B , n-p n-p 
s by 82 and n by n-p = v . I f we choose a set of hypotheses 
concerning s , H . S  = h .  with H . ( XTV-1X ) -1H .T = 0 for 

l l l J 
we are ready to apply the results to our model giving the 

S = Gh + ( I  - GH )  S + i � 1 ( 1 -
where H . G . H .  = H . , 

l l l l 

this estimator has the risk function 
X 

t V+2 [ 1 1 R( p , S ,o2 ) = p + L c . { 2 ( r . -2 ) - - c . }E 2 2K J i=1 l l v l ri- + i 
where K .  has a Poisson distribution with parameter 

l 

i * j then 
estimator 

1 2 -2 1 1  G . ( H . S - h . ) 1 1  T -1 2o l l l X V X and r .  = rank H . .  This has risk uniformly 
l l 

less than that for 
2 ( r . -2 )v 

the usual estimator , § ,  when each c .  
l 

:Ls such that 
0 < c .  < 

l 

l 

\) +2 and has a minimum when in which 
case the risk is 

2.4 . 1  Geometri ca l Constructi on of J ames - S te i n  Est i mato rs i n  L i near 

Mode l s 

The space in which 
T = To 6l T}': · where To 
space of XT . The vector 

y 

y 

lies can be decomposed as the direct sum 
is the error space and 

can be written 
T�·: is the row 

with e E T0 and 
to the inner product 
the component of Y 

XS E T;': , XB being orthogonal to e with respect 
T -1 <a ,b> = a V b . The usual estimator for xs 

in the space T0 • This gives "'2 - - l  1 1  "' 1 1 2 o - v e 1 v-
is 

Using the notation p� y for the proj ection of the vector Y onto the 
subspace � we have "' e = 
column rank , the equation 

PT y 
0 

xs = )..! 

" and XS = PT* Y • Since X has full 
has a unique solution if it is 

consistent and it follows that we only need to estimate )..! = XS . 
The hypothesis H8 = h may be written in terms of )..! s ince if X 
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has full column rank the equation H = H+X has a solution H+ = HX 
where X i s  any generalised inverse of X ; so that H8 = h may be 
written as HX-).1 = h . We may therefore estimate ).1 with an estimator 
which shrinks the maximum likelihood estimator towards each of the 
hyperplanes H . X-).1 = h . 

1 1 
and then , on multiplying by X produce the 

corresponding estimator for 6 . 
The hypotheses H . 8  = h .  

1 1 
( or H . X ).1 = h . ) provide a decomposition 

l l 

of T* into a constant vector XGh and a set of orthogonal subspaces 
T �·: 

0 ' . . . ' T -:: t . As in section 2 . 2  ( putting 6 in place of the vector 
X )  !3 may be written as 

8 = Gh + ( I - GH ) 8 + 

so X8 = XGh + X ( I  - GH ) 8 

t 
I 

i=1  
+ 

G . ( H . 6 - h . ) 
l 

t 
I 

i=1  

l 1 

XG . ( H .  6 - h . ) 
l l 1 

and T T T -1 H . G . X V XG . H . = 0 for i =I= j 
l 1 J J 

.•. which shows that T "  ' t are indeed orthogonal with respect 
to the inner product < . , . > T -1 X V X 

The estimator previously written explicitly can now be written 
in terms of the proj ections of y onto the spaces T0 ,T;: T �': ' 1 T �·� ' . . .  ' t 

._, We have ).1 = p + 0 + p .•. y T T �  0 
where is the hyperplane 

t (1 I + 
i=1 

c . l l  PT • Y i l '  1) 1 o v-
-

\) 1 1  p -:: y w Ti v-1 

which is the estimator given previous ly . 
..; 

PT .�': y 
1 

This geometrical view of the estimator 8 avoids any explicit 
mention of computational procedures and , s ince is unique even when 
X does not have full column rank , allows for generalisation to non-full 
rank models . 

2 . 5  L i nea r Model s of Less  than Ful l Ran k 

We shall now consider the linear model Y = XS + e ,  
where X does not have full column rank . Although 6 is  not estimable , 
certain linear combinations of its elements are . If k = rank X then 
there are k linearly independent estimable functions . It is well 
known that a non-full rank model can be transformed into a full rank 
one by reparametrising in terms of a set of estimable functions . Such 
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a procedure is  mentioned , for example , in Pringle and Rayner ( 1 97 1 ) .  
We shall expand a little on this . 

55  

Let A8 be a vector of k linearly independent estimable 
functions . This  is  equivalent to the condition A = TX where T and 
A have full row rank k . We wish to reparametrise the model in terms 
of 8:': = A8 . We shall at first discuss the transformed model in general 
whether or not it has full rank . Let the transformed model be 
Y = x:':8:': + 
x:':A = X • 

e and therefore x:':8:': = x:''A8 = X8 for all 8 . This implies 
In order that both models have the same rank we require that 

X and x* have the same column space ( we have j ust shown that the 
column space of X is a subspace of that of x* ) whi ch implies that 
x:': = XA* for some matrix A1' • 

If AT8 is  estimable in the 
AT8 = aTX8 = aTx*8* = A*TB* 

original model then 
where A*T = aTx* 

so that estimable functions in one model correspond to estimable 
functions in the other . Also if 8° is  a solution to the normal 
equations XTV-1XB = XTV- 1Y then AB0 is a solution to the normal 
equations X:•:TV-lx:': 8:': = X:•:TV-1Y and conversely if 8*0 is a 
solution to the latter equations then A:''B1'0 is a solution to the 

T -1 T -1 X V X8 = X V Y implies former . This follows since 
A*TXTV-1X8 = A*TxTv-1Y or 
x:•:Tv-1x:':8:': = x:•:Tv- 1Y implies 
XTV-1x.tt8:': = XTV-1Y • 

x:''Tv-1x:''A8 = x:•:Tv- 1Y and conversely 
ATX:•:Tv-1x:':8 = AT X:•:TV-1Y 

If HB = h is a testable hypothesi s  then 
H = UX = ux*A = H*A where H* = ux* 

... ... and the hypothesis may be written as H ... " S'" = h .  

or 

,.._ 

In general we wish to preserve the property that if AT6 is an 
estimator for· AT B and B is a solution to the equation A TB =  � 
then the corresponding estimator for A*TB* = AT6 in the tansformed 

� !""-!" ""( ,_ 

model is  A:': 8:': where 8�' = AS 
,_. 

f'< 8:': , B:\o� 

If this is so then the loss function 

so that one loss function transforms to the other . In the case of the 
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full rank model this is the loss function already considered . 
T T T T T T T T Now suppose that H = [ H1 ,H2 , . . .  ,Ht ] , h = [ h1 ,h2 , . . .  ,ht ] 

and H .  = A . X  for 
1. l 

i = 1 , 2 ,  3 ,  . . .  , t . In the transformed model the 
hypotheses which correspond to the hypotheses H . 8  = h .  

l 1. 
will be 

H .�·: s�·: = h . where H .�·: = 
l 

A .  x�·: . The conditions for independence of 
1. l l 

0 the H . 8  - h .  and of the G . H . 8° and ( I - GH ) 8° l l 
are 

l l 

cov ( H . 8° ,H . 8° ) = H . ( XTV- 1X ) -XTV-1 X( XTV-1X ) -H _T  = 0 and 
l J l J 

cov( XG . H . 8° , X ( I - GH ) 8°) = X( I - GH ) ( XTV-1X ) -XTV-1X (XTV- 1X ) -H .TG .  TXT = 0 ;  
l l l l 

8° being a least squares solution to the normal equations , G .  being a 
l 

generalised inverse of H .  for which XTV-1XG . H . is symmetric and 
l l l 

G = [ G1 , G2 , • • •  , Gt ] .  The matrix Gi gives the proj ection of 8° 
onto the plane H . 8° = h .  the proj ection being P ( 8°) = 8° - G .  ( H . 8° - h . ) . l l l l l 

If the former condition holds for i * j then the latter becomes 
X( I - G . H . ) ( XTV- 1X ) -XTV-1X( XTV-1X ) -H _T G _T XT = 0 .  

l l l 1. 

Since the hypotheses are testable we may use the properties of generalised 
inverses of XTV-1x to reduce these conditions to 

and 

Before showing that these conditions are equivalent to the corresponding 
conditions for the transformed model and that these conditions are 
independent of the generalised inverse used we shall give some useful 
formulae and collect together those already given . These will be stated 
as a lemma. 
Lerruna 1 If ( i )  ( ii )  ·'· ·'· XA" = X" 

·'· "· ( iii ) AX = H dnd ( iv ) AX" = H "  

then 
H�':.t\ ... ·'· 1 . = H HA" = H" 

2 .  /\�·: < x*Tv-1x* ) -.t\�·:T is a generalised inverse of 
3 .  X ( XTV-1X ) -XTV- 1X = X 
4 .  H ( XTV-1X ) -XTV-1X = H 
5 .  ... I f  G" = .t\G then 
6 .  G is a generali sed inverse of H is equivalent to G* = .t\G is 

7 .  
... a generalised inverse of H" 

XTV-1XGH is symmetric is equivalent to XGH ( XTV-1X ) -XT 
symmetric 

is 

8 .  If G�·: = .t\G then X�·:Tv-1x�·:G�·:H�·: i s  symmetric is equivalent to 
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xTv-1xGH is symmetri c  
9 .  Similar formulae are true if each starred variable is interchanged 

with each corresponding unstarred variable . 
Proof 1 . H1'J\ = AX1'J\ = AX = H HJ\1' = AX!/' = AX�·: = H�·: 

2 .  XTV- 1XA�·: ( x�·:T v-1l: ) -N':T XT v-1X 
= J\Tx*Tv-1x* < x*Tv-1x* ) -x*Tv-1x*A 
= ATX1'Tv-1x�''A 
= XTV-1X .  

3 . XTV-1X ( XTV- 1X ) -XTV- 1X = XTV-1X ,  

4 .  

5 .  
6 .  

but V-1 can be written V-l = PTP where P has full 
rank . Therefore PX(XTPTPX ) -XTPTPX = PX 
so that 

Since H 
H 

... XG = X"AG 
HGH = H � 

= 

= 
= 

X( XTV- 1X ) -XTV-1X = X .  
AX , 3 .  implies 
H (  XTV-1X )  -XTV-1X . 

H�·: G�·,H�·: = H�·: � HGH�·: = H�·: =* HGH1: A = H* A · -<=t HGH = H . 
7 .  XTV-1XGH is symmetric implies that if ( XTV-1X ) - is 

T -1  - T - 1  T -1  -symmetric then ( X  V X )  X V XGH ( X  V X )  is symmetric . 

8 .  

T -1 - T -1  T -1 - T This implies that X( X V X )  X V XGH ( X  V X )  X is  
symmetric i . e .  XGH (XTV-1X ) -XT is symmetric .  S ince this 
is invariant to the generalised inverse used ( since 
H ( XTV-1X ) -XT = AX( XTV-1X ) -XT ) this holds in general . 

T -1 - T Conversely ,  XGH ( X  V X )  X 'is symmetric implies 
XTV- 1XGH (XTV-1X ) -XTV-1X . t . . TV-1XGH 1s symme r1c , 1 . e .  
is symmetric . 
x1:Tv-1x1'G*H�·: = 

= 
A�':T {XTV-1XGH} A�': and 

AT{ x*Tv-1x*G*H* }A  
so  that the symmetry of the parts in brackets implies 
the symmetry of the left hand s ides . 

9 .  By the symmetry of the conditions the result follows . 
We now state a . theorem whi ch shows the equivalence of the 

orthogonality conditions in the transformed model with those in the 
original model 

0 
and gives a condition for X ( I - GH ) 8° to be orthogonal 

to XG . H  . 8  . l l 
Theorem 1 1 . H . ( XTV-1X ) -H .T = H . �·: ( X:':Tv- 1x�': ) -H .1:T and is invariant 
to the 
2 .  I f  

l J l J 
generalised inverse used . 
XTV-1XG . H . is symmetric then X ( I - G . H . ) ( XTV- 1X ) -H _TG !XT = 0 .  l l  l l  l l 
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Proof 

Now 

1 .  S ince H .  = 
1 

H !' ( X�"Tv -1X1' ) -H . �·,T 
1 J 

A . X  and H . = A . X  
1 J J 

= H .t/' < x�"T v-1x�·, )  -1\ �·,H _T 
1 J 

= H . ( XTV-1X ) -H _T  
1 J 

invariance follows . 

by lemma 1 
2 .  X ( I  -

( part 2 ) .  
G . H . ) ( XTV - 1 X ) -H _T  G _T XT 

1 1 1 1 

= ( X - XG . A . X ) ( XTV- 1X ) -H _T  G _T  XT 
1 1 1 1 

T - 1 - T T - 1 - T = XG . H . ( X  V X )  X - XG . A . XG . H . ( X  V X)  X 
1 1 1 1 1 1 

= X ( G . H .  
1 1 

T - 1 - T G . H . G . H . ) ( X V X )  X 
1 1 1 1 

= o .  

58  

We  now transform to  the full rank model and apply the James-Stein 
technique to the est imator B�·, for 61' .  The estimator is  

with 0 < 2 n-k (r . -2 )  where c . < n-k+2 1 1 

value of is n-k (r . -2 ) .  c . c .  = n-k+2 1 1 1 
'-' �. Now writing J\6 for 6 " we have 

M = J\Gh + J\ ( I - GH )6 ° + )\
i
t { 1 -

One solution for 

66 = Gh + ( I  - GH ) 6 ° + I { 1 
i= 1 

c .  &2 
1 1 G f' ( H .�·, g/_ h · ) W ,. } 

1 1 1 xhTv - 1x* 
X G f' ( H .�·, §* - h . )  

1 1 1 

r . = rank H .  . The optimum 
1 1 

c .  &2 

I I G . ( H . S0 � h . l l l' T 1 
} 

1 1 1 X v- X 
0 x G . ( H . 6  h . ) 

1 1 1 

and this generates estimators for all the estimable functions . 
For completeness we restate the conditions on 

must have H . ( XTV-1X ) -H _T  = 0 for i * j ,  H . G . H .  = 
T -1  1 J 1 1 1 

X V X G .  H .  is symmetric (which is equivalent 
1 1 

of XG . H . ( XTV-1X ) -XT ) . 
1 1 

2 . 6  Res tr i cted Mode l s of Less t h an Fu l l Ran k  

G .  
1 

H .  
1 

to 

and H .  . We 
1 

and 
the symmetry 

We wish to estimate the estimable functions of 6 in the linear 
model Y = X6 + e ,  e � N ( O ,o2V )  under the restrictions R8 = r .  If n 
the restrictions are of the form of a hypothesis which is testable in 
the unrestricted model then they provide a genuine resriction on the 
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model .  Otherwise they restrict the parameter space and remove some of 
the arbitrariness due to the model ' s  not being of full rank . We shall 
consider the general case in which some of the restrict ions may be of 
one type and the rest of the other . 

Suppose ATB is  an estimable funct ion and � is an arbitrary 
vector in the same dimension as r . We may write 

AT 6 = AT 8 + � T ( R 8 - �) = ( A + R T �) T 8 - � T r 

so an estimable function may be written in many ways in the form 
vT8 + a .  In the unrestricted model if f is an estimator for f ( 6 )  

"' then it is natural to take f + c as an estimator for f( 8 )  + c so 
it is  only necessary to consider homogeneous linear functions ; however 
in the restricted case we have shown that it is useful to consider 
non-homogeneous linear functions of the form AT B + a . 
Definition A function A TB +  a is estimable if  and only if , for some 
c and some vector 
we have AT8 + a 

t ( where t and c are not necessarily unique ) ,  
= tTE [ Y ] + c , the condition holding for all 

for which 
In the 

since ATB 
AT = tTX 

RB = r .  
unrestricted model this corresponds to the usual condition 

+ a = tTE [ Y ] + c = tTX8 + c for all B implies that 
and a = c .  We shall find a condition for estimabi lity in 

the restricted model .  The restriction RB = r is equivalent to the 
condition 6 = m + ME; where rank M = dim B - rank R , Rm = r and 
RM = 0 with � being arbitrary . One possible value of M is  I - R-R 
and for m is R r where R is  a generalised inverse of R . Another 
choice is ( I  - R-R )Q  where Q is  such that ( I  - R-R)Q consists of a 
maximal set of linearly idependent columns of ( I - R-R )  I n  any  case 
M satisfies the equation M = ( I  - R-R)M  since RM = 0 . Now 
T T . A B + a = t XB + c for all B with RB = r is equivalent to 

AT( m  + ME; ) + a =  tTX ( m  + M� ) + c for all t; and this i s  equivalent to 
ATm + a =  tTXm + c and ATM = tTXM . Solving the latter gives 
AT - tTX = pTK where p is arbitrary and KM = 0 with 
rank K 
K = R 
a = c -

= dim B -
giving 

rank M .  S ince R 
T T T A = t X + p R . 

T p R .  The condition for 
and this might have been guessed 

satisfies this condition 
This gives T p Rm + a = c 

estimabili ty is therefore 
s ince tTXB is estimable 

we may 
or 

AT = 
in the 

unrestricted model and pTRB is known in the restriced model . 

take 

T t X + 

We now wish to state condit ions under which testable hypotheses 

pTR 

H . 8  = h .  � � are orthogonal in the restricted model ( they do not need to  be 
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orthogonal in  the unrestricted model )  and conditions on the G .  such 
l 

that G . ( H . 8 - h . ) 
l l l 

is the deviation from the intersect ion of the plane 
= h . with the plane R8 = r .  

l 
H . S  

l 

Transforming the model to an unrestricted model gives 
Y - Xm = XW;, + e S ince M = ( I  - R-R )M  the column space of M is  a 
subspace of that of I - R R and since rank M = rank ( I - R-R )  the 
column spaces are equal and I - R R = MK for some matrix K . Thus 

AM = 0 
so that 

'* AMK = 0 '* A(  I - R-R )  = 0 
AM = 0 i s  equivalent to A( I  

'* A ( I - R-R )M  = 0 
R-R )  = 0 Let 

• AM = 0 
·'· X" =XM and 

H .* = H .  M . In the transformed model Y - Xm = X�1E;. + e we know 
l l 

conditions for the testable hypotheses H �t;. =  h .  t o  be orthogonal 
l l 

and for ( I  - G .�� H .�'� ) t;,  to be the proj ect ion of E;. onto the hyperplane 
l l 

H .-1� t;. = 0 • These conditions are 
l 

H :': ( X11TV-1 X*) -H .�·: = 0 ,  
l J 

and the symmetry of 
···T -1 ·'· ·'· ·'· X� V X"G ." H ." 

l l 
and 

( the latter symmetry conditions being equivalent ) .  We wish to express 
these conditions in terms of the original model . 

I f  we put G .  = MG .�: 
l l 

·'· * �·: H .  G .  = H .  MG ." = H .  G .  , 
l l l l l l 

we obtain 

XG . = XMG .�: = x'':G .* 
l l l 

and 

H . G . H . M = H .�·: G .�·: H .�: = H .�·: = H . M 
l l l l l l l l 

which is equivalent to 

H . G . H . ( I  - R-R )  = H . ( I  - R-R )  
l l l l 

Conversely , i f  
condition and i s  i n  the column space of M 

G .  
l 

then 
satisfies the latter 
G .  = MG .�·: for some 

l l 

G .";': 
l 

= H .  M which is equivalent to H f: G .�': H .'': = H .�': t l l l l 

Also = M XTV-1XG . H . M so that the symmetry of 
l l 

is equivalent to the symmetry of 

a condit ion whi ch does not depend on M . Also 
, • • ·'-T -1 ·'· - ·'·T X�'G .�: H .�: ( X" V X" ) X" 

l l 

so that one is symmetric if  and only if the other is . S ince the symmetry 
conditions in the starred variables are equivalent this i s  also 
independent of M . We shall show this in another way . 

Let XFXTV- 1XM = XM ( i . e .  MTXTV-1XFXTV- 1XM = MT XTV- 1XM ) and 
let F have all its rows and columns in the row and column spaces of M .  
Therefore F = �MT for some cl> • This implies that cl> i s  a 
generalised inverse of MTXTV-1 XM . We show that XFXT is invariant to 
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the choi ce of 
condit ions with 

Now 

which implies 

so that 

which gives 

F .  Let F 1 and 
T F . = M � . M . l. l. 

XM F 1 X
TV-1XM = 

XM � MTXTV-1XM 1 
XM �1 M

TXT 

Now one possible value of F is  
write XG . H . M ( MTXTV-1XM ) -MTXT 

l. l. 
to the choice of F . 

61 

r2 be two matrices satisfying the 

XM = X F 2 X
TV -1XM 

= XM �2 M
TXTV-1XM 

= XM � MTXT 
2 

as 
so we may 

which is invariant 

The matrix F is useful in the solution of the normal equations 
in the restricted model since , in the transformed model , 

Xm) where � is a generalised inverse of 

MT XTV-1XM . Putting Bo M�o , RB0 0 and = m +  = Rm + RM� = r 
B
o = m + M �  MTXTV-1 ( Y  Xm) 

= m + FXTV-1 ( Y  Xm) 
= FXTV-1Y + ( I  FXTV-1X )m  . 

Naturally this i s  not invariant to F unless B is estimable . If  AB 

is estimable then 
I\S0 = AXFXTV-1Y + 

A = AX + BR and 
A ( X  - XFXTV-1X)m + Br 

which is invariant to F . It  is also invariant to m , different values 
of m giving the same solution .  Finally , 

E [AB0 ] = 
= 
= 
= 
= 

AXFXTV-1X8 + A( X  
T - 1 AXFX V X ( m  + MO + 

AXFXTV-1XM� + AXm 
AXM� + AXm + Br 
AXB + BR B 

= AB 

XFXTV-1 X )m  + Br 
AXm + Br - AXFXTV-1Xm 

+ Br 

so that AB0 is an unbiased estimator for AS . The invariance of the 
solution to m may be proved as follows . If and are two 
particular solutions to RB = r then m1 - m2 = M8 for some 8 . The 
difference between estimators d � s o h h d an 11 2 , w ere t ese correspon 
to the values m1 and m2 respectively , i s  

118 ° - AB 0 = A( X  - XFXTV-1X ) M8 1 2 
A ( XM - XFXTV-1XM ) 8 = 

= 0 • 
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The variance of S0 i s  given by 
0 var S = FXTV-1 ( var Y )V-lXTFT 

= o 2FXTV-1VV-1XFT 
= o 2 FXTV-1XFT 

and var AS0 = o2 AFXTV-1XFTAT = o2 AFXTv- 1xrA 
since AFX = AM � MTX = AXM � MTX = AXFXT 

is invariant to F and as FT satisfies the conditions on F we 
T may replace F by F ( in fact we can use a symmetric F ) . 

Also AFXTV-1XFA = AXFXTV-1XM � MT A 
= AXM � MT A 
= AFAT . 

Therefore , var AS0 = o2 ArAT . 

6 2  

W e  now summarise the conditions on the H .  l. and G .  which ensure l. 
the orthogonality of H . S0 - h .  l. l. and H . S0 - h .  J J and of X ( I  - GH ) S0 
and XG . H .  S0 • The conditions are l. l. 

H . M ( MTXTV-1XM) -MTH .  = 0 ( i . e .  l. J H . FH .  = 0 ) l. J 
and MTXTV-1XG . H . M  is symmetric for any matrix M for which l. l. 
rank M + rank R = dim S and M = ( I - R-R )M  ( e . g . M may be taken to  
be I - R-R ) . 

Now we shall write down the generalised James-Stein value which 
d t 00 • It 1.' s correspon s o IJ 

S0 = Gh + ( I - GH ) S 0 + � { 1 - 0 
c i 0 2 

2 } G . ( H . S 0 - h . ) 
i = 1  1 1  Gi ( HiS - hi ) 1 1 xTv-1x 

l l l 

since I I G .1: {H .* �0 - ( hl.. - Hl..m ) } I I 2 ••• T _1 ... = I I G . ( H . S0 - h . ) I I 2 T 1 l. l Xft V Xft l l l X V- X 

This follows · from the following : 
1 .  H . S  = h .  � l. l. 

� 
� 

2 .  X1:G _1: { H .* �0 
J. l. 

2 . 7  D i scuss i on 

h .  ( m  + MO = l. 
H . M� = l. 

H .* � = l. 
( h . - H . m) } = J. J. 

= 

h .  l. 
h .  H . ro l. l. 
h .  H .m l. l. 
XG . ( H . M� l. l. 
XG . ( H . S l. l. 

0 
0 H .m) - h .  + l. l. 

h . )  l. 

The estimators which we have developed in this chapter are based 
on the idea of shrinking the maximum likelihood estimator orthogonally 
towards several hyperplanes . 

We showed that these ideas can be applied directly to the non-
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full rank linear model and to  restricted linear models and expresssed 
the results in a form which involved only the original parameters . 
( Although we did use reparametrisation as a tool for proving these 
results , the parametrisation was chosen arbitrarily ) .  The main value 
of this i s  that , no matter how the model is reparametrised , the result 
is shown to be the same ( or more precisely , invariant to the 
transformation used ) . 

From a practical point of view , however , the generalised inverses  
or near generalised inverses neede d in the calculation are most easily 
calculated by carrying out the transformation ( at least in part ) .  Also 
it is  unlikely that orthogonal hyperplanes will arise in practice 
except in s impler models which are nearer to the canonical form . For 
both these reasons it seems likely that the estimators will best be 
found by reparametrising the model . 

A more important consideration is the gain in efficiency that the 
James-Stein approach to estimation affords . Some criticism has been 
given in the literature based on the mistaken belief that the more 
estimation problems which are combined together the greater should be 
the efficiency of the James-Stein estimator . We have shown that 
combining problems together only to the extent that we use a combined 
estimator for the error variance , but otherwise keeping them separate ,  
is likely to produce a smaller ri sk than by combining all the problems 
together with a single shrinkage factor . 

Apart from the high probabi lity of mis-specifying the variance 
matrix when unrelated problems are combined ( it is clearly dangerous 
to assume all variances to be equal ) the chance of identifying a 
suitable choi ce of origin on the basis of vague prior knowledge is 
poor . By separating the problems , a good choice of origin for one 
component problem will lower the risk even when the others are poorly 
chosen . This  increases the chance of reducing the risk and makes the 
method attractive . It  might be worth trying to prove that we also may 
gain in efficiency by estimating the error variance separately in each 
component problem and thus keeping the problems entirely separate . It 
seems very likely that this is  so . 

A further possibility is to let the data decide to what extent 
the problems are to be combined . Thi s approach has been discussed by 
Efron and Morris( 1 9 7 3b ) . They introduce a data dependent shrinkage 
factor which , under favourable circumstances � gives equal shrinkage 
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to all components while , under unfavourable cicumstances , leaves the 
problems separate .  In general the result will be in between these 
two extremes . 

In fact , this suggestion of Efron and Morris can often be fitted 
into the geralised James-Stein framework when there are at least 
three hyperplanes . This can be done by introducing a fourth hyperplane . 
For example , if  the hypotheses were 

8 . .  = a .  for j = 1 , 2 ,  . . . ' n . l J J l i = 1 ,  2 ,  . . .  ' t 
where 
8 = [ 8oo 81 1  81 2  . . .  8 1n 821  822 1 
then a further prior hypothesis could be a .  = 0 for j = 1 , 2 ,  . . .  ,t J 
The support for the latter hypothesis would determine the extent to 
which the combined shrinkage towards 8 = 0 occurs . 
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C h a p t e r 3 

B ayes i an E s t i mati on i n  the L i near Mode l 

3 . 1 I n troduct i on 

6 5  

In this chapter we shall show how certain prior distributions for 
the parameters of a linear model give rise to estimators of a s imilar 
form to those of the previous chapter - being a shrinkage of the 
maximum likelihood estimator towards each of a set of hyperplanes . 
This is  a generalisation of the estimators in Chapter 1 which were 
developed for the estimation of the mean of a multivariate normal 
distribution . 

This shows a s imilarity between a Bayesian approach and the James­
Stein approach , but note that the j ustification - as opposed to the 
motivation - of the latter is entirely sampling theoretic . 

The maj or point of this chapter i s  to show how Bayesian methods 
may be applied to non-full rank models . 

As we pointed out in Chapter 1 , in order to obtain estimators with 
good sampling properties we must use estimators which are ( at least 
approximately )  derived from prior distributions .  Although necessary 
this condition is  not sufficient since est imators derived from an 
improper prior , although sometimes admissible , can often be improved 
upon quite considerably . However , this  observation j ustifies the use 
of Bayesian methods even in the absence of strong prior knowledge 
(whi ch naturally j ustifies their use ) . It is rare that no prior know­
ledge exists , but weak prior knowledge is , by definition , not precise 
enough to be incorporated into a prior distribut ion . Even so , whether 
prior knowledge is weak or non-existent , we must try to postulate a 
prior distribution if we want our estimators to be good in a sampling 
theory sense . 

A useful technique for embodying weak prior knowledge is to use a 
two stage prior : the first stage is a pri or distribution involving 
unknown parameters ( frequently a proper prior ) and the second stage is 
a prior distribution for the parameters of the first stage prior . 
This  technique can be taken to several more stages if desired . A 
similar method can be used even with strong prior knowledge based on 
past data since there must have been a t ime before that data was 
collected . A weak prior distribution for the parameter of interest , 
when combined with the past data , gives rise to a stronger posterior 
which is then used as a prior for the current data set . Clearly this 



[ 3 . 2 ]  6 6  

method can also be applied to  several stages - each data set  giving 
rise to a stronger prior to be applied to the next data set . 

The former approach was used by Lindley and Smith ( 19 7 2 )  for 
estimat ing the parameter 8 in the llnear model 
Y = XB + e ,  e � N ( O , E ) .  The parameter vector 8 was given a 
normally distributed prior 8 � N ( � l , E 1 ) and � was given a uniform 
distribution . This guaranteed an exchangeable distribution for the 
components of 8 . Assuming that E and E 1 are known they found 
the posterior distribution for 8 and its mean . In the case where 

2 E and E 1 were each known up to a mult iplic�tive constant ( E  = a V ,  
2 E 1 = a 1  v1 ) they found the mode of the posterior distributi on and 

showed that the parameters a2 and o2 could be estimated thus 1 
giving an empirical Bayes estimator for 8 .  Assuming inverse X2 

distribut ions for a2 and a� Lindley and Smith were also able to 
find the posterior distribution for 8 ,  but in this case the calcul­
ation involves difficult numerical integration . 

The latter approach was used by Tiao and Zellner ( 1964 ) . Us ing 
the same model they considered past data Y1 = xl 8 + e1 , e1 - N ( O , E1 ) 
with a uniform prior for ( 8 , log a ,log a 1 ) where " = a2 V and (... 

02  = a 2 vl with V and v1 known ( = I in their paper ) . Unless the var-1 
iances are estimated from the data , the unknown variance case gives 
rise to similar difficult integrals to those obtained by Lindley and 
Smith . Tiao and Zellner , generalising a technique of Fisher , give an 
asymptotic expansion for the integral . As Fienberg points out in the 
discussion to the Lindley and Smith paper , this integral can also be 
simplified using the results of Dickey ( 19 6 8 ) . 

In the next section we shall show that the two approaches are 
special cas·es  of the same general scheme and that this scheme leads to 
the estimators of chapter 2 . 

3 . 2  Pos teri or  Di s tri but i on of  the Pa rame ter Vector 

In order to reconci le the above approaches we show that the 
ultimate prior after all previous stages, in the case of known variance 
matrix ,  consists of a normal distribution of the components of the 
parameter vector in the direction of some hyperplane and a uniform 
distr ibution perpendicular to it . There is a slight complication 
when previous observations are in the form of non-full rank models , 
a case which might arise when these observations are of some compon-
ents of the parameter vector only . In this case the prior 
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distribution for non-estimable functions must be ignored if it i s  
improper ( a  proper prior causes no  diffi culty ) .  The reason for 
i gnoring the prior di stribution for non -estimable functions i s  that 
an improper prior will give rise to a posterior distribution whi ch 
is also improper . The mean of such a posterior will be undefined and 
this reinforces our view that the functi ons are not estimable . Note 
that , although it is not usually stated explicitly that non-est imable 
components are ignored , the above procedure is in fact the usual one . 
Any model can have extra irrelevant parameters apded to it , but if  
they are irrelevant then it would be better if they were ignored . 
This is  what this method does - estimates of the other parameters 
should be the same whether the irrelevant parameters are included in 
or excluded from the model . This can be done by factoring the j oint 
density into a factor involving the estimable function and a factor 
involving the non-estimable functions . The latter is  ignored ( or ,  in 
the case of a proper prior , it integrates to unity ) . Two other 
approaches achi eve the same effect : Box and Tiao ( 1973 ) use locally 
uni form priors which are proper but approximate a uniform distribution 
over the region of interest ; Lindley ( 1965 ) suggests that a uniform 
distribution be regarded as a family of conditional distributions -
uniform on each bounded region - so that for any bounded region we 
may condition on it to achieve a proper density . Lindley ' s  approach 
i s  s imilar to that of Jeffreys ( 19 61 )  who remarks that an integral 
over an infinite range is  defined as the limit of a family of integ­
rals over a finite range as the range tends to infinity ( however 
Jeffreys fails to point out that for improper priors , in contrast to 
the case for proper priors , the integrand is repeatedly renormalised 
as the range increases ) .  

We shall show the result of using a uniform prior for � on both 
the marginal density for e and on the posterior density for � given 
8 when we consider the linear model 8 = A � + £ ,  £ � N ( O , t ) . We n 
do not assume that A has full column rank . 

We first write  the model in terms of j ust the estimable functions 
then we find the marginal and posterior distributions and transform 
back to the original coordinates . 

Let A be an nxp matrix of rank r ,  let !1. be an rxp matrix such 
that the components of !1. � form a complete set of estimable functions 
( ie there exist matrices T and B for which !1. = TA and A = B!l. ) and 
let M be a ( p-r ) xp matrix complementary to !1. .  The matrix  r11.1 i s  

L MJ 
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of full rank . Let [ A  M be its inverse . We have AA = I ,  

AM MA - A-A + M I .  Also MM = I ,  = o ,  = 0 and M = 
-AM = BAM = 0 and AA 

-= BM = B .  Putting ljJ1 = A<P ' ljJ = M<tJ 2 and 

[��] cp = A-ljJ 1 + M  AA - ljJ1 + AM-IjJ2 = BljJ 1 \jJ = we obtain ljJ2 . Now A cp = 
so that , as might be expected , the parameters lJJ2 are irrelevant . 
Thus the model 8 = A cp + £ may be written as 8 = [ B  0 ]  \jJ + £ or as 
8 = B\jJ1 + £ .  

Also ATI- 1A = 
= 
= 

= 

A similar transformation to this is to be found in Zellner ( 1 97 1 ) ,  
but Zellner rewrites the density function instead of rewriting the 
model . The following paragraph shows the two approaches to be 
equivalent . 

T -1 We now show that , if we transform A I A by a congruence 
T T . - 1 [ C 0] transformCJ.tion of the form Q A I A Q · = 0 0 where Q = [ Q1 Q2 ] 

and Q;AT I - 1 A Q 1 = c ,  then the elements of Q� cp ,  where [ Q1 �r 1 = [6}]. 
are a complete set of estimable functions . 

We have Q; AT I-1 A Q2 = 0 so that A Q2 = 0 .  Also 

Q1 Q� + Q2 Q; = I 
so that 

A = A Q1 Q� + A Q2 Q; = A Q 1 Q� 
Therefore rank Q1 = rank Q� = rank A = rank C and the column space of 
A is contained in the column space of Q1 . However , from the equality 
of the ranks ,  the column spaces are identical and hence there is a 
matrix T such that Q� = TA . This establishes the result . 
Now p ( 8 l q, )  = 1 1 

1 exp { - � ( 8 -Aq> )T L: -1 ( 8 -Acp ) }  
( 2rr)"211 1I I '2 

and using a uniform prior p(cp ) = cp for cp we have 
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Let �0 be a solution to the normal equations 

so  that 

We then have 

= ATL:-1 A�o 

ATL:-1 ( 8 - A�0 ) = 0 .  

( 8 - M )Tl:-1 ( 8 - A� ) = { ( 8 - A�o ) - A( � - �o ) }Tl:-1 { ( 8 - A�o ) - A( � - �o ) }  
= ( 8 - A� o ) T l: -1 ( 8 - A� o ) + ( � - � o ) AT l: -.1 A ( � - � o ) 

and 
( 8 - MO ) TL:-\ 8 - A�o ) = 8Tl:-1 ( 8  - A�o ) 

This 
p ( 8 , � )  = 

Also , putting 

p ( 8 , 1jl )  = 

= 8Tl:-1 { I  - A ( ATl: -1A ) -ATl:-1 } 8 
= 8T { l:-1 _ z:-1A(ATl:-1 A) -ATl:- 1 } 8 . 

1jJ o = A�o 
1 and 1jJ 0 = M� 0 , we have 2 

6 9  

In order to  find the posterior density for 1jJ and the marginal 
distribution for 8 we integrate with respect to 1)J1 and ignore the 
irrelevant parameters 1)J2 as we have already explained in section 3 . 1  . 
Alternatively consider the distribution of 1)J2 as the limiting form 
of a family of proper distributions : we may take the limit after 
integrating . We therefore obtain 

p (  8 )  = er T - 1  -1 T - 1  - T -1 1 ( ) 1 T 1 1 exp [ -�8 { L - E  A(A  Z: A )  A Z: } 8 ]  
( 2TI )� n-r I Z: I � I B  z: - B l � 

p-r 
I c { 1 ( o )T T - 1 o ) }  p ( �  8 )  = � T 1 1 exp -� �-� A Z: A( �-� 

( 2TI ) I B z; - B I � 

Notice that both p ( 8 ) and p ( � l 8 )  have the form of a mulivariate  
normal d istribution with singular precision matrix ( Lindley ' s  
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terminology ) and that this can be  transformed to  the product of  a 
proper multivariate normal distribution and a uniform distribution 
( indeed , p (� l 8 )  is of that form ) . To see this for p ( 8 )  note that 
there is an orthogonal matrix P such that 

We now show that Lindley and Smith ' s  model i s  equivalent to one 
of the form used by Tiao and Zellner . Putting 

C = I - A(ATE-1A ) -ATE- 1 

we obtain 
CTE-1 c = CTI -1IE-1 c 

= E -1 - I -1A (ATI -1A ) -ATI- 1 

so that the marginal distribution for 8 
obtained from the l inear model 8 = c� + 

is  of the same form as that 
E , E 'V N( 0 , E ) by taking 

the posterior distribution of � given 8 = 0 • 

In the Lindley-Smith approach the first stage prior is uniform 
and gives rise to  the marginal distribution which we have j ust found . 
We shall show that , using this marginal distribution as a prior for 
another normal distribution , gives a similar posterior . In the Tiao­
Zellner approach we show that the posterior at the next stage has a 
similar form . 

