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Abstract 

White clover (Trifolium repens L.) is an economically important forage legume in 

temperate pastures, providing quality fodder and plant-available nitrogen. However, its 

potential has not been fully exploited due to unpredictable herbage yield and poor 

vegetative persistence in pasture. Identification of genotypes that combine traits essential 

for yield and vegetative persistence, like dry matter yield and stolon density, are key 

objectives in breeding programmes. Long breeding cycles, high genome complexity and 

difficult-to-phenotype traits, usually assessed at late growth stages, are major constraints 

to conventional phenotypic selection in white clover breeding. In cultivar development 

programmes, elite individuals must be accurately identified and selected before crossing 

to generate superior progeny. Genomic selection is becoming a preferred method for 

increasing the rate of genetic gain by enabling early identification and selection of 

superior individuals, based on their genomic estimated breeding values (GEBVs), which 

can be generated without the need for phenotyping. Genomic selection is usually 

performed using a statistical model developed using genotypic and phenotypic 

information derived from a training population. In forage breeding, as parental breeding 

values are estimated by progeny testing, phenotypic data used in genomic prediction 

models is obtained from half-sib progeny. Recent single nucleotide polymorphism (SNP) 

genotyping methods like genotyping by sequencing (GBS) which generate a large volume 

of SNP marker information at low cost, have made genomic selection possible for species 

such as white clover. The main objective of this thesis was to explore the potential of 

genomic selection to improve important traits in white clover breeding. 

A training population of 274 white clover parents were genotyped using GBS to provide 

genotype information. These genotyped maternal parents were randomly polycrossed 

under isolation to generate 274 HS families from which 200 HS were selected for 

phenotyping. The HS families were established in replicated, multi-location mixed sward 

field trials in 2016 at Aorangi and Ruakura New Zealand, under dairy cattle grazing. 

Variance components and quantitative genetic parameters were estimated from the HS 

progeny families via Residual Maximum Likelihood (REML) analyses for traits dry 

matter yield, growth score, leaf size, stolon number, stolon branching and Hydrocyanic 

acid (HCN) production. There was significant (P < 0.05) additive genetic variation 

among HS families for all measured traits. Year, season and location effects were also 

significant. Family mean narrow-sense heritability for the traits ranged from low (0.13) 



iii 

 

to high (0.82). There was a low but positive correlation (0.24) between DM yield and 

stolon number. Results from cluster analysis identified several HS families with high DM 

yield and stolon density. 

Predictive ability assessed by Monte-Carlo cross validation, ranged from -0.17 to 0.44 

for different traits. Predictive ability for dry matter (DM) yield from data merged across 

years and environments was 0.3, while stolon density traits, stolon number and branches 

had lower predictive abilities ranging from -0.17 to 0.21. The highest predictive ability, 

0.44, was obtained for leaf size, a genetically less complex trait than the yield-associated 

traits.  

The performance of different genomic prediction models, Genomic BLUP (GBLUP), 

KGD-GBLUP, BayesCπ, and Reproducing Kernel Hilbert Spaces (RKHS) were 

compared. While no significant difference in predictive ability among models was 

detected, KGD-GLUP, a very computationally efficient model, tended to generate the 

highest predictive abilities on average. There was no decrease in predictive ability when 

the number of individuals in the training population and SNP markers were reduced from 

200 and 110,000 to 80 and 5,500, respectively. Multi-trait genomic selection in which 

primary and secondary traits are incorporated into the model, increased predictive ability 

only when the information of a highly correlated secondary trait was present in both the 

training and test populations. 

Using simulation, it was demonstrated that an integrated strategy using conventional 

phenotypic selection to select among families and genomic selection to select within 

families, termed AFp-WFgs, delivered up to two-fold genetic gain for DM yield over 

conventional phenotypic selection among families alone by enabling access to the ¾ 

additive variation residing within HS families. The cost efficiency of implementing 

genomic selection was also investigated and showed AFp-WFgs was more cost-efficient 

than among family phenotypic selection under high selection pressures. 

Finally, to empirically validate the obtained predictive ability, a divergent selection was 

conducted for a simple trait, HCN, by selecting individuals based on their GEBVs. 

Conventional among HS family selection, progeny test selection and AFp-WFgs were 

compared in terms of response to selection, genetic gain and accuracy of selection. 

Despite the low predictive ability of 0.22 obtained for HCN, results showed AFp-WFgs 

to be similar to progeny test selection and superior to phenotypic selection in terms of  

response to selection and genetic gain. In terms of accuracy, AFp-WFgs was the more 
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accurate selection method, successfully eliminating individuals with high or low HCN 

production in the low and high HCN divergent groups, respectively. 

Our results indicate, for the first time, an integrated phenotypic and genomic selection 

approach to be superior to conventional phenotypic selection at increasing genetic gain 

for a simple trait in white clover. This demonstrates the potential of genomic selection to 

be used in enhancing white clover breeding programmes for quantitative trait 

improvement. 

  



v 

 

Acknowledgements 

My sincere gratitude to my supervisors Zulfi Jahufer, Andrew Griffiths, Jennifer Tate and 

Peter Lockhart for their relentless support and guidance throughout the course of my 

doctoral study and the write up of this thesis. I will fondly remember the highly animated 

and insightful discussions from which I learnt a lot. The open doors and constructive 

feedback have been priceless and deeply appreciated. 

I gratefully acknowledge Greig Cousins, Doug Ryan, and Jessica O’Connor for their 

technical contributions and insightful discussions, Sai Arojju for all the help with 

statistical modelling and valuable suggestions, Ruy Jauregui for assisting with 

bioinformatics and Anna Larking for support in GBS library making. Without their help, 

this body of work would not be complete. 

I would like to thank Craig, Derek, Peter, Mingshu, Poppy, Won, Sean, Sofie, John Ford, 

Bridget, Jana, Narsaa, the Aorangi farm staff and AgResearch forage team for all their 

help with phenotyping and technical assistance. They made mountains of work look like 

mole hills, it was always a pleasure working alongside you all. 

My parents, Obiabo and Deborah Ehoche, you have always encouraged my curiosity, 

quest for knowledge and made me believe early on that I could achieve anything with the 

right mindset. I am forever thankful for your endless support and sacrifice in helping me 

achieve all my goals. You continue to be my heroes. My siblings, Ngbede, Ene, Omeche 

and Joshua, your love and unconditional support has meant everything and kept me going. 

My deepest appreciation to the Adeyinka family, Doris especially, for their constant care 

and enormous support, they created a home away from home for me and are instrumental 

to my completion of this study. 

To my friends Asli, Rachel, Dorcas, Jane, Samra, Marisia, Uche, Antoinette, Rahila, 

Rolake, Momoh, Rukky, Chioma, Jonathan, Kelvin, all the chats, lunches and dinners 

kept my spirits high and got me through the difficult days. Thank you for always being 

there. My sincerest thanks to Hayden and the Hedleys for always cheering me on and 

putting a smile on my face. 

This PhD project forms part of Pastoral Genomics Plus, a New Zealand Industry 

Government-funded research consortium for developing genomic selection in forages, I 



vi 

 

gratefully acknowledge the significant opportunity given to me and the financial 

assistance provided. 

I am immensely grateful to Massey University for the financial support and graduate 

assistantship, which has been extremely instrumental in my professional development. 

 

  



vii 

 

Table of Contents 

Abstract ............................................................................................................................. ii 

Acknowledgements ........................................................................................................... v 

List of Tables.................................................................................................................. xiv 

List of Figures ................................................................................................................ xvi 

List of Appendices ...................................................................................................... xxiii 

List of Abbreviations................................................................................................... xxvii 

1. Introduction .............................................................................................................. 30 

1.1. Thesis Structure .................................................................................................... 34 

2. Literature Review .................................................................................................... 37 

2.1. White Clover Morphology and Trait Relationships ............................................. 37 

2.2. Methods and Conditions of Propagation .............................................................. 38 

2.3. Conventional Breeding in White Clover .............................................................. 39 

2.3.1. Breeding for Increased Dry Matter Yield ...................................................... 41 

2.3.2. Breeding for Vegetative Persistence .............................................................. 43 

2.3.3. Effect of Cyanogenesis .................................................................................. 45 

2.3.4. Role of Agronomy, Cultivar Type and Pasture Management on DM Yield . 48 

2.4. Selection in Plant Breeding .................................................................................. 49 

2.4.1. Response to Selection .................................................................................... 50 

2.4.2. Methods of Enhancing Genetic Gain in Conventional Breeding .................. 52 

2.5. Estimation of Breeding Values ............................................................................. 54 

2.5.1. Genotype-by-Environment Interaction Effects on Selection ......................... 55 

2.6. Molecular Markers for Plant Breeding ................................................................. 56 

2.6.1. Genotyping by Sequencing (GBS) ................................................................ 57 

2.6.1.1. Restriction Enzyme Choice .................................................................... 59 

2.6.1.2. Adapter Design and Concentration Optimization .................................. 59 



viii 

 

2.7. Genomic Selection ............................................................................................... 60 

2.7.1. Genetic gain in Genomic Selection ............................................................... 63 

2.7.2. Factors Affecting the Accuracy of Genomic Selection ................................. 64 

2.7.2.1. Trait Genetic Architecture ..................................................................... 65 

2.7.2.2. Training Population Size and Environments Tested .............................. 65 

2.7.2.3. Linkage Disequilibrium and Marker Density ........................................ 67 

2.7.2.4. Statistical Methods for Generating GEBVs ........................................... 68 

2.7.2.4.1. Parametric Models .......................................................................... 69 

2.7.2.4.2. Non-Parametric Models .................................................................. 69 

2.7.2.5. Model Performance ................................................................................ 70 

2.7.3. Cross-validation ............................................................................................. 71 

2.8. Conclusion ............................................................................................................ 72 

3. Estimation of Quantitative Genetic Parameters for Yield and Persistence-related 

Traits in White Clover..................................................................................................... 73 

3.1. Introduction .......................................................................................................... 73 

3.2. Materials and Methods ......................................................................................... 76 

3.2.1. Establishment of Multi-site and Multi-year HS Family Field Trial .............. 76 

3.2.1.1. Plant Material ......................................................................................... 76 

3.2.1.2. Polycross to Generate Training Population ........................................... 77 

3.2.1.3. Seed Preparation and Germination ........................................................ 78 

3.2.1.4. Trial Locations ....................................................................................... 79 

3.2.1.5. Experimental Design .............................................................................. 80 

3.2.1.6. Trial Management .................................................................................. 81 

3.2.1.7. Grazing Management ............................................................................. 82 

3.2.2. Data Collection and Phenotyping .................................................................. 82 

3.2.2.1. Cyanogenesis ......................................................................................... 82 

3.2.2.2. Growth Score ......................................................................................... 83 



ix 

 

3.2.2.3. Dry Matter Production Cuts ................................................................... 83 

3.2.2.4. Leaf Size................................................................................................. 84 

3.2.2.5. Stolon Characteristics ............................................................................ 84 

3.2.3. Statistical Analysis ......................................................................................... 85 

3.2.3.1. Univariate Analysis ................................................................................ 85 

3.2.3.1.1. Linear Mixed Model ....................................................................... 85 

3.2.3.1.2. Fixed Effects ................................................................................... 85 

3.2.3.1.3. Heritability ...................................................................................... 87 

3.2.3.2. Multivariate Analysis ............................................................................. 88 

3.2.3.2.1. Correlation....................................................................................... 88 

3.2.3.2.2. Pattern Analysis .............................................................................. 88 

3.3. Results .................................................................................................................. 90 

3.3.1. Meteorological Conditions ............................................................................ 90 

3.3.1.1. Rainfall ................................................................................................... 90 

3.3.1.2. Temperature ........................................................................................... 90 

3.3.2. Univariate Analysis........................................................................................ 93 

3.3.2.1. Variance Components and Heritability .................................................. 93 

3.3.2.1.1. HCN ................................................................................................ 93 

3.3.2.1.2. Seasonal Growth Scores .................................................................. 94 

3.3.2.1.3. Within Seasons and Locations ........................................................ 94 

3.3.2.1.4. Across Years and Locations Within Seasons .................................. 94 

3.3.2.1.5. Across Seasons, Locations and Years ............................................. 97 

3.3.2.1.6. Effect of Year and Season on Calibration Cut DM Yield ............... 99 

3.3.2.1.7. Effect of Year and Location on Full-scale DM Cut ...................... 100 

3.3.2.1.8. Check Performance for DM yield ................................................. 103 

3.3.2.1.9. Leaf Size........................................................................................ 104 

3.3.2.1.10. Stolon Traits ................................................................................ 105 



x 

 

3.3.2.1.11. Effects of Summer Period on Stolon Traits ................................ 107 

3.3.2.1.12. Check Performance for Stolon Traits .......................................... 108 

3.3.2.2. Multivariate Analysis ........................................................................... 109 

3.3.2.2.1. Pearson Correlation ....................................................................... 109 

3.3.2.2.2. Pattern Analysis ............................................................................ 111 

3.3.2.2.3. Pattern Analysis of Seasonal Growth Scores ................................ 113 

3.4. Discussion .......................................................................................................... 116 

3.4.1. Genetic Variation ......................................................................................... 116 

3.4.2. Genotype-by-Environment Interaction ........................................................ 117 

3.4.3. Heritability ................................................................................................... 118 

3.4.4. Year and Season Effect on Yield ................................................................. 119 

3.4.5. Year and Season Effect on Vegetative Persistence ..................................... 121 

3.4.6. Relationship Between Traits ........................................................................ 122 

3.4.7. Check Cultivar Performance........................................................................ 124 

3.4.8. Conclusions.................................................................................................. 124 

3.4.9. Foreword to Chapter 4 ................................................................................. 125 

4. Implementation of Genomic Selection .................................................................. 126 

4.1. Introduction ........................................................................................................ 126 

4.2. Materials and Methods ....................................................................................... 129 

4.2.1. Development of the Training Population .................................................... 129 

4.2.2. Evaluation of HS Families ........................................................................... 129 

4.2.3. DNA Isolation .............................................................................................. 129 

4.2.4. Library Preparation ...................................................................................... 130 

4.2.5. SNP Discovery............................................................................................. 132 

4.2.6. Linkage Disequilibrium ............................................................................... 132 

4.2.7. Population Structure .................................................................................... 133 

4.2.8. Genomic Prediction ..................................................................................... 133 



xi 

 

4.2.9. Cross-validation ........................................................................................... 133 

4.2.10. Genomic Prediction Models ...................................................................... 133 

4.2.10.1. GBLUP ............................................................................................... 134 

4.2.10.2. KGD-GBLUP ..................................................................................... 135 

4.2.10.3. BayesCπ ............................................................................................. 135 

4.2.10.4. Reproducing Kernel Hilbert Spaces (RKHS) .................................... 136 

4.2.11. Testing Size of Training Population and Marker Number ........................ 136 

4.2.12. Multi-trait Genomic Selection ................................................................... 137 

4.2.13. Genetic Gain Simulation for DM Yield ..................................................... 138 

4.3. Results ................................................................................................................ 141 

4.3.1. Phenotypic Analysis .................................................................................... 141 

4.3.2. Population Structure .................................................................................... 142 

4.3.3. Linkage Disequilibrium ............................................................................... 144 

4.3.4. Cross-validation ........................................................................................... 145 

4.3.5. Genomic Prediction Model Comparison ..................................................... 147 

4.3.6. Trait Architecture and Heritability .............................................................. 148 

4.3.7. Predictive Ability Across Years and Locations ........................................... 149 

4.3.8. Predictive Ability and Training Population Size (TS) ................................. 150 

4.3.9. Predictive Ability and Marker Density ........................................................ 153 

4.3.10. Multi-trait Genomic Prediction .................................................................. 155 

4.3.11. Genetic Gain Simulation for DM yield...................................................... 157 

4.4. Discussion .......................................................................................................... 161 

4.5. Factors Affecting Predictive Ability .................................................................. 161 

4.5.1. Population Structure .................................................................................... 161 

4.5.2. Cross-validation ........................................................................................... 161 

4.5.3. Genomic Prediction Model Comparison ..................................................... 162 

4.5.4. Trait architecture and heritability ................................................................ 163 



xii 

 

4.5.5. Location and Year ........................................................................................ 165 

4.5.6. Training Population size (TS) ...................................................................... 166 

4.5.7. Marker Density ............................................................................................ 167 

4.5.8. Multi-trait Genomic Prediction .................................................................... 170 

4.6. Genetic Gain Simulation for DM Yield ............................................................. 171 

4.7. Conclusion .......................................................................................................... 173 

4.7.1. Foreword to Chapter 5 ................................................................................. 174 

5. Empirical validation of genomic selection ............................................................ 175 

5.1. Introduction ........................................................................................................ 175 

5.2. Methods .............................................................................................................. 179 

5.2.1. Summary of Genomic Selection Model Development ................................ 179 

5.2.2. Genomic Prediction Model .......................................................................... 179 

5.2.3. Divergent Selection ..................................................................................... 180 

5.2.3.1. Among-family HS Phenotypic Selection (HSp) .................................. 180 

5.2.3.2. HS Progeny Test (PT) .......................................................................... 180 

5.2.3.3. Among-family Phenotypic Selection and Within-family Genomic 

Selection (AFp-WFgs) ...................................................................................... 181 

5.2.3.3.1. Validation Population ................................................................... 181 

5.2.4. Polycross and HCN evaluation .................................................................... 182 

5.2.5. Response to Selection .................................................................................. 183 

5.2.6. Expected Genetic Gain ................................................................................ 183 

5.2.7. Statistical Analysis ....................................................................................... 183 

5.3. Results ................................................................................................................ 184 

5.3.1. Variance Components .................................................................................. 184 

5.3.2. Predictive Ability ......................................................................................... 184 

5.3.3. Response to Selection, Estimated and Observed Genetic Gain ................... 185 

5.4. Discussion .......................................................................................................... 189 



xiii 

 

5.4.1. Genetic Gain and Response to Selection ..................................................... 190 

5.5. Conclusion .......................................................................................................... 193 

5.6. Foreword to Chapter 6 ........................................................................................ 193 

6. General Discussion, Future Work and Conclusions .............................................. 194 

Appendices .................................................................................................................... 202 

References ..................................................................................................................... 223 

 

  



xiv 

 

List of Tables 

Table 3.1 Estimated additive genetic (σ2
f), family-by-year (σ2

f.y), and pooled error (σε), 

variance components, their associated standard errors (± SE) and family mean narrow-

sense heritability (h2
n) for seasonal growth scores for 200 half-sib white clover families 

across two locations, Aorangi and Ruakura. ................................................................... 95 

Table 3.2 Estimated additive genetic (σ2
f), family-by-location interaction (σ2

f.l), family-

by-year interaction (σ2
f.y), pooled error (σε) variance components, their associated 

standard errors (± SE) and family mean narrow-sense heritability (h2
n) for seasonal 

growth scores from combined analyses for 200 half-sib white clover families across two 

locations, Aorangi and Ruakura. ..................................................................................... 96 

Table 3.3 Estimated additive genetic (σ2
f) and pooled error (σ2

ε) variance components 

with their standard errors (± SE), associated interactions and family mean narrow-sense 

heritability (h2
n) estimated at individual and across locations (L) ; Aorangi and Ruakura, 

across seasons (S) and across years (Y) for seasonal growth scores in 200 half-sib white 

clover families. ................................................................................................................ 98 

Table 3.4 Range, mean, additive genetic variance (σ2
f), family-by-location (σ2

f.l), family-

by-year (σ2
f.y), family-by-year-by-location (σ2

f.y.l) residual variance (σ2
ε),  their associated 

± standard errors and family mean narrow-sense heritability (h2
n) for dry matter yield cuts 

of  200 half-sib families across two locations, Aorangi and Ruakura. ......................... 102 

Table 3.5 Estimated additive genetic (σ2
f), family-by-location (σ2

f.l), family-by-year 

(σ2
fy), family-by-year-by-location (σ2

f.y.l) and pooled error (σε) variance components with 

their associated standard errors (± SE) and family mean narrow-sense heritability (h2
n) 

estimated across locations; Aorangi, Ruakura and across years for leaf size scores in white 

clover. ............................................................................................................................ 104 

Table 3.6 Range, mean, additive genetic variance (σ2
f), family-by-season (σ2

f.s), family-

by-year (σ2
f.y), family-by-year-by-season (σ2

f.y.s),  residual variance (σ2
ε),  their associated 

± standard errors and family mean narrow-sense heritability (h2
n) for white clover 

morphological traits, stolon number (SN) number of branches (SB) measured from the 

200 HS families at Aorangi before (PRS) and after (POS) summers of 2017/2018 and 

2018/2019...................................................................................................................... 106 



xv 

 

Table 3.7 Number of HS families and means of groups identified by cluster analysis. 

Values are for 200 HS family lines for traits: Year 1 across location growth score (GS1); 

Year 1 and 2 dry matter across all locations (DM); across all years and location growth 

scores for all seasons (GS123); leaf size (LS); Year 2 pre-summer stolon number 

(SNPRS); pre-summer stolon branches (SBPRS); post-summer stolon number (SNPOS); 

post-summer stolon branches (SBPOS); and hydrogen cyanide production (HCN). 

Locations are Aorangi and Ruakura. *Stolon traits were measured at Aorangi only. .. 113 

Table 3.8 Number of HS families and group means generated from cluster analysis of 

BLUP’s based on performance of 200 HS family lines across two locations and three 

years for seasonal herbage growth scores summer (SumAo and SumRu), autumn (AutAo 

and AutRo), winter (WinAo and WinRu) and spring (SprAo and SprRu). The two 

locations are Aorangi (Ao) and Ruakura (Ru). ............................................................. 115 

Table 4.1 Estimated HS family additive genetic (σ2
f), family×location interaction (σ2

f.l), 

family×year interaction (σ2
f.y), family×year×location interaction (σ2

f.y.l) and pooled error 

(σ2
ε) variance components, their associated standard errors (± SE) and family mean 

narrow-sense heritability for traits from single and combined analyses for the 200 white 

HS clover families across two locations, Aorangi and Ruakura. .................................. 142 

Table 5.1 Estimated additive (σ2
A), replicate (σ2

R), family-by-replicate interaction (σ2
A.R), 

and pooled error (σε) variance components and their associated standard errors (± SE) for 

HCN in the 200 white clover F2 and F3 populations. Narrow-sense heritability (h2
n) was 

calculated on a family mean basis and single plant basis for the F3 population and F2 

populations, respectively. .............................................................................................. 184 

Table 5.2 Estimated and observed genetic gain, response to selection (R) and group means 

for a divergent selection for HCN in white clover across different selection strategies, 

among-family selection (AFS) pressure and within-family selection (WFS) pressure. 186 

 

 

  



xvi 

 

List of Figures 

Figure 1.1 Thesis structure. ............................................................................................. 36 

Figure 2.1 Morphology of the white clover plant. Adapted from Baker and Williams 

(1987). ............................................................................................................................. 38 

Figure 2.2: Simplified diagram of genomic selection implementation in a half-sib forage 

breeding programme. ...................................................................................................... 63 

Figure 3.1 Development of training population for genomic selection. ......................... 77 

Figure 3.2 Training population half-sib families in polycross isolation tunnel. ............. 78 

Figure 3.3 Pre (A) and post (B) incubation of white clover half-sib seed. ..................... 79 

Figure 3.4 General view of the trial at the Aorangi location after establishment. .......... 81 

Figure 3.5 HCN scores (0-5) and representative samples. .............................................. 83 

Figure 3.6 Soil corer and stolon representative samples from the field trial at Aorangi. 84 

Figure 3.7 A) Total monthly precipitation at Aorangi and Ruakura and B) Mean 

Maximum and minimum monthly air temperatures (°C) at Aorangi and Ruakura for the 

duration of the trial; August 2016 to May 2019. Green, yellow, red and blue boxes 

represent spring, summer, autumn and winter seasons, respectively. ............................. 92 

Figure 3.8 Histogram showing cyanogenesis (HCN) scores based on a picric acid assay 

and percentage proportion of 200 half-sib families scored for cyanogenic performance. 

Score 0 = no HCN, 5 = maximum HCN produced. ........................................................ 93 

Figure 3.9 Notched boxplots showing the variation in dry matter yield in white clover due 

to year and season effects. Data taken from seasonal calibration cuts. Horizontal line 

within boxes = median seasonal dry matter (DM) averaged over scores (1-9), filled red 

circle = mean DM, box represents the middle 50% of variation, ends of the upper and 

lower whiskers represent the highest and lowest observations. Notches that do not overlap 

indicate medians that are significantly different at P < 0.05 (Chambers et al., 1983). . 100 



xvii 

 

Figure 3.10 The effect of year and location on the white clover half-sib family dry matter 

yield at the two sites (Aorangi and Ruakura), evaluated under dairy cattle grazing. Error 

bars represent standard errors of the mean. ................................................................... 101 

Figure 3.11 Mean dry matter yield of the top 10% of 200 half-sib families and two 

commercial check cultivars; ‘Grasslands Kopu II’ and ‘Grasslands Bounty’. The trials 

were conducted at Aorangi and Ruakura under dairy cattle grazing across years 2017 and 

2018. .............................................................................................................................. 103 

Figure 3.12 Predicted means and standard errors of the mean for 200 white clover half-

sib families measured pre-summer (PRS) and post-summer (POS) for stolon number (SN) 

and number of stolon branches (SB) at a single location, Aorangi. .............................. 107 

Figure 3.13 Mean stolon number (SN) and stolon branches (SB) of the top 10% of 200 

white clover half-sib families and two commercial check cultivars; ‘Grasslands Kopu II’ 

and ‘Grasslands Bounty’. The trial was evaluated at Aorangi under dairy cattle grazing 

across combined summers of years 2017/2019 and 2018/2019. ................................... 108 

Figure 3.14 Pearson correlation coefficients among traits estimated from the Best Linear 

Unbiased Predictor (BLUP) values of the 200 HS families for traits :Year 1 across 

location growth score (GS1), Year 1 and 2 dry matter across location (DM), across all 

years and location growth scores for all seasons (GS123), summer (SumGS), Autumn 

(AutGS), winter (WinGS), spring (SprGS), leaf size (LS), Year 3 pre-summer stolon 

number (SNPRS), pre-summer stolon branches (SBPRS), post-summer stolon number 

(SNPOS), post-summer stolon branches (SBPOS) and hydrogen cyanide production 

(HCN). Correlations are above the diagonal; P values are below the diagonal and indicate 

significance at 0.05 level. Locations are Aorangi and Ruakura. *Stolon traits were 

measured at Aorangi only. ............................................................................................ 110 

Figure 3.15 Biplot generated from pattern analysis using standardised Best Linear 

Unbiased Predictor (BLUP) values of 200 HS families for traits: Year 1 across location 

growth score (GS1); Year 1 and 2 dry matter across all locations (DM); across all years 

and location growth scores for all seasons (GS123); leaf size (LS); Year 2 pre-summer 

stolon number (SNPRS), pre-summer stolon branches (SBPRS); post-summer stolon 

number (SNPOS); post-summer stolon branches (SBPOS) and hydrogen cyanide 



xviii 

 

production (HCN). Locations are Aorangi and Ruakura. *Stolon traits were measured at 

Aorangi only. ................................................................................................................ 112 

Figure 3.16 Biplot generated from pattern analysis using standardised Best Linear 

Unbiased Predictor (BLUP) values of 200 HS families assessed in two locations, Aorangi 

(Ao) and Ruakura (Ro) over three years for seasonal herbage growth scores summer 

(SumAo and SumRu), autumn (AutAo and AutRo), winter (WinAo and WinRu) and 

spring (SprAo and SprRu)............................................................................................. 114 

Figure 4.1 Multi-trait cross-validation representing two breeding scenarios: MTCV1- 

where the test set has no phenotype information of either primary or secondary trait, 

representing the prediction of individuals with untested phenotypes and MTCV2 where 

the test set has been phenotyped for the secondary trait. .............................................. 137 

Figure 4.2 Selection scheme showing among and within-family selection pressures for a 

population of 200 half-sib (HS) families and the resultant polycross sizes. Numbers in the 

red dashed box indicate the total number of individuals genotyped for that among-family 

selection pressure. For example: with 200 HS families, 5% among-family selection 

pressure = 10 HS families; genotyping 100 individuals from each of the 10 selected HS 

families = 1000 plants genotyped. Within-family 1% selection pressure with 100 plants 

genotyped per HS family = 1 individual selected per HS family; as there are 10 HS 

families at the 5% among-family selection pressure, there will be 10 genotypes (1 per HS 

family) selected for a 5%among-family and 1% within-family polycross. .................. 139 

Figure 4.3 Multi-dimensional scaling (MDS) plot estimated from a genomic relationship 

matrix computed with 110,000 SNP markers from 200 maternal half-sib family training 

population...................................................................................................................... 143 

Figure 4.4 Heat map of the genomic relationship matrix estimated with 110,000 SNP 

markers from 200 maternal half-sib family training population showing the absence of 

population structure....................................................................................................... 144 

Figure 4.5 Linkage disequilibrium decay estimated from 30,225 subset SNP markers of 

200 maternal half-sib training population. Horizontal dashed lines represent baseline r2 at 

the 95th percentile (blue) and the 90th percentile (red), respectively. ............................ 145 



xix 

 

Figure 4.6 Effect of training and test set size ratios and number of iterations on the 

predictive ability for DM (dry matter) yield, GS (growth score) and LS (leaf size). Model 

was run for 100, 500, 1000 and 2000 iterations using KGD-GBLUP and the predictive 

ability was assessed using Monte-Carlo cross validation with 60%, 70%, 80%, 90% and 

95% training set and 40%, 30%, 20%, 10% and 5% test sets. Solid line represents the 

median, black dot in the box represents the mean and grey dots are outliers. Notches that 

do not overlap indicate medians that are significantly different at P < 0.05 (Chambers et 

al., 1983). ...................................................................................................................... 146 

Figure 4.7 Comparison among genomic prediction models BayesCπ, GBLUP, KGD-

GBLUP and RKHS on the predictive ability for DM (dry matter) yield, GS (growth score) 

and LS (leaf size). Models were run for 100 iterations and predictive ability was Monte-

Carlo cross validated using 80% training, 20% test sets. Solid line represents the median, 

black dot in the box represents the mean and grey dots are outliers. Notches that do not 

overlap indicate medians that are significantly different at P < 0.05 (Chambers et al., 

1983). ............................................................................................................................ 148 

Figure 4.8 Regression of predictive ability on heritability for dry matter, leaf size, growth 

score, stolon number and stolon branches based on 200 HS families measured in 2017, 

2018, 2019, in two locations, Aorangi and Ruakura New Zealand; stolon branching and 

stolon number measured in Aorangi only. .................................................................... 149 

Figure 4.9 Predictive abilities for growth score (GS) and leaf size (LS) in two locations; 

Aorangi (Aor) and Ruakura (Rua) and combined across-locations (Com) over a period of 

three years. Models were run using KGD-GBLUP for 100 iterations and predictive ability 

estimated using Monte-Carlo cross-validation using 80% training, 20% test sets. Error 

bars represent standard errors of the mean. ................................................................... 150 

Figure 4.10 Notched boxplots of the effect of training set size on the predictive ability of 

three traits DM (dry matter) yield, GS (growth score) and LS (leaf size). Model was run 

for 100 iterations using GBLUP. Predictive ability was esimated using Monte-Carlo 

cross-validation with 80% training, 20% test sets. Solid line represents the median, black 

dot in the box represents the mean and grey dots are outliers. Notches that do not overlap 

indicate medians that are significantly different at P < 0.05 (Chambers et al., 1983). . 152 



xx 

 

Figure 4.11 Notched boxplots of the effect of marker density on the predictive ability of 

three traits DM (dry matter) yield, GS (growth score) and LS (leaf size). Model was run 

for 100 iterations using GBLUP. Predictive ability was esimated using Monte-Carlo 

cross-validation with 80% training, 20% test sets. Solid line represents the median, black 

dot in the box represents the mean and grey dots are outliers. Notches that do not overlap 

indicate medians that are significantly different at P < 0.05 (Chambers et al., 1983). . 154 

Figure 4.12 Comparison of the predictive ability of single trait model and multi-trait 

model for Dry matter (DM). In multi-trait models, growth score (GS) and leaf size (LS) 

were used as secondary traits. Cross-validation schemes, multi-trait cross-validation 1 

(MTCV1), which corresponds to predicting untested phenotypes and MTCV2 which 

predicts individuals already phenotyped for the secondary trait, were implemented. .. 156 

Figure 4.13 Comparison of the predictive ability of single trait model for pre-summer 

(SNPRS) and post-summer (SNPOS) stolon number when incorporating secondary traits, 

pre-summer (SBPRS) and post-summer (SBPOS) stolon branching. Cross-validation 

schemes, MTCV1, which corresponds to predicting untested phenotypes and MTCV2, 

which predicts individuals already phenotyped for the secondary trait, were implemented.

 ....................................................................................................................................... 157 

Figure 4.14 (A) Expected genetic gain for dry matter yield with phenotypic selection 

(HSp) compared with a breeding strategy using among-family phenotypic selection and 

within-family genomic selection (AFp-WFgs) at different selection pressures. (B) Cost 

per cycle of selection for HSp relative to AFp-WFgs at varying selection pressures. 

Results were based on a sample cost of NZ$63 for phenotyping one sample of dry matter 

yield and field trial cost of NZ$10,000 per year for 200 half-sibs (HS) evaluated in two 

locations. The costs of AFp-WFgs include the above costs in addition to genotyping costs. 

Genotyping costs were estimated at NZ$55 per sample keeping the number of individuals 

genotyped for each WFS at 100. ................................................................................... 159 

Figure 4.15 Cost-efficiency of phenotypic selection (HSp) for dry matter yield relative to 

among-family (AFS) phenotypic selection and within-family (WFS) genomic selection 

(AFp-WFgs) at varying selection pressures. Results were based on a sample cost of 

NZ$63 for phenotyping one sample of dry matter yield and field trial cost of NZ$10,000 

per year for 200 half-sibs (HS) evaluated in two locations. The costs of AFp-WFgs 

include the above costs in addition to genotyping costs. Genotyping costs were estimated 



xxi 

 

at $NZ55 per sample keeping the number of individuals genotyped for each WFS at 100.

 ....................................................................................................................................... 160 

Figure 5.1 Schematic representation of the selection strategies applied in this study on 

white clover HS families. A) Divergent selection for HCN production using among-

family selection (AFS) at 5% for half-sib among-family phenotypic selection (HSp) and 

an integrated approach of among-family phenotypic selection and within-family selection 

via genomic selection (AFp-WFgs). Within-family selection pressure (WFS) at 5% using 

genomic estimated breeding values (GEBVs) for AFp-WFgs only. B) Divergent half-sib 

progeny test (PT) selection based on phenotype BLUPs of F3 progeny at 12% AFS 

pressure. ........................................................................................................................ 182 

Figure 5.2 Comparison of the predictive ability and bias obtained using different sets of 

phenotype data used to train the KGD-GBLUP model for HCN (Hydrogen cyanide) 

production. Progeny predictive abilities were derived from prediction models 

incorporating F2 parent genotype and phenotype inferred by their corresponding F3 HS 

family. Log-progeny is the natural log transformation of the progeny data. The model was 

run for 100 iterations and predictive ability was estimated using Monte-Carlo cross-

validation using 80% as training and 20% as test sets. Solid line represents the median, 

black dot in the box represents the mean and grey dots are outliers. Notches that do not 

overlap indicate medians that are significantly different at P < 0.05 (Chambers et al., 

1983). ............................................................................................................................ 185 

Figure 5.3 Group means of realised genetic gain for three breeding strategies: half-sib 

among-family phenotypic selection (HSp), among-family phenotypic selection and 

within-family selection via genomic selection (AFp-WFgs), half-sib progeny (PT). AFp-

WFgs and HSp selected at 5% selection pressure and PT at 12% selection pressure. Error 

bars indicate standard error of the means. ..................................................................... 187 

Figure 5.4 Distribution of HCN scores showing the accuracy and response to divergent 

selection for three breeding strategies: half-sib among-family phenotypic selection (HSp), 

among-family phenotypic selection and within-family selection via genomic selection 

(AFp-WFgs), half-sib progeny (PT). AFp-WFgs and HSp selected at 5% selection 

pressure and PT at 12% selection pressure. H – High population, L – low population. 

Sample size of 72 individuals per group. ...................................................................... 188 



xxii 

 

 

 

  



xxiii 

 

List of Appendices 

Appendix A.1 Aorangi experimental design CH1 and CH2 are repeated check cultivars 

‘Grasslands Kopu II’ and ‘Grasslands Bounty’….……………………………………202 

Appendix A.2 Ruakura experimental design: CH1 and CH2 are repeated check cultivars 

‘Grasslands Kopu II’ and ‘Grasslands Bounty’…………………………………….…203 

Appendix A.3 ANOVA table for linear mixed model results for the effect of year, season,  

score and their corresponding interactions on DM calibration cuts at Ruakura……...204 

Appendix A.4 Pairwise comparison of season-year combinations on calibration cut DM 

yield at A) Aorangi and B) Ruakura………………………………………………….204 

Appendix A.5 The effect of year and season on the adjusted means on calibration cut DM 

yield (dry matter yield) at two sites; Aorangi and Ruakura…………………………..205 

Appendix A.6 Post hoc pairwise comparison for full-scale DM yield at Aorangi and 

Ruakura for 2017 and 2018…………………………………………………………...205 

Appendix A.7 ANOVA table for linear mixed model results comparing DM yield for HS 

families and commercial checks cultivars over two years, 2017 and 2018 across two 

locations; Aorangi and Ruakura……………………………………………………....206 

Appendix A.8 ANOVA table for linear mixed model results for the effect of year, checks, 

time of measurement and their interaction checks on stolon number assessed over summer 

of combined years, 2017/2018 and 2018/2019 at Aorangi…………………………....206 

Appendix A.9 Post hoc pairwise comparison of season-year combinations on stolon 

number assessed over summer of combined years 2017/2018 and 2018/2019 at 

Aorangi…………..........................................................................................................207 

Appendix A.10 ANOVA table for linear mixed model results for effect of year, checks, 

time of measurement and their interaction on stolon branches assessed over summer of 

combined years 2017/2018 and 2018/2019 at Aorangi……………………………….207 

Appendix A.11 Post hoc pairwise comparison of season-year combinations on stolon 

branches assessed over summer of combined years 2017/2018 and 2018/2019 at 

Aorangi………………………………………………………………………...……...208 



xxiv 

 

Appendix A.12 ANOVA table for linear mixed model comparing stolon number for HS 

families and commercial checks cultivars over summers of 2017/2018 and 2018/2019 at 

Aorangi………………………………………………………………………………..209 

Appendix A.13 ANOVA table for linear mixed model comparing stolon branches for HS 

families and commercial checks cultivars over summers of 2017/2018 and 2018/2019 at 

Aorangi………………………………………………………………………………..209 

Appendix A.14 Importance of principal components for pattern analysis using 

standardised Best Linear Unbiased Predictor (BLUP) values of 200 HS families for traits: 

Year 1 across location growth score (GS1), year 1 and 2 dry matter across all locations 

(DM), across all years and location growth scores for all seasons (GS123), leaf size (LS), 

Year 3 pre-summer stolon number (SNPRS), pre-summer stolon branches (SBPRS), post-

summer stolon number (SNPOS), post-summer stolon branches (SBPOS) and hydrogen 

cyanide (HCN)……………………………………………………...…………....……210 

Appendix A.15 Dendrogram based on cluster analysis of the 200 HS families for traits: 

Year 1 across location growth score (GS1), year 1 and 2 dry matter across all locations 

(DM), across all years and location growth scores for all seasons (GS123), leaf size (LS), 

Year 3 pre-summer stolon number (SNPRS), pre-summer stolon branches (SBPRS), post-

summer stolon number (SNPOS), post-summer stolon branches (SBPOS) and hydrogen 

cyanide (HCN)………………………………………………….………..…………...211 

Appendix A.16 Factor loadings for traits: Year 1 across location growth score (GS1), year 

1 and 2 dry matter across all locations (DM), across all years and location growth scores 

for all seasons (GS123), leaf size (LS), Year 2 pre-summer stolon number (SNPRS), pre-

summer stolon branches (SBPRS), post-summer stolon number (SNPOS), post-summer 

stolon branches (SBPOS) and hydrogen cyanide (HCN)………………………….….212 

Appendix A.17 Trait contribution to principal components; Year 1 across location growth 

score (GS1), year 1 and 2 dry matter across all locations (DM), across all years and 

location growth scores for all seasons (GS123), leaf size (LS), Year 2 pre-summer stolon 

number (SNPRS), pre-summer stolon branches (SBPRS), post-summer stolon number 

(SNPOS), post-summer stolon branches (SBPOS) and hydrogen cyanide 

(HCN)…………………………………………………………………………………212 



xxv 

 

Appendix A.18 Importance of principal components for pattern analysis using 

standardised Best Linear Unbiased Predictor (BLUP) values of 200 HS families for traits 

for traits; WinAo, SprAo, SumAo, AutAo, WinRu, SprRu, SumRu and AutRu……..213 

Appendix A.19 Factor loadings for seasonal herbage growth scores for summer (SumAo 

and SumRu), autumn (AutAo and AutRo), winter (WinAo and WinRu) and spring 

(SprAo and SprRu)……………………………………………………………………213 

Appendix A.20 Trait contribution to the principal components; summer (SumAo and 

SumRu), autumn (AutAo and AutRo), winter (WinAo and WinRu) and spring (SprAo 

and SprRu)…………………………………………………………………………….213 

Appendix B.1 Buffer Mix for DNA isolation………………………………………...214 

Appendix B.2 Effect of training: test set size and number of iterations on the predictive 

ability, bias and bias range for traits dry matter (DM), growth score (GS) and leaf size 

(LS) assessed using KGD GBLUP…………………………………………………...215 

Appendix B.3 Genomic selection model effect on the predictive ability, bias and bias 

range for traits dry matter (DM), growth score (GS) and leaf size (LS)……………...216 

Appendix B.4 Predictive ability, bias and bias range for traits implemented using KGD-

GBLUP………………………………………………………………………………..217 

Appendix B.5 Predictive ability, bias and bias ranges for growth score (GS) and leaf size 

(LS) in two locations; Aorangi and Ruakura and across-locations (Com) over a period of 

three years…………………………………………………………………………......218 

Appendix B.6 Effect of training set size on the predictive ability, bias and bias ranges of 

three traits DM (dry matter) yield, GS (growth score) and LS (leaf size)…………….219 

Appendix B.7 Effect of number of markers on the predictive ability, bias and bias range 

of three traits DM (dry matter) yield, GS (growth score) and LS (leaf size)………....220 

Appendix B.8 Multi-trait predictive ability, bias and bias range for primary traits: DM 

(dry matter)  SNPRS (pre-summer stolon number) and SNPOS (post-summer stolon 

number) using GS (growth score), LS (leaf size) SBPRS (pre-summer stolon branching) 

and SBPOS (post summer stolon branching as secondary) traits yield……………….220 



xxvi 

 

Appendix C.1 One-way ANOVA to compare population means among the different 

groups………………………………………………………………………………....222 

Appendix C.2 Group mean comparison adjusted p values using Tukey’s multiple-

comparison test (α= 0.05)……………………………………………………...……...222 

  



xxvii 

 

List of Abbreviations 

AFLP Amplified Fragment Length Polymorphisms 

AFp-WFgs Among-Family Phenotypic Selection and Within-Family Genomic 

Selection 

AFS Among-family Selection 

AWF-HS Among-and -Within Half-Sib Family Selection 

ANOVA Analysis of Variance 

AutGS Autumn Growth Score 

BLUE Best Linear Unbiased Estimation 

BLUP Best Linear Unbiased Prediction 

CNV Copy Number Variation 

DM Dry Matter 

DNA Deoxyribonucleic acid 

GBLUP Genomic Best Linear Unbiased Prediction 

GBS Genotyping by Sequencing 

GEBV Genomic Estimated Breeding Value 

g(DNA) Genomic DNA 

G×E Genotype by Environment Interaction 

GS Growth Score 

HCN Hydrocyanic Acid 

HS Half-Sibling 

HSp Half-Sib Family Selection 



xxviii 

 

LD Linkage Disequilibrium 

LS Leaf Size 

LSD Least Significant Difference 

MAS Marker-Assisted Selection 

MDS Multi-Dimensional Scaling 

MTCV1 Multi - trait CV1 

MTCV2 Multi - trait CV2 

PCA Principal Component Analysis 

PCR Polymerase Chain Reaction  

PS Phenotypic Selection  

PT Progeny Test 

QTL Quantitative Trait Loci 

RAPD Random Amplified Polymorphic DNA 

REML Residual Maximum Likelihood 

RF Random Forest 

RFLP Restriction Fragment Length Polymorphisms 

RKHS Reproducing Kernel Hilbert Spaces 

RR-BLUP Ridge Regression–Best Linear Unbiased Prediction 

SB Stolon Branches 

SBPRS Pre-Summer Stolon Branches 

SBPOS Post-Summer Stolon Branches 

SEM Standard Error of the Mean 



xxix 

 

SN Stolon Number 

SNP Single Nucleotide Polymorphism 

SNPRS Pre-Summer Stolon Number 

SNPOS Post-Summer Stolon Number 

SprGS Spring Growth Score 

SSR Simple Sequence Repeat / Microsatellite Marker 

SumGS Summer growth score 

SVM Support Vector Machine 

TS Training Population Size 

WFS Within-family selection 

WinGS Winter Growth Score 

μl microliters  

oC Degree Celsius 

σ2 Variance 

ΔG Genetic gain 

 



30 

 

1. Introduction 

White clover (Trifolium repens) is an annual or short-lived perennial found in many 

temperate regions of the world (Gibson & Cope, 1985). It is an allotetraploid that resulted 

from the hybridization of two diploid Trifolium species, T. occidentale and T. pallescens 

(Atwood & Hill, 1940; Ellison et al., 2006) and possesses a genome size of 1093 Mb 

(Bennett & Leitch, 2011). The allopolyploidisation event occurred (15 – 28,000 years 

ago) and likely brought the alpine T. pallescens into close proximity with the coastal T. 

occidentale (Griffiths et al., 2019). Molecular evidence indicates white clover retained 

both progenitor genomes. The allopolyploidisation event underpins the broad adaptation 

and phenotypic plasticity of this species, and facilitates a global ecological niche 

expansion well beyond the restricted ranges of the progenitors (Griffiths et al., 2019). 

White clover is now extensively cultivated in temperate pastures world-wide (Williams  

et al., 2012). In New Zealand, white clover is a significant legume component in mixed 

grass/clover swards, providing an advantage over other temperate countries by delivering 

a cheap, high quality feed source throughout the year (Caradus et al., 1997a; Jahufer et 

al., 2002). Numerous studies have reported greater milk solid content and increased milk 

yields from cows grazed on a grass/clover mixture compared to grass monocultures only 

(Harris et al., 1997; Harris et al., 1998; Dineen et al., 2018; Egan et al., 2018). The 

advantages of white clover are not only limited to providing a rich source of leguminous 

feed for livestock, but also improving soil fertility through nitrogen fixation (Woodfield 

& Caradus, 1996). With effective inoculation of white clover by the symbiotic soil 

bacterium Rhizobium leguminosarum var. trifolii, the nitrogen fixed is sufficient for the 

clover and companion grass, thereby reducing the reliance on synthetic nitrogen fertiliser 

(Gibson & Cope, 1985). Caradus et al. (1995) estimated the annual financial contribution 

of white clover to the New Zealand economy at NZ$3.095 billion, through a variety of 

sources including nitrogen fixation, white clover seed production, forage yield and honey 

production. 

