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Abstract 

 
 

The purpose of this project is to compare two statistical approaches, traditional 

multivariate analysis and Bayesian networks, for representing the relationship between 

volatile compounds in kiwifruit. Compound measurements were for individual vines 

which were progeny of an intercross. It was expected that groupings in the data (or 

compounds) would give some indication of the generic nature of the biochemical 

pathways. Data for this project was provided by the Flavour Biotech team at Plant and 

Food Research. This data contained many non-detected observations which were treated 

as zero and to deal with them, we looked for appropriate value of c for data 

transformation in log(x+c). The data is ‘large p small n’ paradigm – and has much in 

common with data, although it is not as extreme as microarray. Principal component 

analysis was done to select a subset of compounds that retained most of the multivariate 

structure for further analysis. The reduced set of data was analyzed by Cluster analysis 

and Bayesian network techniques. A heat map produced by Cluster analysis and a 

graphical representation of Bayesian networks were presented to scientists for their 

comments. According to them, the two graphs complemented each other; both graphs 

were useful in their own unique way. Along with clusters of compounds, clusters of 

genotypes were represented by the heat map which showed by how much a particular 

compound is present in each genotype while the relation among different compounds 

was seen from the Bayesian networks.  
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Chapter 1 

 
Introduction 

 
 

1.1 Background 

Volatile organic compounds have high vapour pressures which is sufficient under 

normal conditions to significantly vaporize and enter the atmosphere. These are 

measured for kiwifruit to study the flavour and aroma in them. For example, the esters, 

ethyl butanoate and methyl benzoate were shown to increase sweet aroma and flavour 

(McMath et al. 1992), and E-hex-2-enal increased “characteristic kiwifruit aroma and 

flavour” (Young et al. 1995). Plant and Food Research scientists are interested in 

characterisation of aroma and flavour of kiwifruit. They conduct studies and measure 

compounds in fruit in the hope of receiving some indication of the generic nature of 

biochemical pathways. 

 

1.2 Description of data 

The dataset for this study was a compound database collected in 2002 from a mapping 

family planted at the Te Puke Research Centre. It came from a cross made in 1996 of 

two kiwifruit parents which originated from different parts of China. The female parent 

was called CK51_05, which was from a 1991 seed introduction from Henan province, 

and the male parent was called CK15_02, which was from a 1981 seed introduction 

from Guangxi province. Two unrelated parents with different genetic backgrounds and 

different phenotypes were deliberately chosen to generate heterozygosity, which could 

be useful for mapping. This family has 134 females and 137 males. In 2002 fruits were 

collected from 123 females that were fruiting, they were phenotyped for the usual fruit 

attributes and volatile organic compounds were measured by solvent extraction and 

GC/MS.  

 

There were 275 volatile compounds grouped as acid, alcohol, aldehyde, ester, sulphur, 

ketone, lactone, monoterpene and hydrocarbon. The values recorded are concentration 

in nanograms per gram. The data contains many observations that are below the 

measurement threshold and are recorded as zeros.  The most interesting compounds like 
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acid, alcohol, ester and monoterpene were picked from the above group of compounds 

as examples for the study. 

 

For our study, we combined the biochemically related group of compounds, acid-

alcohol and ester into one group. Hence, the focus of this thesis would be on two 

groups: namely, acid-alcohol-ester and monoterpene. Monoterpene has 45 compounds 

while acid-alcohol-ester has 194 compounds. 16 compounds were common in both 

groups. 

 

The objective of this study is to compare two statistical approaches for representing the 

relationship between volatile compounds in kiwifruit. We produced a heat map by 

Cluster analysis to show by how much a particular compound is present in each 

genotype and we made a graphical representation of Bayesian networks to show the 

relation among different compounds. 

 

Thesis outline 

In Chapter 2, an overview is given on methods of data transformation, cluster analysis 

and Bayesian networks. Chapter 3 – 5 gives presentations of the approach and how the 

methods were selected and the analyses carried out. Chapter 3 describes the 

methodology used in transforming data by simulation. Chapter 4 elaborates on 

dimension reduction of transformed data via principal component analysis, and this 

reduced set of data is then used for cluster analysis. The focus of Chapter 5 is on 

Bayesian networks including the framework for parameter and structure learning and 

also details about the software BANJO used for its analysis. Chapter 6 presents results 

of Cluster analysis shown by a ‘heat map’ and a graphical representation of Bayesian 

networks produced with BANJO. Finally, Chapter 7 outlines the conclusions drawn 

from this research and offers suggestions for future work.  
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Chapter 2 

 
Literature Review 

 
 

2.1 Data transformation 

Osborne (2002) discusses the assumption made by many statistical procedures about the 

variables being normally distributed. A significant violation of the assumption of 

normality can seriously increase the chances of the researcher committing either a Type 

I or II error depending on the nature of the analysis and the non-normality. Micceri 

(1989) points out that one reason, although not the only reason researchers utilize data 

transformations is improving the normality of variables. Since our data is highly skewed 

with many small or zero observations, it became imperative to transform the data as 

described in detail in Chapter 3. 

 

Normality in the distribution of variables is not strictly required when principal 

component analysis is used descriptively, but it does enhance the analysis (Tabachnick 

& Fidell, 1996). Since multi-variate normality also implies linear relationships among 

pairs of variables, we tried to look for linear relationship between compounds via 

principal component analysis. In case of lack of linearity, data transformation can be 

done by taking the logarithm, square root, reciprocal, or some other function of the data. 

 

Van den Boogaart, Tolosana-Delgado, and Bren (2006) observed that in compositional 

data, missing values are quite common. “Below detection limit” is the most-commonly 

found type of missing values. Since no full quantitative information is available such a 

censored value is actually treated as zero and data transformation is conducted to take 

care of non-normality. Rowan et al

10log

 (2007) made a choice of c based on the minimum 

non-zero value, under the idea that 47 volatiles available from seedlings of an apple 

population might be there but just non-detectable. His data was transformed, after 

adding half the minimum non-zero value (0.0005) for 21 of the 47 volatiles. 

 

We will be 

using the “log(x+c)” transformation rather than a sophisticated censored data approach. 
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Kennedy (2003) suggests that although the Box-Cox transformation is very popular, it 

has the disadvantage of breaking down when zero values are transformed (because the 

log of zero values is undefined).To avoid the difficulty with zeros in case of log x, 

Bartlett (1947) used log (1+x) transformation in place of log x as a logarithmic 

transformation. 

 

Berthouex and Brown (2002) mentioned log transformation being 

stronger than the square-root transformation. By “stronger”, they meant the range of the 

transformed variables is relatively smaller for a log transformation than that for the 

square root. They expressed log (x+c) for the sample which contains some zero values 

and state that c is usually arbitrarily chosen to be 1 with larger values of c making the 

transformation less severe. We will examine in Chapter 3 how choice of c affects 

inference for linear relationships.  

2.2 Cluster Analysis 

According to Hastie, Tibshirani, & Friedman (2001), cluster analysis, also called data 

segmentation, has a variety of goals. All relate to grouping or segmenting a collection of 

objects into “clusters” such that those within each cluster are more closely related to one 

another than objects assigned to different clusters. Central to all of the goals of cluster 

analysis is the notion of the degree of similarity (or dissimilarity) between the individual 

objects being clustered. Gentleman, Hanhe & Huber (2006) points out the notion of 

agglomerative hierarchical clustering that merges clusters iteratively. This algorithm is 

easy to implement, and somewhat easy to interpret; often the resulting dendrogram will 

appear to indicate that there are groups in the data. 

 

Yin, Yang, Yao, & Shi (2005) used the method proposed by Eisen et al (1998) to 

analyze the expression data of mouse sperm genes from the State Key Laboratory of 

Reproductive Biology of the Chinese Academy of Sciences to find out the hidden 

pattern in the gene data. The method uses cluster analysis to process the genome-wide 

expression data from DNA micro array hybridization. The cluster result is displayed in 

a dendrogram with each node indicating the merging of different sub-clusters. Our data 

is like gene expression data as it has high dimensional, inter-related measurements, it is 

potentially influenced by the genotypes of the individuals they have come from, and 

researchers are interested in identifying clusters of phenotypes and the genotypes 

associated with them. 
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Gentleman et al (2005) discussed heat maps as having the notion of rearranging the 

columns and rows to show structure in the data. The heat map is attached to the 

dendrogram in which different colours represent the different expression level of the 

genes. The rows and columns of the matrix are reordered so that similar rows are placed 

next to each other, and the same for columns. The orderings that are widely used are 

those derived from a hierarchical clustering. Yin et al (2005) attached heat map to the 

dendrogram to help biologists in finding out the genes with similar functions in a 

naturalistic way. 

