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Abstract

Intellectual property (IP) core design modularity and reuse in Very-Large-Scale-Integration
(VLSI) silicon have been the key focus areas in design productivity improvement in order to
shorten product development lead time as well as minimize design error on new product
[11]. The System-On-Chip (SoC) design approach has been adopted in microprocessor
design flow with many functional blocks reuse in silicon. SoC has the advantage of cost
efficiency and higher fabrication yield. The fundamental building block of SoC is the
interconnection of intellectual property (IP) core through a shared bus to establish an on-chip
communication. As IP core integration is severely constraint by silicon wafer sizes (cost per
die), the right level of integration is never an easy decision. System-in-Package (SiP)
addresses this drawback with package level IP core integration. However, SiP has the
drawback of lower fabrication yield which results in higher manufacturing cost [6]. In order
to address these issues, a new level of integration has been suggested in order to reduce the
drawbacks of SiP and SoC approaches. This new integration methodology is also known as

System-in-System (SiS) which emulates SoC and SiP at the system level.

The thesis contains a detailed treatment on the processor architecture and SoC used. The

design methodologies have been discussed too.

The thesis also contains treatment on the verification methodologies and technologies that

are used in design validation.

Research includes the design of two dimensional XBUS system for external IP core
integration on SoC. The thesis proposed a system level bus for IP integration through the
XBUS. As there are multiple ways of integrating IP core at the system level, the XBUS is
limited to two channels (hence two dimensional) in order to simplify implementation

complexities.

Based on experimental results, the proposed method can be introduced as a very promising

method for the design of SoC and various other high-performance computer systems.
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Chapter 1: Introduction

1.1 Problem Description

The introduction of the microprocessor, which was originally constructed for electronic
calculator, has inadvertently revolutionized computer technology from embedded processing
toward application-rich multi-purpose computing platform. From a humble beginning,
continued increase in micro-processor capacity has rendered other forms of computing
devices possible and that include the contemporary smart-technology and smart-phone [29].
The outburst of integrated circuit (IC) complexity, as predicted by Moore’s Law plus the
very exceptional manufacturing advances that bring IC nanotechnology to fruition, are
driving the current semiconductor industry to challenge another cutting edge revolution:
System-on-Chip (SoC) (Figure 1.1) which generally refers to the integration of all
components of a computer and peripheral controllers into a single chip to form an entire
electronic system. As transistors get smaller they get cheaper, faster and consume less
power. The main contribution of this research is the development of external bus system for

direct integration of multiple homogeneous or heterogeneous electronic systems.
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1.2 Motivation

“Having different modules on different dice permits a plug-and-play approach to a range of
markets. You can do several different RF designs and use the appropriate one for each
market segment, without having to change the baseband logic chip, for instance. With an
SoC, you are stuck with whatever you chose to put on the die.” Pieter Hooijmans, Philips

Semiconductor

Independently from the shift in silicon revolution, processor architecture has evolved
dramatically in the last decade. Modern computer system achieves high performance through
a combination of advances in computer architecture and improvements in manufacturing
technology. One consequence of these advancements is the evolution of Field-Programmable
Gate Array (FPGA) which carries enough resources to implement complex embedded
system on a single device or multiple devices. FPGA comprises configurable interconnects,
large memory and hardwired arithmetic blocks and an array of configurable Look-up table
(LUT) [17]. Further refinement in FPGA technology has led to the integration of analogue
intellectual property (IP) cores and RISC processors such as the Micro-Blaze and Power-PC.
The major advantage of FPGA over custom IC is that it relieves the designer from
addressing the increasingly complicated IC physical design flow (Figure 1.2). Inherent re-
configurability is another added plus for FPGA. This device has some drawbacks in that they
carry extra overheads versus cost and lower overall system performance. FPGA consumes
more power compare with custom IC. However, considering the NRE (Non-Return
Engineering) cost for IC fabrication, the FPGAs can be applied to a number of applications
as prototypes or as part of the final product.

The following section discusses in detail about the commonly found and off-the-shelf VLSI
processor architectures.
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Figure 1.2: Typical IC design flow

i) RISC versus CISC

General purpose processors are finite-state automations that execute instruction held in a

memory (hence the stored-program model); every instruction defines a particular way the
total state should change and it also defines the next instruction to be executed. These
devices are further categorized by their processor architectures, i.e.: Reduce Instruction Set
Computers (RISC) and Complex Instruction Set Computers (CISC). RISC type processor
executes small instructions (hence a small instruction set) tailored for specific tasks and
generally performs faster compared to CISC type processors for the same task [13]. CISC
instructions tend to be large and perform more functions. The instruction set for CISC type
processors assimilates high-level language thence requires less machine code for the same
task [14]. However, these functions are rarely used by the compiler and results in a poorer
performance compare to RISC type processors.

i) Harvard versus Princeton

The program stored in the memory feeds the CPU (Central Processing Unit) with instruction
in order to execute a function. The Princeton architecture (Von Neumann) machine stores the
control program, variables and other data structures in a common memory space. This results
in simpler interface to the memory space. The Princeton architecture’s memory interface unit

is responsible for arbitrating access to the memory space between reading instructions and
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passing data back and forth to the processor. This architecture adds a pre-fetch stage in the
instruction pipeline to reduce bottleneck [16]. In contrast, the Harvard architecture machine
uses separate memory banks for program storage, processor stack and variable RAM [15].
And this results in less instruction cycles as the pre-fetch stage is not needed. However, it
lacks the flexibility to process large amounts of memory from different sources (compared to

Von Neumann) and have to access this small amount of memory very quickly.

The section below elaborates in detail the goal of this research.

1.3 Extensible bus (XBUS)

The fundamental building blocks of a system-on-chip (SoC) are its intellectual property (IP)
cores which are reusable hardware blocks designed to perform a particular task of a given
component. Different IP cores are interconnected on SoC by a communication structure such
as a shared bus or network-on-chip (NoC) in order to establish communication amongst
them. This model is used as a ground for extensible bus (XBUS) design which provides a
fabric for communication at the system level with the internal components (hence external
processing), which is the aim of this research. Bus network is a rapidly growing division of
communication industry in which high quality information (or data) can be transferred at
high speed between devices located anywhere in the world. Broadly speaking, networks can
be divided into three main categories, i.e.: Circuit-switched, Message-switched and Packet-
switched. In the circuit-switched network, the two communicating data terminal equipment
(DTEs) establish a continuous physical link for the entire duration of the communication
sessions. Circuit switching is inefficient for variable bit rate transmission or high-bandwidth
data serving since the circuit must always support the highest data rate expected [18].
Message-switched network does not require a continuous physical path to exist between the
DTEs. Data from a DTE is formatted as message of reasonable length and stored/forwarded
at each data network node. Physical connections between the node pairs are made only for
the duration of the message transfer between these node pairs and are broken as soon as the
message transfer is complete [19]. Packet-switched is in many ways similar to message-
switched except that the message is further divided into many standard packets which are
then routed individually through the network. Each packet is stored and forwarded at each
network node. Messages are reassembled from their constituent packets at the receiving DTE
[20].

Serving high bandwidth data transfer workloads would require high data processing

throughput. Throughput computing is a technique that takes advantage of the thread-level
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parallelism (TLP) and hence concurrent threads. This approach has the advantage that
memory stall time of one strand can often be overlapped with execution of other strands on

the same processor.

This report discusses the implementation and verification of the DTP-XBUS-2 as a high-
bandwidth data transfer protocol. As manufacturing cost is one of the many important factors
in the industry. Therefore, a decision is made to use open-source and standard tool-chains to
implement this system. Modern industry is also rapidly shifting towards lower cost open-
source solutions. The performance, area and power are of significant concerns while
implementing the subsystem. The goal of the project is to implement a low-cost DTP system
with a satisfactory performance and a comprehensive verification of its protocol. This report
has been structured in chapters for the simplicity and easiness. Brief information about the

contents of chapters is given as below.

Chapter 2 reviews the literature relevant to the objectives and contributions of this thesis.
Chapter 3 outlines the environment and processor architecture relevant to DTP-XBUS-2.
Furthermore, this chapter describes the basic operations of the DTP-XBUS-2 backbone
devices. The main emphasis of this chapter is on the development of DTP-XBUS-2.

Chapter 4 provides a short introduction about the basics of verification concepts. It discusses
the different types of verification and evaluates the possible alternatives to verify the DTP-
XBUS-2.

Chapter 5 discusses the verification setup based on chapter 3. This chapter also describes the
framework and development of the test bench used for structural and functional verification

of the DTP-XBUS-2 core.

Chapter 6 discusses the results obtained from Power-On Test. This chapter focuses on the

performance analysis of DTP-XBUS-2.

Chapter 7 concludes the thesis and highlights the future work.
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1.4 The thesis contribution

The major contribution of this thesis lies in design and development of a direct off-chip

communication protocol for seamless integration of external IP cores which bypasses

inherent pipelining latency of the microprocessor. As discussed in the abstract section about

the inherent limitations of SoC and SiP, the objective of this thesis aims to resolve the silicon

constraints imposed on SoC and the reliability issues and manufacturing costs associated

with SiP. The communication protocol developed or the DTP-XBUS-2 enables IP core

integration at the system-level. Unlike current prevailing system level bus such as the
Peripheral Component Inter-connect (PCI) and VMEBus, DTP-XBUS-2 bypasses the I1SO-

OSI protocol stack above layer 3 and has a more specific focus on IP cores communication

(Figure 1.4) in contrast to other buses which is more application focused (Figure 1.3).
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Figure 1.3: Conventional System Level Bus.
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Figure 1.4: DTP-XBUS-2

The experimental results show that DTP-XBUS-2 is reliable and could be implemented with
SoC for IP cores integration. The gain in system reliability (low bit error rate) compensates

for the performance in SiP.
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Chapter 2: Literature Review

This chapter reviews the literature about some existing bus communication protocol suitable
for both SoC and SiP.

In general, the performance of a system is dependent on the bus communication efficiency
[8]. Thus, efficient bus architecture with optimal arbitration, where contention is reduced,
plays an important role in maximizing the performance for all on-chip communications.
There are five types of bus architectures for on-chip communication: Global Bus I
Architecture (GBIA), Global Bus Il Architecture (GBIIA), Bi-Fifo Bus Architecture
(BFBA), Crossbar Switch Bus Architecture (CSBA), and CoreConnect Bus Architecture
(CCBA). For off-chip communication, VMEBus and Peripheral Component Interconnect
(PCI) are the common prevailing bus at the system level. However, these buses are more
application focused as discussed in section 1.4 and may not be suitable for IP cores

integration. The reviews for on-chip buses are given as below:

2.1 Global Bus I Architecture

GBIA uses two registers DONE_OP and DONE_RYV to establish communication between
two computing nodes. A flag is set by each node in these registers after the data processing
or the data receipt from the corresponding node. Bus bridges are constructed to allow
different processors on the same substrate to access data memory. The details of GBIA are
illustrated below (Figure 2.1).
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Figure 2.1: Global Bus | Architecture
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For example, if MPC 750 A writes to SRAM_A, the address decoder of that processor
makes a connection through BB_I to the memory, and BB_2 and BB_8 block the access
from any other processors. MPC 750_B then reads from SRAM_A and while the MPC
750_B address decoder attempts to disconnect BB_I from CPU Bus A, BB_2 and BB_3 are
re-connected to CPU Bus B by the control of the address decoder. For the handshake
operation between two computing node, MPC750 A begins with setting DONE_OP_B
register at the completion of its operation. MPC750_B then resets the DONE_OP_B and
reads SRAM_A. After MPC750_B completes the read operation, it then sets DONE_RV_B
register to “1”. MPC750_A terminates the handshake by resetting DONE_RV_B to “0” for

subsequent packet transmission.

2.2 Global Bus 1l Architecture

In this architecture (Figure 2.2), all processing nodes share a common global bus [8] which
requires an arbiter to resolve bus contention when two or more computing nodes try to
initiate data transmission. The arbiter grants the bus in a similar fashion to First-in-First-out

(FiFo) architecture.
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Figure 2.2: Global Bus Il Architecture

2.3 Bi-FiFo Bus Architecture

For this architecture (Figure 2.3), the data output by each computing node are exchanged

through the Bi-directional FiFo located between the nodes. Each node has two ports reserved
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as interfaces to the Bi-FiFo: the upper port, ZZ and lower port, XX. When a node pushes a

data to the Bi-FiFo, this data is also made available to the adjacent node.
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Figure 2.3: Bi-FiFo Bus Architecture.

Both high and low threshold values are defined to indicate that the status of Bi-FiFo: Full
and empty. An interrupt signal is used as an indication for the adjacent computing node
when the data in a Bi-FiFo reaches the high threshold. The interrupted node continuously
read data from the Bi-FiFo until it reaches the low threshold. Communication
synchronisation is performed with the interrupt function and two flag registers, TX_DONE
and RV_DONE, for handshaking. These registers and the threshold registers are contained in
the “REGISTERS” block of figure 2.3.

2.4 Crossbar Switch Bus Architecture

This architecture (Figure 2.4) is derived from GBIIA with the introduction of an array of
transmission gates that provide paths between all computing nodes and shared SRAMS as

shown in figure 2.4
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Figure 2.4: Crossbar Switch Bus Architecture

Each computing node accesses any shared SRAM A, B, C, or D at the same time if there is
no competition for accessing the same SRAM block. When a contention occurs, an arbiter is

used to resolve this situation in a similar fashion to FiFo architecture.

2.5 IBM CoreConnect Bus Architecture

1504 7505 150.A 1507

PLB
] r
Arbiter Processor Local Bus
SRAM SRAM SRAM SRAM
A B C D

Figure 2.5: IBM CoreConnect Bus

This architecture (Figure 2.5) is similar to the GBIIA bus. An arbiter is used to grant full
control of the bus to the computing node according to the priority order in contrast to FIFO
fashion as in GBIIA. The memory unit can be designed as a separate slave entity providing

simpler interfaces to other processing unit [22].

As noted in [1], high performance computing does solely rely on bus architecture. As

operating frequency of microprocessor continues to scale in the GHz range, computer
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systems with more efficient communication protocol have demonstrated with higher return
of investment in terms of system performance [2][3][4][5]. With the microprocessor clock
rate continues to scale as Moore’s Law predicted, simultaneous switching noise (SSN) or so-
called power/ground bounce noise (GBN) becomes one of the critical issues [30]. The
presence of noise in high speed computer system increases the bit error rate which lowers the
signal-to-noise ratio or fault tolerance and this significantly impacts the overall system
performance [2]. Shunt through currents that may excite the resonance modes of power
distribution networks (PDN) are created when high speed digital circuits transit between
power and ground planes (Figure 2.6). In return, the resonating PDN causes undesired
electromagnetic energy propagation that leads to Inter-Symbol Interference (ISI). ISI
continues to be the biggest challenge in SiP design (Figure 2.8) as operating frequency

continues to scale.

Min

(a) (b)

Figure 2.6: Electric field distribution of second order mode in SiP. (a) Long Period Coplanar Electromagnetic
Bandgap Power Planes (LPC-EBG) (b) LPC-EBG with multi via ground surface perturbation lattice (MV-GSPL)

SoC architecture attempts to integrate multiple functions, both analogue and digital into a
monolithic device as a solution to address Electromagnetic Interference (EMI) and
Electromagnetic Compatibility (EMC) issues. However, many integrated functional blocks
cannot be optimized due to the inherent limitation of the semiconductor substrate used [31].
As defect density scales with area, the integration of large scale functions such as memory

and switch fabrics with small scale functions (Figure 2.7) results in compounded yield
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Figure 2.7: Differential rates of system IC upgrades.

Figure 2.8: SiP system interconnect routing architecture

2.6 The development of DTP-XBUS-2 as SoC-SiP Hybrid

The bus architectures for IP core integration as mentioned before are located on the same
substrate. In other words, IP core integration can only be performed for ICs on the same die
or package. However, these methodologies contain inherent limitations as discussed
previously and are yet to be solved [6][12][30][31]. With this background, DTP-XBUS-2 has
been developed as a system level bus dedicated for IP cores integration. As demonstrated in
[32], at the system level, EMI/EMC is more predictable and could be minimized under

proper configurations (Figure 2.9, Figure 2.10, Figure 2.11, Figure 2.12).
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Figure 2.9: Radiative electric field of common-mode current varying with the distance arranged strips, clock
frequency f=500MHz.
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Figure 2.10: Spectral density of radiative electric field of common-mode current varying from fc to 10fc,
fc=100MHz. The distance from a clock strip to other strip is \/16.
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Figure 2.11: Clock strip analysis and S-Parameters. Refer Appendix C
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Figure 2.12: Clock strip analysis for package connector and S-Parameters. Refer Appendix C

As demonstrated in [33], system paths are generally more resistance to environmental

changes when properly configured. On-chip interconnects on the other hand are more

susceptible to process variations, thermal, leakage current and other environmental factors

[34][35].

Page | 24



2.7 Conclusion

From the research on the existing bus architectures and the development of DTP-XBUS-2
for seamless IP core integration at the system level, the information to design the DTP-

XBUS-2 core could be generalized as follows:

a) The DTP-XBUS-2 core bypasses the 1SO-OSI protocol stacks above layer 3 for
direct communication with in-system IP cores.

b) The DTP-XBUS-2 core uses dual clock rate to optimize on-chip and off-chip data
transfer rate.

¢) To evaluate the DTP-XBUS-2 core performance, a CPU intensive thread needs to be
executed and benchmark against actual single-core and dual-core SoC systems.

d) Load scheduling methodologies and techniques could be directly implemented to
optimize resource allocation for each IP cores through the DTP-XBUS-2 core.

e) For high bit rate transfer the DTP-XBUS-2 core should have reasonable well
performance with significant reduction in bit error rate and high signal to noise

ration.
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Chapter 3: System Environment and

Organization

3.1 System Architecture - The Big Picture

The exponential growth of computing power and ownership has made computer one of the
most important forces shaping business and society. For many years each new generation of
processor produces more heat than the one before as the number of cores multiplies with
significant increase in performance. Heat causes devices to run unreliably at high speeds or
high workloads. Throughput Computing is a technique that takes advantage of the thread-
level parallelism that is present in most commercial workloads. Unlike desktop workload,
which often has a small number of threads running concurrently, most commercial workload

achieves scalability by employing large pools of concurrent threads.

3.2 Instruction-Level Parallelism (ILP), Thread-Level Parallelism (TLP)
and System-Level Parallelism (SLP)

Historically, microprocessor has been designed to target desktop workload, and as a result
focused on running a single thread as efficiently as possible. Single thread performance is
achieved in these processors by a combination of extremely deep pipelines (over 20 stages in
Pentium 4) and by executing multiple instructions in parallel (referred to as instruction-level
parallelism or ILP) [10]. The tenet behind throughput computing is that the exploitation of
ILP through deep pipelining has reached the point of diminishing returns, and as a result
current microprocessors do not utilize their underlying hardware very efficiently. For a
majority of commercial workloads, the processor will be idle most of the time waiting on
memory, and even when it is executing it will often be able to only utilize a small fraction of
its wide execution width. So rather than building a large and complex ILP processor that sits
idle most of the time, a number of small, single-issue processors that employ multithreading
are built in the same chip area. Combining multiple processors on a single chip with multiple
strands per processor allows very high performance for highly threaded commercial
applications (hence Thread-Level parallelism, TLP) [21]. This thesis explores a new
mechanism for multi-processor-multi-chip operation, or multi-system processing by

integrating IP cores externally. Operation requests generated by IP core are encapsulated as
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threads which are then distributed by DTP-XBUS-2 in order to utilize resources and features
available externally such as graphics memories or graphics processing units. This approach
is called System-level parallelism (SLP), and the difference between SLP, TLP and ILP is
shown in the figures below (Figure 3.1, Figure 3.2 and Figure 3.3).

Processor

Threads

Strand 1

Strand 2

Strand 3

Strand 4

|

|

|

|

|

P
bttt Time, t

TLP Processor TLP Processor
Instruction Execution Memory Stall

Figure 3.1: Thread-Level Parallelism (TLP). The figure shows the starts of Strand 1, Strand 2, Strand 3 and
Strand 4 arbitrarily and sequentially at t,, t,, t; and t, respectively after time t, on a single TLP processing

core.
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Strand 3

Strand 4

Time, t

ILP Processor
Memory Stall

ILP Processor
Instruction Execution

Figure 3.2: Instruction-Level Parallelism (ILP). The figure shows the starts of Strand 1, Strand 2, Strand 3 and

Strand 4 arbitrarily and synchronously at t, after time t; on a single ILP processing core.
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Strand 4 arbitrarily and synchronously at ty, t,, t; and t, respectively after time t, on multiple TLP processing

cores.

The memory stall time of one strand can often be overlapped with the execution of other
strands on the same processor, and multiple processors run their strands in parallel and hence
completely overlap memory latency with the execution of other strands. Instruction-Level
parallelism on the other hand attempts to reduce execution lead time through deep
pipelining. System-Level parallelism enhances TLP by synchronizing threads at the system
level. This allows TLP processors to emulate ILP at the system level. With processors

capable of multiple GHz clocking, the performance bottleneck has shifted to the memory and
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I/0 subsystems, and TLP is more tolerance against large 1/0 and on-chip memory latency

compared to ILP micro-architecture.

The following section elaborates in more detail about the backbone behind SLP and its

implementation as DTP-XBUS-2 core.

3.3 DTP-XBUS-2 System Overview

L2 L2 L2 L2
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Interface
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Figure 3.4: DTP-XBUS-2 System Overview. PCX and CPX are the Processor-to-Cache-Crossbar and Cache-
Crossbar-to-Processor interfaces respectively. Fast Simplex Link (FSL) is used as a uni-directional point-to-
point high-speed communication. Local Memory Bus (LMB) is used as the interface to on-chip Block RAM

(BRAM). Processor Local Bus (PLB) is used as the interface that interconnects multiple IP cores.