Although white clover is an established pasture sward component of many livestock 

production systems in temperate countries, its potential is not fully utilised due to 

unreliable vegetative persistence and seasonal yield (Caradus et al., 1991; Woodfield & 

Caradus, 1994; Caradus et al., 1995). White clover dry matter (DM) yield and vegetative 

persistence is often compromised by a range of factors including cultivar type, biotic and 

abiotic stresses, pasture management and plant competition (Woodfield & Caradus, 
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1996). As mixed pastures mature, the total percentage of white clover declines 

significantly, often lower than 20% by the fourth year (Piano & Annicchiarico, 1995). 

Genetic improvement of vegetative persistence and seasonal DM yield, both 

quantitatively inherited traits are major objectives in white clover breeding programmes. 

Expression of quantitative traits is influenced by multiple gene effects and by their 

interaction with the environment thus posing a challenge to plant breeders when selecting 

elite genotypes (Byth, 1981; Falconer, 1989; Howard et al., 2014). White clover DM yield 

has been linked to a number of component traits including leaf size, internode length and 

leaf number (Mackay, 1991; Caradus et al., 1993), while vegetative persistence is 

determined primarily by stolon density which plays a major role in the perennation and 

colonization of white clover in mixed swards (Archer & Robinson, 1989; Caradus et al., 

1989b; Collins et al., 1997). Unfortunately, a negative correlation exists between yield 

and stolon density in white clover (Williams, 1987; Caradus et al., 1989b; Jahufer et al., 

1994). This negative association complicates breeding efforts for simultaneous genetic 

improvement of both traits (Jahufer et al., 1999). Important stolon density components 

like numbers of stolon and growing points, thickness and number of  stolon branches are 

affected by summer moisture stress (Jahufer et al., 2012) and cold winter periods (Collins 

et al., 1991). Therefore, the ability of stolons to survive across these two critical periods 

is necessary for white cover longevity in the sward. Another trait implicated in vegetative 

persistence is cyanogenesis which is the release of hydrogen cyanide (HCN) from 

damaged leaves. Several studies have reported cultivars with superior agronomic 

performance in terms of yield and vegetative persistence to be cyanogenic (Williams, 

1987) (Caradus & Williams, 1989; Crush & Caradus, 1995) (Doak, 1933). 

In plant breeding, superior parent plants are selected and crossed to combine desired traits 

in the resulting offspring (Acquaah, 2012). White clover breeding, however, can be 

complicated, due to its allogamous and outbreeding nature, which results in high levels 

of heterozygosity, making it difficult to fix desired traits (Gibson & Cope, 1985). Crop 

improvement can be accomplished through conventional and molecular breeding 

strategies. An important initial step in this process is to estimate the magnitude of genetic 

variation for target traits in the breeding population. This is often an arduous task as plant 

breeders typically evaluate large numbers of plants using multi-site trials to acquire 

reliable data underpinning selection decisions. Although, conventional forage breeding 

methods have been successful for increases in DM yield (Humphreys, 1997), they often 

consist of long breeding cycles which have negative impacts on genetic gain and time 
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taken to release new cultivars. An integration of conventional breeding, new molecular 

techniques and targeted multi-site evaluation of breeding material will provide an 

efficient platform for increasing the rate of genetic gain in crop improvement especially 

for quantitative traits (Jahufer et al., 2012). Genetic gain is a term referring to positive 

trait advances in response to selection and is a function of the selection intensity, selection 

accuracy, genetic variance and years per cycle (Fehr 1980). Strategies that aim to increase 

the selection intensity and accuracy, while maintaining genetic diversity and reducing the 

generation interval or years per cycle, ultimately increase the rate of genetic gain. 

With significant advances in molecular genetics, it is now possible to find associations 

between DNA markers and phenotypes. DNA markers are defined as a fragment of DNA 

which can be used to detect polymorphism or variations between different genotypes or 

alleles in a population of segregating individuals (Jones et al., 1997). Using the presence 

or absence of a marker as a proxy to assist in phenotypic selection, Marker Assisted 

Selection (MAS) makes selection/breeding more cost-efficient, reliable, time and space 

efficient compared to phenotyping (Gupta et al., 1999; Collard et al., 2005). Many 

methods have been developed to detect variation at the DNA level and Genotyping by 

Sequencing (GBS), is a technique for discovery of genome-wide single nucleotide 

polymorphisms (SNPs) developed for Illumina sequencing technology (Elshire et al., 

2011). This methodology, offers a cost-effective alternative, to array-based 

methodologies such as SNP chips, which are expensive to develop and validate, and suffer 

from ascertainment bias, in which the only SNPs identified are those detected in the 

original populations used for developing the SNP-chip (Nielsen & Signorovitch, 2003; 

Albrechtsen et al., 2010). These limitations are overcome in GBS through simultaneous 

marker discovery and genotyping (Elshire et al., 2011). In the Elshire-based GBS 

procedure, a subset or reduced representation of the genome is selected using restriction 

enzymes and then sequenced to identify SNPs. Basically, the genomic DNA from an 

individual is digested with restriction enzymes and barcoded adapters are then ligated to 

each sample representing a specific genotype. Samples are pooled before PCR 

amplification using primers annealing to the barcode adapters. The PCR amplification 

and post-processing steps concentrate the sampled genome fragment to a size range 

optimal for sequencing (Elshire et al., 2011). After sequencing, sequence data are de-

multiplexed to retrieve sequence information for each individual based on its barcode. 

Bioinformatics analysis of the sequenced samples identifies the SNPs to be used 

downstream in a range of genetic and population genetic analyses. 



33 

 

Genomics-based approaches can help identify and exploit beneficial genetic variation in 

plants, independent of the environment. However, this new technology is underutilised in 

forage plant breeding (Tuberosa & Salvi, 2006). Meuwissen et al. (2001) proposed a form 

of MAS called genomic selection that has been successfully applied to animal breeding 

programmes and is increasingly being adopted in plant breeding (Heffner et al., 2009). 

Genomic selection is the combined use of all genetic and phenotypic data collected from 

a set of individuals in a training population to generate a prediction model that can be 

used to predict the phenotype of individuals that have only been genotyped (Goddard & 

Hayes, 2007; Annicchiarico et al., 2014). These predicted phenotypes are referred to as 

Genomic Estimated Breeding Values (GEBVs). By estimating the effect of several 

markers in a population for individuals, all the genetic variance may potentially be 

captured by the markers (Oakey et al., 2016). The goal of genomic selection is to predict 

trait performance using all available marker information. The use of all markers presents 

an advantage over traditional MAS, which uses a threshold to select fewer markers 

associated with a trait at the cost of potentially losing a proportion of marker effects 

considered too small to be significant (Meuwissen et al., 2001; Hayes et al., 2009b; 

Lorenz et al., 2011; Crossa et al., 2017; Faville et al., 2018). One of the major advantages 

of genomic selection is the ability to select individuals accurately without the 

corresponding phenotypic data (Heffner et al., 2009; Hickey et al., 2009; Hayes et al., 

2013). This facilitates shortening of the breeding cycle by eliminating the need for a 

phenotyping step in selection process or by affording the potential to make multiple 

recurrent selections, thereby increasing genetic gain per unit time (Wong & Bernardo, 

2008; Crossa et al., 2010; Bassi et al., 2016). For perennial pasture species like white 

clover, where many important traits are only expressed at maturity by destructive 

sampling, the identification of superior individuals based on their genomic value is 

essential (Hayes et al., 2013). For genomic selection to be performed successfully, precise 

genotypic and phenotypic information must be available for desired traits to enable 

correct assigning of marker effects to observable phenotypes. This is especially important 

for quantitative traits which are strongly influenced by the environment; it is 

recommended that genotypes are assessed over different environments and across years 

(Asoro et al., 2011). 

Currently, few studies evaluating the use of genomic selection for forage species have 

been published or empirically validated and to date, no study has investigated the prospect 

of genomic selection for white clover breeding. Research to examine the emerging role 
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of genomic selection in increasing genetic gain in breeding forage crops and white clover 

especially is needed and this is the aim behind this study. Before implementation of any 

new breeding strategy, however, research must be conducted on determining the 

magnitude of genetic variation for traits of interest as well as an appropriate mode of 

integrating the new marker-based strategy into conventional breeding methods. 

Against this background, the objectives of this study are to: 

I. Generate half-sib families (HS) from a random mating, F2 generation white 

clover breeding pool for evaluation in multi-site and multi-year field trials. 

II. Estimate quantitative genetic parameters and available genetic variation for DM 

yield, seasonal growth, vegetative persistence and other key breeding traits 

based on the HS families. 

III. Determine the heritability of traits and correlations between important traits. 

IV. Evaluate the use of GBS to generate quality SNP markers for use in genomic 

prediction models. 

V. Assess the efficiency of different statistical models used to predict the GEBVs of 

individuals  

VI. Assess the accuracy of genomic prediction models for several traits by estimating 

the correlation between the genomic estimated breeding values (GEBVs) 

predicted by the genomic prediction model and the actual observed phenotypic 

values from the population. 

VII. Compare the rates of genetic gain achieved through conventional HS family 

phenotypic selection and an integrated approach with genomic selection using 

quantitative genetic simulation. 

VIII. Perform a proof-of-concept genomic selection study validating the GEBVs 

predicted by the genomic prediction models. 

1.1. Thesis Structure 

The overall structure of this thesis is organised in five chapters (Figure 1.1). Chapter 2 is 

a literature review on key topics, findings and available information relevant to the 

research topic. Chapter 3 focuses on objectives I-III, which primarily involves the 

generation of the training and breeding population for genomic selection in white clover. 

Genetic, environmental variance and heritability of important morphological traits related 
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to yield and persistence in white clover are obtained from a replicated multi-site trial. 

Chapter 4 deals with objectives IV-VII and shows the methods and results of SNP marker 

generation, the implementation of genomic selection in the current white clover 

population, prediction accuracies obtained for several traits and the cross-validation 

strategies used to assess the accuracy of prediction. Genomic prediction models are 

assessed and factors affecting genomic selection are elucidated. Simulation to compare 

the rates of genetic gain obtained using conventional phenotypic selection and an 

integrated approach utilizing phenotypic selection to perform among-family selection and 

genomic selection to perform within-family selection, termed AFp-WFgs, is performed. 

Chapter 5, objective VIII, is a proof-of-concept / validation study for genomic selection 

performed using GEBVs predicted for a simple trait, HCN, from Chapter 4. The final 

chapter, Chapter 6, contains a critical final overview and discussion along with a summary 

of key findings, implications of the research to white clover breeding and directions for 

future investigations.  
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Figure 1.1 Thesis structure. 
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2. Literature Review 

2.1.  White Clover Morphology and Trait Relationships 

The genus Trifolium comprises of the distinctive three leaflet (trifoliate) form of clover 

species (Ellison et al., 2006), which are long-petioled and glabrous (Gibson & Cope, 

1985). Leaves come in different sizes with a range of leaf markings (Carnahan et al., 

1955; Corkill, 1971). Sizes range from very small (less than 1 cm) in prostrate short-

petioled types, to large (more than 2 cm), in the more erect, longer-petioled types 

(Thomas, 1987b).  The plant consists of a horizontal creeping stem, also called the stolon, 

with internodes separated by nodes that can form nodal roots if in contact with moist soil 

(Figure 2.1) (Thomas, 1987b). There are three development stages in the life cycle; the 

first is a seedling stage, lasting up to 3 months after germination where the plant is small 

and slow growing (Meurant, 1986). The primary stem grows upright with short internodes 

and within 6 to 8 weeks after seed germination, stolons start to develop from axillary buds 

found in the axil of leaves (Gibson & Cope, 1985). Primary stem elongation usually stops 

after the stolon growth begins. Branches that develop from primary stolons generate 

secondary stolons forming a complex network of stolons over time (Gibson & Cope, 

1985). In the second stage, the tap rooted phase, there is rapid expansion of the plant and 

further development of the tap root with subsequent death of the tap root and main stem 

within twelve to eighteen months (Brock & Hay, 2001). White clover is most productive 

at this stage in terms of herbage matter (Widdup & Barrett, 2011) This is followed by a 

clonal growth phase, the third stage, where fragmentation into smaller plants occurs with 

each individual stolon growing independently (Caradus & Woodfield, 1998). White 

clover stolons can grow up to 50 cm long, ranging from 1.9 - 4.0 mm in diameter (Burdon, 

1983). 

After flower formation, white clover is naturally cross-pollinated by a wide range of 

insects, predominantly honeybees (Apis mellifera L.) and bumble bees (Bombus spp.) 

(Burdon, 1983). Flower heads are globose, consisting of individual white flowers with an 

ovary in each floret that usually contains three to four ovules that mature into seeds after 

fertilization seeds (Gibson & Cope, 1985). Profusely flowering white clover varieties tend 

to have fewer stolons because each node has the potential to produce either a stolon or a 

flower head but not both (Woodfield & Caradus, 1996). This implies a negative 
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relationship between persistence through stolon production and high flowering 

capabilities (Thomas, 1987a). 

 

 

Figure 2.1 Morphology of the white clover plant. Adapted from Baker and Williams 

(1987). 

2.2. Methods and Conditions of Propagation 

Approximately 30% of clover species are self-incompatible while 70% are self-pollinated 

(Taylor et al., 1977). White clover has a gametophytic self-incompatibility system 

controlled by a single locus with many alleles (Atwood, 1942). This obligate outcrossing 

system ensures that pollination only occurs from plants that have different self-

incompatibility (S) alleles; therefore, a plant cannot be fertilised by its own pollen, or 

sometimes that of a close relative (Atwood & Hill, 1940). However, temperatures above 

30°C have been shown to break incompatibility and most white clover plants will self-

pollinate (Gibson & Chen, 1973). T. pallescens  is the self-incompatible ancestral parent 

(Abberton, 2007) while T. occidentale is mostly self-compatible (Williams et al., 2008). 
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Continuous regeneration in pasture is by reseeding and vegetative (clonal) growth, 

through the adventitious rooting of stolons, which makes it able to exploit new 

environments (Gibson & Cope, 1985). Propagation by seed is vital for the colonization 

of new areas while clonal propagation is more important for maintenance in sward 

(Burdon, 1983). In cool temperate regions, propagation is mainly via stolon growth, while 

in warmer sub-tropical areas, seedling regeneration is the preferred method of 

proliferation (Archer & Robinson, 1989). Vegetative propagation in white clover occurs 

as a continuous cycle of growth and branching towards the stolon apices as the older and 

basal parts of the stolon decay (Harris 1993). 

White clover is usually grown in combination with a companion grass such as perennial 

ryegrass (Lolium perenne), cocksfoot (Dactylis glomerata), fescue (Festuca 

arundinacea), kikuyu (Pennisetum clandestinum), timothy (Phleum pratense) or 

bermuda grass (Cynodon dactylon) (Van Keuren & Hoveland, 1985; Betts & Ayres, 

2004). This complementary association is beneficial with grasses providing more forage 

during the cool seasons and clovers producing more herbage during warmer summer 

conditions (Sleugh et al., 2000). Other advantages offered by these mixtures include the 

improved performance of animals grazed on mixed swards (Egan et al., 2018), reduced 

weed encroachment and erosion, greater stand longevity than legume or grass 

monocultures (Casler, 1988) and significant reduction in the amount of nitrogen fertilizer 

needed due to nitrogen fixation capability. White clover has the potential to fix up to 

700kg N/ha/year (Crush, 1987), although this is variable from location to location. 

2.3. Conventional Breeding in White Clover 

As an outcrossing tetraploid species, (2n=4x=32), white clover populations are highly 

heterogeneous with high phenotypic plasticity and broad environmental adaptation 

(Woodfield & White, 1996). Research on many white clover traits show considerable 

genetic variation signifying that ample opportunity exists for potential genetic 

improvement of white clover. Existing white clover cultivars are synthetic varieties 

usually produced by polycrossing eight or more selected parental clones (Woodfield & 

White, 1996; Caradus & Woodfield, 1997) or bulked seed lines (Jones et al., 2003) 

followed by consecutive generations of random mating of the closed population (Halloran 

et al., 1977). A polycross design ensures random mating among the genotypes, providing 

each genotype an equal chance of pollinating, or being pollinated by the other genotypes. 
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A conventional white clover breeding programme typically takes 10–20 years to release 

a new cultivar (Williams, 1987). Traits targeted include seasonal dry matter yield, leaf 

size, stolon branching frequency, stolon thickness, improved rooting architecture, water 

use efficiency, tolerance to cold, heat and drought, resistance to nematodes, pests and 

pathogens (Caradus et al., 1991). The yield potential of white clover primarily depends 

on the leaf size and above-ground parts, while stolon branching frequency and growing 

point density contribute to persistence by continuous regeneration (Gibson & Cope, 1985; 

Caradus et al., 1997a). Woodfield and Caradus (1994) reported genetic improvement in 

the range of 6% to 15% per decade for white clover DM yield and similar gains in 

percentage clover and mean stolon number from international collections of 110 white 

clover cultivars grown in New Zealand. They stated, however, that some of these cultivars 

were not adapted to New Zealand conditions and predicted possibly higher genetic gains. 

Recently, Hoyos-Villegas et al. (2019) reported much lower gains, less than 1% per 

decade for DM yield. 

Cultivar development in many white clover breeding programmes follow the same basic 

approach: collection and characterisation of available germplasm, identification and 

polycrossing of superior parental material, multi-site evaluation of resulting progeny 

families, and finally, polycrossing parents of superior progeny (Ayres et al., 1996; Jahufer 

et al., 1999). Phenotypic recurrent selection is the prevalent method in breeding white 

clover. It involves the evaluation of large numbers of plants for a single trait or multiple 

traits, selecting and inter-crossing the top performing plants, and repeating the cycle 

(Williams, 1987). It has been useful in accomplishing numerous breeding goals, 

especially those evaluated on single plants and forage quality traits (Casler & Vogel, 

1999). However, selection of parents based on their phenotypic performance alone is 

sometimes inefficient as phenotypes of individuals may not always indicate their true 

breeding values due to confounding effects, such as dominance or genotype-by-

environment interaction (G×E) (Halloran et al., 1977). Phenotypic recurrent selection is 

often combined with progeny-test selection which requires the establishment of full-sib 

or more commonly in white clover, HS families (Vogel & Pedersen, 1993). Half-sib 

families are produced in multi-parent polycrosses under isolation (Allard, 1960). Each 

plant within the polycross contributes pollen while also receiving pollen from the other 

plants - “the pollen cloud” (Acquaah, 2012). Popular cultivars developed using HS family 

progeny testing include ‘Grasslands Crusader’, ‘Grasslands Kopu I’, ‘Grasslands Kopu 

II’, and the renowned ‘Grasslands Huia’ (Mather et al., 1996). The underlying concept is 
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to use the progeny to reveal the true breeding value of the parents, and only after that are 

the parents with high genetic merit chosen for further breeding. 

White clover cultivars generally are classified by leaflet size into three categories, small, 

medium and large (Smetham, 1973). Most small-leaved types are prostrate with profusely 

branching stolons, while large-leaved types possess longer petioles with a more erect 

habit (Speedy, 1998). Farmers sometimes sow blends of cultivars with different leaf sizes 

to maximise ground cover and persistence. Since white clover is usually grown with a 

companion grass, this has greatly influenced the method for evaluating breeding material, 

with many breeders preferring to evaluate material in mixed swards rather than a 

monoculture of individually spaced plants or rows (Caradus & Williams, 1989). 

2.3.1. Breeding for Increased Dry Matter Yield 

Most important agronomic traits are quantitative, polygenic and highly influenced by the 

environment (Collard et al., 2005). Quantitative traits are genetically controlled by many 

genes, with each gene contributing a relatively small effect on the eventual phenotype 

(Buckler et al., 2009). Apart from the difficulty involved in breeding for quantitative 

traits, white clover is a polyploid with high genotypic and phenotypic heterogeneity 

among individual plants and populations (Capstaff & Miller, 2018). The combination of 

the parental genomes causes significant amounts of heterozygosity which is fixed as a 

result of the disomic inheritance within each genome (Sattler et al., 2016). Heterogeneity 

makes it difficult to “fix” desired traits like yield in the population of interest. Like many 

other agronomically important crop species, low to moderate heritabilities for yield have 

been reported for most white clover populations (Suzuki et al., 1958; Connolly, 1978; 

Annicchiarico  et al., 1999). This complicates trait improvement further, making it a 

difficult and long process. A solution breeders’ use to overcome this problem is to look 

to secondary and sometimes simpler correlated traits with higher heritabilities that can be 

easily selected upon as an indirect method of selection for primary traits (Casler, 2012). 

In many pastures, white clover DM yield tends to decline over time and many studies 

report the total percentage of white clover in mixed sward falling between 20% to 35% 

by the third year of evaluation (Piano & Annicchiarico, 1995; Chapman et al., 1996). By 

the fifth year, Piano and Annicchiarico (1995) estimated total clover content at only 5.5%. 

With only about 3% of pastures reseeded annually to maintain yields (Nolan et al., 2001), 

developing avenues to increase and maintain total herbage content in pasture are crucial.  
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Leaf size (LS) and an erect growth habit are major factors contributing to the DM yield 

potential of white clover (Caradus et al., 1993; Caradus et al., 1997a; Clark & McFadden, 

1997). Leaf size has often been used as a proxy selection trait for DM yield since it is 

highly heritable and positively correlated with DM yield (Woodfield & Caradus, 1990). 

Caradus and Woodfield (1990) and Barcikowska (1976) obtained medium to high broad 

sense heritability (> 0.5) for leaf size. Mackay (1991) pointed out that although leaf 

number and LS were the best predictors of clover proportion in a mixed sward, leaf 

number was of greater importance under favourable conditions. A major reason why LS 

affects the proportion of clover in pasture is because large-leaved clover types have bigger 

but fewer stolons than smaller-leaved types. These larger stolons are more likely to be 

grazed by animals unlike the small-leaved types with numerous, thin and multi-branched 

stolons (Charlton & Stewart, 1999). Clark and McFadden (1997) found that large-leaved 

cultivars were the most productive in the first or establishment year, but productivity 

declined in subsequent years when compared to intermediate leaf sized cultivars. Another 

important trait influencing DM yield is the internode length (Gibson & Cope, 1985). Leaf 

production has been found to be negatively correlated with internode length; longer 

internodes possess fewer leaves per unit of stolon (Gibson & Cope, 1985; Hill & 

Michaelson-Yeates, 1987).  

In addition to the heterozygosity possessed by many white clover populations, many plant 

characteristics associated with DM yield have been found to be phenotypically plastic 

(Caradus et al., 1993). Leaf size is particularly affected by seasonal variation in 

precipitation, temperature and light intensity (Solangaarachchi & Harper, 1987; 

Wachendorf et al., 2001). In winter, white clover can lose up to two thirds of its maximum 

herbage weight (Woledge et al., 1990). Wilman and Simpson (1988) reported higher 

percentage of clover ground cover starting from spring and increasing until the start of 

summer. Internode length, leaflet size and petiole length are also influenced by shading 

from companion species and Wilman and Shrestha (1985) found a positive correlation 

between canopy heights in both ryegrass and white clover as a result of each species 

response to photosynthetically active radiation. 

Estimations of DM yield in clover-based swards range from 3 t ha-1 in adverse upland 

conditions, to 7 to 8 t ha-1 in more fertile preferred lowland sites in the United Kingdom 

(Rhodes, 2001). In New Zealand grazing trials, up to 12 t ha-1 have been obtained for hill 

sites, l6.2 t ha-1 for unirrigated dryland and 22 t ha-1 for lowland sites (Brougham, 1977). 
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Despite the negative correlation between DM yield and vegetative persistence, in 

cultivars like ‘Grasslands Prestige’ and ‘Grasslands Sustain’, high clover yield with 

considerable vegetative persistence has been achieved. Numerous authors have attributed 

this breakthrough to the concurrent selection for increased stolon growing point density 

while maintaining a particular leaf size (Caradus et al., 1997b; Woodfield et al., 2001). 

2.3.2. Breeding for Vegetative Persistence 

Malcolm et al. (2014) defined pasture persistence as the length of time that individual 

plants of a species sown into a pasture continue to provide dry matter and nutrients for 

livestock. Lack of plant persistence in pasture is often due to many overlapping causes 

with poor farm management or grazing practices coupled with genetic and environmental 

factors all playing key roles (Widdup & Barrett, 2011). Pasture persistence is 

advantageous not only to the farmer in terms of continuous animal nutrition but also in 

terms of economic profitablity as the pasture can be maintained over the life of the farm 

business (Malcolm et al., 2014). To date, the pasture renewal rate amongst New Zealand 

dairy farmers has not been remarkable with Sanderson et al. (2003) estimating it at only 

6%. White clover stolons are vital to plant morphology and form at least half of the total 

shoot weight of white clover plants in grazed pastures (Brock et al., 1988). They are 

mainly responsible for continuity in white clover (White & Hodgson, 1999). Many stolon 

attributes are implicated in persistence including stolon number, branches, growing 

points, length and diameter (Caradus & Williams, 1981; Hay et al., 1987; Collins et al., 

1991; Collins et al., 1997). Stolon branching is essential for the replacement of stolons as 

well as increasing tolerance to repeated defoliation from grazing (Beinhart, 1963; Gibson 

& Cope, 1985). Rhodes (2001) highlighted poor stolon density as the primary factor 

limiting dry matter yield. Chapman (1983) investigated stolon survival rates and found 

an average 10% of stolons surviving longer than 12 months in hill country pastures in 

New Zealand. 

New stolons start developing during spring, increasing to a maximum size in summer 

before starting to decline in autumn and winter (Caradus et al., 1997b). During the winter 

period, animal treading and earthworm activity bury a large percentage of stolons (Hay 

et al., 1987). New nodal roots are formed in early spring, but as old roots from the 

previous season die off, the rate of stolon death is higher than the rate of stolon renewal. 

making the plant more susceptible to biotic and abiotic stresses (Woodfield & Caradus, 
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1996). Prolific branching of stolons, therefore, is a desired trait as each new branch 

produces an extra apical bud, and consequently more leaves are formed (Gibson & Cope, 

1985). Additionally, large leaved cultivars are less persistent than the smaller leaved 

cultivars which are highly stoloniferous (Meurant, 1986). To be persistent in sward, new 

stolons and branch points must outweigh the number of dead stolons (Widdup & Barrett, 

2011). 

Furthermore, the ability of the stolons to spread horizontally along the soil confers an 

additional competitive edge over ryegrass in mixed swards (Harris & Thomas, 1973). 

When in competition with a dominant grass, high stolon density assists in the capture of 

light and vital nutrients by white clover (Piano & Annicchiarico, 1995). Stolons also serve 

as storage reserves for carbohydrates and protein that are essential for survival and 

instrumental in the production of new leaves following defoliation after winter (Rhodes, 

2001). Selection for increased stolon density has consequently been seen as fundamental 

to improving the yield and persistence in white clover (Caradus et al., 1990). 

Summer moisture stress has been identified as a principal environmental constraint 

limiting the agronomic performance and persistence of white clover (Jones, 1982; Jahufer 

et al., 2002). White clover, being a shallow-rooted crop, has most of its roots in the top 

20 cm of the soil (Gibson & Cope, 1985), thereby limiting its access to soil moisture. 

After the death of the main tap root, the plant is reliant on the shallow fibrous nodal roots, 

causing difficulty coping under summer moisture stress (Baker & Williams, 1987). Under 

drought conditions, many stolons die back to rooted nodes causing a collapse in the stolon 

population (Brock & Kim, 1994). Up to 30 - 70% loss in clover production has been 

reported under drought conditions (Brock et al., 1988). In an experiment comparing two 

white clover cultivars with different stolon attributes, Brock and Kim (1994) found 

cultivars with thicker stolons more severely affected by drought, while cultivars with 

more branches and thinner stolons thrived better. By contrast, Hay et al. (1987) found that 

thicker and heavier stolons survived moisture stress better.  

Winter is also a critical period for stolon survival with drastic reductions in dry weight 

and number reported by several authors (Collins & Rhodes, 1995; Clark & McFadden, 

1997). Collins et al. (1991) concluded that since stolon weight declined in winter due to 

the utilization of reserves by the plant, stolon length might be a better measure of the plant 

resilience after winter. Stolon growing point density is another important factor, as more 
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growing points enable clover regeneration after intense grazing or pest damage (Caradus 

et al., 1997a). Williams (1983) found increased stolon branching during autumn and 

winter to play a pivotal role in improving spring growth and proper colonization, as plants 

with a high degree of branching can withstand continuous defoliation.  

Evaluation of white clover germplasm under drought conditions has been the foremost 

breeding strategy used to develop new cultivars with persistence under moisture-stress 

(Jahufer et al., 2013). Some breeding programmes have focussed on drought escape to 

improve persistence under moisture stress by developing cultivars that flower and set seed 

early before moisture stress periods (Van den Bosch  et al., 1993). Clark and McFadden 

(1997) reported intermediate leaf-size genotypes as the most suitable for breeding 

increased yield and persistence simultaneously as they possessed the best combination of 

stolon and herbage yield. Cultivars like ‘Prop’ (Jahufer et al., 2002) and ‘Canterbury’ 

have been bred for increased early-flowering and increased seed and forage production. 

Other important morphological traits contributing to increased vegetative persistence, 

especially during drought include deeper nodal roots and a higher root-to-shoot ratio 

(Woodfield & Caradus, 1987). Like yield, many stolon characteristics have low to 

moderate heritabilities and are controlled by many genes making trait improvement 

difficult. Caradus and Woodfield (1990) estimated heritabilties for stolon number at 0.21 

and Stolon diameter at 0.54. Conversely, Annicchiarico  et al. (1999) reported a relatively 

high heritability at 0.6, it should however be noted that cloned spaced plants were used 

in that study unlike the competitive mixed sward environment assessed for by Caradus 

and Woodfield (1990).  

2.3.3. Effect of Cyanogenesis 

Cyanogenesis is a highly polymorphic trait in white clover with both cyanogenic and 

acyanogenic plants occurring in the same population (Armstrong et al., 1913). Plants that 

are cyanogenic release hydrocyanic acid (HCN) from damaged tissues. Usually, it is 

brought about by the combination of two biochemical components; glucosides 

(lotaustralin and linamarin) and their hydrolysing enzyme, linamarase, that are separated 

in undamaged tissue and combined upon cell rupture (Hughes, 1991). The glucosides are 

stored in vacuoles within plant tissues, while the hydrolytic enzymes are apoplastic and 

found in the cytosol (Tegzes et al., 2003). HCN production is controlled by two genes Ac 

and Li. Ac/ac controls the presence/absence of cyanogenic glucosides while Li/li controls 
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the presence/absence of their hydrolyzing enzyme, linamarase (Olsen et al., 2008). At the 

start of HCN production, a sugar is first cleaved from the cyanoglucoside by linamarase 

and in the process releases cyanohydrin which is hydrolysed by hydroxynitrile lyase, 

thereby releasing hydrogen cyanide (Poulton, 1990). The cyanogenic phenotype requires 

the presence of a functional allele at both loci in the plant (Corkill, 1942; Hughes, 1991). 

This results in a variety of genotypes and phenotypes in a segregating population, Corkill 

(1940) categorised these phenotypes into: i) plants containing the cyanoglucoside and the 

enzyme which hydrolyses this glucoside and produces hydrocyanic acid (AcLi); ii) plants 

that contain the glucoside but not the enzyme (Acli); iii) plants that contain the enzyme 

but not the glucoside (acLi), and iv) plants containing neither the glucoside nor the 

appropriate enzyme (acli). 

A considerable amount of literature has been published on cyanogenesis with several 

studies highlighting many factors contributing to the variation observed between plants 

and sometimes even on the same plant. In a study investigating quantitative variation in 

various Trifolium species, Olsen et al. (2014) via southern hybridization, found more than 

one band in some plants that possessed the Ac and or Li gene indicating a variation in 

gene copy number. Hughes et al. (1984) also found that homozygous individuals at either 

locus produced twice the amount of cyanoglucosides or enzyme than the heterozygous 

plants produced, indicating an allele dosage effect. Other factors that affect the amount 

of cyanoglucoside, linamarase and eventual HCN produced by individuals include 

developmental, physiological and ecological factors (Vetter, 2000). In Eucalyptus, 

Eucalyptus cladocalyx, Gleadow and Woodrow (2000) found that more cyanogenic 

glucosides were produced in younger vegetative and reproductive tissues. Younger leaves 

on the stem were more cyanogenic than older leaves and they concluded the inverse 

relationship between leaf age and HCN production was not due to a dilution effect caused 

by an increase in leaf area. In white clover, leaf age, plant size and time of the year are 

also important factors in the level of HCN produced (Rogers & Frykolm, 1937; Hayden 

& Parker, 2002). In a study conducted by Hayden and Parker (2002), drought stress was 

found to negatively affect linamarase activity, but had no effect on cyanoglucoside 

concentration while low temperatures decreased both the amount of cyanoglucoside 

produced and enzyme activity. In addition, a clinal variation has been found in white 

clover with lower frequency of cyanogenic genotypes occurring in colder and higher 

latitudes (Caradus, 1994). 
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Improved white clover persistence and production have been found to be highly 

correlated with cyanogenesis in white clover plants (Caradus & Williams, 1989; Crush & 

Caradus, 1995). A study by Crush and Caradus (1995) showed that many successful NZ 

cultivars including 'Grasslands Demand', 'Grasslands Sustain', ‘Grasslands Pitau' and 

'Grasslands Prestige' were all highly cyanogenic. Caradus et al. (1990) reported a positive 

correlation between cyanogenesis and leaf size, with lines possessing larger leaves being 

more cyanogenic, which could explain the increased yield. An exception to this is the 

Ladino cultivars which are large leaved but typically acyanogenic (Caradus, 1994). 

However, studies by Noitsakis and Jacquard (1992) showed that acyanogenic lines had 

more biomass accumulation, suggesting that the production of HCN comes at a cost of 

biomass production. The persistence conferred by cyanogenesis has been linked to the 

plants’ ability to evade pests, Caradus (1994) found damage by slugs and weevils greatest 

on cultivars with low cyanogenic levels proving that high levels of HCN act as a pest 

deterrent. This supported the logical conclusion that cyanogenic glucosides form part of 

a plant’s defence against herbivores due to their bitter taste and the release of toxic HCN 

upon tissue rupture (Olsen et al., 2008). Interestingly, Brattsten et al. (1983) found the 

larvae of the Southern army worm (Spodoptera eridania) preferred and grew better when 

grazing on cyanogenic plants. Bishop and Korn (1969) also reported no discriminatory 

feeding behaviour by sheep and other animals on cyanogenic or acyanogenic plants.  

The presence of cyanogenic glucosides in white clover has a negative effect on iodine 

and selenium metabolism in livestock and is implicated in causing nutritional myopathy 

in lambs (Crush & Caradus, 1995). Animals that ingest low amounts of cyanide are able 

to detoxify most of it through the action of rhodanese, also called thiosulfate 

sulfurtransferase; a mitochondrial enzyme that converts cyanide to less toxic thiocyanate 

and excreted in the urine (Tegzes et al., 2003). Mortality as a result of cyanide toxicity in 

pasture is, however, uncommon in New Zealand, and numerous authors (Doak, 1933; 

Caradus & Williams, 1989; Crush & Caradus, 1995) report a positive relationship 

between improvement in agronomic performance and increased cyanogenesis. 

Nevertheless, benefits of HCN production are not limited only to herbivore defence, 

studies show that other physiological functions like nitrogen transportation (Møller, 

2010), signalling and stress mediation (Siegień & Bogatek, 2006) may be associated with 

HCN production. 
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2.3.4. Role of Agronomy, Cultivar Type and Pasture Management on DM Yield 

Proper pasture management, to a large extent, influences the growth and maintenance of 

the sward (Van Keuren & Hoveland, 1985). White clover plant morphology and growth 

is determined by several factors, including cultivar type, climate, soil type, companion 

species, type of grazing (i.e. rotational grazing or set-stocking), and type of livestock on 

pasture (Brock et al., 1988; Nolan et al., 2001). Studies comparing grazing systems have 

reported larger size and dry matter of white clover plants under rotational grazing by 

sheep than in set-stocked systems. This is because rotational grazing fosters greater 

growth between grazing by allowing time for recovery of leaf area (Brock et al., 1988; 

Hay et al., 1989; Harris 1993). 

When comparing pasture grazed by dairy or sheep, Hay  et al. (1983) found pasture grazed 

by cattle to contain two to three times more stolon mass than pasture continuously grazed 

by sheep. This was confirmed by Nolan et al. (2001), who found that pasture grazed by 

cattle alone resulted in higher clover content (13·5%) compared with cattle and sheep 

(9·5%) or sheep  alone (4·9%). Harris (1993) also reported 70% greater stolon dry weight 

per plant under dairy pastures. However, the number of stolons and growing points per 

plant were observed to be fewer than in sheep pastures. The consensus is that, since white 

clover is preferentially grazed by sheep in a mixed sward, small-leaved varieties are 

suitable for continuous, hard sheep grazing while large-leaved cultivars are best for less 

severe cattle grazing (Mather et al., 1996; Cai et al., 2014). Nevertheless, some farmers 

prefer to sow a mixture of small and large leaved cultivars in the same sward.  

Other factors like inter-specific competition between white clover and the companion 

grass are also important in mixed pastures. Management practices that favour rapid grass 

tillering require longer defoliation intervals and nitrogen fertiliser application. This 

results in increased growth and spread of the companion grass tiller density, thereby 

placing white clover growth and persistence in a vulnerable position (O’Connor, 1982; 

Caradus & Williams, 1989; Woodfield & Caradus, 1996). Höglind and Frankow-

Lindberg (1998) found that nitrogen application not only reduced the accumulation of dry 

matter in white clover but also reduced the number of stolon branches subsequently 

causing establishment failure. They found that majority of the morphological changes 

occurring were as a result of the decrease in amount of photosynthetically active radiation 

within the canopy as the R:FR ratio of light decreases with grass herbage increase. White 
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clover, therefore, has to be efficient in competing with the companion grasses which are 

often dense and vigorous, to prevent excessive shading and ensure optimum resource 

acquisition (Gibson & Cope, 1985). 

2.4. Selection in Plant Breeding 

The primary aim of selection in breeding is to change the distribution of gene frequencies 

underpinning traits of interest in the population (Falconer, 1989). Due to the self-

incompatibility system and heterozygosity in white clover, desirable traits are difficult to 

fix and breeders rely on recurrent selection to fix wanted traits in breeding populations 

while maintaining genetic diversity for all other traits (Cope & Taylor, 1985). The first 

step in any plant breeding programme is to establish a breeding pool or base population 

from the available genetic resources. These genetic resources may range from wild 

collections of germplasm to commercial cultivars. A breeding pool is generated by 

crossing a range of germplasm that will contribute the genetic diversity needed to achieve 

a set of breeding objectives. The next step is the identification and selection of superior 

individuals associated with the breeding objective, from the breeding pool to advance to 

the next generation (Acquaah, 2012). 

Phenotypic selection has been the major driver of conventional breeding and has so far 

been efficient in accomplishing various breeding goals. However, for traits that are 

difficult or expensive to measure; in particular, traits with large G×E and low heritability,  

phenotypic selection has not been as successful (Moose & Mumm, 2008). Unfortunately, 

genetic improvement in forage breeding has not been as successful as in grain crops which 

have high rates of genetic gain estimated at 13.5% per decade compared to 4% per decade 

in forages (Humphreys, 1997). This could be explained by forage crops having no defined 

harvest index and the use of inefficient selection methods that do not fully utilise the 

additive genetic variation within HS or full-sib families (Casler & Brummer, 2008). The 

success of selection depends greatly on the genetic variation for the trait observed (Fisher, 

1918). The total phenotypic expression of any individual in a population is a combination 

of its genotypic value (G), environmental effect (E) and a complex interaction of both, 

(G×E) (Equation 1) (Falconer, 1989). 

Hence the phenotypic variation 𝜎𝑃
2 in a population is given as; 
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 𝜎𝑃
2 =  𝜎𝐺

2 + 𝜎𝐸 
2 + 𝜎𝐺𝐸

2  (1) 

Where: 𝜎𝑃
2 is the trait phenotypic variation; 𝜎𝐺

2 is the portion of trait variation attributed 

to genotypic variation; 𝜎𝐸 
2  is trait variation attributed to environmental effects; and 𝜎𝐺𝐸

2  

is trait variation attributed to G×E interaction. 

According to Fisher (1918) and Falconer (1989), the genotypic variance in a random 

mating population can further be partitioned due to the average effects of genes (additive 

variation), allelic interactions (dominance variation), non-allelic interactions, or epistatic 

effects (Equation 2). 

 𝜎𝐺
2 = 𝜎𝐴

2 + 𝜎𝐷
2 + 𝜎𝐼

2 (2) 

Where: 𝜎𝐴
2 is the additive variation; 𝜎𝐷

2 is the dominance variation; and 𝜎𝐼
2

 is the 

interaction effect. 

2.4.1. Response to Selection 

Response to selection is the difference between the trait mean value of the parental 

population and the trait mean of the offspring (Falconer, 1989). The relative efficiency of 

different selection strategies can be evaluated by estimating the response to selection 

realised per cycle of selection (Hallauer & Filho, 1981). Knowledge of the heritability of 

the trait in question is needed to predict the response to a single generation of selection 

(Walsh, 2001). Heritability is the ratio of genetic variation to total phenotypic variation 

(Falconer, 1989) and is the measure of the proportion of the observed variation in a 

progeny that is inherited from the parents to offspring (Nakaya & Isobe, 2012). Plant traits 

with a higher heritability can be improved much faster than those with lower heritability 

(Nyquist & Baker, 1991). Furthermore, measures of heritability are useful in determining 

the appropriate selection strategy and breeding scheme to implement, a higher heritability 

means simpler methods like mass selection will be effective while family-based methods 

are more useful for traits with low heritability (Nyquist & Baker, 1991). 

Values of heritability (h2) can range from 0 to 1 and are used to express the reliability of 

the phenotypic value to estimate breeding value (Falconer, 1989). Heritability is 

population specific and it depends not only on additive and non-additive genetic factors 

but also on the environmental variance (Nyquist & Baker; Visscher et al., 2008). Factors 
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like allele frequencies, mode of gene actions and environmental variables can differ 

between populations, thereby affecting heritability estimates (Visscher et al., 2008). 

Two forms of heritability have been defined by Lush (1937); broad-sense and narrow-

sense heritability. Broad-sense heritability is estimated using the total genotypic variation 

and includes additive, dominance and epistatic effects (Equation 3). (Bernardo, 2002). 

Broad-sense heritability is a comparatively poor predictor of potential genetic gain or 

breeding progress with its usefulness contingent on the method of propagation and type 

of population (Acquaah, 2012). It is particularly useful for asexually propagated crops, 

where both additive and non-additive gene action are fixed and can be passed to progeny. 

Woodfield and Caradus (1990) reported high broad sense heritability estimates for white 

clover leaf length and width, and stolon internode length. To determine heritability for 

various white clover morphological attributes, clonal replication has been used to estimate 

broad-sense heritability, while genetic experiments involving diallel crosses and parent-

offspring regression and correlation have been used to estimate narrow-sense heritability 

(Jahufer et al., 2002). 

 ℎ𝑏
2 =

𝜎𝐺
2

𝜎𝑃
2 (3) 

Narrow-sense heritability (Equation 4) on the other hand, accounts only for additive 

genetic effects. It is important in determining the response to selection, if the narrow-

sense heritability for a trait is high, genetic improvement of the trait is more easily 

accomplished (Nyquist & Baker, 1991). The HS family structure is able to efficiently 

isolate additive genetic effects from the other variance components such as dominance 

and maternal effects (Fabbro et al., 2007). Additive variation is important because it can 

be selected for and fixed in plant breeding (Acquaah, 2012). Annicchiarico  et al. (1999) 

estimated the narrow-sense heritability of forage yield components in the range 0.40 - 

0.70. Nonetheless, for traits with low narrow-sense heritability, family selection methods, 

such as full-sib and HS, make use of genotype replication and the partitioning of 

environmental and genetic effects to reduce error (Nguyen & Sleper, 1983). 

 ℎ𝑛
2 =

𝜎𝐴
2

𝜎𝑃
2 (4) 
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Where: ℎ𝑛
2  is the narrow-sense heritability; 𝜎𝐴

2 is the additive variation; and 𝜎𝑃
2 is the trait 

phenotypic variation. 

To determine the response to selection, (R), the selection differential (S) which is defined 

as the difference between the mean of selected parents and the mean of the population 

from which the parents were selected multiplied by the narrow-sense heritability 

(Equation 5) (Falconer & Mackay, 1996). 

 𝑅 =  ℎ𝑛
2𝑆 (5) 

 Where: 𝑅 is the  response to selection; ℎ𝑛
2  is the narrow-sense heritability; and 𝑆 is the  

selection differential. 

2.4.2. Methods of Enhancing Genetic Gain in Conventional Breeding  

The general plant breeders’ equation used for predicting genetic gain (ΔG) is shown 

below (Equation 6) (Fehr et al., 1987). The genetic gain equation is a much-used reference 

for comparing the predicted effectiveness of particular breeding schemes and resource 

allocation (Jahufer et al., 2002; Moose & Mumm, 2008). Genetic gain can be expressed 

on the basis of per breeding cycle or on a per year basis by dividing by the number of 

years taken to complete one cycle (Eberhart, 1970). 

 
∆𝐺 =

𝑘𝑐𝜎𝐴
2

√𝜎𝑝ℎ
2

 
(6) 

Where: ∆𝐺 is the genetic gain or genetic advance; k is the selection intensity; 𝜎𝐴
2 is the 

additive variation; c is the parental control. which indicates the level of control the breeder 

has over the parents in a mating. Control over one parent (eg in a HS mating) gives a 

value of 0.5, over both parents (eg full-sib) 1.0, and a value of 2.0 for clones or selfed 

seed); 𝜎𝐴
2 =  additive variation; and 𝜎𝑝ℎ

2  is the phenotypic variance of the parental 

population. 

The total additive genetic variation in HS families, generated from a randomly mated 

population of parents, is distributed among and within families. One-quarter of the 

additive variation is distributed among the families and the remaining ¾ is found within 

families (Falconer 1986). Therefore, among HS family selection will access ¼ of the total 
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additive variation. Application of a breeding method that also exploits the ¾ within-

family variation will thus increase the magnitude of genetic gain (Vogel & Pedersen, 

1993). Among-and-within-half-sib-family selection (AWF-HS) uses within family 

selection from the best performing families to utilise the remaining ¾ of the additive 

variation within half-sib families. The most common application of AWF-HS selection 

involves establishment of large spaced-planted nurseries so phenotypes can be assessed 

efficiently (Vogel & Pedersen, 1993). Individual plant data has to be collected and used 

to select the best plants within the best families (Casler & Brummer, 2008). High within-

family selection intensity has increased forage seed yield by up to 25% (Sandha & 

Twamley, 1973). However, with this method, since the trait of interest must be assessed 

before selection within families, it is only useful for traits that can be measured in early 

growth stages, otherwise it becomes expensive to maintain all individuals to maturity 

before selecting desirable phenotypes.  

Another form of the breeding equation has been proposed by Casler and Brummer (2008) 

to estimate genetic gain based on among-HS family (Equation 7) and also among and 

within-HS family selection (Equation 8): 

 ∆𝐺𝐻𝑆𝐹 =
𝑘𝐹𝑐

1
4 𝜎𝐴

2

𝜎𝑃𝐹
 (7) 

 

 ∆𝐺𝐴𝑊𝐹−𝐻𝑆 =
𝑘𝐹𝑐

1
4 𝜎𝐴

2

𝜎𝑃𝐹
+

𝑘𝑊𝑐
3
4 𝜎𝐴

2

𝜎𝑃𝑊
 (8) 

 

Where: ΔG is the genetic gain per cycle derived via among HS family selection; 𝑘𝐹 refers 

to the selection intensity or the standardized selection differential among families, c is the 

parental control factor; 𝜎𝐴
2 is the additive variance; 𝜎𝑃𝐹 is the phenotypic standard 

deviation among families; ΔGAWF-HS is the genetic gain derived from among and within 

HS family selection per cycle; 𝑘𝑊 is the standardized selection differential within 

families; 𝜎𝑃𝑊 is the phenotypic standard deviation within families. 
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Increasing selection intensity depends on the proportion of the population selected, the 

size of the whole population and the amount of phenotypic variation available in the 

population. If fewer individuals are selected then the selection intensity is increased 

(Marshall 2008). However, if the population size is not increased as selection intensity is 

increased, inbreeding can occur due to the reduction in genetic diversity in subsequent 

populations (Bernardo, 2002). Selection, therefore, is a balance between applying the 

appropriate intensity to move the trait mean value in the progeny while also maintaining 

genetic diversity; a key consideration in species prone to inbreeding depression. 

