
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

STRUCTURE AND RANDOMNESS IN

COMPLEX NETWORKS APPLIED

TO THE TARGET SET SELECTION

PROBLEM

A thesis presented in partial fulfilment of the requirements for the

degree of

Doctor of Philosophy

in

Computer Science

at Massey University, Manawatu,

New Zealand.

Callum William Scudamore Lowcay

2014

Abstract

Advances in technology have enabled the empirical study of large, so-called ‘com-

plex’ networks with tens of thousands to millions of vertices, such as social networks

and large communications networks. It has been discovered that these networks share

a non-random topology characterised mainly by highly skewed, heavy-tailed degree dis-

tributions and small average distances between vertices. The work of this thesis is to

attempt to leverage the well-known topological properties of complex networks to effi-

ciently solve difficult NP-complete problems, with the aim of obtaining better or faster

solutions than would be possible for general graphs.

Two related NP-complete problems are selected for study: the minimum target set

problem, and the maximum activation set problem. Both problems relate to finding

a ‘target set’ of vertices which is capable of initiating a spreading process (such as

the spread of a rumour) that reaches a large proportion of the network. This thesis

introduces several novel heuristics for these two problems inspired by the topology

of complex networks. It is discovered that in many (but not all) cases it is possible

to make relatively small alterations to the network that enable the computation of a

considerably smaller target set than would be possible on general graphs.

The evaluation of the various heuristics is entirely experimental, which required

the development of procedures to generate ‘random’ networks that can be used as

experimental controls. This thesis includes a survey of several popular techniques for

generating random networks and finds all but one (random rewiring) to be unsuitable

as controls. The validity of random rewiring relies on a somewhat obscure theorem.

Although a proof of the theorem (essentially an existence proof) is already known, this

thesis offers a constructive algorithmic proof. The new proof advances on the old by

providing an upper bound on the maximum number of rewiring operations required

to transform between networks of the same degree-sequence, whereas an upper bound

could not be determined under the old proof.

ii

Acknowledgements

I would like to thank my two supervisors Dr. Catherine McCartin and Professor Stephen

Marsland. The timely completion of this thesis would not have been possible without

their efforts.

I would also like to thank Professor Mike Langston and his research group for hosting

and welcoming me at the University of Tennessee in Knoxville, where we collaborated

on the minimum vertex cover problem.

I was supported for the duration of my PhD research by the Massey University

Vice Chancellor’s Doctoral Scholarship. I was also supported by Stephen Marsland’s

Marsden grant MAU0908.

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Choice of applications . 2

1.3 Aims and objectives . 4

1.4 Roadmap . 5

2 Complex networks 7

2.1 Network datasets . 8

2.1.1 Social networks . 9

2.1.2 Communication networks . 10

2.1.3 Biological networks . 11

2.1.4 A note on density . 12

2.2 Properties of complex networks . 12

2.2.1 Degree distribution . 12

2.2.2 Degree correlations . 16

2.2.3 Extension to dK distributions . 17

2.2.4 The small-world effect . 18

2.2.5 k-Core and k-shell decomposition 21

2.2.6 Centrality metrics . 25

2.2.7 Community structure . 26

2.3 Summary . 27

3 Methodology using random graphs 29

3.1 Random graphs as null models . 30

3.1.1 Comparing random graph models: methodology 32

3.2 Generative models . 34

3.2.1 Erdős-Rényi random graphs . 34

3.2.2 Configuration model . 36

3.2.3 Havel-Hakimi procedure . 40

3.2.4 Preferential attachment . 43

v

3.3 Randomizing models . 46

3.3.1 0K randomization . 48

3.3.2 Degree preserving rewiring . 49

3.3.3 Targeted rewiring . 52

3.4 Summary . 55

4 Proofs of rewiring theorems 57

4.1 Preliminaries . 58

4.1.1 An example . 59

4.2 Proof for simple (unconnected) graphs 61

4.2.1 Alternating cycle construction 61

4.2.2 Rewiring alternating cycles . 61

4.2.3 A special case . 63

4.3 Extension to simple connected graphs 65

4.3.1 4-cycles . 65

4.3.2 The C ′ construction . 65

4.3.3 Ordering the reductions . 67

4.4 Bounds . 69

4.5 Summary . 70

5 The target set selection problem 73

5.1 Minimum target set . 74

5.2 Maximum activation set . 76

5.3 Parametrization of minimum target set 77

5.3.1 Vertex cover number . 79

5.3.2 Cluster edge deletion number . 84

5.3.3 Feedback edge set number . 86

5.3.4 Treewidth . 87

5.4 Summary . 88

6 Heuristics for target set selection 91

6.1 Greedy heuristics . 91

6.1.1 Hubs first . 92

6.1.2 Marginal gain . 93

6.1.3 The Shakarian-Paulo-Reichman algorithm 94

6.1.4 Experimental comparison . 95

6.2 A distributed heuristic algorithm . 96

6.2.1 Experimental results . 100

6.3 Combining heuristics with parameters 103

vi

6.4 Summary . 112

7 Shrinking a target set by edge augmentation 115

7.1 Augmentation for minimum target set selection 116

7.1.1 Experimental results . 117

7.2 Augmentation for maximum activation set 122

7.2.1 Experimental evaluation . 124

7.2.2 Interpretation of results . 127

7.3 Summary . 128

8 Conclusions 131

8.1 Summary . 131

8.1.1 Target sets for complex networks 133

8.2 Main findings . 134

8.3 Future work . 135

Bibliography 136

A Description of software tools 145

A.1 Architecture . 146

A.2 Job specification DSL . 147

A.2.1 An example . 148

A.3 Implementation . 149

A.4 Limitations and future work . 150

vii

List of Figures

2.1 Degree distribution of Physicists 1 . 14

2.2 K-core decomposition . 21

2.3 k-shell decompositions of empirical networks 24

3.1 Power-law fit for the projected configuration model 38

3.2 Size of the largest component in the projected configuration model . . . 39

3.3 Assortativity in the projected configuration model 40

3.4 Clustering in the projected configuration model 41

3.5 Missing edges in Havel-Hakimi random graphs 44

3.6 Assortativity in Havel-Hakimi random graphs 44

3.7 Clustering in Havel-Hakimi random graphs 45

3.8 Power-law fit in Barabási-Albert random graphs 47

3.9 Assortativity in Barabási-Albert random graphs 47

3.10 Clustering in Barabási-Albert random graphs 48

3.11 The degree-preserving rewiring operation 50

3.12 Assortativity following degree-preserving rewiring 52

3.13 Clustering following degree-preserving rewiring 53

3.14 Assortativty of 1K random graphs . 53

3.15 Clustering of 1K random graphs . 54

3.16 Power-law fit following targeted rewiring 55

4.1 Notation . 58

4.2 A rewiring example . 60

4.3 Example sequence of rewiring operations 60

4.4 Rewiring a 4-cycle . 62

4.5 Choosing four distinct consecutive vertices 62

4.6 Reducing an alternating cycle . 63

4.7 The edge ad is included in X . 64

4.8 A 4-cycle that cuts the graph . 66

4.9 The C ′ construction . 66

4.10 An impossible C ′ construction . 68

viii

4.11 Rewiring two 4-cycles . 68

4.12 4-cycles do not overlap . 68

4.13 4-cycle cases . 70

4.14 4-cycle cases for reducing alternating cycles 71

5.1 The tipping model . 74

6.1 Comparison of heuristics for minimum target set selection with propor-

tional thresholds . 97

6.2 Comparison of heuristics for minimum target set selection with constant

thresholds . 98

6.3 A distributed heuristic for minimum target set 99

6.4 Distributed target set algorithm with limited rounds 101

6.5 Size of minimum feedback edge set as hubs only are removed 106

6.6 Upper bound on vertex cover number as hubs only are removed 107

6.7 Size of largest component as hubs only are removed 108

6.8 Size of minimum feedback edge set as hubs and activation sets are removed109

6.9 Upper bound on vertex cover number as hubs and activation sets are

removed . 110

6.10 Size of largest component as hubs and activation sets are removed . . . 111

7.1 Augment by connecting neighbours of neighbours 118

7.2 Augment by connecting distant vertices 119

7.3 Augment within a known target set . 120

7.4 Edge augmentation for Maximum activation set 126

ix

List of Tables

2.1 Network Datsets . 8

2.2 Common Metrics on Complex Networks 13

2.3 Power-laws in Degree Distributions . 13

5.1 Vertex cover numbers . 83

5.2 Cluster edge deletion numbers . 86

5.3 Feedback edge numbers . 87

5.4 Treewidth bounds . 88

x

Chapter 1

Introduction

Advances in technology have enabled the study of large networks, such as social net-

works, communications networks, and various kinds of biological networks (including

neural networks). These networks range in size from a few hundred, to tens of thou-

sands or even millions of vertices. It was once common to assume that all networks of

such size are essentially random in their topology (i.e. the pattern of connections in the

network). However, empirical studies of large networks have shown this assumption to

be false (Newman, 2003; Boccaletti et al., 2006). In fact, most large networks that have

been studied have been found to have a topology that is qualitatively distinct from the

old random models of network topology. These kinds of networks, with non-random

topology, are now referred to in the literature as complex networks.

It is important to determine which topological features of a complex network are

particular to the network in question, and which are merely due to chance. In this

thesis, this is done by empirically comparing the topologies of complex networks with

suitable random networks. A random network is a network chosen randomly from the

space of all possible networks with some particular property, such as all the networks

with a chosen degree distribution, or all the networks of a particular size.

Studies of complex networks from many disparate domains (including social net-

works, computer networks, biological networks, and others) have revealed two topo-

logical properties that are near-universal in complex networks: the heavy-tailed degree

distribution, and the small-world effect. These properties will be discussed in detail

in Section 2.2. Most complex networks exhibit both properties simultaneously. That

these two topologies should be present in such a wide range of networks has attracted

much interest, and has spawned a great deal of research into complex networks.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Most of the complex networks literature focuses on identifying networks that exhibit

typical complex network topologies (the heavy-tailed degree distribution and the small-

world effect), and on explaining how those topologies arise in complex networks.

This thesis asks a different question: knowing that a network has typical complex

network topology, can that structure be leveraged by suitable algorithms to achieve

faster solutions than would be possible without the complex network topology.

Consider, for example, the problem of network search in the world-wide-web net-

work. The goal is to find a particular web page by following the links from one page

to the next. Standard search algorithms (depth-first search and breadth-first search)

take O(m) time to do this, where m is the size of the network in edges. These algo-

rithms are optimal for the general case where nothing is known about the structure of

the network. However, in the case of complex networks the topology can be used to

guide the search, resulting in search algorithms with expected sublinear running time

on complex networks.

Adamic et al. (2001) investigate search in the context of a heavy-tailed network

topology, and find that simple algorithms (specifically a random walk search and a

degree directed search) have expected running times that are polylogarithmic in the

size of the network. Kleinberg (2006) surveys the search problem for networks exhibiting

the small-world effect and finds that sublinear search is possible for some, but not all,

small-world topologies.

Although this thesis seeks general techniques for leveraging complex network topol-

ogy (techniques that could be applied to a variety of problems), two specific problems

are chosen for study. It is hoped that the techniques developed for these problems can

be applied more broadly. The two problems chosen for study (described in Section 5)

are the minimum target set selection problem and the maximum activation set prob-

lem. Both problems concern the spreading of information in a network, such as the

spreading of rumours in a social network.

1.2 Choice of applications

The minimum target set selection problem seeks to find a minimum size subset of the

network, a ‘target set’, so that a spreading process starting from the target set will

eventually affect the entire network. The maximum activation set problem asks for a

target set of a fixed size k, so that the largest possible fraction of the network is affected

by a spreading process starting with the target set. Chapter 5 includes a more detailed

description of the two problems.

Unlike other well-studied network problems (such as the minimum dominating set

1.2. CHOICE OF APPLICATIONS 3

problem), the target set problems are specific to complex networks. In a random

network, for example, any two elements chosen at random would be expected to have

a similar influence over the network. Hence, any randomly selected target set would

be about as good as any other. In complex networks, on the other hand, it is known

that some elements are considerably more influential than others (Kitsak et al., 2010).

How to identify a highly influential subset of a network is, therefore, an interesting and

highly relevant problem in the field of complex networks.

As an example of the target set problem in practice, consider modelling the spread

of disease, or modelling the uptake of new ideas in social networks. If it is possible

to find a small target set that has a large influence on the network, then that has

important implications for example in epidemiology, or ‘viral’ marketing.

Another interesting aspect of the target set problems for this thesis is that they are

both NP-complete, which implies that exact solutions cannot be efficiently computed

on general networks. Furthermore, minimum target set selection is APX-hard (or

inapproximable), so it is not even possible to find good approximation algorithms in

general.

Although the minimum target set and maximum activation set problems are com-

putationally hard, there is some evidence that they may be easier on complex networks

than on general networks. Nichterlein et al. (2010) identify three classes of network

where minimum target set can be computed exactly in polynomial time. It is not known

whether or not any real-world complex networks belong to one or more of these classes,

and determining this is one of the objectives of this thesis.

The algorithms of Nichterlein et al. (2010) are based on the theory of parametrized

complexity. In the field of parametrized complexity, an aspect of the problem input

(in this case an aspect of the topology of the network) is encoded as some parameter

of the input, then algorithms can be designed where the running time is a function of

both the size of the input (as usual), and the parameter. An algorithm is referred to

as FPT (Fixed-Parameter-Tractable) if it is polynomial in the size of the input. It may

be exponential or worse in the parameter. If the parameter is small enough, then such

an algorithm effectively runs in polynomial time.

Since the target set selection problems are both NP-complete, and minimum target

set is APX-hard, the two most promising algorithmic techniques that remain are the

FPT approach (which may or may not be applicable to complex networks) and the

use of heuristics. Both FPT algorithms, and heuristics, rely on exploiting structure

inherent in the problem. Hence, this thesis will be an attempt to develop heuristics,

FPT algorithms, or a combination of both, to exploit complex network topology and

to thereby enable faster, or better (i.e. closer to optimal) solutions for the target set

problems. It also is hoped that the techniques developed will be applicable to other

4 CHAPTER 1. INTRODUCTION

problems besides the target set problems.

1.3 Aims and objectives

1. To determine if there is any previously unnoticed topological structure in complex

networks that could be used to inform the design of algorithms for complex net-

works. In particular, to determine if complex networks belong to any of the classes

of network for which minimum target set selection can be solved in polynomial

time.

2. To determine if, and how, the known structure of complex networks can inform

the design of improved algorithms for the target set selection problems, when

restricted to complex networks. Specifically, this thesis aims to apply complex

network theory to the design of algorithms that are faster, or that produce better

(closer to optimal) solutions than existing heuristics.

This thesis will take an experimental approach. Hence, the objectives in order to

meet the first aim are as follows:

• To select a range of publicly available network datasets that are representative of

the major categories of complex network.

• To determine whether or not any of the selected networks exhibit topological

structures that are known to enable FPT solutions to minimum target set. This

will be done by measuring the relevant network parameters.

For the second aim of this thesis, it will be necessary to compare the performance

of algorithms on complex networks, and non-complex networks. In this way, it is

possible to confirm that some proposed algorithm really does leverage complex network

structure, and that it would not work as well on networks that lack that structure. As

usual in complex networks research, random networks will be used as the null model.

Two varieties of random network will be used: random networks drawn from the

space of all networks of a particular size, and random networks drawn from the space

of all networks with a particular degree distribution. Random networks with particular

degree distributions are included because the degree distribution property is considered

to be a fundamental property of complex networks (Li et al., 2005; Boccaletti et al.,

2006).

By repeating experiments on these two varieties of random network, and a selec-

tion of empirical network datasets, it will be possible to see the relative effects of: no

1.4. ROADMAP 5

complex network structure, some complex network structure, and full complex net-

work structure. It is the opinion of the author that these random networks should be

uniformly random, i.e. drawn uniformly at random from the relevant space of networks.

The objectives for the second aim are thus:

• To determine the most practical procedure for generating the two varieties of

random network, with the constraint that the procedure must generate random

networks uniformly.

• To design new heuristic algorithms for minimum target set selection, and maxi-

mum activation set, based on the known properties of complex networks.

• To compare the performance of the newly designed algorithms with known algo-

rithms (from the literature on target set selection), on both empirical network

datasets, and random networks.

1.4 Roadmap

The remainder of this thesis is organized as follows:

A range of publicly available real-world network datasets are introduced in Sec-

tion 2.1. These networks include communications networks, social networks, and bi-

ological networks. Some of these networks are directed (the connections can only be

followed in one direction), others have connection weights, multiple connections between

some pairs of vertices, and even self-loops (vertices that are connected to themselves).

To enable comparisons across such a variety of networks, a decision has been made

to project every network down to a simple graph, where each edge is undirected, and

there are no multiple connections, self-loops, or weights.

Section 2.2 is a review of the literature on complex networks. The two major

properties of complex networks: the heavy-tailed degree distribution and the small-

world effect are described in detail. Several other properties are discussed as background

to the following chapters.

Chapter 3 concerns the problem of generating random graphs. Since it was decided

to model the empirical complex network datasets as simple graphs, it is necessary

for the random graphs to also be simple. However, it turns out that generating uni-

formly random simple graphs is surprisingly difficult. A variety of methods, popular in

the literature, are reviewed. It is found that only one model is able to generate the re-

quired random networks, while also being practical to implement: the degree-preserving

rewiring model of Gkantsidis et al. (2003).

The Gkantsidis et al. method relies on a somewhat obscure theorem by Taylor

(1980). A novel alternative proof of that theorem is presented in Chapter 4. This new

6 CHAPTER 1. INTRODUCTION

proof permits the computation of upper bounds for the number of rewiring operations

required (which was not investigated by Taylor).

Chapter 5 introduces the minimum target set selection, and maximum activation

set problems. Section 5.3 of that chapter describes the topological conditions under

which minimum target set selection can be solved exactly in polynomial time by known

FPT algorithms. It then goes on to determine whether or not any of the complex

networks datasets introduced in Chapter 2 meet these conditions.

Chapter 6 mainly concerns the minimum target set selection problem. The best

known heuristic algorithms from the literature are introduced and described. Sec-

tion 6.2 introduces a novel heuristic for minimum target set selection that can be

applied in a distributed manner. This is clearly relevant in the context of large commu-

nications networks, for example. An experimental comparison of the known heuristics,

and the novel heuristic reveals that, surprisingly, the distributed heuristic computes the

smallest target set in the least time (on the network datasets selected in Chapter 2).

Experience detailed in Section 5.3 suggests that complex network structure may be

too weak to leverage directly. This is already known to be the case for certain classes

of optimisation problem (Shen et al., 2012). Instead, the remaining chapters of this

thesis investigate a class of algorithms which make small modifications to the network,

in order to create structure that permits faster or better solutions.

Section 6.3 examines how the structure of a complex network changes as vertices

are removed in order from the highest to lowest degree (i.e. in order of how many

connections they have to the rest of the network). Chapter 7 continues the theme of

making small network modifications, this time adding new edges (i.e. new connections)

instead of removing vertices.

Ultimately, it is discovered that it is often possible in complex networks to make

relatively small modifications to a network in order to achieve substantial improvements

in the performance of suitably tuned algorithms. In particular, experiments from Chap-

ter 6 show that the removal of a relatively small number of high-degree vertices from

a complex network simplifies the structure of the network to the point that an exact

solution can be computed for the bulk of the network. Experiments described in Chap-

ter 7 show that adding edges to a complex network is another way to achieve better

performance for suitable algorithms. However, this kind of modification applies less

broadly than the removal of hubs. Finally, it is shown that these results are specific to

complex networks as the techniques employed rely on the underlying complex network

topology.

Chapter 2

Complex networks

A network consists of vertices connected by edges. The vertices represent the networked

entities. For example, the vertices of a social network are the people who make up the

network. The edges represent interactions of some sort between the vertices. Depending

on which interactions are used to form edges, a variety of networks can be drawn even

from the same system.

Complex networks are distinguished from other networks by their topology, i.e. the

pattern of connections in the network. There has been much research comparing the

topology of large empirical networks with random network topologies. This has lead to

the discovery of several properties that occur frequently in large networks, and which

cannot be explained as arising by chance (Newman, 2003; Boccaletti et al., 2006).

Surprisingly, the same topological features have been discovered in a broad range of

networks. These features (described in detail in Section 2.2 of this chapter) are now

considered to be characteristic of ‘complex networks’ (Newman, 2003).

This chapter introduces eight complex network datasets (see Table 2.1 for a full

list), from a broad range of domains. These datasets are used throughout this thesis

as examples of real data. They are contrasted with the random networks discussed in

Chapter 3. The eight datasets introduced in Section 2.1 are chosen to represent the

main kinds of complex networks reported in the literature. They are large enough to be

computationally challenging, but not so large as to require unreasonable computational

resources.

In this thesis, networks are modelled as graphs in the graph theory sense. A graph

G = (V,E) is defined by a set of V of vertices, and a set E of edges, where each edge

connects two vertices. The degree of a vertex is equal to the number of edges incident on

that vertex. In the complex networks literature it is common to see the terms “graph”

and “network” used interchangeably.

A graph can be directed or undirected, depending on whether or not the edges have

directions associated with them. Some graphs may have multiple edges between the

7

8 CHAPTER 2. COMPLEX NETWORKS

Network Vertices Edges Density Mean Max
degree degree

Physicists 1 40,421 175, 693 2.15× 10−4 8.69 278

Physicists 2 34,546 420,877 7.05× 10−4 24.4 846

Enron 36,692 183,831 2.73× 10−4 10.0 1,383

Gnutella 10,876 39,994 6.76× 10−4 7.35 103

Blogs 1,490 16,715 151× 10−4 22.43 351

Internet 27,719 41,684 1.09× 10−4 3.01 1,644

Neural 297 2,148 490× 10−4 14.5 134

Metabolic 453 2,025 198× 10−4 8.94 237

Table 2.1: The eight network datasets used in the experiments throughout this thesis.
Basic metrics are reported for each network: number of vertices, number of edges,
density (ratio of edges to maximum possible number of edges), mean degree, and the
maximum degree.

same pair of vertices, or self-loops (vertices connected to themselves). Sometimes a

number known as a weight is associated with the edges or vertices of a graph, for

example to represent the relative strengths of the connections in a network. An undi-

rected graph with no multiple-edges, self-loops, or edge weights is referred to as a simple

graph.

In order that the disparate network datasets introduced in this chapter can be

treated equivalently, it was decided early on in this research to reduce all the datasets

to simple graphs. This is achieved by replacing all directed edges with undirected edges,

removing any edge weights, removing any self-loops, and replacing multiple-edges with

single edges.

The first part of this chapter, Section 2.1, provides a summary of the network

datasets that were selected for study. The second part, Section 2.2, explains some of

the important topological properties of complex networks. Also included in Section 2.2

are the results of computations showing that the network datasets selected in Section 2.1

exhibit all the classic properties of complex networks.

The main aim of this thesis is to apply knowledge of complex network topologies to

problems in the design of algorithms for complex networks. It was found that some of

the topological properties introduced in this chapter were helpful in that goal, whereas

others could not be so easily harnessed.

2.1 Network datasets

Many kinds of complex network are reported in the literature, and they commonly fall

into three broad categories: social networks, communication networks, and biological

networks (Boccaletti et al., 2006). In social networks, the vertices represent people

2.1. NETWORK DATASETS 9

and the edges are interactions between those people. In communication networks the

vertices are elements in a telecommunications system, such as routers in the Internet.

The edges in this case are communications links. Biological networks are the broadest

category of all; the vertices are elements of some biological system such as neurons in

a brain. In the neural network example, the edges are connections between neurons.

In order to study as wide a range of complex networks as possible, eight publicly

available datasets were selected. See Table 2.1 for a full list of the networks chosen.

Table 2.1 also reports the number of vertices and edges in each of the networks, along

with the density, mean degree, and maximum degree.

The eight networks fall nicely into the three categories previously mentioned: The

Physicists 1, Physicists 2, and Enron networks are social networks; the Gnutella, Blogs,

and Internet networks are communications networks; and the Neural and Metabolic

networks are biological. The remainder of this section is a basic description of the

network datasets, and how they are derived.

2.1.1 Social networks

Of the social networks, the most studied variety is the collaboration network. In a

collaboration network, the edges represent collaborations between people. For example,

the famous IMDB (Internet Movie Database) network of movie actors (http://www.

imdb.com/). In the IMDB network, there is an edge between two actors if they co-

starred in a movie. The network is known to have a small diameter, and it was at one

time a popular game to find short paths connecting actor Kevin Bacon to other, more

obscure, actors.

The IMDB network is not used for the experiments in the thesis, as it is too large

given the computational resources available to the author. Instead, two smaller collab-

oration networks were used, the Physicists 1 and Physicists 2 networks:

Physicists 1 is a co-authorship network of physicists (a collaboration network) post-

ing preprints on the arXiv (http://arxiv.org) in the category of “condensed matter

physics”. It includes papers from 1995 to 2005 (Newman, 2001).

Physicists 2 is another co-authorship network of physicists on the arXiv, this time

in the category of “high energy physics”. It includes papers published prior to 2003

(Gehrke et al., 2003; Leskovec et al., 2005). It is quite a lot denser than the Physicists

1 network, which can lead to noticeably different behaviour.

Due to the rise of social media platforms, such as Facebook and twitter, it has

become possible to study large friendship networks, where two people are linked by

an edge when they report that they are “friends”. Published research shows that the

Facebook network, for example, behaves much like other, more widely studied social

10 CHAPTER 2. COMPLEX NETWORKS

networks (Ugander et al., 2011). Due to the proprietary nature of these networks, even

anonymised data is not typically available to the public. Hence it was not possible to

include such a network in this thesis.

Another way to derive a social network is to examine who talks to who. For example,

an edge could be created when two people send emails to each other. This is how the

Enron social network is derived (Leskovec et al., 2009):

In the Enron network, each vertex represents an email address, and there is an

edge between two addresses if an email was sent between them (Klimt and Yang, 2004;

Leskovec et al., 2009).

The Enron network is popular for study because the raw data was made public

during the trial that followed the bankruptcy of the Enron corporation (Klimt and

Yang, 2004).

2.1.2 Communication networks

The most thoroughly studied of the communication networks is the Internet. Due to

the multilayer architecture of the Internet, several complex networks can be derived.

At the router level network, every vertex represents a router that has a connection to

the Internet. Edges are created between routers when they communicate directly to

each other.

The next layer up is the AS (Autonomous System) level. An autonomous system

is a single Internet connected network (for example, an ISP). The Internet is in fact

composed of many thousands of autonomous systems, and they exchange traffic directly

with each other in a relationship known as “peering”. Since it is impractical for an AS

to have a direct link to every other AS, a packet travelling through the Internet may

traverse many autonomous systems along the way. In the AS network, the vertices

are autonomous systems, and the edges represent the peering relations between them.

From Table 2.1:

Internet is a 2009 snapshot of the Internet at the AS level, provided by CAIDA

(Hyun et al., 2009). Each vertex represents an autonomous system, and there is an edge

between two systems if they exchange traffic. It is by far the sparsest of the networks

studied in this thesis.

A number of networks are built on top of the Internet infrastructure. The most

obvious example is the world wide web network, where the vertices are web pages

and the edges are hyperlinks between those web pages. The world wide web has been

extensively studied, which has given rise to algorithms to rank search engine results for

example. This thesis includes a network derived from a small piece of the world wide

web:

2.1. NETWORK DATASETS 11

Blogs is a directed network of American political blogs, recorded in 2005 by Adamic

and Glance (2005). The vertices represent individual blogs, and the edges are hyperlinks

between the blogs. Thus, it is a very small snapshot of the World Wide Web. This

network was intended to demonstrate community structure; Adamic and Glance found

two distinguishable communities. Perhaps due to the divided nature of the network,

some interesting behaviour is exhibited in some of the experiments later in this thesis.

