Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

The ecology and anatomy of scent

in the critically endangered kakapo (Strigops habroptilus)

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Zoology

at Massey University, Auckland, New Zealand

Anna Clarissa Gsell

May 2012

Hoki, the kakapo - Photo by Dr. Luis Ortiz Catedral

Kakapo chicks born in 2008;©Photo by Chris Birmingham

ABSTRACT

The focus of the research presented here is the analysis of feather scent emitted by a parrot, the kakapo (*Strigops habroptilus*) and the kakapo's ability to perceive scent by studying the anatomy of its brain and the olfactory bulb. In addition, behavioural research was conducted to determine the capability of the kakapo's closest relatives, the kea (*Nestor notabilis*) and kaka (*N. meridionalis*) to detect scents and to distinguish between different concentrations of scents.

The strong odour of the kakapo is one of the many unique characteristics of this critically endangered parrot, but its sense of smell has never been described in detail. The kakapo is the largest parrot worldwide, it is nocturnal and flightless. Kakapo are herbivorous and it is the only parrot with a lek breeding system. Males defend several display arenas during the breeding season and continuously produce low frequency booming calls. Females come from afar and appraise different males and choose one with which they want to mate. As in all lek mating systems some males make major contributions to the gene-pool of the next generation while others make little or no contribution. Currently it is not known what the female's choice is based on and why some male kakapo are 'favoured' over others. However, it has been observed that favoured males appear to emit a stronger odour than less attractive ones (pers. comm. Kakapo Recovery Team). This study is the first to compare the chemical composition of the kakapo's scent in relation to season, age and sex. It is also the first study to uncover the kakapo's ability to smell by conducting a comparative examination of the anatomy and histology of the brain and the olfactory bulb.

In spite of its endangered status, the kakapo is a good model in which to study olfaction, as the birds are closely monitored by the Department of Conservation, New Zealand. The birds undergo regular health checks and transmitter changes, allowing access to a large proportion of the population at once and for which their individual history is known. The study of olfaction in kakapo is important as it can contribute to the growing field of avian olfaction, and by elucidating the kakapo's potential for olfaction conservation managers will be able to make better decisions in their attempt to save this species. The research approach adopted in this dissertation includes the analysis of feather samples from individuals of different sex and age as well as from different seasons using gas chromatography-mass spectrometry. The opportunity to examine the brain as well as the eyes of a kakapo that died at Auckland Zoo, Auckland, New Zealand, allowed a comparative study of the brain, the olfactory bulb and the visual centres (of both the thalomofulgal and the tectogucal pathways) with other Australasian parrots. Additionally, behavioural experiments with kea and kaka, the closest relatives

I

of the kakapo, give insight into two of New Zealand endemic parrot's and their ability to distinguish between different scents and scents of different concentrations.

The findings from this research provide evidence that kakapo distinguish themselves by having one of the largest olfactory bulbs measured in parrots and the highest number of mitral cells, responsible for the transmission of an olfactory neural signal into a behavioural response, counted in any species to date. They also have a strong odour, whose chemical composition shows sexual, age-dependent and seasonal distinction. Furthermore, the study found that kea and kaka are both able to distinguish between different scents and different concentrations of scents.

The main conclusions drawn from this study are that kakapo appear to be equipped with a functional olfactory bulb, able to sense olfactory information, but also communicate information that is likely to be of social importance using their plumage scent. In conclusion, this dissertation provides the foundation for future research, in particular to examine the role of the scent in the social life in kakapo, and it provides fundamental insight into the olfactory and visual sensory abilities of the New Zealand endemic kakapo.

REFLECTION AND ACKNOWLEDGEMENTS

I guess my mother Heidemarie would have been fascinated by the many stories I can tell about kakapo, a bird so curious it seems to originate from a different world. She had an eye for detail and taught my sister and myself to look at things with the eye of an eagle and to appreciate them. I started collecting feathers when I was seven years old. I had a big cardboard box with Indian red patterns on its side, which held all the treasured feathers found on many excursions to various west European woods and the Swiss Alps. It was greatly improved by my early voluntary work in the zoo, which meant that I had access to the most exotic feathers. They were all stored in this box, and I was welcomed with a nice wooden, earthy smell whenever I opened the box.

