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Abstract 

The fermentation of feed and formation of methane (CH4) by ruminant animals occur in 
the rumen, and both are microbial processes. There is a natural variation in CH4 emissions 
among sheep, and this variation is heritable. Therefore, breeding for sheep that naturally 
produce less CH4 is a viable strategy to reduce anthropogenic greenhouse gas emissions. 
Rumen bacteria play a major role in feed fermentation and in the formation of hydrogen 
(H2) or formate, which are converted to CH4 by other rumen microbes called 
methanogens. It has been shown that rumen bacterial community compositions in low 
CH4 emitting sheep differ to those in high CH4 emitting sheep. This led to the hypothesis 
that the metabolism of dominant rumen bacteria associated with low CH4 emitting sheep 
should explain the lower CH4 yield, for example by producing less H2 or formate than 
bacteria associated with high CH4 emitting sheep. In this project, the diversity and 
physiology of members of the bacterial genera Quinella, Sharpea and Kandleria, which 
are major bacterial groups associated with low-CH4 emitting sheep, were investigated. It 
appeared that the genus Quinella is more diverse than previously suspected, and might 
contain at least eight potential species, although to date none have been maintained in 
laboratory culture. Sharpea and Kandleria contain two and one species respectively. 
Experiments with Sharpea and Kandleria showed that these behave like classical lactic 
acid bacteria that produce lactate as their major end product and did not change their 
fermentation pattern to produce more H2 or formate when grown in the presence of 
methanogens. This strengthens a previous hypothesis that sought to explain low CH4 
emissions from sheep with Sharpea and Kandleria in their rumens, in which this invariant 
production of lactate was a key assumption. Quinella is another bacterium found in larger 
numbers in the rumen of some low CH4 sheep. Virtually nothing is known about its 
metabolism. FISH probes and cell concentration methods were developed which helped 
in its identification and resulted in construction of four genome bins of Quinella that were 
more than 90% complete with as little as 0.20% contaminated. Bioinformatic analyses of 
the proteins encoded by these genomes showed that Quinella has the enzymes for lactate 
formation and for the randomising pathway of propionate formation. This indicated that 
lactate and propionate might be major fermentation end products of Quinella. 
Additionally, the presence of an uptake hydrogenase in the Quinella genomes opens up 
the new possibility that Quinella might even use free H2 in the rumen. In all these possible 
pathways, little or no H2 would be produced, explaining why an increased abundance of 
Quinella in the rumen would lead to lower CH4 emissions from those sheep with high 
abundances of this bacterium.  
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