Another variety of network on the Internet is a P2P (peer-to-peer) network. In a

P2P network, traffic is exchanged directly between client machines (peers), rather than

being routed through a central server. The lack of a central server means that network

discovery services (for example) must be distributed across the peers, which are sparsely

connected. The exact details of how the peers are connected depends on the specific

P2P protocol being used. Examples include bittorrent and the older Gnutella network:

Gnutella is a 2002 snapshot of part of the Gnutella network (Ripeanu et al., 2002;

Leskovec et al., 2007), which is a P2P network used mainly for file-sharing.

2.1.3 Biological networks

Many biological networks have been described in the literature. Two are used in this

thesis, both derived from the biology of the C.Elegans nematode worm. The C.Elegans

worm was the first organism to have its full neural network mapped out (White et al.,

1986). In a neural network, the vertices are neurons in brain, and the edges represent

connections between the neurons. Such networks are now known as connectomes, in

analogy to the genome of a species. There is ongoing effort to map the neural networks

of more advanced species. Other varieties on biological network (not studied in this

thesis) include protein interaction networks, and food webs.

The two biological networks used in this thesis are as follows:

Neural is the neural network of the C. Elegans nematode worm, compiled by Watts

and Strogatz (1998) from the work of White et al. (1986). The vertices are neurons,

and the edges represent synaptic connections between the neurons. This network is the

smallest and densest of the networks used in this thesis. It is sometimes observed to

show unusual behaviour as compared to the other networks (see Figure 2.3 for example).

However, the most important complex network properties do hold (degree structure and

the small world effect, explained in Section 2.2).

Metabolic is the metabolic network of the C. Elegans nematode worm (Duch and

Arenas, 2005). As with the neural network, it is smaller than the other networks,

although the density (as measured by mean degree) is similar to the other networks.

The behaviour of this network appears to be similar to the other networks studied in

12 CHAPTER 2. COMPLEX NETWORKS

this thesis.

2.1.4 A note on density

Notice in Table 2.1 that the maximum degree is much larger than the mean degree. This

is due to the highly skewed distribution of vertex degrees observed in these networks

(more in section 2.2.1). Vertices with much higher degree than the mean are referred

to as hubs. Due to the presence of these hubs, the mean degree cannot be interpreted

as the ‘typical’ vertex degree.

Density is the ratio of the number of edges to the maximum possible number of

edges; i.e. d = m/n(n−1)
2 where n is the number of vertices and m is the number of

edges. As seen in Table 2.1, all the networks have extremely low density (which is to

say they are all very sparse). The density metric is thus unsuited to distinguishing the

fine (but important) differences in densities of these networks.

Instead, twice the ratio of edges to vertices (2m/n) is used throughout this thesis

as a measure of density. The reason for using 2m/n is that this is also the mean degree

(since in any graph, total degree equals 2m). Thus, the mean degree turns out to be

convenient as a measure of density in sparse networks.

2.2 Properties of complex networks

Despite the disparate origins of the various categories of complex networks, a range

of topological properties have been found to be common to all such networks. This

section reports and discusses the key properties of complex networks as observed in the

literature. These properties inform the work in the later chapters of this thesis.

Part of the original hope of the research that lead to this thesis was to discover

previously unknown topological structures in complex networks. Some discussion of

this work will be found in Section 5.3. However, no such structures could be found,

and it is now the opinion of the author that the properties listed in this section are

most likely all that one can expect to see in general in a complex network.

2.2.1 Degree distribution

The degree distribution p(k) of a network is the probability that a randomly selected

vertex has degree k; that is, the probability that it has k neighbours. Related to

the degree distribution is the degree sequence. The degree sequence of a network is

a sequence of n integers representing the degrees of the n vertices in the network. A

degree sequence is by convention ordered from largest to smallest degree. Some authors

use the degree distribution and degree sequence interchangeably, but in this thesis a

2.2. PROPERTIES OF COMPLEX NETWORKS 13

Network Mean Clustering Mean Assortativity
Distance Coefficient Clustering Coefficient

Physicists 1 5.50 0.245 0.719 0.186

Physicists 2 4.33 0.146 0.296 −0.00629

Enron 4.03 0.0853 0.716 −0.111

Gnutella 4.64 0.00540 0.00804 −0.0132

Blogs 2.74 0.226 0.360 −0.221

Internet 4.49 0.00876 0.203 −0.142

Neural 2.46 0.181 0.308 −0.163

Metabolic 2.66 0.124 0.655 −0.226

Table 2.2: Measurements of key metrics on the chosen complex networks, indepen-
dently computed for this thesis. The small-world effect can be seen by observing that
the mean distance is very small in all the networks measured, but the clustering coeffi-
cient and mean clustering are relatively high. The Gnutella network is an exception in
terms of clustering, which may relate to the function of that network. Degree correla-
tions are observed in all but two of the networks.

Network Power-law exponent Power-law p-value

Physicists 1 3.50 0.22

Physicists 2 3.50 0.16

Enron 1.97 0.00

Gnutella 3.50 0.03

Blogs 3.50 0.48

Internet 2.17 0.25

Neural 3.34 0.63

Metabolic 2.63 0.01

Table 2.3: Attempted power-law fit to the degree distributions of the chosen complex
networks, independently computed for this thesis according to the method of Clauset
et al. (2009). The p-value is the probability that the data (the vertex degrees of the
network) are drawn from a discrete power-law distribution. Thus, only a large p-value
of a least 0.10 is considered compatible with the power-law hypothesis. Of the networks
that do exhibit true power-law behaviour, the power-law exponents are within the 1.5
to 3.5 range reported in the literature.

14 CHAPTER 2. COMPLEX NETWORKS

Physicists 1: Degree Distribution

0.025

0.050

0.075

0.100

0.125

0

Degree (k)

p(
k)

Figure 2.1: The degree distribution of the Physicists 1 network. Notice that most
vertices are likely to have low degree, but there are a small number of vertices with
very high degree. This is the classic heavy-tailed degree distribution of a complex
network.

degree distribution will always be a probability distribution, and a degree sequence will

always be a sequence of integers.

The degree distributions of complex networks are typically highly skewed, with

wide variability. As an example, the degree distribution of the Physicists 1 network

was computed and is shown in Figure 2.1. Such distributions are said to be heavy-

tailed. Due to these two properties (highly skewed, heavy-tailed), the mean degree

cannot be interpreted as a measure of the ‘typical’ degree of vertices in the network.

The mean degree does, however, find use in this thesis as a measure of density for sparse

networks that is somewhat independent of the size of the network.

The degree distribution in many complex networks has been shown to follow a

power-law p(k) = αk−γ where α and γ are parameters of the distribution (Newman,

2003). The parameter γ is referred to as the exponent, or the scaling index, and is

typically in the range 1.5 ≤ γ ≤ 3.5 (Newman, 2003). See, for example, the values for

the power-law exponent reported in Table 2.3.

Power-law distributions are also referred to as scale-free distributions, because the

parameter γ is invariant when the distribution is multiplied by a scaling factor. This

has lead to the term “scale-free-network” for a network with a power-law degree dis-

tribution. This is poor terminology, because it implies that complex networks have a

fractal structure, which has never been shown to be the case in general.

Power-law degree distributions (and other heavy-tailed degree distributions) are

interesting for several reasons. The power-law implies that even in relatively small

complex networks there will be a small, but significant, number of very high degree

vertices, which are known as hubs. These hubs are not present in randomized networks

(discussed in Chapter 3), which implies that they constitute a structure particular to

complex networks (Newman, 2003).

One consequence of the presence of hubs is that such networks are resilient to

2.2. PROPERTIES OF COMPLEX NETWORKS 15

random failures, but vulnerable to targeted attacks (Newman, 2003). Most of the

vertices have relatively low-degree, so when a vertex is removed at random, usually

only a small number of edges are removed from the network. If, however, hubs are

removed from highest to lowest degree, large numbers of edges will be removed from

the network, rapidly causing it to become disconnected. This property is of obvious

importance in communication networks, such as the Internet.

Since there are a small number of hubs relative to the other vertices, hubs must be

mainly connected to low-degree vertices. Hence, low-degree vertices typically have short

paths back to the hubs. This leads to short average distances between randomly selected

vertices in complex networks (more in Section 2.2.4). This suggests a simple local

strategy (which can be employed without requiring knowledge of the entire network)

to find hubs: choose a vertex at random, then pick the neighbour of that vertex with

the highest degree.

The hubs can be used to guide the design of algorithms on complex networks.

For example, an optimised depth-first search on a network with a power-law degree

distribution completes in O(n1/2) time at worst (O(log(n)) time at best) (Adamic

et al., 2001; Newman, 2003). The same algorithm takes linear (O(n)) time on general

networks (with arbitrary degree distributions). This result, and others, suggest that

some problems may be computationally easier on power-law networks than on general

networks.

Unfortunately, several major NP-complete optimisation problems are known to be

no easier to approximate in power-law networks than in general networks (Ferrante

et al., 2008; Shen et al., 2012). The problem is that the constraint of a power-law degree

distribution is not restrictive enough to prevent the embedding of certain problematic

substructures. Experiments described in Section 3.2 suggest that in fact a wide range

of topologies are possible given a fixed degree sequence.

Although it seems that a power-law degree distribution alone is not enough to allow

for better approximations or faster exact solutions, note that other structures are also

known to be present in complex networks. It is possible that a combination of properties

may provide the desired algorithmic benefits. Chapter 6.3 considers how the hubs can

be used as a basis for modifying the network so that it contains structure that is known

to be useful algorithmically.

Power-laws in empirical networks

The traditional way to check for a power-law degree distribution was to plot the fre-

quency of the vertex degrees on a log-log scale, then do a linear regression to fit a straight

line to the data. The slope of the line is equal to the power-law exponent. This method

is known to be statistically unreliable, and so it is likely that many claimed power-laws

16 CHAPTER 2. COMPLEX NETWORKS

are in fact not (Li et al., 2005).

A reliable procedure for fitting a power-law distribution to data is given by Clauset

et al. (2009), this procedure takes into account the difficulties peculiar to fitting a

discrete power-law (since vertex degrees are always integers, we must fit the discrete

version of the power-law distribution).

The method of Clauset et al. also gives a p-value that measures the likelihood that

the data are in fact drawn from a power-law distribution. A p-value of 1 indicates that

the data follow a power-law, a p-value of 0 indicates that they do not. A large p-value of

at least 0.10 is considered compatible with the power-law hypothesis. This is different to

the usual concept of a p-value (where a small p-value indicates statistical significance),

because this p-value does not represent a null hypothesis. This unusual situation reflects

the difficulty of distinguishing between a true power-law, and a large number alternative

distributions with similar properties (especially the log-normal distribution).

Power-law fits according to the Clauset et al. method are given in Table 2.3. The

code used to compute these values was adapted from the partial R implementation

available from http://www.santafe.edu/˜aaronc/powerlaws/.

One of the difficulties in fitting a power-law distribution to data is that there are

a number of similar distributions that can be difficult to distinguish, for example the

log-normal (Clauset et al., 2009). Thus, and especially considering the generally low

p-values in Table 2.3, the possibility cannot be ruled out that none of these networks

have power-law degree distributions.

While a power-law degree distribution is convenient for theoretical analysis, it is

probably not so important in practice. Li et al. (2005) make a strong case that in the

degree distributions of complex networks, the important properties are that they are

strongly skewed and heavy-tailed, regardless of what specific probability distribution

lies behind those features. Thus, the term heavy-tailed will be used throughout this

thesis to refer generally to networks with these kinds of degree distributions.

2.2.2 Degree correlations

Correlations in the degrees of adjacent vertices are widely observed in complex networks

(Newman, 2003; Boccaletti et al., 2006). These correlations can be positive (adjacent

vertices are likely to have similar degree), or negative (adjacent vertices are likely to

have dissimilar degree). Networks with positive degree correlations are referred to

as assortative networks, whereas networks with negative correlations are known as

disassortative networks (Newman, 2002).

The degree correlations are quantified by the assortativity coefficient r, introduced

by Newman (2002). Newman’s assortativity coefficient is equivalent to the Pear-

son’s correlation coefficient of the degrees of adjacent vertices, which lies in the range

2.2. PROPERTIES OF COMPLEX NETWORKS 17

−1 ≤ r ≤ 1. In assortative networks, r is positive, in disassortative networks it is

negative. Values for empirical networks are reported to be in the range −0.3 ≤ r ≤ 0.3.

Table 2.2 includes independently computed values for the assortativity coefficient of

several empirical networks.

Although the correlations are weak, they capture important variations in the struc-

ture of complex networks, beyond what is implied by the degree distribution. This is

explored in the work of Li et al. (2005), where a not-normalised version of the assorta-

tivity coefficient is introduced, the s-metric.

Li et al. studied the relationship between their s-metric and a network performance

metric (intended to measure the throughput performance of communication networks).

They found that networks with high s (more assortative) have relatively poor per-

formance, but that there is more variation in the structure of those networks. High

performing networks have low s (more disassortative). Indeed, relatively strong disas-

sortativity is a common feature of networks intended for communication (see Table 2.2).

In a power-law network, most vertices have relatively low degree with a few high

degree hubs. Assuming there are no self loops (vertices connected to themselves) or

multiple edges (between the same vertex pair), that implies that in an assortative net-

work, the hubs are strongly connected to each other so that the connections between

hubs and low degree vertices can be minimised. Conversely, in a highly disassortative

network, the highest degree hubs are directly connected to the lowest degree vertices,

with the medium sized hubs connected to each other (a typical structure for a commu-

nications network).

Newman’s assortativity coefficient is normalised against a multigraph, where self

loops and multiple edges are allowed. Thus, a highly assortative network is likely to

have many self loops and multiple edges. All the networks used in this thesis are

projected down to simple graphs by removing any self loops and multiple edges. This

process creates a bias towards disassortativity which is explored further in Chapter 3.

The same effect is observed by Maslov et al. (2004) and Li et al. (2005).

2.2.3 Extension to dK distributions

In their analysis of the Internet AS-level network, Mahadevan et al. discovered empir-

ically that the joint-degree distribution determines most of the important topological

properties of that network (Mahadevan et al., 2006b). The joint-degree distribution

p(j, k) is a two dimensional probability distribution defined as the probability that two

adjacent vertices have degrees j and k. The degree distribution can be computed from

the joint-degree distribution as p(k) =
∑

j p(j, k). The joint-degree distribution also

contains enough information to compute the assortativity coefficient.

The joint-degree distribution can be extended again into three dimensions. This

18 CHAPTER 2. COMPLEX NETWORKS

time a pair of distributions are required, one to describe the degrees of vertices con-

nected in triangles, the other to describe connected triples that do not form triangles. In

this manner, Mahadevan et al. define a series of distributions that capture successively

more information about the topology of a network (Mahadevan et al., 2006a).

They name these distributions “dK distributions”, where d is the number of di-

mensions. Thus, the joint-degree distribution is the 2K distribution, the ordinary

degree distribution is the 1K distribution, and the mean degree can be considered as

the 0K distribution. Each successive distribution captures all the information from

all the lower distributions. For example, the mean degree, degree distribution, and

joint-degree distribution of a network can all be computed given the 3K distribution

of that network.

Multidimensional probability distributions are inconvenient to work with, so dK

distributions for d > 1 are not used in this thesis. However, the theory is used to

inform the design of some experiments.

There is empirical evidence that a wide range of important local and global topo-

logical properties of complex networks are determined by the 3K or 4K distributions

(Mahadevan et al., 2006a). This can be taken as further evidence that global properties

of complex networks (such as a small diameter) are a result of the local organisation of

the network.

2.2.4 The small-world effect

The small-world effect is the most popularly known property of complex networks

(specifically, social networks, although the effect is seen in all varieties of complex

network). The effect is also known by the phrase “six degrees of separation”, following a

1960s experiment by Stanley Milgram which found that on average, any two Americans

can be connected by a chain of six acquaintances (Milgram, 1967).

In the terminology of graph theory, a chain of edges connecting two vertices (which

may not be adjacent) is a path. The number of edges in a path is the length of the

path. Finally, the distance between two vertices is the length of the shortest path

between those vertices. Additionally, the diameter of a network can be defined as the

longest shortest-path (or farthest distance between any two vertices) in the network.

This replaces the informal notion of “degrees of separation”.

The expected distance between any two vertices in a network is measured by the

mean distance: the mean of the distances between every pair of vertices in the network.

To compute the mean distance, one must find the shortest paths between every pair of

vertices. For simple graphs, such as those studied in this thesis, this can be computed

in O(n ·m) time by running a breadth-first search algorithm once from every vertex (n

runs each taking O(m) time). This method was used to compute the mean distance

2.2. PROPERTIES OF COMPLEX NETWORKS 19

figures reported in Table 2.2.

For larger networks, where even this runtime is problematic, a sampling approach

suggested by Newman (2003) may be used. A sample of N vertices is chosen uniformly

at random, then a breadth-first search is run from each sampled vertex v to find the

shortest paths from v to every other vertex in the graph. Every shortest path is equally

likely to appear in the sample. Ultimately, none of the networks studied in this thesis

were large enough to require sampling.

The mean distance between vertices in most complex networks has been found to

be extremely short, especially considering the large size of some of these networks: see

Table 2.2 for example. Additionally, most of these networks are known to have small

diameters (Boccaletti et al., 2006). This seems counter-intuitive (particularly when one

discovers short paths in one’s personal network of acquaintances), but in fact it should

not be so surprising.

Suppose, for example, that every vertex in a network has approximately 10 neigh-

bours. Define the 1-hop neighbourhood of a vertex v as all the vertices that can be

reached from v by a path of length 1. Similarly, the k-hop neighbourhood of v is defined

as all the vertices that can be reached from v by a path of length ≤ k. The size of

the 1-hop neighbourhood is approximately 10. The size of the 2-hop neighbourhood,

assuming there are not many edges within the 1-hop neighbourhood, is 10× 10 = 100.

The size of the k-hop neighbourhood is thus 10k, and so the maximum distance from

v to any other vertex in the graph is approximated by log10(n) where n is the size of

the network. A version of this argument is included in Newman (2003).

There is a common misconception that a small-world network is any network that

has short average distances, but short distances alone do not say much about the

structure of a network. The small-world effect, as recognised by Milgram (1967) and

later formalised by Watts and Strogatz (1998), refers to the presence of short average

distances in combination with structure that would seem to exclude the possibility of

such short distances.

In social networks, for example, most edges cover only very short geographical

distance; and yet the average (network) distances between geographically distant people

remain small. Both these properties are observed in the global Facebook network, for

instance (Ugander et al., 2011). This is the paradox of the small-world effect.

Furthermore, the assumption that there are few edges between the neighbours of

a vertex in complex networks has been shown to be false. The degree to which the

neighbours of vertices are interconnected is known as clustering, and there are several

ways to measure it.

In a simple graph (no self loops or multiple edges), the local clustering Cv of a vertex

v is the ratio of the number of edges between the neighbours of v and the maximum

20 CHAPTER 2. COMPLEX NETWORKS

number of such edges (
d(v)
2) where d(v) is the degree of v. Hence, the clustering of a

vertex measures how close the vertex is to forming a clique with its neighbours. Cv is

normalised to fall in the range 0 ≤ Cv ≤ 1. For multigraphs a subtly different definition

is required (since there is no maximum number of edges): the ratio of the number of

triangles containing v to the number of pairs of adjacent edges centred on v.

The clustering of an entire network can be summarised in two different but similar

ways, which are often confused in the literature (Newman, 2003). The first metric,

which will be referred to in this thesis as the clustering coefficient, is 3 × the number

of triangles ÷ the number of pairs of adjacent edges. The factor of 3 normalises the

clustering coefficient C so it lies in the range 0 ≤ C ≤ 1 (since each triangle contributes

three pairs of adjacent edges). The second metric is the mean local clustering, which is

defined as the mean of Cv for all vertices v in the network.

Both clustering metrics have been computed on a range of networks, and the values

are reported in Table 2.2. Clearly, there is a significant amount of clustering in all

the networks (except curiously the Gnutella network). This is in line with published

literature (Boccaletti et al., 2006).

Notice that the mean local clustering is greater than the clustering coefficient in

all the networks in Table 2.2. This is a common pattern in heavy-tailed networks. It

arises because, due to degree constraints, the neighbours of the hubs cannot be highly

interconnected. Thus, most of the clustering is in the low degree vertices. Therefore,

in a highly clustered heavy-tailed network, the majority of the vertices have high clus-

tering, but there are a small number of vertices with very low clustering. The mean

local clustering emphasises the contribution of the highly clustered low degree vertices,

whereas the clustering coefficient is more affected by the poorly clustered hubs.

The paradoxical coexistence of high clustering and short average distances was

explored by Watts and Strogatz (1998). They developed a simple network model which

demonstrates a mechanism by which the small-world effect can arise. The Watts-

Strogatz model starts with a large number of vertices connected in a ring. From each

vertex, edges are added connecting to all the k-hop neighbours, for some small k. This

creates a network with a high clustering coefficient and high average distances. Watts

and Strogatz then proceed to rewire the edges at random. The rewiring operation is

as follows: pick a vertex v and a vertex u adjacent to v, then remove the edge uv and

replace it with vx for a randomly chosen vertex x.

This causes the mean local clustering of the network to fall. However, the rewired

edges act as shortcuts to distant parts of the network, causing the average distance to

fall as well. As it happens, the average distance falls much faster than the mean local

clustering, thus it is possible for a network to exhibit both high clustering and short

average distances.

2.2. PROPERTIES OF COMPLEX NETWORKS 21

Figure 2.2: The k-core decomposition of a graph. The blue (biggest) box encloses
the 1-core, the yellow box encloses the 2-core, and the red (smallest) box encloses the
3-core (which is the k-core of this graph). Additionally, the vertices of the 1-shell are
coloured blue, the vertices of the 2-shell are coloured yellow, and the vertices of the
3-shell are coloured red. Notice that in this case, the highest degree vertex is in the
1-shell.

The small-world effect is an example of how various topological properties can

interact in unexpected ways in large networks. The addition of a very small number

of shortcuts relative to the size of the network leads to a large change in the global

topology of the network (as measured by mean distance and diameter). The idea of

making small changes to a network to achieve dramatic changes in behaviour is revisited

later in this thesis, in Chapters 6 and 7.

It must be noted that the Watts-Strogatz model is not the only process that can lead

to a small-world network (for example the configuration model described in Section 3.2.2

generates small-world networks). In fact, Watts-Strogatz style models are rarely used

in recent literature as they fail to capture other important topological properties of

complex networks, most importantly the heavy-tailed degree distribution (Newman,

2003). In heavy-tailed networks, it is most likely the hubs that create the shortcuts

that bind the network together.

2.2.5 k-Core and k-shell decomposition

The k-core decomposition of a network captures important connectivity patterns. It has

a variety of uses in network visualisation, fingerprinting, and estimating the influence

of a vertex (Alvarez-Hamelin et al., 2005; Kitsak et al., 2010). Although not so widely

studied as degree distributions and the small-world effect, the k-core decomposition

reveals topological effects that are not apparent from the more widely reported metrics.

In fact, in the search for previously unrecognised topological structure in complex

networks, the author ended up independently rediscovering a crude form of the k-core

decomposition.

22 CHAPTER 2. COMPLEX NETWORKS

The k-core decomposition divides the vertices of a network into a series of overlap-

ping sets known as the k-cores. For any positive integer i, the i-core is a subset of the

(i− 1)-core, and the 0-core contains all the vertices in the network. Thus, each core is

nested inside the previous core. By convention, the “k-core” of a network is the i-core

with highest i (this can be confusing because the lower i-cores are also referred to as

the k-cores of the network).

The i-core is computed according to a simple iterative process: Every vertex with

degree less than i is removed from the network. This step is repeated on the new

network until there are no vertices left with degree less than i. At that point, the

remaining vertices constitute the i-core of the network.

k-cores are related to a well-known metric from graph theory, degeneracy, although

degeneracy is not commonly applied to complex networks. A network is d-degenerate

if the vertices can be ordered such that every vertex v is adjacent to no more than d

vertices ahead of v in in the ordering. Degeneracy is computed by iteratively removing

the lowest degree vertex, noting the maximum lowest degree encountered. This is in

fact a variation on the process used to compute the k-core decomposition. Thus, the

value of k for the k-core of a network is d. Furthermore, every k-core represents the

part of the network left over when the (k − 1) degenerate part is removed. Note that

a network with low d is said to be highly degenerate, and vice versa.

As well as k-cores, one can also study k-shells. The i-shell for some integer i is the

i-core minus the (i+1)-core. If the i-core does not contain at least one vertex of degree

i, then the i-core is equal to the (i+1)-core and the i-shell will be empty. Every vertex

belongs to one i-shell, and i is known as the k-shell number for that vertex. Figure 2.2

illustrates the k-core and k-shell decompositions of a graph, and how the two relate to

each other.

The k-core decomposition captures the connectivity patterns of the network. The

strongly-skewed nature of complex network degree distributions implies that there are

many low degree vertices, which are relatively poorly connected connected to the rest

of the network. These vertices must be found in the low k-shells. The higher minimum

degree of the high k-shells implies that they are relatively dense, and that vertices in

these shells are probably well connected to each other. Note that it is possible for

vertices with very high degree to appear in the low shells, for example in Figure 2.2,

where the highest degree vertex is in the 1-shell. Such vertices have relatively poor

connectivity despite their high degree.

Many complex networks are known to have a hierarchical structure, consisting of a

densely connected core, surrounded by a loosely connected periphery. An excellent way

to quantify this property is to measure the sizes of all the k-shells of a network. This

was first done by Alvarez-Hamelin et al. (2008) using the Internet AS-level graph (note

2.2. PROPERTIES OF COMPLEX NETWORKS 23

that there are preprints of the paper going back to 2005). k-shell decompositions for

a wider variety of networks are given by Dorogovtsev et al. (2008). Dorogovtsev et al.

(2006) also note that in complex networks, the value of k for the k-core is much higher

than in random networks, i.e. complex networks have relatively high degeneracy.

The k-shell decompositions of all the networks listed in Table 2.1 were computed for

this chapter, and the results are reported in Figure 2.3. For most of the networks the

majority of the vertices are in the lowest shells, but all of the networks have the relatively

high degeneracy observed by Dorogovtsev et al. (2006). This can be interpreted as

saying that most of the networks have a large and poorly connected periphery, combined

with a small, dense, highly connected core. This trend is present even in the Physicists

2 network, although it is weak, and the scale makes it difficult to see.

The exceptions to this rule are the two biological networks. In the Neural network,

most of the vertices are in the core. This tells us that most neurons in the network have

good connectivity to other neurons, and there is no periphery to speak of. This may be

related to the function of the network. The Metabolic network exhibits even stranger

behaviour. The largest shells fall in the middle of the range, telling us that most vertices

are neither well connected nor poorly connected. There is neither a periphery nor a

core.

One might expect that in a heavy-tailed network, the hubs would naturally make up

the core of the network, and the low degree vertices would form the periphery. Hence,

the k-shell decomposition would follow a similar pattern to the degree distribution. Al-

though this is seen in the majority of the k-shell decompositions reported in Figure 2.3,

there are enough exceptions to conclude that a variety of k-shell topologies are possible

given the same degree distribution. In particular, a glance at Table 2.3 reveals that

the Physicists 1, Physicists 2, and Neural networks all have strong power-laws in their

degree distributions, and yet exhibit notably different k-shell topologies.

The k-shell topology of complex networks has obvious and important consequences

for algorithm design, although unfortunately the author was not able to derive any

direct applications from the theory. In a typical complex network, most vertices have

low k-shell numbers, so greedy algorithms that iteratively remove low degree vertices

can be highly effective.

An example of an algorithm that benefits from the typical k-shell topology of com-

plex networks is the standard vertex-cover kernelization algorithm. The vertex cover

problem, and the kernelization algorithm are discussed in more detail in Section 5.3.1.