Little did I know at that time how important feathers would become later in my life. I still collect them, but not only for pleasure anymore. Before that though, my journey took me to Africa - inspired by my grandfather who had worked as a medical doctor in Ifakara, Tanzania, in his early days and who wanted to see this amazing continent for one last time. He invited the whole family to a memorable trip to Zambia, where my wish to work in Africa was born. This wish was fulfilled when I conducted by MSc in Tim Clutton-Brock's unique meerkat research project in the Kalahari and worked on aspects of the rich variation of marking behaviour in the social mongoose, the meerkat, (Suricata suricatta). I was familiarised in a vivid way with the many ways scent and marks can be transferred in animals. Work in the Botswana Wild Dog Research Project on the African wild dog (Lycaon pictus) to develop a biological method to repel wild dogs from farmland taught me the conservational aspect scent can have. A call to New Zealand to work on olfaction in the Northern brown kiwi (Apteryx mantelli) heralded a new and fascinating period in my life. Hitherto, little was known about olfaction in birds and the offer to work on the Northern brown kiwi was all the more tempting since I had to deal with a bird whose behaviour, in many aspects, is more reminiscent of a mammal than a bird. Preliminary behavioural experiments undertaken on free ranging birds indicated the use of body scent in the social life of kiwi and a pilot analysis of the chemical compounds in body scent using gas chromatography-mass spectrometry revealed the presence of aromatic oils and alcohols that could account for the strong smell of this bird (Castro et al. 2010). Periods of waiting for permits were filled with work on rats, with the aim to trial and use the scent of conspecifics to attract and lure them. In a land where food is plentiful, the attraction to mate might be stronger and serve as a good option to lure and catch rats while presenting a low risk to other wildlife. All this work on diverse animals using scent and olfaction was a good introduction for my PhD on another endangered and strong smelling bird, the kakapo (Strigops habroptilus), surely the most bizarre and controversial, but rewarding, animal I have worked on so far.

All these ventures to far away destinations were supported by my father Hans-Otto, who in return got to see all these exciting places. I am indebted with deep thanks and gratitude to my father for having supported all along his daughter's unusual, extensive, and not always easy, travel destinations in many ways. I am not quite sure how I came to land so far way, but I think we can blame the kakapo.

I am greatly thankful to my sister Alena Sonja for being all ears to all sorts of issues that come along in the course of a PhD. I would like to thank her for proofreading and commenting on some aspects of my work. Let alone the countless care parcels of food she and my father supplied, primarily fine Swiss and Belgian chocolate, as well as the supply of Italian coffee and other specialities, bringing home a little closer. I think we kept MAF quite busy over the last few years.

Deepest and sincere thanks go to my partner David Vincent, who supported me in the best possible way. He encouraged me in the first place to return to New Zealand in order to study New Zealand's smelly avian fauna, which I am more than thankful for. I would also like to thank David for proof-reading some of my work. Coming from a very different background, his knowledge in economy brought me a different perspective to my life. I am also thankful for that reason.

Apart from all the personal support that has been given to me by my partner and my family, this thesis could not have been completed without the continuous and never failing support of my supervisor Assoc. Prof. Dr. Dianne Brunton (Director of the Ecology and Conservation Group, Institute of Natural Sciences, Albany Campus, Massey University, New Zealand). Dianne has all the aspects that a student wishes for in a supervisor, and I am thankful for her openness to new research projects, for sharing the vision and supporting and refining ideas and helping to bring them to their successful completion. Dianne makes time for her students even if she has no time, and lives the Kiwi 'can do' attitude to the fullest. Without her input and help, this project would not have been possible.

The second person in my academic field I am indebted to is Dr. Ron Moorhouse (Scientist, Kakapo Recovery Programme, Invercargill, New Zealand). Not only am I thankful for his support and help with pursuing an initially unusual project idea and helping with the permits, but also for being a marvellous source of knowledge and providing me with deep insights into the wondrous world of the kakapo.

IV

My co-supervisor Dr. Weihong Ji knew Ron Moorhouse personally and not only enabled me to get to know Ron from a different perspective, that is as a marvellous Scottish pipe player, but made the first contact possible. I am grateful for Dr. Weihong Ji's support and help.

There were several large groups with which I worked on my exciting subject. One of the most remarkable groups, however, was my 'GC-MS group', filled with people that were just as much in love with the subject as I am, and always eager to know more – no matter how late at night it was. So it was more than natural to share knowledge and to keep each other up to date with the newest information available. A vibrant, high wired exchange of knowledge took place between my cosupervisors Prof. Tom Goodwin (Hendrix College, Conway, Arkansas, USA) and Assoc. Prof. Dr. Julie Hagelin (Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, USA) and my collaborators Prof. Dave Greenwood (The School of Biological Sciences, Auckland University, Auckland, New Zealand) and Dr. Andrew Fidler (Cawthron Institute, Nelson, New Zealand). I would like to thank Dave for his tremendous help with the gas chromatographic work and evaluation of the GC-MS output, thank you for putting endless hours into this work, but it has all been worthwhile! I would like to thank Julie and Andrew as well as Pat Holland (Cawthron Institute, Nelson, New Zealand) at this point for allowing me to continue their exciting journey in olfaction in kakapo. Their initial results opened the way for this thesis and helped it to success. I think we all were highly inspired and carried away by Tom's unforgettable humour. It has been great pleasure to work with you people and Tom's visits to New Zealand (Figure 1) are just as vivid as our (Tom, Dave, Julie and myself) trip to the Chemical Signals in Vertebrates Conference in Berlin, Germany, August, 2011. Thank you for being there, and I truly hope, we will continue our adventure in the world of scent in kakapo.