 

The heatmap function became available with the statistical R programming language 

release 1.7.0. It requires Biobase package from Bioconductor to display the output 

graphically. This function calculates distances between gene or sample profiles using 

Euclidean distance (Gentleman, Carey, Bates, Bolstad et al, 2004).  

 

2.3 Bayesian Networks 

According to Heckerman (1998), a Bayesian network for a set of variables 

},....,{ 1 nXXX =  is defined by, 

(1)   A  network structure (DAG) 

(2)   Local probability distributions so that  

∏
=

=
n

i
ii xpaxPxP

1

))(|()(    (2.1) 

 
We use iX  to denote both the variable and its corresponding node, and iPa to denote 

the parents of node iX in a Bayesian network structure as well as the variables 

corresponding to those parents. A simple example of Bayesian network structure is 

given in Figure 2.1.  To learn a Bayesian network, we have to choose the structure of 

the model and assess local probability distributions.  

 

An example of simple Bayesian network structure can be shown with five compounds 

of monoterpene group from our data: cymene (C), menth-4-ol (M), terpinolene (T), 

piperitone (P) and linalool oxide.cis (L).    
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Figure 2.1: An example of a simple Bayesian network structure. 

 

This network structure implies several conditional independencies: 

),|,,;(),|,,;(),,|;(),;( CLMTPIMPLCTILCPMILCI and ).,;( PCLI  

The network structure also implies that the joint distribution has the product form, 

)()|()|(),|()(),,,,( LPCPPMTPLCMPCPLPTMCP =  

 

Heckerman (1998) presented a tutorial on Bayesian networks, which discusses the case 

where a network structure is known. The physical joint probability distribution for a set 

of variables X can be encoded in some network structure B which can be written as, 

∏
=

=
n

i

h
iii

h
s BpaxpBXp

1

),,|(),|( θθ                     (2.2) 

where iθ is the vector of parameters for the distribution ),,|( h
iii Bpaxp θ which is in 

fact a multinomial distribution in our case; sθ is the vector of parameters ),.......,( 1 nθθ , 

ipa is set of parents for value ix  and hB denotes the event that the physical joint 

probability distribution can be factored according to .B  

 

Hartemink (2001) in his Ph.D. dissertation gave a detailed introduction to discretization 

techniques. As the amount of data available for reasoning about genetic regulatory 

networks is comparatively limited, he discussed the need to reduce the dimensionality 

of the modelling by discretizing variables into a small number of levels. Data 

discretized in three groups can represent non-linear relationship in case of multinomial 

distribution. To capture non-linear interactions if they are present and to deal with non-

detected observations we transformed our data to discrete values using quantile 

discretization.  
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There has been an enormous amount of work done in the area of learning Bayesian- 

network structures from data and many authors have contributed their ideas in this area 

of research. In this study, we are using a software package that deal with graphical 

models called BANJO (Bayesian Network Inference with Java Objects). 

 

Geiger & Heckerman (1995) show that the assumptions of parameter independence and 

likelihood equivalence imply that the priors for the parameters of any complete network 

structure must have a Dirichlet distribution. BANJO uses Dirichlet parameter priors as 

they give closed form solution. The conjugacy of the Dirichlet priors allows us to have 

the posterior probabilities in the same form as prior probabilities. 

 

Several authors have discussed certain assumptions for deriving priors on network-

structure. Buntine (1991) describes a set of assumptions that leads to a richer yet 

efficient approach for assigning priors. The first assumption is that the variables can be 

ordered and the second assumption is the presence or absence of possible arcs is 

mutually independent. An alternative approach, described by Heckerman et al (1995b) 

uses a prior network. His idea was to penalize the prior probability of any structure 

according to some measure of deviation between that structure and the prior network. 

For assigning priors to network-structure we assume a uniform prior over structures.  

          

Madigan & York (1995) depicted in their article how Bayesian graphical models unify 

and simplify standard discrete data problems such as Bayesian log-linear modelling 

with either complete or incomplete data. They described two classes of graphical 

models: undirected decomposable and directed acyclic (DAG). In problems where some 

variables are obviously determined before others, or cause others, the directed graphs 

allow a natural representation of them. Undirected models, in contrast, are best suited to 

problems where the variables are determined simultaneously, or perhaps are both 

influenced by some variable that is not explicitly modelled. Our data determines the 

compounds simultaneously; however directed acyclic graphs are used as they define a 

larger class of models and can be interpreted as undirected graphs in BANJO. 

 

Friedman et al (2000) proposed a new framework for discovering interactions between 

genes based on multiple expression measurements. This framework builds on the use of 

Bayesian networks. A method for recovering gene interactions from microarray data 
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was applied to the S. cerevisiae cell cycle measurements of Spellman et al (1998). 

Bayesian networks represent the dependence structure between expression levels of 

different genes (Pearl 1988). Our data has lots in common with gene expression data 

and consequently the fact that Bayesian networks have been used with expression data 

suggests they would be useful in our context. 

 

The common approach to the problem of unknown network structure is to introduce a 

statistically motivated scoring function that evaluates each network with respect to the 

training data D , and to search for the optimal network ),( BB θ according to this score. In 

this score, we evaluate the posterior probability of a graph given the data: 

)(
)()|()|():(

DP
BPBDPDBPDBScore ==   where )(DP  is a constant and )|( BDP can 

be calculated as .)|(),|()|( BBB dBPBDPBDP θθθ∫=                  (2.3) 

where ),|( BDP Bθ  is the likelihood of the data given the network ),( BB θ . Equation 2.3 

is the marginal likelihood, which averages the probability of the data over all possible 

parameter assignments to B . The particular choice of priors )(BP and )|( BP Bθ  for 

each B  determines the exact Bayesian score (Friedman et al, 2000). Equation 2.2 gives 

the Bayesian scoring metric when the structure prior )(BP  is uniform.  

 

Hartemink et al (2002) concentrate on search methods that seek to maximise some 

scoring function that describes the ability of the network to explain the observed data.  

In a search context, the Bayesian scoring metric (BDe) derived by Heckerman et al 

(1995) is an especially common choice for the scoring function. Heuristic rather than 

exhaustive search strategies were considered since the identification of the highest-

scoring model under the BDe for a given set of data is known to be NP- complete 

(Chickering, 1996). Commonly used local heuristic search algorithms include greedy 

hill-climbing, greedy random, Metropolis and simulated annealing. After implementing 

these search algorithms it was observed by Hartemink et al (2002) that simulated 

annealing consistently finds the highest scoring models among these algorithms. Out of 

many software packages, the one that uses simulated annealing is BANJO. A detailed 

explanation of this method is given in Chapter 5. 
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Chapter 3  

 
Transformation methodology  

 
 

3.1 Motivation 

Data transformations are an important tool for the proper statistical analysis of data. 

There are an infinite number of transformations that can be used, but the common ones 

are square-root transformation for count data or the log transformation for size data. It is 

always important to decide which transformation to use prior to analyses. 

 
Figure 3.1: Histograms of carvenone and butyl acetate which belong to the group of 

‘monoterpene’ and ‘ester’ in the compound database. 

 

For example, as shown in Figure 3.1, the compounds carvenone and butyl acetate are 

non-normally distributed; they are present in large amount in fewer genotypes, in small 

amount in more number of genotypes and absent in many other genotypes. They also 

affect inference of relationships. We will discuss below in detail how to transform these 

compounds along with many others for further study. 

