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Abstract
Classical taxonomic approaches to quantifying biodiversity can be notoriously labori-
ous and restrictive. Instead, molecular metabarcoding is emerging as a rapid, high-
throughput, and cost-effective tool to catalog biodiversity. Despite the appeal of 
metabarcoding, methodological and procedural biases must be understood before ro-
bust biodiversity inferences can be made. Here, we use CO1 metabarcoding to char-
acterize marine eukaryote communities associated with Ecklonia radiata, the dominant 
eco-engineering kelp of temperate Australasia. To establish a standardized and repro-
ducible community metabarcoding protocol, we examined the influence of different 
sample preparation, laboratory, and bioinformatic steps on inferences of species rich-
ness and composition of communities associated with E. radiata holdfasts (the root-
like structure anchoring the kelp to the substratum) sampled from northeastern New 
Zealand. Specifically, we examined the effect of sieving the community into differ-
ent size fractions and the replicability of results across DNA extractions, polymerase 
chain reactions and sequencing. Overall, we found that sieving the community into 
two size fractions before DNA extraction enabled detection of a greater diversity of 
taxa than not sieving samples. When compared with traditional morphology-based 
inventories of kelp holdfast biodiversity, we found that although the taxonomic preci-
sion of our metabarcoding approach at the species and genus level was limited by the 
availability of reference sequences in public repositories, we recovered ~40% more 
taxa and a greater taxonomic breadth of organisms than morphological surveys (e.g., 
18 phyla as compared with 14 phyla). On the basis of our findings, we provide meth-
odological guidelines for the use of metabarcoding as a tool for surveying and moni-
toring the hyperdiverse species assemblages associated with kelp holdfasts.
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1  |  INTRODUC TION

DNA metabarcoding (Taberlet, Coissac, Hajibabaei, et al., 2012) 
has revolutionized the way we characterize biodiversity (Bush 
et al., 2019; Stat et al., 2017) as well as the assessment of ecosys-
tem and environmental health (Aylagas et al., 2016). DNA metabar-
coding methods are now used in empirical ecology (Harms-Tuohy 
et al., 2016), invasion biology (Thomas et al., 2020), biomonitoring 
and conservation management (Barnes & Turner, 2016). Where the 
study focus is a specific community, or when a bulk specimen mix-
ture is taken from a focal environment, we refer to these approaches 
as community DNA metabarcoding (Creer et al., 2016). Community 
DNA studies use the same methods of high-throughput DNA ex-
traction, polymerase chain reaction (PCR), and sequencing common 
to all metabarcoding approaches but aim to directly identify the taxa 
within the sampled community based on their DNA barcode. These 
community DNA studies are akin to traditional visual morphology-
based surveys in aiming to characterize the taxonomic richness of 
a community or species assemblage and to infer differences in the 
taxonomic composition among sampled communities (Deiner et al., 
2017; Taberlet, Coissac, Pompanon, et al., 2012).

DNA-based monitoring methodologies (Baird & Hajibabaei, 
2012), such as community DNA, have provided comparable results 
to traditional biodiversity surveys in a range of ecosystems (Deiner 
et al., 2017). In contrast to morphology-based surveys, community 
DNA metabarcoding does not depend on expert taxonomic train-
ing (Bush et al., 2019), allows higher comparability across studies 
(Aylagas et al., 2016; Ji et al., 2013), and produces data (i.e., sequence 
reads) that can be easily reanalyzed and reinterpreted by a second-
ary user. As a result, community DNA approaches often discover 
greater numbers of taxa within a community than has been previ-
ously described (Bush et al., 2019; Siegenthaler et al., 2019; Valentini 
et al., 2016). In the last decade, community DNA approaches have 
been successfully used to describe past and present biodiversity in 
terrestrial (Brehm et al., 2016; Dopheide et al., 2019), freshwater 
(Andújar et al., 2018; Blackman et al., 2019; Elbrecht & Leese, 2017; 
Hajibabaei et al., 2019), estuarine (Lobo et al., 2017), and marine 
(Aylagas et al., 2016; Knowlton & Leray, 2015; Zhang et al., 2018) 
environments. There is growing recognition that community DNA 
can help characterize and monitor the biodiversity of a wide variety 
of important ecosystems and assist in making informed management 
decisions.

As an emerging tool however, before community DNA me-
tabarcoding can be confidently applied, rigorous examination of 
the potential biases and artifacts of the approach must be con-
ducted. For instance, several studies have addressed the influence 
of community sampling protocols (Dickie et al., 2018) and labora-
tory methods, such as DNA extraction procedures (Deiner et al., 
2017; Lear et al., 2018), primer choice (van der Loos & Nijland, 
2021), and amplification bias (Kelly et al., 2019), as well as the level 
of replication at each methodological step, in producing robust, 
consistent, and reproducible results (Ficetola et al., 2015; Nichols 

et al., 2020; Porter et al., 2019). Bioinformatic pipelines, which 
transform the sequence reads into community data, can strongly 
influence study results and are constantly revised and improved 
(Pauvert et al., 2019). Decisions within the bioinformatic pipelines 
regarding the filtering of reads, processing PCR replicates, and se-
quencing depth have also been demonstrated to influence biodi-
versity estimates (Alberdi et al., 2018; Bokulich et al., 2013; Flynn 
et al., 2015; Kunin et al., 2010). As a consequence, prior to using 
a community DNA approach in a new ecosystem or focal com-
munity, there is a recognized need for experimental examination 
of the potential drawbacks and biases that different steps in the 
overall approach might introduce (Aylagas et al., 2016; Bush et al., 
2019; McGee et al., 2019).

One of the most important considerations when first applying 
a community DNA approach in a new system is establishing how to 
obtain a community DNA sample that is representative of the biodi-
versity present in a target community (Koziol et al., 2019). Although 
it is common for procedural replicates and controls to be consid-
ered in the laboratory steps of community DNA studies, there have 
been few systematic examinations of the community sampling 
procedures on the overall estimates of biodiversity (Alberdi et al., 
2018; Porter et al., 2019). Replicate samples of a target commu-
nity, whether it be in traditional morphology-based biodiversity as-
sessments or community DNA approaches, only recover a subset 
of the community; that is, they are not a census, and as such, the 
magnitude of variation among replicates must be quantified (Vlek 
et al., 2006). Community DNA approaches generate millions of se-
quences and are therefore potentially able to reach the asymptote 
of the species discovery curve with fewer replicates than traditional 
surveys (Bush et al., 2019). However, this benefit of a community 
DNA approach will depend on how representative each replicate 
DNA sample is of the community, and results vary among studies 
(Ficetola et al., 2015). It has been established that in communities 
where species have varying biomass, sieving the community into 
different size fractions before DNA extraction can reduce misiden-
tification or the omission of smaller organisms (Aylagas et al., 2016; 
Wangensteen, Cebrian, et al., 2018). However, there has been little 
examination of subsequent steps in a community DNA approach, 
for instance, at what laboratory or bioinformatic stage it is best to 
combine the different size fractions to recover representative esti-
mates of biodiversity. Addressing the implications of these proce-
dural decisions is important (Cowart et al., 2015), particularly when 
the communities being characterized are known to support diverse 
taxa of varying sizes.

