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ABSTRACT

There has been considerable recent interest in geometric function theory,

nonlinear partial differential equations, harmonic mappings, and the connec-

tion of these to minimal energy phenomena. This work explores Nitsche’s

1962 conjecture concerning the nonexistence of harmonic mappings between

planar annuli, cast in terms of distortion functionals. The connection be-

tween the Nitsche problem and the famous Grötzsch problem is established

by means of a weight function. Traditionally, these kinds of problems are

investigated in the class of quasiconformal mappings, and the assumption is

usually made a priori that solutions preserve various symmetries. Here the

conjecture is solved in the much wider class of mappings of finite distortion,

symmetry-preservation is proved, and ellipticity of the variational equations

concerning these sorts of general problems is established. Furthermore, vari-

ous alternative interpretations of the weight function introduced herein lead

to an interesting analysis of a much wider variety of critical phenomena —

when the weight function is interpreted as a thickness, density or metric, the

results lead to a possible model for tearing or breaking phenomena in mate-

rial science. These physically relevant critical phenomena arise, surprisingly,

out of purely theoretical considerations.
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2.4 Equivalence of Nitsche- and Grötzsch-type problems. . . . . . 39

3.1 Beyond the Nitsche bound. . . . . . . . . . . . . . . . . . . . . 57

5.1 Stretching of a cut of base length ` (α = 1
2
). . . . . . . . . . . 77

5.2 Stretching of a block with an open cut (α = 1
2
). . . . . . . . . 77

5.3 Stretching of a block with a straight-line cut (α = 1
2
). . . . . . 78

5.4 Stretching of a cusp (α = 1, n = 2 (top), n = 5 (bottom)). . . 78

5.5 Spherical (left), flat (center), and hyperbolic (right) cylinders. 90



xii



INTRODUCTION

In 1962, J. C. C. Nitsche [34] made a conjecture concerning harmonic map-

pings of annuli in the plane. This conjecture has recently been solved in [21].

Nitsche’s conjecture is that the target annulus could not be too thin relative

to a given fixed domain annulus, or there would be no harmonic mappings.

This research shows that the inverses to these mappings are the mappings of

minimal mean distortion between doubly connected regions (perhaps com-

posed with some conformal mappings). Within this work, the conjecture is

cast in terms of the inverse of these mappings, and it is confirmed to hold in

specific cases. Furthermore, the thesis extends it and generalises the results

to a much wider variety of problems.

The thesis solves the problem of minimising various convex functions

of mean distortion of a domain under various kinds of mapping. Confor-

mal and quasiconformal mappings have found extensive use in kinetic and

elasticity theory—in particular, in geometric function theory and nonlinear

partial differential equations (PDEs) — concerning how materials deform

when physical processes occur (for example, heating, stressing or straining a

material). Mappings of finite distortion are a natural generalisation of the

quasiconformal class, and it is in this class of mappings that we shall look

for solutions.

Consider deforming a doubly connected region in the plane with some

given conformal metric. A question one is urged to ask, and which this

thesis will investigate, is whether it is possible to attain a particular final

deformation while minimising some weighted average of the local conformal

distortion. The distortion function, and the conformal metric, may be taken

to represent certain physical properties of the material; for example, the true

shape of a physical structure and its local anisotropic stretching.
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Sharp results for classical distortion were revealed in the project preceding

this thesis [24], but only a limited case was studied, and under a number of

assumptions. In the research presented here, sharp results are obtained in

the wider class of mappings of finite distortion.

Furthermore, it is possible to interpret the weight function on the distor-

tion in a number of ways; one way leads to drawing an equivalence between

Nitsche phenomena and another famous problem, due to Grötzsch. Other

interpretations lead to models for tearing and similar phenomena in material

science, or to finding whether such critical phenomena occur in spaces of

various different curvatures.

This thesis shows that, perhaps surprisingly, very specific and physically

relevant predictions about critical phenomena (tearing, breaking etc.) can

be made by merely considering purely theoretical, analytic points of view.

Moreover, the main theorem embodied in this work explains how and why

these types of phenomena arise, and admits a qualitative analysis of where

such phenomena occur. It is possible to interpret the main theorem (Theo-

rem 3.3) as showing how critical phenomena may occur in various geometric

settings, allowing these results to become widely used in analysis of manifolds

and their behaviour.

A brief overview

Chapter 1 lays down most of the pertinent analytical foundations of the the-

sis. In particular, a short survey of the Riemann Mapping Theorem and its

classical proof is presented and the key elements of the proof are outlined.

Proofs of this type are standard and powerful in the more general setting

of quasiconformal analysis. Some important techniques from the calculus

of variations are set out here. These techniques are often used in finding

extremals of functionals that reflect physical situations: the famous brachis-

tochrone; problems in the theory of potentials; and many others. The chapter

also observes that harmonic mappings, which arise naturally in many situ-

ations, are solutions to Dirichlet type problems (when solutions exist) and

satisfy variational equations.
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Motivation for the particular extremal problems found herein are fur-

thered in Chapter 2, where various kinds of minimisation problems are dis-

cussed, and some known results are outlined. Nitsche’s 1962 conjecture, as it

is applicable to the situation considered here, is expounded; the equivalence

of Nitsche-type problems and those of Grötzsch is also shown.

The main theorem of this thesis is proved in Chapter 3. After first sur-

veying a proof for a similar, special case; it transpires that, to generalise,

a different technique involving the use of a key inequality needs to be em-

ployed. The inequality is chosen in such a way as to make the last part of an

estimate on an integral vanish, equality holding only in the special case of

the minimiser of mean distortion. It is shown that natural generalisations of

Nitsche’s conjecture are true for the L1 norm, but false for the Lp norms with

p > 1. This motivates analysing the theorem in particular cases, demonstrat-

ing how interesting critical phenomena may arise and showing cases in which

they do not. The end of this chapter contains preliminary calculations and

attempts to generalise the theory further that may prove fruitful for future

projects.

Chapter 4 then exposes the ellipticity condition on the variational equa-

tions. Perhaps surprisingly, in the weighted case, the conditions for ellipticity

are the same as in the unweighted case — irrespective of the particular (posi-

tive, finite) weight function. Some conjectures are made at further conditions

that, when placed on the weight function, may yield the presence or absence

of critical phenomena.

The penultimate chapter, Chapter 5, contains calculations of particular

examples of the weight function as well as some illustrative ideas on how to

analyse when and where critical phenomena arise. A possible connection to

the Frank-Kamenetskii theory of thermal ignition is noted, thereby linking

the behaviour of deformations within metrics to critical phenomena that

occur in other areas of physical science.

In Chapter 6 the thesis draws to a close with some remarks about be-

haviour of minimisers near the minimum of the weight function. The last

section suggests directions for future research.
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1. PRELIMINARIES

This chapter outlines the necessary analytical background for the rest of the

thesis and reviews briefly some of the work that has been done in this area.

More specific literature relevant directly to later chapters will be reviewed

within those chapters. Most of the theorems in this chapter will be laid out

without proof; the appendix and the references provide more details. There

is also a basic list of notation in the appendix.

The concepts of the various arithmetic operations, exponents, absolute

value, conjugation, elementary aspects of the theory of real functions of real

variables and notions of limits and continuity will be taken as primitives and

assumed. Let us begin with differentiation of complex functions, advancing

quickly into deeper study.

Definition 1.1. Let C = {x+ iy : x, y ∈ R} denote the complex plane. The

derivative of f at z0 is

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h

or, equivalently,

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

if this limit exists, and otherwise is undefined.

As is well-known, the derivative of a real function of complex variables

is either zero or does not exist. The case of a complex function of a real

variable yields simply z′(t) = x′(t) + iy′(t) if z(t) = x(t) + iy(t). But the

existence of the derivative of a complex function of a complex variable has

many structural consequences.

Firstly, f(z) must be continuous wherever it has a derivative; the numer-
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ator of the definition is, essentially, a paraphrase of this condition. If further

we write f(z) = u(z) + iv(z) where u and v are real-valued, it follows that

necessarily u and v are continuous if f ′(z) exists.

It is easily shown (e.g. [2]) that the usual rules for derivatives (the Product

Rule, the Chain Rule, etc.) for real-valued functions carry over to complex

functions of complex variables without significant modification.

1.1 Holomorphic functions

The class of holomorphic functions (also sometimes known as analytic, com-

plex differentiable or simply differentiable functions) is formed simply by the

collection of all complex functions of a complex variable that have a derivative

wherever they are defined:

Definition 1.2. A function f(z) is holomorphic on Ω ⊂ C if and only if

it is differentiable at each z ∈ Ω; f(z) is entire if and only if it is analytic

on C.

Notable in the definition of the derivative is that it does not matter how

z0 is approached; this leads to the formulation of the Cauchy-Riemann equa-

tions; a proof of the following theorem may be found in [2, 38].

Theorem 1.3. Let f(z) = f(x, y) = u(x, y)+ iv(x, y) where z = x+ iy, with

x, y, u and v real. Then f is holomorphic if and only if it, together with u

and v, satisfies
∂f

∂x
= −i∂f

∂y

or, equivalently,
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
, (1.1)

the Cauchy-Riemann equations.

The existence of these partial derivatives is implied by the existence of

f ′(z); the continuity of u and v must be assumed to prove the implication

in the other direction. Notice that using this theorem, we can write the
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derivative of f in several ways; the simplest is

f ′(z) =
∂u

∂x
+ i

∂v

∂x
.

Now, by (1.1),

|f ′(z)|2 =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

=

(
∂u

∂x

)2

+

(
∂v

∂x

)2

=
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
.

This shows that for holomorphic f , |f ′(z)|2 is the Jacobian J(z, f) of u and

v with respect to x and y for holomorphic f .

The derivative of a holomorphic function is itself holomorphic. A proof

of this is more difficult and uses Cauchy’s integral formula; see for example

[3, pp. 120–122]. Using this fact, it is easy to see that u and v will have

continuous partial derivatives of all orders, and their mixed derivatives will

be equal. Thus

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0, ∆v =

∂2v

∂x2
+
∂2v

∂y2
= 0.

Definition 1.4. A function u is said to be harmonic if it satisfies Laplace’s

equation

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0.

If two harmonic functions u and v satisfy the Cauchy-Riemann equations

(1.1), then they are said to be conjugate harmonic functions.

The real and imaginary parts of a holomorphic function are therefore

conjugate harmonic functions.

One may consider a complex function f(x, y) of two real variables instead

as a function of the complex variable z = x + iy and its conjugate z̄ =

x− iy. Observe that x = 1
2
(z + z̄) and y = −1

2
i(z − z̄). Treating z and z̄ as

independent variables, we obtain
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Definition 1.5. The z- and z̄-derivatives of f are given by

fz =
∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
, fz̄ =

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

Note the introduced subscript notation for the derivatives. By comparison

with the earlier formulation of holomorphic functions, it is immediate that a

C1 function is holomorphic if and only if its z̄-derivative is zero; hence one

may say that a holomorphic function is a function of z alone, independent of

z̄.

With a little work, it can be shown that a harmonic function u satisfies

the formal differential equation

∂2u

∂z∂z̄
= 0.

1.2 Conformal mappings & Riemann’s Mapping Theorem

Loosely speaking, a conformal mapping is a mapping that preserves angles

between tangents, both in size and orientation. Formally, we have

Definition 1.6. Let f be a mapping of a region Ω into the plane and let

z0 ∈ Ω. Suppose that z0 has a deleted neighborhood D′(z0, r) ⊂ Ω in which

f(z) 6= f(z0). We say that f preserves angles at z0 if

lim
r→0

e−iθ
f
(
z0 + reiθ

)
− f(z0)

|f (z0 + reiθ)− f(z0)|

for r > 0 exists and is independent of θ. For holomorphic functions, this

condition is equivalent to having a nonvanishing derivative in Ω, and we call

these functions conformal.

Properties of conformal mappings are many and their use in complex

analysis is widespread. The use of conformal mappings in the present project

will be limited to simplifying distortion problems. As will become evident in

Section 2.7, an equivalence between two types of minimal-distortion problem

can be found so that there are multiple approaches possible.



1.2. Conformal mappings & Riemann’s Mapping Theorem 9

Often in the study of mappings of the complex plane (or, in fact, in

mappings in Rn) it is important to consider what quantities are conformally

invariant – that is, invariant under a conformal mapping. One such quantity

is the modulus of a curve family (see Section 1.4), an invariant widely used

in the study of quasiconformal mappings.

1.2.1 Normal Families

Let F be a family of functions defined on a region Ω of the complex plane,

and let d be the usual metric on the complex plane.

Definition 1.7. The functions in a family F are equicontinuous on a

set S ⊂ Ω if and only if for each ε > 0 there exists a δ > 0 such that for all

f ∈ F , d(f(z), f(z0)) < ε whenever |z − z0| < δ with z, z0 ∈ S.

Note that this immediately implies that if F is equicontinuous on S, then

each member of F is itself uniformly continuous on S.

Definition 1.8. A family of functions F is normal in Ω if every sequence

(fn)n>0 of functions fn ∈ F contains a subsequence that converges uniformly

on every compact subset of Ω.

The property of being normal is in a sense a compactness property; some-

times the term relatively compact is used to describe a normal family [3,

p. 221]. It follows from this definition that should the space containing F be

complete, then F is normal if and only if it is totally bounded, for the closure

of F is compact if and only if it is complete and totally bounded. For more

in-depth discussion, pick up most any textbook on complex analysis (there

is a good selection in the bibliography).

1.2.2 Riemann’s Mapping Theorem

This important theorem was the subject of Riemann’s 1851 dissertation. His

proof was incomplete, but later completed by other notable mathematicians

such as Hilbert [32, p. 404]. It is now a standard component of almost any

graduate course in complex analysis.
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Theorem 1.9. Riemann’s Mapping Theorem. Every simply connected

region Ω in the plane (other than the plane itself or the extended complex

plane) is conformally equivalent to the open unit disc.

conformal

mapping

1

Fig. 1.1: The Riemann Mapping Theorem.

The exceptions to this theorem are: the complex plane, because a

bounded analytic function that is entire on the whole complex plane is con-

stant (by Liouville’s Theorem, B.6), and thus the image of the complex plane

cannot be the unit disc; and the extended plane, Ĉ, because it is topologically

distinct.

Proofs of this theorem generally involve the solution of a particular kind

of extremal problem; that of holomorphic mappings of the region Ω into the

unit disc (See e.g. [38, pp. 282–284]). The argument comprising the proof is

lengthy, but can be briefly outlined as follows:

1. Show that the family F of (one-to-one) holomorphic functions mapping

Ω into the unit disc is nonempty.

2. Prove that the family F is normal, by establishing equicontinuity on

compact subsets and invoking the Arzelà-Ascoli Theorem (B.10) .

3. For a fixed z ∈ Ω, take a function f0 ∈ F and establish that if f0

does not cover the whole unit disc, then there exists f1 ∈ F with the

property |f ′1(z)| > |f ′0(z)|.
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4. Take s to be the supremum of the set {f ′(z0)|f ∈ F} for some z0 ∈ Ω.

5. The limit of a sequence of functions in F for which the derivative at

z0 tends to s is the function required; that is, a conformal mapping

taking Ω onto the unit disc – seen to be onto since otherwise it would

contradict the third step in the construction.

For a more detailed analysis, see [3, 10, 29, 35, 38].

It is important to note this argument as a tool used in this classic proof:

a normal families type argument to establish the existence of some extrem-

ising function. This method is used to great effect in many other extremal

problems and is a useful technique in analysis of conformal or quasiconformal

problems.

The handiness of a modulus of continuity type argument is that those

functions which share the same modulus of continuity are exactly equicon-

tinuous families. In general the rôle of a modulus of continuity ω is to fix

some explicit functional dependence of δ to ε in the ε-δ definition of uniform

continuity. For example, functions for which ω(t) = kt are k-Lipschitz, and

those functions that are Hölder continuous satisfy ω(t) = ktα — and in fact

quasiconformal mappings are Hölder continuous functions.

1.3 Sobolev spaces

The kinds of functionals dealt with in this thesis result in differential equa-

tions of some finite degree; the solutions to these equations have traditionally

been investigated in some appropriate class of continuous functions. However,

solutions to differential equations are examined more naturally in Sobolev

spaces ; modern literature reflects this (for example, [33]).

Loosely speaking, a Sobolev space is a space of functions that are weakly

differentiable to a certain degree. More precisely,

Definition 1.10. The Sobolev space W k,p
loc (Ω,Ω′) is the set of equivalence

classes of all functions f ∈ Lp(Ω,Ω′) such that f , together with its weak

derivatives up to order k, have locally finite Lp norm.
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The equivalence classes here are understood to be those functions (and

derivatives) that are equal almost everywhere (i.e. their Lp norm is the

same).

It is important that the derivative in this definition is understood in a

suitably weak sense:

Definition 1.11. The ith weak derivative of f ∈ L1
loc is understood as f (i) ∈

L1
loc with ∫

f(t) ϕ(i)(t) dt = (−1)i
∫
f (i) ϕ(t) dt,

for all i times continuously differentiable compactly supported ϕ.

This sense of weak derivative is recognisably motivated by the integration

by parts technique. Since a function’s weak derivative is found in a Lebesgue

class, it is unique up to a set of measure zero. As with the Lp spaces, the

Sobolev space with p = 2 forms a Hilbert space, W k,2.

The natural norm on the space W k,p (making W k,p a Banach space) is

the norm

||f ||k,p =



(
k∑
i=0

∫
|f (i)(t)|pdt

) 1
p

if 1 6 p <∞;

max
06i6k

||f (i)||∞ if p =∞.

but it is actually sufficient to take only the first and last in the sequence; i.e.

this norm is equivalent to the norm ||f ||k,p = ||f ||p+ ||f (k)||p; see for instance

[33].

1.4 Quasiconformal mappings & moduli of curve families

Suppose that Γ is a curve family in Rn (i.e. elements of Γ are curves in Rn).We

recount a little of the theory of quasiconformal mappings before moving on

to their more general counterparts.
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Definition 1.12. A non-negative Borel function ρ : Rn → R is admissible

if ∫
γ

ρ ds > 1

for every locally rectifiable curve γ ∈ Γ. Denote the collection of all admissible

functions on Ω by adm(Ω).

Definition 1.13. For each p > 1, set the p-modulus of Ω

Mp(Ω) = inf
ρ∈adm(Ω)

∫
Rn
ρp dm.

When p = n, we simply write M(Ω) as the modulus of Ω.

Note that 0 6 Mp(Ω) 6 ∞. If it so happens that adm(Ω) = ∅, take

Mp(Ω) = ∞ – though this case will not occur in this thesis. Often, in the

literature, the related concept of extremal length (λ(Γ)) is used; but simply

λ(Γ) = 1/M(Γ) so its use and discussion are practically interchangeable.

This thesis uses whichever is appropriate within context. Also, note that Mp

is an outer measure in the space of all curves in Rn (for a proof, see [42]).

Theorem 1.14. The modulus of a curve family is conformally invariant.