Let 8 = A� + E , E rv N ( O , E )  n 
and let p ( � ) = c exp { -�( �-a )TQ ( �-a ) } 

where Q does not necessarily have full rank . Now 

In order to complete the square for the quadratic  expression in � ' 
( �-a )TQ ( �-a)  + ( 8 -A� )TI-1 ( 8 -A� )  

= ( �-a )TQ ( �-a )  + ( �-�o )TATL-1A( �-�o ) + ( 8 -A�o )TE-1 ( 8 -A�o ) 

where �0 = ( ATE-1A ) -ATE-18 , we need the following lemma . 
Lerruna 1 If  A and B are two matrices with B and A - B positive 
or negative semi-definite and i f  A and B are symmetric then , for 
any generalised inverse , A- , of A , AA -B = B ( and hence 
AA- (A - B) = A - B ) and BA-B i s  invariant to the choice of A- . 
Proof The result i s  essentially that in example 3 . 7  of Rao( 1973 ) .  



[ 3 . 2 ]  

As the proof i s  not given there we shall prove the result here . We 
first show that the null space of A is contained in the null 
space of B . This follows s ince 

Ax = 0 T 0 ,. x Ax = 
T T 

,. x ( A - B ) x  + x Bx = 0 T 0 &:> x Bx = 
,. Bx = 0 • 

7 1 

Since the column space of a matrix is the orthogonal complement of 
the null space , this shows that the column space of B is  contained 
in the column space of A . Thus there is a matrix T such that 
B = AT . Therefore AA -B = AA-AT = AT = B . Also 
BA-B = BTA-B = TTATA-AT = TTAA-AT = TTAT = TTATT = BT 
and this does not depend on A- . 

We can now state and prove the completion of the square result 
to which we alluded above . We shall state it  as a lemma . 
Lemma 2 I f  G and H are positive semi-definite then 

( x-a )TG ( x-a)  + ( x-b )TH ( x-b )  

Proof 

( 1 )  

= { x - ( G+ H )  - ( Ga + Hb ) } T ( G + H ) { x ( G+H ) - ( Ga + Hb ) } 
+ ( b-a )T { G  - G ( G + H ) -G} (b-a )  

By lemma 1 

( G  + H ) ( G  + H ) -G = G and ( G  + H ) ( G  + H ) -H = H 

from which we deduce that 

( 2 )  

Now ( x-a )TG ( x-a) + ( x-b )TH ( x-b )  . T T T T 
= x ( G + H ) x - 2x ( Ga + Hb ) + a  Ga +b Hb 
= { x - ( G + H ) - ( Ga + Hb ) } T ( G + H ) {  x - ( G + H ) - ( Ga + Hb ) } 

+ aT Ga + b T Hb - ( Ga + Hb )  T ( G + H ) - T ( G + H )  ( G + H ) - ( Ga + Hb ) 
from ( 1 ) . S implifying the constant term we obtain 

aT Ga + b T Hb - ( Ga + Hb )  T ( G + H ) - ( Ga + Hb )  
= aT{ G  - G (G  + H ) -G} a + bT{ H  - H ( G  + H ) -H }b - 2ATG (G  + H ) -Hb 

using ( 1 ) . Although this formula has an elegant symmetry , for practi cal 
applications it is more convenient to use ( 2 )  to write the constant 
term in one of the forms 
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or T - } T{ - } T -a { H  - H ( G  + H ) H a · + b H - H ( G + H ) H b - 2a { H  - H ( G  + H ) H }b .  

These may also be written 

( a-b )T { G - G( G + H ) -G} ( a-b )  , 
( a-b )TH ( G  + H ) -G ( a-b )  or as 

( a-b )T {H - H ( G + H ) -H} ( a-b )  , 
T -( a-b )  G ( G  + H ) H( a-b )  . 

We now apply this lemma to the quadratic  form in � and obtain 

( �-a ) Q ( �-a )  + ( 8 -A� )TE- 1 ( 8 -A� )  
= { �  - ( Q  + ATE-1A ) - ( Qa + ATE -1Mo ) }T 

x ( Q  + ATE-1A ) { �  - ( Q  + ATE-1A ) - ( Qa + ATE- 1A�0) 
+ ( 8 -A�0)TE-1 ( 8 -A�0) 
+ ( � 0 -a )  T {ATE -1 A - ATE -1 A ( Q + ATE -1 A )  -ATE - 1 A} ( � 0 -a ) . 

Substituting for �0 and s implifying the last two terms we obtain 

8T{ E -1 - E -1A (ATE -1A ) -ATE -1} 8 
+ ( 8 -Aa )TE -1A{ ( ATE - 1A ) - - ( Q + ATE -1A ) -} ATE -1 ( 8 -Aa )  

= 8TU -1 - E -1A( Q + ATE - 1A ) -ATE -1 } 8 
- 28TE -1A{ (ATE - 1A ) - - ( Q + ATL: -1A ) -} ATE - 1Aa 
+ aTATE-1A{ ( ATE - 1A ) - - ( Q + ATE -1A ) - } ATE - 1Aa 

= 8T{ E -1 - E -1A( Q  + ATE -1A ) -ATE -1 } 8 
- 28T {E -1 - E -1A ( Q + ATE-1A ) -ATE-1 } Aa 
+ aT AT { E -1 - E - 1 A ( Q + ATE -1 A ) -ATE -1 } Aa 

= ( 8 -Aa )  T { E -1 - E -1 A ( Q + ATE -1 A ) -AT L: -1 } ( 8 -Aa ) 

Alternatively , 
( 8 -A�0)TE-1 ( 8 -A�0) = ( 8 -Aa )E -1 ( 8 -Aa )  - ( �0-a )TATE - 1A( �0-a )  

s o  the quadrati c  form becomes 

which again yields the result . 
The j oint density of 8 and � can now be written as 

c { 1 1  T -1 - T - 1 o l l 2 } 1 t: exp -� � - ( Q + A E A )  ( Qa + A E M ) T - 1 ( 2TI ) ?U I E I 2 Q+A E A 
X exp {-� 1 1 8 - Aa 1 1 2 -1 - 1 T -1 - T - 1 } . E -E A ( Q+A E A ) A E 

We now wish to integrate out the estimable functions of � and ignore 
the non-estimable functions . In this context , however , we have not yet 
defined the term "estimable function "  adequate ly .  We do so now . Let B 
and E1 be matrices such that Q = BTL:1

-1 B .  A set of functions will 
be said to be estimable if its members are the elements of a vector of 
the form ( TB + UA )� • These functions have as a basis those functions 
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which are estimable in  the original model together with those funct ions 
which become estimable because of the prior distribution . Integrating 
over the estimable functions of � and ignoring the others gives the 
marginal density for 8 given by 

T { - 1 -1 T -1 - T -1 } ] p ( 8 )  a: exp [ -� ( 8 -Aa )  l: - l: A ( Q  + A  l: A ) A l: ( 8-Aa )  . 
Dividing this into the j oint density of 8 and � gives the posterior 
density for � , 

I 1 1  T -1 - T -1 o 1 1 2 p ( � 8 )  a: exp [ -� � - ( Q + A l: A)  ( Qa + A l: A� ) T -1 Q+A l: A ] 

The constant in  each case is found by integrating over the estimable 
functions only and ignoring the others . Note that the case Q = 0 is 
the case of the uniform prior density already considered : in this  case 
the terms containing a are zero . 

We can now apply these results to  the linear model.  With prior 
knowledge as specified by Tiao and Zellner we have the model 

and 

We 

y = XB 

prior observations 

Y .  = X . B  1 1 
shall write yt+1 = y ' 

+ £ ' 

+ £ .  ' 1 
xt+1 = X 

£ .  "' N ( O , L . )  1 1 i = 1 , 2 ,  . . • , t . 

and l:t+1  = l: • 
If we suppose we have a prior density for 8 of the form 

p ( 8 )  a: exp{ -�( 8-a )TQ ( B-a ) } , 

the case Q = 0 giving a uniform prior , then we may apply the last 
result repeatedly to obtain 

p ( 8 I Y1 , . . .  ,Yt , Y )  
. t+1  t+1  

1 1 1  \ T - 1 - \ T -1 o 1 1 2 t 1 a: exp [ -'2 8 - ( Q + L X .  l: . X .  ) ( Qa + L X .  l: .  X .  8 ( . ) + _ 1 ] 
i =  1 1 1 1 i =  1 1 1 1 1 Q+ L X .  L . X . 

where o T -1 - T -1 8 ( 1. ) = ( X .  L .  X . ) X .  L .  Y . ' . 1 1 1 1 1 1 

i =  1 1 1 1 

The form of this expression makes it  clear that the same result 
is obtained by grouping some of the sets of prior observations  together 
( or together with the current data set ) or by tak ing the observations 
in a different order . Thi s  i s  true in general when the prior is proper . 
In this case it is  now established for certain improper prior 
d istributions . Tiao and Zellner did not do this but , instead , applied 
the uniform prior density directly to the full data set of current and 
prior observations .  



[ 3 . 2 ]  74  

The post erior mean for S ( if the density i s  proper ) is  

t+1  T -1  -8° = ( Q  + L X .  E . X . ) ( Qa + 
i= 1  l. l. l. 

t+1 
I 

i = 1  
T - 1  X .  L Y . )  l. l. l. 

where the generalised inverse is , in fact , an inverse . When the 
posterior density is improper this determines the est�mable functions 
uniquely but not the non-estimable functions . In the case of an improper 
density , the integral is  not defined uniquely , but can be given any 
value by choosing a suitable definition of the integral . However , as 
noted above , the estimable functions are determined uniquely . 

A principle value 

P J 
00 

f ( x )  dx be = g -00 

for the integral 

t ( N )  
lim f (  x )  
N-+= -N 

J 00 f(  x )  dx is defined to _oo 

dx where g( . )  i s  a monotone 

increasing function of N for which li�-l<D g ( N )  = oo .  Principle values 
may converge to  any limit , diverge to +oo or -oo or exhibit sti ll more 
aberrant behaviour . This may be considered an advantage since the lack 
of uniqueness indicates that it is wrong to try to estimate the non­
estimable functions . 

Note that if  Q = 0 then this i s  the result given by the usual 
sampl ing theory estimator in Theil( 1 97 1 )  obtained by combining previous 
and current observations . It is only applicable when the variance 
matrices are all known . 

Consider now the same l inear model but with prior knowledge a 
generalisation of that specified by Lindley and Smith .  We have 

y = xs + E E rv N( O , E ) 
s = At et + Et Et 'V N ( O , Et ) 

ei+1 = A . e .  + E . E . 'V N(  0 , L ) for i = 0 '  1 ' 2 , . . . ' t - 1 . l. l. l. l. l. 

and 

The case of a uniform prior distribution at the final stage , given by 
Q = 0 , is the case considered by Lindley and Smith . . 

Lindley and Smith found the posterior distribution of S g iven 
Y with prior knowledge given by the first stage . This depends on et 
By using the second stage prior for et they eliminate thi s  parameter 
by integration and obtain a result depending on et_1 . Repeating this 
process finally leads to a distributi on depending on a ( presumed to 
be known) . To avoid dificulties with improper prior distributions , they 
take Q to be of full rank and calculate the limiting posterior 
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distribution for S as Q tends t o  zero . We , on the other hand , meet 
the challenge head on . Our approach also works in the reverse order 
using each stage of the prior to determine the prior knowledge at the 
next stage . Unfortunately the formula for the prior knowledge at each 
successive stage does not take quite such a s imple form as with the 
approach of Tiao and Zellner . In practice , however , only two stages 
will usually be needed and rarely will it be necessary to go beyond 
three stages . 

We now give the marginal distribution for 8 after the last s s 
stages , i . e .  the prior at the t - s + 1 stage . We have 

p ( 8  ) � exp{ -�( 8 -A 1 A 2 . . .  A1a )TQ ( ) ( 8  -A 1A 2 . . .  A1a )  s s s- s- s s s- s-
where Q ( s )  is defined inductively by Q ( O ) = Q and 

-1 -1 T -1 - T -1 Q ( i+l ) = �i+l - �i+1Ai+1 ( Q ( i ) + Ai+1�i+1 Ai+1 ) Ai+l�i+l 

7 5  

Using the notation et+l = 8 , p ( 8t ) is the ultimate prior distribution 
for S . We may now deduce that the posterior distribution for S i s  

• 
given by 

I { 1 1 1 T -1 - T -1 o 1 1 2 } p ( S a) � exp -"2 Y - ( Q ( t )+X l: X )  ( Q ( t )At-l " . .  A1a+X � XS T _1 . O ( t ) +X l: X 
This is the same as the result given by Lindley and Smith s ince if  

Q is  non-singular then the marginal and conditional distributions of S 
may be found by integrating in any order ; also the limit of our result as 
Q � 0 is the same as that given by Lindley and Smith . In general we 
could allow Q 
then V o > 0 
singular , and we 

to tend to 
Q = 
can 

o0 + o i  
choose 

any singular limit ( s ince if Qo is  s ingular 
is positive definite and therefore non-

Q as close as we like to Qo ) so ' for the 
more general case , it does not matter in which order the integrations are 
carried out . Owing to the complicated form of the marginal distributions 
a direct proof that the order of integration is unimportant is  difficult . 

It is worth noting that a combination of the approaches of Lindley 
and Smith and of Tiao and Zellner may be used . We may replace the prior 
distribution for S used by the latter authors by a multistage prior 
of the form used by the former authors . A further extension , which may 
be applied to either approach , or to the j oint approach , is  to replace 
the prior distribution 

p ( S )  � exp { -�( S-a)TQ ( S-a) } 
by the prior 
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This will still be  an exchangeable prior i f  a. =  0 and Q = I but 
exchangeability is lost when prior observations are incorporated . This  
is  to be expected s ince the prior observations will not usually give 
the same information about each coordinate of the parameter vector . If  
the model is of full rank then the effect on the posterior distribution 
for 6 will merely be to multiply it by ( 6T6 ) -c . 

3 . 3  E s t i ma t i on Under Pr i or L i near  Hypotheses  

The foregoing theory works j ust as well if  prior data 

Y . = X . 6  + E . , 
� � � 

is replaced by prior beliefs 

h . = H . S  + E .  
1 1 � 

E .  rv N ( O , L ) 
� 1 

E .  rv N ( O , L ) • 1 1 

In this case the prior knowledge will be weaker and this will imply 
that each E . is large . The E .  reflect the fact that our belief that 
h .  = H . 6  

� . 1 

� 1 

is uncertain and we may be in error . We shall impose the 
restriction that our prior beliefs are mutually consistent , that i s  the 

T T T T where H = [ H1 ,H2 , • • • , H ] and equation 
h = [h  T 

1 

H6 = h 
T h2 ' 

T T t 
, ht ] has a solution for 6 . We shall let the 

rank of H .  be r . 
1 1 

independent so that 
and the rank of 

t r = Ei=1 r . .  
1 

H be r ,  the matrices 

Choosing as a prior distribution for 8 
T p ( 6 )  � exp{ -�( 8-a. )  Q ( 6-a. ) } 

( where this might perhaps be the result of multistage prior 
information )  the posterior distribution will be 

p ( 6 I Y ,h1 , . . .  ,ht ) 
t t 

� exp{ -� l i S � ( Q  + I I i= 1  i= 1 
where the norm is 1 1  . 1 1 = 1 1  . 1 1  t T _1 T _1 • 

Q + L H .  E . H . + X L: X 
i= 1 � 1 1 

H .  
1 

This gives rise to estimators A8° for functions AS which are 
estimable in the original model ,  where 

t 
( Q  + I i = 1  

T -1 T -1 -H .  L: .  H .  + X E X )  ( Qa. + 
1 � 1 

t 
I i= 1 

being 

In order to see how the analysis at the end of chapter 1 may have 
a parallel in the regression model we shall use a prior distribution 

{ T \ t T -1 T - 1 }-c T } p ( 6 ) ex: 8 ( Q  + L · 1 H .  E . H . + X L: X ) 6  exp{ -�( 6-a.) Q ( 8-a. )  . 1= 1 1 1 
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The  matrix of the quadratic  form in B has been chosen so  that the prior 
probability only depends on the estimable functions relative to the 
posterior distribution of B . Prior knowledge of this form may not be 
entirely realistic ; however , if it produces admiss ible estimators and 
does not introduce too much non-sample information , then it may be 
worthwhile . The posterior distribution in this case wi�l be 

I T -c ! I - f T -1 T -1 1 1 2  } p ( B  Y ,h1 , . . .  , ht ) cx: ( B  WB )  exp{ -� B - W  ( Qa +  L H .  L .  h . + X L Y W i= 1  1 1 1 
� T - 1  T - 1 where W = Q + L H .  2: • H .  + X 2: X . 

i= 1 1 1 1 

If  W is non-singular then the expectation of B exists , otherwi se it 
does not . Us ing the same convention of i gnoring the non-estimable 
functions that we have used before , we may calculate E [AB] where the 
elements of AS are estimable functions relative to the prior 
di stribution .  Defining B0 as in the equation above and defining 
z = �8°TW8° we may use a result of chapter 1 to obtain 

1 1F1 (�+c+1 ;�+1 ; z )  
E [ AB ]  = A '2f.+c B0 • '2P 1F1 (�+c ;�; z )  

Notice that this is a scalar shrinkage of AB0 which , in the case when 
a = 0 , h .  = 0 for i = 1 1 
likelihood estimator for 

, . . .  
AB .  

, t , is  a matrix shrinkage of the maximum 
It is  doubtful whether this double 

shrinkage is realistic unless each is mild ( i . e .  c is small and 
r = \ t rank H .  is  not too large ) .  L i = 1  1 
3 . 4 The case of  Un known Vari ance 

When some or all of the variance matrices 2: , 2:1 , . . .  , l:t are unknown 
we must either estimate them to produce empirical Bayes estimators or 
assume prior distributions for them and integrate them out of the model .  
There i s  clearly not enough information from which t o  estimate the 
variance matrices completely so we shall suppose that 2: = a2 V and 
L .  = a� V .  for i = 1 , 2 , . . .  , t . This  assumption seems not unreasonable 1 1 1 
for the full Bayes estimators as well as for empirical Bayes estimators . 

3 . 4 . 1 The Emp i ri ca l  B ayes Case 

We might base our estimators for the variances on the maximum 
likelihood estimators for AB given a set of prior estimates or guesses 
of the variance s .  This  scheme could be used iteratively , the new weights 
providing a new estimator for AB from which to compute new variance 
estimates .  We shall not investigate the convergence of this scheme . An 
alternative method is to use the theory of MINQUE estimators . However , 
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these can lead to negative estimates  as can the iterative scheme 
outlined above . 

We shall only consider the case in which the prior knowledge is 
vague and the prior hypotheses are all testable in the original model .  
I t  i s  also convenient t o  suppose the prior hypotheses to be mutually 
orthogonal and that the Q of sect ion 3 . 3  i s  zero . Since a non-zero 
Q can be considered to be the result of an earlier stage Erior 
hypothesis , the latter assumption is not very restrictive . With the 
assumption of vague prior knowledge an estimate of AB ignoring this 
knowledge is a good prior estimate upon which to base estimates of a2 
and a� for i = 1 , 2 , • • •  , t . These estimates will then be used to 1. 

7 8  

provide a better estimator for A B  . I t  will not be necessary to  proceed 
to a second iteration . 

S . " " " kn oo 
• 1.nce � , � 1 , . . .  , �t are un own we cannot calculate � Suppose 

-1 - 1 - 1 we use w ,w1 , . . .  ,Wt as estimates of l: ,t:1 , . . .  , l:t . We may then 
calculate an approximation ' B '  to B0 

• Let w�·: be the block diagonal 
matrix W* = diag (W1 ,w2 , . . .  , Wt ) and let l:* = diag( E1 , L:2 , . . .  , l:t ) 

With HT = [ H1
T , • . .  , Ht

T ] ,  hT = [ h1
T , . . .  , ht

T ) and S = XTWX + HTW�':H 
- - T T the vector B = S ( X  WY + H W�':h )  estimates B when the variances are 

-1 - 1 estimated by fixed matrices W , W�·: . S ince 

and 

and since 

Y - XS = ( I  -· XS-XTW ) Y  - XS-HTW�·:h 

- - T T h - HB = - HS X WY + ( I  - HS-H W1: )h  

var Y = l: , var h = l:1: and 

var ( Y - XB ) 

cov ( Y  ,h ) = 0 , we have 

var( h - HS) = HS-XTWl:WXS-HT + ( I - HS-HTW�': ) l:�: ( I - W*HS-HT ) 
and 
cov( Y-XS , h-HS ) = - ( I - XS-XTW ) l:WXS-HT - XS-HTW�,:l:1: ( I - W*HS-HT ) . 

W -- " -1 -1 If , in fact , � and W�·: = l: �·: then these reduce to 
var ( Y - XS ) = l: - XS-XT 

var( h - HS )  = L�': - HS-HT 
and 

-XS-HT . cov( Y-XS ,h-HS ) = 

Since we suppose the variance matrices to be known up to a multiplicative 
-1 constant we shall suppose that W = al: • I gnoring prior knowledge is 

equivalent to taking w�·: = o in which case we obtain 
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and 
cov( Y-XB ,h-HB ) = o .  

Now taking gives 

E [ (Y-XB )TV-1 ( Y-XS ) ]  = tr{ I - X (XTV-1X ) -XTV-1 } = ( n-p )a2 
and 

E [ ( h-HS )TE�1 ( h-HS ) ]  = tr{ I + a2 H ( XTV-1X ) -HTE�1 } . 
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The above calculations help us to calculate estimators for a2 ,a� , . . .  ,a� 
which will be substituted into the expressions for 8 to provide an 
estimator for 8 . 

We now wish to use the orthogonality of the hypotheses and the fact 
that L l = a�V .  to calculate E [ ( h . -H . 8 ) ( h . -H . B )T ] .  Clearly when i * j  l l l l J J 
this gives H . ( XTE-1X ) -H _T which is zero by the orthogonality of the l J = j then we obtain the value H .  If i l 

from which we see that 

where n .  i s  the number of rows o f  H .  . l l 
We may now give unbi ased estimators for a2  and the a� . They are l 

u7ld a� = l 
I f  any of 

1 21 T -1 ---=--i: ( h . -H . p )  V . ( h . -H . 8 )  n .  l l l 1. l l 
2 { T - 1 - T -1 } - a tr ( X  V X )  H .  V .  H .  ] l l l 

the a� l turn out to be negative then the corresponding variance 
a� l is likely to be small and an exact restricti on is probably required . 
Alternative ly a different prior distribution might give rise to positive 
estimates . 

Using these estimates for the variance our empirical Bayes estimator 
for 8 will be given by 

si': = {_12 xTv-1x + I -1
2 H .T v�1H . } - { _12 xTv-1x + 

a i= 1 cri l l l a 
� 1 T - 1 } L :;;z H .  V .  h • • 

i= 1 cri l l l 

In order to deal with the case of exact restrictions we shall find 
the limiting value of this expression as some of the variances tend to 
zero . This  is a generalisation of a method of Brook and Wallace ( 1973 ) . 

Suppose we let all the variances tend to zero except for those in 
the set {a �· :  i ( I } where I c { 1 ,  2 ,  . . .  ' t } . Thus for i ( I the l 
restrictions  are not exact . If  i ( I then H . 8  is estimable and the 

H _T XT l 
columns of are in the column space of and of l 
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1 XTV-1X \ 1 T - 1  � + L � H . V .  H . . We now use the formula for the inverse a i E I ai 1 1 1 

of the sum of matrices and let a� � 0 for i E I . Let 1 

B = 

h T 

1 T 1 \ 1 T -1 A =  X V- X +  L :2 H .  V .  H .  (?" i E i ai 1 1 1 

1 XTV-1Y \ 1 T -1 a = � + L � H . V .  h .  a i E I ai 1 1 1 

1 - 1 diag � V . for i a .  1 1 
( I = [ H . T ,H . T , . . .  , H . t ]  and 11 12 1u 

T T T = [ h .  ,h . , . . .  ,h . ] 11 12 1u 
where { i1 , i2 , . . .  , i) = { 1 , 2 ,  . . .  , t } -..... I .  

With these definitions we have 
13�·: = { A- - A-H T ( B- 1 + H A-H T ) -1H A- } ( a  + H T Bh ) 

Now if a 
B-1 and 
row rank ) 

a 
is the largest eigenvalue of B- 1 and if 

tend to zero together and ( assuming each 

13�·: � {A- - A-H T( H  A-H T ) -1H A- }a 

-1 B = aC then 
H .  has full 1 

+ lim {! A-H T Ch - � A-H T ( aC-1 + H  A-H: ) -1H A-H_
T Ch } 

a � o a - - "" 

The second term is equal to 

a � o 
= A-H T ( H  A-H T ) -1h .  

Therefore 131' � A  a - A-H T ( H A-H T ) -1 ( H  A-a - h ) . 
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( We note that A a i s  the estimator which i gnores the exact restrictions ) .  
The rule given resembles a positive part estimator in that negative 

estimates of a variance component imply shrinking the estimator for 13 
onto the hyperplane corresponding to that component instead of over­
shrinking as would otherwise be the case . 

3 . 4 . 2 The Bayes Case  

Instead of  estimating the variance components we may choose a prior 
distribution for them and integrate them out of the model .  Unfortunately 
this requires the use of numerical methods . We shall assume inverse 
gamma distributions for the variance components since this distribution 
is the conj ugate distribution for this problem . 

We shall suppose that 
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and p ( o� l a . ,a� ) 1 1 1 = 
. ( ) 2ai CL ·  a .  

(1 ) 1 1 "2Cti r <a . ) 1 

all independently of one another 
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{ 1 aa2} exp - 2 7 
2 1 exp{ - 1 aiai} 2 --;-r (a �  )ai+ 1  1 l 

and of B . 
The special cases of these given by a -+ 0 , a .  -+ 0 ( in whi ch case l 

the normalising constants tend to zero and the distributions become 
improper ) are the invariant priors given by Jeffreys . 

Using the general result of section 3 . 3 that 

ex const (o2, { oi})exp{ -� 1 1 B - 8° 1 1 2 t T _ 1 T _ 1 } Q +  I H .  L H . + X E X 
where t 

( Q  + I 
i= 1 

t 
H .r E� 1H .  + XTE-1x ) - ( Qa + I l l l i = 1  

the j oint density of  8 ,  a2 and the o�  i s  l 

where s = Q + 
t I 

i = 1  
T - 1 + XT<;"-1X H .  E . H .  '-' 1 1 1 

giving the marginal density for 8 , 

p ( B I Y ,  { h .  } ,a , a 2 , {a . , a � } )  l l l 

i=1  1 l l 

T -1 + XT <;" - 1Y )  H .  L h . '-' l l l 

2 2 2 do do1 . . .  dot 
1 t a + 1  ( o2 )a+ n ( o� ) i 
i = 1  1 

S ince the expression for 8° i s  not a very s imple function of 
2 2 2 a ,a1 , . . . ,at , 

1 1 8-6° 1 1 2 = 8TS6 s 
= 8TS8 

this integral is  intractable . In fact 

t 
I i = 1  

T -1 + XT<;" - 1Y ) H .  E . h .  '-' 1 l 1 
t oT + 8 ( Qa + I 

i=1  
It is  the last term which gives rise to the intractibility of the 
integral s ince it contains S . 

I f  we integrate in a different order then we can make the integral 
a little more tractable . The j oint distribution of Y ,h1 , . . .  ,ht , 8 , 02 
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and o1 , . . .  ,ot is given by 

( h B 2 2 2 1 2 2 2 )  p Y ,h1 , . . . , t ' ,o ,o1 , . . .  ,ot a ,a1 , . . .  ,at ,a  ,a1 , . . .  , at 

a: -----
1---- ex�-� r

l! I Y-XB I I2 - 1 + I l ! h . -X . B I I 2_1l
J} 1 1 t k +a +1 "" l. = 1 l l "" . 2 '2!1+a+ n 2 "2U • • [_, [_, ( o )  ( o . )  l l l 

i=1  l 
t a 2 

x ex� -
�[ a:22 + 

iL !ii} ]p (  B )  

where p (  B )  a: exp{ -�( B-a ) T Q (  8 -a ) }  . 
Integrating with respect to the variances we obtain the marginal 
distribution , 

P ( Y ,h1 , . . .  ,ht , B I a1 , . . .  ,at ,a� , . . .  ,a� ,a  ,a 2 )  
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t ( )- ( a+� ) t ( )- ( a . +� . ) 
a: p ( 8 )  f ( a ) n f ( a . )  I I Y-X B W- 1 + aa2 n \ l l h . -X . B I I 2_1 + a .a� l l 

i = 1 l 'y i = 1\ l l V . l l 
l 

= f ( say ) . 
Usually Q will be taken to be zero in which case p { 8 )  = 1 

• In this 
case  this density is a product of multivariate t distribut ions . If  Q 
is taken to be non-zero then it is likely to be known only up to an 
unknown scale factor in which case this could be integrated in the same 
way as the o� to give another multivariate t factor . l 

The marginal distribution of B is not easy to find , if found , 
however , then this leads immediately to the conditional density 

p ( B ! Y , h1 , . . .  ,ht ,a , a2 ,a1 , . . .  , at 'a� , . . .  , a� ) a: ------------�f 
__________ ___ 

J . . .  f f dy dh1 dh2 . . .  dht 
Note that the integral is a multiple integral of dimension n+n1+n2+ . . .  +nt 
and the expected value of B is the ratio  of two such integrals . 

As explained earlier , this may be calculated in one of two ways . The 
results of Dickey ( 19 6 8) reduce the integral to one of dimension t ,  which 
for small t may be found numerically . Alternatively we can use the 
method of Tiao and Zellner ( 19 64) which uses an asymptotic expansion for 
the integral . Either way the work involved is laborious and a s impler 
method is desirable . One approximate method is to use the mode of the 
posterior distribution given by �� = 0 • Taking Q = 0 we have 

1 af 
= 

a log f f as as  2 - 1 T -1 
= 2 (a+� ) { I I Y-XB I�-1 + aa2 } X V ( Y-X 8 )  

t - 1 
+ L 2 ( a . +�.� ! l h . -X . B I I 2 1 + a . a� } H ? v�

1
( h . -X . B )  

i = 1  l l l l V� l l l l l l 
l 
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and this gives a solution satisfying 

t 
I 

i = 1  

= 

This would need to be solved 

t a.i+�i T - 1 L H .  V .  h .  
i= 1 l l hi-Xi��: 1 + aia� l l l 

J_ 
iteratively . The s imilarity to the 

8 3  

eampirical Bayes solution should be noted . The difference lies in  the 
variance estimates of the form 

2a
1
+n {I I Y-x6 1 1v2 -1 + aa2} and 2 1 {l l h . -H . B I I 2 1 + a . a�} a . +n .  2 l v: 2 2 J_ J_ J_ 

which , for small a ,  would seem likely to have positive bias . 

3 . 5  Compa ri son  wi th General i sed James -Ste i n  E s t i ma tors 

When the respective variance matrices are known the Bayes estimators 
are of the form of a constant plus a matrix shrinkage of the least 
squares estimator . The estimator may also be regarded as a weighted 
average of the least squares solution and the exact values satisfying 
the hypotheses . Thus the Bayes estimator , like the generalised James­
Stein estimators , shrink the usual estimators towards the prior 
hyperplanes . This also applies in the unknown variance case , however , 
t he estimator is  then extremely complicated in contrast to the James­
Stein estimators . On grounds of tractability it seems better to  use the 
latter ,  especially s ince they are "almost admissible " .  
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C h a p t e r 4 

M i n i mum Mean  Square E rror E s timat i on 

4 . 1 I ntroducti on 

In this chapter we shall cons ider the linear model 

Y = X 8 + e  E [ e ] = 0 , var e = L: 

and V is unknown , We shall e ither suppose 02 to  be unknown or 
shall take o2 = 1 . ( There is no need to  first study the canonical 
form of the model as it is j ust as easy to deal with the model directly ) . 

We shall compare estimators by using either the mean square error 
matrix or the weighted sum of squared errors . Suppose that s* < . )  is 
an estimator for ... 8 and 6" is the corresponding est imate , then the 
former is given by 

and ,  for a weighting matrix W , the latter is given by 

Another way of comparing estimators i s  by using the mean square 
error of prediction .  Predict ion may be performed at the points given 
by the matrix X , or at a s et of future points . We shall only consider 
the former . The mean square error of prediction is given by 

= E[ ( X8* - X8 ) ( XB* - XB )T ] 
= X  M ( 81: ( . ) , 8 ) XT . 

If X has full column rank then this equality establishes a one-to-one 
A A correspondence between M ( X8 " ( . )  , X8 )  and M( B" ( . )  , B ) and it  is  p 

immaterial whether we measure the mean square error in the p-dimensional 
B -space or in the n-dimensional Y-space . For the same reason , this also 
applies to prediction of X18 if x1 is a matrix of full column rank . 
4 . 2  Compari s on of Est imators 

We may say that one estimator is  better than another if its mean 
square error is  smaller than the mean square error of the other . We 
shall make this precise in the following definition s .  
Definition 4 . 1 Given two estimators for B , B� ( . )  and B� ( . ) , we 
say that 8 � ( . )  is at least as good as 8� ( . )  and write B� ( . )  � B; ( . )  
if and only if , for all p-vectors A , AT8 � ( . )  has scalar mean square 
error less than that for A TB � ( . )  as estimators for A TB . 
Definition 4 . 2 Given two estimators for B, B� ( . )  and B ; ( . ) , we 
say that B � ( . )  is  at least as good as 8 � ( . )  with respect to a 
symmetric positive definite matrix Q if and only if 
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After defining some inequalities for matrices we may rewrite 
definition 4 . 1 in terms of M ( . , . ) . 
Definition 4 .  3 Given two p x p matrices A and B , A is less than 
or equal to B ( written A � B )  i f  and only if B - A is non-negative 
definite . 
Definition 4 . 4 Given two p x p matrices A and B , A is less _than 
or equal to  B with respect to a positive definite matrix Q ( written 
A �Q B )  if and only if tr AQ $ tr BQ . 

Now AT8� ( . )  � AT8; ( . )  if and only if 

E [ ( AT8� ( . )  -AT8 ) 2 ] $ E [ ( AT8� ( . )  - ATA ) ]  

and this is equivalent to the statement that 
T A T A A M ( 8� ( . )  , 8 ) A  � A  M ( 8; ( . )  , 8 ) A .  

Thus an equivalent form of definition 4 . 1 is 8� ( . )  � 8� ( . )  if and 
·"" ·'· on 1 y if M ( 8 1_ ( • ) , 8 ) � M ( 8 2 ( . ) , 8 ) . 

Also , for a random vector t , E [ tTQt ] = tr E[ ttT] Q .  Thus , putting 
8� - 8 and 8� - 8 in turn for t we see that 8� ( . )  �Q 8� ( . )  if and 

... A only if M ( 8l ( . ) , 8 )  �Q M ( 82 ( . ) , 8 ) . 

We shall now show that � i s  a stronger partial ordering than 
�0 . For all symmetric  positive definite matrices  Q ' A � B Q implies 
tr AQ � tr P.Q 
M ( 8�:: ( . ) , 8 ) l. 

implies A $Q B .  It  follows by applying the result to 
that 8� ( . )  $ 8� ( . )  ,. 8� ( . )  �Q 8; < . ) . 

4 . 3  E st i mators wi th Mi n i mum Mean  Square Error 

The usual estimator for 8 under the model considered is S ( . ) 

where B ( Y )  = ( XTV-1X ) -1XTV-1Y .  This estimator is the best linear 
unbiased estimator and the generalised least squares estimator ( which 
minimises the residual sum of squares) ( Y - X 81' )TV-1 ( Y - X B�': ) .  

I f ,  in addition , we assume a normally distributed error vector 
e 'V N ( 0 , E ) then S( . )  is the maximium likelihood · estimator . The n 
usual estimator also satisfies various other well known and desirable 
criteria but we shall show that , in terms of the criteria in definitions 
4 . 1 and 4 . 2  it may be improved upon . 

The following theorem gives two more desirable properties of the 
usual estimator . Both results are known , but the first is much more 
widely known than the second although the second result is at least 
as important . 
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Theor>em 1 For both of the partial oderings for estimators � and 
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�Q tre generalised least squares estimator minimises the mean square 
error among estimators in the class of linear unbiased estimators and 
in the class of linear estimators with bounded mean square error . 
Pr>oof Consider the class of estimators of the form s�·, ( . ) with 
8* ( Y )  = AY + c .  The mean square error i s  

since 

M( 6�\ . ) , 6 )  = E [ ( A Y + c - 8 ) ( A Y + c - B t ] 
= E [ ( ( A X - I ) B + c + A e ) ( ( A X - I ) B + 
= ( (A X - I ) 8 + c ) ( ( A X - I ) 6  + c) T + 

E [ e ]  = 0 and E [ ee T ] = E • 

T c + A e )  ] 
A E AT 

We shall now show that , for 8* ( . )  to  be in either of the classes 
considered, we must have c = 0 and A X = I .  Firstly , 81' ( . )  is 
unbiased if and only if for all 8 

E [ 8�'' ( Y ) ]  = E [ A Y + c] = A X B + c = 6 .  
This implies that c = 0 and A X = I • 

... Secondly , 8" ( .  ) has bounded mean square error if and only if 
A X  = I - for, if  not, then we may choose A such that 
AT ( A X - I )  = 1_? * OT and we may choose 8 = t ]J in 
AT ( ( A X  - I )  + c ) ( (A X  - I )  T T ATC ) 2 + c )  A = ( t]J ]J + 
unbounded as a function of t s ince T ]J ]J * o .  

If  Q is positive definite then we may write Q = 

which case 
which is 

i 
T A . A . 1 1 and 

T tr M Q = E A . M A . . 
i 1 1 Since the A .  1 form a basis for the column space 

of Q , there exists i such that A: ( A X - I ) * 0 .  We conclude that 1 
A X :t= I implies unboundedness of the mean square error matrix and of 
the Q-weighted mean square error . 

Now ,  if A X = I then M and tr M Q will be minimised if c = 0 .  
We now show that A = ( XT v- 1 X ) -1 XT v-1 g ives the minimum mean square 
error. of estimators in the class { 6*( . ) : 8�': ( Y )  = A Y and A X = I } . 

Let A = ( XT V-1 X ) -1 XT V-1 + K and K X = 0 .  
S ince ( XT v-1 X ) -1 XT v-1 V KT = ( XT V-1 X )T XT KT = 0 this gives 

M( 6�': ( . ) , 8 )  = o2 ( XT V-1 X ) - 1 XT V-1 V V-1 X (XT V-1 X ) -1 + o2 K V KT . 
For either partial ordering this is minimised if K = 0 .  This completes 
the proof. 