Figure 1 Dianne (left), Tom (middle) and Andrew (right) on a work lunch meeting that we enjoyed close to Massey University, Albany, New Zealand.

Insight, knowledge and an understanding of not only working with brains but getting a flair for understanding their anatomy, were all facilitated with a lot of patience and understanding by Dr. Jeremy Corfield (Department of Neuroscience, *University of Lethbridge, Lethbridge*, Alberta, *Canada*). Without his unlimited help and time, I would never have come to the point of anatomical understanding that I gained in my work. I am deeply indebted to profound and sincere thanks for all the advice, help and understanding Jeremy has given me.

I would also like to thank Prof. Emeritus Bernice Wenzel and Associate Prof. Essie Meisami (Molecular and Integrative Physiology and Neuroscience, The School of Molecular and Cellular Biology, University of Illinois, Urbana-Champaign, Illinois, USA) for their input. Especially I would like to thank Essie for his great input regarding the unusual layering of the olfactory bulb of the kakapo. I am indebted with sincere thanks to Dr. Andrew Iwaniuk (Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada), not only for his input regarding the anatomy of parrot brains, but most importantly for his generous help in organising permits and specimens of seven parrot brains that I was allowed to use for my study. Without them, the anatomy section would have been significantly smaller and without much meaning. Thank you for your help! I would like to thank Prof. Martin Wild (Anatomy with Radiology, School of Medical Sciences, Auckland University, Auckland, New Zealand) for his great input and advice in refining the art of writing, and I would like to thank Martin and Dr. Fabiana Kubke (Anatomy with Radiology, School of Medical Sciences, Auckland University, Auckland, New Zealand) for having allowed me to use their lab and equipment, without which I would not have been able to get as much insight into the brain of a kakapo as I did. Special thanks go to my lab companions Dr. Pricilla Longerot and Dr. Nils Kruetzfeld, and the lab technician Silke Fuchs.

Thanks go to an amazing lady: Dr. Monica Acosta (Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand), who not only taught me about the visual system in birds but helped me in refining my art of writing. Her passion is contagious, and it was an inspiration to work with Monica. Her lab technician Mai Truong is thanked for her help in and around the lab.

The gas-chromatographically analysis would not have been possible without the help of a lab technician, and I thank Dr. Dung Nguyen (Centre for Genomics & Proteomics, School of Biological Sciences, Auckland University, Auckland, New Zealand) for her extensive help. Dung is also thanked for deeper insights into the processes of gas chromatographic work.

I had the pleasure of examining the olfactory abilities of kea and kaka during my PhD. I am grateful to Auckland Zoo for permitting me to work in their native fauna section. In particular, I would like to thank Andrew Nelson, Michelle Whybrow, Natalie Clark, Tanya Shennan, Debs Searchfield, Sarah Anderson, Helen Watson and Claire Cameron for helping with the experiment.

I would like to thank two veterinarians for their help: Dr. Richard Jakob-Hoff (senior veterinarian at Auckland Zoo, Auckland, New Zealand) for providing me with samples of kakapo and Assoc. Prof. Brett Gartrell (Institute of *Veterinary,* Animal and Biomedical Sciences (IVABS), *Massey University,* Palmerston North, New Zealand) for providing me with the brain of a kea.

Thanks are also expressed to Dr. Walter Boles and Jaynia Sladek (Australian Museum, Sydney, Australia), who provided me with the specimen of an Eastern ground parrot. Brian Gill (Curator, Auckland Museum, Auckland, New Zealand) is thanked for general advice.

Dr. Marti Anderson is not only an amazing person, but also she makes statistical understanding unbelievably easy and painless. Thank you for your help and support in finding my way through PRIMER and PERMANOVA+! I am pleased having met Marti and for her firing inspiration, as it made things so much easier.

Grateful thanks and much appreciation is given to Dr. Daryl Eason, Deidre Vercoe, Jo Ledington, Chris Birmingham and volunteers of the Kakapo Recovery Programme for sampling kakapo feathers.