Kelp (Laminariales) are ecosystem engineers (Jones, 2014) 
responsible for supporting incredibly diverse, structurally com-
plex, and highly productive ecosystems along temperate and 
polar coastlines worldwide (Steneck et al., 2002). On the Great 
Southern Reef of Australia, it has been estimated that between 
700 and 4000 different species of algae, invertebrates, and 
fishes occupy these ecosystems, with high levels of endemism 
(between 20 and 60%; Bennett et al., 2016). Accordingly, when 
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these kelps are lost, we observe dramatic declines in biodiversity 
and ecosystem productivity (Bennett et al., 2016; Filbee-Dexter 
& Scheibling, 2014; Krumhansl et al., 2016; Ling et al., 2009). 
Importantly, kelps are sensitive to environmental changes, and 
the demographic responses of kelp populations to stressors ripple 
throughout the ecosystem (Smale et al., 2013; Teagle et al., 2017; 
Vergés et al., 2014; Wernberg et al., 2016). Monitoring biodiver-
sity changes within kelp forests using traditional survey methods 
is time-intensive and is highly dependent on scientists having di-
verse taxonomic expertise. For these reasons, the monitoring of 
kelp forest-associated biodiversity has benefited from the use of 
metabarcoding approaches. Specifically, the analysis of environ-
mental DNA in seawater samples to detect vertebrate taxa within 
kelp forest ecosystems has gained results comparable with visual 
surveys (Port et al., 2016), and community DNA has also been used 
to characterize the sessile invertebrate communities attached to 
cobbles beneath the kelp canopy (Shum et al., 2019).

The kelp holdfast is the structure that anchors the kelp to the 
substratum, and the complex web of haptera (root-like projections) 
which form the holdfast, provides a biogenically complex structure 
for a diversity of taxa and functional groups to colonize (Figure 1). 
Kelp holdfasts provide a logistically convenient, biologically defined 
sampling unit, which captures a broad diversity of marine eukary-
ote phyla (Anderson et al., 2005; Teagle et al., 2017). Despite the 
notable appeal of using kelp holdfast assemblages as a barometer 
for change in this ecosystem, the large number, taxonomic diversity, 
and predominance of soft-bodied organisms have precluded their 
use in morphological assessments of the biodiversity at the broad 
spatial scales necessary to monitor these ecosystems. Nonetheless, 
kelp holdfasts could provide the basis for an effective community 
DNA approach to characterize and monitor biodiversity in kelp for-
est ecosystems.

Here, we evaluate metabarcoding as a tool for assessing biodi-
versity of Ecklonia radiata holdfasts sampled from an established 
kelp forest in Matheson's Bay on the northeast coast of New 
Zealand. Our comprehensive experimental design examines the in-
fluence of methodological steps and decisions on biodiversity esti-
mates in these communities. Specifically, given the disparate sizes 
of organisms found within holdfast communities, we assessed the 
effect of sieving the community into different size fractions. To as-
sess the representativeness of each DNA extraction, we examined 
the similarity between replicate samples of the same community 
and then assessed the replicability between PCRs. Additionally, we 
analyzed the effect of bioinformatic decisions on final biodiversity 
estimates. We then compare our taxonomically assigned commu-
nity DNA reads with a morphology-based, kelp holdfast inventory 
from the same location to evaluate the biases and opportunities of 
the DNA metabarcoding approach. Finally, we provide a series of 
guidelines for community sampling, sample preparation, laboratory 
procedures, and bioinformatic decisions for metabarcoding marine 
eukaryotes from kelp holdfast assemblages for biodiversity surveys 
and monitoring.

2  |  MATERIAL S AND METHODS

2.1  |  Field sampling and processing

Eight mature E. radiata (mean height =35.1 cm; range =15.4–61.6 cm) 
were collected from Matheson's Bay, New Zealand in February 2019 
by carefully sliding a knife between the base of the holdfast and the 
rocky reef. The individual kelp was quickly placed in polyethylene 
bags and sealed underwater to prevent organisms from escaping and 
the accidental transfer of organisms among samples. Upon returning 
to the surface, samples were placed in an insulated container and 
transported to the laboratory. Once in the laboratory, each E. radiata 
individual was placed in a separate tray, and the holdfast community 
was separated from the kelp holdfast using forceps. The community 
sample was then passed through a stacked filter unit containing a 
fine, 63-µm Sefar Nytal® filter on the bottom and a coarse 1000-µm 
Sefar Nytal® filter on the top. The community sample retained on 
the 63-µm filter was considered the small size fraction containing 
meiobenthic organisms, and the material retained on the 1000-µm 
filter was considered the large size fraction containing megaben-
thic and macrobenthic organisms (Rex & Etter, 2010; Wangensteen, 
Cebrian, et al., 2018). The two size fractions were transferred along 
with the mesh into individual labelled 50-ml falcon tubes. All sample 
processing equipment was sterilized prior to use on each holdfast by 
flaming the forceps (doused in ethanol); washing the filters, funnels, 
and trays with soap and bleach for at least 15 min in each solution; 
and further autoclaving the funnels. All samples were processed 
within 5–6  h of collection in the field and stored at −80°C for at 
least 24 h before lyophilization, more commonly known as freeze-
drying. In the freeze-drying procedure, the falcon tubes containing 
the community samples were quickly transferred into a Labconco 
FreeZone 6 bulk tray freeze-dryer with the lid off, and they were 
subjected to a 24-h cycle at a condensation temperature of −50°C 
and a vacuum pressure of 0.12 mbar. Once the freeze-drying was 
completed, a sterilized 15-ml falcon tube was used like a pestle to 
grind the sample inside the 50-ml falcon tube into a fine powder. 
The powdered community was then weighed and stored at −80°C 
until DNA extraction.

2.2  |  Experimental design

Our overall goal was to assess the potential shortcomings and biases 
introduced by different laboratory and bioinformatic procedures in the 
DNA metabarcoding of E.  radiata holdfast-associated communities. 
The impact of alternative decisions and procedures on measures of 
taxonomic richness and community composition (hereafter “biodiver-
sity estimates”) was examined at different stages of the community 
DNA workflow including sample preparation, DNA extraction, PCR, 
and bioinformatic manipulation (Figure 1). To do this, the eight kelp 
holdfast-associated communities were subsampled for use across 
several experimental treatments. Due to the limited volume of some 
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community samples and poor sequencing of others, not all holdfast 
communities were represented in all treatments, resulting in an unbal-
anced experimental design (Table S1).

For sample preparation, we were interested in examining dif-
ferences in biodiversity estimates between the large and small size 
fractions of the community sample. Our experimental design aimed 

F I G U R E  1  (a) Ecklonia radiata forest and associated community. The white square highlights the kelp holdfast, which was used as the 
focal sampling unit in our study. (b) Overview of the experimental design to investigate the impact of alternative decisions and procedures 
on biodiversity estimates for kelp holdfast assemblages using community DNA metabarcoding. Experimental treatments were considered 
during the sample preparation, DNA extraction, and polymerase chain reaction (PCR) steps of the community DNA approach. In bold are the 
treatments applied to the kelp holdfast communities, which we compared in a series of planned contrasts. For each DNA extraction and PCR, 
two replicates were performed. See Section 2.2 for additional details and explanation of acronyms used for the treatments and Table S1 for 
details of how sampled holdfast communities were subsampled across treatments. BAE, bioinformatically averaged extraction replicates; 
BAF, bioinformatically averaged fractions; BAP, bioinformatically averaged PCR replicates; BCF, bioinformatically combined fractions; BCE, 
bioinformatically combined extraction replicates; BCP, bioinformatically combined PCR replicates; EXTA, Extraction replicate A; EXTB, 
Extraction replicate B; Lrg, large; Sml, small; MPFCOM, pooling the size fractions before DNA extractions; MPFEXT, pooling DNA extractions 
before PCR; MPFPCR, pooling PCR products before sequencing; MPPPCR, pooling PCR replicates; PCRX; PCR replicate X; PCRY, PCR replicate Y
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to test the influence of manually pooling (i.e., physically mixing) the 
size fractions before DNA extraction (MPFCOM), pooling the DNA ex-
tractions of the large and small fractions before PCR (MPFEXT), and 
pooling the PCR products of the large and small fraction extractions 
before sequencing (MPFPCR), as well as bioinformatically averaging 
(BAF) and bioinformatically combining (BCF) the sequence data of 
the large and small fractions on our biodiversity estimates (Figure 1). 
Briefly, bioinformatically combining fractions involved concatenating 
the sequence data of each fraction before analysis, whereas bioinfor-
matically averaging fractions involved calculating the average rich-
ness or community based on the large and the small size fractions as 
part of the analysis (for more details on the bioinformatic procedures, 
see Section ). The specific contrasts we were interested in were.