Note that if D * I then D B C . )  has unbounded mean square 
error ( assuming that D is a non-stochastic matrix) . 

4 . 4  Un res tri cted Mi n i mum Mean Square E rror Es t i ma t i on 

The importance of the bounded mean square error part of theorem 
4 . 1  is that it shows that no linear estimator may have uniformly smaller 
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mean square error than B ( . ) .  This is  so  because , if  an estimator were 
to dominate S ( . ) then it would have bounded mean square error and this 
would contradict the conclusion of theorem 4 . 3 . 1 .  Therefore , for 
uniformly better estimators , we need to consider non-linear estimators . 
In the case of normally distributed errors it is necessary to rej ect 
the assumption of unbiasedness since the usual estimator is  minimum 
variance unbiased . 

Theil( 197 1 )  attempted to find an estimator of the form 8* ( . )  
where B�: ( Y )  = A Y  with A such that this gives an estimator with 
uniformly minimum mean square error . Although we have just shown this 
to be impossible , it is nevertheless interesting to make the attempt . 
I f  we do then it turns out that the optimal value of A depends on 
6 and L: and does not therefore give an estimator for 6 . However 
we do obtain a lower bound on the mean square error of any linear 
estimator and also , substituting estimators for 6 and L: into the 
expression for A , leads to the discovery of non-linear estimators 
which do have uniformly smaller mean square error than the usual 
estimator . 

The mean square error of 8* ( . )  is  

M ( 8�': ( . ) , 8 ) = ( A X - I ) S 8T (A X - I )T + A L: AT 

= A ( L: + X S ST XT ) AT - B ST XT AT - A X  B ST + S BT 
= {A-6STXT ( l:+XS8TXT ) -1 } ( L:+XSSTXT ) {A-S8TXT ( l:+XS8TXT ) - l } 

+ BST - BSTXT( L: + XSSTXT ) -1X88T 
:0: S ST - 8 8T XT ( L: + X B ST XT ) -1 x s sT . 

The above inequality also applies to �Q and equality holds if 
A =  S BT XT O :  + ( X B ST XT ) - 1 ) .  

The only case  for which this leads to an estimator for B occurs 
if ( XT L:-1 x )� is known and 2:: = o2V  with V known . We shall see 
this when we have simplified the expression for A .  This expression 
can be simplified using the formula for the inverse of the sum of 
matrices 

(A + B C ) -1 = 
Applying this  formula gives 

A =  S BT XT ( l:: + ( X S BT XT ) - 1 ) 
= S ST XT { 2::- 1 E- 1 X 8 ( 1 + ST XT L: - 1 X S ) - 1 ST XTL:-1 } 
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Substituting this value for A into the formula for the mean square 
error gives 

M ( B�': ( . )  , 8 )  = B 8T 

= 

Also we obtain 
8 T XT L:-1 X B 81: - A Y  = 8 -

BT XT L: - 1 X 8 1 + 
"' ( XT L: -1 X ) -1 XT L: -1 y where 8 = is the usual estimator for B .  

We shall write D = XT L:- 1 X so that 

B-J: -� = D y where 
1 y = D"2 B and 

-� T k "'  
Now let c = XT V-1 X cr2 D . This gives s* y C 2 8 y = = c T 1 + y y 

"' which depends only on y ' c and 8 . I f  y and c are known then 
this implies that a�'� is an estimator for B . I f  not then B* depends 
on the unknown parameters and is not an estimator since it is not an 
observable random variable . 

Some authors find an apparent contradiction in a random vector 
of the form A Y  depending on 8 , having minimum mean square error 
for 8 and yet not being equal to  8 .  In fact there isno  difficulty 
since 8* is not of minimum mean square error in the class of a l l  

random vectors which depend on 8 - i t  has minimum mean square error 
in a class of which 8 is  not a member. To see this note that , unless 
y = X B ,  8 E { B�': : B-:' = A Y } ... 3 A ( 8 )  such that B = A Y  = A X B + A e  
which is impossible unless A X  = I and e = 0 . If , on the other 
hand , we consider the wider class { 8-:: : 6,': = A Y  + c} then we find 
that B does belong to this class and does have minimum mean square 
error . 

We next consider the class of estimators of the form 

for A in the expression for the mean square error then we obtain 
X M ( 8 ( . ) , 8 ) = a2( XT L: -1 X ) -1 XT L:-1 L: L: -1 X( XT L: -1 X ) -1 

+ {a ( XT L:-1X ) -1XTL:- 1X - I } 88T {a ( XTL:-1X ) - 1XTL:-1X - I } 
= et D -1 + ( a-1 )  2 8 8 T 

• 

This gives a weighted mean square error of 

+ 
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It  i s  clear that there is  no uniform minimum for the former expression 

s ince tT X M( 8 ( . ) , 8 ) t + 

has its minimum at which is not 

independent of t . However , for any given W , the latter expression 
does have a uniform minimum value of 

at a = 

An important case occurs when W = D so that 

a = = 
8T C 8 

We have now derived two random variables 

8;': = 8 8T C 
o2 + 8T c 8 

and 8x = 
8T C 8 

po2 + 8T c 8 

the former being a matrix shrinkage of B and the latter a scalar 
shrinkage . 

4 . 5 More Random Vectors 

As noted previously , unless  D -� 8 is  known , it is necessary to 
substitute estimators for 8 and o2 into the expressions for A 
or a in order to turn ... 8 "  into an estimator for 8 . If  we do then 
we can no longer be certain that the estimator has smaller mean square 
error then the usual estimator . This  is because the above proof was 
based on the assumption that A and a are non-stochastic . The 
following example shows that the mean square error may be e ither 
increased or . reduced by substituting estimators for unknown parameters . 

Let X be a univariate random variable with expectation 8 .  The 
variate ax + ( 1 -a )8  has expectation 8 and mean square error 
a2 var X .  Substituting X for 8 gives the estimator X which has 
mean square error var X . Thus the mean square error i s  increased if 
l a !  < 1 and reduced if l a !  > 1 .  

Returning to our original problem , we see that , when we substitute 
estimators for 8 and o2, we will have to recalculate the mean 
square error . A motivation for the use of shrinkage estimators is  that 
S is too long on average , but , in a sense , has the right direction . 
This is clear because ,  as noted in Brook and Moore ( 1979 ) ,  by Jensen ' s  
inequality E [ 1 1  B 1 1 2 1 � ( E [ 1 1  8 ! ! ] ) 2 � I ! E [ B ]  1 1 2 for any norm . 
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A scalar shrinkage is therefore indicated . Now ,  if a s calar shrinkage 
of § is used in estimating A ,  then the resulting estimator for 
is also a scalar shrinkage of B . Although a scalar shrinkage seems 
reasonable we shall also consider matrix shrinkages . 

Let us write the expression for if} as 81: = 8t + L S 
where 

" Now , if 8 = 
" and L 8  = 

where a = 

l8 + £ 
a2 p::z < o  +a 
T k ( 8 D 8 ) 2 

then 
T £ 

and 

and L = 

8 sT - S 8T 
£ OT ) D o = 

0 = ! 8 . a 

8 8T D - 8T D 8 I 
1 + 8T D 8 
T £ 8T = 8 £ 

2 _a_ ( o oT D I )£ -1+a2 

It is possible to choose l and £ so that £ is orthogonal 
to 8 with respect to the inner product <a ,b> C = aT C b in which 

a2 case L S is orthogonal to S and L B = 1+a2 ( -£ ) .  As we have no 
information about £ ( except that , in a sense , S is in the right 
direction on average )  it seems reasonable to set L S to zero and use 
the estimate s* = St . 

Farebrother( 19 7 5 ) suggested another way of making S* into a 
scalar shrinkage . This is done in such a way as to illustrate a 
connection between the minimum mean square error estimator and the 
ridge regression estimator . We shall present a slight generalisation . 
Let Q be a symmetric positive definite matrix and write 

s�'' 
= 

Putting 

If 8* 

... 8" = 

= 

8 ST D (n + 
1 + ST D 8 

Q D + Q )( )
-1 

8T Q 8  8T Q 8  
e = o + Q * ( )

-1 
· 8T Q 8 

" D8 gives ... 8" = 

is proportional to 8 then , putting 
8 ST D 8 8 8T Q 8 ex + ex 

1 + 8T D 8 ( 1 + 8T D 8 ) 8T Q B 
ex 8 = s* . 

" D 8 . 

8 8  D +  Q T ( ) 1 + 8TD8 STQ8 
8* . 

8* = ex 8 ,  we obtain 

In the case p = 1 Bt is certainly proport ional to 8 . Although 
this is not necessarily so in higher dimensions , 8t may be suggested 
as a replacement for B* This is of the same form as a generalised 
ridge regression estimator for 8 the purpose of which is to give 
more stable estimators for B when the X matrix is ill conditioned .  
This variate is not orthogonal under orthogonal transformations of the 
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parameter space unless Q is proportional to D , but in this case 
* t 

. 
8 = 8 and this leads to numerically unstable estimators in ill 
conditioned problems . 

We may divide 8* into components as follows : 

8* = 8* + K 8* where K = (8 8 T D 
8T D 8 

Now K 8 = 0 so replacing 8* by 8 in the second term gives 
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This further supports the idea of using 8* as a replacement ·'· 
8* . 8 "  -. 

for . .. 
8" . 
We have now produced four random variables from each of which we 

can construct est imators for 8 .  They are 
s�·: 8 8T c A = 8 

02 + 8T C 8 
8x 8 T C 8 A = 8 

p02 + 8T C 8 

8t = 8T C 8 � 
02 + 8T c 8 

8* ( 2 ) -1 
= C +  �a C B 

8 Q 8 
An interesting way of choosing the shrinkage matrix in ridge 

Strawderman ( 1978 ) . He showed that his estimator 
is minimax for a different quadratic  loss funct ion from those used in 
practice .  That is he used a form of weighted mean square error , the 
weighting matrix being C2 instead of C or I . Thus a consequence 
of using ridge regression , at least if Strawderman1s form is used , is  
that the estimator is  good for a form of  loss function not likely to 

regression was given by 

be considered by the user . 
In the next section we shall discuss the estimation of the 

shrinkage factors in the first three of the random vectors given above . 

4 . 6  E s t i mati ng  the  Sh ri nkage Factor 

At each particular value of 6 and L the mean square errors of 
the random vectors in section 4 .  4 are the minimum attainable with linear 
estimators and they are only achieved when the shrinkage happens to 
take the ideal value . Estimating the shrinkage will result in a 
different value for the mean square error - usually a greater value . 
If we are interested in weighted mean square error with weighting 
matrix , W = c-1 

, then it seems more sensible to study realisations 
D X. • d D * d 8t 1 b of � We shall , however , cons1 er � an as wel , ut , as 

8* is more appropriate to a study of robustness , we shall consider it 
no further . 

The na1ve est imator for the shrinkage factos may be obtained by 
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substituting the usual estimators for 8 and 02  into them . Thus 

using 62 =  1 ( Y - X § )T V-1 (Y - X S )  n-p 
gives the following estimators for 8 :  

ST c § 8 
§T c 8 + ..L ( Y - x § )T v-1 ( Y - x § )  n-p 
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Our aim , of course , is to find the best estimator for 8 that we 
can , and to do so we estimate the shrinkage as accurately as possible . 
It is  reasonable to suppose that better estimators of the numerator 
and denominator of the shrinkage factor will give better estimators 
for the shrinkage itself . However , while this may often be true there 
may also be efficient estimators for the components which lead to 
inefficient estimators for the ratio.  Although S ( . )  and 82 ( . )  are 
unbiased and quite efficient for 8 and 02 ( n-p 82 { . )  is biased n-p+ 2 
but more efficient for 02 ) , they do not lead to efficient unbiased 
estimators for constants of the form B 8 T C 8 + A02• We shall divide 
the shrinkage into component parts in a number of ways and try to find 
improved estimators for these components . ( Later in this chapter we 
shall briefly discuss another approach in which the bias in the 
numerator is adj usted to compensate for the bias in the denominator 
and vice-versa ) .  

In the following expressions for 8'.' the parts contained in 
square brackets are to be treated as a whole for estimation purposes . 
I f  these parts contain S then this vector is treated as known since 
we are only trying to estimate the shrinkage (which , in the form 
given in this chapter does not contain 8 ) .  We may write 

a�·: = 

[ 8 8T ] A = C B = 
[ 0 2 + 8TC8]  

[ 8 8T/02 ] A 
= CB = 

[ 1+8TC8/02]  

[ 88T /8TC8 ]  A 
= CB =  

1+ [ o2 / 8TC8] 

[ ST c 8 ]  [ 8] = 
[ 02 + 8TC8 ]  

[ 8T C 8/02 ] [S ] = 
[ 1+8TC8/02] 
AT T [ 8  C8/8 C S ] 

[B ] = 
1+ [ 02 /8TC8 ] 

[ 8T C 8 ] A 

8 +  
[ 02 + 8TC8]  

[ 8T C 8/02 ] S + 
[ 1+8TC8/02]  

1 A 
8 +  

1+ [02 /8TC8] 

[ 88 T - BB T c 8 ] o2 + 8TC8 [ BST
- BBT ] T C 8 

o2 + 8 CS [ BST - BST ] T C 8 . 
o2 + 8 CS 
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In addition we may consider the form of the minimum mean square error 
variate before simplification and obtain 

8�': = [ 88T/a2 ] XT (V + X [ 88T/a2 ) XT ) -1 Y 

= [ 88T] XT ( [ a2 ] V + X [ 88T ] XT ) -1 Y . 

These have the advantage of treating 8 in the same way in the 
numerator and denominator ( 8 always occurs in the factor 88T and 
never in the factor 8 T C 8 ) . 

We can decompose the scalar shrinkage factor in a s imilar way 
to obtain 

8x = [ 8T c 8 ] s = 

CJ2 + 8TC8 

[ 8T C 8 ] B = 
[ a2 + 8TC8 ] 

[ 8T C 8 /o2 ] 8 = 
[ 1+8TC8/a2 ] 

1 A 
8 . 

( Decomposition of 8t leads to the first terms in the last column in 
... the expressions for the decomposition of 8 " ) ,  In the decompositions 

of 8�·: which involve two terms ' the first term is 8 t and the 
second term will be estimated to be zero . 

A further class of estimators m�y be obtained by using the 
improved estimators for 8 to improve the estimation of the shrinkage 
factor . Repeating the process leads to iterating to convergence . We 
shall do this in chapter 5 .  

From now on we shall not differentiate  between an estimator and 
an estimate leaving it to the context to determine which we mean in 
each particular case . We now wish to estimate 88T and similar 
expressions . Using SST we find that E [ SST ] = 88T + o2 C- 1 . We shall 
find that by removing some of the bias we can reduce the mean square 
error . S imilar remarks apply to estimation of other expressions such 
as 8 T C 8 and 8 T C 8 /a2 • In the next section we shall discuss this 
in detail .  

4 . 6 . 1 E s timati n g  the  Components of the S h ri nk age 

We first calculate E [ BST ] .  We have 
E [  BBT J = E [  c-1xTv-1YYTv-1xc-1 J = c-1xTv-1 (a2 v + xT 88 T x )V-1xc- 1  

= 00T 2 -1 �--> �--> + a c . 

It follows that 

= E [ BSTC ]  
E [ STC BJ = 

88TC + a2 I , E [ C�SSTC�] 

8T c 8 + p o2 • 

and 

An unbiased estimator for 88TC 
unbiased estimator for 8TC 8 is  

is therefore §STc - &2 1 

sT c s - p a2 • 

and an 
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The former may give estimates which are negative definite and the 
latter may give negative estimates . In the latter case the probability 
of negative estimates when B T C 8 = 0 is approximately 0 .  5 and 
tends to zero as B T C 8 tends to infinity . It seems reasonable to 
replace a negative or negative definite estimate by zero . This gives 
a smoothed preliminary test estimator akin to the positive part 
version of the James-Stein estimator . 

As we shall see , it is possible to find estimators with smaller 
mean square error than either the na'lve estimators SSTC and ST C S  
or the unbiased estimators SSTC - a2 I and BT C S  - po2 In a 

1 1 similar manner we may also discuss estimation of � B , er 8 , 

8TC8/o2 , o2 /8TC8 , 88TC/o2 and 88TC/8TC8 . In order to calculate 
the mean square errors of the estimators of this section we need to 
make some distributional assumptions . We shall suppose that the error 
term , e ,  in the linear model is distributed as e � N ( O ,o2 V ) . In this 

82 2 
A case ( n-p )OT � X  n-p independently of 8 .  

When estimating the above funct�ons of the parameters we should 
like to use estimators whi ch are consistent . Unfortunately this is 
not always possible . In the next section we shall discuss another 
concept , relative consistency , which is a more desirable concept and 
is often achievable when consistency is  not . 
4 . 6 . 2  Re l a ti ve ly  Cons i s te n t  Est i mators 

Given a sequence of linear models 
var e = o2 V we wish to estimate 8 n n 

Y = X 8 + e , E [  e ] = 0 n n n n n 
and o2 • Graybill ( 197 6 )  gives 

a definition of consistency for this case which is  not general enough 
8TXT v -1 x B since n n n for a discuss ion of consistency of estimation of 

this is not fixed as n increases . Graybill shows that S is mean 
square error consistent for B if  and only if ( XT V -1x ) - 1 � 0 as n n n 
n � ro ,  and that 82 
I f  ( XT V -1x ) -1 � 0 

is always mean square error consistent for o2 • 

n n n as n � ro ,  then BTXT V -1 x B -+ ro as n � ro ,  We n n n 
shall say that a sequence of estimators {e } is  a mean square error n 
consistent e stimator for a sequence of parameters { 8  } n if and only 
if  E [ ( §  - 8 ) 2 ] � 0 as n � oo ,  n n 

Clearly this is not a very stri et requirement if e � o n as 
while it is  much stricter if  8 � ro as n � ro ,  A sequence of n 
estimators { e  } n is said to be relatively consistent for the sequence 
of parameters {8 } n if and only if 1 A 

2 82 E [ ( 8 n - 8 ) ] � 0 as n � ro .  
n 

It is clear that the two definitions of consistency given above can be 
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interpret ed as consistency wi th respect t o  the loss funct ions 
l( e ' e ) = ( e - e ) 2 and £< e ' e ) = 

8
12 ( e - e ) 2 • n n n n n n n n n 

These definit i ons  eas ily ext end to  est imation of vectors and 
matri ces of parameters by replacing the square by a norm , in the 

k of a vector of parameters the Euclidean norm , 1 1 a 1 1  = ( L: a .  ) 2 ,  and 1 
t h e  cas e  of a matrix of parameters the froebenius norm , 1 1 A 1 1  = 0:: 

We also define t he relat ive variance of S n 1 1 1 " "' 11 2 li e.  lfE [ 8n - E [ 8n ) J and the relat ive tia� to  �e 
n 

to  be 
1 "' 

fln ( E [ 8n ) 
n 

.,.. :-. er e  l l e l l  = l e l i f  i s  a s c a l a r or t h e  

- e )  

case 
in 

\ a . .  ) . 
1 ]  

Eu c l i d e an  or froebenius norn.s if 
6 

6 is  a vector or a matri x .  I t  is  
almost trivial that a sequen ce of  est imators i s  relat ively mean square 
error consistent i f  and only i f  the relat ive  vari ance and relat ive 
bi as t end to  zero as n -+ oo .  

4 . 6 . 3  E s t i ma t i on of B ST C B + A o2 
We shall consider the cases A ,  B � 0 .  The expected value and 

variance of b BT C S  + a 82 are 

E [ b  ST C B  + a 82 ) = b 8T C 8 + 
r-T A 2 2 2 T var (b 8 c 8 + a8 ) = 4b a 8 c s + 

These expression s  are deduced from the moments of the central and 
non-central X2 di stributi ons given in appendix 2 .  The mean square 
error will be 

2 MS:C = 4b2 o 2 8TC8 + ( 2b2p + � ) o4 + ( b -B ) 2 ( 8TCf3 ) 2  + ( a+b p - A ) 2  o 4 n -p 
+ 2 ( b -B ) ( a+ bp -A )o2 8TC8 

2 2 + 4b2 ] x 2).. = o4 { [ 2b 2 p + � + ( a+ bp -A ) 2 )  + [ 2 ( b -B ) ( a+ b p -A ) n-p 
+ ( b-B ) 2 x 4).. 2 }  

where Now ,  for large this is minimised by putt ing 

b = B and a = n-p ( A  B p )  ( the latter min imises the first term n-p+2 -

whi ch is  already insignificant for large A ) . for small ).. we 

a -- n -p require that - ( A  b p )  n-p+2 - · It  seems reasonable to  t ake  b = B 

so that the mean square error remains bounded as ).. -+ oo and this  

gives , for small A ' a = n-]2 ( A  Bp ) .  If B = 0 and A = 1 n -p+2 
we are est imat ing c2 Tak ing  b = 0 and a = n-E gives the . n-p+2 

then 

well 

kno•-•m result t hat n-p � 2 h · · 11 n - u as m:tn :tmum mean square error among  a n-p+2 
estimators of the form a 62 for o2 • 
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If A = 0 and B = 1 then we are estimating B T C B and taking 

b = 1 and a = n-�2 ( A - p )  gives smaller mean square error than the n-p 
na�ve estimator . However , choosing a and b so that the first two 
terms in the expression for the mean square error are zero gives 

error as A � o ' otherwise it is bounded relative mean square 
unbounded . Now ,  if c- 1  � 0 
thus if B * O then b STCB 
b B T c B + A a 2 i f  b � B as 

as n � oo then BT c B � eo as n � 00 .  ' 

+ a 62 i s  relatively consistent for 
n � oo , while for B * 0 ordinary mean 

square error consistency is not attainable . If  B = 0 then we have 
consistent estimation and relatively consistent estimati·on if a � A 
as n � oo 

4 . 6 . 4  Esti mati on of BTCB/a2 
Using the moments of the central and non-central x2 -distributi on 

in appendix 2 and the independence of B and 62 we obtain 

b n-p ( BTCB/a2 + p )  + a n-p-2 and 

( n-p-2 )( n-p-4) + p+4\ } 
n-p-4 · 

These results are also attainable from the mean and variance of the 
non-central F distribution . 

We therefore obtain the mean square error 

MSE = 
2b2 ( n-p) 2 { (p+2\ ) 2 + p+4A } + n-p-2 (n-p-2 )(n-p-4 )  n-p-4 

{b ( n-p) ( p+2A ) + a - n}� n-p-2 

b __ n-p-2 Our estimator i s  unbiased if -n-p and a = -p • Only for this 

value of b can we minimise the mean square error by a suitable choice 
of a , this choice being a = -p . The resulting estimator has 
unbounded mean square error as A � oo and unbounded relative mean 
square error as A � 0 • S ince A � oo as n � oo we have relative 
mean square error consistency so long as b � 1 as n � 00 • 

4 . 6 . 5  E s t i ma t i on o f  cr2/aTcs 
Using appendix 2 again , we obtain 

a 
p-2 1F1 ( 1 ;� ; -A )  + b and 

'"' 2 "T A var ( aa IB  CB + b )  = 2{n-p+2 1 a n-p ( p- 2 ) (p-4) 1F1 ( 2 ;� ; -A )  
- (p-�)2 1F1 ( 1 ;� ; -A ) 2} . 

We therefore obtain the mean square error 

MSE = a2{n-p+2 1 F n-p (p-2Hp-4) 1 
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where F1 = 1F1 ( 2 ;� ; -A )  and F2 = 1F1 ( 1 ;� ; -A ) . As A �  oo we may 
apply the asymptotic expansion for the confluent hypergeometric 
function and obtain 

MSE ru L {n-p+2 4A 2 n-p 
+ 2� {2 F0 ( 2 -� , 1 ; ; 1 /A )  

For small A , therefore , 
MSE ru a2{n-p+2 1 1 

n-p ( p-2 )(p-4 ) - (p- 2 )2 

. 
} 2 + b - � 2A 

2a + p ( p- 2 )  
-(p�2 + b)/A + 4�2 . 

Since the final term does not depend on a or b we cannot prevent 
the mean square error from being unbounded . The relative mean square 
error will tend to 1 .  For large A we have 

MSE '\.. a2 
2A2(n-p) + {b - -A- ( 1 -a)f 

{2a2 + ( 1-a )  2} 1 b ( 1-a ) b2 . = 
4).2 - + n-p A 

This is minimised when b = 0 • If we now choose 
relative metin square error then we require that 

Now if C-1 � 0 as n � oo and b � 0 then 

a to minimise the 
a = n-p n-p+2 · 
MSE � 0 and the 

estimator is mean square error cons istent . For relative mean square 
error consistency we require that b � 0 and a � 1 faster than 
A �  00 • I f interest centres on estimating Aa2 /8TC8 + B with B * 0 
then absolute and relative consistency are equivalent if c-1 � 0 
n � oo ,  

4 . 6 . 6  E s t i mati on of  l 8 a 
We first calculate the mean and variance of 1 A "8 8 .  We have 

E [� S ]  = 

E [  1 B ST ] w 
Therefore 

y'l-2( n-p ) 

= n-n 
n-p-2 

n-p n-p-2 

r (�( n-E-1 ) )  r(�(n-p)) 
{ 1 88T OT + 

� 8 and a 
- 11 c 

J
• 

C-1 + { n-p k(n- )(r (�(n-p-1 ) ))2 } 1 8 8T n-p-2 2 P r(�(n-p)) 02 · 

as 

This implies that � S is unbiased for � § if b - 1 f ( �( n-p) )  o a - �-2Cn-p) f (�( n-p-1 ) ) '  
b The mean square error of � is a 

MSE = b 2{ n-E (c-1 + � 8 8T)} -n-p-2 a2 2bv1-2(n-p) r (�( n-E-1 ) )  1 8 8T + �2 8 8T . f (�( n-p ) )  02 a 
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For small A we require b = 0 for a minimum while for large A we 
n-:e-2 f (�( n-E-1 ) )  require b= ll--:2( n-p ) n-p f (�(n-p ) ) 

I f  -1 0 then , for mean consistency , c -+ as n -+ oo square error we 
-nequJ.·re that n-p b2 2b 4:( n p )  r (�( n-p-1 ) )  + 1 -+ 0 as n -+ ro ... n-p-2 - p2 - r (�(n-p)) 
This will be so if b -+  1 as n -+ oo  
4 . 6 . 7  E s t i ma t i on of � B a 

Performing similar calculations to those in the last section we 
find 

[ 1 "' ] n-p 1 E [ 1 � BTJ = ( n-p ) 2 {.l... T + C-1} E 82 8 = n-p-2 a2 B ' (82)2 (n-p-2Hn-p-4) a4 8 8  
and the mean square error for � � is 

MSE = b2{ ( n-t) 2  [ c-1 + ;;t�a1 8 BTl} - 2b n-p :A- 8BT + � 8 8T . (n-p-2) n-p-4) _ n-p-2 a a 
For an unbiased estimator we must have b = 

n-p-2 For minimum mean n-p 
square error we require b = 0 if A is small and b = n-:e-4 if n-p A is large . 

Under the same conditions as in the last section we obtain a mean 
square error consistent estimator . 
4 . 6 . 8  Means  and  Vari ances of Vectors and  Ma tri ces 

so far considered are scalars . When Components of the 
1 estimating a2 B and for some power t we need the 

expected value and 
of B B T , :A- 8 B T a 

variance of a vector variable , while for est imation 
and 1 B BT we need the expectation and 

( BTCB )t 

T 1 transform to the variable Z = H Y for which E [ Z1 ] = < n  n )":! 
E [Z . ]  l = 0 if i * 1 . This implies that R = ZTZ . 

The above transformation matrix is of the form H where 
HT [ 1 T H1 ] with T T I and = m '' A = n n , H n = 0 ' H1H1 = 1 
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1 T 2A 11 11  The matrix H1 
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is arbitrary apart from the 
given constraints and this arbitrariness can be characterised as follows : 
H2 is another matrix satisfying the constraints if and only if there 
is an orthogonal matrix B such that H2 = B H1 • ( In fact if H1 and 

T H2 are given then B = H2 H1 ) • 

When we calculate the variance of a matrix we could follow some 
authors in using the "stacking operator" to turn the matrix Into a 
vector but it is more convenient to use tensor notation which is 
equivalent to working with the elements of the matrix . Thus we require 
the variances of the matrix elements and the covariances between them . 
For consistency we shall treat vectors in the same manner . We shall 
also use the summation convention so that if an expression contains a 
repeated subscript then this implies a summation over that subsript . 
Since we shall need many subscripts ,  some letters will have to take a 
dual role . This will cause no confusion if , when a letter is used as a 
subscript , it is not interpreted as taking its other meaning . For 
example , the letter p stands for the dimension of the parameter space 
but does not have that meaning when used as a subscript . 

Now = 0 if i * 1 , 

if i * j ( since i * j ,.. i * 1 or j * 1 )  

and if i , j , k and l are not all equal and 
not equal in pairs ( s ince otherwise z .  i * 1 

1 

occurs to an odd power in the numerator ) .  [ -2t ] [ -4t 2 ] The expressions still to be evaluated are : E R z
1 

, E R z1 
E [ R- BtZ� ] , E [ R-4tz� ] ( i * 1 ) , E [ R- Btz� z{ J ( i * 1 ) , E [ R-Btz� ] ( i * 1 )  
and E [ R-Btz� z� ] ( i  * 1 , j * 1 , i * j ).  

1 J 

Since E [ R- Bt ( Z �  + Z� ) 2 ] = E [ R-Btz� ] + 2 E [ R-Btz� z� ] 
1 J 1 1 J 

all of the above can be calculated as special cases of the following 
two theorems . 
Theorem 2 I f U � X2 and W � X2 ( A )  independently then s r 

E[ u¥ ] = 
( U+W) c 

2a+b-c (�s )  (�) a b 
( a+b-c+�+�s ) c 

-A F (b 1 b 1 1 . 1  e 2 2 +"22' ,a+ -c+"22'+>:!s ,"22' , 

Theorem 3 I f W "' N ( ]J , I )  
a+b+�s+� ; A ) . 

and u � x2 idependently of w and s 
if 2b is an iteger then 

tviASSEY UNIVERSITY 
J.!BRARY 
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2atb-c (�s ) (�)  a b 
( a+b-c+�s+� ) c 
2a+b - c (�s ) r ( b+1 ) 

= IX  a 
( atb-ct�s+ 1 ) r ( 1� )  c 

if 2b is even 
-A e 2r 2 ( bt 1 ,atb-ct 1+�s ; 1� ,  

a+bt�s+1 ; A )  
if 2b is odd . 

1 0 0  

Note ( i )  The case when 2b is even in theorem 3 is j ust the case 
when r = 1 of theorem 2 .  

( ii )  I f  b i s  an integer then the expression in theorem 2 ,  
and if 2b is an integer then the expressions in 
theorem 3 �  can be written as finite sums of confluent 
hypergeometric functions . 

FToof of theorem 2 Writing V = W/U we have 

Er Ua� 1 = l ( U+W ) cJ 

Now p ( u ,w ) 

Also du dw 

so that 
p ( u ,v ) 

We then have 

�s- 1 -� u e -A = ""1-..s e 
2 2 f (�s )  

au dU 
au av = aw aw 
au av 

u �s-1 e -� 
= e 

2�s r c�s )  

CXl , k �+k- 1 -� 'i' 1\ w e 
k;o kT 2�+kr <�+k ) 

du dv 

CXl 
-A 

1 0 
= 

V u 

Ak �+k �+k-1 U V 

= u du dv 

e -�V 
I kT k=O 2�tk f (�+k )  

-A CXl Ak �s+�+k- 1 u V �+k-1 e -�( l+v ) 
I = e 

k=O  kT 2�s+�+k f ( �s )  f (�+k ) 

-�u( 1+v ) 
Er Ua wh 1 -A 00 k [ I � = e l ( U+W )cJ k=O k ! 0 

V U e b+�+k-1 [ a+b-c+�+k-1 

( 1+v ) c 0 2�s+�+k f (�s )  f (�+k )  
du dv 

-A = e 

-A = e 

I �  
00 k [ 

k=O k ! 0 

atb-c 2 f ( a+b-c+�s+�+k ) 
f (� )  f {�tk )  

b+�+k-1 V 
b 1 1 k ( 1+v)a+ +�s+�+ 

oo k a+b-c 
'i' A 2 f ( a+b-c+�s+�+k ) f ( a+�s ) f ( b+�+k ) 
L kT f (�s ) f (�+k )  f ( a+b+�s+�+k ) k=O 

2a+b-c (�s )a (�)b 
( 1 1 ) 2r2 ( b+� ,a+b-c+�+�s ;� ,a+b+�s+� ; A )  = atb-c+�+�s , C - A xe 

dv 

Proof of theorem 3 Writing A = ��2 , the probability density of W 

is p (w ) = 1 -A -�2 fflw -- e e e I2TI 
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= e -A 1 
I i = O 

00 
1 • 

( A )"2J. I k= O 

00 

m I 
2k+�i w2k+i Ak 

ffn ( 2k+i)!  

k=O 
1 2 -'2\V e 

en / w2k+1 
( 2k+ 1 ) !  

1 0 1  

By the duplication formula for the gamma function , 

12-IT f ( 2z )  = 22 z-� f ( z )  f ( z+�) 
we obtain 

p (w) = -A e 

( This form of the normal distribution density function is  convenient for 
calculating non-central :moments and for deriving the density of the 
non-central 

Putting 

du dw = 

Now p ( u ,w ) 

so that 
p ( u ,v) 

and 
r ua w2b ] 

EL ( U+W2 ) C 

au 
dU 
dW 
au 

= 

= e 

= e 

= e 

= e 

distribution ) .  
k W/U 2 gives 

au 
av 
dW 
av 

�s-1 -� u e 
2"2S r c�s ) 

du dv = 
1 0 k du dv = u 2 du dv . V 

u� � 2u 2 
00 , k 2k+i -�2 �i A w e A I kT --:-k-+"�-;i-+'�-----

k=O 2 2 f(k+i+�)  
00 Ak u�s+�i+�+k- 1  v2k+i e-�( 1+v2 ) 

k� O kf 2"2S+�i+>2+k f (�s ) f ( i+�+k )  

1 - A I 
i= O 

1 -A I i= O 

1 -A I 
i=O 

1 -A I 
i=O 

Ak J oo 2b+2k+i k:i 00 

A 2 I V 
k !  ( 1+v2 ) c k= O _oo r: a+b-c+�s+�i+�+k-1 

X U 
0 2"2S+"2i+>2+k f (�s )  

e -�u( 1+v2 ) 
du dv 

f ( i+�+k) 

k:i 00 

I A 2 
k= O 

Ak J oo 

k ! _oo 2b+i+2k a+b-c . v 2 f ( a+b-c+�s+�J.+�+k ) 
( 1+v2 )a+b+�s+�i+�+k f (�s ) f ( i+�+k )  

x dv 

k:i ), 2 
00 

I Ak 1+ ( -l ) 2b+i 
B (b+�i+�+k ,a+�s ) 

k= O k ! 2 

1 + ( -1 ) 2b+i  00 

A�i I 2 k= O 
Ak 
kT 

X 
a+b-c . 2 f ( a+b-c+�s+�J.+�+k ) 

f (�s ) f ( i+�+k) 

f ( a+�s ) r c b+�i+�+ k )  G f ( a+b+�s+�i+�+k) 
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where 
a+b-c . 2 f ( a+b-c+�s+�l+�+k ) G = ---:::-;"'.,........:...,;::--;::':"7"":"'-r=-�:=__.::___;_ f (  1;s ) r ( i +�+ k ) 

10 2 

When 2b is even the term in 

which i= O vanishes ,  while , when 2b is odd the term in which i = 1 
vanishes . The remaining term in each case is easily seen to be the 
required expression and the result is proved . 

Now Er Y J - Erl HT z J - � n E [ 21 J . If in theorem 3 
(YTY ) t - ( ZTZ ) t - v2\ ( ZTZ )t 

we put a = 0 , b = � , c = t and s = p-1 then we obtain 

E[ (YT
Y
Y ) t] -\ e 

1r1 C �p+1-t ;�p+1 ; \ )  n = 
2t (�+�-t )  t 

1 
1 r 1 C t ;�+1 ; - \ ) n . = 

2t (�+�-t ) t 
Also 

f YYT ] [ H
TZZTH ] El ( YTY ) 2t 

= E 
( ZTZ ) 2t z2 l 

[�1

nT
] 

E[ 1 0 
[;h- n H; ] ( ZTZ ) 2t J = E[ Zi ] I 0 

( ZTZ ) 2t 

i * 1 

Therefore 

In theorem 2 we now put b = 1 , a = 0 , c = 2t , r = 1 and s = p-1 

and putting a = z �  ELzrzl) 2t ] = 

21-2t (�) 1 
( 1-2t+�\ 

1 ' b = 0 ' 
21 -2t (�) 2 
( 1 -2t+�)2t 

c = 2t , s = 1 and r = p-1 we obtain 

We shall calculate the fourth moments of the R-2t Y . .  We have 
l 
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Let A = E [ R-Bt 

D = E [ R-Bt z: z: ] 1 J 

-Bt ] = E [ R  h . z h . z h kz h 7 z p1 p q] q r r s & s 
-Bt ] = h . h . h  kh � E [ R  Z Z Z Z p1 q] r S & p q r s 

z'+ l 1 ' B = E[ R-Bt z: J , c = E [ R-Bt 
1 

where 1 * i * j * 1 . We then 

103  

Z�Z�] and 

have 

-8t 'i' , , E [ R  YiYJ: YkYl] = Ah1 ih1J.hlkhl l + B L h . h . h khpl + C L h1 . h1 .h kh z 
P* l p1 PJ p p>1  1 J p p 

'i' " 'i' " + D L h . h . h kh l + D L h . h . h kh z 
p>q>1 p1 PJ q q q>p> 1 p1 PJ q q 

where r '  means summation over all six rearrangements of the subscripts 
1 and p and r "  means summation over all three rearrangements in 
which p occurs first . Thus 

- 8t 'i' E ( R  Y . Y . YkY7 ] = A h1 .h1 . h1khl 7 + ( B-3D ) L h . h . h  kh l 1 J & 1 J & p> l p1 PJ p P 
'i' ' 'i' " + C L  h1 . h1 .h  kh l + D L h . h  . h kh 7 

p>1 1 J p p p>1 ,q>1 p1 PJ q q& 

S ince this  expectation cannot depend on the transformation used to 
calculate it we must have B = 3D ( the last two terms are invariant to 
the transformation used ) . As a check we shall give a direct proof that 
B = 3D  . We may write 

where T2 = Z� + Z� and 

D = E ( R-Bt Z �Z� ] = 1 J 
coordinates in the Z . -Z .  1 J plane we have 

1 J 

cos e = z .  IT ' sin e = z . /T ' 1 J 

Now , s ince the distribution of Z . Z . is  spherically symmetric , 8 is 1 J 
uniformly distributed over a circle of radius T . Therefore 

E [ cos 4 S I T2 ] � I:• cos ' S  dS 

� [ - s in S cos ' S l �" + 3 I:• sin2 S cos2 S dS 

� 3 I:"sin2 S cos 2 S dS 

= 3 E [ sin2 8 cos 2 8 I T2 ] .  