Massey University, and in particular the Institute for Natural Sciences, Massey University, Albany New Zealand, are thanked for four years of PhD funding and for paying diverse project costs, which could not be covered by other funds.

The Department of Conservation (Te Papa Atawhai), the Te Rūnanga o Ngāi Tahu and Auckland, Zoo, New Zealand are thanked for their help in handing out the necessary permits for this work.

Special thanks go to Katrina Rainey for improving the manuscript.

The time in the lab and as a PhD student was sweetened by numerous cakes baked by Dianne Brunton, Weihong Ji and numerous students, without their input and help the time here would have been much harder. I thank my colleagues and friends for being there and hopefully without forgetting anybody, you are named in alphabetic order: Achyut Aryal, Dr. Alice Tait, Andy Warneford (thanks for the homebrewed beer evenings), Anne-Sophie Boyer, Dr. Birgit Ziesemann (vielen Dank für das Teilen einiger Sorgen, was manches leichter machte), Brigit Kreigenhofer (I will never forget your contagious laugh:-), Cheeho Wong, Chris Wedding, David Gudex-Cross, Prof. David Raubenheimer, Dylan van Winkel, Dr. Elizabeth Laman-Trip, Dr. Elmira Mohandesan, Dr. Emanuelle Martined-Smagghe, Dr. Gabby Beans (your photos are an inspiration), Gabriel Machovsky Capuska, Idan Shapira, Jennifer Ricket, Jenny Laycock, Dr. Jim Dale, Dr. Jo Peace (epic cake baker), Jonathan Gulliver, Jürgen Kolb (vielen herzlichen Dank, dass Du da warst, ich werde unsere Kaffeepausen vermissen), Dr. Luis Ortiz Catedral (amazing biologist and adverturer, what a pleasure to know you), Dr. Karen Stockin (never enough hugs for you for being an awesome person), Katie Hartnup, Dr. Kevin Parker (an inspiration), Dr. Luis Ortis Catedral (just as well, an inspiration to greater purposes), Dr. Manuela Barry (herzlichen Dank fuer alle Deine Zeit auch wenn Du keine Zeit hattest), Mark Delany, Dr. Mark Seabrook-Davidson (many thanks for good and useful advice throughout my PhD), Marleen Barling, Dr. Michael Anderson (many thanks for proofreading), Michelle Roper (many thanks for getting that video equipment working for me), Monika Merriman (thanks for being there), Monique Van Rensberg (always a good friend), Nazanin Ebrahimi, Rosalynn Anderson-Lederer (wished you were not so far away), Dr. Rosemary Barraclough, Sarah Dwyer, Sarah Wells, Sarah Whitwell, Saumya Agrawal, Dr. Shauna Baillie, Taneal Gulliver, Dr. Uri Shanas and Dr. Vincenzo Petrella (tua pizza è la migliore!).

A handful of good overseas friends regularly kept contact and encouraged me in my endeavours; I like to thank Belinda Chan, Christophe and Elisabeth Bruder, Claudia Hudson, Manuela Wymann, Denise Wyniger, Vera Thuis and Claudia Vogel.

I had the help of many proofreaders, who are named here in alphabetic order: Dr. Michael Anderson, Dr. Manuela Barry, Alena Gsell, Dr. Kevin Parker, Katarina Rainey and David Vincent.

Illustrations in this thesis were generously provided by Stephen Belcher, a professional photographer, whose work can be viewed at: http://www.stephenbelcher.net/, Chris Birmingham, ranger at the Kakapo Recovery Programme, worked hard to get all six chicks born in 2008, more or less wellbehaved, sitting next to each other, Dr. Luis Ortiz Catedral, Dylan van Winkel, a naturalist, conservationist and herpetologist, whose worked is described under the following website: http://dylanvanwinkel.wordpress.com. Rebecca Wu contributed with her amazing kakapo collages.

I would like to thank all of them for their contribution.

'Nothing is by chance'

Eileen Caddy

THESIS STRUCTURE AND FORMAT

This thesis is written as a series of seven interrelated chapters, two of which (Chapters Five and Six) have been published in part in peer reviewed journals (Corfield *et al.* 2011; Gsell *et al.* 2012). *Chapter One: scent and olfaction in birds; kakapo (Strigops habroptilus) as a model species* introduces the main subject of my thesis by discussing the current knowledge on olfactory signalling in birds and reviewing the literature on the use of olfaction in birds. The particular case of the kakapo is reviewed by addressing its history and evolution, as well as its behavioural characteristics and the current conservation status. Additionally, it is described why the kakapo makes an excellent model in which to study olfaction in birds. At the end of this first chapter, a brief summary of the specific aims of this thesis is presented.

