Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Appendix D

MASSEY UNIVERSITY Application for Approval of Request to Embargo a Thesis (Pursuant to AC98/168 (Revised 2), Approved by Academic Board 17/02/99)

Name of CandidateDaniel Rexin
Degree:PhDDept/Institute/School:IFS
Thesis title: A molecular analysis of the requirement of TOR kinase signalling for plant growth
Name of Chief Supervisor: Paul Dijkwel
As author of the above named thesis, I request that my thesis be embargoed from public access until (date)
☐ Thesis contains commercially sensitive information.
Thesis contains information which is personal or private and/or which was given on the basis that it not be disclosed.
Immediate disclosure of thesis contents would not allow the author a reasonable opportunity to publish all or part of the thesis.
Other (specify):Contractual agreement with AgResearch
Please explain here why you think this request is justified:
- The data presented in the thesis has not yet been published and extra time is required to submit a manuscript
- The stipend was given with the agreement of AgResearch that the thesis will be submitted and held in confidence
Signed (Candidate):Date: 2//10/15
Endorsed (Chief Supervisor):
Approved/Not Approved (Representative of VC):

Note: Copies of this form, once approved by the representative of the Vice-Chancellor, must be bound into every copy of the thesis.

A molecular genetic analysis of the requirement of TOR kinase signalling for plant growth

A thesis presented in partial fulfilment of the requirements for the degree

Doctor of Philosophy

in

Plant Biology

at Massey University, Palmerston North, New Zealand.

Daniel Rexin

2015

Abstract

Eukaryotes have developed a highly complex mechanism to incorporate signals from nutrient, energy, stress, developmental, and environmental cues to modulate their growth. To promote this growth, eukaryotes have to coordinate the expansion in cellular mass and size through macromolecular synthesis with the increase in cell number through division. This demands a complex orchestration of a plethora of cellular processes such as transcription, protein synthesis, metabolism and cell wall synthesis. The TARGET OF RAPAMYCIN (TOR) pathway was identified as a central integrator of this growth-regulating mechanism. Components of this pathway, including the TOR kinase and its interaction partners REGULATORY-ASSOCIATED PROTEIN OF TOR (RAPTOR) and LETHAL WITH SEC 13 PROTEIN 8 (LST8), are highly conserved among eukaryotes. This includes plants, for which the adaptation to changing environmental conditions is particularly important given their sessile lifestyle and highly plastic development.

This work sought to further expand the knowledge of how TOR function was adapted to suit the requirements of plants. Therefore, I analysed genetic knock-out mutants of *raptor* in *Arabidopsis thaliana*, which resulted in a severe reduction of growth but did not cause an early developmental arrest as reported by previous studies. Detailed analysis of these mutants further revealed defects in the development of trichomes, gametophytes, and the polar extension of root hairs and pollen tubes. Potential causes for these defects were indicated by lower DNA content and limited ROS accumulation in *raptor* mutants. High similarities between *raptor* and *Ist8* mutants indicated that the formation of TOR complexes as found in other eukaryotes might not be functionally conserved in plants.

iii

Further, I adapted a CRE/*lox* system for the induction of mosaic deletions of RAPTOR, which indicated no tissue-specific requirement for RAPTOR functions within the root of *A. thaliana*, but demonstrated a role in the regulation of meristem size.

To conclude, this data presents further evidence for an altered requirement of RAPTOR and LST8 function for TOR signalling in plants compared to fungi and animals. This thesis revealed novel functions of TOR in plant development, ROS homeostasis and endoreduplication. It further draws attention to the connection with other signalling pathways to regulate growth and development in plants.

