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Abstract

The economy and the environment are both affected by traffic congestion. People spend

time stuck in traffic, which limits their free time. Every city’s road infrastructure is

under increased pressure, particularly in large cities, due to population growth and

vehicle ownership patterns. Therefore, traffic control and management are crucial to

reducing traffic congestion problems and effectively using existing road infrastructure.

Bluetooth is a commonly used wireless technology for short distance data exchange.

This technology allows all mobile phones, GPS systems, and in-vehicle applications such

as navigation systems to connect with the personal devices of drivers and passengers. A

Media Access Control (MAC) address is a unique electronic identifier used by each

Bluetooth device. The concept is that, while a Bluetooth-equipped device travels along

a road, its MAC address, detection time, and location can be detected anonymously

at different locations. Bluetooth technology can be integrated into Intelligent Trans-

portation Systems (ITS) to enable better and more effective traffic monitoring and

management, hence reducing traffic congestion.

This thesis aims to develop some statistical methods for analysing Bluetooth track-

ing data in traffic modelling.One of the challenges of using Bluetooth data, particu-

larly for travel time estimation, is multiple Bluetooth detections, which occur when a

Bluetooth sensor records a Bluetooth device several times while it passes through the

detection zone.We employ cluster analysis to look at the possibility of extracting mean-

ingful traffic information from multiple detections, and the observed gap distribution,

which is the time difference between records when multiple detections occur.We also

develop a novel regression method to investigate the relationship between data from

Bluetooth and Automatic Traffic Counts (ATCs) through weighted regression analysis,

in order to explore potential causes of bias in the representativeness of Bluetooth detec-

tions. Finally, we seek the practical objective of recovering ATC from Bluetooth data

as a statistical calibration problem, following the development of a new time-varying

coefficients Poisson regression model.
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Chapter 1

Introduction

As the world’s population and use of private vehicles continues to increase, road conges-

tion creates multiple challenges. In this regard, urban transportation infrastructure has

a significant impact on travellers’ economic, environmental, psychological, and stress

levels. As a result, urban traffic monitoring, strategic management, and transportation

planning are essential to reducing traffic congestion.All of them are time-consuming

and costly, which also requires close collaboration among traffic administrative agen-

cies, intelligent transport systems (ITS), and traffic experts. For example, traffic man-

agement systems reduce traffic congestion by monitoring, optimising subsystems (such

as traffic signals), and controlling traffic on road networks (Diebold, 1995; Chen and

Miles, 2004). Traffic management requires traffic data collection in order to process and

manage various strategies for optimising traffic flow and reducing congestion (Hounsell

et al., 2009).

Traditional data collection methods, such as loop detectors, Automatic Number

Plate Recognition (ANPR) cameras, Automatic Traffic Counters (ATC) etc., are still

developing, but they are costly in terms of both supply and maintenance (Leduc, 2008).

The potential of other technology choices, such as wireless communications, offers

further possibilities for the improvement of existing systems with low-power and cost-

effective sensors. In early 2000, researchers began to examine Bluetooth for monitoring

the movement of vehicles and employing it to ITS (Nusser and Pelz, 2000; Kasten and

Langheinrich, 2001; Murphy et al., 2002; Sawant et al., 2004; Friesen and McLeod,

2015). Bluetooth is a wireless communication technology in order to connect many dif-

ferent types of devices such as smartphones, wireless headsets, tablets, heart monitors,

medical equipment, in-vehicle navigation, etc. (Haartsen, 1998). Figure 1.1 shows some

examples of activated Bluetooth devices used in vehicles, such as in-vehicle navigation,

wireless headset, and smartphone.
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Figure 1.1: Examples of Bluetooth devices used in vehicles
(Source:postoaktraffic.com).

Researchers have been interested in the use of Bluetooth technology as a source of

transportation data to monitor traffic conditions, and the Bluetooth sensor is mentioned

as having lower-cost installations and maintenance (Puckett and Vickich, 2010). It is

also capable of extracting essential traffic data, including travel time, origin-destination

(OD) matrices, and speed to be obtained across networks (Barcelö et al., 2010; Puckett

and Vickich, 2010; Malinovskiy et al., 2011; Barceló Bugeda et al., 2012a; Michau et al.,

2014; Purser, 2016; Michau, 2016; Cotten et al., 2020; Liu et al., 2020).Michau et al.

(2014) used data from Bluetooth sensors in Brisbane to create OD matrices. The Blue-

tooth detector’s coverage region is usually divided into smaller geographic zones, with

two potential origin and destination locations. By matching the Bluetooth detections

between these two locations, the elements of these matrices represent a census of the

volume of trips from origin to destination points. After collecting the data from the

Bluetooth detectors, it can be used to obtain vehicle travel times between detectors

or average speed of vehicles, and the traffic density on the particular road section cov-

ered by the Bluetooth detector (Puckett and Vickich, 2010; Malinovskiy et al., 2011;

Barceló Bugeda et al., 2012b; Laharotte et al., 2014; Tahmasseby, 2015; Purser, 2016;

Zhou et al., 2016).

The majority of research has concentrated on using Bluetooth data to estimate

travel time and speed in order to evaluate traffic conditions on a particular road seg-

ment (e.g. between two Bluetooth detector locations)(Puckett and Vickich, 2010; Ma-

linovskiy et al., 2011; Dı́az et al., 2015; Purser, 2016; Erkan and Hastemoglu, 2016;

Zhou et al., 2016; Cotten et al., 2020; Liu et al., 2020). For example, Malinovskiy

et al. (2011) explored travel time estimation on a short corridor and compared Blue-

tooth travel time with travel time estimated by Automated Licence Plate Recognition

(ALPR) sensors. The results of this study showed that a larger detection zone is prefer-

able, and so a shorter corridor will result in more travel time errors.Quayle et al.

(2010) investigated arterial travel time by comparing Bluetooth and GPS data and

concluded that Bluetooth has the ability to accurately measure travel time over long

spans of time. Their research was conducted on suburban signalized arterial roads in

Portland, Oregon. Bachmann et al. (2013) combined Bluetooth data with loop detector

data to estimate freeway traffic speeds and showed that using Bluetooth data and probe
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data like GPS can improve estimation. This research was conducted on a freeway rather

than on urban roads, which have different characteristics. Dı́az et al. (2015) investigated

commercial Bluetooth detectors in actual traffic situations on a freeway.The resulting

Bluetooth-enabled traffic monitoring system produced highly reliable 5-minute travel

time estimations. Liu et al. (2020) also looked into how accurate Bluetooth travel time

estimates are in urban arterial areas, considering two major challenges: the multiple

detection problem and errors in Bluetooth estimates.When a discoverable Bluetooth

device is recorded several times by a Bluetooth sensor while it passes across the detec-

tion zone, the multiple detection problem refers to the choice of detections that should

be used to calculate travel time estimates. They demonstrated that accurate Bluetooth-

based travel time information on signalised arterial roadways can be achieved if a proper

matching method is used to smooth out the errors in the travel time estimates, such as

average-to-average and last-to-last matching methods.

Since different travel modes (e.g., vehicles, bicycles, and pedestrians) cause different

travel times, Araghi et al. (2012) used clustering techniques such as hierarchical clus-

tering, K-Means clustering, and two-step clustering to test the feasibility of using Blue-

tooth data to estimate mode-specific travel times for different travel modes. Crawford

et al. (2018) also looked into the possibility of identifying road user classes based on

their frequent travels and classifying them into three categories: infrequent, frequent,

and very frequent.

The goal of this study is to look into some statistical methods for analysing Blue-

tooth tracking data in traffic modelling. In this regard, in the rest of this chapter we

will present more details on how Bluetooth detectors operate, introduce properties and

some challenges of the data they collect.

1.1 Structure of thesis

The majority of research has concentrated on using Bluetooth data to estimate travel

time and speed in order to evaluate traffic conditions on a particular road segment

(e.g. between two Bluetooth detector locations). As noted above, multiple detection

is one of the challenges that most research, particularly in the area of travel time

estimation, tries to handle by choosing one detection and filtering out the rest. There is

a time difference between records when multiple detections happen, resulting in a gap

distribution between detections. This research first aims to investigate the possibility of

obtaining meaningful information (e.g. traffic conditions) from multiple detections and

the observed gap distribution in a particular Bluetooth coverage zone.

In Chapter 2, we investigate this possibility in a particular Bluetooth coverage

zone. Cluster analysis is a popular unsupervised learning method which can be used
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to analyze data and identify underlying patterns or groupings. Therefore, the first ap-

proach to investigating the goal is to perform cluster analysis based on multiple detec-

tions and the gap distributions to categorize Bluetooth detector sites, MAC addresses,

and time intervals of a day.To cluster distributions, we utilize the Kolmogorov-Smirnov

statistic.

In Chapter 3, we will investigate the relationship between ATC and Bluetooth detec-

tions, which may help us investigate potential causes of bias in Bluetooth detections’

representativeness.We will utilize regression analysis for modelling the relationship,

taking into account that some observable factors may influence the rate of Bluetooth

detection.We develop a methodology incorporating a non-parametric estimate of the

variance function to explore some alternative models for the relationship.

In Chapter 4, we will develop a Poisson regression model to describe the rate of

Bluetooth detection per vehicle as it varies over time.We will examine the practical goal

of recovering ATC from Bluetooth data following the development of an appropriate

regression model associated with the statistical calibration problem.The goal will be

to predict the unknown ATC value based on the number of Bluetooth counts during

a particular time of day. Finally, Chapter 5 reviews the dissertation’s outcomes and

presents some recommendations for further research.

1.2 Bluetooth technical overview

Bluetooth devices are designed to communicate with and then connect with other

Bluetooth devices which are in close proximity.An active Bluetooth device can be

detected by a unique Media Access Control Identification address (MAC address),

which is a combination of six alphanumeric pairs. The first three pairs are related to

the manufacturer and are allocated by the Institute of Electrical and Electronics En-

gineers (IEEE).The last three pairs are defined by the manufacturer. For example,

7C:6B:9C:39:64:0C is a sample MAC address, where 7C:6B:9C is the manufacturer’s

Organization Unique Identifier (OUI), and 39:64:0C is the device’s unique ID assigned

by the manufacturer as the device’s series number.Despite the fact that MAC ad-

dresses are supposed to be unique, Michau et al. (2014) have discovered that some

MAC addresses are shared among cars. For example, some MAC addresses are shared

by taxi drivers. In the Manchester Bluetooth network, similar shared MAC addresses

also happens.One explanation is the ability to clone Bluetooth device characteristics

for fleet-specific requirements (Cherchali et al., 2010).

Bluetooth uses a radio technology called frequency-hopping spread spectrum over

short distances, from a minimum of 1 meter to more than 100 meters. Depending on

the class radio implementation, the range may be differentiated into three categories

(see Table 1.1).
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Class Transmission power Range

Class 1 100 mW 100 m

Class 2 2.5 mW 10 m

Class 3 1 mW 1 m

Table 1.1: Bluetooth classes, Source:(Frodigh et al., 2000).

In Bluetooth, a piconet is a basic network consisting of two main objects: master

unit and slave unit. These networks can vary in size. Figure 1.2 shows sample of three

different piconets.

Figure 1.2: Sample of three different piconets.

In the piconet, the master unit acts as the main controlling unit and the other

devices that follow the master unit are slave units. The frequency hopping sequences

to enable the synchronization between the master and the slave devices are controlled

by the master device. The communication is just between master to slave or slave to

master, and there is no connection between slaves in a piconet. Note that there can be

up to seven active slaves participating in a piconet at the same time, but with only

one master. A scatternet is a collection of multiple piconets with overlapping areas that

can connect with one another via a shared node. Figure 1.3 depicts an example of a

scatternet with one slave unit as a shared node.
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Figure 1.3: Sample of scatternet (Source: sites.google.com/site/securezrp/introduction).

The Bluetooth device has two main states, standby and connect. The default state

of the Bluetooth unit is standby and in this state, it is in a low-power mode in which

no transmissions occur. The standby state changes to a connected state if there is an

active connection to the Bluetooth unit.

For making a connection, Bluetooth follows two procedures: inquiry (or discovering)

procedure and paging (or connecting) procedure. The inquiry procedure is designed to

scan for other devices within range to discover each other.During the inquiry process,

one Bluetooth device (the master) sends out the inquiry request and other Bluetooth

devices (the slaves) will respond with their address and possibly their name and other

information. In fact, in the inquiry process, the master unit invites the slave units to

create a piconet. After completing the inquiry cycle, the paging procedure creates a

connection between the master and the slave devices.

When a Bluetooth device is set to the inquiry mode, it continuously sends out in-

quiry packets called ID (identifier) packets via one of the 32 predefined inquiry channels

to detect potential slaves in the neighborhood, and scans for replies. In this phase, after

sending an ID packet, the master listens for response packets called frequency hopping

sequence (FHS) from the active slave devices. The FHS packet contains information

about the slave unit, such as its own address and clock values.

The Bluetooth protocol recommends an inquiry cycle of 10.24 seconds, and during

this time period, it is highly likely that an active Bluetooth device within the communi-

cation zone of the detector is detected (Peterson et al., 2006; Kasten and Langheinrich,

2001).

The main important factor that may affect the quality of the MAC address data

collection process is the characteristics of the scanners used as Bluetooth detectors. For
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example, it is important that a Bluetooth detector be able to cover the whole zone even

with the different kinds of environmental obstacles, such as trees, buildings, and other

physical structures that can interfere with wireless communication. There are two main

characteristics of the scanners: the type of antenna and its gain (strength). Basically,

directional and omni-directional are two types of antennas. The difference between these

two types is that omni-directional antennas send and receive signals from any direction

and directional antennas only cover one direction and limited angles. The gain defines

the size of the coverage and is called decibels-isotropic (dBi). The scanner range is

the maximum distance from the scanner, along with a given direction, over which the

scanner can communicate with active Bluetooth devices. Porter et al. (2013) categorized

the six different types of Bluetooth antennaes in terms of their capability and suitability

for the quality of the data collected, and the results indicated that omni-directional

antennas with a gain of 9 to 12 dBi are good choices for Bluetooth data collection.

1.3 Bluetooth for traffic monitoring

In transport applications, Bluetooth detectors sited at locations on the traffic network

act as a master to acquire the MAC addresses of the active Bluetooth devices on the

road as slaves within their communication zone. Therefore, the Bluetooth detector re-

peatedly conducts an inquiry process to detect any Bluetooth devices that are within its

antenna coverage area. The active Bluetooth devices in the coverage zone will respond

to this inquiry by sending a data package containing the MAC address. Note that in

transportation applications, only the inquiry process is needed and Bluetooth scanners

never make a full connection with an available Bluetooth device.

Figure 1.4 shows the detection area of two detectors (the green and red dot) sited

to pick up all vehicles passing through the junction with an activated Bluetooth device.

Figure 1.4: Detection zone.

Figure 1.5 demonstrates the detection of a sample car (red rectangle) with an acti-

vated Bluetooth device, before entering the detection zone and after leaving.As the car
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(red rectangle) is outside of the Bluetooth pick-up area, it would not be recorded.The

car will be detected even when it is partially in the coverage zone and will still record

until it leaves the coverage zone. Therefore, a device can be detected multiple times

if it remains within the coverage zone. In fact, there is a strong correlation between

the length of time that a device remains within the detection zone and the number of

detection records (Moghaddam and Hellinga, 2014).

(a) (b) (c)

Figure 1.5: (a) The car is outside of the Bluetooth pick-up area; (b) the car is partially
in the pick-up area;(c) the car is now fully in the pick-up area.

Figure 1.6 presents the operational concept of collecting traffic data using Bluetooth

detectors. As Figure 1.6 shows, the detectors are deployed on the roadside and they

can detect Bluetooth-enabled devices passing within their coverage zone. If the device’s

MAC address is observed at two consecutive Bluetooth detectors, then travel time and

the average speed for this vehicle over the road segment between these two detectors

can be calculated.As a result, processing similar data from a larger number of vehicles

represents a sample of the vehicle population and provides for estimation of traffic

conditions on this road segment.
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Figure 1.6: The operational concept of collecting traffic data using Bluetooth detec-
tors (Source:www.libelium.com).

1.4 Data description

The data used in this research was collected from Bluetooth MAC scanners installed

on urban roadways in Manchester by Transport for Greater Manchester (TfGM). Since

2011, TfGM has been installing fixed Bluetooth detectors on main arterial roads and

around key urban centres such as Manchester, Wigan, and Rochdale. Around 525 Blue-

tooth detectors owned by TfGM are operating on the Greater Manchester network and

actively recording data. In the case of the first analysis, we chose Manchester city. Figure

1.7 shows a part of the Manchester Bluetooth sites, where the green circles represent

the implemented Bluetooth detectors, and the blue and purple circles represent the

permanent and temporary Automatic Traffic Counters (ATC), respectively. Figure 1.8

displays a Bluetooth detector in Manchester.
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Figure 1.7: A part of Manchester Bluetooth sites (Source:tfgmc2.drakewell.com).

Figure 1.8: A Bluetooth detector in Manchester (Photo taken by Dr.Katharina Han-
naford).

The omni-directional antenna with 9dBi gain is used, which provides a range of

approximately 100 m (Bhaskar and Chung, 2013). The developer of the detectors claims

that Bluetooth detectors can cover up to 6 lanes of traffic travelling at 70 mph. The

vehicles with discoverable Bluetooth devices (i.e. smartphones, headsets, navigators,

etc.) should be captured by detectors. The settings of the sensor are edited on each

device separately and the pick-up zone is changed depending on the location/junction

the sensor is covering. This is to avoid picking up other Bluetooth devices from houses.
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1.5 Challenges presented by Bluetooth data

Bluetooth data is fraught with a range of issues that have a significant impact on the

accuracy of predicted traffic metrics such as journey time, speed, and origin-destination

matrix (Araghi et al., 2015; Bhaskar and Chung, 2013; Cragg, 2013). Some of these

sources of errors are as follows.As mentioned in Section 1, the multiple detections that

happen when a MAC address is likely to be detected multiple times in a short period

of time, particularly during periods of congestion, lead to having more than one valid

record for an active Bluetooth device. Therefore, before Bluetooth data is used for travel

time studies, the strategy for dealing with multiple detections should be specified. There

is no general rule for selecting the best detection record amongst the multiple records of

MAC addresses and some previous researchers have used the first-to-first and last-to-

last records of the devices. In fact, the majority of studies have tried to filter multiple

detections in terms of selecting one time stamp amongst the duplicated records of MAC

addresses and using it for travel time or speed estimation. Bhaskar and Chung (2013)

modelled the theoretical properties of Bluetooth data and analysed the accuracy and

reliability of using Bluetooth for travel time estimation in the modelled section of the

signalised urban environment based on three different models (exit-to-exit, stop-to-stop

and entrance-to-entrance).

Another source of bias is that the trips could be omitted due to missed detections,

which is also one of the aspects of Bluetooth data (Michau et al., 2014).Missed de-

tections can happen as some scanners and devices have stronger signals than others,

but not all of them are equally powerful. Porter et al. (2013) highlight the antenna’s

influence on signal strength and detection.Also, Bluetooth devices are not always dis-

coverable. For example, after a few minutes of inactivity, some devices may become

undetectable and some devices (such as iPhones) are only discoverable for a short

period of time after the user imitates the discovery. For example, in the Manchester

network iPhones were non-trackable, as these devices have a low probability of being

detected by Bluetooth detectors (Bhaskar et al., 2015; Abbott-Jard et al., 2013). The

other main reason is that, as the detection zone becomes more congested with active

Bluetooth devices, the rate of missed detection rises. Interference may reduce detection

effectiveness as the number of detectable devices increases (Franssens, 2010).

The location of the detectors is important, as physical obstacles (e.g. walls and bill-

boards) decrease Bluetooth signals. For example, Brennan Jr et al. (2010) discovered

that the vertical location of the Bluetooth scanner affects the sensor’s efficiency. Colberg

et al. (2014) also discovered a lane bias effect in Bluetooth data. This bias in Bluetooth

units could be due to slower-moving vehicles staying in the Bluetooth detection zone

longer than faster-moving vehicles, giving them a better chance of being detected by
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Bluetooth detectors.Malinovskiy et al. (2010) discovered that, when compared to au-

tomatic licence plate recognition, travel times derived using Bluetooth data are usually

overestimated.As a result, it was suggested that a faster moving vehicle has a high

possibility of passing through the scanning zone undiscovered.This implies that if the

data were collected across a faster-moving traffic zone, there would be a large loss of

data in terms of MAC addresses that could have been recorded compared to slower-

moving traffic.Therefore, implementing the Bluetooth detector near road intersections

with traffic signals and pedestrian crossings, business areas, gas stations, and car parks,

might result in inaccurate travel time and speed estimation.

Furthermore, because a recorded MAC address does not indicate the device’s type

and it can be carried in a vehicle, a bus, by a pedestrian, or a cyclist, distinguishing

between modes of transportation may be difficult.

Comparing Bluetooth data with other data sets like loop detectors or ANPR data

can be used to estimate the Bluetooth penetration rate as the percentage of vehicles

with discoverable Bluetooth devices. For example, TfGM evaluated hourly Bluetooth

penetration rates between 16% and 34% by comparing ANPR and Bluetooth data

(Crawford et al., 2018). Nicolai and Kenn (2007) reported 2% and 6% as the percentage

of people having discoverable devices in Bremen, Germany and San Francisco, US, re-

spectively, where it has approximated 5% in Maryland State, US (Young, 2012). Araghi

et al. (2015) conducted a controlled field experiment to check the reliability of travel

time estimation using Bluetooth and GPS data, where the GPS formed the ground-

truth used to calibrate the Bluetooth detection rate, and reported an estimate of 27%

to 29%.

Despite the difficulties mentioned above, data collected from fixed Bluetooth detec-

tors is still thought to have a lot of potential for road data analysis. In a review paper,

Friesen and McLeod (2015) motivated the continuing development of non-invasively

developed systems using existing communications infrastructure and consumer devices

that include short-range communication technologies such as Bluetooth.
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Chapter 2

Cluster analysis

2.1 Introduction

This chapter presents some exploratory data analysis techniques in order to investi-

gate whether there might be useful information in the multiple detections of Bluetooth

devices at a single site over a short period of time. It starts by developing some can-

didate variables in terms of multiple detections that have been considered in order to

investigate the detection behaviour at a particular detection zone in Section 2.2, and

time series plots of these variables is presented in subsection 2.2.2. Following that, hi-

erarchical cluster analysis, a popular unsupervised learning method, is given in Section

2.3. Firstly, the clustering is performed using a subset of the candidate variables defined

in Section 2.2 and two applications is presented in subsections (2.3.2–2.3.3).When mul-

tiple detections happen, there is a time difference between records, resulting in the

gap distribution between detections. As a result of multiple detections, there are gaps

between consecutive detections. Based on gap time distributions, the cluster analysis

utilising the Kolmogorov-Smirnov statistic is represented in Section 2.4 and, as two

applications of this method, the classification of MAC addresses and time intervals of

a day are presented in subsections 2.4.1 and 2.4.2, respectively. The discussion for this

chapter is provided in Section 2.5.

2.2 Exploratory data analysis

This chapter tries to link between the traffic conditions and detection behaviour in

Bluetooth detector coverage zones based on analysing two properties of Bluetooth data;

multiple detections and the gap time distribution of multiple detections.

The primary step for achieving this goal is considering some different variables that

are related to multiple detections, or the consecutive gap times between the multiple

detections of each MAC address. In order to look at how these variables change during
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the time of day, the time interval of 15 minutes has been chosen as a reasonable length

of time to get enough data. For the purpose of comparing weekdays and weekends,

analysis is performed over one week.The variables considered are as follows:

1. The number of all recorded MAC addresses detected: It shows how many

MAC addresses have been recorded every 15 minutes by each detector, i.e. the

number of all recorded detections, including multiple detections, during every

15 minute time interval. This could be regarded as a traffic level indicator for the

detector’s area. It should be noted that the number of recorded detections will de-

pend on the characteristics of the location of detectors. For example, having a rest

area, gas station, toll plaza, or signalised lights will affect the area’s congestion

and vehicles’ behaviour.

2. The number of all unique MAC addresses detected: It represents the exact

number of detected MAC addresses in a 15-minute period without considering

their multiple recorded detections. This shows how many Bluetooth devices come

across the Bluetooth detector coverage zone.

3. The number of MAC addresses with multiple detections:Due to the

wide detection zone of the detector, while a single MAC address goes through the

zone, it is likely to be detected more than once.Also, traffic congestion causes the

car to stay longer in the coverage zone of the detector, thus the number of MAC

addresses with multiple detections would be expected to increase when there is

congestion.

4. The number of MAC addresses with only one detection: In the ideal

state, when the MAC address is detected once, it can be assumed that the vehicle

with this MAC address is passing fast enough through the zone of the detec-

tor. However, it is wise to think about the possibility that it might be a missed

detection, especially during peak times of day, when the chance of a missed de-

tection will be high due to an increasing number of detectable Bluetooth devices

in the detector area.

5. The proportion of MAC addresses with multiple detections: This vari-

able is considered to check what the proportion of MAC addresses with multiple

detections every 15-minutes. As traffic volume increases, it may be expected that

this proportion will also increase.

6. The average number of detections for the MAC addresses with multi-

ple detections: This variable is considered to test what is the average number

of detections for the MAC addresses with multiple detections every 15-minutes.
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Again, like the proportion of MAC addresses with multiple detections, it may be

expected that this average increases when traffic volume increases.

For the case study area, we have considered a set of Bluetooth detectors and the time

series plots of these variables will be presented.

2.2.1 Case study

For this research, we utilized thirteen Bluetooth detectors in a closed loop to create

a simple and manageable network for analysis. The considered Bluetooth site network

is depicted in Figure 2.1, and their descriptions are given in Table 2.1. The Bluetooth

detector, permanent and temporary ATCs are displayed by the green, blue, and purple

circles, respectively.