Proof. (see e.g. [42, p. 25].) Consider a conformal homeomorphism f : Ω→
Ω′, from a region Ω to another region Ω′ in Rn. Let Γ be the family of curves

contained inside the region Ω, and likewise set Γ′ = fΓ (contained inside Ω′).

The differential matrix Df gives rise to the Jacobian determinant of f :

|Df |n = det(Df) = J(x, f). (1.2)

Since |Df | is the largest eigenvalue of the differential matrix Df , observe that

because |λmax|n = |λ1λ2 . . . λn|, |Df | must be (a multiple of) an orthogonal

matrix. Choose ρ ∈ adm(fΓ). Then ρ(f(x)) : Ω→ R+ ∪ {0} (ρ is extended

by 0 to Rn, but this contributes nothing to the integral, so we may consider

ρ to be defined on Ω only). Pick γ ∈ Γ. Then γ ◦ f = γ′ ∈ Γ′. Now

1 6
∫
γ′

ρ ds =

∫
γ◦f

ρ ds 6
∫
γ

ρ(f)|Df | ds
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so that ρ(f)|Df | ∈ adm(Γ). Hence, using (1.2),

M(Γ) 6
∫
Ω

ρn(f)|Df |n dx =

∫
Ω

ρn(f)J(x, f) dx =

∫
Ω′

ρn dm(x)

by change of variables. Taking the infimum of this over all admissible ρ, we

get that M(Γ) 6 M(Γ′). Now, we may repeat this process of obtaining an

upper bound on the modulus M(Γ′), using f−1 instead. Since f is conformal,

so is f−1, and we obtain the other inequality, M(Γ′) 6M(Γ). Hence, in fact,

M(Γ) = M(Γ′).

Computing M(Γ) can often be difficult, but considerations of the ge-

ometry of the situation often greatly simplify the task. Furthermore, an

upper bound is often considerably easier to find. In particular, note that for

ρ ∈ adm(Γ),

Mp(Γ) 6
∫
ρp dm.

Note that if `(γ) > r > 0 for each γ ∈ Γ (where the γ all lie in some Borel

set G), then

Mp(Γ) 6
m(G)

rp
. (1.3)

For, defining ρ : Rn → R by ρ(x) = 1
r

for x ∈ G and ρ(x) = 0 otherwise,

then ρ ∈ adm(Γ), and the required inequality follows.

1.4.1 Modulus of an annulus

Here we calculate the modulus of a spherical ring and, in particular, for

an annulus in the complex plane. The annulus plays a crucial rôle in later

considerations.

Let A be a spherical ring, with inner radius a and outer radius b. Take

the family of curves Γ to be the set of all curves joining the sphere of radius a

to the sphere of radius b in A (see Fig. 1.2). Note that we could also consider

the curves that join these two spheres that are not contained entirely in A,

but the size of
∫
ρ on such curves is always at least as big as the size of

∫
ρ on

curves that are contained in A. Also, the other curve family for the planar
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γ ∈ Γ

1

Fig. 1.2: A curve family for the planar annulus.

annulus is that of closed paths in A that circumnavigate the central circle;

however, as we shall see later, the symmetry of the situation requires us to

consider only the curve family joining the two boundaries.

What follows is a calculation from Väisälä [42, pp. 22–23].

Let ρ ∈ adm(Γ). Consider the lines γu : [a, b] → Rn, defined by γu = tu,

where t ∈ [a, b] and u ∈ Sn−1. We get∫
γu

ρ ds =

∫ b

a

ρ(tu)t
n−1
n t−

n−1
n dt

and therefore, by Hölder’s inequality,

1 6

∫
γu

ρ ds

n

6
∫ b

a

ρn(tu)tn−1 dt

(∫ b

a

t−1 dt

)n−1

=

(
log

b

a

)n−1 ∫ b

a

ρn(tu)tn−1 dt.

Hence, as b > a,∫
Sn−1

1(
log b

a

)n−1 du 6
∫
Sn−1

∫ b

a

ρn(tu)tn−1 dt du =

∫
A

ρn dm
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by change of variables (tn−1 is the Jacobian). Noting that∫
Sn−1

1(
log b

a

)n−1 du =
ωn−1(

log b
a

)n−1 ,

where ωn−1 is the area of Sn−1, and taking the infimum over all ρ, we see

that

M(Γ) >
ωn−1(

log b
a

)n−1 .

On the other hand, define ρ by

ρ(x) =


1

(|x| log b
a)
n−1 if x ∈ A,

0 otherwise.

Clearly ρ ∈ adm(Γ), and so in fact

M(Γ) =
ωn−1(

log b
a

)n−1 .

In the case of the annulus in the complex plane, we have n = 2 so that in

particular, we have the following theorem:

Theorem 1.15. If Γ is the curve family in the complex plane joining the

circle of radius a > 0 to the circle of radius b > a then

M(Γ) =
2π

log b
a

.

Remember that modulus and extremal length are reciprocal, and either will

be used as necessary.

The modulus of a curve family is important to our discussion for two

reasons. The first and foremost is that it is a conformal invariant (i.e. it is

a quantity that has the same value for any conformal deformation), and so

it gives us geometric information about how close to conformal a mapping

is. The second reason is that the ratio of a to b is relevant in an important

theorem from Schottky [9], which will help us to simplify an important class
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of mapping problems: that of conformal mappings between doubly connected

regions. The relevance of this will become clear in Section 2.1.

1.4.2 Quasiconformality, geometrically and analytically.

Early work on quasiconformal mappings largely uses a definition of quasicon-

formality that can be generalised to the context of arbitrary metric spaces.

The rationale of this is to give a bound on the eccentricity of the infinitesimal

ellipsoids that result when infinitesimal balls are mapped (illustrated below);

that is, a bound on local distortion.

abr
f

1

Fig. 1.3: Local action of a quasiconformal map.

Definition 1.16. Let f : X → Y be a homeomorphism between two metric

spaces (X, dX), (Y, dY ). For x ∈ X and r > 0, set

L(x, r, f) = sup {dY (f(x), f(y)) : dX(x, y) 6 r}

and

l(x, r, f) = inf {dY (f(x), f(y)) : dX(x, y) 6 r} .

The ratio

H(x, r, f) =
L(x, r, f)

l(x, r, f)

is a measure of the eccentricity of the image of ball B(x, r) under f . Then f

is K-quasiconformal at x, K > 1, if

lim sup
r→0

H(x, r, f) = H(x, f) 6 K. (1.4)

We say f is K-quasiconformal if it is K-quasiconformal at every x ∈ X.
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Naturally we are normally interested in the smallest number K that will

satisfy (1.4); and when the term ‘K-quasiconformal’ is used it will normally

imply that K is the smallest number that will do so. Homeomorphisms that

are 1-quasiconformal are precisely the conformal mappings, reflecting the

fact that conformal mappings preserve angles and “roundness”; as such, the

quasiconformal mappings are a natural generalisation of conformal mappings.

Figure 1.3 illustrates this idea; the quasiconformal coefficient K for map f

in this figure will be (a function of) the ratio a/b.

This geometric definition, while elegant, is unfortunately difficult to work

with. In the literature an analytic definition equivalent to the following is

often used:

Definition 1.17. Let Ω,Ω′ be domains in Rn and f ∈ W 1,n
loc (Ω,Ω′). Then f

is K-quasiconformal if there exists a constant K such that

|Df(x)|n 6 KJ(x, f) (1.5)

almost everywhere in Ω.

Note that no more generality is obtained by assuming f ∈ W 1,1
loc (Ω,C)

since a homeomorphism of this class has a locally integrable Jacobian, so the

distortion inequality (1.5) implies that f ∈ W 1,n
loc (Ω,C).

The Beltrami equation

∂f

∂z̄
= µ(z, f)

∂f

∂z
(1.6)

where µ is a measurable function with ||µ||∞ 6 k < 1, is satisfied by qua-

siconformal mappings. This observation will become important later, when

we investigate properties of variational equations (see Section 1.6).

The modulus of a curve family naturally leads to another (equivalent)

definition for a quasiconformal mapping; a mapping f : Ω → Ω′ is K-

quasiconformal if for every curve family Γ in Ω,

1

K
M(Γ) 6M(fΓ) 6 KM(Γ).
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For a proof that this is an equivalent definition, see [42, pp. 46–48]. Given

the previous reasoning concerning modulus as a conformal invariant, it is

natural that this is how a quasiconformal map may also be defined.

1.5 Mappings of finite distortion & distortion functions

In the previous sections, the quantities providing a bound on a mapping’s

distortion are constant. In the case of conformal mappings, there was no

distortion; with quasiconformal mappings, a kind of “finite distortion” was

seen and an a priori uniform bound was assumed as part of the definition.

However there is a natural generalisation of this idea, extending beyond the

class of quasiconformal mappings. If the bounding value is allowed to vary

between different inputs, we obtain a much broader idea of what it is to have

finite distortion:

Definition 1.18. (See [8, pp. 657–659].) A mapping f : Ω → Ω′ between

subdomains of Rn and belonging to the Sobolev class W 1,1
loc (Ω,Ω′) is said to

have finite distortion if there is a measurable distortion function K(x)

such that

|Df(x)|n 6 K(x)J(x, f) (1.7)

for almost every x ∈ Ω. Here 1 6 K(x) < ∞, |Df(x)| is the usual oper-

ator norm of the linear map Df(x) and J(z, f) ∈ L1
loc(Ω) is the Jacobian

determinant of f at x. The smallest function K(x) for which the distortion

inequality (1.7) holds is called the outer distortion of f and is defined by

K(x, f) =


|Df(x)|n
J(x, f)

whenever Df(x) exists and is nonsingular;

1 otherwise.

With reference to Fig. 1.3, in this case we allow the ratio a/b to vary,

though we require it to be finite and nonzero almost everywhere.

For Sobolev homeomorphisms the condition J(z, f) ∈ L1
loc(Ω) is redun-

dant. Also, the distortion function K(x) need not be restricted to specific use

in the above definition; in general, a distortion function is simply a function
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which measures how far a mapping deviates from conformality — in the same

sense that the constant of quasiconformality does. There is a counterpart to

outer distortion called inner distortion, but this will not be addressed within

this thesis; throughout, outer distortion is shortened to simply distortion.

The function K(x, f) corresponds directly to the constant K in the def-

inition of a quasiconformal map; a mapping f is K-quasiconformal at x if

K(x, f) 6 K in a neighbourhood of x. In fact, it can be seen from the

definitions (1.5) and (1.7) that quasiconformal mappings are exactly those

mappings with uniformly bounded distortion. In allowing the distortion func-

tion K(x, f) to vary with x (and to be finite almost everywhere) the class

of functions we consider is now much wider. This is problematic if we wish

to pursue a normal families type argument as is so useful in quasiconformal

(and conformal) cases. For the quasiconformal case, the argument typically

runs

quasiconformal =⇒ Hölder continuous =⇒ equicontinuous =⇒ normal

but in the class of finite distortion mappings, there are in fact no a priori

estimates for a modulus of continuity, ruling out this kind of argument at

the very first step.

There is another obstacle here: the operator norm used in this defini-

tion is insufficiently regular for use in the variational equations (see Section

1.6). A pertinent example may be found in [8, pp. 663–665], in which the

minimisation problem ∫∫
Q
K(z, f)|dz|2, (1.8)

where f maps Q = [0, 1] × [0, 1] ⊂ R2 to Q′ = [0, 2] × [0, 1] preserving the

order of boundary components, is shown to have infinitely many extremals.

Given these drawbacks, we use the distortion function

K(x, f) =
||Df(x)||2
J(x, f)

(1.9)

at points where Df(x) exists and is non-singular instead. Here ||A||2 =
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1
2
tr(AtA) (the mean Hilbert-Schmidt norm). The minimisation problem at

(1.8), with K replaced by K, in contrast to the case for K(z, f), is shown to

have a unique extremal.

In two dimensions, take the example of a linear mapping A (a 2 × 2

matrix). If AtA has eigenvalues λ1, λ2, then

K(z, A) = max

{
λ1

λ2

,
λ2

λ1

}
,

and

K(z, A) =
1

2

(
λ1

λ2

+
λ2

λ1

)
.

If A varies from point to point, then so do K and K. Note that as the

eigenvalues cross K fails to be differentiable whereas K is. In two dimensions

we observe that

K(z, f) =
1

2

(
K(z, f) +

1

K(z, f)

)
which is a convex function of K(x, f), and therefore the L∞ minimisers are

the same.

In general (as is evident above), distortion functions give a measure of

the deviation from conformality of a given mapping f by considering its

differential (Jacobian) matrix Df . A general linear transformation can be

given as

Az = az + bz̄

with a, b ∈ C. The Jacobian determinant and mean Hilbert-Schmidt norm

are then

J(z, f) = |a|2 − |b|2, ||A||2 = |a|2 + |b|2.

In the case of holomorphic mappings, these relationships reduce to the famil-

iar Cauchy-Riemann equations (i.e. b = 0). Comparing these observations

with (1.9) shows immediately that

K(x, f) =
|fz|2 + |fz̄|2
|fz|2 − |fz̄|2

,

a form of the distortion relation that will be of utility in this study.
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The mapping

f(x+ iy) = u(x) + iy

will also become important in our study. For this mapping,

Df =

[
ux 0

0 1

]

whence

||Df ||2 =
1

2
(u2

x + 1), J(z, f) = ux

and therefore

K(z, f) =
1

2

(
ux +

1

ux

)
.

Since we require K > 1, we restrict ourselves to the study of the orientation-

preserving mappings, where ux > 0.

1.6 The calculus of variations

The analysis of the brachistochrone problem, by John Bernoulli, contributed

significantly to the formulation of the calculus of variations, which has seen

many successful applications in a wide variety of problems in nonlinear elas-

ticity, physics and engineering [17, pp. 36–43]. In this thesis, the calculus of

variations will be used both to solve mean distortion problems and to confirm

solutions derived by other means.

To find a function that minimises a certain functional (e.g. mean distor-

tion), a variational process will be employed. The (first-)variational process

generally results in a second-order differential equation to solve; the gener-

ality of this process is best started in the context of Hilbert spaces. The

definition of a local maximum or minimum is almost analogous to that of a

function of one real variable (cf. [43, p. 28]):

Definition 1.19. Let J : X → R be a functional defined on the function

space (X, || · ||), and take a subset S ⊆ X. The functional J is said to have

a local maximum (local minimum) in S at f ∈ S if there exists an

ε > 0 such that J(f̃) − J(f) 6 0 (J(f̃) − J(f) > 0) for all f̃ ∈ S such that
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||f̃ − f || < ε.

The set S here is a set of functions satisfying a given set of boundary

conditions on a domain of interest. The variational process then uses the

idea that any f̃ ∈ S within an ε-neighborhood of f can be represented by a

perturbation of f :

f̃ = f + εη

for some suitable η ∈ X, normally assumed to vanish on the boundary. One

can view η as a test function; this approach is usually taken in a more general

setting where the smoothness condition on f is relaxed.

Here the theory will be specialized to fixed boundary variational problems;

the theory is, however, easily generalised (for example [12] or [43]). What

follows is a short version of the calculation found in [12, pp. 24–30] and is

demonstrative of the variational process in general. Some liberties have been

taken with assumptions and specifics to illustrate the point better — for a

rigorous version see [12] or [43].

Suppose we want to extremise the functional defined on W 1,2(R,R),

J =

∫ x2

x1

F (x, f(x), f ′(x)) dx,

subject to some boundary conditions f(x1) = y1, f(x2) = y2. Suppose also

that f is an extremum of J . Now take f̃ in an ε-neighborhood of f and

substitute into J to get J as a function of ε:

J =

∫ x2

x1

F (x, f̃(x), f̃ ′(x)) dx =

∫ x2

x1

F (x, f + εη, f ′ + εη′) dx

and taking its derivative with respect to ε via the chain rule,

Jε =

∫ x2

x1

(Ff η + Ff ′ η
′) dx,

where subscripts denote appropriate derivatives (regarding F as a function

with x, f and f ′ as independent variables) and primes indicate derivatives
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with respect to x. Integrating the second term by parts yields

Jε = Ff ′ η|x2x1 +

∫ x2

x1

[
Ff η −

(
d

dx
Ff ′

)
η

]
dx.

Recall η here is a test function which vanishes on the boundary, and also

recall the necessary condition from the theory of functions for real variables

to have a smooth extremum. Thus∫ x2

x1

[
Ff −

(
d

dx
Ff ′

)]
η dx = 0. (1.10)

In the general setting of a Hilbert space, then, this corresponds to the

condition

〈E, η〉 = 0

where

E = Ff −
(
d

dx
Ff ′

)
.

To simplify condition (1.10) further, appeal is made to the fundamental

lemma of the calculus of variations (see [43, p. 32]):

Lemma 1.20. Suppose that 〈E, η〉 = 0 for all η ∈ H, and that E : [x1, x2]→
R is continuous. Then E = 0 for all x ∈ [x1, x2].

Here H is the set of all test functions η such that f + εη is in an ε-

neighborhood of f :

H = {η ∈ X : f + εη ∈ S} .

Recall that S is the set of functions in the function space (X, || · ||) over

which we are looking for an extremum. The proof of this fundamental idea

is omitted; it can be found in most texts on the calculus of variations (for

example, [12, pp. 27–29]).

Applying this lemma to the condition (1.10) gives us (cf. [43, p. 33]):

Theorem 1.21. Let Ω = [x1, x2] ⊂ R where x1 < x2, and let Ω′ ⊂ R. Let
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J : W 1,2(Ω,Ω′)→ R be a functional of the form

J(f) =

∫ x2

x1

F (x, f, f ′) dx

where F has continuous partial derivatives of order 2 with respect to x, f and

f ′. Let

S =
{
f ∈ W 1,2[x1, x2] : f(x1) = y1 and f(x2) = y2

}
,

where y1 and y2 are given real numbers. If f is an extremal for J in S, then

∂F

∂f
− d

dx

(
∂F

∂f ′

)
= 0. (1.11)

Equation (1.11) is a second-order differential equation that any smooth

extremal f must satisfy, called the Euler-Lagrange equation, after the math-

ematicians Leonhard Euler and Joseph Lagrange who discovered it in the

18th century [18, p. 680].

1.6.1 Multiple independent variables

The idea of a small perturbation may be extended to functions of multiple

variables. In the setting discussed here, the two-variable case will be the most

important — proof of the more general case is omitted; see [12, pp. 47–54].

Suppose the aim is to extremise a functional of the form

J =

∫∫
Ω

F (x, y, f, fx, fy) dx dy (1.12)

with the values of f on the boundary of the domain Ω ⊂ R2 prescribed and

where subscripts denote derivatives. Suppose also that f is an extremum of

J . Now take f̃ in an ε-neighborhood of f

f̃ = f + εη

where η is a test function on Ω of the two independent variables which van-

ishes on the boundary. The functional J , considered as a function of one
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variable ε (as before), should have an extremum at ε = 0. By the chain rule,

Jε =

∫∫
Ω

(
Ffη + Ffxηx + Ffyηy

)
dx dy.