The kernelization algorithm operates by iteratively removing very low and very high

degree vertices from the network according to carefully designed rules. It has been

noted that this algorithm is more effective in practice than the theory would suggest

(Abu-Khzam et al., 2004). This is most likely due to k-shell topology. Since the low

24 CHAPTER 2. COMPLEX NETWORKS

0 5 10 15 20 25 30

0

600

1200

1800

2400

3000

3600

4200

4800

5400

Physicists 1

0

500

100

200

300

6000

6500

6100

6200

6300

0 8 60 68 50 58 40

Physicists 2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40

Enron

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7

Gnutella

0 5 10 15 20 25 30 35

0

20

60

80

40

100

120

160

180

140

Blogs

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2 4 6 8 10 12 14

Internet

0 2 4 6 81

1

01

21

41

61

811

801

821

841

861

Neural

0 2 4 6 81

1

01

21

41

61

811

801

821

841

861

Metabolic

Figure 2.3: k-shell decompositions of several complex networks. Each chart shows
the number of vertices (x-axis) per shell (y-axis) for one of the networks described in
Section 2.1.

2.2. PROPERTIES OF COMPLEX NETWORKS 25

shells are very large, many low degree vertices can be removed from the graph, including

vertices that didn’t have low enough degree at the beginning of the process.

2.2.6 Centrality metrics

The centrality of a vertex in a network refers to the influence of that vertex on the

structure or function of the network. Many metrics on complex networks show strongly-

skewed behaviour, such as the degree distribution and the k-shell decomposition. This

leads to a small number of vertices having significantly higher values than do typical

vertices for these metrics. Such metrics can be used to quantify aspects of centrality.

For example, a vertex with high degree centrality has high degree. A vertex with high

k-core centrality has a high k-shell number.

Another widely used centrality metric is the betweenness centrality. The between-

ness of a vertex v is the fraction of shortest paths between all pairs of vertices in the

network that pass through v. The betweenness of an edge can be defined similarly,

although the utility of edge-betweenness as a measure of centrality was debunked by

Newman (2003). The näıve way to compute betweenness, by finding then counting

all the shortest paths, is too slow to be practical on large networks, but an efficient

O(m · n) algorithm to compute betweenness is given by Brandes (2001).

Betweenness is intended to measure the role of a vertex in transmitting informa-

tion from one part of the network to another. In a social network, for example, high

betweenness vertices might act as gatekeepers between communities. In the case of

the Internet, all traffic is routed via the shortest path, so high betweenness vertices

are expected to see high levels of traffic. For this reason, betweenness is of particular

interest to Internet researchers (Mahadevan et al., 2006b).

A betweenness distribution can be defined in a similar way to the degree distribution.

The betweenness distribution has been shown to follow a power-law distribution in

complex networks (Goh et al., 2002; Mahadevan et al., 2006b).

Kitsak et al. (2010) compared the relative utility of degree centrality, k-shell cen-

trality, and betweenness centrality with regards to two simple models of infectious

disease spreading. A good centrality measure should predict which vertices are likely

to lead to larger outbreaks, should they become infected. Kitsak et al. found that the

k-shell number of a vertex largely determines the size of the outbreak. In addition, the

betweenness was found to be a very poor predictor of the size of the outbreak.

This thesis aims to apply the known topological properties of complex networks to

two problems related to spreading processes, described in Chapter 5. Since betweenness

centrality seems to be unrelated to spreading, it is not investigated further in this thesis,

despite the popularity of the metric.

26 CHAPTER 2. COMPLEX NETWORKS

2.2.7 Community structure

Intuitively, one would expect to find evidence of community structure in at least some

kinds of complex networks. A community here is defined as a set of vertices that are

more connected to each other than to the rest of the network. For example, a community

in a social network might represent a group of friends. In the world-wide-web network,

groups of pages on related topics might form communities.

The problem of dividing a network into communities is known as clustering, and

there is extensive literature on the topic. The earlier approaches operate by computing

a connection strength metric for every edge in the network. The edges can then be

added in order of decreasing connection strength to build the communities from the

bottom up (Newman and Girvan, 2004). Alternatively, one can rank the edges by

edge-betweenness or some similar metric, and remove the edges in decreasing order

of betweenness. In this way, the network is gradually broken down into smaller and

smaller communities.

With these approaches, the number of communities found increases or decreases

depending on how many edges are added or removed. The complete set of commu-

nities can be captured as a tree structure, known as a dendrogram. The root is the

entire network, and the leaves are individual vertices. The inside nodes represent the

merging of multiple communities. Using probabilistic methods, it is possible to directly

compute a maximum likelihood dendrogam, without requiring a connection strength

or betweenness metric (Clauset et al., 2008).

The problem with all these approaches is knowing which level of the dendrogram

represents the true community structure of the network. Newman and Girvan (2004)

give a simple modularity metric, which measures how many more edges there are within

the communities than between them. This leads to another clustering algorithm which

operates by directly optimising the modularity metric (Newman, 2006). Newman’s

modularity metric is now very widely used as the most convenient way to uncover

community structure in a complex network.

It was hoped in the early stages of the research presented in this thesis, that commu-

nity structure theory could be applied to the design of algorithms targeted for complex

networks. If the communities are dense, and there are few connections between them,

then it would be possible to compute optimal solutions within the communities, then

combine the solutions across the boundaries. However, even in the blogs network,

which is strongly divided into two clear communities (Adamic and Glance, 2005), the

connections within the communities are still relatively sparse, and there are still large

numbers of connections between the communities.

The k-shell structure goes some way towards explaining the weakness of commu-

nities in complex networks. Since the vertices of a community are required to be well

2.3. SUMMARY 27

connected to each other, the centres of the communities lie in the high k-cores. However,

the high connectivity of the k-core implies that relatively dense parts of the communi-

ties must be highly interconnected with each other. Thus, the strong isolation desired

is not seen in typical complex networks.

2.3 Summary

This chapter has introduced a selection of eight publicly available network datasets that

will be used for experimentation throughout this thesis. These networks come from a

range of domains, including social networks (Section 2.1.1), communications networks

(Section 2.1.2), and biological networks (Section 2.1.3). These categories include the

main varieties of complex networks reported on in the literature (Boccaletti et al., 2006;

Newman, 2003).

The second part of this chapter (Section 2.2) described a number of topological

properties that are commonly observed in complex networks, including the networks

described in Section 2.1. The degree distribution (Section 2.2.1), and the small world

effect (Section 2.2.4) are the most widely reported of these properties, but the other

properties are also of relevance to the remainder of this thesis.

The next chapter will survey the literature on random networks. Random networks

serve two purposes in the study of complex networks: as null models to show that the

distinctive topologies of complex networks are not due to chance, and as models of how

those topologies can emerge from simple rules applied stochastically.

28 CHAPTER 2. COMPLEX NETWORKS

Chapter 3

Methodology using random

graphs

As discussed in Section 2.1, a range of eight empirical networks were selected for use in

the experiments that come later in this thesis. These networks were selected mainly for

pragmatic reasons: the datasets are publicly available, the networks have convenient

size and density, and they cover a broad range of domains. However, generalising the

conclusions of experiments is difficult for such a small and varied selection of networks.

For example, this thesis aims to make statements that apply to most complex

networks, but topological variations in particular networks can act as confounding

factors. These confounding factors can be eliminated by using constructed networks,

designed such that all the structural properties are known and understood. It is also

necessary to include a set of control graphs in every experiment. An ideal control graph

should have as little topology as possible, so that one can distinguish between effects

that are due to complex network topology, and those that are not.

Constructed networks, and control networks for the experiments are generated using

random graphs models. This thesis proposes to use two random graph models, which

will be referred to as 0K random graphs and 1K random graphs using the dK terminol-

ogy of Mahadevan et al. (2006a) (described in Section 2.2.3). 0K random graphs have

a fixed 0K distribution, which is to say a fixed mean degree. 1K random graphs have a

fixed degree distribution. A complete description and justification of these particular

models is included in Section 3.1.

By comparing the results obtained on the real networks with random networks

that have the same 0K and 1K distributions, the results of the experiments can be

generalised. It becomes possible to distinguish between effects that are due to the

degree structure of complex networks, effects that are exclusive to particular networks,

and effects that are not due to any specific topology.

Having determined what kinds of random graphs are required, the next question is

29

30 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

how to generate those graphs. Many random-graph models are described and analysed

in the complex networks literature. Depending on one’s perspective, a random-graph

model can be thought of as a stochastic procedure for generating graphs, or the ensemble

of graphs generated by that procedure. (The computer scientist’s view versus the

physicist’s view). This thesis takes the procedural view.

Two approaches to generating random graphs are described in this chapter. The

generative models of Section 3.2 construct new graphs that meet some criteria (deter-

mined by the parameters of the individual models). The rewiring models discussed in

Section 3.3 begin with an existing graph, then randomly rewire the edges in such a way

as to preserve certain topological structures, while randomizing everything else.

This chapter begins by outlining the experimental methodology used throughout

the remainder of this thesis, and describing the uniform random graphs required for

that methodology. As it turns out, generating uniform random graphs that meet the

requirements of this methodology is a difficult problem. Sections 3.2 and 3.3 review

the relevant random-graph models from the literature, while analysing their suitability

for the methodology of this thesis.

The degree-preserving rewiring model described by Gkantsidis et al. is found to

be the most practical solution to the problem of generating uniform random graphs.

This rewiring scheme relies on two theorems, first proved by Taylor (1980). Copies of

Taylor’s proofs are somewhat difficult to obtain, and they are in spirit existence proofs.

For these reasons, independent constructive proofs of the two theorems are presented

in Chapter 4

3.1 Random graphs as null models

The experiments that follow in later chapters of this thesis are of two kinds: those

that compute metrics on complex networks (to determine the presence or absence of

certain structures), and those that evaluate the performance of algorithms on complex

networks. Two kinds of random graph are used in the experiments, these will be referred

to as 0K and 1K random graphs.

The methodology is as follows: for each of the empirical networks listed in Table 2.1,

two random graphs are computed, a 0K random graph and a 1K random graph. The

0K random graph has the same size and mean degree as the empirical network. The

1K random graph has the same size and degree distribution as the empirical network.

The relevant metrics are computed on the empirical networks and the random net-

works. It is then possible to compare the results for each empirical network with its two

random networks, and also to compare the results across all the empirical networks,

across all the 1K networks, or across all the 0K networks.

3.1. RANDOM GRAPHS AS NULL MODELS 31

Notice that the 0K random graphs in general have no local topology, such as cluster-

ing or community structure. Thus, by including 0K random graphs in the experiments,

it becomes possible to distinguish between effects that are due to the specific topology

of the empirical complex networks, and effects that are not due to topology.

1K random graphs are included because (as discussed in Section 2.2.1) the heavy-

tailed degree distribution is considered by many to be a defining characteristic of com-

plex networks (Li et al., 2005; Dorogovtsev and Mendes, 2000; Newman, 2003). Includ-

ing 1K random graphs allows one to draw conclusions from the experiments concerning

heavy-tailed graphs in general, rather than just a few specific empirical examples. Ad-

ditionally, it becomes possible to determine whether an effect is due to the degree

distribution of the network, or some other topological property.

A logical extension of this methodology would be to also include 2K and 3K ran-

dom graphs with the same 2K and 3K distributions as the empirical networks. This

would allow one to observe how assortativity (determined by the 2K distribution) and

clustering (determined by the 3K distribution) affect the results. Including these ran-

dom graph models is not done as it would be beyond the scope of this thesis, which is

concerned with techniques that are broadly relevant to all complex networks. Addition-

ally, there is little literature on how to generate the required random graphs (Stanton

and Pinar (2012) were the first to give a rigorous and practical method to generate

uniformly random 2K graphs).

A clear problem with this approach is that only one random graph of each type

is computed per empirical network. It is possible that an atypical graph might arise

by chance and cause misleading results. This possibility is avoided by repeating every

experiment 10 times to confirm that the results are typical. This works because, as will

be seen later in this chapter, most random graphs derived from any particular model

are almost indistinguishable (using known topological metrics for complex networks).

Statistical hypothesis testing is not used in the experiments presented in this thesis,

which is concerned mainly with finding practical techniques that can be applied to

complex networks. Thus, the experiments are usually looking for qualitative effects of

practical significance.

Where it is necessary to measure the difference between means of large datasets,

confidence intervals are computed using the conventional t-distribution, and plotted

with the experimental results. In practice the confidence intervals are usually very

tight. This is because, as previously mentioned, most random graphs of any particular

kind exhibit very similar topology. Since the intervals are so tight, significance can

be easily determined by sight. If the intervals do not overlap, the effect is significant,

otherwise it is not.

The 0K and 1K random graphs are required to be uniformly random. This means

32 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

that, for the 0K graphs, every graph of a particular size and mean degree is equally

likely to be produced. For the 1K graphs, every graph of a particular size and degree

distribution is equally likely to be produced. Additionally, since all the networks are

modelled as simple graphs, the two random graphs are also required to be simple

(i.e. undirected, unweighted, no self loops, and no more than one edge between any two

vertices).

It is easy to generate 0K simple graphs uniformly at random. The Erdős-Rényi

random graph model discussed in Section 3.2.1 has this capability, as does the random

rewiring model discussed in Section 3.3.1. Generating the 1K random graphs on the

other hand is considerably more challenging, and there is an extensive literature on the

topic.

Sections 3.2 and 3.3 review the literature on several models for generating 1K ran-

dom graphs, while also evaluating how well those models satisfy the uniform and simple

graph criteria. The comparison is partly experimental, and partly based on the known

properties on the models.

3.1.1 Comparing random graph models: methodology

The models discussed in Section 3.2 attempt to generate random graphs by sequentially

adding vertices and edges, starting with an empty graph. The main concern with these

models (for this thesis) is whether or not they generate 1K graphs uniformly at random.

It could be the case that most of these models generate an approximately uniform

random sample of graphs, in which case it may not matter very much which model is

used. If this is the case, then there will be very little topological variation between

large samples of graphs generated by different models. This possibility is explored

experimentally.

The methodology for the experiments in Section 3.2 is as follows. From each model,

a sample of 100 random graphs with power-law degree distributions is generated. In

order to reduce the number of variables, all the graphs have 1000 vertices and a mean

degree of 8. The mean degree should be interpreted here as a measure of density; due

the highly skewed nature of complex network degree distributions, the mean degree

does not accurately indicate the expected degree.

For models where the power-law exponent can be adjusted, 6 samples are generated

with different power-law exponents ranging from 2.0 to 3.0 in increments of 0.2. Two

metrics are then computed and averaged over all the random graphs of each kind. By

plotting the results with 95% confidence intervals it becomes clear that there is signifi-

cant topological variation across the random graphs generated by different models. The

null hypothesis (that the models are approximately uniform) can therefore be rejected.

The metrics used are the assortativity coefficient, and the clustering coefficient.

3.1. RANDOM GRAPHS AS NULL MODELS 33

Both of these metrics are computationally easy to compute, and capture topology that

is mostly independent of the degree distribution. The assortativity coefficient can be

thought of as a summary statistic of the joint-degree distribution, and similarly the

clustering coefficient can be regarded as a summary statistic of the 3K distribution

(Mahadevan et al., 2006a).

If one accepts the claim of Mahadevan et al. that the 3K distribution captures all

the key topological properties associated with complex networks, then assortativity and

the clustering coefficient are the right metrics for these experiments. It is the view of the

author that they are superior to the distance-based metrics that are more commonly

employed in this area (by Gkantsidis et al. (2003) for example). The problem with

distance based metrics (such as average distance and diameter) is that they are hard

to relate to the local topology of the network.

For simple uniform 0K random graphs, the assortativity coefficient must be 0. Since

every edge is independent, there will be no correlations between the degrees. Thus, the

assortativity coefficient could be used as a simple test of randomness. This technique

does not apply to simple uniform 1K random graphs. The combination of the degree

distribution constraint, and the simple graph constraint, creates a bias towards disas-

sortativity. This is because there are many more low degree vertices than hubs, and

the simple graph constraint disallows duplicate edges between hubs, so the hubs must

be mostly connected to vertices of dissimilar degree.

The randomizing models discussed in Section 3.3 start with a source graph, then

rewire the edges randomly. These models are known in theory to generate uniform

samples of random graphs. A potential drawback of rewiring is that, in the case of 1K

random graphs, there is no known upper bound to the number of rewiring operations

that may be required to ensure a uniform distribution. However, recent theoretical and

experimental evidence suggests that the required number of rewiring operations is O(n)

(Ray et al., 2012). Independent experiments presented in Section 3.3 present further

evidence of this claim, based on measurements of the assortativity coefficient, a metric

not previously used for this purpose in the literature.

The truly uniform 1K random graphs from Section 3.3 can be compared with the

generative models from Section 3.2 to evaluate how close to uniform those models really

are. The comparison is done by computing for the randomized graphs the same metrics

that were computed for the graphs from the generative models. It is found that there

is a significant difference, so it can be concluded that none of the generative models

can approximate uniform sampling, and therefore they are not suitable for use in the

experiments that follow in the later chapters of this thesis.

34 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

3.2 Generative models

The generative models construct random graphs by starting with an empty graph, and

adding vertices and edges until the relevant constraints are satisfied. Of these models,

the Erdős-Rényi model (Section 3.2.1) generates 0K random graphs, while the others

generate (or are thought to generate) 1K random graphs.

The main purpose of this section is to compare several models for 1K random graphs

with each other, in terms of the assortativity and clustering coefficients, as described

in Section 3.1.1. If all the models generate topologically similar graphs, then one can

assume that the details of how a random graph is generated do not greatly affect the

topological properties of the graphs, and hence any of the models are safe to use for

generating uniform samples of 1K random graphs.

It turns out that this is not the case, and in fact the different models generate

significantly different sorts of graphs. Further experiments in Section 3.3 reveal that

none of the models presented in this section generate uniformly random graphs.

Of the models that generate 1K graphs, the Configuration model and the Havel-

Hakimi algorithm both take a degree sequence as a parameter. The preferential at-

tachment model discussed in Section 3.2.4 only generates graphs with power-law degree

distributions.

In order to use models that require a degree sequence parameter, it is necessary to

generate a sequence of degrees that matches the desired power-law distribution. For

a given exponent γ and scale factor α, the formula is di = i−1/(γ−1)α where di is the

degree for vertex i.

As stated in Section 3.1, it is necessary to match the mean degree of the random

graphs with the mean degree of the empirical graphs with which they are to be com-

pared. Here, mean degree is being used as a measure of density. In a power-law setting

it cannot be interpreted as the expected degree of a vertex. Mean degree (d̄) is related

to α and γ by the following equation:

d̄ =

∑n
i=1 di
n

=

∑n
i=1 i

−1/(γ−1)α

n
(3.1)

The full equation for a power-law degree sequence is derived by rearranging equa-

tion 3.1 for α and substituting it back into the power-law equation:

di =
nd̄∑n

j=1 j
−1/(γ−1)

· i−1/(γ−1) (3.2)

3.2.1 Erdős-Rényi random graphs

The Erdős-Rényi (ER) random graph model was introduced in a series of papers starting

with Erdős and Rényi (1960). The model has two parameters: the number of vertices

3.2. GENERATIVE MODELS 35

n, and the number of edges m. All multigraphs with n vertices and m edges are equally

likely to occur.

The ER model begins with n vertices and no edges. m edges are added one at

a time. For each edge, two endpoints are selected independently and uniformly at

random. An edge is then added between the two endpoints. This procedure can be

modified to avoid generating graphs with self loops by selecting two distinct endpoints

at random. The generated graphs will still be uniformly random.

The ER model can be easily adjusted to generate only simple graphs. Two distinct

endpoints are selected at random, as with the original ER model. If there is no edge

between the endpoints, a new edge is created. Otherwise no edge is created. The

procedure continues until allm edges have been created. The edges are still independent

of each other, so this modified model generates all simple graphs uniformly at random.

The original purpose of the ER model was to prove the existence or not of graphs

with certain properties, and also to characterise the likelihood of generating graphs

with certain properties. This is done by studying how the probability of generating a

graph with the desired properties changes as n → ∞. If the probability approaches 1,

the property holds almost surely; if the probability approaches 0, almost no random

graph has that property; otherwise it can be concluded that the desired property holds

for at least some graphs. An in-depth discussion of this probabilistic method can be

found in textbooks such as Diestel (2000).

Two well-known properties of random graphs that are of particular relevance to

complex networks are the presence of a giant component, and the existence of short

paths. Suppose that the parameter m, the number of edges, is a function of n, the

number of vertices. If m grows faster than (n−1) log(n)
2 , then the ER model generates

graphs that are almost surely connected (every pair of vertices can be connected by a

path) (Diestel, 2000). Physicists refer to this property as a phase transition from a low

density phase characterised by many small components, to a high density phase where

there is a giant component of size O(n) (Newman, 2003).

The existence of short paths in random graphs follows from the same argument

presented in Section 2.2.4. Since the edges are independent, dx ≈ n where d is the

mean degree and x is the mean path length. Hence, x = log(n)
log(d) . If the mean degree is

fixed, the average path length will remain small even as the random graphs get large.

This simple argument comes from (Newman, 2003).

Other than these two properties, random graphs are very different from complex

networks. Random graphs have Poisson degree distributions, which are centred about

a mean, as opposed to the highly skewed degree distributions seen in complex networks

(Newman, 2003). Since every edge is independent, there are no correlations in the

degrees of adjacent vertices, and therefore no assortativity. For similar reasons, random

36 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

graphs do not exhibit clustering.

3.2.2 Configuration model

The configuration model operates on a similar principle to the Erdős-Rényi model. This

time there is only one parameter, a degree sequence (which also determines the number

of vertices n and the mean degree). The procedure begins with a graph of n vertices

and no edges. In order to maintain the degree sequence constraint, the configuration

model assigns a number of “half-edges” to each vertex v, equal to the degree of v.

Edges are then added one-by-one between randomly selected pairs of half-edges, in a

manner analogous to the Erdős-Rényi model. In this way, all multigraphs with the

desired degree sequence are generated uniformly at random (Molloy and Reed, 1995).

For each edge in the configuration model, the two endpoints are drawn randomly

from the same probability distribution, so the expected assortativity coefficient is 0.

For a power-law degree distribution, the behaviour of the clustering coefficient depends

on the power-law exponent γ (Newman, 2003). When γ < 7
3 , the clustering coefficient

increases with the size of the graph. In a sufficiently large graph it can even exceed 1

(this is only possible in multigraphs). For other values of γ, the clustering coefficient

tends to 0 as the number of vertices increases, as in Erdős-Rényi random graphs.

However, the rate of decrease is much slower, so unlike the Erdős-Rényi model, power-

law configuration model graphs typically have significant clustering.

The main difficulty with the configuration model is that it generates multigraphs,

whereas the methodology described in Section 3.1 requires simple graphs. Unlike for

the Erdős-Rényi model, the configuration model cannot easily be modified to generate

simple graphs uniformly at random.

A näıve way would be to select a pair of distinct half-edges at random, and attempt

to add an edge between them. If this is not possible, select a different random pair of

half-edges. It turns out that this scheme does not generate graphs uniformly. Further-

more, it may get stuck in a situation where the degree sequence is not yet realised (there

are still unconnected half-edges), but no new edges can be added without violating the

simple graph constraint.

The problem is that in a random simple graph with a specified degree sequence,

there are dependencies between the edges. This is easy to see by considering the size of

the space of edges that could be added. Suppose there are three vertices for example:

u has 2 half-edges, v and w have 1. If the edge uv or uw is added, then there is one

possibility for the next edge. However, if vw is added, then there are no possibilities

for the next edge. Thus, the available choices for later edges depend non-trivially on

which edges were added earlier in the process.

3.2. GENERATIVE MODELS 37

Projected configuration model

Another possible solution to the problem of modifying the configuration model to gen-

erate simple graphs is to generate multigraphs, then remove any self-loops or multiple

edges that may have occurred. This operation will be referred to as projection to a

simple graph. Deleting edges will change the degree sequence, and is likely to affect

the uniformity of the generated graphs. However, assuming that the generated graphs

are already close to being simple, it is possible that this process could come very close

to generating simple graphs uniformly at random.

To see the effects of the projection operation on the topology of the graphs generated

by the projected configuration model, six samples of 100 configuration model graphs

were generated with power-law exponents ranging from 2.0 to 3.0 in increments of 0.2

as described in Section 3.1.1. Each of these graphs was then projected to a simple

graph. Metrics were then computed for all the graphs, and the means and confidence

intervals computed as per Section 3.1.1.

The basic form of the configuration model, which allows self-loops, was used for

these experiments. The experiments were later repeated using the self-loop-free version

of the configuration model, and the results (not reported) were similar.

Since the projection operation affects the degree distribution, it was necessary to

confirm that the effect is not too large. Power-law exponents, and p-values were com-

puted according to the method of Clauset et al. (2009). Recall from Section 2.2.1 that

this p-value is the probability that a graph has a power-law degree distribution (as

opposed to some other degree distribution). A value of 0.10 is considered consistent

with the power-law hypothesis.

The results of this first experiment are reported in Figure 3.1. Note that although

the confidence intervals are plotted for every sample of graphs, most of the intervals

are too small to be seen. This lack of variation is entirely to be expected. The original

graphs all had exactly the same degree distribution, so any variation must be due to

errors introduced by the projection operation.

Figure 3.1 shows that the degree distribution is indeed affected by the projection

operation, and that the graphs with smaller power-law exponents are most affected.

Clearly, most of the multiple edges and self-loops will be incident on the hubs, so

the projection operation mainly affects the heavy tail of the degree distribution. By

reducing the degrees of those vertices, the weight of the tail is decreased. A lower

power-law exponent indicates a heavier tail, hence the effect of the projection operation

increasing the power-law exponent.

The fact that the projection operation has a greater effect when the power-law

exponent is smaller is a pattern that will be seen throughout this section. The cause of

the effect is that a heavier tail must also be shorter (since the area under a probability

38 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

Projection of Con guration Model - Degree Distribution Power-law

Attempted Power-law Exponent

Ac
tu

al
Po

w
er

-la
w

Ex
po

ne
nt

an
d

p-
va

lu
e

2.0 2.2 2.4 2.6 2.8 3.0

0.0

1.0

2.0

3.0

2.2

2.4

2.6

2.8

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

Power-law Exponent
p-value

Figure 3.1: Power-law exponents and p-values after the projection operation, for a
range of values of the power-law exponent. A p-value greater than 0.10 is considered
consistent with the power-law hypothesis. Each bar is the average over 100 random
graphs, with 95% confidence intervals. All graphs have mean degree 8.

distribution function is always 1). This implies a higher proportion of multiple edges

and self loops on a smaller number of hubs, leading to the greater effect of the projection.

Although the projection operation affects the degree distribution of the graphs, the

important properties of skewness and the heavy tail are preserved. Therefore, the effects

on the degree distribution due to the projection operation are judged to be acceptable

for the purposes of the experimental methodology outlined in Section 2.2.7.

It is well known that configuration model graphs of sufficient density have a giant

component of size O(n), and as with Erdős-Rényi random graphs, there is a phase

transition (Molloy and Reed, 1995). Obviously, this property is preserved by the pro-

jection operation, since the removal of self loops and multiple edges cannot increase

the number of components. However, as a matter of interest, the sizes of the largest

components were computed, and the results are reported in Figure 3.2.

Having determined that the projection operation does not overly compromise the

power-law degree distribution, the next step is to measure the assortativity and clus-

tering coefficients, as outlined in Section 3.1.1. These two metrics were computed on

both the plain configuration model random graphs, and on the projected graphs.

If the assortativity and clustering coefficients are preserved, as well as the degree

distribution, then that could be taken as evidence that the projection operation has

only a small effect on the uniformity of the samples. Such a result would provide a

convenient control with which to compare the other models. Unfortunately, it turns

out that the projection operation has a very significant effect on both assortativity and

3.2. GENERATIVE MODELS 39

Projection of Con guration Model - Largest Component

Power-law Exponent

Si
ze

of
La

rg
es

tC
om

po
ne

nt
 (%

 o
f V

er
tic

es
)

Con guration Model
Projected Con guration Model

0%

20%

40%

60%

80%

100%

2.0 2.2 2.4 2.6 2.8 3.0

Figure 3.2: Percentage of vertices in the largest component of random graphs from the
configuration model, before and after the projection operation, for a range of values of
the power-law exponent. Each bar is the average over 100 random graphs, with a 95%
confidence interval. All graphs have mean degree 8.

clustering.