Thus B = 3D as required . 

Now and I 
p> 1  

h . h  . p1 PJ = 0 . . 1] so that 
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+ rearrangements of i ,  j , k and Z 
1 1 + D( o ij - 2I ninj H <\z - , 2I nkn l ) 

t rearrangements of i ,  j , k and Z 
A-6C+ 3D + 4/.2 ninj nknl + D ( oij 0kl + 0ik0j l + 0il 0 jk ) 
C-D + �ninj okz+ninkoj z+ninloj k+nj nkoiz+nj nloik 

When t = 0 we have A = 4/. 2 + 12/. + 3 , B = 3 , C = 1 + 
from elementary properties of the x2 1 and non-central 
distributions . This gives , for this value of t ,  
E[ YiYjYkYZ ] = ninj nknl + < o ij okl + o iko j l  + o ilo j k ) 

+nknl o ij ) .  
2A and D = 1 

+ <ninj okl + ninko j l + ninloj k + nj nkoil + nj nl oik 
+ nknl o ij ) and 

cov( YiY/kYl ) = ( o iko j z+o il oj k ) + ( ninko j z+ninlo j k+nj nko il+nj nlo ik ) .  

Using theorem 2 with a = 0 , s = p-1 , b = 2 , r = 1 and c = 4t 
we obtain 

22-4t ( � )  
2 A = ( 2 -4t+�)4t 

while putting a = 2 , s = 1 , b = 0 , r = p -1 and c = 4t gives 
22-4t (�)  

B = 3 D  = 2 

N ow ( p- 1 ) c = I E [ R-Bt z�z21. ] 
i>1 

= E [ R- Bt z2 L z� ] 1 i>1 l. 
so putting a = 1 , s = p -1 , b = 1 , r = 1 and c = 4t we obtain 

22-4t ( 1 1 ) ( 1 ) ?P-"2 "2 ( p-1 ) c = 7t: ( 2-4t+"2P ) 4t 
As a check note that E [ R-4t Z 2 ] + (p- 1 ) E [ R-4t Z � ] = E [ R2-4t ] 1 l. 

and A + ( p-1 ) B + 2 ( p-1 )  C t ( p-1 ) ( p -2 )  D = E [ R4-Bt ] . 
Putting a = b = 0 , r + s = p and c = 1 - 2t in theorem 2 we see 

1-2t 
E [ R2-4t ) = ��2�1�---­( 1 -2t+"2P ) 2t-1 
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while putting a = b = 0 ,  r + s = p and c = 1-2t in theorem 2 yields 

From theorem A1 .  4 . 1 and equation A1 . 4 . 31 we may write 
[ u ] . ( b ) . i CX> z 

2r2 (a+u ,b ; a , c ; z )  I l l 

1r1 (b+i ; c+i ; z ) = ( a ) . ( c ) . • I i= O l .  
l l 

CX> [ u] . ( b ) . i z z I l l 1r1 ( c-b ; c+i ; -z ) . = e ( a ) . ( c ) . • I i=O l . 
l l 

Using these to simplify our expressions we obtain 

( p-2.A ) 1r1 ( 2t ;�+1 ; -.A ) 
+ p 1r1 ( 2t ;� ; -.A )} , 

r z � J 2- 2t 
{ } El T \ = ( 1  2 1 ) 1F1 ( 2t ;�+1 ; -.A )  

( Z Z ) t - t+� 2t 
for i * 1 

2 1-2t { 
} = (1 2 1 ) 1r1 ( 2t-1 ;� ; -.A )  - t+� 2t-1 

and 

= ( 1-2t��) {2 .A l1 ( 2t ;�+1 ; -.A ) 2t 
+ p 1r1 ( 2t ;� ; -.A )} 

which verifies the first check . 
R • . h . f A B C D d E [ ( ZTz ) 2 -4t ) ewrltlng t e expresslons or , , , an 

gives _4t 
_ 3X2 

{ 
( , l  • ' ) A - (�+2-4t ) 1F1 4t ,�+2 , - A + 

4t 

B = 3 D  3X2-4t {' } = e 2 4 ) 1r1 < 4t ;�+2 ; - >. ) • �+ - t 4t 
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- -4t 2 { (�+2 -4t ) A C = �(��--t 2--4t ) 4t 1F1 ( 4t ;�+2 ; -A )  + �(�+2 )  
and 
E ( ( ZTZ ) 2-4t ] = 

2-4t 2 
(�+2-4t)4t-2 

Now 
(�+2-4t ) . 1 J. ( � + 2 ) i 7( .,-�-+�2:::-_""74""7t""')_4_t 

= 
(�-4t ) i+2 1 
(�) i+2 (�-4t\t 

and 1 
(�+2-4t ) 4t- 2 

( �-4t ) .  

= 
(�-4t )2 (�-4t)4t 

= 
( �p ) 2 (�-4t )2 

(�p-4t ) (�) 2 4t 

Let - J. a . = -.,..,---.---2 (�) i 
We may then write 

2 -4t A =  (1 _4t) ( 3a2F2 + 1 2a3AF3 + 4a4A 2 F4 ) ,  >2P 4t 
2 -4t B = 3 D = (�-4t)4t 

3a2F2 ' 
2 -4t C = (1 -4t) ( a2F2 + 2a3AF3 ) >2P 4t 

and 
E ( ( ZTZ ) 2-4t ] = 

A A2 +:r=- 1F1 ( 4t ;�+1 ; - A) + (l ) 

106 

"2P >2P 2  
X 1F1 ( 4t ;�+2 ; -A )} 

+ A2F2 } .  

Now A +  (p- 1 ) B a: 3 p a2F2 + 1 2a3AF3 + 4a1/2 F4 
= 3 p a2F 2 + 12a3AF 3 + 4Aa3 { (�+2 )F 2 - (�+2-A )F) 
= { 3p + 4(�+2-4t ) A } a2 r2 - 4 (�-1-A ) a3F3 

and 2 C + ( p-2 ) D  er p a2 r2 t 4a3AF3 
with the same constant of proportionality 

With this same constant we have 

-4t 2 
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A +  ( p-1 )B + 2 ( p- 1 ) C + ( p- 1 ) ( p-2 )D 
� {p2 + 2p + 4 (�+2-4t ) A } a2r2 + 4{p- 1 - (�-1-A ) } a3AF3 
= 4{ (�) 2 + (�+2-4t ) A } a2r2 + 4 (�p+A ) { (�+ 1 ) a2r1 - (�+1-A ) a2 r2 } 
= 4 (�+1-4t ) Aa2r2 + 4A2 a2r2 + 4 (�+A ) (�+1-4t ) a1r1 

1 07 

= 4(�+A ) ( �p+1 -4t )a1r1 + 4 (�p+1 -4t ) {� a1 F0 - (�-A ) a1F1 } + 4A 2 a2r2 = 2 2a2 { (� ) 2F0 + 2 (�+1 )AF1 + A2 F2 } 
and this verifies the second check . 

Now A - 6 C + 3 D = 

and C - D = 
thus 

-Bt E [ R YiYjYkYl ] = 

2 2-4t 
(�-4t)4t 

a4A2 F4 

2 1-4t 

a3F3 ( ninj okl+ninko j l  
+ninloj k+nknloij 
+njnlo ik+njnkoil ) 

0ik0j l + 0il0 j k ) } 
This agrees with the special case t = 0 .  which was calculated earlier . 

We shall now write our results in the original coordinate system . 
kr. k Noting that C 28 = a Y and C 28 = an we may write 

and 

E[ Y ] 1 -2t 
(YTY )  t 

a 

1-2t a = -----
2t (�+�-t ) t 

1 = ---------
( 2a2 )t (�+�-t ) t 

E [ <J.? c�§§Tc�� ) 2 1 
< sTcS )4t J 

1 

1r1 ( t ;�+1 ; -A )  C�B , 
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= 

We therefore obtain 
EL 8 T! § ) t ] = -( -2a_2_)_t_(_�-+h_2_-t_)_ 

t 

1 08 

and 
Er c �

?68rv ) 2] = 
L < �rcS ) 4t 

1 [ ( . 1  . ) { ( T -1 ) 2 4t 1F1 4t ,�+2 , -A 2 � C v 
( 2a2 ) (�+2-4t )4t Tc-1 Tc-1 } 4 +� �V V a 

�+2-4t ( . 1 • ) + � 2 1F1 4t ,�+3 , - A �p+ 
x { 4�TBvTB�Tc- 1v+( �TB ) 2vTc-1v 

+ (VTB ) 2 �Tc-\}a2 
(�+2-4t ) 2 ] + (\p+2 ) 2 1F1 ( 4t ;�+4 ; - A ) ( �TBvT8 ) 2 . 

4 . 6 . 9  Est i mati on of  B B  BT + A a2 C- l  
We know that B � �T + ( A - B )  82 C-1 is unbiased for 

B0BT + A a2 c- 1 . We shall f . d h f h . � 1n t e mean square error o t e est1mator 
T�ftT ""2 T -1 b� P P  v + aa � C v for B"TBBTv 2 T -1 '"' + a a � c v . 

From the esults of the previous section we have 
MSE = b2 { ( �TBvTB ) 2 + (�T8 ) 2vTc-1va2 +4�TBvTB�Tc-1va2 + (VTB ) 2 �Tc- 1�a2 

+�TC-1�VTC-1va4 +2 (�TC-1v ) 2a 4 - [ �T ( BBT+a2 C -1 )v ] 2 
+ {b�TBBTV+ba2wTc- 1v+aa2wTc-1v-BwTBBTv-Aa2wTc- 1v } 2  

2 2a 4( Tc-1 ) 2 + -a w v n-p 
= b2 { ( �T B ) 2vTC-1va2+2�T8vTBwTc-1va2 + (vTB ) 2WTC- 1�a2 

+wTc-1wvTc-1va 4+ ( wrc-1v ) 2 a4 } 
2 +{ ( b-B )�TBBTv+ (b+a-A )wTc-1va2 } 2 + 2b a4 < wrc- 1v )2 . n-p 

For large A ,  ( b-B) 2 ( wTBBTv ) 2 becomes the dominant term and we must 
have 
are 

b = B to achieve a m1n1mum . For small A the dominant terms 
{b2 [ �Tc-1wvTc-1v + < wTc- 1v) 2 ] + ( b+a-A) 2 ( �Tc-1v ) z }a4 

and their sum is minimised for b = 0 , a = A . If we take b = B to 
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minimise the mean square error for large A ,  then the small A mean 
square error is minimised by putting a =  n-p ( A - B ) . n-p+2 

It is also clear that if b = B then this value of a minimises 
the mean square error for all values of A • Thus we suggest the 
estimator 
B § BT + n-p (A - B ) 82 for b 6 6T + A a2 • n-p+2 

Among all estimators of the form B 8 ST + a 82 this minimises the 
mean square error for every bilinear form in the matrix to be estimated 
when the corresponding bilinear form in the estimator is used to 
estimate it . 

If , as n -+  
b 8 8T + a 82 c-1 

00 c- 1 -+ 0 then an estimator of the form 
• 1 t •  1 • t t f B 0 0T + A a2 c- 1 1s re a 1ve y cons1s en or � �  if 

and only if a is bounded and 
the relative mean square error 

( b - B ) 2 ( / 6v T 6 ) 2 
B 2 ( �_? 6v T 6 )  2 

b -+ B as n -+ oo since in this case 
is asymptotically 
= (� - 1y. 

4 . 6 . 10 E st i ma t i on of 88T/o2 
The estimator bBBT/82 + -1 a C will be unbiased if b = n -p- 2 n-p 

and a = -1 since Er ssT l - 1 n-p ( DOT + a2 c-1 ) .  The mean l�J - OT n-p-2 � �  square 
error of the general form of the estimator is 

b2 ( n-p) 2 MSE = --a·· ( 2 ) (  ) ., n-p- n-p-4 T 2 T 2 T 2 T -1 2 T T T -1 2 { ( � 6 )  (v 6 )  + (� 8 )  v c vo +4� 6v 6� c va 
T 2 T -1 2 T -1 T - 1 4 T -1 4 + (V 6 )  � c �a +� c �v c va +2 ( � c v )a 

T T 2 T -1 2 - ( � 66 V+a � C V )  } 

+ {(· n-p b -1)�T66Tv + (a + n-p � �Tc-1v}2 n-p-2 a2 n-p-2 � 
I f A i s large then the dominant term is ( n-p b -1) 2(�T66Tv) 2 n-p-2 a2 

so that b = n-p-2 minimises the mean square error . If A is small n-p 
then the mean square error has the dominant terms 

( n-l) 2 b 2 { � Tc-1�v TC-1V+ (� Tc -1v ) 2 }+(a + n-p b ) 2 ( � Tc-1v ) 2 ( n-p-2) n-p-4) n-p-2 
whose sum is minimised when b = 0 and a = 0 . On fixing b at the 
optimal value for large A we find that the value a - - 1 is opt imal 
for small A . Thus we are lead to the unbiased choice for a and b . 

As in the last section we have relative consistency if 
a is bounded and b -+ 1 as n -+ oo 

-1 c -+ 0 ' 
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4 . 6 . 1 1 Est i mat i on of  BBT/ BTCB 
The expected value of SST/BTCB is 

1 {__E_ ( . 1 • ' ) BBT ( . 1  • ' ) 2 -1} 202x� p+2 1F1 1 ,�
p+2 , -A + 1F1 1 ,�+1 , -A 0 C 

1 F1 ( 1 ;�+1 ; -A ) 

p 
-1 c 

2 A 1F1 ( 1 ;�+2 ; -A ) BST 1F1 ( 1 ;"!:1 ;�+1 ; -A ) _1 = -· - + c p+2 sTcs P 

1 } -1 - C  p 

the last line using a recurrence relation for the confluent 
hypergeometric function .  

1 10 

For small the bias is 1 -1 BB T 

P
c -

BTCB 
and no estimator of 

the form b MT 
+ a c-1 can remove the bias . For large 

BTCB [ ��T ] BST 
1 { BBT 1 -1} E AT A '\, _T_ - * 2F0 ( 1 -� , 1 ; ; 1 /A ) -T- - - c 

S CB B CB B CB P 
and the bias tends to  zero as A -+ oo • 

MSE 

TAAT 
The mean square error of b lJ B B  v + a lJTC-1v for 

BTC B 
2{ 1 ( 1 , ) [ ( T -1 ) 2 T -1 T - 1 ] = b p ( p+2 ) 1F1 2 ;�+2 ; -A 2 lJ C V +lJ C lJV C V 

is 

+ 1 r ( 2 . 1 + 3 · -A ) � v B ,Tc-1v +  (lJ B )  Tc- 1 [ T T T 2 
( p+2)(p+4) 1 1 '� ' a a � a2 v v 

(vTB ) 2 T - 1 ] + a2 lJ c lJ 

For small A the dominant terms are 
b2 ( 1 , ){ ( T -1 ) 2 T -1 T -1 } 2 ab ( 1 , ) p(p+2) 1F1 2 ;�+2 ; -A 2 lJ C V +lJ C lJV C V + --- 1F1 1 ;�+1 ; -A p T -1 x ( lJ c v ) 2  

and their sum is minimised when a = b = 0 . For large A we have the 
dominant terms 
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In 
b = 1 . 

order to 

T -1 }2 + a �  C v . 

minimise this 
Note that when we have 

expression 
considered 

1 11 

we require that a = 0 and 
the case of large A we 

have supposed that it is the length of 8 causing A to be large . 
As c- 1 

-+ o , �T88Tv/8TCB -+ 0 ( for fixed B ) and the above results 
cease to be valid .  To investigate the consistency of these estimators 
we need to consider the limit of the mean square error as c- 1 

-+ 0 • In 
2 T -1 2 this case the dominant term is a ( � C v )  and we require a -+ 0 for 

consistency and a -+ 0 faster than 1 /A -+ 0 for relative consistency . 
If  the latter condition is satisfied then the next most dominant term 
must tend to zero and this means that b -+ 1 as n -+ oo for relative 
consistency . 
4 . 6 . 1 2 E s t i ma t i on of ( B

T
CB ) - t

B 0 � t � 1 

When 

Taking the expected value of the na1ve estimator we have 

t = 0 

= 

-2t a 
t ( 1  1 ) 2 "2P+"2-t t 

At 
(�+\-t) t 

1 
1F1 ( t ;�+1 ; -A )  T B 

( 8 CB ) t 

this j ust gives B showing that B is  unbiased for 
For no  other value of t can we find an estimator of the form 

B • 

b which minimises the length of the bias vector for all A . 

For small A the bias will be approximately zero if b = 0 and t < 1 
whi le for large A [ 1 A] (�+1 -t ) t E 

( STCS )t 8 � (�p+\-t )t 2F0 ( t-� ,t ; ; 1 /A )  / B 
( B  CB )t 

which suggests taking 
( �p+�-t )  t b = (�+1-t )t 

= 
f ( �p+�) f (�p+ 1-t )  
r < �+ 1 )  r < �+�-t )  
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When t = � this gives 

gives = p-1 = 1 - _!_ p p 

and when t = 1 this 

We shall now consider the mean square error of 
We have 

= 

If A 

+ { t 
b 

( 2o2 ) (�+�-t )  t 
o2 { b2 1. 2t 

( 8rC8 ) 2t (\p+1-2t ) 2t 

is small 

1 T + "::T 88 -a 
then for 0 

1 F1 ( t ;�p+1 ; -A ) -
1 r 88T ( 8TC8 ) t 

[ -1 
1F1 ( 2t ;�+1 ; -A )C 

+ �+1-2t 
"2P+1 1F1 ( 2t ;�+2 ; -A ) a

1
2 88r] 

2 b At 
1 F 1 ( t ;�+ 1 ;  -A ) :2 88 T }· e 1 t )  "2J'+�- t 

< t < � the first term is dominant and 
we require b = 0 ; for t = � the first and third terms are dominant 
and we still require b = o ·  ' while for t > � only the third term 
is dominant and the mean square error is approximately independent of b .  

For large A we have 

and the last three terms are dominant . For a minimum we require that 
b = 

f (�+ 1 )  f(�+�-t ) . When r <\p+\) r (\p+1-t) 
for t = 1 we have b = _E_ p-1 . 

t = � this gives and 

- 1 For relative consistency we again assume that C � 0 as n � oo 

and we therefore consider the case when A is large but 8 is not . For 
all b the estimator will be cons istent but the relative mean square 
error will only tend to zero if b2 - 2b f ( �p+ 1 ) f (�+�-t ) + 1 = 0 and r<\p+\) r <"2P+ 1-t ) 
this will be so if t = 0 . 
4 . 6 . 1 3 Summa ry of E s t i mators 

We now give a summary of possible estimators suggested in the 
previous sections for various functions of the parameters . These are 
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given in table 2 .  

Function 

J:__ 8 a 

1 
02 8 

1 
( 8TC8 )� s 

_1_ 8 
STCS 

B STCS + A o2 

BSST + A o2 I 

STCS """0"2 

SST 
7 
02 

STCS 

SST 
STCS 

�·; for large ),_ 

Estimator 

b " 
6 8 

b " 
62 8 

b .. 

< BTCB )� s 

b " -- s 
§Tc� 

b 8Tc§ + a82 

b SSTc + a o2 I 

"T " 
b S C S + a 82 

""T 
b s s  -1 er + a C  

82 a --
§Tc§ 

+ b 

��T -1 b -- + ac 
�Tcs 

Best Unbiased 
Choi ce 

b - f ( �( n-E) ) - f (�( n-p ) -�) 
1: 

x (� (n-p ) ) - 2 

b = D-)2-2 
n-p 
( f (�+� ) ) b = f (�p ) f (�p+1)  -!: 

b 1 1 �·: = - -p 

b = B 

a = A - B p  

b = B 

a = A - B 

b = n-;e-2 
n-p 

a = - p 

b = n-p-2  
n-p 

a = - 1 
If  a = 1 then 
b = 0 -;': 

b = 1 
a = 0 .. ': 

1 1 3  

Minimum Mean 
Square Error Choice 

f (�(n-p ) -� )  -!: b = f (�( n-p ) )  
X D-)2-2 - 1 

( �( n-p )  )"2 n-p 

b = n-p-4 * n-p 
f (�) f ( �+1 ) b = <r <�+�) ) * 

b _£__ .. ·: = p- 1 

If  b = B then 

a = n-E ( A  - B p ) n-p+2  

If  b = B then 

a = D-E ( A - B )  n-p+2  

If  b = D-E-2 then n-p 
a = - p 

b = D-,E-2 
n-p 

a = - 1 
If a = 1 then 
b = 0 �·: 

b = 1 
a = 0 .. ·: 

In the next sect ion we shall apply these resul�s to the estimation 
of the shrinkage factor . 

4 . 6 . 1 4 E s t i mators for the Shri nkage  factor 

By substituting the component estimators into the shrinkage factor 
S8TC and different rearrangements of this we obtain an estimator 

02 + STC8 bBSTC + a 82 I of the form 
d�Tcs + c 82  

rise to an est imator for S of the form 

for the shrinkage factor and this gives 
bBTc§ + a82 

� .  This is of 
dSTCS + co2 
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of the same form as the estimator obtained by substituting the 
. . h hr ' k f srcs component est1mators 1nto t e s 1n age actor T . 

pa2 + 8 CS 
W 1 ub t " t  t t "  t f BST and 02 1" nto the e may a so s s 1 u e es 1ma ors or 

1 1 4  

last expression for 8�': in section 4 . 6  or an estimator for a-2 8 8  T 

into the previous expression in the same section . Putting bBBT + a82 c-1 

for BST and c 82 for 0 2  gives 

g�·: = (b SBT + ao2 C- 1 )XT { co 2V  + X (b@ST + ao2 C-1 ) XT } -1Y 

whi le putting - 1 + a c  for gives 

Since these are of the same form we shall s implify the former expression . 

Let A = c82 V + X (bSBT + ao2 c-1 ) xT 

+ 

Using the formula for the inverse of the sum of two matrices we obtain 

where 

- 1 A 

The same formula gives 

Therefore 

= 

= 

'"'T A2 b88 C + aa I § C a+c )82 + bST c§ 
" 2 AT A aa + b8 C S B A 2 " 2 �T A • ea + aa + p CB  
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This  is a scalar shrinkage estimator of the same form as our other 
shrinkage estimators . The suggestion raised by this estimator is  that 
the values of a and b suitable for estimating B ST by an estimator 
of the form bSBT + ao2I should be used and substituted into the 

A T  A A 2  T estimator , bB CB + aa , for 8 CS in the scalar form of the shrinkage 
factor . A similar interpretation is taken for the function +s sT . a 

It will be seen that this estimator for the shrinkage factor is 
democratic in the sense that each 8 occurring in the factor is  
treated in the same way . 

Table 3 contains suggested values of a , b , c and d . We do 
not , however , recommend all these values .  In table 4 the nurriliers in 
square brackets give a simplified form of the same shrinkage factor . 
4 . 6 . 1 5  Cons i s tency o f  E s t i mators for the Shri n kage Factor 

We shall suppose as before that c- 1  -+ o as n -+  CXl In this 

case , as n -+ oo A -+ 00 and the ratio 8TC8 
-+ 1 Only if b 'V d 

ka2 +8TC8 
E[ b§Tc§ + a&2] 

"sT "'s " 2 d c + ea 
tend to  1 when c > 0 . So long as as n -+ oo will 

the numerator vanishes for larger values of A than does the denominator 
and we replace the ratio by zero when the numerator vanishes , this 
result applies if c :::. 0 • The result follows from the fact that the 

A value of A exceeds any given bound with arbitrarily small probability 
as n -+ oo In considering the matrix shrinkage we observe that , for an 
estimator to be consistent , its trace must be consistent for the trace 
of the shrinkage matrix .  We are thus lead to the case above and we 
require that b rv d as n -+ oo ( if c < 0 we must replace the factor 
by zero for a negative numerator ) .  We shall not investigate the 
sufficiency of the condition a 'V c as n -+ CXl ' but it is intuit ively 
clear that the variance will tend to zero if  this holds . 

4 . 6 . 16 Cons i s tency o f  Est imators for 8 

We now wish to show 
AT A "' 2  

that , under the conditions of the previous 
bf3 CB + aa 0 section , �-> AT A A 2 is consistent for B Now as n -+ 00 ' (' -+ 00 • ' A 
dB CB + ea 

in probability if b/d -+ 1 . 

Precisely E[ 2b� + a B - s] = 2d� + c 
term tends to zero as n -+ oo 
of the first term is - � B 
ad - be 1 A 

d 2dA + c f3 for large 

Intuitively , this gives the result . More 

E[( 2bA + a - � ) § 1 + � E[ S ] - B .  The last 2d� + c d J d 
if and only if b/d -+ 1 The integrand 

for small � ( with small probability ) and 
� . This tends to zero as � -+ oo ( B fixed ) .  
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Ta.bl.e. 3 Su.ggu:te.d Coe.66-{.ue.na 6ott :the. Sh!Unk.a.ge. Fa.c.:tott 

a b 

- p 1 
- p 1 

n-;e - n-p+2 P 1 
n-;e - n-p+2 P 1 

- 1 1 

- n-;e 1 n-p+2 

- n-;e-2 p [- p] n-;e-2 [ 1 ] n-p n-p 

- n-;e-2 p [ - p ]  n-;e-2 [ 1 ] n-p n-p 

- n-;e-2 [ - 1 ] n-p 
n-;e-2 [ 1 ] n-p 

0 1 
0 1 
0 1 

0 [ 0 ] n-p-2 [ 1 ]  n-p 

- 1 1 

- n-;e-2 1 n-p 

- 1 n-;e-2 
n-p 

c 

1 - p 
0 

- n-;e ( 1-p )  n-p+2 

0 

1 - p 
n-E ( 1-p )  n-p+ 2 

1- n-;e-2 p n-p 
- p] [ n-;e n-p-2 

..3.E... [n-�-2 ] n-p 

1 - n-:12-2 p n-p [ n-;e n-p+2 
p 
1 

1 - 1 /p 
n-p-2 1 - p n[pn-E n-p-2 

2 - n-p+ 2 
4 

- p] 

- p] 

(n-p ) ( n-p+2 ) 

0 

d 

1 
1 

1 

1 

1 

1 

n-;e- 2 n-p 

n-;e-2 n-p 

n-;e-2 
n-p 

1 
1 
1 

n-:12-2 n-p 

1 

1 

n-;e-2 
n-p 

1 16 

[ 1 ] 

[ 1 ] 

[ 1 ] 

[ 1 ] 

Not e  that we have omit ted the estimators in which b I d s�nce these 

are not consistent .  
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This proves that the bias tends to  zero . In  a similar way it  is  seen 
that the variance tends to zero . 

4 . 7  Al te rnati ve Est i mators 

When estimating the shrinkage factor we have tried to cope with 
the bias in the na1ve estimators for the components .  Another approach 
is to compensate for the bias in the numerator by biasing the 
denominator , or vice -versa . We shall cons ider the general scalar 

BT C S  shrinkage of the form . Using the bilinear shrinkage rule . 
ko2 + s Tcs 

of the previous section we have 

if and only if 
( ka2 + STCS ) ( bSTCS + ( bp+a)a2 ) = 

E[ bBT c§ + a82 ]  
E[ dBTCB + c82 ] 

= 

T T S CS ( dS CS + ( dp+c )o2 ) .  
This implies b = d , ( bp+ a )k  = 0 and bp+a+bk = dp+c . Thus a = - bp ,  
d = b and d = b( k-p )  . With b = 1 this is the unbiased choice for 
numerator and denominator . If  we wish to accept the bias in the 
numerator then we put a = 0 • In this case there will be no exact 
solution . However , allowing a stochastic choice of values we have 

( k + 2:\ ) ( 2b:\ + bp + a ) = ( 2A ) 2 d + ( dp+c ) x2A 
i . e .  ( 2A ) 2 ( b-d )  + ( 2:\ ) ( bp+a+bk-dp-c )  + ( bp+a)k  = 0 

and if b = d then this reduces to 

n (bp+a-c )  = - (bp+a)k  . 

The case a = 0 now gives 

replacing the constant d 

< 8TcS ) 2 + ( k+p )o4  + pSTcSo2 

C = bp + bp - b ( n + 1 ) Th · t 2 A - p -n . lS sugges s 
AT A A2 

b h d . abl b S CS + a . . y t e ran om varl e p AT A g1v1ng 
S CB 

as an estimator for S . As mentioned 

previously , we are interested in the cases k = 1 and k = p .  
Similarly , accepting the bias in the denominator leads to b = d = 1 ,  

c = k and 2A ( p+c-k )  = - ( p+a)k so that a = ( k-�*2
+
\- pk This suggests 

d 3TcB ) 2 + ( 2k-p) BTcS82 - pko4 
< 8T c8 + ko2 ) 

as an estimator for S . Again we are 

interested in the two cases k = 1 and k = p . 
We can easily apply the same approach to other representations of 

2bA + a the shrinkage factor ; for example 2 dX + c gives the equation 
n-p n -p + ( k+ 2A ) ( 2b:\ n-p-2 + bp + a )  = 2 :\ ( 2d:\ n -p-=2 dp + c )  . 
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4 . 8  R i s k  Functi ons  for B i l i ne a r  Shr i n kage Est i mators 

The computational formulae for the risk have been delayed unti l  
chapter 6 s o  that the class of estimators of interest may first be 
determined . A formula for computing the risk of bilinear shrinkage 
estimators is given in theorem 6 . 7 . 7 . Thi s formula , when the 
hypergeometric functions  are computed from recurrence relations , g ives 
the risk as the sum of a single infinite series . However, the 
hypergeometric functions have to be computed by their series expans ions 
from time to  time to avoid numerical instability in the recurrence 
formulae . 

In the interest of generality , we did not use this formula in the 
final computation but based the calculation on the unbi ased estimator 
for the risk given in equation 6 . 3 . 2 Taking the expectation of the 
unbiased risk estimator requires the evaluation of a one-dimensional 
integral . This was done numerically . In order to compare the est imators 
of this chapter with those of the next , the risk functions of the two 
families of estimators are plotted on the same graphs at the end of 
chapter 5 ( where a description of the program may be found ) .  
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C h a p t e r 5 

I terat i ve I mprovemen t  of  the Mi n i mum Mean  Square E rror E s t i mator 

5 . 1  I ntroduct i on 

Whenever we estimate the shrinkage factor ( scalar or matrix ) for 
the minimum mean square error variate we arrive at a new estimator 
for 8 .  This new estimator can be used to re-estimate the shrinkage 
factor . It is  of interest to know whether , on repeating the process 
indefinitely , we obtain a sequence of estimators which converges to 
a limit . If so , does the limit provi de a good estimator for 6 ?  
Hemmerle ( 1 97 5 )  was the first to find a fixed point for the iteration 
and he gave conditions under which the fixed points were stable . Later 
Vinod ( 1 9 7 6 )  compared the resulting estimator with other estimators by 
using a Monte-Carlo simulation . Vinod , in fact , gave two iterations , 
one using the usual estimator for the vari ance at each step in the 
iteration , the other basing each estimator for the variance on the 
latest est imate for B .  In the next section we discuss these iterative 
processes . 

5 . 2 Fi xed Po i nt E s t i ma tors 

Consider the matrix shrinkage 
a 2 + BTCB 

. The usual 

estimator for a 2 i s  8 2 = 1 ( Y  - XB ) TV-1 ( Y  - XS ) .  If we base n-p 
our e stimator for a 2 on an improved estimator !3 1: 

0 we may use 

a 2 ,., = � ( Y  - X!3 "' )TV- 1 ( Y  - XB '" ) .  We have used a different divisor 0 � 0 0 * from \1 = n-p to allow for the fact that !30 is , hopefully , a better 
estimator for B than B ( if B were known then we would use n as 
the divisor) . We may combine the two estimation formulae by writ ing 

a 2 * = 0 
= 

= 

� ( Y  ]..1 

� ( Y  ]..1 
n-p 02 

]..1 + � ( !3 �·, - S )TC ( f3 -le - B )  ]..1 0 0 
where , a = 0 gives the usual estimator and a = 1 gives the estimator 

... based on !3 " , so long as ]..1 is  suitably chosen . Replacing n-p by v 0 
allows us to use different divisors for 82 ( remembering that the 
divisor n-p+2 gives minimum mean square error ) .  Vinod refused to  use 
a different divisor " in deference to the usual practice" , However , we 
are estimating B not 02 and we have already abandonned "the usual 
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practice" in doing so. The iteration now precedes by substituting 
D ·'· 
� .. 0 for 8 and o2 * for o2 • This  gives an estimator S * which 0 1 

S �·, . I t  is  clear that each iteration gives a 
0 

i s  substituted for 
resulting vector in the same direction as 

Now consider the scalar shrinkage 

in the same way we see that , whatever the direction of 

Proceeding 

B t the first 
0 ' 

vector to be substituted for S ,  all iterates are in the direction 
of S .  

I n  either case the value of � should be revised at each step , 
but as it is difficult ( if at all possible ) to choose the best value , 
we shall choose � after finding the fixed point as a function of � 
( and of \! and a ) . 

The scalar and vector shrinkages will be combined together by 

considering the shrinkage 8�·, = 8 Tcs 
ko2 + 8TC8 

The case k = 1 gives 

the matrix shrinkage , while the case k = p gives the scalar shrinkage 
provided that we add the extra condition that the initial vector is in 
the direction of 8 . 

A fixed point of the iteration can be found by solving the 
equation 

( ko2 �'; 00 

Substitut ing {k
�
\! 8 2  

for 2 ·'· a " we obtain 00 

We see that one solution is 8: = 0 while the other solutions satisfy 
the equation · 

ka B Tc § + �+ka 
Completing the square in this expression gives 

= o .  

( 1 )  {8�' - < 1 - , ,1:.+2
�
k"' ) B  }T c {800�" - < 1 - � ) B } = ! (-�-)2 sTcs - kv_ &2 •  ,... ..... �+ka 4 �+ka �+ka 

S ince C is positive definite , this has real roots if and only if 
0T C s" > �+ka 2k\! . � � Thus , for small A , the only solution � � 

is 8�� = O ,  while there are three solutions for large � - The non-zero 
solutions  (when they exist ) are points on a hyperellipsoid such that 
C� 8 �'; lies on a hypersphere with centre ( 1 - � ) C� B and radius oo 1:. �+ka 
{t (�:kaY - ���a } 2 8 � 
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In order that the estimator should be continuous as a function 
A of 8 and o2 , it seems desirable that , in the one real root case 

we use the real parts of the complex roots for our solution . In � < )J+ ka 2kV � ).J "' other words , if  then we  use ( 1 - ).J+ka ) 8  On the ).J ).J 
other hand we might be tempted especially if k = 1 - to use 
s:,'; = 0 as a kind of preliminary test estimator .  

In the next section we shall discuss how we may choose among the 
solutions found . 

5 . 2 . 1 Sums of  Squares Cri teri a of Ch o i ce 

Vinod chose the fixed point which minimises the sum of squared 
residuals . We shall consider this choice as well as some others . In 
particular we might choose the solution with minimum length so as to 
minimise the dang�r of over-shrinking .  Another approach is to maximise 
the expected length . If 8 1: = 0 

CXl is the only solution we might be 
interested in the closest approach to a solution of ( 5 . 1 ) .  

We shall let and � ).J  u = 1 - -­).J+ka 
that ( 5 . 1 ) may be rewritten 

( 1 )  ( 8 �': - u 8 ) T C ( 8 -:: -u B ) CXl CXl 

5 . 2 . 2  Least Squa res  Cri teri on 

= v .  

so 

In order to find the solution of ( 5 . 2 . 1 . 1 )  which minimises the 
sum of squared residuals we find a stationary value of 

z = + y [ ( 81' ' - u B ) T c ( 8 l'; - u 8 ) - V ] CXl CO 

where y is a Lagrange multiplier . Now 

and 

Thus 

az 
as .. 

= + 2 y C(  8 .;, - u B ) CXl 
CXl 

= 2· C 8 -:: - 2 C 8 + 2 y C (  8 l': - u 8 ) CXl CXl 

= 2 C [ ( 1 +Y )  8 -:: - ( 1 +yu ) 8 ]  CXl 

= 2 ( 1+y ) C .  

az 
aK* CO 

= 0 o * = 1+Yu 0 fl �-'eo 1+Y IJ = U p + 1 -u B 1+y 

and substituting into  the constraint equation gives 

[ ( 1+yu) - u( 1+y ) 2 ] §T C B  

( 1-u ) 2  § T c s  

This gives 

= 

= 

( 1+y ) 2  V 

( 1+y ) 2  v .  

( 1 -u )2 � §T C B V 
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and if we take the positive root for 1+y we obtain a minimum for 
the residual sum of squares .  This leads to the solution for 

8�': = u s + � s .  
In view of the fact that 

( Y - X 8 1; )T V-1 ( Y - X8 1; ) = 82 + ( B �·: _ S )T C ( B �·: _ B ) 00 00 00 00 

this value also minimises the distance from B .  

5 . 2 . 3 Max i mum Length Sol u t i on 

8 ,'; 00 

In order to maximise the length of 
value of 

B�·: we find a stationary 
00 

z = 8 �·: T C 8 �·: + y [ ( B �" - u B )T C ( 8 �·: - u B )  
00 00 00 00 V )  • 

N a z  2 c Q * ow a s �; = �-'oo + 2 y C ( 8 �·: - u B ) and 00 a s * Ta s �'; 00 

For stationary values , 
B * = 

00 
- 1 A ( 1 + y ) u y8 = = 

00 00 

"' u "' u B - -1 - 8 . +y 

= 2 ( 1 + y ) .  

1 2 2 

Substituting this into the constraint equation gives u2 ST C § = ( 1+y ) v .  
For a minimum we require the negative value of 1+y and this gives the 
estimator 

B�; = u S + m 8 

which is the same solution as before and is in the direction of S .  
5 . 2 . 4  Mean  Square Error Cri teri on 

Vinod compromised his principle that "mean square error is a 
better proxy for closeness to the truth than the sum of squared 
residuals" slightly by minimising the latter quantity . A suggestion to 
minimise the - former quantity seemed to be promising but was not 
completely successful . It is nevertheless interesting and we now 
examine the method . 