Figure 2.1: A network of Bluetooth sites in Greater Manchester. The Bluetooth
detector, permanent and temporary ATCs are displayed by the green, blue, and purple
circles, respectively.
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Site Site Name Description

Site 1 MAC4109MR Upper Brook Street (A34) / Grosvenor St (18), Manchester (Blu)

Site 2 MAC4108MR Upper Brook St (A34) / Plymouth Gr (134), Brunswick, Manchester (Blu)

Site 3 MAC1152MR Upper Brook St (A34) / Hathersage Rd (133), Longsight, Manchester (Blu)

Site 4 MAC4067MR Birchfields Rd (A6010) / Dickenson Rd (41), Rusholme, Manchester (Blu)

Site 5 MAC4066MR Dickenson Rd (A6010) / St John’s Rd (1049), Longsight, Manchester (Blu)

Site 6 MAC1076MR Stockport Rd (A6) / Kirkmanshulme Ln (1206), Longsight, Manchester (Blu)

Site 7 MAC1079MR Stockport Rd (A6) / Plymouth Gr (1205), Longsight, Manchester (Blu)

Site 8 MAC1318 Stockport Rd (A6) / 220m SE of Devonshire St, Longsight, Manchester (Blu)

Site 9 MAC1075MR Stockport Rd (A6) / Devonshire St (1219), Ardwick, Manchester (Blu)

Site 10 MAC4038MR Hyde Rd (A57) / Devonshire St (49), Ardwick, Manchester (Blu)

Site 11 MAC4039MR Hyde Rd (A57) / 200m W of Dalberg St (3/121), Ardwick, Manchester (Blu)

Site 12 MAC1081MR Ardwick Green S (A6) / 10m N of Brunswick St (3/119), Ardwick, Manchester (Blu)

Site 13 MAC1078MR Downing St (A6) / Grosvenor St (165), Ardwick, Manchester (Blu)

Table 2.1: Sites description.

Table 2.2 shows the multiple detections for a sample MAC address with its consec-

utive gap times. This device was detected six times at Site 12, the first at 09:03:13 and

the last at 09:03:30 on February 15th 2019.

Date-Time MAC address Gap time(sec)

2019-02-15 09:03:13 05140F003F84 -

2019-02-15 09:03:14 05140F003F84 1

2019-02-15 09:03:17 05140F003F84 3

2019-02-15 09:03:18 05140F003F84 1

2019-02-15 09:03:21 05140F003F84 3

2019-02-15 09:03:30 05140F003F84 9

Table 2.2: The multiple detections for a sample MAC address with its consecutive
gap times on February 15th 2019 at Site 12.

2.2.2 Time series plots

The traffic conditions vary considerably depending on the time of day. Therefore, it

is expected to see an hourly pattern that indicates how the traffic flow varies during

the day and night. Normally, an hourly pattern indicating how traffic flow varies over

the day and night is expected (Minnen et al., 2015) and normal hourly traffic flow

patterns show a variety of distinct peaks, particularly in urban areas. One peak in

the morning is often more sharp, reaching its peak over a short duration and quickly

dropping to its lowest point. The afternoon peak is characterised by a wider peak and

is reached and dispersed over a longer period than the morning peak.The reason for

the different dispersion is that people usually start going to work in the morning at

around the same time but go back home at different times in the afternoon (Minnen

et al., 2015). Except for the morning and evening rush hours, Manchester is known to
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have a free flow of traffic. The peak hours in Manchester are usually (7:00-9:30) and

(16:00-18:30) on weekdays, with a slight peak in traffic during the lunch break, around

(12:30-14:00).

Figure 2.2 shows time series plots of the first four defined variables at 15-minute

intervals over a weekday on Site 12 on Monday, February 11th, 2019. It should be noted

that Site 12 is located near a roundabout and there is a traffic light and a gas station

in its vicinity, and it has a 48 km/h speed limit.

(a) (b)

(c) (d)

Figure 2.2: Hourly patterns for the first four considered variables: (a) the number of
all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, and (d) the
number of MAC addresses with only one detection on Site 12, Monday 11th February,
2019.

The time series plots of the first four variables show a clear hourly pattern during

the day. For example, the time series corresponding to the number of all recorded

detections of MAC addresses represents that this variable started to increase from a

low number (60 records) at the time interval (5:30-5:45) to the highest number (342
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records) at the time interval (9:00-9:15). After that, it shows a slight drop and continues

consistently around 250 records, but also has some peaks, for instance, 313 records

between (12:00-12:15) due to the lunch break time.The afternoon peak begins at the

time interval (17:00-17:15) and falls again because of the end of rush hour.

Figure 2.3 shows time series plots of the last two defined variables at 15-minute

intervals over a weekday on Site 12, Monday 11th February 2019.

(a) (b)

Figure 2.3: Hourly patterns for the considered variables: (a) the proportion of MAC
addresses with multiple detections, and (b) the average number of detections for the
MAC addresses with multiple detections on Site 12, Monday 11th February, 2019.

It was expected that the proportion of MAC addresses with multiple detections and

the average number of detections for MAC addresses with multiple detections might

change with traffic levels on the street. As noted in Section 2.2, it may be expected that

the proportion and the average of MAC addresses with multiple detections are likely to

increase as traffic increases throughout the day. However, the rate of missed detection

might also be expected to increase as the detection zone becomes more congested with

active Bluetooth devices due to detection interference. As can be seen, no special trend

is observed in these time series plots over different fifteen minute time intervals of a

day. The time series plot of the proportion of MAC addresses with multiple detections

shows a fairly constant rate of 0.8 and the time series plot of the average of multiple

detections was roughly consistent at around 2.

Figure 2.5 shows time series plots of the first four defined variables at 15-minute

intervals over a weekend day on Site 12, Sunday 17th February, 2019.
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(a) (b)

(c) (d)

Figure 2.4: Hourly patterns for the first four considered variables: (a) the number of
all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, and (d) the
number of MAC addresses with only one detection at Site 12, Sunday 17 February,
2019.

As expected, the traffic conditions differ during the week in terms of working days

versus weekends, which have different daily patterns. The traffic during the working

days (Monday to Friday) may not vary considerably from day to day, but the traffic

volume during the weekend is likely to vary from the working days. The pattern from

Monday to Friday is often relatively consistent, apart from Monday morning and Friday

afternoon traffic flow.The pattern during the weekend may differ from Saturdays to

Sundays. The time series plots of the first four variables reveal a clear hourly pattern

during the day that differs from the pattern on weekdays. It emphasises that, according

to Bluetooth data, traffic volumes at this site are higher on weekdays than on weekends.

The time series corresponding to the number of all recorded MAC address detections

illustrates the difference in behaviour between Monday and Sunday midnight, which
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shows 154 records at the time interval (1:00-1:15) on Sunday midnight. This variable

starts to increase from 106 records at (9:45-10:00), then remains consistent until around

6 p.m., when it begins to decrease. Figure 2.5 shows time series plots of the last two de-

fined variables at 15-minute intervals over the weekend on Site 12, Sunday 17 February

2019.

(a) (b)

Figure 2.5: Hourly patterns for the considered variables: (a) the proportion of MAC
addresses with multiple detections, and (b) the average number of detections for the
MAC addresses with multiple detections on Site 12, Sunday 17 February, 2019.

Similarly to the weekday plots, no special trend is observed in the time series plots

of the proportion and the average number of detections for the MAC addresses with

multiple detections. The time series plot of the proportion shows a fairly constant rate of

0.8 and the time series plot of the average of multiple detections was roughly consistent

at around 2 over different fifteen minute time intervals of a day.The interesting result

is that these two variables are pretty constant not only during the different times of

the day, but also across the two different days (i.e. working and weekend days).

The Appendix A.1 presents the time series plots for the other days of the week for

Site 12 (see Figures A.1–A.5) and the time series plots for some of the other sites on one

day, Monday 11th February, 2019 (see Figures A.6–A.14). Comparing the time series

plots of different sites shows that they all have similar behaviour in terms of the first

four variables, but with differences in the calculated numbers for these variables. For

example, Site 13 had the highest number of all recorded MAC addresses (over 3000)

and the average number of multiple detections (around 10), requiring more investigation

into the difference. The proportion of MAC addresses with multiple detections and the

average number of detections for MAC addresses with multiple detections have been

shown to be roughly similar between the other different sites.
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2.3 Cluster analysis

This section discusses the exploratory data analysis of the unfiltered Bluetooth de-

tection data using cluster analysis, one of the most popular unsupervised learning

methods. Cluster analysis partitions a set of data points or objects into separate groups

called clusters.One of most widely studied clustering algorithms is hierarchical clus-

tering that has been used in a wide range of applications (Rokach and Maimon, 2005;

Nielsen, 2016).

Hierarchical algorithms produce a dendrogram or tree graph, which depicts the hi-

erarchical grouping structure. The vertical axis of the dendrogram depicts the distance

or dissimilarity between clusters, whereas the horizontal axis represents objects or clus-

ters. The number of clusters included in the data is a common goal, and the hierarchical

nature of a dendrogram should make it explicit that the number of clusters relies on the

particular level of dissimilarity. Choosing a higher or lower level of dissimilarity results

in a few large clusters or a large number of little clusters, respectively. The agglom-

erative or bottom-up clustering and divisive or top-down clustering are two methods

for hierarchical clustering. The agglomerative method starts by considering singleton

clusters, which means only one data object per cluster at the bottom level, and con-

tinues by joining two clusters to create a bottom-up hierarchy of clusters. The divisive

approach, on the other hand, starts with all the data objects in one large cluster and

cuts them into two groups in a top-down hierarchy of clusters.

In hierarchical clustering, the hierarchy of similar objects is formed based on a pair-

wise distance matrix. The distance matrix is symmetric (because the distance between

object A and object B is the same as the distance between object B and object A)

and has zero on the diagonal (because every object is distance zero from itself). The

agglomerative hierarchical clustering starts with every data object in a separate cluster,

then continues by joining the closest sets of clusters, with the distance matrix updating

on each step. This process of agglomerative merging is continued until the final cluster

(that includes all the data objects in a single cluster) is achieved.

Hierarchical clustering requires the definition of a distance between clusters, in

addition to the distance metric between individual points. The distance between two

clusters is called the linkage. The most popular proximity measures which can be used

in agglomerative hierarchical clustering are as follows:

� Single Linkage: The distance between two clusters is defined as the smallest

distance between a pair of the data points within the clusters,

� Complete Linkage: The distance between two clusters is defined as the largest

distance between a pair of the data points within the clusters,
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� Average Linkage: The distance between two clusters is defined by the average

distance between a pair of the data points within the clusters,

� Ward’s Linkage: The aim of Ward’s method is to minimize the variance within

each cluster. This is achieved by defining distance as the difference in cluster

variance by fusing the clusters.

There are two different approaches that can be used as a starting point in clustering: (i)

using observed variables to define distances between objects or (ii) pairwise distances of

data generated directly from other methods. Both approaches have been investigated

in order to perform the cluster analysis.

The exploratory data analysis of Bluetooth data will be performed based on ob-

served variables such as the multiple detections and the gap times distribution (i.e. the

time difference between two consecutive Bluetooth detections is known as the gap).

For the cluster analysis, we will utilize Bluetooth sites, MAC addresses, and the hourly

time intervals as the objects.

We briefly describe the clustering using observed variables in Section 2.3.1, with two

applications of this approach present in Sections 2.3.2 and 2.3.3. Section 2.4 describes

the second approach, with two applications present in Sections 2.4.1 and 2.4.2.

2.3.1 Clustering based on observed variables

SupposeXi = (xi1, xi2, . . . , xip) andXj = (xj1, xj2, . . . , xjp) represent two p-dimensional

vectors of variables from n vectors in a dataset. The distances between every pair of

variables create an n× n distance matrix, named D, as follows:

D = (dij) ∈ R (2.1)

where dij denotes the distance between two vectors Xi and Xj and can be computed

by some commonly used metric such as the Euclidean distance, the squared Euclidean

distance, the Manhattan distance, the maximum distance or the Mahalanobis distance.

For example, the Euclidean distance between an observation Xi and another Xj is:

dij =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + . . .+ (xip − xjp)2. (2.2)

After creating the distance matrix based on observed variables, the agglomerative hi-

erarchical clustering continues as discussed above. The two following sections present

two applications using clustering based on variables.
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2.3.2 Bluetooth sites clustering

The variability of traffic volumes within each road could depend on its location. For

example, a local road located in a high population urban area normally has higher

traffic volumes compared to a local road in a lower population area. The Bluetooth

sites have different characteristics in terms of their placements, such as proximity to

the school area, shopping malls, the gas stations and the traffic lights, etc.(Purser,

2016). Also the orientation and other characteristics of the site might affect the rates

of multiple and missed detections.

Clustering the Bluetooth detector sites will be useful for identifying similar sites

and possibly detecting unusual sites based on the variables considered.The detection

of unusual sites or outliers can be useful in reconsidering where the Bluetooth detector

should be placed, as the unusual behaviour could indicate the detector is not in the

proper place or that it is malfunctioning. Furthermore, depending on the clustering

results, any further study performed on a single Bluetooth site can be extended to all

similar sites.

We decided to investigate grouping the Bluetooth detector sites in terms of their

patterns of detections to compare the volume of traffic in their coverage zones. This

clustering was done as one of the applications of variable-based clustering.When traffic

volume increases, the number of all recorded Bluetooth detections increases due to more

multiple detections, and the number of unique Bluetooth MAC addresses increases if

the Bluetooth site is located in a high population urban area, as shown by time series

plots (Figures 2.2 and 2.4). Hence, for clustering the Bluetooth sites in the network,

we used these two variables, the number of all recorded Bluetooth detections and the

number of unique Bluetooth MAC addresses. Also, it should be noted that the clustering

results did not differ by adding the other observed variables, therefore, just these two

variables have considered.

The Bluetooth data related to all 13 Bluetooth sites is considered to perform hi-

erarchical clustering on one day (Monday 11th of February, 2019). In a one hour time

interval, the number of all recorded data and the number of all unique captured MAC

addresses were considered as variables for each Bluetooth site. The Euclidean distance

was used to make the similarity matrix containing the pairwise distance for all Blue-

tooth sites. The dendrogram of Bluetooth site clustering using the average linkage critria

and Euclidean distance for two consecutive busy hours in the morning and afternoon

is shown in Figures 2.6 and 2.7, respectively. It should be noted that standardiza-

tion is often used as a preprocessing procedure in cluster analysis. It is important if

each variable of data has a different unit or if the scales of each of the variables are

very distinct. Standardization prevents variables with greater scales from influencing

how clusters are constructed. It enables the algorithm to take into account all variables
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equally. We used both un-standardized and standardized data to do the cluster analy-

sis. Because the clustering results were similar, we have presented the un-standardized

data to make cluster interpretation easier.
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Figure 2.6: The dendrogram of Bluetooth site clustering based on two variables: i)
the total number of Bluetooth detections; and ii) the total number of unique Bluetooth
MAC addresses using the average linkage and Euclidean distance between (a) 7:00-
8:00 a.m. and (b) 8:00-9:00 a.m., Monday 11th February 2019. The five clusters are
represented by different colors.

27



S
it
e1
3

S
it
e1
2

S
it
e7

S
it
e6

S
it
e3

S
it
e1
0

S
it
e4

S
it
e8

S
it
e5

S
it
e9

S
it
e1

S
it
e2

S
it
e1
10

500

1000

1500

2000

Bluetooth Sites

E
u
cl
id
ea
n
D
is
ta
n
ce

(a)

S
it
e1
3

S
it
e1
2

S
it
e7

S
it
e1
0

S
it
e3

S
it
e6

S
it
e4

S
it
e8

S
it
e5

S
it
e2

S
it
e9

S
it
e1

S
it
e1
10

1000

2000

Bluetooth Sites

E
u
cl
id
ea
n
D
is
ta
n
ce

(b)

Figure 2.7: The dendrogram of Bluetooth site clustering based on two variables: i)
the total number of Bluetooth detections; and ii) the total number of unique Bluetooth
MAC addresses using the average linkage and Euclidean distance between (a) 3:00-
4:00 p.m. and (b) 4:00-5:00 p.m., Monday 11th February 2019. The five clusters are
represented by different colors.

Tables 2.3 and 2.4 present information about the two considered variables for each

Bluetooth site within the five sub-clusters, with sites of the same colour clustered to-

gether. The number of clusters has been chosen subjectively and based on examining

the characteristics of the clusters. Also Figure A.15 in Appendix A shows the dendro-

gram of Bluetooth site clustering for the time intervals of 9:00-10:00 a.m. and 5:00-6:00

p.m.The obvious result is that Site 13 behaved differently in all four time periods, and
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this behaviour has also been observed at other hours of the day. In addition, there

was not much of a difference in the Bluetooth site clusters formed between consecu-

tive hours or between morning and afternoon peak hour traffic. For example, clustering

using raw data indicates that Sites 1, 2, 9, and 11, which are close to each other in

the network, were mereged in all time intervals considered, and the other clustered

sites might also have similar characteristics that allow them to be clustered together

despite being further apart. The observed variables do not change significantly for

Site Number of all recorded Number of unique MAC addresses

Site 13 2914 332

Site 7 897 439

Site 12 1091 537

Site 5 324 173

Site 4 221 137

Site 8 170 101

Site 11 432 232

Site 2 479 285

Site 1 479 251

Site 9 466 249

Site 10 707 391

Site 3 624 345

Site 6 635 376

Table 2.3: Details of two considered variables for time period 8:00-9:00 a.m. Sites with
the same colours are clustered together.

Site Number of all recorded Number of unique MAC addresses

Site 13 3156 348

Site 12 1133 554

Site 7 754 367

Site 10 743 418

Site 3 646 351

Site 6 552 313

Site 4 223 145

Site 8 247 147

Site 5 338 185

Site 2 393 234

Site 9 400 214

Site 1 454 236

Site 11 463 262

Table 2.4: Details of two considered variables for time period 4:00-5:00 p.m. Sites with
the same colours are clustered together.

each Bluetooth site over the sample time interval. In Tables 2.3 and 2.4, the details of

the two variables indicate that, for example, Sites 4 and 8 are very similar, as are Sites

1, 2, 9, and 11 at both time intervals. The latter four sites are also located near each
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other in the case study network. It shows that the number of all recorded sites, and

also the number of unique MAC addresses for these sites, follow a consistent pattern at

different times of the day. Also, Site 13 differs in terms of the first variable, since there

is not much of a difference in the second variable, this site has proportionately more

multiple detections. It is near a small commercial site and is placed at T-junctions with

traffic signals, as shown in Figure 2.8.

Figure 2.8: Location of Site 13 (Source: Google Maps)

2.3.3 MAC addresses clustering

To take a closer look at Site 13, we have decided to perform another cluster analysis

on the detected MAC addresses for a one hour time interval on a single day (Monday

11th of February, 2019). Therefore, the objects are now the detected MAC addresses

and two variables have been considered as follows: i) the number of all detections per

MAC address which shows how many times the MAC address has been detected; and

ii) the mean of the gap times for each MAC address. If the MAC address is detected

multiple times, there are gaps between consecutive recorded detections; if it is detected

only once, the mean of gap times is zero. To create the similarity matrix containing the

pairwise distance for all, the Euclidean distance was applied. The hierarchical clustering

using the average linkage method for clustering the MAC addresses in Site 13 during the

time period 3:00-4:00 a.m. is shown in Figure 2.9. For better graphical visualisation,

the non-busy time interval of the day is employed, and also the truncated form of MAC

addresses.
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Figure 2.9: The dendrogram of MAC addresses clustering at Site 13 based on two
variables: i) the number of all detections per MAC addresses; and ii) the mean of the
gap times for each MAC address. It creates using the average linkage and Euclidean
distance and displays for time period 3:00-4:00 a.m., Monday 11th February 2019.

Figure 2.9 depicts the classification of MAC addresses at Site 13 within a specific

time interval. It can be noticed that one MAC address (4706F5) is an outlier when

compared to the other MAC addresses.We also have repeated the clustering for the

other time intervals of the day.This MAC address still has different behaviour in terms

of the first variable, which is the number of all recorded detections. This MAC address

clearly does not belong to an active Bluetooth device passing through the detector

zone because it transmits constantly throughout the day.Table 2.5 shows the details

of considered variables for the two MAC addresses that have been classified in the two

separate clusters. The remaining 31 MAC addresses included 15 MAC addresses that

MAC Address Number of all detections Mean gap times (seconds)

4706F5 1228 2.93

B62DBF 2 428

Table 2.5: Details of two considered variables for time period 3:00-4:00 a.m.

were detected only once and 16 MAC addresses that were detected multiple times, with

mean gap times ranging from 1 second to 16 seconds.

The MAC address clustering can be helpful for identifying MAC addresses that have

an unusually high number of multiple detections, which can be considered as outliers. It

may also be useful to classify the behaviour of the MAC address, possibly as a means to
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distinguish different types of vehicles. The first MAC address, for example, is an outlier,

according to Table 2.5. The second MAC address, which is detected twice with a gap of

428 seconds (about seven minutes), can be interpreted as a device that has gone away

and returned. The rest looks to be a sample of MAC addresses that travelled through

the detector area during the particular time interval, some of which were detected just

once and others which were recorded multiple times, but all of which had similar mean

gap times, causing them to cluster together.

The possibility that a device would leave the detection area and then return suggests

that MAC address behaviour classification should include more variables. Therefore,

gap distributions between multiple detections are suggested as an alternative approach

for classifying MAC address behaviours. The following section develops a clustering

technique for taking this approach.

2.4 Clustering based on Kolmogorov-Smirnov statistic

Discrete elements have been the most common object of clustering (Celeux and Govaert,

1991; Agrawal et al., 1998; Jain et al., 1999; Bouguila and ElGuebaly, 2009). However,

with the complexity of data nowadays, it may be more appropriate to show the data

as a series of numbers or functions rather as a single point. Therefore, cluster analysis

does not always start with a set of variables that have been observed.As an alternative

to discrete elements, probability density functions (pdfs) are considered as items for

clustering (Chen and Hung, 2015; Tai et al., 2016; Nguyentrang and Vovan, 2017). All

that is required is a way of defining a distance between the objects. Now the objects are

distributions, consisting of sets of observations of different sizes. Therefore, the initial

step is to construct a similarity matrix based on pair-wise distribution comparisons.

More-López and Mora (2015) suggested an adaptive algorithm for K-means clus-

tering of the cumulative probability distribution functions of a continuous random

variable. In the algorithm, they used the Kolmogorov–Smirnov two-sample statistic as

a distance function.

The Kolmogorov-Smirnov test (KS statistic) is a non-parametric method for de-

termining if two distributions are different (the two sample KS statistic) or whether

an underlying probability distribution differs from a hypothesised distribution (the one

sample KS statistic) (Berger and Zhou, 2014).Assume two independent random sam-

ples, one of size m with an observed cumulative distribution function of F (x) and the

other of size n with an observed cumulative distribution function of G(x). The high-

est vertical deviation between the two cumulative distribution functions is used as the

statistic D for the two sample KS statistic.

D = max
x

|F (x)−G(x)| (2.3)
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Because it satisfies three conditions for defining a metric: identity of indiscernibles,

symmetry, and triangle inequality, it can be considered a distance. Figure 2.10 shows

an example of the two-sample KS statistic, where the dashed red line is the two-sample

KS statistic (i.e.maximum distance D), and the blue and black lines represent the

empirical distribution function for two samples.
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Figure 2.10: An example of the two-sample KS statistic. The dashed red line is the
two-sample KS statistic (i.e. maximum distance D), and the blue and black lines
represent the empirical distribution function for two samples.

We also decided to use the Kolmogorov-Smirnov statistic for assessing the pair-wise

similarity between the gap distributions in the hierarchical clustering. In sub-sections

2.4.1 and 2.4.2, two applications of this approach are shown.

2.4.1 MAC addresses clustering based on gap distribution

This section presents the clustering of the MAC address data in terms of their gap

times distributions as an application of the cluster analysis using the KS statistic. The

goal is to identify groups of MAC addresses that have similar detection patterns during

the tested time interval.We created a set of descriptive labels for the different types
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of detected patterns in order to cluster the MAC addresses based on their detection

patterns. It is worth mentioning again that when the MAC address has multiple detec-

tions in the coverage zone of the Bluetooth detector, it creates a gap distribution with

varying lengths of gaps in-between detections for each MAC address.

In order to be able to characterize the nature of the clusters, we first define a group

as a collection of detections of the same MAC address with a gap time of less than or

equal to a fixed threshold between them.The time threshold for assigning a group in

this study was set at 10 seconds, based on the assumption that gap times of greater

than 10 seconds can be considered a missed detection. Because the enquiry phase of

connecting Bluetooth devices is expected to take up to 10.24 seconds, it is highly likely

that an active Bluetooth device will be detected within this period; otherwise, it may

be missed (Peterson et al., 2006; Abbott-Jard et al., 2013).

Based on its gap pattern, each MAC address in a set of detected MAC addresses

displays a different state. Each MAC address was given the following new labelling:

� Unique singleton: A unique singleton is a MAC address that is discovered only

once throughout the time interval,

� N singleton group: The MAC address is labelled as N singleton if it is detected

N times and the gap between each of the N detections is more than 10 seconds,

� n1, n2, n3, . . . multiple group : If the MAC address is detected N times and the

gap times between consecutive detections are varied, any number of recorded

detections with gap times less than 10 seconds forms one group, according to

group definition. As a result, it is referred to as the n1, n2, n3, . . . multiple group,

where n1, n2, n3, . . . represent the number of members in each group, and
∑

i ni =

N .

� Unique Group: A unique group is formed when the MAC address is detected

many times and all of the detections have a gap time of less than 10 seconds.

Figure 2.11 shows a visual illustration of these new labels. Table 2.6 presents a sample

report of MAC address gap distribution for a one-hour time interval 3:00-4:00 a.m.
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Figure 2.11: Illustration of new labelling for MAC addresses.

MAC address Time Status Gap Distribution Mean

2B74494DDB0A 3:00-4:00 Unique singelton - -

055600673460 3:00-4:00 2 singelton 19 19

30C1F983896F 3:00-4:00 2, 2, 2, multiple 4, 427, 4, 286, 9 146.0

380646000E05 3:00-4:00 Unique 5, 1, 4, 1 2.75

Table 2.6: A sample report of MAC address gap distribution for a one-hour time
interval 3:00-4:00 a.m.