Figure 3.3 compares the assortativity coefficients of configuration model graphs

before and after the projection operation, for a range of power-law exponents. As can be

seen from the error bars (which represent 95% confidence intervals), the configuration

model generates graphs with no degree correlations. However, significant negative

correlations appear following the projection.

The cause of the disassortativity is once again the concentration of the self-loops

and multiple edges mainly on the hubs. Let an assortative edge be one that connects

vertices of similar degree and a disassortative edge be one that connects vertices of

dissimilar degree. Since the self-loops and multiple edges are mostly between vertices

of similar (high) degree, they are mostly assortative. Overall, the configuration model

graphs are neither assortative nor disassortative, so removing a large number of mainly

assortative edges results in an overall disassortative graph.

The clustering results are reported in Figure 3.4. This time, the clustering is high

in the configuration model graphs (as expected), but significantly lower following the

projection operation. In this case the effect is due to the way multiple edges and self

loops count towards the clustering coefficient.

Recall from Section 2.2.4 that the clustering coefficient is the ratio of triangles to

pairs of adjacent edges. In a multigraph, there are more ways to form a triangle. For

example, any combination of three edges between the same pair of vertices forms a

40 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

Figure 3.3: Assortativity of random graphs from the configuration model, before and
after the projection operation, for a range of values of the power-law exponent. Each
bar is the average over 100 random graphs, with a 95% confidence interval. All graphs
were generated with mean degree 8. The assortativity coefficient ranges from 1 to −1.

triangle, any combination of three self loops on the same vertex forms a triangle, and

triangles can be formed from combinations of self loops and multiple edges. Since the

multiple edges and self-loops are mainly concentrated on a relatively small number of

vertices, these multigraph triangles are highly likely to occur. This is why the clustering

coefficient is so much smaller following the projection operation.

To summarize, the projection operation has a small, but appreciable, effect on the

degree distribution. However, it has a large effect on both the assortativity coefficient

and the clustering coefficient. This implies that the topological structure of the graph

is changed significantly following the projection operation. It is not possible to draw

any conclusions from these experiments as to whether or not the projected configura-

tion model generates all simple graphs with the desired degree sequence uniformly at

random. Further experiments presented in this chapter will show that the projected

configuration model does not in fact generate graphs uniformly.

3.2.3 Havel-Hakimi procedure

A näıve modification to the configuration model to generate simple graphs with exactly

the desired degree sequence works as follows. Normally, two half edges are chosen at

random and a new edge is created between them. Instead, choose two half edges from

the set of pairs that can be joined without violating the simple graph constraint. As

explained in Section 3.2.2, this procedure can get stuck and fail to realise the desired

3.2. GENERATIVE MODELS 41

Projection of Con guration Model - Clustering

Power-law Exponent

Cl
us
te
rin

g
Co

e
ci
en

t

2.2 2.4 2.6 2.8 3.02.0

0.0

0.1

0.2

0.3

0.4

Con guration Model
Projected Con guration Model

Figure 3.4: Clustering coefficient of random graphs from the configuration model, be-
fore and after the projection operation, for a range of values of the power-law exponent.
Each bar is the average over 100 random graphs, with a 95% confidence interval. All
graphs were generated with mean degree 8. The clustering coefficient ranges from 0 to
1 in simple graphs, although it can be greater than 1 in multigraphs.

degree sequence, should the wrong edges be added early in the process.

A more sophisticated algorithm due to Havel and Hakimi (Havel, 1955; Hakimi,

1962) is capable of constructing simple graphs that realise a desired degree sequence.

This algorithm is based on the (Erdős-Gallai) condition, a necessary and sufficient

condition for a degree sequence to be realisable as a simple graph (Erdős and Gallai,

1960). For all k ≤ n:

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(k, di) (3.3)

Where d1, d2, · · · , dn is the degree sequence, ordered from highest degree to lowest

degree. This equation states that the total degree of the k highest degree vertices is

less than the maximum number of edges within the k highest degree vertices, plus

the maximum number of connections available to vertices outside the k highest degree

vertices. The necessity of the condition is obvious, the sufficiency is more involved.

The Havel-Hakimi algorithm begins as with the configuration model, by assigning

each initially isolated vertex a degree from the degree sequence (which must satisfy

equation 3.3). The residual degree, the difference between the intended and actual

degrees, is tracked per vertex.

First a vertex v is selected, this is the select phase. Edges are then added between v

and other vertices until the residual degree of v is 0, this is the satisfy phase. Following

42 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

the satisfy phase, the procedure is repeated on the subgraph excluding v, until every

vertex has residual degree 0. The strategies for selecting v, and selecting the vertices

to connect to v, may be chosen so that equation 3.3 holds for every iteration of the

algorithm.

In order to investigate the applicability of this algorithm for generating uniformly

random samples of simple graphs (with a particular degree sequence), a range of strate-

gies were compared according to the methodology outlined in Section 3.1.1. For each

strategy, a large sample of random graphs was generated, then the means of the assor-

tativity and clustering coefficients were computed per sample and compared.

Each strategy is a combination of a select strategy (for the select phase), and a

satisfy strategy (for the satisfy phase). The full strategy is written as select/satisfy, for

example, largest first/random.

For the select phase, the following strategies were tested:

• Largest first. Select the vertex with the highest residual degree

• Smallest first. Select the vertex with the lowest residual degree

• Random. Select a vertex of positive residual degree uniformly at random.

• Proportional. As with random, but select the vertex proportionally to the residual

degrees rather than uniformly at random. Thus, a vertex with twice the residual

degree is twice as likely to be selected.

For the satisfy phase, the following strategies were tested:

• Random. Connected the selected vertex to vertices chosen uniformly at random

with positive residual degree.

• Proportional. As with random, but this time the vertices are selected proportion-

ally to the residual degrees rather than uniformly at random.

• Largest first. Connect the selected vertex to the vertices of highest residual de-

grees.

Note that only strategies that use ‘largest-first’ for the satisfy phase are able to

guarantee that equation 3.3 holds for every iteration of the algorithm. The other

strategies are included in the interests of generating a wider variety of random graphs.

Although every combination of select and satisfy strategies was tested, results are

reported only for the following strategies: largest-first / random, largest first / propor-

tional, smallest-first / random, smallest-first / proportional, random / largest-first, ran-

dom / proportional, proportional / proportional. These strategies give a good overview

of the full range of results.

3.2. GENERATIVE MODELS 43

Before comparing the assortativity and clustering coefficients, a simple experiment

was performed to check how well the different strategies realise the intended degree

sequence. This is necessary because not all of the combinations of select/satisfy are

guaranteed to maintain the Erdős-Gallai condition (equation 3.3).

A sample of 100 graphs was generated for every strategy, and for a range of power-

law exponents ranging from 2.0 to 3.0 in increments of 0.2. The number of missing

edges per graph, i.e. the number of edges that could not be inserted without violating

the simple graph constraint, was computed for every graph. The mean for each sample

is plotted with a 95% confidence interval in Figure 3.5.

Notice in Figure 3.5 that all the strategies fail to realise the degree sequence when

the power-law exponent is 2.0. Since some of these strategies are guaranteed to realise

any realisable degree sequence, it can be concluded that equation 3.2 does not generate

a realisable degree sequence when the power-law exponent is 2.0. All the strategies

perform better as the power-law exponent is increased. This suggests that power-laws

with low exponents place tighter constraints on how simple graphs can be constructed.

The results for the assortativity and clustering coefficients are shown respectively in

Figures 3.6 and 3.7. It can be seen that each strategy produces a class of graphs with

uniquely (although sometimes subtly) different topological properties. This is most

apparent when comparing strategies across a range of power-law exponents. If one

were to use only a single power-law exponent (2.6), then all of the “satisfy proportional”

strategies would appear to give identical results.

All of the strategies generate graphs that are more disassortative (or more assorta-

tive) than those generated by the projected configuration model (compare Figure 3.3).

The smallest-first/proportional strategy comes close, probably because the “propor-

tional” part mimics how the configuration model picks vertices to connect (propor-

tionally to the residual degree), and the “smallest-first” part mimics the effect of the

projection (since it leads to a graph with missing edges).

Comparing with Figure 3.4, it can be seen that all the strategies produce graphs

with much higher clustering coefficients than the projected configuration model. Thus,

the conclusion is that the strategy used to construct random simple graphs has a

significant effect on the topology of the graphs generated. Therefore, when uniformly

random graphs are required, it is essential to confirm that the intended procedure for

generating those graphs really does meet the uniform requirement.

3.2.4 Preferential attachment

The Barabási-Albert (BA) preferential attachment model (Barabási and Albert, 1999)

was introduced to provide a plausible explanation for how power-law distributions arise

in complex networks. As the first successful model of its kind, it has been enormously

44 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

0

500

1000

1500

2.0 2.2 2.4 2.6 2.8 3.0

Power-law Exponent

M
is

si
ng

 E
dg

es
 (o

ut
 o

f 4
00

0)
Havel-Hakimi Variations - Missing Edges

Largest rst/Random
Largest rst/Proportional
Smallest rst/Random
Smallest rst/Proportional
Random/Largest rst
Random/Proportional
Proportional/Proportional

Figure 3.5: Number of missing edges in Havel-Hakimi random graphs with a power-law
degree sequence. Each bar is the mean of 100 graphs, with a 95% confidence interval.
Each graph has 1000 vertices and is intended to have 4000 edges.

0.0

0.1

0.2

0.3

0.4

-0.1

-0.2

-0.3

-0.4

2.0 2.2 2.4 2.6 2.8 3.0

Power-law Exponent

As
so

rt
at

iv
ity

 C
oe

ci
en

t

Havel-Hakimi Variations - Assortativity Coe cient

Largest rst/Random
Largest rst/Proportional
Smallest rst/Random
Smallest rst/Proportional
Random/Largest rst
Random/Proportional
Proportional/Proportional

Figure 3.6: Assortativity coefficients of Havel-Hakimi random graphs with a power-law
degree sequence. Each bar is the mean of 100 graphs, with a 95% confidence interval.
Each graph has 1000 vertices, and a mean degree of approximately 8.

3.2. GENERATIVE MODELS 45

0.00

0.02

0.04

0.06

0.08

0.10

0.12

2.0 2.2 2.4 2.6 2.8 3.0

Power-law Exponent

Cl
us

te
rin

g
Co

e
ci

en
t

Havel-Hakimi Variations - Clustering Coe cient

Largest rst/Random
Largest rst/Proportional
Smallest rst/Random
Smallest rst/Proportional
Random/Largest rst
Random/Proportional
Proportional/Proportional

Figure 3.7: Clustering coefficients of Havel-Hakimi random graphs with a power-law
degree sequence. Each bar is the mean of 100 graphs, with a 95% confidence interval.
Each graph has 1000 vertices, and a mean degree of approximately 8.

influential in the field of complex networks.

The core idea of the BA model is to model the growth of the network over time.

The growth of a BA network is governed by simple rules, and the power-law degree

distribution arises as an emergent property. This is different to more traditional random

graph models, such as the configuration model, which only consider the topology of the

network at one fixed point in time.

The BA process proceeds in discrete timesteps. At each timestep, a new vertex

v is added to the graph. The new vertex v is connected to m other vertices already

in the graph. The vertices that v connects to are chosen at random proportional

to their degree, according to the equation Π(i) = d(i)/
∑

j �=i d(j) where Π(i) is the

probability that v connects to i and d(i) is the degree of i. Hence, the new vertices are

“preferentially” attached to existing vertices of high degree. A core of m0 ≥ m vertices

is required to start the process, and it matters how this core is chosen (Bollobás and

Riordan, 2003).

The degree distribution of a large BA network is a power-law distribution with

exponent of 3 (Barabási and Albert, 1999). However, there are numerous extensions to

the model which can account for a range of exponents, such as that of Dorogovtsev and

Mendes (2000) for example; several variations are surveyed and analysed by Bollobás

and Riordan (2003). The density is determined by the parameter m. Since m edges are

added for each vertex, the mean degree approaches 2m for large numbers of vertices.

The BA model is problematic as a null model in empirical studies, although it is

frequently misused for this purpose. As explained in Section 3.1, a suitable null model

46 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

must generate every graph with the desired degree distribution uniformly at random.

It is easy to see that the BA model does not meet this criteria by considering the

degeneracy of the generated graphs (see Section 2.2.5 for a definition of degeneracy).

The degeneracy of the generated part of a BA graph (excluding the initial core), is

exactly m. Since a range of values of degeneracy are possible with any fixed power-law

degree distribution, the BA model cannot generate the full range of possible topologies.

Even within the power-law graphs with exponent 3 and degeneracym, there is no reason

to suppose that every graph is generated uniformly at random, and this was never the

intended purpose of the model.

In order to demonstrate the difficulties with using the BA model as a null model, a

series of experiments were performed. A range of values of m from 3 to 9 in increments

of 1 were used, since m is the only parameter of the model that can be adjusted. The

value of m = 4 corresponds to a mean degree of 8, which is comparable to the rest of

the graphs in this chapter. For each value of m, a sample of 100 graphs were generated.

As with the rest of the experiments in this chapter, each graph has 1000 vertices. For

the seed graphs (from which BA networks grow), cliques of m vertices were used.

Measurements of the power-law fit are presented in Figure 3.8. These were com-

puted using the method of Clauset et al. (2009), as discussed in Section 2.2.1. Notice

that the power-law exponents are consistently lower than the expected value of 3, and

the p values are high, but not 1. This is partly because the networks are too small for

the power-law degree distribution to fully emerge. It also highlights another problem

with the BA model: it cannot be used to precisely match a target degree distribution

because the degree distribution is an emergent property from a stochastic process.

The results for assortativity and clustering are shown in Figures 3.9 and 3.10 re-

spectively. The assortativity coefficient (for m = 4) is much lower than for the other

models tested, although the clustering coefficient is approximately comparable to the

Havel-Hakimi variations with similar power-law exponents.

3.3 Randomizing models

The models discussed in this section begin with a graph that already has a desired

property. For 0K random graphs, that will be a graph with a particular mean-degree;

for 1K random graphs, a graph with a particular degree sequence. The edges of the

starting graph are then rewired in such a way that the mean degree (for 0K random

graphs), or the degree-sequence (for 1K random graphs) is preserved, but the graphs

are uniformly random in all other respects.

The 0K random rewiring algorithm presented in Section 3.3.1 is almost trivially

simple (although care must be taken in the implementation, as will be seen in Sec-

tion 3.3.1). The 1K random rewiring algorithm presented in Section 3.3.2 is based on

3.3. RANDOMIZING MODELS 47

3 4 5 6 8 97

0.0

0.5

1.0

1.5

2.0

2.5

m

Po
w

er
-la

w
 E

xp
on

en
t a

nd
 p

-v
al

ue

Barabasi-Albert - Power-law
Power-law Exponent
p-value

Figure 3.8: Power-law exponents and p-values of degree sequences in the Barabási-
Albert preferential attachment model, for a range of values of m. Each bar represents
the average over 100 graphs, with 95% confidence intervals. Each graph has 1000
vertices. p-values range from 0 to 1 and anything over 0.10 is considered consistent
with the power-law hypothesis.

m

3 4 5 6 7 8 9

0.00

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

As
so

rt
at

iv
ity

 C
oe

ci
en

t

Barabasi-Albert - Assortativity Coe cient

Figure 3.9: Assortativity coefficients of graphs generated by the Barabási-Albert
preferential attachment process, for a range of values of m. Each bar represents the
average over 100 graphs, with 95% confidence intervals. Each graph has 1000 vertices.
The assortativity coefficient ranges from −1 to 1.

48 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

m

Cl
us

te
rin

g
Co

e
ci

en
t

3 4 5 6 7 8 9

0.00

0.01

0.02

0.03

0.04

0.05

Barabasi-Albert - Clustering

Figure 3.10: Clustering coefficients of graphs generated by the Barabási-Albert prefer-
ential attachment process, for a range of values of m. Each bar represents the average
over 100 graphs, with 95% confidence intervals. Each graph has 1000 vertices. The
clustering coefficient ranges from 0 to 1.

a degree-preserving rewiring operation. The correctness of the 1K rewiring algorithm

depends on a theorem, for which a proof is presented in Chapter 4. Both algorithms

are known to produce uniform samples of 0K and 1K graphs respectively.

The ‘targeted rewiring’ model presented in Section 3.3.3 is included because it can

be used to generate graphs with properties that would otherwise be difficult to achieve.

Such graphs are used in Section 3.3.2 in order to evaluate how quickly the 1K random

rewiring procedure converges on a uniform distribution. Targeted rewiring can also

be used to produce random graphs with power-law degree sequences, but there is no

evidence that those graphs are uniformly random.

As with the generative models in Section 3.2, the assortativity and clustering coef-

ficients were computed on graphs sampled from the 0K and 1K randomization models.

The results can be directly compared with the results from Section 3.2, leading to the

conclusion that none of the generative models achieve uniform sampling.

3.3.1 0K randomization

This model begins with a graph with n vertices and m edges. A sequence of graphs

are generated by applying the following operation: one of the m edges e is selected

uniformly at random, then two distinct endpoints v1 and v2 are chosen randomly from

the n vertices. If there is no edge v1v2, then e is removed and replaced with v1v2.

Otherwise the procedure is repeated until a feasible rewiring operation is found.

Once enough graphs have been generated, they constitute a uniformly random sam-

ple from the space of all simple graphs with the same n and m as the original graph.

3.3. RANDOMIZING MODELS 49

This is easy to see by analogy with the Erdős-Rényi model. Typically, a large number

of graphs must be generated before the sampling converges on uniformity. A smaller

sample can be obtained by sampling from the larger sample.

It is important that edges be chosen at random. An implementer might be tempted

to pick “random” edges by choosing a vertex at random, then picking a neighbour at

random. This is how rewiring is performed in many small-world models (Watts and

Strogatz (1998) for example), where it is acceptable only because there is no requirement

to converge on uniformly random graphs.

To show that this is not valid, consider a wheel graph as a counter-example. One

vertex is designed the hub, the others form the perimeter. The perimeter vertices are

connected in a cycle, and all the perimeter vertices are connected to the hub. Half

of the edges are on the perimeter, and the other half are spokes (connecting the hub

to the perimeter). In a large wheel graph, if one were to pick a vertex at random, it

would almost certainly be a perimeter vertex. If one were to then pick a neighbour at

random, there would be a 2
3 chance of a perimeter edge (since there are two neighbours

on the perimeter), and a 1
3 chance of a spoke. So this is not a valid way to pick edges

uniformly at random.

Another important concern with random rewiring is: how many rewiring operations

are necessary to compute a uniformly random sample. Clearly, the maximum number

of rewiring operations required to transform one graph into any other (with the same n

and m), is m. Thus, at least that many rewiring operations are required. The author

is not aware of any theoretical or experimental results for the 0K rewiring model, so, it

is assumed by analogy with the 1K model that O(m) rewiring operations are sufficient,

and the constant is 10 to 30.

This thesis uses the random rewiring model instead of the Erdős-Rényi model,

purely as a matter of implementation convenience. In retrospect, the Erdős-Rényi

model would have been a better choice as it generates a single random graph faster,

and that graph is guaranteed to be uniformly random, whereas the rewiring model

requires a large number of rewiring operations to converge on uniformity.

3.3.2 Degree preserving rewiring

The degree-preserving rewiring operation preserves the degrees of all vertices, and hence

preserves the degree sequence of the original graph. Two distinct edges are chosen, and

for each edge, one of the two endpoints is chosen; the endpoints of the edges are then

swapped. Although there are four combinations of endpoints, in a simple graph there

are only two distinct ways to rewire a pair of edges. Figure 3.11 demonstrates both

possible rewirings.

Any graph can be transformed into any other (with the same degree sequence), by

50 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

Figure 3.11: The degree-preserving rewiring operation. The centre figure represents
the original edges, the other two figures represent the two possible rewirings.

applying enough degree preserving rewiring operations. The first proof of this theorem

was given by Taylor (1980). An alternative proof is given in Chapter 4.

The 1K rewiring model introduced by Gkantsidis et al. (2003) operates similarly

to the 0K rewiring model. A sequence of graphs are generated by applying rewiring

operations. First, two edges are chosen independently and uniformly at random, then

for each edge an endpoint is chosen randomly. If it is possible to swap the two edges

without violating the simple graph constraint, then the next graph is generated by

executing the rewiring operation. Otherwise the next graph is the same as the previous

graph, this is called a hold operation. Once the sequence of graphs is long enough,

it converges on a uniform sample from the space of all graphs with the same degree

sequence as the original graph.

The hold operation is essential to achieving uniform sampling (Artzy-Randrup and

Stone, 2005). This is because the number of graphs that can be reached by a sin-

gle degree-preserving rewiring operation depends on the graph in question, and thus

some graphs are more likely than others to show up during a sequence of rewirings.

Artzy-Randrup and Stone suggest that the sequence of graphs converges very slowly

to uniform sampling when using the hold operation, and they propose a more compli-

cated algorithm. However, this is based on an assumption that most attempted rewiring

operations fail, which is not the case on realistic undirected complex networks.

As with 0K randomization, an important concern is how many rewiring operations

are necessary that the final graph is independent of it’s starting point. As proved in

Chapter 4, up to m − 1 rewiring operations may be required to transform the initial

graph into any other graph with the same degree-sequence. To sample from the entire

space uniformly, at least this many rewiring operations will be necessary. Experimental

and theoretical evidence suggests that O(m) rewiring operations are sufficient (Ray

et al., 2012; Gkantsidis et al., 2003) to sample uniformly from the entire space of

graphs with the desired degree distribution, and that the constant is typically 10 to 30

(Ray et al., 2012).

In order to further validate the results of Gkantsidis et al. and Ray et al., two exper-

iments were performed. Each experiment begins with 200 power-law graphs generated

by the Havel-Hakimi algorithm described in Section 3.2.3. These graphs are arbitrarily

3.3. RANDOMIZING MODELS 51

divided into two groups of 100. One group is rewired to have a high assortativity or

clustering coefficient, using the algorithm described in Section 3.3.3. The other group

is rewired to have a low assortativity or clustering coefficient. These graphs are used

as starting points for 1K rewiring.

From each starting point, a single graph is produced by performing 10m, 100m, and

1000m rewiring operations (including holds). Thus, for each group of 100 graphs, there

is a sample of 10m rewired graphs, 100m rewired graphs, and 1000m rewired graphs.

The assortativity coefficients and clustering coefficients are computed on each sample

and compared to the values in the original graphs. This experimental design allows one

to see how many rewiring operations are required for two topologically distinct samples

to converge.

The results for the assortativity coefficient are shown in Figure 3.12, and for the

clustering coefficient in Figure 3.13. The values of the coefficients become indistinguish-

able after only 10m rewiring operations, and do not change thereafter. The conclusion

then is that 10m rewiring operations are sufficient to generate a uniform sample. This

is consistent with the results of Gkantsidis et al. (2003) and Ray et al. (2012).

These experiments differ in their methodology from those presented in Gkantsidis

et al. (2003) and Ray et al. (2012), which use mostly or exclusively distance-based

metrics, which are poor at capturing topology as discussed in Section 3.1.1. The exper-

iments of Gkantsidis et al. and Ray et al. generate their samples from a single staring

graph, and compute the metrics at regular intervals as the samples are generated. Both

sets of experiments compare the running means of the metrics as they are computed,

and when the means no longer change, it is deemed that enough operations have been

performed.

This methodology has the potential problem that the generated sample may appear

uniform, when in fact it only represents a relatively small neighbourhood of graphs

clustered around the starting graph. By using multiple starting points, the likelihood

of this scenario is lessened.

Since it is known that the 1K rewiring process generates uniform samples of random

graphs, it is now possible to empirically estimate the mean assortativity and clustering

coefficients. The experiment is similar to those used in Section 3.2. A sample of

100 random graphs is generated for a range of power-law exponents from 2 to 3 in

increments of 0.2, with each graph having 1000 vertices and 4000 edges. The starting

graphs are generated by the Havel-Hakimi algorithm from Section 3.2.3, using the

largest-first/random strategy. This is repeated for 10m, 100m, and 1000m rewiring

operations, to ensure that the convergence is not affected by the power-law exponent.

The means and confidence intervals for the assortativity and clustering coefficients

are presented in Figures 3.14 and 3.15 respectively. Comparing with the results from

52 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

0.00

-0.05

-0.10

-0.15

-0.20

No Rewiring x10 x100 x1000

Minmal assortativity
Maximal assortativity

Assortativity Coe cient in Rewired Graphs

Figure 3.12: Assortativity coefficients of random graphs, following 1K randomization.
The starting graphs are generated by the Havel-Hakimi algorithm using the largest-
first/random strategy, with a power-law exponent of 2.6. They are then randomly
rewired to have either maximal or minimal assortativity (see Section 3.3.3). Each bar
represents the mean of 100 graphs, with 95% confidence intervals. Each graph has 1000
vertices and 4000 edges.

Section 3.2 yields strong evidence that none of the generative models discussed in that

section generate uniform samples of random graphs.

By comparing Figures 3.14 and 3.15 with those for the configuration model (Fig-

ures 3.3 and 3.4), it can be seen that the simple graph constraint has a large impact on

the topology of the graphs. The mechanisms behind the negative assortativity and low

clustering were explained in Section 3.2.2. Of all the generative models, the projected

configuration model is qualitatively the most similar to a 1K random graph model, but

there are quantitative differences.

3.3.3 Targeted rewiring

The randomization strategies discussed so far start with a graph, then apply a number of

rewiring operations that preserve some desired topological property while randomizing

the graph with respect to all other properties. Targeted rewiring operates in the other

direction. The rewiring operations are selected in a biased fashion so as to eventually

create some structure that was not present in the original graph.

Figure 3.16 shows the results of an attempt to use a targeted rewiring procedure

to generate power-law graphs. The initial graphs are Erdős-Rényi random graphs with

1000 vertices and 4000 edges. The procedure for rewiring the initial graphs to have

power-law degree sequences is as follows:

A degree sequence s of length 1000 is constructed using equation 3.2 so that
∑

i si =

3.3. RANDOMIZING MODELS 53

0

0.05

0.10

0.15

0.20

0.25

No Rewiring x10 x100 x1000

Minmal assortativity
Maximal assortativity

Clustering Coe cient in Rewired Graphs

Figure 3.13: Clustering coefficients of random graphs, following 1K randomization.
The starting graphs are generated by the Havel-Hakimi algorithm using the largest-
first/random strategy, with a power-law exponent of 2.6. They are then randomly
rewired to have either maximal or minimal assortativity (see Section 3.3.3). Each bar
represents the mean of 100 graphs, with 95% confidence intervals. Each graph has 1000
vertices and 4000 edges.

Power-law Exponent

2.2 2.4 2.6 2.8 3.0

0.00

-0.05

-0.10

-0.15

-2.0

-0.25

As
so

rt
at

iv
ity

 C
oe

ci
en

t

No Rewirings
x 10 Rewirings
x 100 Rewirings
x 1000 Rewirings

Assortativity of random power-law graphs following degree-preserving random rewirings

Figure 3.14: Assortativity coefficients of random graphs, following 1K randomization
The starting graphs are generated by the Havel-Hakimi algorithm using the largest-
first/random strategy. Each bar represents the mean of 100 graphs, with 95% confidence
intervals. Each graph has 1000 vertices and 4000 edges.

54 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

Power-law Exponent
2.2 2.4 2.6 2.8 3.0

0.00

0.01

0.02

0.03

0.04

0.06

0.05

Cl
us

te
rin

g
Co

e
ci

en
t

Clustering of random power-law graphs following degree-preserving random rewirings

No Rewirings
x 10 Rewirings
x 100 Rewirings
x 1000 Rewirings

Figure 3.15: Clustering coefficients of random graphs, following 1K randomization.
The starting graphs are generated by the Havel-Hakimi algorithm using the largest-
first/random strategy. Each bar represents the mean of 100 graphs, with 95% confidence
intervals. Each graph has 1000 vertices and 4000 edges.

