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Abstract

In New Zealand (NZ) a typical household uses between 160-330 | of hot water per day
at 50 to 60°C. Most hot water systems are electrically heated. Heat pumps using
carbon dioxide (CO,) in the transcritical heat pump cycle offer high potential for energy
savings. The use of CO, also offers further benefits such high volumetric heating

capacity, reduced environmental impact, good availability and low costs.

The objective of this project was to design, build and test a hot water supply system
(HWSS) using a CO, heat pump.

The main components of the HWSS were the heat pump, a stratified hot water storage
cylinder (HWC), a water pump and a control system. The heat pump design was based
on a prototype Dorin CO; compressor which was available. Key features were use of a
vented spiral tube-in-tube heat exchanger for the gas cooler, use of a low pressure
receiver incorporating an internal heat exchanger after the evaporator and the use of a
back-pressure regulator as the expansion valve. The heat pump had a nominal design
heating capacity of 8.1 kW with a COP of 3.9 at 0°C/34.8 bar.a evaporation
temperature/pressure and 100 bar.a discharge pressure when heating water from 15°C
to 60°C.

The prototype heat pump performance was measured for a range of operating
conditions  including 0°C/33.8 barg to 15°C/49.8 bar.g evaporation
temperatures/pressures, 18 to 30°C cold water inlet temperature, 40 to 60°C hot water
outlet temperature and 90 to 120 bar.g discharge pressures. Liquid refrigerant and/or
oil carry over caused by limited LPR separation capacity and/or oil foaming in the LPR
was apparent for some trials but could not be completely eliminated. The compressor
isentropic and volumetric efficiencies were about 30% lower than stated by the
manufacturer. Possible reasons were mechanical and/or compressor oil related
problems. The gas cooler was marginal in capacity especially when the heat pump

operated at high evaporation pressure conditions.

The measured heat pump heating capacity at the design conditions was 5.3 kW at a
COP of 2.6. The heat pump COP was not sensitive to the discharge pressure across a
wide range of operating conditions, so constant discharge pressure control was
adopted. Overall best heat pump efficiency for 60°C hot water was achieved at 105
bar.g discharge pressure. At these discharge conditions the heating capacity and COP

ranged from 4.8 kW and 2.2 at 0°C/33.8 bar.g evaporation temperature/pressure and



30°C cold water inlet temperature to 8.7 kW and 3.9 at 15°C/49.8 bar.g evaporation

and 18°C water inlet respectively.

A mathematical model of the HWSS was developed. The model parameters were
determined from a small set of separate trials. The overall agreement between
measured and the predicted HWSS performance was good. The HWSS performance
was predicted for conditions likely to occur in a one or two family home. The biggest
efficiency losses were HWC standing losses to the ambient air. The heat pump
operated with close to the maximum COP of 2.75 because the water inlet temperature
seldom rose above 25°C. There was potential for efficiency improvements if the short
on/off intervals caused by the relatively small HWC relative to the heating capacity of

the heat pump could be avoided.

Overall, the investigation has shown that the CO, heat pump combined with a stratified
HWC can provide a very efficient HWSS. The heat pump prototype performance was
competitive with conventional heat pumps but there was significant potential for
efficiency improvements due to the poor compressor performance. However, the
availability and costs of heat pump components and the poor compressor performance

constrain the commercial implementation.
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Chapter 1 Introduction

1 Introduction

New Zealand (NZ) is about to ratify the Kyoto protocol, a global convention to reduce
the global greenhouse gas emissions. Fundamental to the convention is the
development of more energy efficient technologies and greater use of renewable

energies.

New Zealand’s energy production is predominantly fossil fuel based (72% of the total),
followed by hydro-powered electricity (23%), geothermal electrical power (5%) and
other renewable energies (less than 1%) (Ministry of Economic Development, 2000).
The production of sanitary hot water in domestic household accounts for 8.7% of the
total energy use and represents 38% of the domestic energy consumption (4000

kWh/year for the average household).

Water heating technology in domestic and commercial applications is dominated by
electric (69%) and gas-fired (19%) storage units (Willamson and Clark, 2001).
Alternative systems, such as solar thermal, wet-backs and heat pumps represent less
than 1% of the market. Even though the gas instantaneous water heaters dominate

many world markets, the technology has only 8% of the market in NZ.

World-wide about 90 million heat pumps were installed in the year 1997, predominately
for residential space heating, air conditioning and cooling applications (Runacres,
2002). The heat pump market has grown at an average of 15% per year since 1992.

The biggest markets are China, Japan and the USA.

Heat pumps have the potential for high-energy efficiency but the high heating
temperature required for the domestic hot water production limits their efficiency and
use in domestic water heating applications. Therefore the use of heat pumps for water
heating has not been as widespread as the use of heat pumps for space heating and

air conditioning.

The recent concerns of ozone depletion and global warming caused by the emission of
fluorocarbon refrigerants, has increased the research on more sustainable heat pump
technology. One alternative is the natural refrigerant carbon dioxide (CO,), which has
high potential for water heating applications when used in a transcritical heat pump

cycle (Lorentzen, 1994a).



Chapter 1 Introduction

The overall aim of this research was to develop and test the performance of a water
heating heat pump using the transcritical CO, cycle based on a prototype CO,

compressor produced by Dorin SA an Italien compressor manufacturer.