The figure (Figure 3.4) above shows the complete DTP-XBUS-2 system, implemented with
a single chip multi-threaded (CMT) System-on-Chip (SOC) processor that contains a single
SPARC V9 physical processor core. The SPARC V9 physical processor core has full
hardware support for eight strands, two integer execution pipelines, one floating-point

execution pipeline, and one memory pipeline. The floating-point and memory pipelines are
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shared by all eight strands. The eight strands are hard-partitioned into two groups of four,
and the four strands within a group share a single integer pipeline. Hence, at any given time
at most two strands will be active in the physical core, and those two strands will be issuing
either a pair of integer pipeline operations, an integer operation and a floating-point
operation, an integer operation and a memory operation, or a floating-point operation and a
memory operation. Strands are switched on a cycle-by-cycle basis between the available
strands within the hard-partitioned group of four using a least recently issued priority
scheme. When a strand encounters a long latency event, such as a cache miss, it is marked
unavailable and instructions will not be issued from that strand until that event is resolved.
Execution of the remaining available strands will continue while the long-latency event is
being resolved. The SPARC V9 core has a 16KB of 8-way associative instruction cache (32-
byte lines), 16 KB of 8-way associative data cache (32-byte lines), 64-entry associative
instruction Translation Look-aside Buffers (TLB), and 128-entry associative data TLB that
are shared by the eight strands. The TLB provides first level translation for instruction and
data accesses. If any single entry matches, the TLB generates a Physical Address (PA) by
concatenating the Physical Page Number (PPN) stored in the TLB with the lower portion of
the virtual address. If no entries match, then the TLB signals a data or instruction miss.
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The SPARC V9 physical core is connected through a crossbar to an on-chip unified 4 MB of
16-way associative L2 cache (64-byte lines). The L2 cache is banked eight ways to provide
sufficient bandwidth for Data Transfer Protocol (DTP) operation that functions as a fabric of
communication through the Extensible-BUS (XBUS) on a multi-chip-multi-processor
platform. The L2 cache connects to four on-chip DRAM controllers, which directly interface
to a pair of fully buffered DIMM (FBD) channels. In addition, an on-chip PCI-EX controller,
two 1Gbit/10Ghit Ethernet MACs, and several on-chip I/O-mapped control registers are
accessible to the SPARC V9 physical core. The XBUS-2 functions as an intermediate
channel of communication that glues the Network Interface Unit (NIU) and the processor
core through the Cache Crosshar (CCX) and System Interface Unit (SIU). XBUS-2 emulates
SLP and synchronizes IP cores execution at the system level. Traffic from the PCI-EX port

coherently interacts with the L2 cache. The cache organization is shown in Figure 3.5

The L2 Cache sub-blocks are described as below:

a) Input Queue. A 16 entry FIFO which queues packets arriving on the L2 Cache
interface when they cannot be immediately accepted into the L2 pipe. Each entry in
the queue is 130 bits wide.

b) MicroBlaze Queue (MB Queue). MB Queue Accepts packets from MicroBlaze and
issues them to the pipe after arbitrating against other requests.

c) Arbiter. The arbiter manages access to the L2 pipeline from the various sources
which request access.

d) L2 Tag. The tag holds the L2 tag array and associated control logic.

e) L2 VUAD contains the Valid, Used, Allocated, and Dirty bits for the tags in L2
array structure.

f) L2 data contains 512 KB of L2 Data storage and associated control logic.

g) L2 Directory maintains a copy of the L1 tag for coherency management and also
ensures that the same line does not reside in both the Instruction Cache (icache) and
Data Cache (dcache) in the processing core.

h) Miss Buffer. The Miss Buffer (MB) has 32 entries and stores instructions which
cannot be processed as a simple cache hit. This includes true L2 cache misses,
instructions that have the same cache line address as a previous miss or an entry in
the Writeback buffer, instructions requiring multiple passes through the L2 pipeline,
unallocated L2 misses, and accesses causing tag Error Control Code (ECC) error.

i) Fill Buffer is an eight entry buffer used to temporarily store data arriving from
DRAM on an L2 miss request. Data arrives from DRAM in four 16 Byte quad-

words starting with the critical quad-word.
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j)  Write Back Buffer. This buffer is an eight entry buffer used to store dirty evicted
data from the L2 on a miss. Evicted lines are then streamed out to DRAM.
K) Input-Output (I/0O) Write Buffer is a four entry buffer which stores incoming data
from the PCI Express (PCI-EX) interface in the case of a 64 Byte write operation.
As the PCI-EX interface bus width is only 32 bits wide, the data must be collected
over 16 cycles before writing to DRAM.
As discussed earlier, implementing a digital interface is a practical solution in establishing
high-speed communication between complex TLP processing units. A flexible and
configurable control-architecture is required to control the XBUS transceiver’s chains
(TX/RX), and to transfer (or share) communication between the transceivers in each TLP
processing unit. This control-architecture also configures the DTP transceivers to activate a
particular standard. The XBUS-2 operates in a control-architecture being developed to
incorporate dual-channel transceivers. This control-architecture comprises specialized
adapters, a bus and distribution system, a multi-core debug system and the CPU Subsystem.

They are also known as the Processor Local Bus (PLB) (Section 3.4)

3.4 Processor Local Interconnect Bus Standard and Implementation

Processor Local Bus (PLB) is a high performance 1/0 bus used to interconnect peripheral
devices in applications such as computing and communication platforms (Figure 3.6). The
Processor Local Bus is an all-encompassing 1/0O device-interconnect bus that has applications
in the mobile, desktop, workstation, server, embedded computing and communication
platforms. In order to improve bus performance, reduce overall system cost and take
advantage of new developments in computer design, the local bus implements a serial, point-
to-point type interconnect for communication between two devices. Multiple devices or
cores are interconnected via the use of switches which means one can practically connect a
large number of devices together in a system [22]. A point-to-point interconnect implies
limited electrical load on the link allowing transmission and reception. A serial interconnect
between two devices results in fewer interfaces per device which reduces overall design
complexity. The processor local bus performance is also highly scalable. This is achieved by
implementing scalable numbers of pins and signal lanes per interconnect based on

communication performance requirements for that interconnect.
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Figure 3.6: Local Bus Interconnect Implementation with XBUS-2

The PLB implements a switch-based technology (or package-switched) to interconnect a
large number of devices. Communication over the serial interconnect is accomplished using
a package-based communication protocol. Quality of Service (QoS) features provides
differentiated transmission performance for different applications [24]. Hot Plug/Hot Swap
support enabled “always-on” systems. Advanced power management features allow one to
design for low power mobile applications. Reliable, Available, and Serviceable (RAS) error
handling features make PLB-Interconnect Bus suitable for robust high-end server
applications. Hot plug, power management, error handling and interrupt signalling are
accomplished in-band using packet based messaging rather than side-band signals. This

keeps the device interface count low and reduces system design complexity.

In summary, the Processor Local Bus (PLB) is a high-performance 64-bit address bus and a
128-bit data bus. The PLB provides a standard interface between the processor cores and
integrated bus controllers. This allows the development of a library of processor cores and
bus controllers for use or reuse in core, application-specific integrated circuits (ASICs) and
system-on-chip (SoC) designs. The PLB supports read and write data transfers between
master devices and slave devices that are equipped with a local bus interface and are
connected through dedicated signals. Each master device (Master PLB or MPLB) is attached
to the bus through separate address buses, read data buses, write data buses, and transfer
qualifier signals. Slave devices are attached to the local bus through shared, but decoupled,
address buses, read data buses, write data buses, and transfer control and status signals for
each data bus. DTP-XBUS-2 uses a hybrid of master and slave PLB interfaces. The local bus
grants access through a central arbitration mechanism that allows master devices to compete
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for bus ownership. This arbitration mechanism is flexible enough to provide for the
implementation of various priority schemes. Also, an arbitration locking mechanism is used
to support master-driven atomic operations. The local bus is a fully asynchronous bus. A
single clock source provides timing for all dedicated local bus channels. All masters and

slaves that are attached to the local bus share this clock source (Figure 3.7).

The processor local bus is the high performance bus that is also used to access memory
through the bus interface units. The local bus implementation consists of a serial-bus core in
which all master and slave devices are attached. The logic within the serial-bus core consists

of a central bus arbiter and the necessary bus control and gating logic.
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Figure 3.7: Central Bus core

The local bus architecture supports up to sixteen master devices on-chip and unlimited
number of slave devices. The XBUS-2 further extends the maximum number of attached
master devices by a factor of two through process sharing (thread splitting or memory object

distribution) at the system level. However, the number of masters and slaves other than the
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XBUS-2 that are attached to a serial-bus core in a particular system directly affects the

performance of the bus core in that system.

3.4.1 PLB Transfer Protocol

The address cycle has three phases: request, transfer, and address acknowledgement (Figure
3.8). A local bus transaction begins when a master drives its address and transfer qualifier
signals and requests ownership of the bus during the request phase of the address cycle.
After the local bus arbiter has granted bus ownership, the address and transfer qualifiers for
the master are presented to the slave devices during the transfer phase. During normal
operation, the address cycle is terminated by a slave latching the address and transfer

qualifiers for the master during the address acknowledgement phase.
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Figure 3.8: The initiation of Address Cycle arbitrarily at time t, after t,. For this cycle, the Request Phase,

Transfer Phase and Address Acknowledgment Phase take t, - t;, t; — t,, and t, — t;, time intervals respectively.

Each data beat in the data cycle has two phases: transfer and data acknowledgment (Figure
3.9). During the transfer phase, the master drives the write data bus for a write transfer or
samples the read data bus for a read transfer. Data acknowledgement signals are required

during the data acknowledgement phase for each data beat in a data cycle.
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Figure 3.9: The initiation of Data Cycle arbitrarily at t, after t,. For this cycle, the Transfer Phase and Data

Acknowledgment Phase take t, — t; and t; — t, time intervals respectively.

PLB address buses, read data buses, and write data buses are decoupled from one another
allowing for address cycles to be overlapped with read or write data cycles, and for read
cycles to be overlapped with write data cycles. The processor local bus split-bus transaction

capability allows the data and address buses to have different masters at the same time. The
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pipelining capability allows a new bus transfer to begin before the current transfer has been
completed. Address pipelining reduces the overall bus latency on the local bus by allowing
latency that is associated with a new transfer request to be overlapped with an ongoing data

transfer in the same direction (or same destination).

3.4.2 PLB Interface
The PLB Interface consists of the following categories:
1) System signals.
2) Arbitration signals.
3) Status signals.
4) Transfer qualifier signals.
5) Read data bus signals.
6) Write data bus signals.

3.4.3 System signals

The system clock signal provides the timing for the local bus and acts as input to all master
devices, slave devices and the local bus arbiter. All master output signals, slave output
signals, and arbiter output signals are asserted or negated relative to the rising edge of the
system signals. All master input signals, slave input signals, and arbiter input signals are
sampled relative to this edge. The master and slave, attached to the local bus are expected to
operate at the frequency of the bus. Thus, any matching speed that is required because of 1/O
constraints is handled in the local bus interfaces of master and slaves (cycle conversion).

The system signals also contain the power-on reset signal for the local bus arbiter. This
signal is used to switch the bus to an idle or quiescent state that usually and has the following
characteristic:

1) No read or write bus requests are pending.

2) The bus is not locked.

3) The bus is not granted.

4) The read and write data buses are not being used.
This signal is usually asserted relative to the rising edge of the system clock signal. The
duration of the assertion when forcing the bus to idle state in a system depends on the

implementation of the arbiter, master and slave devices.
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3.4.4 Arbitration signals

During the request phase, the arbitration signals are used to compete for the ownership of the
bus. The Master Request is as shown in Figure 3.10 and Figure 3.11. When the arbiter has
granted the bus to a master, the master’s address and transfer qualifier signals are presented
to the addressed slaves during the transfer phase. The transfer phase is marked by the
assertion of the arbitration signals. The maximum length of the transfer phase is controlled

by the address cycle timeout mechanism.
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Figure 3.10: Master Request Schematic
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Figure 3.11: M_Request of three Master devices.

During termination phase, the address cycle in completed by the slave through assertion of
acknowledgement or completely aborted by master through timing out. It is possible for all
three phases (request, transfer and termination) of the address to occur in a single clock cycle

in single cycle arbitration.

3.4.5 Status signals

Status signals are driven by the arbiter and reflect the ownership status of master. Master and
slave devices use these signals to help resolve arbitration on the bus or DTP-XBUS-2. The
arbiter modifies the status signals as indication that a master has a read request that is

pending on the bus or DTP-XBUS-2 or that a secondary read transfer has been acknowledge
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and is pending. The assertion is a combined logic OR of all the master request inputs for
reads, secondary read bus status and interrupt requests by DTP-XBUS-2. The status signals
play similar roles for a write request. The status signals also hold the slave identification of

the master of current transfer or external transaction through the DTP-XBUS-2.

3.4.6 Transfer qualifier signals

The master address and transfer qualifier signals are generated when a request is asserted.
The signals continue to be driven by the master, unchanged, until the clock cycle following
the assertion of acknowledgement, re-arbitrate, or abortion. On the slave interface, the

transfer qualifier signals are latched at the end of the address acknowledgement cycle.

3.4.7 Read data bus signals

The read data cycle is divided into two phases: transfer and data acknowledgement. During
the transfer phase, the slave places data to be read on the read data bus. The master then
waits for the slave to indicate that the data on the read data bus is valid during the data
acknowledgement phase. A single beat transfer has one transfer phase and one data
acknowledgement phase associated with it. A line or burst transfer has multiple number of
transfer and data acknowledgement phases. A master begins a read transfer by asserting its
request signal and by placing high value on the read-write channel. When the bus is granted

to the master, the arbiter gates or shift the data onto the master data registers.

3.4.8 Write data bus signals

The write data cycle has two phases: transfer and data acknowledgement. During the transfer
phase, the master places data to be written on the write data bus. The master then waits for a
slave to indicate the completion of the write data transfer during the data acknowledgement
phase. The write data cycle is very much similar to the read data cycle in that a write request
is generated and data is shifted from the master onto slave the bus is granted to the respective

master.

The Processor Local Bus provides a means of interconnecting subsystem peripherals
including the memory core. The following section will discuss about the memory core

implementation.

3.5 The Data Transfer Protocol (DTP) Memory Architecture

During the microprocessor evolution, memories became an integral part of microprocessor

design. The first integrated microprocessors contained only register files as storage for
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temporary data, while memory system was entirely located off chip. Current microprocessor
chips include up to three levels of cache memory (L1, L2 and L3). Furthermore, the total on-
chip memory capacity increased from a few kilobytes to several megabytes. Consequently
there is a strong demand for dense, fast and energy-efficient memories. In addition, there are
some trade-offs between density, speed, and energy dissipation that can be made, depending
on memory design specifications or memory architecture. For instance, the primary concern

of multi-port register files is their delay time and clock frequency [23].

In many systems, the peripheral devices and memory share the same busses with the
processor. Since the bus is the only path in and out of the system, conflicts will arise when
peripheral devices have data for the processor, but the processor is busy executing program
code. Hence, the DTMP (Data Transfer Memory Protocol) efficiently handles and transfers
memory control from the processor to the peripheral devices and write all of its data in a
single burst of activity. The DTMP places the processor memory interface in a tri-state
condition while the transfers take place. This allows other devices to take over control of the
busses and implement a data transfer to or from memory while the processor idles, or
processes from a separately cached memory (Figure 3.12). This performance gain will be
demonstrated in chapter 6.

Address, Data and Status Busses /\_/\

o BUSREQ
uF

BUSGRA

VA

MEMORY PERIPHERAL |
ARRAY DEVICE

Figure 3.12: Schematic representation of DTMP transfer

The figure above shows the simplified DTMP process. In the simplest form, there is a
handshake process that takes place between and the processor and the peripheral device. The
process can be described as follows:

e The peripheral device requests control from the bus from the processor by asserting
the BUS REQUEST (BUSREQ) signal input on the processor through the cache-
crossbar (CCX).

e When processor completes present instruction cycle, and no higher level interrupts
are pending, it sends out a BUS GRANT (BUSGRA), giving the requesting device

permission to begin its own memory cycles.
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e Processor then idles, or continues to process data internally in cache, until BUSREQ

signal is negated.

3.5.1 Memory Organization
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g Note: A word access on a byte boundary oo
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Byte Access complete and is not allowed in the DTPM e
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AQ=1: UDS=1, LDS=0
Word Al.A23 *
AD=0:LDS=0, UDS=0 — Lower Data Strobe (LDS)
R Upper Data Strobe (UDS)

Figure 3.13: Memory addressing modes with DTMP

When the processor is performing a byte access to memory, then either Lower Data Strobe
(LDS) or Upper Data Strobe (UDS) is asserted to represent the part of memory which where
the word is being accessed (refer figure 3.13). If the byte at the even address is being
accessed, then UDS is asserted and LDS stays HIGH. If the odd byte is being accessed, then
LDS is asserted and UDS remains in the HIGH, or OFF state. For a word access, both UDS

and LDS are asserted.
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Figure 3.14: Memory Organization for DTMP

The figure above (Figure 3.14) shows the DTMP and memory system interface. The READ
signal from the processor and the CHIP SELECT signals have been omitted for clarity. The
processor has a 32-bit data bus and a 32-bit address bus. The memory chips represent one
page of DDR RAM in the address space of the processor. The exact page of memory would
be determined by the design of the Address Decoder logic block. The DDR RAM chips each
have a capacity of 1 MB and are organized as 128KB by 8. The address bus from the
processor contains 30 address lines, which means it is capable of address 230 long words
(32-bit wide). The additional addressing bits needed to address the full address space of 232
bytes are implicitly controlled by the processor internally and explicitly controlled through
the 4 WRITE ENABLE signals labelled WEO through WE3. Address lines A2 through A18
from the processor are connected to address inputs A0 through A16 of the DDR RAM chips,
with A2 from the processor being connected to AO on each of the 4 internal cache memories,
and so on. The upper address bits from the processor, A19 through A31 are used for the page
selection process. These signals are routed to the address decoding logic where the
appropriate CHIP SELECT signals are generated.
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Figure 3.15: Byte write control circuit

As the signals are asserted low, this forms an equivalent of negative logic AND function

(hence by De Morgan’s Theorems) (Figure 3.15):

(A*B)’=A’+B’
(A+B)’ = A™*B’

3.6 The Two-Dimensional Extensible Bus (XBUS-2) Architecture

The previous sections discussed the necessary system environment and components for DTP
communication protocol implementation. This section will elaborate in detail about the

XBUS-2 architecture or the hardware implementation.

Communication can be defined as the imparting or exchange of information. Modern living
demands that we access to a reliable, economical and efficient means of communication.
Telephony is an example of point-to-point communication and normally involves a two way
flow of information. Another type of communication, which traditionally involves only one-
way information flow, is broadcast standard electronic equipment. In these systems
information is transmitted from one location but is received at many locations using many
independent data terminal devices. An important objective in the design of the XBUS-2
communication system is to minimise equipment cost, complexity and power consumption
whilst also minimising the bandwidth occupied by the signal and/or transmission time.
Efficient use of bandwidth and transmission time ensures that as many processing units as
possible can be accommodated within the constraints of these limited, and therefore

valuable, resources [4].

Buses (Figure 3.16) are one of the most widely used means of communication between
components in a SoC. The bus can be physically implemented as a single wire which makes
up a parallel bus. This parallel bus is the typical implementation choice for a bus in almost
all widely used on-chip bus-based communication architectures. Any data transmitted by a
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component moves from its output pins to the bus wires and is then received at the input pins

of the destination component. The destination component typically sends an
acknowledgement back to the transmitting component to indicate if the data was received. A
bus protocol is used to explicitly define a communication transaction through its temporal
(e.g., duration and sequence of messages exchanged) and spatial (e.g., message size)
characteristics. The bus protocol also determines which component may access the shared
bus if multiple requests to send (or receive) data appear on the bus at the same time. Bus-
based communication architectures usually consist of one or more shared buses as well as

logic components that implement the details of a particular bus protocol.

I/F-Interface
Processor Memory 1 Memory 2
Decoder Arbiter
Master I/F Slave I/F Slave I/F
Bus 1
Slave IIF Master/Slave I/F
Bridge DsP
DMA
Master I/F Master I/F e
Bus 2
Master/Slave I/F Slave IIF
Decoder Arbiter
Memory
controller Memory 3
Oft-chip
memory

Figure 3.16: Example of a Bus-based Communication Architecture

3.6.1 XBUS-2 Communication Architecture

Bus-based communication architectures are defined by various architectural and physical
characteristics (ISO-OSI physical layer) that can have many different implementations.
These implementation choices have trade-offs that can significantly affect the power,
performance, and occupied area of the communication architecture. Traditionally, shared
buses have been implemented using tri-state buffers that drive bi-directional lines (Figure
3.17). Tri-state implementations of buses are commonly used in off-chip/backplane buses
(which is the case of XBUS-2). The advantage of tri-state bidirectional buses is that they

take up fewer wires and have a smaller area footprint [25].
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Figure 3.17: Tristate Buffer based Bidirectional Signals

XBUS-2 (Figure 3.18) is responsible for managing and directing all command and data
flows from or to external chip components and the internal chip components such as the
system interface unit, PCI-Express unit, and non-Cacheable unit. The XBUS-2 manages the
transaction layer packet to and from both external and internal components, and maintains
the ordering by queue identity. Whenever an external transaction issues complete TLP
transactions to the XBUS-2, the XBUS-2 segments the TLP packet into multiple cacheline
oriented system commands and issue them to the system-interface-unit. The XBUS-2 then
gueues the response cachelines from the unit and reassembles the multiple cachelines into
one TLP packet with maximal payload size for appropriate responses to other external
transactions. This form of encapsulation resolves a virtual packet addressing into an on-chip
L2 cacheline physical address which can be presented on the XBUS-2 interface and the
necessary functionalities to interpret interrupts, emulated interrupts, and the functionalities to
post interrupt events to queues managed by software in main memory. The XBUS-2 decodes
Transmit Acknowledge (xb2_tx_ack) from interrupt targets and conveys the information to
the addressed device’s Interrupt Function for further processing.