Chapters Two to Six are data chapters and can be divided into four sections. The first section, Chapter Two, deals with the characteristics of the scents emitted. The second section, Chapter Three and Four, deals with the anatomical specialization for scent perception, the brain and the olfactory bulb, in particular. The third section, Chapter Five, looks at the visual system in kakapo, in order to evaluate the importance of olfactory versus visual cues. The fourth section, Chapter Six, combines both aspects of emitting and perceiving scent and looks at whether the kakapo closest relatives, the kea (*Nestor notabilis*) and the kaka (*N. meridionalis*) possess olfactory abilities by using behavioural experiments. Chapter Seven consolidates all findings.

Chapter Two: The chemical analysis of kakapo (Strigops habroptilus) feather scent.

The strong, sweet smell of the kakapo has been described on many occasions, yet it is not known what role it plays. Regular health checks and transmitter changes in the remaining kakapo population on Codfish Island, New Zealand, provided me with the opportunity to obtain feather samples from different kakapo individuals, of different age and sex and collected at different seasons. This allowed me to conduct a complete analysis of the chemical composition of the feather odour in kakapo, encompassing age related, sexual and seasonal factors. Equipped with that data, I was able to assess what information kakapo can convey through its body odour. While Chapter Two discusses the qualities of the sweet smell of the kakapo and examines what type of information the kakapo is able to convey with the smell of its plumage, Chapters Three and Four address the ability of kakapo to receive and process olfactory information.

Chapter Three: A comparison of brain stuctures of the nocturnal kakapo (Strigops habroptilus) and the diurnal sulphur-crested cockatoo (Cacatua galerita) with special emphasis on the olfactory bulb and the optic lobe : The rare opportunity to obtain the brain of an old, male kakapo that had died at Auckland Zoo, presented the unique opportunity to look at the general brain anatomy of the kakapo and to compare it with that of the diurnal sulphur-crested cockatoo.

Chapter Four: Anatomy and histology of the olfactory bulb of the kakapo (Strigops habroptilus) in comparison to other Australasian parrots: Thanks to collaborators in Australia and Canada, I was able to examine and compare the detailed anatomy of the olfactory bulb of the kakapo and nine Australasian parrots of different behavioural ecology and size. These were the Australian king parrot (*Alisterus scapularis*), the cockatiel (*Nymphicus hollandicus*), the crimson rosella (*Platycercus elegans*), the Eastern ground parrot (*Pezoporus wallicus*), the Eastern rosella (*Platycercus eximius*), the galah (*Cacatua roseicapilla*), the rainbow lorikeet (*Trichoglossus haematodus*), the red-rumped parrot (*Psephotus haematonotus*) and the sulphur-crested cockatoo (*Cacatua galerita*). A detailed and comparative study of the anatomy and histology of the olfactory bulb in the kakapo, allowed me to address questions such as whether the kakapo has an acute sense of smell.

Chapter Five: Anatomy and histology of the visual system of the kakapo (Strigops habroptilus) in comparison to other birds: An environment is always perceived through a variety of senses, although some sensory systems are more developed than others. Therefore, the general findings regarding the olfactory system of different bird species were compared to the development and the character of the visual systems, with particular reference to the specific situation in the kakapo.

The visual system was assessed in two ways because retinal information is conveyed over two major pathways: the thalamofugal pathway and the tectofugal pathway. In order to assess visual abilities, it is therefore important to examine the retina and specific brain compartments. For that reason, I describe the retina of the kakapo, while comparing it to the retina of other typical diurnal birds (the domestic chicken, *Gallus gallus*, and the rock pigeon, *Columba livia*), and nocturnal birds (the barn owl, *Tyto alba*, and the predominantly nocturnal morepork, *Ninox novaeseelandiae*). Additionally, I compared four visual brain centres (the entopallium, the nucleus rotundus, the tectum opticum and the Wulst) among nine different parrots. I contrasted the visual brain centres in the kakapo brain with those of the parrots used in the comparison made in the olfactory bulb. Only the Eastern ground parrot had to be replaced with a sample from the kea (*Nestor notabilis*), as the preservation quality of the brains did not always allow me to use them for all examinations. Parts of this work have been published in a peer-reviewed journal (Corfield *et al.* 2011 and Appendix A, Figure A1). Dr.

Jeremy Corfield gained first authorship in this paper due to his connections to Dr. Andrew Iwaniuk and for making this paper possible. Laboratory work has been equally conducted by myself and Jeremy Corfield, data analysis for the paper was mainly conducted by Dr. Jeremy Corfield and Dr. Andrew Iwaniuk, while write up was predominantly done by myself, Dr. Jeremy Corfield and Dr. Andrew Iwaniuk. The data presented in Chapter Five differs from what is presented in the paper, because I conducted my calculations with a different set of parrot species.