Observe that
∂

∂x
(Ffxη) =

∂

∂x
(Ffx) η + Ffxηx

and similarly for the total partial derivative with respect to y; hence the last

two terms of Jε are, by integrating by parts,∫∫
Ω

(
Ffxηx + Ffyηy

)
dx dy =

∫∫
Ω

[
∂

∂x
(Ffxη) +

∂

∂y

(
Ffyη

)]
dx dy

−
∫∫

Ω

[
∂

∂x
(Ffx) η +

∂

∂y

(
Ffy
)
η

]
dx dy.

Green’s formula now shows that∫∫
Ω

[
∂

∂x
(Ffxη) +

∂

∂y

(
Ffyη

)]
dx dy =

∫
∂Ω

(
Ffxη dy − Ffyη dx

)
= 0,

since the test function η ≡ 0 on the boundary. Thus, the necessary condition

for an extremum assumes the form∫∫
Ω

(
Ff −

∂

∂x
(Ffx)−

∂

∂y

(
Ffy
))

η dx dy = 0.

Invoking the fundamental lemma (Lemma 1.20) yields

Theorem 1.22. Let Ω,Ω′ be regions in R2. Let J : W 1,2(Ω,Ω′) → R be a

functional of the form

J(f) =

∫∫
Ω

F (f, x, y, fx, fy) dx dy

where F has continuous partial derivatives of order 2 with respect to each of

its arguments, considered independently. Let

S =
{
f ∈ W 1,2(Ω,Ω′) : f(∂Ω) is prescribed

}
.
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If f is an extremal for J in S, then

Ff −
∂

∂x
(Ffx)−

∂

∂y

(
Ffy
)

= 0. (1.13)

Equation (1.13) is the Euler-Lagrange equation for functions of two vari-

ables. It is possible (using vector calculus) to generalise this result to n

dimensions; however this thesis only requires the two-dimensional result.

It is important to remember that the partial derivative

∂

∂x
(Ffx)

in equation (1.13) is total, in the sense that computing it via the chain rule

gives
∂

∂x
(Ffx) = Ffxx + Ffxf

∂f

∂x
+ Ffxfx

∂fx
∂x

+ Ffxfy
∂fy
∂x

. (1.14)

1.7 Harmonic mappings & Dirichlet’s principle

The study of harmonic mappings is extremely important in mathematical

physics; solutions to many extremal problems take a harmonic form. The

kinds of functionals this thesis discusses are energy functionals; solutions to

these will sometimes be inverse to harmonic mappings. Many problems in

electropotential theory, heat conduction and fluid flow are of this kind — for

some elementary examples and background, see [19, Chs. 3,7], [37, Ch. 3] or

[29, §5.3].

Classically, to solve a Dirichlet problem one must find a harmonic exten-

sion of a function, continuous on the boundary of the unit disk, to the closed

disk. This problem has found many applications; it is an example of finding

a minimal energy transformation (see, for example, [15]). Here a simpler

definition is given, to illustrate that the functionals considered in this thesis

are of essentially the same form as finite energy functionals.

Theorem 1.23. Dirichlet’s Principle. Let Ω ⊂ Rn be a domain. Given
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the boundary condition u = 0 on ∂Ω, if u satisfies Laplace’s equation

∆u = 0

then u is the minimiser of the Dirichlet energy functional

E(v) =

∫
Ω

|∇v|2 dx

among twice-differentiable functions v with v = 0 on ∂Ω.

Note that this principle is often stated for somewhat more general bound-

ary conditions; however the connection between harmonic mappings and en-

ergy functionals is clear.

We now have sufficient analytic background to meaninfully discuss min-

imisation problems of various kinds. These will be presented in the next

chapter, motivating the exact problem kind that this thesis solves.
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Consider deforming an annular region in the plane with a given conformal

metric (possibly viewed as some material property of the region) so as to

minimize some weighted Lp-average of the local conformal distortion — a

measure of the local anisotropic stretching of the material. This is illustrated

in Fig 2.1, below, with two different metrics, namely the usual planar metric

and the flat metric on C \ {0}.

 

Fig. 2.1: Deformations in the plane (left) and the flat metric (right).

Recall the distortion function K at (1.9) from the previous chapter. The

main focus of this thesis will be to show the existence, uniqueness and form of

minimisers for certain kinds of functionals. In particular we seek to extremise

the functional

I(f) =

∫
Ω

Φ (K(z, f)) η(z) |dz|2 (2.1)

where Φ : [1,∞) → [0,∞) is convex (the Lp norms with p > 1 essentially

take this form: Φ(t) = tp), Ω is a region in the complex plane, and η(z) is

some positive C1 weight function, interpreted as a density function, thickness,

metric, or some other physical property, and f is of finite distortion.

The special case of this problem, Φ(t) = t and η ≡ 1, has solutions that



30 2. Minimisation Problems

are the inverse to those of a physical problem of finding a minimal energy

deformation among harmonic mappings; see, for example, [8]

2.1 Conformal mapping problems

The theory of conformal mapping problems for simply connected regions is

well-known, culminating in Riemann’s Mapping Theorem, which ensures that

there exists a mapping with no local distortion (i.e. a conformal mapping)

for simply connected regions. Of interest, then, is what occurs where the

region is not simply but multiply connected. Doubly connected regions will

form the basis of a theory for multiply connected regions. A theorem from

Schottky plays a crucial rôle:

Theorem 2.1. (as stated in [9]; originally from [39]) An annulus A = {z :

r < |z| < R} can be mapped conformally onto the annulus A′ = {z′ : r′ <

|z′| < R′} if and only if R
r

= R′

r′
. Moreover, every conformal mapping f :

A→ A′ takes the form f(z) = λz±1, where |λ| = r′

r
or |λ| = r′R as the case

may be.

In essence, this theorem says that doubly connected regions are confor-

mally equivalent if and only if their moduli (extremal length) are the same.

This theorem provides one step towards simplifying our mapping problem.

Another relevant result in classical complex analysis is:

Theorem 2.2. Every doubly connected region Ω in the complex plane is

conformally equivalent to a round annulus A = {z ∈ C : r 6 |z| 6 R},
r 6= R, with modulus M(A) = log R

r
= M(Ω).

The definition of modulus included here is the interpretation of “extremal

length” from Theorem 1.15, discarding multiplicative constants. This is a

special case of a result found in Ahlfors’ book [3, pp. 255–256]. Together

with Schottky’s theorem, this simplifies the search for mappings between

doubly connected regions: we need only consider mappings between annuli

whose moduli are not equal.

However, there are physical considerations which do not allow relatively

nice solutions like conformal mappings. In fact, when one considers how
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conformal

mapping

1

Fig. 2.2: A doubly connected region is conformally equivalent to a circular annulus.

unlikely it is that one doubly connected region encountered has exactly the

same extremal length as another, it becomes obvious that the class of func-

tions being considered must be widened. Quasiconformal mappings are a

natural generalisation of conformal mappings.

2.2 Quasiconformal mapping problems

Where the region under consideration is simply connected, the Riemann

Mapping Theorem reduces the problem to a conformal mapping problem.

However, this does not guarantee that given boundary conditions are satis-

fied — to account for this we must enlarge the class of functions to (at least)

quasiconformal mappings.

It is possible to view the distortion inequality (1.5) for quasiconformal

mappings in a number of ways when considering mapping problems. Firstly,

one may wish to minimise the maximal distortion on a domain Ω. In this

case,

Theorem 2.3. Between doubly connected regions Ω,Ω′ in the complex plane,

subject to a given set of boundary conditions, there is a quasiconformal map-

ping, unique up to a conformal transformation of the target, which minimises

maximal distortion if and only if the ratio of the moduli of Ω and Ω′ is

bounded.
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A proof of this (in all dimensions) may be found by combining Theorems

34.3 and 39.1 in Väisälä’s book [42, pp. 114,131].

However, in the case of mean distortion, it has been shown [6] that

Theorem 2.4. The minimisation problem at (2.1) with η ≡ 1 throughout Ω

and Φ the identity map has a unique solution only within particular ranges

of the ratio of the moduli of Ω and Ω′.

As an illustrative example, the L1-Grötszch problem (see [8, p. 663])

seeks to minimise distortion among functions mapping the unit square 2 to

some non-square rectangle 2′, with the boundary condition that edges map

to edges. Consider, however, the following calculation (see [2, p. 12] for a

similar calculation).

Let Ω be the closed rectangle [0, b]× [0, a] in the complex plane. Let Γ be

the set of all curves in Ω joining the side [0, a] to its opposite side. Consider

the lines γy : [0, b] → C defined by γy = x + iy where x ∈ [0, b]. Clearly

γy ∈ Γ. We get by Hölder’s inequality

1 6

(∫
γy

ρ ds

)2

6 b

∫ b

0

ρ2(γy) dx.

Thus integrating over y ∈ [0, a] gives, by Fubini’s Theorem,

a 6 b

∫ a

0

∫ b

0

ρ2(γy) dx dy = b

∫
Ω

ρ2 dm 6 b

∫
ρ2 dm.

Since this holds for every ρ ∈ adm(Γ), we have M(Γ) > a/b. By the earlier

result (1.3), we also know that M(Ω) 6 ab/b2 = a/b. Hence in fact

M(Γ) =
a

b
,

that is, the modulus of a rectangle is the ratio of the length of its sides.

In this case, while the Riemann Mapping Theorem guarantees the exis-

tence of a conformal mapping from 2 to 2′, certainly edges cannot match

up exactly under this deformation. The preceding calculation shows that the

extremal length of the curve family joining edges for 2 is 1, while that of 2′
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is the ratio of larger to smaller edge length — and since extremal length is

a conformal invariant, the Riemann mapping ought to preserve it, which it

cannot achieve by mapping edges to corresponding edges.

The solution in this case is, however, quasiconformal — in fact minimisers

can be shown to be linear stretchings. For example, in [8, pp.663–665] it is

shown that stretching a square to a rectangle of the same height (in the y co-

ordinate) but twice the width (x coordinate) results in the 2-quasiconformal

mapping

f(x+ iy) = 2x+ iy.

It is worth noting that in this case, as in the conformal case, the argument

for the existence of a minimiser uses a modulus of continuity type argument.

Such an argument usually runs similarly to the proof of the Riemann Map-

ping Theorem: find a candidate mapping (i.e. any candidate within the class

of mappings under consideration); use Hölder continuity to establish equicon-

tinuity of a family of functions within the considered class that contains the

candidate, which implies this family is normal; then choose a sequence that

minimises the necessary quantity.

In general, the tools used to establish the existence of minimisers are

exactly such a normal family type argument, using (consequences of) some

conformal invariant — for example in the case where the invariant is the

modulus of a curve family, first Hölder continuity is established, from which

the rest of the argument follows.

2.3 Mappings of finite distortion

Mappings of finite distortion lend themselves very well to extremal problems

where solutions may degenerate on sets of zero measure [7]. Unfortunately,

this means that their distortion is not uniformly bounded, unlike the quasi-

conformal mappings.

When we widen consideration of mappings to this class, we lose some

powerful tools found in classical quasiconformal analysis. The typical ar-

gument as mentioned in the previous section fails, as there are no a priori
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modulus of continuity estimates available for these mappings. We may, how-

ever, look at sequences that degenerate, in the sense that their limit is not

of finite distortion — by such a means it may be shown that minimisers do

not exist outside certain ranges (cf. the technique from [6, pp. 16–21]).

2.4 The Teichmüller problem

The classical Teichmüller problem asks one to identify deformations of the

unit disk with minimal distortion, under the condition that the boundary

remains fixed and the origin is moved to a given (distinct) point; see Fig.

2.3. Teichmüller identified the minimiser for maximal distortion (a quasicon-

formal mapping) [30, p. 233].

f

b b
f(0)0

1

Fig. 2.3: The Teichmüller problem.

In [30], it is shown that while there are minimisers for the classical maxi-

mal distortion term among the set of quasiconformal mappings, the extreme

value for the mean distortion is not attained by any mapping in the wider

class of finite distortion, unless f(0) = 0 whereupon f(z) = z is the obvious

minimiser.

A point is raised by Martin in [30] is that the boundary hypotheses are

important here:

Theorem 2.5. Not every homeomorphism of finite distortion with∫∫
D
K(z, f) |dz|2 <∞

has a continuous extension to the closed disk D.



2.5. Nitsche-type problems & Nitsche’s conjecture 35

That is to say, a kind of Dirichlet-like principle may not be satisfiable in

this setting. The counterexample Martin provides is one in which the image

under a certain mapping of finite distortion of a single boundary point is a

continuous arc. Perhaps surprising here is that the inverse mapping does have

a continuous extension to the boundary and is harmonic [30, pp. 234–235].

Asymptotically sharp bounds on the mean distortion are also proven in

[30]. Further, Martin emphasizes that, while in the classical case of maximal

distortion there is a minimiser that can be exhibited, in the case of mean

distortion the infimum is never attained (provided the solution is not the

identity map) but the minimum value tends to ∞ as |f(z)| → 1. Under the

observation that harmonic mappings are often the result of minimal energy

calculations in physics, he proposes that the solutions to these problems may

represent critical phenomena of materials — a possible model for tearing or

similar.

The fact that critical phenomena already occur in this situation (let alone

doubly connected regions) suggests the importance of studying mappings

of finite distortion in a more general setting — in fact, even for classical

distortion, widening the class of functions to those of finite distortion still

does not guarantee the existence of minimisers in general; this will be proven

in Chapter 3.

2.5 Nitsche-type problems & Nitsche’s conjecture

Define annuli

A1 = {1 6 |z| 6 R}, A2 = {1 6 |z| 6 S}

with moduli σ1 = log(R) and σ2 = log(S). In 1962, Nitsche published

a note [34] in which he proved that A2 can be mapped harmonically onto

A1 only if A1 is not too thin relative to A2; further, he conjectured about

the critical value beyond which no harmonic mappings are possible. In the

present minimisation problem, it is the inverse mapping f : A1 → A2 that is

of interest. When posed in terms of this scenario, Nitsche’s conjecture is
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Conjecture 2.6. Let Ω = A1 and Ω′ = A2. For the minimisation problem

(2.1), with η(z) = 1 and Φ(t) = t, minimisers exist if and only if

S +
1

S
6 2R. (2.2)

This has recently been proven [21].

We consider homeomorphisms of finite distortion f : A1 → A2 mapping

the boundary components to each other,

f({|z| = 1}) = {|z| = 1}, and f({|z| = R}) = {|z| = S}.

On the annulus A1 place a positive weight η : A1 → R+ (we view η(z)|dz|2 as

a conformal measure on A1 or a material property of A1). In polar coordinates

fz =
1

2
e−iθ

(
fρ −

i

ρ
fθ

)
, fz̄ =

1

2
eiθ
(
fρ +

i

ρ
fθ

)
and

|fz|2 + |fz̄|2 =
1

2
(|fρ|2 + ρ−2|fθ|2),

J(z, f) = |fz|2 − |fz̄|2 =
1

ρ
=m(fθfρ),

which together yield

K(z, f) =
|fz|2 + |fz̄|2
|fz|2 − |fz̄|2

=
ρ|fρ|2 + ρ−1|fθ|2

2=m(fθfρ)
.

Definition 2.7. Given a convex function Φ : [1,∞) → [0,∞) a Nitsche-

type problem asks one to establish the existence or nonexistence of a min-

imiser (or perhaps a stationary point) of the functional

f 7→
∫∫

A1

Φ(K(z, f)) η(z) |dz|2,

with Φ, η, f as in (2.1).

It is proven in [6] that if (2.2) is satisfied, then there is a unique min-
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imiser whose inverse is harmonic. It is further shown that outside this range

there are no minimisers, and the way a minimising sequence degenerated is

explained — thus proving Conjecture 2.6 in the affirmative. This will be

addressed further in Section 5.2. Given the symmetry here one expects the

minimiser to be a radial mapping; one of the form

z = reiθ 7→ ρ(r)eiθ, ρ(1) = 1, ρ(R) = S (2.3)

and indeed the minimiser is

z 7→ |z|+
√
|z|2 + ω

1 +
√

1 + ω

z

|z| , ω =
2− SR
R2 − 1

.

We refer to the resulting bound on (a function of) R, S from the inequality

at (2.2) as the Nitsche bound for this problem. In general,

Definition 2.8. A Nitsche bound for an extremal problem between two

regions Ω and Ω′ is a bound on (some function of) given conformal invariants

σ and σ′, associated with Ω and Ω′ respectively, such that an extremal exists

if and only if this bound is respected.

2.6 Grötszch-type problems

The classical Grötzsch problem is to identify the linear mapping as the home-

omorphism of least maximal distortion between two rectangles (assuming

edges go to edges). Thus we set

Q1 = [0, `]× [0, 1], Q2 = [0, L]× [0, 1]

and suppose we have a deformation of finite distortion f : Q1 → Q2 with

<ef(0, y) = 0, <ef(`, y) = L, =mf(x, 0) = 0, =mf(x, 1) = 1 (2.4)

(so f is orientation-preserving and maps edges to edges). This Sobolev map

is absolutely continuous on almost all lines and so
∫ `

0
<e(fx) dx = L and
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∫ 1

0
=m(fy) dy = 1 for almost all y and x respectively, and hence

<e
∫∫

Q1

fx(z) |dz|2 = L, =m
∫∫

Q1

fy(z) |dz|2 = `. (2.5)

The distortion function is

K(z, f) =
|fx|2 + |fy|2
J(z, f)

> 1.

Definition 2.9. A Grötzsch-type problem seeks a minimiser, satisfying

the boundary conditions (2.4), to the functional

f 7→
∫∫

Q1

Φ(K(z, f)) λ(z) |dz|2 (2.6)

for some positive weight function λ.

Observe that this definition considers mean distortion, rather than the

traditional maximal distortion. As will shortly be seen, solving this type of

problem has an intimate connection with Nitsche-type problems, and any

Nitsche bound therefore carries over (via an appropriate weight function).

2.7 Equivalence of Nitsche- and Grötszch-type problems

The universal cover of an annulus is effected by the exponential map, so z 7→
exp(2πz) takes z = x+iy ∈ [0, `]×[0, 1] to A1 if σ2 = log(S) = 2πL. A branch

of the logarithm must be chosen to define the inverse map A2 → [0, `]× [0, L].

If f : A1 → A2 is given, then we can define f̃(z) = 1
2π

log(f(exp 2πz)). A

particular point here is that log is conformal (in fact we only really need log

to define a univalent conformal mapping from A2 to Q2 with edges matching

up) so

K(z, f̃) = K
(
z,

1

2π
log
(
f(e2πz)

))
= K

(
z, f(e2πz)

)
,
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and hence the change of variables w = exp 2πz yields∫∫
Q1

Φ
(
K(z, f̃)

)
λ(z) |dz|2 =

∫∫
Q1

Φ
(
K(z, f(e2πz)

)
λ(z) |dz|2

=
1

4π2

∫∫
A1

Φ
(
K(w, f)

)
λ(z)e−4π<e(z) |dw|2.

f

f̃

1
2π

log(w)exp(2πz)

A1

A2

Q1 Q2

1

Fig. 2.4: Equivalence of Nitsche- and Grötzsch-type problems.