Accuracy of selection refers to the accuracy of selecting an individual based on its genetic 

merit of the desired trait (Simm, 1998). To increase selection accuracy, multi-location 

and replicated trials serve to separate genetic effects from prevalent environment effects. 

Breeders rely on utilizing among and within family selection, progeny testing as 

previously discussed and more recently, marker assisted selection.  

Increasing the additive genetic variance and associated heritability can be achieved 

through a number of ways. For example, by increasing  the parental control and being 

able to pre-determine and select potential parents before pollination enables the isolation 

and crossing of the selected plants. This means that only the selected plants contribute 

alleles to the next generation (Fehr, 1987). Also, by increasing the diversity of the base 

population and inbreeding before evaluation, additive genetic variation can be increased. 

However, this may not be an option for outcrossing species like white clover. 

2.5. Estimation of Breeding Values  

Variance component estimates can be derived from phenotypic data of populations with 

appropriate structures using linear mixed model methods such as Analysis of Variance 

(ANOVA) and Residual Maximum Likelihood (REML) analysis. Line means can be 

estimated using the Best Linear Unbiased Estimation (BLUE), which assumes fixed line 

effects, or by estimation of adjusted means, Best Linear Unbiased Prediction (BLUP), 

when lines or families being evaluated are considered as random effects. Given by the 

model below (Equation 9); 

 𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝜀 (9) 
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Where: y is the vector of observations; β and u are vectors of fixed and random effects 

respectively; X and Z are design matrices for β and u and ε is the random residual vector. 

When genotype effects are taken as fixed, they are represented by β in the model, and 

when regarded as random, genotypic effects become part of u (Piepho et al., 2008). 

Normally, in plant evaluation trials, cultivars are treated as fixed factors, while years and 

locations are random factors. However, due to the fact that many plant breeding data are 

obtained from various environments and often unbalanced with new entries added 

regularly, several studies have shown that BLUP, in which lines or families are considered 

as random effects, tends to provide more accurate estimates of genotype effects than 

BLUE (Bauer et al., 2006; Piepho & Möhring, 2006; Piepho et al., 2008; Viana  et al., 

2014). This is because BLUPs are able to account for missing data and environmental 

factors in the model. When investigating variation within a population, genotypes are best 

considered as random and Piepho and Möhring (2006) found bias of variance component 

estimates to be higher when cultivar main effects were considered as fixed. However, if 

the aim is only to investigate differences among the genotypes and not any reference 

populations, then genotypes can be considered as fixed effects (Smith  et al., 2005). The 

major advantage of using BLUP is the shrinkage of observed progeny estimates towards 

the population mean, thereby increasing accuracy by reduced variance and smaller mean 

squared error (Piepho et al., 2008). BLUPs are calculated for each trait in individual lines 

and selections are then made based on their estimated breeding values. 

2.5.1. Genotype-by-Environment Interaction Effects on Selection  

Generally, plant breeding programmes and cultivar evaluation trials are carried out across 

multiple locations over two to three years. These multi-location and year trials enable 

reduction of the confounding effects of G×E interactions (Byth, 1981; Cooper & Byth, 

1996; Ríos, 2015). Significant G×E interaction exists for many traits, especially complex, 

polygenic traits. When comparing phenotypic variance components, Arief et al. (2019) 

reported that the estimates of genotype-by-year and genotype-by-year-by-location 

variances were the largest components contributing to phenotypic variance. In plant 

breeding programmes G×E interactions are evident when genotypes re-rank in their 

relative performance across test environments (Byth, 1981; Fehr et al., 1987). These 

interactions are known to occur in two forms; first, differences between the genotypes 

exist in the test environments but the rankings of the genotypes remain constant and 

genotype performance can be predicted across environments. The second, and most 
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important is the presence of a “crossover effect” where genotype rankings change with 

environment (Bernardo, 2002). Significant G×E interactions associated with re-ranking 

of entries makes prediction of their performance across environments unreliable (Cooper 

& Byth, 1996). Evaluation of genotypes in multiple environments with appropriate 

randomization and replication has been the most efficient way to address this issue. 

However, this is often expensive and time consuming (Moose & Mumm, 2008). 

The traditional approach to analysing G×E interaction is the two-way ANOVA model 

where genotype, environment, and their interaction are treated as fixed effects in the 

model (Equation 10):  

 𝑦𝑖𝑗𝑘 = 𝜇 + 𝑔𝑖 + 𝑒𝑗 + 𝑔𝑒𝑖𝑗 + 𝜀𝑖𝑗𝑘 (10) 

Where: y ijk is the k-th record for the i-th genotype in the j-th environment; μ the overall 

mean; 𝑔𝑖 is the fixed effect of the ith genotype; ej is the fixed effect of the ith; geij is the 

interaction effect; and ϵijk the residual error term (Meyer, 2009). 

The ANOVA model is limited by the requirements of many data points or replicates to 

accurately predict interaction. Another approach is to use REML analysis that generates 

BLUP estimates, treating genotypes, replicates ,environments and G×E as random effects 

(Piepho et al., 2008). Hu (2015) compared ANOVA to BLUP in oilseed rape multisite 

trials and discovered the BLUP model provided both high precision and efficiency in 

predicting location-specific genotype effects. ANOVA estimates of variance components 

were found to only be unbiased when data was balanced. 

2.6. Molecular Markers for Plant Breeding 

The use of molecular markers has revolutionised plant breeding, supporting many 

selection decisions and aiding in the assessment of plant variation. Several types of 

molecular markers have been developed and include Restriction Fragment Length 

Polymorphisms (RFLPs), Random Amplified Polymorphic DNA (RAPDs), Amplified 

Fragment Length Polymorphisms (AFLPs), microsatellites (Simple Sequence Repeats; 

SSRs) and Single Nucleotide Polymorphisms (SNPs) (Xu, 2010). RAPD and AFLP are 

dominant markets, scored as presence/absence, thereby ensuing difficulty in identifying 

alleles at the same locus. On the other hand, RFLP, SSRs and SNPs are co-dominant 

markers, enabling identification of allelic variants at the same locus. Simple sequence 
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repeats have been popular in white clover genotyping. A comprehensive integrated 

genetic linkage map was produced by Griffiths et al. (2013) using SSRs and gene-specific 

markers. Four other genetic linkage maps have also been published by other authors 

(Jones et al., 2003; Barrett et al., 2004; Zhang et al., 2007; Isobe et al., 2012). Single 

nucleotide polymorphisms are single-base variations in any of the bases at the same point 

in the genome among individuals (Hayes et al., 2009c). They are becoming the most 

commonly used marker in many plant breeding programmes due to their high-density and 

direct association with traits (Foolad & Panthee, 2012). Their discovery in allotetraploid 

genomes is however complicated due to the presence of homoeologous genomes (Logan-

Young et al., 2015). Sequence variation between homoeologues confounds SNP 

discovery by giving the appearance of a SNP when there is no Mendelian segregation 

(Page & Udall, 2015). In the absence of a quality reference genome to assign 

homoeologues, distinguishing these variants from true SNPs between homologues 

requires significant investigation within segregating populations (Young & Udvardi, 

2009; Kaur et al., 2012). 

2.6.1. Genotyping by Sequencing (GBS) 

Reduced library representation methods are alternative platforms that involve the 

selection of a subsample of the genome for sequencing. They have quickly become a 

popular method to identify SNPs among individuals. Genotyping by Sequencing is a 

restriction enzyme-based library reduction method that uses a restriction enzyme to 

generate genomic fragments, to which a unique DNA barcode is attached (Elshire et al., 

2011). Samples are then pooled and size selection is performed to obtain a library which 

is sequenced by parallel high-throughput methods (Beissinger et al., 2013). The 

advantages of GBS include reduced sample handling, simultaneous marker discovery and 

the ability to multiplex samples by use of unique barcodes (Elshire et al., 2011; Glaubitz 

et al., 2014). Genotyping by Sequencing is a particularly attractive option for breeders 

who only have a short period of time in breeding cycles to obtain and utilise GEBVs 

(Jacobs, 2018). The original GBS approach can be modified to allow for a double digest 

using two different restriction enzymes, a rare and a frequent cutter (Poland & Rife, 

2012). This approach facilitates the capture of more fragments by cleaving larger 

fragments to a size more able to be sequenced (<500 bp) and avoids repetitive regions 

resulting in easier and direct bioinformatic analysis for large genomes (Wong  et al., 

2015). This method has been applied to a large number of plant, animal and bacterial 
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species, and is an ideal assay to simultaneously discover SNPS and generate genotypes 

for multiple individuals in species where there are limited genomic resources. 

A challenge often encountered using GBS is the high occurrence of missing data, low 

read depth and insufficient number of reads produced (Davey et al., 2011; Glaubitz et al., 

2014; Schröder  et al., 2016). Read depth, which is the average number of times a locus 

is sequenced, is particularly important as it increases the accuracy and confidence of 

correctly calling individual genotypes from the genomic data (Gorjanc et al., 2017). 

Because mutational variation in allopolyploids like white clover is a result of homologous 

and homoeologous sequence variation as well as paralogous variation between duplicated 

gene copies, accurately differentiating between these classes is essential for SNP 

validation (Hand et al.; Kaur et al., 2012). In GBS, like many other genotyping methods, 

high sequence error rates and low depth makes it difficult to differentiate between 

homoelogues (nucleotide variation between the different subgenomes) and homologues 

(nucleotide variation within a subgenome) SNPs in downstream analysis (Hand et al.; 

Dufresne et al., 2014). Schatz et al. (2010) recommended a sequencing depth of 15x to 

30x for accurate detection of SNPs. Ashraf et al. (2014) suggested a minimum average 

sequencing depth of 5–10x as sufficient to overcome the problem of too many missing 

data points. Most times, however, it is a trade-of between read depth and number of 

desired SNPs (Kim et al., 2016). 

Some of these problems can be overcome by reducing the multiplexing level, using rare 

cutters, sequencing to higher depth, sequencing the library multiple times, filtering the 

data and using imputation algorithms (Poland & Rife, 2012; Rocher et al., 2015; Kim et 

al.). Sequencing the same library multiple time achieves the same purpose with the 

downside of increasing per-sample cost and for breeding programmes seeking cost-

effective platforms, the other approaches are preferable (Poland & Rife, 2012). Another 

approach suggested is a fragment size selection step after library preparation to achieve a 

reduced fragment pool that can be sequenced at higher depth by selecting the optimum 

length for sequencing (Schröder  et al., 2016). Wong  et al. (2015) suggested DNA quality 

as a likely factor because poor-quality DNA affects digestion by restriction enzymes and 

subsequent PCR amplification causes overrepresentation of PCR fragments from good 

quality samples. Numerous authors, however, have validated the efficacy of GBS for SNP 

generation and the suitability for GBS markers in developing genomic selection models 

for accurate trait prediction (Poland & Rife, 2012; Li et al., 2015; Faville et al., 2018). 
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2.6.1.1. Restriction Enzyme Choice 

Choosing the appropriate restriction enzyme is a critical step in developing a GBS 

protocol for an organism (Elshire et al., 2011). Use of restriction enzymes provides an 

easy way to reach inaccessible regions of the genome (Elshire et al., 2011). This is 

especially important given that a large proportion of QTLs might be located outside 

coding regions (Ruvinsky & Graves, 2004) or in promoter or enhancer regions 

(Hrdlickova et al., 2014). Frequent cutters like four or five base cutters (e.g, ApeKI) tend 

to deliver more markers and higher genome coverage but at a lower depth than less 

frequent cutters (e.g six base cutter PstI) that have less genome coverage due to fewer 

recognition sites in the genome but higher depth (Poland & Rife, 2012; Hamblin & Rabbi, 

2014; Schröder  et al., 2016). In the absence of a size selection step during library 

construction, restriction enzymes maximize the proportion of fragments that fall within 

the desired size range (100–400 bp) as fragment proportions outside this range fail to be 

bridge-amplified during Illumina sequencing (Sonah et al., 2013; Hamblin & Rabbi, 

2014). Restriction enzymes that produce overhangs or sticky ends and are methylation-

sensitive are desirable for GBS because repetitive regions of the genomes can be avoided 

and gene-rich lower copy regions can be targeted (Gore et al., 2009; Poland & Rife, 2012). 

2.6.1.2. Adapter Design and Concentration Optimization 

Most next-generation sequencing platforms require a library preparation with the ligation 

of specific adapter oligonucleotides to fragments of the DNA to be sequenced (Syed et 

al., 2009). The proper ratio of adapters to genomic DNA has to be optimised for each 

species prior to library construction by titrating a fixed amount of digested DNA to 

varying adapter concentrations (Elshire et al., 2011). The presence of too many adapters 

form adapter dimers which are the result of self-ligation of the adapters without a DNA 

sequence (Head et al., 2014). Meanwhile, a scarcity of adaptors results in DNA fragments 

ligating to themselves, and these dimers form clusters which take up space on the flow 

cell without producing useful data (Head et al., 2014). If the adapter concentration is too 

low, then the restricted fragments will not be saturated with adapters, which results in 

only a subset of the fragments being amplified for sequencing. When this occurs, a 

different subset of fragments may be sequenced in different replicates of the same 

individual which reduces the consistency of SNPs discovered and genotyped. Optimising 
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adapter concentration to ensure fragment end saturation is likely to improve consistency 

of SNP discovery. 

Two different types of adapters are used: barcode and common adapter. The barcode 

adaptor terminates with a 4 to 8 bp unique barcode on its top strand and a 3 bp overhang 

on its bottom strand that is complementary to the sticky end generated by the restriction 

enzyme (Elshire et al., 2011). The presence of the barcode enables individual samples to 

be identified after a pooling stage. The barcoded adapter is ligated to one side of the cut 

DNA fragment and a common adapter, also complementary to the restriction enzyme cut 

site ligates to the other side of the fragment. To aid in GBS efficiency, the barcoded 

adapters are designed to be at least three base pairs different from all others and essentially 

not contain the restriction enzyme cut site (Davey et al., 2011). During sequencing, the 

common adapter binds to the flow cell prior to the first round of bridge amplification; 

therefore, fragments with only barcode adapters are flushed from the sequencing flowcell. 

Fragments with only common adapters will only amplify in a linear fashion during the 

PCR phase, whereas those with a barcode adapter and common adapter will amplify 

exponentially and be represented in the sequence data. 

2.7. Genomic Selection 

While most gains achieved in white clover have been due to conventional breeding and 

selection, with the discovery of molecular markers, plants that carry genes responsible for 

desirable traits can be selected with the use of markers identifying the particular genome 

location influencing the trait (Faville  et al., 2012). Genomic selection establishes 

associations between markers and phenotypes based on information from genotype and 

phenotype data in a training population and estimates a breeding value for selection 

candidates (Wang et al., 2018). It utilises marker data by either using the markers to build 

a genomic relationship model between individuals via an estimation of the proportion of 

the genome a pair of individuals have in common or by determining the effect of each 

marker on the trait of interest and adding the effects to get the estimated breeding values 

of each individual (Heffner et al.; Gezan et al., 2017). 

While Marker-assisted selection (MAS) has been especially successful for introgressing 

monogenic and major effect genes (Dekkers & Hospital, 2002), unfortunately, small 

effect genes underlie numerous complex polygenic traits. According to Jannink et al. 

(2010), this failure of MAS is due to the two-step method of first identifying QTL and 
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then estimating their effects. This separation means that estimated effects will be biased 

and small-effect QTL will be disregarded due to the high stringent thresholds put in place 

as MAS typically assigns a significance threshold to markers (Jannink et al., 2010). 

Genomic selection on the other hand, makes use of all available genetic markers without 

assigning a significance threshold (Meuwissen et al., 2001). Another contributing factor 

is that many QTL studies use bi-parental populations that are not necessarily 

representative of the allelic diversity in breeding programmes (Jannink et al., 2001). 

Moreover, because the phenotypic variation that marker loci define is often non-additive 

and a function of G×E effect, the efficiency of MAS, to predict genetic gain accurately, 

is often challenging (Staub et al., 1996). When compared to classical recurrent selection, 

a potential advantage of genomic selection is that it allows for more recombination events 

due to shorter crossing cycles per unit of time, thereby producing more useful variation 

in the population (Heffner et al., 2009; Müller et al., 2017). 

In the past decade, there have been dramatic reductions in genotyping costs while 

phenotyping still presents a bottle neck to breeding progress due to increasing time and 

labour costs (Heslot et al., 2015). Unlike animal breeding, where a majority of phenotypes 

are collected automatically as part of the industry, e.g., carcass parameters from meat 

works and milk quality and quantity, phenotyping in plants is generally manual, laborious 

and prone to human errors. The efficiency of genomic selection relies on the availability 

of precise phenotype information to accurately estimate marker effects. Collecting these 

phenotypes in a cheap and cost-effective method, further increases the cost-effectiveness 

of genomic selection. 

Although genomic selection was first initiated in dairy cattle breeding, it is increasingly 

being applied in plant breeding with many studies based on simulation data and 

populations derived from crosses of bi-parental lines (Bernardo & Yu, 2007a; Habier et 

al., 2010). The application of new genomic-assisted breeding techniques can increase the 

efficiency of conventional breeding strategies by enhancing the precision of selection, 

reducing the time frame for releasing new cultivars and enabling selection of candidate 

individuals without the influence of the environment (Iwata & Jannink, 2011; Lorenz et 

al., 2011; Resende et al., 2012a). In perennial crops like white clover where important 

stolon traits pertinent to persistence are usually not measured until later growth stages, 

exploiting genomic selection will prove useful.  
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To perform genomic selection, a reference or training population of individuals with 

genotypic and phenotypic information is used to calibrate a statistical model which is 

subsequently used to estimate breeding or genotypic values of potential selection 

candidates based on genotypic information alone (Meuwissen et al., 2001; Bassi et al., 

2016). The predictive ability of a model is estimated as the Pearson’s correlation 

coefficient between observed phenotypic value and predicted phenotype. In some cases, 

genotypic data and phenotypic data are obtained from a different set of individuals, for 

instance, in dairy cattle breeding where productive traits of breeding sires are estimated 

from daughter phenotypic records. In this study, the training population is only genotyped 

and another group of individuals, obtained from crosses of the training population provide 

the phenotype data. A statistical model is then derived using genotype and phenotype 

information from both populations (Figure 2.2). Another sub-set of individuals, the 

selection population (derived from remnant seed of the training population) is genotyped, 

GEBVs are generated and individuals are selected based on their GEBVs. To test the 

prediction equation, a population grown from crosses of the selection population can be 

phenotyped and tested to determine the accuracy of the genomic prediction model. In the 

case of perennial forage crops like white clover, the breeding values of maternal parents 

are inferred by testing their progeny in field trials. It is therefore ideal, in genomic 

selection, for genomic prediction models to be based on the genotype data of maternal 

parents and phenotypic data of HS progeny in order to mirror real breeding systems 

(Annicchiarico et al., 2015). 

Genomic selection allows breeders to exploit both among and within family variation. 

The lack of access to within-family genetic variation  has been identified as a major reason 

for the poor genetic gain in forages, as ¾ of the additive variation is located within-

families (Casler, 2008; Resende et al., 2014). Also, by making use of these untested 

parents whose breeding values have been inferred by their progeny phenotype, the 

breeding cycle can be reduced, and more genetic gain can be accomplished per unit time 

(Robertsen et al., 2019). One possible implication of this is that relating the phenotype 

data of a mixture of genotypes in a sward to the genotypic data of parent plants might 

decrease the predictive ability (Grinberg et al., 2016). 
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Figure 2.2: Simplified diagram of genomic selection implementation in a half-sib 

forage breeding programme. 

 

2.7.1. Genetic gain in Genomic Selection  

An extension of the breeder’s equation earlier discussed is given below; 

 Δ𝐺 = 𝑖𝑟𝜎𝐴/𝑇 (11) 

Where: Δ𝐺 is genetic gain; 𝑖 is the selection intensity; 𝑟 is the selection accuracy; 𝜎𝐴 is 

the square root of the additive genetic variance and 𝑇 is the length of time to complete 

one breeding cycle.  

Genomic selection aims to improve the annual rate of genetic gain by increasing the 

selection intensity and accuracy, which increase the numerator value in equation 11 and 

by reducing the generation interval, the denominator value (Bassi et al., 2016). By 

evaluating greater numbers of candidate parent plants, selection intensity is increased. 

Selection accuracy is enhanced by selecting based on the genotype rather than phenotype, 

thereby avoiding the environmental and other interactions. It has been shown that the 

greatest advantage afforded by genomic selection is in decreasing time per selection 

cycle. Wong and Bernardo (2008) reported a potential reduction in selection cycle from 

19 to 6 years in Oil palm. In white clover, ample time can be saved by eliminating the 

need for progeny testing before selection. 
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2.7.2. Factors Affecting the Accuracy of Genomic Selection 

The correlation between estimated and true breeding values can be explained by a linear 

relationship with the response to selection; hence, the Pearson correlation of true and 

predicted observed values is used to evaluate predictive ability (Daetwyler et al., 2013). 

When markers and QTL are in perfect linkage disequilibrium (LD), the expected accuracy 

(r) is determined by size of the training population, (N), heritability of the trait (h2) in the 

population, and the effective number of loci or independent chromosome segments, Me 

(Daetwyler et al., 2008; Meuwissen, 2009) (Equation 12). 

 𝑟 = √
𝑁ℎ2

𝑁ℎ2 + 𝑀𝑒
 (12) 

In a comprehensive comparison by Blondel et al. (2015), using data sets of different plant 

species, they found a poor correlation between Pearson correlation and ranking accuracy 

of individuals and proposed that genomic selection be performed as a ranking tool and 

less emphasis be placed on predictive ability. Their theory is based on the fact that since 

genomic selection is primarily for selection or elimination of best or worst candidates, it 

might be sufficient to correctly rank individuals from most to least favourable, because 

to select the best individuals, knowledge of their precise breeding values might not be 

necessary. However, predictive abilities are still important in assessing the response to 

selection (Isidro et al., 2015). 

The accuracy of genomic selection ultimately depends on the heritability and number of 

loci affecting the trait, the number of individuals in the reference population, the 

interaction between genotype and environment, and choice of statistical method to 

estimate the GEBV (Daetwyler et al., 2007; Hayes et al., 2009b; Crossa et al., 2013a). 

Along those lines, the goals of a training population are to maximize marker variance, 

reduce co-linearity between markers and obtain a uniform sample of the available genetic 

in the breeding population (Jannink et al., 2010). 

High prediction accuracies (0.71) for important traits have been reported in animal 

breeding (VanRaden et al., 2009). In plant breeding, real data accuracies are rarely as 

high, although for crop species with extensive LD like maize (Zea mays), Riedelsheimer 

et al. (2012) obtained an accuracy of 0.74 for maize biomass. In the case of forage species, 
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where LD is not as extensive, Faville et al. (2018) reported predictive abilities ranging 

from 0.07 to 0.43 for DM yield in five different ryegrass populations. Grinberg et al. 

(2016) obtained similar accuracies for DM yield (0.08 to 0.22) and highlighted highest 

accuracies were obtained for forage quality traits like water soluble carbohydrates (0.59). 

In alfalfa, Medicago sativa, a common leguminous forage, Annicchiarico et al. (2015) 

reported accuracies of 0.32 and 0.35 for DM yield in two genetically contrasting 

populations. Recently, Jia et al. (2018) obtained an accuracy for 0.13 for DM yield in 

alfalfa. For simpler traits in the same study, higher accuracies of 0.65 and 0.52 for plant 

height and flowering date respectively were obtained. Regardless of the accuracy level, 

research by (Collins & Rhodes, 1995; Crossa et al., 2013a; Heslot et al., 2015) validate 

the assessment that genomic selection outperforms phenotypic selection. 

2.7.2.1. Trait Genetic Architecture 

Traits with higher heritability have been found to have higher predictive ability (Muranty 

et al., 2015; Grinberg et al., 2016). Grinberg et al. (2016) observed a positive trend 

between simple forage quality traits like water soluble carbohydrate content with a higher 

predictive ability of 0.59 while yield related traits had significantly lower predictive 

ability (0.38). As trait complexity increased, Roorkiwal et al. (2016) found predictive 

ability to decrease in chickpea.  Arojju et al. (2018) also reported a positive correlation 

between the predictive ability for crown rust resistance in ryegrass and heritability. When 

they compared different sub-populations of full-sibs, HS families, ecotypes and cultivars, 

full-sib families had the highest heritability for crown rust resistance among all sub-

populations and obtained the highest predictive ability. By contrast, Grattapaglia and 

Resende (2011) found no significant change in accuracy with an increase in heritability 

from 0.2 to 0.6 for different eucalyptus tree traits. They highlighted, however, that a large 

training set of 1000 individuals was used. Meuwissen et al. (2001) reported larger training 

sets ameliorate decrease in accuracy due to low heritability. 

2.7.2.2.  Training Population Size and Environments Tested 

Optimum population size has been found to vary from population to population. 

However, the consensus view is that larger training populations provide more accurate 

estimates of marker effects on phenotypes due to an increase in detection power (Wong 

& Bernardo, 2008; Grattapaglia & Resende; Crossa et al., 2013a; Iwata et al., 2013). 

Reviews from dairy cattle conclude that genomic selection accuracy seemed to increase 
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linearly with training population size (VanRaden et al., 2009). This is because a large 

training population allows for accurate estimation of small effects across the entire 

genome and capture all the genetic variation available. Upon reducing training population 

size from 90% to 10%, Arojju et al. (2018) observed a drop in predictive ability from 0.52 

to 0.38. Similarly, Jarquín et al. (2014) found there was a steady decline in predictive 

ability as the number of individuals in a soybean training population reduced from 250 to 

100 individuals. On deciding whether to use more lines and fewer number of replicates 

per line or fewer lines and more replications per line, Zhong et al. (2009) reported better 

prediction values for fewer lines with more replicates than more lines with fewer 

replicates. Wong and Bernardo (2008) were of a different opinion, asserting that 

increasing the population size is more important than increasing the number of replicates. 

The accuracy of breeding values also depends on the strength of relatedness of individuals 

in the training population (Jannink et al., 2010). Habier et al. (2010) reported reduced 

predictive ability using unrelated or distantly related lines. Daetwyler  et al. (2012) 

assessed the contribution of population structure to accuracy of genomic prediction and 

reasoned accuracy of genomic predictions benefits significantly from genomic 

relationships due to population structure. Therefore, failure to remove variation due to 

population structure might result in exaggerated prediction accuracies (Riedelsheimer et 

al.; Guo et al., 2014b; Isidro et al., 2015). However, population structure can be exploited 

if similar structures exist between the reference population and validation population, as 

in the cases of selection candidates being offspring of the reference population from 

which the population equation was derived (Habier et al., 2007b; Goddard, 2008; Habier 

et al.). 

The number of environments the training population is tested in is also of significance 

because both marker-by-enviroment interaction effects and markers with stable effects 

across environments can be identified (Oakey et al., 2016). By incorporating a G×E 

interaction into genomic selection models, an increase in predictive ability can be realised 

as information from correlated environments can be exploited (Crossa et al., 2013b). 

Sukumaran et al. (2017) tested 287 wheat lines in 18 international environments for a 

variety of traits and found that including G×E interaction significantly increased 

predictive ability. By modelling G×E, Haile et al. (2019) increased the predictive ability 

by up to 66% for reproductive period in lentils. However, the breeding population must 

also be tested in those environments because significant G×E impairs the accuracy of 
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genomic selection when a model is trained in one site, and implemented/validated in 

another environment (Resende et al., 2012b). Though, as expected, Haile et al. (2019) 

reported no added advantage in including an environment interaction when trait 

heritability is high due the low environmental effect on the expression of such traits. 

Environmental influence in the form of genotype–by–environment-by-year interaction 

also affects predictive ability and lines tested across years often show increasing 

predictive ability with the passage of time. Grinberg et al. (2016) found predictive ability 

for yield ground cover in perennial ryegrass to be lower in the first year than the second 

year. 

2.7.2.3.  Linkage Disequilibrium and Marker Density 

Genomic selection makes use of genome-wide markers, therefore, it requires linkage 

disequilibrium (LD) to exist between marker loci and quantitative trait loci (QTL) in order 

to estimate associated marker allele effects (Hayes et al., 2009a; Jannink et al., 2010). 

According to Habier et al. (2013), linkage disequilibrium, linkage and genetic 

relationships all make contributions to the prediction accuracy. LD is said to occur when 

there is non-random association of alleles at two or more different loci while linkage 

refers to the tendency for alleles in close physical proximity on the same chromosome to 

be inherited together (Oraguzie et al., 2007). The extent of LD is significant in increasing 

or decreasing predictive ability because it determines the amount of genetic variance that 

can be captured by the markers (Hayes et al., 2013). As LD between QTLs and SNPs 

tends to decrease over generations, the reliability and accuracy of genomic prediction is 

expected to decrease if SNP effects are not recalibrated in subsequent generations (Muir, 

2007). Calus et al. (2008) proposed that LD should be greater than 0.2 between 

neighbouring marker pairs to achieve a desired accuracy and with simulated data achieved 

an accuracy of 0.6 for predicting a trait with heritability of 0.1. 

Increased marker number has been found to increase the prediction success as higher 

marker densities can better determine the strength of linkage disequilibrium between 

SNPs and genes or QTLs (Heffner et al., 2009; Habier et al., 2013). However, when the 

main contributor to predictive ability or accuracy was linkage or genetic relatedness, the 

impact of increased marker density was less evident (Habier et al., 2013). For inbreeding 

species with higher levels of LD and slow LD decay, fewer markers are needed than for 

outcrossing species where the rate of decay is faster (Jannink et al., 2010). de los Campos 
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et al. (2012) reported increasing accuracy of marker estimates with increased sample size, 

due to reduction in bias and variance of estimates. They also noted predictive ability 

increases steadily with increased marker density until it plateaus, the rate of which 

depends on the span of LD in the genome and sample size. Zhong et al. (2009) confirmed 

this in their study of genomic selection in barley inbred lines. They discovered that 

predictions were better when LD was high, but also that predictions were more accurate 

with greater marker densities, particularly more evident under low LD than high LD. 

Nakaya and Isobe (2012) suggested there was an optimum marker threshold above which 

marker accuracy declined. This was explained by Hickey  et al. (2014) as an over-fitting 

of the genomic prediction equation with excess markers. In this situation, non-genetic 

effects due to environmental variance can be misinterpreted as marker effects. Meuwissen 

(2009) recommended the number of markers should be 10 × Ne × genome size in Morgans 

for achieving high GEBV accuracy, where Ne is population size. Worthy of mention, 

Zhang et al. (2019) discovered the predictive accuracy of simple traits controlled by large 

effect genes were more influenced by increased marker density than QTL traits. 

2.7.2.4. Statistical Methods for Generating GEBVs 

Genomic selection can be performed as a one-step or two-step process. In the two-stage 

approach, BLUPs are obtained through a linear mixed-model analysis and then fitted as 

the response variable in genomic selection models to predict GEBVs from SNP markers 

(Smith  et al., 2005). The single step uses a mixed model design with raw phenotypic data 

from line replicates rather than line adjusted means (BLUPs). This enables the total 

genetic variation due to lines to be partitioned into variation due to markers and residual 

genetic variation, thereby enhancing estimation accuracy (Oakey et al., 2016). 

To estimate breeding values, a variety of approaches have been proposed. Parametric 

methods like ridge regression–best linear unbiased prediction (RR-BLUP), GBLUP and 

Bayesian-based methods such as BayesA, BayesB, BayesCπ, and Bayes LASSO (Least 

Absolute Shrinkage and Selector Operator) (Asoro et al., 2011). Semi-parametric 

methods include reproducing kernel Hilbert spaces (RKHS), and non-parametric 

/machine learning methods include Random Forest (RF) and support vector machine 

(SVM) (Gianola et al., 2006; de los Campos et al., 2012; Heslot et al., 2012). 

In the basic genetic model (Equation 13), phenotypic outcomes, 𝑦𝑖(𝑖 = 1, … . , 𝑛) are seen 

as the sum of the genetic value 𝑔𝑖and a model residual 𝜀𝑖;  
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Hence; 𝑦𝑖 = 𝑔𝑖+𝜀𝑖  (13) 

In the parametric models, 𝑔𝑖 is described as a regression on marker covariates 𝑥𝑖𝑗(𝑗 =

1, … . . 𝑝 molecular markers) given as Equation 14:  

 𝑔𝑖 = Σ𝑗=1
𝑃  𝑥𝑖𝑗𝛽𝑖𝑗 (14) 

Where: 𝛽𝑖𝑗is the regression of the 𝑦𝑖 on the 𝑗𝑡ℎ marker covariate 𝑥𝑖𝑗 (Meuwissen et al., 

2001). 

Since the number of SNP markers (m) vastly exceeds the number of phenotypic records 

(n), all methods rely on shrinkage estimation or variable selection to fit the regression (de 

los Campos et al., 2012). The methods differ mainly in prior assumptions they make about 

the distribution of the SNP effects with consequent implications on the distribution of 

QTL and the LD between SNPs and QTL (Hayes & Goddard, 2010). 

2.7.2.4.1. Parametric Models  

GBLUP and RR-BLUP assume equal variance of marker effects with each SNP effect 

drawn from a normal distribution with a constant variance (Meuwissen et al., 2001). 

Bernardo and Yu (2007a) pointed out that equal variance is not synonymous with all 

makers having the same effect, instead, marker effects are all equally shrunken toward 

zero. These two methods rely on kinship between individuals while others like the 

Bayesian models, are modelled on SNP-QTL associations to estimate effects of genetic 

markers (Habier et al., 2007a; Zhang et al.). This assumption of equal variance is, 

however, not realistic as all markers do not have equal variances and should not be treated 

equally (Xu, 2002). The Bayesian models like BayesA, BayesB, BayesC, BayesCπ and 

BayesLASSO assume that some markers have zero effect and variances differ across 

markers with non-zero effect (Meuwissen et al., 2001; Meuwissen & Goddard, 2010; 

Habier et al., 2011).  

2.7.2.4.2. Non-Parametric Models  

Machine-learning models like RKHS, SVM and RF make no strong assumptions about 

the properties and distribution of the parameters. For example, in RF, a collection of 

regression trees are grown from a sample drawn with replacement from the training set 
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using a random subset of predictors to define the best split at each node (Heslot et al., 

2012). The predictive ability is obtained by averaging the predictions of all trees in the 

forest (Blondel et al., 2015). RKHS uses a kernel function to form a square matrix by 

converting markers into a set of distances between paired observations (Heslot et al., 

2012). The goal of SVM is to train a model to assign new data into categories and it 

achieves this by mapping the data into a higher dimension and then produces categories 

with the largest possible separation (Heslot et al., 2012; Howard et al., 2014). 

2.7.2.5. Model Performance 

The abundance of models has inspired several comparison studies to find the best 

performing model in different situations (Meuwissen et al., 2001; Heslot et al., 2012; 

Howard et al., 2014; Annicchiarico et al., 2015; Roorkiwal et al., 2016; Crossa et al., 

2017; Gezan et al., 2017; Liu et al., 2018). Models like RRBLUP and GBLUP which 

assume equal variance have been shown to have better predictive ability for traits 

controlled by numerous small effect loci, i.e. vegetative yield which is influenced by 

many small genes (Zhong et al., 2009; Zhang et al., 2019). On the other hand, Bayesian 

methods with differential shrinkage are better at predicting moderate to high heritability 

traits influenced by few QTL as they avoid over shrinking QTL with significant effects 

(Lorenz et al.; Lin et al., 2014). For example, Faville et al. (2018) and Grinberg et al. 

(2016) found GBLUP to give the highest predictive ability for yield related traits. 

Daetwyler  et al. (2010) also confirmed that BayesB performed better than GBLUP when 

the number of QTL underlying a trait are small. Consequently, GBLUP and RR-BLUP 

have been recommended for use in crop species, due to their ease of application over the 

Bayesian approaches and their suitability for key traits, many of which are influenced by 

multiple small effect loci (Habier et al., 2010). 

For complex non-additive traits, however, nonlinear models tend to increase predictive 

ability (Crossa et al., 2013a) and may be particularly suitable for nonlinear relationships 

between predictors and responses e.g. epistatic effects (Jannink et al., 2010). This is also 

important because the observed phenotype is as a result of not only additive effects but 

dominance and epistatic effects as well. Blondel et al. (2015) reported that tree-based 

ensemble methods like Random Forests and Gradient Boosting Regression Trees were 

more accurate at ranking individuals than traditional regression methods like GBLUP and 

Bayesian methods. That being said, most studies resort to using more than one model to 
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generate prediction equations and findings by Heslot et al. (2012) on testing 11 genomic 

selection models over eight different data sets on three crop species; wheat, barley and 

maize, reported similar predictive ability for all the models. 

Most methods require a complete marker data set which leads to the need for imputation, 

the most common of which is mean or naïve imputation. However, a variation of GBLUP, 

KGD-GBLUP (Kinship with depth adjustment) by Dodds et al. (2015) circumvents this 

problem and creates an unbiased matrix of relationships among individuals including 

those with zero depth. This is especially useful for marker systems that not only have high 

rates of missing data but also produce low read depth data like GBS (Dodds et al., 2015). 

On comparing KGD with other methods like GBLUP, RRBLUP and RF, Jacobs (2018) 

found that KGD matched or outperformed the other methods in terms of accuracy with a 

decreased computation burden and was quicker to implement as no imputation was 

needed. 

2.7.3. Cross-validation 

To assess the accuracy of a model in predicting breeding values, predicted values are 

compared to observed phenotypic values. Two popular strategies are the k-fold and 

Monte-Carlo cross-validation. In the k-fold, the dataset is randomly divided into k equal 

parts with equal number of individuals. One-fold, the test set, is left out and the model is 

then trained on the remaining k-1 folds and used to predict the GEBVs of the individuals 

in the test set. This is repeated k times until each fold is used once as the test set. The 

accuracy is obtained by comparing the GEBVs with their corresponding observed 

phenotypes and the mean Pearson correlation is calculated across the k folds (Heslot et 

al., 2012; Daetwyler et al.). In Monte-Carlo cross-validation, the data is randomly split 

into two parts, a reference set and a test set. The phenotypes in the test set are masked and 

the reference set is used to train the model to predict the GEBVs of the individuals in the 

test set (Erbe et al., 2010). This process is repeated for numerous iterations generating 

new training and test sets each time. The mean predictive ability is the average Pearson 

correlation coefficient between predicted and observed phenotype for all iterations. The 

bias, which is the slope of the regression of phenotypes to estimated breeding values is 

also an important measure of a model should be 1 or close to 1 to indicate little bias 

(Daetwyler et al., 2012). Bias values greater than one are indicative of overprediction or 

an inflated genotype variance (Velazco et al., 2019b). 
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2.8. Conclusion 

In summary, the review of the literature highlights the need for integrating available 

breeding strategies with SNP-based selection and bioinformatic tools to accelerate 

breeding. This is especially necessary for forage crops like white clover, characterised by 

long generation intervals and often difficult and expensive to measure quantitative traits. 

Genomic selection is a strategy that can be used alongside conventional breeding to 

expedite cultivar development and deliver long-term plant breeding goals. This study was 

primarily designed to investigate the feasibility of using genomic selection in white clover 

breeding to accelerate genetic gain for DM yield and vegetative persistence related traits. 

A major component of this thesis is based on the quantitative genetic analysis of a training 

population of 200 HS families of white clover, evaluated across three years and two 

contrasting environments. The process and outcomes of implementing genomic selection 

in a white clover breeding population are delineated in the following chapters. 
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3. Estimation of Quantitative Genetic Parameters for Yield and 

Persistence-related Traits in White Clover 

3.1. Introduction 

White clover is an important and nutritious forage legume. However, its dry matter (DM) 

yield and vegetative persistence in pasture is compromised due to the lack of available 

cultivars with the genetic potential to enhance seasonal yield and longevity which are 

often constrained by biotic and abiotic issues. Stolons are a vital part of the plants 

morphology and highly stoloniferous cultivars have been found to be more persistent in 

pasture as they have greater spread and colonization ability (Chapman 1983; Marshall et 

al., 2017). According to Mitchell (1956), the optimum temperature for stolon growth and 

development is 24°C. As a result, extreme temperatures, especially during summer 

moisture stress periods, can cause rapid loss of stolon and reduce DM yield. Therefore, a 

major challenge for breeders is to identify superior genotypes associated with high stable 

seasonal DM yield and high stolon density for improved vegetative persistence. 

An important first step in cultivar development is the assessment of genetic variation for 

key traits in the breeding population. This is not often an easy task as estimation of 

variance components is ideally carried out over years and locations due to the presence 

of large standard errors (Flachenecker et al., 2006). Genetic improvement depends mainly 

on the magnitude of genetic diversity present in the population (Nyquist & Baker, 1991). 

As defined by Falconer (1989), the phenotype of an individual consists of genotypic and 

environmental effects. Genotypic effects are further partitioned into additive as well as 

non-additive components such as dominance and epistatic interactions. In forage 

breeding, the most significant component is the additive variance as this is inherited from 

parents to offspring. Consequently, it can be selected for and fixed via breeding methods 

(Falconer & Mackay, 1996; Acquaah, 2012). Caradus et al. (2000) noted that the narrow-

sense heritability for key white clover traits indicate that significant genetic improvement 

for most of them can be achieved. Estimation of quantitative genetic parameters such as 

additive variance, G×E, heritability and correlation between traits, provide breeders with 

vital information to improve the efficiency of breeding strategies to maximize genetic 

gain.  
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Heritability is the ratio of genetic to phenotypic variation (Falconer & Mackay, 1996). 

Narrow-sense heritability estimates the magnitude of additive variation that is 

transmittable from parent to offspring. Plant breeders are interested in the heritability of 

traits as this genetic estimate helps predict genetic gain. According to Nyquist and Baker 

(1991), if the narrow-sense heritability of a trait is high, then phenotypic selection 

methods like mass selection will be able to improve the trait of interest with ease. Until 

recently, improved white clover cultivars have been as a result of phenotypic assessment 

and improved management and fertiliser strategies (Caradus et al., 1997b). However, for 

traits with lower heritability, selecting superior genotypes based on the phenotype alone 

will not deliver rapid genetic gain as most of the observable variation is not genetic, and 

consequently not transmitted. Although heritability ultimately depends on the genetic 

nature of the trait, to improve estimations of heritability, the use of replications and multi-

site testing decreases the confounding effects of G×E, thereby increasing heritability 

(Falconer, 1989; Lorenz, 2013).  

Partitioning the phenotypic variance into genetic and environmental components, 

provides an insight into the magnitude of G×E interaction as genotypes grown in different 

environments may often show significant variation in performance. This highlights the 

need for multi-site replicated trials over years (Annicchiarico, 2002). Jahufer et al. (1999) 

reported significant G×E interactions for many stolon and DM yield-related traits in white 

clover. The result of these interactions often complicate comparisons among genotypes 

and reduce the efficiency of selection of superior genotypes (Falconer, 1989). These 

interactions emphasize the need to carry out trials across multiple environments, years 

and meteorological conditions to assess the breeding potential of selection candidates and 

the identification of genotypes that perform better across or within specific environments 

(Eberhart & Russell, 1966; Brown & Caligari, 2008a; Jahufer et al., 2013; Osei et al., 

2018). 
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This chapter reports on work focused on: 

I. Establishment of a white clover training population of HS families and their multi-

site evaluation to estimate genetic and phenotypic information for a range of traits 

for application in genomic selection. 

II.  Estimation of the magnitude of genetic, phenotypic and environmental variance 

for traits associated with seasonal herbage yield and vegetative persistence. 

III. Determination of trait heritability and estimation of genetic correlations between 

the measured traits. 
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3.2. Materials and Methods  

3.2.1. Establishment of Multi-site and Multi-year HS Family Field Trial 

3.2.1.1. Plant Material 

In 2012, clonal cuttings from top performing, broadly adapted white clover breeding lines 

were polycrossed to form a synthetic F1 population of 141 HS families. Selection of these 

lines was based on high clover yields, high stolon density and persistence across years 

and enviroments. This source material was selected to capture as much genetic variation 

as possible which is crucial for outcrossing populations. An equal number of seeds from 

each of the individual F1 plants was mixed together to constitute a balanced bulk, grown 

and polycrossed to generate 137 F2 HS families. Individuals were selected from these 137 

HS families for an additional polycross to generate the F3 training population as described 

below (Figure 3.1). 
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Figure 3.1 Development of training population for genomic selection. 

 

3.2.1.2. Polycross to Generate Training Population 

Using source material previously developed, a training population for genomic selection 

was generated by sampling two plants from each of the 137 F2 HS families. The selected 

274 plants were staked and cross-pollinated in a bee-proof isolation crossing tunnel from 

December 2015 to January 2016 (Figure 3.2). Twelve wild bumble bees (Bombus sp.) 

were placed in jar and rinsed with water to remove any residual wild white clover pollen 

as described in Gibson and Cope (1985). Washed bees were released into the isolation 

tunnel and checked daily to replace any bees that had died to maintain a constant of 

approximately 12 bumble bees. The plants were re-randomized weekly to ensure a 
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uniform distribution of pollen across all plants and avoid formation of population sub-

structures. 

 

 

Figure 3.2 Training population half-sib families in polycross isolation tunnel. 

 

3.2.1.3. Seed Preparation and Germination 

After successful pollination and seed maturation, seed was harvested, threshed, cleaned 

and seed weight recorded and maintained separately for each plant. A subset of 200 HS 

families was selected for field trials, based on seed yield, to ensure sufficient seed for 

subsequent experimentation. Seed hardness was broken by scarification and exposure to 

variations in temperature (stratification) before germination. The process was performed 

by lightly scarifying 0.2 g of seed from the 200 F2 maternal parent plants using fine 

sandpaper. Scarified seeds were then germinated on petri-dishes containing pre-

moistened filter paper (Figure 3.3). To synchronise germination, seeds were kept at 4˚C 

for 48 hours and then incubated at 25˚C for 24 hours. Germinated seeds were planted into 

propagation trays containing a mix of peat and sand with a three-month slow release 

Osmocote fertilizer and maintained under glasshouse conditions. Ninety seedlings were 

established for each of the 200 HS families making a total of 18,000 seedlings excluding 

spares and checks grown for the trial. 
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All plants were maintained in a glasshouse for approximately two months, after which 

the plants were trimmed, maintained in the trays and transferred outside the glasshouse 

on a drained concrete surface for “hardening” to ensure survival and a smooth transition 

when transplanting to field conditions.  

 

 

Figure 3.3 Pre (A) and post (B) incubation of white clover half-sib seed.  

 

3.2.1.4. Trial Locations 

The trial was conducted at two sites: AgResearch Grasslands Research Centre in 

Palmerston North, Manawatu (Aorangi) (40.38˚S, 175.61˚E); and the AgResearch 

Ruakura Research Farm in Hamilton, Waikato (37.77˚S, 175.31˚E). The soil types at the 

Palmerston North and Ruakura sites were Kairanga fine sandy loam and peaty silt loam 

soil, respectively. Three months prior to transplanting the white clover entries, both 

locations were sown with  perennial ryegrass (Lolium perenne L.) cultivar Ceres One50 

containing the endophyte AR37. Both locations were and sprayed with the herbicide 

Kamba® 500 at a dilution of 800 mL ha-1 to ensure resident white clover plants were 
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eliminated and prevent contamination of the trial. Crop 15, N (15.1%), P (10%), K (10%) 

and S (7.7%) fertiliser was applied at a rate of 250 kg ha-1 through a direct drill. 

