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ABSTRACT 

The construct ion and performance of a Pulsed Field Gradient system for 

use with a commerc ial , high-resolut ion , Fourier-Transform NMR spectrometer 

is described . The self-diffusion coefficient of benzene as measured by 

the calibrated system is in agreement with the current literature value , 

within the overall experimental error of the system ( +2% ) .  The use of 

an external lock in conjunct ion with signal averaging facilitates the 

measurement of self-diffusion coefficients for solution components in 

small concentrat ions . During s ignal accumulat ions, the system exhibits 

freedom from the spin-echo phase and envelope instabilities mentioned as 

sources of error even in recent publicat ions dealing with the Pulsed 

Field Gradient technique ( e . g .  von Meerwall et a l . , 1 97 9 ) .  The 

ability of the system to invest igate dilute solutions is demonstrated by 

measurements made on 0 . 5% ( w/v ) solut ions of polystyrene in carbon 

tetrachloride . Homogeneity coils included in the NMR probe have allowed 

the self-diffusion coefficients of some single components in mult i­

component systems to be invest igated , and results for the binary system 

butanol-benzene are presented . 

Polymer self-diffusion coefficients have been obtained for 110 , 000 

molecular weight random-coil polystyrene in the solvents carbon tetra­

chloride , deuterated-chloroform and deuterated-toluene .  The Pulsed 

Field Gradient NMR method was used for the measurements ,  and the poly­

styrene concentrat ions ranged from 0 . 5% (w/v ) to 2 5% ( w/v ) . For each 

solvent a concentrat ion regime is found in which the de Gennes ' polymer 

self-diffus ion scaling law is obeyed; and the upper concentration limit 

at which this scaling law breaks down is defined . The self-diffusion 

coefficient of polystyrene in the solvent deutero-benzene has also been 

determined, and is shown to agree with Forced Rayle igh Scattering self­

diffus ion results for similar molecular we ight polystyrenes in normal 

benzene . In contrast , values of th� self-diffusion coefficient obtained 

for polystyrene random-coils by calculation from sedimentat ion data are 

shown to differ significantly from those directly determined . The 

mutual diffusion coefficients of the polystyrene solutions have been 

obtained from Quasi-E lastic Laser Light-Scattering experiments .  These 

mutual diffusion coefficients do not approach the directly measured self­

diffusion coeffic ients even at concentrations where the random-coils are 

on average well separated . It is proposed that migrat ing polymers must 

suffer transient entanglement effects over the experimental time scales 



employed in the diffusion measurements .  

Quasi-Elast ic Laser Light-Scattering has also been used to measure the 

diffusion coefficient of polystyrene latex spheres in 0 . 01M and 0 . 001M 

sodium chloride . Experiments were conducted over the latex sphere 

concentration range 0,0 04% (w/v ) to 4 . 46% (w/v ), and several measurements 

were also made for low concentrat ions of latex spheres in triply 

distilled water . The diffusion coefficient was found to be ionic 

iii 

strength dependent over the entire concentrat ion range studied . Solut ions 

of polystyrene spheres at moderate concentrat ions exhibit the phenomenon 

of multiple scattering . The available literature on multiple scattering 

is reviewed and criteria adopted for the reliable interpretation of data 

collected during experiments on these solutions . The diffusion 

coefficients so obtained show substantial agreement with the mutual­

diffusion coefficient results of Anderson et al . ,  obtained by a capillary 

penetration technique . The conclusion reached in this sect ion of the 

work is that Quasi-Elast ic Laser Light-Scattering is able to provide a 

measure of the mutual diffusion coeffic ient in the presence of interact ions 

between charged macromolecules .  This conclusion i s  seen to be in accord 

with earlier laser light-scattering studies on solut ions of the protein 

Bovine Serum Albumin, provided that a reassessment of available mutual 

diffusion data on these systems is undertaken . 
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