∑
i di where di is the degree of vertex i in any one of the initial graphs. The rewiring

operation is as follows: choose an edge e with endpoints {i1, i2} at random, and a vertex

j also at random. If di1 ≥ si1 then rewire {i1, i2} → {j, i2}. If di2 ≥ si2 then rewire

{i1, i2} → {i1, j}. Otherwise, do no rewiring. This procedure is discussed in Lewis

(2009), where it is shown to converge rapidly on the desired degree sequence. The

central idea is to lower the degrees of vertices where the degree is too high. Since the

total degree never changes, this must also increase the degrees of some other vertices,

which will become the hubs.

The procedure was used to create graphs with a range of power-law exponents from

2.0 to 3.0, 100 graphs were generated for each power-law exponent. The power-law

exponent and p-value were measure as explained in Section 2.2.1. The p-value indicates

the probability that the data are indeed drawn from a power-law distribution, and

any value greater than 0.10 is considered compatible with the power-law hypothesis.

Figure 3.16 reports the mean values of the power-law exponents and p-values for each

attempted power-law exponent, with 95% confidence intervals.

As can be seen in Figure 3.16, the targeted rewiring procedure generates graphs that

match the intended power-law degree sequence closely, but not exactly. The procedure

also appears to work better for smaller power-law exponents with the exception of

2.0, which, as discussed previously in Section 3.2.3, is not actually a realisable degree

sequence.

Since the degree-preserving rewiring scheme described in Section 3.3.2 is known

to converge on a uniform distribution, and there are no such results for the targeted

3.4. SUMMARY 55

2.0 2.2 2.4 2.6 2.8 3.0

0

3.0

0.4

0.8

1.2

1.6

0.2

0.6

1.0

1.4

1.8

2.0

2.2

2.4

2.6

2.8

Rewiring towards a power-law degree sequence

Power-law exponent
p-value

Figure 3.16: Power-law exponents and p-values of Erdős-Rényi random graphs that
have been rewired using the targeted rewiring procedure, in an attempt to create power-
law degree distributions in those networks. The p-value ranges from 0 to 1, and any
value above 0.1 is considered consistent with a power-law degree distribution.

rewiring procedure, targeted rewiring was not investigated further as a method of gen-

erating random power-law graphs.

A similar targeted rewiring procedure was used to generate graphs with maxi-

mal and minimal assortativity as starting points for some of the experiments in Sec-

tion 3.3.2. To generate those graphs, random degree-preserving rewirings were per-

formed in batches of 10. After every 10 rewiring operations, the assortativity of the

entire network was measured. Then, if it had moved away from the intended assorta-

tivity, the entire batch of rewiring operations was rejected and rolled-back. It is easy to

see that this procedure will find a graph with maximal or minimal assortativity, while

maintaining the degree sequence of the original graph.

3.4 Summary

A methodology to be used by the experiments presented in later chapters of this thesis

was described in Section 3.1. This methodology requires the generation of 0K and 1K

simple random graphs. 0K simple random graphs are drawn uniformly at random from

all the simple graphs that have a particular size and mean degree. 1K simple random

graphs are drawn uniformly at random from all the simple graphs that have a particular

degree-sequence. 0K random graphs are easy to generate using a variety of well-known

techniques. The generation of 1K simple random graphs is much harder.

In Section 3.2, a comparison was made between several random graphs models,

popular in the literature, that may be able to generate 1K random graphs. It was

56 CHAPTER 3. METHODOLOGY USING RANDOM GRAPHS

found that the topological properties of the 1K graphs differed qualitatively between

the different random graph models. This reinforces one of the main ideas of this chapter:

that is is essential that random graphs be generated in a truly uniform manner.

The rewiring models reviewed in Section 3.3.2 are known to be capable of gener-

ating 1K random graphs, and they are more convenient from the point of view of the

methodology of Section 3.1. For these reasons, the random rewiring models are used

throughout the remainder of this thesis whenever random graphs are required.

By comparing the topologies of the randomized graphs (Section 3.3.2) to the gen-

erated graphs (Section 3.2), it can be seen that none of the generative models achieve

uniform sampling, although the projected configuration model (Section 3.2.2) comes

the closest. However, this does not imply that it is impossible to directly generate

uniformly random graphs.

There is an algorithm due to Bayati et al. (2007) which could be adapted for power-

law degree distributions, and that approximates uniform sampling to an arbitrary fac-

tor. The Bayati et al. algorithm was not considered for this thesis as it presents several

practical difficulties. It is slow for complex networks (the running time is O(ndmax)

where dmax is the maximum degree, which is O(n) for complex networks). The algo-

rithm is also difficult to implement and is not widely used in the complex networks

literature.

The correctness of the 1K rewiring model (Section 3.3.2) relies on a theorem which

is presented in the following Chapter.

Chapter 4

Proofs of rewiring theorems

Section 3.3.2 discussed an algorithm for uniformly sampling from the space of all simple

graphs that have a particular degree sequence. The algorithm begins with a graph that

is known to have the desired degree sequence, then a series of random degree-preserving

rewiring operations are applied to the starting graph. Each rewiring operation creates

a new graph for the sample, and when the sample becomes large enough it becomes

approximately uniform.

The degree-preserving rewiring operation is illustrated in Figure 3.11. Essentially,

two distinct and non-adjacent edges are selected, and for each edge one of the two

endpoints is selected, then the endpoints are swapped. In this chapter, the degree-

preserving rewiring operation is usually referred to as an edge swap operation, for the

sake of brevity.

In order to see that the rewiring approach samples from the entire space of graphs

with the desired degree sequence, it is necessary to show that any two graphs in that

space can be linked by a chain of rewiring operations. More formally, the rewiring

approach relies on the following theorem:

Theorem 1. Pick two arbitrary simple graphs G1 and GN with the same degree

sequence. Then there is a sequence of edge swap operations that transforms G1 into

GN such that every edge swap preserves the simple graph constraint.

This theorem was first proved by Taylor (1980). Taylor’s paper also includes a proof

for the following related theorem, which is important if one wants to take a sample with

the additional constraint that all the graphs are connected:

Theorem 2. Pick two arbitrary connected simple graphs G1 and GN with the same

degree sequence. Then there is a sequence of edge swap operations that transforms

G1 into GN such that every edge swap preserves the connectedness and simple graph

constraints.

57

58 CHAPTER 4. PROOFS OF REWIRING THEOREMS

Figure 4.1: From left to right: An element of R(G1) (or R(C) for some alternating
cycle C); an element of I(G1) (or I(C) for some alternating cycle C); an edge in G1

but not in R(G1); an edge not in G1 or I(G1); an alternating path.

Taylor’s proof of Theorem 1 operates by induction on the degree sequence. He

shows that G1 and GN can be both be rewired to a common target graph. To do this

he shows how G1 and GN can be transformed into G′
1 and G′

N such that the highest

degree vertex v1 has the same neighbourhood in both G′
1 and G′

N . Then v1 can be

removed from G′
1 and G′

N , and by induction there is a sequence of edge swaps between

G′
1 \ {v1} and G′

N \ {v1}.
The proof of Theorem 2 is more complicated. Essentially, Taylor shows that if an

edge that needs to be rewired would cut the graph into subgraphs A and B, then there

must be a cycle in one of those subgraphs. An edge on the cycle can then be swapped

with another edge to cross the boundary between A and B. This does not disconnect

the graph because the ‘borrowed’ edge lies on a cycle.

This chapter presents an independent proof of both theorems. The proof operates

by directly constructing the required sequences of edge swap operations to transform

G1 to GN without violating the relevant constraints.

Since the required sequences of edge swaps are directly constructed, it is possible

to place an upper bound on the number of edge swaps required to transform between

two graphs. For simple graphs the bound is |E| − 1, where E is the edge set of G1. In

the connected case, the bound is 2|E| − 1 since it may be necessary to use extra edge

swap operations to rewire some edges.

4.1 Preliminaries

The goal is to find a sequence of edge swap operations that transforms an arbitrary

simple graph G1 = (V,E1) into another arbitrary simple graph GN = (V,EN) so that

the degree sequence of G1 matches the degree sequence of GN , and no edge swap ever

violates the simple graph constraint. Every edge swap creates a new graph, so there is

a sequence of graphs G1, . . . , Gi, . . . GN where each can be transformed to the next by

a single edge swap.

To transformGi toGN , some edges must be removed, and some added. Let R(Gi) ⊆
Ei be the set of edges to remove, and I(Gi) ⊆ Ēi be the set of edges to add (where Ēi

is the set of edges in the complement graph of Gi). Since each edge swap creates a new

graph, these two sets must be recomputed following every edge swap. Note also that

4.1. PRELIMINARIES 59

|R(Gi)| = |I(Gi)| since every graph in the sequence has the same degree-sequence and

therefore the same number of edges. Figure 4.1 shows the graphical notation used to

illustrate the proof.

An alternating path is defined as a vertex-labelled path (v1, v2, · · · , vn) where the

edges alternate between elements of Ei and Ēi. All of the edges in an alternating path

are required to be unique, but the path may cross over itself, i.e. the same vertex may

appear multiple times in an alternating path.

If the alternating path begins and ends at the same vertex then it is an alternating

cycle. It will be required to have even length, so that for every pair of vertices in the

cycle, there are two disjoint alternating paths between them. If E(C) is the set of edges

along an alternating cycle C in Gi, then R(C) = E(C) ∩ Ei, and I(C) = E(C) ∩ Ēi.

It is important to note that an alternating cycle according to this definition does not

represent an actual cycle in the underlying graph.

For the connected case (Section 4.3), K ⊆ E(Gi) is a cutset if Gi \ K has more

components than Gi. A bridge is a single-edge cutset. If K is a cutset, but no proper

subset of K is a cutset, then K is a minimum-cut.

4.1.1 An example

As an example of how the required sequence of edge swap operations might be con-

structed in practice, consider Figure 4.2. The top line shows two non-isomorphic graphs,

G1 and GN with the same degree sequence (3, 2, 2, 1, 1, 1). The graphs have been

labelled such that no vertex changes degree between the two graphs.

From the labelling, two edge sets are computed: I(G1) (the set of edges that must

be added to G1 to get GN) and R(G1) (the set of edges that must be removed from

G1 to get GN). The graphical notation from Figure 4.1 is used to show the sets I(G1)

and R(G1) in the second row of Figure 4.2.

Notice that the sets I(G1) and R(G1) in Figure 4.2 are not minimal. If a different

labelling had been chosen, then smaller sets would have been possible. The point is

that any labelling which preserves vertex degrees will suffice, and so finding I(G1) and

R(G1) is not an obstacle to implementing an algorithm that computes the sequence of

edge swaps.

Following the construction of I(G1) and R(G1), the next requirement is to find

the alternating cycles. A general method of finding the alternating cycles is given in

Section 4.2. For the graph in Figure 4.2, it is possible to find the following alternating

cycle: (v1, v2, v4, v5, v2, v6, v4, v3, v1).

An alternating cycle is rewired by reducing it to a smaller alternating cycle, which

can be rewired recursively. The required reductions are explained in Section 4.2.2.

Returning to the example graph, the original alternating cycle can be split into two

60 CHAPTER 4. PROOFS OF REWIRING THEOREMS

v1 v2 v3

v4

v5v6 v1

v2 v3

v4 v5

v6

v1 v2 v3

v4

v5v6

Figure 4.2: An example of how the sequence of edge swap operations is constructed
in practice. Top-left : G1. Top-right : A graph GN with the same degree sequence as
G1, but not isomorphic to G1. Bottom: Construction of the sets I(G1) (dotted) and
R(G1) (solid), using the notation in Figure 4.1.

v4

v1 v2 v3

v5v6
v4

v1 v2 v3

v5v6

v4

v1 v2 v3

v5v6

Figure 4.3: A sequence of three edge swap operations that rewires the graph G1 (from
Figure 4.2) to GN (also from Figure 4.2). The edges and endpoints that are swapped
are highlighted in red.

4.2. PROOF FOR SIMPLE (UNCONNECTED) GRAPHS 61

4-cycles (v2, v6, v4, v5, v2) and (v1, v2, v4, v3, v1) which are both trivial to rewire. The

edge swap operations are as follows:

1. {e26, e45} → {e25, e46}

2. {e12, e43} → {e13, e42}

Thus, G1 was rewired to GN using two edge swap operations. The full sequence of edge

swap operations is illustrated in Figure 4.3.

4.2 Proof for simple (unconnected) graphs

The essence of the proof is to choose an edge swap to apply to Gi such that |R(Gi+1)| <
|R(Gi)| (and since |R(G)| = |I(G)|, |I(Gi+1)| < |I(Gi)|). If such an edge swap can

always be constructed, then G1 can be rewired to GN in a finite number of steps as

required (sinceR(G) is finite). The edge swap operations are found by selecting adjacent

edges that lie on alternating cycles, as described in Section 4.2.2. The construction of

the alternating cycles is described in the next section.

4.2.1 Alternating cycle construction

Gi and GN have the same degree sequence, and so the vertices can be labelled such

that no vertex changes degree when Gi is rewired. This implies that for every vertex v,

|Nv ∩R(Gi)| = |Nv ∩ I(Gi)|, where Nv is the set of edges incident on v. Now for every

edge uv in R(Gi)∪I(Gi), an alternating path can be constructed as follows: The initial

path is (u, v). Suppose uv ∈ I(Gi), then there are edges xu ∈ R(Gi) and vy ∈ R(Gi),

so the initial path can be extended to (x, u, v, y). If uv ∈ R(Gi) then the path can be

extended by a similar argument.

Since every alternating path can be extended in this way, and the set I(Gi)∪R(Gi) is

finite, every alternating path will eventually loop back on itself and form an alternating

cycle. The graph can be rewired by rewiring the alternating cycles individually.

4.2.2 Rewiring alternating cycles

An alternating cycle C ∈ Gi can be rewired using the following recursive procedure.

First, if the alternating cycle is of length four (the 4-cycle), then it can be rewired in

one operation (Figure 4.4), reducing R(C) by two.

Any k-cycle C where k > 4 can be reduced to a smaller cycle in the following way.

Pick four distinct consecutive vertices (a, b, c, d). Let X be the rest of the cycle, so the

full cycle is (a, b, c, d,X, a).

62 CHAPTER 4. PROOFS OF REWIRING THEOREMS

To see that it is always possible to choose four distinct consecutive vertices, note first

that every three consecutive vertices (a, b, c) on an alternating cycle must be distinct.

This is because, since (a, b, c) are part of an alternating cycle, there must be edges

ab ∈ I(C) and bc ∈ R(C) (or ab ∈ R(C) and bc ∈ I(C)), and ab �= bc since the sets

I(C) and R(C) are disjoint. If four consecutive vertices (a, b, c, d) are selected, however,

then it may be that a = d as shown in Figure 4.5. In such cases, there is another vertex

e /∈ {a, b, c, d} (also shown in Figure 4.5), and (b, c, d, e) form four distinct consecutive

vertices as required.

Figure 4.4: Left : The 4-cycle. Right : The 4-cycle following a single edge swap
operation.

a

b

c

e

f

d

Figure 4.5: Four consecutive vertices (a, b, c, d) on an alternating cycle C where a = d.
In this case, since C is an alternating cycle, there are two more vertices e, f /∈ {a, b, c, d}
as shown in the figure. Now there are four distinct consecutive vertices (b, c, d, e) as
required.

The remainder of this section assumes that bc ∈ R(C). If bc ∈ I(C) then the edge

classes (I edges and R edges) are switched, but the cases are otherwise the same.

Now there are two cases (illustrated in Figure 4.6):

Case 1

There is an edge ad in G. Then there is a 4-cycle (a, b, c, d, a). After rewiring this

4-cycle, the original k-cycle becomes the (k− 2)-cycle (a, d,X, a). Rewiring the 4-cycle

reduces R(C) by 1.

4.2. PROOF FOR SIMPLE (UNCONNECTED) GRAPHS 63

Case 2

There is no edge ad. Then there is a (k−2)-cycle (a, d,X, a). After recursively rewiring

the (k − 2)-cycle, there is a 4-cycle (a, b, c, d, a), which can be rewired trivially.

a

b

c d

X

a

b

c d

X

1

a

b

c d

a

b

c d

X

2

Figure 4.6:
Case 1 : There is an edge ad, so rewire the 4-cycle (a, b, c, d, a) to get the reduced cycle
(a, d,X, a)
Case 2 : There is no edge ad, so recursively rewire the (k − 2)-cycle (a, d,X, a) to get
the 4-cycle (a, b, c, d, a)

Note that in both cases, an edge e /∈ E(C) is included in an edge swap operation.

In Case 1, this edge becomes part of I(C) for the reduced cycle; for Case 2 it becomes

part of R(C).

4.2.3 A special case

Case 2 from Section 4.2.2 attempts to rewire an alternating cycle (a, b, c, d,X, a) by

identifying a smaller alternating cycle (a, d,X, a). However, it is possible that the edge

ad ∈ Ēi is included in the alternating path X, a case that requires special handling.

Assume that the edge ad occurs on every alternating path from a to d. If there

were an alternating path that did not include ad, then the reduction could be carried

out as usual using that path. If every alternating path from a to d includes ad, then

ad ∈ I(C) (in this example where bc ∈ R(C)) and there are four distinct vertices e, f ,

g, and h as shown in Figure 4.7. These vertices must be distinct, otherwise there would

be an alternating path from a to d excluding ad. For the same reason, there cannot be

any edge ef ∈ I(C) ∪R(C).

Now, since e �= f , there are two cases (illustrated in Figure 4.7):

64 CHAPTER 4. PROOFS OF REWIRING THEOREMS

a

b

c d

e

f

g

h

a

b

c d

e

f

g

h

1

a

b

c d

e

f

g

h

a

b

c d

e

f

2

Figure 4.7: A k-cycle where the edge ad ∈ I(C) occurs on every alternating path from
a to d. This implies the situation illustrated where there are four distinct vertices e, f ,
g, and h.

Case 1 : There is no edge ef so rewire the 4-cycle (a, d, e, f, a).
Case 2 : There is an edge ef , so rewire the (k − 4)-cycle (a, d, g, . . . , e, f, . . . , h, a)
recursively. This leaves the 6-cycle a, b, c, d, e, f, a) to be rewired.

Case 1

There is no edge ef . Then there is a 4-cycle (a, d, e, f, a). After rewiring this 4-cycle,

the original k-cycle becomes the (k − 2)-cycle (a, b, c, d, g, . . . , e, f, . . . , h, a). R(C) is

reduced by 1.

Case 2

There is an edge ef . Then there is a (k − 4)-cycle (a, d, g, . . . , e, f, . . . , h, a). After

rewiring the (k − 4)-cycle, there is a 6-cycle (a, b, c, d, e, f, a) which can be rewired

using the reductions shown in Figure 4.6. Note that there is also a (k − 2)-cycle

(a, b, c, d, g, . . . , e, f, . . . , h, a), but rewiring the (k − 4)-cycle instead will be more con-

venient when the proof is extended to simple connected graphs in Section 4.3.

Every edge swap reduces R(C) by 1 or 2 edges, and the last edge swap always

reduces R(C) by 2, so the alternating cycle is rewired using no more than R(C) − 1

edge swap operations.

This completes the proof of Theorem 1. The alternating cycle based proof can now

be extended to the case of simple connected graphs, i.e. graphs with only one connected

component. In this case, every edge swap operation is required to preserve the property

that the graph is connected.

4.3. EXTENSION TO SIMPLE CONNECTED GRAPHS 65

4.3 Extension to simple connected graphs

The reductions from Section 4.2 are of two kinds. Those that identify a 4-cycle to be

rewired immediately, and those that identify a smaller alternating cycle to be rewired

recursively. Case 1 from Section 4.2.2 and Case 1 from Section 4.2.3 are of the first

kind. Case 2 from Section 4.2.2 and Case 2 from Section 4.2.3 are of the second kind.

The reductions that identify a smaller alternating cycle to be rewired recursively can

be applied without disconnecting the graph. For the reductions that identify a 4-cycle

to be rewired immediately, new cases are required since it is not necessarily possible

to rewire a 4-cycle directly without disconnecting the graph. When it is necessary

to rewire a 4-cycle C that disconnects the graph, an alternative 4-cycle C ′ will be

constructed such that swapping the edges of R(C ′) does not disconnect the graph.

C ′ is chosen so that |R(G)∪ I(G)| is reduced by at least two when C ′ is rewired, so
that the alternative edge swaps make the same progress towards GN as the edge swaps

from the simple case. However, there is a case where a sequence of four edge swaps may

reduce |R(G) ∪ I(G)| by as little as 4 edges (Figure 4.11). This increases the upper-

bound on the number of edge swap operations to 2|E| − 1. (Since now the number of

edge swaps required could be as high as |R(G1)∪I(G1)|−1 and |R(G1)∪I(G1)| ≤ 2|E|).

4.3.1 4-cycles

In the simple case (Section 4.2.2), it was always possible to rewire a 4-cycle with one

edge swap. However, this edge swap may disconnect the graph as shown in Figure 4.8.

In the case that C disconnects the graph, another cycle C ′ can be constructed such

that there is at most one edge e ∈ C ′ \ (R(Gi) ∪ I(Gi)). Thus, if C ′ is rewired,

|R(Gi+1)∪I(Gi+1)| ≤ |R(Gi)∪I(Gi)|−2, guaranteeing that every edge swap operation

makes progress towards GN . In the case that C ′ also cuts the graph, the C ′ construction
can be applied iteratively to obtain a finite sequence of 4-cycles, where the last 4-cycle

in the sequence does not cut the graph.

4.3.2 The C ′ construction

Assume that C, the 4-cycle in Gi to be rewired, has R(C) ⊆ R(Gi) and there is at

most one edge in I(C) \ I(Gi). This assumption is assured by ordering the reductions

as described in Section 4.3.3.

If R(C) is a cutset in Gi, then there is an edge xy ∈ I(Gi) that crosses the boundary

created by the cutset, as shown in Figure 4.8. The edge xy is used to construct a new

cycle, C ′, as shown in Figure 4.9. R(C ′) and I(C ′) follow the same assumptions made

for C, so if R(C ′) is also a cutset in Gi, then the C ′ construction can be applied again

to construct a sequence of 4-cycles.

66 CHAPTER 4. PROOFS OF REWIRING THEOREMS

C

x

y

Figure 4.8: A 4-cycle in Gi that cuts the graph. If C were rewired using a single edge
swap, then the graph would be separated into the two components indicated in grey.
Since the target graph GN is connected, there must be an edge xy ∈ I(Gi). This edge
is used to construct another 4-cycle that does not cut the graph (it is always possible
to find such a cycle).

C C'

x

y

w

z

C'

x

y

w

z

a

b
C

x

y

Figure 4.9: Left : C is a 4-cycle in Gi and R(C) is a cutset, but GN is connected
so there must be an edge xy ∈ I(Gi) that crosses the boundary created by R(C).
The alternating cycle construction from Section 4.2.1 finds the edges xw ∈ R(Gi) and
yz ∈ R(Gi). In the case that wz ∈ R(C) (top), there is a 4-cycle C ′ = (a, b, z, y, a)
which does not cut the graph (since wz /∈ R(C ′) crosses the same boundary). Otherwise
there is no edge wz and C ′ = (x, y, z, w, x) (bottom).

4.3. EXTENSION TO SIMPLE CONNECTED GRAPHS 67

Suppose that neither C nor C ′ can be rewired without cutting the graph. It is now

necessary to distinguish between a minimum-cut (neither edge in R(C) is a bridge in

Gi), and a non-minimum-cut where both edges are bridges in Gi. There are two cases:

Case 1

If C ′ is a minimum-cut, then so is C; the reason is shown in Figure 4.10. In this

case, C and C ′ overlap as shown in Figure 4.11, and can be rewired by a sequence of

four edge swaps. In the worst case, both C and C ′ may include one edge each from

Ēi \ I(Gi). Therefore, the four edge swap operations required to rewire C and C ′ may

reduce |R(Gi) ∪ I(Gi)| by as little as 4 edges.

The bound of |E|− 1 on the number of edge swaps for the simple case (Section 4.2)

was based on the assumption that every edge swap reduces |R(Gi)∪ I(Gi)| by at least

2. Hence, the upper bound for the connected case increases to 2|E|−1 (it remains true

that the last edge swap rewires two edges).

Case 2

If C ′ is not a minimum-cut, then repeat the C ′ construction to obtain a C ′′. This must

always be possible when C ′ cuts the graph. Repeated application of the C ′ construction
leads to a sequence of 4-cycles C1, . . . , Ci, . . . , Cn.

A simple inductive argument illustrated in Figure 4.12 shows that every time the

C ′ construction is applied, at least two new edges from the finite set R(Gi) ∪ I(Gi)

are required, and therefore the sequence of 4-cycles is finite. Since the sequence is

finite, it must be possible to rewire the last 4-cycle in the sequence without cutting the

graph. Since every C ′ has at most one edge e /∈ R(Gi) ∪ I(Gi), |R(Gi+1) ∪ I(Gi+1)| ≤
|R(Gi) ∪ I(Gi)| − 2, as required.

4.3.3 Ordering the reductions

The C ′ construction of Section 4.3.2 shows how to rewire a 4-cycle C in Gi that would

cut the graph, but it assumes that all such cycles have R(C) ⊆ R(Gi) and there is at

most one edge in I(C) \ I(Gi). These assumptions could be violated when edges from

Ei \R(Gi) or Ēi \ I(Gi) are included by the reductions in Sections 4.2.2 and 4.2.3. The

solution is to order the reductions to avoid 4-cycles that do not satisfy the assumptions.

Assume that the cycle C includes at most one edge xy ∈ Ei \ R(Gi) ∪ Ēi \ I(Gi).

This is certainly true prior to applying any reductions. If C is a 4-cycle, then it must

be one of the two cases shown in Figure 4.13, and is handled as described in that figure.

68 CHAPTER 4. PROOFS OF REWIRING THEOREMS

C C'

x

y

a

b

Figure 4.10: If C in Gi is not a minimum-cut, then C ′ cannot be a minimum-cut
either. Suppose C ′ is a minimum-cut and C is not, then there must be a path from a
to b in Gi. That implies that xy lies on a cycle in Gi, so C could have been rewired
without cutting the graph, a contradiction.

Figure 4.11: If C and C ′ are both minimum-cuts, then they overlap as shown. A
sequence of four edge swaps rewires the two 4-cycles.

Ci-1 Ci

x

y

w

z
A

B1 B2

Figure 4.12: Two 4-cycles Ci and Ci−1 in the sequence C1, . . . , Cn. Removing R(Ci−1)
cuts the graph into the components A, B1, and B2 (or A and B1 ∪ B2 if Ci−1 is a
minimum-cut). Assume by induction that all Cj for j < i − 1 are in A (trivial for
i = 2), then xy ∈ I(G1) and xw ∈ R(G1) do not occur in any C1, . . . , Ci−1

4.4. BOUNDS 69

The reductions described in Sections 4.2.2 and 4.2.3 begin by choosing four distinct

consecutive vertices (a, b, c, d) in the alternating cycle (a, b, c, d,X, a). If these vertices

are chosen such that the (at most one) edge xy ∈ Ei \R(Gi) ∪ Ēi \ I(Gi) is one of the

edges ab, bc, or cd, then it is possible to apply the reduction without increasing the

number of edges in the set Ei \R(Gi) ∪ Ēi \ I(Gi).

The four distinct consecutive vertices (a, b, c, d) can be chosen so that xy ∈ {ab, bc, cd}
in the following way. First, let b = x and c = y, then choose any a and d on the al-

ternating cycle so that (a, b, c, d) are consecutive. Now if a = d, then there is another

vertex e /∈ {a, b, c, d} as shown in Figure 4.5 and (b, c, d, e) are distinct and consecutive

as required.

Now there are four cases: Cases 1 and 2 from Section 4.2.2, and Cases 1 and 2 from

Section 4.2.3. Case 1 from Section 4.2.3 identifies a 4-cycle that always matches one of

the two cases shown in Figure 4.13, so it can be handled as described in that figure.