The MAC addresses recorded by Bluetooth detectors at one-hour intervals were

taken into consideration, and new labelling was assigned depending on the gap times

distribution.We used the KS statistic to create a distance matrix comprising the pair-

wise distance for all pairs of MAC addresses based on the difference of their cumulative

distribution functions, and then we used Ward’s linkage method to apply the hierar-

chical clustering approach to this matrix. Also, because there is no gap distribution for

unique singleton MAC addresses (i.e. those that have been recoded just once), the gap

for those was set to zero, i.e. gap distribution= {0}. Figure 2.12 displays the dendro-

gram of MAC addresses clustering based gap distribution using Ward’s linkage and KS

distance at Site 12 for time periods 3:00-4:00 a.m., Monday 11th February 2019.Note

that the KS distance between individual distributions must be between 0 and 1, but

the distance between groups defined by Ward’s method can exceed 1. This time period

was chosen as a non-busy period in order to have fewer MAC addresses that provide a

better visualisation of clusters.We also selected Site 12 because it is one of the sites near

a roundabout, and being close to a gas station and a park should lead vehicles to stay

more within the coverage area. Looking at the details of sub-cluster objects shows that

all six MAC addresses in the first cluster from the left are labelled as a unique singelton

that has only been recorded once. The next three MAC addresses were discovered twice

35



0
5

10
15

MAC Addresses

W
a
rd
’s

li
n
ka
ge

F
E
4B

0F
F
26

58
5

C
21

5A
5

74
52

8
3

16
1A

16
1
82

22
B

6C
C
F
C
1

16
13

C
2

30
C
A
F
9

9D
14

49
C
A
70

94
73

C
99

9
D
4
D
4
03

23
0D

25
50

E
1E

0
F
56

B
E
A

24
06

1C
5
70

57
6

36
2E

12
22

6A
8
4

32
1
62

8
E
01

F
80

7A
0
F
6
6

8E
4F

36
3
95

81
3

F
D
8
D
A
C

27
04

A
3

30
C
5F

9
23

21
F
A

27
03

A
7

26
1F

4A
27

02
A
2

Figure 2.12: The dendrogram of MAC addresses clustering based gap distribution
using Ward’s linkage and KS distance at Site 12 for time periods 3:00-4:00 a.m., Monday
11th February 2019.

using the same gap distribution and have exactly the same mean gap.The remaining

23 MAC addresses were identified multiple times with different gap distributions and

mean gaps.

2.4.2 Time interval clustering based on gap distribution

To give another application of cluster analysis based on KS-statistics, we have investi-

gated using the gap distributions in order to cluster the time intervals of a day. The

main aim is to explore if the pattern of gap times between consecutive MAC address de-

tections can be used to divide a day into interpretable clusters, in which time intervals

with similar gap distribution patterns, which may indicate similar traffic conditions,

merge together. The Bluetooth data related to Site 12 is selected to perform hierarchical

clustering. The recorded MAC addresses during every one-hour time interval were con-

sidered and corresponding gap times computed.The KS statistic was used to compute

the distance matrix between the 24 distributions (24 hours of a day).After computing

the distance matrix based on KS statistic, hierarchical clustering was utilized using

Ward’s linkage method. Figure 2.13 represents the hierarchical clustering dendrogram

for Site 12, Monday 11th February, 2019.
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Figure 2.13: The dendrogram of time interval clustering based gap distribution using
Ward’s linkage and KS distance at Site 12, Monday 11th February 2019.

Looking at the dendogram based on the captured gap times distribution, there are

two distinct clusters: the right hand cluster (i.e. cluster 2) seems to include the non-

busy hours, while the left hand cluster (i.e. cluster 1) shows to include the most of

the busy hours (i.e. cluster 1). As the volume of traffic varies, the amount of time

each vehicle spends in the detection area changes, influencing the detection pattern.

In congested traffic, we can expect more multiple detections and gap times, whereas in

free flow traffic, we can expect fewer multiple detections and gap times. For example,

the morning and evening peak periods (i.e. 8, 9 a.m. and 4, 5 p.m.) had a similar gap

times distribution and were clustered together. It shows that they have all experienced

similar traffic conditions, resulting in a comparable Bluetooth detection gap pattern.

Figures 2.14 and 2.15 represent a log transform of gap times for time intervals in

cluster 1 and cluster 2, respectively. Looking at these plots, it can be seen that how

the time intervals in the same cluster have a similar gap distribution. As seen in

Figure 2.15, the first three time periods after midnight, which are merged together as

a sub-cluster in cluster 1, had a similar gap distribution.
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Figure 2.14: The log transform of gap times for time intervals in cluster 1 for Site
12, Monday 11th February, 2019.
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Figure 2.15: The log transform of gap times for time intervals in cluster 2 for Site
12, Monday 11th February, 2019.

Figure 2.16 displays the cumulative distribution function of the log-transform of all

gap times in cluster 1 and cluster 2 (i.e. considering the cumulative distribution of all

gap times from the sub-clusters in cluster 1 and cluster 2). It shows how the gap times

distributions of these two clusters are different. For example, it is going up faster in

cluster 2 during non-busy hours than in cluster 1 during busy hours, so the gap times
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tend to be smaller at these times.When there is no traffic, it can be said to have smaller

gap times because devices can depart the area more quickly than congested traffic.The

difference is mostly around 5 and 20 seconds and the biggest difference happens around

15 seconds. The hierarchical clustering time interval for Site 12 for the other days of

one week are presented in Appendix A (Figures A.16–A.21).
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Figure 2.16: The log transform of gap times for time intervals by considering all sub-
clusters together in cluster 1 and cluster 2 for Site 12, Monday 11th February, 2019.

2.5 Discussion

In this chapter we have explored whether there might be interpretable information in

the complete record of detections at an individual Bluetooth site, including multiple

detections rather than filtering them out.We also looked into whether the distribution of

observed gap times for multiple detections could provide useful information for traffic

inference, because multiple detections result in gaps between consecutive detections.

We employed cluster analysis, as an unsupervised learning technique, in two different

ways to do this. Firstly, by considering some variables to summarize different aspects

of the multiple detection data, and secondly, by directly utilizing the distribution of

observed gap times. For the second method, we used KS statistics to compute the

distance between the gap times distributions. This KS statistics clustering method could

have wide applicability in situations where the clustering objects are sets of data or the

distribution of the observed data.

The results of the cluster analysis confirmed that there was information in the mul-

tiple detections because the analyses produced meaningful clusters. For example, the

39



KS clustering of the time intervals of day based on the gap times distributions indicates

that the clusters reveal something about the structure of the data. When looking at the

dendrogram, it was obvious that there were two different groups of busy and non-busy

times of day, with the merging of some of the consecutive time intervals also indi-

cating meaningful clusters. It is important to remember that the clusters results were

derived solely from the gap times distribution for multiple detections, therefore there

was certainly information since it clustered together adjacent time periods. Also, hav-

ing meaningful clusters in the outcomes of Bluetooth sites and MAC address clustering

demonstrated that there was information in using the complete record of detections.

Bluetooth site clustering, for example, showed that sites that were nearby together

recorded relatively similar data, and it is possible that sites that were far away in

terms of location but clustered over the hours had common characteristics.

Another question that has been raised was if this information could be beneficial

for traffic inference.Depending on the considered variables, for example, Bluetooth

sites clustering using raw Bluetooth data was useful for identifying unusual Bluetooth

sites. After that, outliers can also be examined in order to determine which factors

caused the difference between sites. It could, for example, be due to a faulty detector

or improper installation. This has been seen in the case of reporting Site 13, where it

has shown completely different behaviour in terms of the total number of Bluetooth

detections. After reporting to TfGM, it was revealed that there was a printer with

an active Bluetooth device in the coverage area which was transmitting all the time.

Another advantage that should be mentioned is the generalisation of any future analysis

to sites with similar characteristics. Also, it was possible to detect unusual and similar

MAC address behaviour using both methods, based on candidate variables and gap

distributions, so that any unsual behaviour can be investigated.

It would have been more beneficial if we could have training data with the infor-

mation about the type of device or type of vehicle, which may also help us categorize

different transportation modes, such as pedestrians, bicycles, and vehicles, with respect

to their similar gap times distributions. Finally, the time intervals clustering based on

the gap distributions using KS statistics can be helpful to distinguish the time intervals

with similar traffic patterns. Therefore, such information could be useful for gaining in-

sights into traffic conditions at each Bluetooth location separately and without filtering

any data.

However, there are several limitations due to the poor quality of the Bluetooth

detection data. In particular, the issue of missed detections will have a big effect, espe-

cially on the analysis of the gap times distribution. As noted before, missed detection

can happen in both congested and free-flowing traffic. For instance, MAC addresses

with one detection are assumed to belong to devices travelling through the area during
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a non-busy time interval of the day, but they can be considered as missed detections

during a busy time frame.Determining if a MAC address with multiple detection be-

longs to a device that stayed in the area but the detector lost its detection, or a device

that left and returned to the area, can be challenging in some cases.

As mentioned above, KS-clustering can have wider applications in any situation

requiring the clustering of distributions. There is an issue of defining the distance be-

tween groups for the KS-clustering.We also explored alternative ways of defining the

distance between groups, required for iteratively grouping objects into a hierarchical

tree. A natural way to do this would be to pool all the data within a group to make a

single distribution. Consider the three object distributions of A, B, and C, for which

KS statistics compute the pairwise distance as the maximum distance between them. If

the KS distance between A and B is less than the KS distance between A and C and

between B and C, then the objects A and B will be linked together at a specific level

while drawing the dendogram. It is a requirement that the distance between C and the

A,B group must be greater than the distance between A and B, so that C would join

them in the dendogram at a higher level. However, we found that when the distances

between groups are defined as the KS distance between the pooled data in each group,

this condition is sometimes violated, so a coherent dendogram cannot be formed. We

therefore relied on the standard linkage methods, such as Ward’s method.As a counter-

example, the black, red, and blue lines in Figure 2.17 correspond to the ecdf for A, B,

and C, respectively. The maximum distance between A to B is smaller than the max-

imum distance between A to C and B to C. However, because the maximum distance

from the combination c(A,B) (i.e. green line) to C would be much smaller, C will join

them at a lower height in the dendrogram. In this example, the mean of C is in between

means of A and B, with a significantly smaller variance.
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Figure 2.17: An example of using KS statistic as linkage method.The black, red,
blue and green lines correspond to the ecdf for A, B,C and the combination c(A,B),
respectively.
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Chapter 3

Modelling the relationship

between Bluetooth and

Automatic Traffic Counts

3.1 Introduction

This chapter presents the methodology adopted in this research on modelling the rela-

tionship between Bluetooth and Automatic Traffic Counters (ATC). Another method

for collecting traffic data is ATC, which is characterized by two rubber tubes spread

across the carriageway and attached to a recording box on the roadside. These tubes can

operate at any time of day or night for the duration of the specified period. They can

record the exact time, the instantaneous speed, and number of vehicle movements, as

well as the classification of vehicles passing through, such as cars, buses, or heavy goods

vehicles, in contrast to Bluetooth detectors, which are unable to distinguish between

vehicles, pedestrians, or their specific location within the detection zone.ATC data can

be used to determine the exact number of traffic flows in a particular region, but it is

expensive to maintain and install especially if it is needed in numerous places. Table 3.1

shows the ATC classification guide that is utilised in the TfGM database. The Greater

Manchester network uses two types of ATC counters. Permanent ATCs are usually in-

stalled on major roads and corridors. They measure vehicles via inductive loop detectors

which record changes to electromagnetics fields as vehicles pass over them.The other

type is the temporary ATC that are deployed for short durations (7-14 days) and they

use pneumatic tubes which measures changes in air compression as vehicles pass over

them.
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Name Description

Car Car, van, car + trailer

R2X Two axle rigid (Heavy Goods Vehicles)

R3X Three axle rigid (Heavy Goods Vehicles)

R4X Four axle rigid (Heavy Goods Vehicles)

R2X+T Two axle rigid + trailer (Heavy Goods Vehicles)

R3X+T Three axle rigid + trailer (Heavy Goods Vehicles)

A2+1X Artic, two axle tractor unit + one axle semi-trailer (Heavy Goods Vehicles)

A2+2X Artic, two axle tractor unit + two axle semi-trailer (Heavy Goods Vehicles)

A2+3X Artic, two axle tractor unit + three axle semi-trailer (Heavy Goods Vehicles)

A3+1/2X Artic, three axle tractor unit + one or two axle semi-trailer (Heavy Goods Vehicles)

A3+3X Artic, three axle tractor unit + three axle semi-trailer (Heavy Goods Vehicles)

Bus Bus or coach (Public Sevice Vehicles)

Other Any other vehicle (Not classified)

Table 3.1: ATC classification guide.

Bluetooth data does not provide an exact estimate of all traffic, but instead a

proportion of it. Therefore, Bluetooth data only shows a small sample of the total

traffic flow. The smaller sample size is assumed because not everyone and all modes

in the network have active Bluetooth devices, and even when they are turned on,

Bluetooth may not be activated or detected by the detector. The question is whether

the sample is biased or representative, and if biased, what factor or factors affect it.

The integration of the ATC data with Bluetooth data could help to describe a

possible relationship between the rate of the Bluetooth detections and the number of the

vehicles passing through the location. It motivates an investigation into the relationship

between ATC and Bluetooth detections.

Before analysing and modelling this relationship, it is necessary to consider the

limitations and challenges of employing Bluetooth data. For example, as noted before in

Section 1.5, not all vehicles have Bluetooth devices, and not all Bluetooth detections are

associated with vehicles. At the detection area, they might be captured from bicyclists

and pedestrians. Furthermore, the Bluetooth scanner might lose some MAC address

detection. This happens due to some different factors as follows (Michau et al., 2014):

� Signal strength is reduced as a result of physical obstacles such as walls and

billboards.

� Due to the increasing number of detectable Bluetooth devices in the detector area

interacting with each other, detection quality is decreasing.

� While the sensor is at its back-off time, which is required to detect, truncate, and

record MAC addresses, a high-speed car with an active Bluetooth device passes
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through the detector coverage area.

Therefore, the location of the sensor has a significant effect on the detection pattern.

For example, having signalised lights or gas stations causes the vehicles to stay more in

the coverage zone of the detector, thus the number of Bluetooth detections would be

expected to increase. Also, installing the detector near places like shopping malls, parks,

etc., where there are lots of pedestrian movements, means higher chances of Bluetooth

detection even in the absence of any vehicles (Carpenter et al., 2012). Therefore, the

Bluetooth data is not a representative sample of all vehicles passing through the area,

and any inferences drawn from the Bluetooth data might be biased.

Crawford et al. (2017) also looked into some of the potential sources of biases in

the use of Bluetooth data for traffic monitoring, such as Bluetooth sensor detection

rates that vary depending on location, travel direction, and time of year, to assess the

feasibility of using Bluetooth data to examine repeated travel behaviour. To do this,

they looked at three locations with Bluetooth detectors and ATC in close proximity. A

scatterplot of 5 minute ATC data against the number of unique Bluetooth detections

at all three sites revealed a non-linear relationship between the Bluetooth and ATC

data. The relationship pattern suggested two stages, the first of which is defined by

small volume of traffic and an apparently constant rate of Bluetooth detections, and

the second of which begins when traffic numbers reach a particular level and the rate

of Bluetooth detections rapidly increases. It was hypothesized that the detection rate

may depend on some factors. For example, it could be higher during peak times due to

more vehicles in the coverage zone or differences in the types of people travelling; some

may be more likely to travel with a Bluetooth-enabled device.

To explore this issue further, we also selected four locations such that both the ATC

counter and Bluetooth detector are nearby and one year of data was adopted for each

location.Table 3.2 presents description of selected locations and Figure 3.1 shows the

study locations (black circles) on the Manchester map.

Location Site Name Description

Location 1 1421 Cambridge St (A5067) / 70m N of Cavendish St, Manchester (ATC)

MAC4149MR Cambridge St / Cavendish St (1090), Manchester (Blu)

Location 2 1165 Ardwick Green (A6) / 35m E of Hamsell Rd, Ardwick, Manchester (ATC)

MAC1081MR Ardwick Green S (A6) / 10m N of Brunswick St (3/119), Ardwick, Manchester (Blu)

Location 3 1416 Ashton Old Rd (A635) / 90m E of Chancellor Ln, Ancoats, Manchester (ATC)

MAC4013MR Ashton Old Rd (A635) / Chancellor Ln (11), Ardwick, Manchester (Blu)

Location 4 1277 Whelley (B5238) / 60m E of Wilton Ave, Wigan (ATC)

MAC4313WG Ashton Old Rd (A635) / Wigan Rd (B5238) / Cale Ln (10/188), Whelley, Wigan (Blu)

Table 3.2: Description of selected locations.
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(a) (b)

Figure 3.1: Maps showing the study locations (black circles) in Manchester, the green
and blue circles are the Bluetooth detector and permanent ATC: (a) Locations 1,2 and
3 (b) 4.

Figure 3.2: Five minute counts of ATC and unique Bluetooth detections at the four
considered locations for a one-year period (2018).

Figure 3.2 presents the five-minute counts of ATC against the unique number of

Bluetooth detections at all four locations for a one year period (2018). The unique

number refers to the fact that we have filtered Bluetooth data by considering only one

observation per MAC address, ignoring multiple detections.
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A similar non-linear relationship as described in Crawford’s study was observed

in the four locations (Crawford et al., 2017). It can be seen from Figure 3.2 that

there is a positive correlation between the number of Bluetooth detections and ATC

counts for all locations but the rate (the slope of the line) does not seem to be con-

stant.Moreover, there is more variation, especially when it moves from lower to higher

values of ATC.There are a few outliers, especially in locations 1 and 3, which show

that even if the movement of any vehicle is not recorded (i.e. no ATC record), the

Bluetooth can be detected from an active device by pedestrians or cyclists. Location

3 shows that there were some five-minute intervals when very few Bluetooth were de-

tected regardless of the higher number of ATC. It may have occurred when there is no

traffic and the vehicles are passing fast enough through the zone of the detector, so the

Bluetooth sensor loses the chance of Bluetooth detection, or maybe the BT detector

was temporarily disabled.

One possible cause of the variation of the changing rate of detections is buses. Our

first hypothesis is that the Bluetooth detection rate will be higher as buses drive around,

because a bus will be transporting a higher number of passengers with active Bluetooth

devices. The initial idea in this chapter is to consider whether the number of buses is

one of the factors that explains the variation. Table 3.1 explains how the ATC records

are classified by vehicle, so we can include the number of buses in the analysis.

A second hypothesis we explore is whether speed is another factor explaining this

variation. It is expected that the rate of detection is affected by the speed of vehicles

passing through the detection area.A high-speed car passing through the area, for

example, may be missed (Stevanovic et al., 2015). However, if there is a traffic jam that

forces vehicles to slow down or stop, several interfering active devices may reduce the

transfer of data to the detector.

Accordingly, the first major requirement for this exploration will be to develop

a valid statistical model to explain the relationship between the rate of Bluetooth

detection per ATC, which then can help to give statistically supported insights into

the possible factors that might explain the variation. Table 3.3 summarises the total

number of unique Bluetooth detections, ATC, and buses in one year for the selected

locations during one year (2018). It can be seen that locations 2 and 3 have the highest

and lowest total number of buses, respectively. This also demonstrates that, among the

other locations, location 4 has the lowest Bluetooth detection records.
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Locations Bluetooth ATC Bus

Location 1 1390729 6144323 74523

Location 2 3015851 9476541 593370

Location 3 2011941 8884268 20430

Location 4 857866 7025772 47930

Table 3.3: Summary of the total number of unique Bluetooth detections, ATC, and
buses for the selected locations during one year, 2018.

In this chapter, we first describe the multiple regression models which will be con-

sidered to investigate the relationship between the rate of Bluetooth detection and the

number of vehicles passing the detection area in Section 3.2. Following that, two meth-

ods of variance function estimation are discussed in order to deal with heteroscedas-

ticity, as one of the main assumptions for having a valid regression model. Finally, the

implementation and results of regression analysis incorporating the number of buses

and speed are presented in Sections 3.3 and 3.3.3, respectively.

3.2 Methodology

3.2.1 Linear regression model

Regression analysis is used for examining the relationship between one dependent vari-

able and one or more other variables, called independent or explanatory variables.

This relationship can be explained by the regression equation, which is finally used

to forecast or predict the dependent variable. It is called simple linear regression if

just one single independent variable is employed to predict the value of a dependent

variable, otherwise it is called multiple linear regression. The multiple linear regression

is represented as follows:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ϵ (3.1)

where β0 is the intercept and β1, β2, . . . , βk are called the slopes or the regression

coefficients, and ϵ is the error term, also known as the residual.

There are some assumptions for the regression model which if violated, the outcome

might be biased and it can affect any meaningful interpretation of the model. These

assumptions are as follows:

� the relationship between the dependent variable and the independent variables is

linear, called linearity,
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� the residuals are normally distributed,

� the residuals are independent,

� the variance of the residuals should be constant for all observations, which is

known as homoscedasticity, and if the variance changes; it is called heteroscedas-

ticity (non-constant variance).

Normally distributed errors are considered to be the least important of these assump-

tions (Lumley et al., 2002; Gelman and Hill, 2006; Knief and Forstmeier, 2021), es-

pecially for large samples. Lumley et al. (2002) reviewed the statistics for the t-test

and linear regression, as well as what the research literature and textbooks say about

those techniques. Following that, simulations based on a large dataset of medical costs

are shown.These simulations show that, even with highly non-normal data, linear re-

gression and the t-test can perform well in moderately large samples. Regarding the

independence assumption if the errors are positively correlated over time, then stan-

dard errors calculated ignoring the correlation will tend to be too small, and the sig-

nificance of terms in the model might be exaggerated.This assumption can be checked

graphically by calculating the autocorrelation function of the residuals sorted in time

order.

The initial goal of this chapter was to find a relatively accurate relationship between

Bluetooth detections and ATC records, while also taking into account the effect of the

number of buses to see if the number of buses can influence the rate of Bluetooth

detection (see Section 3.1). The regression model approach can be utilized to explore

these relationships, by considering a multiple linear regression model as follows:

y = α+ βx+ γz + ϵ (3.2)

where the number of Bluetooth detections, ATC recordings, and buses are represented

by y, x, and z in these models, with y as a dependent variable and x and z as inde-

pendent variables. Here α is the average number of Bluetooth detections if no vehicles

pass through the area, β is the average number of Bluetooth detections per ordinary

vehicle, and this average would be β + γ if the bus is travelling through, so γ is the

average extra Bluetooth detection per bus compared to other vehicle and finally, ϵ is

the error term.

However, looking at Figure 3.2, which is the scatter plots of five minute counts of

ATC and unique Bluetooth detections for a one-year period, shows that a straight line

does not appear to be a good fit for the data, because there seems to be a change

in slope at some point (or points). Table 3.4 presents the linear and other alternative

regression models that have been used for this purpose, such as the quadratic, cubic, and

segmented (or broken-stick) models. Segmented regression is a type of regression that
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allows for the fitting of several linear models to the data for different x ranges, which

knots or breakpoints are x values where the linear function’s slope changes. Therefore,

knots are included in these models. For example, in a segmented model with two knots,

c1 and c2 represent the knot’s values and the indicator function I(x ≥ c1) is defined to

be 0 if x ≤ c1 and 1 if x > c1 and the slope for each stick is considered by β+∆β1 and

β +∆β1 +∆β2, respectively.

Model Regression equation

Linear y = α+ βx+ γz + ϵ

Quadratic y = α+ βx+ β1x
2 + γz + ϵ

Cubic y = α+ βx+ β1x
2 + β2x

3 + γz + ϵ

Segmented with one knot y = α+ [β +∆β1I(x ≥ c1)]x+ γz + ϵ

Segmented with two knots y = α+ [β +∆β1I(x ≥ c1) + ∆β2I(x ≥ c2)]x+ γz + ϵ

Segmented with three knots y = α + [β + ∆β1I(x ≥ c1) + ∆β2I(x ≥ c2) + ∆β3I(x ≥
c3)]x+ γz + ϵ

Table 3.4: Some alternative regression models for the effect of ATC records on Blue-
tooth detections incorporating a different effect for buses. The number of Bluetooth
detections, ATC recordings, and buses are represented by y, x, and z in these models.
Also, for example, in a segmented model with one knot, c1 represents the knot’s value
and the indicator function I(x ≥ c1) is defined to be 0 if x ≤ c1 and 1 if x > c1.

When we are working with real traffic data, homoscedasticity may fail because of

excess variations resulting from different phenomena, such as different times of day,

traffic incidents, weather, or missing data due to technical errors or communication

failures in detectors, etc. In the presence of heteroscedasticity, the estimated statistical

significance of the independent variables is inaccurate and invalid if the heteroscedas-

ticity is not accounted for in the model. Therefore, the following section will discuss

the methodology tested for resolving heteroscedasticity based on the underlying data

distribution.

3.2.2 Addressing heteroscedasticity

There are several techniques for resolving heteroscedasticity in regression models, such

as the methods based on weighting and the methods based on data transformation

(Carroll and Ruppert, 1988).

The weighted regression model, as one of the well-known techniques, has been

utilised to correct non-constant variance situations. This method gives a weight based

on the variance of the fitted value corresponding to each data point, and this procedure
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will assign more weight to the observations with smaller variances as these observations

present more reliable knowledge about the regression model than the observations with

large variances. This is a very good method for removing heteroscedasticity, if it can

use the correct weights.

In order to implement the weighted regression model, it is important to specify a

model for the variance of the error term. In the presence of heteroscedasticity, it is

expected that the variance of the error term is not constant (i.e., Var(ϵi)=σ
2
i , i =

1, 2, . . . , n).

The most common model assumes that the variance is functionally connected to

mean. For example, the variance as proportional to the power 2θ of the mean response,

i.e. Var(ϵi)=σ
2
i µ

2θ (or the standard deviation as proportional to the power θ of the

mean response) (Carroll and Ruppert, 1988). The gamma or lognormal data follows

with θ=1, whilst θ=0.5 would be relevant to the Poisson distribution.

Because the research data is count data, an initial assumption is also that Poisson

regression can be used, with θ = 0.5; this will be discussed in the next chapter (Section

4.2). Here, before deciding on the appropriate θ, we decided to let the data provide us

with an indication of θ.

In this regard, we first utilised the rolling standard deviation method to visualise

how the standard deviation or variance of Bluetooth detections varies in order to get a

good idea of θ according to the data.

3.2.3 Rolling variance method

In the rolling variance method, a window of pre-specified length is shifted across the

data and the variance is computed for the data in each window. In this method, the data

windows can also be created as non-overlapping or overlapping windows. The difference

between these two types of windows is that if the non-overlapping can not provide

a sufficient number of observations for an accurate evaluation, then the overlapping

windows will be an alternative to get a more detailed picture; however the estimated

variance are then not independent, because they are based partly on the same data.

Finally, the computed data can be plotted in order to see how the standard deviations

or variances change in terms of the power of the mean.

To visualise how the variance of Bluetooth detections varies in connection with the

mean, we first utilised the rolling variance method. It was performed over the non-

overlapping window of length k across amounts of ATC using the following steps:

� Step 1: Assuming window length (e.g. k = 10) and stopping criteria (e.g. maxi-

mum number of ATC counts).