Acknowledgments

I would like to express my deep appreciation to everyone who has supported me during my PhD study. I would like to thank my supervisors Bruce Veit and Paul Dijkwel for giving me the opportunity to do my PhD project under their guidance. In particular, I would express my appreciation to Bruce Veit for his intellectual support and for giving me the freedom to explore science in my own way. I am particularly grateful for the tremendous efforts of Paul Dijkwel in mentoring and advising me during this time. I would also like to thank Mei Lin Tay and Anna Larking, whose support and company was indispensable for this project and made the time spent in the lab enjoyable. In particular, I would like to recognize Mei Lin Tay's contribution to the cloning of LST8.1 and Anna Larking's immense efforts in genotyping, crossing, and the propagation and caretaking of plants.

I would like to thank Michael McManus and the members of the Dijkwel & McManus group, especially Matt, Jay, Jibran, Rubina and Srishti, for their vital discussions and jokes during the lab meetings.

I am thankful for the financial support I received from the Royal Society of New Zealand and AgResearch, and I would also like to thank Massey University for supporting my travel to overseas conferences.

I am sincerely grateful to my parents, who have supported me throughout the years of my study as they have done my whole life. Anne and Elaine: words cannot express how grateful I am to know you are by my side. This thesis would not have been possible without your support and love. I would also like to thank you for your efforts in proof reading my writing and Mitsui for her constant attempts to distract me during the writing process. Last but not least, I would like to thank my friends and flatties who made the time in Palmerston North an unforgettable and most enjoyable experience.

Table of contents

Abstract	iii
Acknowledgments	v
Abbreviations	xi
List of figures	xvii
List of tables	xix
Chapter 1 General introduction	1
1.1 Target of rapamycin	2
1.2 Discovery	2
1.3 TOR protein features	3
1.4 TOR complex formation	4
1.4.1 The TOR complex 1	5
1.4.2 RAPTOR	5
1.4.3 LST8	6
1.4.4 Additional interaction partners of TOR in TORC1	7
1.5 TORC1 substrates and functions	8
1.5.1 Protein synthesis	8
1.5.2 Ribosome biogenesis	10
1.5.3 Cell cycle	10
1.5.4 Metabolism and mitochondrial activity	11
1.5.5 Autophagy	11
1.5.6 Lifespan	12
1.6 The TOR complex 2	13
1.6.1 TORC2 substrates and functions	14
1.7 Regulation of TORC1	
1.7.1 Nutrients	
1.7.2 Growth factors	
1.7.3 Energy	19
1.7.4 Stress	19
1.8 Regulation of TORC2	19
1.9 TOR signalling in plants	

	1.9.1 TOR	21
	1.9.2 Raptor	23
	1.9.3 LST8	23
	1.10 Functions and downstream targets of TOR in plants	25
	1.10.1 Protein synthesis	25
	1.10.2 Cell cycle	26
	1.10.3 Transcription	27
	1.10.4 Development	27
	1.10.5 Metabolism	28
	1.10.6 Stress	28
	1.10.7 Autophagy	29
	1.11 Regulation of TOR activity in plants	30
	1.11.1 Glucose	30
	1.11.2 Energy	31
	1.11.3 Hormones	31
	1.11.4 Nutrients	33
	1.11.5 Conclusion and Outlook	33
	1.12 Aim of this research	34
C	hapter 2 Material & Methods	37
	2.1 Cloning	37
	2.1.1 Overview of the cloning strategy	37
	2.1.2 Colony PCR	43
	2.2 Creation of transcriptional fusions	44
	2.3 Plant methods	45
	2.3.1 Plant lines	45
	2.3.2 Growth conditions	45
	2.3.3 Genotyping PCR	46
	2.3.4 Plant transformation	47
	2.3.5 Extraction of genomic DNA of <i>A. thaliana</i>	49
	2.3.6 Genomic mapping of T-DNA insertions using high-efficiency thermal asyn interlaced PCR (hiTAIL-PCR)	nmetric 50
	2.3.6 Genomic mapping of T-DNA insertions using high-efficiency thermal asyn interlaced PCR (hiTAIL-PCR)	nmetric 50
	 2.3.6 Genomic mapping of T-DNA insertions using high-efficiency thermal asyn interlaced PCR (hiTAIL-PCR)	nmetric 50 51 52
	 2.3.6 Genomic mapping of T-DNA insertions using high-efficiency thermal asyn interlaced PCR (hiTAIL-PCR)	nmetric 50 51 52 52
	 2.3.6 Genomic mapping of T-DNA insertions using high-efficiency thermal asyn interlaced PCR (hiTAIL-PCR). 2.3.7 H₂O₂ assay 2.4 Transcriptomic analysis	nmetric 50 51 52 52 52