(1)	 Large (Lrg; n  =  15) versus Small (Sml; n  =  15): Do biodiversity 
estimates of the large and small size fractions differ?

(2)	 Bioinformatically averaged fractions (BAF; n = 11) versus pooling 
PCR products before sequencing (MPFPCR; n = 3): Do biodiver-
sity estimates differ if DNA extractions of the large and small size 
fractions are amplified and sequenced separately and then bio-
informatically averaged, or if the PCR products of the large and 
small size fractions are manually pooled before sequencing?

(3)	 Bioinformatically combined fractions (BCF; n = 3) versus pooling 
PCR products before sequencing (MPFPCR; n = 3): Do biodiver-
sity estimates differ if DNA extractions of the large and small size 
fractions are amplified and sequenced separately and then bioin-
formatically combined, or if the large and small size fractions are 
manually pooled before sequencing?

(4)	 Bioinformatically averaged fractions (n = 11) versus pooling DNA 
extractions before PCR (MPFEXT; n = 6): Do biodiversity estimates 
differ if DNA extractions of the large and small size fractions are 
amplified and sequenced separately and then bioinformatically 
averaged, or if the large and small DNA extractions of the size 
fraction are manually pooled before PCR?

(5)	 Pooling DNA extractions before PCR (MPFEXT; n = 6) versus pool-
ing the size fractions before DNA extraction (MPFCOM; n  =  6): 
Do biodiversity estimates differ if the PCR products of the large 
and small size fractions are manually pooled before PCR, or if the 
large and small size fractions are manually pooled before DNA 
extraction?

For DNA extraction, we examined differences between replicate 
extractions of the same community sample (ExtA and ExtB) and the 
influence of bioinformatically averaging (BAE) and bioinformatically 
combining (BCE) sequence data for separately sequenced replicate 
extractions. Specifically, the contrasts we were interested in were.

(6)	 Extraction A (ExtA; n  =  21) versus Extraction B (ExtB; n  =  21): 
Do biodiversity estimates of the two extraction replicates differ?

(7)	Bioinformatically averaged extraction replicates (BAE; n  =  42) 
versus bioinformatically combined extraction replicates 
(BCE; n  =  22): Do biodiversity estimates differ if the sequence 
data for the separately sequenced replicate extractions are 

bioinformatically averaged, or if the PCR products of the replicate 
extractions are bioinformatically combined?

For PCR, we examined differences between replicate PCR prod-
ucts for the same extraction (PCRX and PCRY) and the influence of 
pooling replicate PCR products for the same extraction before se-
quencing (MPPPCR), as well as bioinformatically averaging (BAP) and 
bioinformatically combining (BCP) sequence data for replicate PCR 
products following sequencing. Specifically, the contrasts we were 
interested in were

	 (8)	 PCR replicate X (PCRX; n  =  6) versus PCR replicate Y (PCRY; 
n = 6): Do biodiversity estimates from the two PCR replicates 
differ?

	 (9)	 Bioinformatically averaged PCR replicates (BAP; n = 12) ver-
sus pooling PCR replicates (MPPPCR; n = 11): Do biodiversity 
estimates differ if the sequence data for the separately se-
quenced replicate PCR products are bioinformatically av-
eraged, or if the PCR replicates are manually pooled before 
sequencing?

(10)	 Bioinformatically combined PCR replicates (BCP; n = 6) versus 
pooling PCR replicates (MPPPCR; n = 11): Do biodiversity esti-
mates differ if the sequence data for the separately sequenced 
PCR replicates are bioinformatically combined, or if the PCR 
replicates are manually pooled before sequencing?

Biodiversity estimates can be strongly affected by the meth-
odology used to cluster sequences; thus, we also examined the in-
fluence of using amplicon sequence variants (ASVs) or operational 
taxonomic units (OTUs) on our results. Furthermore, to investigate 
the effects of different bioinformatic sample standardization deci-
sions, we examined the influence of different filtering methods on 
our biodiversity estimates for the 10 contrasts described above (see 
Section 2.4 for more detailed information).

2.3  |  Community DNA extraction and PCR

Genomic DNA was extracted from a 0.20 g of the powdered kelp 
holdfast community using the DNeasy PowerSoil Extraction Kit 
(QIAGEN) following the specified protocol, except using UltraPure 
DNase/RNase-Free Distilled Water (Thermo Fisher) in the final step 
rather than elution buffer. For each sample, we performed two repli-
cate extractions (Extractions A and B). For each set of extractions, a 
negative extraction control was also included using UltraPure water. 
To assess the quality and quantity of the extractions, the extracted 
DNA was run on a 1% agarose gel and visualized using GelRed® 
Nucleic Acid Gel Stain (Biotium, Inc.), and gel-based estimates were 
confirmed using a Qubit™ fluorometer with the Qubit™ dsDNA BR 
Assay Kit. The DNA concentration of all extractions was normal-
ized to ~15 ng/µl by diluting some DNA extractions with UltraPure 
DNase/RNase-Free Distilled Water (Thermo Fisher; the maximum 
required dilution was 1:10).
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A 313-bp fragment of the cytochrome oxidase I (COI) mito-
chondrial gene was amplified using the primers mlCOIintF-XT: 5′-G
GWACWRGWTGRACWITITAYCCYCC-3′ (Wangensteen, Cebrian, 
et al., 2018) and jgHCO2198: 5′-TAIACYTCIGGRTGICCRAARA
AYCA-3′ (Geller et al., 2013), modified to include the Illumina™ 
overhang adaptors. We chose this primer because of its utility in 
metabarcoding studies of metazoa (Wangensteen, Palacín, et al., 
2018) and in particular community DNA metabarcoding of marine 
fauna and flora (Shum et al., 2019; Wangensteen, Palacín, et al., 
2018). Two PCRs were performed for each DNA extract (PCRX 
and PCRY). For the PCR, 2.5 µl of the DNA template was added 
to a mix consisting of 12.5  µl of MyTaq™ Mix (Bioline, London), 
1 µl of each primer (10 µM), 6 µl of UltraPure DNase/RNase-Free 
Distilled Water (Thermo Fisher), and 2  µl of bovine serum albu-
min (20  mg/µl; Thermo Fisher) in a 25-µl total reaction volume. 
We followed the thermocycling regime used by van der Reis et al. 
(2018) conducted in a SureCycler 8800  Thermal Cycler (Agilent 
Technologies). Specifically, thermocycling involved an initial dena-
turation at 95°C for 60 s; 20 “touch-up” cycles including a dena-
turation step at 95°C for 30 s, an annealing step starting at 45°C 
for 30  s (increasing 1°C with each cycle), and a final extension 
step at 72°C for 30 s; 20 “touch-down” cycles including a denatur-
ation step at 95°C for 30 s, an annealing step starting at 65°C for 
30 s (decreasing 1°C with each cycle), and a final extension step 
at 72°C for 30 s; 10 cycles including a denaturation step at 95°C 
for 15 s, an annealing step at 45°C for 20 s, and a final extension 
step at 72°C for 30 s; and a final extension cycle at 72°C for 60 s 
and then holding at 14°C. For each PCR, a negative control was 
also included using UltraPure DNase/RNase-Free Distilled Water 
(Thermo Fisher) instead of DNA template. Amplicons were puri-
fied by magnetic separation following the Mag-Bind® Total Pure 
NGS protocol (Omega Bio-Tek). PCR products were pooled as re-
quired according to our experimental design, quantified (Qubit® 
2.0 Fluorometer, Invitrogen), and diluted to an equal concentra-
tion of between 5 and 15  ng/µl. Sequencing was performed at 
Massey Genome Services, Massey University (Palmerston North, 
New Zealand) where indexing occurred using the Nextera™ DNA 
Library Preparation Kit (Illumina) before sequencing on an Illumina 
MiSeq™ System (2 × 250 paired-end protocol).