With the choice

η(w) =
1

4π2
λ(z)e−4π<e(z), e2πz = w, (2.7)

the equivalence between the two problems (with related weights) is seen.

Figure 2.4 depicts this equivalence.



40 2. Minimisation Problems

It is of course possible to choose a different branch of the logarithm to

accomplish this mapping. Doing this will simply result in a different rectangle

(say Q3), which can be translated to any rectangle obtained by another

branch of the logarithm, in particular to Q2 mentioned above, so this amounts

to using the original fixed branch.
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Previous chapters have observed a variety of mapping problems, and tech-

niques used for studying them, motivating us to consider the mapping prob-

lem (2.1) as important and worthy of deeper study. This chapter proves

under which conditions minimisers for the mean distortion problem (2.1)

exist and are unique.

3.1 The symmetry assumption for the Grötzsch problem

The aim of this section is to outline a proof that minimisers of the distortion

functional at (2.1) are radially symmetric in some cases — full generality will

be established later in this chapter. Initially, take η(z) = 1/|z|2, so that via

the equivalence from Section 2.7 this idea reduces, by restricting ourselves to

the Lp norms only, to finding minimisers to∫∫
Q
Kp(z, f) |dz|2,

in the Grötzsch problem (2.6). To simplify this section, note that it is possible

to find a conformal scaling map to take a rectangle to another of the same

modulus while respecting the order of boundary components (see Section

2.2). Consider F , consisting of orientation-preserving homeomorphisms f :

Q→ Q′ in the Sobolev class W 1,1(Q,C) of finite distortion mapping vertical

edges to vertical edges and horizontal edges to horizontal edges. Note that

in this case, W 1,1
loc (Q,C) = W 1,1(Q,C) since Q is compact. Thus the aim is

to prove

Theorem 3.1. Let Q = [0, a] × [0, 1] ⊂ C and Q′ = [0, b] × [0, 1] ⊂ C. For
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the Grötzsch type distortion problem

min
f∈F

∫∫
Q
Kp(z, f) |dz|2, (3.1)

minimisers take the form

f(z) =
b

a
<e(z) + i=m(z), (3.2)

and the minimal mean distortion is∫∫
Q
Kp|dz|2 = a

(
a2 + b2

2ab

)p
. (3.3)

This is proven for the special case a = 1, b = 2, p = 1 in [8, pp.663–665];

the inspiration for this proof is drawn from there.

Proof. Let

f(x+ iy) = u(x+ iy) + iv(x+ iy) (3.4)

for homeomorphisms f ∈ W 1,1
loc (Q,Q′). Note that for almost every y ∈ Q,∫ a

0

ux(t+ iy) dt = u(a+ iy)− u(iy) = b

and for almost every x ∈ [0, a],∫ 1

0

vy(x+ is) ds = v(x+ i)− v(x) = 1.

Hence, upon further integration,∫∫
Q
ux dx dy = b and

∫∫
Q
vy dx dy = a.

Next, take α := 2p
p+1

> 1 (with p > 0) and use the measure-theoretic version

of Jensen’s Inequality to observe(∫ 1

0

∫ a

0

[bux + avy] dx dy

)α
6
∫ 1

0

∫ a

0

aα−1 (bux + avy)
α dx dy, (3.5)



3.1. The symmetry assumption for the Grötzsch problem 43

noting that equality holds when ux and vy are constant almost everywhere.

Evaluating the left hand side gives

(
a2 + b2

)α
6
∫∫

Q
aα−1 (bux + avy)

α |dz|2. (3.6)

Now

0 6 (aux − bvy)2 = a2u2
x − 2abuxvy + b2v2

y (3.7)

and add b2u2
x + 2abuxvy + a2v2

y to both sides, obtaining

b2u2
x + 2abuxvy + a2v2

y 6 a2u2
x + b2u2

x + a2v2
y + b2v2

y.

Factorising gives

(bux + avy)
2 6 (a2 + b2)(u2

x + v2
y)

and, since both sides are nonnegative,

(bux + avy)
α 6

(√
a2 + b2

)α (√
u2
x + v2

y

)α
for α > 1. Substituting into (3.6) and observing that the integrands are

nonnegative throughout yields

(
a2 + b2

)α
6
∫∫

Q
aα−1

(√
a2 + b2

)α (√
u2
x + v2

y

)α
|dz|2. (3.8)

Recall the distortion function

K(z, f) =
||Df(z)||2
J(z, f)

and observe that for a function of the form (3.4)

2||Df ||2 = tr(Df tDf) = u2
x + u2

y + v2
x + v2

y .

Since a, b and α are constant, rearranging (3.8) shows that

a1−α
(√

a2 + b2
)α

6
∫∫

Q

(√
u2
x + v2

y

)α
|dz|2



44 3. Minimisers of Distortion Functionals

6
∫∫

Q

(√
u2
x + u2

y + v2
x + v2

y

)α
dx dy (3.9)

=

∫∫
Q

2
α
2 ||Df ||α|dz|2

= 2
α
2

∫∫
Q
K

α
2 J

α
2 |dz|2.

From Hölder’s inequality we find that for r and q Hölder conjugates,

∫∫
Q
K

α
2 J

α
2 |dz|2 6

(∫∫
Q
K

α
2
r|dz|2

) 1
r
(∫∫

Q
J
α
2
q |dz|2

) 1
q

.

Choose q = 2
α

(note that q > 1 since α 6 2) and r = 2
2−α and square both

sides to obtain

2−αa2−2α
(
a2 + b2

)α
6

(∫∫
Q
K

α
2−α |dz|2

)2−α(∫∫
Q
J |dz|2

)α
. (3.10)

For an arbitrary Sobolev map f : Q→ Q′ we know that∫∫
Q
J |dz|2 6 |Q′| = b

and so, substituting α = 2p
1+p

into (3.10), simplifying and rearranging,

∫∫
Q
Kp|dz|2 > a

(
a2 + b2

2ab

)p
.

This is a lower bound on the mean Lp distortion.

It remains to check when equality holds. First, equality holds in (3.9)

if and only if uy = vx = 0 everywhere, whence u is independent of y and

v is independent of x. Next, (3.5) attains equality if and only if ux and vy

are constant; and (3.7) forces bvy = aux almost everywhere in Q. It is now

obvious that equality holds throughout the proof if and only if

f(x+ iy) =
b

a
x+ iy,

as required.
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At this juncture it must be pointed out that, contrary to intuition, radial

symmetry for minimisers of mean distortion need not hold in higher dimen-

sions; in particular, there is a recent theorem from Iwaniec and Onninen

which points out that radial symmetry of minimisers is lost in dimension 4

and higher; the proof is a classical reductio ad absurdum [23, p. 936, pp. 977–

979].

However, in this thesis the more general case for dimension 2 will be

proved — a somewhat more difficult calculation than the special case men-

tioned at Theorem 3.1. Before launching into this proof, we derive a key

inequality.

3.2 A key inequality

Take complex numbers X and X0, and positive real J and J0. Rearranging

the elementary inequality ∣∣∣∣ XX0

− J

J0

∣∣∣∣2 > 0,

with equality holding if and only if X/X0 = J/J0, a positive real number,

gives ∣∣∣∣XJ0 −X0J

X0J0

∣∣∣∣2 > 0.

Observe that |X0J0|2 > 0. On expansion (recall |z|2 = zz for any z ∈ C),

the numerator yields

XXJ2
0 −XX0JJ0 −XX0JJ0 +X0X0J

2 > 0.

Dividing by JJ2
0 gives

XX

J
− XX0

J0

− XX0

J0

+
X0X0J

J2
0

> 0.



46 3. Minimisers of Distortion Functionals

and so (by inserting 0 in the form X0X0/J0 −X0X0/J0 twice)

XX

J
− X0X0

J0

− X0X

J0

+
X0X0

J0

− X0X

J0

+
X0X0

J0

+
X0X0J

J2
0

− X0X0

J0

> 0.

Rearranging and multiplying the last term by J0/J0 gives

XX

J
−X0X0

J0

>

(
X0X

J0

− X0X0

J0

+
X0X

J0

− X0X0

J0

)
−
(
X0X0J

J2
0

+
X0X0J0

J2
0

)
.

Pulling out common factors and further simplifying yields

XX

J
− X0X0

J0

>

(
X0

J0

(X −X0) +
X0

J0

(X −X0)

)
− X0X0

J2
0

(J − J0) ,

and this proves

Proposition 3.2. For any complex numbers X and X0, and positive real J

and J0,

|X|2
J
− |X0|2

J0

> 2<e
(
X0

J0

(X −X0)

)
− |X0|2

J2
0

(J − J0) . (3.11)

This inequality may be used to identify minima for the mean distortion,

by studying the function

(X, Y, J) 7→ |X|
2 + |Y |2
J

,

convex on C × C × R (meaning its graph lies above its tangent plane). Re-

calling the distortion function

K(z, f) =
|fz|2 + |fz|2
|fz|2 − |fz|2

the connection is clear; when X and Y are partial derivatives, these functions

are the same. In this thesis, this technique will be used to establish a much

more general result.
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3.3 The Main Theorem

This section proves

Theorem 3.3. Let

(i) `, L be positive real numbers, and Q = [0, `]× [0, 1], Q′ = [0, L]× [0, 1],

(ii) λ(x) : [0, `]→ (0,∞) be a continuous weight function,

(iii) Φ : [1,∞)→ [1,∞) be an increasing convex C∞ function,

(iv) f0(z) = u0(x)+ iy where u0 is a solution to the boundary value problem

λ(x)

(
1− 1

u2
x(x)

)
Φ′
(
ux(x) +

1

ux(x)

)
= α, (3.12)

u(0) = 0, u(`) = L (3.13)

where α is a real constant.

(v) F be all homeomorphisms of finite distortion f : Q→ Q′ with

lim
x↘0
<e f(x, y) = 0, lim

x↗`
<e f(x, y) = L,

lim
y↘0
=m f(x, y) = 0, lim

y↗1
=m f(x, y) = 1.

Then for any f ∈ F ,∫∫
Q

Φ (K(z, f))λ(x)|dz|2 >
∫∫

Q
Φ (K(z, f0))λ(x)|dz|2

holds, with equality attained uniquely by the minimiser f0.

Proof. Consider a mapping of the form

f0(z) = u(x) + iy, (3.14)

which, when considered on a rectangle, is analogous to the radial stretchings

(2.3). We have (f0)x = ux 6= 0 (since `, L > 0) and (f0)y = i. Therefore, if
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we set ω(x) = 1/ux(x), a real valued function, then for any f ∈ F we have

the identity

|ω(x)fx + ify|2 > 0. (3.15)

Equality here clearly holds if f = f0. If f 6= f0, then observe that:

1. f cannot be constant since f ∈ F must map Q to Q′; and

2. since equality in (3.15) for nonconstant f demands ω(x)fx = −ify, the

Beltrami coefficient

µ(z, f) =
fz̄
fz

=
fx + ify
fx − ify

=
fx − ω(x)fx
fx + ω(x)fx

=
ux − 1

ux + 1
= µ(z, f0)

and hence equality holds in (3.15) only if f and f0 are conformally equivalent.

The boundary conditions (3.13) force this conformal equivalence to be the

identity; hence equality holds in (3.15) if and only if f = f0.

Now (3.15) gives

0 6 |ω(x)fx + ify|2 = (ω(x)fx + ify)(ω(x)fx − ify)
= ω2(x)|fx|2 + |fy|2 − 2=m(ω(x)fyfx)

which yields

ω2(x)|fx|2 + |fy|2 > 2ω(x)=m(fyfx). (3.16)

Notice that (letting f = U + iV )

=m(fyfx) = =m(Ux(z)− iVx(z))(Uy(z) + iVy(z)) = J(z, f),

so (3.16) gives

ω2(x)|fx|2 + |fy|2 > 2ω(x)J(z, f) (3.17)

with equality if and only if f = f0. It is possible to rewrite (3.17) in two

different ways, namely

|fx|2 + |fy|2 > (1− ω−2(x))|fy|2 + 2ω−1(x)J(z, f),

|fx|2 + |fy|2 > (1− ω2(x))|fx|2 + 2ω(x)J(z, f).
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This gives two estimates on the distortion function (writing J = J(z, f)),

2K(z, f) > (1− ω−2(x))
|fy|2
J

+ 2ω−1(x),

2K(z, f) > (1− ω2(x))
|fx|2
J

+ 2ω(x),

and therefore, for a general mapping f , either

2(K(z, f)−K(z, f0)) > (1− ω−2(x))

[ |fy|2
J
− |(f0)y|2

J0

]
,

or

2(K(z, f)−K(z, f0)) > (1− ω2(x))

[ |fx|2
J
− |(f0)x|2

J0

]
.

To apply the inequality (3.11) from Proposition 3.2 we require positivity

of the first term; that is, in the first case we want (1−ω−2(x)) > 0 and in the

second case, (1−ω2(x)) > 0. This depends pointwise on ux for the candidate

extremal mapping. Next note that if Φ : R → R is convex, then its graph

lies above any tangent line:

Φ(K)− Φ(K0) > Φ′(K0)
(
K−K0)

where we have adopted the shorthand K = K(z, f),K0 = K(z, f0). Equality

holds here if and only if K = K0. This therefore yields the inequalities:

2(Φ(K)− Φ(K0)) > (1− ω−2(x))Φ′(K0)[
2<e

((f0)y
J0

(
fy − (f0)y

))
− |(f0)y|2

J2
0

(
J − J0

)]
,

2(Φ(K)− Φ(K0)) > (1− ω2(x))Φ′(K0)[
2<e

((f0)x
J0

(
fx − (f0)x

))
− |(f0)x|2

J2
0

(
J − J0

)]
.
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Now (f0)y = i and (f0)x = 1/ω(x) = J0 so, after substitution,

2(Φ(K)− Φ(K0)) >
(
1− 1

ω2(x)

)
Φ′(K0)

[
2
J0
=m
(
fy − 1

)
− J−J0

J2
0

]
= 2

(
ω(x)− 1

ω(x)

)
Φ′(K0)=m

(
fy − 1

)
+
(
ω2(x)− 1

)
Φ′(K0)(J0 − J) ,

2(Φ(K)− Φ(K0)) > (1− ω2(x))Φ′(K0)
[
2<e

(
fx − (f0)x

)
−
(
J − J0

)]
.

The next step is to multiply by a weight function λ(x) and integrate.

Assume that f0 (that is ω(x)) is chosen so that

λ(x)(1− ω2(x))Φ′(K0) = α (3.18)

for a real constant α. This is already recognisable as

λ(x)
(

1− 1

u2
x

)
Φ′
(
ux +

1

ux

)
= α,

which is the Euler-Lagrange equation for the variational problem of finding

the extremal for ∫∫
Q

Φ(K(z, f))λ(x) |dz|2

among functions of the form (3.14) — this is easy to verify using the results

from Section 1.6. This equation is therefore necessarily satisfied by the min-

imiser. Observe that if α = 0 then ux = 1, whence f is the identity map,

meaning Ω = Ω′; α 6= 0 is the nontrivial case.

We now have

2

∫∫
Q

Φ(K)λ(x) |dz|2 > 2

∫∫
Q

Φ(K0)λ(x) |dz|2 − α
∫∫

Q
(J0 − J) |dz|2

+2

∫∫
Q
λ(x)

(
ω(x)− 1

ω(x)

)
Φ′(K0)=m

(
fy − 1

)
|dz|2,
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2

∫∫
Q

Φ(K)λ(x) |dz|2 > 2

∫∫
Q

Φ(K0))λ(x) |dz|2 + α

∫∫
Q

(J0 − J) |dz|2

+ 2α

∫∫
Q
<e
(
fx − (f0)x

)
|dz|2.

From the boundary conditions at (2.4) and (2.5) we see that∫∫
Q
λ(x)

(
ω(x)− 1

ω(x)

)
Φ′(K0)=m

(
fy − 1

)
|dz|2

=

∫ `

0

λ(x)

(
ω(x)− 1

ω(x)

)
Φ′(K0)

[ ∫ 1

0

=m
(
fy − 1

)
dy
]
dx = 0

and ∫∫
Q
<e
(
fx − (f0)x

)
|dz|2 =

∫ 1

0

[ ∫ `

0

<e
(
fx − (f0)x

)
dx
]
dy = 0.

This yields, in both cases,∫∫
Q

Φ(K)λ(x) |dz|2 >
∫∫

Q
Φ(K0)λ(x) |dz|2 ± α

2

∫∫
Q

(
J0 − J

)
|dz|2.

To look for a minimum here, the sign of α depends on whether ux(x) > 1 or

ux(x) < 1 for all x (this must be the case for the minimiser since if ux ever

changes sign, there is a better candidate for the minimum; namely a ux which

does not change sign). Note that this already is an interesting property of

the minimiser. For an arbitrary Sobolev mapping we know [31]∫∫
Q
J |dz|2 6 |Q′| =

∫∫
Q
J0 |dz|2.

This establishes the desired result.

Theorem 3.3 proves the existence and uniqueness of minimisers for general

minimisation problems of the Grötzsch type, and, by extension, to Nitsche-

type problems, provided we can solve (3.12). In [6, pp. 16–21] minimising

sequences are identified outside the Nitsche range (see the bound at (2.2))

and from this, minimisers can be shown not to exist outside this range in,
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specifically, the unweighted case for the L1 norm.

Similar arguments may show the nonexistence of minimisers outside var-

ious ranges in our more general setting as well. However, precise results are

quite challenging and we shall not address this matter here.

3.3.1 The theorem for the annulus

Recall the equivalence between Grötzsch-type and Nitsche-type problems

seen in Section 2.7. With the choice

η(w) =
1

4π2
λ(z)e−4π<e(z), e2πz = w,

(z is the complex coordinate in the rectangle, w in the annulus) the equiva-

lence between the Grötzsch and Nitsche problems is seen. By means of this

change of variables, it is possible to convert Theorem 3.3 to the annulus:

Theorem 3.4. Let

(i) R, S be positive real numbers, and A = {z ∈ C : 1 6 |z| 6 R},
A′ = {z ∈ C : 1 6 |z| 6 S},

(ii) η(z) : A→ (0,∞) be a radially symmetric continuous weight function,

(iii) Φ : [1,∞)→ [1,∞) be an increasing convex C∞ function,

(iv) f0(z) = ρ0(|z|) z|z| where ρ0 is a solution to the boundary value problem

r2η(r)

(
1− ρ2(r)

r2ρ2
r(r)

)
Φ′
(
rρr(r)

ρ(r)
+

ρ(r)

rρr(r)

)
= α

ρ(1) = 1, ρ(R) = S

where α is a real constant.

(v) F be all homeomorphisms of finite distortion f : A→ A′ with

lim
r↘1

f(reiθ) = eiθ, lim
r↗R

f(reiθ) = Seiθ.
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Then for any f ∈ F ,∫∫
A

Φ (K(z, f)) η(z)|dz|2 >
∫∫

A
Φ (K(z, f0)) η(z)|dz|2

holds, with equality attained uniquely by the minimiser f0.