	2.6 Microscopy	54
	2.6.1 β-glucuronidase (GUS) staining	54
	2.6.2 Differential interference contrast microscopy	54
	2.6.3 Aniline blue staining	54
	2.6.4 Alexander staining	55
	2.6.5 Propidium iodide staining	55
	2.6.6 Electron microscopy	55
	2.6.7 ROS staining using H_2DCF -DA	56
	2.6.8 S-phase cell detection using ethynyl deoxyuridine (EdU)	56
С	Chapter 3 Characterization of <i>raptor3g raptor5g</i> mutants in <i>A. thaliana</i>	57
	Introduction	57
	Results	58
	3.1 Isolation of <i>raptor</i> mutants	58
	3.2 Raptor mutants show limited growth	61
	3.3 A. thaliana raptor3g raptor5g mutants show RAPTOR-independent TOR activity	64
	3.4 Expression of RAPTOR3G and RAPTOR5G in A. thaliana	65
	3.5 Transcriptomic profile of <i>raptor</i> mutants	68
	3.6 Root hairs of <i>raptor3g raptor5g</i> mutants show altered development and ROS accumulation	73
	3.7 RAPTOR is involved in regulating growth and development through controlling meris size	tem 76
	3.8 <i>Raptor</i> mutants show reduced endoreduplication accompanied with altered trichome development and reduced organ size	78
	Discussion	84
С	Chapter 4 Flower development and transmission of <i>raptor</i> mutants	93
	Introduction	93
	Results	93
	4.1 Flower development of A. thaliana raptor mutants	93
	4.2 Arrest of female gametophyte in raptor3g raptor5g mutants causes sterility	96
	4.3 RAPTOR is involved in pollen maturation and pollen tube growth	98
	Discussion	102
С	Chapter 5 Analysis of mosaic <i>raptor</i> knock-outs	107
	Introduction	107
	Results	109
	5.1 Generation of A. thaliana lines with lox-flanked RAPTOR	109
	5.2 Introduction of an inducible CRE recombinase to A. thaliana	112
	5.3 Generation of the CRE/RAPTOR3G ^{lox} system in A. thaliana	115

5.4 Functional testing of the CRE/ <i>lox</i> system through the induction of HSp::CRE RAPTOR3G ^{lox} and control lines	116
5.5 <i>RAPTOR</i> is not required to maintain growth and development in small <i>RAPTOR</i> ^{/ox} deletion sectors within the root meristem	119
5.6 Raptor deletion sectors in the root show reduced meristem size	123
Discussion	125
Chapter 6 Comparison of <i>raptor</i> and <i>Ist</i> 8 knock-out mutants in <i>A. thaliana</i> a implications on the presence of a TORC2 in plants	nd its 129
Introduction	129
Results	130
6.1 Generation of <i>A. thaliana</i> lines with <i>lox</i> -flanked <i>LST8</i>	130
6.2 Generation of the CRE/LST8.1 ^{/ox} system in <i>A. thaliana</i>	132
6.3 Functional testing of the CRE/lox system in HSp::CRE LST8.1 ^{lox} and control lines	133
6.4 Deletion of <i>LST8</i> mimics the phenotype of <i>raptor</i> null sectors	134
6.5 <i>Raptor3g raptor5g</i> and <i>lst8.1</i> mutants show differences in the response to changes light period	of the 137
6.6 <i>Raptor3g raptor5g</i> and <i>lst8.1</i> mutants show differences in DNA content under long condition.	day 139
6.7 <i>Raptor3g raptor5g</i> and <i>lst8.1</i> mutants show a similar but not identical transcriptomic profile	c 142
6.8 RAPTOR and LST8 are not essential for TOR activity in plants	145
Discussion	146
Chapter 7 Final discussion, outlook and concluding remarks	151
Appendices	157
Bibliography	175