Transplanting of the HS F3 progeny was carried out on 23rd of August 2016 at the Aorangi 

site and 27th of September 2016 at the Ruakura site. Prior to transplanting the seedlings 

into the grass swards, the grass was grazed closely to reduce grass competition and 

enhance establishment of the clover. 

3.2.1.5. Experimental Design 

A Row-Column experimental design with three replicates was used at each site 

(Appendix A.1, A.2). Fifteen plants of each of the 200 HS families were hand planted 

into 0.5 m by 0.75 m plots with 1.5 m between plots. In addition to the 200 HS families, 

each replicate had 24 repeated checks comprising of ‘Grasslands Kopu II’ and 

‘Grasslands Bounty’. ‘Grasslands Kopu II’ is a synthetic New Zealand cultivar 

characterised by large leaves, intermediate cyanogenesis, high herbage DM yield and 

stolon density (Woodfield et al., 2001). ‘Grasslands Bounty’ is a small to medium-leaved 

clover with high stolon density. The inclusion of repeated checks spread across the design 

was to reduce any effect of spatial trends. Two hundred HS families were transplanted 

per replication making a total of 600 plots plus an additional 72 check plots established 

per location. A total of 10,080 plants were sown in each location, comprising of 9,000 HS 

family plants and 1,080 check plants (Figure 3.4). 
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Figure 3.4 General view of the trial at the Aorangi location after establishment. 

 

3.2.1.6. Trial Management 

Soil tests were performed regularly to determine soil fertility level and fertiliser was 

applied as indicated. Over the course of the trial, five applications of 100 kg ha -1 of urea 

and one application of 180 kg ha -1 Maxi S Super plus N were applied at Aorangi. Three 

applications (30 kg ha -1, 40 kg ha -1 and 50 kg ha -1) of urea were applied in Ruakura in 

addition to an annual application of 400kg SUPER10 15k potassic superphosphate 

fertilizer.  

To ensure uniformity of regrowth after grazing, paddocks were topped when grazing was 

poor and uneven, and clippings disposed of outside the trial area.  

Interrow spraying was performed as needed to eliminate volunteer clover, weeds and to 

prevent spread of HS family clover from one plot to its neighbouring plot. The trials were 

established in August and September 2016 at the Aorangi and Ruakura locations, 

respectively, and data were collected for this thesis until May 2019. 
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3.2.1.7. Grazing Management 

The trials were grazed by cattle according to standard practices when herbage mass was 

between 2500-2800 kg DM ha-1 to residuals of 600-700kg DM ha-1 at each grazing. To 

estimate herbage mass, a rising plate meter (Jenquip, Feilding, New Zealand) was used 

before and after every grazing. A total of 19 and 17 cattle grazings took place at Aorangi 

and Ruakura, respectively, over the course of the trial. At each site grazing was carried 

out using a mob of young animals, for 2 to 3 hours. The animals were not allowed to 

camp on the trail area. 

3.2.2. Data Collection and Phenotyping 

Each year consisted of four seasons: Summer (December to February), Autumn (March 

to May), Winter (June to August) and Spring (September to November). 

The following traits were measured: 

3.2.2.1. Cyanogenesis 

The presence or absence of Hydrocyanic acid (HCN) was assessed on leaf material from 

24 individuals from each of the 200 HS families, using a modified qualitative picrate 

paper strip test (Corkill, 1940). This method identifies only those genotypes that carry 

dominant alleles at both loci, Ac and Li. Sampling was performed prior to transplanting 

when the HS family seedlings were six weeks old. Briefly, one leaf was sampled from 

each of 24 replicate plants of each HS family, placed in a 1 ml Eppendorf tube which had 

1cm filter paper (3M, company) placed in the cap of the tube and treated with 10 μl 

Toluene acid to digest the leaf material. An aliquot of 10 μl picric acid was then applied 

to the filter paper, the tubes were closed and incubated at 37°C for two hours before 

scoring. Scoring was done on a scale of 0-5 (Figure 3.5), where 0 was absence of HCN, 

indicated by no change in the colour of the picric acid paper, (yellow); 1-2 indicated low 

HCN production; 3 indicated medium HCN production (orange); and 4-5 indicated high 

levels of HCN production (reddish brown). 
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Figure 3.5 HCN scores (0-5) and representative samples. 

 

3.2.2.2. Growth Score 

Visual assessment of clover yield across the trial was taken on a scale of 1 (lowest) to 9 

(highest) herbage production per plot, with 0.5 units increments to allow closer 

approximation of continuous data. Scores were taken prior to each grazing when herbage 

mass was between 2500-2800 kg DM ha-1. At each scoring period, calibration cuts for 

each score were taken by randomly selecting three plots per score. A 0.2 m-2 quadrant 

was randomly placed on the ground and the above ground biomass cut to a stubble height 

of 2-3 cm using mechanical shears. Harvested samples were then separated into white 

clover and ryegrass components and dried in an oven at 80°C for 48 hours and the dry 

weight recorded. A regression analysis was performed between cut DM and plot scores 

to obtain an estimate of score accuracy. The regression between plot score and clover DM 

content allowed a clover herbage yield (kg DM ha-1) to be estimated for all plots. 

3.2.2.3. Dry Matter Production Cuts 

To assess clover herbage biomass, across the trial, full-scale DM yield cuts were 

performed annually in spring at a herbage mass accumulation between 2500-2800 kg DM 

ha-1. Before grazing, a 0.2 m2 quadrant was randomly placed in each plot and the above-

ground biomass removed. Harvested samples were then separated into white clover and 

ryegrass components, oven-dried and weighed. The first harvest dates were 31st October 

and 29th November 2017 at Aorangi and Ruakura, respectively. The second harvest dates 

were 6th of November and 2nd of December 2018 at Aorangi and Ruakura, respectively. 
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A total of 672 plots comprising HS families and checks were harvested from each trial 

location annually. 

3.2.2.4. Leaf Size  

Leaf size was recorded twice each year. A visual leaf size score of 1 (smallest) – 5 

(largest) was used with 0.5 unit increments allowable. 

3.2.2.5. Stolon Characteristics 

Two stolon traits, number of stolons and number of branches, were measured before and 

after summer to determine the effect of summer moisture stress on these traits. On each 

occasion, three cores (5 cm diameter × 4 cm depth) were taken randomly from all plots 

in Aorangi using a soil corer (Figure 3.6). From each collected core, the number of stolons 

and the number of branches on each stolon were counted. Data were collected from the 

second year of growth in  late November (pre-summer and March (post-summer). 

 

 

Figure 3.6 Soil corer and stolon representative samples from the field trial at 

Aorangi. 
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3.2.3. Statistical Analysis  

3.2.3.1. Univariate Analysis 

3.2.3.1.1.  Linear Mixed Model 

Residual Maximum Likelihood (REML) (Patterson & Thompson, 1971; Harville, 1977) 

was conducted on all data collected, based on linear mixed models, using DeltaGen 

software (Jahufer & Luo, 2018). These analyses enabled estimation of variance 

components for genetic and nongenetic effects and BLUPs, (White & Hodge, 1989) for 

traits  HCN, DM yield, seasonal growth scores (GS), leaf size (LS), stolon number (SN) 

and stolon branches (SB).  

The statistical significance of the variance components was estimated using deviance of 

log-likelihood as suggested by Galwey (2006).  

Residual plots were assessed for deviations from normality and homogeneity and square 

root transformed for seasonal calibration cuts.  In all the mixed linear models, years, sites, 

seasons and repeated checks were considered as fixed effects while the HS families, G×E, 

replicates, rows and columns of the experimental design were considered random effects. 

3.2.3.1.2. Fixed Effects 

To estimate fixed effects, maximum likelihood estimation was used instead of REML 

(Zuur et al., 2009) as maximum likelihood generates more accurate estimates of fixed 

regression parameters (Twisk, 2006). HS families and check cultivars were considered as 

fixed effects in order to obtain BLUEs (Best Linear Unbiased Estimate) and estimate 

differences among them (Annicchiarico, 2002; Smith  et al., 2005). Analyses were 

performed using the ‘lmer’ function in the ‘lme4’ package in R while pairwise difference 

and separation of means was performed by Fisher’s least-significant difference (LSD) 

test in the ‘predictmeans’ package in R (R Core Team, 2012).  
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Phenotypic data were analysed using the following linear models: 

Single season and site analysis (Equation 15): 

 𝑌𝑖𝑗𝑘𝑙 = µ + 𝑓𝑖 + 𝑏𝑗 + 𝑟𝑗𝑘 + 𝑐𝑗𝑙 + 𝜀𝑖𝑗𝑘𝑙 (15) 

Where: 𝑌𝑖𝑗𝑘𝑙 is the value of an attribute measured from genotype i in replicate j in row k 

and column l, and i = 1,…, 𝑛𝑓  ; j = 1, …, 𝑛𝑏 ; k = 1,…, 𝑛𝑟 ; and l = 1,…, 𝑛𝑐, where, 𝑓, b, 

r, and c are families, replicates, rows and columns, respectively; µ is the overall mean; 𝑓𝑖 

is the random effect of the HS family i, N(0, 𝜎𝑓
2); 𝑏𝑗 is the random effect of replicate j, 

N(0, 𝜎𝑏
2); 𝑟𝑗𝑘 is the random effect of row k in replicate j, N(0, 𝜎𝑟

2); 𝑐𝑗𝑙 is the random effect 

of column 𝑙 in replicate j, N(0, 𝜎𝑐
2); and ɛ𝑖𝑗𝑘𝑙 is the residual effect of genotype i in row k 

and column l in replicate j, N(0, 𝜎ɛ
2). 

 

Across-season analysis within each location (Equation 16): 

 𝑌𝑖𝑗𝑘𝑙𝑚 = µ + 𝑓𝑖 + 𝑠𝑗 + 𝑏𝑗𝑘 + (𝑓𝑠)𝑖𝑗+(𝑓𝑏)𝑖𝑘 + (𝑏𝑠)𝑗𝑘 + 𝑟𝑗𝑘𝑙 + 𝑐𝑗𝑘𝑙𝑚

+ 𝜀𝑖𝑗𝑘𝑙𝑚 

(16) 

Where: 𝑌𝑖𝑗𝑘𝑙𝑚 is the value of an attribute measured from family i in row l and column m 

of replicate k nested in season j and i = 1,…, 𝑛𝑓  ; j = 1,…, 𝑛𝑠 ; k = 1,…, 𝑛𝑏 ;  l = 1,…, 𝑛𝑟, 

and m=1,…,𝑛𝑐 ,where, 𝑓, s, b, r, and c are families, seasons, replicates, rows and columns, 

respectively; µ is the overall mean; 𝑓𝑖 is the random effect of the HS family i, N(0, 𝜎𝑓
2); 

𝑠𝑗 is the fixed effect of season  j ; 𝑏𝑗𝑘 is the random effect of replicate k within season j, 

N(0, 𝜎𝑏
2); (𝑔𝑠)𝑖𝑗is the effect of the interaction between family i and season j, 𝑟𝑗𝑘𝑙 is the 

random effect of row l in replicate k within season j, N(0, 𝜎𝑟
2); (𝑏𝑠)𝑖𝑗is the interaction 

between replicate k and season j, 𝑟𝑗𝑘𝑙 is the random effect of row l in replicate k within 

season j, N(0, 𝜎𝑟
2) 𝑐𝑗𝑘𝑚 is the random effect of column 𝑚 in replicate k, within season 

j, N(0, 𝜎𝑐
2); and ɛ𝑖𝑗𝑘𝑙𝑚 is the residual effect of genotype i in row l and column m of 

replicate k in season j, N(0, 𝜎ɛ
2). 
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Across year by season by location analysis (Equation 17): 

 𝑌𝑖𝑗𝑘𝑙𝑚𝑛𝑜 = µ + 𝑓𝑖 + 𝑦𝑜 + 𝑒𝑛 + (𝑓𝑒)𝑖𝑛

+ 𝑠𝑗 + (𝑓𝑠)𝑖𝑗 + (𝑓𝑦)𝑖𝑜 + (𝑠𝑦)𝑗𝑜 + (𝑓𝑒𝑦)𝑖𝑛𝑜

+ (𝑓𝑠𝑦)𝑖𝑗𝑜 + 𝑏𝑗𝑛𝑜𝑘 +  𝑟𝑗𝑛𝑜𝑘𝑙 + 𝑐𝑗𝑛𝑜𝑘𝑚 + 𝜀𝑖𝑗𝑘𝑙𝑚𝑛𝑜 

(17) 

Where: 𝑌𝑖𝑗𝑘𝑙𝑚𝑛𝑜 is the value of an attribute measured from family i in the jth season, within 

the oth
 year, at the nth location, in the kth replicate, in lth

 row, and mth column. i = 1,…, 𝑛𝑓  

; j = 1,…, 𝑛𝑠 ; k = 1,…, 𝑛𝑏; l = 1,…, 𝑛𝑟 ; m = 1,…, 𝑛𝑐; n = 1,…, 𝑛𝑒; o = 1,…, 𝑛𝑦 , where, 

𝑓, y, e, s, b, r, and c are families, years, locations, seasons, replicates, rows and columns, 

respectively. µ is the overall mean; 𝑓𝑖 is the random effect of the HS family i, N(0, 𝜎𝑓
2); 𝑦𝑜 

is the fixed effect of year o; 𝑒𝑛 is the fixed effect of location n; (𝑓𝑒)𝑖𝑛 is the effect of the 

interaction between family i and location n;, 𝑠𝑗 is the fixed effect of season j; (𝑓𝑠)𝑖𝑗 is the 

effect of the interaction between family i and season j, (𝑓𝑦)𝑖𝑜 is the effect of the 

interaction between family i and year o,(𝑠𝑦)𝑗𝑜 is the effect of the interaction between 

season j in year o, (𝑓𝑒𝑦)𝑖𝑛𝑜 is the effect of the interaction between family i location n and 

year o, (𝑓𝑠𝑦)𝑖𝑗𝑜 is the effect of the interaction between family i season j and year o,  

𝑏𝑗𝑛𝑜𝑘is the random effect of replicate k within season j within year o in location n 

,N(0, 𝜎𝑏
2); 𝑟𝑗𝑛𝑜𝑘𝑙 is the random effect of row l within replicate k in season j within year o 

in location n ,N(0, 𝜎𝑟
2); 𝑐𝑗𝑛𝑜𝑘𝑚 is the random effect of column m in  replicate k within 

season j within year o in location n ,N(0, 𝜎𝑐
2); and ɛ𝑖𝑗𝑘𝑙𝑚 is the residual effect of genotype 

i in row l and column m of replicate k in season j, N(0, 𝜎ɛ
2). 

3.2.3.1.3. Heritability 

Heritability for a trait measured once was estimated using the estimates of genotypic and 

error components of variance in the following Equation (18) by (Falconer, 1989): 

 ℎ𝑛 =
2

𝜎𝑓
2

𝜎𝑓
2 +

𝜎𝜀
2

𝑛𝑟

 (18) 

Where: h2
n is the narrow-sense heritability; σf

2 is the family additive variance component; 

𝜎𝜀
2 is the error variance component, and nr is the number of replicates. 
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For repeated measurements, heritability was estimated as: 

Across seasons (Equation 19): 

 
ℎ𝑛 =

2  
𝜎𝑓

2

𝜎𝑓
2 +

𝜎𝑓𝑠
2

𝑛𝑠
+

𝜎𝑏
2

𝑛𝑏
+

𝜎𝜀
2

𝑛𝑠𝑛𝑏

 
(19) 

Across sites and seasons within a year (Equation 20): 
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𝜎𝑓

2

𝜎𝑓
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𝜎𝑓𝑒
2
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𝑛𝑠
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(20) 

Across site, season and year analysis (Equation 21): 

 
ℎ𝑛 =

2
𝜎𝑓

2

𝜎𝑓
2 +

𝜎𝑓𝑦
2

𝑛𝑦
+

𝜎𝑓𝑒
2

𝑛𝑒
+

𝜎𝑓𝑠
2

𝑛𝑠
+

𝜎𝑓𝑦𝑒𝑠
2

𝑛𝑦𝑛𝑒𝑛𝑠
+

𝜎𝑏
2

𝑛𝑒𝑛𝑏
+

𝜎𝜀
2

𝑛𝑦𝑛𝑒𝑛𝑠𝑛𝑏

 
(21) 

Where the equation components are defined in relation to the linear model.  

3.2.3.2. Multivariate Analysis 

3.2.3.2.1. Correlation 

Pairwise Pearson correlation analysis was carried out to determine the type and strength 

of relationship between traits using HS family BLUP-adjusted means for each trait. 

Pearson’s correlation coefficient and significance estimation were performed using the 

‘cor’ package in R. 

3.2.3.2.2. Pattern Analysis 

Principal component analysis (PCA) and cluster analysis were conducted to generate a 

graphical summary of the association among measured traits as well as determine patterns 

of phenotypic variation among the HS families using HS BLUP-adjusted means in the 

software Deltagen (Jahufer & Luo, 2018). Only traits showing significant (P < 0.05) 

additive genetic variation were included in the analyses. The data were standardised to 

remove scaling effects, have a mean of zero and a variance of one (Fox & Rosielle, 1982; 

Cooper & DeLacy, 1994). 



89 

 

Cluster analysis was performed on the standardised data using a hierarchical 

agglomerative classification procedure with squared Euclidean distance as a measure of 

dissimilarity. In order to choose the optimum level of truncation for the resulting 

hierarchy from cluster analysis, the increase in the sum of squares among HS family 

groups as the number of groups increased was investigated (DeLacy, 1981). The group 

level selected was determined by the point where the percentage of the HS family sum of 

squares among groups did not improve substantially as the number of groups increased. 
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3.3. Results 

3.3.1. Meteorological Conditions 

3.3.1.1. Rainfall 

Meteorological data were obtained for both sites and daily observations were aggregated 

to give total and average values for rainfall, maximum and minimum air temperature 

respectively. In comparison to the 10-year average of 1025 mm for Aorangi, the driest 

year was 2017 with a total rainfall of 744 mm compared to 1373 mm, and 1103 mm for 

2016 and 2018, respectively (Figure 3.7). In 2016/2017, summer months experienced the 

least amounts of rainfall, 115.4 mm compared to 196.6 mm, 207 and 220 mm for spring, 

autumn and winter, respectively. The same trend was observed in 2017/2018 and 

2018/2019, 193 mm in summer compared to 212 mm, 277 mm and 317 mm for spring, 

autumn and winter then 154 mm compared to 209 mm and 160 mm for spring and 

autumn, respectively. Winter had the highest precipitation of all the seasons. 

In Ruakura, years 2017 and 2018 experienced higher amounts of rain, 1492 mm and 

1469 mm, relative to the 10-year average of 1167 mm, while 2016 had a total rainfall of 

1013 mm (Figure 3.7). The summer of  2016/2017 experienced the least amount of rain, 

195 mm compared to 296 mm, 605 mm and 334 mm for spring, autumn and winter, 

respectively. In succeeding years, the summer months experienced more rain than the 

other seasons, 545 mm compared to 317 mm, 271 mm and 370 mm for spring, autumn 

and winter then 221 mm compared to 185 mm and 170 mm for spring and autumn for 

2017/2018 and 2018/2019, respectively. 

Total rainfall for the duration of the trial was 2418 mm in Aorangi and 3509 mm in 

Ruakura, a difference of 37% between the sites. 

3.3.1.2. Temperature 

Mean monthly maximum and minimum temperatures for the duration of the experiment 

(Figure 3.7) at the two sites were comparable to the 10-year maximum and minimum 

averages of 18°C and 9°C in Aorangi and 19.5°C and 8.5°C in Ruakura. The warmest 

year at Aorangi and Ruakura was 2018, with a mean average maximum of 18.6°C and 

20.6°C, respectively. Ruakura was on average 2°C warmer than Aorangi. 
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Summer months were the warmest in Aorangi, with average maximum temperatures of 

20.6°, 24.7°C and 23.1°C for 2016/2017, 2017/2018 and 2018/2019. At Ruakura, the 

highest average maximum temperature was 26.1°C in summer 2018/2019. 

Average minimum temperatures were similar across both sites.  
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Figure 3.7 A) Total monthly precipitation at Aorangi and Ruakura and B) Mean 

Maximum and minimum monthly air temperatures (°C) at Aorangi and Ruakura 

for the duration of the trial; August 2016 to May 2019. Green, yellow, red and blue 

boxes represent spring, summer, autumn and winter seasons, respectively.  



93 

 

3.3.2. Univariate Analysis  

3.3.2.1. Variance Components and Heritability 

3.3.2.1.1. HCN 

There was significant (P < 0.01) additive genetic variation (σ2
f) among the white clover 

genotypes for HCN content. Additive variance was estimated at 0.54 ± 0.07 and residual 

error, 2.74 ± 0.06. Family mean narrow-sense heritability across samples was estimated 

from Equation 18 as 0.82 ± 0.018. Note that the number of samples taken per HS family 

was taken to be the number of replicates in this instance. Cyanogenic potential BLUP 

values ranged from 1.2 to 4.3 for the HS families. Most of the lines (73%) produced 

moderate to high levels of HCN (scores 3-5) while the remaining 27% produced none to 

low levels of HCN (Figure 3.8). Check 1, ‘Grasslands Kopu II’ had a mean score of 2.4 

while check 2, ‘Grasslands Bounty’, had a mean score of 3.3. 

 

Figure 3.8 Histogram showing cyanogenesis (HCN) scores based on a picric acid 

assay and percentage proportion of 200 half-sib families scored for cyanogenic 

performance. Score 0 = no HCN, 5 = maximum HCN produced. 

 



94 

 

3.3.2.1.2. Seasonal Growth Scores 

Estimation of variance components among HS families for seasonal growth scores (GS) 

are presented in Tables 3.1, 3.2 and 3.3. 

3.3.2.1.3. Within Seasons and Locations 

There was significant (P < 0.05) additive genetic variation for GS among HS families at 

individual locations within seasons and within years except for year 2017 winter at 

Aorangi. Combined analyses across years 2017, 2018 and 2019 for each season showed 

significant additive genetic variation among HS families for both locations with the 

exception of Ruakura spring and summer as shown in Table 3.1. Apart from Autumn in 

Aorangi, the family × year (σ2
f.y) interaction variance component was consistently higher 

than the additive genetic variance component (σ2
f). The magnitude of the additive genetic 

variance among the HS families (σ2
f) appeared to increase with subsequent years but not 

consistently so. When compared to Aorangi, Ruakura always had higher error variance 

components (σ2
ε). Heritability ranged from 0.18 to 0.6 and was predominantly higher at 

Aorangi. 

3.3.2.1.4. Across Years and Locations Within Seasons 

There was significant (P < 0.05) additive genetic variation among the HS families across 

locations for each of the four seasons except for summer and autumn 2017 and autumn 

2019 (Table 3.2). Family × location (σ2
f.l) interaction was significant (P < 0.05) for 

individual years and across years and was always larger than the additive genetic variance 

component (σ2
f) apart from across years analysis for autumn. Family × year (σ2

f.y) was 

only significant across years 2017, 2018 and 2019 and 2017 and 2018 for summer and 

spring respectively and was lower than the family × location (σ2
g.l) interaction component.  

The magnitude of the additive genetic variance among HS families (σ2
f) was generally 

higher in spring. Ruakura consistently had higher error variances compared to the Aorangi 

location. The residual error variance component was larger than all other components. 

Narrow-sense heritability seemed to increase with successive years and ranged from 0.13 

to 0.41 as presented in Table 3.2. 
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Table 3.1 Estimated additive genetic (σ2
f), family-by-year (σ2

f.y), and pooled error (σε), variance components, their associated 

standard errors (± SE) and family mean narrow-sense heritability (h2
n) for seasonal growth scores for 200 half-sib white clover 

families across two locations, Aorangi and Ruakura.  

Variance  
 

components 

Summer Autumn Winter Spring 

Aorangi Ruakura Aorangi Ruakura Aorangi Ruakura Aorangi Ruakura 

Year 2017 

σ2
f 0.40 ± 0.09* 0.67 ± 0.18* 0.08 ± 0.04* 0.43 ± 0.18* 0.07 ± 0.04 0.32 ± 0.12* 0.25 ± 0.06* 0.44 ± 0.16* 

σ2
ɛ 0.91 ± 0.05 1.44 ± 0.08 0.73 ± 0.06 3.04 ± 0.22 0.64 ± 0.03 1.39 ± 0.08 0.64 ± 0.04 0.98 ± 0.06 

h2
n 0.42 ± 0.06 0.36 ± 0.07 0.25 ± 0.11 0.3 ± 0.09 0.18 ± 0.08 0.27 ± 0.07 0.42 ± 0.06 0.28 ± 0.08 

 Year 2018 

σ2
f 0.40 ± 0.10* 0.34 ± 0.11* 0.31 ± 0.07* 0.55 ± 0.17* 0.37 ± 0.09* 0.79 ± 0.21* 0.82 ± 0.14* 0.61 ± 0.17* 

σ2
ɛ 0.61 ± 0.03 2.52 ± 0.22 0.69 ± 0.04 2.64 ± 0.2 1.16 ± 0.10 2.92 ± 0.21 0.92 ± 0.05 1.24 ± 0.07 

h2
n 0.39 ± 0.07 0.43 ± 0.07 0.42 ± 0.06 0.38 ± 0.08 0.48 ± 0.07 0.45 ± 0.07 0.56 ± 0.05 0.37 ± 0.07) 

 Year 2019 

σ2
f 0.88 ± 0.16* 1.41 ± 0.23* 0.84 ± 0.15* 0.59 ± 0.20* - - - - 

σ2
ɛ 0.52 ± 0.02 1.77 ± 0.12 1.67 ± 0.12 2.80 ± 0.30 - - - - 

h2
n 0.55 ± 0.05 0.22 ± 0.10 0.6 ± 0.05 0.29 ± 0.11 - - - - 

 Across years (2017, 2018, 2019) Across years 2017 & 2018 

σ2
f 0.18 ± 0.08* 0.16 ± 0.11 0.20 ± 0.05* 0.2 ± 0.10* 0.10 ± 0.03* 0.32 ± 0.12* 0.25 ± 0.06* 0 

σ2
f.y 0.50 ± 0.06* 0.74 ± 0.09* 0.16 ± 0.03* 0.30 ± 0.10* 0.11 ± 0.03* 0.33 ± 0.08* 0.32 ± 0.05* 0.67 ± 0.08* 

σ2
ɛ 0.90 ± 0.02 1.90 ± 0.07 0.80 ± 0.03 2.10 ± 0.13 0.80 ± 0.03 1.70 ± 0.08 0.90 ± 0.03 1.60 ± 0.05 

h2
n 0.30 ± 0.09 0.20 ± 0.12 0.53 ± 0.07 0.37 ± 0.12 0.36 ± 0.11 0.37 ± 0.09 

0.42 ± 0.08 
0 

*Significant at P < 0.05
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Table 3.2 Estimated additive genetic (σ2
f), family-by-location interaction (σ2

f.l), 

family-by-year interaction (σ2
f.y), pooled error (σε) variance components, their 

associated standard errors (± SE) and family mean narrow-sense heritability (h2
n) 

for seasonal growth scores from combined analyses for 200 half-sib white clover 

families across two locations, Aorangi and Ruakura.  

Variance  

components 

Summer Autumn Winter Spring 

Year 2017 

σ2
f 0.11 ± 0.08 0.06 ± 0.07  0.09 ± 0.04* 0.20 ± 070* 

σ2
f.l  0.72 ± 0.11 * 0.18 ± 0.08*  0.29 ± 0.05 * 0.45 ± 0.07* 

σ2
ɛ 2.16 ± 0.06 1.91 ± 0.09 1.57 ± 0.04  1.65 ± 0.05 

h2
n 0.14± 0.09  0.13 ± 0.14 0.17 ± 0.08 0.29 ± 0.08 

 Year 2018 

σ2
f 0.14 ± 0.08  0.21 ± 0.07*  0.24 ± 0.09* 0.33 ± 0.10* 

σ2
f.l 0.57 ± 0.10*  0.44 ± 0.08* 0.32 ± 0.12*  0.71 ± 0.11* 

σ2
ɛ  1.70 ± 0.06 1.21 ± 0.05  2.06 ± 0.10 2.01 ± 0.06 

h2
n 0.20 ± 0.10  0.14 ± 0.10 0.33 ± 0.10  0.32 ± 0.08 

 Year 2019 

σ2
f 0.28 ± 0.13*  0.23 ± 0.13 - - 

σ2
f.l 1.21 ± 0.16* 0.57 ± 0.16* - - 

σ2
ɛ 1.74 ± 0.05 2.06 ± 0.12 - - 

h2
n  0.28 ± 0.11 n.s. - - 

 Across years (2017, 2018, 2019) Across years (2017 & 2018) 

σ2
f  0.11 ± 0.05* 0.13 ± 0.05* 0.09 ± 0.04* 0.13 ± 0.06* 

σ2
f.l 0.36 ± 0.07* 0.04 ±  0.03 0.29 ± 0.06* 0.29 ± 0.07* 

σ2
f.y 0.07 ± 0.04* 0.03 ± 0.03 0.04 ± 0.04 0.16 ± 0.06* 

σ2
f.y.l 0.46 ± 0.06* 0.04 ±  0.04 0.05 ± 0.05 0.34 ± 0.06* 

σ2
ɛ 1.98 ± 0.04 1.76 ± 0.05 1.5 ± 0.04 1.86 ± 0.04 

h2
n 0.27 ± 0.10 0.41 ± 0.11 0.3 ± 0.12 0.23 ± 0.13 

*Significant at P < 0.05 
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3.3.2.1.5. Across Seasons, Locations and Years 

Results from variance component analysis across seasons and across years for GS is 

presented in Table 3 and shows significant (P < 0.05) additive genetic differences among 

HS families at individual sites and across sites for all years and across years. All two-way 

interactions for family × season (σ2
f.s) and family × location (σ2

f.l) were significant except 

for Ruakura 2019 and across years 2017, 2018 and 2019 analyses at both sites. The family 

× location interaction variance (σ2
f.l) was typically larger than the line variance for all 

years. Family × year (σ2
f.y) interaction was also significant for both sites when analysed 

across all years but not significant when locations were combined. Three-way interaction 

of family × season × location (σ2
f.s.l) was not significant while family × year × season 

(σ2
f.y.s) and family × year × location (σ2

f.y..l) was significant (P < 0.05) for combined 

location analyses only. The residual error variance component was larger than all other 

components for majority of the analyses. Family mean heritability  ranged from 0.24 to 

0.73 and increased as the trial progressed. The narrow-sense heritabilities on a family 

mean basis estimated from across location analyses were always lower than the estimates 

from individual location analyses. 
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Table 3.3 Estimated additive genetic (σ2
f) and pooled error (σ2

ε) variance components with their standard errors (± SE), associated 

interactions and family mean narrow-sense heritability (h2
n) estimated at individual and across locations (L) ; Aorangi and Ruakura, 

across seasons (S) and across years (Y) for seasonal growth scores in 200 half-sib white clover families. 

Source 
σ2

f σ2
f.s σ2

f.l σ2
f.s.l σ2

f.y σ2
f.y.s σ2

f.y.l σ2
ɛ h2

n 

Year 2017 

Aorangi 0.12 ± 0.04* 0.11 ± 0.02* n.a n.a n.a n.a n.a 0.76 ± 0.02 0.35 ± 0.07 

Ruakura 0.36 ± 0.11* 0.21 ± 0.03* n.a n.a n.a n.a n.a 1.52 ± 0.04 0.33 ± 0.08 

Across site 0.10 ± 0.05* 0.03 ± 0.01* 0.46 ± 0.06* ns   n.a 1.83 ± 0.03 0.24 ± 0.01 

 Year 2018 

Aorangi 0.37 ± 0.08* 0.14 ± 0.02* n.a. n.a. n.a. n.a. n.a. 0.82 ± 0.02 0.50 ± 0.06 

Ruakura 0.51 ± 0.13* 0.15 ± 0.03* n.a. n.a. n.a. n.a. n.a. 1.42 ± 0.05 0.42 ± 0.07 

Across site 0.20 ± 0.07* 0.05 ± 0.02*  0.66 ± 0.08* 0.01 ± 0.02 n.a. n.a. n.a. 2.42 ± 0.04 0.24 ± 0.07 

 Year 2019 

Aorangi 0.85 ± 0.15* 0.04 ± 0.01* n.a. n.a. n.a. n.a. n.a. 0.49 ± 0.02 0.59 ± .054 

Ruakura 0.53 ± 0.2* 0 n.a. n.a. n.a. n.a. n.a. 1.25 ± 0.06 0.29 ± 0.12 

Across site 0.25 ± 0.12* 0 1.2 ± 0.15* 0 n.a. n.a. n.a. 1.60 ± 0.04 0.27 ± 0.10 

 Across years  

Aorangi 0.26 ± 0.05* 0 n.a. n.a. 0.25 ± 0.025* 0.01 ± 0.01 n.a. 0.90 ± 0.013 0.48 ± 0.06  

Ruakura 0.50 ± 0.07* 0 n.a. n.a. 0.52 ± 0.06* 0.02 ± 0.02 n.a. 2.40 ± 0.03 0.73 ± 0.04 

Across site  0.12 ± 0.04* 0  0.35 ± 0.05* 0  0.04 ± 0.03 0.04 ± 0.01*  0.34 ± 0.04* 1.73 ± 0.02 0.32 ± 0.10 

*Significant at P < 0.05, n.a = not applicable.  
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3.3.2.1.6. Effect of Year and Season on Calibration Cut DM Yield 

Fixed effects analysis showed year and season had significant (P < 0.05) effects on white 

clover DM yield. There were significant (P < 0.05) differences among seasons within 

years, across years, as well as significant year-by-season interactions (Figure 3.8 

Appendix A.3, A.4, A.5). 

Also, there was significant additive genetic variation among HS families across years and 

seasons as illustrated by the boxplot in Figure 3.9. Post hoc analyses indicated that at 

Aorangi, years 2018 and 2019 were significantly different from 2017 although 2018 was 

not significantly different from 2019. When averaged over seasons, 2018, the second year 

of growth had 35% and 12% more DM yield than 2017 and 2019, respectively. Variation 

amongst HS families was also more pronounced in 2018 than 2017 or 2019 (Figure 3.9).  

Significantly (P < 0.05) higher DM yield was observed in summer 2018 than other 

seasons-year combinations while spring and winter had the lowest DM yield. There was 

a 194% difference in DM yield between the average of the highest scored plots (score 9) 

in summer 2018 (2648 ± 134 kg DM ha-1) and the lowest scored plots (score 1) 

(40 ± 59.3 kg DM ha-1) in 2017 winter (Appendix A.5). 

At Ruakura, there were no significant differences between 2017 and 2019, but both years 

were significantly (P < 0.05) different from 2018. DM yield  increased by 42% from 2017 

to 2018, followed by a 17% decrease in 2019 (Figure 3.9). The largest variation was 

observed in 2018. Summer 2018 DM yield was significantly higher than all other season-

year combinations except 2018 autumn and 2019 summer, while winter 2017 had the 

lowest DM yield (Figure 3.9). There was a 193% difference in DM yield between the 

average of highest scored plots in summer 2018 (4891 ± 176 kg DM ha-1) and the lowest 

scored plots (85 ± 23 kg DM ha-1) in 2017 winter (Appendix A.5). 
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Figure 3.9 Notched boxplots showing the variation in dry matter yield in white 

clover due to year and season effects. Data taken from seasonal calibration cuts. 

Horizontal line within boxes = median seasonal dry matter (DM) averaged over 

scores (1-9), filled red circle = mean DM, box represents the middle 50% of 

variation, ends of the upper and lower whiskers represent the highest and lowest 

observations. Notches that do not overlap indicate medians that are significantly 

different at P < 0.05 (Chambers et al., 1983). 

 

3.3.2.1.7. Effect of Year and Location on Full-scale DM Cut  

Full scale cuts were taken from all plots in spring 2017 and 2018. As Table 3.4 indicates, 

significant (P < 0.05) additive genetic variation (σ2
f) was detected among the HS families 

only at Aorangi for 2017, 2018 and across both years, while no significant variation was 

observed at Ruakura. The magnitude of the additive genetic variance (σ2
f) increased with 

subsequent years at Aorangi. Across-site genetic variance was significant (P < 0.05) for 

individual years as well as combined years while family × location interaction (σ2
f.l) was 

significant when the two years were combined. Family × year (σ2
f.y) and family × year × 

location (σ2
f.y.l) interactions were not significant. Narrow-sense heritability on a HS 

family mean basis ranged from 0.27 to 0.54 and increased over time at Aorangi. There 

was a 134% and 140% difference between the best performing HS family at Aorangi in 
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2017 and 2018 respectively, while a 160% and 147% difference was observed among 

families at Ruakura for 2017 and 2018, respectively (Table 3.4). 

As shown in Figure 3.10 and Appendix A.6, there was 44% significantly (P < 0.05) less 

DM yield at Aorangi between 2017 and 2018. At Ruakura, though no significance was 

detected, there was a 21% increase from 2017 to 2018. There was a 31% and 46% 

difference between both sites in 2017 and 2018, respectively. All other pairwise 

comparisons were not significant at the 5% level using Fisher’s least significant 

difference test (LSD) test. 

 

 

Figure 3.10 The effect of year and location on the white clover half-sib family dry 

matter yield at the two sites (Aorangi and Ruakura), evaluated under dairy cattle 

grazing. Error bars represent standard errors of the mean. 
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Table 3.4 Range, mean, additive genetic variance (σ2
f), family-by-location (σ2

f.l), family-by-year (σ2
f.y), family-by-year-by-location 

(σ2
f.y.l) residual variance (σ2

ε),  their associated ± standard errors and family mean narrow-sense heritability (h2
n) for dry matter 

yield cuts of  200 half-sib families across two locations, Aorangi and Ruakura. 

Source σ2
f σ2

f.l σ2
f.y σ2

f.y.l σ2
ɛ h2

n Mean  Plot range (kgha-1) HS Family range(kgha-1) 

 Year 2017 

Aorangi 0.19 ± 0.09* n.a. n.a. n.a. 1.60 ± 0.12 0.27 ± 0.10 804 17.50 - 2327.50 298 - 1513 

Ruakura 0.08 ± 0.08 n.a. n.a. n.a. 1.16 ± 0.27  607.5 12.50- 2187.50 182 - 1618 

Across sites 0.15 ± 0.04* 0   1.40 ± 0.07 0.37 ± 0.08    

 Year 2018 

Aorangi 0.25 ± 0.06* n.a. n.a. n.a. 0.81 ± 0.06 0.48 ± 0.07 477.5 17 - 1767.50 85 - 1030 

Ruakura 0.13 ± 0.14 n.a. n.a. n.a. 2.02 ± 0.16  724 0 - 2515 245 - 1615 

Across sites 0.14 ± 0.05* 0   2.10 ± 0.07 0.35 ± 0.10    

 Across years 

Aorangi 0.24 ± 0.05* n.a. 0 ± 0 n.a. 1.19 ± 0.06 0.54 ± 0.06 643 17.50 - 2345 n.a. 

Ruakura 0.08 ± 0.06 n.a. 0 ± 0 n.a. 1.40 ± 0.08  664 0 - 2515 n.a. 

Across sites 0.10 ± 0.03* 0.10 ± 0.04* 0 ± 0 0 ± 0 1.45 ± 0.05 0.38 ± 0.09       

*Significant at P < 0.05, n.a = not applicable.  
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3.3.2.1.8. Check Performance for DM yield 

Figure 3.11 presents the DM yield performance of the top 20 families compared to 

‘Grasslands Kopu II’ and ‘Grasslands Bounty’, the two commercial check cultivars 

included in the trial. When compared to all 200 HS families, 10 and 25 HS families had 

significantly (P < 0.05) higher DM yield in comparison to ‘Grasslands Kopu II’ and 

‘Grasslands Bounty’, respectively (Appendix A.7). The two checks, ‘Grasslands Kopu 

II’ and ‘Grasslands Bounty’ produced 38% and 50% less herbage DM than the highest 

performing family, HS 109. 

 

Figure 3.11 Mean dry matter yield of the top 10% of 200 half-sib families and two 

commercial check cultivars; ‘Grasslands Kopu II’ and ‘Grasslands Bounty’. The 

trials were conducted at Aorangi and Ruakura under dairy cattle grazing across 

years 2017 and 2018. 
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3.3.2.1.9. Leaf Size 

Significant (P < 0.05) additive genetic variation was estimated among the 200 HS 

families for leaf size at Aorangi and Ruakura for all years apart from Ruakura 2019 as 

presented in Table 3.5. Across-site analyses for individual years, as well combining all 

years, also revealed significant (P < 0.05) additive variation. Across-site additive genetic 

variance (σ2
f) was predominantly lower than individual site analyses. Family × location 

(σ2
f.l) interaction was significant for individual years 2018 and 2019, as well as  across all 

three years and was less than or equal to the genetic variation when combining sites. The 

three-way interaction of family × year × location (σ2
f.y.l) was significant while family × 

year (σ2
f.y) interaction was only significant at Aorangi when analyses was combined 

across all years. The residual error variance component was larger than all other 

components. Family mean heritability ranged from 0.13 to 0.73 and increased as the trial 

progressed.  

Table 3.5 Estimated additive genetic (σ2
f), family-by-location (σ2

f.l), family-by-year 

(σ2
fy), family-by-year-by-location (σ2

f.y.l) and pooled error (σε) variance components 

with their associated standard errors (± SE) and family mean narrow-sense 

heritability (h2
n) estimated across locations; Aorangi, Ruakura and across years for 

leaf size scores in white clover. 

Source σ2
f σ2

f.l σ2
f.y σ2

f.y.l σ2
ɛ h2

n 
 

Year 2017 

Aorangi 0.07 ± 0.03* n.a. n.a. n.a. 0.55 ± 0.05 0.26 ± 0.10 

Ruakura 0.06 ± 0.02* n.a. n.a. n.a. 0.29 ± 0.06 0.30 ± 0.09 

Across sites 0.05 ± 0.01* 0.01 ± 0.01 n.a. n.a. 0.47 ± 0.02 0.36 ± 0.09 
 

Year 2018 

Aorangi 0.08 ± 0.02* n.a. n.a. n.a. 0.37 ± 0.02 0.51 ± 0.08 

Ruakura 0.09 ± 0.02* n.a. n.a. n.a. 0.29 ± 0.02 0.69 ± 0.06 

Across sites 0.05± 0.01* 0.05± 0.01* n.a. n.a. 0.40 ± 0.01 0.42 ± 0.09 
 

Year 2019 

Aorangi 0.20 ± 0.05* n.a. n.a. n.a. 0.70 ± 0.02 0.46 ± 0.10 

Ruakura 0.02 ± 0.03 n.a. n.a. n.a. 0.01± 0.02 n.s. 

Across sites 0.05 ± 0.01* 0.03 ± 0.01* n.a. n.a. 0.56 ± 0.03 0.31 ± 0.08 
 

Across years 

Aorangi 0.10 ± 0.02* n.a. 0.02 ± 0.01* n.a. 0.40 ± 0.02 0.73 ± 0.06 

Ruakura 0.05 ± 0.01* n.a. 0 n.a. 0.30 ± 0.01 0.66 ± 1.8 

Across sites 0.06 ± 0.01* 0.04 ± 0.01* 0 0.01 ± 0.005* 0.42 ± 0.01 0.7 ± 0.06 

*Significant at P < 0.05, n.a.= not applicable.  
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3.3.2.1.10. Stolon Traits 

There was significant (P < 0.05) additive genetic variation among the 200 HS families 

for the traits stolon number (SN) and number of branches (SB) produced pre-summer 

(PRS) and post-summer (POS) for individual years in the second (2017/2018) and third 

year (2018/2019) of growth (Table 3.6). 

Combining pre-and post-summer assessments, (PRS+POS) showed significant (P < 0.05) 

genetic variation only for Year 2 SB and Year 3 SN. The family × season interaction 

(σ2
f.s) component was significant (P < 0.05) in all cases for SN and SB for individual 

years. Upon combining years however, there were no significant differences observed 

among HS families for either SN or SB and family × season (σ2
g.s) was not also significant 

for PRS, POS and PRS+POS. For both traits SN and SB, family × year (σ2
f.y) interaction 

was significant for PRS and POS but not for PRS+POS, while the three-way interaction 

of family × year × season (σ2
f.y.s) was significant. The residual error variance component 

was the largest variance component. Family mean heritability ranged from 0.14 to 0.3 for 

SN and 0.09 to 0.4 for SB.  

For PRS and POS in Year 2, there was a 150% and 131% difference respectively, between 

the top and worst performing HS family for SN and a 161% and 130% difference 

respectively, for PRS and POS in Year 3. There was a 143% and 163% difference 

respectively, between the top and worst performing line for SB in Year 2 and a 177% and 

174% difference, respectively, in Year 3. 

 



106 

 

Table 3.6 Range, mean, additive genetic variance (σ2
f), family-by-season (σ2

f.s), family-by-year (σ2
f.y), family-by-year-by-season 

(σ2
f.y.s),  residual variance (σ2

ε),  their associated ± standard errors and family mean narrow-sense heritability (h2
n) for white clover 

morphological traits, stolon number (SN) number of branches (SB) measured from the 200 HS families at Aorangi before (PRS) and 

after (POS) summers of 2017/2018 and 2018/2019.  

  

*Significant at P < 0.05, n.a.= not applicable.  

  SN SB 

 Source PRS POS PRS+POS PRS POS PRS+POS 

2017/2018 (Year 2) 

σ2
f 0.44 ± 0.11* 0.31 ± 0.14* 0.09 ± 0.09 1.47 ± 0.45* 1.18 ± 0.37* 0.75 ± 0.30* 

σ2
g.s n.a. n.a. 0.04 ± 0.11*** n.a n.a 0.78 ± 0.34* 

σ2
ɛ 5.16 ± 0.18 8.33 ± 0.29 6.80 ± 0.16 22.87 ± 0.79 20.39 ± 0.70 21.88 ± 0.52 

h2
n 0.20 ± 0.04 0.25 ± 0.09 0 0.37 ± 0.07 0.15 ± 0.04 0.10 ± 0.90 

mean 1782.90 2547 n.a. 3362.04 3565.80 n.a. 

Plot range (no.m2) 0 - 7641 0 - 9678.6 n.a. 0 - 17319 0 - 14263.2 n.a. 

 HS line range (no.m2) 566 - 4019 510 - 4018  1189 - 7244 679 - 6735  

2018/2019 (Year 3) 

σ2
f 0.21 ± 0.07* 0.28 ± 0.1* 0.13 ± 0.06* 1.32 ± 0.36* 1.09 ± 0.29* 0.14 ± 0.24 

σ2
g.s n.a. n.a. 0.13 ± 0.06* n.a n.a 1.12 ± 0.31* 

σ2
ɛ 4 ± 0.14 5.60 ± 0.19 4.80 ± 0.12 17.56 ± 0.60 14.50 ± 0.49 15.90 ± 0.38 

h2
n 0.14 ± 0.04 0.13 ± 0.04 0.28 ± 0.11 0.18 ± 0.04 0.19 ± 0.04 0.09 ± 0.14 

mean 1426.30 1833.8 n.a. 2445.1 2241.31 n.a. 

Plot range (no.m2) 0 - 8150.4 0 - 7641 n.a. 0 - 15282 0 - 17319 n.a. 