� Step 2: Considering the slide window based on the assumed length.
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� Step 3: Computing the mean and variance (or standard deviation) of Bluetooth

detections in the slice window. The bootstrapping method can be utilized here

to estimate the confidence intervals by resampling with replacement the data in

the window. Bootstrapping is a statistical procedure that uses various simulated

samples from a single dataset. For a range of sample statistics, this procedure

allows you to calculate standard errors, generate confidence intervals, and do

hypothesis testing (Efron and Tibshirani, 1994).

� Step 4: Rolling the window by length k.

� Step 5: Repeat step 3 and 4 until reaching the stopping criteria.

It should be noted that we used non-overlapping windows in order to have independence

between samples of each window, because the large sample size would produce sufficient

data for an accurate evaluation of variance within quite small windows. Finally, we

display the computed variance to show how the variances change in terms of the mean.

The other alternative approach, if this method does not help us to find the an

appropriate parametric form of the variance function, is the non-parametric method of

variance-function estimation.

3.2.4 Non-parametric variance function estimation

Chiou and Müller (1999) proposed a nonparametric quasi-likelihood regression tech-

nique for an unknown variance function. The quasi-likelihood technique is useful in

many applications where the exact distribution of the observations is unknown. In

this method, the variance function is estimated non-parametrically by smoothing the

squared residuals acquired from an initial regression model fit at the estimated mean.

For the smoothing method, they used local polynomial fitting (Fan and Gijbels, 1996),

also suggesting that any reasonable smoother could be used.They showed that the

inference based on the nonparametric quasi-likelihood estimators of the vector of re-

gression parameters is asymptotically equivalent to quasi-likelihood estimation using a

known variance function.

This technique utilizes an iterated process in which in each iteration the non-

parametric variance function is estimated from the residuals and estimated means us-

ing the smoothing method.Then this non-parametric variance function can be used

to update and improve the model parameters. Carroll and Ruppert (1988) suggested

alternatives to the squared residuals for variance-function estimation, such as weighted

absolute residuals and the logarithm of absolute residuals.

We adapted Chiou and Müller’s method by smoothing the logarithm of absolute

residuals using LOESS (locally estimated scatter plot smoothing), which results in a

smooth line capturing the general trend (Cleveland, 1979). The advantage of using the
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logarithm of absolute residuals is that they are less skewed than squared residuals, and

the relationship will be a straight line if the power of the mean model is correct. The

method starts with an unweighted regression model and a variance function estimated

by regressing the logarithm of absolute residuals on the fitted values with LOESS.The

weights are computed using the estimated variance, and the weighted regression model

is fitted until the coefficients do not change significantly. The non-parametric method

for estimating the variance-function is performed using the following steps:

� Step 1: Fit an unweighted regression model and obtain the residuals of the con-

sidered model.

� Step 2: Estimate the variance function using LOESS by regressing the logarithm

of absolute residuals on the fitted values. The exponential of obtained fitted values

(i.e. yi) of this regression is considered as σi (here because of logarithm function,

exponential of the obtained fitted values are σi):

eyi = σi (3.3)

� Step 3: Use this variance function to estimate the weights as wi = 1/σ2i and

create the weight vector as W = {w1, w2, . . . , wn}.

� Step 4: The normalized weight can be computed by dividing the raw weights by

its mean and fit the weighted regression model.

� Step 5: Repeat steps 2 to 4 until the coefficients of the weighted regression model

converge (i.e. when the coefficients do not change significantly).

3.2.5 Model selection

The process of selecting the best model from a set of models that must be a reasonable

approximation of the data-generating process is known as model selection.We inves-

tigated the six different regression models given in Table 3.4 to find the best fit for

data. The Akaike information criterion (AIC) and the Bayesian information criterion

(BIC) were utilised to compare the goodness of fit of the different regression models

(Burnham and Anderson, 2002; Gideon, 1978). The AIC is calculated as:

AIC = 2k − 2 log(L̂) (3.4)

where k is the number of estimated model parameters and log(L̂) is the natural log-

arithm of the maximum likelihood estimation for the model. Also, BIC is computed

as:

BIC = k log(n)− 2 log(L̂) (3.5)
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where k and log(L̂) are the same as defined for AIC, and n is the number of observations,

or equivalently, the sample size. The better model will be the one with the lower value

of AIC or BIC.

3.3 Implementation and results

The selected four locations as case studies are presented in section 3.1. Location 2 has

the most Bluetooth detections, ATC records, and buses in total, as seen in Table 3.3,

as well as the most obvious change in slope. Therefore, first, we started to fit the linear

regression model (3.2) to the data for this location. It needs to be noted that the ob-

servations are considered as the number of Bluetooth detections, ATC and bus counts

during every five minute time interval. Table 3.5 shows a summary of the parameter

estimates for the fitted model related to location 2. The multiple linear regression equa-

tion is estimated as follows:

y = −1.67 + 0.31x+ 0.44z (3.6)

Coefficients Estimate Std. Error t value Pr(> |t|)

α -1.67 0.052 -32.33 <2e-16 ***

β 0.31 0.001 390.51 <2e-16 ***

γ 0.44 0.008 53.10 <2e-16 ***

Table 3.5: The multiple linear regression coefficients estimation.

It can be seen from Table 2.2 that all the coefficients are statistically significant.

There is an average of 0.31 Bluetooth detections per ordinary vehicle and an average

of 0.75 (i.e. 0.31+0.44) Bluetooth detections per bus. The negative intercept for this

regression model might not be interpretable, because if no vehicles, including buses,

pass through the detection area for five minutes, there is still a chance that Bluetooth

will be detected by an active device from a pedestrian or cyclist.
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Figure 3.3: Residuals versus fitted value plot for the multiple linear regression model.

As expected, the heteroscedasticity can be seen as a cone shape where the spread

of the residuals increases as the fitted value increases (Figure 3.3).Given the above

pattern, it will be essential to address heteroscedasticity in order to create a valid

statistical model.

In this regard, the rolling variance method and the non-parametric variance function

estimation are utilised to specify an appropriate model for the variance function based

on data. The results are presented in the following sections.

3.3.1 Results of the rolling variance method

To begin, the rolling variance approach with a window length of k = 10 is utilised

to specify a variance model based on the data. The result of the variance versus the

mean of Bluetooth detections across the rolling windows of ATC counts for location

2 is shown in Figure 3.4. The estimates from each window are shown as circles, with

bootstrap 95% confidence limits as dashed lines.
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Figure 3.4: The variance versus the mean of Bluetooth detections across the rolling
windows of ATC counts for location 2. The estimates from each window are shown as
circles, with bootstrap 95% confidence limits as dashed lines.

An initial linear trend suggests that the variance is proportional to the mean for

small values of ATC, but this pattern displays that something has happened to cause

the variance to first increase sharply and then go down as ATC increases (here when

ATC counts are higher than 120). It does not allow us to make a decision about the

value of θ. It is difficult to find out what underlying factors cause this extra variation

in traffic situations, although it may be that this extra variance is caused by two dif-

ferent situations. Firstly, when there is no traffic jam, a large number of vehicles can

pass through the location fast enough to not be detected by the Bluetooth detector.

Secondly, when traffic congestion enforces so many vehicles in the area, the interfer-

ence of detectable Bluetooth devices reduces the effectiveness of detection. In addition,

other factors may also affect the hourly, weekday, monthly and seasonal variations.

Therefore, as the variance does not appear to be proportional to a power 2θ of the

mean, the next step is to employ the non-parametric method as the other alternative

approach.The results of this method will be given in the next section.

3.3.2 Results of non-parametric variance function estimation in re-

gression models including bus

We used the non-parametric method of variance-function estimation because the rolling

standard deviation method failed to suggest an appropriate parametric variance model
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based on the data. Figure 3.5 presents the result of regressing the logarithm of abso-

lute residuals on the fitted values using the LOESS method after the weighted linear

regression model is converged for Location 2. The red line shows the LOESS smoother

with a span of 0.90, which uses 90% of the points in each window. After ten iterations,

convergence was reached, which is considered as no significant change in the coefficients.

Figure 3.5: The result of regressing the logarithm of absolute residuals on the fitted
values using the LOESS method after the weighted linear regression model is converged
for location 2.

In this approach, the regression models shown in Table 3.4 are considered as weighted

regression models. The multiple linear regression (3.6) after accounting for the non-

parametric variance function and as a weighted linear regression is:

y = 1.77 + 0.23x+ 0.04z (3.7)

Table 3.6 presents a summary of the parameter estimates for the fitted this model for

location 2.The coefficients are statistically significant, as can be seen, but they have

changed and become smaller. The positive, statistically significant, coefficient of buses

suggests that buses have an effect on the rate of Bluetooth detection, which increases as

the buses pass through the detection area.Although the intercept is not of interest here,

as it is influenced by non-vehicle detection, it has also become positive and meaningful.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 1.77 0.022 79.078 <2e-16 ***

β 0.23 0.008 273.131 <2e-16 ***

γ 0.04 0.007 4.881 <1.06e-6 ***

Table 3.6: The estimated coefficients of the weighted multiple linear regression es-
timation for the effect of ATC records on Bluetooth detection incorporating buses at
location 2.

Figure 3.6 shows homoscedasticity in the residual plot after the weighted regression

model is converged, along with a few remaining problems when the average number of

Bluetooth detections is low.

Figure 3.6: Residuals versus fitted value plot after the weighted multiple linear re-
gression model is converged for location 2.

The last step is to compare the alternative regression models given in Table 3.4. Cross-

validation is a common approach for model comparison. Cross-validation was used by

Rosenberg et al. (2003) to compare models with parametric and non-parametric terms

in the mean response model. However, because we have a large dataset and a com-

plex fitting procedure, cross-validation will be too computationally intensive in our

situation. Two alternative approaches, AIC and BIC, will be used here to make com-

parisons. It should be noted that the model for the mean response contains only para-

metric components, but the variance is modelled non-parametrically. The performance

of AIC or BIC in such situations has not been widely studied.Yang (1999) presented

a new model complexity criterion called ABC, which differs from AIC in that it in-

cludes a model complexity error term for non-parametric components. The method was
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demonstrated for adaptive smoothing, in which the amount of smoothing varies be-

tween models.We could use the effective number of parameters (enp) for considering

the degrees of freedom of the non-parametric variance function aspect and add it as a

penalty term to AIC and BIC.However, in our modelling the amount of smoothing in

the loess phase is kept constant across all models, so Yang’s penalty term for model

complexity would change slightly and can be ignored. Examination of the enp for the

models confirmed that the values are very close.

The comparison results show that the weighted segmented regression model with

three knots or break-points has a lower AIC and BIC than the other models, indicating

that it is the best-fitting line for the data (Table 3.7).

Model df AIC BIC

Weighted linear 4 687395.0 687433.3

Weighted quadratic 5 680889.2 680936.4

Weighted cubic 6 678610.8 678668.2

Weighted segmented with one knot 6 678951.0 679008.4

Weighted segmented with two knots 8 676528.1 676604.6

Weighted segmented with three knots 10 676155.4 676342.0

Table 3.7: Comparison AIC and BIC between the weighted regression models for the
effect of ATC records on Bluetooth detection incorporating effect for buses at location
2.

The summary of the coefficient estimations for all other alternative regression mod-

els is presented in Tables (3.8–3.12). All of the coefficients are statistically significant,

and the results show that buses have an impact on the rate of Bluetooth detections,

which as predicted will increase as the buses pass through the detection area. However,

if the number of buses was the full explanation for the changing rate, including the

buses in the model should have resulted in the linear model being chosen as the best

model, which did not happen, indicating that the buses were not the only factor in the

rate variation. It should be noted that p-values for ∆β1, ∆β2 and ∆β3 are NA in Tables

(3.10–3.12), because the difference between two slopes really comprises two parameters:

the size and the location of the change.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 2.06 0.035 58.58 <2e-16 ***

β 0.18 0.001 125.47 <2e-16 ***

β1 0.001 0.001 81.55 <2e-16 ***

γ 0.35 0.008 44.22 <2e-16 ***

Table 3.8: The estimated coefficients of the weighted multiple quadratic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses at
location 2.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 3.88 0.053 73.77 <2e-16 ***

β 0.04 0.003 14.14 <2e-16 ***

β1 0.003 0.00005 64.09 <2e-16 ***

β2 -0.00001 0.0000002 -50.37 <2e-16 ***

γ 0.28 0.008 35.45 <2e-16 ***

Table 3.9: The estimated coefficients of the weighted multiple cubic regression es-
timation for the effect of ATC records on Bluetooth detection incorporating buses at
location 2.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 1.94 0.035 55.33 <2e-16 ***

β 0.21 0.001 171.14 <2e-16 ***

∆β1 0.14 0.001513 93.52 NA

γ 0.31 0.008 38.72 <2e-16 ***

Table 3.10: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses with one knot c1 = 59 at
location 2.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 1.65 0.031 53.80 <2e-16 ***

β 0.23 0.001 234.01 <2e-16 ***

∆β1 0.22 0.003 72.36 NA

∆β2 -0.25 0.005 -47.87 NA

γ 0.23 0.008 28.62 <2e-16 ***

Table 3.11: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses with two knots c1 = 77 and
c2 = 124 at location 2.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 1.99 0.04 49.91 <2e-16 ***

β 0.21 0.002 136.57 <2e-16 ***

∆β1 0.07 0.004 21.12 NA

∆β2 0.21 0.006 33.57 NA

∆β3 -0.28 0.006 -43.38 NA

γ 0.23 0.008 28.87 <2e-16 ***

Table 3.12: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses with three knots c1 = 50,
c2 = 88 and c3 = 122 at location 2.

Figure 3.7 shows the predicted values against ATC count, for a fixed number of buses

(here equal to 5), obtained from weighted segmented models with different number of

knots. It demonstrates that there is only a slight difference between the segmented

model with two knots (c1 = 77, c2 = 124) and three knots (c1 = 50, c2 = 88, c3 =

122). The statistically significant improvement from using the third knot could have

happened due to the large sample size (i.e. here, the sample size equals 105120; the

total number of five-minute periods in a year). Therefore, the slight difference is still

statistically (but not practically) significant.Hence, the model with two knots could

well be used to explain the relationship.
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Figure 3.7: The predicted values against ATC count, for a fixed number of buses,
obtained from the weighted segmented model by the different number of knots.

Following that, based on the obtained slopes of the model with two knots, the

changes in Bluetooth detection can be explained as follows. For all ATC counts below

the first knot, c1 = 77, the slope is positive (i.e. β = 0.23) and that means the rate

of Bluetooth detections is constant at 0.23, i.e. approximately 23 % of vehicles are

detected. There is a significant increase in the slope between the first knot and the

second knot (β + ∆β1 = 0.45). This indicates that the rate of Bluetooth detections is

expected to increase when ATC counts are between 77 and 124 (i.e. approximately

45 %). It was predicted that when the vehicles stay more in the coverage zone of the

detector, the rate of Bluetooth would be expected to increase, so this region may

represent traffic congestion. Finally, on the other side of the second knot, the slope is

roughly the same as the first segment (β +∆β1 +∆β2 = 0.2), which suggests that the

rate of Bluetooth detections is predicted drop to 0.2, i.e. approximately 20 % of vehicles

detected.

As discussed in Section 3.1, the possibility of missed detections increases as the

number of detectable Bluetooth devices in the detector area increases, as well as when

there is a fast, free-flowing traffic condition in which vehicles can leave the area with-

out being detected. For this location, the slope of the first segment shows that there
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is no traffic (due to the low number of ATC), and the third part reflects the traffic

(due to the high number of ATC). Both segments showed the same rate of Bluetooth

detection, with the higher rate in the second segment.We performed similar analysis

for the other locations, and Tables (A.1–A.21) in Appendix A.4.1 present the esti-

mated coefficients of weighted regression models and comparisons between them.The

coefficients of the number of ATC and buses are positive, and statistically significant

for all other locations. The rate of Bluetooth detection for the third segment (the con-

gested traffic situation) is lower than the rate for the first segment at these locations

(the free-flowing traffic situation). This could imply that in a congested traffic situa-

tion, the detector would lose more Bluetooth detections.Also, for locations 1 and 3,

the weighted segmented regression model with three knots was shown to provide a

better fit.However, the same as location 2, the slight difference between the weighted

segmented regression model with three knots and two knots is statistically (but not

practically) significant.Hence, the segmented regression model with two knots could be

considered as the final model. For location 4, the weighted segmented regression model

with two knots was chosen as the best fit in first place. The comparison of locations

suggests that location 2, where the number of buses is higher than others (see Table

3.3), also has the highest bus coefficients, and location 1 has the lowest bus coefficients.

Furthermore, there may be some similarities between the traffic patterns for loca-

tions 1 and 4, as well as for locations 2 and 3, firstly because the knots of the weighted

segmented regression model that indicate the value of the ATC count where the slope

of the linear function changed, and hence the rate of Bluetooth detection, seem to be

close together. Secondly, the non-parametric variance function estimation also shows a

roughly similar trend for these locations.

Finally, the number of buses has an effect on the rate of Bluetooth detections.

When the buses are present, the rate will be higher. However, because the segmented

regression model with two knots was chosen for the best fit, rather than the linear

model , it suggested that this is not the only explanation for the rate variation. In the

following section, then, we will incorporate speed to see whether the Bluetooth rate

variation is justified.

3.3.3 Results of non-parametric variance function estimation in re-

gression models including speed

As described in Section 3.1, the ATC data also include the instantaneous speed of

vehicles passing through the detection area. Here we hypothesized that including speed

might be able to differentiate congested versus flee-flowing traffic at higher volumes. To

account for the effect of speed in the multiple linear regression, we include speed as an
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interaction term as follows:

y = α+ βx+ γz + ωs+ δ(x× s) + ϵ (3.8)

where the number of Bluetooth detections, ATC recordings, buses and the average

speed of vehicles passing through the detection zone are represented by y, x, z and s,

respectively. Table 3.13 presents AIC and BIC comparison of the six regression mod-

els with the interaction term ATC×speed at location 2, showing that the segmented

regression model with three knots is a better fit for data.

Model df AIC BIC

Weighted linear 6 675957.0 676014.4

Weighted quadratic 7 673860.8 673927.8

Weighted cubic 8 672184.4 672260.9

Weighted segmented with one knot 8 675047.8 675124.3

Weighted segmented with two knots 10 669959.3 670054.9

Weighted segmented with three knots 12 669850.7 669965.5

Table 3.13: Comparison AIC and BIC between the weighted regression models for
the effect of ATC records on Bluetooth detection incorporating speed at location 2.

Figure 3.8 shows the predicted values of Bluetooth detection rate versus ATC com-

puted from segmented models with different numbers of knots when a fixed number of

buses (here equal to 5) and a fixed speed (here equal to 48 km/h speed) are being used.

It demonstrates that there is only a slight difference between the segmented model with

two knots (c1 = 80,c2 = 123) and three knots (c1 = 50, c2 = 88, c3 = 121). Therefore,

the relationship could be explained using the segmented model with two knots.
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Figure 3.8: The predicted values of Bluetooth detection rate versus ATC computed
from segmented models with different numbers of knots when a fixed number of buses
(here equal to 5) and a fixed speed (here equal to 48 km/h speed limit) are being used.

The estimated coefficients of the weighted segmented model with two knots for loca-

tion 2 using the non-parametric variance function estimation approach are summarised

in Table 3.14 and other regression model results are presented in Appendix A.4.2 (see

Tables A.22 – A.26).

Coefficients Estimate Std. Error t value Pr(> |t|)

α 1.61 0.254 6.31 <2.82e-10 ***

β 0.43 0.003 119.242 <2e-16 ***

∆β1 0.19 0.003 56.930 NA

∆β2 -0.28 0.005 -53.110 NA

γ 0.16 0.007 20.675 <2e-16 ***

ω 0.003 0.004 0.580 0.562

δ -0.004 0.0001 -57.239 <2e-16 ***

Table 3.14: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporate buses and speed with two knots
c1 = 80 and c2 = 123 at location 2.

The results showed that the rate of Bluetooth detection decreases when the vehicle

speed increases. The coefficient of ATC × speed (i.e. δ) can be used to interpret the
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effect of speed on rate, which showed that an increase in speed of 10 km/h resulted

in a rate reduction of 0.04 (from 0.43 to 0.39). This could relate to free-flowing traffic

conditions in which the vehicle can leave the detection area faster and the detector

is less likely to detect it. The coefficient of speed (i.e.ω) is difficult to interpret as it

represents the influence of speed when ATC = 0, and surely there is no recorded speed

if there is no vehicle passing through the area.However, this coefficient is not significant

in the best chosen model.

The result of regressing the logarithm of absolute residuals on the fitted values

using the LOESS method after the weighted segmented regression model with two

knots, which was selected as the best model, is converged for location 2 is shown in

Figure 3.9.

Figure 3.9: The result of regressing the logarithm of absolute residuals on the fitted
values using the LOESS method after the weighted segmented regression model with
two knots selected as the best model is converged for location 2.

Figure 3.10 shows homoscedasticity in the residual plot after the weighted segmented

regression model is converged with a few remaining problems when the average number

of Bluetooth detections is low.
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Figure 3.10: Residuals versus fitted value plot after the weighted segmented regression
model with two knots is converged for location 2.

Figure 3.11 shows the autocorrelation of the residuals from the weighted segmented

regression model with two knots. It shows that there is significant, but not strong,

positive autocorrelation in the residuals of the final model. This suggests that other

unaccounted sources of variation resulted in some positive autocorrelations, which led

to the rate being considered as a time-dependent variable in the following chapter.
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Figure 3.11: The autocorrelation of the residuals from the weighted segmented re-
gression model with two knots for location 2.

We performed similar analysis for the other locations, and Tables (A.27–A.47) in

Appendix A.4.2 present the estimated coefficients for weighted regression models and
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a comparison between them.The bus and ATC× speed coefficients are statistically

significant with the same signs as for the first location positive but different for the

bus; and negative but different for ATC ×speed coefficients. In some cases the main

effect coefficient for speed (ω) was statistically significant. This is difficult to interpret

because the effect of speed on rate is most likely nonlinear, a significant ω coefficient can

be interpreted as an attempt to model this nonlinearity.Another alternative explanation

is that there are some unobserved confounding factors, and the main effect of speed

serves as a channel for expressing those unobserved variables, say the environment

and traffic conditions. The weighted segmented regression model with three knots was

shown to provide a better fit for locations 1 and 4, while the segmented regression

model with two knots was chosen as the best fit for location 3.Given that the weighted

segmented regression model’s knot values for locations 1 and 4 (as well as locations 2

and 3) appear to be close together, there may be some similarities in traffic patterns

and reported speeds for these locations, in particular because their speed coefficients

indicate close values.

3.4 Discussion

In this chapter we have explored the modelling of the relationship between the rate

of Bluetooth detections and ATC records. Four study locations where both the ATC

counter and Bluetooth detectors are deployed nearby were chosen for the analysis.

The visualisation suggested a non-linear relationship pattern with two stages between

Bluetooth and ATC variables. Firstly, it is characterised by low traffic volumes and

lower Bluetooth detections, and the second, which starts when traffic volumes reach

a certain level and the rate of Bluetooth detections rapidly increases.We employed

regression analysis, as a powerful statistical method for modelling the relationship, by

taking into account that some factors might influence the rate of Bluetooth detection.

We were able to extract the number of buses and the speed of the vehicles passing

through the area using the ATC database. The initial idea was that the number of

buses was considered as one of the factors that might explain the variation, because

the rate would be higher when buses are likely traveling around with more active

Bluetooth devices. The second hypothesis was that the speed of the vehicles might also

have an effect on the rate. For example, a high-speed car travelling through the region

could be undetected.Also, several interfering active devices may decrease data transfer

to the detector if there is a traffic jam that forces vehicles to slow down or stop.

Therefore, the multiple linear regression with some other alternative models was

first constructed by considering the Bluetooth detections as a dependent variable, ATC

records and the number of buses as two independent variables. After running regression

analysis, heteroscedasticity produced an unequal scattering of residuals, which needed
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to be addressed before making any inferences from the model. The rolling variance

approach was used to specify an appropriate parametric model for the variance function

based on data, but it failed, and thus a non-parametric variance function estimation

method was successfully used.

The results of regression analysis showed that buses had an effect on the rate of

Bluetooth detections, which as we expected, increases as more buses pass through the

detection region.However, including the buses in the model should have resulted in

the linear model being selected as the best model, which did not happen, showing

that the buses were not the complete explanation of the rate variation. The segmented

regression model with three knots was considered to be the best model for locations 1, 2,

and 3, whereas the weigghted segmented regression model with two knots was prefered

for location 4. Here, there was a slight statistically (but not practically) significant

difference between the segmented regression model with two and three knots. Therefore,

for all locations, the segmented regression model with two knots could be considered

as the best final model.

The results of regression analysis that included the interaction speed term demon-

strated that as the vehicle speed increases, the rate of Bluetooth detection reduces.

That is presumably because of free-flowing traffic, where the car can exit the detection

area faster and the detector has a lower chance of detecting it.

Finally, since adding the buses and speed still does not explain all the variations in

Bluetooth rates, there must be other factors involved, which are unknown and may not

be observable with the data available to us. The only other factor that can be considered

based on the data we have is the effect of different times of the day. As a result, in

the next chapter, we will investigate how different times of day affect Bluetooth rate

variation.Other factors, such as the number of buses and speed, also change during

different times of the day. Therefore, even if we do not know what all the influential

factors are, we will be able to incorporate them into constructing the relationship

between the rate of Bluetooth detection and the number of vehicles passing through

the area.
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Chapter 4

Calibration based on

time-varying coefficients Poisson

regression

4.1 Introduction

Consider an area that is being monitored with both a Bluetooth detector and an ATC.

When a car with Bluetooth-enabled device(s) passes through this area, ATC will record

the vehicle, and Bluetooth items will be recognised by a Bluetooth sensor. As noted in

Section 1.5 depending on the detector’s location, road traffic condition and the length

of time the vehicle spends in the detection area, a Bluetooth device on a vehicle can be

recorded multiple times or may not be captured.Also, a vehicle may be carrying more

than one active Bluetooth device, however, some devices show a tendency more than

others not to being discoverable. For example, smart phones have a lower capture rate

due to the fact that the devices must be in discoverable mode in order for the detector to

record them (Bhaskar et al., 2013). Therefore, having multiple active Bluetooth devices

in one individual car does not necessarily mean that all of them would be detected

by the sensor. Another possible source of recorded data is Bluetooth-enabled devices

carried by pedestrians and cyclists in the area, although they are expected to form a

relatively low percentage of the data set (Araghi et al., 2012).