Abbreviations

°C	Degrees Celsius
μE	Micro-Einstein
μm	Micro-meter
μΜ	micro-molar
4E-BP	4E-BINDING PROTEIN
ABA	Abscisic acid
ABRC	Arabidopsis Biological Resource Center
Akt	s. PKB
amiRNA	artificial microRNA
AML1	ARABIDOPSIS MEI2-LIKE 1
AMPK	AMP-ACTIVATED PROTEIN KINASE
APC/C	Anaphase promoting complex/cyclosome (APC/C)
APR2	ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE
ATG	AUTOPHAGY-RELATED
ATP	Adenosine triphosphate
AVO	ADHERES VORACIOUSLY TO TOR2
bp	Nucleotide base pairs
Ca ²⁺	Calcium
CDC	CELL DIVISON CYCLE
CDK	CYCLIN-DEPENDENT KINASE

cm	Centi-meter
Col-0	Columbia-0
СТАВ	Cetyltrimethyl ammonium bromide
DAG	Days after germination
DAI	Days after induction
ddH2O	Double-distilled water
DEPTOR	DEP DOMAIN-CONTAINING MTOR-INTERACTING PROTEIN
DEX	Dexamethasone
DNA	Deoxyribonucleic acid
EdU	Ethynyl deoxyuridine
eIF2	EUKARYOTIC INITIATION FACTOR 2
eIF3h	EUKARYOTIC TRANSLATION INITATION FACTOR 3h
eIF4E	EUKARYOTIC TRANSLATION INITIATION FACTOR 4E
FAT	FRAP, ATM, TRAPP2
FATC	FAT, C-terminal
FKBP12	FK506 BINDING PROTEIN
FLC	FLOWERING LOCUS C
FRB	FKBP12-rapmycin binding
FT	FLOWERING LOCUS T
g	Gram
GAP	GTPase activating protein
GEF	GUANINE NUCLEOTIDE EXCHANGE FACTOR
GFP	GREEN FLUORESCENCE PROTEIN
GL	GLABRA

- GOI Gene of intererst
- GUS β-glucuronidase
- h Hour(s)
- H₂O₂ Hydrogen peroxide
- HEAT Huntingtin, Elongation factor 3, A subunit of protein phosphatase 2a, and TOR1
- hiTAIL-PCR High-efficiency thermal asymmetric interlaced PCR
- HM Hydrophobic motif
- HSp Heat shock promoter
- kbp 1000bp
- KOG1 KONTROLER OF GROWTH
- LD Long day
- LD Long day (16h light 8h dark)
- LRX1 LEUCINE-RICH REPEAT/EXTENSIN 1
- LST8 Lethal with SEC 13 protein 8
- LTP1 LIPID TRANSFER PROTEIN 1
- MEI2 MEIOSIS REGULATOR-2
- mg Milli-gram
- MIPS1 MYO-INOSITOL-1 PHOSPHATE SYNTHASE 1
- mL Milli-liter
- mm Milli-meter
- mRNA Messenger ribonucleic acid
- MS Murashige and Skoog
- mTOR Mechanistic/Mammalian TOR
- n Sample size