2.4  |  Bioinformatic analysis

Sequence reads were analyzed and filtered using a series of qual-
ity control steps available in the bioinformatics toolkit of QIIME 2 
(Bolyen et al., 2019). First, the primers were removed without mis-
match tolerated using cutadapt (Martin, 2011). We used DADA2 
(Callahan et al., 2016) to perform the paired-end merging (trim-
left-r 13, trim-left-f 13, and trunc-len 200), dereplication, chimera 
filtering (using the consensus method), and clustering of ASV. Using 
the decontam R package v1.4 (Davis et al., 2018) with the com-
bined method, we filtered the ASV table for possible contaminants 
using the extraction and PCR negative controls. To account for the 

expected degree of tag switching in multiplexed metabarcoding 
analysis (Costello et al., 2018), we used the abundance renormali-
zation approach in Wangensteen and Turon (2015). This approach 
removes the reads of the subsamples corresponding to a cumula-
tive frequency of <3% for each particular ASV. ASVs passing the 
initial quality control steps were taxonomically assigned using the 
MARES_COI_NOBAR reference sequence database (Arranz et al., 
2020). MARES is the most comprehensive COI reference database 
for marine eukaryotes available and provides users the ability to 
retain taxa that cannot be assigned at the species level but can be 
assigned at higher taxonomic levels—a desirable feature when work-
ing in communities of taxonomically diverse and potentially poorly 
characterized biodiversity (Arranz et al., 2020).

For taxonomic assignment, we first performed a BLASTn 
(Altschul et al., 1990) with an e-value of 1−60 for high-quality matches 
using the default max_target_seqn, which recovers the first 500 
possible matches (Shah et al., 2019). Then, we used MEGAN 6.18.3 
(Huson et al., 2016) for taxonomic assignment within the NCBI tax-
onomy framework using the default Lowest Common Ancestor algo-
rithm parameters. Lastly, the ASVs were further clustered into OTUs 
using VSEARCH v2.13.6 (Rognes et al., 2016) and a 97% similarity 
threshold. The resulting ASV and OTU tables were further filtered 
to remove sequencing artifacts or erroneous ASVs (or OTUs) based 
on different approaches. Five filtering methods were investigated: 
keeping all ASVs (or OTUs); removing ASVs (or OTUs) with a rela-
tive abundance lower than 0.003% (Elbrecht & Leese, 2017), 0.01% 
(Alberdi et al., 2018), and 0.05% of the total number of sequences; 
and using the LULU curation algorithm (Frøslev et al., 2017) to col-
lapse ASVs (or OTUs) into their parent ASVs (or OTUs) depending on 
their similarity and co-occurrence patterns.

Three of the eight E. radiata holdfast communities had adequate 
biomass to be used in all the treatments used to construct the con-
trasts above (Figure 1), whereas the other five community holdfasts 
spanned as many treatments as was possible, given the biomass of 
the sample (Table S1). This experimental design resulted in a total 
of 72  subsamples for sequencing including three extraction nega-
tive controls and five PCR negative controls. We bioinformatically 
combined subsamples by combining the appropriate sample size 
fractions (3 BCF subsamples), extraction replicates (22 BCE subsa-
mples), or PCR replicates (6 BCP subsamples) according to our ex-
perimental design, generating a total of 31 synthetic subsamples for 
comparison. We bioinformatically averaged subsamples by adjusting 
the coefficients of the contrast matrix to ±0.5 or ±0.25 (see Section 
2.5 for details) for the appropriate fractions, extractions, and PCRs 
to define the contribution of each subsample to the average. A total 
of 103  subsamples were used for statistical analysis, examined at 
both the ASV and OTU levels and for all filtering thresholds as well 
as sample rarefaction levels.

We considered the trade-off of increasing the rarefaction 
threshold to retain a greater proportion of the sampled diversity at 
the expense of removing greater numbers of subsamples with low 
ASV and OTU richness or decreasing the rarefaction threshold and 
retaining more subsamples at the expense of removing a greater 
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proportion of the sampled diversity. Given that our experimental 
design focuses on treatment (subsample) contrasts, we deemed 
it was most important to select a rarefaction threshold for each 
ASV and OTU table that retained the greatest number of subsam-
ples (Figure S1). We assessed the effect of variability introduced 
by the rarefaction procedure by repeating each analysis on three 
different rarefied datasets each started from a different random 
seed as well as an analysis of the unrarefied data. Two subsamples 
(MTB11_Sml_ExtA_MPPPCR and MTB20_Lrg_ExtB_MPPPCR) had 
low sequencing depth for unknown reasons and were excluded 
when the data were rarefied to even depth. Rarefaction was per-
formed using the Phyloseq R package v1.28 (McMurdie & Holmes, 
2013).

2.5  |  Statistical analysis

We used linear models implemented in R v4.0.1 (R Core Team, 
2020) to assess how our laboratory and bioinformatic decisions 
influenced biodiversity estimates for the holdfast communities. 
First, we calculated the presence or absence of each ASV or OTU 
in each rarefaction, filtering and clustering category for each sub-
sample. From these presence–absence matrices, we calculated 
two response variables: the observed taxonomic richness for each 
subsample and differences in community composition based on 
Jaccard's dissimilarity between all pairwise combinations of sub-
samples. Second, due to the unbalanced and partially nested nature 
of our experimental design to test the 10 planned comparisons de-
scribed above, we set up a dummy variable, which assigned each 
subsample to its corresponding combination of levels for the sam-
ple preparation, DNA extraction, PCR, and bioinformatic steps. For 
example, a subsample where the large size fraction was extracted, 
then one of the two extraction replicates was amplified, and the 
single PCR sequenced would have been coded as Lrg_EXTA_PCRX. 
This categorical dummy variable had a total of 25  levels for the 
95 subsamples considered, excluding negative controls and includ-
ing the bioinformatically combined synthetic subsamples. We then 
constructed a contrast matrix for the dummy variable, which con-
tained our planned independent comparisons. Each column of the 
contrast matrix corresponded to a particular planned comparison 
(see Section 2.2), allowing us to test contrasts directly, without un-
necessary subsetting and thereby multiple testing of the same data. 
Subsamples involved in contrasts were assigned weights of either 
1 or −1, depending on the levels being contrasted, except for bio-
informatically averaged subsamples that were assigned a weight of 
±0.5 or ±0.25 (Crawley, 2012). Not all 10 contrasts were orthogo-
nal. Non-orthogonal contrasts are analogous to collinear predictors 
and can produce similar statistical issues (Quinn & Keough, 2002); 
hence, to mitigate these issues, we used the inverse of the trans-
posed contrast matrix to calculate the fixed effects design matrix. 
We also used the inverse of the transposed contrast matrix for the 
calculation of the estimated marginal means and standard errors 

using the emmeans R package v1.4.8 (Lenth et al., 2018). Lastly, 
because individual kelp holdfast communities contributed to mul-
tiple levels of the dummy variable (i.e., repeated measures), for our 
analysis of taxonomic richness, we specified the individual kelp 
identifier as a random effect in a linear mixed model fitted using the 
lmer function in the lme4 R package v1.1 (Bates et al., 2014). To test 
the statistical significance of the contrasts from the linear mixed 
models, we used the summary function from the lmerTest R package 
v3.1 (Kuznetsova et al., 2017). For the analysis of community com-
position, we conducted a permutational analysis of variance using 
the adonis2 function in the vegan R package v2.6 (Oksanen et al., 
2007) and determined the significance of our contrasts using 999 
permutations under a reduced model. While the adonis2 function 
does not allow fitting mixed models, to account for repeated meas-
ures we constrained permutations to only occur among subsamples 
with the same individual kelp identifier. We tested the homogeneity 
of dispersions assumption of this analysis and examined patterns of 
multivariate beta diversity between subsamples by calculating the 
mean distance to the group centroid using the betadisper function 
in the vegan R package v2.6. Differences in the group dispersions 
among levels of our experimental treatments were tested using the 
anova.betadisper function. To account for repeated measures in this 
analysis, we also constrained permutations (999 permutations) of 
the residuals to occur among subsamples with the same individual 
kelp identifier.