It is easily verified that, under the transformation between rectangle and

annulus, this gives the same minimisers.

For a given minimisation problem (with suitable parameters), these two

theorems (3.3 and 3.4) show that the minimiser is required to satisfy a partic-

ular differential equation. This is the Euler-Lagrange equation for extremal

problems of this kind — and it is in fact a first-order differential equation.

Here is where the Nitsche phenomenon arises: there are two boundary con-

ditions (3.13) to satisfy, and this may not be possible by solving a first-order

equation.

3.4 Critical Nitsche-type phenomena

Theorem 3.3 strongly motivates us to study the ordinary differential equation

(3.12) for solutions that will identify minimisers of Nitsche and Grötzsch-type

problems. Note also that the transformation from the Nitsche-type problem

to the Grötzsch problem yields a significantly simpler equation to study.

3.4.1 The Nitsche phenomenon

Let us first observe how the Nitsche phenomenon arises for the special case

Φ(t) = t. Here we have Φ′ ≡ 1, and λ(x) = 4π2e4πx as η(w) = 1. We have

1− 1

u2
x(x)

=
α

4π2
e−4πx, ux(x) =

2π√
4π2 − αe−4πx

,

u(x) =

∫
2πe2πx dx√
4π2e4πx − α

=
1

2π

∫
dt√
t2 − α

, t = 2πe2πx.



54 3. Minimisers of Distortion Functionals

So

u(x) =
1

2π
log

(
e2πx +

√
e4πx − β

1 +
√

1− β

)
, β =

α

4π2

noting u(0) = 0. Recall u : [0, `] → [0, L] and we must solve u(`) = L, that

is

L =
1

2π
log

(
e2π` +

√
e4π` − β

1 +
√

1− β

)
(3.19)

by choice of our free parameter α. As λ is continuous, the extreme value the-

orem informs us that it attains both an absolute maximum and an absolute

minimum on [0, `]. Set

λ0 = min
x∈[0,`]

λ(x).

Notice that α is not bounded from below, and as α→ −∞, β → −∞ we can

make the right hand side of (3.19) arbitrarily small. Thus there is always a

minimiser if 0 < L 6 `. Now if α > 0 we see that (3.12) requires α < λ0 so

that β < 1. Observe that (after simplification)

dL

dβ
=

e2π`
√
e4π` − β + e4π` −√1− β − 1

4π
(
e2π`
√
e4π` − β + e4π` − β

) (√
1− β + 1− β

) ,
which is nonnegative whenever ` > 0 and β 6 1. Therefore L is bounded by

the choice β = 1:

L <
1

2π
log
(
e2π` +

√
e4π` − 1

)
. (3.20)

With some manipulation, it can be shown that (3.20) is precisely the Nitsche

bound (2.2).

3.4.2 More generality for Φ′ = 0

For more general weights λ(x),

1− 1

u2
x(x)

=
α

λ(x)
, ux(x) =

√
λ(x)

λ(x)− α,



3.4. Critical Nitsche-type phenomena 55

and we must study the behaviour of

u(x) =

∫ √
λ(x)

λ(x)− α dx.

Again, as α→ −∞ we can make this integral arbitrarily small. Notice that

α/λ(x) < 1, so if we put λ0 = minx∈[0,`] λ(x), then this integral is dominated

by that with the choice α = λ0 and one must decide whether

∫ `

0

√
λ(x)

λ(x)− λ0

dx <∞.

As λ is taken as a positive weight, the numerator is a bounded function and

so the issue is around the convergence or otherwise of the integral∫ `

0

dx√
λ(x)− λ0

<∞

A comparison test with
∫
dt/t shows that convergence will require

λ(t) ≈ λ0 + t2s, s < 1

(with t = x− x0) near the minimum x0.

Divergence of this integral will indicate that no critical phenomena oc-

cur. For, if the integral diverges, a suitable choice of α will ensure that the

boundary conditions u(0) = 0, u(`) = L can be satisfied.

There are two cases for the integral to diverge

• λ(x) has a smooth interior minimum on 0 < x < `; or

• λ(x) has a minimum on one of the boundary values, x = 0 or x = `.

Divergence here requires the minimum also to be smooth, in the sense

that the appropriate directional derivative is zero.

When viewed in the negative, the condition for a critical phenomenon to

occur is straightforwardly that the weight λ has a non-smooth minimum in

the domain. This leads to the postulation of
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Conjecture 3.5. Suppose that Φ is convex and has bounded derivative. Then

in the minimisation problem at (2.1), critical Nitsche-type phenomena will

occur if and only if |z|2η(z) is not smooth at the minimum value.

The reasoning above verifies this for Φ(t) = t. This conjecture is phrased

in terms of annular domains; the following reasoning supports this conjecture.

In the case of the annulus, solutions are radially symmetric on the annulus

(independent of argw), and we can rewrite (2.7) as

η(r) =
1

4π2
λ(x)e−4πx, e2πx = r,

or, rearranging,

λ(x) = 4π2 r2 η(r).

Since we require λ′(x) = 0 at x = x0, and (by the chain rule) d
dx

= dr
dx

d
dr

, we

have
d

dx
λ(x)

∣∣∣∣
x=x0

= 0 = 4π2 dr

dx
· d
dr

(
r2 η(r)

)∣∣∣∣
r=r0

where r0 = r(x0) is a minimum of r2η(r). Note that r = e2πx (which justifies

the use of the chain rule) so that dr
dx

= 2πe2πx = 2πr and hence

8π3r · d
dr

(
r2η(r)

)
= 0

at the minimum. As r > 0, division by 8π3r and integration gives the

condition

η(r) ≈ c

r2

for some constant c near the minimum; in other words, r2η(r) must be flat

near the minimum.

In order for a deformation to be able to stretch the domain infinitely

far, r2η(r) must have a smooth minimum inside the domain, in the sense

that if the minimum occurs on the boundary, then its directional derivative

(orthogonal to and towards the boundary) is zero. The Nitsche range is

simply that range within which the minimum of r2η(r), if it occurs in the

domain (or on its boundary), is smooth.
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An explanation from [6, pp. 16–21] shows what happens in situations out-

side the Nitsche range. Here, mappings of finite distortion map the domain

annulus to a subannulus of the image; the remainder of the target annulus

is a region of finite, nonzero measure which is the image of a boundary (zero

measure) — thus of infinite distortion; Fig. 3.1 illustrates this.

f

infinite distortion

1

Fig. 3.1: Beyond the Nitsche bound.

In this picture, the minimum value of r2η(r) occurs on the inner bound-

ary of the domain annulus. Despite being beyond the Nitsche bound, the

mapping of minimal mean distortion is the limit of a sequence of mappings

of finite distortion; however, this limit map has infinite distortion on the

inner boundary, which is mapped to a region of nonzero measure.

These conditions for critical phenomena will be revisited when various

interpretations of the weight function are discussed in Chapter 5.

3.4.3 Failure of Nitsche phenomenon: Φ′ unbounded

Should the convex function Φ have unbounded derivative, then there is always

a minimiser. In particular we do not see any critical Nitsche-type phenomena

for the Lp-norms of mean distortion; that is, with Φ(t) = tp. Let us deal with

the case λ(x) ≡ 1; the case where λ is bounded is quite similar here.

From Theorem 3.3, recall that(
1− 1

u2
x(x)

)
Φ′
(
ux(x) +

1

ux(x)

)
= α.
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The relevant concern is whether ux is able to satisfy this differential equation.

If α ↘ 0, then ux ↘ 1 and when α ↗ ∞ we obtain ux ↗ ∞, so for α > 0

the intermediate value theorem provides us with a solution. The remaining

case is the question of what happens when α → −∞, and this is analysed

similarly.

3.4.4 Borderline case: Φ′ bounded

In this case there are some subtleties. We may view the condition

λ(x)

(
1− 1

u2
x(x)

)
Φ′
(
ux(x) +

1

ux(x)

)
= α

as imposing a condition on the integrability of ψ(λ0/λ(x)) where ψ is the

inverse of the bounded function t 7→ Φ′(t+t−1)(1−t−2). Whether or not there

are critical Nitsche-type phenomena will be determined by this integrability

condition (cf. Conjecture 3.5).

Let us give some illustrative examples in the standard critical Nitsche

case with ` = 1, λ(x) = e4πx (ignoring multiplicative constants). We may

assume that Φ′(t)↗ 1 and the limiting case α = e4π:

Case: Φ(t) = t− log(t), Φ′(t) = 1− 1
t
, a = a(x) = α/λ(x) = e−4πx 6 1.

Here ux is the largest real root of the polynomial:(
1− 1

t+ t−1

)
(1− t−2) = a

P (t) = −1 + t− at2 − t3 + (1− a)t4 = 0.

Since

P

(
1

1− a

)
= − a2

(1− a)2
< 0,

the largest real root

ux(x) >
1

1− a(x)
,

and ∫ 1

x

us(s) ds >

∫ 1

x

ds

1− e−4πs
. (3.21)
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Now∫ 1

x

ds

1− e−4πs
=

∫ 1

x

e4πsds

e4πs − 1
=

1

4π

∫ s=1

s=x

dζ

ζ − 1
=

1

4π
log |ζ − 1|

∣∣∣∣s=1

s=x

where ζ = e4πs; hence the left hand side of (3.21) diverges as x↘ 0. There-

fore with appropriate choice of α we can always solve u(0) = 0 and u(1) = L.

Hence we find no critical Nitsche phenomena here.

The above case encourages investigation of functions of the form

Φ(t) = t+
1

(p− 1)tp−1
(3.22)

for p 6= 1. Note that the first case above corresponds essentially to the case

p = 1, though in the general formula (3.22) Φ is undefined when p = 1. This

is suggestive of interesting occurrences around p = 1.

We have Φ′(t) = 1 − 1
tp

, 0 < a = a(x) = e−4πx < 1 for 0 < x < 1, and

hence ux is the largest real root of the polynomial

P (t) =

(
1− 1

(t+ t−1)p

)(
1− 1

t2

)
− a = 0. (3.23)

Note that when t > 0, P (t) is continuous, and

P ′(t) =
2

t3

(
1− 1

(t+ t−1)p

)
+

(
1− 1

t2

)2
p

(t+ t−1)p+1 > 0,

meaning P increases monotonically. Also note that P (1) = −a < 0, and

lim
t→∞

P (t) = 1− a > 0,

so that P has exactly one real positive root ux > 1. Furthermore, if p < 0

then Φ′ is unbounded, and when p = 0, Φ′ = 0. Thus we may assume p > 0.

Case: 0 < p < 1.
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Firstly, observe that

0 > −a2(1− a)2

= −a2 + 2a3 − a4

= 2a− a2 − 2a2 + a3 + 2a3 − a4 − 2a+ 2a2 − a3

= (2a− a2)(1− a+ a2)− a− a+ 2a2 − a3

=
(
1− (1− a)2

) ((
1 + (1− a)2

)
− (1− a)

)
− a

(
1 + (1− a)2

)
.

Division by (1 + (1− a)2) gives

(
1− (1− a)2

)(
1− 1− a

1 + (1− a)2

)
− a < 0

or, rewriting slightly,(
1− 1(

1
1−a

)2

)(
1− 1

1
1−a + 1−a

1

)
− a < 0 (3.24)

Now for 0 < p < 1, (
1

1− a +
1− a

1

)p
<

1

1− a +
1− a

1
.

Together with (3.24), this shows

P

(
1

1− a

)
=

(
1− 1(

1
1−a

)2

)(
1− 1(

1
1−a + 1−a

1

)p
)
− a < 0

and hence the largest real root

ux >
1

1− a.

The integral of the right hand side diverges (see the reasoning for the case

Φ′ = 1 − t−1). Thus with appropriate choice for α we can always solve

u(0) = 0, u(1) = L and we see no Nitsche phenomena.
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Case: p > 2.

Recall equation (3.23). Note that(
t+

1

t

)p
>

(
t+

1

t

)2

> t2.

Thus

1− 1

(t+ t−1)p
> 1− 1

t2

and therefore(
1− 1

(t+ t−1)p

)(
1− 1

t2

)
− a >

(
1− 1

t2

)2

− a.

The largest real root of P (t) is therefore dominated by the largest real root

of

Q(t) =

(
1− 1

t2

)2

− a.

Solving Q(t) = 0 gives the largest real root of P (t)

ux <
1√

1−
√
a(x)

=
1√

1− e−2πx
.

Now ∫ 1

0

1√
1− e−2πx

dx =
1

π

∫ x=1

x=0

dζ√
ζ2 − 1

with ζ = eπx. Observe that

1

π

∫ x=1

x=0

dζ√
ζ2 − 1

= log
(
ζ +

√
ζ2 − 1

)∣∣∣x=1

x=0
= log

(
eπ +

√
e2π − 1

)
,

a finite number. Therefore ux(x) is dominated by an integrable function and

we must see the Nitsche phenomenon. It is no coincidence that the value of

the integral here is strongly reminiscent of that for the “standard” Nitsche

case outlined in Section 3.4.1 — the function dominating the root of P (t)

here is essentially the same.

It remains to cover
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Case: 1 < p < 2.

For p > 1, (
t+

1

t

)p
> tp

whence

1− 1

(t+ t−1)p
> 1− 1

tp
.

Also, for p < 2, t2 > tp for t > 1 and therefore we also have

1− 1

t2
> 1− 1

tp
.

Therefore the polynomial

P (t) =

(
1− 1

(t+ t−1)p

)(
1− 1

t2

)
− a >

(
1− 1

tp

)2

− a = Q(t),

and the largest real root of P (t) is again dominated by the largest real root

of Q(t). Solving Q(t) = 0 yields

ux <
1(

1−
√
a(x)

)1/p
.

Near x = 0,
√
a(x) = e−2πx ≈ 1− 2πx and so

∫ 1

0

1(
1−

√
a(x)

)1/p
dx ≈

(
1

2π

)1/p ∫ 1

0

1

x1/p
dx,

which converges (to (2π)−1/p) if and only if p > 1. Therefore in this case,

too, ux is dominated by an integrable function and we must see a critical

Nitsche-type phenomenon.

The conditions surrounding critical phenomena will be further discussed

in Chapter 5. Also, while the Euler-Lagrange equations may be difficult (or,

at worst, impossible) to solve analytically, we may still learn some things

about them. The next chapter will exhibit the ellipticity of these equations.



4. ELLIPTICITY OF THE EULER-LAGRANGE

VARIATIONAL EQUATIONS

Elliptic differential equations arise naturally in the study of materials, where

static solutions are found for steady-state phenomena [27, pp. 44–48]. In

this chapter, the ellipticity of the variational equations for the minimisation

problem is exposed, from which it may be said that the theory expounded

here applies, generally, to the material sciences.

4.1 Variational equations

What follows is a long formal calculation, with little or no assumptions about

the symmetry or topology of the domain for a given extremal problem. On

the basis of examples in the calculus of variations [8, p. 683], however, we

do assume the extremal function f for the minimisation problem (2.1) has

enough regularity to guarantee that

fzz̄ = fz̄z,

for example f ∈ W 2,2
loc (Ω,Ω′).

In [8], extremal problems for mappings of finite distortion are studied,

particularly in an elliptic setting, for the minimisation problem∫∫
Ω

KΦ(z, f)|dz|2 =

∫∫
Ω

Φ (K(z, f)) |dz|2 (4.1)

with Φ ∈ C∞[1,∞) a strictly increasing convex function (Φ(1) = 1). Astala

et al. [8, pp. 684–687] carry out the following calculation.



64 4. Ellipticity of the Euler-Lagrange variational equations

Begin with the complex Beltrami coefficient from (1.6)

µ(z, f) :=
fz̄
fz

for f : Ω→ Ω′ an orientation-preserving diffeomorphism. Vary by a complex-

valued test function η ∈ C∞0 (Ω). For all sufficiently small complex parameters

ε, J(z, f + εη) > 0. Note also that boundary values are the same for f and

f + εη. Now the complex differential of µ, denoted µ̇, is a complex linear

operator on C∞0 (Ω), and acts on a test function η as follows:

µ̇[η] =
∂µ(z, f + εη)

∂ε

∣∣∣∣
ε=0

=
fz ηz̄ − fz̄ ηz

(fz)2
.

The complex differential of

κ(z, f) = |µ(z, f)|2 =
|fz̄|2
|fz|2

is calculated by the chain rule:

κ̇ = µµ̇,

so for each test function η,

κ̇[η] = κ

(
ηz̄
fz̄
− ηz
fz

)
.

The linear distortion function K is simply

K(z, f) =
|fz|2 + |fz̄|2
|fz|2 − |fz̄|2

=
||Df(z)||2
J(z, f)

=
1 + κ(z, f)

1− κ(z, f)
,

and hence

K̇ = K̇(z, f) =
2κ̇(z, f)

(1− κ(z, f))2

or

K̇[η] =
2κ

(1− κ)2

(
ηz̄
fz̄
− ηz
fz

)
.
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Therefore for Φ : [1,∞)→ [1,∞) convex,

KΦ = Φ

( |fz|2 + |fz̄|2
|fz|2 − |fz̄|2

)
and

K̇Φ[η] = Φ′
(

1 + κ

1− κ

)
2κ

(1− κ)2

(
ηz̄
fz̄
− ηz
fz

)
=

2

(1− κ)2
Φ′
(

1 + κ

1− κ

)(
fz̄ ηz̄ − κ fz ηz

|fz|2
)
.

The preceding calculation done, the authors of [8] discuss minimisers of

the variational integrals as seen in (4.1). We now extend this discussion to

include weight functions.

Suppose the aim is to find the variational equations for∫∫
Ω

KΦ(z, f) w(z) |dz|2, (4.2)

where w(z) is some complex-valued nonzero weight function (we take w(z)

in favour of our earlier notation of η and λ to emphasize more generality

here). Our aim here will be to derive some conditions on the ellipticity of

the Euler-Lagrange equations, taking into account this weight function.

If f is in C1(Ω) then

∂

∂ε

∫∫
Ω

KΦ(z, f + εη) w(z) |dz|2
∣∣∣∣
ε=0

= 0

for every test function η ∈ C∞0 (Ω). Now

∂

∂ε

∫∫
Ω

KΦ(z, f + εη) w(z) |dz|2 =

∫∫
Ω

K̇Φ(z, f) w(z) |dz|2

and hence∫∫
Ω

2

(1− κ)2
Φ′
(

1 + κ

1− κ

)(
fz̄ ηz̄ − κ fz ηz

|fz|2
)
w(z) |dz|2 = 0.



66 4. Ellipticity of the Euler-Lagrange variational equations

That is, ∫∫
Ω

2

(1− κ)2
Φ′
(

1 + κ

1− κ

)(
fz̄ ηz̄
|fz|2

)
w(z) |dz|2

=

∫∫
Ω

2

(1− κ)2
Φ′
(

1 + κ

1− κ

)(
κ ηz
fz

)
w(z) |dz|2

Now set

A(κ) =
2κ

(1− κ)2
Φ′
(

1 + κ

1− κ

)
= Φ′

( |fz|2 + |fz̄|2
|fz|2 − |fz̄|2

)
2|fz|2|fz̄|2

(|fz|2 − |fz̄|2)2 (4.3)

so we have ∫∫
Ω

(
A(κ)w(z)

fz̄

)
ηz̄|dz|2 =

∫∫
Ω

(
A(κ)w(z)

fz

)
ηz|dz|2.