 

Durbin et al (2002) considered log transformation of the form )ln( c+µ , where µ  is the 

true expression level and c is some positive constant to stabilize the variance of 

microarray data expressed at high levels. Yamamura (1999) suggested that 5.0=c is 

preferable to 1=c in )(log cxe +  because a discrete distribution defined in {0, 1, 2…) is 

approximately described by a continuous distribution defined in ),0( ∞ if we use .5.0=c  
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Since our data is highly skewed with many small or zero (missing) observations as 

shown in the example above, it was imperative to transform the data. As we cannot take 

the log of zero, we should add a constant to each number to make them non-zero. So we 

used a typical transformation for this scenario which was log(x+c), where x represented 

the measurements of different compounds for different genotypes. And c was chosen 

independently for the two groups, monoterpene and acid-alcohol-ester.  

 

To illustrate the importance of the choice of c, we considered three values which were 

too small (0.0005), too large (10) and intermediate (0.5) for monoterpene in Figure 3.2. 

We look at the relationship between two compounds, namely carvenone and 

isopiperitenone, for these different choices of c. 

 

 
Figure 3.2: Plots of carvenone and isopiperitenone for different c values. 

 

Similarly for acid-alcohol-ester, three values were considered. Too small and too large 

values were similar from before, but the intermediate value here was 2. Relationship 

between two compounds was observed, namely butyl acetate and ethyl pentanoate for 

the choice of c. 
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Figure 3.3: Plots of butyl acetate and ethyl pentanoate for different c values. 

 
The untransformed scatterplot of the pair of compounds for both groups obscures the 

linear relationship as shown in Figure 3.2 and 3.3. Hence three plots were made for each 

group to observe the performance of c values. It was seen that c = 0.0005 had many 

outliers, which will act as points of leverage.Using c = 10 showed the differences at the 

lower end of the scale compressed for both groups. It was observed that c = 0.5 and c = 

2 is roughly normally distributed for monoterpene and acid-alcohol-ester respectively. 

As observed, c might affect the behaviour at the low end of the data, and we will focus 

on this behaviour while selecting c. The best value of c is one that makes the data look 

normal. 

 

3.2 Selection of constant by simulation 

Since there are many non-detected observations which may be considered as zeros, the 

data was log transformed after adding a constant to each number to make them non-

zero. The constant was selected by simulating 10,000 random normal samples of size 

123 (no. of genotypes). Then gap1 was calculated as the difference between 2nd smallest 

and smallest value and gap2 was the difference between 3rd smallest and 2nd smallest 

value. There are no exact zeros for simulated data. In Fig 3.2 and 3.3, choice of c was 
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made to make the data look normal at the lower end of the scale and this was done by 

examining gap1 and gap2. 

 

Different values for c like 0.1, 0.5, 1, 2, 3, 4 and 10 were selected to standardize the 

log(x+c) values for each compound and each value of c. Any value of c would be 

appropriate as we are looking for a reasonable c that will eliminate the problem of 

compression of scale as shown in Fig 3.2 and 3.3 with c=10. Then gap1 and gap2 

values were computed to see which value of c is in accordance with gap1 and gap2 of 

the random normal samples. Gap1 and gap2 for the compounds were taken as the 

difference between the smallest unique measurements where the smallest values are all 

log(c). While all the compounds were transformed, only those compounds were used 

for selecting c which had at least 75% non-zero measurements which means compound 

measurements should be present in at least 92 genotypes out of 123.  

 

For monoterpene group only 5 compounds were selected out of 45 to compute gap1 and 

gap2 for 0.1, 0.5, 1, 2, and 10 c values. And out of 194 compounds from acid-alcohol -

ester group, 27 compounds were considered for 2, 3, 4 and 10 values of c. These were 

compared with gap1 and gap2 for random normal samples. Ideally gap1 and gap2 for 

the transformed data values will have a similar distribution to gap1 and gap2 for the 

simulated normal values. But a more detailed work can be carried on by conducting 

separate simulation for every compound and goal would be to find c which can work for 

all of them simultaneously. Also, since we are not really looking at smallest gap, our 

aim would be to find what ‘gap i ’ looks like for normal data, where i  is the number of 

non-detected observations. 

 

The constant value chosen in Figure 3.4 after comparing gap1 and gap2 between the 

normal simulation and the transformed data for monoterpene group is 0.5. The upper 

quartile (Q3) of the transformed data and normal data looks similar for gap1, while for 

gap2 the median (Q2) of transformed data is approximately same as for the random 

normal samples. For gap1, though the maximum value of constant 0.1 is similar to the 

maximum value of normal data, the upper quartile (Q3) is not the same. All the values 

of c look compressed for gap2 except the value 0.5. 
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Figure 3.4: Box plot shows 5 data points of gap1 and gap2 for random normal samples 

and monoterpene group. 

 

For acid, alcohol & ester group in Figure 3.5, the c value chosen is 2 after comparison. 

The lower quartile (Q1) for gap1 is same for both data values, though the median is 

closer to Q1 in transformed data than for the normal data. For gap2, the upper and lower 

quartile of transformed data is nearly equal to that of normal data. The upper quartile 

(Q3) for all other values of c is quite low as compared to the value 2 for both gap1 and 

gap2. 

 
Figure 3.5: Box plot shows 5 data points of gap1 and gap2 for random normal samples 

and acid, alcohol & ester group. 
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The two groups have different values of c as derived from the simulations above. All 

compounds in the monoterpene group will be transformed by using log (x+0.5), while 

for transforming compounds in acid-alcohol -ester group log(x+2) will be used. 

Applying the log(x+c) transformation to the compounds in Figure 3.1 makes them look 

normal with the exception of a bulge in the lower tail as shown in Figure 3.6. 

Carvenone has 84 observations which are non-detected; therefore we get negative 

values for those observations. While butyl acetate has 28 non-detected observations, it 

is present in small amount in most of the genotypes, and present in large amount in few 

of them. Therefore, its distribution looks skewed to the right to some extent. We cannot 

eliminate big “lump” of low value measurement. 

 
Figure 3.6: Histograms of transformed carvenone and butyl acetate which belong to the 

group of ‘monoterpene’ and ‘ester’ in the compound database. 

 

We can see log(x+c) transformation on compound where it is more successful.  Hex-

E2-enol in Figure 3.7 looks perfectly normal as all observations are detected in that 

compound. 
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Figure 3.7: Histograms of untransformed and transformed hex-E2-enol which belong to 

the group of ‘alcohol’ in the compound database. 
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Chapter 4 

 
Multivariate techniques 

 
 

4.1 Principal component analysis 

We are using Principal component analysis in an atypical way, to select subset of 

original variables that will retain the overall features, rather than to create new 

variables. Principal component analysis is a mathematical technique that reduces the 

dimensions of the data by transforming it to a new set of variables (the principal 

components) while retaining most of the variation in the data set. We select a subset of 

the compounds showing large variability across genotypes, or shared variability among 

compounds by looking at those compounds which load highly on the first several 

principal components. These compounds are thought to represent the variability in the 

flavour of kiwifruit, like for instance butanoates and acetates gives a very fruity flavour 

to the fruit. Also, the important kiwifruit volatiles are believed to be synthesized from a 

set of precursors like methionine, phenylalaine, and linolyl-CoA, resulting in sets of 

correlated compounds belonging to the same pathways.  

 
Principal components (PCs) are uncorrelated and ordered such that the k th PC has the 

k th largest variance among all PCs. The k th PC can be interpreted as the direction that 

maximizes the variation of the projections of the data points such that it is orthogonal to 

the first k -1 PCs [Jolliffe, 2002]. The traditional approach is to use the first few PCs in 

data analysis since they capture most of the variation in the original data set, while the 

last few PCs are often assumed to capture only the residual ‘noise’ in the data. 

 

Principal component analysis is performed on the symmetric covariance matrix or on 

the correlation matrix. These matrices are calculated from the data matrix. If the 

responses are highly variable and widely different in measurement units then it would 

be preferred to use the correlation matrix which also means to standardize the data first. 

However, if the measurement units are commensurable, then statistically it is more 

desirable to use the covariance matrix. Since all the compounds in our data were 

recorded in nanograms per gram and they were transformed using log(x+c), principal 
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components for this were taken out from the covariance matrix. We do principal 

component analysis within groups, and the within group measurements have similar 

orders of magnitude. 

 
We followed the procedure as below for selecting compounds for cluster analysis: 

 

• We selected those PCs which accounted for 90% variation in the data (King and 

Jackson, 1999). 