 HS line range (no.m2) 283 - 2603 736 - 3509  396 - 6452 396 - 5716  

Across years 

σ2
f 0.09 ± 0.07 0.05 ± 0.09 0.03 ± 0.05 0 0.36 ± 0.24 0.11 ± 0.15 

σ2
f.y 0.28 ± 0.08* 0.30 ± 0.11* 0.07 ± 0.068 1.50 ± 0.29* 0.90 ± 0.30* 0.27 ± 0.22 

σ2
f.s n.a. n.a. 0.04 ± 0.07 n.a. n.a. 0 

σ2
f.y.s n.a. n.a. 0.22 ± 0.09** n.a. n.a. 0.95 ± 0.23* 

σ2
ɛ 4.60 ± 0.11 7.01 ± 0.17 5.80 ± 0.09 20.4 ± 0.40 17.60 ± 0.40 18.90 ± 0.32 
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3.3.2.1.11. Effects of Summer Period on Stolon Traits 

The main effects time and year were significant (P < 0.01) for SN while only the year 

effect was significant for SB (P < 0.001) (Appendix A.8, A.10). As shown in Figure 3.12, 

there was a significant 27% decrease in SN from Year 2 (2017/2018) to Year 3 

(2018/2019) whereas SB decreased by 32% from Year 2 to Year 3. 

The trait SN increased significantly (P < 0.05) by an average of 47.5 % between PRS and 

POS in Year 2. Although it increased by 33% in Year 3, no significant differences were 

detected (Figure 3.11, Appendix A.9). There was an insignificant increase in SB between 

PRS and POS in Year 2 followed by a insignificant decrease between PRS and POS in 

Year 3 (Appendix A.11). 

 

 

Figure 3.12 Predicted means and standard errors of the mean for 200 white clover 

half-sib families measured pre-summer (PRS) and post-summer (POS) for stolon 

number (SN) and number of stolon branches (SB) at a single location, Aorangi. 

 

 

 



108 

 

3.3.2.1.12. Check Performance for Stolon Traits 

When comparing the HS families to the two commercial checks, ‘Grasslands Kopu II’ 

and ‘Grasslands Bounty’, 49 HS families had significantly (P < 0.05) higher SN than 

‘Grasslands Kopu II’. Cultivar ‘Grasslands Bounty’ was not significantly different to any 

of the top families (Figure 3.13), Appendix A.12). ‘Grasslands Kopu II’ produced 

significantly less SB than 17 HS families, while only one family, HS 31, had 43% 

significantly (P < 0.05) more SB than ‘Grasslands Bounty’ (Appendix A.13). 

 

 

Figure 3.13 Mean stolon number (SN) and stolon branches (SB) of the top 10% of 

200 white clover half-sib families and two commercial check cultivars; ‘Grasslands 

Kopu II’ and ‘Grasslands Bounty’. The trial was evaluated at Aorangi under dairy 

cattle grazing across combined summers of years 2017/2019 and 2018/2019. 



109 

 

3.3.2.2. Multivariate Analysis 

3.3.2.2.1. Pearson Correlation 

The pairwise Pearson correlation coefficients are presented in Figure 3.14 and indicated 

that DM had strong positive and significant (P < 0.001) phenotypic correlation with mean 

growth score (GS123) across years, seasons and location, across location seasonal growth 

scores for summer (SumGS), autumn growth scores (AutGS) and spring growth scores 

(SprGS). Dry matter (DM) was moderately positively correlated with Year one across 

location growth score (GS1), across location seasonal growth scores for winter (WinGS) 

and leaf size (LS). Interestingly, there was a significant (P < 0.001) low but positive 

correlation (0.24) between DM and Year 3 post-summer stolon number (SNPOS). 

Although HCN was negatively correlated with almost all traits, the only significant 

relationship was a negative correlation with LS. Leaf size was moderately correlated with 

GS123 and had a significant negative correlation with Year 3 pre-summer stolon number 

(SNPRS). Pre-summer stolon number and number of branches (SNPRS) and (SBPRS) 

had a significant (P < 0.001) positive correlation (0.67), while post-summer stolon 

number (SNPOS) and number of branches (SBPOS) also had significant (P < 0.001) 

positive correlation (0.6). The pre-summer stolon traits had a low correlation with the 

post-summer stolon traits. All stolon traits (SNPRS, SBPRS, SNPOS and SBPOS) had 

low but positive correlations with all seasonal growth scores. 
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Figure 3.14 Pearson correlation coefficients among traits estimated from the Best 

Linear Unbiased Predictor (BLUP) values of the 200 HS families for traits :Year 1 

across location growth score (GS1), Year 1 and 2 dry matter across location (DM), 

across all years and location growth scores for all seasons (GS123), summer 

(SumGS), Autumn (AutGS), winter (WinGS), spring (SprGS), leaf size (LS), Year 3 

pre-summer stolon number (SNPRS), pre-summer stolon branches (SBPRS), post-

summer stolon number (SNPOS), post-summer stolon branches (SBPOS) and 

hydrogen cyanide production (HCN). Correlations are above the diagonal; P values 

are below the diagonal and indicate significance at 0.05 level. Locations are Aorangi 

and Ruakura. *Stolon traits were measured at Aorangi only. 
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3.3.2.2.2. Pattern Analysis  

Figure 3.15 provides a graphical summary of the association among traits as well as the 

clustering pattern of the 200 HS families according to trait expression.  

The first four PCs explained, respectively, 30.6, 19.4, and 12% of the overall phenotypic 

variation among HS families for yield and persistence-related traits (Figure 3.15, 

Appendix A.14). Although PC 2 and PC 3 accounted for similar amounts of variation, 

results are presented for PC 2 due to the better visual discrimination, further supported by 

the dendrogram generated from the cluster analysis. (Appendix A.15). The first axis 

(PC1) was a negative indicator of the yield-related traits; GS1, DM, GS123 and LS and 

the persistence-related traits, SNPRS, SBPRS, SNPOS and SBPOS with traits loading 

heavily on that dimension, demonstrating their importance (Appendix A.16). PC1 was a 

positive indicator for only HCN, confirming the negative association with the other traits. 

The short vector length of HCN also indicates a weak association with the other traits 

(Weikai, 2014). PC2 was a positive indicator for the yield-related traits and negative for 

the persistence related traits; SNPRS, SBPRS, SNPOS and SBPOS (Appendix A.16). The 

pre-summer stolon traits had the largest impact on PC2 while the post-summer stolon 

traits had the largest impact on PC3 (Appendix A.17). 

The angle between directional vectors represents the correlation structure among the 

traits. The yield traits (DM, GS, GS1) were highly positively correlated as shown by the 

(< 90°) angles between them. The stolon traits also showed strong positive association 

but those measured in the same season had a greater positive association with each other, 

such as SNPRS and SBPRS and SNPOS and SBPOS which were more closely associated 

with each other. Stolon traits showed no to slightly negative association with LS and an 

inverse relationship with HCN. There was also a negative association between HCN and 

LS. It is worth highlighting the positive association between yield-related traits and 

post-summer traits, SN and SB. For example, several HS families in group 1, (red), far 

from the vector origin and between the stolon and yield traits e.g., HS 14 and 117, indicate 

above average expression for DM yield and persistence-related traits like SN and SB. 

Cluster analysis generated three groups (Table 3.7). The number of genotypes within each 

group ranged from 33 in group 1 to 92 in group 3. Group 1 consisted of genotypes with 

the highest mean expressions for DM yield, GS and LS. Group 2 had the second highest 
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mean and possessed combined high expressions for pre and post-summer SN and SB. 

While group 3 predominantly contained HS families high in HCN production. 

 

Figure 3.15 Biplot generated from pattern analysis using standardised Best Linear 

Unbiased Predictor (BLUP) values of 200 HS families for traits: Year 1 across 

location growth score (GS1); Year 1 and 2 dry matter across all locations (DM); 

across all years and location growth scores for all seasons (GS123); leaf size (LS); 

Year 2 pre-summer stolon number (SNPRS), pre-summer stolon branches 

(SBPRS); post-summer stolon number (SNPOS); post-summer stolon branches 

(SBPOS) and hydrogen cyanide production (HCN). Locations are Aorangi and 

Ruakura. *Stolon traits were measured at Aorangi only. 
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Table 3.7 Number of HS families and means of groups identified by cluster analysis. 

Values are for 200 HS family lines for traits: Year 1 across location growth score 

(GS1); Year 1 and 2 dry matter across all locations (DM); across all years and 

location growth scores for all seasons (GS123); leaf size (LS); Year 2 pre-summer 

stolon number (SNPRS); pre-summer stolon branches (SBPRS); post-summer 

stolon number (SNPOS); post-summer stolon branches (SBPOS); and hydrogen 

cyanide production (HCN). Locations are Aorangi and Ruakura. *Stolon traits were 

measured at Aorangi only. 

Cluster No. of lines GS1 DM GS123 LS SNPRS SBPRS SNPOS SBPOS HCN 

1 34 5.44 2.90 5.51 3.22 2.67 4.88 3.72 4.35 2.88 

2 92 5.19 2.57 4.45 3.08 2.78 4.90 3.61 4.71 3.01 

3 74 5.20 2.63 4.56 3.21 2.40 3.76 3.16 3.54 3.25 

 

3.3.2.2.3. Pattern Analysis of Seasonal Growth Scores 

The biplot (Figure 3.16) generated from the PCA for mean seasonal growth scores across 

the two locations and years shows that the first PC1 and PC2 accounted for 46.6% and 

29.8% of the variation, respectively. PC1 had negative associations with all traits while 

PC2 was a positive indicator for Aorangi seasonal GS with traits loading heavily in that 

dimension compared to Ruakura seasonal GS (Appendix A.19). Ruakura seasonal GS 

contributed more to PC2 and PC3 (Appendix A.20). Angles among the directional vectors 

indicate a positive but weak relationship between both locations. HS families 116 and 18 

displayed high performance at both sites while HS families 15 and 15, 4 and 17 performed 

better at either Aorangi or Ruakura respectively. 

Cluster analysis generated four groups. Group 4 had the highest mean expression for all 

four seasons across the two sites. Group 3 had the second highest mean (62 HS families) 

with the highest yields in Ruakura than in Aorangi, while group 1 was the third highest 

with HS families performing better in Aorangi. The last group, 2, consisted of HS families 

that performed better in some seasons than group 1 and/or 3 but was on average the lowest 

group.  



114 

 

 

Figure 3.16 Biplot generated from pattern analysis using standardised Best Linear 

Unbiased Predictor (BLUP) values of 200 HS families assessed in two locations, 

Aorangi (Ao) and Ruakura (Ro) over three years for seasonal herbage growth scores 

summer (SumAo and SumRu), autumn (AutAo and AutRo), winter (WinAo and 

WinRu) and spring (SprAo and SprRu). 
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Table 3.8 Number of HS families and group means generated from cluster analysis 

of BLUP’s based on performance of 200 HS family lines across two locations and 

three years for seasonal herbage growth scores summer (SumAo and SumRu), 

autumn (AutAo and AutRo), winter (WinAo and WinRu) and spring (SprAo and 

SprRu). The two locations are Aorangi (Ao) and Ruakura (Ru). 

Cluster No of lines WinRu SprRu SumRu AutRu SumAo SprAo WinAo AutAo 

1 45 4.84 4.31 5.52 5.51 6.08 5.41 6.09 6.69 

2 24 5.02 4.21 5.60 5.54 5.42 4.58 5.46 6.02 

3 62 5.65 4.82 6.10 6.12 5.78 4.91 5.81 6.47 

4 69 5.81 4.93 6.28 6.26 6.22 5.95 6.35 6.89 
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3.4. Discussion 

A key criterion for the success of a breeding programme is the understanding of the 

breadth of genetic variation for important selection traits. The primary objective of this 

chapter was to investigate the magnitude of additive genetic variation among a training 

population of 200 white clover HS families, within a genomic selection programme, 

evaluated in a multi-location/year/season trial for important morphological traits 

contributing to DM yield and vegetative persistence. Analysis of the HS family data 

would also enable estimation of genetic parameters, e.g., heritability and genetic 

correlation. 

3.4.1. Genetic Variation 

 High and significant genetic variation was present for HCN, indicating the potential 

genetic variation available for selecting either high or low expression of this trait 

depending on the breeding goals for the target market as it varies from country to country. 

For example, the large leaved Ladino cultivars with low HCN are used extensively in the 

United States (Crush & Caradus, 1995) and several European countries where low levels 

of HCN are preferred. Whereas in New Zealand, the preference is for cyanogenic cultivars 

that have historically been agronomically successful (Caradus & Williams, 1989). 

Considerable amounts of additive genetic variance were estimated for DM, LS, SN and 

SB across years, locations and seasons. Similar results were reported in other studies 

evaluating white clover populations (Woodfield & Caradus, 1990; Jahufer et al., 1994; 

Caradus & Chapman, 1996; Jahufer et al., 1997; Annicchiarico  et al., 1999; Jahufer et 

al., 1999; Jahufer et al., 2016). This variation is important for breeders as selection is only 

effective when there is available genotypic variation that allows substantial genetic gain 

to be made (Acquaah, 2012). The significant genetic diversity means that superior plants 

can be identified and successfully used to achieve genetic gain for traits under selection. 

No significant additive variation was detected at Ruakura for both of the full-scale DM 

cuts. It must be noted that the full-scale cuts are taken at one point in time only and it is 

possible that the HS families had low detectable genotypic variation amongst them at the 

time of the sampling. The challenging environment in Ruakura could possibly suppress 

the expression of genetic variation; hence, reducing the ability to detect significant 

differences among HS families. Other possible reasons could be attributed to the presence 
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of large sampling errors (as evidenced by the large standard errors), bias in collecting 

samples or insufficient sample size that prevented significant differences to be observed. 

3.4.2. Genotype-by-Environment Interaction 

There was significant family × year,  family × location,  family × season as well as family 

× year × season and  family × year × location interactions for most traits. Caradus and 

Chapman (1991) Caradus et al. (1993), Jahufer et al. (1994) and Jahufer et al. (2009) have 

also reported significant G×E interaction for many yield and persistence-related traits in 

white clover. As expected, for polygenic traits like GS, SN and SB, the magnitude of 

interaction variance components was often greater than the family additive genetic 

variance component, demonstrating a change in relative performance of HS families 

across spatial and temporal environments. In contrast, LS, a trait influenced by 

considerably fewer genes, had higher additive genetic variation relative to G×E, showing 

a higher level of genotype influence on the phenotype. This presence of G×E implies that 

DM yield at Aorangi would be a poor predictor of DM yield at Ruakura as these complex 

traits are more influenced by environment than genotype. Results of the PCA biplot 

(Figure 3.16) also show a low correlation between locations. However, cluster analysis 

revealed HS families that can be selected for broad adaptation across both locations, for 

example, HS families 116 and 18, whereas, HS families 14 and 15 with superior 

performance in Aorangi, might be selected for specific adaptation to that location (Figure 

3.16). 

The relative contribution of family × year to the total amount of observed variation was 

lower than family × location indicating that location had a greater effect on seasonal GS 

than the year of growth. The presence of G×E not only complicates comparisons among 

genotypes but also reduces the efficiency of selection of superior genotypes as the true 

genetic variation is confounded by environmental effects (Falconer, 1989). Because little 

success can be expected by phenotypically selecting for these traits in one environment, 

trials will have to be run across multiple environments and years to assess the true 

breeding potential of selection candidates, especially if the goal is to breed for broad 

adaptation (Brown & Caligari, 2008a; Moose & Mumm, 2008; Jahufer et al., 2013). 

Notwithstanding, with selection strategies based on genotypic rather than phenotypic 

selection, decision making strategies for these traits could be improved. 
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3.4.3. Heritability 

For a simple trait such as cyanogenesis (HCN), the estimate of narrow-sense heritability 

on a family mean basis was high (0.82). However, this result must be interpreted with 

caution due to a probable upward bias as variance estimates were obtained before HS 

families were transplanted to the trial locations and could be confounded by G×E 

(Nyquist & Baker, 1991; Falconer & Mackay, 1996). Heritability estimates for LS was 

moderate to high (0.3 - 0.73) and similar to other studies by Barcikowska (1976); Caradus 

and Woodfield (1990); (Woodfield & Caradus, 1990; Jahufer et al., 1994; Caradus & 

Chapman, 1996). It can therefore be assumed that for such a simple trait, fewer numbers 

of locations and years may be sufficient for evaluation due to the consistent performance 

of HS families (Falconer & Mackay, 1996; Dohm, 2002). 

As the traits became more complex, i.e., DM yield, growth scores and stolon density, they 

tended to have lower heritability estimates than simple traits like LS and HCN. 

Heritabilities for DM yield were low to moderate (0.27 - 0.54) and comparable to 

Annicchiarico  et al. (1999) (0.52), Jahufer et al. (1999) (0.38) and Finne et al. (2000) 

(0.44). Heritability for SN (0.13 – 0.25)  is similar to studies by Caradus and Woodfield 

(1990) that placed heritability estimates in the range of 0.11 to 0.45. Heritability for SB 

(0.15 – 0.37)  is lower than reported by Rowe and Brink (1993) (0.59) and consistent with 

Jahufer et al. (1999) (0.27) and Caradus et al 1990, (0.37). These low heritabilities could 

also be influenced by large error variances, which result from insufficient replication, 

problematic experimental design, human error in data sampling and inappropriate choice 

of data analysis (Weikai, 2014). 

The low to moderate heritabilities for DM, GS and stolon traits indicate the likely 

challenges to be faced in improving these traits. These low heritabilities are not surprising, 

as these traits are complex with quantitative inheritance patterns strongly influenced by 

the environment. While it does not signify additive genetic variance is lacking, it implies 

that of the observed variation, a substantial proportion is caused by environmental 

variation rather than genetic differences (Visscher et al., 2008). This means that even 

though selection for yield and vegetative persistence is possible due to the genetic 

variation available, it is hampered by the low narrow-sense heritabilities that are caused 

by high non-additive genetic variation (Annicchiarico, 2015). From a breeding 

perspective, it translates to difficulty in trait improvement via mass selection or individual 
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phenoypic selection strategies. Nevertheless, more discriminatory methods like progeny 

testing and family-based selection methods which allow breeders to access and utilise 

among and within family additive genetic variation would prove useful. 

Heritabilities were generally lower for earlier measurements and increased with time, as 

an increase in the number of years reduces the divisor in the heritability equation. It can 

be deduced that making selections at earlier stages may not be as efficient as selecting 

later in the breeding cycle when important persistence related traits can be observed. This 

also shows the importance of multi-year trials in identification of superior breeding 

material. On the other hand, across location heritabilities were usually lower than 

individual location heritabilities, this could be as a result of magnitude of the  family × 

location variance relative to the line additive variance (Weikai, 2014). 

Differences were obsereved between the heritabilities at both locations, heritability at 

Aorangi was higher than at Ruakura for most traits. This is likely due to the higher levels 

of enviromental heterogeneity at the Ruakura enviroment which mask the additive 

variation. This is not surprising as the two locations are remarkably different in terms of 

climatic and soil conditions, weed, pest and disease pressures. According to Falconer 

(1989), differences in heritability between locations could be a result of differences in 

either the genetic variance or the enviromental variance or both of these factors. 

3.4.4. Year and Season Effect on Yield 

In the HS family trials across the two sites Aorangi and Ruakura, the contribution of white 

clover herbage yield to pasture varied over seasons and years and revealed similar patterns 

of herbage accumulation at both locations. The differences in the performance of the HS 

families are likely driven by temporal variation in temperature and rainfall (Brougham, 

1958, 1977). This differential response by genotypes to environmental fluctuations is a 

result of the combination of the genetic variation for the trait as well as genetic variation 

in the plasticity of response to different external stimulus (Hoffman & Parsons, 1991). 

Comparison of the three years seasonal GS showed that DM yield differed across years 

significantly, indicating an influence of time (year) on the variability of yield. DM yield 

was significantly higher in the second year especially during the summer and autumn 

months. This is similar to that reported by Widdup and Barrett (2011) and Caradus et al. 

(1995) indicating that white clover produces the greatest amount of herbage biomass in 

the second year of growth. Also, the second year showed the greatest amount of 
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phenotypic variation. The decrease in DM yield in the third year could be explained by 

the plants becoming more susceptible to biotic and abiotic stresses like intraspecie 

competition (Chapman et al., 1996), adverse weather conditions (Wachendorf et al., 

2001), pests and diseases and reliance on a weak fibrous root system (Brock & Caradus, 

1995). 

Even though all seasons had the highest DM production in 2018, spring in Aorangi that 

year had the lowest amount of DM. This decrease in herbage production is also reflected 

in the full - scale dry matter cuts that were also collected in that season in 2018. Among 

the plausible explanations for the abnormally low DM yield could be the low amount of 

rainfall (total of 208 mm) over the spring months of that year. September and October 

2018 received 58 mm and 54 mm of rainfall respectively. Wachendorf et al. (2001) 

reported seasonal precipitation as having an impact on white clover spring growth and 

according to Brock et al. (1988), clover content can be reduced by over 70% during spring 

drought. In 2018, most clover plants would have made the transition from tap roots to 

fibrous, nodal roots. It is probable that the low DM yield could be as a result of clover 

plants relying on their fibrous roots which are shallow and lack the ability to forage deeper 

soil layers for water and resources; whereas, in 2017, they still possessed their tap roots 

which are hardier and penetrate deeper into soil layers thus ensuring better access to water 

and nutrients (Caradus, 1977). It must be noted, however, that Ruakura had comparable 

precipitation levels (185 mm) in spring with relatively less effect on DM yield. Therefore, 

the full cause of this discrepancy is uncertain. 

The lowest biomass was recorded in winter and spring and highest in autumn and summer. 

Low herbage production in winter is explained primarily by the fact that plants have 

reduced leaf area index due to fewer number of leaves and lower leaf surface area to 

intercept radiation; thus, resulting in restricted photosynthetic ability (Woledge et al., 

1990). Previous New Zealand research has suggested that the reason for low yield in 

spring and reduced clover contribution to pasture is due to several reasons, outlined by 

Brock et al. (1988) as drought conditions, lax defoliation regimes and over zealous 

nitrogen fertilizer applications. Another primary reason is temperatures being around 

15.5°C, which is optimum for ryegrass growth, thereby tilting the balance in favour of 

the actively growing ryegrass (Brougham, 1958; Woodfield & Caradus, 1996; 

Wachendorf et al., 2001). At the onset of summer, however, due to warmer tempereatures, 

now in the optimum range of 18°C to 29°C for white clover, ryegrass growth rate 
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decreases (Brougham, 1958). White clover is then able to contribute more to the total 

herbage yield during this period due to its ability to thrive under warmer temperatures 

coupled with the reduced competition from ryegrass (Brock et al., 1988). Overall, even 

though the white clovers’ contribution to yield in a mixed sward is characterised by 

variability, a major benefit of gowing clover in a mixed sward with ryegrass is this 

seasonal complementarity which ensures available feed for livestock all year round 

(Brougham, 1958; Harris & Thomas, 1973; Caradus et al., 1995). 

3.4.5. Year and Season Effect on Vegetative Persistence 

A key problem with white clover is the inability to sustain a sufficiently large proportion 

of clover in mixed swards for its nitrogen fixation and animal production benefits to be 

realised (Woledge et al., 1990). Hence, the maintenance of high stolon density is an 

important trait for white clover vegetative persistence as the stolon is the primary 

structural unit of the plant (Thomas, 1987b). High stolon density allows for better capture 

of light and nutrients to support adequate clover growth (Piano & Annicchiarico, 1995). 

The mean number of stolons produced over both years, (1910 stolons m-2), was in the 

range reported by Woodfield and Caradus (1994), on 110 global white clover cultivars 

and ecotypes (531 - 2075 stolons m-2). Similarly, the mean number of stolons branches 

produced over both years, (2933 stolon branches m-2), was in the range reported by 

Jahufer et al. (1999) on 63 white clover germplasm accessions (398-3582 stolon branches 

m-2) and Jahufer et al. (1995) on 43 white clover accessions (453-3725 stolon branches 

m-2). 

A hypothesis at the start of the experiment, reported in this chapter, was that stolon 

density, as measured by stolon number and branching, would be impacted by summer 

moisture stress, resulting in a decline. However, this was not the case and two trends were 

immediately apparent: first, there were more stolons in the HS family trial plot swards 

after summer in both years of measurement: and second, there was a significant decline 

in the following years assessment for SN and SB, respectively. The increase over summer 

in the first year was initially assumed to be due to the fragmentation of stolons as a result 

of the loss of the tap root system. But despite the relatively dry summers with summer 

months receiving only 193 mm and 154 mm of rain over the two summers, similar results 

were observed in the following year over summer. Previous research findings into 

survival of stolons over summer have been inconsistent, expectedly due to the differences 
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in study conditons, climatic patterns and genetic diversity in HS families used. While Hay  

et al. (1983), Hay et al. (1987) and Caradus and Williams (1989) found stolon number to 

be higher in summer and autumn, Jones (1982) and MacFarlane et al. (1990) reported 

summer moisture stress causing a decline in stolon numbers. A detailed study by Archer 

and Robinson (1989) over five years found stolon density to only be affected by summer 

drought when soil moisture levels fall below 35 mm and corresponding temperatures were 

higher than 30°C. In our study, mean maximum temperatures were 25°C and 24°C and 

total rainfall was 193 mm and 154 mm during the summer periods of both years. As there 

was no clear effect of summer moisture stress on stolon number and branching despite 

the low amounts of rainfall, our results support the findings that a combination of 

conditions of high temperatures and moisture deficit have to be met before stolon density 

declines. 

3.4.6. Relationship Between Traits 

To save time and cost, early selection is advantageous to breeders and the identification 

of traits at early growth stages that correlate positively with yield at later stages is 

beneficial. Year 1 growth score (GS1) had a high correlation with growth score Years 1 

– 3 across locations (GS123) and DM yield, indicating that good establishment translated 

to better performance in later years. 

The trait HCN had a low but significant negative correlation with the yield-related traits, 

DM, GS and LS. This suggests that highly cyanogenic plants tended to have reduced 

biomass compared to plants that produced lower amounts of HCN. This aligns with 

Noitsakis and Jacquard (1992) whose work showed that acyanogenic genotypes 

possessed more biomass than cyanogenic genotypes, thereby supporting the theory that 

the production of HCN may come at an energy cost to the plant. Although there was a 

weak negative correlation between HCN and stolon traits, only pre-summer SN was 

significant. This shows that cyanogenic plants did not necessarily possess the 

morphological stolon traits that are correlated with improved vegetative persistence in 

pasture. Caradus and Williams (1989) and Crush and Caradus (1995) reported that 

cyanogenic plants were more persistent through the pest resistance conferred by the HCN 

production in the plants. Our results indicate that the contribution to persistence by 

cyanogenesis in this study, is not necessarily via an increase in stolon density. Leaf size 

was also significantly negatively correlated with HCN. These results differ from results 
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by Caradus et al. (1989a) who reported no correlation between HCN and LS and Caradus 

et al. (1990) who reported a positive correlation between cyanogenesis and leaf size. 

The traits SB and SN had high significant positive correlations supported by the PCA 

biplot. Jahufer et al. (1994) also reported high correlations between SN and SB. This high 

correlation can be attributed to pleiotropy or the common genes contributing to both traits 

are likely co-inherited (Lynch & Walsh, 1998). 

The high correlation between GS and DM yield indicates the suitability to use scores as 

a measure of DM yield. Riday (2009) demonstrated that visual scores were accurate in 

estimating quantitative measurements if the correlation between them was high. Since 

DM harvests require more time, cost and labour, scores allow for more efficient resource 

use. The positive significant association between DM and LS provides the opportunity to 

indirectly select for increased DM yield using LS, as this trait is easier to measure and 

has a higher heritability (Hallauer & Filho, 1981; Casler, 2012). The trait LS was either 

not correlated or negatively correlated with SN and SB. This negative correlation is 

supported by numerous studies (Caradus & Williams, 1981; Caradus & Woodfield, 1990; 

Jahufer et al., 1994; Annicchiarico  et al., 1999; Brock & Tilbrook, 2000) and implies a 

negative correlation between DM yield and stolon density, since it is well known that LS 

is a major contributor to the yield potential of white clover (Caradus et al., 1989a; 

Woodfield et al., 2001). The negative relationship observed is because plants with bigger 

leaves tend to have fewer stolons.  

An interesting finding in our study was the positive correlation (0.24) and (0.33) between 

DM yield and post-summer SN and GS123, respectively. Results of the PCA biplot 

(Figure 3.14) also support this finding and although the two principal components did 

adequately capture all the variation represented in the data, it was still useful in displaying 

the most important relationship patterns. This is not the first time this positive correlation 

between DM yield and stolon traits has been reported as Annicchiarico  et al. (1999) and 

Jahufer et al. (1999) also reported similar results. This positive correlation coupled with 

the results from the cluster analysis enabled the identification of several promising HS 

families that are both high yielding and persistent. This reinforces the fact that it is 

possible to simultaneously breed for increased DM yield and stolon density without a 

trade-off occurring (Caradus & Williams, 1989). 
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3.4.7. Check Cultivar Performance 

‘Grasslands Kopu II’, a large-leaved cultivar renowned for its large leaf size and high 

herbage DM yield was found to have higher DM yield than ‘Grasslands Bounty’ albeit 

not significantly. ‘Grasslands Bounty’ on the other hand, a clover cultivar especially bred 

for high stolon density, had more stolons and stolon branches than ‘Grasslands Kopu II’, 

again substantiating the finding that large-leaved cultivars produce fewer stolons than 

small-leaved cultivars. Comparison with the HS families revealed several HS families 

that had superior agronomic performance in terms of DM yield and vegetative persistence 

than the two commercial checks. Notably, ‘Grasslands Bounty’, performed significantly 

better than many of the HS families for SN and SB and was only outperformed by HS 

family 31 for SB. The HS families with higher expressions of these traits are valuable for 

future breeding programmes although investigation into their performance in a wider 

range of environmental conditions is warranted. 

3.4.8. Conclusions 

• Considerable additive genetic variation was found among the 200 white clover 

HS families for key traits especially DM yield, SN and SB. Taken together with 

the estimated narrow-sense heritabilities, this indicates that selection can deliver 

significant genetic gain for yield and persistence. 

• Significant G×E was observed in the form of year, location and season 

interactions. This validates the need for multi-site trials across different years and 

seasons. 

• Herbage yield showed great plasticity in response to year and season changes. DM 

yield was highest in summer and clover content started to decline in the third year. 

Spring and winter were identified as potential vulnerable periods for white clover 

growth in pastures due to a combination of factors including low temperatures and 

competition from the companion grass. Management practices like avoidance of 

excessive nitrogen fertilizer application and frequent defoliation in spring to 

prevent ryegrass growth from outcompeting the clover are encouraged. 

• A pattern of stolon increase over summer was observed indicating that the 

relatively cool summers did not severely influence stolon characters. The average 

number of stolons and branches was also higher in the second year of growth and 
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declined by the third year signifying a start of the decline of clover persistence in 

sward. 

• A moderate positive correlation was observed between herbage production and 

post-summer stolon number. This finding has important implications as it means 

genotypes that combine high herbage yield and vegetative persistence can be 

developed from this population. 

• Comparative performance of the 200 HS families to two commercial checks, 

‘Grasslands Kopu II’ and ‘Grasslands Bounty’ identified HS families with 

improved agronomic performance in terms of yield and persistence. Further 

evaluation over years and locations will be paramount in determining if this 

advantage is maintained. 

3.4.9. Foreword to Chapter 4 

To implement genomic selection in plant breeding, training population design and 

specifications will have to be developed and optimised for any species. The primary 

objective of Chapter 3 was to establish a population from which genetic variation 

available for desired traits relevant to white clover yield and persistence could be 

determined. In the following chapter, the potential to use genomic selection to accelerate 

the progress in genetic gain for several traits in this population will be explored. The 

factors affecting predictive ability will also be examined. Using simulation, the rate of 

genetic gain obtained via conventional among-family phenotypic selection and progeny 

test will be compared to a strategy utilizing among-family phenotypic selection and 

within-family genomic selection (AFp-WFgs) and their cost-efficiencies compared. 
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4. Implementation of Genomic Selection  

4.1. Introduction 

Selection of elite genotypes is a key phase in any plant breeding programme. The ability 

of a breeder to accurately evaluate numerous potential selection candidates for key traits 

poses a significant challenge. Often, phenotypes of individuals are assessed at the fully 

developed plant stage which makes phenotyping an expensive and laborious procedure. 

Forage plant breeders must maintain and evaluate large populations across years, seasons 

and locations, especially when evaluating material for broad adaptation. This can also be 

inefficient as individuals not selected are usually discarded, culminating in a waste of 

financial and physical resources. Therefore, the ability to identify elite individuals at the 

seedling stage would prove useful in reducing breeding cycles by eliminating the need to 

wait for later-stage filial generations to phenotype important traits (Rutkoski et al., 2011; 

Bassi et al., 2016; Herter et al., 2019). 

Genomic selection leverages the decreasing cost of genotyping platforms such as 

genotyping-by-sequencing (GBS) and utilises genome-wide markers and phenotype 

information to estimate genomic estimated breeding values (GEBVs) for future selection 

candidates (Annicchiarico et al., 2019). Using their GEBVs, the best individuals are 

identified and advanced to replicated trials or used as parents to produce the next 

generation (Grinberg et al., 2016). A major advantage conferred is the reduction in the 

generation interval by being able to rapidly go through several cycles of selection 

especially for perennial species (Heffner et al., 2010; Resende et al., 2012b). Heffner et 

al. (2010) estimated this reduction in time to be one-third or less than the standard time 

spent on phenotypic selection. In many perennial forage species where the preferred 

method of assessing an individual’s breeding merit is by progeny testing; requiring at 

least three years per cycle (Quesenberry et al., 1991), genomic selection is of great 

benefit. Even though accelerating the breeding cycle is considered the most efficient way 

to expedite genetic gain, other elements of the breeder’s equation are also addressed 

(Cobb et al., 2019). Selection intensity is increased by the expanded capacity to screen 

more individuals, made possible by high-throughput genotyping, while also exploiting 

the added benefit of a more diverse germplasm. In addition, by relying on the genotype 

of the individual rather than on phenotype record, which is often influenced by G×E and 

environmental noise, the precision in estimating the true breeding value is increased 
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(VanRaden et al., 2009). In addition, the lack of access to within-family variation has 

been identified as a major reason for the poor genetic gain in forages, as 75% of the 

genetic variation is located within families (Casler, 2008; Resende et al., 2014). Genomic 

selection allows breeders to exploit both among and within family variation, potentially 

accelerating genetic gain. 

Many factors, including trait architecture, genomic selection model, marker density, 

linkage disequilibrium (LD) and training population size, are known to influence 

predictive ability and a considerable amount of research has focused on elucidating these 

factors (Meuwissen et al., 2001; Goddard & Hayes, 2007; Hayes et al., 2009b; Zhong et 

al., 2009; Crossa et al., 2013a; Daetwyler et al., 2013; Isik, 2014; Isidro et al., 2015). 

More recently, a new variant of genomic selection has emerged, multi-trait genomic 

selection, which has been found to confer significant boosts for improving predictive 

ability under certain scenarios (Jia & Jannink, 2012). Genomic selection is usually 

performed on a single trait at a time, however, since several traits are usually phenotyped, 

it is worthwhile to take advantage of the relationship among traits to boost predictive 

ability by including more traits in the model (Jia & Jannink, 2012; Montesinos-López et 

al., 2019). Like indirect selection in conventional breeding, the selection accuracy of a 

low heritability trait, such as DM yield, can be substantially improved by harnessing the 

correlation with another highly heritable trait via a multi-trait genomic selection approach 

(Jia & Jannink, 2012; Guo et al., 2014a). 

For many species, phenotyping costs have become a bottleneck in breeding while 

genotyping costs are dropping steadily (Heslot et al., 2015). A case point is white clover, 

which has a low rate of genetic gain due to long breeding cycles, complex genome, 

difficult-to-measure traits (e.g., associated with vegetative persistence) and lack of a 

forage value index, emphasising the importance of applying marker-based methods like 

genomic selection. Before integration of any new strategy into a breeding programme, 

core elements that increase the likelihood of successful implementation of the new 

approach must be evaluated. The main goals of this chapter are to: 

I. Explore the feasibility of implementing genomic selection in white clover. 

II. Optimize genomic selection by assessing the effect of various cross-validation 

schemes, population sizes, marker numbers, model type, and establish practical 
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guidelines and recommendations for genomic selection implementation in white 

clover. 

III. Assess the performance of single-trait and multi-trait genomic prediction models. 

IV. Compare the genetic gain derived from HS phenotypic selection to an among-

family phenotypic selection and within-family genomic selection (AFp-WFgs) 

strategy via simulation. 
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4.2. Materials and Methods  

4.2.1. Development of the Training Population 

 A key step in the development of genomic selection is the establishment of an association 

between molecular marker information “Genotype” and phenotypic information, 

“Phenotype”. In this study, the genotype/phenotype association is based on combining 

molecular information from parents and phenotypic data of progeny. The training 

population consisted of 200 F2 maternal parent plants, which were genotyped prior to 

crossing. 

4.2.2. Evaluation of HS Families 

The phenotype data used in this study consisted of the 200 F3 HS families described in 

the Chapter 3. These HS families were derived from a polycross of the F2 training 

population from which the genotype data were collected. All HS families were evaluated 

in a row-column design at two locations: Aorangi and Ruakura, New Zealand with three 

replications per HS family. Location characterization, trial establishment, trial 

maintenance and trait measurement protocols are described in Chapter 3. Phenotyping 

was carried out from August 2016 to May 2019. Traits measured were HCN (hydrocyanic 

acid) production; dry matter (DM) yield; seasonal growth scores (GS); and leaf size (LS). 

Pre-summer stolon number (SNPRS), pre-summer stolon branches (SBPRS), post-

summer stolon number (SNPOS), and post-summer stolon branches (SBPOS) were 

measured at Aorangi only. Residual Maximum Likelihood (REML) analysis was carried 

out on all traits measured based on a linear mixed model using DeltaGen software 

(Jahufer & Luo, 2018). This analysis resulted in generating estimates of variance 

components and Best Linear Unbiased Predictions (BLUPs) for all traits. A detailed 

description of the linear mixed model and data analyses are presented in Chapter 3. 

4.2.3. DNA Isolation 

Genomic DNA was extracted from the 200 maternal parents in a 96-well plate modified 

from Whitlock et. al (2008) as described by Anderson et al. (2018). Briefly, into each 

well, 50 mg of leaf tissue from each plant was placed and freeze dried. Two 2.38 mm 

stainless steel beads were inserted per well, heat-sealed with the Axygen® Sealing Mats 

and ground with Qiagen Tissue Lyser at 30 Hz for two minutes. To each well, 500 µl 

homogenization buffer plus 1.8 µl proteinase K was added and centrifuged (Hettich 
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Rotanta 460R centrifuge) up to 4000×g at room temperature for 10 minutes and the beads 

removed. From each well, 300 µl of supernatant was transferred to a new Axygen® 1.1 ml 

96-well plate, mixed with 300 µl precipitation buffer, and an Axygen® sealing mat was 

applied before mixing the plate for 30 seconds by inverting it. Plates were incubated on 

ice for 15 minutes before centrifuging at maximum speed (8595×g) for 30 minutes. 

Following that, 400 µl of the supernatant was transferred from each well to a new Pall 

AcroPrep Advance filter plate, mixed with 600 µl binding buffer by pipetting up and 

down gently and centrifuged at 4000×g for two minutes. Distillate was discarded and a 

wash was performed on the filter plate with another round of 300 µl per well of binding 

buffer and centrifuged at maximum speed for two minutes. Two more washes were 

performed with 300 µl per well of washing buffer and 300 µl per well of 100% absolute 

ethanol and centrifuged for two minutes. Plates were then centrifuged at 4000×g for 5 

min at room temperature to dry the membrane before swapping to a fresh Axygen® 1.1 

ml 96-well plate for elution of DNA from the filter plate. To obtain the final eluent, 115 

µl of 10 mM Tris HCl pH 8 and 0.04 µl 100 mg ml−1 RNAse A was added to each well 

and centrifuged at 4000×g for one minute at room temperature yielding approximately 

100 µl of eluent (see Appendix B.1 for the composition of the various buffers).  

The quality and quantity of DNA were measured using a Nanodrop 1000 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA) and visualised  by 

electrophoresis and subsequent ethidium bromide staining on a 0.8% (wt/vol) 

agarose/Tris borate EDTA (TBE)gel. The extracted DNA was quantified using Hoechst 

fluorometric 33258 dye stock on a Bioemk Synergy HTX multi-mode fluorometer, and a 

representative subset of a samples was also quantified using a Qubit fluorometric assay 

(Invitrogen, Carlsbad, California). 

4.2.4. Library Preparation 

GBS libraries were constructed based on a method described by Elshire et al. (2011). The 

enzyme ApeKI (recognition sequence G/CWGC, where W is A or T) was used to digest 

white clover genomic DNA for GBS library making. This enzyme was used because it 

produces more fragment sizes in the optimal range of 100 bp–400 bp for sequencing and 

being a five bp cutter, has more cut sites in the genome thus providing more effective 

coverage across the genome than 6 bp cutters. 
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Before commencing library preparation, white clover genomic DNA (gDNA) was 

digested with ApeKI and titrated against different concentrations of adapter mix (common 

and barcode adapter). This was to make sure all the cut ends of the gDNA have adapters 

ligated to them to ensure equal sample representation. At 99ng of ApeKI adapter mix, an 

adapter dimer was present, indicating that all the cut ends of the gDNA were saturated.  

After the titration experiment, adapter plates of 96 barcode adapters with common 

adapters were dried down to a combined concentration of 99 ng (44.5ng of each). Three 

96-plex GBS libraries were generated using 100 ng of gDNA per sample which was 

transferred onto 99 ng ApeKI adapter plates. Plates were covered with Airpore tape, 

briefly spun and dried down using a SpeedVac concentrator (SpeedVac SPD10300). Once 

dried, the gDNA and adapters were digested with ApeKI. The digestion mix for one 

reaction was 0.2 µl of 5 U ApeKI enzyme (NEB R0643L), 2 µl NEB buffer (NEB 

B7203S) and 17.8 µl H20 making a final  20 µl volume. A digestion master mix for all 96 

reactions was made up and 20 µl added to each sample, the plate was sealed with a PCR 

seal and briefly spun down. The plate was then incubated in a PCR machine for the 

digestion reaction to occur at 75°C for two hours. After digestion, the digested DNA was 

ligated to the barcoded and common adapters. The ligation mix for one reaction was 5 µl 

NEB ligase buffer (NEB B0202S), 1 µl NEB T4 DNA ligase (NEB M0202L), 24 µl of 

H20 making a final volume of 30 µl. A ligation master mix for all 96 reactions was made 

up and 30µl added to each sample. The plate was sealed with a PCR seal, briefly spun 

down and incubated in a PCR machine for one hour at 22°C and then 65°C for 20 minutes 

to deactivate the enzyme before dropping to 4°C. From each sample on the 96-well plate, 

an equal volume of ligated mixture/library (5µl) was extracted and pooled into a 5 ml 

Eppendorf tube containing 2500 µl CP buffer (SKU:PDR042) and cleaned up with 

Omega Bio-Tek EZNA cycle pure kit (Kit No.: D6492-02) as per kit instructions and 

eluted in 50 µl elution buffer. 

To amplify the ligated fragments, a 50 µl Polymerase chain reaction (PCR) reaction mix 

was created containing 4 µl pooled DNA, 25 µl 2X NEB master mix (NEB M0270L), 19 

µl dH20,  12.5 pmol/µl of each of the following primers: 

 (i) 5′AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC

GCTCTTCCGATCT3′  
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(ii) 5′CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTG

AACCGCTCTTCCGATCT3′ 

The following PCR amplification protocol was performed; 5 minutes at 72°C, 30 seconds 

at 98°C and then 18 cycles of 10 seconds at 98°C, 30 seconds at 65°, 30 seconds at 72°C 

and then 5 minutes at 72°C. PCR amplified libraries were purified according to Omega 

Bio-Tek EZNA cycle pure kit instructions and eluted in 30µl of elution buffer (10 mM 

Tris-HCl, pH 8.5). To ensure optimum fragment size, 30 µl of library was combined with 

10 µl of ladder L, mixed and size selected on a Pippin prep (PIP0001, Sage Science). A 

2% agarose gel cassette, (CDF2010), was used to size select DNA fragments between 

193 and 313 bp. Post-pippin libraries were validated on a Tapestation (4000 TapeStation 

System) before being sequenced on two lanes of Illumina HiSeq 2500 (Illumina, San 

Diego, CA, USA) at AgResearch Invermay, New Zealand. 

4.2.5. SNP Discovery 

Single-end sequence reads were obtained for all three libraries, de-multiplexed and 

trimmed using Trimmomatic software (Bolger et al., 2014). A sliding window of 10% of 

the total read length was used to check quality, retaining only regions with an average q-

score above 15. The TASSEL5 GBS pipeline was used to call genetic variants by aligning 

to the Trifolium repens genome (version five) discovering a total of 361,220 SNPs. After 

filtering for minor allele frequency (MAF) ≥ 0.001, missing rate > 50%, Hardy-Weinberg 

disequilibrium (HWdiseq >-0.05), the pipeline produced a variant call format file with 

110,000 SNPs with a median read depth < 12.8. 

4.2.6. Linkage Disequilibrium 

Pair-wise LD, measured as the square of the correlation coefficient (r2) between markers 

was calculated using PLINK (Purcell et al., 2007). Additional filtering was performed to 

exclude MAF > 0.03 and markers with more than 30% rate of missingness. After filtering, 

30,225 high-quality subset SNPs were used to estimate LD for each chromosome by 

calculating the r2 values for pairwise markers using a sliding window of 100 kb. All 

chromosomes were then pooled to estimate the rate of decay across the genome.  The 

decay of LD over genetic distance was visualised by plotting the r2  value against the 

distance in base pairs in R (R Core Team, 2018) . 
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4.2.7. Population Structure  

Multi-dimensional scaling (MDS) was employed to determine the presence of any 

structure in the population using the ‘cmd scale’ function in R. A heatmap showing the 

relationship between individuals was also generated using the genomic relationship 

matrix derived from the filtered SNP markers. 

4.2.8. Genomic Prediction 

Two stage genomic selection analysis was implemented. In the first stage, trait BLUPs 

were generated for each of the 200 HS families using mixed-model analysis for all traits 

described in Chapter 3. In the second stage, genotype data provided by the maternal 

parents and the BLUPs for targeted traits were fitted into a single genomic prediction 

model. To reduce computing time, three traits were selected for detailed analyses, based 

on genetic complexity, namely: DM yield measured across-locations and years (2017, 

2018); GS measured across-seasons, locations and years (2017, 2018, 2019); LS 

measured across-seasons, locations and years (2017, 2018, 2019). 

4.2.9. Cross-validation 

The Monte-Carlo cross-validation approach was used to assess predictive ability by 

splitting the data into training and test sets. The phenotypes of the individuals in the test 

set are assumed to be unknown and predicted from a model trained exclusively from the 

training set (Erbe et al., 2010). In order to evaluate the optimum training to test size ratio 

to implement, the population was randomly divided into two portions and assigned to the 

following training/test ratios: 60/40%, 70/30%, 80/20%, 90/10% and 95/5%. After 

estimating marker effects in the training set using phenotypic and genotype data, the 

GEBVs of the individuals in the test set are then predicted using the already estimated 

marker effects and the predictive ability averaged over several iterations. The following 

iterations; 100, 500, 1000 and 2000, were evaluated across all training/test ratios. 