Page | 45



Data Interface |1 ¥Xb2_phy_data_ctrl »
———————%b2 phy data clk——»
®bux2_tx_clk
___________ N
‘ r XBUS2_MAC |
: CRC \
| Generator |
l—»T¥ Buffer | TX FIFO |
| TX Data -SFD —|—> —Xb2_t¢_data—»
1
F—XbZ_t_ent—»
—| TX Interface |
bLE | le—Xb2_tx_acki—
I |
PLB Bus <: Interface [ Transmit ; le—Xb2_bx_stat—
Module : Control |
S | |
| H
S Transmit __J
Receive |
R || ‘
[
Buffer | | Loop |
ke | Receive Control Back |l«— ]
: MUX ——Xb2_rx_ack{—»
A
| —Xb2_rx_stat»
| R¥ Interface |
| K /J —Xb2_nx_dv—
1
[\ // -Xb2_rx_data—
| CRC Checker | RX FIFO |
INTC_irpt did ‘
<
. e e |
Xbus2_rx_clk

Figure 3.18: XBUS-2 Architecture

3.6.2 XBUS-2 Functional Description

The XBUS-2 contains several groups of functions as follows:

a)

b)

d)

Transmission (TX) Buffer is a 2K Byte dual ported memory to hold transmit data for
one complete frame and the transmit interface control registers. The Xb2_tx_data
interface transfer data from the MAC to PHY, Xb2_tx_en for transmit enable,
Xb2_tx_ack to acknowledge successful reception of transmitted data by receiver and
Xb2_tx_stat reflects the status of PHY transmit register.

Reception (RX) Buffer is a 2K Byte dual ported memory to hold receive data for
one complete frame and the receive interface control registers. Xb2_rx_data for data
reception from the PHY to MAC, Xb2_rx_dv to indicate data validity, Xb2_rx_stat
to reflect the status of reception buffer and Xb2_rx_ack to acknowledge successful
data reception.

CRC Generator is used for the calculation of CRC for the frame that needs to be
transmitted.

Transmit control multiplexer (MUX) arranges the frame that needs to be transmitted
and sends pre-amble, Start of Frame Delimiter (SFD), frame data, padding, and CRC

to the Transmit First-in-First-out (FIFO) in the required order.
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f)
9)
h)

)

Receiver Control logic is used to generate frame receive interrupt after CRC
Checker verifies the CRC sequence of received frame.

Loop Back MUX when enabled, routes data on TX lines to RX FIFO.

CRC Checker module calculates the CRC of the received frame

TX Interface interacts with the physical layer (PHY) and sets the necessary
conditions for physical transmission. The Transmit Control registers are updated
after the frame is transmitted.

RX Interface interacts with the PHY and sets the necessary conditions for physical
reception.

Data Interface provides access to PHY register for PHY management.

3.6.3 Data Transfer Protocol (DTP)

The DTP data is encapsulated in frames. The fields in the frame are transmitted from left to

right or from the least significant bit to most significant bit as shown in Figure 3.19.

2 Bytes 0—1500 Bytes 4 Bytes
Preamble St bbreme beimitey Destination Address Source Address Relative Address Type/ Data Pad | Frame Check Sequence
(SFD) Length
7 Bytes 1 Byte i Bytes 6 Bytes f Bytes 0—46 Bytes

Figure 3.19: XBUS-2 Data Frame.

The description of each fields are as follows:

a)

b)

d)

Preamble field. This field is used for synchronization. The preamble field contains
seven bytes with the pattern of “10101010”. For transmission, this field is always
automatically inserted by XBUS2_MAC. For Reception, this field will be stripped
from the data packet.

SFD field marks the start of the frame and contains the pattern “10101011”. The
Xb2_tx_en may go active during preamble but will be active prior to the start frame
delimiter field. For transmission, this field will be inserted automatically by
XBUS2_MAC. For reception, this field is always stripped from the data packet.
Destination Address field is six Bytes in length. The least significant bit of the
destination address is used to determine if the address is an individual/unicast (0) or
group/multicast (1) address. Multicast addresses are used to group logically related
stations. This field is always provided in the packet data for transmission and is
always retained in the receive packet data.

Source Address field is six Bytes in length. This field is always provided in the

packet data for transmission and is always retained in the receive packet data.
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e) Relative Address field is six Bytes in length. This field is used to re-route off-chip
Destination Address in a daisy chained network (hence two dimensional). This field
is always provided in the packet data for transmission and is always retained in the
receive packet data.

f) Type/Length field is two Bytes in length. When used as a length field, this field
represents the number of bytes in the following data field. As the maximum length
of a data field is 1,500 Bytes, a value in this field that exceeds 0x05DC would
indicate a frame type rather than length. This field is always provided in the packet
data for transmission and is always retained in the receive packet data.

g) Data field may vary from 0 to 1500 bytes in length. This field is always provided in
the packet data for transmission and is always retained in the receive packet data.

h) Pad field may vary from 0 to 46 Bytes in length. This is used to ensure that the frame
length is at least 64 bytes in length (the preamble and SFD fields are not considered).
The values in this field are used in the Frame Check Sequence calculation and not
included in the length field.

i) Frame Check Sequence (FCS) field is 4 bytes in length. The value of the FCS field is
calculated over the source address, destination address, relative address, length/type,
data, and pad fields using a 32-bit Cyclic Redundancy Check (CRC) (Figure 2.20).
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Figure 3.20: Snapshot of XBUS-2 CRC Generation Circuit.
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The SPARC V9 processor is used to initiate DTP transfer protocol through the XBUS-2

interface.

3.7 SPARC V9 and the Data Transfer Protocol (DTP)

TLU —— IFU |=
MMU/
= EXUO0 EXU1 =+ HW
TW
FGU LSuU
T
v

Crossbar

Figure 3.21: Core Block Diagram

The SPARC V9 core (Figure 3.21) has 8 pipelining stages which can be describe as the
Fetch (F) stage, Cache (C) stage, Pick(P) stage, Decode(D) stage, Execute(E) stage,
Memory(M) stage, Bypass(B) stage and finally the Write-back(W) stage (Figure 3.22). The
pick stage enables up to two threads to be picked at each cycle. In the bypass stage, the Load
Store Unit (LSU) forwards data to the integer register files. All integer operations pass
through the bypass stage. Some instructions, such as load misses, fall into a long latency pipe
after the bypass stage. Integer multiplies are pipelined between different threads. Integer
multiplies block within the same thread. Integer divide is a long latency operation. Integer

divides are not pipelined between different threads.

Fetch

Cache

Pick

Decode

Execute

Bypass

Memory

WrteBack

Figure 3.22: Integer Pipelining Operation
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In contrast, the Floating-point operation has 12 stages (Figure 3.23). All floating point
instructions are pipelined through the integer execute stage, and floating-point instructions
that need integer resources obtain them during this stage. The floating-point register file
(FRF) is accessed during the execute stage of the integer pipe. All floating-point operations
except for divide and square root have a fixed latency of 6 cycles in the Float Graphics Unit
(FGU) pipe. Floating-point data bypasses to dependent floating-point operations at execute
during the float bypass (FB) and float writeback (FW) stages. Floating-point data writes into
the FRF during the float writeback (FW) stage. The FGU executes all integers and floating-
point multiplies. Multiplies are fully pipelined. This unit also executes all integers and
floating-point divides. Up to two divides can be below pick at a time across all threads. The
floating-point pipeline stages are illustrated in the figure below.

Integer Pipeline
Stages

Predicts
Exception Status
Sent to Trap
Logic Unit (TLU)

Decode

Execute

FCC sent to
decode

Actual FGU Trap
Float 4 Status

Float 5

Float Bypass

Float Writeback

Figure 3.23: Floating Pipeline stages

The Instruction Fetch Unit (IFU) (Figure 3.24) feeds instructions from the memory or
XBUS-2 to the rest of the core. This unit generates the program counter (PC) and maintains
the instruction cache (icache). The IFU covers the first three stages of the pipeline
operations, or the Fetch/Cache, Pick and Decode. Each cycle, the Fetch unit fetches up to
four instructions for one thread. The fetched instructions are written into instruction buffers
(I1Bs) which are then fed to the pick logic. Each thread has a dedicated 8 entry IB. The fetch
unit maintains all PC addresses for all threads. The fetch unit redirects threads due to branch
mis-prediction, LSU synchronization, and traps. The fetch unit handles instruction cache
misses and maintains the Miss Buffer (MB) for all threads. The MB ensures that the L2 does

not receive duplicate icache misses. The Fetch stage is further divided into three micro-
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stages, or the “Before Fetch”, “Fetch”, and “Cache”. During the “Before Fetch” stage, the
Fetch unit picks the next thread to pick. The next fetch address is calculated at this stage. In
the “Fetch” stage, the icache data array, the tag array, and the instruction TLB (ITLB) are
accessed in parallel. ITLB hit or miss is determined during this cycle. The data read from all
8 ways of the icache is latched at the end of this cycle. Physical address information from the
ITLB and from the tag array is latched at the end of the fetch stage. Hit or miss of the icache
is determined during the “Cache” stage. Way selects choose the correct instruction data in
the cache stage. The cache data is aligned. This aligned data is written into the instruction
buffers of the fetched thread.

Fetch Fetch Unit
Addr Gen
Y ¥ ¥ ¥
ITLB < PC
16 KB Cache
_|—- 8 way Miss Tracking
ICache = Logic
| L
¥ ¥
Instruction Instruction
Buffers (4x8)| |Buffers (4x8)
L4 Y . L |
Pick 0 Pick 1 Eﬁ':
L A Decode
Decode 0 Decode 1 Unit
I I Y

¥ v
EXUO EXU1 L2

Figure 3.24: Instruction Fetch Unit

The fetch unit can only fetch 1 thread at a time because the icache has one port. A Least
Recently Fetched (LRF) mechanism ensures fairness in picking this thread out of the 8
possible threads. Every cycle the fetch unit picks a LRF thread from the set of all READY
threads. The picked thread ID (if there is one) is written to the current fetch thread ID

register.

The pick unit attempts to find two instructions to execute among eight different threads. The

threads are divided into two different thread groups (TG) of four threads each: TGO (threads
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0-3) and TG1 (threads 4-7). The Least Recently Picked (LRP) ready thread within each
thread group is picked each cycle. The pick process within a thread group is independent of
the pick process within the other thread group. This independence facilitates a high
frequency implementation. In some cases, hazards arise because of this independence. For
example, each thread group may pick an FGU instruction in the same cycle. As the core has
only one Floating-Graphic Unit, hardware hazard results. The decode unit resolves hardware
hazards that result from independent picking. Pick maintains a state machine per thread to
indicate whether the thread can be picked. A thread is either in READY state or in WAIT
state. If a thread is READY and IB entry 0 is valid, it can be picked. If a thread is not
READY, then it is in the WAIT state. A thread remains in the WAIT state until the condition
or conditions that caused the transition to WAIT are resolved or the thread is flushed. A
thread is in WAIT state if any wait conditions exist for the thread. A thread is in READY
state if no wait conditions exist for the thread. Pick is initiated before the type of instruction
being picked can be determined. Once the instruction type is known, dependency and
resource limitations may require the pick to be cancelled for correct machine behaviour. A
cancel pick transitions the picked thread to WAIT the next cycle unless the condition or
conditions giving rise to the hazard or hazards resolve this cycle. If the hazard or hazards
resolve this cycle, the thread remains in the READY state.

Threads enter the WAIT state in one of two ways. A thread may enter WAIT after it has
been picked to allow dependency and/or hardware hazards to resolve. Alternatively, a thread
may enter WAIT before it is actually picked.

The decode unit decodes one instruction from each thread group (TGO and TG1) per cycle.
Decode determines the outcome of all instructions that depend on the CC and FCC bits
(conditional branches, conditional moves, etc.). The integer source operands rsl and rs2 are
read from the IRF during the decode stage. The integer source for integer stores is also read
from the IRF during the decode stage. The decode unit supplies pre-decodes to the execution
units. This unit also resolves scheduling hazards that are not detected during the pick stage

between the 2 thread groups.
The Execution Unit (EXU) (Figure 3.25) executes all integer arithmetic and logical

operations except for integer multiplication and division. The EXU calculates memory and

branch addresses. The unit also handles all integer source operand bypassing.
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Figure 3.25: Execution Unit

The execution unit comprises ALU (Arithmetic Logic Unit), Shifter (SHIFT), Bypass
(BYP), Integer Register File (IRF) and the Register Management Logic (RML). The RML
tracks the list of registers for that particular instruction and feed that values held in those
registers to the IRF. The BYP will decide if that instruction is a Floating point instruction, an

Integer instruction or a memory instruction.

Load Store Unit (LSU) (Figure 3.26) handles memory references between the core, the L1
data cache, and the L2 cache and XBUS-2. All communication with the L2 cache is through
the crossbars (processor to cache and cache to processor, a.k.a. PCX and CPX) via the
gasket. The LSU ensures compliance with the Total Store Order (TSO) memory model with
the exception of instructions which are not required to strictly meet those requirements
(block stores, for example). The LSU is responsible for handling all Address Space Identifier
(ASI) operations including the ASI decode and initiating transactions on the ASI ring. The

LSU is also responsible for detecting the majority of data access related exceptions.
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Figure 3.26: Load Store Unit

The Data Cache Array (DCA) and Data Tag (DTAG) make up the level 1 data cache. The
DTLB provides virtual to physical and real to physical address translation for memory
operations. The Load Miss Queue (LMQ) stores the currently pending load miss for each
thread (each thread can have at most one load miss at a time). The Store Buffer (STB)
contains all outstanding stores. The PCX interface (PCXIF) controls outbound access to the
PCX and ASI controller. The CPX interface (CPXIF) receives CPX packets (load miss data,
store updates, ifill data, and invalidates), stores them in a FIFO, and sends them to the
dcache. The dcache is write-through, so the LSU sends all stores to the L2. The L2 maintains
a copy of the L1 tags for coherency. Hit or miss in the L1 for stores is determined by the L2.
Stores which hit the L1 will update the dcache. Stores which miss do not allocate. Cache
updates and invalidations for stores occur after the ack has been received from the L2. All
stores within a thread are processed in order. When the L2 sends the store ack, the LSU
writes the ack into the FIFO. When the ack reaches the head of the Cache Processor Queue
(CPQ), there are two possibilities. If the ack indicates a cache update is required (if the store
hit to the L1 cache) it must wait for a hole to open in the dcache pipe before the update can
proceed and the store dequeued from the store buffer. If the store missed the cache and no
update is indicated, the store can be immediately dequeued from the store buffer. (Store

misses do not allocate in the L1 dcache.) The L2 directory controls allocation since it has the
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most current copy of the L1 tags and valid status. The allocation information is embedded in

the invalidation vector that is part of the store ack packet.

3.8 Ultra-High-Bandwidth Data Transfer Operation

Today’s communication systems demand very high computational performance and energy
efficient signal processing. The traditional way to move large amounts of data between
devices is to use a bus, a collection of signals that carry similar data and perform a common
function. XBUS-2 performance includes a range of components and concepts. This section
will discuss the performance of the XBUS-2 channel itself. Monitoring the total amount of
traffic on the XBUS-2 requires a device that operates in promiscuous receive mode, reading
in every frame seen on the XBUS-2 Transceivers (Figure 3.27). Looking at every frame with
a general-purpose computer requires a network interface and computer system that can keep
up with high frame rates. This is achieved through the integrated JTAG interface, re-
programmed to perform a port scan test on the transceivers and loopback on-chip into the
monitoring system to gauge the overall transmission performance. The very same method is
also used to benchmark the performance of SoC with DTP-XBUS-2 system against those
without in the computation of statistics for large image (Image Processing). The figure below

illustrates the frame composition on the XBUS-2 channel.

The preamble field which consists of 7 bytes is used to announce the frame and to enable all
receivers on the network to synchronize themselves to the incoming frame. The start of
frame delimiter is a continuation of the preamble. Both the preamble field and the start-of-
frame delimiter field are removed by the controller when it places a received frame in its
buffer. Similarly, when a controller transmits a frame, it prefixes the frame with those two
fields or a preamble field. The destination address identifies the recipient of the frame. Each
field can consist of two or more subfields, whose settings govern such network operations as
the type of addressing used on the XBUS-2 channel, and whether the frame is addressed to a

specific device or more than one device.
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Figure 3.27: On-chip System Monitor

The source address field identifies the station that transmitted the frame. Like the destination
address field, the source address can be either two or six bytes in length. Both destination
and source addresses are normally displayed by network monitors in hexadecimal, with the
first three bytes separated from the last three by a colon (:) when six-byte addressing is used.
When a destination address specifies a single device, the address is referred to as a unicast
address. A group address that defines multiple devices is known as a multicast address,
while a group address that specifies all devices on the network is referred to as a broadcast
address. The reference address field defines the offset for both the destination address in
multi-devices network. The two byte length field indicates the number of bytes contained in
the data field. The minimum size frame must be 64 bytes in length from preamble through
FCS fields. This minimum size frame ensures that there is sufficient transmission time to
enable Xb2 transceivers to detect collisions accurately, based on the number of extensions
specified in the network and the time required for a frame to propagate through the chain.
Based on the minimum frame length of 64 bytes and the possibility of using two-byte
addressing fields, this means that each data field must be a minimum of 46 bytes in length.
At ultra-high bandwidth data transfer operation, this specification will not provide a frame
duration long enough to permit a 100-device extension. This is because at this data rate there
is a high probability that a device could be in the middle of transmitting a frame before it
becomes aware of any collision that might have occurred at the other end of the segment.
Hence, a carrier extension is introduced to extend the frame to a minimum of 512 bytes
rather than 64 bytes. If the information to be placed in the field is less than 46 bytes, the
remainder of the field must be padded. The maximum length of the data field is 1500 bytes.
The frame check sequence provides a mechanism for error detection. Each transmitter
computes a cyclic redundancy check (CRC) that covers all the address fields, the length
field, and the data field. The transmitter then places the computed CRC in the four-byte FCS
field. The CRC treats all the fields as a single long binary number. The n bits to be covered
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by the CRC are considered to represent the coefficients of a polynomial M(X) of degree n —
1. Here, the first bit in the destination address field corresponds to the Xn—1 term, while the
last bit in the data field corresponds to the X0 term. Next, M(X) is multiplied by X32, and

the result of that multiplication process is divided by the following polynomial:

G(X)=X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1 ----------- (1)

Note that the term Xn represents the setting of a bit to a 1 in position n. Thus, part of the
generating polynomial X5 + X4 + X2 + X1 represents the binary value 11011. This division
produces a quotient and remainder. The quotient is discarded, and the remainder becomes the
CRC value placed in the four-byte FCS field. This 32-bit CRC reduces the probability of an
undetected error to 1 bit in every 4.3 billion, or approximately 1 bit in 2*32 — 1 bits. Once a
frame reaches its destination, the receiver uses the same polynomial to perform the same
operation upon the received data. If the CRC computed by the receiver matches the CRC in
the FCS field, the frame is accepted. Otherwise, the receiver discards the received frame, as
it is considered to have one or more bits in error. The receiver will also consider a received
frame to be invalid and discard it under two additional conditions. Those conditions occur
when the frame does not contain an integral number of bytes, or when the length of the data
field does not match the value contained in the length field.

Destination Saurce . Frame Check
Idle SFD Presmible Address Address Relative Address| Type/Length Data Pad Sequence Driginal Frame

Destiration Source Frame Chek
Idle SFD Preamble Address Address Relative Address| Type/Length Data Pad Sa— Extension Exterded Frame

Figure 3.28: Frame Extension for collision detection prior to frame bursting.

Frame bursting is used to counteract the overhead associated with transmitting relatively
short frames. Under frame bursting, each time the first frame in a sequence of short frames
successfully passes the 512-byte collision window using the carrier extension scheme and
subsequent frames are transmitted without including the carrier extension. The effect of
frame bursting is to average the wasted time represented by the use of carrier extension
symbols over a series of short frames (Figure 3.28). The limit on the number of frames that
can be carried is a total of 1500 bytes for the series of frames, which also represents the
longest data field. In addition to enhancing network use and minimizing bandwidth

overhead, frame bursting (Figure 3.29) also reduces the probability of collisions occurring.
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This is because the burst of frames are only susceptible to a collision during the first frame in

the sequence (Figure 3.28).
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Figure 3.29: Frame Burst

3.9 Power-On Framework

e——— 512 bytes ——|

Frame burst
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This section will discuss the power-on framework for DTP-XBUS-2 system. The standard

SPARC V9 tool-chain is used to generate the memory initialization sequence for power-on.

The framework requires the following packages as shown in the figures below (Figure 3.30

and Figure 3.31).
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sudo apt—get
sudo apt—get
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sudo apt—get
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sudo apt—get
sudo apt—get

update
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_3,"'
_}"'
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install
install
install
install
install
install
install
install
install

Figure 3.30: Framework packages

build —essential
make

gcce

g++

flex

bison

patch

texinfo
libncurses —dev

-00000001FF

:100100001820FD00AS2104501860F000ARB63000037
1001100018800000A88403DC1SAD0000ABASD41CLY
:10012000E0A52002BCO500001000000A 1500000038
:1001300084C40000D40330000C6300040C 84000440
0C03D0O0084410004440048009C21007498

1003 DCO0000000010000000200000003 0000000407
-1003EC0000000005000000060000000700000008E7
:0400000300000100F8

Figure 3.31: Memory Initialization Sequence (Hex)
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The power-on sequence comprises of the Start Code, represented by “:”, Byte Count: The
first two hex digits, after the start code in order to indicate the number of bytes (hex pairs) in
the data field e.g. byte count 0x10 or 0x20 represents 16 or 32 bytes of data respectively.
Address: The four hex values, after the byte count, to identify the 16 bit big-endian address
of the beginning of data in the memory. Record type: The two hex values, after the address,
to define the type of the data field. There are six types of data fields identified by the record
type (00 to 05). The record type 00 indicates a data record of 16-bit address. The record type
01 identifies an end-of-file record and record type 03 identifies a start segment address
record. Data: A sequence of n bytes (2°n hex values) of data, where the byte count specifies
n. And finally the Checksum: The last two hex-values which are the two’s compliment sum

of the values in all fields except the start code (:) and the checksum itself.