• Then we computed loadings for the selected components which defines the size 

of the contribution of each original variable to the PCs.  

• The loadings in each PC were squared and only those were selected that fall 

above 75% of the highest loading value. This threshold value was chosen to get 

manageable number of variables. 

• The compounds for which the highest loading appeared twice in different PC 

were considered only once. 

 
The compounds were selected for monoterpene and acid-alcohol-ester group. For 

monoterpene group, 14 components accounted for 90% variation in the data. The 

loadings were squared for the 14 components; and for each component the highest 

loading value and values that fall above 75% of that loading value were looked for. For 

example, the highest loading value in component 4 was 0.28356, and we searched in for 

values greater than 0.21267 (75% of 0.28356). We found 

1.3.3.Trimethyl.2.oxabicyclo.2.2.2.octan.5.one was the only compound that had loading 

value greater than 0.21267, and hence it was selected. Though, exo.2.hydroxycineole 

had the highest loading value in this component it was not selected because it was 

already picked up by the second component. This procedure was done for all the 

components and finally 16 compounds got selected from monoterpene group. 

 

Similarly, for acid-alcohol-ester group 90% variation in the data was shown by 29 

components. Again, loadings of those components were squared and 35 compounds 

were selected which were in relation to the highest loading value and values that fall 

above 75% of that loading value in each principal component. Hierarchical clustering 

was then performed on the selected compounds and the results were portrayed by 

producing a heat map, discussed in next section.  
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4.2 Cluster analysis 

Cluster analysis, also referred to as a unsupervised learning method, is widely used for 

finding groups in data. We have restricted our attention here towards hierarchical 

clustering. These hierarchic techniques produce a dendrogram that starts with the 

calculation of the distances of each compound with respect to other compounds. Groups 

are then formed by agglomeration where one starts with each compound by being alone 

as an individual cluster, and in successive steps combine the pair of clusters that are 

closest to each other into one new cluster.  

 
For our hierarchical clustering, the distance measure used between individual 

observations is the Euclidean distance. For example, the data for a cluster analysis 

consists of the values of p variables pXXX ,.....,, 21 for n objects. The Euclidean 

distance function can be written as,  

                                            ∑
=

−=
p

k
jkikij xxd

1

2)(             (4.1) 

 
where ikx is the value of variable kX for individual i  and jkx  is the value of the same 

variable for individual j [Manly, 2005]. Also a distance measure between clusters or 

groups of observations is determined by complete linkage, which is also called farthest 

neighbour.  In this method, the distances between clusters are determined by the greatest 

distance between any two objects in the different clusters. The choice of Euclidean 

distance and complete linkage is default in R (hclust). K-means clustering, which is the 

most common method of flat-partition-based clustering, is not considered here because 

a specified number of expected clusters k is difficult to determine. 

 
As our data is like gene expression data as discussed in Section 2.2, for its analysis we 

used Bioconductor which is Open source development software. Bioconductor is based 

primarily on the R

 

 programming language. Biobase package is part of the Bioconductor 

project. It contains standardized data structures to represent gene expression data. The 

ExpressionSet class from Biobase package is designed to combine several different 

sources of information into a single convenient structure. It consists of several 

conceptually distinct parts which can be described as,  

1. assay data -  is a matrix of ‘expression’ values. The matrix has F rows and S 

columns, where F is the number of features and S is the number of samples. 
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2. phenotypic data - summarizes information about samples. 

3. feature data - contains feature covariates specific to the experiment. 

 
The ExpressionSet class was created for the monoterpene and acid-alcohol-ester groups. 

For the monoterpene group, S was 123 genotypes and F was 16 compounds. While for 

the acid-alcohol-ester group F was 35 compounds with the same number of genotypes. 

Phenotypic data had names of the genotypes while feature data had labels of 

compounds. After creating an ExpressionSet for both groups, we presented the output 

graphically by using heatmap function with colours taken from RColorBrewer package 

from CRAN (Comprehensive R Archive Network). 

 

A heat map is a false colour display where the rows and the columns have been 

permuted to show interesting patterns. Eisen et al. (1998) presented the results of 

clustering (dendrogram), together with a heat map of gene expression values. Since then 

they have become a standard visualization method for this type of data. A heat map is a 

representation of normalized values, where the number of rows in the heat map is equal 

to the number of features (compounds in our case) and the number of columns is equal 

to the number of samples (genotypes). One can then colour code each rectangle 

representing the expression level of one feature in one sample.  

 

Heat maps were produced for 16 compounds of monoterpene group and 35 compounds 

of acid-alcohol-ester group selected via Principal component analysis with 123 

genotypes in both. Heat maps for the two groups are displayed and discussed in Chapter 

6. 
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Chapter 5 

 
Bayesian networks 

 
 

5.1 Introduction 

A Bayesian network is a graphical representation of a joint probability distribution, 

representing dependence and conditional independence relationships. The important 

features of Bayesian networks are, 

• Bayesian networks are directed acyclic graphs, which mean their edges have 

direction and there are no directed loops within the graph.  

• A joint probability distribution is not the collection of individual probabilities 

for each variable, but allowing the value of one variable to affect the value of 

another.  

• Two variables are dependent if knowledge of one provides predictive value for 

other variable. On the other hand, independence means when knowledge of one 

variable provides no predictive value for other. Finally, conditional 

independence enables us to untangle the relationships amongst the variables 

within the network, values of which can be correlated in some manner and point 

out direct influence.  

We hope to interpret the parent-child relationships in the graphical model of compounds 

as compounds that directly affect each other’s levels, e.g. the parent compound is a 

chemical precursor of the child compound. 

 

There are separate priors on the structure and the parameters. In Bayesian networks 

literature, the most commonly used class of priors are the Dirichlet priors over 

parameters (Spiegelhalter & Lauritzen, 1990, and Cooper & Herkovits ,1992). For each 

value combination of the parent variables a multinomial sampling is parameterized via a 

set of parameters kθθ ,......,1  such that 1=∑
i

iθ ; iθ  corresponds to the probability of the 

i th outcome. A Dirichlet distribution over this set of parameters is defined via a set of 

hyper parameters kαα ,,.........1 . Then, the generalization can be written as, 
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If there is a data set D  whose sufficient statistics are kNN ,......,1 , then 
 

),......,|()|( 11 kk NNDirDP ++= ααθθ    (5.2) 
 

The distribution of s'θ  for different nodes and different parent values are assumed to be 

independent. The above prior is used conditional on the network structure. BANJO 

selects a common value of 1 for the s'α . 

 

5.2 Learning the Structure of Bayesian networks 

The main approach to structure learning in Bayesian networks is to define a score that 

evaluates how well the dependencies or independencies in a structure match the data, 

and the task is to search for a structure that maximizes the score. The commonly used 

scoring function is the Bayesian scoring metric (BDe) which is defined in Equation 

(2.2). From that equation we see the score used to evaluate the quality of each network 

is an integral over possible values for the parameters. )(BP is defined as a structure prior 

which is uniform in our case and plays a relatively minor role. )|( BP Bθ is a parameter 

prior which is Dirichlet as given in Equation 5.3 above. 

 

The task of structural learning has been reduced to a search problem. The challenging 

part of this problem is that the size of the space of all structures is super exponential in 

the number of nodes, so an exhaustive enumeration of all the structures is not possible. 

Instead, researchers have considered heuristic search strategies that move around in the 

search space by iteratively performing small changes to the current structure [Jensen, 

1996]. 

 

Commonly used local heuristic search algorithms include greedy search and simulated 

annealing. The details of heuristic search algorithms are presented as follows: 

 
Greedy search 
 
Greedy search is a simple heuristic search procedure. It chooses some initial structure 

which can be an empty structure, a randomly chosen structure, or a prior structure 

specified by the user and calculates the gain for adding or deleting an edge with the 
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restriction that resulting graph should be acyclic. It then performs the edge addition or 

deletion process with highest gain and use the resulting model as the current model. 

This algorithm chooses what looks locally best, rather than worrying about whether or 

not it will be best in the long run. In other words, when working with such algorithms 

we are not guaranteed to find a global optimal structure but only a local optimal 

structure.  