Integrating by parts gives(
A(κ)w(z)

fz̄

)
η

∣∣∣∣
∂Ω

−
∫∫

Ω

∂

∂z̄

(
A(κ)w(z)

fz̄

)
η|dz|2

=

(
A(κ)w(z)

fz

)
η

∣∣∣∣
∂Ω

−
∫∫

Ω

∂

∂z

(
A(κ)w(z)

fz

)
η|dz|2

whence, as the test function η vanishes on the boundary,∫∫
Ω

∂

∂z̄

(
A(κ)w(z)

fz̄

)
η|dz|2 =

∫∫
Ω

∂

∂z

(
A(κ)w(z)

fz

)
η|dz|2.

Rearranging,∫∫
Ω

[
∂

∂z̄

(
A(κ)w(z)

fz̄

)
− ∂

∂z

(
A(κ)w(z)

fz

)]
η|dz|2 = 0.

The fundamental lemma of the calculus of variations (Lemma 1.20) now

informs us that

∂

∂z̄

(
A(κ)w(z)

fz̄

)
− ∂

∂z

(
A(κ)w(z)

fz

)
= 0,
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or
∂

∂z̄

(
A(κ)w(z)

fz̄

)
=

∂

∂z

(
A(κ)w(z)

fz

)
. (4.4)

It is easy to verify that this corresponds directly to the result from (1.13).

4.2 The initial result

First let us proceed as in [8], by setting w(z) ≡ 1. The authors do not detail

this formal calculation, and mention essentially nothing of the inner workings.

However, in order to generalise to the case of weight functions, it is necessary

to check how the weight function will behave during this computation.

If Φ(t) = t, then we can use the rule (h)z̄ = hz to simplify (4.4), obtaining

∂

∂z

( |fz|2fz̄
J(z, f)2

)
=

∂

∂z̄

( |fz̄|2fz
J(z, f)2

)
. (4.5)

First observe that

J(z, f) = |fz|2 − |fz̄|2

J(z, f)2 = |fz|4 − 2|fz|2|fz̄|2 + |fz̄|4

and

∂

∂z

(
J(z, f)2

)
= 2J(z, f)

[(
(fz)zfz + fzzfz

)
−
(
(fz̄)zfz̄ + fz̄zfz̄

)]
(4.6)

∂

∂z̄

(
J(z, f)2

)
= 2J(z, f)

[(
(fz)z̄fz + fzz̄fz

)
−
(
(fz̄)z̄fz̄ + fz̄z̄fz̄

)]
(4.7)

∂

∂z

(
|fz|2fz̄

)
= (fz)zfzfz̄ + fzfzzfz̄ + |fz|2fz̄z (4.8)

∂

∂z̄

(
|fz̄|2fz

)
= (fz̄)z̄fz̄fz + fz̄fz̄z̄fz + |fz̄|2fzz̄ (4.9)

so that by the quotient rule the numerator of the left hand side of (4.5)

becomes

N -LHS(4.5) = J(z, f)2 ∂

∂z

(
|fz|2fz̄

)
− |fz|2fz̄

∂

∂z

(
J(z, f)2

)
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and the numerator of the right hand side

N -RHS(4.5) = J(z, f)2 ∂

∂z̄

(
|fz̄|2fz

)
− |fz̄|2fz

∂

∂z̄

(
J(z, f)2

)
Note that the denominator is the same in each case — the fourth power of

the Jacobian, which is nonzero (almost everywhere) — and cancels. Now set

N -LHS(4.5)

J(z, f)
=
N -RHS(4.5)

J(z, f)
, (4.10)

so that by substituting equations (4.6)–(4.9) into (4.10),

LHS(4.10) =
(
|fz|2 − |fz̄|2

) (
(fz)zfzfz̄ + fzfzzfz̄ + |fz|2fz̄z

)
−2 |fz|2fz̄

[(
(fz)zfz + fzzfz

)
−
(
(fz̄)zfz̄ + fz̄zfz̄

)]
,

RHS(4.10) =
(
|fz|2 − |fz̄|2

) (
(fz̄)z̄fz̄fz + fz̄fz̄z̄fz + |fz̄|2fzz̄

)
−2 |fz̄|2fz

[(
(fz)z̄fz + fzz̄fz

)
−
(
(fz̄)z̄fz̄ + fz̄z̄fz̄

)]
.

Expanding yields

LHS(4.10) = |fz|2(fz)zfzfz̄ + |fz|2fzfzzfz̄ + |fz|4fz̄z
−|fz̄|2(fz)zfzfz̄ − |fz̄|2fzfzzfz̄ − |fz̄|2|fz|2fz̄z
−2 |fz|2fz̄(fz)zfz − 2 |fz|2fz̄fzzfz
+2 |fz|2fz̄(fz̄)zfz̄ + 2 |fz|2fz̄fz̄zfz̄,

RHS(4.10) = |fz|2(fz̄)z̄fz̄fz + |fz|2fz̄fz̄z̄fz + |fz|2|fz̄|2fzz̄
−|fz̄|2(fz̄)z̄fz̄fz − |fz̄|2fz̄fz̄z̄fz − |fz̄|4fzz̄
−2 |fz̄|2fz(fz)z̄fz − 2 |fz̄|2fzfzz̄fz
+2 |fz̄|2fz(fz̄)z̄fz̄ + 2 |fz̄|2fzfz̄z̄fz̄.

Collecting coefficients of the various second derivatives, and making use of
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the equivalence (h)z̄ = hz, gives

LHS(4.10) = fzz
(
|fz|2fzfz̄ − |fz̄|2fzfz̄ − 2 |fz|2fz̄fz

)
+fz̄z

(
|fz|4 − |fz̄|2|fz|2 + 2 |fz|2fz̄fz̄

)
+fzz̄

(
|fz|2fzfz̄ − |fz̄|2fzfz̄ − 2 |fz|2fz̄fz

)
+2 fz̄z̄ |fz|2fz̄fz̄,

RHS(4.10) = fz̄z̄
(
|fz|2fz̄fz − |fz̄|2fz̄fz + 2 |fz̄|2fzfz̄

)
+fzz̄

(
|fz|2|fz̄|2 − |fz̄|4 − 2 |fz̄|2fzfz

)
+fz̄z

(
|fz|2fz̄fz − |fz̄|2fz̄fz + 2 |fz̄|2fzfz̄

)
−2 fzz|fz̄|2fzfz.

Further simplification yields

LHS(4.10) = −fzzfzfz̄
(
|fz|2 + |fz̄|2

)
+ fz̄z|fz|2

(
|fz|2 + |fz̄|2

)
−fzz̄fzfz̄

(
|fz|2 + |fz̄|2

)
+ 2 fz̄z̄ |fz|2f 2

z̄ ,

RHS(4.10) = fz̄z̄fzfz̄
(
|fz|2 + |fz̄|2

)
− fzz̄|fz̄|2

(
|fz|2 + |fz̄|2

)
+fz̄zfzfz̄

(
|fz|2 + |fz̄|2

)
− 2 fzz|fz̄|2f 2

z .

Equating LHS(4.10) = RHS(4.10) and rearranging now gives

fzz̄|fz̄|2
(
|fz|2 + |fz̄|2

)
+ fz̄z|fz|2

(
|fz|2 + |fz̄|2

)
− fzz̄fzfz̄

(
|fz|2 + |fz̄|2

)
−fz̄zfzfz̄

(
|fz|2 + |fz̄|2

)
= fz̄z̄fzfz̄

(
|fz|2 + |fz̄|2

)
+ fzzfzfz̄

(
|fz|2 + |fz̄|2

)
− 2 fzz|fz̄|2f 2

z

−2 fz̄z̄ |fz|2f 2
z̄ ,

and further simplification yields

γ2fzz̄ − 2 γfzfz̄fzz̄ = γfzfz̄fz̄z̄ + γfzfz̄fzz − 2 |fz̄|2f 2
z fzz − 2 |fz|2f 2

z̄ fz̄z̄, (4.11)
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with γ = |fz|2 + |fz̄|2. Note that this is precisely the step at which the

additional assumption, introduced at the start of this calculation, that fzz̄ =

fz̄z (f is continuously differentiable) is required.

Taking equation (4.11) and its conjugate (bearing in mind that γ is real)

gives a set of simultaneous equations:

γ2fzz̄ − 2 γfzfz̄fzz̄ = γfzfz̄fz̄z̄ + γfzfz̄fzz − 2 |fz̄|2f 2
z fzz

−2 |fz|2f 2
z̄ fz̄z̄,

(4.12)

γ2fzz̄ − 2 γfz fz̄fzz̄ = γfzfz̄fz̄z̄ + γfzfz̄ fzz − 2 |fz̄|2(fz)
2fzz

−2 |fz|2(fz̄)
2fz̄z̄.

(4.13)

Multiplying (4.12) through by γ, and (4.13) by 2fzfz̄, and rearranging the

latter yields

γ3fzz̄ − 2 γ2fzfz̄fzz̄ = γ2fzfz̄fz̄z̄ + γ2fzfz̄fzz − 2 γ|fz̄|2f 2
z fzz

− 2 γ|fz|2f 2
z̄ fz̄z̄,

2 γ2fzfz̄fzz̄ − 4 γ|fz|2|fz̄|2fzz̄ = 2 γ|fz|2f 2
z̄ fz̄z̄ − 4 fzfz̄|fz̄|2|fz|2fzz

−4 fzfz̄|fz|2|fz̄|2fz̄z̄ + 2 γf 2
z |fz̄|2 fzz.

Adding these two equations together to eliminate fzz̄ and simplifying gives

γιfzz̄ = ιfzfz̄fzz + ιfzfz̄fz̄z̄

with ι = γ2− 4|fz|2|fz̄|2 = J(z, f)2 6= 0, and division by γ = |fz|2 + |fz̄|2 and

cancelling ι yields

fzz̄ =
fzfz̄

|fz|2 + |fz̄|2
fzz +

fzfz̄
|fz|2 + |fz̄|2

fz̄z̄.

Thus (4.5) reduces to the equation

fzz̄ = αfzz + βfz̄z̄, (4.14)

with

α =
µ(z, f)

1 + |µ(z, f)|2 =
fzfz̄

|fz|2 + |fz̄|2
= β.
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Note that

|α|+ |β| = 2|µ|
1 + |µ|2 < 1

whence (4.14) is elliptic [7, pp. 231–232].

This recreates the proof from Astala et al. [8], with the lengthy missing

stages included. The next section expands this result to the weighted case.

4.3 The weighted expansion

Again assuming Φ(t) = t, in the case where a weight function w = w(z) is

introduced in the minimisation problem (4.2), equation (4.4) becomes

∂

∂z

(
w|fz|2fz̄
J(z, f)2

)
=

∂

∂z̄

(
w|fz̄|2fz
J(z, f)2

)
, (4.15)

observing again the useful property (h̄)z̄ = hz. Note that now

∂

∂z

(
w|fz|2fz̄

)
= wz|fz|2fz̄ + w

(
(fz)zfzfz̄ + fzfzzfz̄ + |fz|2fz̄z

)
,

∂

∂z̄

(
w|fz̄|2fz

)
= wz̄|fz̄|2fz + w

(
(fz̄)z̄fz̄fz + fz̄fz̄z̄fz + |fz̄|2fzz̄

)
.

Proceeding as before (and cancelling J(z, f) whenever possible) gives

LHS(4.15) = w
[
fz̄z|fz|2

(
|fz|2 + |fz̄|2

)
− fzzfzfz̄

(
|fz|2 + |fz̄|2

)
+2 fz̄z̄ |fz|2f 2

z̄ − fzz̄fzfz̄
(
|fz|2 + |fz̄|2

)]
+wz|fz|2fz̄J(z, f),

RHS(4.15) = w
[
fz̄z̄fzfz̄

(
|fz|2 + |fz̄|2

)
− fzz̄|fz̄|2

(
|fz|2 + |fz̄|2

)
+fz̄zfzfz̄

(
|fz|2 + |fz̄|2

)
− 2 fzz|fz̄|2f 2

z

]
+wz̄|fz̄|2fzJ(z, f).

Rearranging and simplifying now yields

w
(
γ2fzz̄ − 2 γfzfz̄fzz̄

)
= w

(
γfzfz̄fz̄z̄ + γfzfz̄fzz − 2 |fz̄|2f 2

z fzz − 2 |fz|2f 2
z̄ fz̄z̄

)
−wz|fz|2fz̄J(z, f) + wz̄|fz̄|2fzJ(z, f)
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with γ = |fz|2 + |fz̄|2. Note again that the additional assumption that fzz̄ =

fz̄z is required here. Taking this equation and its conjugate gives a set of

simultaneous equations:

w
(
γ2fzz̄ − 2 γfzfz̄fzz̄

)
= w

(
γfzfz̄fz̄z̄ + γfzfz̄fzz − 2 |fz̄|2f 2

z fzz

−2 |fz|2f 2
z̄ fz̄z̄

)
− wz|fz|2fz̄J(z, f)

+wz̄|fz̄|2fzJ(z, f), (4.16)

w
(
γ2fzz̄ − 2 γfz fz̄fzz̄

)
= w

(
γfzfz̄fz̄z̄ + γfzfz̄ fzz − 2 |fz̄|2(fz)

2fzz

−2 |fz|2(fz̄)
2fz̄z̄

)
− wz|fz|2fz̄J(z, f)

+wz̄|fz̄|2fzJ(z, f). (4.17)

Multiplying (4.16) through by wγ, and (4.17) by 2wfzfz̄, and rearranging

yields

|w|2
(
γ3fzz̄ − 2 γ2fzfz̄fzz̄

)
= |w|2

(
γ2fzfz̄fz̄z̄ + γ2fzfz̄fzz − 2 γ|fz̄|2f 2

z fzz

−2 γ|fz|2f 2
z̄ fz̄z̄

)
+wfzfz̄γJ(z, f)

(
wz̄fz̄ − wzfz

)
,

|w|2 (−4 γ|fz|2|fz̄|2fzz̄
+2 γ2fzfz̄fzz̄

) = |w|2
(
−4 fzfz̄|fz̄|2|fz|2fzz − 4 fzfz̄|fz|2|fz̄|2fz̄z̄

+ 2 γ|fz|2f 2
z̄ fz̄z̄ + 2 γf 2

z |fz̄|2 fzz
)

+2w|fz|2|fz̄|2J(z, f)
(
fz̄wz̄ − fzwz

)
.

Adding these two equations together to eliminate fzz̄ gives

|w|2γιfzz̄ = |w|2ιfzfz̄fzz + |w|2ιfzfz̄fz̄z̄ + |w|2ιγF (z)

with ι = γ2 − 4|fz|2|fz̄|2 = J(z, f)2 6= 0 and

F (z) =
1

|w|2γJ(z, f)

[
wfzfz̄γ

(
wz̄fz̄ − wzfz

)
+ 2w|fz|2|fz̄|2 (fz̄wz − fzwz̄)

]
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contains only first derivatives of f . Division by |w|2ιγ yields

fzz̄ =
fzfz̄

|fz|2 + |fz̄|2
fzz +

fzfz̄
|fz|2 + |fz̄|2

fz̄z̄ + F (z),

and so (4.15) reduces to a partial differential equation of the form

fzz̄ = αfzz + βfz̄z̄ + F (z),

with α and β as in (4.14). Note that here the ellipticity conditions are the

same as those for (4.14).

Here we have introduced

F (z) =
fzfz̄
J(z, f)

(
wz̄fz̄ − wzfz

w

)
+

2|fz|2|fz̄|2
γJ(z, f)

(
fz̄wz − fzwz̄

w

)
. (4.18)

Note that

• F (z) is homogeneous of degree 1 in f .

• F (z) is homogeneous of degree 0 in w.

• If w is constant then F (z) = 0, confirming that this result agrees with

the unweighted case.

• F (z) does not involve f directly, only its first derivatives.

This chapter shows, perhaps surprisingly, that the ellipticity conditions

of the Euler-Lagrange equations are independent of the weight function w(z)

— generalising the ellipticity results from [8]. The above list of properties of

F (z) may also provide opportunities for interesting future research.
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5. INTERPRETING THE WEIGHT FUNCTION —

SPECIFIC CASES & APPLICATIONS

Here will be discussed some interesting interpetations of the weight function;

we put forth ideas on how the weight function might be interpreted to lend

a physical (or other) application to the results of this thesis. Elliptic par-

tial differential equations arise naturally in the study of materials; it is not

surprising, therefore, that our results provide links to the physical sciences.

5.1 Thickness

With λ(x) = e4πx (i.e. η = 1 in (2.1)), the Nitsche phenomenon for annuli

obtains. Observe also that if λ(x) is constant, ux(x) is constant and therefore

u(x) in such cases is a linear mapping that can be stretched to any length,

as determined by the constant α. The weight function λ(x) can also be

viewed as a thickness or density. In particular an object with a “cut” gives

an interesting Nitsche-type phenomenon.

Consider the (continuous positive) weight function on [0, `]

λ(x) =

{
1− x

`
if 0 6 x < `

2
;

x
`

if `
2
6 x 6 `.

This is stretched to [0, L] with Φ′(x) = 1 (the case Φ′(x) constant is similar).

First, note that for each x, α 6 λ(x) and hence α 6 1
2
. Recall that Theorem

3.3 gives (3.12), which yields

u =

∫ √
λ(x)

λ(x)− α dx.
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Taking λ1 = 1− x
`

and λ2 = x
`
, and simplifying,

u1 =

∫ √
`− x

`− x− `α,

u2 =

∫ √
x

x− `α.

The change of variables s = `−x in u1 shows that the analysis of u1 is similar

to u2 with a change of sign (this should be no surprise as λ is symmetric).

Further changing variables by t =
√
s− `α, carrying out the integration and

back-substituting,

u1 = −
√
`− x

√
`− x− `α− `α log(

√
`− x− `α +

√
`− x) + C

for some constant C. The constant is found using the boundary condition

u(0) = 0 (preserving the order of boundary components). Rearranging gives

u1 =

[√
1− α−

√(
1− x

`

)2 − α
(
1− x

`

)
−α log

(√
1−x

`
+
√

1−x
`
−α

1+
√

1−α

)]
`.

A similar calculation, keeping in mind that u(`) = L, shows that

u2 = L−
[
√

1− α−
√(x

`

)2

− α
(x
`

)
− α log

(√
x
`

+
√

x
`
− α

1 +
√

1− α

)]
`.

Now we require that u1(`/2)−u2(`/2) = 0 (i.e. that they meet in the middle).

Thus

L =

[
2
√

1− α−
√

1− 2α− 2α log

(
1 +
√

1− 2α√
2
(
1 +
√

1− α
))] `,

and hence L can be made arbitrarily small by letting α tend to−∞. However,

there is an upper limit on L;

α 6 min
x∈[0,`]

λ(x) =
1

2
,
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and thus

Lmax =
[√

2− log
(√

2− 1
)]
` ≈ 2.296`.