Case 2 from Section 4.2.2 and Case 2 from Section 4.2.3 both identify a smaller

alternating cycle (a, d,X, a). Since the smaller alternating cycle excludes the three

edges ab, bc, and cd, it also excludes the edge xy. Thus, the reduced cycle still has at

most one edge in the set Ei \R(Gi) ∪ Ēi \ I(Gi).

Case 1 from Section 4.2.2 identifies a 4-cycle (a, b, c, d, a) to rewire. Since one of ab,

bc, cdmay be the edge xy, and since admay also belong to the set Ei\R(Gi)∪Ēi\I(Gi),

up to two edges in the 4-cycle may belong to the set Ei \ R(Gi) ∪ Ēi \ I(Gi). If the

4-cycle includes at least one edge from each of R(Gi) and I(Gi), then it is handled as

shown in Figure 4.13 Case 2. Otherwise it is one of the four cases shown in Figure 4.14

and is handled as shown in that figure.

4.4 Bounds

For the simple graph case (Section 4.2), every edge swap operation reduces the length

of an alternating cycle by at least 2 edges. The total length of all the alternating

cycles in the initial graph is |R(G1) ∪ I(G1)|, which is bounded above by 2|E| (since
|R(G1)| ≤ |E| and |I(G1)| = |R(G1)|). The last edge swap always rewires a 4-cycle,

reducing |R(GN−1) ∪ I(GN−1)| by 4. Thus, the upper bound on the number of edge

swaps required for the simple case is 1
2(|I(G1) ∪R(G1)| − 2) ≤ |E| − 1.

For the connected case, essentially the same alternating cycle reductions are used.

When it is not possible to rewire a 4-cycle C, an alternative 4-cycle C ′ is constructed
such that there is at most one edge e ∈ I(C ′) \ I(Gi). Therefore, rewiring C ′ reduces
|R(Gi)∪ I(Gi)| by 2 edges, making the same amount of progress as the reductions used

in the simple case.

However, there is a case where a sequence of four edge swaps may reduce |R(G) ∪
I(G)| by as little as four edges. Now, up to |R(G1)∪I(G1)| edge swaps may be required

70 CHAPTER 4. PROOFS OF REWIRING THEOREMS

1 2a

b c

d a

b c

d

x

Figure 4.13: If a 4-cycle C in Gi that must be rewired includes at least one edge from
each of R(Gi) and I(Gi), then it is one of the two cases shown in this figure. For each
case, it is possible to construct a 4-cycle that satisfies the requirements to apply the C ′

construction described in Section 4.3.2.

Case 1 : the cycle satisfies the requirements of Section 4.3.2 for the construction of
an alternative cycle C ′. Specifically, R(C) ⊆ R(Gi) and there is at most one edge in
I(C) \ I(Gi).
Case 2 : there is an edge cd ∈ R(C) \R(Gi) (note that the edge ad shown in the figure
may or may not belong to I(Gi) and this does not affect the following construction). An
alternative 4-cycle is constructed as follows: due to the alternating cycle construction
(Section 4.2.1) there must be an edge xc ∈ R(Gi), but there cannot be an edge ax
because R(C) is a cutset in Gi. So the required 4-cycle is (a, b, c, x, a).

in the worst case. Since |R(G1)∪I(G1)| ≤ 2|E|, and the last edge swap rewires a 4-cycle

(as in the connected case), the bound for the connected case becomes 2|E| − 1.

Each edge swap can rewire at most 2 edges, and there are pairs of graphs which

require every edge to be rewired, so at least |E|/2 edge swaps may be required in some

cases. This suggests that the upper bounds of |E| − 1 and 2|E| − 1 (for the simple and

connected cases respectively) are close to optimal.

4.5 Summary

This chapter provides an alternative proof of Taylor’s theorems about graph rewiring,

which demonstrate that any graph can be rewired to any other of the same degree

sequence, even when constrained to simple and connected graphs. The proof presented

in this chapter directly constructs the required sequence of edge swap operations, as

opposed to Taylor’s proof which only proves the existence of such a sequence.

By directly constructing the edge swap sequences, it is possible to place an upper

bound on the number of edge swap operations required to rewire between arbitrary

graphs. The bound is |E| − 1 in the simple case, but 2|E| − 1 for the connected case

since some situations may required extra edge swaps. Note that there are arbitrary

pairs of graphs for which |E|/2 edge swap operations may be required since each edge

swap rewires two edges, and it may be necessary to rewire all edges. This suggests that

the upper-bound of |E| − 1 is close to optimal.

4.5. SUMMARY 71

a

b

c d

X

e

a

e, b

c d

X

a

b

c d

X

e

A
B

a

b

c d

X
e

1 2

3 4

Figure 4.14: Case 1 from Figure 4.6 requires the rewiring of a 4-cycle C = (a, b, c, d, a)
in Gi, which may disconnect the graph. The reduction ordering described in Sec-
tion 4.3.3 guarantees that there are at most two edges in C that are not in R(Gi)∪I(Gi).
The following four cases are only required if R(C) ∩R(Gi) = ∅ or if I(C) ∩ I(Gi) = ∅,
otherwise Case 2 from Figure 4.13 would apply.

Case 1 : bc ∈ R(C)\R(Gi). Since C is an alternating cycle, there is an edge de ∈ R(C)
as shown in the figure. Since R(C) is a cutset, e �= b and there is no edge eb. Thus,
(b, c, d, e, b) can be rewired without cutting the graph.
Case 2 : bc ∈ I(C) \ I(Gi). Since C is an alternating cycle, there is an edge de ∈ I(C).
Assume e = b. Then there is a 4-cycle (a, b, d, c, a) which can be rewired without cutting
the graph. Rewiring (a, b, d, c, a) reduces R(Gi) by 2, so this rewiring makes progress
towards rewiring the entire graph.
Case 3 : As for Case 2 except that e �= b and there is no edge eb. Then recursively
rewire the alternating cycle (a, b, e,X, a) as shown in the figure. Note that the vertex
e may be in the component labelled A or the component labelled B, and this does not
make any difference in this case.
Case 4 : As for Case 3 except that there is an edge eb. Since R(C) is a cutset, e must be
in the same component as b. Now the 4-cycle (e, b, c, d, e) can either be rewired directly
(reducing the original alternating cycle as required), or if it cuts the graph, then it is
handled as per Case 2 in Figure 4.13.

72 CHAPTER 4. PROOFS OF REWIRING THEOREMS

Chapter 5

The target set selection problem

The previous chapters have discussed the topological properties of complex networks

(Chapter 2), and some of the random graphs models used to study those properties

(Chapter 3). This chapter introduces two related problems concerning dynamic spread-

ing processes on complex networks. The remainder of the thesis will aim to apply the

theory from Chapters 2 and 3 to the problems described in this chapter. This will

demonstrate how principles of network theory can be used to guide the design of algo-

rithms optimised for complex networks.

There are numerous models for the simulation of how information may be dynam-

ically transmitted and spread throughout complex networks, see Barrat et al. (2008)

and Boccaletti et al. (2006) for a review of the better known models. In general, these

models proceed in discrete timesteps. At each timestep the vertices are divided into

those that are active and those that are inactive, where the active vertices are those

that have been influenced by the spreading process. The spreading models considered

in this chapter arise from the study of epidemiology (modelling the spread of infec-

tious disease), rumour dynamics, and word-of-mouth marketing. This thesis is not

concerned with the details of exactly what is being spread through the network, only

with problems relating to the simulation procedures themselves.

Both of the problems presented in this chapter are concerned with finding a target

set, a target set being the initial set of vertices from which some spreading process

begins. The first problem, minimum target set, is discussed in Section 5.1. Here

the goal is to find a minimum size target set from which influence will spread to the

entire network. Minimum target set has been extensively studied in the context of a

deterministic spreading process known as the tipping model or the thresholds model

(see Ben-Zwi et al. (2009) and Nichterlein et al. (2010)). This version of the problem

is the one used in this thesis.

The second problem, maximum activation-set, is discussed in Section 5.2. The

goal of maximum activation set is to find a target set of size k which will lead to the

73

74 CHAPTER 5. THE TARGET SET SELECTION PROBLEM

1
1

2 2
3

3
1

1

1
1

2 2
3

3
1

1

1
1

2 2
3

3
1

1

1
1

2 2
3

3
1

1

Figure 5.1: The tipping model. The numbers inside the vertices are the activation
thresholds. Activated vertices are coloured blue, inactive vertices remain white. The
initial target set (1 vertex) is shown on the left. To the right are shown the results of
three successive activation rounds. No further activations are possible with this target
set under these thresholds.

largest set of activated vertices (following many rounds of some spreading process).

Maximum activation set has been studied under a wide range of very general spreading

models (Kempe et al., 2005). Only one variation is considered in this thesis: Maximum

activation set under the well-known SIR model (defined in Section 5.2). Justification

for this particular choice is made in Section 5.2.

The main concern of this thesis is not the fine differences between different spreading

processes, but rather how the theory of complex networks can inform the design of

algorithms. Minimum target set and maximum activation set (under the SIR model) are

chosen because the underlying spreading processes operate in a similar manner (they are

both progressive as discussed in Sections 5.1 and 5.2), but one of the models (tipping) is

deterministic while the other (SIR) is stochastic. This leads to interesting comparisons

between what works in a deterministic setting and what works in a stochastic setting,

without complicating the experiments with too many parameters.

5.1 Minimum target set

This problem concerns a deterministic spreading process known as the tipping model,

introduced by Ben-Zwi et al. (2009) and based on a more general model studied by

Kempe et al. (2003). In the tipping model (also known as the thresholds model), every

vertex is in one of two states, active or inactive. Additionally, every vertex v has an

integer threshold t(v). Activation proceeds in rounds. During each round, for every

vertex v the number of activated neighbours of v is compared to t(v). If the number of

activated neighbours n(v) equals or exceeds t(v), then v becomes activated. Figure 5.1

illustrates the process in a small graph.

The tipping model simulates a progressive process where active vertices remain

active. Thus, the simulation reaches a point where no more vertices can change state,

and this happens after no more than n rounds. This property allows one to easily

5.1. MINIMUM TARGET SET 75

simulate the cascade of activations in linear time. The algorithm is based on breadth-

first search. Every active vertex is placed on a queue. Vertices are removed from

the queue one by one and the neighbours are examined. Any neighbours that can be

activated are marked as activated, then placed on the back of the queue. This continues

until the queue is empty.

The problem is to find a minimum size target set (i.e. an initial set of vertices to

activate) which will lead to a cascade of activations resulting in the activation of every

vertex in the network. This is the same problem studied by Ben-Zwi et al. (2009). Since

the sequence of activations is deterministic, it is possible to find a target set which is

guaranteed to activate the entire network. In the case of a stochastic model, such as

the SIR model used in Section 5.2, no such guarantee can be made. Hence a different

but related problem (maximum activation set) is studied in that context.

An important issue to consider when using the tipping model is how the vertex

thresholds are assigned. Due to the way the model is defined, any vertex with threshold

0 will be activated on the next round even if none of its neighbours are active. If

t(v) > d(v) (where d(v) is the degree of v), then v can never be activated by its

neighbours, and so it must belong to any minimum target set. If all the vertices have

threshold 1 then the problem is trivial. Assuming the network is connected, any single

vertex constitutes a target set for the entire network.

In practice, the thresholds are set in one of several ways (see for example Shakarian

and Paulo (2012) or Nichterlein et al. (2010)). Under the constant thresholds scheme,

t(v) = min(c, d(v)) for some constant c > 1 and all vertices v. Under the proportional

thresholds scheme, t(v) = max(1, r · d(v)) for some ratio 0 < r ≤ 1, and the thresholds

are rounded to integers. A special case of proportional thresholds is majority thresholds,

where r = 0.5. One further way to set the thresholds is probabilistically. This scheme

is known as linear thresholds and is employed by Kempe et al. (2005). The thresholds

are chosen uniformly at random from the interval 1 ≤ t(v) ≤ d(v) for each vertex v.

The experiments presented in this thesis compare the performance of algorithms

under constant thresholds and under proportional thresholds. This ensures that the

activation process remains deterministic, simplifying the experiments. If the thresholds

were set randomly (using linear thresholds for example) then the size of a minimum

target set could fluctuate significantly between experiments. By considering propor-

tional thresholds with a range of values for r, it is possible to compare the effects of

generally low thresholds with generally high thresholds. Constant thresholds, on the

other hand, model a situation in complex networks where a few high degree vertices

have proportionally much lower thresholds than the low degree vertices of the majority.

Thus, contrasting the results for constant thresholds with the results for proportional

thresholds hints at the effects of hubs on the cascade of activations.

76 CHAPTER 5. THE TARGET SET SELECTION PROBLEM

An important special case is when t(v) = d(v) for all vertices v. In this case, a

minimum target set is equivalent to a minimum set of vertices C such that every edge

is adjacent to a vertex in C. This is exactly equivalent to the well known NP-complete

minimum vertex cover optimisation problem, discussed at length in Section 5.3.1. Due

to this trivial reduction to vertex cover, the minimum target set selection problem is

also NP-complete. Furthermore, minimum target set is known to be APX-hard (Chen

et al., 2009). Thus, there is no polynomial time algorithm to solve general instances

of the minimum target set problem, and there is no polynomial time approximation

scheme.

Despite being NP-complete in general, it is possible to solve some restricted in-

stances of minimum target set selection exactly. The case where t(v) = 1 for all v

is a trivial example. However, polynomial time algorithms have also been devised for

graphs with low treewidth (Ben-Zwi et al., 2009), graphs with small vertex covers, small

cluster deletion sets, and small feedback edge sets (Nichterlein et al., 2010). These al-

gorithms are discussed in detail in Section 5.3, including an evaluation of how well they

perform on complex networks.

5.2 Maximum activation set

Whereas the minimum target set selection problem is concerned with finding a minimum

size target set that activates the entire network, the maximum activation set problem

seeks a size k target set (for some integer k) that activates the maximum number

of vertices. The maximum activation set problem makes sense for a deterministic

spreading process such as the tipping model discussed in Section 5.1, and also for

stochastic spreading processes. For stochastic spreading processes, the goal is to find a

target set which maximises the expected size of the activation set.

Like minimum target set selection, maximum activation set is NP-complete. In this

case, though, there is a polynomial time approximation algorithm due to Kempe et al.

(2005) with an approximation factor of 1 − 1/e − ε where e is the base of the natural

logarithm and ε > 0 is an arbitrary real number.

Kempe et al. use a very general spreading model in their analysis, of which the

well-known SIR model is a special case. The SIR model comes from epidemiology and

was intended to model epidemic diseases, which spread rapidly through a population

before dying out as people become immune. The SIR model predates the study of

complex networks, and originally included an implicit assumption that the epidemic

to be modelled occurs in a random network (similar to the Erdős-Rényi style networks

described in Section 3.2.1). The model is easily adapted to complex networks, allowing

for analytical comparisons between the random network and complex network cases

(see Newman (2003), Boccaletti et al. (2006), Barrat et al. (2008)).

5.3. PARAMETRIZATION OF MINIMUM TARGET SET 77

Under the SIR model, every vertex is in one of three states, (S)usceptible, (I)nfected,

or (R)ecovered. Infected and Recovered are the activated states, Susceptible is the in-

active state. Additionally, there is a parameter 0 ≤ β ≤ 1 representing the infectivity

of the disease (with 1 being highly infective and 0 being non-contagious). At each

timestep, every Infected vertex infects each of its Susceptible neighbours with proba-

bility β. Then, the Infected vertices change to the Recovered state. Recovered vertices

remain in the recovered state.

Like the tipping model, the SIR model is progressive, because the number of active

(Infected or Recovered) vertices never decreases. Eventually, all the vertices are either

Recovered or Susceptible, but there are no Infected vertices. Thus, it is possible to

compute the expected size of an activation set using essentially the same algorithm as

for the tipping model (described in Section 5.1). The expected size of an activation

set is computed by running a large number of trial simulations of the SIR process,

then computing the average size of the activation sets. The approximation algorithm

of Kempe et al. (2005) relies on this method of computing the expected size of the

activation set.

Although the maximum activation set is relevant for a variety of spreading models,

this thesis only considers maximum activation set under the SIR model. This simplifies

the experiments that follow in Chapter 7 by intentionally reducing the number of

parameters.

5.3 Parametrization of minimum target set

This section concerns the polynomial time algorithms for minimal target set selection

proposed by Ben-Zwi et al. (2009) and Nichterlein et al. (2010). Since the general prob-

lem is NP-complete (see Section 5.1), these algorithms are only applicable to restricted

subsets of graphs. This section aims to determine whether or not the algorithms are

applicable to typical complex network topologies.

The algorithms of Ben-Zwi et al. (2009) and Nichterlein et al. (2010) are based

on the theory of parametrized complexity. Parametrized complexity is founded on the

observation that many problems that are NP-complete in general can be solved in

polynomial time in some restricted cases. One can often identify a parameter of the

input that distinguishes between the intractable (NP-complete) cases, and the tractable

cases (which permit polynomial time algorithms).

A suitable parametrization of the problem permits the design of parametrized algo-

rithms, where the running time depends on both the parameter and the input size (as

opposed to traditional algorithms where the analysis of the running time depends only

on the input size). There is extensive literature on the subject of parametrized com-

plexity, and many NP-complete problems are known to permit efficient parametrized

78 CHAPTER 5. THE TARGET SET SELECTION PROBLEM

solutions (Downey and Fellows, 2012).

The performance of a parametrized algorithm will be determined by how the running

time of the algorithm depends on the parameter. A problem is said to be fixed-parameter

tractable (FPT) if it permits an algorithm with running time O(f(k) ·nc) where k is the

parameter, n is the input size (number of vertices or edges for graph problems), and

c is a constant. f is an arbitrary function of k, and in the case of FPT parametrized

versions of classically NP-complete problems, f grows exponentially or worse. Notice

that if the parameter is regarded as a constant, then f(k) contributes only a constant

factor to the otherwise polynomial running time. Thus, a well designed FPT algorithm

runs in polynomial time when the parameter is fixed, and the constant factor is small

when parameter is sufficiently small.

The algorithm of Ben-Zwi et al. (2009) uses the treewidth of the graph as a pa-

rameter. Treewidth measures, in a sense, how tree-like a graph is (Bodlaender and

Koster, 2008). A tree has treewidth 1, whereas the treewidth of a k vertex clique is

k − 1. Treewidth is defined as the width of a minimum tree-decomposition. A tree-

decomposition places the vertices of a graph into overlapping bags of connected vertices,

so that for every edge in the graph there is a bag containing both the endpoints. The

bags are connected together in a tree in such a way that for every vertex v, the subtree

of bags containing v is connected. The width of a tree-decomposition is equal to the

number of vertices in the largest bag less one, and a minimum tree-decomposition is

one that minimises this width.

Algorithms based on treewidth, such as the Ben-zwi et al. algorithm, require a

tree-decomposition of the input graph. Computing a minimum tree-decomposition is

an NP-complete problem in itself. However it is often possible to find a small tree-

decomposition using approximation algorithms. Section 5.3.4 considers the treewidth

of the complex networks listed in Table 2.1, by computing upper and lower bounds.

Minimum target set selection can be solved trivially for trees, so if one assumes the

problem is easier the closer the graph is to a tree, then treewidth is an obvious choice for

the parameter. Ben-Zwi et al. (2009) give an algorithm for minimum target set selection

parametrized by the treewidth of the graph w with running time nO(w). This algorithm

is not FPT, as the degree of the polynomial in n depends on the parameter w, so it is

only practical when the treewidth is extremely small. Ben-Zwi et al. (2009) additionally

prove that there is no algorithm with running time no(
√
w) (unless P = NP), so their

nO(w) algorithm is close to optimal.

The three parametrized versions of the problem considered by Nichterlein et al.

(2010) are all FPT. They parametrize the problem by vertex cover number (τ) to get a

running time of O(2(2
τ+1)·τ ·m) where m is the number of edges. When parametrized

by cluster edge deletion number (ξ), they get a running time of O(4ξ ·m+n3) where n

5.3. PARAMETRIZATION OF MINIMUM TARGET SET 79

is the number of vertices. Finally, when parametrized by feedback edge set number (f),

the running time is 4f · nO(1).

Nichterlein et al. claim that their FPT algorithms are suitable for complex networks,

specifically social networks (Nichterlein et al., 2013). The remainder of this section

investigates this claim by computing the values of the parameters on the complex

networks listed in Table 2.1.

A vertex cover of a graph is a set of vertices C such that every edge is adjacent to at

least one vertex in C. The vertex cover number τ of a graph is the size of a minimum

vertex cover, and computing τ is well known NP-complete problem. Fortunately, vertex

cover is also FPT when parametrized by the size of the vertex cover, i.e. if there is a

small vertex cover then it can be found in polynomial time. Section 5.3.1 considers the

vertex cover numbers of complex networks.

A cluster edge deletion set is a set of edges R such that for a graph with edge set

E, E \R is a disjoint union of cliques, also known as a cluster graph. The cluster edge

deletion number ξ is the minimum size of a cluster edge deletion set. As with treewidth

and vertex cover, computing ξ is an NP-complete problem. Like vertex cover, it is also

FPT when parametrized by the size of the cluster edge deletion set itself. Section 5.3.2

discusses the cluster edge deletion sets of complex networks and how they are computed.

Finally, a feedback edge set is a set of edges F so that for a graph with E edges, E\F
is a cycle-free graph (a forest). The feedback edge set number f of a graph is the size of

a minimum feedback edge set. If F is a minimum feedback edge set, then T = E \F is

a maximum spanning forest, which can be computed using a straightforward breadth-

first or depth-first search. The minimum feedback edge set, then, consists of all the

edges that the breadth-first or depth-first search does not add to the spanning forest

(i.e. F = E \ T). Note that minimum target set can be solved on a per-component

basis, so one need only consider the feedback edge set number of the component with

the most cycles. Section 5.3.3 discusses the feedback edge set number parameter in

complex networks.

5.3.1 Vertex cover number

The parametrization of minimum target set by vertex cover number (Nichterlein et al.,

2010) requires that the input graph have a small vertex cover. This section attempts

to compute the sizes of minimum vertex covers in the networks listed in Table 2.1,

the results are reported in Table 5.1. Note that since the computation of a minimum

vertex cover is an NP-complete problem, it is not always possible to compute an exact

solution. In these cases, upper and lower bounds are reported instead. Vertex cover is

FPT when parametrized by the solution size k, so in many cases exact solutions can

be found even on large graphs. Even when exact solutions are not possible, the FPT

80 CHAPTER 5. THE TARGET SET SELECTION PROBLEM

algorithms can be adapted to improve the upper and lower bounds.

The parametrized version of the vertex cover problem is to find a vertex cover of

size no more than k for some parameter k. This can be solved in O(1.2852k + kn) time

(Chen et al., 1999), although a simpler version of this algorithm is used in this section,

with a running time of O(2k+kn). In order to find the minimum vertex cover using the

FPT vertex cover algorithm it is necessary to trial multiple values of k. Although the

algorithm constructs a vertex cover smaller than k, it does not necessarily construct

the smallest such vertex cover.

The number of values of k that must be tested can be reduced by using a binary

search strategy. Upper and lower bounds for the size of the minimum vertex cover are

maintained, and k is selected to be in the middle of the range. If the parametrized

algorithm finds a vertex cover, then the size of that vertex cover becomes the new

upper bound, otherwise k becomes the new lower bound. Eventually the upper and

lower bounds become equal, at which point the minimum vertex cover has been found.

It is easy to see that only a logarithmic number of trials are required.

In order to set the initial upper and lower bounds, two heuristics are used. The

first is based on graph matching. A matching of a graph G = (V,E) is a set M ⊆ E

such that all e ∈ M are mutually independent (not adjacent to each other). A vertex

adjacent to an edge in M is said to be matched. Additionally, a matching is maximal if

there is no e ∈ E that is not adjacent to an edge in M , and a matching is maximum if

it is the largest possible matching of the graph. Every maximum matching is maximal.

A maximal matching can be computed by a straightforward greedy approach (add

random edges until no more edges can be added). A maximum matching can also be

computed in polynomial time, but requires a more complicated approach (Diestel, 2000;

Micali and Vazirani, 1980).

It is easy to see that, given a maximal matching of a graph, the union of all the

endpoints of the matching is a vertex cover of the graph. Every edge that is not in the

matching must have a matched endpoint since the matching is maximal, therefore every

edge is covered as required. Furthermore, there can not be any vertex cover smaller

than the number of edges in the matching. This is because at least one endpoint for

every edge must be in the vertex cover. Thus, given a maximal matching M of a graph,

the vertex cover number τ must lie in the range |M | ≤ τ ≤ 2|M |.
In an effort to get a tighter upper bound, a simple heuristic greedy algorithm can

be used. At each step, the algorithm puts the vertex of highest degree into the vertex

cover, then removes all edges incident on that vertex. This continues until there are no

more edges left in the graph, at which point the vertex cover is complete.

The classic FPT algorithm for vertex cover proceeds in two phases. The first phase,

kernelization, reduces the size of the problem to a kernel no larger than 2k by applying

5.3. PARAMETRIZATION OF MINIMUM TARGET SET 81

a sequence of reductions in polynomial time. The second phase, the depth-bounded

search-tree, searches the kernel for a vertex cover smaller than k. The kernelization

phase is fast, since the running time does not depend on k. However, the running time

of the search-tree phase is exponential in k, which makes it impractical unless k is small

or the kernel is small.

Many reduction rules have been devised for the kernelization of vertex cover, see

Abu-Khzam et al. (2004) and Chen et al. (1999). The rules are to be applied iteratively,

until no further reduces are possible. The following rules have found to be highly

effective in practice (Abu-Khzam et al., 2004):

Degree 0 : Isolated vertices are not part of any minimum vertex cover, so they can

be removed from the graph.

Degree 1 : For a degree 1 vertex v with neighbour u, there is a minimum vertex cover

that includes u and not v.

Degree 2 : For a degree 2 vertex v with neighbours u and w such that there is an edge

uw, there is a minimum vertex cover that includes u and w, but not v. There

is also a reduction rule for the case when u and w are not adjacent, but it is

surprisingly difficult to implement efficiently.

Degree k : A vertex with degree greater than k must belong to any vertex cover

smaller than k because otherwise all its neighbours would have to go in the vertex

cover, resulting in a vertex cover larger than k.

Crown reduction : In a graph G = (V,E), a crown consists of an independent set

I ⊆ V , and a set H = N(I) where N(I) is the neighbour set of I and I �= ∅. A

crown must also satisfy the condition that in the bipartite graph induced by I and

H, there is a matching such that every vertex in H is matched. For every crown,

there is a minimum vertex cover that contains all the vertices of H and none of

the vertices of I. A crown can be found and removed in linear time (Abu-Khzam

et al., 2004).

Reduction by matching : In a graph G = (V,E), two disjoint sets C ′ ⊆ V and

V ′ ⊆ V can be computed in O(
√|V | · |E|) time such that every v ∈ C ′ is in

a minimum vertex cover of G, and V ′ is the reduced problem instance. The

algorithm works by finding a maximum matching in a graph derived from G. This

reduction was first proposed by Chen et al. (1999), and is based on a theorem by

Nemhauser and Trotter Jr (1975).

When a reduction rule adds a vertex to the vertex cover, k is reduced by one. Thus,

the value of k for the kernelized graph is typically less than the original value of k.

82 CHAPTER 5. THE TARGET SET SELECTION PROBLEM

Of the reduction rules, all but the degree k rule can be applied without having to

first determine the value of k. This fact was exploited for this thesis when computing

the vertex cover numbers reported in Table 5.1. Before computing upper and lower

bounds and proceeding to run the full algorithm for various values of k, the graph is

fully kernelized except for the degree k rule. The reduction by matching guarantees

that the kernel is no larger than 2k (Chen et al., 1999), thus there is a lower bound of

l/2 for the size of the kernel, where l is the size of the kernel (typically much smaller

than the size of the network n).

Upper and lower bounds are computed for the kernelized graph by combining the

n/2 lower bound, the upper and lower bounds from matching, and a greedy upper

bound. The greedy upper bound is computed by iteratively adding the highest degree

vertex to the vertex cover and removing it from the graph, until the graph is empty

and therefore a vertex cover for the entire network has been computed.