We wish to minimise the function E [ ( 8�': - B )T C ( 8* - 8 ) ]  subj ect 
to the constraint ( 8�·: - u B) T C ( 8�': - u B )  = v .  Unfortunately the 
expectation does not exist since the constraint cannot be satisfied 
if v is negative . Two alternative constraints may be considered 
( i )  c s�·; - u S )T c c s�': - u S ) = v1 where v1 is the positive part of V 
( or a smooth version of it ) 
C ii )  { C B1; - u B )T C C 8�·: - u S ) - v } B�·: = o .  

The first constraint is equivalent to s�·; = u B if V < 0 while ' for 
V < 0 , the latter is equivalent to 8* = 0 .  With consraint ( i )  and 
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Lagrange multiplier y ( Y )  we wish to find stationary values of 
z = E [ ( B�·: - B )T C ( 61: - 8 ) + y{ ( B�': _ u S )T C ( S�·: _ u S ) - v1 } ] . 

This is the usual caculus of variations technique for this kind of 
problem . Let St ( Y ,a ) be a parametrised class of functions with 

1 2 3 

S* ( Y ) = Bt ( Y , O ) .  For stat ionary values az l - 0 .  This must be true aa a= O -
for all such 

Writing 
classes of funtions . 
as�·: ast 
aa = aa I a= o we have 

az j 
aa a= O 

a s*T AT = E [ 2 -- C ( S�': - 6 ) + 2y � C ( B�·: -u B ) ]  aa aa 

and if this is zero for each such family of functions then 
= o .  

This gives s�'' 1 yu "' from which we = 1+y s + 1+y B 
·'· "' 1 u "' 

8" - u S  = 1+y s 1 +y s 
and substituting in the constraint equation gives 

"' T "' = ( S - u S ) C ( S - u S ) .  

derive 

If v1 = 0 then this gives y = oo and therefore S�·= = u § .  If v1 > 0 

then 
Br: = u s ± I v1 

"' T "' ( S - uB )  C ( S - u B )  
( S 

This i s not an estimator for S as it depends on . S itself . However , 
it can be estimated . Putting B for S we obtain 

as before . 
An alternative , which is now a familiar trick , is to iterate to 

convergence . We require that 
lc S1: - u 13> T c ( s:': - u B )  ( sr= - u B )  = ±.tv;_ ( si: - u 8 )  

with s* * u B . This i s  merely the constraint equation so we have 
solved nothing . 

For constraint ( ii )  we must use a vector of Lagrange multipliers 
and find a stationary value of 
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z = 
The condition for stationary values i s  

T ... ••• A V } Cy + 2y c 8" c ( 8" - u B )  = 0 

which may be written 

s�': - B + �{ ( 8�·: - u B )T c ( 8�·: -u S ) -v}y + YT c s�'' < B�': - u B ) = o .  

I f  V < 0 then s* = 0 from the constraint equation . We wish to 
s olve for the case when V > 0. In fact s* = 0 is always a solution 
of the constraint equation , but for v > 0 we are interested in 
other solutions which are solutions of ( B�': - u B ) T C ( 81: - u § )  = 0 
and this gives 

From these we see that 

B ) 

i . e .  

+ 
••• A T A T ... v + ( f3" - uf3 ) C ( u f3 - f3 ) + y CB"v = O  

from which we find y T C B* and substitute back into ( 1 )  to obtain 

< B ,': - 8 ) - { 1 + ! < B1: - u B )T c < B - u S ) < B1: - u B ) = o .  V 
Simplifying we obtain 

A A T A A A ( B " - u 8 ) C ( 8 - u 8 ) ( 8" - u 8 ) = v ( 8  - u B ) . 

Finally , we write this as 

Thus we are lead to the result that 8 - u B must be an eigenvector 
of ( 81: - u B ) ( B 1: - u S )T C and v its non-zero eigenvalue ( the 
latter statement is equivalent to the constraint equation ) .  

Now ,  the only eigenvector of the matrix above , which corresponds 
to a non-zero eigenvalue , is  8 �·: - u B J. and thus 8 "  = B .  This is 
impossible as this value does not satisfy the constraint . Thus , 
assuming there is a stationary value other than 8* = 0 leads to a 
contradiction and therefore 8* = 0 is the only stationary value . We 
have thus shown that this approach leads nowhere . 

5 . 2 . 5  Ma ximi s i ng the Expected Len gth 
� A T I A Consider the constraint in the form ( 8 '  - u B )  C ( 8�: - u B )  = v 1 . 

We wish to maximise E [  81:T C 81: ] under this  constraint . By the method 
of the previous section we obtain 



[ 5 . 3 ]  

for a stationary value , and this gives 
= yu "' -1+y 8 -

" u 8 u " 
1+y 8 • 

Substituting this into the constraint equation gives 
u2 ST C S = ( 1 + y ) 2 v1 . 

Thus the solutions are 

8�·: S ;-v;-= u ± ;' � 

1 2 5  

With the posit ive sign thi s  agrees with the solution which max imises 
the length . It is easi ly seen that this must be so since , if  the 
length is maximum for each value of Y , then the expected length 
must also be a maximum . 

5 . 3  The Cas e  for wh i ch there i s  No Sol uti on  
.•. When the only fixed point of the iteration i s  8" = 0 we have 

"' kv 1 s* "' 

8": A < - -- . We have already suggested that = u 8 or = 0 � 1 -u 
should be taken as the solution according as we rej ect or accept the 
hypothesis 8 = 0 at about the 50% level . 

Another argument for using the solution 8 �·, 8"' = u is that this 
gives , in a sense , the closest approach to a solution of ( 5 . 2 . 1 . 1 ) .  
This  is the closest apprach to a solution in the sense that it  

A "' T A " minimises ( 8" - u 8 )  C C S" - u S )  - v .  
An alternative i s  t o  note that , at each iteration ,  we may write 

S� - e 8* If  there is  no fixed point then we might choose the l - i 0
. 

closest value to a fixed point in that the derivative of e. 1 with l+ 
respect to e .  i s  unity .  Unfortunately this leads to a quarti c  l 
equation and as we already have a reasonable solution for this case 
we proce ed no further . 

Another alternative i s  to write s�: = e .  s�: 1+1  l l 
cannot find a 

a e. 
solution for which e .  = 1 we maximise l 

and , if we 
e . . For a l 

l maximum a8:t = 0 .  We shall omit the subscripts so the quantity to  
l 

be m inimised is  written s �·:T C 8 z = 
ko2 ,•: + s*T c 8* where 

Now 

= � 82 + a ( 8* - B )  T C ( s* - B ) . � � 

d Z  
a s�·� = 

( ko2 '': + 8'':T c s'': ) C 8 - 2ka 8 1:T c § C ( B11 - S )  � 

/ 
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and this is zero when 
= 2ka 

l-1 B1:T C § C ( B�·: - � ) t 28�·:T C � CB�-: .  

This gives 81: = h B where 
kv 82  + ka ( h- 1 ) 2 BT c � + h2 �T c S = 
)J )J 

This  quadratic equation for h gives 
= ka A + kv 

)J 2]J 

Clearly we require the positive root . Now 

and we wish to show that e < 1 when V < o . If V < 0 then 
'�" 2 (l..!+ka)kv A. < 2 l-1 

and therefore 

k \) l-1 2 
4(l..!+ka) kv( l..! +ka) 

ka l-12 
= �J+ ka + 4 ( l-1 + ka ) 2 

= 
4ka( l..!+ka ) + l-12 

4(l..!+ka)2 
= ( 2ka+l..1 ) 2 4( l..!+ka)2 
= (�+ka) 2 

l..! ·�ka 
= u2 . 

Thus h > u with equality if v = 0 .  
Now 

e = ka + ­}J 
and by the equation for h , 

e = 
h�T c � 

2ka BT c B ( h2 -h )  + 2BT C B rf l-1 
= 

< 

= 

1 
2h( 1 + ka ) l-1 

1 
ka 2u( 1  + - ) l-1 

1 . 

2ka - --
l-1 

2ka - --
l-1 

note however that as A -+ 0 , h increases . This is not a desirable 
property and the solution is not recommended . 

1 26 
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5 . 4  Sta b i l i ty of Fi xed Poi nt  Sol ut i ons 

Writing 8* = 881: i+1 l. we obtain 8 = and 8 < 1 

if  and only if 

a2 �·, + 8�:,r c 8�: l. l. 
The equation 

was solved in section 5 . 2 .  Similar s implification of the inequality 
leads to 8 < 1 if and only if  

< 8�: - u 8 )  r c < 8�: - u 8 )  - v > o .  l. l. 
Thus , if 8�:T c 8 l. > 0 then 8 > 0 

and only i f  < 8�: - u S )T C ( 8: - u S ) l. l. 

and the iteration converges if 
- V > o . This  is  because the 

components of the successive iterated vectors form a decreasing 
sequence bounded below by zero ( for positive components - if a 
component i s  negative then its successive iterates form an increasing 
sequence bounded above by zero ) . 

Completing the square in the denominator for 8 gives 

where w = � = 2 u - 1 .  S ince lJ+ka the denominator i s  

positive and e is  continuous as a function of 8 .�'t ( this is  also l. 
clear from the original form of the denominator ) .  

Now , if then 
8�:,T c s 

8 .1' T C S = -:::--J. _____ 8�:T C @ > 0 .  J.+1 8::T C 8�: + ka2 1' J. 
1 l. 

Thus , after the first iteration , 8�·:T C B � 0 whatever the starting 
value and thus the iteration converges if for some starting value 
8 < 1 .  If the iteration has only one fixed point then the limit must 
be 81' = o .  00 

Furthermore , writing 

8�:,T c � --�-l __________ 8: = 
8�:T C 8::: + ka2• �·, 

l 

l. l l 

<P .  81' 
l 0 

we have 

� B�·:T C � 
____ ii>..,.J. __ 

o 
_________ 8 �·, 

<P� 81:T c 81' + k a� 1: o 
l 0 0 l 

= <Pi+1 8� 

Thus the absolute value of the shrinkage factor is  smaller than 
8�'T C B  

0 

8�·,T c 8�" 
0 0 

The transfer function from <t>. 
l 

to  is  shown in the 
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graph in figure 1 3 .  I t  is  symmetric if a = 0 and almost so  for 
large values of I <P • I . We have drawn the graph for the case of three 1 
fixed points ( if there is  only one fixed point then the graph only 
crosses the line cpi+1 = cp .  at the origin ) .  1 

cpi+1 

FiguAe. 1 3  TJta.Y!-6 6e.Jr. Fwtc.tion 6oJr. FA..xe.d Po-in:t IteJtation o6 8-<.Une.aJt 

Sh!U.nk.ag e. E.tdhnato!U> 

By the continuity of the function , the gradient must be greater 
than unity at the middle crossing and less than unity at the others . 
The middle soluti on is therefore unstable and the others are stable . 
Thi s is  another reason for preferring the positive root in the equation 
for 8� ( this gives the upper crossing) . 

Finally note that , after the first iteration ,  the component of 
8� in the direction of 1 
follows . Let 

= 

s* = a8 + o 
0 

<P� B�H C B 1 0 

is  a shrinkage of B .  We see this as 
T A and let o C B = 0 . Now 

k 2 �': a . 1 
0 

Now the modulus of the shrinkage factor for B is less than unity (but 
note that a = 0 implies 8� = 0 if i > 0 ) . 1 
5 . 5  Another Fi xed Poi nt  I terati on 

We argued in chapter 4 that we may be able to improve our 
estimation of the quadratic expressions in our shrinkage factor . I f  
this i s  so then we might find an improved estimator for 8 by using 
an iterative version of the estimators in chapter 4 .  In that chapter 
we suggested estimators of the form bSBT C + a a2 I for BST C and 

AT ... 2 2 T bB C B  + a 8 I for ko + 8 C B  . In the iterative process to be 
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considered we shall substitute 
these estimators . Thus we take 

B �·; i+1 = 

for 

1 29 

and 2 ••• a .. for 

to define our iterative process . Ther� may not be any best values of 
a ,  b ,  c or d at a particular step , but some reasonable choi ce needs 
to be made - therefore we should think of these as functions of B� 1. 
However , in view of the compllcati on of choosing these values , we 
prefer to keep them fixed but unknown .. After finding the fixed points 
we shall try to choose these coefficients so as to minimise the risk . 
Another problem , which also occurred in chapter 4 , is that the 
denominator may vanish if c < 0 .  To avoi d this problem we shall take 
b = d and a < c , then we shall set the shrinkage to zero when the 
numerator vanishes .  

In order to find the fixed points of the iteration we shall , for 
the moment , ignore this problem . 
5 . 5 : 1 F i xed Poi nts  

i . e .  

For B* to be a fixed point we require that 00 

= bB�·:T c 8 s* + ao2 �·: B .  00 . 00 

Thus , if a * 0 then 6� rr S - a result obtained without imposing 
any side conditions on our solutions as we had to do with the 
previous form of the shrinkage . Substituting the formula for 
we obtain 

Putting 6�·: = h 8 CX) 

( b  + 2ca. ) B1:T C 8 + � 8T C 8 + cv 82 } 6�·: lJ CX) lJ lJ CX) 

= {aa. B1:T C B�" 2aa. B1:T C S  + aa. BT C B  + � 82 } B .  lJ 00 CX) lJ ll lJ 
we obtain 

( d + ea. ) � h 3 - ( b + 2 ea. ) � h 2 + ea. A h + � h ll lJ ll 21J 

= aa. � h2 - 2aa. A h + aa. A + aa. ll lJ lJ 21J 
Finally , after simplifying this we obtain 

( d  + ea. ) h3 _ ( b  + 2ca. + aa. )  h2 + (� + 2aa. + c v ) h + ( aa.  + � ) = O lJ lJ lJ lJ lJ 2jj'A lJ 21J A 
which has three solutions for h , one of which must be real . The other 
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solutions are comlex conj ugates if they are not real . In order to 
choose among these roots it seems sensible to use one of the criteria 
used in our previous choice of solution . By analogy with that 
section we shall choose the largest real root ( which is always less 
than unity if b = d ) or the largest real part among the roots . 

5 . 5 . 2  Con vergence of the I terati on  

In  order to investigate the manner of  the convergence of  the 
iteration we shall make the assumption that c > 0 .  We shall relax 
this assumtion later . The iterative process is defined by the equation 

where 

and 

B ," ·'· " 
= u . s:  + v .  B i+1 l l l 

u . l 

v . l 

= 

= 

Now we may write any starting vector as 
... B" = e B + et> o 0 0 0 where ST C o = 0 and 

The values of e 0 

e B )T c c s�·: 0 0 
BT c B 

and 0 are 

A ;,; e s ) 2 0 } 
e = 0 

and 

s �<:T c 8 0 

o = J:.. c s* et> 0 0 
ol. A 

e B ) 0 

We show by induction that we may write 
thi s  to be so. In that case 

B ·: = e .  B + et> .  o . Assume l l l 

B -.:: a�:: A = u . + v .  B i+1  l l l 
= u .  c e . 8 l l et> .  0 ) + l 
= ( u . e .  + V . )  B l l l 

We thus have the recurrence relation 

e .  1 = u .  e .  + v . l+ l l l 

+ 

+ 

"' V .  B l 
u .  <P • 0 . l l 

cp .  1 = u . <f> • • l+ l l 
Thus all iterations give vectors lying in the same plane as 8 
Substituting for 
relations for e .  l 

u .  and v . l l 
and <f> . l 

we obtain the following recurrence 
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e .  1 = l+ " T "' cv 2 ea A }T { A } d( 8 . 8+� . o )  c < e . s+� . o )  + -- a +  � < e . -1 ) 8+� . 6 )  c < e . -1 ) 8+� . 6  l l l l l.l l.l l l l l 

= 

and 

�i+1 = 

If e .  l 

lJJi+1 = 

b 

d 8 �  l 

d e�  l 

* 0 

8 � + aa ( 8 . - 1 ) 2 
l l.l l 

aa �2 av + -- + 2'lit l.l i 2l.l 
ea + - ( e . -1 ) 2 
l.l l 

b 

+ � ( 9 . -1 ) 2 
l.l l 

+ d �� 
1 

e .  � . l l 
+ d � .  l 

� .  
1 

ea �2 cv + - i + 2iiA 

+ 

l.l 

ea �2 cv 
- + '2UX l.l i 2l.l 

then let ljJ .  so that = � l 

b e �  l.J! .  1 l 

1 

b e �  + aa 
l l.l 

< e . - 1 ) 2 + l 
� �2 + av 

l.l i 2ii1" 
We shall replace negative values of e .  by zero which means that l 

e . 1 and �i+1 1+ are also zero if a < 0 . If a < 0 and ei+1 
then I 1.J!i+1 1 > l l.J! .  I . Thus if � . > 0 then the l l.J! . I form an l l 1 

increasing sequence and do not tend to zero . Therefore the � · l 
cannot tend to zero and thus cannot converge ( zero is the only fixed 
value for � .  ) • On the other hand , if  

1 
a > 0 then the l.J! .  -+ 0 

1 

> 

and therefore � • -+ 0 . If ,  when 1 a < 0 a fixed point has e > 0 
00 

and � = 0 then it  cannot therefore be stable . However a modified 00 

process in which we set each � .  l to zero is worth considering . We 
may argue , as for the previous iteration , that the middle fixed point 
is the only unstable one for the modified iteration ( the iteration 
needs no modification if a > 0 ) . 

We now relax the restriction that c > 0 .  As suggested earlier , 
if  the denominator of the shrinkage factor vanishes then so should 
the numer·ator . In this case we replace the shrinkage factor by zero . 
This is equivalent to setting e .  l and � .  l to zero . The previous 

and arguments are unchanged so long as e .  l � .  l remain positive . 

5 . 6  P ract i ca l  E st ima tors 

In order to use the fixed point estimator of the previous section 
we need to solve a cubic equation . This is eas i ly done using a 
numerical procedure . If  the solutions are all real then we take the 
largest root ; if two are complex conj ugates then we take their real 
part or use B! = 0 if we want to accept the hypothesis B = o . 

0 
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5 . 7  Graphs  o f  Ri s k  Functi ons  for Fi xed Poi n t  Est ima tors 

Risk functions for the James-Stein estimator and its positive 
part versi on , positive part bilinear shrinkage estimator and the 
fixed point estimators were all computed using the formula 6 . 3 . 2  
which , for the spherically symmetric  case becomes 

r0 ( F )  f£:.?. v )  = El v( 2 -4F 

where o ( X , S )  ( 1  c v ( F )  ) X = F 

+ ( 1  dv + c v ) dF 
p- 2 c = --V+2 

1 J 
\) c = - c p 

and the expectation is  with respect to the distribution of the usual 

F test statistic  for testing s = 0 i ..e . 

order that the integration should be over a finite range , this 
di stribut ion was transformed to a non-central beta di stribution using 

the transformation U = pF 
\! + pF The integral was divided into four 

ranges , the lower and upper tai ls and two central areas on either 
side of the approximate mode . This ensured more rapid convergence and 
made certain that the integration procedure did not miss the narrow 
peak which occurs in the beta distribution when \! or A is  large . 
The procedure used repeated bisection of the interval farthest  from 
the mode until  the convergence criterion was sat isfied , and then 
repeated the process for the next interval . A maximum of 203  
evaluations  was allowed in each of the four intervals and the values 
of the beta density function were saved for the evaluation of future 
risk functi ons . In certain cases the beta density is unbounded near 
U = 0 or U = 1 so these extreme values were not included in the 
range of integration .  The range extended close enough to these end 
points for an upper bound to the integral over the neglected intervals 
to be less than a tolerable error threshold . The central regions 
extended to approximately three times the standard deviation either 
side of the mean ( unless this led to values outside the interval [ 0 , 1 ] ) .  

In order to choose the ranges of integration , the beta density 
function was plotted with a wide range of parameter values .  On the 
same graphs an approximation to the density based on an approximation 
to the non-central F distribution given by Searle ( 1971 )  and various 
points were marked . These points corresponded to the mode and points 
of inflection of the approximate density , the transformed inflection 
points of the approximate F density , the mean and points one 
standard deviation each side for the approximate beta distributi on , 
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and the transfornation of these points for the non-central 
distribution .  

1 3 3  

F 

In most cases it  was observed that the approximate density and 
the true density were almost indistinguishable , and where they 
differed visibly the difference was not great . The mode of the 
approximate beta distribution was chosen as a cetral value and , as a 
measure of width , the standard deviation was multiplied by the mode 
divided by the mean . The other curves shown with the graphs of the 
density functions in figures 14-19  (which are a selection from the 
set of graphs plotted ) are the cumulative curves calculated at four 
points by two different numerical routines and smoothed by fitting a 
piecewise cubic function to the cumulative frequencies and its 
derivative . These routines were not subsequently used in the evaluati on 
of the risk functions .  

When evaluating the risk estimate , the derivative of v ( F )  i s  
required . While this presented no dificulty for most of the estimators , 
the derivative was sometimes discontinuous . For the iterated est imators 
of this chapter the formula for the derivative of an implicit function 
was used . 

Initially the cubic equation for the shrinkage factor was solved 
using the procedure REALPOLYZEROFINDER in the Burrough ' s  numerals 
package . This proved to be too sloww and was replaced by a specially 
written procedure whi ch proved to be ten times faster . This  procedure 
used the well known algebraic solut ion in the case in which the 
equation has two complex roots . For the case of three real roots an 
iterative solution ,  based on the well known trigonometrical solution , 
was used . The numerals package was , however , used for the cubic spline 
subroutine and for the numerical integration procedure . 

The program was written to be used interactively so that 
information from earlier plots could be used to help with later plots . 
In particular t h i s enabled value s for t h e parameters in the 
estimators to be chosen close to values which had shown promise , and 
also enabled the ranges of values for the axes to be chosen interacively .  
I t  was also possible t o  choose the number of graphs t o  be plotted per 
frame and which graphs to be so plotted . Interactive runs were used in 
order to gain experience with the program . Once choices of parameters 
etc . had been made the remainder of the computations were done in batch 
mode . 

The risk function was plotted for seven equally spaced values of 
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<P = � between zero and three - the number of points and the 

range being chosen interactively when the program was run . A cubic 
spl ine was used to smoothly fill in the intermediate values .  In cases 
in which the risk fluctuates wildly , this cubic spline is a poor fit 
and gives graphs which oscillate in the extreme . An aberrant spline 
was therefore taken to mean that the estimator was also poor . An 
example of this behaviour is shown in figure 27. 

For the estimator 6 ( X , S ) = ( 1 -
ea ) X F and its positive part , 

the difference between the risk and the James-Stein risk was p lotted . 
The graph of the differnce between the risk of the estimator in 
question and the risk of the Efron and Morris version of the positive 
part James -Stein estimator ( taking a = 

then plotted . We have already presented 
m in (p-0 . 6 6  n+2 

p-2 n-0 . 66 
these in chapter 2 .  

' 2 )) was 
This 

difference was also used for all the other estimators . The risk for the 
James-Stein estimator was found to agree with the risk calculated in 
chapter 2 thus verifying the accuracy of both programs ( at least when 
the shrinkage has zero derivative ) .  

The risk functions for the estimators of chapters 4 and 5 were 
plotted for values of p and v given in table 4 .  

Tab.f.e 4 Va.f.ue.-6 o n  p a.n.d v 6oJt wh.J..c.h th e  RUk Fu.netioYL6 Have Been 

Computed 

1�-���---:--�--:-o--�---2-:--+---:--41·--:-o� 
For each of these values the risk functions of the bilinear 

shrinkage estimators a + b F X c + d F for values of a , b , c and d in 

table 5 were plotted . On the same graph as each bilinear shrinkage 
estimator were plotted the risk functions for the corresponding 
iterative versions  with a the weighting factor in the variance 
estimate , taking values 0 0 .  5 and 1 . 

As it had been found that changing th value of lJ , the divisor 
for the variance estimate , had little effect , we kept lJ = v when 
running the program in batch mode . 

A sample of these graphs i s  shown in figures 2 0-49 and a key 
to the plotting symbols for these curves is shown in table 6 .  For 
all values of p and v some of the estimators performed comparably 
with the Efron and Morris version of the James-Stein estimator , but 
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only when p = 3 were any of the estimators uniformly better . In 
this case they were s ignificantly better . It is to be noted that only 
when p = 3 that the Efron and Morris  estimator differs markedly 
from the preliminary test level of 50% and this could be an explanat ion 
for the improvement . I f  this is  the case then some of the estimators 
for other values of p and V in table 1 ( section 2 . 2 . 1 )  which 
improve on the Efron and Morri s rule except near the origin , might be 
capable of being tuned to give improved estimators everywhere . 

Table. 5 Vafuu o 6  a , b , c. and d 6oft Whic.h ShJr.in.kage. E6.tUnatoM 

o 6  &Un.e.a.Jt Type. an.d Thw Itvr..o.tive. Ve.IL6ioM wvz.e. Plotted 

a b c d 

- p p 0 p 
n 

- n+2 P p 0 p 

- 1 p 1 - p p 
- 1 n p - - p p n-2 

n n - -- p - ( 1 - p )  p n+2 n+2 
- p p 1 - p p 

n - p p - - p n-2 p 
2 - p p n-2 P p 

n n - n+2 p p -. ( 1 - p ) p n+2 
0 p 1 p 
0 1 1 p - - p p 
0 1 1 p - - p 2p 
0 p p p 
0 n-2 p --n - p p 

- 1 2 p - n+2 p 
n-2 4 - -- p n(n+2 ) p n 
n 

n-2 p 0 p 

One feature of the graphs is that when the bilinear shrinkage 
estimator does well its iterative versi on usually does well also .  This 
does not mean that the iterative versions are better although this is 
often the case . 
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It is not at all clear from these plots which estimator is the 
best to use in practice except when p = 3 . The Efron and Morris 
estimator compares favourably with the more complicated estimators of 
this chapter and may be worth considering for its simplicity . On the 
other hand , there are estimators of this chapter which sacrifice some 
of the saving in risk near the ori gin to save in risk for larger 
values of A . It could be the case that some users would prefer 
these . Examples appear in figures 2 1 , 2 2 , 2 3 , 24 , 2 5 , 26 , 3 2 , 37  and 44 . 
Unfortunately there is no consistency from one pair of values of p 
and V to another in the choice of good values for the parameters 
of the estimator . 

Table. 6 Ke.y :to :the. P.to:tting Symbo.tt. ivt G.tta.ph6 o 6  FiguJte.-6 2 0 - 4 9  

A maximum 
0 bilinear 

-

0 iterated 
V iterated 

-

0 iterated 

likelihood estimator 
shrinkage 

-·- ·- · - -- - - ·- ----- - - ------·-

bilinear shrinkage a = 0 . 5  
bilinear shrinkage a = 1 
bilinear shrinkage a = 0 
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C h a p t e r 6 

R i s k  Functi ons for Shrunken Est i mators 

6 . 1 I n troduct i on 

We shall cons ider the following problem . Given that X rv N ( � ,o2 I )  p 
and with X and s independent , and given the loss 
[< � . �  ,a2 ) = a- 2 11 � - � i l 2  we wish to calculate the risk function for 
estimators for � of the form 6 ( X , S )  = h ( W , S ) X  where W = 1:. l l x i J 2 • p 
An estimator of this form will be said to be spherically symmetri c .  I f ,  
in 
F = 
X -+ 

addition , 
w then s 
aX , s -+ 

the shrinkag� factor , h ( W , S ) ,  depends only on the ratio 
the estimator is invaria�t to transformations of the form 
a 2S ; a property which we shall call scale inva:rian ce . 

It j s  convenient to define g( W , S )  = 1 - h ( W , S ) , 
1 v (W , S )  = � F g( W , S )  and w ( W , S )  = v( W , S )  1 where c 

_ n-2 n c = .o:.......:=_ __ p n+2 
The estimator 6 ( X , S )  �ay then be written in any of the forms 

o ( X , S )  = h ( W , S ) X  = [ 1  - g ( W , S ) ] X  
= [ 1  - � c v (W , S ) ] X  = [ 1  - f c { 1 + w ( W , S ) } ] X .  

Note We have define� S rv 1:. a 2  x 2  rather than S rv a 2  x 2  hecause n n n 
this allows the case of unknown variance to ba conveniently treated as 
a special case by putting S = a2 �nd formally WTit5ng n = m .  In 

order that the notation be consistent we have defined 
that w 'V !  x2 0 )  whe:re A 'V �  o- 2 l i � W . p n 

w = � l lx i l 2 p 

In the next section we collect together some lemmas �.,hich wi 11 
be useful in derivtng some of the many expressi ons for the risk 
function . 
6 . 2  Some I denti t i es I nvol v i ng  Expecta ti ons  

so 

The first ident ity is a well known result gi ven , for example , in 
Rao( 1 97 3 )  and in Lindley ( 1 96 5 ) . 
Lerruna 1 

then 
If X 
E [ X] = 

is a s calar random 
a - J�oo F ( x) dx + 

variable for whi ch Joo ( 1  - F( x ) ) dx 
a 

E [ X ] exists 

where F( x) i s  the di stribution function of X and a is a constant . 
Proof 

and 

Integrating by parts �e see that 
IT X 
a 
f
a 
x 

-U 

dF( x ) = [ - x( 1 - F (x ) ) ] T + a JT ( 1 - F (x )) dx 
a 

dF( x ) = [ x F ( x) ] �0 fa F ( x )  dx J -U 
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so that r X df( x ) = a -
(a 

F ( x) dx + IT ( 1 - F( X ) )  J -U -U a 
+ u F ( U ) T ( 1  - F( T ) ) .  

Now T ( 1  - F ( T ) )  = T J: dF( x ) :::; J; X dF( x ) 
and this tends to zero �s T � ro s ince E [ X ] exi�ts . 

S imilarly U F( U ) = 

tends to zero as U � oo .  

I-Ll U dF ( x )  
- ro J--� � - x dF( x ) 

dx 

The next lemmas a.re of similar form to this but relate to 
particular distributions . At the se�me time we can calculate the 
expectat ions of more complicated funct i ons than X .  
Lemma 2 

then 
If X �  N ( � , o2 ) and h ( . )  

E ( X  h ( X ) ] = � E [ h ( X ) )  + 
is absolutely continuous 

E [ d
d 
X h( X ) ]  d so long as h ' ( X )  = dX h ( X )  exists almost everywhere and both 

of E [ X ] h ( X )  and E [ h ' ( X ) ]  are finite . 
Proof 
so that 

The densi ty of X is p ( x) = A exp { -�-2 ( x- � ) 2 }  
� p ( x) = - o-2 ( x-� ) p ( x ) and thus dx 
a2 p ( x) = J < x-� )  p ( x ) dx . 

Integrating by parts we obtain 

1 59 

r ( x- � )  p ( x )  h ( x ) dx [ - a2 p ( x )  T ( T p ( x) h ' ( x ) dx . = h ( x) ] _u + J _u -U 
lim rT ( x-� ) Also E [ ( X-0 h ( X ) ]  = p ( x) h( x) dx 

U ,T� · -U 
and E [ h ' ( X ) ]  = lirr. IT p ( x ) h ' ( x )  dx . 

U ,T� -U 
We therefore need to prove that lim p ( x) h ( x) = 0 .  

�±ro 

No\.,r fro ( x- ; ) h ( x) p ( x) dx and fro 
h ' ( x) p ( x )  dx 

� � 
are both finite so that lim p ( x ) h ( x )  i s fini.te . If this limit is 

X� 
non-zero then we may , without loss of generality , suppose that 
V x > U ,  p ( x) h ( x )  > Z > 0 .  We then have I: ( x-< )  h( x ) p ( x) dx � ( U- < )  I: h ( x )  p ( x) dx � ( U- � ) ( T-U ) l .  
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Since the left hand s ide is bounded as T -> eo it is impossible that 
l > 0 s ince otherwise the right hand s ide is unboundecl . 

S imilarly , we may show that p ( x )  h ( x ) � 0 as x � - eo 

Lemma 3 If X �  N ( � ,o2 ) and h( . )  is absolutely continuous then , 
so long as E [ X  h ( X ) ]  is finite , 

E [ X  h ( X ) ] = � E [h( X ) ]  + o 2 � [ h ( X ) ] .  
Proof 
lemma 2 

Diffel-·entiating the density function 
partially with respect � we obtain 

p ( x) a a[ p ( x) 
in the proof of 
= � p( x) . 0 

Therefore E [ ( X -0 h ( X ) ]  - J eo a2 {.l_ p ( x) } h( x) dx -
-00 

a � 
= o 2 :� f_: p ( x) h ( x) dx 
= a 2 a a� E [ h ( x )  J • 

The next lemma appears in Efron and Morr.i..s ( 1975 ) .  The proof b given 
here as Efron and Morris do not prove convergence . This lermna is also 
a consequence of ( 4 ) below , but that proof assumes that h ( . )  is 
continuous at the origin , whereas this proof does not . 
Le;;una 4 If s � a x 2  ( or more generally S � y (� ,2a ) with n 
not necessari ly an integer) , h ( . )  is absolutely continuous w.i..th 
derivative existing almost everywhere then 

E [ S  h ( S ) ] = a n  E [h( S ) ]  + 
so long as S h( S )  and S h ' ( S ) 
Pl'•oof 
so that 

The deusity function of aas ( s  p ( s ) ) = � p ( s )  

2a E [ S  h ' ( S ) ]  
both have finite expectat i on .  �n-1 s S is p ( � )  = A s exp (- 2a ) 1 ;a s p ( s )  

and f < s - a n ) p ( s )  ds = -2a s p ( s ) .  
Integrating by parts we obtain 

n 

( T 
J ( s-an ) p ( s )  h ( s )  ds = £ [ -2as p ( s )  h ( s ) ] T £ + 2a JTs p ( s )  h ' ( s )  ds . £ 

Dividing the integrals from E to T as the sum of integrals from 
E to a n  and f-rom a n  to T we see ihat: if these tend to finite 
limits as T � eo  and as E � 0 then s p ( s )  h( s )  also tend to 
finite limits as s � 0 and as s � eo ,  I f  the limits are non-zero 
then we may , without loss of generality , assume that they are positive : 
if not , consider -h ( s ) .  Suppose that lim s p( s )  h ( s )  = l > 0 � there exists U > a n  for which V s > U ,  s p( s )  h ( s )  > l 

and ( ( s -an ) p ( s )  h ( s )ds :. ( U  - a n ) ( p ( s )  h ( s )  ds 

so that 
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whi ch i s greater than or equal t o ( U - a n ) l J
T ! ds .  s u 

Similarly , if lim s p ( s )  h( s )  = l > O then 3 o < a n 
t:-+0 such that V s < o s p ( s )  h ( s )  > l 

and r ( a n - o )  p( s )  h ( s )  ds � ( a n - o )  rp ( s )  h ( s )  ds 
E E 

J o 1 � ( a n - o ) l s ds . 
E 

In both cases the right hand sides converge by assumption . This 
contradicts the assumption that the other limits are non-zero and 
proves the lemma . 
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The next lemma collects togethel' some results for the multivariate 
normal distribution which are mostly generalisations of lemmas 2 and 3 .  
We shall not find all of them directly useful l;ut , in the order given 
the later results are derived fi.··om the earlier ones . The first result 
is quoted in Efron and Morris ( 1 97 5 ) ; the sixth is adapted from 
Stein ( 196S ) . 
Lerruna 5 Suppose that X rv N ( E; ,o2 I )  and h ( . ) is an absolutely p 
continuous row vector ( or scalar ) function independent of E; . Suppose 
also that in each of the following expressions the left hand side is 
finite and the last term on the right hand side exists and is finite . 
( In expressions involving derivatives of h with respect to X this 
implies that the derivative exists almost everywhere ) .  The following 
results then apply : 
( 1 )  E [ X  h( X ) )  = E; E [ h ( X ) )  + a2 E [ 0°E; h ( X ) )  
( 2 )  E [ X  h ( X ) )  = E; E [ h ( X ) )  + a2 0°E; E[ li ( X ) ]  
( 3 ) E [ X  h( X") ] = a2 e- 1. 0°E; { e

A E [h ( X ) ] }  

( 4 )  
( 5 )  
( 6 )  

E [ X  h C I I x i i 2) J = E; E [h < l l x i i 2) J 
E [ X  h (  l i x 1 1 2) ]  = E; E [ h (  l i x i i 2) J 
E [ X  h ( l l x 1 1 2) J = E; e-A 0°A { eA 

+ 2 o2 E [ X h ' C I I x i i 2) J 
+ � a

a>-. E [ h < l l x i i 2) J  

E [h ( 1 1  X 1 1 2) l }  
( 7 ) E [ 1 1  X 1 1  2 h ( X ) ] = E; T E [ X h ( X )  ) + p o 2 E [ h ( X)] + a 2 E [ X T Cl a X h ( X )  ] 

( 8 ) E [ l l  x l l 2 h( I I X 1 111 = E;TE [ X h ( I I X W)] + p a2 E [h ( I I X W) ]  

+ 2 a 2 E [ 11 X 1 1  2 h ' ( 1 1  X 1 1 2) ] • 

Proof Note first that if any of the above results is true when 
h( . )  is a scalar then it is also true when h( . )  is a row vector . 
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We see this by applying the result to each l:Omponent of h ( . ) .  Writing 
E .  fo:r· the expectation with respel:t to X .  ( the i th component of X )  l l 
we have , by lemmas 2 and 3 ,  for s calar h ( . ) :  

E . [ ( X . - E, . )h ( X ) ]  = a2 E . [ "aX h ( X ) ]  = cr2 "arc E . [ h ( X ) ] . l l l l a • a c, . l l l 
thus , on taking expectations with respect to the other coordinates we 
have , 

E [ ( Xi - E,i )h( X ) ] = cr 2  Ei [:X . h ( X ) ]  l thus proving ( 1 )  and ( 2 ) . 
= a2 a

a
E, . E [ h ( X ) }  l 

Now , for any function f( E, ) ' differentiable w.ith respect 
a ;.. a[{e f( E, ) } = 

= 

a t.. A. 
a[ e 

- 2 a E, 

f( E,;) A. a + e a ;; f( 0 

A. f( O A. a e + e a[ f( E,) .  

to E, ,  

S ince E [ h ( X ) ]  is a function of E, differentiable with resect to E, ,  
( 2 )  and ( 3 ) are equivalent . 

Now suppose that a function f ( y1 , . . .  ,y ) depends only on the length 
� p 

of y = [ y1 , . . . ,yp] � .  Taking polar coordinates r , 8  where 
T obtain = [ e 1 , . . .  , ep-1 ] we 

( a ) af af a!" a e  af af ar 
ay = ar ay + ay as = ar ay since af as = o .  

Applying this to h( 1 1  X 1 1 2 ) which depends only on the length of 
a 1 1 · 1 1 ?\ - a ll xll 2  a ' I 1 1 2 have ax  h (  X -, - a x a 11 X wh( 1 X ) 

and so ( 1 )  implies ( 4 ) .  