This is a Nitsche bound on the maximal stretch. It is the value α that

determines how far the final stretch can be; the bound on α determines the

bound on L; see Figure 5.1.

f̃

f̃

f̃

1

0

1

1

0

0

ℓ

1

1

1

0

1

0

1

0
√
2

L(ℓ)

L(θ)

θ

1

Fig. 5.1: Stretching of a cut of base length ` (α = 1
2).

As ` tends to 0, so does L. But now suppose the cut is embedded in a

block of some fixed length (say 1), the result is not quite as clear.

f̃

f̃

f̃

1

0

1

1

0

0

ℓ

1

1

1

0

1

0

1

0
√
2

L(ℓ)

L(θ)

θ

1

Fig. 5.2: Stretching of a block with an open cut (α = 1
2).

Figure 5.2 might suggest (initially at least) that as θ approaches 0, L

approaches 1 (i.e. the block is unable to stretch). But this is in fact not the

case. Simply calculating the limit reveals that L tends to
√

2; see Figure 5.3.

Once again we observe that α determines the length of the final stretch; it

is in fact
√

1
1−α . That is, the deeper the cut, the smaller the maximal stretch

— which coheres with intuition when interpreting the weight function as a

thickness of some elastic material.



78 5. Interpreting the Weight Function — Specific Cases & Applications

f̃

f̃

f̃

1

0

1

1

0

0

ℓ

1

1

1

0

1

0

1

0
√
2

L(ℓ)

L(θ)

θ

1

Fig. 5.3: Stretching of a block with a straight-line cut (α = 1
2).

A different sequence of weight functions with the same (qualitative) lim-

iting case as that of the above is a sequence of cusps (Figure 5.4),

λ1(x) = 1 + (1− xn)1/n, λ2(x) = 1 +
(
1− (2− x)n

)1/n
.

The minimum of the weight function λ determines the critical value α = 1.

Here the maximum stretch is limited (between 2
√

2 and π). Carrying out

f̃

0

2

2 0

2

π

f̃

0

2

2 0

2

2.87

1

Fig. 5.4: Stretching of a cusp (α = 1, n = 2 (top), n = 5 (bottom)).

the calculation for the sequence of weight functions by letting n→∞ shows

that this sequence also decreases to a limit of 2
√

2. This confirms the results

of the cut block case.

It is possible to interpret the weight function as a kind of density function;
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this case is essentially analogous to the thickness interpretation already pre-

sented — where density has a non-smooth minimum value inside the domain

being stretched, critical phenomena will occur.

The functional that is being minimised is, as previously discussed, a kind

of energy functional (see Chapter 1). As Theorem 3.3 shows, the critical

value for the constant α is attained by setting α equal to (or in some nice

relation to) the minimum value of the weight function. Thus the following

interpretation may be made: during a stretching process, the energy that is

applied focuses at the weakest point (the minimum value of the weight), and

a critical phenomenon corresponds to an “infinite energy density” buildup at

that point, meaning that there is too much energy for the substance being

stretched to maintain integrity.

5.2 Metric interpretation

We may choose to interpret the quantity η(z) |dz|2 (or, equivalently,√
η(z) |dz|) as being some kind of surface metric on the annulus. Curva-

ture metrics η that are conformally flat — meaning that locally they behave

like a Euclidean manifold — are characterised by the fundamental equation

−∆ log η(r)

η2(r)
= k, (5.1)

where k is the (Gaussian) curvature of the surface (see [20]). Note the radial

symmetry — such symmetry will be assumed throughout this section. Of

particular interest are those metrics with constant curvature. Where k > 0,

the space is said to have spherical curvature; where k = 0 we have the flat

(Euclidean) metric; and where k < 0 spaces exhibit hyperbolic curvature.

Bearing in mind that, in polar coordinates, the Laplace operator

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

and, restricting ourselves to the radially symmetric case, η is independent

of θ, thus the ∂2/∂θ2 term vanishes. An observation key to the next few
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examples is that, as a consequence of Theorem 3.3, a Nitsche-type critical

phenomenon occurs if and only if the minimum of r2η(r) on the domain

annulus is not smooth (recall the end of Section 3.4.2).

5.2.1 Solving the metric equation

Substituting σ(r) = log η(r) in (5.1) gives

σrr(r) +
1

r
σr(r) = −ke2σ(r),

where subscripts denote derivatives. Further substituting Θ(r) = 2σ(r) and

rearranging gives

Θrr(r) +
1

r
Θr(r) + 2keΘ(r) = 0.

Using substitution and a change of variables

Υ(s) = 2 log r + Θ(r), r = es

we obtain

Υs = 2 + rΘr, Υss = rΘr + r2Θrr,

whence

Θr =
1

r
(Υs − 2) , Θrr =

1

r2
(Υss + 2−Υs) .

Following these substitutions through transforms the curvature equation

(5.1) into

1

r2
(Υss + 2−Υs) +

1

r2
(Υs − 2) + 2keΥ−2 log r = 0

which reduces to the elegant second-order equation

Υss(s) + 2keΥ(s) = 0. (5.2)

It is interesting to note that this is exactly the Frank-Kamenetskii equation

with parameter δ = 2k (see [41] and [26, pp. 76–80]). The parameter δ in

this model determines a critical point in reactions, specifying exactly where



5.2. Metric interpretation 81

thermal runaway occurs. It is also interesting to note the direct connection

between δ and k — this suggest there may be further critical phenomena

depending on the size of the curvature. These results show potential for

further research.

With the help of the further substitution

Γ = Υs

and observing that

Υss = Γs = Γ
dΓ

dΥ

via the chain rule, equation (5.2) becomes separable:

Γ
dΓ

dΥ
= −2keΥ.

Solving yields

Γ2 = −4keΥ + C

whence

Υs = ±2
√
−keΥ + C (5.3)

where C is an integration constant and will depend on boundary conditions.

5.2.2 Euclidean (flat) metrics

This is the situation in which the classical Nitsche phenomenon arises, the

curvature k = 0. Substituting σ(r) = log η(r) into (5.1) and evaluating the

Laplacian yields the differential equation

σrr +
1

r
σr = 0.

Solving this gives σ(r) = log C
rα

, or

η(r) =
C

rα
(5.4)
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where C is constant. Equivalently, we can take k = 0 in (5.3) to get

Υs = constant.

Following the substitutions backwards confirms the solution (5.4).

The case α = 2 corresponds to the choice η(w) = C/|w|2 in a Nitsche

type problem (Theorem 3.4). Notice that ds2 = |dw|2/|w|2 is the flat metric

of C \ {0}. In particular all circles centered on the origin in this metric have

the same length and C \ {0} with this metric is isometric to a (flat) cylinder

(recall Figure 2.1).

If we translate this to the Grötzsch problem via (2.7), we obtain

η(w) =
C

|w|2 =
1

4π
λ(z)e−4π<e(z).

Bearing in mind that w = e2πz, this relation shows λ(z) must be a (nonzero)

constant.

Correspondingly, in the Grötzsch-type problem (Theorem 3.3) with λ(z)

constant there is always a linear minimiser f : [0, `]× [0, 1]→ [0, L]× [0, 1],

f(z) =
L

`
x+ iy

irrespective of the convex functional Φ. Hence within a flat metric space we

see no Nitsche phenomena.

5.2.3 Spherical metrics

We may read the solution (5.3) as

dΥ

ds
= ±2

√
k
√
c2

0 − eΥ

for some suitable constant c0. Separating variables and integrating,∫
dΥ√
c2

0 − eΥ
=

∫
±2
√
k ds. (5.5)
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The right hand side is straightforward; the left hand side may be evaluated

by multiplying by 1 in the form e−Υ/2/e−Υ/2 to get

LHS(5.5) =

∫
e−Υ/2 dΥ

e−Υ/2
√
c2

0 − eΥ
=

∫
e−Υ/2 dΥ√
c2

0e
−Υ − 1

.

The substitution u = c0e
−Υ/2 with −2c−1

0 du = e−Υ/2 dΥ transforms this

integral into

− 2

c0

∫
du√
u2 − 1

.

Evaluating both sides of (5.5) and backsubstituting for u therefore yields

− 2

c0

cosh−1
(
c0e
−Υ/2

)
= ±2

√
k s+ α

for a constant of integration α. Rearranging and using the relation s = log r

gives

Υ = log

 c2
0

cosh2
(
∓c0

√
k log r − c0α

2

)
 ,

and simplifying the cosh term using exponent and logarithm rules, and the

definition of cosh in terms of exp, gives

cosh
(
∓c0

√
k log r − c0α

2

)
=

1

2

(
c1r
∓c0
√
k + c−1

1 r±c0
√
k
)

where the constant c1 = exp
(
− c0α

2

)
> 0 to simplify constants. Thus

Υ = log

 4c2
0(

c1r∓c0
√
k + c−1

1 r±c0
√
k
)2

 .
Undoing the substitutions backward throughout the calculation and mul-

tiplying both denominator and numerator of the result by c1r
±c0
√
k shows

that

η(r) =
2 c0 c1 r

±c0
√
k−1

c2
1 + r±2c0

√
k
. (5.6)
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Note that c1 > 0 and since we require η(r) > 0 we have c0 > 0 also.

Now, the criterion for the occurrence of a critical phenomenon is the

smoothness at the minimum of r2η(r). Thus we wish to find the nature of

the minimum of

F (r) =
2 c0 c1 r

±c0
√
k+1

c2
1 + r±2c0

√
k
.

With a little work, it can be shown that

F ′(r) =
2 c0 c1 r

±c0
√
k
(
c2

1 + r±2c0
√
k ± c0c

2
1

√
k ∓ c0

√
k r±2c0

√
k
)

(
c2

1 + r±2c0
√
k
)2 .

Observe F ′ is only possibly undefined only when r = 0 but in this case F

is also undefined (and we require r > 0 as s = log r). Hence F exhibits no

minimum here. Solving F ′(r) = 0 shows

c2
1 + r±2c0

√
k ± c0c

2
1

√
k ∓ c0

√
kr±2c0

√
k = 0

or

r =

(
c2

1(1± c0

√
k)

−1± c0

√
k

)±1/(2c0
√
k)

. (5.7)

Let us illustrate how this result may be generally analysed with a typical

case: η(r) = (1 + r2)−1. This metric can be shown to have constant positive

curvature k = +4 and is often used as a prototypical example of a constant

positive curvature metric. This corresponds to the case c0 = 1
2
, c1 = 1 and

k = 4 in (5.6).

Locating where r2η(r) = 0 via (5.7) yields the only critical points r = 0

and r = ∞. Therefore, for any annulus of bounded modulus the extreme

values of r2η(r) occur on the boundary and have nonzero derivative there —

meaning we must see critical Nitsche-type phenomena.
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5.2.4 Hyperbolic metrics

To solve equation (5.1) meaningfully for k < 0, restrict z to |z| < 1. Then

the solution (5.3) becomes

dΥ

ds
= ±2

√
−k
√
eΥ + c2

0

for some appropriate constant c0. By reasoning analogous to the previous

section (with a few sign changes, and observing the use of the hyperbolic

sine function instead of the hyperbolic cosine as substitution to carry out the

integration), it is easy to arrive at

η(r) =
2 c0 c1 r

±c0
√
−k−1

c2
1 − r±2c0

√
−k

. (5.8)

Setting F (r) = r2η(r) we obtain

F ′(r) =
2 c0 c1 r

±c0
√
−k
(
c2

1 − r±2c0
√
−k ± c0c

2
1

√
−k ± c0

√
−k r±2c0

√
−k
)

(
c2

1 − r±2c0
√
−k
)2

and solving for critical points we find either r = 0 or

r =

(
c2

1(1± c0

√
−k)

1∓ c0

√
−k

)1/±2c0
√
−k

(5.9)

In the illustrative case η(r) = (1 − r2)−1, the hyperbolic metric on the

unit disk with constant curvature −4, we have c0 = 1/2, c1 = 1 and k = −4

in (5.8). Solving (5.9) again shows that extrema for annuli with bounded

modulus must occur only on their boundary; thus, there must always be

critical Nitsche phenomena.

5.2.5 Constant nonzero curvature

In (5.7) and (5.9) we may experiment with different values for k and the

positive constants c0 and c1. Take k > 0 for instance, and set β = ±c0

√
k 6= 0



86 5. Interpreting the Weight Function — Specific Cases & Applications

for ease of notation. Then (5.7) becomes

r =

(
c2

1(β + 1)

β − 1

)1/2β

. (5.10)

If |β| < 1 there are no real solutions, and |β| ↘ 1 leads to r = 0 or r =∞ (as

was the case for η(r) = (1 + r2)−1). Yet for |β| > 1 there are valid solutions;

and now the relevant question is whether the solutions to (5.10) locate a

minimum or a maximum. Recall the derivative

F ′(r) =
2 c0 c1 r

β
(
c2

1 + r2β + c2
1β − β r2β

)
(c2

1 + r2β)
2 .

After some computation, it can be shown that

F ′′(r) =
2 c0 c1 r

β−1

(c2
1 + r2β)

3

[
c4

1β(β + 1)− 6c2
1β

2r2β + β(β − 1)r4β
]

and we inspect the sign of this second derivative at the critical point (5.10).

Note that as r, c1 and c2 are all positive, we need only determine the sign of

c4
1β(β + 1)− 6c2

1β
2r2β + β(β − 1)r4β.

Substituting (5.10) yields

c4
1β(β + 1)− 6c2

1β
2

(
c2

1(β + 1)

β − 1

)
+ β(β + 1)

(
c2

1(β + 1)

β − 1

)2

which simplifies to

−4c4
1β

2β + 1

β − 1
< 0

whenever |β| > 1. Thus the critical point is a maximum — and hence once

again, for an annulus of bounded modulus the minimum of r2η(r) must occur

on the boundary and has nonzero derivative, showing that critical Nitsche

phenomena will occur.

Next, take metrics of constant negative curvature; setting β = ±c0

√
−k,
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we obtain

r =

(
c2

1(1 + β)

1− β

)1/2β

. (5.11)

Recall

F ′(r) =
2 c0 c1 r

β
(
c2

1 − r2β + c2
1β + β r2β

)(
c2

1 − r±2c0
√
−k
)2 .

This time |β| > 1 yields no real solutions and |β| ↗ 1 again gives the critical

points at 0 and ∞. Hence we consider |β| < 1. Calculation of the second

derivative of F shows

F ′′(r) =
2 c0 c1 r

β−1

(c2
1 − r2β)

3

[
c4

1β(β + 1) + 6c2
1β

2r2β + β(β − 1)r4β
]

where the sign is straightforward to analyse. The numerator is positive (being

a product and sum of positive terms), and we are left to consider only the

sign of

c2
1 − r2β.

Substituting (5.11) gives

c2
1 −

(
c2

1(1 + β)

1− β

)
= c2

1

(
1− 1 + β

1− β

)
=
−2βc2

1

1− β > 0

as |β| < 1. Thus r2η(r) is convex and has a smooth minimum at the critical

value in (5.11). Therefore, whether or not there are critical phenomena will

depend on where the minimum of r2η(r) falls. If it is in the interior of the

domain, then the minimum is smooth and no Nitsche phenomena obtain. If it

falls on the boundary, then again the minimum is smooth. But if it is outside

the domain, then the minimum of r2η(r) in the domain is on the boundary

and not smooth, and therefore we must see a critical Nitsche phenomenon.

5.2.6 Nonconstant curvature

This section contains some test cases, motivated by the previous sections on

constant curvature, of cases where the curvature may be varied with r.
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Take

η(r) =
r−p

1− rp
for r < 1. This is an incomplete metric on the unit disc (for some p) — a

metric on the punctured unit disc. On substituting into the characteristic

equation (5.1) to determine its curvature, we see (after some simplification)

that its curvature is negative,

k = −p2r3p−2 < 0.

To determine whether critical phenomena occur, again look at where the

minimum of r2η(r) occurs, and whether it is smooth. Thus, after some

simplification,
d

dr
(r2η(r)) =

2− p+ (2p− 2)rp

rp−1(1− rp)2

which, on solving equal to zero for a smooth minimum, yields

r0 =

(
p− 2

2p− 2

)1/p

.

This requires p > 2 (or p < 1) to be real, as might be expected; the critical

case is p = 2 which yields r2η(r) = (1 − r2)−1. When p < 2, r2η(r) has a

smooth minimum at r = 0, and hence there is no smooth interior minimum

for annuli of bounded modulus and we must see critical phenomena. However,

for p > 2, it is easily verified that 0 < r0 < 1 and that this value gives a

minimum for r2η(r). Thus if this minimum value lies inside the domain

annulus, there will be no critical phenomena; otherwise, there will be.

On the other hand, we may take

η(r) =
r−p

1 + rp

and investigate it for critical phenomena. Again, observe that this metric is

incomplete as it is undefined when r = 0. The characteristic equation (5.1)
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yields

k = p2r3p−2 > 0

whence this is a spherical metric. After some simplification, we find

d

dr
(r2η(r)) =

2− p+ (2− 2p)rp

rp−1(1− rp)2

which yields

r0 =

(
p− 2

2− 2p

)1/p

.

For r0 to be real, this equation requires 1 < p < 2. For these values, however,

a second derivative test reveals that r2η(r) has a maximum at r0; whence the

minimum must occur on a boundary and we must see critical phenomena.

Putting together everything from Section 5.2, we have shown the follow-

ing:

Theorem 5.1. In the minimisation problem (2.1),

I(f) =

∫
Ω

Φ (K(z, f)) η(z) |dz|2,

if η(z) is radially symmetric and satisfies the characteristic equation for

Gaussian curvature (5.1)

−∆ log η(z)

η2(z)
= k,

with k constant, the following holds:

(i) If k > 0, critical phenomena always obtain.

(ii) If k = 0, no critical phenomena obtain.

(iii) If k < 0, critical phenomena obtain if and only if the minimum of

|z|2η(z) occurs on the boundary and is not smooth, in the sense that its

directional derivative is nonzero.

The last subsection (Section 5.2.6) further encourages the postulation of:
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Conjecture 5.2. The conclusions from Theorem 5.1 also hold in cases of

nonconstant curvature.

1

Fig. 5.5: Spherical (left), flat (center), and hyperbolic (right) cylinders.

Figure 5.5 shows these results qualitatively, the (topological) annulus in

each case is the domain of the deformation f . In the case of the spherical

metric, the minimum value of r2η(r) (qualitatively represented by the small-

est circle in the diagram) always occurs at a boundary, and this minimum is

not smooth. In the flat metric, the minimum of r2η(r) is everywhere (since

it is constant) and smooth; whence no critical phenomena. In the hyperbolic

case, however, the minimum of r2η(r) may occur on a boundary, or it may

occur in the interior of the domain annulus. The latter is the case in Fig.