Chapter Six: Olfactory sensitivity in kea and kaka: In order to evaluate whether the sense of smell and the action of scenting play any role in the ecology of the Nestoridae, I conducted scent experiments with the kakapo's closest relatives, the kea (*Nestor notabilis*) and the kaka (*N. meridionalis*) at Auckland Zoo. The experiments tested whether kea and kaka possess olfactory abilities and whether they are able to discern different scents and different concentrations of scents. The work presented in this chapter has been published in a peer-reviewed journal (Gsell *et al.* 2012 and Appendix B, Figure B1). I conducted all the experiments, the statistical analysis and the write-up, while my co-authors provided useful input.

Chapter Seven: Conclusions and outlook: The last chapter summarises all information and puts it into context. The relevance of my findings is discussed and research directions are suggested.

Appendixes A&B: Statement of contribution for a publication

Appendixes C-H: present supporting information to Chapter Two.

References: All references are listed at the end of the thesis to minimise repetition. All literature cited is consistent with the format used for the scientific journal: *Proceedings of the Royal Society, Sciences B.* For a list of title word abbreviations, see:

http://www.csa.com/ids70/serials_source_list.php?db=biolclust-set-c.

TABLE OF CONTENT

ABSTRACT	Ι
REFLECTION AND ACKNOWLEDGEMENTS	III
THESIS STRUCTURE AND FORMAT	Х
LIST OF TABLES	XVIII
LIST OF FIGURES	XIX
CHAPTER ONE: SCENT AND OLFACTION IN BIRDS; KAKAPO (STRIGOPS	HAB-
ROPTILUS) AS A MODEL SPECIES	1
1.1 Overview	2
1.2 Signals	3
1.3 Olfactory signals	3
1.4 Social scents	4
1.5 Spatial movements	6
1.6 Scent as defence	7
1.7 Chemotaxonomy	8
1.8 Detection of scent: the olfactory region of the brain	9
1.9 Production of scent	9
1.10 The Kakapo: a parrot unlike any other	10
1.11 History, taxonomy, appearance, flightlessness and nocturnality of kakapo	10
1.12 Lek-Breeding	13
1.13 Conservation, a species at the brink of extinction	15
1.14 A perfume like no other and how an idea became a thesis	15
1.15 Thesis outline and structure	16
CHAPTER TWO: THE ROLE OF BREEDING CONDITION, SEASON, SEX AND) AGF
ON THE CHEMISTRY OF KAKAPO (STRIGOPS HABROPTILUS) FEATHER S	
	19

20
20
23
23

2	2.3.2	Sampling of feathers	23
2	2.3.3	GC-MS analysis of feather sets	23
2	2.3.4	Data analysis	24
2	2.3.5	Principal coordinate analysis (PCO)	26
2	2.3.6	Test of homogeneity of dispersion (PERMDISP)	26
2	2.3.7	Permutational ANOVA and MANOVA: PERMANOVA	26
2	2.3.8	Canonical analysis of principal coordinates (CAP)	27
2	2.3.9	Procedure	27
2.4	Results		28
2	2.4.1	Chromatograms	29
2	2.4.2	Same sex comparisons	29
	2.4.2.1	Booming versus non-booming males	29
	2.4.2.2	Males – breeding season versus non-breeding season	29
	2.4.2.3	Females – breeding season versus non-breeding season	30
2	.4.3	Group comparisons	32
	2.4.3.1	Sexual differences during the breeding and non-breeding season	32
	2.4.3.2	Age related differences during the breeding and non-breeding season	32
2	2.4.4	Males of unknown booming status	34
2.5	Discuss	ion	36

CHAPTER THREE: A COMPARISON OF BRAIN STUCTURES OF THE NOCTUR-NAL KAKAPO (*STRIGOPS HABROPTILUS*) AND THE DIURNAL SULPHUR-CRESTED COCKATOO (*CACATUA GALERITA*) WITH SPECIAL EMPHASIS ON THE OLFACTORY BULB AND THE OPTIC LOBE. 41

3.1. Abstract		42
3.2. Introduction		42
3.3. Methods		45
3.3.1	Specimens and permits	45
3.3.2	Preparation of brains and sectioning	46
3.3.3	Specific methods in creating brain atlases	46
3.3.4	Areas identified on the atlas	46
3.4. Results		48
3.4.1	Brainstem	48
3.4.2	Telencephalon	48
3.5. Discu	3.5. Discussion	