The purpose of this chapter is to model the rate of unique Bluetooth detections per

vehicle, so the research scheme is associated with two forms of data, Bluetooth and

ATC, as in the previous chapter.Due to traffic conditions, the rate of Bluetooth per

vehicle may vary. For instance, in free-flowing traffic, the detector may not be able to

detect all passing Bluetooth-enabled vehicles since they are moving through the region

too fast. Hence, it is anticipated that there will be fewer Bluetooth counts per vehicle. As
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traffic congestion increases, so will the number of Bluetooth counts per vehicle, and thus

the rate of Bluetooth detections, due to the longer time spent in the detection area.

Conversely, traffic congestion may cause signal interference, resulting in the device’s

failure to be recognised (Vo, 2011).

The number of unique Bluetooth detections and ATC record data in sequential

five-minute time intervals for one year and for a specified week are shown in Figures 4.1

and 4.2, respectively. It displays a daily pattern for each Bluetooth and ATC data set

that is implied by traffic volume change over time.As a result, developing a model that

can characterise the rate of Bluetooth detection per car as it fluctuates over time is

critical. There may be some random factors that affect the rate of detecting Bluetooth

devices, such as weather, detector position, and so on, and it would be impossible to

account for them all in the model fitting.Hence, our model will only account for the

part of the Bluetooth rate that has constant hourly and daily trends throughout the

year. In this chapter same as Chapter 3, we will consider both Bluetooth and ATC

records as count data and explore several candidate models for the research goal.

Figure 4.1: Bluetooth and ATC record data in five minutes time interval for one year,
2018.
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Figure 4.2: Bluetooth and ATC record data in five minutes time interval for one
week, 22-28 January, 2018.

A further practical purpose will be to use the model to recover ATC from the count

of Bluetooth devices. The fundamental advantage of ATC is that it can work at any time

of day or night, capturing the exact time, instantaneous speed, and model of each vehicle

passing through the area. Comparing to traditional data collection methods, the Blue-

tooth detector is known for its low installation and maintenance costs. It also utilizes

less power and has high privacy protection when detecting and saving data.However,

the Bluetooth counts are very different from the ATC counts. The statistical calibration

method will be utilised to predict ATC from the Bluetooth detections after choosing

the suitable model to fit the data.

Section 4.2 starts by describing the modelling possibilities, including the counting

process, discrete time series Poisson regression, and Poisson regression with smoothly

time-varying coefficients using the Fourier series or the periodic B-spline. Section 4.3

describes two different model selection techniques, quasi-likelihood Baysian informa-

tion criterion and cross-validation. In Section 4.4, the implementation and results of the

fitted Poisson regression model are provided. Section 4.5 presents the statistical calibra-

tion method using two approches, the classical estimator and the profile log-likelihood

approach. Finally, the implementation and results of the calibration are presented in
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Section 4.6 and discussion for this chapter is provided in Section 4.7.

4.2 Modelling possibilities

4.2.1 Counting process

Data from both Bluetooth and ATC is collected as count data over time.Therefore,

the counting process can be used to model them. The counting process is a stochastic

process N(t) that displays the total number of events N(t) that occur in the time

interval [0, t] under the following assumptions:

� N(0) = 0,

� N(t) ∈ {0, 1, 2, . . .} for all t ∈ [0,∞),

� For 0 ≤ s < t, N(t) − N(s) depicts the number of events that happen in the

interval (s, t].

The counting process {N(t), t ∈ [0,∞)}, is called a (homogenous) Poisson process, if

N(t) has a constant rate λ > 0 and independent Poisson distributed increments,

which means the number of arrivals in non-overlapping intervals is independent, and

the number of arrivals in any interval of length τ > 0 has Poisson distribution, N(t+

τ)−N(t) ∼ Pois(λτ) with the probability mass function as:

p(N(t) = x|λτ) = e−λτ (λτ)x

x!
, x = 0, 1, . . . (4.1)

where x is the possible value from the sample space for the random variable N(t).

Alternatively, a non-homogeneous Poisson process has all the characteristics of a

Poisson process, except that its rate is a function of time, i.e.λ = λ(t) and so it does

not have stationary increments. Hence, the increments of a non-homogeneous Poisson

process are independent but not necessarily stationary. For instance, if N(t) be the

number of vehicles arriving at a public car parking by the time t, then the arrival rate

of vehicles is larger during working hours compared to off-hours. More specifically, we

can write:

N(t+∆t)−N(t) ∼ Pois

(∫ t+∆t

t
λ(s)ds

)
. (4.2)

We can assume that ATC and Bluetooth data are generated by two counting processes

NA(τ) and NB(τ), which count the total number of ATC and Bluetooth counts up to

the time τ > 0, respectively.

The observations of NA(τ) and NB(τ) will be recorded in discrete time points, so

the realization up to the time τ > 0 for NA(τ) can be written as {τ1, τ2, . . . , τNA(τ)}
which denotes the actual times of events.

73



As noted before, the main goal is to model the rate of Bluetooth detections per

vehicle at different time points by considering the following facts:

� Every vehicle carries a number of active Bluetooth devices, say {0, 1, 2,. . . } so

not every vehicle has active Bluetooth devices,

� Due to the different characteristics of Bluetooth devices, they may be recorded

by the different detection probabilities. For example, some smartphones remain

in the discoverable mode only for a limited time, unless the discovery time mode

is changed by the user. Therefore, they will have a relatively low probability of

being detected by the sensor. In practice, an installed detector may not be able

to record all the discoverable Bluetooth devices in the vehicles, so only a certain

portion of them are detected,

� There is a possibility that we have non-vehicle Bluetooth detections in the data,

however, it is expected to be a small number.

� The number of Bluetooth counts can vary due to traffic conditions. In the free-flow

traffic conditions, the detector may fail to capture all of the passing Bluetooth-

enabled vehicles as they are passing through the area fast enough before being

detected. It is expected to have fewer Bluetooth counts, and therefore, the rate of

the Bluetooth detections per vehicle will decrease. Whereas when traffic conges-

tion increases, the number of Bluetooth counts also increases and will raise the

rate of the Bluetooth detections due to the longer staying time in the detection

area (Michau et al., 2014).

Considering the above facts, suppose the ith vehicle passing through the detection

area at time τi carrying a number of active Bluetooth devices that follows a Poisson

distributed random variable Zi ∈ {0, 1, 2, . . .}., Each active Bluetooth device has a

probability of p being detected.We can construct another random variable Xi that

depends on Zi as:

Xi =

Zi∑
j=1

Bj (4.3)

where Bj are the identical and independently distributed Bernoulli random variables,

which represent the detection event, i.e.Bj = 1 if the j th Bluetooth device is detected

and Bj = 0 otherwise.

We were unable to directly model the actual arrival process of Bluetooth devices

and the detection event, i.e.Zi and Bj .We can utilize Xi to explore their joint effects

that can be regarded as the number of Bluetooth devices being detected. The equation

(4.3) is like thinning operators in Poisson autoregression (Al-Osh and Alzaid, 1987),

therefore, Xi is also a Poisson random variable.
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If NA(τ) follows a non-homogeneous Poisson process, then the Bluetooth count pro-

cess NB(τ) also can be modelled like a non-homogeneous Poisson processes as follows:

NB(τ) =

∫ τ

0

X(s)dNA(s) =

NA(τ)∑
i=1

Xi ∼ Pois

(
n∑

i=1

λ(τi)

)
if NA(τ) = n (4.4)

where X(s) can be regarded as the number of Bluetooth devices being detected and for

the ith ATC count at time τi, we assume that it generates Xi ∼ Pois(λ(τi)) Bluetooth

counts. Note that Xi are independent Poisson random variables, then
∑

iXi is Poisson

random variable conditional upon NA(τ). The intensity λ(τi) characterises the average

count of Bluetooth devices detected from a vehicle at time τi.

We can also consider another counting process to account for the non-vehicle Blue-

tooth detections. Therefore, we can further add a noise Poisson process ϵ(τ) with

arrival rate ρ as follows:

NB(τ) =

NA(τ)∑
i=1

Xi + ϵ(τ) ∼ Pois

(
ρτ +

n∑
i=1

λ(τi)

)
if NA(τ) = n (4.5)

It can thus reasonably expected that ρ is small due to the low probablility of the

non-vehicle Bluetooth detections and we will consider it as a constant in the modeling

procedure.

Modeling in a continuous time scale will be difficult due to the large dataset and

the computational complexity. Therefore, the continuous-time counting process will not

be considered directly in this study.As a discrete time approximation, a model based

on time series regression will be examined further in the following section.

4.2.2 Time series regression of counts

Following the property of the Poisson process (4.5), we have the conditional expectation

of NB given NA over a time interval (t, t+∆t] as follows:

E[NB(t, t+∆t]|NA(t, t+∆t]] = ρ∆t+

NA(t,t+∆t]∑
j=1

λ(tj) ≈ ρ∆t+ λtNA(t, t+∆t] (4.6)

where λt =
∫ t+∆t
t λ(s)ds. The unit time increments ∆t will equal the chosen resolution,

for example, if we discretise the data into five-minute slots, ∆t = 5 minutes.

Considering the number of unique Bluetooth detection and ATC for specified time

slots ∆t (e.g. five minutes interval), Bluetooth and ATC data will be aggregated into

two different time series, y = {yt} and x = {xt}, t ∈ {1, 2, . . . , T}, where T is the

number of ∆t over a time period.

We can consider the Poisson time series regression with the identity link function
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with the effect of time on the regression coefficient as follows:

yt|xt = NB(t, t+∆t] ∼ Pois(µt) (4.7)

µt = E[yt|xt] = α+ β(t)xt (4.8)

where refers to the equation (4.6) xt = NA(t, t + ∆t], α = ρ∆t, β(t) = λt and µt is a

function of α and β(t). The likelihood function of the Poisson regression is given by:

L(α, β(t)|y,x) =
T∏
t=1

e−µt(µt)
yt

yt!
. (4.9)

The log-likelihood function is:

l(α, β(t)|y,x) =
T∑
t=1

(yt log(µt)− µt − log(yt!)) . (4.10)

This model considers the effect of time on the regression coefficient, i.e. the relationship

between Bluetooth and ATC. Bluetooth counts are expected to be higher during con-

gested time intervals of the day than in free-flow traffic and to be lower on weekends

than on weekdays due to changes in traffic conditions. As previously discussed, there

should be daily and weekly patterns or cycles in the rate of Bluetooth detections per

vehicle which can present a profile related to real-life traffic conditions. Formulating

β(t) in a suitable way can help us to explore the temporal structure in our data. In this

study, two different time resolutions of one hour and five minutes will be considered.

Because of the small values of α, i.e. the number of non-vehicle Bluetooth detections,

we did not consider the time and day effects on α.

The first formulation of β(t) will be regarded as a Poisson regression model

with stepwisely time-varying coefficients and can be rewritten as follows. This

model is based on the assumption that there is no hourly and daily interaction effects,

i.e. the hourly pattern is the same every day.

µt = α+

β0 + 24∑
i=2

∆β
(h)
i · I(t in the ith hour) +

7∑
j=2

∆β
(d)
j · I(t in the jth weekday)

xt
(4.11)

By considering the one-hour time slot, β0 represents the baseline rate during 00:00-

01:00 AM at Monday, and ∆β
(h)
i and ∆β

(d)
j adjust the baseline according to the actual

time by using the indicator function I(condition) which also convert the model into

the discontinuous version. For example, for the time interval t between 02:00-03:00 AM
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(i.e. hour 3) at Thursday (i.e. day 4), we will have the following term:

µt = α+ [β0 +∆β
(h)
3 +∆β

(d)
4 ]xt (4.12)

This model is easy to fit but the assumption that the rate of Bluetooth per vehicle

would change suddenly every hour and stay constant within each hour is an unrealistic

scenario. The traffic conditions can change dramatically within an hour, especially dur-

ing the day.As a result, smaller time intervals, such as five minutes, are likely to be a

more reasonable interval size for capturing variations throughout the daytime.Choosing

the five-minute time slot will increase the complexity of the fitted model as the differ-

ent parameters should be assigned for every time interval. It would be more realistic to

assume that the rate of Bluetooth detection would change smoothly over the different

times of the day.Therefore, modifying the step function β(t) into a smooth function

of time leads to having a less parameterized model. In the next subsections, we will

present the Poisson regression model with smoothly time-varying coefficients.

4.2.3 Poisson regression with smoothly time-varying coefficients

Poisson Fourier time series regression

The Poisson time-series regression method to analyse the data can be defined as follows:

yt ∼ Pois(µt)

µt = α+ β(t)xt, t ∈ {1, 2, . . . , S}
(4.13)

where β(t) is a smooth periodic function to characterise the seasonal effects and S is

the seasonal period of this function.One of the most common choices to include the

periodic covariates is to utilise Fourier series. The Fourier series expansion theorem

indicates that any periodic function can be represented using a summation of sine and

cosine functions of various frequencies and amplitudes (Davis and Sampson, 1986). We

can use the finite Fourier series approximation to extract the weekly pattern of β(t) in

(4.13), therefore, the smooth function β(t) can be modelled by the summation of finite

pairs of sine and cosine functions as follows:

β(t) =

m∑
k=0

[
ak cos

(
2πkt

S

)
+ bk sin

(
2πkt

S

)]
(4.14)

where ak and bk are the Fourier coefficients, t represents a particular time, S is the

seasonal period time and m is the number of the harmonic pairs included in the model

that consists of 2m number of sine and cosine functions. The constant term a0 is the

average value of the function β(t) and will be denoted β0, i.e. the average rate of the
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Bluetooth detections per vehicle. Therefore, β(t) also can be written as:

β(t) = β0 +
m∑
k=1

[
ak cos

(
2πkt

S

)
+ bk sin

(
2πkt

S

)]
(4.15)

Note if m tends to infinity, the finite Fourier series will converge to β(t), However, it

cannot be reached in reality. It is necessary to decide a suitable m to approximate

the underlying smooth function β(t). The more harmonics are employed, the more pre-

cise can a function be described.However, we need the optimal number of harmonic

functions with a reasonable complexity to capture the actual pattern of the coeffi-

cients with a moderate computational burden.Therefore, m will be determined based

on certain model selection criteria. Two different model selection criterion, the quasi-

likelihood Bayesian information criterion (QBIC) and the cross-validation method will

be discussed to estimate the optimal number of the harmonic terms in Section 4.3.

The Poisson regression model with the Fourier coefficients can be characterised as

follows:

µt = α+

(
β0 +

m∑
k=1

[
ak cos

(
2πkt

S

)
+ bk sin

(
2πkt

S

)])
xt (4.16)

The functional-coefficient β(t) will tell us how much variability we could expect for the

rate of the Bluetooth detections during each time interval of different days.

Figure 4.3 shows the four Fourier basis functions by considering m = 2.The high-

lighted blue and green harmonic functions are corresponding to the cosine and the sine

term for k = 1 and k = 2, respectively. As can be seen, the Fourier basis has global

support over the whole domain, which means that any modifications such as changes

in the fitted value at the particular time t will affect all the Fourier coefficients in the

scope.
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Figure 4.3: The four Fourier harmonic basis functions by considering m = 2. The
highlighted blue and green harmonic functions are corresponding to the cosine and the
sine term for k = 1 and k = 2, respectively.

Therefore, a Fourier series will be useful in situations such as a function without

strong local features. The Fourier series basis would not be the only option in this case

as a periodic function and another flexible choice of the periodic covariates that can be

considered is a periodic B-spline that we will represent in the next subsection.

Poisson periodic B-spline time series regression

B-Splines (basis-splines) are one of the most popular methods for approximating a func-

tion by defining a linear combination of piecewise polynomials, called basis functions

(Ramsay, 2004; Perperoglou et al., 2019; Lusa and Ahlin, 2020). A B-spline of order d is

a parametric smooth curve constructed from a piecewise polynomial of basis function

B̃i,k−1(t) of degree k = d− 1.A sequence of knots (usually equally spaced) are needed

in order to subdivide the domain on the B-spline curve into a set of knot spans as

[ti, ti+1). A periodic B-spline is a B-spline with the property that the first domain knot

and the final domain knot produce a closed loop.

Recursive definitions of B-spline functions can be presented in the way that the basis

function of degree k = 1 have values of unity in a given interval, and zero otherwise

(De Boor, 1978). The i-th B-spline basis functions of degree k = 1 for the i-th interval

[ti, ti+1) defined as:

B̃i,1(t) =

1 if ti ≤ t ≤ ti+1

0 otherwise.
(4.17)
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and the higher degree of basis functions, B̃i,k(t) for k > 1, will be determined as:

B̃i,k(t) =
t− ti

ti+k − ti
B̃i,k−1(t) +

ti+k+1 − t

ti+k+1 − ti+1
B̃i+1,k−1(t) k = 2, . . . , d. (4.18)

The cubic periodic B-splines (i.e. d = 3) will be used as the most common choice in

this study. The Poisson regression model with the cubic B-spline basis functions as the

functional coefficients and also the identity link function will be considered as follows:

µt = α+ β(t)xt (4.19)

= α+ β0xt +

N∑
i=1

βiBi,3(t)xt

where β0 is the average rate of the Bluetooth detections per vehicle, as the same with

the Fourier model, βi is the periodic B-spline coefficients, t represents a particular time,

and N is the number of periodic B-spline basis included in the model. Also, because of

the way they are constructed, periodic B-spline basis functions have local support and

each of them will take care of its region and that is the main difference between the

Fourier series and the periodic B-spline. The periodic B-spline basis with N = 4 knots

for a period length of one week is depicted in Figure 4.4. The highlighted blue and green

basis functions correspond to the first and last columns of the periodic B-spline basis

functions, respectively. As can be seen in Figure 4.4, each periodic B-spline basis has

local support and it is nonzero at a certain interval and zero elsewhere, which shows

it only affects values within a limited range. It demonstrates that if the coefficients for

the specific periodic B-spline basis change, it only locally affects its limited non-zero

support domain, unlike the Fourier basis functions that influence the whole domain.The

green basis function is the sum of two corresponding basis functions from the ordinary

B-spline basis. It also explains periodicity, which occurs when the value of each periodic

B-spline basis at time t = 0 is the same as the value at time t = S, i.e. the periodic

B-spline curve matches at the same starting and ending points.
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Figure 4.4: The periodic B-spline basis with N = 4 knots for a period length of one
week.The highlighted blue and green basis functions correspond to the first and last
columns of the periodic B-spline basis functions, respectively.

4.3 Model selection

Model selection is about choosing the optimal model that must be a good approximation

of the data, but as simple as possible, from a given set of models (Burnham and

Anderson, 2002). To incorporate the Fourier series or periodic B-spline functions in the

Poisson regression in practice, we need to decide the number of sine and cosine terms

or the number of knots, respectively. In order to balance the smoothness and parsimony

of fitted models, appropriate model selection techniques are needed to determine the

optimal model complexity. This subsection will present two different model selection

techniques: one based on the quasi-likelihood Bayesian information criterion and the

other based on cross validation.

4.3.1 Quasi-likelihood Bayesian information criterion

We have utilised AIC and BIC as the two most well-known methods for the compari-

son of the goodness of fit of the different regression models in the previous chapter (see

Section 3.2.5).One common problem with the Poisson regression is the over-dispersion

that happens when the sampling variance is larger than the theoretical variance based

on the distribution of the fitted model (Student, 1919; Cox, 1983; Fisher, 1950; Dean,

1992). Therefore, a quasi-likelihood version of the BIC (QBIC) that takes the overdis-

persion into account is used to choose the optimal number of Fourier terms and the
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knots for B-splines. The QBIC statistic is defined as follows:

QBIC =
−2 log(L̂)

D̂
+K log(n) (4.20)

where D̂ is the estimated dispersion parameter, K is the number of estimated model

parameters and log(L̂) is the log likelihood value of the fitted model and n is the sample

size (Pinheiro and Bates, 2000). In model selection, D̂ should be estimated as the global

overdispersion parameter to use for comparing different models. In fact, the same value

of D̂ obtained from the global model of the nested models (i.e, the most complex model)

will be used in (4.20) to compute the QBICs.Otherwise, if we use different D̂ for each

model, it will always return the smallest candidate model as the best choice.

The ideal global model, for example, in the Poisson Fourier regression model, would

be one with an infinite m (i.e. number of Fourier terms). Therefore, we consider an ap-

proximation by choosing a large enoughm and running a few Poisson Fourier regression

models to see how the overdispersion parameter changes as the model complexity in-

creases. If the dispersion parameter settles down to a stable value, we will consider it

as the estimate of the global over-dispersion parameter and utilise it to compute QBIC

for a sequence of the Poisson Fourier regression models (Lebreton et al., 1992). Finally,

the preferred number of the Fourier basis functions will be chosen as the model with

the minimum QBIC value. The same procedure will be applied to select the optimal

number of knots for the periodic B-splines.

4.3.2 Cross-validation

Cross-validation is a technique for evaluating model performance where it approximates

the mean prediction error to quantify the prediction accuracy of the model. The original

sample is divided into two separate data sets in this method, a training and a test set,

to train and evaluate the fitted model, respectively.

The cross-validation for the time-series model is performed on a rolling basis that

starts with a small subset of data as test data, fits the model based on the training data

and finally checks the prediction error for the test data with the fitted model. Note that

the test data should be considered based on the assumed periodicity to avoid breaking

the internal structure of the time series. For instance, since a weekly periodicity has

been built in our model, the procedure is performed by considering one week of test

data. The method for the Poisson Fourier regression models is as follows and the same

procedure will be applied to the periodic B-spline.

� We use one week of data as test data and Poisson Fourier regression fits on the

training data, which is the rest of the data, for a given m (i.e. the number of
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Fourier terms). This should be repeated for the total number of weeks in a year,

say w = 52, for yearly data.

� The prediction error can be calculated by the logarithmic score as follows:

s(y, ŷ) = − log(p(y|ŷ)) (4.21)

where y is the real single observation, ŷ is the prediction value of the fitted model

using the training data and p(y|ŷ) is the Poisson probability mass function for

the observed outcome y given the estimated mean ŷ (Good, 1992; Gneiting and

Raftery, 2007). The weekly periodicity is used to define the test data in our model.

Therefore, the mean logarithmic score would be computed as follows:

sw(Y
(w), Ŷ (−w)) =

1

S

wS∑
j=(w−1)S+1

s(yj , ŷ
(−w)
j ) (4.22)

where S represents the seasonal period, Y (w) is the vector of real observations of

the week that is considered as the test data, Ŷ (−w) is the vector of the predicted

values using the remaining weeks (i.e. training data). The total number of weeks

in a year (i.e.w = 1, . . . , 52) will be used to calculate the average score. The final

cross-validation error s
(m)
cv for the number of m Fourier terms is considered as the

average over all logarithmic scores.

� The optimal number of m will be chosen by the lowest cross-validation error s
(m)
cv .

4.4 Implementation and results

The methodologies discussed in the previous sections were employed to model Blue-

tooth and ATC data collected over one year (2018). Both Bluetooth and ATC data

were considered as the time series recorded in the one-hour and the five-minute time

slots. The implementation and the results of the Poisson regression model with stepwise

time-varying coefficients and the Poisson regression with smoothly time-varying coeffi-

cients with the Fourier and B-spline basis are presented in the following subsections.

4.4.1 Fitting Poisson regression model with stepwise time-varying co-

efficients

As the first model, we have been considered Poisson regression model with stepwise

time-varying coefficients where β(t) have changed according to the time t and defined
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as follows:

µt = α+ [β0 + β(h)(t) + β(d)(t)]xt (4.23)

= α+ β0xt +
24∑
i=2

∆β
(h)
i · [I(t in the ith hour) · xt]

+
7∑

j=2

∆β
(w)
j · [I(t in the jth weekday) · xt] .

where the predictors with interaction terms are generated as I(t in the ith hour)·xt and
I(t in the jth weekday)·xt. In R, the glm() function is used to fit the Poisson regression

with the identity link function. In addition, we found that if the intercept includes time

and day effects, the fitted model can explain the majority of the rate variability with

α(t). As a result, the model is developed on the consideration of β(t) changing over

time, rather than the intercept, which is influenced by non-vehicle detection.

0.20

0.25

0.30

0.35

E
st
im

at
ed

F
u
n
ct
io
n
al

C
o
effi

ci
en
ts

Mon Tues Wed Thurs Fri Sat Sun

Day

Figure 4.5: The estimated functional coeffcients from the stepwisely time-vary coef-
ficient Poisson regression model.

The estimated functional coefficients from the stepwise time-varying coefficient Pois-

son regression model over one week are shown in Figure 4.5. The Bluetooth detection

rate is varies between 0.2 and 0.36, and the results show a similar hourly pattern over

the weekdays and the weekends due to the model assumption of no interaction, but
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with lower average rate values over the weekends. It also depicts the assumption that

the rate is constant within each hour but changes between the hours of the day. Fur-

thermore, because β(t) is defined as a discountinous periodic function, therefore, the

beginning and end are not connected. The estimated functional coefficients on Tues-
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Figure 4.6: The estimated functional coeffcients from the stepwisely time-vary coef-
ficient Poisson regression model for Tuesday.

day are shown in Figure 4.6. It can be seen that the rate increases at 6:00 a.m., with

the maximum rate for the morning peak between 8:00-9:00 a.m., then drops, and then

begins to increase again at midday 12:00, with the evening peak between 3:00-5:00 p.m.

4.4.2 Fitting the Poisson regression model with Fourier basis

The first choice was using the Fourier series to estimate β(t) as smoothly time-varying

coefficients. The harmonic functions generated the corresponding cosine/sine values on

different time points with the specific frequency for the Bluetooth time-series data.We

have discretized the data in five minutes and expected to see the daily and weekly

seasonalities as shown in Figure 4.2. Therefore, the frequency is the total number of five

minutes slots during one week, say 2016 (= 60
5 × 24 × 7). The harmonic functions were

generated by the function ‘harmonic’ in the TSA package in R.The optimal number

of sines and cosines terms are unknown and will be determined based on the model
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selection criterion. The model with the harmonic basis functions will be considered as:

µt = α+ β(t)xt (4.24)

= α+ β0xt +

m∑
k=1

[
ak cos

(
2πkt

T

)
+ bk sin

(
2πkt

T

)]
xt

= α+ β0xt +
m∑
k=1

ak

[
cos

(
2πkt

T

)
xt

]
+

m∑
k=1

bk

[
sin

(
2πkt

T

)
xt

]
.