4.2.10. Genomic Prediction Models 

To gain insight into the ability of various models with different underlying assumptions 

to accurately predict trait performance, four different genomic prediction models were 

investigated. Models were assessed mainly on their predictive ability and bias. Predictive 

ability, as earlier described, is defined as the Pearson’s correlation between the predicted 
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values and the actual observed values in the test set, whereas the bias is the regression of 

the observed phenotype data on the predicted value generated by the model (Velazco et 

al., 2019b). Data from the cross-validation testing determined 100 iterations were 

sufficient for testing genomic prediction models, therefore the procedure was repeated 

100 times and the predictive ability calculated as the average value of all observed 

correlations. The same process was performed to estimate the bias. The higher the 

predictive ability, the more confidence is placed in the model to accurately predict 

GEBVs of untested individuals while bias values close to one indicate better performance 

of a model. 

4.2.10.1. GBLUP 

The first model, GBLUP, uses a mixed model approach where the GRM is included as a 

variance-covariance matrix (Equation 22). The relationship between individuals is 

estimated from the SNP markers, under the assumption of equal variance across all locus 

(Habier et al., 2007a). The GRM was calculated using the ‘A.mat’ function of the 

‘rrBLUP’ package (Endelman, 2011) in R (R Development Core Team, 2018) according 

to Equation 23 as proposed by VanRaden (2008). Missing values were imputed with the 

mean value of the non-missing values for that marker. 

 𝑦 = 1µ + 𝑍𝑏 +  𝜀 (22) 

Where: y is the vector of phenotypic records; µ is the grand mean; 𝑍 is the incidence 

matrix for random effects; b is the vector of random marker effects with a normal 

distribution b  ̴ N (0,G 𝜎𝑔
2 ) where G is the genomic relationship matrix (GRM) and 𝜎𝑔

2 is 

additive genetic variance; 𝜀 is the vector of random residual effects. 

G, the GRM is calculated as follows: 

 𝐺 =  
𝑍𝑍′

2 ∑𝑝𝑖(1 − 𝑝𝑖)
 (23) 

Where: 𝑍 is obtained by subtracting M – p, M being a matrix with rows (n) and columns 

(m), containing markers coded as -1, 0, 1, p is a matrix with MAF (minimum allele 

frequency) calculated as 2(𝑝𝑖 − 0.5) where 𝑝𝑖 is MAF of the ith marker. 
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4.2.10.2. KGD-GBLUP 

The KGD-GBLUP model is a variant of the GBLUP, developed specifically to estimate 

relatedness with low-depth sequence data which usually have high levels of missing data, 

without requiring imputation as it uses only SNPs with common genotype calls between 

both individuals (Dodds et al., 2015). The GRM is estimated according to Equation 23 

with additional correction for low sampling depth and level of missingness according to 

Dodds et al. (2015). Analyses was implemented in R (R Development Core Team, 2018). 

4.2.10.3. BayesCπ 

This Bayesian model is a variable selection method that estimates the variance of markers 

using a prior distribution, thereby allowing markers to be shrunken towards zero to 

different degrees (Meuwissen 2003; Lorenz et al., 2011). In BayesCπ, the prior 

probability (π), that a SNP has zero effect is unknown and estimated to be a value between 

0 and 1 (Habier et al., 2011; Lorenz et al., 2011). Analysis was performed with the 

‘BGLR’ package (Pérez & de los Campos, 2014) in R (R Core Team, 2018). Markov 

Chain Monte Carlo cycles were repeated 1000 times after 500 cycles of burn-in and a 

binning set at 5. 

The basic Bayesian model framework is given as:  

 𝑦 = 𝑋𝛽 + 𝑍𝑏 +  𝜀 (24) 

    

The distribution of 𝑏 is; 

 𝑏 = ~𝑁(0, 𝐼𝜎2) (25) 

Where: y is the vector of phenotypes; 𝛽 is the vector of fixed effects with a flat prior; 𝑋 

is an incidence matrix for the fixed effects of β; 𝑏 is a vector of random coefficients of all 

marker effects; 𝑍 is a genotypic matrix of the number of observations and number of 

markers; 𝜎2 is approximately the largest variance a SNP effect is expected to have and  𝜀 

is vector of random error the model residual. 
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4.2.10.4. Reproducing Kernel Hilbert Spaces (RKHS) 

In this semi-parametric model, a kernel function is employed to convert the marker matrix 

into distances between pairs of individuals forming a square matrix that is used in a 

mixed-effects linear model (Gianola et al., 2006; Heslot et al., 2012). The equation of the 

model is given as: 

 𝑦 =  µ +  𝐾ℎ𝛼 + 𝜀 (26) 

The kernel matrix Kh is defined as: 

 𝐾ℎ(𝑥𝑖𝑥𝑗) = exp (−ℎ 𝑑𝑖𝑗) (27) 

Where µ is a vector of fixed effects and ε is a is a vector of random residuals with α and 

ε assumed to have independent prior distributions, α ~ N(0, 𝐾ℎ𝜎𝛼
2) and ε ~ N(0, Iσε

2) 

respectively. The smoothing parameter, h, is defined as 2/d and indicates the rate of decay 

of the correlation between genotypes, xixj are vectors of marker genotypes of the i and j 

lines. The squared Euclidean distance between individuals and i and j are calculated based 

on their genotypes and is denoted as 𝑑𝑖𝑗 . The RKHS model was performed using the 

‘BGLR’ package  in R. 

4.2.11. Testing Size of Training Population and Marker Number 

To investigate the effect of training population size (TS), on predictive ability, the 

GBLUP model was selected to be used for further analysis as it was established to be the 

most computationally efficient. The influence of using fewer individuals in the training 

population was investigated by using subsets of 20, 40, 60, 80, 100, 120, 140, 160 and 

180 HS families randomly chosen to train the model. 

The effect of marker number on predictive ability was also considered by selecting 

random subsets of markers (55, 110, 550, 1,100, 5500, 11,000 and 55,000) for model 

development. For each population and marker subset, the process was repeated 100 times 

and the predictive ability represented as the average of the 100 iterations. 



137 

 

4.2.12. Multi-trait Genomic Selection 

A multi-trait model was fitted with positively correlated traits to determine the possibility 

of boosting the predictive abilities for traits dry matter (DM) yield and stolon number 

(SN). For yield, DM was considered the primary trait while leaf size (LS) and growth 

score (GS) were secondary traits with their phenotype information included in the model. 

Prediction models were developed using phenotypic data from the first and second year 

since DM was measured only in those years. In the case of stolon density, SN was taken 

as the primary trait and stolon branching (SB) incorporated as the secondary trait in the 

model. 

Two different cross-validation (CV) schemes representing scenarios encountered by 

breeders were implemented. In the first, multi-trait CV1 (MTCV1) (Figure 4.1), the aim 

is to predict the GEBVs for the primary trait of individuals not phenotyped for neither the 

primary nor the secondary trait. Hence, in this case, the marker effects are first estimated 

from a training set that has been genotyped and phenotyped for the primary and secondary 

trait then the test set have their phenotypes predicted solely based on their genotypic 

information. In the second scenario, multi-trait CV2 (MTCV2), the individuals to be 

predicted (test set) have been phenotyped for the secondary trait but have no performance 

record for the primary trait of interest (Figure 4.1). Performance of models was evaluated 

through Monte-Carlo cross-validation where 80% of HS families were randomly assigned 

to the training HS families set and used to predict the remaining 20% in the test set. 

 

Figure 4.1 Multi-trait cross-validation representing two breeding scenarios: 

MTCV1- where the test set has no phenotype information of either primary or 

secondary trait, representing the prediction of individuals with untested phenotypes 

and MTCV2 where the test set has been phenotyped for the secondary trait.  

 

Phenotype data from two or more traits were fit simultaneously as dependant variables in 

the Bayesian generalized linear model with the R packages ‘BGLR’ (Pérez & de los 
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Campos, 2014) and ‘MTM’ (de los Campos & Grüneberg, 2016). The model was run for 

3000 iterations with the first 1500 discarded as burn-in and a thinning level of 5. 

4.2.13. Genetic Gain Simulation for DM Yield 

Simulation analysis was carried out in DeltaGen (Jahufer & Luo, 2018) to compare 

predicted genetic gain achieved using a combined approach of among-family phenotypic 

selection and within-family selection via genomic selection (AFp-WFgs) to a  common 

selection strategy used by forage breeders based on phenotypic selection alone (HSp). 

Additive, family × location and family × year variance component estimates for DM were 

used to simulate the predicted genetic gain achieved using both methods. The base 

selection strategy assumed for both phenotypic and genomic selection was 200 HS 

families evaluated for DM yield by means of full cuts across three replicates in two 

environments. An extra year was added per breeding cycle for crossing and population 

establishment. Genetic gain per breeding cycle was compared at four different among 

family selection (AFS) and within family selection (WFS) pressure scenarios and the cost 

for each scenario was also calculated. 

Different subsets of HS families were selected based on three among-family selection 

(AFS) pressures of 20%, 10% and 5%. It was assumed that from each selected HS family, 

a random sample of 100 seedlings were established and genotyped to estimate GEBVs. 

Either of four within-family selection pressures (WFS) were applied at 20%, 10%, 5% 

and 1% to select individuals with the highest GEBVs. As expected with increasing 

selection pressure, the number of selected individuals decreases. As the number of 

seedlings grown for each selected HS family was set at 100, if the number of HS families 

selected at the AFS stage is y, the total number of individuals genotyped at the WFS stage 

would be 100 × y (Figure 4.2). Therefore, the same cost for genomic selection would 

apply across all WFS pressures under the same AFS pressure. 
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Figure 4.2 Selection scheme showing among and within-family selection pressures 

for a population of 200 half-sib (HS) families and the resultant polycross sizes. 

Numbers in the red dashed box indicate the total number of individuals genotyped 

for that among-family selection pressure. For example: with 200 HS families, 5% 

among-family selection pressure = 10 HS families; genotyping 100 individuals from 

each of the 10 selected HS families = 1000 plants genotyped. Within-family 1% 

selection pressure with 100 plants genotyped per HS family = 1 individual selected 

per HS family; as there are 10 HS families at the 5% among-family selection 

pressure, there will be 10 genotypes (1 per HS family) selected for a 5%among-

family and 1% within-family polycross. 

 

The following costs were considered for HS phenotypic selection (HSp) and include fixed 

and variable costs such as land, equipment, labour, crossing, trial establishment, fertiliser 

application and grazing. Starting and maintaining a trial in one location was fixed at 

NZ$10,000 per year, cost of DM trait evaluation = NZ$63 per plot. For among-family 

selection based on phenotype combined with within-family selection based on genomic 

selection (AFp-WFgs), costs were the same as above with the addition of genomic 

selection costs which include DNA extraction, GBS library making, sequencing and data 

analyses which was approximated at NZ$55 for one seedling at 96-plex. 

DeltaGen uses the equation (Equation 28) from Casler and Brummer (2008) and its 

modification (Jahufer and Luo 2018) (Equation 29) to calculate genetic gain (ΔG) for 

HSp and AFp-WFgs, respectively; 
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 𝛥𝐺HS = 𝑘𝑓𝑐 

1
4 𝜎𝐴

2

𝜎𝑃𝐹
 (28) 

Where: 𝛥𝐺HS is the genetic gain based on selection and random mating of the top 

performing HS families; 𝑘𝑓 is the among family selection intensity; 𝑐 is the parental 

control; 𝜎𝐴
2 is the additive variance; and 𝜎𝑃𝐹 is the among-family phenotypic standard 

deviation. 

 𝛥𝐺𝐴𝐹𝑝−𝑊𝐹𝑔𝑠 = 𝑘𝑓𝑐𝑓  

1
4 𝜎𝐴𝑌

2

𝜎𝑃𝐹
+ 𝑘𝑊𝑐𝑊ℎ𝑋𝑟𝐴−𝑋𝑌

√3

2
𝜎𝑃𝐹 (29) 

Where: 𝛥𝐺𝐴𝐹𝑝−𝑊𝐹𝑔𝑠 is the genetic gain derived using a combination of among-family 

phenotypic selection and within-family selection via genomic selection (AFp-WFgs);  𝑐𝑓 

and 𝑐𝑤 are the among and within-family parental controls respectively; equal to 0.5 for 

HS families; 𝜎𝐴𝑌
2  is the additive genetic variance for the trait Y under selection; 𝑘𝑊 is the 

within HS family selection intensity; 𝑟𝐴−𝑋𝑌 is the genomic selection predictive ability 

estimated at 0.3 and the square root of heritability of trait X given as ℎ𝑋 which corresponds 

to genomic heritability, was estimated as 0.35 using the GRM estimated using the SNP 

markers and the estimated variance components obtained from the REML analysis for 

DM yield according to Equation 30. Model was implemented using ASReml-R (Butler et 

al., 2009). 

 
ℎ2 =

𝜎𝑔
2

𝜎𝑔
2 +

𝜎𝑔𝑦
2

𝑛𝑦
+

𝜎𝑔𝑙
2

𝑛𝑙
+

𝜎𝑏
2

𝑛𝑏
+

𝜎𝜀
2

𝑛𝑦𝑛𝑏

 
(30) 

Where: ℎ2 is the genomic heritability and 𝜎𝑔
2 is the genetic variance calculated by 

regressing the markers on the phenotypes; 𝑛𝑦, 𝑛𝑙 , 𝑛𝑏  are number of  years, locations and 

replicates respectively; and 𝜎𝜀
2 is the residual variance.  
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4.3. Results 

4.3.1. Phenotypic Analysis 

There was significant (P < 0.05) additive genetic variation (σ2
f) for the traits DM, SNPRS, 

SBPRS, SNPOS, SBPOS, GS and HCN as indicated in Chapter 3 (Table 4.1). Family × 

location variance (σ2
f.l) was significant (P < 0.05) for the traits DM, GS and LS. The 

estimated additive genetic variance explained a larger proportion of the phenotypic 

variance for LS than σ2
f.l   or σ2

f.y.l. The σ2
f.l  and σ2

f..y.l variance components were larger 

than the additive variance for GS. The error component of variation was higher than all 

other components for all traits, especially the stolon density related traits. Family mean 

narrow-sense heritability ranged from 0.1 to 0.8 (Table 4.1). The most highly heritable 

traits were HCN and LS, while the stolon density traits were the lowest. There was a high 

positive correlation (0.73) between DM and GS and a moderate correlation (0.35) 

between DM and LS. There was a high positive correlation (0.67) between Pre-summer 

SN (SNPRS) and SB (SBPRS). The correlation between post-summer SN (SNPOS) and 

SB (SBPOS) was also high (0.63) as described in Chapter 3. 
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Table 4.1 Estimated HS family additive genetic (σ2
f), family×location interaction (σ2

f.l), 

family×year interaction (σ2
f.y), family×year×location interaction (σ2

f.y.l) and pooled error 

(σ2
ε) variance components, their associated standard errors (± SE) and family mean 

narrow-sense heritability for traits from single and combined analyses for the 200 white 

HS clover families across two locations, Aorangi and Ruakura. 

Trait σ2
f σ2

f . l σ2
f . y σ2

f.y.l σ2
ɛ  h2

n 

Hydrocyanic acid - HCN 

0.54 ± 

0.07* 

_ _ _ 2.74 ± 

0.06 

0.82 ± 

0.02 

Dry matter - DM 

0.10 ± 

0.03* 

0.10 ± 

0.04* 

_ _ 1.45 ± 

0.05 

0.38 ± 

0.09 

Growth score - GS 

0.12 ± 

0.04* 

0.35 ± 

0.05* 

0.04 ± 

0.03 

0.34 ± 

0.04* 

1.73 ± 

0.02 

0.32 ± 

0.10 

Leaf size - LS 

0.06 ± 

0.01* 

0.04 ± 

0.01* 

_ 0.01 ± 

0.01* 

0.42 ± 

0.01 

0.70 ± 

0.06 

Pre-summer stolon number - 

SNPRS 

0.21 ± 

0.07* 

_ _ _ 4 ± 0.14 0.14 ± 

0.04 

Post-summer stolon number - 

SBPOS 

0.28 ± 

0.10* 

_ _ _ 5.60 ± 

0.19 

0.13 ± 

0.04 

Pre-summer stolon branches - 

SBPRS 

1.32 ± 

0.36* 

_ _ _ 17.56 ± 

0.60 

0.18 ± 

0.04 

Post-summer stolon branches - 

SBPOS 

1.09 ± 

0.29* 

_ _ _ 14.50 ± 

0.49 

0.19 ± 

0.04 

 

4.3.2. Population Structure 

No population structure was observed in the training population as depicted by the 

absence of obvious clusters in the MDS plot in Figure 4.3 and the absence of off-diagonal 

clusters in Figure 4.4. The first two principal coordinates explained 4.4% of the total 

genetic variation in the population. 
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Figure 4.3 Multi-dimensional scaling (MDS) plot estimated from a genomic 

relationship matrix computed with 110,000 SNP markers from 200 maternal half-

sib family training population. 
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Figure 4.4 Heat map of the genomic relationship matrix estimated with 110,000 SNP 

markers from 200 maternal half-sib family training population showing the absence 

of population structure. 

 

4.3.3. Linkage Disequilibrium 

The extent of LD was found to decay rapidly to below 0.2 after 300 bp and 0.15 by 800 

bp (Figure 4.5). Background LD at the 95th percentile and 90th percentile was 0.28 and 

0.07, respectively.  
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Figure 4.5 Linkage disequilibrium decay estimated from 30,225 subset SNP markers 

of 200 maternal half-sib training population. Horizontal dashed lines represent 

baseline r2 at the 95th percentile (blue) and the 90th percentile (red), respectively. 

 

4.3.4. Cross-validation 

Increasing the size of the training set and reducing the test set was found to slightly 

increase the predictive ability in almost all iteration sets for all three traits as shown in 

Figure 4.6. An increase in the variation of the mean predictive ability was also observed 

as the test set size reduced. The highest biases were generally obtained with the larger 

training to test set ratios, namely, 60/40 and 70/30, while smaller training to test set ratios 

had bias values closer to one (Appendix B.2). The number of iterations run was found to 

have no significant impact on the predictive ability, although a wider range in bias values 

was observed with increasing number of iterations (Appendix B.2). Bias values were 

higher for GS than for LS or DM in all iterations. Since no significant gain in accuracy 

was observed by increasing the number of iterations up to 2000, all subsequent models, 

hereafter, were run with 100 iterations and cross-validated with training/test ratios of 

80/20.
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Figure 4.6 Effect of training and test set size ratios and number of iterations on the predictive ability for DM (dry matter) yield, GS (growth score) and LS (leaf 

size). Model was run for 100, 500, 1000 and 2000 iterations using KGD-GBLUP and the predictive ability was assessed using Monte-Carlo cross validation with 

60%, 70%, 80%, 90% and 95% training set and 40%, 30%, 20%, 10% and 5% test sets. Solid line represents the median, black dot in the box represents the 

mean and grey dots are outliers. Notches that do not overlap indicate medians that are significantly different at P < 0.05 (Chambers et al., 1983).
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4.3.5. Genomic Prediction Model Comparison 

The predictive ability of KGD-GLUP was slightly higher than the other models, BayesCπ, 

GBLUP and RKHS for all three traits although increases were not significantly different 

(Figure 4.7). Predictive ability ranged from 0.29 to 0.33 for DM, 0.2 to 0.25 for GS and 

0.41 to 0.44 for LS. When considering the regression coefficient, all models had similar 

bias values for LS. For DM and GS, BayesCπ and RKHS had bias values closer to one 

while the KGD-GBLUP obtained the highest bias amongst the models for all three traits, 

2.02 for DM, 3.20 for GS and 1.68 for LS (Appendix B.3). The variance around the mean 

predictive ability was similar for individual traits apart from GS where the KGD-GBLUP 

had the lowest variance as evidenced by the boxplot in Figure 4.7. In terms of computation 

speed, the GBLUP and KGD-GBLUP models were less computationally demanding and 

generally easier to implement. Overall, KGD-GBLUP was the best performing model in 

terms of predictive ability while BayesCπ and RKHS had better performance in terms of 

bias.  
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Figure 4.7 Comparison among genomic prediction models BayesCπ, GBLUP, KGD-GBLUP 

and RKHS on the predictive ability for DM (dry matter) yield, GS (growth score) and LS 

(leaf size). Models were run for 100 iterations and predictive ability was Monte-Carlo cross 

validated using 80% training, 20% test sets. Solid line represents the median, black dot in 

the box represents the mean and grey dots are outliers. Notches that do not overlap indicate 

medians that are significantly different at P < 0.05 (Chambers et al., 1983). 

 

4.3.6. Trait Architecture and Heritability 

There was a significant (P < 0.001) relationship between predictive ability and trait 

heritability with heritability explaining a moderate proportion (35%) of the predictive 

ability (Figure 4.8). Traits with higher heritability tended to have higher predictive ability 

except for certain traits. The highest predictive ability achieved was 0.44 for LS based on 

across-location and years analysis. The lowest predictive ability (-0.17), was obtained for 

SBPRS Year 3. Surprisingly, for HCN, a trait with the highest heritability of 0.82, a 

predictive ability of 0.22 was obtained. Traits with higher heritability tended to have 

relatively lower biases compared to traits with lower heritability (Appendix B.5). The 

highest biases were obtained with the stolon density traits and GS compared to other traits.  
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Figure 4.8 Regression of predictive ability on heritability for dry matter, leaf size, 

growth score, stolon number and stolon branches based on 200 HS families 

measured in 2017, 2018, 2019, in two locations, Aorangi and Ruakura New Zealand; 

stolon branching and stolon number measured in Aorangi only.  

 

4.3.7. Predictive Ability Across Years and Locations  

Predictive ability tended to increase with trial maturity and was highest in the third year 

(Figure 4.9) (Appendix B.4). Also, the predictive ability achieved by combining data from 

all three years was higher than individual years for LS and GS. The highest predictive 

ability for GS, 0.25 was achieved when data from all three years were combined. For LS, 

the same predictive ability, 0.43 as achieved when Years 2 and 3 and Years, 1, 2 and 3 

were combined (Figure 4.9). There was an increase in predictive ability for LS, from 0.17 

in the first year, to 0.43 when all three years were combined. Similarly, combining data 

from all three years for GS, increased the predictive ability by 127% from the first year. 

The predictive ability obtained in Ruakura was noticeably lower than that at Aorangi. 

Predictive ability ranged from 0.06 to 0.22 for GS at Aorangi while Ruakura had a lower 

range of 0.02 to 0.17 (Figure 4.9). Models developed using BLUPs from across the two 

locations, provided the highest predictive ability range for GS, 0.15 to 0.25. Similar 

results were obtained for LS where there was a 40% difference in average predictive 

ability between Aorangi and Ruakura (Figure 4.9) (Appendix B.5). Ruakura tended to 

have the highest bias values and bias range for GS while bias values were similar between 

locations for LS (Appendix B.5). 
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Figure 4.9 Predictive abilities for growth score (GS) and leaf size (LS) in two 

locations; Aorangi (Aor) and Ruakura (Rua) and combined across-locations (Com) 

over a period of three years. Models were run using KGD-GBLUP for 100 iterations 

and predictive ability estimated using Monte-Carlo cross-validation using 80% 

training, 20% test sets. Error bars represent standard errors of the mean. 

 

4.3.8. Predictive Ability and Training Population Size (TS) 

The impact of training population size (TS) on predictive ability is illustrated in Figure 

4.10. No significant differences were observed in the predictive ability of LS when the 

TS was reduced from 200 to 100 individuals and a significant drop of 28% was only 

realised when the number of individuals was further reduced to 80 individuals. Significant 

decrease in predictive ability was observed in the more complex trait, DM, when 40 

individuals or less were used to train the model. Predictive ability decreased by 48% and 

83% when the TS was reduced from 100 to 40 and 20 individuals, respectively. For GS, 

no significant differences in predictive ability were observed when 40 or more individuals 

were included in the model. There was larger variation in the predictive ability between 

samplings when fewer individuals were being used compared to when all 200 HS families 

were included in the model as evidenced by the boxplot in Figure 4.10. For all traits, bias 

values were generally larger with larger ranges as the TS decreased except in the scenario 
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using 40 and 20 individuals for DM and GS, respectively, where values were less than 1 

(Appendix B.6). Based on these data, it appears that in this population, for simple and 

complex traits, the TS based on 80 to 100 individuals can generate similar prediction 

values to 200 individuals. 
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Figure 4.10 Notched boxplots of the effect of training set size on the predictive ability of three traits DM (dry matter) yield, GS (growth score) and LS (leaf 

size). Model was run for 100 iterations using GBLUP. Predictive ability was esimated using Monte-Carlo cross-validation with 80% training, 20% test sets. 

Solid line represents the median, black dot in the box represents the mean and grey dots are outliers. Notches that do not overlap indicate medians that are 

significantly different at P < 0.05 (Chambers et al., 1983).
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4.3.9. Predictive Ability and Marker Density 

Across all traits, no significant gain in predictive ability was observed when more than 

5% (5,500) of markers were used for LS and GS and 1% (1100) markers for DM yield 

(Figure 4.11). The predictive ability for DM began to significantly reduce from 550 

markers or less as evidenced by a 28% drop from 110,000 markers. For GS, the predictive 

ability was consistent at 0.21 until it started decreasing as markers were dropped from 

5,500 to 1,100 and dropped steadily to 0.06 when only 55 markers were included in the 

model. Similarly, the predictive ability for LS started reducing significantly from 0.42 to 

0.31 when only 1,100 markers were used, a percentage decrease of 26%. This significant 

drop in predictive ability continued when fewer markers were included in the model. 

Reducing marker size did not seem to increase the sampling errors as evidenced from the 

boxplots showing a similar degree of variation around the mean predictive ability (Figure 

4.11). Also, reducing the number of markers generally increased the bias range for DM 

and GS while the bias range for LS was stable from 1% to larger marker sets (Appendix 

B.7). In summary, for this population, predictive ability was consistent for simple and 

complex traits when 5,500 markers or more markers were incorporated into the model. 

 

 



154 

 

 

 

Figure 4.11 Notched boxplots of the effect of marker density on the predictive ability of three traits DM (dry matter) yield, GS (growth score) and LS (leaf size). 

Model was run for 100 iterations using GBLUP. Predictive ability was esimated using Monte-Carlo cross-validation with 80% training, 20% test sets. Solid 

line represents the median, black dot in the box represents the mean and grey dots are outliers. Notches that do not overlap indicate medians that are 

significantly different at P < 0.05 (Chambers et al., 1983).
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4.3.10. Multi-trait Genomic Prediction 

The prediction accuracy of the single trait model for DM was no different to when 

incorporating either GS or LS, or both, as additional secondary traits in the multi-trait 

cross-validation 1 (MTCV1) model. This approach aims to combine and model these 

traits from phenotyped individuals to predict the performance of untested but genotyped 

individuals. By contrast, MTCV2 models, based on incorporating the secondary traits 

singly or combined, predicts for test individuals that have been phenotyped only for the 

secondary trait. This additional phenotype information in the test individuals increased 

predictive ability by 24% and 94% to 0.39 and 0.64 for DM-LS and DM-GS , respectively 

(Figure 4.12). The percentage of increase observed in predictive ability was proportional 

to the degree of correlation between the primary and secondary trait. A three-way multi-

trait approach combining GS and LS to predict DM did not deliver any significant benefits 

over DM-GS. For complex traits like stolon parameters, the multi-trait model, MTCV1, 

did not outperform the single trait model for stolon number pre-summer (SNPRS) or post-

summer (SNPOS) when incorporating secondary traits stolon branching pre-summer 

(SBPRS) and post-summer (SBPOS), respectively (Figure 4.13). However, incorporation 

of SBPRS and SBPOS secondary trait phenotype data in the test individuals for SNPRS 

and SNPOS, respectively, using a MTCV2 model, increased the predictive ability for 

SNPRS from 0.15 to 0.54 while SNPOS increased from -0.1 to 0.28 (Figure 4.13). 

Generally, range in bias values obtained for MTCV2 and MTCV1 were closer to 1 than 

all single trait models (Appendix B.8). In summary, addition of a secondary trait in the 

prediction model did not increase predictive ability unless the test set was also phenotyped 

for that secondary trait. 
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Figure 4.12 Comparison of the predictive ability of single trait model and multi-trait 

model for Dry matter (DM). In multi-trait models, growth score (GS) and leaf size 

(LS) were used as secondary traits. Cross-validation schemes, multi-trait cross-

validation 1 (MTCV1), which corresponds to predicting untested phenotypes and 

MTCV2 which predicts individuals already phenotyped for the secondary trait, 

were implemented. 
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Figure 4.13 Comparison of the predictive ability of single trait model for pre-

summer (SNPRS) and post-summer (SNPOS) stolon number when incorporating 

secondary traits, pre-summer (SBPRS) and post-summer (SBPOS) stolon 

branching. Cross-validation schemes, MTCV1, which corresponds to predicting 

untested phenotypes and MTCV2, which predicts individuals already phenotyped 

for the secondary trait, were implemented. 

      

4.3.11. Genetic Gain Simulation for DM yield  

Genetic gain from conventional among half-sib family phenotypic selection (HSp) was 

compared to an approach incorporating marker-based genomic selection to conduct 

within-family selection. The genetic gain obtained for DM yield using HSp was 5.3, 6.7 

and 7.8% per cycle at among-family selection (AFS) pressures of 20%, 10% and 5%, 

respectively (Figure 4.14). Relatively lower genetic gain was obtained for phenotypic 

selection compared to all among-family selection based on phenotype combined with 

within-family selection based on genomic selection (AFp-WFgs) scenarios. Using 

genomic selection to select within-families (WFS) increased genetic gain by at least 34% 

relative to HSp at all selection pressures. The costliest scenario to implement was 20% 

AFS and WFS at 1%, 5%, 10% and 20% which increased genetic gain from 5.3 to a 

maximum of 10.3% (at 1% WFS) per cycle with more than twice the cost of implementing 

HSp (Figure 4.14). At 10% AFS, WFS increased genetic gain from 6.7% up to 11.7% 
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with a concomitant cost increase of 63%. Since fewer individuals were selected at the 

lower AFS of 5%, WFS was able to increase genetic gain by a maximum of 64% at 

1%WFS with only a one-third increase in cost over HSp (Figure 4.14). 

When comparing the cost-efficiency of phenotypic selection relative to AFp-WFgs, at 

20% AFS, phenotypic selection was the most cost-efficient. The highest cost per 

percentage genetic gain was obtained using lower AFS and WFS pressures (i.e., 20% AFS 

with 20% WFS). This is mainly as a result of the reduced response to selection by 

selecting more individuals, thereby reducing genetic gain and incurring higher 

genotyping costs by selecting more HS families at the AFS stage (Figure 4.15). The 

higher genetic gain obtained at 10% AFS and 1% WFS made it more cost-efficient than 

10% HSp, despite a 63% increase in cost. Further increases in the AFS and WFS pressures 

increased the amount of genetic gain obtained per unit cost and at 5% AFS, HSp and 20% 

WFS were the least cost-efficient, while 1% WFS was the most efficient due to the 

increased genetic gain with less than 35% increase in cost over phenotypic selection.  
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Figure 4.14 (A) Expected genetic gain for dry matter yield with phenotypic selection 

(HSp) compared with a breeding strategy using among-family phenotypic selection 

and within-family genomic selection (AFp-WFgs) at different selection pressures. 

(B) Cost per cycle of selection for HSp relative to AFp-WFgs at varying selection 

pressures. Results were based on a sample cost of NZ$63 for phenotyping one sample 

of dry matter yield and field trial cost of NZ$10,000 per year for 200 half-sibs (HS) 

evaluated in two locations. The costs of AFp-WFgs include the above costs in 

addition to genotyping costs. Genotyping costs were estimated at NZ$55 per sample 

keeping the number of individuals genotyped for each WFS at 100. 



160 

 

 

Figure 4.15 Cost-efficiency of phenotypic selection (HSp) for dry matter yield 

relative to among-family (AFS) phenotypic selection and within-family (WFS) 

genomic selection (AFp-WFgs) at varying selection pressures. Results were based on 

a sample cost of NZ$63 for phenotyping one sample of dry matter yield and field 

trial cost of NZ$10,000 per year for 200 half-sibs (HS) evaluated in two locations. 

The costs of AFp-WFgs include the above costs in addition to genotyping costs. 

Genotyping costs were estimated at $NZ55 per sample keeping the number of 

individuals genotyped for each WFS at 100.  
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4.4. Discussion 

Increasing genetic gain is a top priority in plant breeding and genomic selection has been 

demonstrated to deliver substantial genetic gain amongst other benefits (Wong & 

Bernardo, 2008; Muranty et al., 2015; Lin et al., 2016; Jighly et al., 2019). Even though 

white clover possesses all the characteristics of a crop that can benefit from the adoption 

of genomic selection, so far, no studies have examined the potential of utilizing genomic 

selection to improve important traits like seasonal DM yield in white clover. This chapter 

implements genomic prediction modelling as a precursor to genomic selection in a white 

clover training population. It also investigates an integrated approach of utilizing 

phenotypic selection and genomic selection to increase genetic gain using simulation 

based on estimates of additive genetic and G×E variance components for DM yield, 

obtained from multi-location field trials. Results from this study provide guidelines for 

the effective initiation of genomic selection for white clover. 

4.5. Factors Affecting Predictive Ability  

4.5.1. Population Structure 

Several studies have reported the presence of population structure to inflate predictive 

ability due to the presence of false positive marker-trait associations (Daetwyler  et al., 

2012; Riedelsheimer et al., 2013; Guo et al., 2014b; Isidro et al., 2015; Fè et al., 2016; 

Pembleton et al., 2018). No significant structure was found in the training population, 

thereby allowing the use of standard genomic prediction models (Annicchiarico et al., 

2015). 

4.5.2. Cross-validation  

The highest biases were generally obtained when more individuals were used in the test 

set and fewer in the training set e.g., 60/40 and 70/30, whereas when more individuals 

were used in the training set, e.g., 95/5, bias values were closer to one. Bias values lower 

than one are indicative of an underestimation of the top performing individuals and over 

estimation of the low performers (Velazco et al., 2019b). The highest predictive ability 

was generally obtained with larger training sets and smaller test sets e.g., 90/10 and 95/5. 

Increasing the size of the training set allows for more observations per marker, thereby, 

estimating marker effects more accurately (Hayes et al., 2009a). This increase in 
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predictive ability, however, came with a trade-off, as progressively reducing the test set 

size significantly increased the number of outliers and variability around the mean 

predictive ability. These results are reflective of the personalised designing and 

optimization of training and test sets that must be performed for different datasets to 

obtain reliable estimates of predictive ability. The number of iterations did not have a 

significant effect on the predictive ability. Results demonstrated that 100 iterations were 

enough to obtain valid predictive abilities with significant time saving benefit as running 

the model with 2000 iterations increased the computing time by over 1000% compared 

to 100 iterations (data not shown). 

4.5.3. Genomic Prediction Model Comparison 

All models achieved similar predictive abilities for the different traits. Prior studies by 

Arojju et al. (2018) and Roorkiwal et al. (2016) also found no significant improvements 

in predictive ability when comparing different models in ryegrass and chickpea (Cicer 

arietinum), respectively. Although, the KGD-GBLUP model, on average, had slightly 

higher predictive ability than the other models it also had the highest bias. This suggests 

the possibility of the model not only detecting more genetic signal but also including more 

noise (Heslot et al., 2012). 

The genetic architecture of a trait is known to influence the predictive ability of different 

models (Zhong et al., 2009; Daetwyler  et al., 2010). For relatively less complex traits, 

like LS, variable selection models like BayesCπ, which do not assume equal variance of 

all markers, have been shown to perform better (Daetwyler et al., 2013). Contrary to 

expectation, for the trait LS, BayesCπ did not significantly outperform KGD-BLUP and 

GBLUP which assume all SNPs have equal variance. So far, there has been no detailed 

investigation on the exact nature of the inheritance pattern of LS in white clover and this 

result possibly sheds insight on the underlying mechanism controlling LS as quasi-

quantitative with major genes and several polygenes controlling the inheritance (Ashri, 

1968). 

The RKHS model, identified to be capable of capturing non-additive genetic variation, 

with consequent increases in predictive ability for traits where dominance and epistasis 

play a significant role, did not outperform the less advanced models in predicting any of 

the traits. This may indicate that the contribution of epistatic variation to the total variation 

is insignificant for the measured traits (Haile et al., 2019). In white clover, the variation 
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using the HS family structure is entirely additive as dominance and epistasis are not 

detected (Falconer, 1989). Hill et al. (2008) showed, empirically, that a large proportion 

of variation for quantitative traits was additive. In traits like maize, however, where 

dominance and epistasis are significant, Liu et al. (2018) found RKHS to perform better 

than GBLUP or Bayesian models. 

Concerns have been raised by several authors on the issue of the possible rapid decline in 

predictive ability of models that rely on kinship among individuals, i.e., GBLUP, with 

succeeding generations, especially when there are fewer individuals in the training 

population (Habier et al., 2007a; Daetwyler  et al., 2010; Heslot et al., 2012; Daetwyler 

et al., 2013). By contrast, models that exploit the LD between markers and QTL lead to 

more persistent predictive ability over generations (Liu et al., 2015). Despite this, 

Goddard et al. (2011) and Zhong et al. (2009) argued that since the relatedness between 

individuals estimated in the relationship matrix is due to LD, then both LD and genetic 

relationships make contributions to the predictive ability. 

4.5.4. Trait architecture and heritability 

The variation in predictive ability among traits can be explained by the differences in 

genetic architecture. Zhong et al. (2009) provides evidence of the negative relationship 

between the predictive ability and number of QTLs in a trait.  For complex traits like DM, 

GS and stolon density traits, which are strongly influenced by the environment, as 

evidenced by the high G×E, the predictive ability was relatively lower (0.25 - 0.33). This 

is consistent with Jia et al. (2018) and Annicchiarico et al. (2015) who obtained prediction 

accuracies of 0.13 and 0.3 for DM yield in alfalfa, respectively. Many studies report an 

increase in predictive ability as trait heritability increases (Combs & Bernardo, 2013a; 

Riedelsheimer et al., 2013; Zhang et al., 2014; Spindel et al., 2015; Roorkiwal et al., 2016; 

Arojju et al., 2018). The higher predictive ability obtained for LS, (0.44), a more heritable 

trait is likely because most of the variation is genetically controlled, thereby allowing for 

improved estimation of marker effects (Stewart-Brown et al., 2019). In view of the 

important role heritability has on predictive ability, it may be worthwhile to explore 

approaches that improve the estimation of trait heritability. For instance, increasing the 

number of locations and/or replicates for traits with poor quality phenotype data might 

improve the estimation of heritability (Falconer & Mackay, 1996). However, there is a 

limit to the returns of using this approach to increase predictive ability, as heritability 
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estimates above 0.7 are not worth the extra cost accrued from setting up more replicates 

or environments for testing (Cobb et al., 2019). Another avenue to increase the predictive 

ability of low heritability traits is to increase the training population size. According to 

Goddard (2008), 3000 individuals are needed to double the accuracy from 0.3 to 0.6 for 

a 0.3 heritability trait. 

HCN, a simple trait under the control of two genes, had a relatively low predictive ability 

of 0.22. This finding was unexpected and could be due to several reasons, one being that 

the reference genome (Griffiths et al., 2019), is currently incomplete and the sequence of 

the HCN gene is absent in the available reference genome. Another reason could be the 

differences in the copy number variation (CNV) for the cyanogenesis genes. The Li and 

Ac genes, responsible for producing the hydrolysing enzyme linamarase and cyanogenic 

glucoside, respectively, have been reported to have multiple copies (Olsen et al., 2014). 

Detecting CNV is difficult, because individuals can possess different lengths of the 

variant; hence, genotyping platforms not optimised to detect CNV may miss a substantial 

proportion of genetic variation, thereby reducing predictive ability. 

Negative to low predictive ability was obtained for some traits, especially when using 

phenotype data from the first year. According to Riedelsheimer et al. (2013), this could 

be due to opposite linkage phases between the training set and validation sets. In addition, 

the possibility of makers being out of LD with QTL in the validation population was 

highlighted by Zhao et al. (2012) as a potential reason. In our situation, because this is an 

F3 segregating generation where several loci are expectedly in LD, it is highly unlikely 

that this is the case (Bassi et al., 2016).  

Another plausible reason for low predictive abilities is the lack of substantial additive 

genetic variation. Traits with higher amounts of additive variation have been found to be 

predicted more accurately than traits where non-additive variation plays a crucial role 

(Annicchiarico et al., 2015). The inherent difficulty in trait assessment and the lack of 

availability of accurate, high-throughput phenotyping systems further compound this 

issue as poor-quality phenotypic data is generated due to the inability to precisely partition 

environmental noise. Therefore, the possible interference of the subpar phenotypic data 

cannot be ruled out as a hindrance to the accurate estimation of marker effects by the 

genomic selection model. Zhao et al. (2012) confirms this in their study in elite maize 

cultivars where they found predictive ability to match the degree of precision of 
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phenotyping, suggesting the need for high quality phenotyping platforms for genomic 

selection. 

4.5.5. Location and Year 

Generally, improvement in predictive ability was observed with successive years and 

combining the data of multiple years from the two trial locations. Similarly, Grinberg et 

al. (2016) noted the predictive ability in perennial ryegrass to be higher in the second year 

than in the first year. The increase in predictive ability in the second and third year 

compared to the first, can be explained by the higher amount of additive genetic variation 

obtained in those years. Spindel et al. (2015) also found predictive ability to increase 

when data from all years were used to train genomic prediction models. With respect to 

multi-location data, Faville et al. (2018) and Annicchiarico et al. (2015) obtained higher 

predictive ability when data were pooled across environments in ryegrass and alfalfa, 

respectively. This is because multi-year and multi-location data can capture more 

variation and effectively separate G×E from additive variation while single year or 

location data are possibly confounded by G×E effects, causing a reduction in predictive 

ability (Massman et al., 2013a). This boost in predictive ability results from a positive 

correlation between locations and years which increases the number of replicates of each 

line allowing for more accurate trait prediction (Burgueño et al., 2012; Faville et al., 

2018). In the absence of a positive correlation, however, pooling environments decreases 

predictive ability (Spindel et al., 2015). In summary, utilizing models developed from 

multi-location data is usually preferable to a single location model when G×E is 

substantial (Annicchiarico et al., 2015). 

Predictive ability in Aorangi was generally higher than at Ruakura, most likely as a result 

of the larger amount of additive genetic variation present. Crossa et al. (2010) found 

predictive ability to differ by as much as 30% between different locations. The lower 

predictive ability obtained at Ruakura for GS in Year three especially, can be attributed 

in part to the higher levels of environmental noise in the phenotype data. This is apparent 

from the high error variance component, which was more than twice that obtained at 

Aorangi as well as the higher family × year interaction variance. Also, it is worth noting 

that the third year in Ruakura was characterised by extreme weed invasion necessitating 

the removal of the third replicate from the trial which had a negative impact on 

heritability. 
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4.5.6. Training Population size (TS) 

Similar predictive ability was achieved when half of the TS was used to train the model. 

Previous studies on the influence of TS on predictive ability have reported mixed results 

with some concluding TS had a greater influence on predictive ability than others. Zhong 

et al. (2009) reported doubling the TS size to deliver high gains while Grinberg et al. 

(2016), in contrast, report no significant increase in accuracy when TS was increased. In 

our case, no significant improvement in predictive ability was observed when doubling 

the TS from 100 to 200 individuals. This is in line with Bassi et al. (2016) who 

recommended TS sizes from 100 HS families sufficient to achieve a prediction accuracy 

of 0.5. Indeed, this was illustrated in this study. For instance, DM, had a predictive ability 

of 0.3 which corresponds to a prediction accuracy of 0.5. Prediction accuracy is defined 

as the predictive ability divided by the square root of heritability (Dekkers, 2007). 

Therefore, dividing the predictive ability of 0.3 by the square root of heritability, 0.4, 

gives a prediction accuracy of 0.5. Habier et al. (2013) showed that prediction accuracies 

due to LD increased with the inclusion of more individuals in the TS while accuracies 

due to the genetic relationships plateaued and started to decline. The reduced predictive 

ability observed with fewer individuals in the TS is due to the reliance on insufficient 

number of individuals to capture the additive genetic relationship (Meuwissen, 2009; 

Zhong et al., 2009; Heffner  et al., 2011). With more phenotypic records, the observation 

per marker allele is increased with subsequent increase in the accuracy of genomic 

selection (Hayes et al., 2009a). 

It is also important to highlight the reduction in the variance around the average predictive 

ability, when larger training sets were used. Predictive ability was less stable at smaller 

training population sizes indicating higher error. Smaller TS are more sensitive to poor 

quality phenotype data, which are damaging to accurate predictions (Stewart-Brown et 

al., 2019). According to Daetwyler  et al. (2010) and Resende et al. (2012b), increasing 

the reference population size increases predictive ability as the additional information 

enables maker effects to be precisely estimated with less variability. An increase in bias 

was also observed at lower population sizes indicating underprediction of GEBVs 

(Velazco et al., 2019b). Increasing the population size provided more genomic 

information and produced a more unbiased model. 
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Trait architecture was found to influence the extent of predictive ability decline. Goddard 

and Hayes (2007) found traits controlled by greater number of genes with small effects 

required larger training sets for accurate prediction. This differs from our findings, as LS, 

compared to DM and GS was most sensitive to reduction in the size of TS. This could be 

because, GBLUP, the genomic prediction model used, has been shown to better predict 

quantitative traits like DM and GS where numerous loci contribute to variation. 

The design of the training population has also been shown to a critical factor in genomic 

selection (Riedelsheimer et al., 2013). These results show financial resources can be saved 

by using fewer HS families or even diverted to developing more populations. Employing 

different populations is an attractive strategy for breeding programmes interested in 

creating and maintaining a more genetically diverse pool of individuals. This approach, 

however, is debatable as combining different unrelated populations reduces the predictive 

ability as different QTL could be segregating in populations of diverse backgrounds 

(Rutkoski et al., 2011). This is indicated by the incongruity in QTL locations reported for 

the same species when several populations are analysed for the same trait (Blanc et al., 

2006; Bernardo, 2008). Furthermore, unrelated populations are at risk of having variable 

LD between markers and causal genes (De Roos et al., 2008). 

Nevertheless, several studies have reported favourable increases in predictive ability 

when two or more populations were merged. Schulz-Streeck et al. (2012) and Faville et 

al. (2018) combined populations in maize and ryegrass, respectively, and obtained higher 

predictive ability across all populations than in specific populations. The increase in the 

overall training population size, due to merging multiple populations, allows for more 

replication of alleles. The higher occurrence of rare alleles consequently improves the 

predictive ability of the genomic selection model (Jarquín et al., 2014; Stewart-Brown et 

al., 2019). Moreover, combining populations creates larger training set sizes, which have 

been shown to offset the negative impact of low heritability on predictive ability due to 

better estimation of marker effects (Grattapaglia & Resende, 2011). 

4.5.7. Marker Density 

The impact of reducing the number of markers in this study was insubstantial when more 

than 1% (> 1,100) of markers were used, irrespective of the trait. In fact, for DM yield, 

the predictive ability estimated using 10% of markers was higher than when all markers 

were used in the model. The optimum number of markers to accurately predict trait 
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performance has been found to vary considerably and depends on several factors 

including the level of LD between markers and QTL and the training population size 

(Meuwissen et al., 2001). Many studies report an increase in predictive ability as marker 

density increases due to the increased likelihood of detecting markers in LD with QTL 

and the greater genetic variation captured (Asoro et al., 2011; Heffner  et al., 2011; Hickey 

et al., 2014; Lin et al., 2014). However, a plateau in predictive ability is reached after 

which subsequent increase in the number of markers is subject to diminishing returns 

(Heffner  et al., 2011). Higher LD increases the probability of linkage between markers 

and QTL (Kainer et al., 2015). Linkage disequilibrium is particularly important as an 

assessment for marker usefulness in subsequent cycles of genomic selection, as high LD 

increases the persistency of genomic selection accuracy in the succeeding generations 

(Dekkers & Hospital, 2002). Calus et al. (2008), proposed an LD ≥ 0.2 between adjacent 

loci for accurate prediction of GEBVs for a trait with low heritability. Outcrossing and 

diverse populations with low LD usually require more markers to guarantee sufficient 

markers are in LD with QTL (Jannink et al., 2010). Nevertheless, Zhong et al. (2009), 

established that markers not in LD with QTLs can potentially capture the genetic 

relationship between individuals and increase the predictive ability. In our case, LD was 

found to decay below 0.2 after 300 bp. The relatively high rate of LD decay is consistent 

with the nature of the outcrossing population where recombination events are higher than 

self-pollinating species and similar to reports in ryegrass (Fè et al., 2015; Arojju et al., 

2016; Faville et al., 2018) and alfalfa (Li et al., 2014). It must be noted, however, that the 

LD estimates might not be reflective of the true LD in this population as the reference 

genome from which SNPs were called, is still incomplete with numerous gaps and several 

scaffolds unassigned to chromosomes. This may have a negative impact on the estimation 

of LD. 