Following computation of the bounds, the full FPT algorithm (including kerneliza-

tion with the degree k rule and the search-tree phase) is run for various values of k until

a minimum vertex cover of the kernel is found. To get a vertex cover of the original

graph, it is necessary to include any vertices that were added to the vertex cover by

the initial kernelization phase.

It has been noted (by Abu-Khzam et al. (2004) for instance) that the vertex cover

kernelization performs much better in practice than the theory implies. One often finds

a kernel smaller than 2k, and in some cases the kernel is even smaller than k. In the

case of complex networks, the reason is most likely due to the k-shell structure of these

networks, discussed in Section 2.2.5. Repeated application of the degree 1 and 2 rules

removes the 1 and 2 shells from the graph. Most vertices in complex networks belong

to the low shells, so large numbers of vertices can removed by these simple reductions.

The version of the search-tree phase used in this thesis is based on the observation

that for any vertex v, either v belongs to the minimum vertex cover, or the neighbours of

v belong to the vertex cover. A search tree can be constructed by recursively branching

on every vertex. Since the desired vertex cover is smaller than k, there is no need to

search more than k levels into the tree, hence the running time is no worse than 2k.

The overall running time of the search-tree phase can be improved by running the

kernelization phase again between branches (Niedermeier and Rossmanith, 2000). Note

that more sophisticated branching rules are possible, which can reduce the running

time of the search tree phase from O(2k) to O(1.2852k) (Chen et al., 1999). This is still

exponential, so unless k is small (or the kernel is very small), neither algorithm will

be practical. Thus, it was not considered worthwhile attempting the more complicated

search tree when computing Table 5.1.

5.3. PARAMETRIZATION OF MINIMUM TARGET SET 83

Network Size (vertices) Minimum cover
Lower bound Upper bound

Physicists 1 40,421 19,809 (49%) 24,412 (60.4%)

Physicists 2 34,546 15,868 (45.9%) 28,053 (81.2%)

Enron 36,692 13,334 (36.3%) 14,653 (39.9%)

Gnutella 10,876 4,348 (40.0%)

Blogs 1,490 560 (37.6%)

Internet 27,719 8,087 (29.2%)

Neural 297 134 (45.1%) 227 (76.4%)

Metabolic 453 249 (55.0%)

Table 5.1: Sizes of minimum vertex covers for the networks described in Section 2.1.
For networks where an exact solution could not be computed, upper and lower bounds
are reported. The numbers are also reported as a percentage of vertices.

Despite the powerful algorithmic techniques employed, it was not possible to com-

pute exact vertex covers for all the networks listed in Table 2.1. This is largely be-

cause, as can be seen in Table 5.1, the vertex covers are not small enough for the FPT

approach to guarantee reasonable running times. Consider for example the Neural

network where k is lower bounded by 134. The search tree phase has running time

O(2k) for the algorithm used, and O(1.2852k) for the optimal algorithm. Even using

the optimal algorithm, 1.2852134 ≈ 4× 1014. Note that the other networks where exact

solutions could not be computed have far higher lower bounds for k than does the

Neural network.

In the cases where it was possible to compute exact vertex cover numbers, this was

due to the previously discussed “unreasonable effectiveness” of the kernelization phase.

Where the kernel was too large, it was not possible to run the search-tree phase to

completion, and hence only the upper and lower bounds are reported.

Although it was not possible to compute exact values for the vertex covers of all the

networks, the computed lower-bounds are all very high, ranging from 29% to 55%. This

translates to minimum vertex covers that are generally large in terms of the absolute

number of vertices, and therefore unsuitable as a parameter for the minimum target

set problem.

It should be noted that there are numerous other heuristic algorithms for computing

a minimum vertex cover that could have been employed, such as hill-climbing and

genetic algorithms. It was not considered worthwhile implementing such algorithms

since, although they might permit smaller upper bounds, the lower bounds are already

very high. Thus, the conclusions from this section would not be affected.

84 CHAPTER 5. THE TARGET SET SELECTION PROBLEM

5.3.2 Cluster edge deletion number

Given a graph G = (V,E), the minimum cluster edge deletion problem is to find a set

D ⊆ E such that G \ D is a disjoint union of cliques, also known as a cluster graph.

The cluster deletion number ξ is the size of a minimum cluster edge deletion set. As

with vertex cover, this is an NP-complete problem.

Cluster edge deletion is FPT when parametrized by the solution size k, with the

algorithm of Gramm et al. (2003) giving a running time of O(1.77k+ |V |3). If there is a
cluster edge deletion set smaller than k, then the algorithm returns such a set (although

it may not be the smallest possible), otherwise the algorithm fails. By running the

algorithm for various values of k it is possible to home in on a minimum cluster edge

deletion set.

The essential insight of Gramm et al. (2003) is to look for conflict triples. A conflict

triple is formed by three vertices u, v, w where there are edges uv and vw, but no edge

uw. Such triples cannot exist in a cluster graph. In cluster deletion, either one or both

of uv and vw must be deleted. One can obtain a lower-bound to the cluster deletion

number by simply counting the number of conflict triples, since at least one edge must

be deleted to resolve each triple.

The algorithm of Gramm et al. (2003) proceeds in two phases, kernelization and

a depth-bounded search-tree. The kernelization rules produce a kernel no larger than

2k2 + k, and this takes O(|V |3) time to compute. The kernelization rules given by

Gramm et al. are for the more general cluster edge editing problem, where edges may

be added as well as deleted to get a cluster graph. To ensure that the algorithm always

makes progress, edges may be marked permanent to show that they cannot be later

deleted, or forbidden to show where edges have already been deleted. The simplified

rules for cluster edge deletion are as follows:

Rule 1.1 : For every pair of vertices {u, v}, if |N(u) ∩N(v)| > k (where N(v) is the

set of vertices adjacent to the vertex v) and there is an edge uv, then mark uv

permanent. If there is no edge uv then the instance has no solution.

Rule 1.2 : For every pair of vertices {u, v}, if |(N(u) ∪ N(v)) \ (N(u) ∩ N(v))| > k,

mark uv forbidden. If there is an edge uv then add it to the deletion set.

Rule 1.3 : If there is a conflict between rules 1.1 and 1.2 (|N(u) ∩ N(v)| > k and

|(N(u) ∪N(v)) \ (N(u) ∩N(v))| > k), then the instance has no solution.

Rule 2 : For every three vertices u, v, and w, if uv and uw are permanent, then so is

vw. If there is no edge vw then the instance has no solution. If uv is permanent

and uw is forbidden, then vw must also be forbidden. If there is an edge vw then

add it to the deletion set.

5.3. PARAMETRIZATION OF MINIMUM TARGET SET 85

Rule 3 : If a connected component forms a clique, it can be removed from the graph.

Although the cubic running time of this kernelization is polynomial, it remains

highly problematic for large graphs (recall from Section 5.3.1 that the vertex cover

kernelization was essentially linear). Furthermore, notice that kernelization rule 1 only

applies when k < |V | and rule 2 only applies following at least two applications of rule

1. As can be seen from the results in Table 5.2, k > |V | in every network tested, so

these kernelization rules cannot be directly applied to the complex networks considered

in this thesis.

In addition to the kernelization rules (which guarantee that the kernel is no larger

than 2k2+k), Gramm et al. also give three heuristic reduction rules. These degree-based

rules do not provide any theoretical guarantees regarding the size of the kernel, but

they are highly effective in practice for the same reasons as the degree-based reductions

for vertex cover (Section 5.3.1). Each of the heuristic reduction rules operates on three

adjacent vertices u, v, and w. The three rules are as follows:

Degree 1 : If u and v both have degree 1, and there is no edge uv, then there is a

minimum cluster edge deletion set including uw.

Degree 2 : If the degree of u is 1, the degree of v is 2, and there are edges uv and vw,

then there is a minimum cluster edge deletion set including vw.

Degree 3 : If both u and v have degree 3, w has degree 2, there are edges uv, uw,

and vw; and two distinct vertices x and y with edges ux and vy, then there is a

minimum cluster edge deletion set including ux and vy.

The depth-bounded search-tree phase constructs a search tree by recursively branch-

ing on the conflict triples. For each conflict triple, there are two possibilities: either

the first edge is deleted, or the first edge is not deleted and only the second edge is

deleted. The height of the tree is limited by the current value of the parameter k. By

interleaving kernelization phases between levels of the search-tree, and employing some

rules to avoid exploring branches that cannot lead to a solution, Gramm et al. are able

to achieve their 1.77k running time for the search-tree phase.

Values for the cluster edge deletion numbers of the networks listed in Table 2.1

were computed using ideas from Gramm et al. (2003), and the results are reported

in Table 5.2. The procedure was as follows: first compute a kernel using the degree

based reduction rules. Then get a lower bound for k by counting the non-overlapping

conflict triples. Using the binary search inspired technique for choosing values of k

(Section 5.3.1), attempt to find an exact solution using the search-tree phase and in-

terleaving of the degree based reduction rules.

86 CHAPTER 5. THE TARGET SET SELECTION PROBLEM

Network Size (edges) Minimum deletion set (% of edges)

Physicists 1 175,693 117,368 (66.8%) *

Physicists 2 420,877 272,475 (64.7%) *

Enron 183,831 159,292 (86.7%) *

Gnutella 39,994 35,328 (88.3%)

Blogs 16,715 16,047 (96.0%)

Internet 41,684 30,784 (73.9%)

Neural 2,148 1,189 (55.3%) *

Metabolic 2,025 1,682 (83.1%)

Table 5.2: Sizes of minimum cluster edge deletion sets for the networks described in
Section 2.1. The * indicates graphs for which it was not possible to compute an exact
solution. In those cases the reported numbers are lower bounds only.

It can be seen in Table 5.2 that the cluster edge deletion numbers are high in both

absolute and relative terms. Even in cases where it was only possible to compute a

lower bound, the bounds are all greater than 50% of the edges. This rules out the

use of cluster edge deletion number as a parameter for minimum target set in complex

networks.

5.3.3 Feedback edge set number

A minimum feedback edge set is a minimum set of edges that, when deleted, leave a

cycle-free network, i.e. a tree. A minimum feedback edge set maximises the number of

edges in the resulting tree. Thus, in a connected network (i.e. there is a path between

every pair of vertices), removing any minimum feedback edge set results in a spanning

tree with n− 1 edges. The number of edges in the minimum feedback edge set is then

m− (n− 1) where n is the number of vertices in the network and m is the number of

edges.

There is a complication, however, in that a network may have more than one con-

nected component. Therefore, it is necessary to find the connected components (with a

breadth first search for example) in order to compute the minimum feedback edge set.

Although the complex networks tested are generally sparse, this still implies very

large feedback edge sets. For this reason, the feedback edge set number was computed

for the largest component only, since minimum target set can be solved per component.

Table 5.3 reports these feedback edge set numbers for the networks listed in Table 2.1.

Notice that even for the sparsest network (the Internet network), the feedback edge

sets are far too large to allow for a practical parametrization of the minimum target

set problem.

5.3. PARAMETRIZATION OF MINIMUM TARGET SET 87

Network size (edges) Feedback edge set (% of edges)

Physicists 1 175,693 135,279 (77.0%)

Physicists 2 420,877 386,384 (91.8%)

Enron 183,831 147,116 (80.0%)

Gnutella 39,994 29,119 (72.8%)

Blogs 16,715 15,493 (92.7%)

Internet 41,684 15,767 (37.8%)

Neural 2,148 1,852 (86.2%)

Metabolic 2,025 1,573 (77.7%)

Table 5.3: Sizes of minimum feedback edge sets for the networks described in Sec-
tion 2.1. The feedback edge set number reported is for the largest connected component,
rather than the entire network, as explained in Section 5.3.3.

5.3.4 Treewidth

Ben-Zwi et al. (2009) prove that when parametrized by the treewidth w of the input,

there is no algorithm for minimum target set selection with running time no(
√
w) or

faster. Thus, treewidth is only useful as a parameter for large networks if it is very

small. The treewidth based algorithm of Ben-Zwi et al. has a running time of nO(w),

and the constant factor in the O(w) part is greater than 1, so the running time is at least

nw. Therefore, even graphs with treewidth as small as 3 are likely to be intractable.

Computing the treewidth of a graph, like vertex cover number and cluster deletion

number, is an NP-complete problem. Computing a tree decomposition is not known to

be FPT, but there are close approximation algorithms. However, the approximation

algorithms have slow running time, so heuristics are typically employed instead (Bod-

laender and Koster, 2008). Note that a treewidth-based algorithm does not require the

minimum tree decomposition, but merely a sufficiently small tree decomposition

Instead of attempting to compute an accurate approximation, loose upper and lower

bounds are computed to confirm that the treewidth of complex networks is typically too

large to permit a parametrized approach to minimum target set. For the lower bound,

degeneracy is used. Degeneracy is related to the k-shell decomposition (Section 2.2.5).

It is the highest k for which there is a non-empty k-shell. It can equivalently be defined

as the maximum possible minimum degree of any induced subgraph of the original

graph.

It is known w(G) ≥ δ(G) where w(G) is the treewidth of a graph G and δ(G) is the

minimum degree of G (Bodlaender and Koster, 2008). It is also well-known that the

treewidth of any induced subgraph can be no higher than the treewidth of the entire

graph, or conversely, the treewidth of the entire graph must be at least as high as the

treewidth of any induced subgraph. Thus, degeneracy (the highest possible minimum

degree of any induced subgraph) is a lower-bound to the treewidth of the entire graph.

88 CHAPTER 5. THE TARGET SET SELECTION PROBLEM

Network size (vertices) Treewidth
Lower bound Upper bound

Physicists 1 40,421 29 3745

Physicists 2 34,546 30 9671

Enron 36,692 43 2247

Gnutella 10,876 7 2804

Blogs 1,490 36 258

Internet 27,719 14 105

Neural 297 10 84

Metabolic 453 10 38

Table 5.4: Upper and lower bounds to the treewidth of the networks described in
Section 2.1. These numbers were computed as described in Section 5.3.4.

For upper bounds, the greedy-degree algorithm described in Bodlaender and Koster

(2010) is used because it is fast, and is known to provide a reasonably tight upper bound

in practice. This greedy algorithm constructs a tree-decomposition by constructing bags

out of the lowest degree vertices first.

The results for treewidth upper and lower bounds are reported in Table 5.4. Al-

though the treewidth of the networks is considerably smaller than the vertex cover

number, the cluster deletion number, and the feedback edge set number, it is still a sig-

nificant fraction of the number of vertices in the network. This mirrors a result of Gao

(2009), which shows that for at least one class of complex network (Barabási-Albert

random graphs), the treewidth is a linear function of the size of the network.

In conclusion, the treewidth parameter is too large in the networks tested to permit

a parametrized solution to minimum target set. It is, however, small enough that it

may be a plausible approach for other problems on complex networks.

5.4 Summary

This chapter introduces two problems relating to spreading processes on complex net-

works: minimal target set under the tipping model, and maximum activation set under

the SIR model. Both these problems are NP-complete, and minimum target set is also

APX-hard. It is for their computational difficulty, and the clear practical applications,

that these two problems were chosen for study.

The two problems are explored in detail throughout the remaining two chapters

of this thesis, where the goal is to apply the complex network theory discussed in

Chapters 2 and 3 to the problems in an effort to obtain smaller solutions, or faster

solutions, than possible with the currently known heuristic algorithms. It is hoped

that this will lead to some insight into how complex network theory can be applied in

general to algorithm design.

5.4. SUMMARY 89

For the minimum target set problem there are a number of parametrized algorithms

that are able to solve the problem in polynomial time on restricted classes of networks:

those with small vertex covers, small cluster deletion numbers, small feedback edge

sets, and extremely low treewidth. Section 5.3 employs state of the art algorithms to

compute these quantities on the complex networks listed in Table 2.1 (although for

feedback edge it is trivial to compute an exact solution). It is found that none of the

parameters are small enough to permit the practical computation of exact solutions.

These results may appear to contradict Nichterlein et al. (2013), who claim that the

parametrized target set algorithms can be realistically employed on several social net-

works. However, they must filter the edges of the networks in order for the parameters

to be small enough. In fact, on empirical social network data (specifically their “DBLP

conference” and “DBLP author” networks), they filter out over 99% of the edges before

the parameters become small enough to be practical.

Although the parameters (vertex cover number, cluster deletion number, feedback

edge set number) are very high in real networks, some FPT algorithms (such as the

vertex cover algorithm) are known to be much faster in practice than their upper

bounds would suggest. This is most likely not the case for for the algorithms described

by Nichterlein et al. (2010).

Both the vertex cover based, and the cluster deletion set based algorithms for mini-

mum target set selection operate by a brute force search on a set which is upper bounded

in size by the relevant parameter. These sets are highly restrictive in their topology,

and so it is unlikely that they are much smaller in practice than their upper bounds

would suggest. The feedback edge set based algorithm includes a kernelization rule

that removes degree 1 vertices. This may be effective on networks with a large 1-shell,

but on it’s own it is not sufficient to compute exact solutions unless the feedback edge

set number is also small.

The following chapter discusses several known heuristics for minimum target set,

and introduces a novel distributed heuristic. The possibility of combining heuristic

and parametrized approaches is then explored. Chapter 7 then introduces the idea of

augmenting the input graph with a small number of edges, so that a small target set

can be found, even if there was no such target set in the original graph.

This is based on the assumption that it is possible to introduce new edges to many

networks, which is reasonable for the social networks and technological networks that

are the main focus of complex networks research. For example, an online social net-

work could “recommend” new friends (as Facebook is known to do). For technological

networks, it may be possible to build new communications links or (in the case of the

Internet) establish new connections between ISPs.

90 CHAPTER 5. THE TARGET SET SELECTION PROBLEM

Chapter 6

Heuristics for target set selection

The minimum target set selection problem introduced in Chapter 5 is NP-hard, inap-

proximable, and the known FPT parametrized algorithms are not directly applicable

to complex networks. Thus, a heuristic approach is necessary.

This chapter introduces a range of heuristics for minimum target set selection in

Section 6.1, some of which are informed by the properties of complex networks and

others which are not. Section 6.2 introduces a novel heuristic for minimum target set

which can be applied in a distributed manner. The sizes of the target sets obtained by

each of the heuristic algorithms are compared on the networks listed in Table 2.1.

Finally, in Section 6.3, the possibility of combining heuristic and parametrized so-

lutions is explored. Specifically, it is discovered that as hubs are progressively removed

from complex networks, there is a rapid fall in the feedback edge set and vertex cover

numbers of the networks. This suggests that a hybrid algorithm combining the heuristic

“hubs first” approach of Section 6.1.1 with the FPT parametrized algorithms discussed

in Chapter 5 may yield better solutions in general than purely heuristic solutions.

6.1 Greedy heuristics

This section describes three heuristic algorithms for computing a minimum target set.

The hubs-first algorithm (Section 6.1.1) is inspired by the distinctive degree topology of

complex networks. The marginal-gain algorithm (Section 6.1.2) is adapted from the op-

timal approximation algorithm for maximum activation set (discussed in Section 5.2).

Although marginal-gain cannot provide an approximation guarantee for minimum tar-

get set, it is plausible that it could at least provide a small target set in practice. The

Shakarian-Paulo-Reichman algorithm, independently discovered by Reichman (2012)

and Shakarian and Paulo (2012), places vertices in the target set based on their thresh-

olds; it was not intended for any network topology in particular.

These three heuristics are compared in Figures 6.1 and 6.2 (which also include the

91

92 CHAPTER 6. HEURISTICS FOR TARGET SET SELECTION

distributed heuristic introduced in Section 6.2). Target sets are computed using each

of the heuristics for a range of networks and threshold assignments. The networks are

the empirical complex networks listed in Table 2.1.

The thresholds are assigned in two different ways as discussed in Section 5.1: pro-

portional thresholds are assigned as a fixed proportion of the degree for each vertex,

constant thresholds are assigned as the minimum of a constant and the degree for each

vertex. Figure 6.1 shows the results for proportional thresholds, Figure 6.2 shows the

results for constant thresholds. The proportional thresholds are assigned from the range

0.1 - 0.9. For the constant thresholds, a mostly arbitrary range from 2 to 20 was chosen.

Since most vertices in complex networks have low degree it makes sense to choose low

numbers for constant thresholds (otherwise most vertices would have thresholds equal

to their degree).

6.1.1 Hubs first

This algorithm is based on the observation that complex networks have strongly skewed,

heavy-tailed degree distributions, as discussed in Section 2.3. This implies a relatively

small number of very high degree vertices (hubs). These vertices would make good

candidates for a target set on account of their high degree (they can directly influence

more vertices than a similarly sized target set selected from low-degree vertices).

The hubs-first algorithm is as follows: the highest degree vertex v is added to the

target set, then A(v), the activation set from v, is computed. Note that v ∈ A(v).

There would be no benefit to adding a u ∈ A(v) to the target set in addition to v,

since u is always activated by v anyway. Thus, the next step is to remove A(v) from

the graph. It is then necessary to adjust the thresholds to account for the influence of

the activated vertices that are removed. For every vertex w /∈ A(v) that is adjacent to

vertices in A(v), the threshold t(v) is reduced by |Nw ∩ A(v)|, where Nw is the set of

vertices adjacent to w. The procedure is then repeated from the highest degree in the

resulting graph until the graph is empty, at which point the target set activates the

entire network.

This is essentially a quadratic time algorithm, since finding the highest degree vertex

requires scanning the entire network. An improvement to O(n log n) time could be

achieved by tracking vertex degrees in a heap, but in practice this optimisation is not

necessary. The addition of each hub causes the network to become smaller, and it

quickly shrinks to the point where there is little to be gained from a more sophisticated

algorithm.

Experimental evaluation of hubs-first on the complex networks listed in Table 2.1 is

reported in Figures 6.1 and 6.2 for proportional and constant thresholds respectively.

The algorithm appears to perform well across all the thresholds ranges evaluated.

6.1. GREEDY HEURISTICS 93

From Figures 6.1 and 6.2, it can be seen that the hubs first algorithm often produces

a smaller target set than other, more complicated heuristics. This suggests that in

networks with a highly-skewed and long-tailed degree distribution, the high degree

vertices form a relatively small target set for the entire network. It is likely that the

other heuristics also find target sets containing large numbers of high degree vertices.

However, the other heuristics are able to include more lower-degree vertices which may

be less optimal, hence why the hubs-first heuristic tends to produce the smallest target

set.

6.1.2 Marginal gain

The marginal-gain algorithm (proposed by Kempe et al. (2005)) is based on the optimal

approximation algorithm for maximum activation set. Maximum activation set (see

Section 5.2) is a subtly different problem to minimum target set in that it seeks a

target set of fixed size k which activates the largest possible proportion of the network.

The existence of a target set of size k that activates the entire network does not imply

the non-existence of a smaller target set that does the same.

For maximum activation set, the algorithm of Kempe et al. (2005) achieves an

approximation bound of 1 − 1/e − ε where e is the base of the natural logarithm. No

such bound is possible for minimum target set (Chen, 2009), but it is plausible that

this algorithm could compute almost optimal target sets in practice.

The marginal-gain algorithm, as stated by Kempe et al. (2005), was intended for

stochastic activation models (such as SIR), but it is trivially adapted to the determinis-

tic tipping model used for the minimum target set problem. The goal of the algorithm

is to maximise the activation set, i.e. the set of vertices that will eventually become

activated when the target set is activated. When a vertex is added to the target set,

the extra vertices that become activated are referred to as the marginal activation set.

The marginal gain algorithm adds vertices to the target set one by one, always choosing

the vertex that maximises the marginal activation set.

Computing the activation set from a target set is a linear time operation. The näıve

marginal-gain algorithm requires that this computation be made for every vertex in the

graph, and for every vertex that gets placed in the target set, so the overall running

time is cubic. This is problematic on large graphs. Improvements by Chen et al. (2009)

reduce the running time to quadratic, but the Chen et al. version of the algorithm is

only applicable to independent cascade models (such as SIR, but not the tipping model;

see Kempe et al. (2005)).

In order to apply the marginal-gain algorithm to the complex networks listed in

Table 2.1, an optimisation of the näıve algorithm was required. The activation sets A(v)

from all the vertices v were precomputed and stored in large bit-sets. The activation

94 CHAPTER 6. HEURISTICS FOR TARGET SET SELECTION

set A of the current target set T was also maintained at each step. For the set A and for

all the sets A(v), the neighbour sets N(A) and N(A(v)) were also maintained. N(A)

is defined to be
⋃

a∈ANa \A where Na is the set of vertices adjacent to the vertex a.

In the case that A ∩ A(v) = ∅ and N(A) ∩ N(A(v)) = ∅, the marginal gain from

adding v to the target set is simply A(v). Checking this condition takes linear time

(intersection on bit-sets), but the constant is much smaller than always recomputing the

entire activation set. If the condition is not satisfied then it is necessary to recompute

the activation set from adding v to the target set, and the marginal gain will be A({v}∪
T) \ A where T is the target set so far. Since A({v} ∪ T) is a subset of A({v} ∪ T ′)
whenever T ⊂ T ′, adding v to the target set will activate every vertex in A({v} ∪ T)

on this round, and on all subsequent rounds. Therefore, every vertex in A({v} ∪ T)

excluding v can be permanently removed from the set of candidates to include in the

target set.

The sizes of the target sets produced by the marginal-gain algorithm, as shown in

Figures 6.1 and 6.2, are generally good. However, marginal-gain (cubic running time)

is often beaten by heuristics with much better running time, such as the hubs-first

algorithm.

6.1.3 The Shakarian-Paulo-Reichman algorithm

This heuristic algorithm for minimum target set was first introduced by Reichman

(2012), who also proves that it finds a target set no larger than
∑

v∈V min
(
1, k

d(v)+1

)

where V is the vertex set of the graph, k is the maximum threshold, and d(v) is the

degree of the vertex v. The algorithm was independently discovered by Shakarian and

Paulo (2012), who applied it to complex networks and found that in practice, it often

finds a target set much smaller than Reichman’s upper-bound.

The Shakarian-Paulo-Reichman (SPR) algorithm is as follows: for every vertex,

compute the difference between the degree and the threshold δ(v) = d(v) − t(v). If

t(v) > d(v) or (equivalently) δ(v) < 0, then v can never be activated by its neighbours,

therefore v must belong to the minimum target set. The algorithm operates by succes-

sively removing vertices from the graph, causing the degrees of the remaining vertices

to decrease. At each step, the vertex v with the smallest non-negative δ(v) is selected

to be removed. The thresholds remain constant throughout this process, so eventually

δ(v) < 0 for all vertices v remaining in the graph. At this point, the vertices remaining

in the graph are a target set for the original graph.

The asymptotic running time for the SPR algorithm is the same as for the hubs-first

algorithm discussed in Section 6.1. The näıve implementation (used in this thesis) is

quadratic, but an improvement to O(n log n) is possible by tracking δ(v) for each vertex

in a heap. As with the hubs-first algorithm, the network gets smaller after every round

6.1. GREEDY HEURISTICS 95

of the algorithm, and so the runtime is much faster in practice than the upper bounds

would suggest.

Both algorithms (SPR and hubs-first) are considerably faster than the cubic marginal-

gain algorithm discussed in Section 6.1.2. As seen in Figures 6.1 and 6.2, the SPR

algorithm usually produces a smaller target set than either hubs-first or marginal-gain,

except for high (above 0.7) proportional or high constant thresholds.

6.1.4 Experimental comparison

Each of the three heuristic algorithms discussed in this section was used to compute

a target set for each of the networks listed in Table 2.1. The results for proportional

thresholds are reported in Figure 6.1 and the results for constant thresholds are reported

in Figure 6.2. Figures 6.1 and 6.2 also include results for target sets computed using

the distributed algorithm discussed in Section 6.2.

For the proportional thresholds, the hubs-first algorithm generally produces the

smallest target set whether the thresholds are high or low. The marginal-gain algorithm

performs similarly to the hubs-first algorithm, except when the thresholds are very high.