 

Greedy search is usually performed with multiple restarts to escape local maxima. After 

a local maximum is found the search is reinitialized with a random structure. This 

reinitialization is then repeated for a fixed number of iterations, and the best structure 

found throughout the entire process is selected. 

 
Simulated annealing 
 
Definition given by (Black, 2009) is “Simulated Annealing is a technique to find a good 

solution to an optimization problem by trying random variations of the current solution. 

This technique stems from thermal annealing which aims to obtain perfect 

crystallizations by a slow temperature reduction to give atoms the time to attain the 

lowest energy state.” 

 

Simulated annealing is an improvement on greedy search as it has the potential to 

escape local minima. Instead of picking the best move, it picks a random move. If the 

move improves the situation, it is executed. At this point simulated annealing is the 

same as greedy search. Otherwise, the algorithm makes the move with some probability 

less than 1. The chance of getting stuck in a local minimum is greatly decreased by 

using simulated annealing as opposed to greedy search.   

 

The term annealing comes from the field of metallurgy, where the basic procedure is to 

heat up a piece of metal and then cool it down in a controlled fashion. The atoms in a 

heated metal become unstuck from their initial positions with some level of internal 

energy. Then as cooling takes place, the atoms gradually configure themselves in states 

of lower internal energy. If the cooling is sufficiently slow, the final internal energy is 

lower than the initial internal energy, thus refining the crystalline structure and reducing 

defects (Chong and Zak, 2008). The parameter settings of initial value of temperature, 

cooling factor and computation time were chosen in the hope to find global optimum. 
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Simulated annealing was originally devised by Kirkpatrick et al (1983).The simulated 

annealing algorithm starts with model im chosen at random, and the error (or energy) 

)( imE is computed. Then a new model jm is obtained for which the error )( jmE is 

computed. If )()( ij mEmEE −=∆ , then jm is always accepted as 0<∆E . However if 

,0>∆E  the new model is accepted with probability 







 ∆
−=

T
EPaccept exp ,                                              (5.3) 

where T is the temperature parameter. The above probability distribution is known as 

Boltzmann’s distribution. The E  used in BANJO is )log(BDe− , making acceptP  

equivalent to a Metropolis Hastings algorithm when 1=T . The acceptance process is 

repeated several times at a constant temperature. Then the temperature is lowered 

following a cooling schedule and the process is repeated. The algorithm is stopped 

when the error does not change after a sufficient number of trials. 

 

Geometric cooling is the most commonly used cooling schedule and is described as 

(Kirkpatrick et al., 1983) 

kk TT α=+1                                                    (5.4) 

 If 0T  is the initial temperature, kT  is the temperature in iteration k , 1<α  (typically in 

the range of 0.9-0.99) that controls the rate of temperature decline. It should be noted 

that, in the simulated annealing algorithms used in BANJO, reannealing (or tempering) 

– a sequence of cooling and reheating (increase in temperature) is considered instead of 

straight forward annealing. To avoid being caught at local minima, the temperature 

increases periodically than decreases monotonically (Misevičius, 2003).  The reheating 

is applied in an advanced phase of the search, where the search algorithm is nearing to 

the convergence. Because the early convergence of the local search-based algorithms 

tends toward local minima, the reheating should allow the search algorithm to escape 

them with higher probability and increase the chance to reach the global optimum (or at 

least to reach better local minimum). 

 

5.3 BANJO (Bayesian Network Inference with Java Objects)  

The two groups of compounds namely; acid-alcohol-ester and monoterpene were 

discretized into three values: 
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1. Non-detected observations 

2. Observations <= median value 

3. Observations > median value 

 

The median value was determined excluding non-detected observations. The two groups 

of compounds were analyzed separately, and the discretization was applied separately to 

each group of compounds. This discretized data was run in BANJO [Hartemink, 2005]. 

It is a software application and framework for structure learning of static and dynamic 

Bayesian networks. Since our data came from single point of time, the input data for 

BANJO was arranged according to the static data file. 

 
The static settings file in BANJO 2 is organized into multiple sections, separated by 

dividing lines.  

• As discretization was done on our data, we did not use the option of discretizing 

in BANJO. 

• We did not specify an initial structure as we used an empty structure. The 

minimum and maximum Markov lags were at the same time-point so they were 

set to zero. The strength of prior was equivalent to one observation, that means 

.1=α  

• We used Simulated Annealing as the heuristic search strategy combined with 

evaluation of a single random local move at each step. For each network 

structure an overall network’s score is computed using the BDe metric and 

Metropolis-Hastings stochastic decision mechanism which determines whether 

the proposed network in the current search iteration will be accepted as the new 

current network for the next iteration, or if it will be rejected, in which case the 

search proceeds from the current network. 

• Pre-compute log gamma and cache setting are the tuning options for the runtime 

memory requirements of BANJO. Default values were used as memory was not 

an issue with relatively small data. 

• In Simulated Annealing, we experimented with the values for setting up the 

initial temperature when starting the search, the cooling factor, the reannealing 

temperature for “restarting” the search, the maximum number of accepted 

networks before adjusting the cooling factor, the maximum number of search 
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iterations before adjusting the cooling factor, and the minimum number of 

search iterations before reannealing (See Tables 5.1 to 5.3 below). 

• The search was scheduled to run for a maximum time of an hour and the number 

of search iterations to be executed without checking the stopping criteria was set 

to 1000. 

• We used raw correlations of the transformed but undiscretized data to show a 

parent variable’s influence on a child. We also used the top scoring graph which 

gave the highest score and showed the number of networks examined, while 

other summary measures like influence scores, dot output and consensus graph 

are given in BANJO to get the post-processing results. 

 

Nothing much was changed in the settings file for both the groups from above discussed 

sections, except the section on parameters used by specific search methods for 

simulated annealing. Different values of real number greater than zero were used for 

initial temperature and cooling factor with different time that a search is scheduled to 

run. The main reason for choosing different parameter settings was to get a good 

combination of values for finding the number of networks examined and a high score. A 

preliminary data of 26 ester compounds was used for this study. The tables below give 

the combination of values for three different time periods. 

Table 5.1, shows that with initial temperature as 1000 and cooling factor as 0.1; we get 

high number of re-anneals, high score and scores computed. We can also get varying 

number of networks examined when different initial temperatures are compared with 

the same cooling factor. The bolding of numbers in Table 5.1- 5.3 indicate the most 

number of networks examined, high number of re-anneals, high score and most scores 

computed.  

 

Number of re-anneals gives us confidence of exploring more regions of space and 

scores computed tells us about the computations performed according to the memory 

requirements of BANJO. We are interested here in looking at the combination of values 

which gives a high number of networks examined with high score. The highest cooling 

factor of 0.7 attained high score and examined the most networks, but there is not much 

difference among other cooling factors when number of networks examined is 
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compared with the same initial temperature. Also with high cooling factor less regions 

of space (number of re-anneals) is investigated.   

 

Table 5.1: Combination of different initial temperature and cooling factor with 

maximum time of 15minutes 

Initial temp 1000 1000 1000 10000 100000 
Cooling factor 0.1 0.2 0.7 0.1 0.1 
Reannealing temp 800 800 800 800 800 
Max. accepted networks 
before cooling 

2500 2500 2500 2500 2500 

Max. proposed networks 
before cooling 

10000 10000 10000 10000 10000 

Min. accepted networks 
before re-annealing 

500 500 500 500 500 

Max. time 15min 15min 15min 15min 15min 
Number of networks 
examined 

90743000 92535000 95757000 74031000 86947000 

Number of re-anneals 2813 2569 796 2295 2694 
High Score -2303.1531 -2303.1531 -2303.1531 -2303.6690 -2303.2869 
(Node) Scores computed 1985436 1983745 1819115 1618568 1894824 
 

Table 5.2 tells us the same thing as observed in Table 5.1. When same cooling factor 

(0.1) is run with different initial temperatures, the one value of temperature which 

examined the most networks, more number of re-anneals, high score and most scores 

computed is 1000. Again there is not much difference in the networks examined with 

high cooling factor of 0.7. 
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Table 5.2: Combination of different initial temperature and cooling factor with 

maximum time of 30 minutes 

Initial temp 10000 10000 1000 100000 
Cooling factor 0.1 0.7 0.1 0.1 
Reannealing temp 800 800 800 800 
Max. accepted networks before 
cooling 

2500 2500 2500 2500 

Max. proposed networks before 
cooling 

10000 10000 10000 10000 

Min. accepted networks before 
re-annealing 

500 500 500 500 

Max. time 30min 30min 30min 30min 
Number of networks examined 161034000 184901000 173433000 168813000 
Number of re-anneals 4992 1540 5377 5233 
High Score -2303.1531 -2303.1531 -2303.1531 -2303.2869 
(Node) Scores computed 3513215 3496804 3771262 3667494 
 

It was seen from Table 5.1 and 5.2 that cooling factor of 0.1 was the most efficient. So 

in Table 5.3, the same cooling factor with three different values of initial temperature 

was run for maximum time of an hour. Once again it was proved that initial temperature 

of 1000 with cooling factor of 0.1 gave the best result. In other words, the slower the 

cooling, the higher is the probability of finding the optimum solution. These set of 

values along with others were used in the settings file of BANJO for both groups of 

compounds. 