X we 

Also , 1 1  X 1 1 2 has a non-central x2 distibution which therefore 
depends on E, only thl'ough l l c, W =  2 A.o2 and so E [ h< l lx W ) J depends 
only on A. and we may apply ( a )  to obtain 

j_ E [ h ( l l  X 1 12 ) ] = a t.. j_ E [ h ( l l X 1 1 2 ) ]  = a-2  E, "a' E [h( J i  X 1 1 2 ) ] a c, a c,  a t.. a A  
and so ( 2 ) implies ( 5 ) .  

By the same argument ( 3 ) implie::; ( 6 )  or alternatively we may show 
the equivalence of ( 5 )  and ( 6 )  in the same way that we showed the 
equivalence of ( 2 ) and ( 3 ) . 

Writing XT h ( X ) instead of h ( X )  in ( 1 )  we obtain 
E [ X XT h ( X ) ] = !; E [ XT h( X ) J  

= !; E[ XT h( X ) ]  
+ cr2 E[j_ ( XT h ( X ) ) ]  a x 
+ cr2 I E[ h ( X ) ] 

for h a scalar function of X .  Taking the trace of both sides of this 
expression proves ( 7 ) .  
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We may now prove that ( 7 )  implies ( 8 ) in the same way that we 
showed that ( 1 )  implies ( 4 ) . 

One final comment on the proof is necessary . I f E [ X  h ( X ) ] 
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is finite then so is E [h ( X ) ] and if E [ l l x l l 2h ( X ) ] is finite then 
so are E [ X  XT h ( X ) ] ,  E [ XT h( X ) ] and E [ h ( X ) ] . 

We may now prove some similar results for non-central x2 and 
F disributions ( the degrees of freedom not necessar'ily being integers ) .  
They are mure complicated since the derivatives of the density functions 
are related to dens ity functions in the s ame distributional family but 
different numbers of degrees of freedom . Since these densities are 
mixtures of the co:r·responding central dens ities , we may also de:r'ive 
expressions relat ing to expectations with respect to the mixing 
distributi on which is Pois�on �ith parameter A .  

We first make some remarks concerning the notation for these 
mixtures of distributions . 

Suppose that T is a 1 ·andom variable and for each t there is 
a random variable Xt . If n ( t )  is the dens ity function of T and 
pt ( x) is the density function of xt then the j oint density 
pt ( x ) n ( t )  is the denslty of a random variable ( X ,T ) where the 
conditional distribution of X given T = t is pt ( x ) . The marginal 
density of X is J pt ( x ) n ( t )  dt . We use the notation XT for a 
random vari able with thls density . The random variable XT is defined 
as follows : ubserve T = t frum the density n ( t )  then observe Xt 
from the density pt ( x ) .  This variable may be thought of as a mixture 
of the Xt random variables with weighting function n ( t ) . 

With the above notati on we may write x2p+2K for a random 
variable with a non-central x2 ( A ) distribution where K has a p 
Poisson distribution with parameter A .  A similar remark applies to 
the unweighted non central F distribution ( i . e .  the ratio of a 
non-central x2 distribution to an independent central x2 
distribution - not divided by their degrees of freedom) which is a 
Poisson weighted mixture of unweighted central F distributions . 

He may no� state and prove a lemma concerning central and 
non-central x2 distributions . 
Lemma 6 I f  U "" a 2 W �., i X p+2i i 
Poisson distribution with parameter 

a x2 � . ( A )  then, if p+ .£ 1. 
' u . u d 1\ ' " l = i + K an 

K has a 

( 9 )  E [ U� h( U . ) ]  = (� + i )  ( 2a )�E [h ( U .  ) ]  if either side is finite l l L � l+� 
- A 3 { A 

• } = e � e E h ( W . )  0 11. l 
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( 11 ) E [ w .  h ( W .  ) ] = ( ,, + 2 i )  a E [ h ( W .  A ) ] + 2 a A E [ h ( W . 2 ) ] 1 1 r 1+i l+ 
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Proof 

density of 
Let the density functi on of U .  

1 

W .  be p . ( w ) . These densities 1 l 

0 ( ' be pi U J  and let the 
are given by 

�+i-1 u u ex·p· ( - -) o 2a p . ( u) = ______ ..:._ and p .  ( w )  l 

00 k - A ) A o 
= 

e 
k� Ok !  

pi+k (w ) l !:2p+i ( 2a) 2 r (�p+i ) 
and the j oint density of U . K l+ and K is given by 

Ak o ' 
p . ( u , k ) - I\  k! P · , ( u ) . = e 1 

Since f ,a: 0 
u p .  1 

E [ U� h ( U . ) 1 1 

( u) 

which proves ( 9 ) .  

• 1+K 
= ( 2a ) a (�p+ i ) a 

0 ( u ) we have pi+a 
= h( u ) p .  ( u ) du Jooo ua o 

l 
= ( 2a)a 

= ( 2a )a 
( !:2p+ i )  J: h (u ) 0 ( u) du a pi+a 
(�p+ i ) a E [b ( U .  ) ]  l+a 

-A a oo A k Joo o = e -;;y { I  -]< !  h ( u )  p1. +k ( u ) du } 
<J k = O  . 0 

kAk-1 (oo o 
k !  J "  h ( u )  pi+k ( u) du 

u 

' 00 ' k roo 
= e - �� \ 11 h ,' u) 0 ( ' du L k' j p . .  1 +' U J  

k= O ; 0 1-r K 

= E ( h ( W  . .  1 ) ]  1"1" 
which proves ( 10 ) . 

- I. � A k Joo o Also E [ W  . . h ( W . ) ]  = e L --k ' u h ( u ) p1. +k ( u ) du 1 l 

Proving ( 11 ) . 

k = O  . 0 
00 k roo - A 'i' A o = e L -- J ( 2a ) (�p+i+k ) h ( u ) p ( u ) du 

k= O k ! 0 i+1+k 
ClJ , _  00 - A \ A)\. J

r o = e L ( 2a ) (�p+i ) h ( u )  p ( u ) du 
k = O kT 0 ..i.+k+1 

00 k 00 - A I' kA f o + e L -k ' ( 2a ) h ( u ) p1. +,J\_+1 ( u )  du k= O • 0 
= ( p+2i ) a E [ h ( Wi+1 ) ]  
= ( p+ 2 i )  a E [ h ( W i+ 1 ) ] 

+ 2a A e-A ,.,a, { eA E [ h ( W .  A )J } 
0 1\  1+.!. 

+ 2a A E [h (W .  ,.... ) ] 1+L 
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Finally , 
(X) k r(X) E [ K h( U .  K ) ]  = e-X L %- J h( u )  0 ( u )  du 

1+ k= C k .  0 
pi+k 

= 

proving ( 1 2 ) . 

Note that by ( 1 0 )  �a, E [ h ( W .  ) ] = E [ h ( W .  1 ) ] - E [ h ( W .  ) ] • 
d l\  J. J.+ .l 

The next lemma refers to the unweighted F and non-central F 
distributions , or to multiples of them . We note that an unweighted 
F ( X )  distribution is the same as an inverse non-central beta m ,n 
di stribution with parameters � '  � and non-centrality parameter 
and whose density funct i on is 

Lemma 7 

-X (X) X k p ( u )  = e L -, 
k=O k .  

1 �+k-1 u 
B ( �k ,�n ) ( 1+u)�m+�+k 

If F . . "- a 13i�p+i ,�+j ) then J.] 

1 6 5 

' 
1\ , 

( 1 3 )  a -13 ] E [ F  . . ( a+F . . )  h ( F . . )  
(�p+i ) (�+j ) Q a-B  a a-�  [ ] = a  (�p+\n+i+j )13 E h ( Fi+a ,j +a-13 ) J.] J.] lJ 

If G • •  J.] a then G • .  = F .  , . wher-·e K has C1 l.J J.+r- , J 
Poisson distribut ion with parameter I. Cilld 

( 14 ) E [ G� .  ( a+G . . ) - l3h ( G  . . ) ]  lJ lJ J.] 

Proof The probability density of F . . is given by l] 

Therefore 

0 p . . ( u) l] 

a u 0 

= 

p . .  
( a-tu) 13 1J 

It follows that 

�+j a �+ i- 1 
u 

B(\p+i ,�n+j ) ( )�+�+i+j a+u 

= B (�-ti+a ,�+j+l3-a ) o ( u) 0 a pi+a , J' +I3- a B (�p+ i ,�+j ) a�-
( �p-t i ) (�-tj ) Q a-13  a � -a o = a ( . ' ) p .  . 13 ( u ) . �p+�+1+J 13 l+a ,J +  -a 

I �a 
t • .  

E 1J -
( a+F . .  ) � J.] 

h ( F  . .  ) ] = l.J 
a-B (�p+i ) a (�+j )13-a J(X) a 0 h ( u ) p0 ( u )  du (�p+�n+i+j ) f3 i+a , j+i3-a 

Proving ( 1 3 ) .  
The probability density of G • •  J.] 

and the j oint density of ( F .  K . , K )  1+ , ]  

is -X � >.k o p . . (u ) = e L j:(T p . +k . ( u )  lJ k=O ' J. , J 
' . k - 11. A 0 is p . . ( u ,k )  = e -k ' p . k . ( u ) . J. ] • l+ , ]  
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Therefore a 
r G • •  El 1J 
( a+G . . ) 8 

1] 

a 
h ( G  . . ) ] = E fE [ Fi+K ,j 

8 h( F .  K . ) ! K] ]  1J l ( F ) 1 + ,J a+ . K . 1+ , ]  
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a- a � - a [ S [ P .�+i+K ) (�+j ) o l l  = E a E • . h ( F . . ) K (�+�+1+J +K) 8 1+a+K , J+B-a I J J 
r ( �+i+K) N ] = aa-8 ( �+j ) o _N E l-.,.,(1...----.-1--=-·--:-· -K"'-.)- h( F .  K . o ) � 

'-' �+�+1+] + 8 1+a+ , J + � -a 
proving ( 1 4 ) . 

6 . 3  An Unb i as ed Est imator  for the Ri s k  

We shall denote the risk function of the estimator 6 ( X , S )  by 
R6 ( Co2 ) .  The followi11g theorem generalised from Efron and Morris ( 1976 ) 
gives a formula for the risk of 6 ( X , S )  = ( 1  - y c v( W , S ) )  X in terms 
of W and S .  
TheoPem 1 If v( W , S )  is absolutely continuous 
derivatives existing almost everywhere , if c = 
each term under the expectation operator in the 
is finite then 

with partial 
E. - - p-2 c - --n n+2 
right hand 

and 
side 

( 1 )  + W Cl v  _ aw C V  S �;}] , 
PPoof We may write 

R6 ( � , a2 ) = a-2 E [ l l < x c/ X ) - E, i l 2 ] 
r -2 1 ' ' 1 2 -2 c v T = El a I X-� I - 2a -f- X ( X-0 

if  
of 

Now using ( 7 )  of lemma 6 . 2 . 5  applied to Y= X - � ( which has zero 
expectation ) and tak ing  h ( Y )  = a-2 we have the well known result 
that E [ a-2 l l x- E, l l 2 ] = p .  
Using ( 8 ) of lemma 6 . 2 . 5 where V h ( X ) = 02F and afterwards taking 
expectations with respect to S we obtain 

a-2 E [f XT ( X-0] = p E [ E [-fl s J J  + 2E [ E [  I ! X ! 1 2 a!! � llz(f) ! S J J  
= p E [ f J + 2 E [ W Cl

a
W (f) ] 

[ V ,  2E F J + 2E [f W ��] 
where the second equality is due to the scale invariance of the 
operator 

w 
a Y ay  

a v aw <'f) 
and the third 

= w a ( Sv, aw w' = 
Finally , using lemma 6 . 2 . 4  with 

is 

s 
due to the fact that 

av Sv w - V = aw F 

2 'I · ·  I ' 2 h ( S )  = V �- " .1 a- WF 

av -aw 
V -F 

and tak ine expectations with respect to X last we obtain 

and 

( 1 ) 
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2 o-2 [ E ; l l x IF J = 
2 E [Pj_ S ] o - r  

2 = E [ E [;/F s I W] ] 

The last 

2 _ [ v , = p .t.. -J F + q E [ S � n as 
v2 

= p E [ - ] F 
" ? 

+ � E [  ::_- J n F 
equality follows from the fact that 

a 2 s aas < v2 S S v2 s ' V  ) \ \ - = -w I = -w- + a s  F 
v2 

= + F 

2 (�) ] F 
4p E (� av + s as J . n .t 

2s 2 av -w V as 
� s  av as · F 

Combining these terms together gives 

R ' r ? )  - r - <  2 ,v , 2 p n+2 _ , 4c w av 0\  <, , a - = p - .t.. c p- ''f \ - n p-2 c V J + F aw 

1 67 

4c2p V dV ) n F  5 as  · 

-This is true no matter what value we take c to  have . It  is convenient 
to take c = p-2 n arJd c = E. c p n+2 11 

in which case 

R0 ( � , o2 ) = p - 4c E[�P�2 v( 2-v)  + 

Note that, for the proof to be valid , each term must have finite 
expectation since tht: proof calculated the risk as the sum of the 
expectations  of several terms . 02 Remark I f  a = - then lemrna 4 remains formally true when n = oo n 1 and S = a2 since - x2 converges strongly to 1 as n � oo .  In this n n 
case the last term i s  zero ( if h ' ( o2 )  exists ) so that , in the theorem , 
c = 0 .  This gives the fo:r•mula for known va:c·iance 

R0 ( � ,o2 ) = p - 4c E[-f{ P�2 v( 2-v )  + w �� }] . 
We will now express the risk function in terms of F and S .  

This wi ll 

We let V 
shrinkage 
subscripts 

We have 

therefore 

and 

be seen to be a special case of the transformation 
u = was8 

' V = wrso whet'e det [� �] * 0 .  
r·epresent the vaZ.ue of the function occurring in the 

factor so that we may write v( U,  V )  = v( W , S )  and use 
to denote 

[ aaw 
= 

i:J as 
, av Wvaw) s = 

" ( av ) .:> as  w = 

the var·iable held constant 
[ au aw 
au as 

av ' [ a l aw j au 
av 8 
a s  av 

= 

, av 
a u , au ) v + ' "( av ) Y v av u 

n Ov  6 u ( au \ + o v<��)u 

u a w-
8 �  s 

in partial der� vatives . 
v 
] [ 

a 
l 

Y � a
a
u 

8 s av 

• 
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This gives the rlsk function in terms of U and V 

R0 ( � ,o 2 ) = p - 4c E [% {P�2 
v( 2-v ) + ( a - B c v ) u (;�)v + ( y -o c v ) V (��)

u}] . 

As this tioes not involve E;. or cr2 explicitly this provides an 
unbiased estimator 

I f  we define 

and 

for the risk 
1 {p-2 c - \ ( ) (

av
) r 4 v L -v , + a - S  c v u au v + 

= 

= 

1 ( p 4c 
1 

4c ( p  "'R 1 "  V ) '  \ u ' ) 

av } ( y - o c v ) v (av)
u 

. 

then these give the scaled reduction in risk over that of the 
maximum likelihood estimator and ar, unbiased estimator of this quantity .  

W e  ar-e particularly interested in the result of putting U = F ,  
an cl V = S given l>y a = 1 , B = - 1 , y = 0 and 6 = 1 .  W e  quote the 
result as a theorem . 
Theol'em 2 I f  v( F , S )  is absolutely continuous with finite part i al 

n _c 
__ n - 2  derivatives almost everywhere , if c = c.. L....::... n n+2 and if each term on 

the L··i ght hand side of ( 2 )  l1as finl. te expectation then an unbi ased 
estimator for the scaled reduction in risk over the maximum likelihood 
estimator is given by 

1 (p-2 
= - ./ -- v ( 2-v ) F L 4 - C V  S 

cr'he speci al case in which v is independent of S - except for the 
depeudeuce un S implicit iu the dependence of v on F - was given 
in Efron and MorPis ( 1976 ) ) .  

As an application of this result we take v = t so that we have 
� < ) 1 p-2 c �  , J.·6 r , s  = r � t L-t ,  

which i s  positive if 0 < t < 2 with a maximum of at t = 1 .  
/ Thus we may achieve a uniform reduction in risk by using this estimator 

which is the James-Stein estimator . In chapter 7 we shall show that there 
is no spherically symmetric estimat or with uniformly smaller risk 
estimator than the James-Stein estimator with t = 1 .  However , we shall 
see in the next section that the positive part James-Stein estimator 
does have uniformly smaller risk than the unmodified version .  This  
demonstrates that we  need wore powerful results to  prove some 
domination theorems . 

Efron and Morris ( 1 976 ) showed that when v depends on F 
alone the unbiased estimator of the risk is unique . We shall show that 
the same is true in the more general case considered here . This follows 
f:t•om the completeness of S as a function of o2 and from the 
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.J. completene_ss of W as a function of A .  Suppose R" ( F ,  S )  is another 
unbiased estimator of the risk . We have * � * E [ R  ( F , S )  - R( F , S ) )  = E [ R  ( F , S ) ]  

Therefore 

"' E [ R( F , S ) ]  

� A * � E [ R  .. ( F , S ) - R ( F , S ) ]  = E [ E [ R  ( F , S )  R ( F , S )  I W] ] = 0 
which , Ly the completeness of W (whi ch i s independent of S ) , implies 

·'· E [ R .. ( F , S )  - R( F , S )  I W] = 0 almost everywhere . 
6 . 4  Exp l i c i t  Expres s i ons for the Ri s k  

We shall fi rst calculate the risk in terms of W and S .  This 
wi ll be done in terms of the shrinkage £actor h as well as in terms 
of g and v. 

We note that the risk depends on A and o2 , the dependence on 
s being only through A .  We shall henceforth write the risk as R( A , o2 ) .  

We then have the following formula for the risk : 
R0 , o2 ) = a- 2 E [ j i h ( W , S ) X - � i l 2 J 

= o-2 E [  l i X l l 2h2 ( W , S ) ] - 2o- 2 1;T E [ X  h ( W , S ) ]  + o- 2 j j � 1 1 2 •  
Now , by 6 . 2 . 6  and by 6 . 2 . 1 0 , 
E [ X h ( W ,  S ) ] = I; e-A 'daA { eA E [ h ( W , S ) ] } 

= ;
2
E [ h ( W1 , S ) ] 

wher·e W .  "- � x2 2 • 0 )  and in part i cular W = W l p p+ l 0 ' 
a2 w "' - x2 0 ) . 1 p p+2 

Thus we have 

Substituting h = 1 -g in ( 1 )  gives 
( 2 )  RO , a2 ) = po- � E [ W  - 2 W g ( W , S )  + Wg2 ( W , S ) )  - " '  + 4 A E [ g( W1 ,S ) ]  £. 1\  a2 and s ince E [ W] = - (p+2 A ) by 5 . 2 . 1 1 ( or by a well known result ) p 
we have 
( 3 )  R( A ,o2 ) = p + po-2 E [Wg( W , S ) { g (W , S ) -2 } ]  + 4 A E [ g( W A ,S ) ] . 

_!_ 

Using 6 . 1 . 1  again we obtain 
( 4 ) RO , o2 ) = p + po-2 E [ Wg( W , S ) { g ( W , S ) - 2 } ] + 2po-2 E [ W_ 1g( W_1 , S ) ]  

- 2 ( p- 2 )  E [ g ( W , S ) ] . 
Substituting C V  C V  S g = r = -w- we obtain 

( 5 ) R0 , o 2 ) ..;. p + �2 E [�2 v2 ( W , S ) ] - 2 ( p- 2 ) c E [� v( W , S ) ]  
+ 2: c { E [ Sv( W_1 , S ) ]  - E [ Sv ( W , S ) ] } 

which we ruay write as 2 2 
( 6 ) R 0 , o 2 ) = p + p0c2 E [ � ( w , s ) {  v ( w , s ) -2 } J + 2 - 2 s2 : c E [W v( W , S ) ]  

s 2 -
- 2 ( p- 2 )  c E [W v( W , S ) ] + :zc { E [ Sv( W_1 ,S ) ]  - E [ Sv(H ,s ) J } . 
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Applying the central x2  case of 6 . 2 . 1 1  with i = 0 ,  
substituted for p and a respectively , and putting 

we obtain 
{ 7 )  R O . ,a2 ) 

Applying the same formula once more gives 

a2 n and 2 n 
s . '\, � x2 1. n n+2i 

( 8 ) R ( A  , a 2 ) = IJ + p C 2E [ SWl V ( W , S l ) { v ( W , S 1 ) - 2 } ] + 2 p c 2 E [ SW1 v ( W , S 1 ) ] 
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- 2 ( p-2 )  c E[� v�W , s ) J + 2 p c{ E [ v( W_ 1 , s 1 ) ) - E [ v ( W , S 1 ) ) }  

which is an interesting result sice it does not contain A or a2  
explicitly and shows some s imiarity with the unbiased risk estimator of 
section G . 3 .  This expression does not however provide an unbiased estimator 
for the ri sk since it contaius s1 and w_ 1 which may only be transformed 
to  S and W by transformations involving unknown parameters . 

Using 6 . 2 . 11  again for the cases i = 0 and i = 1 gives 

( 9 )  R ( A , o 2 ) = p + ( p-2 )  c a2  E[� v( W ,S 2 ) { v( W , S2 ) -2} ] 
+ 2 ( p-2 ) a2{E[�

2 
v( W_ 1 , s 2 ) ] - E[�

2 
v( W , S2 ) ] } 

+ 2 ( p-2 )  c a2{E[� v( W , S 2 ) ] - E[� v (W , S 1 ) ]} 
which , by rearranging terms may be written 

( 1 0 )  R0 . , o2 )  = p + ( p-2 )  c cr2E[� v( W , S 1 ) { v( W , S1 ) -2 } ] 

Now let K 

+ 2 ( p-2 ) a2{E [�
2 

v( W_ 1 , s 2 ) ] - E[�
2 

v( W , S2 ) ]} 
+ ( p-2 )  c a 2{E[� v2 ( w , s 2 ) ] - E[� v2 ( w , s 1 ) ]} . 

have a Foisson distribution with parameter A and let 
2 

Ui = 0p x2 p+2i . We then have 2 U .  K '\. � x2 +2 . ( A )  and from ( 9 )  we obtain 1.+ p p l. 

r 1 ( 1 1 )  RO ,cr2 ) = p + ( p-2 ) c cr2EL u  . .  1\. 

+ 2 ( p-2 ) cr2{E[�
2 

v ( UK_ 1 , s2 ) ] 
while from ( 1 0 )  we deduce 

- E[�2 v( UK ,S2 ) ] } 
- E [� v(UK , S 1 ) ] } K 
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( 1 2 )  RO ,o 2 )  = p + ( p-2 ) c o2 E[�
K 

v (UK , S 1 ) {v ( UK , S 1 ) - 2} ] 
+ 2 ( p-2 ) c a 2{E[�

2 
v ( UK_1 , s) ] - Eu2 

v( UK , S2 ) ] } 
+ ( p-2 ) c a2{E[�K v2 ( UK , S2 ) ] - E[�K 

v2 ( UK , S1 ) ] } . 

Computing conditionally on K and tak ing expectations with respect 
to K last and using 6 . 2 . 9  we obtain 

2 r p-2 _ ] ( 1 3 )  R( >. ,a ) = p + p � El p-2+2K v( UK_1 ,s2 ) { v (  UK_ 1 , ;:,2 ) -2 } 

+ 2 p c E [p_P2
-}2K { v ( UK_1 ,s 2 ) - v( UK_1 ,s 1 ) } ] 

from equation ( 1 1 )  using the form of the third term occurring in ( 8 ) . 
S imilarly from ( 1 2 )  we obtain 

( 1 4 )  RO ,o2 ) = p + p c E[p_:2
-}2K v (UK_1 ,s 1 ) { v ( UK_ 1 ,s1 ) -2 } ] 

"' ,.., f p-2 { 2 c u ,... ) 2 ( " s ) } ] + P � �l p -2+2K V K-1 ' w2 - V UK-1 ' 1 

In Efron and Morri s ( 197 6 )  a formula for the risk is given which 
only applies when the shrinkage is dependent only on F .  It may be 
derived from ( 1 )  using 6 . 2 . 1 2 

= Er ( n+p+2K ) F 
l .!:! + p 

and 6 . 2 . 1 3 .  The expression is 

h2 ( F )  - 4 K h ( F )  + 2K] . 
F 

Some of the above expressions for the risk have been given before 
in the case in which h depends on F alone and a few have been 
g iven in the general cas e .  The following art icles contain expressions  
s imilar to  these , however , they are all written in  a form which makes 
e xplicit reference to K . The articles are : Alam( 197 3 ) , Stein ( 1966 ) , 
Baranchik ( 1970 ) , Strawderman ( 1 97 1 ) , ( 197 3 )  and Sclove , Morris and 
Radhakrishnan ( 197 2 ) .  

Another expression valid when v only depends on S may be 
derived either from ( 8 ) or from the risk estimate . The latter i s  
easier but makes unnecessary assumptions about v .  We first give that 
derivation and then check the result us ing ( 8 ) .  

From the risk estimate we have 
RO ,��) -p - * E[f {P�2 v( v-2 )  ( 1+ c v ) r�; } ] 

= Efp-2 v ( v-2 ) ] _ 2 [ d ( ) 2 ] L p F pc E dF 1 + c v . 
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Integrating the second term by parts and noting that 
d��F) = � { p_ 1 , 1 ( F )  - p0 , 1 ( F )} , where pij ( F )  is the density 
function of F . . , we obtain l J  

RO , o 2 ) -p = Ef p-2 v (v-2 )  Jl _ p
2
c [ ( 1+c v  )2 p ( F ) ) 000 p c  l p F 

= Ef p-2 v( v-2 ) lP F ] 
( 1 , 2 dp ( F ) +c v '  dF 

so that 
( 1 6 )  R ( A ,a:L ) -E = Ef p-2 v (v-2 )  ] p c  lP F + E_1 1 [ 2v] ' 

dF 

where E . .  [ . ] is the expectation with respect to the probabi lity l , ]  
distribution of F . . . l] Now the expression in ( 8 ) may be written 

R( ::\ , o 2 ) -E [ v( v-2 )  l . 
p c  = c E0 , 1 F J + E-1 , 1 [ 2v] - E0 , 1 [ 2 v] 

+ c Eo , 1[
2
r
v] - p�2 E[�] 

= c E f v2 ] - £:3_ E[ 2v] 0 ,  1 l F p F + 
= p-2 Ef v2 -2v l + E [ 2v ) P l F j -1 , 1 

This is equivalent to ( 1 6 )  if and only if 
c Eo , 1 [

v:] - p�2 E[v:] = c E-1 , 1 [ v2 ] - c E0 , 1 [ v2 J . 
Putting a = � 
E f 8+aF v2 ] 0 , 1 l aF . 

and 8 = � this is eqivalent to the equat ion 
_ 8+1 [ v2 l 2 - --;- E TJ + E -1 , 1 [ V ] • 

Now when v2 doe::; not depend expli citly on S we may integrate with 
respect to F alone . The condition is then equivalent to the 
equation 8+aF p ( F )  = 8+1 p ( F )  + p-1 , 1 ( F )  aF 0 , 1 aF which can easily be 
checked by writing out the density functions whi ch are of the form 

- aa+i 88+j Fa+
.i

- 1  
( F )  - ::\F ( . . . aF 1 ) p . . -B (  . o ., o . . e 1 1 a+ 8+l+J ; o+ l ; o+aF 1\ ; lJ a+ l , P+] ; ( 8+aF )a+ �+l+J � 

the result following from a recurrence relation for the confluent 
hypergeometric function . 

Another interesting expression was given by Stein in the 
discussion to Efron and Morris ( 1 973b ) . This is a forerunner of 
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Stein ' s  ( 1973 ) unbiased estimator for the risk . The formula is  

E [ ! l  Xl a
a
x log g ( X ) -� 1 1 2 1 = p - E [ l l a

a
x log g ( X ) ! I2- gc

2
x ) i

t aa;1 g ( X ) ]  

valid when o2 = 1 .  
A s imilar expresion , namely 

may be derived from 6 . 2 . 1 .  
In sect ion 6 . 6  we wish to derive some sufficient conditions for 

domination of one estimator over another . These conditions include a 
condit ion under which E [ X] < E[ Y ]  for a pair of random variables 
X and Y .  The next secti on therefore considers this problem . 

6 . 5  Some I neq ua l i t i es Con cern i ng Expectat i on s  

The following two lemmas give alternative sufficient conditions 
for the inequality E [ X ] < E [ Y] . They are standard results . 
Lemma 1 I f  X and Y are random variables , j ointly distributed such 
that P (X  < Y )  = 1 ( i . e .  X is stochastically less than Y )  then 
E [ X] < E [Y ]  and if h ( . )  is an increasing funct ion then 
E [ h( X ) ]  < E [ h ( Y ) ]  if both sides exist . 
Proof Writing E[ X] in terms of the j oint density and noting 
that the contribution to the integral from the part of the space for 
which X �  Y is zero we have E [ X] = J x dPXY( x ,y)  and similarly , 

X<Y 
E [ Y ] = J y dPXY( x ,y ) . S ince over this subset x<y the result 

X<Y 
follows . The same argument may be applied to h ( X )  and h ( Y )  
viz : E [h ( X ) ]  = f h ( x )  dPXY ( x ,y )  < f ( ) X<Y X<Y h y dPXYx ,y) 

since when .x<y ,  h { x )  < h ( y ) . Alternatively we may apply the theoren1 
to H = h ( X )  and K = h ( Y ) for which P ( H < K )  = 1 . 
Lemma 2 I f  a random variable X has distribution function P X and 
y has distribution function n and if Px( u) > Py (u )  for almost r y 
all u , then E [  X]  < E [ Y ] . Also , if h ( . )  is non-decreas ing then 
E ( h( X ) ] � E [ h ( Y ) ]  with strict inequality if h is  strictly increasing 
on a set which has non-zero measure in both X and Y .  These 
inequalities apply so long  as the expectations exist . 
Proof We have J oo 

X E [ X ]  = 
_oo 

r 00 
= + j 0 ( 1 -PX( x ) )  dx . 
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This follows from lemma 6 .  2 . 1 .  Using the as sumed inequality for· the 
distribution functions we obtain 

0 Joo E [ X ]  < - J Py ( x )  dx + 
-<X> 0 

= L: y dPY( y )  

= E [ Y ] . 

where v = h (u ) .  The inequal ity is strict i f ,  for some set of non-zero 
measure bounded above by u ,  h ( x )  is strictly increasing . Applying 
the above proof to H and K we have E [ h ( X ) ] $ E [ h ( Y ) ] . Strict 
inequality clearly applies when h is strictly increas ing on some 
set of non-zero measure in X and Y .  

Note that the result of lemma 2 depends only on properties  of 
the two marginal distributions and not on any assumed j oint distribution 
of " 1'1. anJ Y .  However , we shall show that if  X and y are j ointly 
distributed such that P ( X < Y )  = 1 then PX( u )  > Py( u )  for almost 
all u .  
Firstly , 

Secondly , 

Py ( u )  = P ( Y  < u ) 

Px( u )  

= P (  X < Y A Y < u V X :2: Y A Y < u )  
= P ( X  < y A y < u)  + P ( X  ;;::. y A y < u )  
= P ( X  < Y )  P ( Y  < u I X < Y )  + P ( X  ;;::. Y )  F ( Y  < u I X ;;::. Y )  
= P ( Y  < u l X < Y)  
= P ( X  < u )  
= P ( X  < Y A y < u V X <  u A y ;;::. u V X <  u A X ;;::. Y )  
= P (  X <  Y A Y < u )  + P ( X < u A Y ;;::. u ) + F ( X <  u A X ;;::. Y )  

;;::. P l X  < Y A y < u )  
= P ( X < Y ) P ( Y < u i X < Y ) 
= P ( Y  < u I X <  Y )  
= Py( u ) . 

The inequality will be strict if  P (  X <  u A Y ;;::. u )  > 0 .  

Since the condition Y ;;::. u is independent of X this condition 
is  equivalent to P ( X  < 1.1 )  P ( Y ;;::. u )  > 0 which is  true if and only if 
P ( X  < u )  > 0 and P ( Y ;;::. u )  > 0 .  This proves the result . 

For the reverse connection we need to  make some assumptions . It 
is not true that if  PX( u) > PY ( u )  then X is stochastically less 
than Y .  It is true , however , that PX( u ) > Py ( u )  implies that there 
exists a joint density of X and Y with PX and Py as the 
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marginals for which the result is  true . To prove this note that , 
g iven a variate X with di stribution function PX( . )  we may define 
a random variable Y such that Py ( Y ) = PX ( X )  at points where Py 
i s  continuous . At points of discontinuity we choose Y = inf Z .  Py ( Z )�PX{ X )  
This  makes Y functionally dependent on X and it i s  easy t o  see 
that P( X < Y )  = 1 . 

In the next section we shall use lemmas 1 and 2 to prove some 
theorems on domination of estimators . 

6 . 6 Orderi ng  Amon g E st i mators 

I f  
2 

s "' �  x 2 
k n n+2k then , for i < j ,  

all u .  This is easy to see by examining the 

PS . 
( u )  > PS .  ( u )  for 

l J 
density functions . 

Alternatively we may eas ily define a j oint density for s .  l and S .  

with PS .  and PS .  l J 
this as follows . Let 

as the marginal distribution functions . We do 

k = 1 , 2 ,  . . .  , j  be distributed as 
i 

The j oint distribution of S .  and S .  given by S . = L Uk and 

J 

• l J l k= 1 
S .  = I Uk will then be such that S .  is stochastically less  than J k= 1 l 
S .  and S .  and S .  J l J have the required marginal distributions . A 
similar result applies to Wk "' 

a2 a 2 u "' - x 2 0 )  and uk "' - x 2 
1 p 1 p 1 

2 � x 2 
2k ( \ ) ,  In this case we take p p+ 

k = 2 , 3 ,  . . .  , j . 
The next theorem is a generalisat ion of a formula in Strawderman 

( 1973 )  which in turn is  a generalisation of a formula in Baranchik 
( 1 97 0 ) . Our proof is  simpler than that given by Strawderman . 
Theorem 1 I f  0 � v ( W , S )  $ 2 and v ( . , . )  is a non-decreasing 
function of . the first variable and a non-increasing function of the 
second then , with the notat ion of section 6 . 4 ,  o ( X , S )  is a minimax 
estimator for � . 
Proof We need to show that the risk for o ( X , S )  is less than 
p s ince the maximum likelihood estimator , whose risk is p ,  i s  
minimax . In 6 . 4 . 9  the second term i s  negative or zero i f  0 $ v $ 2 .  
Since w_1 is stochastically less than W the third term is negative 

• f' or zero l� V increases with W. Finally the last term is negative 
or zero if v i s  decreasing in S s ince s2 is stochastically 
greater than s1 . 

An alternative proof , valid only when the risk estimator exists , 
is  even simpler . From 6 . 3 . 1  
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2 - [ 1 { n -2 av R ( ). cr ) = p - 4 c E - c._.;:_ v (  2-v )  + W -o ' r 4 aw 
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- C V  S �� } ] 
and under the conditions of the theorem each term under the expectation 
operator is  negative or zero . 
Cor>o l lary 1 ( Strawderman ' s  theorem ) .  With the notation of the "theorem , 
if v is writt�n as a function of F and S ,  0 $ v $ ? and v i s  
non-decreasing in F 
minimax . 
Proof Writing 

and non-increasing in S then 6 ( X , S )  is 

w v ( F , S )  = v(S, S )  we see that , for fi xed s '  V 

increasing in F implies that v is increasing in W ; while , for 
fixed W ,  v decreases in S under the conditions of Strawderman ' s  
theorem. Thus the conditions of Strawdermans theorem imply the 
conditions of theorem 1 and the result follows . ( Again �nder more 
stringent renditions , this  result i s  deducible from 6 . 3 . 2 ,  i . e .  from 

R0 0 ,cr2 ) = p - 4 c E [�P�2 v( 2-v ) + ( 1+ c v ) F ; - c v S �� } ] ) .  

is  

Coro l lary 2 ( Baranchil< ' s theorem) . If  v in the theorem depends only on 
F , 0 $ v ::> 2 and v i s  a non-decreasing function of F then 
6 ( X , S )  is minirnax . 
Proof This clearly follows from Strawderman ' s  theorem as a special 
case . Alternatively , v( F )  = v(�) is  clearly non-decreasing in W and 
non-increasing in S and the result follows from theorem 1 .  

Another inequality was given in Stein ( 1966 ) and we shall in chapter 
7 that it cannot be proved using only the unbiased estimator for the 
risk . We shall give a slight generalisation of the result as a theorem . 
Theorem 2 Let 6 ( X , S )  = h ( W , S ) X .  If h ( . , . )  is negative on a set of 
non-zero measure , then , under the assumptions of section 6 . 4 ,  the 

+ + estimator 6 ( X , S )  = h ( W , S )  X ,  
and h + ( W , S ) ' = 0 if h ( W , S )  � 0 �  

where h+ ( W , S ) = h (W , S )  if h ( W , S )  > 0 
has smaller risk than 6 ( X , S ) . 

Proof In 6 . 4 . 1 ,  if h is negative then the first two terms may 
be reduced by replacing h by zero . 

We now wish to find classes of estimators known not to be minimax . 
One obvious such class is obtained by adapting the conditions of 
theorem 1 .  If  v( W , S )  $ 0 or v( W , S )  � 2 and if v ( . ' .  ) i s  
non-decreasing i'Q the second variable and non-increasing in the first , 
then 6 ( X , S )  i s  not minimax except _n the trivial cases v( W , S )  = 0 

or v ( W , S )  = 2 .  
Another condition has been given by Efron and Morri s ( 1973a)  for the 

case in which v depends only on W .  Their result is that if v ( W )  i s  
non-decreasing and if  v( W )  > 2 for s'ome W then as  6 -+ eo the risk 
is greater than p. This result was proved by using a prior density for 
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( derived from a normal prior distribution for � ' 
and showing that the Bayes risk for this prior is 

1 77 

greater than p . This turns out to be equivalent to showing that if 
2 r cp-2 ) a  2 ] W "' a xp then , for large a , EL W  v ( W ) - 2 v(W )  > O . Efron 

and Morris do not prove the latter assert ion which in fact holds 
under more general conditions _on v( . ) .  We shall derive the analogous 
result for the case in which v depends on both W and S under 
more genP.ra1 conditions . Incidently , we conj ecture that a suffi cient 
condition on v ( . , . )  for this result to  hold is that there exist 
6 > 0 ,  w and s 0 0 such that 
s < s . We cannot replace 6 

v( w , s )  > 2+ 6 for all w > w 0 
by zero s ince the estimator with 0 - 1 v ( w )  = w ( 1  + cos w )  i s  not minimax . 

and 

In the following theorem we shall give the formula for the Bayes 
ri sk under the prior distribution A "' � 2 

p X p Theorem ;� T 2 If A "' - x2 then under the conditions of secti on 6 . 4  
the Bayes risk of 

p p 6 ( X , S )  is  

Proof We shall show that if U "-' a x2 ( f. )  and A "-' b X2 r s 
the marginal distribution of 
mixture of a( 1+ 2b ) X2 and r 

u is a( 1 +'2b ) x2 r if s = r ,  

2b 
1+2b 

a ( 1+2b ) x2r+2 with weights 
if s = r+2 .  In general 

p (u )  
. �+k-1 ( u ) 00 u exp - -

= I 2a  
�+k k= O ( 2a )  f ( �+k ) 

00 �k-1 ( u ) f ( l k )  ( 2b )�s+k 
= I 

u exp - - ";is+ --2a  2b+ 1 
( 2a )�+k f ( �+k ) k !  ( 2b )�s f (�s )  k=O 

�-1 ( �) ( 1  ) ( 2 b u  )k u exp , - 2a 00 "2S k 2a( 1+2b ) = I 
( 2a )� f (�) ( 1+ 2b )"2S k= O (�r)k k !  