CHAPTER I	FOUR: ANATOMY AND HISTOLOGY OF THE OLFACTORY BU	LB OF THE
KAKAPO (STRIGOPS HABROPTILUS) IN COMPARISON TO OTHER	AUSTRAL-
ASIAN PAF	RROTS	61
Abstr	act	62
4.1Intro	duction	62
4.1.1	A unique opportunity	64
4.1.2	Olfactory bulb, its layers and their functionality	65
4.2 Meth	lods	68
4.2.1	Specimens	68
4.2.2	Permits	68
4.2.3	Preparation of brains and sectioning	71
4.2.4	Shrinkage factors	71
4.2.5	Creation of photo-micrographs	73
4.2.6	Modelling of brain compartments in Amira	73
4.2.7	Delineation of brain compartments	74
4.2.8	Modelling of brain compartments	75
4.2.9	Data analysis of brain compartments	75
4.2.10	Analysis of the olfactory bulb layer size	76
4.2.11	Creation of line diagrams of the olfactory bulb	76
4.2.12	Mitral cell counts	76
4.2.13	Average mitral cell length	77
4.2.14	Principal component analysis (PCA)	77
4.2.15	Measurement of the olfactory bulb using Bang and Cobb's (1968) method	78
4.3 Resul	ts	78
4.3.1	Olfactory bulb size	78
4.3.2	Configuration and composition of the olfactory bulb layers	83
4.3.3	Volumetric assessment of the olfactory bulb layers	87
4.3.4	Mitral cell count	90
4.3.5	Mitral cell length	91
4.3.6	Principal component analysis (PCA)	93
4.4 Discu	ssion	94
4.4.1	Olfactory bulb size	94
4.4.2	Descriptive assessment of the olfactory bulb	94
4.4.3	Making use of museums specimens	97
4.4.4	Low sample sizes and their value?	99

CHAPTER FIVE: ANATOMY AND HISTOLOGY OF THE VISUAL SYSTEM IN THE			
КАКАРО (STRIGOPS HABROPTILUS) IN COMPARISON TO OTHER BIRDS	5 101	
5.1Abstr	act	102	
5.2 Introduction		102	
5.2.1	Retina	104	
5.2.2	Two pathways for retinal information	104	
5.2.3	Outcomes	105	
5.3 Meth	nods	106	
5.3.1	Specimens and modelling of brain regions	106	
5.3.2	Volumetric Measurements of visual centre	106	
5.3.3	Retina	106	
5.4 Resu	lts	107	
5.4.1	Brain Morphology	107	
5.4.2	Brain Volumetric	109	
5.4.3	Retina	109	
5.5 Discu	ussion	113	
CHAPTER	SIX: OLFACTORY SENSITIVITY IN KEA AND KAKA	117	
6.1 Abst	ract	118	
6.2 Intro	duction	118	
6.3 Meth	nods	119	
6.3.1	Scent experiment set-up	119	
6.3.2	Measuring parrot responses	120	
6.4 Resu	lts	121	
6.5 Discussion		126	
CHAPTER	SEVEN: CONCLUSION AND OUTLOOK	129	
7.1 Intro	duction	130	
7.2 Mair	findings	131	
7.2.1	The brain of the kakapo as a window to its sensory abilities	131	
7.2.2	The quality of the chemical composition of kakapo scent	131	
7.2.3	The use of scent in the kakapo's closest relatives, the kea and the kaka	132	
7.3Futu	re research	132	
7.3.1	Can bird odour signals indicate a male's quality?	133	
7.3.2	Do kakapo display MHC-dependent mate choice?	134	

7.3.3	Chemical composition and origin of scent	135
7.4 Implic	ations	136
REFERENC	ES	141
APPENDIX	A: STATEMENT OF CONTRIBUTION FOR A PUBLICATION 1	163
APPENDIX	B: STATEMENT OF CONTRIBUTION FOR A PUBLICATION 2	164
APPENDIX	C: DETERMINATION OF PEAKS	165
APPENDIX	D: BOOMING VERSUS NON-BOOMING MALES	170
APPENDIX	E: WITHIN SEX COMPARISIONS	171
APPENDIX	F : GROUP COMPARISONS	172
APPENDIX	G: LIST OF FEATHER SAMPLES	173
APPENDIX	H: ACCOMPANYING CD OF KAKAPO CHROMATOGRAMS	176