Table 5.3: Combination of different initial temperature and cooling factor with 

maximum time of an hour 

Initial temp 1000 10000 100000 
Cooling factor 0.1 0.1 0.1 
Reannealing temp 800 800 800 
Max. accepted networks before cooling 2500 2500 2500 
Max. proposed networks before cooling 10000 10000 10000 
Min. accepted networks before re-annealing 500 500 500 
Max. time 1hr 1hr 1hr 
Number of networks examined 322312000 314443000 291905000 
Number of re-anneals 9994 9749 9048 
High Score -2303.1531 -2303.1531 -2303.1531 
(Node) Scores computed 6987840 6834576 6346358 
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The settings file for static Bayesian network with 16 variables in case of monoterpene 

group and 35 variables in case of acid-alcohol-ester group with 123 observations in both 

is given in Appendix. This file is then used to run in BANJO. Finally, when the 

maximum allotted search time is reached, BANJO prints out the search result which is 

also shown in Appendix.  

 

BANJO supplies the obtained high-scoring Bayesian network for monoterpene group in 

the following form: 

 

 

The first line indicates the score (-1531.4331) and when it was first encountered 

(iteration 64627). 

Line 2 indicates that the number of variables in the network is 16. 

Line 3 to 18 (one for each of the 16 variables ) first list the id of a variable, then the 

number of parents, and then  a listing of the parents. E.g., “0 1 9” means that variable id 

= 0 has one parent which is id = 9. Similar explanation can be given for the high-scoring 

Bayesian network of acid-alcohol-ester group. The graphical representations of the 

obtained networks generated using the BANJO dot format output is detailed in results 

chapter. 
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Chapter 6 

 
 Results   

 
 

6.1 Overview 

The two groups of compounds, namely monoterpene and acid-alcohol-ester are 

analyzed using cluster analysis and Bayesian networks.16 compounds from the 

monoterpene group and 35 compounds from the acid-alcohol-ester group are chosen via 

principal component analysis to portray the results.  

 

This chapter is divided into three parts. In the first part (Section 6.2), heat maps for the 

two groups are displayed and discussed. The focus of the second part (Section 6.3) is on 

the graphical representation of Bayesian networks produced with BANJO for the two 

groups of compounds. All 45 compounds from monoterpene group are also explored in 

this section. Finally, the comments made on the two analyses by Ross Atkinson and 

Robert Winz are summarized in Section 6.4. 

 

6.2 Heat maps  

The data is transformed by using log(x+0.5) for the monoterpene group and log(x+2) 

for the acid-alcohol-ester group before producing a heat map. The heat map shows the 

clustering of compounds by genotypes. Each row represents one compound selected by 

principal component analysis to share variability with other compounds; each column 

represents one genotype. The colour code in each rectangle represents the expression 

level of one compound in one genotype, with light colours for low data values and dark 

colours for high data values.  The lightest colour represents non-detected observation. 

 
Monoterpene group 
 
Figure 6.1, reveals three clusters of compounds from the dendrogram on the right-hand 

side. The first cluster shows the compounds which are non-detected and present in very 

small amount, while the second cluster shows those which are present in small to 

medium amount. The third cluster represents three compounds which are present in 

large amount in most of the genotypes. 
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Three clusters of genotypes can be seen from the dendrogram on top of the Figure 6.1. 

The first and the third cluster look quite similar with the exception of three compounds 

(cineole, hydroxycineole and trimethyl oxabicyclo octan) which are present in large 

amounts in the third cluster of genotypes. The second cluster has very few non-detected 

compounds and more of compounds which are present in small amount. 

 

 
 
Figure 6.1: Heat map representing 123 genotypes and 16 monoterpene compounds. 
 
 
Acid-alcohol-ester group 
 
Figure 6.2 also reveals three clusters of compounds with a similar pattern. The first 

cluster shows the butanoates and benzoates with butyl hexanoate, which are present in 

most of the genotypes. This cluster has only compounds from the ester group. Ethyl 

butanoate is present in large amount as seen by the dark green colour, while other 

compounds are seen in medium to large amount.  

 

Compounds that were present in a small number of genotypes are represented by second 

cluster. This cluster has many compounds which are non-detected and a few compounds 

which are present in small amount. In this cluster, octanoic acid is the only compound 

that belongs to the acid group; there are two compounds from the alcohol group and the 

rest are from the ester group. 
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The third cluster comprises compounds which are present in small to medium amount in 

most of the genotypes. This cluster has compounds mainly from alcohol group and a 

few from the ester group along with just one from acid group. 

 

Three clusters of genotypes, not very obvious can be seen from the dendrogram on top 

of Figure 6.2. Two lines are added to the plot to indicate which individuals are grouped 

together. No distinctive feature can be pointed out from the first cluster. The second 

cluster of genotypes is the smallest of all the clusters. It shows one compound from 

ester group being methyl butanoate and two compounds from alcohol group being 

hex.E2.enol & hexanol are present in large amount, while methyl benzoate is non-

detected in two genotypes of this cluster. The presence of highly correlated compounds 

like butyl hexanoate and hexyl butanoate in relatively small amount is shown by the 

third cluster. Benzyl alcohol is present in large amount in most genotypes of this cluster. 

 

After cutting the tree, we looked for visual evidence in heat map for the number of 

clusters in genotypes. By simple Mendelian control, a major gene with 2 alleles 

heterozygous in both parents results in 1:2:1 ratio which gives three groups; so if a 

single gene was controlling the entire system we might expect to see one large cluster 

and two smaller ones of equal size, but it is not true in our case. We could have got 

more than three clusters of genotypes. However, the scientists pointed out in our 

discussion that this pattern may hold for a subset of the compounds, and the heat map 

would allow them to visualize this. 
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Figure 6.2: Heat map representing 123 genotypes and 35 compounds of acid-alcohol-

ester. 

 

6.3 Graphical representation of Bayesian networks 

The two groups of compounds are discretized into three values. The non-detected 

observations are treated as not available/missing values defined as 1. A median value is 

calculated excluding non-detected observations. Then observations less than or equal to 

median value is defined as 2 and observations greater than median value is defined as 3.  

Out of this discretized data, compounds chosen by principal component analysis for the 

two groups along with full set of 45 compounds of monoterpene is then used to run in 

BANJO.  

 
Monoterpene group 
 
Three different graphs are presented below for this group, 

   Figure 6.3: Biochemical pathway graph was provided by scientists from Plant and 

Food Research. It was constructed with current knowledge of biological 

pathways based on chemistry. 

   Figure 6.4:  Bayesian networks for all 45 compounds of monoterpene group.  

   Figure 6.5:  Bayesian networks for 16 compounds chosen by Principal component 

analysis. 
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Figure 6.3: Biochemical pathway known for monoterpene group. 
 

Unknown.240 compound is not present in Fig 6.3, but its measurement is included in 

the analysis of monoterpene group and hence represented in Fig 6.4 and 6.5. 

Compounds like geranyl diphosphate and linoyl diphosphate that are not measured are 

depicted in Fig 6.3 as names without boxes. 
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Figure 6.4: Graphical representation of Bayesian networks inference for monoterpene 

group with 45 compounds. 
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Table 6.1: Division of Bayesian networks graph for monoterpene group with 45 

compounds into four levels and compounds present in that level. 