5.5 — the domain contains the “tightest” part of the hyperbolic surface and,

since this is smooth, no critical phenomena occur.
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The most significant result of this thesis is, essentially, Theorem 3.3. It

examines energy functionals in a wide range of integrability classes as they

arise from mean pointwise distortion, from a theoretical point of view. This

is an idea central to many problems in the physical sciences. The theorem

proves for the first time that symmetries of the functional are inherited by the

solution — normally an a priori assumption. It also provides an alternative

proof to part of Nitsche’s 1962 conjecture, and expands on it significantly.

Initiating the study of functionals of this kind is motivated by various

kinds of distortion problems as seen in Chapter 2. The celebrated Teichmüller

problem, for example, may be seen as a problem of this kind. For this problem

the maximal distortion may be solved within the class of quasiconformal

mappings — however, mean distortion has been shown not to be minimisable

in this class, subject to certain boundary conditions [30]. Closely related is

the Dirichlet problem, first encountered in Chapter 1.

As a result of Theorem 3.3, it becomes possible to determine qualitatively

when minimisers to energy functionals exist and when they do not. One result

in particular is that the important Lp integrability classes for p > 1 admit no

critical phenomena, which is perhaps surprising considering that the classical

Nitsche critical case occurs in exactly the space L1. Furthermore, this the-

orem is established within the class of mappings of finite distortion, a wide

class of mappings including the classically important conformal and quasi-

conformal mappings; these are generally solutions to Dirichlet-type minimal

energy problems.

In the search for a proof of this theorem, it becomes clear in Chapter

2 that some powerful tools typically used in the study of quasiconformal

mappings are not available when considering mappings of finite distortion.
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The usual normal families type argument does not apply as there are no

obvious modulus of continuity estimates. Another more recent technique has

been adapted to tackle this problem; the inequality found at Section 3.2.

Additionally, the important connection between Nitsche-type and Grötzsch-

type problems is elucidated in Section 2.7. In fact, Theorem 3.3 concerns

Grötzsch-type problems; the theorem, when applied to the annulus, is a

little more difficult to analyse; this is seen in Chapter 3.

Further, the results from Chapter 4 show that the variational equations

arising from considering distortion functionals are generally elliptic, irrespec-

tive of the particular weight function, wherefore the wealth of the theory of

elliptic partial differential equations may be applied broadly.

These findings are examined in more specific settings in Chapter 5, where

it is discovered that, within a suitable interpretation, the nonexistence of min-

imisers corresponds to a range of critical phenomena. In the case of a thick-

ness or density function, this corresponds to tearing of the material. When

minimising mean distortion one must place the largest distortion where the

weight is smallest, so that this contributes least to the total distortion. This

may correspond to a material being stretched until there is “zero density”

(or minimum density necessary for structural integrity) left at the point of

minimum weight, where the structure will tear or break.

Chapter 5 also discusses weight functions as metrics. One result is the

possible connection between interpreting the weight function as a metric

and the well-known Frank-Kamenetskii thermal ignition theory in chemistry.

Another result is that critical phenomena occur only in non-flat settings

(of course, under the assumption there are no additional conditions on the

convex function Φ) and, in particular, they always occur in spherical metrics

but only sometimes in hyperbolic metrics.

One of the highlights of the theorem is that, due to the differential equa-

tion from Theorem 3.3,

λ(x)

(
1− 1

u2
x

)
Φ′
(
ux +

1

ux

)
= α,

the constant α determines (or is determined by) the final deformation. In
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cases where such a relationship cannot be satisfied, then for that particular

λ, deformations may still exist — but there will be no deformations of min-

imal weighted mean distortion. In fact, it may even be possible to identify

minimising sequences (as per [8]) that degenerate.

Thus, we may extend our idea of interpreting the weight as a thickness to

discuss the case where there are multiple cuts. Observe that α is constrained

by the minimum of λ over the interval of interest. Hence the bound on the

maximal stretch is also constrained by the lowest dip in λ that gives the

maximal α, and critical phenomena occur at this point — this is precisely

what one might expect.

It is a profound result that the Euler-Lagrange equation for minimal

weighted mean distortion is first order with free parameter α. The differential

equation in the theorem is in fact the Euler-Lagrange variational equation;

these equations are normally second -order, with two boundary conditions

and one free parameter. Here we see a first order equation, with two bound-

ary conditions. It is precisely this which explains how critical Nitsche-type

phenomena arise, for a first-order equation with two boundary conditions

does not have solutions in all cases, and varying the parameter may not lead

to a desired solution.

6.1 Further research

The interpretations of the weight function seen in Chapter 5 are a start on

modelling tearing type phenomena practically that can be expanded upon.

The cut block (for example) incorporates no mechanism that would allow

the region to become thinner under the mapping, whereas in reality it often

is the case that thickness changes under deformations.

Recall the function F (z) from (4.18) that arises from considering the el-

lipticity of the variational equations in the generalised setting. An important

research question is: can we obtain some condition on the weight w(z) in or-

der for critical phenomena to occur (for example, perhaps its derivative must

not be zero on the boundary)? Special cases of the weight function may yield

useful results and insights — for example, what if the weight is a function of
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only one variable, or if the weight is a real-valued function?

In analysing the main theorem in terms of critical Nitsche-type phenom-

ena, recall Conjecture 3.5:

Critical Nitsche-type phenomena in the minimisation problem at

(2.1), where Φ is convex and has bounded derivative, obtain if

and only if the minimum value of |z|2η(z) is not smooth.

This is verified for the case Φ(t) = t. It will be interesting to see whether this

conjecture holds. Since Section 3.4.3 shows that there is always a minimiser

(i.e. no critical phenomena) when Φ′ is unbounded, the case Φ′ bounded is

the case worthy of investigation. In fact, Section 3.4.4 uses this idea to arrive

at a critical case for Φ.

Furthermore, Theorem 3.3 speaks only to doubly connected regions with

radial symmetry. What happens if the region is more generally multiply

connected? Only a special case of a result from Ahlfors [3, pp. 255–256] is

used to simplify the problem (Theorem 2.2). But the full result from [3,

pp. 255–256] hints at how results may be generalised from here — to look at

“sub-annuli” within an annulus, insofar as symmetry considerations allow.

The results from the end of Chapter 5 seem to indicate a close connection

between the theory developed in this thesis and thermal ignition phenomena

in physical chemistry; it may be worthwhile exploring this connection to see

how deep it goes.

The author wishes to finish here, with a thought: etiam eruditio. This

thesis has accomplished a lot, and there is a lot of potential for further

research, both theoretical and applied.
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A. COMMON DEFINITIONS AND NOTATION

Throughout this thesis, familiarity with some topological notions and some

aspects of analysis will be assumed, and certain notational conventions will

be used:

• Ĉ denotes the extended complex plane, also known as the Riemann

sphere. That is, Ĉ = C ∪ {∞}.

• If z = x+ iy is a complex number, x denotes the real part of z, written

as <(z), and y denotes the imaginary part of z, written as =(z).

• D(z0, r) denotes an open disc, centered at z0, with radius r > 0. That

is, D(z0, r) = {z : |z − z0| < r}. Similarly, a closed disc centered at z0

with radius r > 0 is denoted by D(z0, r).

• A set S containing z0 is called a neighborhood of z0 if there exists a real

number r > 0 such that D(z0, r) ⊂ S.

• A deleted neighborhood of z0 is a set S \{z0} such that S is a neighbor-

hood of z0.

• A set S is said to be open if for each z ∈ S there exists r > 0 such that

D(z, r) ⊂ S.

• For any set S, S̃ denotes the complement of S. That is, S̃ = C \ S.

• A set S is said to be closed if S̃ is open.

• A function f : X → Y is called a homeomorphism from the space X

to the space Y if it is a continuous bijection with a continuous inverse.
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• A point z is in the boundary of S, ∂S, if every neighborhood of z

intersects both S and its complement S̃.

• The closure of S, S, is given by S = S ∪ ∂S.

• S is called bounded if there exists some r > 0 such that S ⊂ D(0, r).

• Compact sets are sets that are both closed and bounded.

• S is said to be disconnected if there exist open sets A and B such that:

(i) A ∩ S 6= ∅;
(ii) B ∩ S 6= ∅;

(iii) S ⊂ A ∪B; and

(iv) (A ∩ S) ∩ (B ∩ S) = ∅.

A set that is not disconnected is called connected.

• A region is a nonempty open connected subset of the complex plane.

• The function f(z) is said to have limit L as z tends to a,

lim
z→a

f(z) = L

if and only if to each real number ε > 0 there corresponds a real number

δ > 0 such that |f(z)− L| < ε whenever 0 < |z − a| < δ.

• The function f(z) is said to be continuous at a if and only if

limz→a f(z) = f(a). A continuous function is one that is continuous at

all points where it is defined.

• If f(x, y) = u(x, y) + iv(x, y) is a function of a complex variable z =

x+ iy, then the matrix of partials

Df(x, y) =


∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y
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is known as the differential matrix of f .

• The term Jacobian refers to the Jacobian determinant, the determinant

of the differential matrix, ∂u
∂x

∂v
∂y
− ∂u

∂y
∂v
∂x

.

• A path in Rn is a continuous mapping γ : I → Rn where I is an interval

in R. The path is said to be open or closed according to whether I is

open or closed.

• The locus of a path is the point set γI ⊂ Rn. A subpath of a path

γ : I → Rn is the restriction of γ to a subinterval of I.

• Let γ : [a, b] → Rn be a closed path, and let a = t0 6 t1 6 t2 6 · · · 6
tk = b be a subdivision of [a, b]. The supremum of the sums

k∑
i=1

|γ(ti)− γ(ti−1)|

over all subdivisions of [a, b] is called the length of γ and denoted by

`(γ). Note that 0 6 `(γ) 6 ∞, where `(γ) = 0 if and only if γ is

constant. Furthermore, if `(γ) < ∞, γ is rectifiable; otherwise γ is

non-rectifiable.

• A path given by γ(t) = x(t)+ iy(t) for a 6 t 6 b is called a smooth path

if its derivative γ′(t) = x′(t) + iy′(t) with respect to the real parameter

t exists for each t in [a, b] and if the function γ′ is continuous on the

interval [a, b].

• A path γ : [a, b] → C is said to be piecewise smooth if there exists a

partition P : a = t0 < t1 < · · · < tn = b of the interval [a, b] with the

property that the restriction of γ to each [tk−1, tk] for 1 6 k 6 n is a

smooth path.

• If A ⊂ Rn, then m∗n(A) denotes the Lebesgue outer measure of A. If A

is measurable the star may be omitted; the n is omitted when there is

no danger of misunderstanding.
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• By Cn(Ω) we denote the class of all complex-valued functions that are

n times continuously differentiable on the region Ω, and C(Ω) denotes

the class of all complex-valued functions that are continuous on the

region Ω.

• A diffeomorphism, f : Ω→ Ω′ is a C1-homeomorphism whose Jacobian

J(x, f) does not vanish.

• Let (X,µ) be a measure space. A function is p-integrable if its Lp norm,

defined as

||f ||p =

(∫
|f |p
) 1

p

,

is finite. The collection of all p-integrable functions is denoted by Lp.

• Sn is a unit n-sphere. That is to say, a unit sphere in Rn+1.

• Two regions Ω,Ω′ (in Rn or C) are conformally equivalent if there exists

a conformal mapping f : Ω→ Ω′.

• An integral over a domain is locally finite if, for every point x of the

domain, there is an open neighbourhood Nx about x such that the

integral over Nx is finite.

• A function f : (X, dX) → (Y, dY ) admits ω : [0,∞) → [0,∞) as a

modulus of continuity at x0 if and only if

d(f(x0)), f(x)) 6 ω (d(x0, x))

for all x in X. If f admits ω as a modulus of continuity at each x0

in X, then f admits ω as a (global) modulus of continuity. We may

equivalently say that f is ω-continuous (at x0).

• Given two normed vector spaces V and W (over the same field, say R
or C), the operator norm |A| of a (continuous) linear map A : V → W

is given by

|A| = inf {c : ||Av|| 6 c||v|| for all v ∈ V } .
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Equivalently,

|A| = sup {||Av|| : v ∈ V with ||v|| 6 1} .

There are other, equivalent definitions often used in literature.

• The Hilbert-Schmidt norm of a linear operator A is

||A||2 =
∑
i

||Aei||2

where the ei form an orthonormal basis for the space on which A op-

erates. The mean Hilbert-Schmidt norm of A is

||A||2 =
1

n
tr
(
AtA

)
• Lp is the space of all functions (on a measure space (X,Σ, µ)) that are

Lebesgue p-integrable; i.e. the set of all functions for which

||f ||p =

(∫
X

|f |p dµ
) 1

p

<∞.

• A test function is a smooth function (infinitely differentiable) with com-

pact support (identically zero outside of a bounded set). Within this

thesis, we are interested in test functions that vanish on the bound-

ary of a given domain; the author may at times neglect to state this

explicitly, but will be assumed.
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B. SELECTED BACKGROUND THEOREMS AND

PROPOSITIONS

Theorem B.1. (The Intermediate Value Theorem)

If f is a continuous real-valued function on an interval [a, b] and y is a real

number satisfying f(a) 6 y 6 f(b), or f(b) 6 y 6 f(a). Then there exists

x ∈ [a, b] such that f(x) = y.

For a proof of this fundamental theorem from analysis, see e.g. [11, p. 51].

In short, this theorem says that the image of an interval is an interval.

Theorem B.2. (The Inverse Function Theorem)

Let f : Ω → C be analytic, with f ′ continuous and f ′(z0) 6= 0. Then there

exists a neighborhood U of z0 and a neighborhood V of f(z0) such that f :

U → V is a bijection and the inverse function f−1 is analytic, with derivative

given by
d

dw
f−1(w) =

1

f ′(z0)
where w = f(z0).

For a proof, see [29, pp. 77–78].

Theorem B.3. (The Bolzano-Weierstrass Theorem)

Suppose that (zn)n>1 is a bounded sequence in C. Then (zn) has at least one

accumulation point. Moreover, this sequence has exactly one accumulation

point if and only if it is a convergent sequence with the unique accumulation

point as its limit.

For a proof, see [35, p. 53], or [11, p. 48].

Theorem B.4. (The Cauchy Criterion for Uniform Convergence)

Suppose that each function in a sequence (fn) is defined on a set U . The

sequence converges uniformly on U if and only if it is a uniform Cauchy

sequence on U .
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For a proof, see [35, p. 246].

Proposition B.5. If Ω is a simply connected region of the complex plane,

then for every function f that is both analytic and free of zeros in Ω there

exists a branch of log f(z) in this region.

For a proof, see [35, pp. 196–197].

Theorem B.6. (Liouville’s Theorem)

The only bounded entire functions on C are constant.

For a proof, see [29, pp. 171–172].

Theorem B.7. (Cauchy’s Integral Formula)

Let f be analytic in an open disk D and γ a closed, piecewise smooth path in

D. Then

n(γ, z)f(z) =
1

2πi

∫
γ

f(ζ) dζ

ζ − z

for every z in D \ |γ|.

For a proof, see [35, pp. 161–162]

Theorem B.8. Let Ω ⊂ C be a domain and f : Ω → C a nonconstant

analytic mapping. Then f(Ω) is also a domain (in particular, it is open).

For a proof, see [29, pp. 435–436].

Theorem B.9. (Hurwitz’s Theorem)

Suppose that each function in a sequence (fn) is analytic and zero-free in a

domain Ω and that fn → f normally in Ω. Then either f is free of zeros in

Ω or it is identically zero there.

For a proof, see [35, pp. 348–349].

Theorem B.10. (The Arzelà-Ascoli Theorem)

A family F of functions that are defined and continuous on some region Ω is

a normal family if and only if it is both equicontinuous and pointwise bounded

in Ω.
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For a proof, see [35, pp. 282–284].

Theorem B.11. (Montel’s Theorem)

Let F be a family of functions that are analytic in an open set Ω. Suppose

that F is locally bounded in Ω. Then F is a normal family in this set.

For a proof, see [35, p. 285].

Theorem B.12. (Green’s Formula, Flux-Divergence Form)

Let ∂Ω be a positively oriented, piecewise smooth, simple closed curve in the

plane R2, and let Ω be the region bounded by ∂Ω. If M and N are functions

of (x, y) defined on an open region containing Ω and have continuous partial

derivatives there, then∫∫
Ω

(
∂M

∂x
+
∂N

∂y

)
dx dy =

∮
∂Ω

M dy −N dx.

For a proof, see e.g. [5, § 18.4] or [1, § 7.4].

Theorem B.13. (Fubini’s Theorem)

Suppose A and B are complete measure spaces. Let f(x, y) be A × B-

measurable. If
∫
A×B |f | d(x, y) < ∞ where d(x, y) is a product measure on

the space A×B, then∫
A

(∫
B

f(x, y) dy

)
dx =

∫
B

(∫
A

f(x, y) dx

)
dy =

∫
A×B

f(x, y) d(x, y).

For a particularly neat proof and further discussion, see [25].

Theorem B.14. (Jensen’s Inequality, measure-theoretic version)

Let a, b be real numbers with a < b, and f : [a, b] → R a Lebesgue-integrable

function, and let Φ be a convex real function. Then Jensen’s inequality states

Φ

(∫ b

a

f(x) dx

)
6

1

b− a

∫ b

a

Φ ((b− a)f(x)) dx

Note that this is not the most general statement of Jensen’s inequality in

a measure-theoretic setting; this is just the version needed here. For a proof,

see [38, p. 62]
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Theorem B.15. (Hölder’s Inequality for Lp spaces)

Let f ∈ Lp and g ∈ Lq for Hölder conjugates p and q, meaning

1

p
+

1

q
= 1.

Then ∫
fg 6

(∫
|f |p
) 1

p
(∫
|g|q
) 1

q

,

where the (Lebesgue) integrals are assumed with respect to the appropriate

measure in each space.

For a proof, see almost any graduate text on analysis or measure theory;

e.g. [38, pp. 63,66]

Theorem B.16. (Gauss’ Divergence Theorem, planar version)

Let Ω be a compact subset of R2 with a piecewise smooth boundary. If ~F is a

continuously differentiable vector field defined on a neighbourhood of Ω, then∫∫
Ω

(∇ · ~F ) dx dy =

∮
∂Ω

~F · n̂ ds

where n̂ is the unit normal vector.

For a proof, see [1, § 7.3].
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Hölder’s, 32, 44

Jensen’s, 42

Jacobian, 13, 19, 21

Jacobian determinant, 68

Laplace’s equation, 7

mapping

conformal, 8

harmonic, 7, 27, 30, 35

holomorphic, 6

of finite distortion, 19, 33, 47,

52

quasiconformal, 17, 33, 35

Sobolev, 51

metric, 79

flat, 81

hyperbolic, 85, 87

spherical, 82–84, 86

modulus

of a curve family, 13, 33

of a rectangle, 32

of an annulus, 14–16

of continuity, 11, 33, 34

Nitsche

111



112 Index

bound, 36, 37, 51, 54, 77

conjecture, 35

phenomenon, 53–94

problem, 36, 51, 53

norm

Hilbert-Schmidt, 21

operator, 20

Sobolev space, 11

Teichmüller problem, 34

Theorem
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