Using planned independent comparisons implemented by the 
manipulation of the contrast matrix allowed us to efficiently use 
the degrees of freedom within our experimental design to only test 
the comparisons of interest. Importantly, because all planned com-
parisons are considered in the model without the need for post hoc 
tests, corrections for multiple testing and false positives are not re-
quired. Nevertheless, because we wanted to explore the effects of 
different filtering thresholds (site occupancy vs. proportional read 
abundance), clustering methods (ASV vs. OTU), and levels of taxo-
nomic precision (taxonomically assigned vs. taxonomy free), there 
were a large number of models considered. However, because we 
were interested in determining possible biases in estimates of bio-
diversity as a result of our experimental manipulations, we chose to 
retain a higher probability of false-positive results, making it more 
likely that we detect a bias rather than ignoring potential biases. 
Accordingly, by not correcting for multiple testing, we present the 
most conservative view of procedural biases in community DNA me-
tabarcoding of kelp holdfast communities.

For data visualization, we calculated the mean taxonomic rich-
ness and standard error of each treatment for unassigned ASVs fil-
tered by 0.003% minimum read abundance using the emmeans R 
package. To visualize the differences in community composition be-
tween the large and small fractions of the holdfast community sam-
ples, we projected the sample coordinates for the first two axes of 
the principal coordinate analysis (PCoA) of the Jaccard dissimilarity 
between subsamples for the presence/absence matrix of unassigned 
ASVs filtered by 0.003% minimum read abundance.
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2.6  |  Comparison with morphology-based surveys

To assess the performance of the community DNA approach as compared 
with a traditional morphological survey, we used the community DNA sub-
samples that were sieved, extracted, and amplified separately but pooled 
before sequencing (MPPPCR). According to our results, this would be the 
preferred treatment of future samples as it retrieved similar taxonomic 
richness and community composition as bioinformatically combined 
PCR products of each sample while minimizing the sequencing costs (see 
Section 3). Here, we compared the taxonomically assigned OTUs in these 
community DNA subsamples from the eight E. radiata holdfasts against 
a morphology-based survey conducted for nine E. radiata holdfasts col-
lected <750 m away in 2002 (Anderson et al., 2005). Prior to comparison, 
we assessed whether the assigned taxa identified by metabarcoding were 
of exclusively marine or brackish origin using the wormsbyname function in 
worms R package v0.2 (Holstein, 2018). Assigned OTUs, which were not 
exclusively marine, were identified using a custom R script and removed. 
If an OTU or morphologically identified taxon could only be confidently 
assigned at a high taxonomic level (i.e., identifiable only to Class or Order), 
the OTU or morphologically identified taxon was labelled as undefined 
in lower taxonomic levels. We then compared the absolute and relative 
number of OTUs and morphologically identified taxa for these two studies 
from the same geographical area synonymizing taxonomies according to 
the World Register of Marine Species (Horton et al., 2017).

3  |  RESULTS

Across our experimental design, Illumina sequencing produced 
4,310,106 paired-end reads of 72 sequenced subsamples (including 
negative controls). After quality filtering (primer removal, denoise, 
paired-end assembly, dereplication, and chimera removal), a total 
of 1,303,462 reads were retained with a modal sequence length of 
313 bp and a mean sequence length of 319 bp. The two subsamples 
(excluding negative controls) that retrieved <5000 reads were re-
moved for downstream analysis (Table S1). The final dataset after 
removing possible contaminants and after tag switching abundance 
renormalization (Wangensteen & Turon, 2015) consisted of 7230 
ASVs, with an average of 14,862 reads per subsample (range: 5156–
24,624). ASVs were clustered into OTUs at 97% similarity, produc-
ing 2623 OTUs. Further filtering of ASVs and OTUs was performed 
based on the LULU algorithm (Frøslev et al., 2017) and three thresh-
olds of minimum read abundance (0.003%, 0.01%, and 0.05%; Table 
S2). Rarefaction curves indicated that most of the subsamples ap-
proached an asymptote in ASV and OTU richness, indicating that 
sampling effort was sufficient to produce a representative estimate 
of the biodiversity in the sampled community (Figure S1).

3.1  |  Effect of sample preparation

For the eight holdfast communities collected from the field, the 
larger size fraction had overall lower taxonomic richness than the 

smaller size fraction for all ASVs and OTUs (Figures 2, 3, and S2). 
However, the large size fraction had a similar taxonomic richness to 
the small size fraction when comparing only the taxonomically as-
signed ASVs and OTUs (Figures 2 and S2). Conversely, though not 
unexpectedly, the community composition of the two size frac-
tions differed strongly for every rarefaction, filtering, clustering, 
and taxonomic assignment procedure used (Figures 2, 4, and S2). 
Differences in the variability in assemblage composition (multivari-
ate dispersions) between the large and small size fractions differed 
when considering all reads at the OTU level and considering all reads 
at the ASV level when stringent filtering was applied (0.01% or 
0.05% minimum read abundance; Figure S2). Interestingly, the PCoA 
showed that the greatest variation in community composition was 
associated with the holdfast identities (PCoA1 in Figure 4) rather 
than differences between the large and small size fractions of each 
holdfast (PCoA2 in Figure 4).

The bioinformatically combined sequence reads from the sepa-
rately sequenced size fractions (BCF) retrieved more taxonomic rich-
ness than pooling PCR products before sequencing (MPFPCR) based 
on ASVs (Figures 2, 3, and S2). Interestingly, the taxonomic richness 
of the BCF and the pooled fractions before sequencing (MPFPCR) 
was similar when we clustered the ASVs into OTUs at 97% similarity 
(Figures 2 and S2). The lowest taxonomic richness was found when 
the sequence reads of the two size fractions were bioinformatically 
averaged (BAF; Figures 2, 3, and S2). Nevertheless, although we de-
tected differences in taxonomic richness between bioinformatically 
combining and bioinformatically averaging the two size fractions, 
we detected no significant differences in community composition 
among these two bioinformatic approaches (Figures 2 and S2).

Pooling the large and small size fractions before DNA extraction 
(MPFCOM) or before PCR (MPFEXT) had little effect on estimates of 
taxonomic richness (Figures 2 and S2). Similarly, we found no signifi-
cant differences in community composition between the pooled size 
fractions before DNA extraction (MPFCOM) and the pooled size frac-
tions before PCR (MPFEXT; Figures 2 and S2). The taxonomic rich-
ness of the pooled size fractions before PCR (MPFEXT) was similar 
to the taxonomic richness retrieved by bioinformatically averaging 
the sequence data of the two size fractions (BAF; Figures 3 and S2). 
Interestingly, all methods for pooling the size fractions after sepa-
rately extracting the DNA of each fraction (i.e., pooling extractions 
of the size fractions before PCR, pooling PCR products of the size 
fractions before sequencing, and bioinformatically averaging and 
bioinformatically combining sequence data from each fraction) 
showed similar community composition (Figures 2 and S2).

3.2  |  Effect of DNA extraction

The taxonomic richness of replicate extractions from the same sub-
sample (Extractions A and B) did not differ significantly for most of 
the clustering and filtering options we examined, except for ASVs 
when only taxonomic assigned reads were considered and for OTUs 
considering all reads (Figures 2 and S2). Additionally, we found 
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similar community composition among replicate extractions for all 
combinations of clustering and the level of filtering (Figures 2 and 
S2).