NiR	NITRITE REDUCTASE
nm	nano-meter
NR	NITROGEN REDUCTASE
PA	Phosphatidic acid
PCG1α	PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR)-γ
	coactivator
PDK1	PHOSPHOINOSITIDE-DEPENDENT KINASE 1
PI	Phosphatidylinositol
PI(3,4,5)P ₃	Phosphatidylinositol 3,4,5-triphosphate
PI3K	PHOSPHATITYLINOSITOL-30-KINASE
PI-3P	Phosphatidylinositol 3-phosphate
PIKK	Phosphatidylinositol 3-kinase-related kinase
PIN	PIN-FORMED
PKC	PROTEIN KINASE C
PLD	PHOSPHOLIPASE D
PP2A	PROTEIN PHOSPHATASE 2A
PRAS40	PROLINE-RICH AKT SUBSTRATE OF 40KDA
PTEN	PHOSPHATASE AND TENSIN HOMOLOG
RAG	RAS-RELATED GTPASE
RAM	Root apical meristem
RAPTOR	REGULATORY-ASSOCIATED PROTEIN OF TOR
RBR1	RETINOBLASTOMA-RELATED 1
RD	Regulatory domain
RHEB	RAS HOMOLOG ENRICHED IN BRAIN

- RHO1 RAS HOMOLOG 1
- RiBi Ribosome biogenesis
- RICTOR RAPAMYCIN-INSENSITIVE COMPANION OF MTOR
- RNA Ribonucleic acid
- RNC RAPTOR N-terminal conserved
- RNC/C RAPTOR N-terminal Conserved / putative Caspase
- ROM2 RHO1 MULTICOPY SUPPRESSOR 2
- ROS Reactive oxygen species
- RRM RNA-recognition motifs
- RT Room temperature
- RTG Retrograde response pathway
- S6K 40S RIBOSOMAL PROTEIN S6 KINASE
- SD Short day
- SD Short day (10h light 12h dark)
- SEM Scanning electron microscope
- SFP1 SPLIT FUNGER PROTEIN 1
- SNRK1 SNF1-RELATED KINASE-1
- STAT3 SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 3
- TAG Triacylglyceride
- TAP TWO A PHOSPHATASE ASSOCIATED PROTEIN
- TCA Tricarboxylic acid cycle
- TCO89 89-KDA SUBUNIT OF TOR COMPLEX ONE
- TM Turn motif
- TOR TARGET OF RAPAMYCIN

TORC	TOR complex
TOS	MTOR signalling motif
TPR	Tetratricopeptide repeat
TSC	TUBEROUS SCLEROSIS
U2AF	U2 AUXILIARY FACTOR
ULK1	UNC51-LIKE KINASE 1
uORF	Upstream open reading frame
VPS34	VACUOLAR PROTEIN-SORTING DEFECTIVE 34
Wat1p	WD repeat-containing protein
WOX5	WUSCHEL-RELATED HOMEOBOX 5
Wt	Wild type

List of figures

Figure 1.1 Protein domain structures of TOR, RAPTOR and LST8 in representative species.	4
Figure 1.2 The mammalian TOR pathway	. 13
Figure 1.3 Overview of the TOR pathway in plants.	. 30
Figure 3.1 Genomic locations of T-DNA insertions within RAPTOR genes.	. 60
Figure 3.2 Agarose gel of genotyping-PCR with RAPTOR3G lines	. 60
Figure 3.3 Agarose gel of genotyping PCR with RAPTOR5G lines.	. 61
Figure 3.4 Phenotypes of A. thaliana raptor mutants.	. 63
Figure 3.5 Root growth of <i>raptor</i> mutants	63
Figure 3.6 Dose-response curve of <i>A. thaliana</i> to the TOR inhibitor AZD8055	. 65
Figure 3.7 Genomic sequences of RAPTOR3G and RAPTOR5G	. 66
Figure 3.8 Expression profile of GUS reporter lines.	. 67
Figure 3.9 GUS activity in floral organs and gametophytes of GUS reporter lines	. 68
Figure 3.10 Significantly activated and repressed gene clusters in <i>raptor3g raptor5g</i> mutants	70
Figure 3.11 Representation of differentially expressed genes between <i>raptor3g raptor5g</i> mutants and wt plants	71
Figure 3.12 Expression profile of cell cycle-related genes in wt and <i>raptor3g raptor5</i> , mutants	g 72
Figure 3.13 Length of root hairs in wt and raptor3g rapro3g5 mutants.	74
Figure 3.14 Root hairs of mature primary roots	74
Figure 3.15 ROS accumulation in root hairs	75
Figure 3.16 Quantitative measurements of H ₂ 0 ₂ levels.	75
Figure 3.17 S-phase staining of cell with EdU	77
Figure 3.18 Longitudinal length of cortex cells in wt and raptor3g raptor5g mutants.	. 78
Figure 3.19: Leaf development of wt and raptor3g raptor5g mutants.	. 80
Figure 3.20 Leaf epidermis of wt and raptor3g raptor5g mutants.	81
Figure 3.21 Quantitative measurements of the surface area of pavement cells	. 81
Figure 3.22 Trichomes of wt and raptor3g raptor5g mutants	. 82
Figure 3.23 DNA content analysis using flow cytometry	. 83
Figure 4.1 Flower initiation of wt and raptor3g raptor5g mutants	. 95
Figure 4.2 Phenotypes of wt and raptor3g raptor5g mutants at time of flowering	95