Levels Compounds present in that level 
Start geraniol cis and geranyl acetate 
Middle Myrcene- β   

sabinene hydrate, sabinene,3 thujen 2 one 
myrtenol, pinocarveol, α -pinene, β -pinene, pinocarvone, verbenol, 
borneol, 3-pinanone.                                                                         

End Linalool, epoxylinalool, linalool oxide.cis, linalool oxide.trans. 
Terpin hydrate, α -terpineol; 1, 3, 3-Trimethyl-2-oxabicyclo [2.2.2] 
octan-5-ol; 1, 3, 3-Trimethyl-2-oxabicyclo [2.2.2] octan-5-one; 
cineole 1.8-; exo-hydroxycineole. 
Limonene, carvenone, carveol, 1.8.menthadien-4-ol, isopiperitenone, 
carvone; 2,3-dihydrocarvone; piperitone. 
α -terpinene, β -terpinene, γ -terpinene, terpinolene, menth-1-en-
4ol.p-, cymene-p; 1,3,8-p-methatriene; p-cymene-8-ol. 
Norpian-2-one3.6.6-trimethyl, berbenone, β -damascenone, 4oxo 
α damascene. 

Unknown Unknown.240 
 

This Bayesian network was not readily interpretable. So in an attempt to see which 

compounds are present at various stages of ripeness we divided the compounds into four 

levels (Table 6.1). Compounds like geraniol cis and geranyl acetate are at the starting 

level. Middle level comprises of myrcene, sabinene and initial part of pinene synthases. 

All terminal nodes appear to be at the end level which consists of linalool, cineole, 

limonene, terpinene, and later part of pinene synthases.  

 

Figure 6.4 shows the edges between same levels of compounds in red colour, the edges 

between compounds in the immediate next level in blue colour and the edges between 

compounds of starting level and end level in green colour. More red edges (42) than 

blue (28) means there is possibly greater correlation among end level compounds which 

could be due to heterogeneity in fruit ripeness. The least number of edges (4) is seen in 

green colour. In an additional effort to understand this group of compounds, we selected 

new set of compounds for this group via Principal component analysis as discussed 

earlier. This produces the simpler graph as seen in Figure 6.5.  

 

 



 

36 

 
 
Figure 6.5: Graphical representation of Bayesian networks for monoterpene group with 

16 compounds chosen by principal component analysis. 

 
As referred in section 5.1, a Bayesian network is a graphical representation of a joint 

probability distribution, representing dependence and conditional independence 

relationships.  For example, we see that cymene is the parent of piperitone and menth-1-

en -4ol, indicating that all three are correlated; the fact that menth-1-en-4ol and 

piperitone don’t have an edge directly between them indicates their level of correlation 

is fully explained by the fact that both are related to cymene. Here, we have created 

Bayesian networks for the compounds shown in the heat map.  Where edges are present, 

we also give the correlation of the continuous transformed measurements. For 

monoterpenes, we show a graph representing the chemical pathways (Fig.6.5) in which 

each compound is involved as a point of comparison. 
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For the monoterpenes, we see that there are a few edges in common with the pathway 

graph. They are terpinolene & menth –1- en-4 ol and isopiperitenone & carvenone.  

However, in most of the graph high correlation is seen among compounds present when 

the fruit is fully ripened, rather than compounds in the same mechanistic pathway. The 

highest correlation is seen among terminal or near terminal compounds e.g.  cymene.p 

and piperitone or terpinolene and menth1en4ol. 

 
Acid-alcohol-ester group 
 

 
 

Figure 6.6: Graphical representation of Bayesian network for acid, alcohol & ester 

group with 35 compounds chosen by principal component analysis. 

 
Compounds linked with different butanoates are highly correlated. Butyl-

3hydroxybutanoate which belong to both alcohol and ester group is highly correlated 
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with butanoic acid, while butyl but2enoate which comes from the ester group is 

negatively correlated with octanoic acid. Strong correlation can be seen between hexyl 

butanoate and butyl hexanoate. Benzyl alcohol and phenyl methyl butanoate look quite 

closely related. 

 

6.4 Comments made on the two analyses 

Heat maps and graphical representation of Bayesian networks for the two groups of 

compounds were discussed with Ross Atkinson and Robert Winz from the Flavour 

Biotech team at Plant and Food Research. The simpler monoterpene graph with 16 

compounds was shown to them. They suggested the biological pathway graph (Figure 

6.3) based on hypothesized chemistry is not necessarily the truth. According to them, it 

was interesting to see from the Bayesian networks for the same group (Figure 6.5) that 

even though compound 1, 3, 3-Trimethyl-2-oxabicyclo [2.2.2] octan-5-ol was present in 

high number of genotypes, due to low variability it was not correlated with other 

compounds.  

 

In the acid-alcohol-ester group, from Figure 6.6, it was seen that methyl butanoate and 

ethyl butanoate were the important compounds that gave characteristic aroma in gold 

and green kiwifruit. They thought the compounds were correlated due to ripeness 

heterogeneity rather than a chemical relationship. 

 

The scientists noticed genotypic mapping can be done with the information provided by 

heat maps (Figure 6.1& 6.2). Genotypes resulting in similar compound levels can be 

chosen, as the dendrogram gives appropriate clusters of genotypes for both groups of 

compounds. They also recommended that compounds which are highlighted as either 

present or absent in a particular genotype cluster are likely to be under simple genetic 

control can be shown by the heat maps. This is an interesting conclusion; however trait 

mapping methods are beyond the scope of this thesis. 

 

Feedback was taken from the two scientists on usefulness of the two graphs. According 

to them, both graphs were useful in their own sense. They were pleased to see direct 

interactions among different compounds from the Bayesian networks. At first, they 

thought the graph shows correlations but after a detailed explanation they were able to 

understand the concept of conditional independence.  
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It was advised that 1, 3, 3-Trimethyl-2-oxabicyclo [2.2.2] octan-5-ol and exo.2hydoxy 

cineole were technically alcohols; but they synthesized differently from the simpler 

alcohols. It was observed from the heat maps of acid-alcohol-ester and monoterpene 

group that the intensity of colour representing the levels of the two compounds is 

different in the two graphs. The presence of these compounds in genotypes does not 

actually change from one group to another; it is just that their levels relative to the other 

compounds in the group (monoterpenes or alcohols) is changing.  

 

Adding further to the comments made on Figure 6.6, they believed ratio between methyl 

butanoate and ethyl butanoate was a good predictor of optimum maturity. The 

correlation of these two compounds with others gave them an idea to look in for the 

development of other compounds that could control flavour maturity. The compounds 

from acid group and compounds found in both ester and alcohol group together were 

pre-cursors to esters. Strong predictive ability could be seen from the Bayesian 

networks as one enzyme could be responsible for hexyl butanoate, hexyl benzoate and 

hexyl hexanoate.  
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Chapter 7 

 
Conclusion and Discussion 

 
 

7.1 Conclusion 

This chapter focuses on concluding the results of this study. An analysis was done on 

two groups of volatile compounds, viz., acid-alcohol-ester and monoterpene. The 

problem of non-detected observations was tackled by transforming the data with 

different constant values. The goal was to get an indication of the presence of volatile 

compounds in each genotype, and to see a relationship between them. To reach this 

goal, Clustering and Bayesian networks were implemented on compounds chosen by 

Principal component analysis. 

 

The heat map produced with cluster analysis for both groups of compounds revealed 

three clusters of compounds: compounds which are non-detected and present in very 

small amount, compounds which are present in small to medium amount and 

compounds which are present in large amount in most of the genotypes. Three clusters 

of genotypes from the monoterpene group and three clusters of genotypes from the acid-

alcohol-ester group were also seen from the dendrogram of the heat map. 

 

A graphical representation of Bayesian networks is produced with the software BANJO. 

For monoterpene group, in most of the graph high correlation is seen among compounds 

present when the fruit is fully ripened and highest correlation is seen among terminal or 

near terminal compounds. While for acid-alcohol-ester group, the graph shows 

compounds linked with different butanoates are highly correlated. 