Across the subsampled communities, the mean taxonomic rich-
ness of the bioinformatically averaged extraction replicates (BAE 
was lower than bioinformatically combined sequence reads of the 
extraction replicates (BCE; Figures 2, 3, and S2). This result suggests 
that ASVs and OTUs may differ among subsamples of the same 
holdfast community (i.e., extraction replicates). On the basis of this 
contrast alone, we cannot determine whether biases have been in-
troduced by PCR and/or sequencing, rather than the subsampling 
of the community. However, the community composition of the 
bioinformatically averaged (BAE) and combined (BCE) replicate ex-
tractions was similar (Figures 2 and S2).

3.3  |  Effect of PCR

Subsamples from the same extraction, amplified and sequenced sep-
arately (PCRX and PCRY), did not differ significantly for most of the 
clustering and filtering options we examined, except when considering 

all reads at the ASV level when stringent filtering was applied (0.01% 
or 0.05% minimum read abundance; Figures 2 and S2). However, the 
community composition of the PCR replicates did not differ signifi-
cantly in any of the contrasts we examined (Figures 2 and S2).

We found no significant differences in taxonomic richness 
among the different strategies for pooling PCR replicates for taxo-
nomically assigned ASVs and OTUs (Figure S2). However, the high-
est taxonomic richness was found when bioinformatically combining 
the sequence data of both size fractions (BCF), followed by pooling 
PCR replicates (MPPPCR), and the lowest taxonomic richness was 
found for bioinformatically averaging PCR replicates (BAP; Figure 3). 
The community composition of the PCR replicates did not differ sig-
nificantly at either the ASV level or OTU level when only the taxo-
nomically assigned or all reads were examined (Figures 2 and S2).

3.4  |  Comparison with morphology-based surveys

The morphology-based survey of holdfast-associated biodiversity 
recorded 181 taxa belonging to 14 phyla, of which 109 taxa were 
identified to the species level (Anderson et al., 2005; Figure 5). Our 

F I G U R E  2  Summary results for the planned contrasts used to examine differences in taxonomic richness (upper table) and community 
composition (based on Jaccard's dissimilarity index; lower table) as a result of different decisions taken during the community DNA 
metabarcoding approach, including sample preparation, DNA extraction, and polymerase chain reaction (PCR) amplification. Differences 
were examined at the amplicon sequence variant (left table) and operational taxonomic unit level (right table), considering different filtering 
thresholds (NO: no filtering; LULU algorithm; and 0.003%, 0.01%, and 0.05% minimum read abundance across all samples) and including all 
reads and only reads taxonomically assigned to Eukaryota. Blue color intensity increases with increasing level of statistical significance (key, 
top left), and white denotes no statistically significant difference between levels of the experimental treatments. The results presented here 
are a conservative estimate based on the consensus across three random seeds of each rarefaction performed (see Figure S2 for further 
results). BAE, bioinformatically averaged extraction replicates; BAF, bioinformatically averaged fractions; BAP, bioinformatically averaged 
PCR replicates; BCF, bioinformatically combined fractions; BCE, bioinformatically combined extraction replicates; BCP, bioinformatically 
combined PCR replicates; EXTA, Extraction replicate A; EXTB, Extraction replicate B; Lrg, large; Sml, small; MPFCOM, pooling the size 
fractions before DNA extractions; MPFEXT, pooling DNA extractions before PCR; MPFPCR, pooling PCR products before sequencing; 
MPPPCR, pooling PCR replicates;PCRX; PCR replicate X; PCRY, PCR replicate Y
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F I G U R E  3  Mean (±standard error) taxonomic richness of amplicon sequence variants filtered at 0.003% minimum read abundance and 
considering all reads for each of the 10 planned contrasts considered at the sample preparation, DNA extraction, and polymerase chain 
reaction (PCR) steps of community DNA metabarcoding approach. Dashed lines connect pairs of experimental treatments considered in 
each numbered contrast (see Section 2.2 for details). BAE, bioinformatically averaged extraction replicates; BAF, bioinformatically averaged 
fractions; BAP, bioinformatically averaged PCR replicates; BCF, bioinformatically combined fractions; BCE, bioinformatically combined 
extraction replicates; BCP, bioinformatically combined PCR replicates; EXTA, Extraction replicate A; EXTB, Extraction replicate B; Lrg, large; 
Sml, small; MPFCOM, pooling the size fractions before DNA extractions; MPFEXT, pooling DNA extractions before PCR; MPFPCR, pooling PCR 
products before sequencing; MPPPCR, pooling PCR replicates; PCRX; PCR replicate X; PCRY

F I G U R E  4  Principal coordinate analysis (PCoA)of Jaccard's dissimilarity between samples for amplicon sequence variants filtered at 
0.003% minimum read abundance and considering all reads. Each kelp holdfast sample is represented by a different colored symbol. The 
small size fractions for each sample are indicated by triangles and pink polygon, whereas the large fractions are indicated by circles and the 
blue polygon. The labels (Large and Small) indicate the group centroids. Although among sample differences were large, indicated by the 
clustering of symbols of the same color along the PCoA1, differences between size fractions were consistent and associated with PCoA2
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metabarcoding-based approach identified a total of 305 OTUs, repre-
senting 18 phyla; however, only 70 OTUs were assigned to the spe-
cies level with 64 unique species identified (Figure 5 and Table S3). The 
number of assigned OTUs (i.e., taxa) was higher at lower taxonomic 

ranks for morphology-based surveys and the number of undefined taxa 
lower (Table S3). However, at higher taxonomic ranks (class, order, and 
phylum), the total number of assigned OTUs with the metabarcoding 
approach exceeded that of the morphology-based surveys (Table S3).

F I G U R E  5  Venn diagrams showing the number of taxa detected by each methodological approach at different taxonomic levels. Results 
of community DNA metabarcoding are displayed on the left (blue) and traditional morphology-based surveys on the right (yellow) of each 
Venn diagram, with the number of taxa in common in the intersection (green)

F I G U R E  6  Proportion of taxa identified for each phylum by each methodological approach. DNA metabarcoding on the left (blue) and 
traditional morphological-based surveys on the right (yellow). OTUs, operational taxonomic units
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The taxonomic overlap between the morphology- and 
metabarcoding-based surveys was minimal at low taxonomic ranks; 
only two species and six genera were found in both survey meth-
odologies, barely 1%–3% of the total OTUs assigned to those levels 
(Figure 5 and Table S3). The taxonomic overlap increased at higher 
taxonomic ranks, reaching 34% and 33% of taxa identified at the 
Class and Phylum level, respectively (Figure 5). There were three 
Phyla found only in the visual surveys (Brachiopoda, Rhizopoda, 
and Sipuncula), though these represented a small percentage (a 
combined 2.2%) of the total taxa found by the morphology-based 
approach (Figure 6). Seven Phyla were exclusively identified using 
metabarcoding, including microeukaryotes and fungi (Myzozoa, 
Ascomycota, and Oomycota), Archaeplastida, and Stramenopiles 
(Rhodophyta, Chlorophyta, Bacillariophyta, and Ochrophyta), 
though some of these Phyla were excluded from the morphology-
based surveys a priori (Figure 6). Importantly, these microeukary-
otic and fungal phyla represented 43% of the total taxa found using 
the metabarcoding approach (Figure 6). Arthropods, Annelids, 
Porifera, and Echinoderms were common in the morphology- and 
metabarcoding-based surveys (Figure 6). Interestingly, Molluscs 
and Bryozoans, which were common in the morphology-based 
survey, were scarce in the metabarcoding-based survey (Figure 6). 
There were 17  species present in the morphological survey that 
had representative reference species barcodes in the MARES refer-
ence database; however, only two of these species were recovered 
in our metabarcoding survey of holdfast-associated communities.