Habier et al. (2007a) and Habier et al. (2013) showed that even with no LD, genomic 

prediction models like GBLUP still had positive prediction accuracy resulting from the 

estimation of additive genetic relationships and linkage between QTL and SNPs. The 

predictive ability due to genetic relationships, in situations with low LD, is expected to 

decay faster over generations. This is mostly because information from genetic 

relationships is halved for the progeny in subsequent generations unlike LD which is more 

persistent (Habier et al., 2007b). This breakdown means that genomic prediction models 

would have to recalibrated frequently to ensure genetic relationships are captured (Müller 

et al., 2017; Faville et al., 2018). 
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It was not surprising to observe the redundancy of large marker sets despite the low LD. 

In a simulation study, Habier et al. (2013) found that prediction accuracies due to genetic 

relationships and linkage plateaued with at lower SNP density than accuracies due to LD. 

Furthermore, when the training and breeding population are closely related, as in this 

situation, a large proportion of accuracy is due to the relatedness information captured by 

the markers (Goddard et al., 2011; Kainer et al., 2015; Arojju et al., 2018). The large 

marker requirement by populations with low LD can also be offset by using a population 

generated from a few parental lines (Nakaya & Isobe, 2012). Also, early filial generations 

require fewer markers as Bassi et al. (2016) pointed out, while later generations need 

more markers because of the breakdown of LD.  

As earlier identified, marker number has a low impact on predictive ability as it was clear 

from our analyses that similar predictions were achieved with significantly fewer 

markers. It is well established that the number of individuals sequenced, and the 

sequencing depth contribute to the eventual number of markers detected (Li et al., 2011). 

Practically, since high genotyping costs are a possible deterrent to the successful 

implementation of genomic selection in many plant breeding programmes, instead of 

allocating resources to more expensive genome-wide genotyping that generate millions 

of SNPs, it seems beneficial to employ relatively cheaper, low-coverage genotyping 

platforms like GBS, which potentially produce large numbers of markers with low depth. 

Especially with the development of genomic prediction models like KGD-GBLUP, which 

efficiently utilise low read depth data with high rates of missing values thus enabling the 

use of a wider range of SNPs potentially tracking QTLs. The GBS approach also comes 

with the flexibility to fine-tune the ratio of  read depth to the number of markers obtained 

i.e., generate more markers at a lower depth or fewer markers at higher depth of coverage 

(Elshire et al., 2011). For instance, by using a rare cutter (e.g PstI, a 6 bp cutter), with less 

frequent recognition sites, a smaller library is generated with a higher read depth per 

fragment and fewer missing data (Poland & Rife, 2012). Furthermore, reducing or 

increasing the multiplexing level can influence the sequencing coverage and amount of 

missing data. For this study, a 96-plex level was used, however increasing to 364-plex 

can drive the cost per individual down even further albeit with less coverage and larger 

proportion of missing data. Even at relatively low depth, 1x or less coverage, markers are 

still able to detect signals between markers and phenotypes thus providing a robust, cost-

effective approach suitable for genomic selection (Gorjanc et al., 2017). Several studies 

have used GBS in the marker discovery phase of genomic selection in many species and 
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have established that even with high level of missing data, imputation methods are able 

to recover substantial information (Deschamps et al., 2012; Poland et al., 2012; Rutkoski 

et al., 2013; Cericola et al., 2018). 

4.5.8. Multi-trait Genomic Prediction  

The goal of multi-trait selection is to take advantage of the correlation between two or 

more traits to improve the predictive ability of a more expensive, and or difficult to 

measure trait (Jia & Jannink, 2012). Implementing MTCV1, which represents a scenario 

of predicting untested phenotypes for the primary trait, by incorporating a secondary trait 

in the prediction model, did not deliver any significant boost in predictive ability, 

consistent with results from several authors (Jarquín et al., 2014; Fernandes et al., 2018; 

Velazco et al., 2019a; Ward et al., 2019). It was only when the test set individuals had 

phenotypes for the secondary trait, i.e., the MTCV2 scenario, that a significant increase 

in predictive ability was observed for DM yield and SNPRS. Wang et al. (2017) and 

Velazco et al. (2019a) observed that including more traits improved the predictive ability 

of the primary trait. Interestingly, our results contradict this finding as combining LS and 

DM did not significantly improve the predictive ability of DM over when GS was used 

alone. The increased predictive ability results not only from the additional information 

obtained from the secondary trait, but also mostly due to the exploitation of the correlation 

between traits to increase the reliability of inferring the breeding values of individuals for 

the primary trait (Velazco et al., 2019a). This was evident in DM yield as the increase in 

predictive ability was higher when the more highly corelated trait, GS, was included in 

the model even though it had a lower heritability than LS. 

The applicability of MTCV2 scenario is still unclear and depends on breeding objectives. 

If the goal is to save cost by not phenotyping a more expensive primary trait, then a multi-

trait approach can be applied to selection candidates already under advanced field testing 

to assess for the secondary trait. However, since a major advantage of genomic selection 

is the capacity to skip the phenotyping stage and in particular, predict the GEBVs of 

individuals at the seedling stage, then the benefits of MTCV2 might only be fully 

appreciated for quality traits such as HCN and water-soluble carbohydrate which are 

expressed early in the life cycle of the plant. 



171 

 

4.6. Genetic Gain Simulation for DM Yield  

Conventional breeding in white clover is traditionally based on phenotypic selection 

among families with limited access to within-family variation. According to Casler 

(2008), the main reason for low rates of genetic gain in forage crops is the non-utilization 

of within-family variance by selection methods. By using genomic selection to efficiently 

distinguish between candidates and access within-family variation, genetic gain can be 

increased. The maximum genetic gain achieved via AFp-WFgs was approximately twice 

that obtained by phenotypic selection. As expected, the highest genetic gain was obtained 

with the highest selection pressure. Lin et al. (2016) and Endelman et al. (2014) in 

simulation studies, also found genomic selection to substantially increase genetic gain in 

ryegrass and maize. 

The uptake of genomic selection by breeding programmes will critically depend on the 

cost per unit of genetic gain achieved. Although AFp-WFgs was more expensive than 

phenotypic selection, the increase in genetic gain, despite a moderate predictive ability of 

0.3, made it more economically advantageous than phenotypic selection alone at higher 

selection pressures, for example 10% and 5%. This is similar to results by Wong and 

Bernardo (2008) and Riedelsheimer et al. (2012) who found genomic selection 

outperformed phenotypic selection and MAS in terms of genetic gain and cost-efficiency 

in oil palm and maize, respectively. With the costs of genotyping continuously decreasing 

and phenotyping and labour costs on the increase, genomic selection is becoming a 

preferred route that allows more selection candidates to be screened at higher selection 

pressures, thus increasing the response to selection and increasing genetic gain even 

further. 

Changing the selection pressures among and within-family had marked effects on the 

genetic gain and cost. This reflects the existing flexibility to tailor breeding schemes to 

available budgets and resources. A more exploitative breeding scenario would be to 

increase the number of selection candidates and apply higher selection pressures thereby 

increasing selection efficiency while still maintaining genetic diversity as more plants are 

grown (Jannink, 2010; Lorenz, 2013). For example, in this case, at 1% within-family 

selection using genomic selection, only one individual was selected from 100. In order to 

obtain 20 individuals for a polycross at 1% WFS, as many as 2000 seedlings would have 

to be grown, increasing the chances of better random sampling. One of the main 
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advantages of genomic selection is the ability to increase selection pressure through high-

through-put genotyping (Isik, 2014). 

When financial resources are limited, the number of candidate plants grown at the within-

family stage can be reduced in order to save cost on genotyping. This would, however, 

depend on the goals of the breeding programme and the intended polycross size. Caution 

must be taken with this “rapid short-term response but limited long-term approach”, 

however, as fixation rate is higher and increases in the rate of inbreeding are likely to 

occur (Gorjanc et al., 2018). Lin et al. (2017) showed that genomic selection could double 

the rate of inbreeding compared to phenotypic selection. In addition, fixation rate is higher 

at the high selection intensity, more so for genomic selection for two reasons: one being 

the rapid cycling compared to phenotypic selection and the second because genomic 

selection is based on markers; consequently, fixation for favourable alleles linked to 

markers will be higher (Jannink, 2010). Maintenance of variation and genetic diversity is 

therefore crucial, especially for outcrossing species like white clover. 

The simulation performed estimates the genetic gain for DM yield after one cycle of 

selection. When considering time per cycle, which is considered the most important 

component of genetic gain, genomic selection can be exploited even further (Bernardo, 

2002; Lorenz et al., 2011; Bassi et al., 2016). While phenotypic selection takes at least 

three years per cycle, genomic selection can be used to perform up to two cycles of 

selection per year by eliminating the need for lengthy phenotyping. This is possible when 

two fundamental requirements for flowering are provided, which include long daylength 

and a vernalization period. Some white clover varieties can flower even without 

vernalization when 14 to 16-hour photoperiods are met (Cope & Taylor, 1985). 

Glasshouse facilities that provide these requirements can expedite flowering with no 

consequences on seed set and seed yield. This implies that even with a lower accuracy 

than phenotypic selection, genomic selection is able to increase genetic gain by carrying 

out more cycles per unit time (Bernardo & Yu, 2007a; Heffner et al., 2010; Resende et 

al., 2012b). 

In summary, a deciding factor for many breeding programmes before implementing 

genomic selection would be the amount of genetic gain derived per unit cost (Jahufer & 

Luo, 2018). Depending on the available budget, if the expenses are too high, the increase 

in genetic gain may not justify the increase in cost. New strategies that deliver more 
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genetic gain per unit cost are more likely to be adopted. To maximise genetic gain, the 

availability of practical information comparing the relative efficiencies of different 

schemes is of immeasurable assistance to breeders in making important breeding 

decisions regarding selection choices and resource allocation. 

4.7.  Conclusion 

This study represents the first assessment of implementing genomic selection to improve 

DM yield and persistence in white clover. The following conclusions were reached: 

• GBS produced many markers with sufficient quality and versatility to successfully 

implement genomic selection. 

• KGD-BLUP model, although not significantly better, consistently had the highest 

predictive ability compared to the other models. 

• Trait heritability was significantly associated with predictive ability. Traits with 

higher heritability and low G×E had higher predictive abilities. Moderate 

predictive ability was obtained for DM yield and LS, while GS and stolon density 

traits had low predictive abilities. Multi-location and multi-year data improved 

predictive ability.  

• Vegetative persistence-related traits such as stolon number and branching, with 

high levels of environmental noise had lower predictive ability. This highlights 

the importance of good quality phenotypic data for genomic selection. 

• Predictive ability was found to improve with data maturity due to the higher 

additive genetic variation estimated in the later years of the trial for measured 

traits.  

• Similar predictive ability was achieved with half the training population size and 

5% of markers, indicating the flexibility to manipulate and optimise genomic 

selection and reduce cost in this population. 

• The limited extent of LD in the population was not found to influence the number 

of markers needed.   

• Multi-trait models substantially improved predictive ability only when the 

phenotype information of a highly correlated secondary trait was present in the 

test population.   
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• Based on the simulation, up to two-fold increase in genetic gain per cycle can be 

made in improving white clover DM yield by incorporating an among and within-

family approach despite a modest predictive ability of 0.3. 

• At higher within-family selection pressures, AFp-WFgs was found to be more 

cost-efficient than phenotypic selection. This confirms the potential economic 

advantages of integrating genomic selection with phenotypic selection to 

significantly increase genetic gain. 

4.7.1. Foreword to Chapter 5 

Chapter 4 demonstrated the development of genomic prediction models that underpin the 

application of genomic selection to a white clover HS family population and provided 

key insights into the various factors affecting the predictive ability of genomic selection. 

It showed the ability to enhance genetic gain by integrating phenotypic selection and 

genomic selection while considering the cost-efficiency of both approaches through 

simulation. In the following chapter, using a simple trait HCN, empirical evidence on the 

application of genomic selection to increase genetic gain will be provided.  
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5. Empirical validation of genomic selection  

5.1. Introduction 

Genomic selection is the use of genome-wide markers to predict phenotypes of 

individuals based on their genome-wide marker information (Meuwissen et al., 2001). 

The first step in genomic selection is the training of a genomic prediction model by the 

estimation of marker effects using phenotype and genotype information derived from a 

training population (Meuwissen, 2009). The next step, the prediction phase, which is 

undoubtedly the main purpose of genomic selection, the trained genomic prediction 

model is used to predict the genomic estimated breeding values (GEBVs) of untested 

individuals, using only their marker information (Lorenz et al., 2011). Before GEBVs are 

used to make selections, however, the genomic prediction model is validated. This is 

typically done through a process of cross-validation where the data set is split into two 

sets, a training set from which marker effects are estimated and a test set in which the 

individual’s phenotypes are masked with the purpose to predict their GEBVs (Hayes et 

al., 2009b). The correlation between the predicted GEBV and the actual phenotype is 

regarded as the predictive ability which serves as a measure of performance of the model 

(Meuwissen et al., 2001; Goddard & Hayes, 2007; Daetwyler et al., 2013). Although the 

predictive ability plays an important role in determining the feasibility of genomic 

selection, it does not describe the amount of genetic gain or response to selection 

achievable (Herter et al., 2019). Since the main purpose of genomic selection is to predict 

the performance of untested individuals not in the training population, and potentially 

several generations away, the true performance of the genomic prediction model must be 

empirically validated with distinct real data not included in model development (Lorenz 

et al., 2011; Bassi et al., 2016). 

Empirically validating genomic selection is important as the realised genetic gain 

obtained from its implementation can be calculated. Phenotypic selection has been the 

key driver of realised genetic gain in breeding programmes. However, this strategy 

requires replicated multi-year-season-location-based trials to enable the separation of the 

confounding effects of G×E interaction from the additive genetic variation, in order to 

identify superior individuals (Dudley & Moll, 1969; Falconer, 1989; Holland et al., 2003; 

Weikai, 2014). In marker-assisted selection (MAS), the performance of individuals is 

estimated using few markers and even though MAS has been proven to be successful for 
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traits under the genetic influence of large QTL, it fails for traits controlled by numerous 

minor-effect genes like yield (Jannink et al., 2010). This is mainly due to the significant 

markers being associated with only a fraction of the total genetic variation responsible for 

the trait (Bernardo & Yu, 2007b). Consequently, genomic selection, which uses all 

marker information available has been found to outperform phenotypic selection and 

MAS (Wong & Bernardo, 2008). In dairy cattle, where genomic selection was first 

implemented, a two-fold increase in genetic gain has been achieved by reducing the time 

required for bull progeny tests (Harris et al., 2008; Hayes et al., 2009b). In plants, 

empirical evaluation has revealed the largest driver of increase in genetic gain derived 

from genomic selection to be the reduction in the breeding cycle (Hickey et al., 2014). 

For maize yield, in terms of realised gain, genomic selection outperformed phenotypic 

backcrossing (Combs & Bernardo, 2013b) and pedigree and phenotypic selection 

(Beyene et al., 2015). Likewise, Massman et al. (2013b) reported higher gains from 

genomic selection compared to phenotypic selection and MAS for grain yield and 

cellulosic ethanol in maize. 

In forages, reported predictive abilities and accuracies have been low to moderate for 

many traits. As prediction accuracy is derived by dividing the predictive ability 

correlation by the square root of the trait heritability, prediction accuracy is larger than 

predictive ability. Often these terms are used interchangeably, which complicates 

comparison of prediction accuracies/predictive abilities among published studies. Faville 

et al. (2018) obtained a predictive ability of 0.07 to 0.43 for DM yield in perennial 

ryegrass. Also in perennial ryegrass, Arojju et al. (2019) reported predictive abilities of 

0.22 and 0.34 for digestibility and water-soluble carbohydrate. For the same trait, crown 

rust resistance, Arojju et al. (2018) reported a predictive ability of 0.52 while Byrne et al. 

(2017) reported a higher accuracy of 0.86. In alfalfa, a predictive accuracy of 0.1 and 0.3 

for DM yield was reported by Jia et al. (2018) and Annicchiarico et al. (2015), 

respectively. In switchgrass, (Panicum virgatum), a predictive accuracy of 0.5, 0.4 and 

0.3 was reported for standability, leaf length and heading date, respectively (Lipka et al., 

2014). In some of the aforementioned studies, to emulate applied forage breeding, where 

parental breeding values are estimated from their progeny, the genotype information is 

obtained from the parental training population while the phenotype information is from 

trait evaluation of their progeny (Annicchiarico et al., 2015). According to Grinberg et al. 

(2016), this may have a negative effect on the predictive ability because the phenotype 

and genotype information are from different populations. Studies have shown that 
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different QTL are expressed in populations grown under different environmental 

conditions (Bernardo, 2008; Massman et al., 2013a). Furthermore, a decrease in 

predictive ability could be caused by differences in SNP allele frequencies in the two 

populations after recombination (Massman et al., 2013a). Comparing predictive abilities 

derived from both scenarios would be important to provide some insight on this issue. 

The rate of genetic gain achieved per cycle of selection is a standard measure used to 

assess the efficiency of alternate breeding strategies (Conaghan & Casler, 2011). 

Strategies that deliver the most genetic gain per unit cost are ultimately preferred by 

breeders. In white clover, two common breeding strategies, half-sib among-family 

phenotypic selection (HSp) and half-sib progeny test (PT) have been used to increase the 

rate of genetic gain for important selection traits. In PT, the breeding values of the parents 

are estimated from their progeny and used to select the best parents from the original 

polycross which are then randomly mated, usually as clones (Vogel & Pedersen, 1993; 

Goldman, 2000). Instead of using clones, after identifying the best HS families, HSp 

utilises the remnant seed from the of the top families - without evaluation of individuals 

within families - to generate a new population. However, this method utilises only ¼ of 

the available additive genetic variation. Without selection of individuals within families, 

¾ of the additive genetic variation  is not accessible. Using phenotypic selection to 

identify superior HS families and applying genomic selection to select elite individuals 

within families, the AFp-WFgs strategy, enables the total additive genetic variation 

available to be exploited, potentially increasing genetic gain. Although genomic selection 

is increasingly becoming adopted and implemented in many crop breeding programmes 

globally, so far, no studies have reported the realised genetic gain derived from 

implementing genomic selection in white clover.  

This chapter is focused on: 

I. Empirically validating the predictive ability obtained for HCN by carrying out 

divergent selection using GEBVs obtained from the genomic prediction model 

and comparing with observed phenotypic values. 

II. Comparing the rate of genetic gain obtained using three different strategies 

encompassing phenotypic selection and an integrated approach with genomic 

selection. 
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III. Comparing the predictive abilities derived using a model trained with different 

sets of phenotype information obtained from the progeny, using log transformed 

data of progeny and the phenotype of the parental training population.  
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5.2. Methods  

5.2.1. Summary of Genomic Selection Model Development  

As described in Chapter 3, a training population comprising of 274 F2 parental HS 

families was generated in 2015 and genotyped to provide 110,000 SNP markers used to 

train the genomic prediction  model. This population was polycrossed in the summer of 

2015. Harvested seed from the top 200 seed-yielding families was germinated to establish 

the 200 F3 HS families for the purpose of providing phenotype information from a 

replicated multi-location and multi-year field trial. Prior to transplanting the seedlings in 

the two locations, Aorangi and Ruakura, 24 samples of each HS family were evaluated 

for HCN on a score of 0 to 5 as previously described in Chapter 3. The parental F2 

population was also phenotyped for HCN by sampling three leaves from each plant. The 

trait HCN was chosen to test genomic selection as it is expressed at the seedling/young 

plant stage, and therefore application of genomic selection and phenotype testing were all 

achieved in a time period that fits within this study. Residual Maximum Likelihood 

(REML) analysis was conducted separately on data collected to estimate BLUPS and 

variance components for genetic and nongenetic effects. 

5.2.2. Genomic Prediction Model 

The KGD-GBLUP model was fitted using a GRM estimated with 110,000 markers derived 

from the F2 parental population and the phenotype of the F3 progeny population and run 

for 100 iterations using the ‘rrBLUP’ package (Endelman, 2011) in R (R Core Team, 

2018). The performance of the model was assessed by Monte-Carlo cross-validation 

where the whole data set was divided into a training (80%) and a test set (20%), the 

phenotypes of the test set are assumed to be unknown and predicted by the trained model. 

The predictive ability was calculated as the Pearson correlation coefficient of the 

observed and predicted value of 100 iterations. 

To test if obtaining genotype and phenotype information only from the F2 maternal 

training population increased the predictive ability, the model was run separately using 

the phenotype data of the F2 population. Also, due to the non-normal distribution of the 

HCN phenotype data, a natural log transformation was performed on the F3 HCN data to 

determine if a significant boost in predictive ability could be achieved. 
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The GEBVs predicted by all three sets of phenotypes information were compared to 

evaluate if there were differences in the ranking of the individuals predicted. Spearman's 

rank correlation coefficient was used to analyse the correlations between the predicted 

GEBVs at a significance level of 0.05 in R (R Core Team, 2018). 

5.2.3. Divergent Selection 

The HS families were ranked based on their phenotypic BLUPs obtained from REML 

analysis for HCN. Based on a 5% among-family selection pressure, 10 families with 

highest HCN and 10 families with the lowest HCN were identified. In April 2018, a 

random sample of 0.1g of seed was scarified and germinated from the remnant seed of 

each family in the ‘high’ and ‘low’ selection populations on pre-moistened filter paper, 

as described in Chapter 3. Forty-eight germinated seedlings were planted in propagation 

trays containing a mix of peat and sand in preparation for the following selection 

strategies. 

5.2.3.1. Among-family HS Phenotypic Selection (HSp) 

From the 48 germinated seedlings of each HS family in the high and low population, two 

or three plants were randomly taken from each of the 10 HS family to assemble 24-plant 

isolated polycrosses for the high (HSp-H) and low (HSp-L) populations, respectively 

(Figure 5.1). The number of individuals for all polycrosses was kept above 20 as 

recommended by Moll and Robinson (1966) to avoid inbreeding. 

5.2.3.2. HS Progeny Test (PT) 

The 24 highest and 24 lowest HCN maternal F2 parental HS families were identified based 

on the BLUP means obtained from their F3 progeny. Clonal cuttings of each F2 maternal 

plant in the high (PT-H) and low (PT-L) cyanogenic selections were made in May 2018, 

planted in propagation trays and maintained in a glasshouse. Two clones were randomly 

selected per F2 maternal plant in each high and low population separately, to make a 48-

plant polycross for each high and low population in the summer of 2018/2019. 
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5.2.3.3. Among-family Phenotypic Selection and Within-family Genomic Selection 

(AFp-WFgs) 

5.2.3.3.1. Validation Population 

To conduct a within-family selection using genomic selection, 48 seedlings were 

randomly sampled per selected HS family in the high (AFp-WFgs-H) and low (AFp-

WFgs-L) populations (Figure 5.1) making a total of 480 individuals per population. To 

obtain the GEBV of each individual, DNA was extracted according to the modified 

protocol of Anderson et al. (2018), described in Chapter 4. GBS libraries were constructed 

using the protocol published by Elshire et al. (2011) and previously outlined in Chapter 

4. Sequencing was performed on 960 individuals via Illumina HiSeq 2500 sequencing 

platform (Illumina, San Diego, California) at AgResearch Invermay, New Zealand. 

The single-end sequence reads obtained were de-multiplexed, trimmed and filtered 

according to the methodology described in Chapter 4. After aligning to the Trifolium 

repens genome, a total of 312304 SNPs were identified with a mean sample depth of 8.1 

and <35% missing. These SNP data were entered in the KGD method software for 

computing the GRM. GEBVs for HCN production were estimated using the KGD-

GBLUP genomic prediction model for each individual. 

After estimating GEBVs for all individuals, at a within-family selection pressure of 5%, 

the top 2 or 3 plants with the highest GEBVs in each selected HS family in the high 

selection population and 2 or 3 plants with the lowest GEBVs in each selected HS family 

in the low selection population, were chosen separately to obtain a 24-plant polycross 

each for high and low HCN selections. 
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Figure 5.1 Schematic representation of the selection strategies applied in this study 

on white clover HS families. A) Divergent selection for HCN production using 

among-family selection (AFS) at 5% for half-sib among-family phenotypic selection 

(HSp) and an integrated approach of among-family phenotypic selection and within-

family selection via genomic selection (AFp-WFgs). Within-family selection pressure 

(WFS) at 5% using genomic estimated breeding values (GEBVs) for AFp-WFgs 

only. B) Divergent half-sib progeny test (PT) selection based on phenotype BLUPs 

of F3 progeny at 12% AFS pressure. 

 

5.2.4. Polycross and HCN evaluation  

In the summer of 2018/2019, after undergoing vernalization in winter, all six selected 

groups were randomly polycrossed in separate cages according to the procedure described 

in Chapter 3. The plants were re-randomized weekly to ensure random mating within each 

group. After successful pollination, seed was harvested from each HS family in each 

group separately, cleaned and equal amount of seed from HS families within each group 

were collected and a balanced bulk was made separately for each group. From each 

balanced bulk, a random sample of 72 seeds was taken from each group, germinated and 

planted in propagation trays containing a mix of peat and sand. The plants were 
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maintained in a glasshouse and evaluated for HCN production after six weeks according 

to the methodology described in Chapter 3. Scoring was done on a scale of 0 to 5 where 

0 is no HCN produced and 5 is the maximum score for HCN production. 

5.2.5. Response to Selection  

The response to selection, R, was estimated according to Equation 31 (Falconer & 

Mackay, 1996). Realised genetic gain was expressed as the percentage increase of the 

selected population over the mean of the source population. 

 𝑅 = 𝑃𝑠 − 𝑃𝑝 (31) 

Where: R is the response to selection; 𝑃𝑠 is the mean value of the progeny of the selected 

HS parents and 𝑃𝑝 is the mean of the source population before selection. 𝑃𝑝 = 2.2  for PT 

and 3.08 for AFp-WFgs and HSp.  

5.2.6. Expected Genetic Gain 

Simulation analysis was carried out in DeltaGen (Jahufer & Luo, 2018) to compare the 

potential genetic gain derived using HSp, PT and AFp-WFgs. Among HS Family additive 

variance and family × replicate interaction variance component estimates for HCN were 

used to simulate the predicted genetic gain achieved from the three breeding strategies. 

Equation 28 was used to estimate the expected genetic gain from HSp and PT with the 

parental control value (c), set to 1 for PT and 0.5 for HSp. A 5% selection pressure was 

used for among-family selection while a 12% selection pressure was used for PT. 

Equation 29 was used to estimate the genetic gain derived for AFp-WFgs with the within-

family selection pressure set at 5%. The genomic heritability for HCN was estimated at 

0.8, using Equation 30, while 𝑟𝐴−𝑋𝑌 , the genomic selection predictive ability obtained 

from the KGD-GBLUP model for HCN was 0.22. 

5.2.7. Statistical Analysis 

One-way analysis of variance (ANOVA) followed by Tukey’s multiple-comparison test 

(α= 0.05) was performed to determine significant differences among the different high 

and low selection groups. Data were analysed using the ‘stats’ package and ‘TukeyHSD’ 

function in the ‘FSA’ package in R (R Core Team 2018). 
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5.3. Results 

5.3.1. Variance Components  

There was significant (P < 0.05) additive genetic, replicate and family × replicate 

interaction variance within the F2 and F3 populations for HCN (Table 5.1). Additive 

genetic variation was lower than the error variance component. Estimated narrow-sense 

heritability on an individual plant basis was higher in the F2 maternal population (0.93) 

compared to the F3 family mean narrow-sense heritability. 

Table 5.1 Estimated additive (σ2
A), replicate (σ2

R), family-by-replicate interaction 

(σ2
A.R), and pooled error (σε) variance components and their associated standard 

errors (± SE) for HCN in the 200 white clover F2 and F3 populations. Narrow-sense 

heritability (h2
n) was calculated on a family mean basis and single plant basis for the 

F3 population and F2 populations, respectively. 

 Population σ2
A σ2

A.R σ2
R σ2

ɛ h2
n 

F2 1.80 ± 0.19 0.11 ± 0.01 0.01 ± 0.01 0.43 ± 0.03 0.93 

F3 0.54 ± 0.07  - 0.01 ± 0.08 2.74 ± 0.06 0.82 

 

5.3.2. Predictive Ability  

A comparison of the predictive ability obtained when the genomic selection model is 

trained with the genotypes of the parental F2 maternal plants and phenotype information 

of either the HCN progeny BLUP means, BLUP means of a natural log transformation of 

the progeny data or BLUP means of the parental training population is shown in Figure 

5.2. Predictive ability was highest (0.36) when the model was trained with the F2 parents 

from which the genotype and phenotype information were used directly compared to 

using the F2 parent genotypes with phenotypes inferred from the corresponding F3 HS 

progeny (0.22). Transforming the progeny data also significantly increased the predictive 

ability by 45% relative to the untransformed progeny data. Although there were no 

significant differences in the bias values for all three sets of data, the highest bias range 

was obtained with the progeny (-0.56 to 5.26), followed by the transformed progeny data 

(-0.24 to 3.26) and then the parent (0.02 to 3.6). There was a high, significant (P < 0.001) 

positive correlation between the cross-validated GEBVs of individuals predicted by the 

progeny BLUP means and the log transformed data (0.97) and progeny BLUP means and 

the parent BLUP means (0.82). This indicates that the same individuals were selected 

regardless of the phenotype data used. 
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Figure 5.2 Comparison of the predictive ability and bias obtained using different 

sets of phenotype data used to train the KGD-GBLUP model for HCN (Hydrogen 

cyanide) production. Progeny predictive abilities were derived from prediction 

models incorporating F2 parent genotype and phenotype inferred by their 

corresponding F3 HS family. Log-progeny is the natural log transformation of the 

progeny data. The model was run for 100 iterations and predictive ability was 

estimated using Monte-Carlo cross-validation using 80% as training and 20% as 

test sets. Solid line represents the median, black dot in the box represents the mean 

and grey dots are outliers. Notches that do not overlap indicate medians that are 

significantly different at P < 0.05 (Chambers et al., 1983). 

 

5.3.3. Response to Selection, Estimated and Observed Genetic Gain  

The realised genetic gain and response to divergent selection for HCN production was 

compared across three different selection strategies (Table 5.2). In the high population, 

the realised genetic gain obtained from selection based on AFp-WFgs was four times 

more than the HSp. Although the PT selection pressure was lower than AFp-WFgs and 

HSP, selection resulted in the highest response to selection, and consequently delivered 

more genetic gain than AFp-WFgs and HSp (Table 5.2). When comparing among 

strategies in the low population, the highest response to selection was obtained by AFp-

WFgs corresponding to a higher genetic gain than either PT or HSp (Table 5.2). 

The responses to selection and consequent genetic gain were higher for the low population 

than the high population for AFp-WFgs and HSp. 



186 

 

The realised genetic gain was higher than the expected genetic gain in the high and low 

populations for AFp-WFgs and HSp while the realised genetic gain for PT was lower than 

the expected genetic gain in both populations.  

Table 5.2 Estimated and observed genetic gain, response to selection (R) and group 

means for a divergent selection for HCN in white clover across different selection 

strategies, among-family selection (AFS) pressure and within-family selection 

(WFS) pressure. 

Selection strategy Population AFS WFS Expected ΔG  Ave HCN R Realised ΔG 

HSp 

High  5% - 22% 3.42 0.34 11% 

Low 5% - -22% 1.09 -1.99 -65% 

AFp-WFgs 

High  5% 5% 30% 4.43 1.35 44% 

Low 5% 5% -30% 0.46 -2.62 -85% 

PT 

High  12% - 98% 4.24 2.02 91% 

Low 12%  - -98% 0.44 -1.78 -80% 

Half-sib among-family phenotypic selection (HSp), among-family phenotypic selection and 

within-family selection via genomic selection (AFp-WFgs), half-sib progeny (PT). R = Ps - Pp. 

Where  𝑃𝑠 is the mean value of the progeny of the selected HS parents and 𝑃𝑝 is the mean of the 

source population and R is the response to selection. 𝑃𝑝 = 2.2 for PT and 3.08 for AFp-WFgs and 

HSp. 

 

Analysis of variance revealed significant (P < 0.001) variation present between the 

groups (Appendix C.1). From post hoc analyses, in the high population, significant (P < 

0.0001) differences were found between the means of AFp-WFgs-H and HSp-H, whereas 

no significant (P = 0.94) differences were found between AFp-WFgs-H and PT-H (Figure 

5.3) (Appendix C.2). AFp-WFgs and PT strategies delivered 30 and 24% increase in HCN 

production above the population mean of HSp. When comparing between the population 

means of HSp-L and AFp-WFgs-L in the low population, significant (P < 0.05) 

differences were also observed between the two groups while PT-L was significantly 

(P < 0.05) different  from HSp-L but not significantly (P = 0.99) different from AFp-

WFgs-L. AFp-WFgs and PT decreased HCN by 58 and 60% compared to HSp. 
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Figure 5.3 Group means of realised genetic gain for three breeding strategies: half-

sib among-family phenotypic selection (HSp), among-family phenotypic selection 

and within-family selection via genomic selection (AFp-WFgs), half-sib progeny 

(PT). AFp-WFgs and HSp selected at 5% selection pressure and PT at 12% selection 

pressure. Error bars indicate standard error of the means. 

 

From the histogram in Figure 5.4, (Appendix C.2), even though no significant differences 

were observed between AFp-WFgs-H and PT-H, by using GEBVs, the accuracy of 

selection was enhanced such that all the lower scores, (i.e., 0, 1 and 2) were successfully 

eliminated from the high population. Contrarily, the HSp-H and PT-H populations had 

several individuals with low scores and even some acyanogenic individuals in the 

population. In the low population, AFp-WFgs-L and PT-L had no individuals with scores 

above 4, while the HSp-L population had individuals that were very cyanogenic and four 

individuals with a score of 5. 
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Figure 5.4 Distribution of HCN scores showing the accuracy and response to 

divergent selection for three breeding strategies: half-sib among-family phenotypic 

selection (HSp), among-family phenotypic selection and within-family selection via 

genomic selection (AFp-WFgs), half-sib progeny (PT). AFp-WFgs and HSp selected 

at 5% selection pressure and PT at 12% selection pressure. H – High population, L 

– low population. Sample size of 72 individuals per group. 

  



189 

 

5.4. Discussion 

This chapter extends from findings reported in Chapter 4 by empirically validating 

predicted GEBVs from trained genomic prediction models. It compares breeding 

strategies that rely on phenotypic selection and an integrated genomic selection approach. 

The results show that an integrated approach of AFp-WFgs provides greater selection 

efficiency per unit time than the other approaches and provides insight into the 

incorporation of genomic selection into conventional white clover breeding. 

There was significant additive genetic variation for HCN production among the HS 

families in the F2 and F3 generations indicating the potential of genetic improvement for 

the trait. Estimates of narrow-sense heritability were high in both populations which 

provides evidence that the trait is under strong genetic control. The estimation of 

quantitative genetic parameters like heritability is essential to predict response to 

selection and  the magnitude of genetic gain achievable (Fehr et al., 1987; Hallauer & 

Miranda, 1988; Falconer, 1989; Nyquist & Baker, 1991; Jahufer et al., 2002). However, 

since the heritability was estimated from samples taken at one location, it is likely 

upwards biased/inflated as G×E interactions may confound the additive genetic variance 

(Comstock & Moll, 1963; Nyquist & Baker, 1991; Holland et al., 2003). 

It was encouraging to observe that despite the low to moderate predictive ability obtained 

for HCN, it still enabled more precise selection, higher response to selection and 

substantial genetic gain compared to phenotypic selection. The AFp-WFgs strategy 

enabled identification of superior individuals form within HS families based on their 

GEBVs in comparison to HSp which is based on phenotypic selection only. Studies by 

Heffner et al. (2010) and Belamkar et al. (2018) in winter wheat showed genomic 

selection with low accuracies, (0.17 – 0.3), outperformed MAS and phenotypic selection, 

respectively, in terms of genetic gain for yield. The conclusion, therefore, by Belamkar 

et al. (2018) was that predictive abilities should not be the only gauge to measure the 

success of genomic selection. In fact, Blondel et al. (2015) showed Pearson’s correlation 

between predicted and breeding values to have poor correlation with ranking accuracy. A 

better approach to evaluate genomic selection, in their opinion, is to utilise models that 

rank individuals from “most favourable to least favourable” and focus on the top 

individuals rather than on predicting breeding values based on models contingent on 

Pearson’s correlation. Our findings also support this premise and since most breeders are 
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seeking to identify the top performers for selection, a ranking approach to genomic 

selection might be more appropriate. 

Using the F3 progeny phenotype data instead of the F2 parental phenotype data 

significantly reduced the predictive ability. This is likely due to the recombination event 

which causes changes to LD in the F3 population (Habier et al., 2007a). Recombination 

breaks down the association between markers and genes, thereby affecting estimated 

marker effects and GRMs (VanRaden, 2008). More specifically, models like GBLUP and 

KGD-GBLUP that rely on LD and additive genetic relationships between marker and 

QTL are particularly affected (Habier et al., 2013; Lorenz & Smith, 2015). The HCN data 

displayed non-normality and was log transformed resulting in an increase in predictive 

ability. The underlying assumption of most genomic selection models is that the 

phenotype data is normally distributed. This boost in predictive ability suggests that the 

quality of the phenotypic data was not sufficient. Minamikawa et al. (2018) found that 

visually scored traits tended to have lower accuracies than measured traits. This re-

emphasizes the importance of high-quality phenotype data for successful genomic 

selection. Despite the higher predictive ability obtained, ranking individuals based on 

their GEBVs from the transformed and untransformed data, as well as the parental 

phenotype data showed similar rankings across the datasets with high Spearman’s rank 

correlations. This high correlation indicates that all methods tended to select the same 

individuals indicating a slight to no difference in selecting individuals based on all 

methods. 

This finding implies that if the phenotypic data of the parental training population is 

available, it could potentially be used to train genomic prediction models in forage species 

to enable a more precise estimation of marker effects. However, because parental lines 

are usually not evaluated in realistic mixed sward trials like their progeny, available 

phenotype data is likely to be obtained from spaced plants or individual plants, as in this 

case, which have low correlations with mixed sward-based data (Casler & Brummer, 

2008). 

5.4.1. Genetic Gain and Response to Selection 

The magnitude of genetic gain obtained for a trait is a function of the selection intensity, 

prediction accuracy, (the phenotypic selection accuracy is estimated as the square root of 

the heritability), square root of the additive variance and the time per cycle (Dudley & 
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Moll, 1969; Falconer, 1989; Nyquist & Baker, 1991; Desta & Ortiz, 2014). The trait HCN 

had high and significant additive genetic variance, resulting in high heritability, and was 

selected at a high selection pressure. Therefore, the high response to selection and 

magnitude of genetic gain were not unexpected and divergent selection proved successful 

for all three strategies, with AFp-WFgs delivering similar gain to PT and up to four times 

the genetic gain than HSp. Response to selection in the low population was higher for 

AFp-WFgs than HSp or PT, resulting in decreasing HCN significantly. These results are 

similar to Beyene et al. (2015) who found genomic selection to outperform pedigree-

based phenotypic selection in maize biparental populations by at least two-fold. 

Annicchiarico et al. (2019) also reported, via simulation, genomic selection to be more 

efficient than phenotypic selection for simple traits with low G×E in pea. By contrast, 

Sallam and Smith (2016) found genomic selection to deliver equivalent gains to 

phenotypic selection for improving disease resistance traits in barley. Comparing 

different breeding strategies based on their achieved genetic gain allows breeders to 

choose a strategy that delivers the highest genetic gain per unit cost (Fehr et al., 1987). 

The rate of genetic gain achieved per cycle is a common estimate used to assess the 

efficiency of different breeding strategies (Fehr et al., 1987; Conaghan & Casler, 2011). 

Using genotype information to estimate breeding values for individuals within families 

before selecting, AFp-WFgs utilised the ¼ additive variation among families as well as 

the ¾ additive variation available within families with consequent increase in the genetic 

gain achieved (Vogel & Pedersen, 1993; Casler & Brummer, 2008; Conaghan & Casler, 

2011). In contrast, the HSp strategy does not access within family genetic variation, 

therefore, selection of individuals within families is random which means only the ¼ 

additive variation among families is utilised (Falconer & Mackay, 1996). Although the 

PT strategy does not utilise within-family additive variance, it was able to deliver similar 

gains to AFp-WFgs. By the identification and crossing of superior parents, the parental 

control c, is increased from 0.5, when only the female parent is identified to 1 (Casler, 

2008; Acquaah, 2012).  

The possibility to include within-family selection has been identified as central to 

accelerating genetic gain in forage species (Casler & Brummer, 2008). Traditionally, HSp 

can be modified to allow for selection within families, termed among-and within-family 

selection. However, this entails the growing of individuals within families to the specific 

growth stage where the trait under selection can be phenotypically assessed. This not only 
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increases the length of the breeding cycle but also incurs additional labour and 

phenotyping costs. Besides, within-family phenotypic evaluations are usually carried out 

on spaced plants which poorly represent typical mixed sward growing conditions 

(Hayward & Vivero, 1984). With regards to the PT breeding strategy, significant financial 

and spatial investment must be made to maintain the parental lines while their progeny is 

being evaluated, which can take up to four years in white clover. Also, and perhaps the 

most serious disadvantage, is the addition of an extra year or two for another crossing 

event, making it a year behind the other strategies (Casler & Brummer, 2008; Conaghan 

& Casler, 2011; Jahufer & Luo, 2018). According to Vogel and Pedersen (1993) PT is an 

inefficient method of selection and typically stopped after one cycle of selection as 

repeating the process entails a re-evaluation of the same clones that were evaluated in the 

previous cycle. The power of genomic selection lies in the ability to address these 

problems by estimating the breeding values of individuals within families at the seedling 

stage without the need for phenotypic assessment and by eliminating the need for progeny 

testing at certain stages of the breeding programme. Therefore, when comparing all three 

strategies, AFp-WFgs delivered the most gain per unit time. 

Differences in the realised gain vs the expected genetic gain occur as a result of several 

factors including the sample size of the populations compared, environmental conditions 

and the form of material evaluated (Nickell & Grafius, 1969; Oyekunle & Anjorin, 2018). 

In this situation, phenotypic evaluation was performed on bulked samples of all selected 

individuals in the separate groups. Even though equal quantities of seed were included in 

the balanced bulk, uneven representation of HS families in the 72 seedlings grown is 

possible due to the small sample size used for phenotypic assessment. As a result, the 

genetic variability observed may not entirely represent the true population (Bilyeu et al., 

2016). 

It is important to note that the reported study was a proof of concept. In this regard, the 

trait HCN production was chosen because of its simple genetic architecture and 

phenotype which can be measured early in the life cycle of the plant, even though it is not 

necessarily selected for in many white clover breeding programmes. While these results 

are reflective of the high heritability of HCN, I believe they are indicative of the merit of 

using the AFp-WFgs breeding strategy for other key white clover traits. Resende et al. 

(2013), via simulation, found genomic selection to be more advantageous for low 

heritability traits. 



193 

 

5.5. Conclusion 

In summary, employing the parental phenotype information and log transformed progeny 

data to train the genomic selection model increased predictive ability and suggests a 

potential data enhancing method to explore in order to increase the predictive ability. This 

study empirically validated GEBVs predicted by the genomic prediction model and 

showed up to four-fold superiority of AFp-WFgs over HSp in terms of magnitude of 

genetic gain at a 5% divergent selection. Accuracy of selection was also higher for AFp-

WFgs than HSp or PT and may prove more cost-efficient per percentage of genetic gain, 

depending on genotyping costs compared to phenotyping. The results show that genomic 

selection can effectively be used to select superior plants within-families without the need 

for phenotypic evaluation of spaced plants. This study emphasizes the value of applying 

an integrated strategy that uses both phenotypic and genomic selection to accelerate the 

rate of genetic gain in white clover.  

5.6. Foreword to Chapter 6 

Chapter 5, provided for the first time, empirical validation on the application of genomic 

selection in white clover breeding. The impact of different breeding strategies on genetic 

gain was also compared. In the following chapter, a summary of key findings from the 

overall study presented in this thesis will be discussed. The chapter will also focus on 

implications of the results obtained on white clover breeding. Observed shortcomings and 

anticipated future directions will also be presented. 
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6. General Discussion, Future Work and Conclusions  

The study reported in this thesis was focused on integrating genomic selection into an 

established among HS family selection strategy to expedite genetic gain for key white 

clover traits. The findings from this study make significant contributions to the current 

literature on quantitative genetics and breeding in this species. They provide a 

comprehensive demonstration of the methodology and implementation of genomic 

selection, as well as serve as a guide for practical and theoretical requirements that must 

be considered before genomic selection is incorporated into applied white clover breeding 

programmes. 

Before implementing genomic selection, a population providing accurate estimation of 

variance components and phenotypic information for the estimation of marker effects 

must be generated. The prediction of breeding values is dependent on the knowledge of 

the magnitude of additive genetic variance and heritability (Kennedy, 1981; Nyquist & 

Baker, 1991; Holland et al., 2003). In this study, genetic parameters were estimated from 

200 white clover HS families evaluated across multiple years in two distinct locations 

(Aorangi and Ruakura) in New Zealand. Results from the multi-location trials showed 

significant additive genetic variation among the HS families for traits related to yield and 

vegetative persistence. Worthy of mention were the HS families identified with high DM 

yield and high stolon density, as evidenced by the positive correlation between the traits. 

These HS families would be important as breeding material for future cultivar 

development. Narrow-sense family mean heritability estimates were low to moderate for 

DM yield and stolon density (0.13 - 0.54), indicating the likely low genetic gain of these 

traits if phenotypic selection is implemented. 

Year, season and location effects had significant influence on DM yield and vegetative 

persistence. Due to the high level of phenotypic plasticity exhibited by white clover, 

environmental effects have great impact on key traits (Mitchell, 1956; Davies & Evans, 

1982; Archer & Robinson, 1989; Caradus & Williams, 1989; Caradus et al., 1989b; 

Jahufer et al., 1994; Woodfield & Caradus, 1996). There were significant family × 

location interaction effects for most traits measured, indicating a relative change in the 

performance of HS families across locations and emphasizing the need for multi-location 

trials to separate confounding G×E effects and identify stable genotypes. Summer 

moisture stress has been found to have an adverse effect on stolon density (Jones, 1982; 
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Archer & Robinson, 1989; Jahufer et al., 2012). Stolon density was not affected by 

summer moisture stress in this study either due to the typical warm and low rainfall 

conditions not occurring during this period or the increasing rainfall and dropping of 

temperatures immediately post summer which enables fast recovery in the number of 

stolon fragments and stolon branches (Sanderson et al., 2003). Dry matter yield, although 

variable between years, was highest in summer and lower in winter and spring. Improved 

summer growth of clover has been identified to be an important factor in maintaining 

dairy milk production during this period, especially as the quality of pasture declines due 

to increased dead matter in the sward and ryegrass flower heads (Woodfield et al., 2001). 