= 
�-1 _u ) u exp ( - 2a 

( 2a )� f (�) ( 1+ 2b )"2S 

In the special case s = r this reduces to  

1 

then 
and a 

and 
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w-1 < u ) u exp - -2-a 2 b u  p ( u ) = ----...,..----- exp ( 2a( 1+2b ) ) = 
{ 2a ( 1+2b ) }7rr (�) 

whi le when s = r+2 the expression gives 

p (  u) = 
�- 1 u u exp(- 2a ) 

{ 2a ( 1+2b ) }7r f (�) ( 1+2b )  

00 
\ �+k L � k=O 

�-1 u u exp(- 2a( 1+2b ) ) 

{ 2a( 1+ 2b ) }7r f (�)  

2 b u  k ( 2a( 1+2b ) ) 

k !  

1 = 
�-1 ( u ) u exp - 2a ( 1+2b ) + 

( �+1 ) -1 ( u 
2b u exp - 2a( 1+2b ) ) 

1+2b { 2a( 1+2b )pr f (�) 1+2b { 2a ( 1+2b } }�+1 f ( �+1 )  

These are the required results .  
From 6 . 4 . 9  we obtain 

R( T 2 , a2 ) = p + ( p -2 ) a2 E[�v2 ( H , S2 ) -2·.· ( W , S 1 ) }  + �/ v ( W_ 1 ,s2 ) - v( W , S2 ) } ] 
where the expectati on 

W .  l 
a2 2 'V - X + 2 . 0 ) , p p l 

is 

s .  l 

with respect 
a2 '\, - 2 n X n+2i 

tc the distributions 

and >. T 2 
'\, - x2 . p p Putting a2 a = p 

b T 2 and p+2 i  i o , -1 in the previous result gives s = p ' = r = = p 

where 

= p + 

the expectati on is 
a2 (p+2T 2 ) 2 p2 x p ' w_1 

with respect to 
a 2 (p+2T 2 ) '\, 2 2 X p-2 p and and 

Applying 6 . 2 . 9  to this expression gives 

- 2 2 < ) 2 .. r e  2 T 2 C n+2 )c a2 R ( T ,a ) = P· + p-2 a �lw v ( l-. , s2 ) - nws2 
v( w , s 2 ) 

+ 2 (p-2 )a2 2 p 
pW S2 

v ( W  , S2 ) - s; p+2T2 

( ) 2 f c 2 c �  ) 2 P < ) 1 = P + p-2 a El W V W , S 2  - s; p+2T2 V W , S 2 J 
Er cp2 2p3 w_1 ] = p + l p+2T2 v2 ( W_ 1 , S2 ) ( p+ 2T )2 � v( W_ 1 ,S2 ) 

r cp2 2c p 2 ] = p + Elp+2T2 v2 ( W_1 ,S2 ) p+2T2 v( W , S1 ) 

We now wish to find sufficient condit ions for 
2 w -1 E [ v2 ( W_1 ,s2 ) - 2v( W , S1 ) J = E [ v2 ( W_ 1 , s2 ) - (p+2:2 ) c  -S- v( W_ 1 , S2 ) J 

2 
to be positive . The follov;ing two theorems give sufficient conditions 
for this to be so .  
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Theorem 4 If W_ 1 � � X2p_ 2 , 
a sufficient conditi on that 

S � � x2 and V = v( W_ 1 ,s2 ) then 2 n n+4 H 
E -- E [ V2 - 3£ --1 V ] >  0 f .-f · . tl - or sur lClen y ac s2 

large a 
v (w , s )  > 1 

Proof 

and small b i s  that there exists 8 > 0 sc:ch that 
1 + 8 for sufficiently large and small +rr- w 

E ( V2 b w_1 E = - 2V . - 2 (--..., - -ac s2 
= var V + E [ V ] ( E [ V ) - 2 )  

> var V + E ( V] ( E [ V ] - 2 )  

1 ) V ] 

w_1 2b 
__,.,. cov (-ac s2 

2b j.. w_, - ac var s;-

' V ) 

var V 

= var V + E [ V ] ( E [ V ] - 2 ) - 2 / 2(n+p) /var V .  p ( n+2 )c 

s .  

Now i f  E [ V ] > 2 then the above expression is  pos itive if and only if 

V ) 2 { [ ] [ ] 4 ( n+p) } ( var + 2 E V ( E  V - 2 ) - n( p-2 )  var V 

This  holds for all values of var V if 

(4 (p+n ) ) 2 < 8 (p+n ) E [ V ) ( E [ V ] -2 ) n( p-2 ) n ( p- 2 ) 
if and only if 

+ { E [ V ) ( E [ V ) - 2 ) } 2 > 0 .  

which , when E [ V ]  > 2 ,  holds 
E [ V )  > 1 + /1+2 (p+n ) 

n ( p-2 ) = 1 + /p( n+2 ) = 1 + � n ( p- 2 )  vc 
l. �e must now show that if v( w , s )  > 1 + IC + 8 for large enough 

and small enough s then E[ V] > 1 + � for large enough a and 

w 

1 c 
small enough b .  Let L = 1  + rc . Given E: > 0 there are x0 , y0 
such that Jaxo 

Pw ( x) dx < E: and r: Ps ( y )  dy < E: and there 
o - 1 by0 2 

are x1 , y1 . such that v( w , s ) > l + 8 for 

Suppose V �  0 .  We then have , if  X 0 
and 

E [ V ] = l + 8 + E [ V- L -8 ]  

> l + 8 + Jx1 rltJ ( v( x ,y ) - z-6 )pw ( x ) ps ( y )  dx dy 
0 y1 -1 2 

> l + 8 + Ja
x
o( ( v( x ,y ) - l- 6)p

w 
( x )ps ( y )  dx dy 0 by -1 2 0 

> l + 8 + ( Z+8 ) { 1 - ( 1 -t: ) 2 } 
= ( l+8 ) (  1 -E: ) 2 
> C l+6 ) ( 1 - 2E: ) 
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0 and this is greater than Z if and only if E < -2�(�l-+�O�] Now if V < 0 
f h 1 . V by V+ on some set o non-zero measure t en rep ac1ng increases E .  

We may apply the above result t o  V+ . This completes the proof . 
In our appl1cation of th1s theorem we put a = 

• • 02 (p+p
2T 2) and b -- 02. 

We then choose b small enough first and then T 2  may be chosen so that 
a is suffi ciently large . 

Our other theorem concerns the case 1n which v ( w , s )  -+ Z < E as 
w -+ oo and s -+ 0 .  

Theorem 5 Let W 1� � X2 , s2 � 
b x2 W � � X2 - p p-2 n n+4 ' p p and S � £. 2 1 n X n+2 · 

Let V =  v( 't1 _ 1 , s 2 ) and v1 = v( H , S1 ) .  If v (w , s ) -+ l where 0 < l < oo 
as w -+ ao and s -+ 0 and if v(w , s )  is bounded above by l1 then for 
large enough a and small enough b ' E = E [ V-2V  ) 1 < o .  
Proof 

and 

Given E < 

f
a
o
xo P\o/ x) dx < 

[ Ps ( y )  dy < 
by 1 0 

and there are x1 , y1 
y < y1 . Suppose that 

0 there are X 0 ' yo such that 

f
axo Pw ( x ) dx < E 
0 -1  

[ Ps ( y )  dy by 2 0 
such that l-E x1 a > and X 0 

< E 

< v( x ,y )  y1 b < ­Yo 

< l+E 
then 

if X > X 1 and 

> ( l-E ) 2 - 2 ( l+E ) + f
x1f 00{ v2 ( x ,y ) � ( l -E ) 2 }pw } x) Ps� ( y )  dx dy 0 y1 - �  � 

I f  E < 

+ 2 (
x1f 00{ l tE-v( x ,y ) }pW ( x ) J 0 y 1 

Ps ( y )  dx dy 1 

{ l+E-v( x ,y ) } pw( x) Ps ( y )  dx dy 1 
> ( l-E ) 2 - 2 ( l+E ) - E ( l-E ) 2 + 2 E ( l-l1+E ) > l2 - 2 E l - 2 l  - 2E - E l  2 + 2 E l - 2 E l 1 
= ?} 2 l  

l2 - 2 l  
ZL+2 l1+ 2 

then this expression is positive . 

if E < l 

0.� __ 02 (p+p
2T 2) As in the application of theorem 4 we shall put 
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and b = a2 • 
We shall now summarise these results in a theorem . 

Theorem 6 Under the definitions of section 6 . 4 ,  the estimator o (X , S )  
i s  not minimax if v ( w , s ) converges to a limit greater than two as 
w -+ oo  and s -+ 0 or i f v( w , s )  > 1 + 1 0 for some 0 > 0 for - + IC 
large w and small s .  

We remark that there are analogues of theorems 4 and 5 as a -+ 0 
and as b -+ oo for the case in which v(w , s )  < 0 for small w and 
large s .  However these do not help in a non-minimaxi ty proof since 

and as whi ch does not approach zero . 
w However , we can state that i f v( w , s ) < 0 or if v(w , s )  > � then 

C S  

the Bayes risk can be reduced . The first assertion can be seen from the 
form of the Bayes risk in theorem 3 ;  the second from the fact that in 
this case h(w , s ) < 0 and by theorem 2 ,  the risk can be reduced . 
6 . 7  Ri s k  Functi ons for s ome Spec i a l  Fami l i es of  Es t i mators 

A special case of the family cf estimators in this chapter is 
given by v( w , s )  = t .  The risk function will be 

R( A , o2 ) = p + p ( p- 2 )  c t ( t -2 )  E[p_ 2
1
+2K] 

where K has a Poisson distribution with parameter A .  This result is 
given in James and Stein ( 1960 ) and easily follows from 6 . 4 . 1 4 .  The 
case t = 1 achieves minimum risk and is the James-Stein estimator . 
Values of t between 0 and 2 achieve minimaxity . The value t = 0 
gives the maximum like lihood estimator , while t = 2 gives the same 
risk . Efron and Morris ( 1973a) shmv that in order to dominate the James­
Stein estimator the conditions of theorem must be violated . 

Another class of estimators known to be minimax when 0 $ t � 2 
i8 the class of estimators given by v( w , s )  = t if w > t c s and 
v(w , s )  w if w S t c s . This is the class of positive part James-= ......,-

CS 

Stein estimators and its members dominate the corresponding estimRtor / with v( w , s )  = t by virtue of theorem 2 .  These estimators are non-
comparable for different values of t as can be seen by inspecting 
their risk function s for small and large values of A .  

We shall now consider an extended family of estimators . 
let O < X , S ) = ( 1  - de+�) X .  The special case d = 0 ,  e = 1 is the 
James-Stein estimator already considered . The case d = c gives the 
estimator F O ( X , S )  = ....--F X c + given by Alam and Thompson ( 1 964 ) . The 
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The risk function for estimators of this class can be written in terms 
of hypergeometric functions of two variables and is given in the next 
theorem . 
Theorem 7 The ri sk of the estimator o ( X , S )  = (1 - �)X d+F is 

- 2 2 
= p + pc a d 

' oo , k ( a+k ) 2 a { e -A \ 1\ 1.. IT a+b+2+k 2r1 ( 1 ,b+ 1 ; a+b+3+k ; 1 - b d )  k= O  
- A  � Ak ( a+k f a } - e L IT a+b+ 1+k 2r1 ( 1 ,b+ 1 ; a+b+2+k ; 1 - b d )  
k=O 

00 , k - { -A \ 11 a + k a 2p c a e L IT a+b+i+k 2r1 ( 1 ,b+ 1 ; a+b+2+k ; 1 - b d )  k= O 
00 Ak _).. I - e IT k= O 

where a = � and b = � . 
Proof 

R -p 
p 

where v = a 

From 6 .  4 .  8 v!e have 

F Now d+F 

[ v] - 2 c E [ v] - 2 E.:..?_ c E  
0 , 1 

V 1 d F = a d+F an 

p 0 , 0 

Using the formula in appendix 2 
Er xm ] = e-\b )  I ( a+k )m 
l (" y+X )n n-m k= O ( a+b+k)n 2r1 ( n ,b+n-m; a+b+n+k ; 1-y ) 

where X has a non-central inverse beta distribution B2 ( a ,b , A )  
we obtain 

� p 

- e-A �  Ak ( a+k ) 2 
L k ! ( a+b+1+k ) 2 k=O 

00 

2r1 ( 2 ,b+1 ; a+b+3+k ; 1 - � d ) } 
/' 

Ak - { -A L a + k a 2 e a  e IT a+b+1+k 2r 1 ( 1 ,b+1 ; a+b+2+k ; 1 - b d )  
k=O 

00 k -A I A a-1+k a - e IT a+b+k 2r1 ( 1 ,b+ 1 ; a+b+ 1+k ; 1 - b d )  k= O 
00 a-1 a -A \ 1 + -- - b e L a b k=O a+b+k 

Now using the recurrence relation for the hypergeometric function 
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a 
2r1 ( 2 ,b+1 ; a+b+3+k ; 1 - b d )  a = ( a+b+2+k ) 2r1 ( 1 ,b+ 1 ; a+b+2+k ; 1 - b d )  

a - ( a+b+1+k ) 2r1 C 1 ,b+ 1 ; a+b+ 1+k ; 1 - b d )  
and simpli fying gives the result . 

As a check we shall show that the James-Stein risk may be obtained 
from this by letting d tend to zero . Using Gauss ' s  theorem we 
that the term in 1 is of the form 0 in the limit we apply d 0 so 
de l ' Hopital ' s  rule . The derivative of a hypergeometric function 
another one . Applying Gauss ' s  theorem to the derivative gives 

00 

R( A ,oz ) = p + p c aa c a bb
+1 - 2 a-a

1 e -.A \ 1 L a-1+k kT k=O 

see 

is 

whi ch is the result obtained earlier . Note that the minimum occurs at 
a = 1 giving 

\ 00 , k  
e-A \ a-1 A 

L a-1+k kT k= O 
Unless d is very small , in which case the algorithm in theorem 7 

may be numerically unstable , this algorithm gives an efficient way to 
evaluate the risk . Using a recurrence relation for the hypergeometric 
function allows us to calculate each function F ( 1 ,b+1 ; a+b+i+k ; 1 - F d )  
from the previous two values . Thus , in theory , only the values 
F( 1 ,b+ 1 ; a+b+1 ; 1 - � d )  and F ( 1 ,b+ 1 ; a+b+ 2 ; 1 - F d )  need be 
calculated using the series expansion . In practice , errors tend to 
accumulate and it is better to calculate new values every about twenty 
terms . In addition it is possible to use a recurrence relation to 
calculate the hypergeometric functions for different numbers of 
degrees of freedom ( differing by an even integer ) but this is 
inefficient in storage and the saving in computation is small . 
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C h a p t e r 7 

R i s k  Est i mate Opt i ma l i ty of Shrun ken  E s t i mators 

7 . 1  I n troducti on 

The unbiased estimator for the risk which we discussed in chapter 
6 leads to an optimality property which , in some cases ,  is easier to 
handle mathematically than admissibility . If o 1 ( X , S )  and o2 ( X , S )  
are two estimators for which unbiased risk estimators exist , and if 
the risk estimator for o 1 ( .  , . )  is uniformly less than that for 
o 2 ( .  , . ) then the estimator o1 ( .  , . ) dominates the estimator o 2 ( .  , • ) 
in terms of risk estimate and hence also in terms of risk . If no 
estimator dominates o 1 in terms of ri sk esti mate then is 
said to be risk estimate optima l .  Efron and Morris ( 1976 ) showed that 
a certain class of estimators , whose minimaxity was net p�eviously 
known ,  was in fact a class of minimax estimators . This was done by 
using the concept of risk estimate dominance . Thus the risk estimate 
is useful for proving certain dominance results , although , as we shall 
see , we cannot prove all such results this way . In particular we shall 
show that the James-Stein estimator is optimal in terms of risk 
estimate so that the positive part vers ion , whi ch dominates it in 
terms of risk ,  cannot be shown to dominate it using the risk estimate 
alone . We shall also show that the positive part version of the 
James-Stein estimator is risk estimate opt imal . These results , whi ch 
first appeared in Moore and Brook ( 197 8 ) , will only be shown rigorously 
to be true in the class of scale invariant spheri cally symmetric 
estimators . 

First we shall discuss the general problem of risk estimate 
dominance in the class of estimators for which we have previously 
calculated t"he unbiased ri sk estimator . 
7 . 2  R i s k  E s t i mate Domi nance  

Suppose X '\,  N ( � ,o2 I )  p and o2 2 s '\, - x  n n 
We wish to compare the estimators 

��·: ( X ,  S )  = ( 1 

and 

c ( 1+w( W , S ) ) ) X F 

independently of X .  

by comparing their risk estimators (which we assume to exist ) .  Using 
the transformation U = wasB , V = wY s0 of section 6 . 3  and using the 
expression in that section for the unbiased estimator for the risk , we 
find that the difference between the risk estimates for �* and 1:: �·: <., f 
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i s  proporti onal t o  

r� �·: ( U ,V )  
f 

1 P 2 a w a �  - { --
- ( f2 -w2 ) + ( B B ) ( B Bf )  u � = F 4 a - c - c w U d U  - a- c- alJ 

aw 1: a f  + (y -o c - o c w )  V - - ( Y -u c- O c  f )  v a v  a v  

W e  shall write 4 a = p -2 and b = 4 
n+2 in which case 

( 1 ) = � ( f2 - w2 ) + (aa-Bb- Bb w )  U �� -

+ (ya-ob- o b w )  v �� 
... 

a f (aa-Bb- 8b f )  U -a u  
a f  - ( ya-ob- ob f )  V -av 

In order for (': to dominate � -­f in t erms of risk estimate we 

require that 6f � 0 ,  the condition being necessary and sufficient . 

We are thus lead to the problem of solving the differenti al  inequality 

( 2 )  ( A+Bw ) aw V aw _ w2 = g ( f )  + ljJ2 ,  u a u  + < C+Dw ) a v  �� � 0 

where g ( f )  = ( A+Bf ) U �� + ( C+Df ) V �� - f2 

and A = aa-Bb , B = -Bb , c = y a-ob and D = - o b .  

The characteristic equations of ( 2 )  are 

dU ( 3 ) 
U (A+ Bw ) = dV 

-
V-:-( C_+_D_w�) 

= dw 

Any given function ljJ may be written in terms of U ,  V and w sin ce 

f is assumed to be known . In this case , the condition for ( 3 ) to  have 

an integrating factor depending only on w given in Ince ( 1 9 6 3 )  is 

( 4 ) ( A+Bf)  U .£_i + ( C+Df) V .£_i - f2 = -t 2  t2  real . a u  a v  ' 
We can show that t2 is  positive , otherwise the estimator � �·: would 

f 

dominate the . James-Stein estimator in terms of risk estimate and this 

we shall show t o  be impossible . 
1: In particular ( 4 ) i s  satisfied by f = t ,  and any estimator � f 

with f satisfying ( 4 )  has the same risk as t;, �': t ( where 

the estimator with f = t = constant ) .  This means  that it  is  

is 

easier to compare an estimator with than with any other ( apart 

from where f satisfies ( 4 ) ) .  In particular we may compare 

an estimator with the maximum likelihood estimator , 

the James-Stein estimator , ��·: 
. 

0 
Let us choose a , B , y and 6 so that U = W and 

therefore put a =  1 ,  B = 0 ,  y = 0 ,  6 = 1 obtaining 

or with 

V = S .  We 

A = a ,  b = o ,  

and C = D = - b giving the part ial differential equation for w 
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( 5 )  a W �� - b ( 1 +w ) S �; = w2 - t 2 + 1jJ ,  1jJ � 0 

which has characteri sti c _ equations 
dW 
aW = 

Suppose that there are 

dS dw 
bS ( 1 +w )  = 

W , S such that 0 0 w = w( W ,S ) > t .  0 0 0 
In this case as \-1 increases , w increases and S decreases along a 
characteristic through (W ,S ,w ) .  For a posit ive increment dW in 0 0 0 
W ,  dS < 0 and 

dW :; dl\· dS $ 1+w dw . aW 7-t"T bS w2-t2 
Assuming t * 0 and integrating these inequalities 
in the direction of increasing W gives 

1 w $ - log a w 0 
:1. 1 

s 0 $ - og s b 
that i s  

* t ;;?:: 

s 3l!l 
( soj b :; 

1 w- � t� 
wo+ l t l lo · 

2Jt l g w+ t w0-J tj 

1 * wo+ l t l 2ftT log w+ t �tT 0 

w - I  t l 
[�0 ]¥ 0 

w +l t l 0 

[;f-%- ]
l t l + 1  

[� 0 0 
The first equ3tion shows that 

as w -+ w 
2 

and 

and 

l t l - 1 

from ( W  s w o '  o '  o ) 

and the second equation shows that w is unbounded as S -+ 0 along 
a characteristic . They also give bounds on the rate of convergence 

w w - I t I ( w_\31!1 
TtT � { 1 + w:+jt j \WJ a } / { 1 

s 2 
t z + (w� - tz ) ( so) b . 

solved but we omit the result which is 

�_!_) ¥  w:+Ttf\w } 0 0 

The case t = 0 is also easily 
qualitively the same . 

Given M > 0 we can find a point ( W1 , s1 ,w1 ) on the 
characteristic for which w > M .  Consider the level curve through 1 
this point . Its equations are ( 5 ) and 
( 6 )  aw aw 

0 = dw = ClW dW + as dS . 
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From ( 5 ) and ( 6 ) we find that 

If 

i f  

aw a W 3w 

dW 
dS 

+ 

> 

aw < 0 

dw dW 
b (  1+w ) S W dS 

= 

a W 
b (  1+w )  S then 

2 w 

aw > 0 aw ' otherwise �� < 0 .  However 

then there is a level curve between the characteristic aw 
( along which w i s  increasing ) and the line s = s1 so that �� > 0 .  

We have thus shown that aw > 0 
aw 

and , therefore , that there is a 

region in the w ,  s plane for which w > M given by the characteri stic 

base curve through c w1 , s 1 ) , the part of the w axis for which w > w2 
and the part of the l ine s = s1 for which w > w1 . Thi s  implies that 

w > M in the region s < s1 '  w > W2 . Thus , by theorem 6 . 6 . 6  the 

estimator r, -!: is not minimax . Now if I t  I ::;. 1 then (' has smaller 

risk est imate than the maximum likelihood estimator and i s  therefore 

minimax . Thus cannot dominate in terms of risk estimate ( or 

in terms of risk ) . 

We have thus shown that , for l t l  � 1 ,  if w > l t l  at some point 

then r,* does not dominate in terms of risk estimate . 

If  we wish to give a similar argument for the case i t ! > 1 then 

we cannot use theorem 6 . 6 . 6 .  S ince this is not an important special 

case we shall not give a preci se  argument in the general case in which 

w depends on both F and S .  We shall give a precise argument for 

the spheri cally symmetric case in the next sect ion . A rough argumept 

is as follows . It is easily seen that the characteristics meet the W 
axis at right angles . Therefore , close to the axis , the characteristic 

may be replaced, approximately , by its tru1gent at S = 0 .  The solution 

of the inequality for S shows that , with the characteristic replaced 

by the t angent , S increases too quickly for the convergence of the 

integral of 2 w with respect to S .  S ince this occurs for each value 

of W greater than w2 the double integral cannot converge . S ince a 

condition for the existence of the risk estimate is that this integral 

should converge the result follows by contradiction . We believe that 

this argument can be made precise . 

We should also like to show that the existence of a point for 

which w < - l t l leads to a contradiction but we have had less  success . 

Theorem 6 . 6 . 6  does not help even when l t l  < 1 but the behaviour of w 

along the characteristics through the points for whi ch w < - I t I 
suggests that the double integral for w2 cannot converge . 
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In the next sect ion precise arguments shall be given for the 

class of scale invariant estimators , that is in the case for which 

w depends only on F .  

7 . 2 . 1 R i s k  E s t i mate Dom i nance i n  the  C l ass  o f  Sca l e  I nvar i ant  

E s ti mators 

When w depends on F alone the inequality to be solved i s  

( 1 )  dw ( a+b+b w )  F dF = lP ::::: 0 .  
Now , in order that the expectation of w2 shall not exist , it  

is sufficient that w- 1 ( F )  = O( F- l /b ) as F � oo or that 

w- 1 ( F ) = O( F 1 /a ) as F � 0 .  If  there is a point F for whi ch 0 
w = w ( F  ) > l t l  0 0 then dw l > 0 and therefore dw > 0 for dF F dF 

0 
F > 

for 

F . It  then 0 follows from ( 1 ) that 

dw ( a+b+b w )  F d F  ::::: 

F > r0 • Integrating we see that 

w + l t l  a+b 
F r 0 $ (:-lHI w

0
+ lt l  )2 l t l 

0 
for F > F • 0 

This  means  that w i s  unbounded as F � oo and therefore that 

w- 1 ( F )  = O ( F- 1 /b ) as F � oo. This contradicts the existence of the 

expectati on of and shows that there does not exist F 0 such that 

w( F ) > l t l . Our solut ions assumed that 0 t * 0 .  It  is easy to  see that 

the same result applies if t = 0 . 

We now wish to see what happens if there exist values  

are less than - I t I There are two pos sible cases if l t I 

( i )  3 F such that - 1 - � < w ( F  ) < - I t l 
0 b 0 

( i i )  3 F such t hat -1 - � > w ( F ) . 0 b 0 

If  t a ::::: 1 + b then only the second case may occur . 

of w whi ch 

< 1 + � b 

In the second case we may argue as previously that w � - oo as 

F � oo and that -w- 1 ( F )  = O ( F- 1 /b ) as F � oo ( only the signs of w 

and 

to F 

F 0 
F 

dw 
dF 

In 

0 

$ 

are changed in this argument ) .  

the first case , w is increas ing . We integrate from F < F 0 
and obtain 

(w0- l t l w+ l t l) �i�1 2 2 1 b (wo - t \� 
for F < F . w- l t l w + l t l  \wLt 2 ) 0 0 
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The inequal ity reverses i f  w reaches the value - 1 - � as F -+ 00 b 

1 89 

decreases . Thi s  must occur , for , with the direction of the inequality 

unchanged the value of w i s  unbounded below as F -+ 0 .  Let 
a w ( F

1
) = 

-1 - b .  For F < F1 we cannot continue the soluti on curve 

continuously so case ( i ) is  impossible . 

Thus , in order to dominate the shrunken 
·'· 

est imator t;," t in 
·'· 

- i t  I l t  I · terms of risk estimate , we must use c where � w ::; Jn w 
the case of the James-Stein estimator , t = 0 and w = 0 i s  the only 

solution . Therefore no estimator can dominate the James-Stein estimator 

in risk estimate . However , we have already seen that the positive part 

version of the J ames-Stein estimator dominates the unmodified version . 

Its  ri sk est imate must be sometimes greater and sometimes less . 

We now turn our attention to the posit ive part estimator . We prove 

part of the result for (' f in general .  In order to dominate 

in risk estimate we require that 

dw ( a+b+b w )  F dF = df ( a+b+b f )  F d F  + w2 

I f  w2 > f2 then this implies that 

dw ( a+b+b w )  dF > df ( a+b+b f )  dF 

Therefore , if  

( a+b+b w ) 2 
w > f > 0 

0 0 at F 0 , then , for F > F 0 
- ( a+b+b f ) 2 > ( a-..b+b w ) 2 

0 - ( a+b+b f ) 2 • 0 

1jJ � o .  

I t  is easy to see that w - f -+ 0 as F -+ 00 is only possible if  

f -+ (X) as F -+ oo .  If  f i s  bounded then inf ( w-f) > o .  
F>F 0 

-w < - I f I and a+b+b w > 0 then 

dw > a+b+b f df df  
dF dF > dF a+b+b w 

and so , if  :-W < -f at F then f - w increases 0 0 0 
decreases below F Finally , if a+b+b w < o ,  a+b+b f > 0 0 
df > dF 

where 

0 then dw < dF 0 .  

App lying these results 

f ( F )  = t if F 

= 1- F 1 F c 

t;,1'+ ... 
to the estimator = t;,"  t f 

� e t  Ht ) 
:s, c c  1 +t )  

Now , if  

as F 

and 

(' f 

we see that , if w > 

F > F ; that , if w 

l t l  for F � c ( 1+t ) ,  then 0 w > l t l  

1 )  and 

for all 

0 0 
= w ( F ) < min ( - I t I , 1. F 0 c 

a+b+b w0 > 0 then for some F1 < F0 , w ( F
1

) < - 1  
w = w( F ) < min ( - l t l , 1.  F - 1 ) and a+b+b w < 

0 0 c 0 

and , if  

0 then for all 
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F > F , w ( F )  < w ( F  ) .  It now follows from the previous section that , 0 0 
for F � c t 1+t ) ,  we need .w2 > t2  in order to dominate the 

A+ A 
estimator � -· in terms of risk estimate . Now if � "  dominates  t w �* in risk estimate then it  also dominates  it in risk and dominates  t 
the maximum likelihood estimator in risk estimate . Thus -1 � w � 1 .  
However , we have already seen that if w < min ( - 1�,� F - 1 )  and c 
a+b+b w > 0 then there are values of w < -1 .  Thi s  is a contradict ion . 

Also if w > � F - 1 for F < c ( 1 +t ) then (': can be improved c w 
upon in risk by taking the positive part estimator . Now ,  taking t = 0 

we have the contradiction that 

�+ = �*+ 
< �* � t w w 

···+ � " t 

� �·: 
w is �� . Thus the positive since the posit i ve part versi on of 

part James-Stein estimator (with 

risk estimate . 

t = 0 )  cannot be improved upon in 

7 . 3 
* A Cond i t i on for R i s k  E s t i mate Domi nance  over  � t 

Efron and Morris ( 1 976 ) gave a condition for risk estimate 

dominance of an estimate� for which an unbiased risk estimate  exists , 

over the maximum likelihood estimator . We have already given a 

condition for risk estimate dominance of such an estimator over ��·: t 
In this section we shall give a condit ion which is similar to that 

given by Efron and Morris . The condition i s  only given for 

the case that w depends only on F .  

�* in w 

In order to  find the condition we shall solve equation 7 . 2 . 1 . 1 

again . Writing ljJ = (w2 - t2 ) F d4> 
dF we find that 

a+b+b w dw 2. ( 1 + F d4> ) 1 drp 
w2 - t2 

= = r + dF dF F dF 

where 4> is . non-decreasing if w2 > t2 and non-increasing if w2 < t2 • 

Integrating gives 

= - log F a+b w- l t l  + 2ftT log W+ftT + 

The complete solution is therefore that 
a+b 

exp 4> = 2. (w-l t l \2 lt l ( w2 -t 2 )�b 
F \W+ftT ) 

is non-decreasing when w2 > t 2 and non-increasing when w2 < t 2 . We 

have already seen that the former case is impossible . Although we shall 

not prove it here , it is fairly easy to see that the above condition 

implies that i f  w ( F  ) = I t I 0 
that for I t  I < a�b = 1 1 + -c 

then 

if 

w ( F )  = for 

then 

F > F 0 
w( F )  

and 

= - I t  I 
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for F < r1 . This result i s  contained in Moore and Brook ( 197 8 )  and 
slightly generalises the similar theorem in Efron and Morris ( 1 976 ) . 
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8 

D i s tr i buti on of  Studen t i sed  Shrunken E s t i ma tors 

8 . 1 I n troduct i on 

The methods of chapter 4 allow for the computation of the first , 
second and fourth moments of the James-Stein estimator in terms of 
hypergeometric functions . Similar methods lead to the computat ion of 
tne third moment . The computation is complicated by the fact that the 
shrinkage factor depends on both X and s ( and is homogeneous in 
s- 1 X ) but the other factor is j ust X .  Thus the estimator is neither 
a homogeneous function of X nor of s- 1 X . The Studentised shrunken 
estimator , s- 1 [, -:: , on the other hand , is homogeneous in s- 1 X . This  
makes the computation of  the density function almost a triviality 
since , putting Z = s - 1 (': and T = s - 1  X , the distribution of Z is 
j ust a transformation of the distribution of T ( which has a 
multivariate t -di stribution with parameter A ) . 

If  we Studentised the estimator in a different way , by dividing 
by the trace of its variance matrix , then we j ust have a linear 
multiple of Z - the factor being dependent on A .  This multiple is 
easily found by the methods of chapter 6 ,  but we prefer to define 
Studentisation in the former manner . 

Noting that the shrinkage factor only depends on the length of 
the vector s - 1 X ,  we find it is easier to work in polar coordinates . 
Accordingly , in the next section we transform the mutivariate normal 
and t distributions to  polar form . 

8 . 2 Pol a r  Coord i nates 

We f irst transform the coordinate system ( x1 , . . .  ,xp ) to the 
system ( y1 , . . .  ,yp ) by an orthogonal transformation in such a way 
that the y �axis is in the direction of [, .  Dividing by a then p 
gives a coordinate system ( z1 , . . .  , zp ) in which the point ( t;,1 , . . .  , t;,k ) 
in the original system is given by ( 0 , 0 ,  . . .  , O , A )  in the 
z -coordinates . 

We shall transform to polar coordinates through a sequence of 
transformations . Let r

1 
= z1 , 

z1 = r2 cos 8 1 
z2 = r2 sin 8 1 

-n $ 8 < n .  1 

We then transform the other coordinates successively by the 
transformations 
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zi+ 1 = ri+ 1 s in e . � -� � e . � � r .  = r . 1 cos e . 1 2 �+ � 
for i = 2 , 3 ,  . . .  ,p-1 . Putting r = r , we finally obtain the p 
coordinate system ( 8 1 , . . . , ep_1 ,r ) which may be written directly in 
t erms of ( z1 , . . .  , zp ) by the relations 

z . � = r cos e p-1 cos e p-2 cos e . 1 sin e .  �+  � i= 2 , 3 ,  . . .  ,p- 1 

= r cos e p-1 cos e p-2 cos 

Using this sequence of transformat i ons makes it easy to find the 
Jacobian of the combined transformation which i s  

� c e e \ = 1"'2 1"'3 . . .  rp- 1 rp 0 1 , . . .  , p - 1 '1"' ' 

Now the normal density funct ion i s  given by 

1 p-1 
p ( z )  = 

( 27T )�p exp { -�( z -:\ ) 2 + I p i = 1  

-��- A Z  T 1 p -�z z = 
( 2TI )�p e e e 

Transforming to polar coordinates g ives 
>.r s in e p-1 

p- 1 cos e 1 p-

z2i } 

e p-1 
As might be expected , this factorises into a density involving r and 
ep-1 and  densities involving e 1 , e 2 , . . .  , ep-2 Thus r and e p -1 
are not inde.pendent but are independent of the other variables which 
are also mutually independent . For each value of r 
conditional density is, in fact , uniform over a p-2 

and e 1 ' the p-
dimensional sphere . 

Our shrunken estimators shrink in the d irection of r and leave all 
the 8-coordinates unchanged . 

Having transformed to this coordinate system it is almost a 
trivial matter to derive the density function for the non-central x2 
distribution . We merely write 

e 
/-r s in e p-1 = � ( >.r )k k L ...;.....,.�- cos e 1 k=O k ! p-

and integrate with respect to e1 , . . .  , ep_1 
is the j oint density of r and e 1 . p-

Our concern here , though , 
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Since i cos e de  

p-2 1 

= 

= 

f (�i+� ) f (�) 
r <f.zi+1 )  

= 

we have 
1 e 27T )"2P n 

i-2 I � . 1 cosl- e .  d8 . 
-� l l r el 1 ) "2P-� e 27T ) 2"2P-1 r e�p-1 ) 

Writing <P = e we obtain the density for r and <P p-1 
-�A 2 p-1 -�2 Ar sin <P p-2 p e r , tP ) e cp .  = r e e cos 

2"2P r e�-�) 
It is now an easy matter , in the case of known variance , 

transform r by the shrinkage transformation .  Let u = h er ) r 

194 

to 
and 

assume that he . ) is one-to-one so that r = f e u )  for some function 
f e . ) .  The j oint density of u and <P is then 

p e u , <P ) = -�2A 2 e e f e u )p-1 e-�e f e u )) 2 eAf e u ) sin <P f ' ( u) cosp-2<P 
2"2P r e�-�) 

If required it is then possible to multiply by the j oint density of 
82 , . . .  , 8p _2 and invert the transformation .  However , it is probably 
better to leave the density in polar coordinates . 
8 . 3  Unknown Vari ance  

ns 2 If the variance is unknown and estimated by s then S = (Yr 
has a X2 -distribution on n degrees of freedom . The j oint density 
of r ,  <P and S is therefore 

p e r , cp , S )  = p-1 -�2 Ar sin <P p-2 �-1 -�S r e e cos cp S e . 2"2P r e�-� ) 2� r e� ) 
We require the j oint density of and cp ,  that is , of � r .  s 

I f we transformed this density back to the ori ginal coordinate system 
then we would obtain the multivariate non-central t density in 
catesian form . This is already well known . Alternatively , we could 
have started with the known form of that density and transformed it 
in the manner of the previous section and thus avoiding the integration 
with respect to S .  