4  |  DISCUSSION

To routinely use DNA metabarcoding of kelp holdfast biodiversity 
as a kelp forest ecosystem monitoring tool, sampling and laboratory 
protocols must be optimized, validated, and standardized (Cowart 
et al., 2015; Elbrecht & Leese, 2017; Pawlowski et al., 2018). Here, 
we present the analysis of a robust experimental design that quanti-
fies the impacts of various practical, laboratory, and bioinformatic 
decisions made during a community DNA approach to estimating 
biodiversity. Our overall aim was to highlight the opportunity for 
using community DNA to assess the taxonomic richness and com-
munity composition of assemblages living on and in the holdfasts of 
a dominant ecosystem engineering kelp and to identify any short-
comings and biases in such an approach. Our results highlight that 
sieving the community into similarly sized organisms enables detec-
tion of a wider range of taxa, and replicate DNA extractions of the 
community, as well as replicate PCRs help to capture the maximum 
taxonomic richness within a sample. When compared with tradi-
tional morphology-based approaches to quantifying biodiversity in 
kelp holdfast communities, a community DNA approach recovers 
higher levels of taxonomic richness and a greater breadth of phyla. 
Nonetheless, as described in several other systems (Gauthier et al., 
2020), incomplete reference sequence databases remain a key fac-
tor limiting the potential of community DNA approaches to biodiver-
sity assessment in this ecosystem. Below, we outline our learnings 

and discuss their implications for quantifying biodiversity, providing 
methodological and procedural recommendations for community 
DNA studies of kelp holdfast biodiversity.

Partitioning the kelp holdfast community into two size fractions 
allowed the detection of a wider diversity than what can be achieved 
without size fractioning. Within kelp holdfasts, resident organisms 
vary considerably in their biomass (Anderson et al., 2005), from nem-
atodes only micrometers in length to sponges or colonial ascidians 
that can dominate much of the available space within a holdfast. The 
taxonomic richness obtained when sieving the kelp holdfast com-
munity into large and small size fractions, regardless of the pooling 
strategy used (manually in the laboratory through physical mixing 
of the fractions or bioinformatically), was higher to that of the com-
munity characterized when both fractions were extracted together, 
simulating the unsieved sample of the same communities (Figure 2). 
Higher numbers of DNA copies from larger organisms with greater 
biomass can hinder the detection of smaller organisms, and thus, in 
the absence of size fractioning, higher sequencing effort is required 
to detect small, low biomass organisms (Cowart et al., 2015). In our 
study, the smaller size fraction had greater taxonomic richness than 
the larger size fraction at the ASV and OTU levels, considering all 
reads. Similar to previous studies, our results suggest that without 
size fractioning, it may be difficult to recover the presence of small 
biomass organisms in taxonomically diverse communities (Elbrecht 
et al., 2021; Rex & Etter, 2010; Wangensteen, Cebrian, et al., 2018). 
It is worth noting that each individual holdfast contained a very 
different assemblage; thus, although we were able to differentiate 
among subsamples of the large and small fraction confidently, differ-
ences in community composition among holdfasts were substantial 
(Figure 4).

To avoid missing taxa, previous studies have suggested that mul-
tiple extractions and amplifications of the same sample may be re-
quired (Ficetola et al., 2015). Across our study design, the mass of 
the community subsample was kept consistent, optimizing the ratio 
of subsample mass to reagent volume for DNA extraction (as deter-
mined in pilot studies) and enabling the use of each community sam-
ple across several experimental treatments. Despite our efforts to 
homogenize the holdfast community samples before subsampling, 
we found that combining extraction replicates detects the highest 
taxonomic richness (Figures 2 and 3). This result is consistent with 
previous studies on animal taxa that have also found high variability 
among extraction replicates (Hermans et al., 2018). In the case of 
kelp holdfast community samples, the size of any subsamples used 
for extraction may often be too small relative to the bulk commu-
nity sample to recover the full taxonomic breadth of organisms that 
are present (Deiner et al., 2017). Future studies may wish to trial in-
creasing the overall mass of subsamples used in DNA extraction, to 
potentially gain more representative subsamples of the entire com-
munity. Nonetheless, our results also highlight the value of having 
extraction replicates (Zhou et al., 2011).

In contrast, studies focused on single phyla have shown that 
replicate extractions are less important than PCR replicates in mini-
mizing variability among samples (Ficetola et al., 2015; Porter et al., 
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2019). PCR replicates are recommended as a procedure to reduce 
the PCR stochasticity and maximize the detection of taxa (Leray & 
Knowlton, 2015). The downside of increasing the number of PCR 
replicates, however, is the increased cost and the risk of false pos-
itives by accumulating artifactual sequences (Alberdi et al., 2018; 
Ficetola et al., 2015). In our study, we found that although PCR rep-
licates are presumed to have similar biases due to primer choice and 
the laboratory protocols we used, inherent stochasticity in each PCR 
replicate slightly influenced the taxonomic richness observed but 
not the community composition of replicate PCRs.

Despite our efforts to rarefy subsamples that were bioinfor-
matically combined following sequencing so that they were compa-
rable to subsamples that were pooled before sequencing, in most 
cases, this was not sufficient to make up for the impact of increased 
sequencing depth. For instance, bioinformatically combining the 
large and small fractions tended to produce higher taxonomic rich-
ness than if the large and small PCR products of the fractions were 
pooled before sequencing, and the lowest taxonomic richness was 
always observed when bioinformatically averaging the large and 
small fractions (Figures 2, 3, and S2). Similar results were observed 
for other pooling strategies used for the extraction replicates, where 
we observed significantly higher richness when bioinformatically 
combining the extraction replicates compared with bioinformati-
cally averaging extraction replicates. In contrast, bioinformatically 
combining PCR replicates caused little or no increase in taxonomic 
richness. The high similarity in the community composition of PCR 
replicates (discussed above; Figures 2 and S2) may explain why there 
was no increase in taxonomic richness when PCR replicates were 
bioinformatically combined, supporting findings of previous studies 
that suggest ecological inferences are influenced most by sequenc-
ing depth rather than PCR stochasticity (Smith & Peay, 2014).

Across our experimental design, the greatest taxonomic rich-
ness was recovered through bioinformatically combining fractions, 
extractions, and PCR replicates. Procedures equivalent to our bio-
informatically combined treatment have been shown to commonly 
recover the highest number of species (Leray & Knowlton, 2017). 
Nonetheless, the risk of false positives is also increased by such ad-
ditive strategies—through increased introduction and amplification 
of contaminants, as well as sequencing errors (Alberdi et al., 2018; 
Flynn et al., 2015). For these reasons, different strategies such as 
removing singletons, even doubletons and tripletons (Kunin et al., 
2010), and stringent filtering can be used to remove artifactual se-
quences at the expense of removing low abundance true positives 
(Elbrecht & Leese, 2017; Flynn et al., 2015; Leray & Knowlton, 2017). 
In our case, we used both a range of thresholds for the minimum read 
abundance filtering across subsamples and a site occupancy model 
to remove rare ASVs or OTUs that may be erroneous sequences or 
artifacts. By choosing a relative read abundance across subsamples, 
ASVs, which appear in low abundance in some subsamples but may 
be present in greater abundance in other subsamples, will be re-
tained as they are possible true positives (Leray & Knowlton, 2017). 
However, using this approach, we lost a substantial number of taxa 
(~80% of the ASVs and OTUs), even with the least stringent filtering 

(0.003%), implying the loss of many true positives (Table S2). Of all 
the filtering approaches used, we retained the highest number of 
taxa using the site occupancy model implemented using LULU. This 
approach uses similarity among ASVs (or OTUs) and co-occurrence 
patterns to determine whether rare ASVs are a sequencing error 
from a more abundant ASV (Frøslev et al., 2017). As a result of our 
findings, our recommendation for filtering would be to use either 
the LULU algorithm or a low minimum read abundance threshold 
(0.003%) to minimize the risk of false positives but retain a greater 
diversity of taxa.