After constructing the harmonic functions, the next step is to fit the Poisson regression

model where the interaction terms of the ATC counts and the Fourier basis variables

are the explanatory variables (Algorithm 1). The model is fitted using glm(), which

includes Poisson regression and the identity link function. It should be noted that to

prevent the initialisation problems due to the Poisson identity link function, we ran the

linear regression model to obtain the initial values for fitting in glm(). Using random

initial values would not be useful due to a large number of parameters. The final step

is to estimate the optimal number of harmonic functions with the model selection

methods as discussed in Section 4.3(Algorithm 2). Figure 4.7 shows the computed over-

dispersion parameter D̂ for a range number of Fourier terms. It can be seen as the

number of Fourier terms m increase, D̂ converges to a specified value that will use in

the model selection part.
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Figure 4.7: The computed over-dispersion parameter D̂ for a range number of Fourier
terms (i.e.m is the number of Fourier terms).
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Algorithm 1 Poisson regression model with Fourier basis

Input: F = {(xt, yt)|t = 1, . . . , T}, m
1: Generate the m number of harmonic functions basis, ψ1, . . . , ψm, ϕ1, . . . , ϕm

2: Initialization: Fit the linear regression model with Fourier basis

3: yt = α+ β0xt +
∑m

k=1 [akψk + bkϕk]xt

4: θ̂ = (α̂, β̂0, â1, . . . , âm, b̂1, . . . , b̂m)

5: Fit glm() with identity link function and the initial parameter vector θ̂

Output: Model summary :

6: θ̂∗ = (α̂∗, β̂∗0 , â
∗
1, . . . , â

∗
m, b̂

∗
1, . . . , b̂

∗
m)

Algorithm 2 Cross-validation

Input: F = {(xt, yt)|t = 1, . . . , T}, m(min), m(max)

1: for i = m(min) to m(max) do

2: for w = 1 to 52 do

3: Test data: Hold out data from F for week w

4: Training data: Remainder data

5: Algorithm Poisson regression model with Fourier basis

6: Predict the test data using the fitted glm()

7: Calculate the logarithmic score sw

8: end for

9: Calculate the average of the logarithmic scores sw across all w, s
(m)
cv

10: end for

11: Determine the optimal m∗ :argmin(s
(m)
cv )

The results of the QBIC and the cross-validation are represented in Figure 4.8. The

step-wise trending in both plots can be interpreted as the number of the basis functions

increases (i.e. the frequency increases), the Fourier series can capture the better struc-

ture of the periodic function β(t) at particular frequencies and it causes a significant

drop in the QBIC or the estimated prediction error. Finally, after adding a certain num-

ber of the harmonic functions, it will not provide more improvements and more details

about the corresponding periodic function. The optimum number of harmonic func-

tions have been evaluated at 43 and 58 based on the QBIC and the cross-validation,

respectively. They both show different optimal numbers, however, the QBIC criteria

emphasizes that the number of 43 is exactly the best choice as the QBIC begins to

increase shortly after it.Whilst based on the cross-validation criteria, the estimated

prediction error does not show the significant variations after the number of 43 and

remains flat for m greater than 43.Therefore, the number of m equals 43 was chosen

to implement the final model. Choosing the number of m = 43, the total number of
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model parameters is 88, which is the sum of intercept, β0 and the number of 86 Fourier

series coefficients. Figure 4.9 shows the estimated functional coeffcients β̂(t) from the

Poisson regression with the number of 43 Fourier basis for the one week of 2018.
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Figure 4.8: The optimal number of harmonic functions (m) with the model selection
methods: (a) QBIC, (b) the cross-validation.

The Bluetooth detection rate is between 0.2 and 0.38 across the whole week for this

location. The results showed very similar patterns over the weekdays and the different

patterns for the weekends. Figure 4.10 shows the estimated weekly functional coeffcients

on Tuesday that is starting to increase and reach the morning peak at 8:15, goes down

at 10:00 and finally, 12:10 and 16:00 are the second and third peaks during the daytime,

respectively, then starting to decrease after the evening peak.There are slightly different

peaks on Tuesday, Wednesday and Thursday compared to the other weekdays. For

example, there is an extra second peak for these three days which may appear due to

the global properties of the Fourier basis functions and using the periodic B-spline will

help to check whether it is a real feature or not. This pattern has been repeated for the

other weekdays but has changed over the weekend.A lower rate of Bluetooth detections

has been captured on weekend days and also the pattern is different from the weekdays

as expected.The first and second main peaks on Saturday are displaying at 12:55 and

18:05, respectively, and roughly the same variability is shown on Sunday with an extra

peak at midnight around 01:50.
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Figure 4.9: The estimated functional coefficients from the Poisson regression with
Fourier basis.
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Figure 4.10: The estimated weekly functional coefficients from the Poisson regression
with Fourier basis for Tuesday.

Figure 4.11 shows no systematic patterns in the residuals versus the fitted values

plot. However, there are a few outliers, especially when the number of ATC records is

small. This could be because α is assumed to be constant, or it could be because there
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is more non-vehicle detection. In addition, the plot appears to be centred around the

horizontal red line at level 0. However, there is a slight tendency to overpredict when

the number of ATC records is large.

Figure 4.11: The deviance residuals versus the fitted values for the Poisson regression
with Fourier basis.

4.4.3 Fitting the Poisson regression model with periodic B-spline

The periodic B-spline was applied as the second method to estimate β(t) and the

periodic B-spline basis functions were generated by the function pbs() in R (Wang,

2013). Again, the optimal number of knots is unknown and will be determined based

on the model selection criterion. The Poisson regression model with the periodic B-

spline basis functions will be considered as follows, where the interaction terms of the

ATC counts and the periodic B-spline basis are the explanatory variables and also the

identity function as the link function (Algorithm 3).

µt = α+ β(t) · xt (4.25)

= α+ β0xt +
N∑
i=1

βiBi,3(t)xt

Figure 4.12 denotes that the periodic B-spline attains the optimal number of knots at

90 based on both criteria, QBIC and cross-validation.
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Algorithm 3 Poisson regression model with the periodic B-spline basis

Input: F = {(xt, yt)|t = 1, . . . , T}, N
1: Generate the N periodic B-Spline basis functions, B1,3, B2,3, . . . , BN,3

2: Initialization: Fit the linear regression model with the periodic B-spline basis

3: yt = α+ β0xt +
∑N

i=1 βiBi,3xt

4: θ̂ = (α̂, β̂0, β̂1, . . . , β̂N )

5: Fit glm() with identity link function and the initial parameter vector θ̂

Output: Model summary :

6: θ̂∗ = (α̂∗, β̂∗0 , β̂
∗
1 , . . . , β̂

∗
N )
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Figure 4.12: The optimal number of periodic B-spline basis (N) with the model
selection methods: (a) QBIC, (b) the cross-validation.

Figure 4.13 shows the estimated functional coefficients from the Poisson regres-

sion with the periodic B-spline for the first week of 2018. The periodic B-spline also

represents the same range of the Bluetooth detection rate in addition to the similar

patterns over the weekdays and the different patterns for the weekends. The second

peak observed on weekdays (Tuesday–Thursday) with the Fourier model has not been

captured with this model. The total number of the model parameters will be equal to 92

with respect to choosing the number of knots at 90. Figure 4.14 shows the estimated

weekly functional coefficients on Tuesday that is increasing to the morning peak at
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8:00, reach a bottom at 09:35 and again start to rise to the evening peak at 16:10. The

same as the Fourier model, this trend has been repeated for the other weekdays with

the changes over the weekend.
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Figure 4.13: The estimated weekly functional coefficients from the Poisson regression
with the periodic B-spline.
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Figure 4.14: The estimated weekly functional coeffcients from the Poisson regression
with periodic B-spline basis functions for Tuesday.

Table 4.1 shows the comparison between the Poisson regression with Fourier and

the periodic B-spline basis functions using the QBIC and cross-validation.Also, Figure

4.15 represents the comparison of the estimated weekly functional coefficients from the

Poisson regression with Fourier versus periodic B-spline basis functions. The result of

the QBIC indicated that the Poisson regression with Fourier basis is slightly better than

the model with the periodic B-spline basis functions. However, the cross-validation sug-

gested the periodic B-spline basis model. Because there is only slight difference between

these two models, the Fourier will be preferred due to the fewer number of parameters.

Model QBIC CV Number of parameters

Fourier 491043.65 3.15253 88

Periodic B-spline 491056.93 3.15236 92

Table 4.1: The comparison between the Poisson regression with Fourier and the
periodic B-spline basis functions using the QBIC and cross-validation.
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Figure 4.15: The comparison between the estimated weekly functional coeffcients
from the Poisson regression with Fourier and the periodic B-spline basis functions.

4.5 Calibration

Bluetooth data represents the advantages compared to traditional data acquisition in

terms of low-cost data collection, installation and maintenance of Bluetooth detectors

and privacy protection. It has been shown the abilities to deliver some of the important

traffic management aspects such as travel time estimation, speed, origin-destination

matrix (Barcelö et al., 2010; Puckett and Vickich, 2010; Malinovskiy et al., 2011; Bar-

celó Bugeda et al., 2012a; Michau et al., 2014; Purser, 2016; Michau, 2016; Cotten et al.,

2020; Liu et al., 2020).

At this stage, we have built regression models that are more consistent with reality

by considering the variability in the relationship between Bluetooth and ATC records

at different times and days of the week. Therefore, the practical idea is to recover ATC

from the Bluetooth data which means predicting ATC value from the known number

of the Bluetooth counts for a particular time of a day.As the ATC is the response and

Bluetooth is the predictor in the regression models, the statistical calibration method

can be used to achieve this goal (Brown, 1982; Osborne, 1991).

Based on the idea of inverse regression, the classical estimator can be considered as

the simplest approach of calibration. The inverse solution of the regression model uses

the known response value to approximate the unknown regressor.Our final regression
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model with the complex combination of the Fourier or B-spline basis functions will

make it complicated to use inverse regression. Also, it would be inappropriate to

calculate a normal approximation based confidence interval for the parameter of interest

when the sampling distribution of the estimate is not normal. Alternatively, there is

another approach named profile likelihood, which is particularly effective in the non-

normal model, can produce the confidence interval by taking into account any possible

asymmetry in the shape of the likelihood.This method is profiling the likelihood of

the fitted regression model for a range of unknown regressors and known response to

choose a point with the maximum likelihood as the best estimation of the regressor

with confidence interval.

The profile likelihood method is very computationally intensive, while the classical

estimator is more computationally efficient. Therefore, we will first introduce the clas-

sical estimator and then profile likelihood.The classical estimator is utilised to acquire

a suitable range of unknown regressor in the profile likelihood implementation.

4.5.1 The classical estimator

As a start, assume that the regression model is as follows:

yt = α+ β(t)xt + ϵt. (4.26)

where α is the intercept, and β(t) are the functional coefficients and ϵt is the error

term. It looks like an ordinary linear regression model, but as yt is Poisson random

variable yt ∼ Pois(α + β(t)xt), so ϵt = yt − E[yt] is no longer normal distributed and

we can consider the expected value of ϵt is zero as E(yt) = µt. Based on the assumption

of the equality of variance and mean in Poisson regression, the variance of ϵ equals

to µt which is unknown.The inverse regression method can be applied to estimate the

unknown value of xt by the inverse solution of model (4.26) as follows:

xt =
yt − α− ϵt

β(t)
. (4.27)

Finally, with the observed yt and the estimated values of α and β(t) from the model

(4.26), the classical estimator of xt is as follows:

x̂t =
yt − α̂

β̂(t)
(4.28)

given the fact that ϵt has mean zero and x̂t can be obtained by utilising the inverse

regression estimator.

As β(t) is estimated as a complex combination of the Fourier or the periodic B-

spline basis functions, it is slightly complicated to calculate the standard error for the
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classical estimator x̂t. The multivariate Delta method can be utilised to approximate the

standard error for xt defined in (4.27) and produce a reasonable confidence interval. This

method estimates the mean and the variance of a function of random variables using

the Taylor series approximation. For example, if g(X) is a scalar function of the random

vector X, using multivariate Delta method, the variance of g(X) can be estimated as:

V ar(g(X)) =
(
∇g(µ)

)
V
(
∇g(µ)

)T
(4.29)

where V is variance–covariance matrix of X and ∇g(µ) is the gradient vector of g at

µ = E(X).

In our case, the function g(X) is the model presented in (4.27), where the vector

X consists of three components as follows:

X =
( ϵ

α
β(t)

)
. (4.30)

Note that it also takes ϵ into account to construct the prediction interval for x̂t.

Suppose Poisson Fourier regression model with the optimal number of m harmonic

functions is selected as the final model, the variance-covariance matrixV can be written

in block form as follows:

V =


σ2ϵ 0 0

0

Ṽ
0

 (4.31)

where the error term ϵ is independent of α̂ and β̂(t) because it will be estimated from

the new data set whereas the coefficients are extracted form the model. Therefore, the

first row and column of V include zeros and σ2ϵ . Note we do not know about the ϵ, but

the variance of ϵ equals to µt, therefore, the variance of ϵ is approximated by the known

yt. The sub-matrix Ṽ is the covariance matrix of α and β(t) for the particular time t

that will be extracted from the model.

To compute the sub-matrix Ṽ , firstly, consider the parameter vector θ for the

Fourier model as:

θ = (α, β0, a1, . . . , am, b1, . . . , bm)T (4.32)

U is a 2 × (m + 2) sub-matrix from the design matrix used to fit the model, which

it defines to consider the intercept and the slope and the Fourier coefficients for the

particular time t.

U =

(
1 0 0 · · · 0 0 · · · 0

0 1 cos(2πtT ) · · · cos(2mπt
T ) sin(2πtT ) · · · sin(2mπt

T )

)
(4.33)
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An estimation for α̂ and β̂(t) for the particular time t is given as follows:(
α̂

β̂(t)

)
= U θ̂ (4.34)

where θ̂ is extracted after the fitted Poisson Fourier regression model (see Section 4.4.2).

Finally, the variance of the estimations can be obtained as:

Ṽ = Var
(

α̂
β̂(t)

)
= UΣUT (4.35)

where Σ is a (m+2)×(m+2) corresponding to the covariance matrix of the parameters

obtained from the regression model (m+ 2 is the overall number of sine and cosine in

the Fourier series plus the slope and the intercept). Obtaining Ṽ from Equation (4.35)

will complete the covariance matrix V in Equation (4.31).

The function g defined in (4.27) is a nonlinear function and the other part of the

multivariate Delta method is to estimate the partial derivatives of g with respect to

vector X as follows:

∇g|X =


∂g
∂ϵ

∂g
∂α

∂g
∂β(t)

 =


−1

β̂(t)

−1

β̂(t)

α̂−yt
(β̂(t))2

 (4.36)

Finally, after obtaining the covariance matrix V and ∇g, the variance and standard

error for x̂t will be computed as shown in equation (4.29). The calibration interval with

the confidence level α is given by,

x̂t ± zα/2 · (S.E.(x̂t)) (4.37)

However, there is also the over-dispersion which should be considered as a factor in

Poisson regression in the presence of excessive variabilities. As a result, the standard

error for x̂t can be modified by multiplying it by the square root of the estimated

over-dispersion parameter derived from the fitted Poisson model.

x̂t ± zα/2 · (S.E.(x̂t) ·
√
D̂) (4.38)

The calibration interval specifies a range of trial x̂t values which will be further used as

an initial range in the profile likelihood method described in the following subsection.

4.5.2 The profile likelihood

Denoting the original data set by F = {(xt, yt)|t = 1, . . . , T}, the profile likelihood

method performs by adding the new data (xτ , yτ ), where τ is a new time point, xτ is

the unknown ATC data and yτ is a known Bluetooth count. The regression model is

fitted for the augmented dataset F
⋃
{(xτ , yτ )} and the profile log-likelihood function

97



for xτ computed as follows:

lp(xτ ) = max
θ

{
l(θ|F

⋃
{(xτ , yτ )}

}
(4.39)

Finally, the optimum estimation of xτ with the maximum log-likelihood is:

x∗τ = argmax
xτ

(lp(xτ )) (4.40)

An approximate (1-α)% confidence interval for xτ is the set of values satisfying,

[
xτ : 2 {lp(x ∗

τ )− lp(xτ )} ≤ χ2
1−α(1)

]
(4.41)

where χ2
1−α(1) denotes the (1-α)th quantile of the chi-squared distribution with the

one degree of freedom, i.e. equal to the number of parameters in the profile likelihood

(Davidson and MacKinnon, 1993; Murphy and Van der Vaart, 2000; Jones, 2008).

4.6 Calibration implementation and results

The Fourier Poisson regression model with the optimal number of m is used to imple-

ment the calibration, but the procedure is the same for the periodic B-spline Poisson

regression model. Considering the model,

yt = α+ β0xt +

m∑
k=1

ak

[
cos

(
2πkt

S

)
xt

]
+

m∑
k=1

bk

[
sin

(
2πkt

S

)
xt

]
(4.42)

The glm() function estimated α, β0, and all Fourier coefficients using the Poisson

distribution and the identity link function. Assume the number of Bluetooth counts yτ

in the five minute time interval between 17:05-17:10 (i.e. τ = 206) on Monday is 19 (i.e.

yτ = 19) and the goal is to predict how many vehicles (i.e. ATC or xτ ) passed through

the area.

As first calibration method, the classical estimator was used to compute an initial

value for xτ , and the multivariate Delta method was used to approximate the standard

error to produce a trial range for the profile likelihood method of xτ . The initial value

of x̂τ was 51, with estimates of 17 and 1.36 for standard error and overdispersion,

respectively (i.e. S.E.(x̂t) = 17, D̂ = 1.36). Finally, using zα/2 = 3 (i.e. to have a wide

enough range for xτ ), a 99% confidence interval of (1, 101) was derived from Equation

(4.38).

To begin, using the classical estimator method, the profile likelihood approach ob-

tained a range trial of (1, 101) for xτ . Then, the method continued by adding the new

point (xτ , yτ ) to the original data set. The regression model (4.42) refitted for each new
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data set and the profile log-likelihood function lp(xτ ) is monitored over the trial range.

Finally, the technique chose the best estimate as the point with the highest likelihood,

x∗τ = 51, and a 99% confidence interval of (21, 98) retrieved from Equation (4.41).

The same estimation for x̂t is obtained using both calibration methods; however,

the profile log-likelihood technique yielded an asymmetrical (and thus more accurate)

confidence calibration interval for the estimation.

The calibration result using the profile log-likelihood is shown in Figure 4.16, where

the curve shows the changes in the value of the log-likelihood for the range of xτ . The

vertical red and the dashed blue lines mark the optimum value and the confidence

calibration interval, respectively.
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Figure 4.16: The calibration result using the profile log-likelihood where the number
of Bluetooth counts is assumed to be 19 in the five minute time interval between 17:05-
17:10 on Monday. The vertical red and the dashed blue lines mark the optimum value
and the confidence calibration intervals, respectively.

The calibration results using both techniques, the classical estimator and the profile

log-likelihood, are also shown in Figure 4.17, and also with actual recorded observations

for all five minute time intervals between 8:00 am and 12:00 pm on Monday, February

5, 2018.The blue line represents the actual observations, and the overlapping black

and red line shows the prediction results from the profile log-likelihood and classical

estimators. The dashed black lines indicate the confidence calibration intervals of the

profile log-likelihood.The calibration results indicate that some time intervals were

overestimated and others were underestimated, and it captured some but not all of the

variability in the data.
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Figure 4.17: The calibration result using the profile log-likelihood method and actual
recorded observations for all five minute time intervals between 8:00 am and 12:00
pm, Monday 5th February 2018. The blue line represents the actual observations, and
the red line shows the prediction results from the profile log-likelihood and classical
estimators. The dashed black lines indicate the confidence calibration intervals of the
profile log-likelihood.

4.7 Discussion

In this chapter, we investigate the effect of different times on the days of the week when

modelling the relationship between the rate of unique Bluetooth detections and ATC

data.A framework based on generalized linear model was presented in this chapter. The

Bluetooth and ATC data are considered as time series with two different temporal

resolutions, one hour and five minute time slots.

To incorporate the time effects, two different models were used. Firstly, the same

hourly pattern was assumed every day, which led to a Poisson regression model with

stepwisely time-varying coefficients. This model was constructed based on the one hour

time slots and showed the average rate of Bluetooth detection changed between the

hours of the day and was constant within each hour.A more realistic assumption, how-

ever, was that the rate could vary within an hour on different days. Therefore, the

second idea was to construct a Poisson regression model with smoothly time-varying
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coefficients. The model was considered to have periodic functional coefficients to deter-

mine how the variations in ATC records over time would affect the underlying change in

the rate of Bluetooth detections for different times of the day. In this regard, the Fourier

series and the periodic B-spline were selected to define the periodicity part of the fitted

model. Both methods were implemented, and the comparison revealed a slight difference

between them; however, the Poisson regression model with a Fourier basis function can

be chosen as the final choice with the fewest parameters. The results obtained from the

fitted regression model indicated that the rate of Bluetooth detection per vehicle varied

significantly in a consistent pattern weekly. There are some random events happening

that will change the traffic conditions (e.g., weather conditions, national holidays and

so forth) and the rates of Bluetooth which we cannot model. Thus, this result is only

relevant to the part of the Bluetooth rate that is consistent throughout the year.

The potential practical goal was to recover ATC from Bluetooth data after de-

veloping an adequate regression model, which predicts ATC value based on the known

number of Bluetooth detections for a particular time of day.The motivation was to take

advantage of ATC prediction utilising Bluetooth detection so that traffic data could

be captured with low-cost Bluetooth detectors. The statistical calibration method was

applied using two methods, the classical estimator and the profile log-likelihood.The

classical estimator also was utilized as the initial step for the profile log-likelihood im-

plementation. Based on the known Bluetooth quantity, both calibration techniques gen-

erated the same estimate for the unknown ATC prediction. The profile log-likelihood

procedure creates an asymmetrical calibration interval for the prediction, which is more

realistic since xt is a count from aggregating a Poisson process. A symmetrical interval

based on normal approximation is hardly appropriate if considering the skewness in the

distribution of xt.
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Chapter 5

Conclusions

5.1 Summary of thesis

Most research in the use of Bluetooth data for traffic monitoring has focused on estimat-

ing travel times or origin-destination matrices, with multiple detections at individual

cites being treated as irrelevant or a nuisance. The issue of the representativeness of

the data as a sample of all vehicles has, with a few exceptions, been ignored.Here we

have investigated what, if anything, can be learned by analysing all the detections at

a particular site. This has required the adaptation and extension of some sophisticated

statistical techniques. These adaptations and extensions may also be useful in other

contexts.

The main findings and contributions of this thesis are summarised in this chapter. In

Chapter 2, we started with some exploratory data analyse for determining whether the

complete record of Bluetooth detections would contain interpretable information at a

particular Bluetooth site. The complete record means considering multiple detections

rather than filtering them, since multiple detections is one of the problems in computing

travel times and extracting meaningful features from the Bluetooth data.As a result

of multiple detections, there are gaps between consecutive detections. Therefore, we

investigated whether the distribution of observed gap periods for multiple detections

could provide useful information for traffic inference. The hierarchical cluster analy-

sis was utilised to categorize Bluetooth sites, MAC addresses, and time intervals of a

day. In order to categorise MAC addresses and time intervals of a day, the methodol-

ogy for clustering based on gap time distribution was proposed, which employed the

Kolmogorov-Smirnov statistic. The cluster analysis results confirmed that there was

information in the multiple detections because meaningful clusters are generated.

In Chapter 3, we also examined the relationship between ATC and Bluetooth de-

tections, which may contribute to investigating possible sources of bias in the rep-

resentativeness of Bluetooth detections. By taking into account that some observable
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factors may influence the rate of Bluetooth detection, we used regression analysis as

a powerful statistical method for modelling the relationship.Using the ATC dataset,

we were able to extract the number of buses and the speed of the vehicles travelling

through the area. heteroscedasticity caused an unequal scattering of residuals after re-

gression analysis, which required to be resolved before making conclusions from the

model. A non-parametric variance function estimate method was successfully applied

after the rolling variance approach failed to define an appropriate parametric model

for the variance function based on data.Using a non-parametric variance function esti-

mation method, we fitted six alternative regression models for the data of the selected

four case study locations, the first of which included the number of buses and the sec-

ond of which included vehicle speed. The segmented regression model with three knots

and two knots in some study locations was chosen as the best fit for the data in both

scenarios. The results revealed that the number of buses and vehicle speed were not suf-

ficient for explaining the Bluetooth rate variation. There must be other factors, such

as weather, detector position, equipment failure, etc., affecting the rate and it would

be impossible to account for them all in the model fitting given the current data.

In Chapter 4, we developed a Poisson regression model that characterises the rate

of Bluetooth detection per vehicle as it varies over time.Therefore, this model was

considered to have periodic functional coefficients in order to assess how changes in

ATC records over time affect the underlying change in the rate of Bluetooth detections

at different times of the day. It also took into account the part of the Bluetooth rate

that has consistent hourly and daily patterns over the year. The model was designed to

assess the feasibility of using the Fourier series or the periodic B-spline to describe the

seasonal variations in the Bluetooth rate process by representing the model’s parameters

throughout the year. Instead of having the parameters constant for each time interval

(here, 5 minutes), the parameters are assumed to change with time smoothly over a

one-week period. The periodicity part of the fitted model was defined using either the

Fourier series or the periodic B-spline. Although there was a slight difference between

them, the Poisson regression model with a Fourier basis function was chosen as the

final model with the fewest parameters.

We also examined a practical goal of recovering ATC from Bluetooth data after

constructing an appropriate regression model in Chapter 4 which is related to the

statistical calibration problem.The aim was to predict the unknown ATC value from

the known number of Bluetooth counts for a given time of day.The classical estimator

and the profile log-likelihood approach were used to apply the statistical calibration

method. For the profile log-likelihood implementation, the classical estimator was also

used as the initilazation step. Both calibration procedures produced the same prediction

for the unknown ATC based on the known Bluetooth quantity. The profile log-likelihood
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technique creates an asymmetrical calibration interval for the prediction, which suggests

that a symmetrical interval based on approximate normality may not be appropriate.

5.2 Future research

There are a number of obvious next steps to be taken in this research.As noted in Chap-

ter 2, KS-clustering method could be useful in situations where the clustering objects

are sets of univarite data observed under different conditions. Simulation studies could

be conducted to investigate the performance of KS-clustering, such as the sample size

needed to reliably identify clusters, or different ways of defining the distance between

groups for KS-clustering beyond the common linkage method.