 
7.2 Discussion  

The compound database for this study is similar to microarray data if we consider “large 

p, small n” paradigm, where p= number of compounds and n= number of genotypes in 

our case. Acid-alcohol-ester group has 194 compounds and 123 genotypes which means 

( np > ) and monoterpene has 45 compounds which means pn 3= (still moderate 

relative to p). Also like microarray data, we identify similar individuals and pathways 

with correlated genes. We can cite an example of a paper written by Mishel et al (2003) 
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which is similar to our work. Their individual tumor samples are like our genotypes, 

and their molecular subtypes are like our correlated compounds.  

 

The optimality criteria used in BANJO (BDe) tends to prevent overfitting based on the 

amount of data. Since we have a small amount of data, our network tends to be quite 

simple. For example, we discretized our observations into three values; if a node has 

two parent nodes, there are 9 possible combinations of the parent levels, resulting in 18 

parameters governing the distribution of data at the child node.  Thus if we increase the 

number of parents then the parameters cannot be precisely estimated. If one wishes to 

reduce the complexity of the network even more than the data suggest, BANJO allows 

one to put a cap on the number of parents that a node is allowed to have. Since we have 

a small amount of data, our network tends to be quite simple, and where we place the 

cap on the number of parents it has little effect. If the true relationships between the 

compounds are complex, we would need substantially more data to recover them.  As 

our data came from one time point we conducted static Bayesian networks and while 

doing that we lost substantial information about edge directions and thus about possible 

causal interactions between the genes. Husmier (2003) suggested interactions between 

genes are not instantaneous, but its effect happens with a time delay after its cause.  

 

Clustering provides a computationally cheap way to extract useful information out of 

large expression data sets. It only groups interacting genes together in a block, where 

the detailed form of the interaction patterns is lost. Therefore, probabilistic relationships 

between multiple interacting genes are represented by Bayesian networks. The structure 

of a Bayesian network describes the relationships between these genes in the form of 

conditional independence relations. Presence of many non-detected observations in our 

study does not violate assumptions of Bayesian networks and hence they are in the flow 

of the biochemical pathways as seen from the graphical representation. In hierarchical 

clustering method, the presence of many non-detected observations is quite obvious as 

they form a cluster with observations which are present in small amount as seen from 

the heat maps.  

 

7.3 Future study 

Two different correlation values can be worked out in future. The first set will give the 

correlation of a present/ absent indicator in genotypes; they will be shown under the 



 

42 

same pathway or under simple genetic control. The second set will give correlation 

values for those compounds which are present in both; correlated compounds could be 

related by some genetic factor, stage of ripeness, or consequence of chemical pathway.  

 

It was pointed out from the Bayesian networks of acid-alcohol-ester group that 

chemically butanoic acid should be the parent of butyl 3hydroxybuatnoate. Therefore it 

may be less confusing to represent the edges as undirected in case of butanoic acid, as in 

many cases there are equivalent graphs with edges reversed. Our use of directed graphs 

is for computational convenience. 
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Appendix   

 
 

BANJO settings file and search results for the two groups of compounds 
 
Settings file for monoterpene group 
 
-----------------------------------------------------------------------------  
- Banjo    Bayesian Network Inference with Java Objects -  
- Release 2.0            1 Apr 2007 -  
- Licensed from Duke University       -  
- Copyright (c) 2005-2007 by Alexander J. Hartemink     -  
- All rights reserved         -  
-----------------------------------------------------------------------------  
- Project:               mono16 example  
- User:               demo  
- Dataset:       16-vars-123-observations  
- Notes:           static bayesian network inference  
-----------------------------------------------------------------------------  
- Settings file:     data/static/static.settings.txt  
-----------------------------------------------------------------------------  
- Input directory:       data/static/input  
- Observations file:         static.data.txt  
- Number of observations:              123  
- Number of variables:        16  
- Discretization policy:             none  
- Exceptions to the discretization policy:           none  
-----------------------------------------------------------------------------  
- Initial structure file: (optional) 
- 'Must be present' edges file:         static.mandatory.str  
- 'Must not be present' edges file:  
----------------------------------------------------------------------------- 
- Min. Markov lag:          0  
- Max. Markov lag:                                                          0  
- Max. parent count:                                                        5  
- Equivalent sample size for Dirichlet parameter prior:                   1.0  
-----------------------------------------------------------------------------  
- Searcher:         SimAnneal  
- Proposer:                RandomLocalMove  
- Evaluator:                                        defaulted to EvaluatorBDe  
- Cycle checker:                                              CycleCheckerDFS  
- Decider:                                     defaulted to DeciderMetropolis  
------------------------------------------------------------------------------------------------------------------------------------------- 
- Pre-compute logGamma:              no  
- Cache:                                                           fastLevel2  
-----------------------------------------------------------------------------  
- Initial temperature:                               1000  
- Cooling factor:              0.1  
- Reannealing temperature:             800  
- Max. accepted networks before cooling:          2500  
- Max. proposed networks before cooling:                                10000  
- Min. accepted networks before reannealing:                              500  
-----------------------------------------------------------------------------  
- Output directory:       data/static/output  
- Report file:        static.report.txt  
- Number of best networks tracked:         1  
- Max. time:              1.0 h  
- Min. networks before checking:              1000  
- Screen reporting interval:                                            20.0 s  
- File reporting interval:                                              10.0 m  
-----------------------------------------------------------------------------  
- Compute influence scores:                                                yes  
- Compute consensus graph:                                                 yes  
- Create consensus graph as HTML:                                          yes  
- Create 'dot' output:                                                     yes  
- Location of 'dot':    C:/Program Files/ATT/Graphviz/bin/dot.exe  
-----------------------------------------------------------------------------  
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Search results for monoterpene group 
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Settings file for acid-alcohol-ester group 
 
  
-----------------------------------------------------------------------------  
- Banjo    Bayesian Network Inference with Java Objects -  
- Release 2.0            1 Apr 2007 -  
- Licensed from Duke University       -  
- Copyright (c) 2005-2007 by Alexander J. Hartemink     -  
- All rights reserved         -  
-----------------------------------------------------------------------------  
- Project:                aae35 example  
- User:               demo  
- Dataset:       35-vars-123-observations  
- Notes:           static bayesian network inference  
-----------------------------------------------------------------------------  
- Settings file:     data/static/static.settings.txt  
-----------------------------------------------------------------------------  
- Input directory:       data/static/input  
- Observations file:         static.data.txt  
- Number of observations:              123  
- Number of variables:        35  
- Discretization policy:             none  
- Exceptions to the discretization policy:           none  
-----------------------------------------------------------------------------  
- Initial structure file: (optional) 
- 'Must be present' edges file:         static.mandatory.str  
- 'Must not be present' edges file:  
----------------------------------------------------------------------------- 
- Min. Markov lag:          0  
- Max. Markov lag:                                                          0  
- Max. parent count:                                                        5  
- Equivalent sample size for Dirichlet parameter prior:                   1.0  
-----------------------------------------------------------------------------  
- Searcher:         SimAnneal  
- Proposer:                RandomLocalMove  
- Evaluator:                                        defaulted to EvaluatorBDe  
- Cycle checker:                                              CycleCheckerDFS  
- Decider:                                     defaulted to DeciderMetropolis  
------------------------------------------------------------------------------------------------------------------------------------------- 
- Pre-compute logGamma:              no  
- Cache:                                                           fastLevel2  
-----------------------------------------------------------------------------  
- Initial temperature:                               1000  
- Cooling factor:              0.1  
- Reannealing temperature:             800  
- Max. accepted networks before cooling:          2500  
- Max. proposed networks before cooling:                                10000  
- Min. accepted networks before reannealing:                              500  
-----------------------------------------------------------------------------  
- Output directory:       data/static/output  
- Report file:        static.report.txt  
- Number of best networks tracked:         1  
- Max. time:              1.0 h  
- Min. networks before checking:              1000  
- Screen reporting interval:                                            20.0 s  
- File reporting interval:                                              10.0 m  
-----------------------------------------------------------------------------  
- Compute influence scores:                                                yes  
- Compute consensus graph:                                                 yes  
- Create consensus graph as HTML:                                          yes  
- Create 'dot' output:                                                     yes  
- Location of 'dot':    C:/Program Files/ATT/Graphviz/bin/dot.exe  
----------------------------------------------------------------------------- 
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Search results for acid-alcohol-ester group 
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