The compiled program is boot-loaded into DTP-XBUS-2 during power-on to initiate basic
tests that verify basic functionalities of DTP-XBUS-2. The following scripts are needed for
the compilation.

Linker Script

A linker script is used to set up a memory-map of applications (Figure 2.32). This script
defines the addresses of the memory space, the positions and sizes of the stacks and heaps in
the memory and the contents of each memory-mapped space.

Startup Script

The startup script prepares the RAM for data initialization. The script also includes
additional code for the stack initialization and code for transferring initialized data and static
variables from the ROM to the RAM.

FROVIDE (__stack = ADDE( bss) + SIZEOF( bss) + STACESIZE + OFFSET);
PROVIDE (__copy_start = _copy_start);

PROVIDE {__copy_end = _copy_end);

PROVIDE (__copy_adr = _copy_adr):

MEMOEY

{
rom (rx} : OFIGIN = (ee00000000, LENGTH = Ou0000FFFF
ram (rwx) - OFIGIN = (=FO000000, LENGTH = (e000F0000

1
SECTIONS
Text (100 -
' _stext=;
*_text)

_etext=_;
} =rom

Figure 3.32: Linker script
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At the beginning of power-on, the HEX file will be loaded into the ROM starting from the
reset address of SPARC V9. The data sequences (instruction/data) are then parsed and
loaded into the ROM as RAM is not initialized at this stage. Finally, a test bench will be
created to instantiate the DTP-XBUS-2 system and drive the system clock and the system
reset sequence. The system clock for the CPU Subsystem is set to 100 MHz. When the test
bench asserts a system reset, the SPARC V9 sends the READ request and initiate DTP-
XBUS-2 for basic transfer operation as described in chapter 6. After the completion of basic
verification, the DTP-XBUS-2 system is configured accordingly for performance analysis as

described in Chapter 6.

3.10: Conclusion

In this chapter, the environment structure and processor architecture relevant to DTP-XBUS-
2 are presented. Furthermore, this chapter describes the basic operations of the DTP-XBUS-
2 backbone devices. The building blocks are presented in the following sequence: Complete
system implementation, the DTP-XBUS-2 integration strategy through the on-chip processor
local bus structure with the SPARC v9 processor, DTP-XBUS-2 memory controller
architecture and implementation, the DTP-XBUS-2 communication protocol and
architecture, a complete treatment about the customization of SPARC v9 processor for DTP-
XBUS-2 implementation, DTP-XBUS-2 transfer operation and finally the framework for

power-on.
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Chapter 4: Verification Concepts

This chapter discusses the various verification concepts and methodologies. Product
reliability is of major concern for many companies. The goals of product verification are to
screen out defects in CPU architecture, manufacturing defects, bin for speed, and verify that
devices meet the published Direct-Current (DC), Alternating-Current (AC), and frequency

specifications. Today, product verification is the only way to accomplish these goals.

4.1 Minimal Verification Requirements

There are many attributes of a good product test. A good product test has the following
attributes [26]:

1) Passes only good product and fails only bad product. This optimizes yields and
screens out defects.

2) Has a short test time. This minimizes product costs and reduces capital equipment
needs.

3) Is comprehensive. This ensures coverage of all structures in the device under test.

4) Is maintainable. This facilitates update in order to reflect product changes and testing
improvements by anyone with the need and with minimal risk (for example, in a
common format).

5) Is repeatable. The adopted test method should provide consistent results over time.

6) Enables line yield and process learning; it provides data in support of vyield

improvement and other manufacturing optimization activities.

Defects in the device, often modelled as faults should be screened out during the product
verification phase. Often, adding screens increases test time, hence arises the need to reduce
test time and cost. This dilemma of increased quality via added testing and a constant drive
to reduce test time poses a major conflict to the test and manufacturing community [26].

4.2 Test Methods

There two general types of verification approaches for silicon devices.
1) Functional Test
2) Structural Test
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4.2.1 Functional Test
Functional test (Figure 4.1) causes a device to operate very much like it would in actual
operation. Certain patterns are fed in as input on the input pins and the correct output is

watched for on the output pins.

Test pattern into Result out of

primary inputs primary outputs
f-_ —_— —

Primary,,‘ — 1 — | - Primary

inputs E 3 outputs
J- o [

Figure 4.1: Functional Test

The following are the properties of functional test:
1) Functional test is used to verify product features and functionalities.
2) Test patterns must be customized for each product features in functional test.
3) Functional test can be used to operate the device at full or functional speed in order
to characterise device performance.

4) Functional test does not require extra on-die logic nor consume any area on-chip.

The sources of functional errors in semiconductor devices are usually associated with the
following reasons:

1) Ambiguities in product feature specifications. Unclear product feature definitions
prior to actual design implementation usually lead to design error(s), hence
functional faults.

2) Ambiguities in product operation specifications. Improper selection of device
architecture often lead to mismatch in device operation hence causes functional
errors.

3) Design implementation errors.

The main objective of functional verification is to resolve design discrepancies versus the
expected architectural specifications and to ensure proper device operation [27]. However,

there are certain errors that cannot be observed in functional verification during simulation.
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These errors include functional faults that can only be observed during power-on or
hardware reset or hardware specific design errors, faults that can be observed but require
significant computational resources, and the occurrence of multiple faults at the same time

that that prevent a clear observation of cause(s) of the errors.

In functional verification, different approaches are used to increase the test coverage of the
DTP-XBUS-2, as described below:

4.2.1.1 Black-Box Verification

In this approach, the design under verification (DUV) is treated as a black box (closed box)
without consideration of the device architecture. The DUV refers to Xilinx ML505
Development Board with DTP-XBUS-2 architecture implemented as a soft-Intellectual
Property (IP) core. The DUV is accessed only through available external interfaces or JTAG
chain, and hence without access to its internal components. This verification approach lacks
controllability in terms of setting up a certain functional state of the design, isolation of a
particular functionality or the ability to correlate the output response to a particular input
stimulus. The test bench is developed in parallel to the design implementation. However, this
methodology is not suitable for large design verification due to significant discrepancy in the
number of functional blocks versus controllability or test coverage.

4.2.1.2 Gray-Box Verification

In this approach, the DUV is treated as a closed box with knowledge of the device internal
architecture (DTP-XBUS-2). The input stimulus is applied through the JTAG interfaces with
the mission to activate specific macro components of the DUV, for example to set an internal
Finite-State-Machine (FSM) to a particular state. This approach significantly increases the
verification coverage and at the same time reduces computational requirements. Design-for-
verification is the phase in which device architecture is constantly being fine-tuned to
increase test coverage. An example of such modifications is the addition of easily

controllable registers to set up a particular internal state of the design.

4.2.1.3 White-Box Verification

This verification approach offers full controllability and observation of the performance and
operation of each functional component in the device such as setting up a particular state or
bypassing some internal units. Such verification methodology heavily depends on the
particular device implementation hence the test bench can only be developed once the device

architecture is implemented.
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4.2.2 Structural Test

Structural test (Figure 4.2) adds scan chains throughout a device to carry (or “scan”) test

patterns deep into the device (Figure 4.3). These scan chains are called design-for-testability

(DFT) circuitry [37]. The device is clocked and the data from one scan chain passes through

the device’s internal circuitry and into the next scan chain, where it is carried away to be

examined in the tester [28].

Scanin
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(slow)

Figure 4.2: Structural Test (Overview)

Structural test has the following attributes:

1)

2)

3)

4)

Structural test is used to detect manufacturing defects. This test is used to ensure all
transistors are present, connected correctly, and operate at expected specifications.
Structural test however does not ensure that the “structures” provide the desired
features and capabilities. Design validation or functional validation must be carried
out separately.

Structural test require “design for testability” (DFT) circuitries on-die that acts as
internal probes to monitor DTP-XBUS-2 component connections.

In structural test, test patterns can be algorithmically generated. This decreases the
number of-hours required to generate the test programs, and hence a significant
saving to test-time reduction.

Structural test can be operated at less than actual full device operating speed. This
provides more flexibilities in on-chip test implementation and greatly simplifies
overall DTP-XBUS-2 system design.
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The ultimate challenge in product verification has always been the identification of effective
methodologies that screen out defects which at the same time also provide sufficient test
coverage for the complex silicon devices at a low cost. Device complexity and performance
are beginning to scale from the conventional functional test and tester capabilities, and hence
the only probable solution in order to keep up with these new emerging test requirements is
the adoption of design for testability (DFT). DFT is used to achieve higher coverage on the
DTP-XBUS-2, which also enables the production of high quality product verification in a
cost-effective manner. DFT techniques have enabled the generation of high quality product

tests, debug of early silicon and analysis of failing parts in the DTP-XBUS-2.
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Figure 4.4: Structural Tester minimum requirements.

In the past, microprocessors relied solely on functional test for product verification. With the
continued increase in design complexity, size, speed, plus the emergence of new
architectural features, this practice is proving to be both impractical and cost ineffective. In
addition, the high cost of semiconductor automatic test equipment (ATE) is proving to be an
economic and technical bottleneck. As devices get more complex, test-time increase and the
test infrastructures become more complex where more I/O pins and tester memory will be
required (Figure 4.4). As test time goes up this also increases the overall test cost. All these
factors will unnecessarily increase the total cost of functionally testing the DTP-XBUS-2
device. The incorporation of relevant DFT features helps to resolve these challenges, hence

allowing the DTP-XBUS-2 device to be tested more completely, quickly, and economically.

In summary, structural tests target manufacturing defects and attempt to ensure the
manufacturing correctness of basic devices such as wires, transistors, etc. Functional tests,
on the other hand, target device functionality and attempt to ensure that the device is
functioning correctly. Functional tests are written primarily for architectural verification and
silicon debug. They can be used for manufacturing testing also, as is done with the DTP-
XBUS-2 device. Structural tests, on the other hand, are used primarily for manufacturing

testing, and can be used for failure analysis and fault isolation.

The various verification technologies are discussed in the next section.
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4.3 Verification Technologies

Due to the increasing complexity of system specifications, various verification
methodologies are required for detecting design errors at the early stage of the development
process as well as for ensuring the performance characteristics of the final product. System
level simulation enables the evaluation of system specifications against the requirements at
early stages of the development, before proceeding to hardware implementation. Simulation
allows one to execute the system specification at different levels of abstraction, hence
allowing verification of the correct functionality of the system’s specification with respect to

its functional requirements.

In summary, the technologies available to perform product verification are given below.
1) Modelling and Simulation
2) Formal Verification

3) Product Emulation

4.3.1 Modelling and Simulation

The simulation is the process of executing a given system specification in a computer based
environment. The DTP-XBUS-2 system consists of a coherent combination of hardware and
software. As such, simulation has to be applied not only to each of the hardware and
software partitions and components in part, but also to the entire system as a whole (co-
simulation). The DTP-XBUS-2 simulation environment is divided into two phase,
executable specifications and simulation-based validation. The idea behind executable
specifications is to remove the process of parsing through a large quantity of documents
describing the desired functionality of the DTP-XBUS-2 and at the same time this method of
verification is used to provide a better insight into the working mechanism of the system
(hence modelling). The executable specification is gradually refined to contain more and
more implementation details during system development. The refinement of the original
executable specification can be targeted towards reaching a higher abstraction level
simulator of the DTP-XBUS-2. Ideally, this specification is expected to provide complete

and accurate system specifications.

As the system design size and complexity increase, high abstraction level design methods are
needed to rapidly explore design space and verify system functionality. Hence, this
modelling method can be used for simulating the system and evaluating its functionality and
performance. Based on the results obtained from simulating the system models, the initial

models of the systems may be refined and improve until satisfactory ones are obtained.
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Moreover, system verification can be done before actual device implementation using high-
level models, which alleviates the burden of verification. The system models that are created
during the development process should satisfy the requirements of the actual designs, which
in this case is the DTP-XBUS-2.

Simulation, on the other hand, requires complete documentation of each of the functional
components in the DTP-XBUS-2 device. Simulation is a more commonly adopted method
used to identify design errors during the validation phase. In the simulation-based
verification next inputs values and expected responses of the components are predicted in
terms of its current state and input values. This type of verification methodology will require
a test bench together with an actual design implementation. The test bench is used to apply
input values to the DUV, which in this case is the DTP-XBUS-2. The next state values of the
DUV are computed based on these input values. The captured output value is finally verified
against the computed state. In order to increase test coverage, this verification methodology
will require the computation of all expected response, hence making it relatively impractical
for large-scale design.

4.3.2 Formal Verification

Formal verification is a practical solution to handle limitations of simulation-based
verification in large scale designs. In formal verification, a behavioural model of the system
(Executable Specification) is mathematically derived. Formal verification will proceed to
verify or reject a given property of a hardware implementation through a set of logical
methods and mathematical equations. In formal verification, a system is considered verified
if the derived mathematical equations (Executable Specification) that describe the system are
proven to be correct. Hence, any property proved by the formal verification holds for all
possible input vectors applied to that implementation. The major advantage of formal
verification techniques is the ability to make universal statements about a property of a
design implementation. These statements hold for all possible input streams without
requiring test vectors to be applied or re-applied. There are two major categories of formal
verification techniques, as given below:

1) Equivalence checking and

2) Property checking.
4.3.2.1 Equivalence Checking

In this technique, two formal representations of the design implementation (before and after

a given transformation) are provided as input to an equivalence-checking tool. This tool
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creates a canonical representation of each implementation. Since the canonical representation
is unique for every Boolean function under an assumed set of conditions (e.g., variable
ordering), the methodology to prove the equivalence of these two representations is typically
straightforward. The most common input representations of a design to equivalence-
checking tools are RTL (Register Transfer Level) and design net-list. The development effort
however, scales with the size of the design, making it a difficult task. Moreover, creating a

canonical representation for very large system is not practical.

4.3.2.2 Property Checking

Property checking is another form of formal verification approach that uses the Executable
Specification. Given a formal description of the design implementation (e.g., an RTL
description) property checking approach verifies that a given property described in temporal
logic holds for the given implementation. The design properties are specified as a set of

assertions. The following are the advantages of the property checking method.

1) The properties can be described at any level of the product specification and the
design creation. They can be collected incrementally as specification and
development proceeds.

2) Property checking can be performed in the early stages of the design even when a
verification environment is not available to provide a test-bench.

3) The properties can be used with emulation-based verification and simulation-based
verification.

4) Property checking provides the coverage collection that is needed to check the
verification completeness.

5) Property checking is a static technique in which no test bench or logic simulator is

required.

There are multiple languages to facilitate property checking, including
(i) Property Specification Language (PSL) and
(i) Verilog Hardware Description Language (properties are defined in the form of

assertions).

4.3.2.3 Limitations of Formal Verification
It is an often-repeated myth that formal verification ensures complete test coverage for a
particular system. However, an absolute flawlessness of systems cannot be guaranteed with a

vigorous formal verification alone. Since this verification method only allows the detection
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of design faults and does not identify fabrication faults or faults while a system is in use. The
verification checks the correctness of statements according to the formal specification of a
design which can be incomplete or faulty itself. Moreover, the verification tools may contain
faults in their programs. Hence, the formal verification should be taken as an adjunct to but

not as a substitute for standard quality assurance methods.

4.4 Verification Methodologies

The previous section describes the various technologies available for product verification.
This section describes the available methods for implementation. Complete verification
coverage will require a combination of different technologies and multiple facilities.
Different methodologies will be required to bring together these tools and facilities. Most
commonly used types of these methodologies are:

1) Assertion-based Verification

2) Coverage-Driven Verification (CDV).

The assertion-based verification focuses on how assertions can be involved throughout the
design flow and across multiple tools. The coverage driven verification is concerned with the
best approach for designing and implementing the verification project. Both approaches
overlap each other because an assertion can be considered as a coverage point for the

coverage analysis. The following subsections briefly describe these two methodologies.

4.4.1 Assertion-based Verification
In this verification methodology, assertions will be used as an integral part of the functional
verification flow. The main components in this methodology are as follow:

(i) Identifying main properties to be asserted.

(i) Deciding when those properties must be asserted.

(iii)  Verification tools used to confirm asserted properties.

The main categories of properties that must be verified are as below:
Q) Operating environment assumptions.
(i) Verification related assumptions.
(iii) Design specifications.
(iv) Design and implementation decisions.
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It is not necessary that all properties must be satisfied at all time during device operation e.g.,
any device property may fail during the reset sequence. Therefore, such properties may not

be asserted during the reset sequence.

4.4.2 Coverage-driven Verification(CDV)

CDV is a simulation-based verification approach particularly developed to focus on the
productivity and efficiency related challenges faced in any functional verification. The
coverage-driven approach improves the verification completeness and correctness. The basic
idea behind this approach is the random generation of the stimulus, which is the main source
of the productivity gained in this methodology. The coverage collection is a necessary part
when the stimulus generation is randomized. As in the absence of coverage no information is
available about scenarios covered. Some examples of CDV approaches are listed below.
1) Transaction-driven verification: It allows scenarios to be specified at a higher level
of abstraction.
2) Constrained random stimulus generation: It leads to productivity gains in generating
the scenarios.
3) Automatic result checking: It provides confidence that the design works for all
randomly generated scenarios.
4) Coverage collection: It is a mandatory approach as in the absence of coverage it is
not obvious which scenarios have been randomly generated.
5) A directed-test-based verification: It is also a necessary approach because not all
scenarios can be generated efficiently by only using random generation techniques.

4.5 Verification Environment

The verification environment has to be implemented in a way that it should allow all
scenarios in the verification plan to be verified according to the guideline of the target
verification methodology. A verification plan includes identification of all factors that relate
to device execution, preparation of planning sessions and planning documents, product
functionalities documentation, structuring the verification plan, capturing features and
attributes, and formulation of the verification environment and the coverage implementation.
Generally, there can be different verification environment architectures available to achieve
this target. This section briefly discusses a verification environment architecture that
facilitates the application of the CDV methodology and the assertion-based verification
methodology. The Open Verification Methodology (OVM), which provides the best outline

to accomplish a CDV, is also discussed in this section. This section emphasizes on the
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architectural blocks of a verification environment, how these blocks are generally used in the

verification environment and the features that should be supported by each block.

4.5.1 Abstract View of a Verification Environment

A verification environment is connected to a DUV through the boundary signals of that
DUV (Figure 4.5). The boundary signals can be grouped into interfaces that are comprised of
multiple ports. Each port represents interconnected signals that jointly describes an interface
protocol supported by the DUV. In this way, a DUV will be viewed as a block with a
number of abstract interfaces suggesting a layered architecture for its verification
environment. The figure below shows a layered architecture of a verification environment in

which the lowest layer components directly interact with DUV interfaces.
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Figure 4.5: Verification Environment

Each higher layer component deals with increasingly higher levels of verification abstraction
that correspond to more complex verification scenarios. This verification environment is
structurally comprised of interface verification components (IVCs) and system/module
verification components (SVC/MVCs). The IVCs provide abstraction for physical ports to
interact with the DUV. The SVCs/MVCs make use of this feature to interact with the DUV
at the level of abstraction provided by the IVCs. In this architecture, software verification
components are a specific type of IVCs that interact with the software stack of the DUV.
There are two operational modes for every verification component, as given below:

1) Active mode and
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2) Passive mode.
A SVC in an active mode generates transactions for lower layer verification components
while an IVC in active operational mode generates transactions at DUV ports. A passive
verification component does not include any stimulus generation capability. It only monitors
the verification environment traffic. These modes must be correctly implemented when a

verification component is reused in the next design integration step.

4.5.2 Interface Verification Component (IVC)

The IVC (Figure 4.6) is used to interact with one or multiple DUV ports that support the
same protocol. The IVCs also include supplementary features to monitor and collect
coverage information of the physical port they interact with and hence suitable for
performance analysis of DTP-XBUS-2. The architecture of an IVC is geared less towards
generating full verification scenarios since concurrent interaction with multiple ports is
required for this purpose. However, this architecture is more equipped to give an abstract
view of DUV ports to higher layer verification components. They monitor the traffic on

DUV ports by protocol checking and coverage collection.
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Figure 4.6: Interface Verification Component

The figure shows the architecture of an IVC that contains an agent components and a bus
monitor. Each IVC interacts with a DUV port through an agent component that again
includes following components:

1) Adriver.

2) A monitor.

3) A sequencer.
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4.5.3 Module/System Verification Component

A three-layer verification environment is shown in Figure 4.5, which is composed of IVCs,
MVCs and SVCs. The SVCs include system level set-up generation functionality and
perform end-to-end validation. The internal architecture of MVCs and SVCs is similar
because they both interact with higher and lower layer verification components. The
architecture of 1VCs is different since they interact directly with the DUV ports. The SVCs
generally emphasize on the end-to-end behaviour of the DUV rather than the behaviour of
the individual blocks. In this approach it is assumed that smaller blocks have already been

verified.

SVC emphasizes on:
1) Design errors in modules that can be verified only as a part of the overall system.
2) Inaccurate assumptions about the module operation.
3) Misconnection between system modules.

4) Errors in module interactions arising from protocol mismatches.