The chosen methodological approach for a community DNA 
study will differ depending on whether a study is focused on ASVs or 
OTUs and whether the overall richness or different measures of di-
versity or turnover among samples are of interest. Recently, the use 
of ASVs instead of OTUs has been promoted because it improves 
the reusability, reproducibility, and comprehensiveness of sampled 
biodiversity (Callahan et al., 2017). In our study, differences in taxo-
nomic richness between the bioinformatically combined subsamples 
and other pooling strategies diminished when clustering ASVs into 
OTUs. At the ASV level, combining the size fractions, extractions, or 
PCRs bioinformatically after sequencing revealed higher taxonomic 
richness than any other strategies for pooling subsamples, either 
by bioinformatically averaging or pooling PCR products of the size 
fractions before sequencing. However, at the OTU level, subsamples 
pooled before sequencing showed similar richness as bioinformati-
cally combined subsamples at a reduced sequencing cost. Because 
differences in taxonomic richness between pooled subsamples are 
no longer significant when similar sequences are collapsed into 
OTUs, nucleotide differences (<3%) among divergent lineages of the 
same species or cryptic species appear to drive differences observed 
at the ASV level.

The community composition inferred for our kelp holdfast com-
munities remained similar regardless of the strategy used for pooling 
fractions, extractions, and PCRs and were consistent across ASVs 
and OTUs. Therefore, it appears that multivariate descriptions of 
community composition may be more robust to methodological or 
procedural biases than univariate biodiversity indices. If the main 
objective is to retrieve the greatest number of taxa possible, bio-
informatically combining the fractions after sequencing separately 
would be recommended, especially at the ASV level, using the LULU 
algorithm or a moderate filtering by read abundance (e.g., 0.003%) to 
remove false positives. Nevertheless, if there are limits to resources 
or the primary interest of a study is focused at the OTU level, pooling 
the PCR replicates of the extractions for the large and small frac-
tions before sequencing would recover a similar community compo-
sition. Such an approach would minimize sequencing costs, in favor 
of increasing the field sampling effort, and thereby potentially the 
overall richness captured by the study (Porter et al., 2019).

We chose to use COI as the barcode region for characterizing 
the kelp holdfast community because of its substantial represen-
tation in reference sequence repositories (Porter & Hajibabaei, 
2018), its broad taxonomic coverage, and it has been shown to 
successfully discriminate among species (Andújar et al., 2018). 
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However, our data and previous results suggest that reference 
databases are biased towards highly abundant macroorganisms 
(Wangensteen, Cebrian, et al., 2018) and lack reference sequences 
for small and cryptic species, which can also be a challenge to iden-
tify morphologically. In our case, only 15% of the species found in 
the morphology-based survey of kelp holdfast communities con-
ducted by Anderson et al. (2005) have a reference sequence in 
MARES. Possibly as a consequence, the observed difference in 
taxonomic richness between the large and small fractions of the 
holdfast community was not evident when considering only the 
assigned ASVs or OTUs. Despite efforts to generate DNA bar-
codes for specific taxa and locations (Carew et al., 2017), DNA 
metabarcoding is still somewhat limited by incomplete reference 
databases (Curry et al., 2018; McGee et al., 2019; Morinière 
et al., 2019). Although reference databases continue to improve, 
taxonomy-free approaches (Apothéloz-Perret-Gentil et al., 2017; 
Mächler et al., 2020) enable some important biodiversity infer-
ences, albeit without the tangible links to community function and 
resilience that require knowledge of species (or OTUs or ASVs) 
identity and ecology.

Using molecular tools for biomonitoring diverse assemblages is 
becoming more common, often detecting higher diversity than con-
ventional morphology-based approaches (Deiner et al., 2017). Our 
metabarcoding approach retrieved almost two times the number of 
OTUs identified using conventional morphological surveys of kelp 
holdfasts and had broader taxonomic coverage (Anderson et al., 
2005; Shum et al., 2019; Wernberg et al., 2019). An important rea-
son is that the COI primer set used for the metabarcoding survey 
targeted a broader taxonomic range than the morphological survey. 
Nonetheless, there were certain strengths unique to each approach. 
For example, a higher diversity of taxa was found using community 
DNA for some groups, such as Porifera and Cnidaria, with morpho-
logical features that are not easily retained through common pres-
ervation techniques (e.g., freezing or fixation). Our community DNA 
approach also recovered Rhodophyta and Ochrophyta, Phyla that 
were not considered by the morphological survey despite being im-
portant components of kelp forest communities (Shum et al., 2019). 
Considering the phyla commonly detected with both approaches, 
we found dissimilarities in the characterization of certain taxa. For 
example, Molluscs and Bryozoans were poorly represented in the 
metabarcoding survey relative to the morphology-based survey, 
potentially due to the strengths of the morphological taxonomists 
(Anderson et al., 2005), a true loss of diversity in those groups as 
the two studies were conducted 20 years apart, taxonomic biases in 
the extraction of DNA in mixed communities (Hermans et al., 2018), 
or introduced by primer choice (van der Loos & Nijland, 2021). In 
the latter cases, using alternative extraction techniques or using a 
combination of primers to target certain taxa may be helpful (Alberdi 
et al., 2018).

Overall, the metabarcoding approach captured a good represen-
tation of the known kelp holdfast diversity and proved more time- and 
cost-effective. For the groups considered by both survey methods, 
there were similar trends in the number of taxa recovered for the 

dominant phyla. For instance, Arthropoda, Annelida, Porifera, and 
Echinodermata—all abundant and important taxa in kelp forest eco-
systems (Anderson et al., 2005; Wernberg et al., 2019)—were com-
mon in both surveys showing a high proportion of taxa. However, 
there was a higher proportion of undefined taxa using the metabar-
coding approach, especially at lower taxonomic ranks. The limited 
ability to taxonomically assign the molecular OTUs, especially at 
lower taxonomic ranks, again, reflects gaps in reference sequence 
databases (Wangensteen, Cebrian, et al., 2018), particularly for ma-
rine species (Arranz et al., 2020; Leray & Knowlton, 2016). Ideally, 
both approaches would be used in tandem to further develop an 
understanding of their respective strengths and weaknesses and to 
provide a specimen reference collection corresponding to the se-
quence reference database to help increase the ability of community 
DNA studies to assign taxonomic identities to sequences.

The effectiveness of a biomonitoring strategy depends on the 
ability to detect diversity and change over time and space (Shum 
et al., 2019). Our study retrieved a high number of taxa within a 
relatively low number of kelp holdfast samples and demonstrated 
the ability to distinguish among holdfast community samples at 
small spatial scales (meters apart; Figure 4). The holdfast has been 
a key focus in ecological studies because it is convenient to sam-
ple, hosts a diversity of taxa (Anderson et al., 2005; Smith, 2000; 
Teagle & Smale, 2018), and because kelps are susceptible to envi-
ronmental change, so too are their holdfasts (Smale et al., 2013; 
Teagle et al., 2017; Vergés et al., 2014; Wernberg et al., 2016). One 
of the drawbacks in using the holdfasts for monitoring, however, 
was the immense diversity they support, making morphological 
characterization of their associated biodiversity a highly intensive 
task. Our study reveals that community metabarcoding provides 
a means for the high-resolution characterization of biodiversity 
associated with holdfasts, thus making kelp holdfast assemblages 
an accessible barometer for monitoring biodiversity change in 
critically important and at-risk kelp forests. By carefully dissect-
ing procedural sources of bias and determining cost-effective and 
reproducible methods, it shows promise that community DNA me-
tabarcoding could provide a standardized and repeatable method 
for monitoring the biodiversity of these hyperdiverse marine 
communities.
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