The Bluetooth data points are assumed to represent a vehicle in most studies

(Van Boxel et al., 2011; Bachmann et al., 2013; Remias et al., 2017). However, it

can be related to any mode of transportation, such as a car, bus, bicycle, or pedes-

trian. Furthermore, a traveller may have multiple devices, for example, using a Blue-

tooth enabled headphone and smartphone, or a group of passengers using the same

transportation mode, such as a bus, with an active Bluetooth device. These problems

will result in significant bias and errors in travel time estimation or the approximate

amount of traffic, especially in urban areas. Therefore, we could also explore ways to

distinguish between different vehicle types using Bluetooth detection patterns. However,

this would probably require conducting a field experiment. Identifying multiple Blue-

tooth MAC addresses that are tracked together across consecutive Bluetooth locations,

for example, could perhaps be used to distinguish buses. However, it is possible that

two MAC addresses in close proximity in traffic are incorrectly considered to belong to

the same vehicle.

The Poisson regression model with smoothly time-varying coefficients proposed in

Chapter 4 could perhaps be combined with more factors, such as the number of buses

and speed.However, the implementation of the calibration method would now require

knowledge of speed and the number of buses. The average speed of a vehicle can be

determined if the corresponding Bluetooth device is detected by both upstream and

downstream Bluetooth sensors. By matching the MAC address, the time required to

travel the distance between the two fixed locations is determined and the average speed

is calculated.However, this would probably not be a suitable proxy for the instantaneous

speed of vehicles at a particular location. The timetable of buses can be used to get an

approximation of the number of buses that may pass through that area in a particular

time period, but this is unlikely to be very accurate over short periods of time.

We could try to extend the Poisson regression model in Chapter 4 by allowing the

constant intercept term in the model to vary over time.The problem with enabling

the intercept to change with time was that it posed an identifiability problem, which
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led to a functional intercept that explained most of the seasonal variation. Because the

number of non-vehicle Bluetooth detections is small, a Bayesian framework approach

might be employed by specifying some prior information about the constant to keep it

from dominating the model. Also, validating the methodology for more locations and a

larger network would be useful.

It would be useful to model the probability of a missed Bluetooth detection using

the data available in future research.Modeling this probability is complicated due to

the variety of causes for missed detections, such as the signal strength and activation

status of different Bluetooth devices, the traffic conditions (congestion or free-flow),

and the routes of vehicles leaving and then returning to the detection area.Without

conducting a field experiment, it is difficult to understand the linkages between the

Bluetooth detection data and the probability of a missed detection. If we could model

this probability in a suitable way, especially without undertaking a field experiment, the

resulting model could help us discover more realistic connections between the Bluetooth

detection data and actual traffic flow.

Finally, a more refined spatial-temporal version of the proposed model in Chapter

4 can be developed as

y(s, t) = B(s, t)x(s, t) + ϵ(s, t),

for a transportation network with only Bluetooth sensors. Following the idea of solving

the statistical linear inverse problems discussed in Hazelton et al. (2021), the corre-

sponding calibration estimate x̂s,t can be used to recover the actual traffic flow.Although

the Bluetooth count y(s, t) may merely yield an inaccurate estimate of the ATC count

x(s, t), its low cost and high privacy can help it reach a much higher coverage in the

transportation network. In addition, it will be very interesting and challenging to ex-

plore how to jointly model ATC and Bluetooth counts and further use a joint model

with full information to recover the actual traffic flow.

The main practical question to address is how the analyses performed in this thesis

could be used by practicing traffic engineers. Cluster analysis can be useful for finding

outliers in the network. The outliers can be regarded as any Bluetooth sites or MAC

addresses that show different behaviour. It could be used as a preliminary step before

doing other analysis, or for grouping similar Bluetooth sites to consider similar analy-

sis. Also, without any further monitoring traffic tools, it would be possible to classify

the different times of the day in terms of the traffic conditions based on the gap time

distribution.

In terms of the use of this analysis for traffic engineers, the regression models’ results

indicated how the rate of Bluetooth detections per vehicle is affected by buses, which

could be taken into account when determining the appropriate spacing and positions

for detectors in the network.

105



In terms of how traffic engineers could leverage this analysis, the calibration phase

and recovering unknown ATC from the calibrated model could be widely used in traffic

applications. Temporary ATC counters are deployed for short periods of time in some

Manchester network locations, so by monitoring Bluetooth detections and ATC data

in these locations and fitting the appropriate regression model based on the data, the

calibrated ATC results could be used to predict the number of vehicles for the time

periods when the temporary ATC counter has been removed.
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Additional Figures and

Statistical Tables

107



A.1 Time series plots

(a) (b)

(c) (d)

(e) (f)

Figure A.1: Hourly patterns for the first four considered variables: (a) the number of
all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 12, Tuesday 12 February, 2019.108



(a) (b)

(c) (d)

(e) (f)

Figure A.2: Hourly patterns for the first four considered variables: (a) the number of
all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 12, Wedenesday 13 February, 2019.
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(a) (b)

(c) (d)

(e) (f)

Figure A.3: Hourly patterns for the first four considered variables: (a) the number of
all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 12, Thursday 14 February, 2019.
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(a) (b)

(c) (d)

(e) (f)

Figure A.4: Hourly patterns for the first four considered variables: (a) the number of
all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 12, Friday 15 February, 2019.
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(a) (b)

(c) (d)

(e) (f)

Figure A.5: Hourly patterns for the first four considered variables: (a) the number of
all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 12, Saturday 16 February, 2019.
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(a) (b)

(c) (d)

(e) (f)

Figure A.6: Hourly patterns for the first four considered variables: (a) the number of
all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 1, Monday 11 February, 2019.
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(a) (b)

(c) (d)

(e) (f)

Figure A.7: Hourly patterns for the first four considered variables: (a) the number of
all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 2, Monday 11 February, 2019.
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(a) (b)

(c) (d)

(e) (f)

Figure A.8: Hourly patterns for the first four considered variables: (a) the number of
all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 3, Monday 11 February, 2019.
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(a) (b)

(c) (d)

(e) (f)

Figure A.9: Hourly patterns for the first four considered variables: (a) the number of
all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 6, Monday 11 February, 2019.
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(a) (b)

(c) (d)

(e) (f)

Figure A.10: Hourly patterns for the first four considered variables: (a) the number
of all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 7, Monday 11 February, 2019.
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(a) (b)

(c) (d)

(e) (f)

Figure A.11: Hourly patterns for the first four considered variables: (a) the number
of all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 9, Monday 11 February, 2019.
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(a) (b)

(c) (d)

(e) (f)

Figure A.12: Hourly patterns for the first four considered variables: (a) the number
of all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 10, Monday 11 February, 2019.
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(a) (b)

(c) (d)

(e) (f)

Figure A.13: Hourly patterns for the first four considered variables: (a) the number
of all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 11, Monday 11 February, 2019.
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(a) (b)

(c) (d)

(e) (f)

Figure A.14: Hourly patterns for the first four considered variables: (a) the number
of all recorded of MAC addresses detected, (b) the number of all unique MAC addresses
detected, (c) the number of MAC addresses with multiple detections, (d) the number
of MAC addresses with only one detection, (e) the proportion of MAC addresses with
multiple detections, and (f) the average number of detections for the MAC addresses
with multiple detections at Site 13, Monday 11 February, 2019.
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A.2 Hierarchical clustering Bluetooth sites
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Figure A.15: The dendrogram of Bluetooth site clustering based on two variables: i)
the total number of Bluetooth detections; and ii) the total number of unique Bluetooth
MAC addresses using the average linkage and Euclidean distance between (a) 9:00-
10:00 a.m. and (b) 5:00-6:00 p.m., Monday 11th February 2019. The five clusters are
represented by different colors.
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A.3 Time interval clustering based on gap distribution
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Figure A.16: The dendrogram of time interval clustering based gap distribution using
Ward linkage and KS distance at Site 12, Tuesday 12th February 2019.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hours

W
ar
d
’s

li
n
ka
ge

1

2

3 5
23
0

22
6

21
8

17 15 16 12
9

13 10 18
7

11 14
2 4 1

19 20

Figure A.17: The dendrogram of time interval clustering based gap distribution using
Ward linkage and KS distance at Site 12, Wednesday 13th February 2019.
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Figure A.18: The dendrogram of time interval clustering based gap distribution using
Ward linkage and KS distance at Site 12, Thursday 14th February 2019.
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Figure A.19: The dendrogram of time interval clustering based gap distribution using
Ward linkage and KS distance at Site 12, Friday 15th February 2019.
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Figure A.20: The dendrogram of time interval clustering based gap distribution using
Ward linkage and KS distance at Site 12, Saturday 16th February 2019.
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Figure A.21: The dendrogram of time interval clustering based gap distribution using
Ward linkage and KS distance at Site 12, Sunday 17th February 2019.
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A.4 Results of the weighted regression analysis for the

other locations

A.4.1 Results of the weighted regression analysis incorporating buses

Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.15 0.013 11.595 <2e-16 ***

β 0.22 0.0004 590.648 <2e-16 ***

γ 0.02 0.016 1.017 <3.09e-7 ***

Table A.1: The estimated coefficients of the weighted multiple linear regression es-
timation for the effect of ATC records on Bluetooth detection incorporating buses at
location 1.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.75 0.019 39.457 <2e-16 ***

β 0.17 0.001 148.766 <2e-16 ***

β1 0.001 0.00001 43.372 <2e-16 ***

γ 0.02 0.015 1.469 <1.42e-7 ***

Table A.2: The estimated coefficients of the weighted multiple quadratic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses at
location 1.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.99 0.028 35.144 <2e-16 ***

β 0.14 0.003 54.207 <2e-16 ***

β1 0.001 0.0001 20.678 <2e-16 ***

β2 -0.000005 0.0000004 -12.776 <2e-16 ***

γ 0.01 0.015 0.674 <5.01e-7 ***

Table A.3: The estimated coefficients of the weighted multiple cubic regression es-
timation for the effect of ATC records on Bluetooth detection incorporating buses at
location 1.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.59 0.018 32.80 <2e-16 ***

β 0.2 0.001 235.76 <2e-16 ***

∆β1 0.06 0.001 45.39 NA

γ 0.02 0.015 1.49 <1.36e-7 ***

Table A.4: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses with one knot c1 = 52 at
location 1.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.56 0.017 33.206 <2e-16 ***

β 0.2 0.00077 278.993 <2e-16 ***

∆β1 0.087 0.0027 40.263 NA

∆β2 -0.15 0.0087 -18.776 NA

γ 0.01 0.0157 0.911 <3.62e-7 ***

Table A.5: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses with two knots c1 = 59 and
c2 = 98 at location 1.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.71 0.035 20.521 <2e-16 ***

β 0.18 0.003 58.877 <2e-16 ***

∆β1 0.02 0.003 6.335 NA

∆β2 0.08 0.003 32.101 NA

∆β3 -0.16 0.008 -19.105 NA

γ 0.01 0.015 0.777 <4.37e-7 ***

Table A.6: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses with three knots c1 = 18,
c2 = 62 and c3 = 98 at location 1.
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Model df AIC BIC

Weighted linear 4 565927.3 565965.6

Weighted quadratic 5 564332.4 564380.2

Weighted cubic 6 563512.9 563570.3

Weighted segmented with one knot 6 563844.6 563901.9

Weighted segmented with two knots 8 563279.7 563356.2

Weighted segmented with three knots 10 562450.1 562545.8

Table A.7: Comparison AIC and BIC between the weighted regression models for the
effect of ATC records on Bluetooth detection incorporating buses at location 1.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.96 0.019 50.742 <2e-16 ***

β 0.21 0.0003 649.217 <2e-16 ***

γ 0.21 0.043 4.999 <5.76e-7 ***

Table A.8: The estimated coefficients of the weighted multiple linear regression es-
timation for the effect of ATC records on Bluetooth detection incorporating buses at
location 3.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 2.09 0.03 70.080 <2e-16 ***

β 0.16 0.001 138.343 <2e-16 ***

β1 0.24 0.042 5.739 <9.52e-9 ***

γ 0.0004 0.00001 53.021 <2e-16 ***

Table A.9: The estimated coefficients of the weighted multiple quadratic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses at
location 3.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 3.55 0.044 80.318 <2e-16 ***

β 0.05 0.002 20.367 <2e-16 ***

β1 -0.00001 0.0000001 -50.008 <2e-16 ***

β2 0.19 0.041 4.787 <1.7e-6 ***

γ 0.002 0.00004 58.520 <2e-16 ***

Table A.10: The estimated coefficients of the weighted multiple cubic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses at
location 3.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 2.15 0.029 73.403 <2e-16 ***

β 0.16 0.0009 176.256 <2e-16 ***

∆β1 0.08 0.001 65.373 NA

γ 0.23 0.041 5.642 <1.69e-8 ***

Table A.11: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses with one knot c1 = 63 at
location 3.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 2.09 0.026 79.148 <2e-16 ***

β 0.17 0.0007 235.300 <2e-16 ***

∆β1 0.16 0.003 51.405 NA

∆β2 -0.18 0.004 -44.124 NA

γ 0.2 0.04 4.902 <9.48e-7 ***

Table A.12: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses with two knots c1 = 82 and
c2 = 124 at location 3.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 2 0.026 76.658 <2e-16 ***

β 0.17 0.0007 241.915 <2e-16 ***

∆β1 0.16 0.003 46.777 NA

∆β2 -0.16 0.004 -33.484 NA

∆β3 -0.08 0.015 -5.014 NA

γ 0.19 0.04 4.728 <2.27e-6 ***

Table A.13: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses with three knots c1 = 82,
c2 = 122 and c3 = 169 at location 3.

Model df AIC BIC

Weighted linear 4 634788.8 634827.0

Weighted quadratic 5 631568.9 631616.7

Weighted cubic 6 628000.0 628057.4

Weighted segmented with one knot 6 630593.9 630651.2

Weighted segmented with two knots 8 627493.5 627570.0

Weighted segmented with three knots 10 625009.0 625104.6

Table A.14: Comparison AIC and BIC between the weighted regression models for
the effect of ATC records on Bluetooth detection incorporating buses at location 3.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α -0.07 0.006 -12.038 <2e-16 ***

β 0.12 0.0002 562.307 <2e-16 ***

γ 0.12 0.015 7.594 <3.13e-14 ***

Table A.15: The estimated coefficients of the weighted multiple linear regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses at
location 4.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.08 0.008 10.495 <2e-16 ***

β 0.1 0.0006 162.469 <2e-16 ***

β1 0.14 0.015 8.889 <2e-16 ***

γ 0.0002 0.000005 36.301 <2e-16 ***

Table A.16: The estimated coefficients of the weighted multiple quadratic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses at
location 4.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.38 0.011 35.173 <2e-16 ***

β 0.05 0.001 46.546 <2e-16 ***

β1 -0.000005 0.0000001 -49.332 <2e-16 ***

β2 0.13 0.015 8.746 <2e-16 ***

γ 0.001 0.00002 55.696 <2e-16 ***

Table A.17: The estimated coefficients of the weighted multiple cubic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses at
location 4.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.19 0.009 19.541 <2e-16 ***

β 0.09 0.0007 121.619 <2e-16 ***

∆β1 0.04 0.0008 50.488 NA

γ 0.14 0.015 9.632 <2e-16 ***

Table A.18: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses with one knot c1 = 35 at
location 4.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.16 0.0084368 19.099 <2e-16 ***

β 0.1 0.0005223 183.674 <2e-16 ***

∆β1 0.07 0.0016025 46.208 NA

∆β2 -0.09 0.0022153 -38.758 NA

γ 0.12 0.014 8.352 <2e-16 ***

Table A.19: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses with two knots c1 = 54 and
c2 = 101 at location 4.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.19 0.009 19.188 <2e-16 ***

β 0.09 0.0007 118.040 <2e-16 ***

∆β1 0.02 0.002 8.608 NA

∆β2 0.06 0.003 18.199 NA

∆β3 -0.09 0.002 -33.776 NA

γ 0.13 0.014 8.458 <2e-16 ***

Table A.20: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses with three knots c1 = 35,
c2 = 63 and c3 = 99 at location 4.

Model df AIC BIC

Weighted linear 4 499965.0 500003.3

Weighted quadratic 5 498148.0 498195.8

Weighted cubic 6 496603.8 496661.2

Weighted segmented with one knot 6 497225.0 497282.4

Weighted segmented with two knots 8 495413.1 495489.6

Weighted segmented with three knots 10 495481.9 495577.5

Table A.21: Comparison AIC and BIC between the weighted regression models for
the effect of ATC records on Bluetooth detection incorporating buses at location 4.
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A.4.2 Results of the weighted regression analysis incorporating buses

and speed

Coefficients Estimate Std. Error t value Pr(> |t|)

α -1.11 0.224 -4.950 <7.45e-7 ***

β 0.56 0.003 175.350 <2e-16 ***

γ 0.28 0.007 35.350 <2e-16 ***

ω 0.03 0.004 8.613 <2e-16 ***

δ -0.005 0.0001 -89.025 <2e-16 ***

Table A.22: The estimated coefficients of the weighted multiple linear model for the
effect of ATC records on Bluetooth detection incorporate buses and speed at location
2.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 1.18 0.252 4.678 < 2.9e-6 ***

β 0.43 0.004 98.374 <2e-16 ***

β1 0.0005 0.00001 47.551 <2e-16 ***

γ 0.25 0.007 32.785 <2e-16 ***

ω 0.01 0.004 3.337 <8.47e-4 ***

δ -0.004 0.0001 -61.721 <2e-16 ***

Table A.23: The estimated coefficients of the weighted multiple quadratic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses
and speed at location 2.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 2.15 0.266 8.109 <5.14e-16 ***

β 0.28 0.004 57.680 <2e-16 ***

β1 0.003 0.00005 58.032 <2e-16 ***

β2 -0.00001 0.0000002 -49.808 <2e-16 ***

γ 0.21 0.007 27.373 <2e-16 ***

ω 0.03 0.004 6.040 <1.54e-9 ***

δ -0.004 0.0001 -60.233 <2e-16 ***

Table A.24: The estimated coefficients of the weighted multiple cubic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses
and speed at location 2.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.04 0.236 0.184 0.854

β 0.51 0.003 135.180 <2e-16 ***

∆β1 0.07 0.002 26.061 NA

γ 0.28 0.008 34.732 <2e-16 ***

ω 0.02 0.004 4.621 <3.82e-6 ***

δ -0.004 0.00001 -69.864 <2e-16 ***

Table A.25: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses and speed with one knot
c1 = 102 at location 2.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 1.77 0.258 6.873 <6.31e-12 ***

β 0.41 0.003 107.823 <2e-16 ***

∆β1 0.05 0.003 15.684 NA

∆β2 0.18 0.006 30.212 NA

∆β3 -0.31 0.006 -46.763 NA

γ 0.16 0.007 20.800 <2e-16 ***

ω 0.004 0.004 0.976 0.329

δ -0.004 0.00001 -56.258 <2e-16 ***

Table A.26: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporate buses and speed with three knots
c1 = 50, c2 = 88 and c3 = 122 at location 2.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 1.99 0.113 17.546 <2e-16 ***

β 0.36 0.002 141.463 <2e-16 ***

γ 0.04 0.015 2.951 0.00317 **

ω -0.031 0.002 -11.842 <2e-16 ***

δ -0.004 0.00001 -58.217 <2e-16 ***

Table A.27: The estimated coefficients of the weighted multiple linear regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses
and speed at location 1.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 2.02 0.122 16.584 <2e-16 ***

β 0.36 0.004 79.265 <2e-16 ***

β1 0.00001 0.00001 0.870 0.38446

γ 0.04 0.015 2.901 0.00372 **

ω -0.032 0.002 -11.555 <2e-16 ***

δ -0.004 0.00001 -42.707 <2e-16 ***

Table A.28: The estimated coefficients of the weighted multiple quadratic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses
and speed at location 1.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 2.18 0.125 17.338 <2e-16 ***

β 0.32 0.004 67.804 <2e-16 ***

β1 0.001 0.00001 17.921 <2e-16 ***

β2 -0.000006 0.00001 -18.443 <2e-16 ***

γ 0.06 0.015 4.271 <1.95e-5 ***

ω 0.027 0.002 9.630 <2e-16 ***

δ -0.004 0.00001 -45.221 <2e-16 ***

Table A.29: The estimated coefficients of the weighted multiple cubic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses
and speed at location 1.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 1.68 0.113 14.825 <2e-16 ***

β 0.39 0.002 129.612 <2e-16 ***

∆β1 -0.13 0.008 -16.929 NA

γ 0.06 0.01503873 4.550 <5.38e-6 ***

ω -0.02 0.002 -9.089 <2e-16 ***

δ -0.004 0.00001 -59.509 <2e-16 ***

Table A.30: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses and speed with one knot
c1 = 99 at location 1.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 2.05 0.12 17.023 <2e-16 ***

β 0.35 0.003 93.064 <2e-16 ***

∆β1 0.03 0.002 13.160 NA

∆β2 -0.15 0.006 -22.667 NA

γ 0.06 0.015 4.224 <2.4e-5 ***

ω -0.03 0.002 -11.049 <2e-16 ***

δ -0.004 0.00001 -43.479 <2e-16 ***

Table A.31: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses and speed with two knots
c1 = 59 and c2 = 95 at location 1.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 2.05 0.12 16.995 <2e-16 ***

β 0.35 0.003 93.157 <2e-16 ***

∆β1 0.03 0.003 12.449 NA

∆β2 -0.11 0.011 -9.144 NA

∆β3 -0.07 0.018 -3.823 NA

γ 0.06 0.015 4.262 <2.03e-5 ***

ω -0.03 0.002 -11.013 <2e-16 ***

δ -0.004 0.00001 -43.458 <2e-16 ***

Table A.32: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses and speed with three knots
c1 = 60, c2 = 92 and c3 = 105 at location 1.
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Model df AIC BIC

Weighted linear 6 559580.9 559638.2

Weighted quadratic 7 559473.5 559540.5

Weighted cubic 8 559065.0 559141.5

Weighted segmented with one knot 8 559073.3 559149.8

Weighted segmented with two knots 10 558691.2 558796.8

Weighted segmented with three knots 12 558677.3 558792.1

Table A.33: Comparison AIC and BIC between the weighted regression models for
the effect of ATC records on Bluetooth detection incorporating buses and speed at
location 1.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 5.27 0.136 38.744 <2e-16 ***

β 0.36 0.002 154.552 <2e-16 ***

γ 0.08 0.039 1.969 0.049 *

ω -0.07 0.002 -26.352 <2e-16 ***

δ -0.004 0.00001 -68.590 <2e-16 ***

Table A.34: The estimated coefficients of the weighted multiple linear regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses
and speed at location 3.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 5.55 0.142 39.017 <2e-16 ***

β 0.34 0.003 99.359 <2e-16 ***

β1 0.00008 0.000008 10.721 <2e-16 ***

γ 0.09 0.039 2.279 0.0226 *

ω -0.08 0.003 -26.266 <2e-16 ***

δ -0.004 0.00001 -55.625 <2e-16 ***

Table A.35: The estimated coefficients of the weighted multiple quadratic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses
and speed at location 3.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 5.75 0.146 39.291 <2e-16 ***

β 0.26 0.004 65.799 <2e-16 ***

β1 0.001 0.00003 38.601 <2e-16 ***

β2 -0.000005 0.0000001 -37.519 <2e-16 ***

γ 0.06 0.039 1.675 0.0939

ω -0.06 0.003 -18.319 <2e-16 ***

δ -0.004 0.00006 -57.464 <2e-16 ***

Table A.36: The estimated coefficients of the weighted multiple cubic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses
and speed at location 3.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 5.92 0.143 41.262 <2e-16 ***

β 0.32 0.003 101.409 <2e-16 ***

∆β1 0.036 0.001 25.919 NA

γ 0.1 0.039 2.573 0.0101 *

ω -0.08 0.003 -27.059 <2e-16 ***

δ -0.003 0.00006 -48.147 <2e-16 ***

Table A.37: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses and speed with one knot
c1 = 67 at location 3.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 5.64 0.142 39.575 <2e-16 ***

β 0.32 0.003 106.665 <2e-16 ***

∆β1 0.11 0.003 31.250 NA

∆β2 -0.18 0.004 -40.731 NA

γ 0.07 0.038 1.778 0.0754 .

ω -0.07 0.003 -24.782 <2e-16 ***

δ -0.003 0.00006 -50.714 <2e-16 ***

Table A.38: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses and speed with two knots
c1 = 87 and c2 = 125 at location 3.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 5.53 0.142 38.803 <2e-16 ***

β 0.34 0.005 66.969 <2e-16 ***

∆β1 -0.03 0.004 -6.277 NA

∆β2 0.12 0.003 34.065 NA

∆β3 -0.18 0.004 -42.462 NA

γ 0.07 0.038 1.830 0.0673 .

ω -0.08 0.003 -25.846 <2e-16 ***

δ -0.003 0.00006 -49.255 <2e-16 ***

Table A.39: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses and speed with three knots
c1 = 22, c2 = 85 and c3 = 126 at location 3.
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Model df AIC BIC

Weighted linear 6 620834.6 620892.0

Weighted quadratic 7 620816.3 620883.2

Weighted cubic 8 619440.9 620241.7

Weighted segmented with one knot 8 620165.2 622210.0

Weighted segmented with two knots 10 617939.9 618035.5

Weighted segmented with three knots 12 617967.8 618082.5

Table A.40: Comparison AIC and BIC between the weighted regression models for
the effect of ATC records on Bluetooth detection incorporating buses and speed at
location 3.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.009 0.043 0.204 0.83817

β 0.12 0.001 157.422 <2e-16 ***

γ 0.078 0.015 5.170 <2.35e-7 ***

ω 0.002 0.0007 2.932 0.00336 **

δ -0.002 0.00002 -64.264 <2e-16 ***

Table A.41: The estimated coefficients of the weighted multiple linear regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses
and speed at location 4.