Module/System Verification Component

Agent-N
Agent -1
Sequencer
. VE Monitor &
Scoreboards Predictors e
A A A
DUV Monitor &
Coverage Collector —

L 4 ! v

Interface Interface
Verification [f— nuv f— Verification
Component Component

Figure 4.7: Module/System Verification Component

Figure 4.7 shows the architecture of a SVC containing multiple agents where each agent
provides the same functionality while interacting with a different set of lower layer
verification component. Each SVC includes the sequencer, the verification environment
(VE) monitor and coverage collector, and the DUV monitor and coverage collector. To
provide information about the current state of the DUV, the VE monitor interacts with
monitors in the lower layer verification components. For example, system monitors track the

monitors in the IVSs and in the MVCs. Since internal signals of the DUV cannot be tracked
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through monitors attached to the DUV ports, a DUV monitor is used to track these internal
signals. However, a thin layer of a wrapper between the DUV monitor and the DUV enables
the reusability of the verification environment. A combination of both monitors (the VE
monitor and the DUV monitor) allows a gray-box verification approach. A sequencer uses
the information provided by these monitors to generate end-to-end scenarios. In an SVC, the
sequencer is generally responsible for operations including the initialization of the DUV and
the verification environment, the configuration of the DUV and the verification environment,
and end-to-end scenario generation for the DUV verification. The score boarding is used to
check for potential problems including:

1) Data values being different than expected.

2) Packets being received when not expected.

3) A packets not being received when expected.

The coverage collection is an SVC that focuses on collecting information including the
basic traffic of each interface, the combined effective traffic at all interfaces, the states of the
internal design, the generated sequences, delay and throughput information (performance
information), the configuration modes, resets and restarts, and errors observed and errors

injected.

4.6 Conclusion

This chapter presents the possible verification methodologies for DTP-XBUS-2. These
methods are divided into two broad groups: Functional Test and Structural Test. Function
test performs device emulation and verifies the VLSI chip when in operation. Functional test
is divided further according to the abstraction of VLSI chip architecture description: black-
box, grey-box and white box. In the black-box approach, the internal chip architecture is
completely ignored. This method verifies basic transfer functionality of the DTP-XBUS-2.
The grey box approach enables the internal FSM of DTP-XBUS-2 to be monitored. White-
box approach enables full customization of the DTP-XBUS-2 registers and control. On the
other hand, structural test has a more specific focus on VLSI chip interconnection. Structural
tests are carried out through internal DFT logic in which test vectors are shifted in through a
scan-chain. Also discussed in this chapter is the verification environment: IVC and MVC.
IVC customizes the test interface according to the accepted communication protocol by the

DUV. MVC comprises the test programs to be executed on the DUV.
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Chapter 5: DTP-XBUS-2 Verification

Due to the imperfect nature of manufacturing process, defects may be introduced during
fabrication, resulting in chips that could potentially malfunction. The designed chip
architecture may not be suitable for a particular manufacturing process due to on-chip timing
constraint (Inter-Symbol Interference or ISI). This chapter provides insights about the DTP-
XBUS-2 verification plan and implementation. The objective of verification plan or test
generation is the attempt to produce a set of test vectors that will uncover any defects in the
chip (Figure 5.1).

Defect-free Generate a vector that
Inputs can produce a logic 1
/
Outputs >D7
Defective
- X
X : Defect

Figure 5.1: Test Generation

5.1 Memory System Verification

With the advent of deep submicron semiconductor manufacturing technology, embedded
memory has become an attractive solution. Because almost all system chips contain some
types of embedded memory, memories are considered one of the most universal cores. There
are many challenges in regard to memory integration with logic despite the process
technology issues, guaranteeing the performance, quality and reliability is yet another
guestion to address. Testing embedded memory is more difficult than discrete memory due
to the fact that accessing memory unit from external test is costly and might incur
performance penalty and signal integrity issues due to pin/area overhead. DTP-XBUS-2 is
incorporated with design-for-testability (DFT) logics for core isolation and tester access.
While exploring various test methodologies available, we have also explored the possibility
of Algorithmic Built-in-Self-Test (AGBIST). The figure below (Figure 5.2) shows the

current implementation of BIST [38].
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The main difference between AGBIST (Figure 5.3) and BIST is that AGBIST
algorithmically generates a state dependent test vector which is suitable for state machine
tests and test vector compression. BIST uses Linear Feedback Shift Register (LFSR) to

generate test vectors which is sufficient for combinational logic tests.
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A complete treatment of AGBIST will be a new topic of research itself. Hence the discussion
of AGBIST will be omitted in this thesis.

The DTP-XBUS-2 memory systems consist of embedded RAM and ROM that interact with
other sub-systems through the processor local bus. The plan of verification includes the
following key features.
1) An interface structure to interact with the memory unit
2) Development of a bus functional model complying with the processor local bus
specifications.
3) Test library/test cases development.

4) Test bench development.

5.2 Interfacing with the Memory

The interface structure is the front-end of the test bench that interacts with the memory unit.
This structure is used for:
1) Modeling the communication between functional blocks

2) Structural connectivity between IP blocks

The implemented bus functional model (BFM) complements the interface structure by
replicating the behavioural model of the local bus master-slave components. The BFM
includes an interface for cycle based communication with the memory system. This model
emulates the following communication cycle.

1) Idle cycle

2) Read request

3) Write request

4) Burst read

5) Burst write

The BFM drives the signal to the device under validation and the responses are captured
through the interface structure that complies with the local bus specifications.

The test library is the test program that contains several test cases for the functional
verification of the memory system. The BFM is used to execute the test program which
includes the following:

1) Sequential write/read test
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a. Generates a sequential address, randomizes data items and sends the write
request to the device with a single beat write request.

b. After successful completion of the write request, a read request is sent for
the same address with a single beat read request.

c. The received data is compared with the written data. If the test passes, the
whole procedure is repeated for the next sequential address.

2) Random single beat write/read test

a. Adopts the same methodology as the sequential write/read test except that it
generates random address instead of sequential.

b. This test is used to test real-time scenarios where memory accesses are
random.

3) Random burst write/read test

a. This test randomly generates arrays of addresses and data, and sends a burst
write request to the device.

b. After successful completion of burst write, this test sends a burst read
request to the device under validation.

c. The received data array is compared with the written data array. If the test
passes, the whole process is repeated again with new set of randomized
arrays of addresses and data.

The test bench instantiates all components and connects them together. In addition, the test
bench also drives the system clock and system reset signals. The test bench includes the
following:

1) Memory unit

2) Processor local bus (PLB) interface

3) Bus functional model

4) Test library

The figure below (Figure 5.4) shows the architecture of the memory test bench.

Test Library Memory Unit

—Clock—

BFM | PLB (riesignalsy PLB

—Reset—

Testbench

Figure 5.4: Memory Test bench
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5.3 DTP-XBUS-2 Functional Verification

The DTP-XBUS-2 verification environment includes:
1) A configurable test library, enhanced on existing RAM test library
2) Coverage model
3) Test bench

5.3.1 The Library

The DTP-XBUS-2 system has both processor local bus master and slave interfaces. Hence,
the interface structure will connect the master and slave components to its interfaces
respectively. As the test library (initiator) initializes the Instruction Transfer Mode (DTP-
TXI) to drive different tests on the DUV, the library will be configured for a particular mode
of operation. This test library (initiator) is an extension of the memory test library which is
capable of driving only a single BFM and of generating the addresses for a complete given

address space.

In order to initiate the DTP-XBUS-2 transfer operation, the XBUS-2 must be configured
correctly. To access a slave component through the XBUS-2, the transferring end from
external device has to transmit an address that qualifies the address space of this slave
component. As the test library is responsible of generating the addresses for the BFMs,
thence it must be configurable so that it can generate the addresses within a specific sub-
space of an address space (Figure 5.5). Hence, this test library (initiator) is required to divide
the total address space of the Sub-bus system into four sub-spaces. The addresses generated
for a slave component include the slave-id in the MSBs (configurable). The address space of
each connected slave component is divided into three sub-spaces, one for each BFM. A BFM
can only access this particular address space inside the memories. This subdivision of the

slaves’ address spaces is necessary to handle the overlapping problem.
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Three instances of the test library will be required, with each configured to drive the
respective BFMSs. Each instance drives a single BFM and generates all addresses within the
accessible address range of its BFM. However, each BFM can randomly access the
connected slave components over the XBUS system. Each instance of the test library

(initiator) can execute all tests which are provided by the test library.

5.3.2 Coverage Model

A coverage model is used to ensure that the DUV has been exposed to a satisfactory variety
of the stimuli and it is functioning correctly. A database of Verilog bins has been created to
store a histogram of the addresses accessed by each BFM. The model covers the requested
addresses by the BFMs and the slaves. In this way, the number of times in which an address
is accessed by a BFM and how many times a Slave component correctly responded the

requests for this address could be cross verified.

5.3.3 Test Bench
This test bench (SPC_TB) is used for the functional verification of the Sub-bus system. It
instantiates all components those are required for the verification, correctly configures them,
connects them together, and drives the system clock and the system reset signals to these
components. The including components are

1) A XBUS-2 system,

2) Four RAM components,

3) Three interfaces,

4) Three bus functional models,

5) Three test libraries (one for each BFM)
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Figure 5.6 shows the architectural look of the test bench that was used for the functional

verification of the XBUS-2 system.
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Figure 5.6: XBUS-2/Sub-bus Test bench

5.4 SPARC V9 Functional Verification

The functional verification of a heavily pipelined processor is a challenging task. The
constrained random generation methodology is used in the verification of the SPARC V9
core. A grey-box verification approach is used for more complete test coverage. Therefore,
the internal signals of the SPARC V9 core will be monitored along with a reference model
for the comparison. The architectural model (simICS) of the SPARC V9 core was used as
the golden model. As the verification environment uses Verilog interfaces to communicate
with the DUV (DTP-XBUS-2), a Verilog wrapper was implemented around the SPARC V9

core. This wrapper provides interfaces to access the DUV.

Since the SPARC V9 core is a complex implementation and its verification is a challenge,
hence the most important aspects to be verified must be identified. These aspects play a vital
role in the correct execution of this processor. The correct working of these aspects verifies
that the core is correctly operational. As in literature [36], SPARC V9 is being continuously
verified and proven to be stable. This alleviates the SPARC V9 verification requirements.
The aspects taken into account are listed below.

1) SPARC V9 always generates a correct program counter (PC).
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2) SPARC V9 correctly updates its state in its supervision register (SR).

3) SPARC V9 correctly saves its context in case of an exception (ESR/EEAR/EPCR).

4) SPARC V9 always stores correct data to corresponding addresses in the data
memory.

5) SPARC V9 correctly stores the execution results in its general purpose registers.

To identify the correct time interval to monitor the DUV’s features would require a thorough
understanding of the core’s architecture, in particular the instruction pipeline execution. This
task becomes more complex when the exception model and the variable execution time of
different instructions are taken into account. Jumps/branches and delay slot executions need
to be handled appropriately as well. Another important side is to consider the freeze logic
and flush-pipeline logic of the SPARC V9 core. These two logics vigorously control the
processor pipeline execution. This information is contained in registers. Hence, they all have
enable signals for their update. These register enable signals identify the correct points to
monitor these registers. However, along with these enable signals to manage the pipeline’s
control logic, the exception control logic, the freeze logic and the flush-pipeline logic will
also be required since these logics control the register enables. In pipeline execution,
different pipeline stages may operate on different registers or may operate on different parts
of a single register. Thus, identifying a correct execution stage to monitor a register is a very
important aspect.

A robust verification environment will be required in order to feed the instructions into the
SPARC V9 core, handle Load/Store requests from the core, and correctly monitor the
important registers of the core. Additionally, it is very important for an exhaustive
verification to fill the complete instruction pipeline of the core and account the dependencies
between the instructions. In this verification environment, an instruction is first sent to the
golden model (simICS). After its execution the status of the golden model is obtained and
stored. This instruction is then sent to the DUV and all important registers are monitored
when this instruction updates them in different pipeline stages. These registers’ values are
compared with the status which was received from the model. The model executes every
instruction in zero time while the SPARC V9 core is hardware implementation (can be
registered) having eight instructions in its pipeline. Hence, this verification environment

must include a synchronization mechanism between the golden model and the DUV.
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5.4.1 Instruction Set Simulation
The Instruction Set Simulator (simICS) of the SPARC V9 core is used as a reference model
for the functional verification. This simICS is an architectural simulator, and a generic
simulator capable of emulating SPARC V9 architecture based systems. It provides high-level
and quick architectural simulation for early code analysis and performance analysis of
systems. It supports most peripherals and system controller cores. The current version of the
simICS provides a network socket for remote debugging with a GNU debugger (GDB)
support for different environments (OAK processor model, memory configurations and
sizes, configuration of peripheral devices). This version also offers the choice to either use
the simulator standalone or as a library. The new version also includes an Open SystemC
Initiative (OSCI) Transaction Level Modelling (TLM) 2.0 interface. Its standard
configuration can model the main memory, the CPU, and a numbers of other peripherals.
The existing ISS was embedded into a SystemC module in order to use the simICS as a
golden model. The module is also required to support the Programming Language Interface
(PLI) to incorporate the Verilog based verification environment. The development involves
several steps, as given below.

1) Modify the existing Oak (simICS) library to provide a set of public interfaces to

access it.
2) Define a SystemC module as a wrapper around this library that can access its public
interfaces.
3) Implement the PLI support inside this SystemC wrapper so that it can be integrated

within the Verilog based verification environment.

5.4.2 Compiling simICS Library

The installation of the SPARC V9 GNU tool-chain package includes the simICS simulator as
standalone for an early code analysis and a performance analysis of the system. In order to
make use of this simulator as a reference model, the set public interfaces need to be compiled
to a library. This library can be configured to model DTP-XBUS-2 system. The simICS
library needs to be configured to model only the CPU and some generic peripherals. It does
not model the main memory, the cache system, the memory management or other
peripherals, since the DUV does not include such components. Similar to the standalone
implementation of the simulator, a configuration file has to be used to configure the library
to model different components in the system. The simICS offers the facility to use itself as a
library, and provides two upcall functions to call up to the SystemC model of which it is a
part, to read and write from the peripheral address space. An additional upcall function needs

to be implemented in order to access the status of the ISS. Further, a PLI needs to be
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implemented in order to access this library within the WVerilog-based verification

environment.

5.4.3 Using simICS as a Library

In the standalone implementation of the simICS (Figure 5.7), the main function initializes the
instruction set simulator. After that it stays in a loop and executes the instructions. This is
similar to creating a new simICS workspace for SPARC V9 simulation. However, in the
library implementation this main function is replaced by a series of functions those form the
interfaces to the library. The header file (config.h) contains the declaration of these functions
while their implementation is provided in the libtoplevel.c file. These functions are described
below.
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Figure 5.7: simICS

1) simICS_init (...)

This function initializes the simulator. It has several arguments those are given
below. Config_file: This file provides the configuration data to the simulator.

Image_file: This argument is used to pass the program image to the simICS. By
default, the simICS takes the .ELF executable format of program images. However,
it can also take the .IHex executable format. Since we want to fetch instructions and
data from external test bench, an empty .ELF image will be passed in this argument.
To read or write from the peripheral address space the ISS needs to be able to call up
to the SystemC model of which it is part. A standard implementation of the ISS
library provides two upcall functions to read and write from the peripheral address
spaces. These functions are defined by the upr and upw, fourth and fifth function

parameters of the simICS _init(). The upcall functions in the golden model have been
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2)

modified according to requirement. In this implementation the ISS uses the “upr”
upcall function to read the next instruction from the SystemC model. If this is a Load
instruction the same upcall function is used again to read data. However, in case of a
Store instruction the “upw” upcall function is used to write data up to the SystemC
model. Since it is required that the internal status of the ISS to be accessible (after
every instruction’s execution), a third upcall function (upcpustatus) is implemented
in the simICS to write its status up to the SystemC model. This ISS status includes:

Q) The PC register,

(i) The supervision register (SR),

(iii)  The exception supervision register (ESR),

(iv) The exception program counter register (EPCR),

(V) The exception effective address register (EEAR),

(vi) All general purpose registers (GPRs) and

(vii)  The instruction that was just executed on the ISS.

The implementation of these upcall functions is provided in the SystemC model
(C++), while the simICS (C) can access them on demand. Therefore, upcalls were
implemented as static functions in the SystemC model. The SystemC model calls the
simICS_init(). To enable the upcall functions for invoking the member functions of
this SystemC model a pointer (class_ptr) to this SystemC module instance is passed
as an argument to these upcall functions. Third argument (class_ptr) is the pointer to
the SystemC module class that initializes the simulator by calling the simICS_init().
simICS_run (...)

This function is used to run the simulator for a specific period of time, passed in its
argument (in seconds). The duration of -1 runs the simulator forever. int simICS_run

( double duration ) ;

5.4.4 simICS Library and Generic peripherals

The library implementation of the simICS makes provision for any additional peripheral to
be implemented externally. Any access (READ/WRITE) to this peripheral’s memory map
generates the upcall to an external handler. Generic (Figure 5.8) is a new extension in the
simICS to model external peripherals. Any READ or WRITE access to the memory map of
an implemented generic component generates an upcall. All peripherals of the simICS are
configured in a configuration file (.cfg). A new section generic is introduced in this file to
describe the external peripherals. Multiple external peripherals can be described by multiple
generic sections. Each generic section includes multiple parameters to specify an external

peripheral.
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section generic

enabled = 1
baseaddr = 0x00000000
size = 0x7FFFFFFF
byte enabled = 1
hw_enabled = 1
word _enabled = 1
name = "Gen_devl"

end

Figure 5.8: Generic

The parameters of a generic component are as given below.

1

2)

3)

4)

5)

enabled = 0|1
The option 1 is to enable and the option O is to disable this AT Attachment and AT
Attachment Packet Interface (ATA/ATAPI). If you do not specify the value, default
is 1 (enabled).

baseaddr = value
It is the starting address of this generic peripheral’s memory map. Its default value is
0 (not a sensible value). The size of the memory mapped register space is controlled

with a parameter i.e., size. It is described below.

size = value

This parameter controls the size of the generic peripheral’s memory mapped space in
bytes. Any access (READ/WRITE) from the ISS to this address space (baseaddr 7!
size-1) will be directed to the external interface (upcall). The value of this parameter
should be in power of 2.

name = “str”

This string specifies the name of the generic peripheral.

The generic peripheral can be configured to have support for byte, half-word and
word accesses. If the value is 1 (default) the respective support is enabled.
byte_enabled = 0|1

hw_enabled = 0|1

word_enabled = 0|1
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The requirement for the golden model is to generate the upcalls for a complete 32 bit address
space (0x0000_0000 to OxFFFF_FFFF) which is byte-addressable. The maximum size that
can be supported by a single generic peripheral is Ox7FFF_FFFF bytes. Hence, three generic
peripherals are needed to cover the complete 32 bit address space. With this configuration
the golden model (simICS) always generates the upcalls either to READ/WRITE data or to
fetch a new instruction. The verification environment feeds the instructions and data to the
simICS.

5.5 SystemC Wrapper and Reference Model

After modifying the simICS (or ISS) and generating the library, a SystemC wrapper around
this library needs to be implemented in order to incorporate the reference model in the
verification environment. The key features this SystemC wrapper was required to implement
are as given below.
1) Provide the implementation of the upcall functions (upr, upw, upcpustatus).
2) Call the simICS_init() function and pass its arguments.
3) Run the simulator forever by calling the simICS_run() function in a thread.
4) Provide a PLI for these upcall functions to be accessible in the verification
environment.
5) Implement a synchronization mechanism between the SystemC upcalls and the PLI
functions.
6) Handle the host machine’s byte order (little-endian/big-endian).
7) Provide the implementation to qualify valid data bytes inside the data array by using
the selection bits.
8) Parse out the required status information of the ISS and make it available to the PLI

functions.

5.5.1 Upcalls

Three static member functions must be implemented in the SystemC wrapper in order to
provide the implementation of the upcall functions of the simICS library. These static
functions take a pointer of the SystemC module’s instance which starts the simICS ISS. This
pointer is provided as a third argument to the simICS_int function. Each static function calls
inside another C++ class member function. This member function actually provides the
implementation of its respective upcall function. When the ISS generates an upcall to its
corresponding interface function, it simply calls this static function because its interface
function is a pointer to a C++ static function. This static function calls a member function

which actually implements the upcall. The code snippet below is taken from the
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implementation of this SystemC wrapper class. It gives insight about the upcalls’ working in
the wrapper. The staticWriteUpCPUStatus is a static function of the wrapper. Its pointer is
passed into the upcall i.e., upcpustatus (in the simICS_init) for writing up the ISS status.
When the ISS generates this upcall, since the upcpustatus is a pointer to the
staticWriteUpCPUStatus function, the ISS in fact calls this static function which actually
calls a C++ member function inside (writetUpCPUStatus). This member function parses the

incoming status information of the ISS and makes it available to its respective PLI function.

| *===Access the CPU state after every instruction’s exectution===>*/

void spc_sc_module_pli::staticWriteUpCPUStatus(void*instancePtr, void*cpu_statusPtr)

{
spc_sc_module_pli* classPtr = ( spc_sc_module_dpi*) instancePtr;
cpu_state_up* cpu_state_up_ptr = ( cpu_state_up*) cpu_statusPtr;
classPtr—writeUpCPUStatus ( cpu_state up ptr ) ;

} /] staticWriteUpCPUStatus( )

The declaration of the staticWriteUpCPUStatus function is given below.

static void staticWr iteUpCPUStatus ( void * instancePtr , void * cpu_statusPtr ) ;
simICS_init Initialization

The simICS_init library function is called within the SystemC wrapper to initialize the ISS.
A configuration file, an empty ELF file, the wrapper’s own pointer (itself starting the ISS)
and the pointers to its static functions are passed as arguments to this library function, as

given below.

simICS_init("../example.cfg", "../example.elf", this, staticReadUpcall, staticWriteUpcall,
staticWriteUpCPUStatus) ;

5.6 Programming Language Interface

As discussed, the implementation is provided in a SystemC model and it is imported inside a
Verilog model by using the include “PLI” declaration. On the other hand, the
implementation of is provided in a Verilog model and it is then exported to a SystemC
model. In this verification environment only the PLI functions need to be imported in order
to be called within a Verilog based test bench while their implementation is provided inside

the SystemC wrapper of the golden model. Three imported PLI functions have to be
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implemented in the SystemC wrapper respective to three upcall functions. The hooked-up
member functions of the SystemC wrapper take data and instructions from these imported
PLI functions and feed the ISS with this data and instructions. These member functions also
make the simulator’s status and data available to these imported PLI function so that it can
be sent to the test bench. The definition of these three imported PLI functions in the SystemC

wrapper is given below (Figure 5.9).

int sv_readUp(const int rinsn, const int rdata , int xread addr, int +read addr mask);
int sv_writeUp (int swaddr, int swdata);

int sv_writeStatusUp( cpu_state ref #i1ss status):

Figure 5.9: PLI functions

All included PLI functions must be registered in the SystemC module by using
SC_PLI_REGISTER_CPP_MEMBER_FUNCTION().
SC_PLI_REGISTER_CPP_MEMBER_FUNCTION("sv_readUp",
&spc_sc_module_pli::v_readUp);
SC_DPI_REGISTER_CPP_MEMBER_FUNCTION("sv_writeUp",&spc_sc_module_pli::v
_writeUp);
SC_DPI_REGISTER_CPP_MEMBER_FUNCTION("sv_writeStatusUp",&spc_sc_module_
pli::v_writeStatusUp);

The PLI identifies an imported function by its name only (not by its parameters). Hence,

only one copy of overloaded functions can be supported.