LIST OF TABLES

Table 2.1	Birds divided by categories used in the feather scent analysis	25
Tabel 2.2	Summary of all results: Comparisons within sex and groups	31
Table 3.1	Abbreviations used in the two brain atlases	59
Table 4.1	List of birds used and some of their main traits	70
Table 4.2:	Overview of parrots used	72
Table 4.3	Volumetric measurements of the brain, olfactory bulb, olfactory bulb layers and	81
	visual centres	
Table 4.4	Olfactory bulb ratios in the kakapo and the sulphur-crested cockatoo	82
Table 4.5	Volumetric size of the olfactory bulb layers (as a function of bulb size) in kakapo	89
	and other Australasian parrots	
Table 4.6	Number of mitral cells per bulb	90
Table 5.1	Average thickness for central and peripheral retina and retinal layers in diurnal	111
	and nocturnal species	
Table 6.1	Summary of scent trial schedules and the scents used	125
Table C1	Examples of an output data file from the Agilent 6890 Gas Chromatograph and	168
	AMIDS	
Table G1	Birds sampled for the feather scent analysis	173
Table HA	Birds sampled for the feather scent analysis	CD

LIST OF FIGURES

Figure 2.1	Chromatograms of a male and a female kakapo during the breeding and	28
	non-breeding season	
Figure 2.2	Principal coordinate analysis of booming versus non-booming males	29
Figure 2.3a	Principal coordinate analysis of males during the breeding and non-breeding	30
	season	
Figure 2.3b	Principal coordinate analysis of females during the breeding and non-	30
	breeding season	
Figure 2.4	Principal coordinate analysis of feather samples of adult males versus fe-	33
	males	
Figure 2.5	Canonical analysis of principal coordinates separating booming males from	34
	non-booming males	
Figure 2.6 a	Principal coordinate analysis of the chemical composition of feather scent in	35
	four birds sampled during the breeding and non-breeding season	
Figure 2.6 b	Correlation of the chemical components with the two PCO axes	35
Figure 3.1 a	Brain of a kakapo	45
Figure 3.1 b	Brain of a sulphur-crested cockatoo	45
Figure 3.2 a-l	Brain atlas of the kakapo	52
Figure 3.3 a-o	Brain atlas of the sulphur-crested cockatoo	56
Figure 4.1	Relative size of the olfactory bulb in 108 species of birds	63
Figure 4.2a	3D modelling using Amira for volume calculations	74
Figure 4.2b	Screenshot of the user interface of Amira	74
Figure 4.3	Box-plot of the olfactory bulb volume of kakapo and nine Australasian par-	78
	rots	
Figure 4.4	Scatter plots of the olfactory bulb	80
Figure 4.5a	Photo of the kakapo brain and the ration between largest diameter of the	82
	olfactory bulb versus largest diameter of the corresponding cerebral hemi-	
	sphere	
Figure 4.5 b	Magnified view of the olfactory bulb of a kakapo	82
Figure 4.6	Photo-micrograph of the olfactory bulb of the kakapo and line diagram indi-	84
	cating the different layers	
Figure 4.7a-h	Photo-micrographs of the olfactory bulb and line diagrams of the layers	87
	identified in the olfactory bulb	
Figure 4.8	Box-plot of the volumetric differences in seven layers of the olfactory bulb	88

Figure 4.9	Bar-diagram of the average size and standard error of mitral cells	91
Figure 4.10 a	Scatter-plot of the number of mitral cells per volume (mm ³)	92
Figure 4.10 b	Scatter-plot of the averaged length of mitral cells (mm)	92
Figure 4.11	Principal component analysis of the number of mitral cells and their aver-	93
	aged length	
Figure 5.1	Schematic diagram of the two visual pathways	105
Figure 5.2	Photo of the brain s of kakapo, kea and kaka	108
Figure 5.3	Scatter-plots of each of the four visual brain regions measured against total	110
	brain volume	
Figure 5.4	Photomicrographs of transverse sections through the retina of seven bird	113
	species	
Figure 6.1	The frequency of visits to scent pipes per day	122
Figure 6.2	The time spent by each bird at scent pipes per day	123
Figure 6.3	The frequency of touches of scent pipes per day	124
Figure A1	Statement of Contribution 1	163
Figure B1	Statement of Contribution 2	164
Figure C1A	Chromatogram with a peak at 10.3 mins	165
Figure C1B	Fragmentation series of compounds found at the area of interest	165
Figure C2	Automated Mass Spectral output file	166
Figure C3	Choice of peaks	167
Figure D1	Principal coordinate analysis (PCO) of booming versus non-booming males	170
Figure E1A	PCO of males during the breeding and non-breeding season	171
Figure E1B	PCO of females during the breeding and non-breeding season	171
Figure F 1&2	Sexual differences during breeding- and non-breeding season	172
Figure F 3&4	Age related differences within and outside the breeding season	172
Figure H1-68	Chromatograms of the feather odour from all kakapo used in this thesis	CD