Putting 

p ( t ,<P , S )  = 

t = � r we have 
-�A2 1 -�p e n 

a e t , s ) m -;::"a --e r-',"=s-<-5 = I s and 
St2 

�p-1 p-1 - 2n A � S t e exp(;n S t sin <P )  
p-2 �-1 -�S x cos <P S  e 

A 1: Expanding expy-; S 2 t sin <P )  as a power seri es we have 
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p ( t , � , S )  = 
1 1 2 1 1 00 k k 2 -�A -"2P p-e n t A s in � cos � tp -1+k 

� >m L k !  �k 2 2.1:' f (  � -1  ) 2 2 f ( � ) k = 0 n 

�+�k-1 -�( 1+t 2 /n ) S  
x S e 

It  is now easy to  integrate with respect to  S and obtain 

p ( t , � )  = 
00 /-k sink

� cosp-2
� I rr �k k= O n 

X tp+k- l 2�+�k f (�p+�k ) 

( 1+t 2 /n )"2P+�k 

1 9 5  

If  desired , then thi s can be  transformed back . On putting u = f ( t )  

we can find the d istribution of the shrunken estimator as in the 

last �ection . The formula is not really suited to analyt i cal 

manipulat i on but can be dealt with numerically . 
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A p p e n d i x 1 

Gamma Beta and  Hypergeometri c Functi ons 

Al . l  I n trod uct i on 

1 96 

In order to  make referenced formulae easier to find we list the 
main properties of the gamma beta and hypergeometric  funct ions and 
various generalisations of the hypergeometric funct ion .  Most of these 
properties may be found in Erde.lyi ( 1 9 5 3 ) , Slater ( 1 9 60 )  and Slater( 1 966 ) .  

A1 . 2  The gamma Functi on 

We define 

( when the l imit 

and 

( a ) = lim 1 .  x( x+1 ) ( x+ 2 )  . . .  ( x+n- 1 )  
z lm (x+z)(x+z+1) . . .  (x+z+n-1) x-+ a n -+ eo  

exist s ) , 
[ a ]  = ( a-z+ 1 ) z z 

f { z )  = ( 1 ) z - 1  
The following propert ies hold 

( 1 )  f ( z )  = 1 1 .  N !  z N.: ( z + 1:-")�(;-z-+--:2::-;):-.-.-.-,(-z-+-:-:N--"71"') 

z n 

and i s  analyt ic except at s imple poles at z= 0 , -1 , -2 , - 3 , . . .  
( 2 )  
( 3 ) 

( 4 )  

( 5 )  

( 6 ) 

( 7 )  

( 8 )  

f ( z+1 ) =  zf ( z ) 
( a ) = lim z x -+  a 
[ a ] = lim z x -+  a 
( a ) "' z 

z a 

[ a]  "-' a-z 
z 

[ a) z+z; 

= lim 
x -+ a  

= lim 
x -+  a 

f ( x+ z )  
f ( x) 
f ( x+1 ) r( x+n-1) 

as a -+ co  

[ x ] 2 [ x+ z ] z; 
in fact ( 5 ) and ( 7 )  together with ( a ) 1 = a characterise 
( 9 )  

( 1 0 )  

( 1 1 )  

( 1 2 )  

( 1 3  ) · 

( 1 4 )  

( 1 5 )  
( 1 6 )  

( a ) = 1 0 
[a ] = 1 0 

1 ( a ) = -z la-1]  
1 

z 
[ a] = -z ( a+1 ) z 
( a) n 
[ a] n 

n = ( -1 )  ( -a )  

if it exists 

if it exists 

n an integer 

n n an integer 

( a) = a ( a+1 ) ( a+ 2 )  . . .  ( a+n-1 ) n 
[ a] = a ( a- 1 ) ( a-2 )  . . .  ( a-n+1 ) n 

n= 1 ,2 , 3 , . . .  
n= 1 , 2 , 3 . . • 

( a )  z 
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multiplication rule 

( 17 )  

special 

( 1 8 )  

( 1 9 )  

n-1 
f (  nz )  = 

nz-� n 
t,., i,  < 2n r2" - 2 

n f ( z + ::_ ) n r=O 
case - the duplication formula 

f ( 2z )  22z-� 
f ( z ) f ( z + �) = 

( 2TI ) �  
f (�)  = liT 

197 

( 20 )  Jooo xz- 1 e-ax dx = 1 
z a 

f (  z )  i f  the real part of z is  positive . 

Stirling ' s  expansion 

( 21 )  
00 

log f ( z )  "-' ( z-� )  log z - z + � log ( 2n )  + I 
r= 1  2r( 2r- 1 ) z2r- 1 

as z -+ oo I ar g z I s. TI -!J. 
where B is  the r th Bernoui lli number . r 
( 22 )  f ( z )  Z Z k k 1 1 '\, - - 2 ( 2 ) 2{ 1 -e z 7T + 1 2 z  + 2 88z2 1 39 57 1 

51 840z3 - 2488320z'+ 

+0(-;:\- ) } • z 

Al . 3  The Beta Funct i on 

The beta function is defined in terms of the gamma function as 

B ( z , l;; ) = f ( z )  f ( l;;) -r(z+l;; ) . The following formulae , valid when the 

real parts of z and I;; are positive , are important 

( 1 )  B ( z , l;; ) 

( 2 ) B ( z , l;; ) 

( 3 )  B ( z ,l;; ) 

= xz- 1 ( 1 -x ) l;; - 1 dx J 1

0 

= x dx 
[ z- 1 

0 ( 1+x ) z+l; 

2J�o 
. 2 z- 1 e 2S-1 e de = s1n cos 

A1 . 4  The  Hypergeometri c Fun ct i on 

We use the term "hypergeometric function"  to include certain 
generalisations of the Gaussian hypergeometric function defined below . 
Within the circle of convergence we define 

00 ( a1 )r ( a2 )r . . .  ( aP )r zr 
PFQ( a1 , a2 , . . .  , ap ;b1 ,b2 , . . .  , bQ ; z )  = 

r�O (b1)r(b2)r . . . ( bQ)r r !  

and by analytic continuation outside . W e  shall often omit the subscripts 
P and Q on F . The radius of convergence is 00 , 1 or 0 according 
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a s  P � Q ,  P = Q + 1 or P > Q + 1 .  I n  the latter case the series is  
an asymptot ic  expansion as z � 0 of a convergent hypergeometric 
series ( Slater( 1966 ) )  which may be identified with it . The special 
cases 2r1 C a ,b ; c ; z )  and 1r1 C a ; c ; z )  are respectively the Gaussian 
hypergeometric  function and the confluent hypergeometric function . The 
latter is  a limiting case of the former s ince 

1r1 C a ; c ; z )  = lim 2r1 C a ,b ; c ;� ) 
b � oo  

Writing F = F( a ,b ; c ; z ) , F (a+ )  = F ( a+1 ,b ; c ; z ) , F( a- )  = F ( a-1 ,b ; c ; z )  
etc . we have the following recurrence relat ions for the Gaussian 
hypergeometri c function 
( 1 )  

( 2 )  
( 3 )  
( 4 )  
( 5 ) 
( 6 )  
( 7 )  
( 8 )  
( 9 )  
( 1 0 )  
( 1 1 )  
( 1 2 )  

{ C c -2a ) - ( b-a ) z } F + a ( 1-z ) F ( a+ )  - ( c-a )F ( a- )  = 0 

( b-a ) F  + aF( a+ )  - bF ( b+ ) = 0 
( c-a-b )F + a( 1-z ) F ( a+ )  - ( c-b )F (b- ) = 0 

c { a- ( c-b ) z } F - ac ( 1 -z )F ( a+ )  + ( c-a ) ( c-b )zF( c+ ) = 0 
( c-a- 1 )F + aF( a+ ) - ( c-1 )F ( c- ) = 0 

( c-a-b ) F  - ( c-a ) F ( a- ) + b ( 1-z ) F ( b+ ) = 0 
( b-a ) ( 1 -z )F - ( c-a ) F( a- ) + ( c-b ) F ( b-) = 0 

c ( 1 -z )F - cF ( a- ) + ( c-b ) zF ( c+ ) = 0 
{ C a-1 ) - ( c-b-1 ) z } F + ( c-a ) F( a- ) - ( c- 1 ) ( 1 -z ) F ( c- ) = 0 

{ C c-2b ) + ( b-a ) z } F + b ( 1-z ) F (b+ ) - ( c-b )F (b- ) = 0 
c {b- ( c-a ) z } F - bc ( 1 -z )F ( b+ ) + ( c-a ) ( c-b ) zF( c+ ) = 0 

( c-b- 1 ) F  + bF (b+ ) - ( c-1 ) F ( c- ) = 0 
( 1 3 )  c ( 1 - z )F - cF (b- ) + ( c-a ) zF( c+ ) = 0 
( 1 4 )  { Cb-1 ) - ( c-a-1 ) z } F + ( c-b )F (b- ) - ( c- 1 ) ( 1-z )F ( c - )  = 0 
( 1 5 )  c { ( c-1 ) - ( 2 c-a-b-1 ) z } F +  ( c-a ) ( c -b )F ( c+ ) - c < c-1 ) ( 1 - z ) F ( c-) = 0 

Fm,ther recurrence relations deducible from these , but more 
easily prove9 direct ly are 
( 1 6 )  

( 1 7 )  

( 1 8 )  

Also 
( 1 9 )  

F( a ,b+1 ; c ; z )  

F ( a+1 ,b ; c ; z )  

( c-1 ) F ( a ,b ; c- 1 ; z )  + 

d 
dz F( a ,b ; c ; z )  = 

Gauss ' s  theorem 

( 20 )  F( a ,b ; c ; 1 )  = 

F ( a ,b ; c ; z )  az = -- F ( a+1 ,b+ 1 ; c+ 1 ; z )  c 

F ( a ,b ; c ; z )  bz = -- F( a+1 ,b+ 1 ; c+1 ; z )  c 

F( a ,b ; c ; z )  abz = --- F( a+1 ,b+1 ; c+l ; z ) . c 

ab -- F ( a+1 ,b+1 ; c+ l ; z ) .  c 

f ( c ) f ( c-a-b )  
r < c-a ) f ( c-b ) = 

( e-a ) a ...,.--.....,--.,.-- = ( c-a-b ) a 

( c-b )b 
( c-a-b )  b 
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Euler 1 s  theorem 
( 21 )  c-a-b F ( a ,b ; c ; z )  = ( 1-z )  F ( c-a , c-b ; c ; z ) . 

For the confluent hypergeometri c function we have the following 
recurrence relations 
( 22 )  
( 2 3 )  
( 24 )  
( 2 5 )  
( 26 )  
( 27 )  
Also 
( 2 8 )  

( 29 )  

( 30 )  

( 3 1 )  
( 32 )  

( 3 3 )  

( c-2a-z )F + aF( a+ ) - ( c-a )F{ a- ) 
c ( a+z )F - acF ( a+ ) ( e-a ) F( c + )  
( c-a-1 )F + aF( a+ )  ( c-1 ) F ( c - )  

er - cF( a- ) - zF( c+ ) 
( a- 1+z )F + ( c-a )F ( a- )  - ( c- 1 ) F ( c - ) 

c ( c- 1+ z ) F - ( c-a ) zF ( c+ ) - c ( c- 1 ) F ( c- ) 

F ( a+ 1 ; c ; z )  F ( a ; c ; z ) = � F ( a+1 · c+1 · z ) c ' ' 

= 0 
= 0 
= 0 
= 0 
= 0 
= o .  

az ( c- 1 ) F ( a ; c- 1 ; z )  + F ( a ; c ; z )  = -- F ( a+1 · c+1 · z )  c ' ' 
d a 
dz F ( a ; c ; z )  = - F ( a+1 · c+1 · z ) c ' ' 

-z e F ( a ; c ; z )  = F( c-a ; c ; -z )  
-z ( ) '\.. r ( c ) a-b ( 1 ) e r a ; c ; z  f ( a ) z 2r0 1-a ,b-a ; ;z 
F( a ; c ; -z )  

as z -+ oo 

as z -+ oo • 

The 2r2 function may be written in terms of 1r1 functions . 
We give the proof as the result is not so well known as the others . 
We first prove a useful lemma . 

Lemma 1 

Proof 

00 

I i = O 
[u ) . [ k ] . l l 
( a) . • I l .  l 

( a+u\ = (a\ 
Using the definition of 

function and Gauss 1 s theorem we have 

( a+k ) u = (a) u 
the Gaussian hypergeometric 

00 [ u] . [ k ] . 00 ( -u ) . ( -k ) . I i= O 
l l 

(a) . i ! l 
= I i =O 

l l 
( a) . i !  l r e  a ) f (  a+u+k ) = f (  a+u)r( a+k) 

This may also be proved by induction if either k or u is a pos itive 
integer . In our application to the next theorem k will be a positive 
integer . 
Theorem 1 

Proof 

00 

I i= O 
00 

I k=O 

[ u] . (b ) . z1 l l 
(a ) . ( c ) . i ! l l 1r1 ( b+i ; c+i ; z )  

( a+u)k ( b  \ 2k 
( a\ ( c\ kT 
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Thus 2r2 ( a+u ,b ; a , c ; z )  
oo oo [ u] . [ k ] . ( b  \ 

= 
k�O i� o ( a ):( c ): i ! 

00 

= I i = O 
00 

= I i= O 
00 

00 

I 
[ u ] . [ k ] . ( b \ l l 
( a ) i ( c\ . ' k=i l .  

[ u ] . ( b ) . z i 00 
l l I ( a) . (c) . i !  l l k=O 

[ u ] . 

k z IT 
k z IT 

(b+i \ 
(c+i) 

k z IT 
l i! = I i=O 

i (b ) .  z l 
( a) . (c) . 1 F 1 ( b+ i ;  c+ i ;  z ) . 

l l 
If u is a positive integer then this sum is finte . 
A1 . 5  Hypergeometr i c Funct i ons  o f  Two Va ri a b l es  

200 

The Gaussian hypergeometric series can be generalised to the case 
of two vari ables in a variety of ways . We shall only give the Appell 
seri es which form one set of generalisations . We defir,e 

oo ( a ) (b ) ( b ' ) \ m+n m n m n r1 C a ;b ,b ' , c ; x ,y ) = L (c) m ! n ! x y 
m ,n= O m+n 

r2 C a ;b ,b ' ; c , c ' ; x ,y )  = 

F3 ( a , a ' ;b ,b ' ; c ;x ,y ) = 

and F4 ( a ; b ; c ,c ' ; x ,y )  = 

Note that defining 
r0 ( a ; b ; c ; x ,y )  = 

and 
F5 ( a ,a ' ;b , b 1 ; c , c ' ; x ,y )  = 

00 ( a )  + ( b )  ( b  I ) 
I m n m n m n 

(c) ( C I ) m ! n !  X y 
m ,n= O m n 

00 ( a ) ( a ' ) ( b )  ( b  I )  I m n m n m n X y (c ) m !  n ! m ,n= O m+n 
00 ( a )m+ ( b )  + n m n 

( c ) ( c ' ) m ! n !  
m n X y • 

m ,n= O m n 
00 

I 
m ,n=O 

00 

( a )  ( b ) m+n m+n 
( c ) - m !  n !  m+n 

m n X y 

( a) ( a ' )  ( b )  ( b ' )  m n m n 
( c ) C c' )  m! n ! m ,n=O m n 

m n  X y 

do not define new functions s ince the former is equal to 
F( a ,b ; c ; x+y ) and the latter is equal to F ( a ,b ; c ; x )F ( a ' ,b ' ; c ' ; y ) . 
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In this appendix we briefly state the definitions of the density 
functions we have used and calculate the moments and expected values 
of certain random variables for whiqh these values have been quoted 
earlier in the thesi s . 

A2 . 2  Non-centra l Beta and Gamma Di stri b u t i ons  

The non-central gamma density with parameters a, 8 and 
non-centrality parameter A is  defined t o  be the function 

-A p( x) = e 
oo , k  a+k-1 -x/8 \ 11 x e 

k� O kT 8a+k f ( a+k ) 
and is  denoted by y( a , 8 , A ) a notation whi ch will be interpreted as 
standing for the d istributi on or for a random variable with that 
distribution . Putt ing a = � and 8 = 2 g ives the non-central y 
distribution denoted by y ( n ,A )  which i s  the density of the sum of 
squares of n independent N ( ).J i , 1 ) variables with � E i�1 Ji = A . 

The special cases in which each )..! . 1 is zero ( i . e .  A = 0 )  are the 
central y and x2 distributions denoted respect ively by y ( a , 8 )  
and x2 n 

It  is clear that the y ( a , 8 , A )  distribution i s  the marginal 
density of X 

p ( x ,k )  = 

from the j oint distributi on 
, , k  a+k-1 -x/8 - 11  11 x e e kT 8a7k f ( a+k ) 

the conditional des ity given K = k being y (a+k , 8 ) . The marginal 
density of � is  the Poisson distribution with parameter A . 

The ratio of independent y ( ).J , 8 , A ) and y (v , 8 )  variates is  the 
non-central inverse beta distribution 82 ( ).J ,V , 8 , A ) with the dens ity 
functi on 

p (x )  -A = e 
00 , k  ).J+k-1 L 1\ X 

k= 0 kT B ( ).J
._
+
_
k_,_v

_
)
_
( -1 +_x_)_).J_+_v_+-=-k 

which can be interpreted as a marginal density in the same way as the 
non-central gamma distribution . 

The ratio  of independent � y ( ).J , 8 ,A )  and � y(v , 8 )  variates , ).J 1 1 2 or , which is the same , the ratio of 2)..! x2 ( 2).J ,A )  and 2v X 2v has 
the density function 
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p (x )  = -A e 
00 \ k �+k � �+k-1 
L 1\ m n x 

k= 0 kT B (�+ k '�) _
(
_
n
_
+
_
m
_
x
_
)
��-+..,...�-+-=-k where m=2lJ and n= 2v . 

I f  m and n are positive integers then this is the non-central F 
distribution denoted by F(m ,n , A ) . We shall use the same notation 
regardless of whether m and n are integers . Regarding this as the 
marginal density of a j oint distribution , we note that the conditional 

m+2k F density given K = k is the density of where F m m+2k ,m a ,b 
denotes the random variable F( a ,b , O ) . 

The transformations 
transform 82 ( 1J ,V , A )  and 
density 

y = � and 1+x 
F ( 2� , 2V , A )  

p ( y )  -A = e I Ak YlJ+k-1 ( 1 -y)v-1 

k= O k !  B ( lJ+k ,v) 

y = mx = � respect ively m+nx lJ+Vx 
to  the distribution with 

which is defined to be the non-central beta distribution denoted by 
8 1 ( 1J ,V , A )  or by 8 ( lJ ,V , A ) . 

A2 . 3  Moments  of Non- cen tra l Beta and  Gamma D i s tri b uti ons 

is 
The p th moment about zero of the non-central gamma distribution 

= 

= 

= 

= 

= 

00 -A I e 

oo Ak xa+p+k-1 e-x/8 
L kT 8a+k k=O r <a+k ) 

Ak 8a+p+k f (a+p+k ) 
k=O  kT s<Hk f (a+k ) 

00 A k {a )
E 

(a+p \ p - A L 8 e 
k=O k !  ( a \ 

8P (a )  1r1 ( a+p ;a ;A )  p 
00 ( -p \ ( -A )k 

8P{a )  I p k= O  (a \ k !  
k 00 [ p ] kA 

8P (a )  I p k= O ( a )kk !  

If p is  a positive integer then this series terminates at k = p .  
The mean and variance are easily seen to be 

E [ X] = (a+A ) 8 and 
Putting 8 = 2 and a = · � gives the mean and variance of the x2 ( n  ,.). ) 
distributi ons respect ively as 

n + 2 A and 2 n  + B A .  
The p th moment about zero of the B1 ( 1J ,V , A )  distribution is 
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= J 1 e-A I A k 
�:---1-:--__... 

O k= O  k !  B (�+k ,v ) 

= -A � Ak B (�+p+k ,v ) e 
k; O IT B (�+k ,v ) 

-A = e 
oo 

Ak (�+k )  

k�O IT (�+v+k) P 

x�+p+k-1 ( 1-x )v -1 dx 

-A = e 
oo A k (�+v )k (�+p )k (� )

P 
k� O IT (� \(�+v+p\ ,(�-+-v�)-P 

(� )  -A = 
(�+v) e 2r2 (�+v ,�+p ;� .�+v+p ; A ) .  

p 
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Thi s does not simplify to a finite sum when p is  a positive integer . 
The p th moment about zero for the B2 (� ,v ,A ) distribution is  foo oo k �+p+k-1 

E [ xP ] = -A I A 1 __ 
x 

__ =--_ 

0 
e 

k= O  IT B(lJ+k ,v) ( 1+x )�+p+k+v -p 

00 k 

dx 

= e -A I � B (}l+p+k ,v -p) 
k= O  k ! B (�+k ,v) if p < V 

and this does terminate if p is a positive integer . 
After a little s implification we find the mean and variance are 

1 E [X ]  = -1 (�+A ) v - and var ( X )  = 1 { (].!+A )2 
v -1 (v -1 Hv -2 )  

]J+2A } + 2 • v-
This gives the mean and variance of the non-central F distribution as 

_E._ ( 1 + � ) n-2 m and 2n { (m+2A ) 2 
m2 (n-2) ( n-2Hn-4 ) 

m+4A } + --4 . n-
By s imilar reasoning it is e asy to show that , for the S1 ( � ,V , A ) 

distribution 
( � )  ( V )  m n = '( �-+-v')-­

m+n 
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and for the distribution B2 (].J ,V , A )  
( lJ )  ( v ) m n-m 
( ].J+V ) n 

For the B2 ( 1J ,V , A )  distribution we can also caculate 

2 04 

a result which is helpful for calculating the risk function for the 
bilinear shrinkage estimators of chapter 4 . We have 

r xm ] E -
l ( d+X )n -

= 

= 

[ xm { 1 -d }
-n ] 

E ( 1+X )n 
1 - 1+X 

[ oo ( n )r �1-d)
r
] E r�O -;y- ( 1+X )n 1+X 

00 ( n )  
I I' r! r=O 

( 1 -d )I' 
(lJ ) (v ) + m n r-m 

( lJ +v) n+r 

which converges if 

-A e 
x 2 r2 (1J +m ,].J+V ;].J ,1J+v+n+r ;A ) 

1 1 -d 1 < 1 

00 00 -A l: l: = ( n )  (lJ ) (v ) + r m n r-m ( ].J+m \ (].J+v )k ( 1 -d )k k 
e (].J+v )n+r ( lJ \ ( lJ +v+n+r \ kT r=O k=O r ! 

-A ( lJ )m(v )n-m � � = e ( , ' +v ) L L 
( n )r(V+n-m )r (].J+m)k (lJ+V )k ( 1-d )r Ak ,... n r=O k=O (].J )k(].J+V+n )r+k r ! kT 

( lJ ) (v ) -A m n-m = e (lJ+V )  n 
Where F is on� of the many possible hypergeometri c functions of two 
variables and of 0rder 2 , 2 in A and 2 , 1 in 1-d .  By analytic 
continuation, the result also holds if 1 1 -d l � 1 .  In the case m =  0 
the order of the hypergeomtric function reduces to 1 , 1 in A and 2 , 1 
in 1-d and the case m = 1 

E[ ( d:X )ml 
= E[ ( d+:)m-1] 

may be reduced to the case m = 0 
d E [ ( d+1X )m ] . 

s ince 

A2 . 4  E xpecta t i ons  wi th Respect to the J o i nt Dens i ty wh i ch G i ves Ri se  

to  the Non - central I nverse Beta  D i s tri but i on 

Given the j oint density 

p ( u ,k )  = -A Ak ulJ+k-1 e k ! B (].J+k ,V ) ( 1+u )].J+V+k 

we shall find [
( O+K ) ] 

E _ _ __  
m r ( U )  ( y+K ) in terms of V �  82 ( 1J ,V ) .  We have 

[
( 6+K ) ] 

E ( y+K)
m r ( U )  
n 

n 
-A oo Ak ( 6+k )m [ = e L kT ( y+k ) r ( U )  

k = O n 0 
].J+k-1 u 

B ( ].J+k ,n ) ( 1+u )lJ+V+k 
du 
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We thus have 

= ( r ( u) 
lJ -1 u 

B ( lJ ,  v ) (  1+u) lJ+\I 
00 , k  ( O+k ) 

x { e-A L __ A m 
k = O  k ! ( ytk )n 

2 0 5  

For certain special cases , for example if  n = 0 ,  the order of the 
hypergeometric function is reduced . 

A2 . 5  The Poi sson D i s tri but i on 

The first few central moments of the Poisson distribution ( see 
Kendal and Stuart ( 1977-79 ) are 

lJO ( A )  = 1 l-1 1 ( A )  = 0 
lJ2 ( A )  = A l-13 ( A )  = A 
lJ4( A )  = A + 3A 2 lJ 5 ( A )  = A + 10.A2 

lJ 6 ( .A )  = A + 10A 2 + 30A 3  lJ7 ( A ) = A + 54A2 t 105A 3  . 

The highest power of A in lJ ( .A )  is [�] where the square brackets n 
indicate the "integer part " function . The coefficients in these 

n increases . expans ions become large very quickly as 
We wish to calculate E [ 1 ] for a.+K a. > 0 which we have already 

done exactly as 
E[a.!K ] = � e-A 

1 r1 ( a. ;a.+1 ; A )  = � 1r1 ( 1 ;a.+1 ; -.A )  

and asymptotically as 

E[a.!K] � I  2F0 ( 1-a. , 1 ; ;  
Stein ( 1966 ) gives an approximat ion which we shall extend to give an 

1 asymptotic expansion . Expanding a.tK as 

1 _1 ( 1 
K-.A) 

- 1  
Ort-K = + --a.+ A a.+ A 

n 
( - 1 )r (K-A)

r 1 I = a.+ A r= O  a.+ A 

and taking expectations , we have 

r 1 l 1 { n ( -1 )r 
lJr ( .A ) 

( 1 ) E -J = - L la.+K a.+A r= O  ( a.+.A )r 

+ ( ) 
n+1 1 ( - 1 )n+1 K-A  

a.+ .A a.+K 

+ ( - 1 )n+1  1 E[ ( K-.A )n+1
]} . 

( a.+ A )n K+a. 

According t·o Erd�lyi (  19 56 ) ,  a series E n a � ( x ) + R ( x )  r= 1 r r n 
an asymptotic expansion as X -+ X 0 
and R ( x ) = o ( �  ( x ) ) as x -+  x . n n o 

• 

if �r+1 ( x )  = o( �r ( x) )  as 
is  

X -+ X 0 
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It i s  easy to see that the series in ( 1 )  does not converge as , 
after n terms with n odd the remainder is 

I (k-A)n+1 1 Ak 
-- --

k=O  a+A a+k k ! 

and for any k (k -A) > a+2A ,\ :+A  > 
1 so that c0-A) n+2 

a+A -+ 00 as n -+ oo 0 
Since all - the other terms are positive the remainder is greater and 
tends to infinity also .  We wish to show that the series is an 
asymptoti c  expansion for E [--1-] as A -+ 0 and as A -+ 00 • a+K 

In terms of Erdelyi ' s  definition this i s  not strictly true as 
pairs of terms of the series are of the same order as A -+ 00 • Let us 
group the terms in pairs and write 

= 
n { l-12 ( A )  
L r 

2r 
lJ2r+1 ( A )  } 
(a+A ) 2n+1  + __ 

1-::---:- E [ 
( a+A ) 2n+ 1 

( K-A ) 2n+2 l 
r=O ( a+A ) K+a J 

( a-1+A ) A  = 1 + ( a+ A )  3 
( a- 1+A )+ ( 3a- 1 0+ 3A ) A 2 + (a+A )s + . . .  + R .• n 

For small A it is easy to  see that the ratio of adjacent terms 
asyptotically 1 /a2 which does not tend to zero as A -+  o .  The 
expansion is not , in terms of Erdelyi ' s  definition , an asymptotic 
expansion near A = 0 ,  but the terms do become rapidly smaller as 

is  

r 
increases if a > 1 ( at least until the high order terms in J. start 
to dominate) . We shall show however that R -+ 0 as A -+  0 .  We have n 

1 [ < K-A ) 2n+2] lJ2n+2 ( A )  
Rn < 

( a+A ) 2n+1 E a = 
a( a+A ) 2n+1 

and s ince lJ2n+2 ( A )  has A as a factor this tends to zero as A -+  0 .  

Thus we can caculate E[a+A ] near A = 0 with this series even a+K 
though it is · not , strictly speaking an asymptotic expansion . 

For large A we wish to show that 

( CHA ) lJ2r+2 ( A ) - lJ2r+3 ( A ) 
o ca+A ) lJ 2r( J. ) - lJ2r+1 ( A )) = 

( a+A ) 2r+3 (a+A ) 2r+1 

and that 
1 

E [ ( K- A ) 2n+2 ] 0 ( ( a+A ) 
= 

(a+A ) 2n+1 K+a 

in whi ch case the expansion will be asymptotic 
as A -+ 00 • The first relation is equivalent to 
is true . We have to show that 

lJ2n ( A )  - lJ 2n+1 ( A )  ) 
( a+A ) 2n+1 

in Erdelyi ' s  sense (
Ar�1)= o (;n

) which 
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r ( K-\ ) 2n+2 l __ � 1 ) El J , n  , that i s  that 
( K+a ) \ 2n+1 1\ 

E [ ( K-\ ) 2n+2] = a().n+ 1) . 
( K+a) \ 

Now E[ ( K-\ ) 2n+2] < E[ ( K- \ ) 2n+2 ] 
K+a K-\ 

Thus the expansion is an asymptotic expansion as A � 00 • We now wish 
to find an upper -bound on the relative error of the expansion . Firstly 
Rn > 0 and putting n = 0 shows that E[a�K] > a�\ . The relative 

error a�\ Rn I E [ a�K] is therefore less than 

[ (K-\ ) 2n+2 ] 
Rn = E 

(a+\ ) 2n+1 ( a+K ) 
. ( a+\ ) �2n+2 ( ). ) - �2n+3 ( ). ) 

= 

( a+\ ) 2n+3 

( a+\ ) �2n+2 ( ). ) - �2n+3 ( ). ) 
< 

( a+\ ) 2n+3 

We could have replaced a+K by a 

+ 

+ 

[ ( K-\ ) 2n+4 ] 
E 

(a+\ ) 2n+\ a+K) 

�2n+4 ( ). ) 

a (a+\ ) 2n+4 

in the expression for R but n 
preferred to expand to one more term and replace a+K by a in R 1 •  n+ 
From either formula we can , in theory , find an upper bound for the 
relative error . Using Stein ' s  approximation and the simpler error 
formula , we see that the relative error is less than 
\ ( 1+ 3\ ) 
a (a+\ ) 3 ( and probably quite close to ). ( 1+3\ ) ) If . ( a+\ ) 4 • 

than 1 /3 then an upper bound on the relative error is  

a is greater 

3). 3 
a(a+\)2 = a(a+\ ) 

3 giving a crude bound of -.;- for all A .  a 
By using better approximations to the relative error bound given 
above , we may obtain bounds which are not so crude as thi s .  Note , 
however , that this bound is very good for large a .  
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A p p e n d i x 3 

Some Compl ete Fami l i es of D i s tri b uti ons  

A3 . 1  I n troducti on 

As proofs of the completeness of the non-central x2 and F 
distributions as functions of the non-centrality parameter do not 
appear in many texts on statistics , we append them here . These 
results are proved by showing that the distributions  belong to a 
more general complete class of distributions than the exponential 
family . We first prove this family to be complete . 

A3 . 2  A Comp l ete Fami ly  of Dens i t i es 

208 

The first result associates some complete families of densities 
with a complete family of densities depending on a discrete parameter 
and conversely . 
Theorem 1 Let 

00 k 
q ( x ,w ) = a ( w )  I b ( k )  �! p ( x ,  k )  

k= O 
where b ( k )wk > 0 

for all k and for all w in some region Q .  Suppose that q ( x ,w )  
and {p ( x ,k ) } are density functions on a sample space $ { X } . 

The family of densities {q ( x ,w ) : w  E Q} is complete if and only 
if the family {p( x ,k ) : k= 0 , 1 � 2 ,  . . .  } is complete so long as 
a set with a point of accumulation ( e . g .  an uncountable set ) .  
Proof If  Ek [ f (X )] exists for all k then 

K k I Ek [b( k )  �! f( X ) ] exists for all K 
k=O  

and by the monotone convergence theorem 
00 k 

Q is 

E [ f( X ) ] w exists on and E [ f( X ) ] = a (w) w I b ( k )  �! Ek [f ( X ) ] .  
k= O  

Conversely , . if  Ew[ f( X ) ]  exists on Q then 

a (w )  
K wk I b ( k )  kT p ( x ,k )  < q( x ,w )  

k=O  
and by the theorem on bounded convergence 

E [ f ( X ) ]  = a(w) w 
all k .  

00 k I b ( k )  �! Ek [ f( X ) ]  and 
k=O  

Ek [f (X ) ]  exist for 

Suppose that Ek [ f( X ) ]  = 0 for all k implies f( x)  = 0 .  

This implies that if E [ f ( X ) ] = a ( w) w 
00 k 
I b ( k )  �! Ek [ f( X ) ]  = 0 

k=O 
for w E  Q and if Q is a set with a point of accumulation , then 
by the uniqueness theorem for power series (Rudin( 1966 ) )  

Ek [ f ( X ) ]  = 0 for all k and therefore f (x) = 0 .  
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Conversely , suppose that E [ f ( X ) ]  = o V w E Q  implies f ( x )  = o .  - W 

This implies that if Ek [ f( X ) ]  = 0 for all k then 
00 k 

Ew [ f ( X ) ] = a (w ) k�O b ( k )  �! Ek [ f( X ) ] = 0 

and therefore f ( x ) = 0 .  This completes the proof . 
00 k 

Coro l lary Let q( x ,w )  = a (w ) I �! p( x ,k )  where p ( x ,k )  > 0 V k 
k=O 

be a complete family of densit ies on a parameter space Q which has 
a point of accumulation .  If b ( k )wkp( x , k )  > 0 then the density 

00 k 
Q( x ,w) = a1 (w )  L b ( k )  �! p ( x ,k )  k=O 

is complete on Q .  
Proof The p ( x ,k )  can b e  normalised t o  be a family of density 
functions which will be complete if { q( x ,w ) } is complet e .  The 
completeness of {Q( x ,w)} now follows from the completeness of the 
normalised family {p (x ,k ) } .  
A3 . 3  App l i cati ons  - The non- cen t ra l  x2 and  F Di s tri buti ons  

We shall consider the completeness of these densities as functions 
of the non-centrality parameter A and shall regard the degrees of 
freedom as fixed . 

The non-central X2 distribution with 2V degrees of freedom 
has the density function 

00 Ak V+k-1 -�X 
f ( x , A )  - A  I X e = e IT 2v+k f (v+k ) k=O 

and the non-central F distribution with 2� 
freedom has the density function 

oo , k lJ+k V �+k-1 -A f ( x ,A ) = e L 1\ l-l V X IT B ( lJ+ k • v )  -( --)-�-+-v-+-=-k k=O ' V+lJX 
Both of these expressions are of the form 

-A oo Ak k f ( x ,A )  = e L IT t ( x ) p ( x )  � .  
k=O 

and 2v degrees of 

Introducing a coefficient before each term gives 

g( x , A )  = a ( A )  p ( x ) Ot( x ) ) k 
k !  

which , according to our corollaries , is complete if and only i f 
f ( x ,A )  is complete . Now At( x) g ( x ,A )  = a( A ) p ( x )  e which is a 
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member of  the exponential family of densities and hence complete if  
the parameter space contains an interval . 

Incidently , we can now use the theorem to show that the central 
x2 , {x2 ( 2v+k ) : k=0 , 1 , 2 , . • .  } and central F ,  { F ( 2�+k , 2v ) }  are 
complete families as fuctions of the parameter k .  

The above proof also applies to non-central beta and gamma 
distributi ons , in fact they are s lightly easier since the coefficients 
are less complicated . 

Finally we note that the result in our corollary shows that the 
exponential family is complete on any set of parameters which has 
a point of accumulation .  This  follows from the fact that we may 
choose our constants in such a way that the two series in the 
corollary are identical . 
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A p p e n d i x 4 

Projecti ons  and Genera l i sed I nverses 

Rao and Mitra ( 1971 ) give properties of the generalised inverse of a 
matrix and properties of matrices whih are almost generalised 
inverses in a sense which we shall make precise . 

A matrix G is defined to be a generalised inverse of a matrix 
A if and only if AGA = A . A generalised inverse is not unique 
unless A is non-singular in which case G = A-1 . We often denote 
a generalised inverse of A by the symbol A- . The following extra 
conditions define the unique Penrose inverse of A :  
( 1 )  ( i )  GAG = G ( ii ) ( GA )T = GA ( iii ) ( AG)T = AG . 
A generalised inverse satisfying ( i i )  or ( iii ) gives a kind of 
proj ection matrix .  More general conditions will be given . 

Suppose we have a semi-inner product 
T <a ,b>M = a Mb where M is symmetric and 

This defines a semi-norm 1 1  • 1 1  defined by 

< . , c >M defined by 
non-negative definite .  

1 1  a I IM = ( < a ' a> M )� . 
The necessary and sufficient condition for x = Gb to be a 

minimum semi-norm solution to the consistent equation Ax = b is 
that 
( 2 )  ( i )  AGA = A and ( i i )  
One such matrix i s  given by 
( 3 )  G = ( M + ATA ) - AT { A ( M  + ATA ) - AT } -

• 

If  the column space of A is contained in the column space of M 
then a simpler solution may be taken to be 
( 4 ) G = M-AT (AM-AT ) - . 

A minimum semi-norm soluti on is by definition a proj ection of 
the origin pnto the solution space of the equation A x = b. In 
general , a solution minimising 1 1  y - x 1 1  M is defined to be a 
proj ection of y onto the solution space and is  given by 
( 5 ) X = G b  + 0 - G A) y .  

Using a semi-norm II · IIN in the column space of A we can find 
the nearest vector to a solution of inconsistent equations A x = b 
- "the nearest " being taken to mean that the semi-norm of the 
residual , b - A  x is to be minimised . The solution is x = G b 
where G satisfies 
( 6 )  ( i ) NAGA = NA and ( i i )  (AG )TN = NAG 
Unless N is positive defin ite , condition ( i )  is  weaker than the 
condition for a generalised inverse . One form for G is 
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( 7 )  
The vector AGb i s  the proj ection of b onto  the column space of A .  

In general , a proj ection , z ,  of y onto the column space of A 
is defined to be a vector , z = A x , for some x , for which 
l l z - Y l �  is a minimum . Such a proj ection is given by z = p y A 
where PA is a matrix for which 

( 8 )  and rank PA = rank A .  

This can always be computed by tak ing P A = A G where G is a 
generalised inverse defined by ( 6 ) above . 

I f  N is positive definite then the proj ection is  an orthogonal 
proj ection in the sense that <z - y , A x >N = 0 for all x .  
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