Note: The composite data types (e.g., structure/union) being transferred through the PLI
from SystemC to Verilog (or opposite) make provision for each element to be 32-bit aligned.
For example, if a structure contains a char data type (8 bits), 24 bits should be padded to it to

make it 32-bit aligned.

5.6.1 Golden Model Synchronization

When the ISS starts the execution it fetches the first instruction through an upcall function
(upr) from the reset address (0x0000_0100). It executes the instruction in zero time and
comes up again to fetch the next instruction. As the ISS is running forever in a SystemC
thread, it will never give the control to any other process if there is no mechanism to block it.
A SystemC FIFO was implemented based mechanism with blocking READ/WRITE to
synchronize the system. Four FIFOs of a single element depth were implemented between
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the hooked-up member functions and the imported PLI functions. With this strategy, when
the ISS upcalls to fetch a new instruction it writes the PC address to the pc-fifo and is
blocked until the instruction is available in the read-fifo. If this instruction is a Store, the ISS
makes an upcall to write data up and it is blocked until the write-fifo is empty. However, if
this instruction is a Load, the ISS upcalls to read data and it is blocked until data is present in
the read-fifo. After completing the execution of an instruction the ISS upcalls to write its
status up and it is blocked until the status-fifo is empty. When the ISS is blocked the control
is transferred to other running processes. On the other ends of these FIFOs the test bench
uses the imported PLI functions to feed the instructions and data to the ISS to read data and
addresses (for the Store instructions) and to get the status of the ISS after the execution of

every instruction.

5.6.2 Golden Model Architecture

Figure 5.10 shows the architecture of the golden model. The ISS accesses the wrapper
functions through its upcalls. The communication between the ISS and the test bench is
synchronized by means of SystemC FIFOs. Test bench implemented in Verilog (OVM)
accesses these FIFOs through the imported DPI functions.

Golden Model this
yalanc Winnpa) smptI elflcanﬁg file
simICS
l—.l staticReadUpcall |O—0:|upr
sv_readUp read_up_addr_fifo
readUpcall
read_up andle- H—,
fifo adian H staticWriteUpcall F—D:]UPW

sv_writeUp write_up_addr_fifo writeUpcall |
staticWriteUpCPU cpustatus
;t | flani:o— I — write_up_data_fifo Status jUp pu "
TI.J—' write_up_status_fifo k—[ write UpCPUStatus |
Up

Figure 5.10: SPARC V9 Golden Model

5.7 Verilog Wrapper and SPARC V9 Core

A Verilog based wrapper has to be implemented around the SPARC V9 core (DUV) which
includes three Verilog interfaces named as:

0] The insn-if.

(i) The data-if .

(iii)  The status-if.
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These are used to access the instruction XBUS-2, data XBUS-2 and the internal signals of
the core respectively. The status-if of this wrapper makes all required internal signals of the
DTP-XBUS-2 available at its ports. The internal signals include the status registers (to be
monitored) and the control signals (to control the monitoring). The status registers include

(i) Some important SPRs,

(i) All GPRs.

(iii)  The program counters (PC).

This wrapper also implements a translation block to translate the SPARC V9’s internal
signals to a usable form e.g., the GPRs are implemented as a dual-port synchronous memory
and their translation to thirty two 32-bit registers is needed. Further, this wrapper also
implements a control block to manipulate the internal control signals according to the
requirements e.g., delay a control signal for two clock cycles. All components of the

verification environment interact with the DUV only through the wrapper’s interfaces.

5.8 Verification Environment

Figure 5.11 elaborates the architecture of a verification environment (spc_tb_top) and was
used for the functional verification of the SPARC V9 core. This verification environment
includes

XBUS-2 Wrapper |

SPARC V9

PLB Signals

trans_
bloc

PLB Signals

| data_if | | slatus_ill | insn_if |

| spc_data_if |‘ ‘ | spc_insn_if |

Figure 5.11: Verification Environment

1) The golden model,

2) The DUV wrapper (XBUS-2_wrapper) (Figure 5.9),
3) The main test bench component (spc_tb),

4) The global package (v_sc_package) and

5) The test library (spc_tb_test_example_inst).
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The main test bench (spc_tb) is a reconfigurable and reusable component. It interacts with
the golden model through its imported PLI functions and uses its physical interfaces to
interact with the DUV wrapper. The main test bench executes the configurable tests of the
test library where all tests are constrained random generation of the scenarios which are
comprised of SPARC V9 instructions. spc_tb first sends an instruction to the golden model,
writes/reads data (if the instruction is Load or a Store) and receives the ISS status once the
instruction has been executed. Further, it sends this instruction to the DUV. While this
instruction passes through different pipeline stages in the DUV the main test bench keeps
eye on the state of the DUV and reacts accordingly. It examines the control state machine of
the DUV along with the data-path. spc_tb monitors the control signals of the DUV to
determine the right time to examine the status of the DUV (e.g., PC, SPRs, etc.) and the
execution results (GPRs). It compares the status of the golden model with the DUV status
and scoreboards it. The main test bench also implements a coverage model to assess the
completeness of the verification. Most of the components of the verification environment can
be configured according to implementation’s requirements. For example,

(1 The coverage model or the scoreboard should be implemented or not,

(i) An agent component will operate as a passive component,

(ili))  Which tests of the test library to be executed.
The components of this verification environment will be described as below (Figure 5.12).

Spc_th top

Golden Model

SPC_TB

Figure 5.12: Verification Components
5.9 Main Test Bench for DTP-XBUS-2

Figure 5.13 shows the structural design of the main test bench used for the functional
verification of the SPARC V9 core. It is comprised of three main components:
1) The interface verification component (ivc_spc),

2) The system/module verification component (svc_spc) and
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3) The virtual sequencer (spc_virtual_sequencer).

All components inside the spc_tb interact with each other through standard TLM interfaces.

5.9.1 Interface Verification Component (IVC)
The main test bench interacts with the DUV (SPARC V9) through its interface verification
component. This IVVC includes

(i) Three physical interfaces (instruction, status, data),

(i) An instruction agent,

(iii) A data agent and

(iv) A bus monitor.

The instruction, status and data interfaces of the IVC are respectively connected to the
instruction, status and data interfaces of the DUV wrapper. The other side of the instruction,
status and data interfaces are respectively connected to the instruction agent, the bus monitor
and the data agent of the IVC. The instruction interface is used to send the instructions to the
DUV. The status interface is used to read the internal status registers and the control signals
of the DUV. The data interface is used to send or receive data of Load or Store accesses from
the DUV. Figure below shows a detailed view of this IVVC.
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Figure 5.13: Interface Verification Component

5.9.2 Physical Interfaces

These interfaces provide the port-level connection to the DUV interfaces and the helper

functions for the IVC to read or write the values on these ports. These interfaces implement

the XBUS-2 protocol checking using concurrent assertions e.g., the ack and the err signals

must not be asserted together. These concurrent assertions are checked throughout the

simulation to ensure that the interconnection protocol is always obeyed.

5.9.3 Instruction Agent
This instruction agent contains
0] An instruction driver,

(i) An instruction monitor and
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(iii)  Aninstruction sequencer.

It operates as a Master component which is connected to the instruction interface of the
DTP-XBUS-2. On receiving a request from the core, its instruction driver requests a new
transaction (instruction) from the instruction sequencer and sends it to the DUV over the
instruction interface (ivc_spc_insn_phy if) by using its helper functions. These transactions
are required to be translated to the port level signals. The instruction driver follows the
XBUS-2 interconnection standard. It synchronously asserts the termination signal (i.e., ack,
err, rty) for one clock cycle after each request from the DUV. The instruction monitor only
reads (does not drive) the signals of the instruction interface when the instruction driver

acknowledges a request.

After reading the interface signals by using helper functions, this instruction monitor
translates them into an instruction transaction and sends this transaction to the system
verification component, over a TLM port (insn_collected_port). An instruction transaction
encloses the instruction that is sent to the DUV and the address of this instruction. The
instruction driver requests a new instruction from the instruction sequencer. It sends the next
transaction (instruction) in the sequence to the driver. These sequences are a constrained
random generation of SPARC V9 instructions. The instruction sequencer contains a library
which encloses several sequences of instructions those can be generated on demand.

5.9.4 Data Agent
The data agent contains
(1 A data driver,
(i) A data monitor and

(iii) A data sequencer.

It operates as a Slave component which is connected to the data interface of the DTP-XBUS-
2. On receiving a READ request from the DUV, its data driver requests a new transaction (a
data item) from the data sequencer and sends it to the DUV over the data interface
(ivc_spc_data_phy_if) by using its helper functions. These transactions are required to be
translated to the port level signals. The data driver follows the XBUS-2 protocol. It asserts
the synchronous termination signal (ack, err, rty) for READ requests while asserting
asynchronous termination signal for WRITE requests. These termination signals are asserted
for one clock cycle. The data monitor only reads (does not drive) the signals of the data
interface when the data driver acknowledges a request. After reading the interface signals, it

translates them to a data transaction and sends this transaction to the system verification
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component over a TLM port (data collected_port). This data transaction encloses the
address and the data item along with the write enable (we_i) and the byte select (sel_i)
XBUS-2 packets. On the data driver’s request, the data sequencer sends a new transaction (a
data item) to the driver. The data sequencer contains a library which encloses several data

sequences.

5.9.5 Bus Monitor
The bus monitor is used to access the internal control signals and the status registers of the
DUV through the status interface of the IVC. It can also access the instruction and data
interfaces.
This bus monitor reads the XBUS-2 status signals every cycle, translates them to a status
transaction and sends the transaction to the system verification component over a TLM port
(status_collected_port). This status transaction is comprised of

0] the PC register,

(i) the SR,

(iii)  the ESR,

(iv)  the EPCR,

(v) the EEAR,

(vi)  all GPRs and

(vii)  some important control signals of the DTP-XBUS-2 e.g., pc_we, esr_we,

except_start, etc.

5.10 System Verification Component (SVC)

The ultimate goal of the system verification component is to verify the end-to-end
characteristics of the DTP-XBUS-2 core. This SVC is one step higher at abstraction level
than the IVC. It is comprised of the following components:

1) The module monitor (mvc_monitor),

2) The scoreboard (mvc_scoreboard) and

3) The coverage model (mvc_coverage_model).

5.10.1 Module Monitor

This module monitor, shown in Figure below (Figure 5.14), collects the transactions
(instruction/data/status) sent from the IVC. It interacts with the golden model to read its
status and data along with the store address (in case of Stores). It accesses the golden model
by accessing the PLI functions (sv_writeStatusUp, sv_writeUp) through the local Verilog

tasks (sv_readstatusUp_t, sv_readUp_t) respectively. The golden model executes every
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instruction in zero time while the DTP-XBUS-2 is an 8-stage pipeline processor. Therefore,
a synchronization mechanism must be implemented to correctly compare their status and
results. This mechanism is implemented in the module monitor using Verilog FIFOs where
the depth of each FIFO is four elements. The module monitor receives information from the
golden model and stores it into the corresponding FIFO (e.g., SR to SR-fifo, PC to PC-fifo).
The main test bench keeps on sending the instructions to the ISS first and then to the DUV.
The module monitor keeps on filling its FIFOs by receiving the status and results from the
ISS. These FIFOs are full by the time the first instruction executes on the DUV (in the
execution pipeline stage). The module monitor takes the status information of the ISS from
the top of the FIFOs, parses out the status of the DUV from the transactions (status/data)
received from the IVC and sends both information to the scoreboard. The control block (ctrl)
implements interactive control logic to monitor the control state machine of the DUV and
react accordingly to decide the right time of comparison between the ISS and the DUV
statistics. This control block also sends a few control signals (e.g., except_start) to the virtual
sequencer which are needed for the reactive scenario generation.
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Figure 5.14: Module Monitor
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To compute the verification coverage the module monitor sends the instructions of those that
are executed on the golden model and on the DTP-XBUS-2 to an implemented coverage
model. Additionally, it sends a few status flags of the DTP-XBUS-2 which are essential for a
satisfactory coverage collection. These flags include

(i) The carry flag,

(i) The overflow flag and

(iii)  The conditional branch flag.

5.10.2 Scoreboard

The scoreboard receives the status registers and data along with the address (for Stores) from
the module monitor through standard TLM ports. It receives the status of the golden model
(expected_*_port) and the status of the DUV (actual_*_port). It implements an individual
comparator for each stakeholder in the status and data transactions e.g., PC, SR, address to
store data, etc. After comparison the scoreboarding is executed to generate the final report

for each stakeholder.

5.10.3 Virtual Sequencer
The verification environment contains a virtual sequencer to synchronize the timing and data
between

1) The golden model (ISS or simICS),

2) The instruction interface and

3) The data interface.

The instruction sequencer generates sequences of instructions. The data sequencer generates
sequences of data. There is no co-ordination between these sequencers. This co-ordination is
necessary to control the sequence generation on the instruction and data interfaces.
Moreover, the instruction and data transactions have to be transmitted to the golden model
first and then to the DTP-XBUS-2 (DUV). Therefore, a regulating agent must be
implemented at a higher level of abstraction in order to allow the fine control of the
verification environment for a particular test. The virtual sequencer contains the instances of
the instruction sequencer and the data sequencer along with a virtual sequence library. This
library encloses the virtual sequences which are executed on the virtual sequencer and
control the coordination between the instruction sequencer, the data sequencer and the
golden model. The virtual sequences are a constrained random generation of the scenarios (a
sequence of instruction types e.g., ADD, MUL, etc.). When the DTP-XBUS-2 sends an
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instruction fetch request the virtual sequencer picks the next instruction in the sequence (e.g.,
ADD) and generates its constrained random transaction (binary code of ADD instruction
e.g., 0xe0841800). The transaction is generated on the instruction sequencer by using the
local sequence library of the instruction sequencer. Before sending this transaction to the
instruction driver the virtual sequencer first sends it to the golden model. If this instruction is

a Load, the virtual sequencer also provides a randomized data to the golden model.

The golden model finishes execution and sends the status and result back to the module
monitor.

After this the virtual sequencer allows the instruction sequencer to send this instruction’s
transaction to the instruction driver. If the instruction is a Load, the virtual sequencer uses
the same data sent to the golden model and generates a constrained data transaction on the
data sequencer by using its local sequence library (data sequence library). When this
instruction is executed on the DUV and sends a READ request, this data transaction is sent
to the data driver. The virtual sequencer also implements a complex mechanism to offer
interactive behavioural modelling by using control signals of the DUV received from the
module monitor. One instance of this mechanism is to stop sending instructions to the golden
model (sending instructions to the DUV never stops) if an exception has been signalled in
the XBUS-2 pipeline. It is because the XBUS-2 instruction pipeline is flushed and following
instructions will never be executed. Whereas, the golden model (simICS) executes
instructions at once in zero simulation time as it is fed with instruction before transmitting to
the DTP-XBUS-2 (DUV).

5.11 Conclusion

This chapter presents the verification implementation strategy for DTP-XBUS-2. This
chapter begins with the discussion about memory verification strategy through the
construction of BFM. A section is dedicated to the discussion of the golden model of simICS
which is used to verify the operation of SPARC v9. In this section, the PLI interfaces are
discussed as the possible implementation strategy for the data agent that communicates with
the simICS golden model. This chapter then proceeds to explain the implementation of 1IVC
and MVC as discussed in Chapter 3.
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Chapter 6: Experimental Results

6.1 Introduction

This chapter presents the actual test results obtained with DTP-XBUS-2 (XB2) core
implemented on the ML505 Xilinx FPGA Development board and the comparison of the
performance with single and dual core SoCs in computing statistics for large image using the
designs and verification methodologies as described in the previous chapters. The functional

and structural verification results during power-on are also presented.

The processor usage, timing measurements and eye measurement are gauge through the
Xilinx ChipScope Pro with IBERT core. After a connection is established, the values are
updated every second. The setup is as shown in the figure below (Figure 6.1)

Figure 6.1: Experimental Setup

6.2 DTP-XBUS-2 Power-0On Test Results

6.2.1 Overview
Functional verification is performed with all components of the XB2 interconnected and the
test-bench as setup in chapter 4 using the methodologies as described in Chapter 3. These

components of Xb2 are as described in Chapter 2. A test program is executed through the

Page | 101



JTAG chain to validate the basic functionalities of the XB2 core during power-on. For this
purpose, a memory initialization file (IHex) of the test program is first generated using the
SPARC V9 tool chain and boot-loaded into the ML505 development board. The SPARC V9
will execute this binary encoded file to perform in-circuit functional and structural tests and

initiate a basic transfer operation through the XB2 core.

6.2.2 SPARC V9 Execution Results
6.2.2.1 Execution Results
The following are the most important aspects during XB2 functional verification.
1) SPARC V9 should fetch correctly the instructions from the correct addresses inside
the Random Access Memory (RAM).
2) SPARC V9 should calculate the correct execution result and initiate XB2 for a single

frame transfer operation.

6.2.2.2 Instruction Fetch
On power-on or reset, SPARC V9 should fetch the first instruction correctly from its reset
address (0x0000_0100) from the DDR RAM. Figure 6.2 shows the expected waveform of
the SPARC V9 instruction interface (PLB) that fetches instructions from the DDR RAM and
feeds them to the processor. After the first instruction fetch, the processor should initiate the
following tests as described in chapter 5 before coming to a halt:

1) Sequential Single Write/Read Access test

2) Random Single Write/Read Access test

3) Idle Cycle test

4) Random Block Write/Read Access test
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Figure 6.2: SPARC V9 expected instruction fetch waveform.
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Figure 6.3 shows the test executed on the SPARC V9 processor. At this stage the SPC_TB
has been completely initialized and ready for performance analysis. The tests are designed to
cover the complete address space of the RAM. It first writes a data value to an address, then
reads from the same address and finally compares both data values. The test results indicate

that the SPARC V9 core and memory unit are fully functional.

# Top level module:

# Spec_th_top

# Loading SPC_TE

# Initializing simIC5..... 2imIC3 initialized
# Loading sv_std.std

# Loading work.dtp_xbi(fast)
# Loading work.xbus_th(fast)
# Loading work.plbififast)

# Loading work.ramtest|fast)
# Loading std, standard

# Loading ieee.ztd logic_lléd(body)
# Loading ieee.numeric_std(body)

# Loading work.global pack

# Loading std. textioibody)

# Loading work.mew pack (body)

# Loading work.raw(rtl)#l

run -a

# Testing secquential Single Write/Read Access

# Testing secquential Single Write/Read Access: Passed

# Testing rendom Single Write/Read Access

# Testing randon Single Write/Read Access: Passed

# Testing Idle Cycle

# Testing Idle Cycle: Passed

# Testing random Block Write/Read Access

# Testing random Elock Write/Fead Access: Passed

# Power-on Test successfully completed. Proceeding to load main test xbi_drv

Figure 6.3: Memory Test Results
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6.2.2.3 Single Frame Transfer

After the completion of memory test, the ML505 initiates the OBP boot-loader (Figure 6.4)
and load the SunQOS operating system.

MBFW_INFO: Powering on OpenSPARC T1
"Alive and well ...

Strand start set = Oxf

Total physical mem = OxacOO0B

Scrubbing the rest of memory

Humber of strands = Bxd

menbase = Oxf

mensize = @x1000000

physmem = BxacBfann

done

returned status @x0
setup everything else
Setting remaining details

Start heart beat for control domain

!:FIRNINB: Unable to connect to Domain Service providers
HARNING: Unable to get LDOM Variable Updates

HARNING: Unable to update LDOH Yariable

Sun Fire T1008. Ho Keyboard

Copyright 2007 Sun Microsystems, Inc. All rights reserved.

OpenBoot &.x.build_122===PROTOTYPE HUTl Dmme, 156 HB memory available, Serial W66
11024 .

lgreddy obp H@1

Ethernet address 0:e0:81:5f:2c:ab, Host ID: 83f9edfd.

[B] ok boot

Boot device: u(h'\k File and args:

SunlS Release 5.11 Version snu_77 6h-bit

Copyright 1983-2007 Sun Microsvstems, Inc. ALl rights reserved.