Figure 4.3 Inflorescences of A. thaliana raptor mutants	96
Figure 4.4 Female gametophytes of wt and raptor3g raptor5g mutants	
Figure 4.5 Pollen viability test using Alexander staining.	100
Figure 4.6 Measurement of pollen tube growth.	
Figure 4.7 Quantitative measurement of pollen tube growth.	
Figure 5.1 T-DNA sequence of pCBI-RAPTOR3G ^{lox} vector	
Figure 5.2 Scheme for the creation of <i>RAPTOR3G^{lox}</i> lines	112
Figure 5.3 T-DNA sequences of pCRE vectors.	114
Figure 5.4 Scheme for the creation of A. thaliana CRE lines	114
Figure 5.5 Overview of the generation of RAPTOR ^{lox} CRE lines.	116
Figure 5.6 Induction of HSp::CRE RAPTOR3G ^{lox} and control lines	
Figure 5.7 Induction of raptor deletion sectors in various tissue of the RAM	122
Figure 5.8 Induction of large <i>raptor</i> deletion sectors in the root	
Figure 6.1 Control series of HSp::CRE LST8.1 ^{lox} and control lines	
Figure 6.2 Induction of large Ist8.1 deletion sectors in the root	
Figure 6.3 Induction of Ist8.1 deletion sectors in various tissue of the RAM	
Figure 6.4 Phenotypes of wt, <i>raptor3g raptor5g</i> and <i>lst8.1</i> mutants in response period changes.	e to light 139
Figure 6.5 DNA content analysis of <i>raptor3g raptor5g</i> and <i>lst8.1</i> mutants using cytometry.) flow 141
Figure 6.6 Phenotypes of <i>raptor3g raptor5g</i> and <i>lst8.1</i> with reduced TOR gene	e dosage. 146

List of tables

Table 1.1 Components of TORC1 and TORC216
Table 2.1 LST8 PCR-reaction mixture. 38
Table 2.2 RAPTOR-PCR reaction mixture. 39
Table 2.3 Cloning-PCR setup
Table 2.4 Sequencing reaction mixture
Table 2.5 Sequencing reaction setup
Table 2.6 Colony-PCR mixture. 44
Table 2.7 Colony-PCR setup. 44
Table 2.8 Promoter-PCR mixture. 45
Table 2.9 Promoter-PCR setup
Table 2.10 Genotyping-PCR mixture. 47
Table 2.11 Genotyping-PCR setup. 47
Table 2.12 Agrobacterium strains and selective antibiotics. 48
Table 2.13 Thermocycling conditions of hiTAIL-PCR reactions
Table 3.1 Relative representation of trichome phenotypes of wt and raptor3g raptor5g mutants. 82
Table 4.1 Transmission ratio of raptor alleles through the male and femalegametophyte
Table 5.1 List of RAPTOR3G ^{lox} lines
Table 5.2 List of CRE lines
Table 6.1 List of LST8.1 ^{lox} lines
Table 6.2 Transcriptomic comparison of raptor3g raptor5g and Ist8.1 mutants