Taken together, these results support the call for better management practices by way of 

proper grazing practices and optimum stocking rates to prevent over-defoliation during 

sensitive winter and spring periods, as well as proper fertilizer application to prevent the 

companion species outcompeting the white clover. 

Collection of accurate phenotype data has always been a challenge for the improvement 

of quantitative traits like yield (Boopathi, 2013). Across all the field trials, the 

experimental error variance components were the largest in comparison to the other 

sources of variation for most traits. Reducing this component by improved sampling 

techniques improves the precision in the estimates of genetic parameters like additive 

genetic variance and heritability (Fehr et al., 1987). Significant cost and difficulty were 

encountered in assessing and measuring stolon density and DM yield due to several 

factors including the mixed sward growing conditions and the size of the trial. Estimating 

stolon density and DM yield in mixed sward conditions is extremely challenging and 

destructive measuring techniques are often resorted to. Considering the size of the trial, 

labour and time constraints, a limited number of samples were collected per plot. This is 

a potential limitation of the study. Due the presence of high within-plot variability, 

measures taken to obtain true plot representation may not be adequate. A major 

contributor to the accuracy of genomic selection is the quality of the phenotype data and 

phenotyping has become an obstacle for many breeding programmes (Desta & Ortiz, 

2014; Heslot et al., 2015). Since a “garbage in, garbage out” scenario is likely to occur 

for entering erroneous phenotype data into genomic selection models, great attention must 

be paid to obtaining reliable phenotypic information. It is recommended that further 

research be undertaken to develop advanced high-throughput and precise imaging 

techniques for non-destructive monitoring and measuring systems that allow for several 

measurements to be taken over regular time intervals. Efficient, cost-effective 
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phenotyping will allow redirection of resources to larger trials or the additional testing of 

more locations. The more data collected at different times points, the better the estimation 

of marker effects, as different QTL can be expressed at different stages in the life cycle 

of the plant (Yan et al., 2003; Muraya et al., 2017). 

Low to moderate predictive abilities were obtained for most traits in this study, reflecting 

their low to moderate heritabilities. Understanding the genetic architecture and 

distribution (normal or skewed) of traits is paramount to managing the expectations of 

genomic selection. Considering the relatively low accuracies that are frequently reported 

in genomic selection studies, the reluctance to implement this strategy by many breeders 

is understandable. However, several studies have reported gains from genomic selection 

and our results contribute to the growing body of evidence that genomic selection delivers 

more genetic gain than phenotypic selection alone, and therefore presents an opportunity 

not to be missed. Heffner et al. (2010) demonstrated prediction accuracies of 0.3 and even 

0.2 for yearly genetic gain are sufficient to surpass MAS. In situations where genomic 

selection was less accurate than phenotypic selection, results have shown that by reducing 

the cycle length, genomic selection proved a superior strategy (Rutkoski et al., 2015). In 

such a case, employment of genomic selection will depend on a compromise between the 

desired accuracy and the reduction in the generation interval (Burgueño et al., 2012). It is 

advised, however, that validation be performed first, preferably on a small scale as was 

done in this study, before more comprehensive implementation. 

There are several elements that contribute to the predictive ability of genomic selection 

and it is difficult to ascribe relative weightings to each of them as their impacts vary from 

population to population. Reducing the number of markers and size of the training 

population showed only a marginal decline in predictive ability. Because resources are 

finite, the number of individuals potentially evaluated is limited due to high phenotyping 

and labour costs. Genotype information was provided by GBS which delivered abundant 

markers of sufficient quality for genomic selection. Even with low read depths and high 

rates of missing data, imputation options and genomic selection models like KGD-

GBLUP are available which utilise markers with low to zero depth and high level of 

missingness (Dodds et al., 2015). High genotyping costs is a possible deterrent to the 

adoption of genomic selection in many plant breeding programmes, significant savings 

can be made via reduced genotyping costs if high predictive ability is sustained with fewer 

markers. Hence, low coverage sequencing of more individuals with fewer markers may 
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prove more cost-efficient than sequencing fewer individuals at a higher depth with the 

goal of generating more markers (Li, 2011). However, in subsequent generations where 

LD is not expected to be as extensive, the number of markers used would have to be 

increased accordingly to ensure marker-QTL LD relationship is preserved (Riedelsheimer 

et al., 2013; Bassi et al., 2016). There was substantial increase in the cost of implementing 

genomic selection relative to phenotypic selection, it must be noted, however, that some 

of the costs incurred are “start-up” costs at the first instance of implementation. 

Subsequently, major costs would mostly comprise of genotyping selection candidates 

with no need for phenotyping until later stages. 

The integrated phenotypic selection and genomic selection approach, AFp-WFgs, 

resulted in higher genetic gain than among-family HS phenotypic selection only. This 

was due to increased accuracy of selection and the ability to access the ¾ additive genetic 

variation within HS families. White clover breeding has been fraught with low genetic 

gain due to long breeding cycles, difficult-to-measure traits with low heritability, negative 

association among key traits  and the lack of meaningful selection pressure applied within 

families (Caradus et al., 1995; Jahufer et al., 2002; Barrett et al., 2006; Casler & 

Brummer, 2008). Forage breeding programmes can take as long as 15 to 20 years before 

new cultivars are released (Williams, 1987). A principal factor contributing to the long 

generation intervals is the need for progeny tests, which take up to three years or more, at 

various stages of the breeding scheme. By replacing visual phenotypic assessment of 

progeny with genomic selection, time, cost and labour can potentially be saved (Lin et 

al., 2016). This is not to say that progeny tests are eliminated completely, as the initial 

phase of the breeding pipeline requires phenotypic data from the progeny to train the 

model and estimate breeding values of parents. However, at later stages of the scheme, 

i.e., intermediate field trial stages, phenotyping can be omitted, and rounds of selection 

conducted based on the genotype information of selection candidates alone. According to 

Bassi et al. (2016), implementing genomic selection in early generations is the more cost-

effective approach. This is because more candidates grown at this stage allow for greater 

selection pressure to be applied as well significant cost savings by eliminating undesirable 

genotypes at the early stages (Schmidt et al., 2016). On the other hand, if the cost of trait 

phenotyping is low, and in the case where genotyping is significantly more expensive, 

phenotypic selection can be used in the early stages to screen out undesirable lines so that 

genotyping can be saved for the later stages where there are fewer individuals. 
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The value of genomic selection depends on its ability to successfully predict GEBVs over 

generations without phenotyping, after estimating marker effects (Habier et al., 2007a). 

Studies by Meuwissen et al. (2001) have shown that genomic selection can lead to 

acceptably high correlations between predicted and true breeding value over several 

generations without the need for recalibration. With cycles of selection, however, the 

relationship between the training population and the present population under selection 

decreases (Daetwyler et al., 2013). Selection and drift cause changes to allele frequencies 

and LD between markers and QTL, with negative effects on the predictive ability (Habier 

et al., 2007b; Rutkoski et al., 2015; Bassi et al., 2016; Ferrão et al., 2017). The decrease 

in the accuracy of genomic selection has been reported to be higher in the early 

generations due to the decay in relationship between the populations (Jannink, 2010). 

Nevertheless, later generations have been found to have more sustained accuracy due to 

LD between markers and QTL (Habier et al., 2007b). Consequently, it is recommended 

to update the training model regularly, especially in outcrossing populations with low LD 

where rapid breakdown in marker-QTL linkages are likely to occur (Isik, 2014). Updating 

the model with new phenotypic measurements to re-estimate marker effects maintains the 

genomic relationship between selection population and the training population, 

admittedly at extra cost but with benefits on long-term genetic gain (Bassi et al., 2016; 

Lin et al., 2016). Muleta et al. (2019) reported a 39% increase in predictive ability when 

using a model that was updated yearly compared to a non-updated model in sorghum 

yield. Relationships between populations can also be maintained by the use of closed 

recurrent selection schemes (Heffner  et al., 2011; Bassi et al., 2016). 

Drift and selection are also the main reasons why genetic gain starts to plateau (Lorenz et 

al., 2011). A potential setback to the implementation of genomic selection is the increase 

in net inbreeding per year as the reduction in generation interval decreases the available 

genetic variance faster (Goddard & Hayes, 2007). Genomic selection has been reported 

by Jannink (2010) and Rutkoski et al. (2015) to cause more rapid fixation of alleles and 

reduced genetic variance compared to phenotypic selection. According to Rutkoski et al. 

(2015), since genomic selection only acts on alleles in the training population, then, 

alleles in low frequency, those not in LD with markers are influenced only by drift and 

not selection unlike phenotypic selection which allows these alleles to reach intermediate 

levels and cause genetic variance. Phenotypic selection typically takes three years or more 

to perform one cycle of selection, while genomic selection can be performed twice in a 

year. This kind of aggressive selection is not without its drawbacks. With successive 
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rounds of selection, the frequency of favourable alleles increases to the point of fixation 

and subsequent selection events fail to deliver any response to selection (Knight, 1979). 

Breeding schemes for open-pollinated species like white clover aim to increase the 

frequency of desirable alleles in a population while maintaining heterozygosity (Knight, 

1979; Brown & Caligari, 2008b). Consequently, breeders are faced with a dilemma of 

increasing genetic gain by selection whilst preserving or even increasing genetic 

diversity. In the first instance, when choosing the reference population, genetic variation 

should be ensured to reduce collinearity between linked markers and the rapid loss of 

variation due to selection pressure (Jannink et al., 2010). Also, selection criteria that 

assign larger weights to minor alleles could potentially ensure long term selection 

response by increasing their frequency (Goddard, 2008; Jannink, 2010). More practically, 

this problem can be ameliorated by initiating selections in populations with high genetic 

diversity, or simultaneously running pre-breeding activities so that new genetic variability 

can be introduced as a plateau in the response to selection is reached (Knight, 1979; 

Goddard & Hayes, 2007). Gaynor et al. (2017) found schemes that included a population 

improvement component for pre-breeding to deliver more than twice the genetic gain than 

phenotypic selection and up to 1.46 times the genetic gain than standard genomic 

selection strategies. 

Increasing genetic gain is a top priority for most breeding programmes and plant breeders 

will likely choose the approach that delivers the highest amount of genetic gain at the 

lowest cost. Therefore, having practical information on which to base these important 

decisions is crucial (Jahufer & Luo, 2018). Results in this study found the integrated 

genomic selection approach to outperform conventional phenotypic selection at all 

selection pressures, in terms of trait improvement. However, the cost-efficiency of 

genomic selection over phenotypic selection was variable and dependent on the selection 

pressure. Selection pressure can be increased by selecting fewer candidates or increasing 

the selection pool, so the proportion selected is smaller. For instance, 5% selection 

pressure can be 10 out of 200 or 200 out of 4000 HS families. With the latter, the trade-

off would occur with the requirement to genotype several candidates and this remains the 

costlier approach of the two. Still, this presents a major opportunity to make full use of 

the benefits of genomic selection to assess more genetic variation as estimations of 

GEBVs can be done without phenotyping. Also, with multiplexing comes reduced cost 

of genotyping per sample. The former, selecting fewer candidates, leads to faster rates of 

inbreeding due to reduced population size. Caution must be taken with increasing 
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selection pressure for traits in outcrossing species like white clover as this often limits the 

selection intensity that can be applied for a secondary trait (Knight, 1979) especially if 

they are negatively correlated. Furthermore, even though higher selection pressures cause 

rapid response in the initial generations, less response is observed at later generations 

compared to lower selection pressures, as the population becomes increasingly 

homozygous (Rumball & Rae, 1968). 

The number of markers required for genomic selection is largely dependent on the 

genome wide LD (Meuwissen et al., 2001; Meuwissen et al., 2016). Species with 

substantial LD decay, require more markers to track QTL. In this study, LD was 

calculated between marker pairs on the same pseudo-molecule from a draft reference 

genome. The uncharacteristically low LD decay indicates an overestimation of the rate of 

LD decay. Draft genomes are not as accurate as complete reference genomes and present 

a limitation to the current study. Further work needs to be carried out on estimating LD 

between marker pairs located on the same scaffold which might prove to be a more 

accurate approach. 

In this thesis, in-house scripts developed for filtering raw SNP data were utilised resulting 

in the exclusion of a significant percentage of poor-quality SNPs before GRMs were 

constructed. It would be interesting to compare the GRMs constructed using less stringent 

filtering approaches based on MAF and read depth, to explore the impact on predictive 

ability, especially when a genomic prediction model, like KGD-GLUP, developed for 

SNP data with low depth is used.  

Empirical validation of the GEBVs was performed using a balanced bulk of the separate 

groups. This provided a simplified method to obtain the mean of the population. The 

disadvantages of this method include the unequal representation of all individuals in the 

evaluated samples. Also, there was no way to assess the top percentage of individuals 

accurately selected based on their GEBVs, which further defines the accuracy of genomic 

selection. In the future, to assess the ranking of predicted GEBVs and actual observed 

breeding values, phenotypic assessment should be carried out on individual selected 

plants not on bulked samples. 

The inclusion of a marker preselection step where only markers above established 

significant thresholds of association to specific genes or QTL are included in genomic 

selection models has been found to increase predictive ability in some cases. Arojju et al. 
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(2018) reported using subsets of significant markers to be beneficial for crown rust 

resistance, a quality trait in ryegrass. There is scope for future work to establish whether 

using SNPs linked to traits of interest, based on GWAS studies, would significantly 

increase the predictive ability versus using all available markers which is the original 

premise of genomic selection. 

Reduced genotyping costs mean genomic selection is progressively becoming adopted by 

many plant breeding programmes worldwide, especially in cases where phenotyping and 

labour costs consume a large chunk of the budget. Phenotypic selection will continue to 

play a major role in breeding as it remains the foundation of selection. In white clover, 

the greatest potential of genomic selection is the ability to enhance selection for typically 

costly and difficult-to-measure traits, facilitate within-family selection and carry out more 

cycles of selection per unit time. Through simulation and empirical validation, results 

from this study demonstrate genomic selection to be a promising tool to increase the rate 

of genetic gain in white clover breeding. 
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Appendices 

 

Appendix A.1 Aorangi experimental design: CH1 and CH2 are repeated check 

cultivars, ‘Grasslands Kopu II’ and ‘Grasslands Bounty’.  
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Appendix A.2 Ruakura experimental design: CH1 and CH2 are repeated check 

cultivars, ‘Grasslands Kopu II’ and ‘Grasslands Bounty’. 
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Appendix A.3 ANOVA table for linear mixed model results for the effect of year, season,  

score and their corresponding interactions on DM calibration cuts at Ruakura.  

Source                         Df Sum Sq Mean Sq   F value          Pr(>F)       

Year                           2   5761  2880.7  201.6250       < 2.2e-16 ***   

Season                         3  10305  3435.1  240.4294       < 2.2e-16 ***   

Score                          8 128611 16076.3 1125.2195       < 2.2e-16 ***   

Year:Season                    4   1737   434.4   30.4026       < 2.2e-16 ***   

Year:Score                    16   1321    82.5    5.7766 0.0000000000064 ***   

Season:Score                  24   1187    49.5    3.4618 0.0000000653127 ***   

Year:Season:Score             32    818    25.6    1.7896        0.005113 **    

Residuals                     718  10258    14.3                                 

---   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1   

 

 

 

 

Appendix A.4 Pairwise comparison of season-year combinations on calibration cut 

DM yield at A) Aorangi and B) Ruakura. Significance at  the 5% level as 

determined by Fisher's least significant difference test. 
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Appendix A.5 The effect of year and season on the adjusted means on calibration 

cut DM yield (dry matter yield) at two sites; Aorangi and Ruakura. SEM 

(standard error of the mean) as error bars. 

 

Appendix A.6 Post hoc  pairwise comparison for full-scale DM yield at Aorangi 

and Ruakura for 2017 and 2018. Significance at  the 5% level as determined by 

Fisher's least significant difference test. 

Pairwise p-value    

          1:Aorangi 1:Ruakura 2:Aorangi 2:Ruakura 

1:Aorangi    0.0000    1.5798    2.6317    0.6421 

1:Ruakura    0.1528    0.0000    1.0457   -0.9398 

2:Aorangi    0.0301    0.3263    0.0000   -1.9830 

2:Ruakura    0.5388    0.3748    0.0827    0.0000 
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Appendix A.7 ANOVA table for linear mixed model results comparing DM yield 

for HS families and commercial checks cultivars over two years, 2017 and 2018 

across two locations; Aorangi and Ruakura.  

                 Sum Sq Mean Sq NumDF   DenDF F value         Pr(>F)     

Year              87058   87058     1   12.04  1.4835        0.24657     

Site               6059    6059     1   12.04  0.1032        0.75348     

Line           42120531  208517   202 2373.46  3.5532      < 2.2e-16 *

** 

Year:Site        386260  386260     1   12.04  6.5820        0.02470 *   

Year:Line      20670785  102331   202 2372.91  1.7437 0.000000002743 *

** 

Site:Line      26416778  130776   202 2372.99  2.2285      < 2.2e-16 *

** 

Year:Site:Line 13573893   67532   201 2372.61  1.1508        0.07966 .   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Appendix A.8 ANOVA table for linear mixed model results for the effect of year, 

checks, time of measurement and their interaction checks on stolon number 

assessed over summer of combined years, 2017/2018 and 2018/2019 at Aorangi.  

            Sum Sq  Mean Sq NumDF  DenDF F value         Pr(>F)     

Year      18336785 18336785     1 12.487 12.1192       0.004290 **  

Time      21498918 21498918     1 12.400 14.2091       0.002531 **  

Check     71429211 35714605     2 86.863 23.6046 0.000000006501 *** 

Year:Time  1950651  1950651     1 12.302  1.2892       0.277828     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Appendix A.9 Post hoc pairwise comparison of season-year combinations on stolon 

number assessed over summer of combined years 2017/2018 and 2018/2019 at 

Aorangi. Significance at the 5% level as determined by Fisher's least significant 

difference test. 2POS = stolon number post-summer year 2; 2 PRS = stolon 

number post-summer year 2; 3POS = stolon number post-summer year 3; 3 PRS = 

stolon number pre-summer Year 3. 

 

Appendix A.10 ANOVA table for linear mixed model results for effect of year, and 

time of measurement and their interaction on stolon branches assessed over 

summer of combined years  2017/2018 and 2018/2019 at Aorangi. 

             Sum Sq  Mean Sq NumDF  DenDF F value       Pr(>F)     

Year       90183140 90183140     1 12.803 18.2953     0.000931 *** 

Time          12260    12260     1 12.536  0.0025     0.961010     

Check     161668245 80834122     2 98.363 16.3987 0.0000007141 *** 

Year:Time   2258987  2258987     1 12.536  0.4583     0.510730     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Appendix A.11 Post hoc pairwise comparison of season-year combinations on 

stolon branches assessed over summer of combined years  2017/2018 and 

2018/2019 at Aorangi. Significance at  the 5% level as determined by Fisher's least 

significant difference test. 2POS = stolon number post-summer year 2; 2 PRS = 

stolon number post-summer year 2; 3POS = stolon number post-summer year 3; 3 

PRS = stolon number pre-summer year 3. 
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Appendix A.12 ANOVA table for linear mixed model comparing stolon number for 

HS families and commercial checks cultivars over summers of 2017/2018 and 

2018/2019 at Aorangi.  

                 Sum Sq  Mean Sq NumDF  DenDF F value          Pr(>F)     

Year            34742710 34742710     1   12.1 25.5992       0.0002753 

*** 

Time            20475121 10237561     2   12.1  7.5433       0.0074995 

**  

Line           641733235  3176897   202 5469.1  2.3408       < 2.2e-16 

*** 

Year:Line      488658670  2419102   202 5600.9  1.7825 0.0000000001595 

*** 

Time:Line      843507716  2093071   403 5481.8  1.5422 0.0000000001136 

*** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Appendix A.13 ANOVA table for linear mixed model comparing stolon branches 

for HS families and commercial checks cultivars over summers of 2017/2018 and 

2018/2019 at Aorangi.  

                   Sum Sq  Mean Sq NumDF  DenDF F value    Pr(>F)     

Year             40226487 40226487     1   12.1  9.0998   0.01066 *   

Time              2339143  1169571     2   12.1  0.2646   0.77187     

Line           2064967957 10222614   202 6031.4  2.3125 < 2.2e-16 *** 

Year:Line      1658610948  8210945   202 6096.9  1.8574 5.383e-12 *** 

Time:Line      2781704365  6902492   403 6032.2  1.5614 2.660e-11 *** 
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Appendix A.14 Importance of principal components for pattern analysis using 

standardised Best Linear Unbiased Predictor (BLUP) values of 200 HS families for 

traits: Year 1 across location growth score (GS1), Year 1 and 2 dry matter across all 

locations (DM), across all years and location growth scores for all seasons (GS123), 

leaf size (LS), Year 3 pre-summer stolon number (SNPRS), pre-summer stolon 

branches (SBPRS), post-summer stolon number (SNPOS), post-summer stolon 

branches (SBPOS) and hydrogen cyanide (HCN). Locations are Aorangi and 

Ruakura.*Stolon traits were measured at Aorangi only. 

Importance of components % PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Standard deviation 1.660 1.324 1.193 1.046 0.849 0.659 0.605 0.549 0.391 

Proportion of Variance 0.306 0.195 0.158 0.122 0.080 0.048 0.041 0.034 0.017 

Cumulative Proportion 0.306 0.501 0.659 0.780 0.860 0.909 0.949 0.983 1.000 
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Appendix A.15 Dendrogram based on cluster analysis of the 200 HS families for 

traits: Year 1 across location growth score (GS1), year 1 and 2 dry matter across all 

locations (DM), across all years and location growth scores for all seasons (GS123), 

leaf size (LS), Year 3 pre-summer stolon number (SNPRS), pre-summer stolon 

branches (SBPRS), post-summer stolon number (SNPOS), post-summer stolon 

branches (SBPOS) and hydrogen cyanide (HCN). Locations are Aorangi and 

Ruakura.*Stolon traits were measured at Aorangi only. 
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Appendix A.16 Factor loadings for traits: Year 1 across location growth score (GS1), 

year 1 and 2 dry matter across all locations (DM), across all years and location 

growth scores for all seasons (GS123), leaf size (LS), Year 2 pre-summer stolon 

number (SNPRS), pre-summer stolon branches (SBPRS), post-summer stolon 

number (SNPOS), post-summer stolon branches (SBPOS) and hydrogen cyanide 

(HCN). Locations are Aorangi and Ruakura. *Stolon traits were measured at 

Aorangi only. 

Trait Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9 

GS1 -0.72 0.13 -0.28 0.31 -0.36 0.34 0.07 -0.10 -0.16 

DM -0.80 0.28 -0.05 0.12 -0.02 -0.44 -0.24 0.04 -0.12 

GS123 -0.91 0.21 -0.10 0.10 0.00 0.03 0.06 0.04 0.31 

LS -0.46 0.44 -0.07 -0.46 0.57 0.20 0.02 0.06 -0.09 

SNPRS -0.24 -0.80 -0.38 -0.04 0.02 0.08 -0.11 0.37 -0.02 

SBPRS -0.33 -0.74 -0.37 -0.12 0.23 -0.09 0.01 -0.37 0.01 

SNPOS -0.51 -0.38 0.64 0.00 0.02 -0.13 0.41 0.07 -0.07 

SBPOS -0.30 -0.30 0.80 0.07 0.04 0.21 -0.35 -0.07 0.02 

HCN 0.19 0.01 -0.04 0.86 0.46 0.02 0.04 0.03 -0.01 

 

Appendix A.17 Trait contribution to principal components;  Year 1 across location 

growth score (GS1), year 1 and 2 dry matter across all locations (DM), across all 

years and location growth scores for all seasons (GS123), leaf size (LS), Year 2 pre-

summer stolon number (SNPRS), pre-summer stolon branches (SBPRS), post-

summer stolon number (SNPOS), post-summer stolon branches (SBPOS) and 

hydrogen cyanide (HCN). Locations are Aorangi and Ruakura. *Stolon traits were 

measured at Aorangi only. 

Trait Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9 

GS1 18.96 0.95 5.64 8.78 17.57 27.16 1.35 3.34 16.25 

DM 22.99 4.57 0.16 1.33 0.06 45.42 15.27 0.50 9.70 

GS123 30.20 2.60 0.63 0.89 0.00 0.19 1.03 0.63 63.83 

LS 7.73 11.14 0.30 19.17 45.10 9.54 0.12 1.00 5.90 

SNPRS 2.05 36.59 10.08 0.14 0.05 1.56 3.42 45.81 0.29 

SBPRS 3.99 31.07 9.59 1.32 7.17 1.89 0.02 44.87 0.09 

SNPOS 9.48 8.08 28.44 0.00 0.04 3.67 44.93 1.79 3.57 

SBPOS 3.23 5.00 45.03 0.40 0.27 10.49 33.49 1.83 0.25 

HCN 1.37 0.00 0.13 67.98 29.73 0.07 0.36 0.23 0.12 
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Appendix A.18 Importance of principal components for pattern analysis using 

standardised Best Linear Unbiased Predictor (BLUP) values of 200 HS families for 

traits for traits; WinAo, SprAo, SumAo, AutAo, WinRu, SprRu, SumRu and 

AutRo. Aorangi (Ao) and Ruakura (Ru). 

Importance of components% PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Standard deviation 1.927 1.545 0.860 0.672 0.497 0.440 0.374 0.357 

Proportion of Variance 0.464 0.298 0.093 0.056 0.031 0.024 0.018 0.016 

Cumulative Proportion 0.464 0.763 0.855 0.912 0.942 0.967 0.984 1.000 

 

Appendix A.19 Factor loadings for seasonal herbage growth scores for summer 

(SumAo and SumRu), autumn (AutAo and AutRo), winter (WinAo and WinRu) and 

spring (SprAo and SprRu). Aorangi (Ao) and Ruakura (Ru).  

Trait Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 

SumAo -0.63 0.55 0.27 -0.40 0.24 -0.04 0.00 -0.10 

AutAo -0.75 0.53 0.05 -0.16 -0.26 -0.02 -0.08 0.21 

WinAo -0.77 0.50 -0.11 0.18 -0.15 0.23 0.06 -0.18 

SprAo -0.70 0.48 -0.17 0.41 0.21 -0.18 -0.01 0.06 

SprRu -0.64 -0.50 -0.49 -0.19 0.14 0.13 0.13 0.11 

SumRu -0.57 -0.58 0.49 0.18 0.12 0.20 -0.11 0.08 

AutRu -0.68 -0.58 0.29 0.03 -0.14 -0.19 0.22 -0.04 

WinRu -0.65 -0.64 -0.26 -0.07 -0.07 -0.12 -0.23 -0.13 

 

Appendix A.20 Trait contribution to the principal components; summer (SumAo 

and SumRu), autumn (AutAo and AutRo), winter (WinAo and WinRu) and spring 

(SprAo and SprRu). Aorangi (Ao) and Ruakura (Ru). 

Trait Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 

SumAo 10.66 12.66 9.68 35.56 22.47 0.89 0.00 8.09 

AutAo 15.43 11.74 0.40 5.66 27.91 0.22 4.71 33.93 

WinAo 16.16 10.30 1.65 7.02 8.96 27.58 2.71 25.61 

SprAo 13.41 9.71 3.81 35.84 17.30 16.94 0.05 2.92 

SprRu 11.11 10.48 31.76 7.93 7.84 9.28 11.59 10.02 

SumRu 8.89 13.94 31.80 6.70 5.99 19.61 8.61 4.47 

AutRu 12.71 14.22 11.53 0.18 7.64 17.83 34.84 1.05 

WinRu 11.63 16.95 9.37 1.12 1.89 7.65 37.50 13.89 
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Appendix B.1 Buffer Mix for DNA isolation. 

Homogenization buffer per 1000 ml 

29.22 g NaCl 

100 ml 1M Tris (pH 7.4) 

100 ml 0.5M EDTA (pH 8) 

13.12 g sodium sulphite 

7 g sodium dodecyl sulphate 

 

Precipitation buffer per 1000 ml 

353.3g potassium acetate  

144.1g (140ml) acetic acid 

 

Binding buffer per 1000 ml 

2M (191 g) guanidinium chloride make up 

to 333 ml with TE  

667 ml 100% EtOH 

 

Wash buffer per 1000 ml 

4 ml 5M NaCl 

2 ml 1M Tris-HCL (pH 8) 

194 ml H2O 

800 ml EtOH 
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Appendix B.2 Effect of training: test set size and number of iterations on the 

predictive ability (PA), bias and bias range for traits dry matter (DM), growth score 

(GS) and leaf size (LS) assessed using KGD-GBLUP.  

Trait Iteration CV PA Bias Bias range 

DM 100 5/95 0.37 1.99 -1.81 - 7.98 

DM 500 5/95 0.29 1.50 -3.8 - 8.56 

DM 1000 5/95 0.32 1.68 -5.75 - 14.79 

DM 2000 5/95 0.31 1.65 -7.77 - 10.13 

DM 100 10/90 0.36 1.95 -0.56 - 5.15 

DM 500 10/90 0.31 1.69 -1.44 - 6.46 

DM 1000 10/90 0.31 1.66 -4.12 - 7.48 

DM 2000 10/90 0.31 1.64 -2.02 - 8.95 

DM 100 20/80 0.29 1.83 -0.67 - 9.54 

DM 500 20/80 0.30 1.80 -0.25 - 19.91 

DM 1000 20/80 0.30 1.83 -0.57 - 27 

DM 2000 20/80 0.30 1.80 -0.8 - 9.69 

DM 100 30/70 0.30 5.45 0.32 - 244.34 

DM 500 30/70 0.29 2.12 -0.12 - 42.45 

DM 1000 30/70 0.29 2.14 -0.09 - 58.58 

DM 2000 30/70 0.29 2.04 -0.04 - 28.19 

DM 100 40/60 0.28 4.32 0.35 - 205.95 

DM 500 40/60 0.27 3.44 0.23 - 469.44 

DM 1000 40/60 0.28 2.81 0.25 - 124.07 

DM 2000 40/60 0.27 2.91 -0.02 - 249.53 

GS 100 5/95 0.23 2.31 -6.91 - 11.41 

GS 500 5/95 0.23 2.08 -6.28 - 18.94 

GS 1000 5/95 0.22 2.00 -6.27 - 17.18 

GS 2000 5/95 0.21 1.92 -14.12 - 17.53 

GS 100 10/90 0.23 2.20 -2.36 - 10.62 

GS 500 10/90 0.23 2.17 -3.68 - 15.27 

GS 1000 10/90 0.22 2.11 -4.06 - 16.24 

GS 2000 10/90 0.22 2.11 -3.38 - 23.89 

GS 100 20/80 0.22 3.16 -0.72 - 65.02 

GS 500 20/80 0.21 2.50 -1 - 42.05 

GS 1000 20/80 0.21 2.86 -1.61 - 168.4 

GS 2000 20/80 0.21 2.86 -1.35 - 379.6 

GS 100 30/70 0.20 9.39 -0.19 - 511.69 

GS 500 30/70 0.20 3.51 -0.87 - 66.69 

GS 1000 30/70 0.19 11.17 -0.55 - 7213.77 

GS 2000 30/70 0.20 11.06 -0.91 - 11802.23 

GS 100 40/60 0.18 7.33 -0.57 - 940.93 

GS 500 40/60 0.18 6.03 -0.15 - 182.33 

GS 1000 40/60 0.17 5.13 -0.93 - 579.58 

GS 2000 40/60 0.18 9.67 -0.8 - 4225.11 

LS 100 5/95 0.42 1.52 -1.57 - 5.33 
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LS 500 5/95 0.43 1.51 -1.96 - 7.01 

LS 1000 5/95 0.44 1.53 -2.87 - 6.51 

LS 2000 5/95 0.43 1.50 -3.89 - 7.59 

LS 100 10/90 0.44 1.55 0.02 - 3.51 

LS 500 10/90 0.43 1.53 -0.95 - 4.92 

LS 1000 10/90 0.44 1.53 -1.46 - 5.05 

LS 2000 10/90 0.43 1.50 -0.84 - 4.77 

LS 100 20/80 0.41 1.56 0.27 - 3.38 

LS 500 20/80 0.42 1.54 0.32 - 4.28 

LS 1000 20/80 0.42 1.54 -0.13 - 4.21 

LS 2000 20/80 0.42 1.56 -0.1 - 6.9 

LS 100 30/70 0.42 1.71 0.6 - 5.05 

LS 500 30/70 0.40 1.58 0.32 - 4.28 

LS 1000 30/70 0.40 1.63 0.23 - 5 

LS 2000 30/70 0.40 1.65 0.26 - 7.42 

LS 100 40/60 0.40 1.92 0.75 - 5.66 

LS 500 40/60 0.38 1.86 0.42 - 31.04 

LS 1000 40/60 0.38 2.07 0.27 - 347.09 

LS 2000 40/60 0.38 1.77 0.25 - 23.81 

 

Appendix B.3 Genomic selection model effect on the predictive ability (PA), bias and 

bias range for traits dry matter (DM), growth score (GS) and leaf size (LS).  

Trait Model PA Bias Bias range 

DM BayesCπ 0.30 1.07 -0.74 - 3.46 

GS BayesCπ 0.20 0.80 -0.21 - 2.05 

LS BayesCπ 0.42 1.41 0.35 - 2.54 

DM GBLUP 0.29 1.73 0.03 - 6.49 

GS GBLUP 0.21 2.36 -0.17 - 15.65 

LS GBLUP 0.42 1.59 0.22 - 4.18 

DM KGD_GBLUP 0.33 2.02 -0.14 - 11 

GS KGD_GBLUP 0.25 3.20 -0.76 - 20.4 

LS KGD_GBLUP 0.44 1.68 0.36 - 3.54 

DM RKHS 0.30 1.39 0.02 - 3.29 

GS RKHS 0.20 1.04 -0.62 - 2.75 

LS RKHS 0.41 1.53 0.31 - 3.64 
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Appendix B.4 Predictive ability, bias and bias range for all measured traits, 

implemented using KGD-GBLUP. Heritability = H.  

Trait Location Year H Predictive ability Prediction accuracy Bias Bias range 

HCN _ 1 0.82 0.22 0.24 1.3 -0.28 - 7.66 

DM Aorangi 1 0.27 0.13 0.25 3.16 -2.44 - 52.99 

DM Aorangi 1.2 0.54 0.25 0.33 1.92 -0.54 - 9.4 

DM Aorangi 2 0.48 0.24 0.35 1.68 -0.66 - 7.17 

DM Combined 1 0.37 0.12 0.20 2.13 -1.7 - 15.99 

DM Combined 1.2 0.38 0.30 0.48 1.73 5.94 - -0.04 

DM Combined 2 0.35 0.33 0.56 1.46 -0.08 - 3.9 

GS Aorangi 1 0.35 0.12 0.20 4.55 -4.17 - 48.83 

GS Aorangi 1.2 0.35 0.13 0.23 6.16 -1.9 - 58.31 

GS Aorangi 2 0.50 0.19 0.27 2.50 -0.57 - 17.42 

GS Aorangi 2.3 0.53 0.22 0.31 2.80 -0.52 - 23.43 

GS Aorangi 3 0.59 0.20 0.27 1.66 -0.43 - 7.36 

GS Aorangi 1.2.3 0.48 0.20 0.28 2.55 -0.35 - 15.4 

GS Ruakura 1 0.33 0.13 0.22 6.77 -1.08 - 235.21 

GS Ruakura 1.2 0.36 0.17 0.28 2.75 -0.86 - 43.71 

GS Ruakura 2 0.42 0.14 0.22 7.76 -1.26 - 267.16 

GS Ruakura 2.3 0.22 0.13 0.27 5.11 -2.34 - 146.99 

GS Ruakura 3 0.29 0.02 0.04 0.38 -24.33 - 33.22 

GS Ruakura 1.2.3 0.73 0.16 0.19 4.17 -2 - 58.9 

GS Combined 1 0.24 0.13 0.26 2.12 -0.93 - 22.39 

GS Combined 1.2 0.23 0.18 0.37 2.26 -0.67 - 16.3 

GS Combined 2 0.24 0.16 0.33 4.02 -1.25 - 46.91 

GS Combined 2.3 0.35 0.23 0.40 2.33 -0.81 - 18.55 

GS Combined 3 0.20 0.22 0.49 1.88 -0.41 - 7.95 

GS Combined 1.2.3 0.32 0.25 0.45 3.20 -0.76 - 20.4 

LS Aorangi 1 0.26 0.17 0.33 1.48 -0.56 - 7.72 

LS Aorangi 1.2 0.53 0.36 0.49 1.79 -0.02 - 4.15 

LS Aorangi 2 0.51 0.33 0.47 1.77 0.05 - 5 

LS Aorangi 2.3 0.71 0.38 0.45 1.56 0.2 - 3.86 

LS Aorangi 3 0.46 0.33 0.48 1.22 -0.08 - 3.61 

LS Aorangi 1.2.3 0.73 0.39 0.46 1.72 -0.04 - 4.28 

LS Ruakura 1 0.30 0.15 0.27 0.88 -1.2 - 5.02 

LS Ruakura 1.2 0.61 0.26 0.33 1.19 -0.15 - 4.57 

LS Ruakura 2 0.69 0.19 0.23 1.39 -0.7 - 6.47 

LS Ruakura 2.3 0.68 0.25 0.31 1.33 -0.21 - 4.73 

LS Ruakura 1.2.3 0.66 0.34 0.42 1.45 0.1 - 4.91 

LS Combined 1 0.36 0.19 0.31 0.93 -0.26 - 4.57 

LS Combined 1.2 0.55 0.40 0.55 1.47 0.54 - 3.26 

LS Combined 2 0.42 0.36 0.56 1.61 0.27 - 3.43 

LS Combined 2.3 0.55 0.43 0.59 1.69 0.07 - 4.01 

LS Combined 3 0.31 0.36 0.65 1.43 0.19 - 3.29 

LS Combined 1.2.3 0.70 0.43 0.51 1.63 0.49 - 3.28 
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Stolon branches (POS) Aorangi 1 0.15 0.21 0.54 2.30 -0.52 - 14.63 

Stolon branches (POS) Aorangi 2 0.19 0.01 0.02 -18.30 -59.2 - -0.55 

Stolon branches (PRS) Aorangi 1 0.37 -0.18 -0.29 NA NA 

Stolon branches (PRS) Aorangi 2 0.18 0.08 0.19 21.30 -1.37 - 1738.31 

Stolon number(POS) Aorangi 1 0.25 0.02 0.05 0.29 -7.86 - 41.3 

Stolon number(POS) Aorangi 2 0.13 -0.11 -0.29 NA NA 

Stolon number(PRS) Aorangi 1 0.20 -0.03 -0.08 NA NA 

Stolon number(PRS) Aorangi 2 0.14 0.15 0.41 0.90 -0.88 - 5.05 

 

Appendix B.5 Predictive ability (PA), bias and bias ranges for growth score (GS) 

and leaf size (LS) in two locations; Aorangi and Ruakura and across-locations (Com) 

over a period of three years. 

Trait Location Year PA Bias Bias range 

GS Aorangi 1 0.06 4.55 -4.17 - 48.83 

GS Aorangi 1.2 0.13 6.16 -1.9 - 58.31 

GS Aorangi 2 0.19 2.50 -0.57 - 17.42 

GS Aorangi 2.3 0.22 2.80 -0.52 - 23.43 

GS Aorangi 3 0.20 1.66 -0.43 - 7.36 

GS Aorangi 1.2.3 0.18 2.55 -0.35 - 15.4 

GS Ruakura 1 0.12 6.77 -1.08 - 235.21 

GS Ruakura 1.2 0.17 2.75 -0.86 - 43.71 

GS Ruakura 2 0.11 7.76 -1.26 - 267.16 

GS Ruakura 2.3 0.10 5.11 -2.34 - 146.99 

GS Ruakura 3 0.02 0.38 -24.33 - 33.22 

GS Ruakura 1.2.3 0.12 4.17 -2 - 58.9 

GS Combined 1 0.15 2.12 -0.93 - 22.39 

GS Combined 1.2 0.18 2.26 -0.67 - 16.3 

GS Combined 2 0.16 4.02 -1.25 - 46.91 

GS Combined 2.3 0.23 2.33 -0.81 - 18.55 

GS Combined 3 0.22 1.88 -0.41 - 7.95 

GS Combined 1.2.3 0.25 3.20 -0.76 - 20.4 

LS Aorangi 1 0.17 1.48 -0.56 - 7.72 

LS Aorangi 1.2 0.36 1.79 -0.02 - 4.15 

LS Aorangi 2 0.33 1.77 0.05 - 5 

LS Aorangi 2.3 0.38 1.56 0.2 - 3.86 

LS Aorangi 3 0.33 1.22 -0.08 - 3.61 

LS Aorangi 1.2.3 0.39 1.72 -0.04 - 4.28 

LS Ruakura 1 0.15 0.88 -1.2 - 5.02 

LS Ruakura 1.2 0.26 1.19 -0.15 - 4.57 

LS Ruakura 2 0.19 1.39 -0.7 - 6.47 

LS Ruakura 1.2.3 0.34 1.45 0.1 - 4.91 

LS Combined 1 0.19 0.93 -0.26 - 4.57 

LS Combined 1.2 0.40 1.47 0.54 - 3.26 

LS Combined 2 0.36 1.61 0.27 - 3.43 
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LS Combined 2.3 0.43 1.69 0.07 - 4.01 

LS Combined 3 0.36 1.43 0.19 - 3.29 

LS Combined 1.2.3 0.43 1.63 0.49 - 3.28 

 

Appendix B.6 Effect of training set size on the predictive ability (PA), bias and bias 

ranges of three traits DM (dry matter) yield, GS (growth score) and LS (leaf size). 

Implemented using GBLUP. 

Trait TS% TS PA Bias Bias range 

DM 10% 20 0.05 0.36 -26.36 - 26.84 

DM 20% 40 0.15 -1.83 -181.02 - 23.69 

DM 30% 60 0.20 2.90 -9.82 - 37.38 

DM 40% 80 0.18 2.69 -116.33 - 49.59 

DM 50% 100 0.20 2.81 -2.59 - 39.2 

DM 60% 120 0.24 8.13 -2.03 - 551.1 

DM 70% 140 0.27 3.88 -1.14 - 132.2 

DM 80% 160 0.25 2.41 -1.27 - 42.69 

DM 90% 180 0.30 2.06 -0.34 - 7.5 

DM 100% 200 0.29 1.73 0.03 - 6.49 

GS 10% 20 -0.09 0.67 -26.12 - 98.73 

GS 20% 40 0.11 2.60 -14.01 - 47.59 

GS 30% 60 0.08 3.34 -13.95 - 76.36 

GS 40% 80 0.10 2.08 -45.9 - 54.44 

GS 50% 100 0.11 5.13 -4.87 - 96.77 

GS 60% 120 0.14 3.00 -7.34 - 62.52 

GS 70% 140 0.16 4.87 -21.84 - 125.22 

GS 80% 160 0.18 3.97 -1.49 - 109.8 

GS 90% 180 0.20 2.80 -1.52 - 43 

GS 100% 200 0.21 2.36 -0.17 - 15.65 

LS 10% 20 0.10 1.74 -200.68 - 242.31 

LS 20% 40 0.21 6.07 -26.79 - 149.89 

LS 30% 60 0.25 2.86 -142.08 - 51.34 

LS 40% 80 0.30 2.43 -3.95 - 15.8 

LS 50% 100 0.36 3.03 -1.3 - 32.52 

LS 60% 120 0.35 2.30 -0.49 - 18.65 

LS 70% 140 0.39 1.99 -0.24 - 13.07 

LS 80% 160 0.39 1.75 0.2 - 5.64 

LS 90% 180 0.39 1.56 0.06 - 4.56 

LS 100% 200 0.42 1.59 0.22 - 4.18 
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Appendix B.7 Effect of number of markers on the predictive ability (PA), bias and 

bias range of three traits DM (dry matter) yield, GS (growth score) and LS (leaf 

size). Implemented using GBLUP. 

Trait  Markers% Markers PA Bias Bias range 

DM 0.05% 55 0.07 0.35 -58.42 - 27.42 

DM 0.10% 110 0.14 5.14 -13.08 - 107.7 

DM 0.50% 550 0.21 2.25 -0.62 - 24.34 

DM 1% 1100 0.26 2.03 -0.5 - 12.63 

DM 5% 5500 0.31 2.03 -0.01 - 13.64 

DM 10% 11000 0.31 1.87 -0.2 - 7.25 

DM 50% 55000 0.28 1.78 -0.25 - 14.85 

DM 100% 110000 0.29 1.73 0.03 - 6.49 

GS 0.05% 55 0.06 0.87 -28.75 - 13.74 

GS 0.10% 110 0.10 2.94 -5.79 - 80.75 

GS 0.50% 550 0.13 4.37 -14.75 - 90.87 

GS 1% 1100 0.16 2.18 -1.2 - 24.41 

GS 5% 5500 0.20 2.38 -0.69 - 15.77 

GS 10% 11000 0.20 3.23 -0.95 - 72.93 

GS 50% 55000 0.20 2.36 -0.51 - 26.51 

GS 100% 110000 0.21 2.36 -0.17 - 15.65 

LS 0.05% 55 0.12 0.97 -32.13 - 15.6 

LS 0.10% 110 0.16 2.89 -3.59 - 97.1 

LS 0.50% 550 0.27 1.34 -0.76 - 9.2 

LS 1% 1100 0.31 1.25 -0.29 - 5.04 

LS 5% 5500 0.41 1.57 0.25 - 3.59 

LS 10% 11000 0.41 1.52 0.34 - 3.89 

LS 50% 55000 0.42 1.57 0.35 - 3.31 

LS 100% 110000 0.42 1.59 0.22 - 4.18 

 

Appendix B.8 Multi-trait predictive ability (PA), bias and bias range for primary 

traits: DM (dry matter) SNPRS (pre-summer stolon number) and SNPOS (post-

summer stolon number) using GS (growth score), LS (leaf size) SBPRS (pre-summer 

stolon branching) and SBPOS (post-summer stolon branching as secondary traits 

yield. 

Trait CV PA Average bias Bias range 

DM Single 0.325 2.02 -0.14 - 11 

DM-GS MTCV1 0.31 1.30 0.04 - 2.96 

DM-GS MTCV2 0.63 2.02 1.26 - 3.23 

DM-GS+LS MTCV1 0.29 1.23 0.19 - 3.06 

DM-GS+LS MTCV2 0.62 1.92 0.71 - 2.74 

DM-LS MTCV1 0.31 1.23 -0.25 - 2.97 
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DM-LS MTCV2 0.39 1.47 0.42 - 2.81 

SNPRS Single 0.15 0.98 -0.88 - 5.05 

SNPRS-SBPRS MTCV1 0.15 0.75 -0.69 - 2.61 

SNPRS-SBPRS MTCV2 0.54 1.73 0.7 - 2.69 

SNPOS Single -0.11 1.14 -3.52 - 41.31 

SNPOS-SBPOS MTCV1 -0.10 -0.65 -2.88 - 1.44 

SNPOS-SBPOS MTCV2 0.28 1.56 -0.52 - 3.79 
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Appendix C.1 One-way ANOVA to compare population means among the different 

groups. 

Response: Score 

           Df      F    Pr(>F)     

Group        5 276.57 < 2.2e-16 *** 

Residuals 426                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Appendix C.2 Group mean comparison adjusted p values using Tukey’s multiple-

comparison test (α= 0.05). 

Population AFp-WFgs-H AFp-WFgs-L HSp-H HSp-L  PT-H 

AFp-WFgs-L  0.0000* - - - - 

HSp-H 0.0000* 0.0000* - - - 

HSp-L 0.0000* 0.0249* 0.0000* - - 

PT-H 0.934 0.0000* 0.0009* 0.0000* - 

PT-L 0.0000*  0.99  0.0000* 0.02013* 0.0000*  
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