Use is subject to license terms. .

HARNING: Time-of-day chip unresponsive; dead batteries?

HARNING: Time of Day clock error: reason [Stalled]. Stopped tracking Time OF
Day clock.

Hostname: 11-Fpga-08

t1-fpga-00 consele login: root
Har 20 14:50:11 t1-fpga-00 login: ROOT LOGIN /dev/console
Sun Microsystems Inc.  Sun0S 5.11 snw_{7  October 2007

Figure 6.4: OPB Boot-loader

Once the operating system is loaded, the kernel will invoke the xb2_drv program through
SPC_TB which will then initiate a single frame transfer (Figure 6.5).

# ¥bZ drw

# Loading [ loopback:default starting [(loopback network interface] ]
# Loading [ physical:default starting (physical network interfaces) ]
# [ milestone/name-services:default starting dtp ]

# [ systensidentifyvinode starting (system identity (nodename])] ]

# [ systensnetainitidefanlt starting (xbZ initialization) ]

# xbZ dunmy transfer

# xbZ dummy transfer: passed

Figure 6.5: Single frame transfer.

The results obtained validate the basic functionality of the DTP-XBUS-2 core prior to the

execution of more tests as in the following section to screen out defects.

6.3 DTP-XBUS-2 Complete Verification

Figure below (Figure 6.6) presents the results of the address coverage for DTP-XBUS2 and
other attached master and slave components. This coverage model is implemented to verify

the transfer operation initiated by the components and transferred through the xb2 channel.
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Loading work.acbiter (rtl)

Master : 1 Testing Single Frame Transfer

Maszter : 2 Testing Single Frame Transfer

Master : 3 Testing single Frame Transfet

Master : 3 Testing sequential Single Frame Transfer: Passed
Master : 3 Testing burst Frame Transfee

Master : 2 Testing sequential Single Frame Transfer: Passed
Master : 2 Teﬁr.inq burst Frame Transfet

Master : 1 Testing sequential Single Frame Transfer: Passed
Master @ 1 Testing burst Frame Transiet

Master : 3 Testing burst Frame Transfer: Passed

Idle Cycle

Idle Cycle: Pazsed

Mazter : 3 Testing random Frame Transfer

Master : 3 Testing random Frame Transfer: Passed

Master : 2

Idle Cycle

Idle Cycle: Pazsed

2 Testing random Frame Transfec

Mazter : 2 Testing random Frame Tranzfer: Pasaed

Tezting burst Frame Transfer: Passed

Mazter :

Mazter : 1 Testing burst Frame Transfer: Passed
Idle Cycle

Idle Cycle: Passed

Master : 1 Testing random Frame Transfer

Master : 1 Testing random Frame Transfer: Pasaed

 ® R W S E S S R 4 9 4 4k % dh b 4h 4k 4h Gh 4h Hh Hh Hh 4R Hh

Amplitude (ALY

Time (=) 10

Figure 6.6: Verification Coverage

The results obtained confirm that DTP-XBUS-2 core is fully operational at the clock rate of

100MHz. The eye diagram on the receiver shows healthy system performance.

To evaluate the performance of the DTP-XBUS-2 core, the following Measures of
Effectiveness (MOE) are selected: Single Core DTP-XBUS-2 SoC against Single Core SoC,
Single Core DTP-XBUS-2 SoC against Single Core SoC with extended memory, Single
Core DTP-XBUS-2 SoC against Dual Core SoC, Single Core DTP-XBUS-2 SoC against
Dual Core SoC with extended memory. The same tests are repeated with Dual Core DTP-
XBUS-2 SoC. A separate analysis is performed to benchmark the performance gain by

integrating different IP cores externally. The system is setup as shown in figure 6.7
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Figure 6.7: System setup

As the properties of natural images are important not only in image compression but also for
the study of sensory processing in biology, medical applications in imaging and more, the
computation of statistics for large image is selected for this purpose. The steps involved are
as listed below.

1) Truecolor composite construction (Figure 6.8)

2) First attempt on image enhancement (Figure 6.9)

3) Histogram Accumulation Class examination (Figure 6.10)

4) Accumulation Class sampling (Figure 6.11)

5) Truecolor composite enhancement with a contrast stretch (Figure 6.12)

The throughput, P, CPU Performance, CPUP and memory usage, M are normalized

according to the relation

s _ curnulative(P)
ROTTR T (Patepl+ Patepd+ FPatepd+ FPatepa+FPateps)) @)
CPU secondsperinsiruciion
CPUPporm= At computationiime . ®)
M usage
Mﬂﬂff“m — Migiq}qua{i‘abfcmcmﬂ?‘y ____________ 4)
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Figure 6.8: Truecolor composite

Figure 6.9: First attempt enhancement

Page | 107



Incrementally Computed Histogram IMHIST Histogram
T

8000 T T T T T 5000 T T T T

000 - B 7000 - 4
6000 - B 6000 - 4
5000 - B 5000 - 4
4000 - B 4000 - B
3000 - B 3000 - 4
2000+ B 2000 - 4
1000 - B 1000 - 4

DEI a0 100 150 200 260 300 IJEI 50 100 150 200 250 300

Figure 6.10: Histogram Accumulation Class examination
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Figure 6.11 Accumulation Class Sampling
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Truecaolor Composite with Corrected Contrast Stretch

e %

Figure 6.12: Truecolor composite enhancement with a contrast stretch

6.4 DTP-XBUS-2 SoC Performance Analysis

The setup for Single Core DTP-XBUS-2 SoC is as shown in the figure below (Figure 6.13)

Lz L2 Lz L2
Cache | | Cache | | Cache | | Cache
L2 Cache
I Interface
PCY
Clack
SPARC VY Generatar
Instructi CPX
on Cache — [~ | Crosshar-
t16kB) Microblaze P;“[E““r
LIVIE Interface Eem
FaL Reset
Instruction ez
Contraller
Microblaze Interrupt Debu
B
Controller | |2 iie ML505 Board B
Data
Controller | |
Data ‘ |
Cache
T Py - SR s o U [ PP
Controller MAC Rs232 Controller
DDR2 SDRAM | DDR2 SDRAM
Interface 400 Interface 400
[T T R NN B B
CCR2 DDR2Z DCR2 DDR2Z DCR2 CCR2 DCR2 CCR2
SDRAM SDRAM SDRAM SDRAM SDRAM SDRAM SDRAM SDRAM

ML505 Board A

Figure 6.13: Single Core DTP-XBUS-2 SoC setup
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The setup for Dual Core DTP-XBUS-2 SoC is as shown in the figure below (Figure 6.14).

The CPU performance and memory usage is monitored throughout the test.

L2 L2 L2 L2
Cache | | Cache | | Cache | | Cache
I

L2 L2 L2 L2
Cache | | Cache | | Cache | | Cache
I

Figure 6.14: Dual Core DTP-XBUS-2 SoC
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H Microblaze mtEI’f’LllIFK Dehug
Controller Maodule
Data
Cache {
16KB [
DTPxBUS-2|  [Hard Ethernet — DDRZ_SDRAKM
MAC Controller
DDR2 SDRAM
Interface 400 ‘ | ‘
MT/s
DOR2 DDRZ DOR2 DDRZ
SDRAM SDRAM SDRAM SDRAM

IL505 Board B

A standard Xilinx GPU core is integrated externally as shown in the figure below (Figure

6.15)

Lz Lz Lz Lz
Cache | |Cache | | Cache | | Cache
L2 Cache
T Interface
PCH
Clock
SPARC W9 Generator
Instructi P
an Cache = Crosshar-
(16K8) Microhlaze F;DE:‘“D'
LIE Interface ystem
FSL Reset
Instruction feeeimt)
Contraller
Microblaze —— Interrupt Debug
Controller Module
Data
Controller | |
Data | |
Cache tJ
16KE B
L(A6KB) | DDR2_SDRAM | IHard Ethernet e DTP-BUS-2|__
Controller MAC
DDR2 SDRAM
Interface 400
| | | [
DDR2 DDR2 DDR2 DDRZ
SDRAM SDRAR SDRAM SDRAM

ML505 Board A

ML505 Board B

Graphics
Processing
Unit
DTEXBUS2 DDR2_SDRAM
Controller
DDRZ SDRAM
Interface 400
MT/s
DDR2 DDR2 DDRZ DDR2
SDRAM SDRAR SDRAM SDRANM

Figure 6.15: DTP-XBUS-2 SoC with External GPU IP core.

The results of computation are presented as follow (Figure 6.16).
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Figure 6.16: Performance Analysis

As observed, the integration of dedicated IP core has a significant influence over the CPU
performance. This phenomenon is explained in [39], which is due to the inherent parallelism
in the graphics core which makes it suitable for on-demand computation such as image
processing. Single core SoC has the poorest performance due to the frequent occurrence of
memory bottle-necks as observed. The performance gain in Single core SoC with DTP-
XBUS-2 is a direct result of memory resource extension which reduces memory bottle-neck.
An interesting phenomenon is observed with Dual Core SoC and Dual Core SoC with DTP-
XBUS-2. Dual Core SoC with DTP-XBUS-2 demonstrates performance gain due to the fact
that memory allocation is more flexible and uses memory resources available on both
systems (ML505 board A and board B). The Dual Core SoC is constraint by the memory
resources available on-board (ML505 board A). In general, both systems demonstrate

performance gain compared to Single Core SoC due to thread level parallelism.
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6.5 Conclusion

The DTP-XBUS-2 SoC is implemented on Xilinx ML505 development board with IBERT
core for signal monitoring and analysis. The system stability is demonstrated with the eye
diagram on the receiver which shows healthy eye-opening. The performance gain is
demonstrated with the computation of statistics for natural images. It clearly observed that
DTP-XBUS-2 core allows external IP cores to be seamlessly integrated and unlike SoC,
DTP-XBUS-2 has more flexibility in terms of space utilization. The availability of dedicated
processing core and extended memory resources explain why DTP-XBUS-2 system

generally performs better.
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Chapter 7: Conclusion and Future

work

7.1 Conclusion

This thesis is divided into two major parts: the first part describes the implementation of the
DTP-XBUS-2 (xb2) core and the second part describes the verification methodologies
available for xb2. The xb2 core is used with advance control architecture that operates the
DTP-XBUS-2 MAC. The function includes configuring the xb2 transceiver and the interface
for DTP protocol. The complete system comprises the SPARC V9 processor, an xb2 core,
memory subsystems and several other interfaces. The SPARC V9 toolchain is used to
generate the memory initialization file for the processor core and early code analysis. The
verification of the CPU Subsystem includes the coverage-driven constrained random
verification of the xb2 core, the sub-bus system and the memory subsystem. For the
verification of the SPARC V9 core, a golden model is implemented using the simICS with a
SystemC wrapper around to incorporate the verification environment. Moreover, OVM is
used to implement a configurable and reusable verification environment. This thesis includes
the co-verification with the programming languages Verilog, C, C++ (SystemC) and PLI.
The verification results of the Sub-bus system and the memory system show that both
subsystems are implemented correctly. These tests are performed during power-on. Apart
from that, performance analysis is performed to benchmark the gain for systems using the
DTP-XBUS-2 core.

7.2 Future work

There are several improvements which could be done for the development of the xb2 core.
Some possible improvements are listed below.

1) Implementation of load scheduling techniques directly on the DTP-XBUS-2 MAC
for more efficient load distribution in a daisy-chain network. The proposed method
should dynamically derive loads as the introduction of DTP-XBUS-2 enables the
hot-plug/hot-swap of resources and feature sets.

2) Investigation of AGBIST as described in chapter 5. As described, AGBIST does not
use LFSR to generate test vectors but uses FSM to generate state dependent test

vectors which could be used as method for test vector compression.
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3) Introduction of state encryption on the xb2 transceiver. As xb2 core allows system
level components to directly communicate with internally integrated IP cores, a
concern arises on data privacy. Current state registers have a predictable output on
reset. A method is proposed that uses a hybrid of flash technologies that directly

embed state information on the state registers.

Furthermore, it could be possible to enhance the throughput of the DTP-XBUS-2 by
maximizing the throughput of PLB interfaces of the SPARC V9 core.
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Abbreviations

ASIC

ATE

BFM

BRAM

CISC

CMT

CPU

CPX

CRC

DDR RAM

DFT

DIMM

DRAM
DTE

DTP

DUV
ECC
FBD
FCS
FIFO
FPGA
FSL

Application Specific Integrated Circuit
Automated Test Equipment

Bus Functional Model

Block RAM

Complex Instruction Set Computers
Chip Multi-Threaded

Central Processing Unit

Cache to Processor Crosshar

Cyclic Redundancy Check

Double Data Rate RAM

Design for Testability

Dual In-line Memory Module

Dynamic RAM
Data Terminal Equipments

Data Transfer Protocol

Design Under Validation

Error Control Code

Fully Buffered DIMM

Frame Check Sequence

First in First out

Field Programmable Gate Array
Fast Simplex Link

Integrated Circuit
Instruction-Level Parallelism
Intellectual Property

Joint Test Action Group
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LMB
LUT
MAC
MUX
NRE
NOC
PCI
PCI-EX
PCX
PHY
PLB
PLI
PPN
RAM
RISC
SiP
SiS
SoC
SLP
TLP
TLB
VLSI
XBUS

Local Memory Bus

Lookup Table

Medium Access Controller
Multiplexer

Non-Return Engineering

Network on Chip

Peripheral Component Interconnect
Peripheral Component Interconnect Express
Processor to Cache Crossbar
ISO-OSI Physical Layer

Processor Local Bus

Programming Language Interface
Physical Page Number

Random Access Memory

Reduced Instruction Set Computers
System in Package

System in System

System on Chip

System-Level Parallism
Thread-Level Parallism
Translation Look-aside Buffers
Very Large Scale Integration
Extensible Bus
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Hardware Implementation B

This appendix presents the details on the hardware implementation of DTP-XBUS-2

Below is the DTP_XBUS_2 top-level implementation

entity DTP_XBUS 2 is

generic

(
C_BASEADDR : std_logic_vector := X"FFFFFFFF";
C_HIGHADDR : std_logic_vector := X"00000000";
C_SPLB_CLK_PERIOD_PS > integer := 10000;
C_SPLB_AWIDTH : integer range 32 to 36 := 32;
C_SPLB_DWIDTH . integer range 32 to 128:= 32;
C_SPLB_P2P : integer := 0;
C_SPLB_MID_WIDTH : integer := 1;
C_SPLB_NUM_MASTERS . integer := 1;
C_SPLB_NATIVE_DWIDTH : integer range 32 to 128:= 32;
C_SPLB_SMALLEST MASTER : integer range 32 to 128:= 32;
C_SPLB_SUPPORT_BURSTS : integer range O to 1:= 0;
C_INCLUDE_MDIO . integer := 1;
C_INCLUDE_INTERNAL_LOOPBACK > integer := 0;
C_INCLUDE_GLOBAL_BUFFERS > integer := 0;
C_DUPLEX : integer range O to 1:= 1;
C_TX_PING_PONG : integer range O to 1:= O;
C_RX_PING_PONG : integer range O to 1:= 0
)

port
(
PHY tx_clk : in std_logic;
PHY_rx_clk : in std_logic;
Xb2_tx_stat : in std_logic;
Xb2_rx_dv : in std_logic;
Xb2_rx_data : in std_logic_vector (3 downto 0);
Xb2_tx_ack : in std_logic;
Xb2_rx_ack : out std_logic;
Xb2_rx_stat : out std_logic;
Xb2_tx_en : out std_logic;
Xb2_tx_data : out std_logic_vector (3 downto 0);
Xb2_phy data_ctrl_1 : in std_logic;
Xb2_phy data_ctrl_O : out std_logic;
Xb2_phy data_ctrl_T : out std_logic;

Xb2_phy data_clk: out std_logic;
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IP2INTC_Irpt
SPLB_CIk
SPLB_Rst
PLB_ABus
PLB_UABus
PLB_PAvValid
PLB_SAvalid
PLB_rdPrim
PLB_wrPrim
PLB_masterlID
PLB abort
PLB_buslLock
PLB_RNW
PLB_BE

PLB MSize
PLB_size
PLB_type
PLB_lockErr
PLB_wrDBus
PLB_wrBurst
PLB_rdBurst
PLB_wrPendReq
PLB_rdPendReq
PLB_wrPendPri
PLB_rdPendPri
PLB_regPri
PLB_TAttribute
S1_addrAck
S1_SSize

SI1 _wait
SI_rearbitrate
S1_wrDAck
S1_wrComp
S1_wrBTerm
S1_rdDBus
S1_rdwdAddr
S1_rdDAck
S1_rdComp
S1_rdBTerm
S1_MBusy
SI_MWrErr
S1_MRdErr
SI_MIRQ

):

std_logic;
std_logic;
std_logic;
std_logic_vector (0
std_logic_vector(0
std_logic;
std_logic;
std_logic;
std_logic;
std_logic_vector(0
std_logic;
std_logic;
std_logic;
std_logic_vector(0
std_logic_vector (0
std_logic_vector (0
std_logic_vector(0
std_logic;
std_logic_vector(0
std_logic;
std_logic;
std_logic;
std_logic;
std_logic_vector(0
std_logic_vector(0
std_logic_vector(0
std_logic_vector(0
std_logic;
std_logic_vector(0
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic_vector(0
std_logic_vector (0
std_logic;
std_logic;
std_logic;
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector

to
to

to

to
to
to
to

to

to
to
to
to

to

to
to

(0 to
(0 to
(0 to
(0 to

C_SPLB_AWIDTH-1);
31);

C_SPLB_MID_WIDTH-1);

(C_SPLB_DWIDTH/8)-1);

1);
3);
2);

C_SPLB_DWIDTH-1);

1);
1);
1);
15);

1);

C_SPLB_DWIDTH-1);
3);

C_SPLB_NUM_MASTERS-1);
C_SPLB_NUM_MASTERS-1);
C_SPLB_NUM_MASTERS-1);
C_SPLB_NUM_MASTERS-1)
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attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

attribute
attribute
attribute
attribute
attribute
attribute
end XBUS2

syn_maxfan
syn_maxfan
syn_maxfan
MAX_FANOUT
MAX_FANOUT
MAX_FANOUT
uselowskewl ines
uselowskewlines
uselowskewl ines
HDL
IMP_NETLIST
1P_GROUP
IPTYPE
STYLE

SIGIS
ASSIGNMENT
ADDRESS
PAIR

SIGIS

SIGIS

SIGIS

of
of
of

ASSIGNMENT
ASSIGNMENT
ADDRESS
ADDRESS
PAIR

PAIR

of

of
of
of
of

MAC;

of SPLB_CIk
of SPLB_Rst

of SPLB_Clk
of SPLB_Rst

of PHY_tx_clk
of PHY_rx_clk
: string;
: string;
: string;
: string;
: string;
: string;
: string;
: string;
: string;
SPLB_CIlk
SPLB_Rst
IP2INTC_Irpt

C_BASEADDR
C_HIGHADDR
C_BASEADDR
C_HIGHADDR
C_BASEADDR
C_HIGHADDR

: signal is

integer;
10000;
10000;

signal is
signal is
string;

signal is
signal is
STRING;

"'yes";

signal is "yes";

: signal is

: signal is

: signal is

''10000";
""10000";

"CLK";
"RST";

"INTR_EDGE_RISING";

. constant is

: constant is

: constant

I constant

. constant iIs

: constant

"REQUIRE";
"REQUIRE";
""BASE"';
"HIGH";
""C_HIGHADDR";
"'C_BASEADDR";

architecture imp of DTP_XBUS_2 is

constant NODE_MAC :

signal
signal
signal

signal

phy_tx_data_i

phy_rx_clk_i :
phy_tx_clk_i :
phy_rx_data_i :

std_logic;
std_logic;

std_logic_vector(3 downto

: std_logic_vector(3 downto

bit_vector := x"00005e00FACE";

0);
0);

signal
signal

signal

phy_dv_i
phy_rx_er_i

phy_tx_en_i

std_logic;
std_logic;
std_logic;
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signal Loopback
signal phy_rx_data_in
signal phy _dv_in

signal phy_rx_data_reg :

signal phy_rx_er_reg
signal phy_dv_reg
signal phy_tx_clk _core
signal phy_rx_clk_core
component FDRE

port

Q : out std_logic;
C : in std_logic;
CE : in std_logic;
in std_logic;
in std_logic
)
end component;
component BUFG
port (

0 : out std_ulogic;

I : in std_ulogic :

)
end component;
component BUFGMUX
port (

0 : out std_ulogic;
10 - in std_ulogic :
-= 0"

11 - in std_ulogic
S : in std_ulogic
)
end component;
component BUF
port(
0 : out std_ulogic;

I - in std_ulogic
E
end component;

attribute 10B

begin

: std_logic;
: std_logic_vector (3 downto 0);
: std_logic;

std_logic_vector(3 downto 0);

: std_logic;
- std_logic;

: std_logic;
: std_logic;

0"

"0":

> string;

PHY rst n <= not SPLB_Rst ;

LOOPBACK_GEN: if C_INCLUDE_INTERNAL_LOOPBACK = 1 generate

Page | 120



begin
INCLUDE_BUFG_GEN: if C_INCLUDE_GLOBAL_BUFFERS = 1 generate

begin
CLOCK_BUFG_TX: BUFG
port map (
0 => phy_tx_clk _core, --[out]
I => PHY_tx_clk --[in]
):

end generate INCLUDE_BUFG_GEN;

NO_BUFG_GEN: if C_INCLUDE_GLOBAL_BUFFERS = 0 generate
begin

phy_tx_clk_core <= PHY_tx clk;

end generate NO_BUFG_GEN;