Coefficients Estimate Std. Error t value Pr(> |t|)

α -0.05 0.045 -1.019 0.308135

β 0.21 0.002 96.178 <2e-16 ***

β1 -0.00003 0.000006 -4.630 <3.659e-6 ***

γ 0.07 0.015 4.921 8.62e-7 ***

ω 0.003 0.0007 3.676 2.37e-4***

δ -0.002 0.00003 -52.585 <2e-16 ***

Table A.42: The estimated coefficients of the weighted multiple quadratic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses
and speed at location 4.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.16 0.049 3.335 <8.53e-4 ***

β 0.16 0.002 66.220 <2e-16 ***

β1 0.0009 0.00002 40.330 <2e-16 ***

β2 -0.000004 0.0000001 -43.615 <2e-16 ***

γ 0.07 0.0147 4.924 <8.48e-7***

ω 0.004 0.0008 4.602 < 4.190e-6***

δ -0.002 0.00003 -49.765 <2e-16 ***

Table A.43: The estimated coefficients of the weighted multiple cubic regression
estimation for the effect of ATC records on Bluetooth detection incorporating buses
and speed at location 4.
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Coefficients Estimate Std. Error t value Pr(> |t|)

α -0.19 0.043 -4.364 <1.28e-5 ***

β 0.22 0.001 151.998 <2e-16 ***

∆β1 -0.078 0.002 -28.629 NA

γ 0.05 0.014 3.339 <8.42e-4 ***

ω 0.005 0.0007 7.311 < 2.68e-13***

δ -0.002 0.00002 -71.477 <2e-16 ***

Table A.44: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses and speed with one knot
c1 = 114 at location 4.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.09 0.046 1.850 0.06428 .

β 0.18 0.001 97.761 <2e-16 ***

∆β1 0.05 0.002 25.988 NA

∆β2 -0.01 0.002 -40.402 NA

γ 0.07 0.014 4.623 <3.79e-6 ***

ω 0.002 0.0007 2.988 < 2.81e-3***

δ -0.001 0.00003 -48.990 <2e-16 ***

Table A.45: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses and speed with two knots
c1 = 59 and c2 = 99 at location 4.

Coefficients Estimate Std. Error t value Pr(> |t|)

α 0.08 0.046 1.750 0.08014

β 0.19 0.001 98.617 <2e-16 ***

∆β1 0.06 0.003 20.395 NA

∆β2 -0.08 0.004 -17.682 NA

∆β3 -0.04 0.004 -8.270 NA

γ 0.06 0.014 4.506 <6.63e-6 ***

ω 0.002 0.0007 3.073 < 2.12e-3***

δ -0.001 0.00003 -49.177 <2e-16 ***

Table A.46: The estimated coefficients of the weighted segmented model for the effect
of ATC records on Bluetooth detection incorporating buses and speed with three knots
c1 = 62, c2 = 93 and c3 = 120 at location 4.
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Model df AIC BIC

Weighted linear 6 494644.2 494701.5

Weighted quadratic 7 494515.8 494582.8

Weighted cubic 8 493336.1 493412.6

Weighted segmented with one knot 8 493233.2 493309.7

Weighted segmented with two knots 10 492371.3 492466.9

Weighted segmented with three knots 12 492298.9 492413.7

Table A.47: Comparison AIC and BIC between the weighted regression models for
the effect of ATC records on Bluetooth detection incorporating buses and speed at
location 4.
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Appendix B

R Codes

B.1 Time interval clustering based on gap distribution by

Kolmogorov-Smirnov statistic

library(chron)

library(lubridate)

library(scales)

library(dplyr)

library(tidyr)

library(rlist)

library(stringr)

library(tidyverse)

library(anytime)

library(reshape2)

library(zoo)

library(magrittr)

library(reshape)

library(arsenal)

library(imputeTS)

library(ggplot2)

library(sfsmisc)

library(mclust)

# Importing csv files

times_OneHours<-read.csv(file="C:\\TimeInterval24Hours.csv")

for (i in 1:length(filescsv))

{assign(namescsv[i], read.csv(paste(pathcsv,filescsv[i], sep = "\\")))}
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# Using it in order to add extra column to each data set to show

#Site name: example Site 1

Mac2site = sapply(1:length(namescsv), function(x){paste0(b[x])})

names(Mac2site) = namescsv

#*************************************************

# Function for Making our data set as desire format

MakingDataSet=function(data, siteCode){

data <- subset(data, select = c(Date, Vehicle.Id))

colnames(data) <- c("DayTime", "VehicleID")

data$DayTime=substr(data$DayTime,start=1,stop=19)

data$DayTime <- strptime(data$DayTime,"%Y-%m-%d %H:%M:%S")

data$DayTime <- as.POSIXct(data$DayTime)

data$Code = siteCode

return(distinct_data <- dplyr::distinct(data))

}

# Function for spliting data set to desired time interval

time_interval <- function(data,start,end){

data=data[which(data$DayTime>=start& data$DayTime<=end ),]

return(distinct_data <- dplyr::distinct(data))}

#*************************************************

# Applying function on each data set

for(k in namescsv){assign(k, MakingDataSet(get(k), Mac2site[k]))}

# Empty list for saving our results

Result_list<-vector("list", length =nrow(times_OneHours) )

ResultAsKS<-vector("list", length =nrow(times_OneHours) )

#*************************************************

files="Site12"

check_date<-unique(substr(Site12$DayTime,start=1,stop=10))

date_day<-c("2019-02-11","2019-02-12","2019-02-13","2019-02-14",

"2019-02-15","2019-02-16","2019-02-17")

date_name<-c("Monday","Tuesday","Wednesday","Thursday","Friday",

"Saturday","Sunday")

B<-data.frame(date_day,date_name)

# First assign each data set for computing results

data_set=assign(files, get(files))

data_set_test<-data_set %>%filter(str_detect(data_set$DayTime, check_date[ff]))

for (z in 1:nrow(times_OneHours)){
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temp_data_set<-time_interval(data_set_test,

paste(check_date[ff],"",times_OneHours[z,1]),

paste(check_date[ff],"",times_OneHours[z,2]))

#*************************************************

# Order data frame based on VehicleID

temp_data_set= temp_data_set[order(temp_data_set$VehicleID),]

# Computing Gap time diff and adding new column as gap

temp_data_set_gap<-temp_data_set%>% group_by(VehicleID) %>%

mutate(gap=DayTime-lag(DayTime, default = first(DayTime)))

#*************************************************

# Extracting IDs name from data set

# Number Of All Unique IDs

ID_name=unique(temp_data_set$VehicleID)

Result<-data.frame( VehicleID=character(),

Time=character(),

Number_Group=numeric(),

size=numeric(),

Status=character(),

Gap_dist=numeric(),

Gap_mean=numeric(),

Gap_std=numeric(),

Gap_median=numeric(),

stringsAsFactors=FALSE)

for (j in 1:length(ID_name)){

# storing information for each ID and applying computation

temp=temp_data_set_gap[which(temp_data_set_gap$VehicleID==as.character(ID_name[j] ) ),]

# How many detection has an ID: if it has just one detection,

# so definitely it has one group

Size<-nrow(temp) # Size:number of all detection

if (Size!=1) { # N_initial: number of group

N_initial=1

for(k in 2:Size){

if(temp$gap[k]>10){

N_initial=N_initial+1

}

}

} else {N_initial=1} # if Size=1 then N_initial=1

if (N_initial ==1 & Size!=1 ){ #Unique Group
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temp_one<-data.frame("VehicleID"=as.character(unique(temp$VehicleID)),

"Time"=paste(times_OneHours[d,1], "-", times_OneHours[d,2]),

"Number_Group"=N_initial,

"size"=Size,

"Status"="Unique",

"Gap_dist"=paste(c(temp$gap), collapse = ", "),

"Gap_mean"=mean(as.numeric(temp$gap[2:nrow(temp)])),

"Gap_std"=sd(as.numeric(temp$gap[2:nrow(temp)])),

"Gap_median"=median(as.numeric(temp$gap[2:nrow(temp)]))

)

Result<-rbind(Result,temp_one)

} else if(N_initial ==1 & Size==1){ #Unique Singelton

temp_one<-data.frame("VehicleID"=as.character(unique(temp$VehicleID)),

"Time"=paste(times_OneHours[d,1], "-", times_OneHours[d,2]),

"Number_Group"=N_initial,

"size"=Size,

"Status"="Unique Singelton",

"Gap_dist"="0",

"Gap_mean"=0,

"Gap_std"=0,

"Gap_median"=0)

Result<-rbind(Result,temp_one)

}else if ( N_initial==Size & N_initial==2){

temp_one<-data.frame("VehicleID"=as.character(unique(temp$VehicleID)),

"Time"=paste(times_OneHours[d,1], "-", times_OneHours[d,2]),

"Number_Group"=N_initial,

"size"=Size,

"Status"="2 Singelton ",

"Gap_dist"=paste(c(temp$gap), collapse = ", "),

"Gap_mean"=mean(as.numeric(temp$gap[2:nrow(temp)])),

"Gap_std"=sd(as.numeric(temp$gap[2:nrow(temp)])),

"Gap_median"=median(as.numeric(temp$gap[2:nrow(temp)])))

Result<-rbind(Result,temp_one)

}else if (N_initial==Size){

temp_one<-data.frame("VehicleID"=as.character(unique(temp$VehicleID)),

"Time"=paste(times_OneHours[d,1], "-", times_OneHours[d,2]),
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"Number_Group"=N_initial,

"size"=Size,

"Status"=paste0(N_initial," Singelton "),

"Gap_dist"=paste(c(temp$gap), collapse = ", "),

"Gap_mean"=mean(as.numeric(temp$gap[2:nrow(temp)])),

"Gap_std"=sd(as.numeric(temp$gap[2:nrow(temp)])),

"Gap_median"=median(as.numeric(temp$gap[2:nrow(temp)])))

Result<-rbind(Result,temp_one)

}else if(N_initial!=Size){ # Multiple group

grouped = c(1) # Assigning number to each group

for(t in 2:nrow(temp)){

grouped = c(grouped, ifelse(temp$gap[t]<=10, grouped[t-1], grouped[t-1]+1))

}

# adding one column at end of temp to show group

temp<-temp %>% mutate(grouped=grouped)

groupedlist_1 <- numeric(length = length(unique(grouped)))

for(q in unique(grouped)){

groupedlist_1[q]=nrow(temp[which(temp$grouped==q),])

}

temp_one<-data.frame("VehicleID"=as.character(unique(temp$VehicleID)),

"Time"=paste(times_OneHours[d,1], "-", times_OneHours[d,2]),

"Number_Group"=N_initial,

"size"=Size,

"Status"=paste(c(groupedlist_1, "Multiple"), collapse = ", "),

"Gap_dist"=paste(c(temp$gap), collapse = ", "),

"Gap_mean"=mean(as.numeric(temp$gap[2:nrow(temp)])),

"Gap_std"=sd(as.numeric(temp$gap[2:nrow(temp)])),

"Gap_median"=median(as.numeric(temp$gap[2:nrow(temp)])))

Result<-rbind(Result,temp_one)

}

Result_list[[z]] <- Result

}

test<-Result_list[[z]]

toplot = lapply(1:nrow(test), function(i){

if(test$Status[i] != "Unique Singelton"){

x = strsplit(as.character(test$Gap_dist[i]), ", ", fixed = T)[[1]]

x = as.numeric(x[x!="0"])
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res = data.frame(VehicleID=test$VehicleID[i],Gap_dist = x, Time = test$Time[i])

} else{

x = as.character(test$Gap_dist[i])[[1]]

x = as.numeric(x)

res = data.frame(VehicleID=test$VehicleID[i],Gap_dist = x,

Time = test$Time[i])}})

res = do.call(rbind, toplot)

ResultAsKS[[z]]<-res

}

# End of first for loop on z

OverallReport_Site12<-do.call("rbind", Result_list)

#*************************************************

#***********Clustering Section ******************

S=nrow(times_OneHours)

ss<-times_OneHours %>% unite("Time", start, end, sep=" - ")

time_inter<-data.frame(Time=character())

label<-c("0 ","1 ","2 ","3 ","4 ","5 ","6 ","7 ","8 ","9 ",

"10 ","11 ","12 ","13 ","14 ","15 ","16 ","17 ","18 ","19 ",

"20 ","21 ","22 ","23 ")

time_inter <- data.frame(label,ss)

#Need it if we want details of each cluster

colnames(time_inter)=c("Time","Time1")

# Empty matrix for saving KS results

KS_Result=as.data.frame(matrix(0, ncol = S, nrow = S))

rownames(KS_Result)=time_inter$Time

colnames(KS_Result)=time_inter$Time

for (h in 1:(S-1)){

sample<-ResultAsKS[[h]]$Gap_dist

for(z1 in (h+1):(S)){

sample1<-ResultAsKS[[z1]]$Gap_dist

H=ks.test(sample,sample1)

KS_Result[z1,h]<-H$statistic

KS_Result[h,z1]<-H$statistic

}}

# Turns KS distance matrix into a distance object that R recognises:

ks_dist = as.dist(KS_Result)
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hc=hclust(ks_dist, method="ward.D")

B.2 Non-parametric variance function estimation in re-

gression models including bus

library(chron)

library(lubridate)

library(scales)

library(dplyr)

library(tidyr)

library(rlist)

library(stringr)

library(tidyverse)

library(anytime)

library(reshape2)

library(zoo)

library(magrittr)

library(arsenal)

library(data.table)

library(imputeTS)

library(ggplot2)

library(sfsmisc)

library(e1071)

library(nlme)

library(segmented)

All_Data_BUS<-read.csv(file="C:\\Users\\LocationTwo\\BT_BUS.csv")

All_Data_BUS<-All_Data_BUS %>% select(-c(X))

colnames(All_Data_BUS)<-c("BT", "Bus.count","ATC","Bus.prop","day","time")

test<-All_Data_BUS

new_data<-data.frame(residual=numeric,fit=numeric())

stop<-10

t<-1

#************ Linear model ***********************

# Weight vector

W<-rep(1,length = 105120)

while(t<=stop){
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# linear model

Mod_lm <- lm(BT ~ ATC+Bus.count, data =test,weights = W)

new_data<-as.data.frame(cbind(abs(residuals(Mod_lm)),fitted(Mod_lm)))

colnames(new_data)<-c("residual","fit")

# loess smoothing

sp<-0.9

lowess_values <- loess(residual ~ fit, data=new_data.lin, span=sp)

phat <- predict(lowess_values)

new_data<- as.data.frame(cbind(new_data,phat))

std_est<-exp(new_data.lin$phat)

var_est<-exp(2*new_data.lin$phat)

Normal.W<-var_est/mean(var_est)

W<-1/Normal.W

t<-t+1

}

#************ Quadratic model ***********************

# Weight vector

W1<-rep(1,length = 105120)

while(t<=stop){

#Quadratic model

Mod_Qua <- lm(BT ~ ATC+Bus.count+I(ATC^2), data =test,weights = W1)

summary(Mod_Qua)

new_data<-as.data.frame(cbind(log(abs(residuals(Mod_Qua))),fitted(Mod_Qua)))

colnames(new_data)<-c("residual","fit")

# loess smoothing

sp<-0.9

lowess_values <- loess(residual ~ fit, data=new_data, span=sp)

phat <- predict(lowess_values)

new_data <- as.data.frame(cbind(new_data,phat))

std_est<-exp(new_data$phat)

var_est1<-exp(2*new_data$phat)

Normal.W<-var_est1/mean(var_est1)

W1<-1/Normal.W

t<-t+1

}

#************ Cubic Model ***********************

# Weight vector
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W2<-rep(1,length = 105120)

while(t<=stop){

# Cubic Model

Mod_cub <- lm(BT ~ ATC+Bus.count+I(ATC^2)+I(ATC^3), data =test,weights = W2)

summary(Mod_cub)

new_data<-as.data.frame(cbind(log(abs(residuals(Mod_cub))),fitted(Mod_cub)))

colnames(new_data)<-c("residual","fit")

# loess smoothing

sp<-0.9

lowess_values <- loess(residual ~ fit, data=new_data, span=sp)

phat <- predict(lowess_values)

new_data <- as.data.frame(cbind(new_data,phat))

std_est<-exp(new_data$phat)

var_est2<-exp(2*new_data$phat)

Normal.W<-var_est2/mean(var_est2)

W2<-1/Normal.W

t<-t+1

}

#************ Segmented Model with one knot ***********************

# Weight vector

W3<-rep(1,length = 105120)

while(t<=stop){

# Segmented Model with one knot

Mod_lin <- lm(BT ~ ATC+Bus.count, data =test,weights = W3)

# Building the segmented Regression Model

# create a figure to get an idea of the data

### have to provide estimates for breakpoints.

my.seg <- segmented(Mod_lin,

seg.Z = ~ ATC,

npsi=1)

new_data<-as.data.frame(cbind(log(abs(residuals(my.seg))),fitted(my.seg)))

colnames(new_data)<-c("residual","fit")

# loess smoothing

sp<-0.9

lowess_values <- loess(residual ~ fit, data=new_data, span=sp)

phat <- predict(lowess_values)

new_data <- as.data.frame(cbind(new_data,phat))

std_est<-exp(new_data$phat)

152



var_est3<-exp(2*new_data$phat)

Normal.W<-var_est3/mean(var_est3)

W3<-1/Normal.W

t<-t+1

}

#************ Segmented Model with two knots ***********************

# Weight vector

W4<-rep(1,length = 105120)

while(t<=stop){

Mod_lin.1 <- lm(BT~ATC+Bus.count, data =test,weights = W4)

my.seg.1 <- segmented(Mod_lin.1,

seg.Z = ~ ATC,

npsi=2)

new_data<-as.data.frame(cbind(log(abs(residuals(my.seg.1))),fitted(my.seg.1)))

colnames(new_data)<-c("residual","fit")

# loess smoothing

sp<-0.9

lowess_values <- loess(residual ~ fit, data=new_data, span=sp)

phat <- predict(lowess_values)

new_data <- as.data.frame(cbind(new_data,phat))

std_est<-exp(new_data$phat)

var_est4<-exp(2*new_data$phat)

Normal.W<-var_est4/mean(var_est4)

W4<-1/Normal.W

t<-t+1

}

#************ Segmented Model with three knots ***********************

# Weight vector

W5<-rep(1,length = 105120)

while(t<=stop){

Mod_lin.2 <- lm(BT~ATC+Bus.count, data =test,weights = W4)

my.seg.2 <- segmented(Mod_lin.2,

seg.Z = ~ ATC,

npsi=3)

new_data<-as.data.frame(cbind(log(abs(residuals(my.seg.2))),fitted(my.seg.2)))

colnames(new_data)<-c("residual","fit")

# loess smoothing

sp<-0.9
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lowess_values <- loess(residual ~ fit, data=new_data, span=sp)

phat <- predict(lowess_values)

new_data <- as.data.frame(cbind(new_data,phat))

std_est<-exp(new_data$phat)

var_est5<-exp(2*new_data$phat)

Normal.W<-var_est5/mean(var_est5)

W5<-1/Normal.W

t<-t+1

}

#*****************************************************

ggplot(new_data,aes(fit, residual)) +

xlab("Fitted") +

ylab("log(abs(residuals))")+

# geom_point() +

geom_line(aes(y = phat),color = "red")+ theme_bw() +

theme( panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

axis.line = element_line(colour = "black"))

+ylim(c(0, 3))

#*****************************************************

# Comparision between models

AIC(Mod_lin,Mod_Qua,Mod_cub,my.seg,my.seg.1,my.seg.2)

BIC(Mod_lin,Mod_Qua,Mod_cub,my.seg,my.seg.1,my.seg.2)

B.3 Poisson regression model with Fourier basis

library(tidyverse)

library(anytime)

library(lubridate)

library(TSA)

library(janitor)

library(broom)

All_Data_BUS<-read.csv(file="C:\\Users\\BT_BUS.csv")

colnames(All_Data_BUS)<-c("BT", "Bus.count","ATC","day","time")

# Adding another variable as time of day and Type of day ( weekdays vs weekend)
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f=as.POSIXct(All_Data_BUS$time,tz="Europe/London", origin="1970-01-01")

Hour<-hour(f)

mon<-month(f)

DAY<-c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday")

test <- All_Data_BUS %>%

mutate(Hour = factor(Hour))%>%

mutate(DayWeek = factor(weekdays(as.Date(day)),levels=DAY)) %>% tibble()

#**************************************************

# The number of observations in one week: 2016=12*24*7

BT.ts <-ts(test$BT,frequency=2016)

# Creating harmonic basis functions

fourier<-harmonic(BT.ts,m=43) .

# We use clean_names() from the R package janitor to get

# a clean tibble of Fourier

fourierbase<-clean_names(as.data.frame(fourier))

data<-cbind(test,fourierbase) %>% tibble()

#The above codes simply generate the desired data set with

# only BT, ATC and Fourier bases.

# Linear model first to get the initial values for Poisson regression.

fourier.lm <- lm(BT~ATC+ATC:(.-ATC-BT),data=data)

fourier.glm<-glm(BT~ATC+ATC:(.-ATC-BT),data=data,

family=poisson(link="identity")

,start=fourier.lm$coefficients)

B.4 Poisson regression model with the periodic B-spline

basis

All_Data_BUS<-read.csv(file="C:\\Users\\BT_BUS.csv")

colnames(All_Data_BUS)<-c("BT", "Bus.count","ATC","day","time")

# Adding another variable as time of day and Type of day ( weekdays vs weekend)

f =as.POSIXct(All_Data_BUS$time,tz="Europe/London", origin="1970-01-01")

Hour<-hour(f)
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mon<-month(f)

DAY<-c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday")

test <- All_Data_BUS %>%

mutate(Hour = factor(Hour))%>%

mutate(DayWeek = factor(weekdays(as.Date(day)),levels=DAY)) %>%

tibble()

#**************************************************

# This part generates the periodic B-spline basis for one week

spline.base<-pbs::pbs(1:2016,df=N,Boundary.knots=c(0,2016),intercept=FALSE)

spline.design.matrix<-rbind(matrix( rep( t( spline.base ) , 52 ) ,

ncol = ncol(spline.base) , byrow = TRUE ),

spline.base[1:288,])

spline.data <- cbind(test,spline.design.matrix)

spline.lm <- lm(BT~ATC+ATC:(.-ATC-BT),data=spline.data)

spline.glm <-glm(BT~ATC+ATC:(.-ATC-BT),data=spline.data,

family=poisson(link="identity"),

start=spline.lm$coefficients)

B.5 Calibration with the classic estimator and the profile

log-likelihood methods

All_Data_BUS<-read.csv(file="C:\\Users\\BT_BUS.csv")

colnames(All_Data_BUS)<-c("BT", "Bus.count","ATC","day","time")

# Adding another variable as time of day and Type of day ( weekdays vs weekend)

f =as.POSIXct(All_Data_BUS$time,tz="Europe/London", origin="1970-01-01")

Hour<-hour(f)

mon<-month(f)

DAY<-c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday")

test <- All_Data_BUS %>%

mutate(Hour = factor(Hour))%>%

mutate(DayWeek = factor(weekdays(as.Date(day)),levels=DAY)) %>%

tibble()

#**************************************************
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BT.ts<-ts(test$BT,frequency=2016)

fourier<-harmonic(BT.ts,m=43)

fourier.data <- cbind(test,fourier) %>% tibble()

fourier.lm <- lm(BT~ATC+ATC:(.-ATC-BT),data=fourier.data)

fourier.glm <- glm(BT~ATC+ATC:(.-ATC-BT),data=fourier.data,

family=poisson(link="identity"),

start=fourier.lm$coefficients)

### Store the glm coefficient as the initial values for the glm calibration.

fourier.glm.initial<-fourier.glm$coefficients

# Computing Over-dispersion

DP<-c_hat(fourier.glm , method = "pearson")

#**************************************************

# theta : parameter vector

theta<-fourier.glm$coefficients

# Sigma: Variance-covariance matrix

Sigma<-vcov(fourier.glm)

temp<-as.data.frame(fourier.data)

# vec is a corresponding to that particular row of the Fourier basis of time,

#for example, if I am assuming the first 5 min slot,

#it chooses the first row of the Fourier basis, for the second 5 min slot,

#it is going to be 2, and etc.

t<-206 # particular t : for example 17:00:00 on Monday

vec<-temp[t,-c(1:2)]

names(vec)<- NULL

# Known Bluetooth

yzero=19

#********************# Delta method **************

#First part for computing SE for x0 using Delta method

# V1=(1,0,...,0)

V1<-c(1,rep(0, 87))

# V2=(0,1,the row of the Fourier basis for the particular time t)

V2<-c(0,1,vec)

V<-rbind(unname(V1),unlist(V2))
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Cov_Mat_1<-(V) %*% Sigma %*% t(V)

Cov_Mat_1

# Extended cov matrix

# yzero considers as variance of e

Ext_Cov_Mat<-cbind(c(yzero,0,0),rbind(0,Cov_Mat_1))

Ext_Cov_Mat

#******************************************************

# slope for that particular time slot

b1<-t(unlist(V2))%*% theta

b1

#******************************************************

# intercept for that particular time slot

b0<-fourier.glm$coefficients[1]

#******************************************************

#******************************************************

# x0 = (y0-b0-e)/b1

# Estimation unknown ATC

x0<-(yzero-b0)/b1

# Partial derivate : dx0/db0= -1/b1

dx_b0<- -1/b1

# Partial derivate : dx0/db1= b0-y0/(b1^2)

dx_b1<- (b0-yzero)/(b1^2)

# Partial derivate : dx0/de= -1/b1

dx_e<- -1/b1

# derivate matrix

Derv_mat<-c(dx_b0,dx_b1,dx_e)

Var_x0<-t(Derv_mat )%*% Ext_Cov_Mat %*% Derv_mat

Var_x0

SE<-sqrt(Var_x0)

# Considering SE with over-dispersion

SE.DP<-SE*sqrt(DP[1])

# we use x0hat +/- 3 SE, this should give us

# a range of trail xo values for the profile log-likelihood
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l<-max(round(x0-3*SE.DP),0)

u<-round(x0+3*SE.DP)

#*************************************************

#//////// Profile log-likelihood /////////////

vec_x0=seq.int(l,u, 1)

res=rep(0,length(vec_x0))

for(i in 1:length(vec_x0)){

### generate the specific data set by add one row

fourier.data.addone <-fourier.data%>%

add_row(BT = yzero, ATC = vec_x0[i],temp[t,-c(1:2)])

fourier.glm <- glm(BT~ATC+ATC:(.-ATC-BT),data=fourier.data.addone,

family=poisson(link="identity"),start=fourier.glm.initial)

res[i] <- (logLik(fourier.glm))

}

result<-data.frame(Estimate.ATC=numeric(),LogLike=numeric())

result<-as.data.frame(cbind(vec_x0,res))

max_point<-result[which(result$res==max(result$res)),]

#range() simply get the upper limit and lower limit of all valid ATC counts.

R1<-range(vec_x0[max(res)-(res)<qchisq(.99,1)*DP[1]/2])
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