CLOCK_MUX: BUFGMUX

port map (
0 => phy_rx_clk_core, --[out]
10 => PHY_rx_clk, --[in]
11 => phy_tx_clk _core, --[in]
S => Loopback --[in]
)
phy_rx_data_in <= phy_ tx data_i when Loopback = *"1° else
phy_rx_data_reg;
phy_dv_in <= phy_tx_en_i when Loopback = "1" else
phy_dv_reg;
phy_rx_er_i <= "0" when Loopback = "1" else

phy_rx_er_reg;
phy_tx_clk_i <= not(phy_tx_clk _core);
phy_rx_clk_i <= not(phy_rx_clk_core);

DV_FF: FDR
port map (
Q => phy_ dv_i, --[out]
C => phy_rx_clk_i, --[in]
D => phy_dv_in, --[in]
R => SPLB_Rst); --[in]
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RX_REG_GEN: for i1 in 3 downto O generate

begin
RX_FF: FDRE
port map (

Q => phy_rx_data_i(i), --[out]

C => phy_rx_clk_i, --[in]

CE => "1", --[in]
=> phy_rx_data_in(i), --[in]
=> SPLB_Rst); --[in]

end generate RX_REG_GEN;
end generate LOOPBACK_GEN;
NO_LOOPBACK_GEN: if C_INCLUDE_INTERNAL_LOOPBACK = O generate

begin

INCLUDE_BUFG_GEN: if C_INCLUDE_GLOBAL_BUFFERS = 1 generate

begin
CLOCK_BUFG_TX: BUFG
port map (
0 => phy_tx_clk_core, --[out]
I => PHY_tx_clk --[in]
)
CLOCK_BUFG_RX: BUFG
port map (
0 => phy_rx_clk_core, --[out]
I => PHY_rx_clk --[in]
):

end generate INCLUDE_BUFG_GEN;
NO_BUFG_GEN: if C_INCLUDE_GLOBAL_BUFFERS = 0 generate
begin

phy_tx_clk_core <= PHY_tx_clk;

phy_rx_clk _core <= PHY_rx_clk;

end generate NO_BUFG_GEN;

-- Transmit and Receive clocks for core

Page | 122



phy_tx_clk_i <= not(phy_tx_clk_core);
phy_rx_clk_i <= not(phy_rx_clk_core);

-— TX/RX internal signals

phy _rx_data i <= phy_rx_data_reg;
phy_rx_er_i <= phy_rx_er_reg;
phy_dv_i <= phy_dv_reg;

end generate NO_LOOPBACK_GEN;

IOFFS_GEN: for i in 3 downto O generate
attribute 10B of RX_FF_1 : label is "true";

attribute 10B of TX_FF_I : label is "true";
begin
RX_FF_1: FDRE
port map (
Q => phy_rx_data_reg(i), --[out]
C => phy_rx_clk_core, --[in]
CE => "1°, --[in]
=> Xb2_rx_data(i), --[in]
=> SPLB_Rst); --[in]

TX_FF_I: FDRE

port map (
Q => Xb2_tx_data(i), --[out]
C => phy_tx_clk_core, --[in]
CE => "17, --[in]
D => phy_tx_data_i(i), --[in]
R => SPLB_Rst); --[in]

end generate I10FFS_GEN;

IOFFS_GEN2: if(true) generate
attribute 10B of DVD_FF : label is '"true";
attribute 10B of RER_FF : label is "true";
attribute 10B of TEN _FF : label is "true";

begin

DVD_FF: FDRE
port map (

Q => phy_dv_reg, --[out]

C => phy_rx_clk_core, --[in]

CE => "1-, --[in]

=> Xb2_rx_dv, --[in]
=> SPLB_Rst); --[in]
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RER_FF: FDRE

port map (
Q => phy_rx_er_reg, --[out]
C => phy_rx_clk_core, --[in]
CE => "1-, --[in]
=> Xb2_rx_ack, --[in]
=> SPLB_Rst); --[in]
TEN_FF: FDRE
port map (
Q => Xb2_tx_en, --[out]
C => phy_tx_clk_core, --[in]
CE => "1°, --[in]
=> PHY_tx_en_i, --[in]
=> SPLB_Rst); --[in]

end generate I0FFS_GEN2;

Xb2MAC : entity
generic map

XBUS2_MAC

(
C_DUPLEX

C_RX_PING_PONG
C_TX_PING_PONG
C_INCLUDE_MDIO
NODE_MAC

C_BASEADDR

C_HIGHADDR
C_SPLB_AWIDTH
C_SPLB_DWIDTH
C_SPLB_P2P
C_SPLB_MID_WIDTH
C_SPLB_NUM_MASTERS
C_SPLB_SUPPORT_BURSTS

=>

=>

C_SPLB_SMALLEST_MASTER =>

C_SPLB_CLK_PERIOD_PS
C_SPLB_NATIVE_DWIDTH

))

=>

=>

C_DUPLEX,
C_RX_PING_PONG,
C_TX_PING_PONG,
C_INCLUDE_MDIO,
NODE_MAC,

C_BASEADDR,

C_HIGHADDR,
C_SPLB_AWIDTH,
C_SPLB_DWIDTH,
C_SPLB_P2P,
C_SPLB_MID_WIDTH,
C_SPLB_NUM_MASTERS,
C_SPLB_SUPPORT_BURSTS,
C_SPLB_SMALLEST MASTER,
C_SPLB_CLK_PERIOD_PS,
C_SPLB_NATIVE_DWIDTH

port map
(
SPLB_CIk => SPLB_CIk,
SPLB_Rst => SPLB_Rst,
PLB_ABus => PLB_ABus,
PLB_UABus => PLB_UABus,
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PLB_PAvalid =
PLB_SAvalid =>
PLB_rdPrim =>
PLB_wrPrim =>
PLB_masterlID =

PLB_abort =>
PLB_buslLock =>
PLB_RNW =>
PLB_BE =>
PLB_MSize =>
PLB size =
PLB_type =>
PLB_lockErr =>

PLB_wrDBus =>
PLB_wrBurst =>
PLB_rdBurst =>
PLB_wrPendReq =>
PLB_rdPendReq =>
PLB wrPendPri =>
PLB_rdPendPri =>

PLB_regPri =>
PLB TAttribute =>
S1_addrAck =
SI_SSize =>
SI_wait =
S1_rearbitrate =>
S1_wrDAck =>
SI_wrComp =>
S1_wrBTerm =
S1_rdDBus =
S1_rdwdAddr =>
S1_rdDAck =>
SI1_rdComp =>
S1_rdBTerm =
SI1_MBusy =>
SI_MWrErr =
S1_MRdErr =
S1_MIRQ =
IP2INTC_lrpt =>
PHY tx_clk =
PHY rx_clk =
Xb2_tx_stat =
Xb2_rx_dv =
Xb2_rx_data =
Xb2_tx_ack =>

PLB_PAvalid,
PLB_SAvalid,
PLB_rdPrim,
PLB_wrPrim,
PLB_masterlD,
PLB_abort,
PLB_busLock,
PLB_RNW,
PLB_BE,
PLB_MSize,

PLB size,
PLB_type,
PLB_lockErr,
PLB_wrDBus,
PLB_wrBurst,
PLB_rdBurst,
PLB_wrPendReq,
PLB_rdPendReq,
PLB_wrPendPri,
PLB_rdPendPri,
PLB_regPri,
PLB TAttribute,
S1_addrAck,
SI_SSize,
SI_wait,
S1_rearbitrate,
S1_wrDAck,
S1_wrComp,
S1_wrBTerm,
S1_rdDBus,
S1_rdwdAddr,
S1_rdDAck,
S1_rdComp,
S1_rdBTerm,
S1_MBusy,
S1I_MWrErr,
S1_MRdErr,
SI_MIRQ,
IP2INTC_Irpt,
phy_tx_clk_i,
phy_rx_clk_i,
PHY crs,

phy dv_i,
phy_rx_data_i,
PHY_col,
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PHY_rx_ack => phy_rx_er_i,

Xb2_tx_en => PHY_tx_en_i,
Xb2_tx_data => PHY_tx_data_i,
Xb2_phy data_ctril_1 => PHY_MDIO_I,
Xb2_phy data_ctrl_O => PHY_MDIO_O,
Xb2_phy data_ctrl_T => PHY_MDIO_T,
Xb2_phy data_clk => PHY_MDC,
Loopback => Loopback
):

end imp;

v

DTP-XBUS-2
> Data Interface ¥b2_phy_data_ctrl
®h2_phy data_clk »

Xbux2_tx_clk
,,,,,,,,,,, 5
r XBUS2_MAC
CRC |
Generator |
+—»{TX Buffer TX FIFO |
TX Data —|—> —Xb2_tx_data—»
—Xllﬂitxienf$
I TX Interface |
l—Xb2_tx_ack
PLB I |
PLB Bus <]: Interface | Transmit 1—Xl::2_tx_stat
Module : Control |
I Transmit _:
I Receive |
RX |
Buffer | | Loop :
e » Receive Control Back < ]
| MUX —Xb2_rx_ackt»
| |
| —Xb2_rx_stat—»
RX Interface |
| le—x¥b2 = dv
| 1
I l-Xb2_rx_data-
CRC Checker ta| RRFIFO |
INTC_irpt | ata |
- |
,,,,,,,,,,,, ?,,,,,,,,,,,,J
Xbus2 rx_clk

Figure B.1: DTP-XBUS-2 Top-level illustration

The implementation of all components in the figure B.1 will be shown in the following

sections.
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Figure B.2: Synthesized DTP-XBUS-2.

Figure B.2 shows the complete implementation of the DTP-XBUS-2.

The transmission interface is as shown in the figures (Figure B.3 and Figure B.4) below.
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Figure B.3: DTP-XBUS-2 Data Transmitter implementation
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Figure B.4: Synthesized DTP-XBUS-2 Data Transmitter implementation
DTP-XBUS-2 receiver implementation (Figure B.5 and Figure B.6)
eth_rxethmac
mrx clk_pad_i MR =CIk
o— MR DY Fshvidic] p—m
F eset R xStartFrm f—e
o— Transmitting R xEndFrm f—e
— r_IFG ByteCrtEgd f—m
=—1 HugER BuyteCriGrest? f—
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s—f I_Hro Stateldle p—a
o—] Fazzal StateP ream ble fF—a
+—1 i ontralF nn Address0k StateSFD e
B i R xfhort p—e
[1513:: izt Addresshlizs f—a
: MaFL[1 5
_ AL RDate(7:0] ety
B Ol 11 27 [47:0]
_ ByteCrt[150] —1151]]
B ot ¢+ Ha5H31:0]
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Figure B.5: DTP-XBUS-2 Receiver implementation

Page | 128



Figure B.6: Synthesized DTP-XBUS-2 receiver.

DTP-XBUS-2 CRC implementation (Figure B.7 and Figure B.8)

Xb2_crc
[ mb¢_clk_pad_i -— Clk
Wo_reL | I ] Reset CrcError f—e
— Enable
o—1 Inftialize Cre[31:0) 1310]
Data[3:0]
Xb2_crc
Figure B.7: DTP-XBUS-2 CRC
g le ¢ ¢ e l8 ¢ & g[8 ¢
) e & 4
& & ls | & Ald oo b § 44

Figure B.8: Synthesized DTP-XBUS-2 CRC

DTP-XBUS-2 Transmit Control Implementation (Figure B.9 and Figure B.10)
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Figure B.9: DTP-XBUS-2 Transmit control
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Figure B.10: Synthesized DTP-XBUS-2 Transmit Control

DTP-XBUS-2 Receive Control Implementation (Figure B.11 and Figure B.12)
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Figure B.12: Synthesized DTP-XBUS-2 Receive Control

DTP-XBUS-2 CRC Checker implementation (Figure B.13 and Figure B.14)
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Figure B.13: DTP-XBUS-2 CRC Checker

Figure B.14: Synthesized DTP-XBUS-2 CRC Checker

DTP-XBUS-2 Data Interface implementation (Figure B.15 and Figure B.16)
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Figure B.15: DTP-XBUS-2 Data Interface
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Figure B.16: Synthesized DTP-XBUS-2 Data Interface

DTP-XBUS-2 FPGA implementation (Figure B.17)
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Figure B.17: DTP-XBUS-2 implemented in ML505 Virtex-5 FPGA
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Clock Strip Analysis C

This section will describe the setup for clock strip analysis.

In this analysis, the components are as listed below:

a) Air box (Figure C.1)

b) Four Copper Nets (Figure C.2, Figure C.3, Figure C.4 and Figure C.5)

¢) FR4 epoxy

Figure C.1: Air-box setup
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Figure C.2: Copper Net179 setup

Figure C.3: Copper Net178 setup
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Figure C.4: Copper plane 2 Setup

\

Figure C.5: Copper plane 1 setup
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Figure C.6: FR4 Epoxy setup

Similarly, the clock strip analysis for package connectors contain the following components
a) Vacuum box (Figure C.7)

b) Modified Epoxy (Figure C.8)

c) FR4 Epoxy (Figure C.9 and Figure C.10)

d) Copper connectors and layers (Figure C.11, Figure C.12 and Figure C.13)
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Figure C.7: Vacuum box setup

Figure C.8: Modified Epoxy
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Figure C.9: Board 1 FR4 Epoxy

LE it

\

Figure C.10: Board 2 FR4 Epoxy
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TS it

Ii
[
Figure C.11: Copper connectors setup

| =E=f=i=

Figure C.12: Copper pads setup
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Figure C.13: Ground plane setup
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Linker Script

/*************** Llnkerscnpt to Set_up the Memory_map ****************/
* startup .Id */

/ *

* Setup the memory map of the Code .

* stack grows down from high memory .
*

* The .text section — contains instructions

* The .data section — contains static initialized data

* The .rdata section — contains static constant data

* The .bss section — contains uninitialized data

* The .ctor section — contains addresses of global constructors
* The .dtor section — contains addresses of global destructors
* The .stabs section — part of the debug symbol table

* The .stabstr section — part of the debug symbol table

*

* The memory map look like this :

* 4 +<—Startof ROM

*| Interrupt Tabl e |

* 4 + <=0 x100

*|.text|

*|_stext|

*|* . text]

*| _etext|

* 4 +<-initializeddatagoeshere
*|.data|

*|_sdatal|

*|*.data|

*|_sdata]

* 4 +<-thectoranddtorlistsarefor
*|.rdata|C++support(ifrequied)

*|*.rdata|

*]

* 4 +<-Startof RAM

*||startofbss,clearedbycrtO
*|.bss|startof heap
*|__bss_start]
*|_end |

* 4

*
*

*

*|__stack|

*+ +<-topofstack
*/

STACKSIZE = 0x100 ;

OFFSET =0x0;

/*Thenextlineinthescriptgivesavaluetothelinkersymbol _stack.*/
PROVIDE (_ _stack=ADDR(.bss)+SIZEOF (.bss) + STACKSIZE + OFFSET) ;
PROVIDE(__copy_start=_copy_start);

PROVIDE (__copy_end =_copy_end ) ;

PROVIDE ( __copy_adr =_copy_adr);

MEMORY

{
rom (rx ) : ORIGIN = 0 x00000000 , LENGTH = 0 x000f0000
ram ( rwx ) : ORIGIN = 0 xf0000000 , LENGTH = 0 x000f0000

}
SECTIONS
{
.text0x100:
{
_stext=.;
*(.text)
_etext=.;
} >rom
/*
All initialized data sections go in t e RAM.
*/
.data:{
_copy_start=.;
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_sdata=.;
*(.data)
_edata=.;
}>rom
.rdata:

*(.rdata)

copy_end=.;

_ CTOR_LIST__=.;

LONG((_CTOR_END__ - _CTOR_LIST__)/4-2)
*(.ctors)

LONG(0)

__CTOR_END__=.;

__ DTOR_LIST__=.;

LONG((__DTOR_END__ - __DTOR_LIST__)/4-2)
*(.dtors)

LONG(0)

__DTOR_END__=.;

}>rom
.bss(NOLOAD) :
{

_copy_adr=.;

.=(SIZEOF (.data)+SIZEOF(.rdata));
__bss_start=.;

*(.bss)

*(COMMON)

end = ALIGN(O X2 ) ;

_end = ALIGN(0x2);
}>ram

.stab 0 (NOLOAD) :

[.stab]

-

_stabstr0(NOLOAD):

[.stabstr]

-
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Startup Script

.extern__stack

.extern__copy_start

.extern__copy_end
.extern__copy_ adr

/*Corejumpshereatstartandreset™/

_stext:
/ * Stack initialization * /

|.movhirl,hi(__stack)
|.orirl,rl,lo(__stack)

_mem_data_copy :

| . movhir3,hi(__copy_ adr)
|.orir3,r3,lo(__copy_adr)
|.movhird, hi(__copy_start)
|.orird,r4d, lo(__copy_start)
| . movhir5,hi(__copy end)
|.orir5,r5,10(__copy_end)

|
|
|
|

.subr5,r5,r4
.sfeqir5,0

. bf _jump_main
. nop
_mem_data_loop :
|.lwzr6,0(rd)
|.swO(r3),r6
|.addir3,r3,4
|.addird,r4 4
|.addir5,r5,-4
|.sfgtsir5, 0

| . bf _mem_data_loop
| . nop

/* Jump t 0 Main */
_jump_main :

.jrr2
. nop

.movhi r2, hi(_main)
.orir2,r2,1o(_main)
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ISS Program F

int simICS_ init (const char * config_file, const char * image _ file , void * class _ ptr,unsigned long int (* upr ) (
void * class_ ptr, unsigned long int addr , unsigned long int mask ) ,void (* upw) ( void * class _ ptr,
unsigned long int addr , unsigned long int mask , unsigned long int wdata ) ,
void (* ) (void * class_ptr, void * cpu_statusPtr) ) ;

[ **** |ibtoplevel.c *** * /
config.ext. =
struct config
{
struct
{/* External linkage for SystemC * /
void * class_ptr ;
unsigned long int (* read_up ) ( void * class_ptr,
uns igned long int addr , unsigned long int mask ) ;
void (* write_up ) ( void * class_ptr, uns igned long int addr ,
uns igned long int mask , uns igned long int wdata ) ;
void (* ) (void * class_ptr, void * cpu_statusPtr ) ;
Yext;
struct ext_access_cpu_status

void (* write_cpustatus_up) ( void *) ;

H

extern struct ext_access_cpu_statuscpu status_up ;
[****sim-config.c****/

a.struct ext_access_cpu_statuscpustatus_up ;

b.config.e x t. = NULL;
[****generic.c****/

static void ext_write_cpustatus(void * cpu_statusPtr )

{

config.ext. (config.ext.class_ptr, cpu_statusPtr );

/*b.Ingeneric_sec_start().*/
cpustatus_up.write_cpustatus_up=ext_write_cpustatus;
[****execute.c****/
cpustatus_up.write_cpustatus_up (&cpu_state) ;

| * *Akxkkkk oy @ cgen.c Fkkkkk k[

case 0 x11:
i f ((insn & 0xfc000000 ) == 0x44000000 ) {
{
uorreg_ta;
/* Number o fope rands : 1 */
a=(insn>>11) & Ox1f;
#define SET_PARAMO(val) cpu_state.reg[a] =val
#define PARAMO cpu_state.reg [a]
{r*"1_jr"*/
cpu_state.pc_delay = PARAMO;
next_delay insn=1;
if ( config.sim.profile )
fprintf(runtime.sim.fprof , "-%081 IX %"PRIXADDR" \ n ", runtime .
sim.cycles , cpu_state.pc_delay) ;
}
#undef SET_PARAM
#undef PARAMO
if (do_stats)
current—>insn_index=104;/*"1.jr"*/
analysis(current);
}
}
}
else
/*Invalidinsn*/
{
I_invalid();
if(do_stats)
{

current—>insn_index=-1;/*"???"*/
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}

break ;
L.JALR:

case 0 x12

analysis(current);

i f ((insn & 0xfc000000 ) == 0 x48000000 )
{
{
uorreg_ta ;
/* Number o fope rands : 1 */
a=(insn >>11) & Ox1f;
# define SET_PARAMO( v al)cpu_statereg[a]l=val
# define PARAMO cpu_state.reg [a]
{/*"1_jalr"=*/
cpu_state.pc_delay = PARAMO;
setsim_reg (LINK_REGNO, cpu_state.pc + 8) ;
next_delay insn=1;

}

#undef SET_PARAM
# undef PARAMO
i f(do_stats)

current =>insn_index = 105; /* " | .jalr" */

analysis (current) ;

}

else

/*Invalidinsn*/

I_invalid();
if(do_stats){

current—>insn_index=-1;/*"???"*/

analysis(current);

}

break ;

* kkkkkkhkkk *kkkkkkikkhkk k
/ execgen.c /

case 0 x30

#undef SET_PARAM
#undef PARAMO
#undef PARAM1
#undef PARAM2

if ((insn & 0 xfc000000 ) == 0 xc0000000 )

{
uorreg_ta,b,c;
/* Number o f ope rands : 3 */
a=(insn>>16) &0 x1f;
#define SET_PARAMO( val ) cpu_state.reg[a]=val
#define PARAMO cpu_state.reg [a]
b=(insn>>11) &0 x1f;
#define PARAML1 cpu_state.reg [ b ]
c=(insn>>0)&0x7ff;
c|=((insn>>21)&0x1f)<<11;
#define PARAM2 ¢
{/*"] _mtspr"*/
uint16_t = PARAMO + PARAMZ2;
uorreg_tvalue = PARAMLI,

i f ( cpu_state.sprs [ SPR_SR] & SPR_SR_SM)

mt spr ( ,value);
else

PRINTF ("WARNING: tryingtowrite SPRwhile

SR[SUPV]iscleared.\n");
sim_done () ;
}

if(do_stats){
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current—>insn_index=139;/*" . mtspr"*/
analysis(current);

}
}
}
else
/*Invalidinsn*/
{
I _invalid();
if(do_stats)
current—>insn_index=-1;/*"???"*/
analysis(current);
}
}
}
break ;
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