This effect is especially apparent in the Neural and Metabolic networks. Finally, the

Shakarian-Paulo-Reichman algorithm tends to produce larger target sets than either of

the other two heuristics.

For constant thresholds, the results are somewhat different. Here, SPR algorithm

performs well on the Blogs, Neural, and Metabolic networks, but still produces rel-

atively large target sets for the other networks. As for proportional thresholds, the

hubs-first and marginal-gain algorithms continue to produce similar results.

It is not surprising that the marginal gain algorithm performs comparatively worse

when the thresholds are higher. Activating a single vertex is not sufficient to start

a cascade of activations, unless that vertex had threshold 1. If all vertices have high

thresholds (as under high proportional thresholds), then it may be necessary to activate

a large number of vertices in order to start a cascade. Until these initial vertices have

been activated, the marginal-gain algorithm is effectively blind (as the activation set

from each vertex includes only the vertex itself).

Concerning the relatively poor performance of the SPR algorithm, especially for

high proportional thresholds, consider that the algorithm removes vertices where the

threshold is close to the degree. Under high proportional thresholds, all vertices have

thresholds close to their degree. Thus, the SPR algorithm is likely to remove some

of the high degree vertices, which would probably be better included in the target

set (considering that the hubs-first heuristic produces the smallest target sets in these

cases).

Of the three algorithms compared in this section, the hubs-first algorithm has the

96 CHAPTER 6. HEURISTICS FOR TARGET SET SELECTION

best performance across a range of network topologies and threshold values. The run-

ning time of the hubs-first algorithm was similar to the SPR algorithm in that both

implementations were O(n2) (although the runtime is much faster in practice than this

upper bound would suggest). The marginal-gain algorithm also produces relatively

small target sets, but the running time (O(n3)) is too slow for large networks.

6.2 A distributed heuristic algorithm

Conventional algorithms for networks consider the entire network as a single static

structure. Distributed algorithms, on the other hand, view the vertices of the network

as individual computing elements and the edges as communication links between the

vertices. A distributed algorithm is executed concurrently on every vertex in the net-

work. Vertices may send messages to their immediate neighbours, but any long-range

messages must be routed via a sequence of directly connected vertices. This is a natu-

ral model of computation for several important classes of complex networks, including

communications networks such as the Internet, and social networks.

This section considers a distributed version of the Shakarian-Paulo-Reichman algo-

rithm (described in Section 6.1.3). As with the SPR algorithm, the distributed algo-

rithm maintains δ(v) = d(v) − t(v) for each vertex. The key difference is that instead

of removing the vertex with the smallest δ(v) in the network, every vertex v examines

its 1-hop neighbourhood, and the vertex u with the lowest δ(u) in that neighbourhood

is removed. This heuristic is illustrated in Figure 6.3. Note that many vertices may be

removed in a single round when using this heuristic.

The distributed version proceeds in rounds, as with the conventional SPR algo-

rithm, but there are several adaptations to the distributed environment. The modified

procedure is run concurrently by every vertex in the graph; synchronization of the

rounds is achieved by sending messages between the vertices. The SPR algorithm calls

for vertices to be removed from the network between the rounds, which does not make

sense in a distributed environment where the network cannot be modified. Instead,

vertices are marked as being in a removed state.

In the distributed algorithm, every vertex is in one of three states: removed, targeted,

or undecided. The removed state represents the vertices that would be removed from

the network by the conventional SPR algorithm. The targeted state represents vertices

v where δ(v) < 0 , i.e. vertices that must go into the target set. Vertices that are

neither removed nor targeted are undecided, and every vertex begins in this state. This

system requires a redefinition of δ(v) as |U(v)|+ |T (v)| − t(v) where U(v) is the set of

all undecided neighbours of v, T (v) is the set of all targeted neighbours of v and t(v) is

the threshold of v as usual.

6.2. A DISTRIBUTED HEURISTIC ALGORITHM 97

0.0%

12%

25%

37%

49%

62%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Physicists 1SPR
Hubs
Marginal Gain
Distributed

0.0%

12%

53%

27%

49%

65%

0.1 0.5 0.7 0.2 0.4 0.8 0.6 0.9 0.3

Physicists 2
SPR
Hubs
Marginal Gain
Distributed

0.0%

12%

53%

21%

77%

49%

0.1 0.5 0.6 0.2 0.7 0.4 0.3 0.9 0.8

EnronSPR
Hubs
Marginal Gain
Distributed

0. %

12%

53%

73%

495%

696%
697 695 691 690 698 69. 692 693 694

SPR
Hubs
Marginal Gain
Distributed

Gnutella

0. %

. 1%

25%

37%

141%
143 142 147 14. 140 149 145 146 148

SPR
Hubs
Marginal Gain
Distributed

Blogs

0. %

12%

53%

747%
745 749 741 74. 740 742 746 743 748

SPR
Hubs
Marginal Gain
Distributed

Internet

0. %

12%

53%

2. %

747%
742 749 745 743 741 740 74. 746 748

SPR
Hubs
Marginal Gain
Distributed

Neural

00.

%%.

11.

22.

535.
532 531 53% 530 537 534 539 536 538

SPR
Hubs
Marginal Gain
Distributed

Metabolic

Figure 6.1: Comparison of heuristics for minimum target set selection with propor-
tional thresholds from 0.1 to 0.9, in the networks listed in Table 2.1. SPR is the
Shakarian-Paulo-Reichman algorithm (Section 6.1.3). Distributed is the distributed
heuristic (Section 6.2). The sizes of the target sets are reported as percentages of the
vertices in the networks.
On some large networks with high thresholds, the marginal-gain algorithm was termi-
nated before it could compute a target set (as the runtime was too long). The missing
data are for the Physicists 1 network (thresholds 0.7 to 0.9), for the Physicists 2 network
(thresholds 0.5 to 0.9), and for the Enron network (thresholds 0.8 to 0.9).

98 CHAPTER 6. HEURISTICS FOR TARGET SET SELECTION

0.0%

12%

25%

37%

49%

2 4 6 8 10 12 14 16 18 20

Physicists 1SPR
Hubs
Marginal Gain
Distributed

0.0%

1.2%

53%

57%

34%

39%

41%

3 6 8 2 50 53 56 58 52 30

Physicists 2
SPR
Hubs
Marginal Gain
Distributed

0.0%

5.5%

11%

16%

22%

27%

33%

38%

2 4 6 8 10 12 14 16 18 20

EnronSPR
Hubs
Marginal Gain
Distributed

46%

37%

28%

18%

9.2%

0.0%
2 4 6 8 10 12 14 16 18 20

SPR
Hubs
Marginal Gain
Distributed

Gnutella

13%

10%

6.7%

3.4%

0.0%
2 4 6 8 10 12 14 16 18 20

SPR
Hubs
Marginal Gain
Distributed

Blogs

4 6 % 3 72 74 76 7% 73 42

8%1

491

441

761

. 041

2021

SPR
Hubs
Marginal Gain
Distributed

Internet

0. %

51%

62%

1. %

737%
8 2 0 4 17 18 12 10 14 87

SPR
Hubs
Marginal Gain
Distributed

Neural

2 4 6 8 10 12 14 16 18 20

SPR
Hubs
Marginal Gain
Distributed

Metabolic

55%

44%

33%

22%

11%

0.0%

Figure 6.2: Comparison of heuristics for minimum target set selection with constant
thresholds from 2 to 20, for the networks listed in Table 2.1. The sizes of the target
sets are reported as percentages of the vertices in the networks.
On some large networks with high thresholds, the marginal-gain algorithm was termi-
nated before it could compute a target set (as the runtime was too long). The missing
data are for the Physicists 1 network (thresholds 6 to 20), for the Physicists 2 network
(thresholds 8 to 20), and for the Enron network (thresholds 14 to 20).

6.2. A DISTRIBUTED HEURISTIC ALGORITHM 99

2
3

4

4

3

5

2
3

4

4

2

5

5

3

3

Figure 6.3: An illustration of the distributed heuristic. Each vertex v is labelled with
δ(v). Left : The highlighted vertex will be removed during the next round, since it has
a lower δ(v) than all its neighbours. Right : Both of the highlighted vertices have lower
δ(v) than their neighbours, but only one of them can be removed during the next round
since they are adjacent. Which vertex to remove is chosen by some arbitrary criteria.

During each round, every undecided vertex communicates with its immediate neigh-

bours to determine whether it should transition to the removed or the targeted state,

or whether it should remain undecided. Once a vertex transitions to the removed or

targeted state it is no longer required to respond to messages from its neighbours, since

these states are final. As with the original SPR algorithm, at least one vertex will

transition to a final state on every round, so at most n rounds are required where n is

the number of vertices in the network. The distributed algorithm is designed so that a

large number of vertices may transition on each round, and in practice it is found that

the required number of rounds is much less than n.

Each round of the distributed algorithm is composed of three communication phases:

Phase 1 : Every undecided vertex v sends a message containing δ(v) asynchronously

to all of its undecided neighbours. v then waits until it has received the same message

from all its neighbours. If δ(v) < 0, then v now transitions to the targeted state and

no longer responds to messages from its neighbours. The neighbours of v can deduce

that this transition has taken place.

Phase 2 : Every vertex decides if it is a candidate for transition to the removed

state. A vertex v is a candidate if δ(v) ≤ δ(u) for every vertex u adjacent to v. Every

vertex v then sends a message to each of its neighbours telling them whether or not v

is a candidate. v waits until it has received the same message from all its undecided

neighbours.

Phase 3 : If v is not a candidate, then it remains in the undecided phase. If v is

a candidate, and none of the neighbours of v are candidates, then v transitions to the

removed state. If v is a candidate, and at least one neighbour u of v is also a candidate,

then only one of u or v may transition to the removed state. This ensures that the

central principle of the SPR algorithm, that the removed vertices are always activated

by the non-removed vertices, is maintained. This situation is illustrated in Figure 6.3

100 CHAPTER 6. HEURISTICS FOR TARGET SET SELECTION

(right). If u and v are both candidates, then some kind of tie-breaker is required. For

example, if every vertex can be assigned a unique id number, then the vertex with the

lowest id could be chosen to transition to the removed state.

Once v has decided whether or not to transition to the removed state, it sends

a message to all its neighbours informing them of the decision. v waits until it has

received the same message from all its neighbours, and then updates its own δ(v) to

reflect any neighbouring vertices that have transitioned to the removed state. If δ(v) is

now negative, v will transition to the targeted state at the beginning of the next round.

At any one moment, the current round of the algorithm may differ between distant

parts of the network. However, notice that no vertex enters phase 2 of the algorithm

until all of its neighbours have finished phase 3 from the previous round. Hence,

neighbouring vertices always agree on the current round. It is easy to see that there

are no further race conditions or deadlocks.

The same algorithm can be stated in a sequential form: first, a list is made of every

vertex that is a candidate for removal (a vertex v is a candidate if δ(v) < δ(u) for

all neighbours u of v). Then, for every candidate v with a neighbour u that is also a

candidate, either v or u is removed from the list according to some tie-break criteria, as

in the distributed version. All the vertices remaining in the list are removed from the

network. δ(v) is recomputed for every vertex, and the process repeats in rounds until

every remaining vertex has negative δ(v), as in the original Shakarian-Paulo-Reichman

algorithm.

For the distributed version of the algorithm, the running time is linear since each

round takes constant time per vertex (assuming bounded degree), and there are at most

n rounds. The bounded degree assumption is reasonable here because most vertices in

a complex network have low degree, and even the high degree hubs have much lower

degree than n in large networks. The sequential version is quadratic since the entire

network must be scanned to compute the candidates list. However, the constant is

much smaller in practice than for the SPR algorithm, because multiple vertices are

removed on each round (whereas the SPR algorithm removes exactly one vertex per

round).

6.2.1 Experimental results

The distributed algorithm was implemented in both its distributed and sequential

forms. The distributed implementation uses the Scala actors API (Haller and Odersky,

2007) to provide true parallel processing. The algorithm was run on each of the net-

works listed in Table 2.1, and for a range of proportional and constant thresholds. The

results are shown in Figure 6.1 for proportional thresholds, and Figure 6.2 for constant

thresholds. These figures also show the results for the heuristic algorithms discussed in

6.2. A DISTRIBUTED HEURISTIC ALGORITHM 101

0

10000

20000

30000

40000

Original network
0k-Random
1k-Random

0 10 20 30 40 50 60 70 80 90 100 110 120

Physicists 1

0

1000

20000

21000

30000

31000

40000

Original network
0k-Random
2k-Random

0 20 30 40 50 10 60 70 80 90 200 220 230

Physicists 2

0

1000

20000

21000

30000

31000

40000

41000 Original network
0k-Random
2k-Random

0 20 30 40 50 10 60 70 80 90 200 220 230

Enron

012324Ori4gna l 1
e twO4ol k
- twO4ol k

e - e Re de me 5e 6e 7e 8e 9e - ee - - e - Re

Gnutella

e

Reee

meee

6eee

8eee

- eeee

0

100

200

300

400

O000

O100

O200 r igngal eat wo ki -
0- Rdl amk5
O- Rdl amk5

0 O0 10 60 20 70 30 80 40 90 O00 OO0 O10

Blogs

012324Ori4gna l 1
e twO4ol k
- twO4ol k

e - e Re de me 5e 6e 7e 8e 9e - ee - - e - Re
e

5eee

- eeee

- 5eee

Reeee

R5eee

Internet

0

10

200

210

300

310

4Ori rgnalg et wOo
0ok- ngRwd
2ok- ngRwd

0 20 30 m0 50 10 60 70 80 90 200 220 230

C.Elegans Neural

0

100

200

300

400
Original network
0k-Random
1k-Random

0 10 20 30 40 50 60 70 80 90 100 110 120

C.Elegans Metabolic

Figure 6.4: Sizes of computed target sets by the distributed algorithm described in
Section 6.2. Results are shown for each of the networks listed in Table 2.1, and for 0K
and 1K randomized versions of these graphs. The x-axis shows the limit on the number
of rounds, the y-axis shows the size (in vertices) of the computed target set. The first
bar in each chart shows the results for a limit of 0, which represents a situation where
all the vertices are placed into the target set. Thus, the proportional size of the target
set can be checked by comparing with the first bar in the chart.

102 CHAPTER 6. HEURISTICS FOR TARGET SET SELECTION

Section 6.1, including the original Shakarian-Paulo-Reichman algorithm.

For low proportional thresholds (Figure 6.1), and constant thresholds (Figure 6.2),

the performance of the distributed algorithm is comparable to the SPR algorithm in

terms of the size of the computed target set. For the high proportional thresholds

(> 0.5), the performance of the distributed algorithm is generally superior to SPR,

and comparable to the other heuristics (hubs-first and marginal-gain). Overall, the

distributed algorithm does not usually produce a smaller target set than the hubs-first

algorithm, although in practice it may be faster if the number of rounds is significantly

less than the size of the network.

These results are somewhat surprising, as the distributed algorithm does not have

a global view of the network, unlike the conventional SPR algorithm. Note that the

activation process was simulated from every target set to confirm that all the algorithms

compared in Figures 6.1 and 6.2 do indeed produce legitimate target sets.

The main difference between the two algorithms (distributed and conventional

SPR), is that the distributed algorithm can remove multiple vertices in a single round.

If a vertex u has a large number of neighbours with small δ(v), and there are not too

many edges between those neighbours (as is typical of hubs in complex networks), then

the distributed algorithm may remove enough neighbours of u to make δ(u) negative,

forcing u into the target set. Since u was a hub, it was a good candidate for this. The

conventional SPR algorithm would be forced to remove the neighbours one-by-one, un-

til δ(u) = 0, at which point there is a risk that u will be removed from the graph,

resulting in a larger target set.

A further concern for the performance of the distributed algorithm is the number

of rounds it takes to compute a target set. If this number is a significant fraction of

the number of vertices in the network (n), then there is little point in attempting a dis-

tributed approach (since the previously discussed sequential version of the distributed

heuristic would be more efficient).

For each of the networks listed in Table 2.1, the distributed algorithm was run with

a limited number of rounds. The algorithm was modified to terminate after the limit

on the number of rounds was reached. Following termination, any undecided vertices

were placed in the target set. These experiments were repeated on 0K and 1K random

graphs (see Section 3.3). To reduce the number of parameters in the experiments, the

threshold assignment was limited to proportional thresholds with a factor of 0.5. The

results of the experiments are reported in Figure 6.4.

The results reported in Figure 6.4 show that the number of rounds required in

practice is significantly less than n. For most of the networks tested, 5 rounds are

sufficient to find a small target set. On other networks (Physicists2 and Blogs), no

more than 50 rounds were required; very few considering the sizes of these networks

6.3. COMBINING HEURISTICS WITH PARAMETERS 103

(34, 546 for Physicists2, 1, 490 for Blogs).

Figure 6.4 also shows the results for 0K and 1K randomized networks (as described

in Section 3.3). For the 0K random networks, the minimal target set is reached after

less than 20 rounds in all cases. This is much faster than in the original networks, or

the 1K random networks. However, the computed target set is considerably larger in

the 0K random networks in most cases.

The 1K random networks show essentially the same pattern as the original networks,

so it can be concluded that the degree structure of complex networks plays a role in

the ability of the distributed algorithm to find target sets that involve longer chains

of activation than can be found in 0K random networks. However, there is additional

structure in the complex networks that is also relevant to this effect.

6.3 Combining heuristics with parameters

This section describes a scheme whereby a heuristic algorithm (such as those discussed

in Section 6.1) is combined with one of the parametrized algorithms introduced by

Nichterlein et al. (2010). Recall from Section 5.3 that the algorithms of Nichterlein et

al. cannot be applied directly to complex networks, as the values of the parameters are

usually too high. Note, however, that the hubs-first and SPR algorithms described in

Section 6.1 operate by progressively removing vertices from the network. This results in

simpler networks as vertices are removed, and so it is likely that some of the parameters

will also fall (feedback edge set number and vertex cover number for example).

This leads to a hybrid algorithm, where the heuristic algorithm is run until some

network parameter becomes sufficiently small that an exact solution can be computed

for the remainder of the problem using a parametrized algorithm. The possibility of

such an algorithm is explored by considering the combination of the hubs-first algo-

rithm (Section 6.1.1) with the parametrized algorithms using feedback edge set number

(Section 5.3.3) and vertex cover number (Section 5.3.1).

The hubs-first heuristic is chosen as it removes the vertices with the greatest impact

on the network first. The SPR algorithm operates in the opposite direction, tending

to remove low degree vertices first. Thus, it is plausible that removing a small number

of hubs could lead to a large reduction in one of the network parameters. This would

allow the parametrized phase of the hybrid algorithm to solve the bulk of the problem

exactly. If the SPR algorithm were used for the heuristic phase, it is likely that a

large number of vertices would have to be removed before the parameters became small

enough for the parametrized phase to take over.

The feedback edge set number and vertex cover number parameters are chosen

because they are the most likely to decrease as high degree vertices are removed by the

heuristic phase of the hybrid algorithm. Removing high degree vertices will tend to

104 CHAPTER 6. HEURISTICS FOR TARGET SET SELECTION

reduce the density of the network, directly leading to a decrease in the feedback edge

set number. Vertex cover number is also related to sparsity: if there are fewer edges,

then it may be that fewer vertices will be required to cover them.

The viability of this hybrid approach (hubs-first plus feedback edge set or vertex

cover) was tested experimentally by progressively removing vertices from networks in

order from highest to lowest degree. The two parameters feedback edge set number

and vertex cover number were recomputed after removing each vertex. The parame-

ters were computed only for the largest connected component of the network, rather

than for the entire network. The reasoning for this will be explained in the following

paragraphs. Since some of the networks are too large to compute an exact vertex cover

number, an upper bound was computed instead, using the same technique as was used

in Section 5.3.1.

A further concern when removing high degree vertices is that there is likely to be

a dramatic increase in the number of components (and therefore a similarly dramatic

decrease in the size of the largest component). In most complex networks, the majority

of the vertices are connected in a single “giant” component of size O(n) where n is

the number of vertices in the network. It is well-known that as high degree vertices

are removed from complex networks, the size of the giant component decreases rapidly,

until at some point it breaks apart into a multitude of much smaller components and

there is no longer a clearly identifiable giant component in the network (Newman, 2003).

Newman and other physicists refer to this phenomenon as a phase transition from a

dense state with a giant component to a sparse state.

If the largest component is small enough (≤ 30 vertices for example), then the

remainder of the problem could be solved by brute force, and the parametrized approach

would provide little benefit. For this reason, the size of the largest component was

measured as hubs were removed, in addition to the feedback edge set number and

vertex cover number. Thus, it is possible to determine if the parameters fall to a small

size before the giant component breaks up.

A further consideration is that since the problem can be tackled on a component-

by-component basis, it is sufficient to consider the values of the network parameters

only in the largest component. The expected rapid decrease in the size of the largest

component will contribute to the decreasing values of the other parameters. Hence,

rather than measuring the parameters for the entire network, they are measured only

for the largest component.

These experiments were run on the complex networks listed in Table 2.1, and on

randomized versions of those networks according to the methodology described in Sec-

tion 3.1. The results are reported in Figure 6.5 for feedback edge set number, Figure 6.6

for vertex cover number, and Figure 6.7 for the size of the largest component.

6.3. COMBINING HEURISTICS WITH PARAMETERS 105

The results for feedback edge set number and vertex cover number are similar. The

parameters fall rapidly at first and then more slowly. Depending on the network, the

parameters become small after between 5% and 25% of the vertices have been removed.

The size of the largest component (Figure 6.7) falls slowly at first, with a rapid decrease

at some point which depends on the network, as predicted by the phase transition theory

(Newman, 2003). Notice that this rapid decrease in the size of the largest component

is not visible for the Physicists 2 network, suggesting that more vertices would have to

be removed before the phase transition is reached (the charts only show the removal of

up to 30% of the vertices).

There are clear qualitative differences in the behaviour of the original networks

compared to the 0K and 1K randomized networks. The decrease in the feedback edge

set number and vertex cover number parameters on 0K networks appears to be linear

with respect to the number of vertices removed. This differs from the curve seen in the

original and 1K randomized networks, with an initially rapid decrease followed by a

longer period of slow decrease. Although the original networks and the 1K networks

show the same shaped curve, the rate of decrease is faster in the original networks.

This suggests that the behaviour observed in the original networks is largely due to the

strongly skewed, heavy-tailed degree distributions of these networks, but that there is

also another unidentified topological factor at work.

By comparing Figure 6.7 with Figures 6.5 and 6.6, it can be seen that the point

at which the feedback edge set and vertex cover parameters become small is about the

same point at which the size of the largest component becomes small. Therefore, the

benefit of using a parametrized approach, rather than simple brute force, to solve the

bulk of the problem is marginal.

These experiments looked at the values of the network parameters as hubs were

removed. However, note that the hubs-first algorithm (Section 6.1.1) removes not

only the highest degree vertex v on each round, but also A(v) (the activation set of

v). To further evaluate the viability of the combined hubs-first / FPT strategy, the

experiments were repeated, removing A(v) at each step rather than just v. Since a

threshold assignment is necessary in order to compute A(v), and to avoid increasing the

number of variables in the experiment, majority thresholds were used (i.e. proportional

thresholds with ratio r = 0.5).

106 CHAPTER 6. HEURISTICS FOR TARGET SET SELECTION

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0k-Random
1k-Random
Original network

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Physicists 1

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Physicists 2

0k-Random
1k-Random
Original network

0200 0204 0260 0264 0280 0284 0210

0

80000

k0000

- 0000

R0000

600000

680000

6- 0000

6R0000

800000

Enron

0andomOr i
6andomOr i
g l e motwm. 53 r la

0

2000

4000

68000

61000

80000

82000

84000

k8000

k1000

0-00 0-0R 0-60 0-6R 0-80 0-8R 0-k0

Gnutella

0andomOr i
6andomOr i
g l e motwm. 53 r la

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0k00 0k0- 0k10 0k1- 0k20 0k2- 0kR0

Blogs

0andomOr i
1andomOr i
g l e motwm. 53 r la

0k-Random
1k-Random
Original network

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

3000

6000

9000

12000

15000

18000

21000

24000

27000

Internet

0

200

400

600

800

1000

1200

1400

1600

1800

0k-Random
1k-Random
Original network

0.00 0.05 0.10 0.15 0.20 0.25 0.30

C.Elegans Neural

0

200

400

600

800

1000

1200

1400

1600

1800

0k-Random
1k-Random
Original network

0.00 0.05 0.10 0.15 0.20 0.25 0.30

C.Elegans Metabolic

Figure 6.5: Sizes of minimum feedback edge sets in complex networks as vertices are
removed from the networks in order from highest to lowest degree. The networks used
are those listed in Table 2.1. The x-axis shows the proportion of vertices removed, the
y-axis shows the size of the feedback edge set. The experiments were repeated on 0K
and 1K random graphs (as per Section 3.1).

6.3. COMBINING HEURISTICS WITH PARAMETERS 107

0

2000

4000

68000

61000

80000

82000

84000

k8000

k1000

0- RandomO
6- RandomO
r igl gdn edt w. mi -

0500 0503 0560 0563 0580 0583 05k0

Physicists 1

0

2000

4000

68000

61000

80000

82000

84000

k8000

k1000

0- RandomO
6- RandomO
r igl gdn edt w. mi -

Physicists 2

0500 0503 0560 0563 0580 0583 05k0

0

2000

4000

68000

61000

80000

82000

84000

k8000

k1000

0-00 0-0R 0-60 0-6R 0-80 0-8R 0-k0

Enron

0andomOr i
6andomOr i
g l e motwm. 53 r la

0

k000

- 000

R000

a000

n000

d000

o000

m000

1000

0O00 0O0n 0Ok0 0Okn 0O- 0 0O- n 0OR0

Gnutella

0r igl et w
kr igl et w
. 5232 l 69 847 t 5r

0

200

400

600

800

1000

1200

1400

1600

1800

0k00 0k0- 0k10 0k1- 0k20 0k2- 0kR0

Blogs

0andomOr i
1andomOr i
g l e motwm. 53 r la

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0k-Random
1k-Random
Original network

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Internet

0

k0

- 0

R0

an0

ad0

ao0

na0

nm0

n10

0Ori gl et
aOri gl et
w.525l g36l 984 e.O

0700 070d 07a0 07ad 07n0 07nd 07k0

C.Elegans Neural

0

50

100

150

200

250

300

350

400

450

0. k- Rando
1. k- Rando
mOri raRgla et dO.

0w00 0w05 0w10 0w15 0w20 0w25 0w30

C.Elegans Metabolic

Figure 6.6: Upper bounds for minimum vertex covers in complex networks as vertices
are removed in order from highest to lowest degree. The networks used are those listed
in Table 2.1. The x-axis shows the proportion of vertices removed, the y-axis shows
the vertex cover upper bound. The experiments were repeated on 0K and 1K random
graphs (as per Section 3.1).

108 CHAPTER 6. HEURISTICS FOR TARGET SET SELECTION

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0. k- Rando
1. k- Rando
mOri raRgla et dO.

0w00 0w05 0w10 0w15 0w20 0w25 0w30

Physicists 1

0

2000

4000

68000

61000

80000

82000

84000

k8000

k1000

0-00 0-0R 0-60 0-6R 0-80 0-8R 0-k0

0andomOr i
6andomOr i
g l e motwm. 53 r la

Physicists 2

0

2000

4000

68000

61000

80000

82000

84000

k8000

k1000

0-00 0-0R 0-60 0-6R 0-80 0-8R 0-k0

Enron

0andomOr i
6andomOr i
g l e motwm. 53 r la

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0k00 0k0- 0k10 0k1- 0k20 0k2- 0kR0

Gnutella

0andomOr i
1andomOr i
g l e motwm. 53 r la

0

200

400

600

800

1000

1200

1400

1600

1800

0k00 0k0- 0k10 0k1- 0k20 0k2- 0kR0

Blogs

0andomOr i
1andomOr i
g l e motwm. 53 r la

0k-Random
1k-Random
Original network

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

3000

6000

9000

12000

15000

18000

21000

24000

27000

Internet

0

k0

- 0

R0

an0

ad0

ao0

na0

nm0

n10

0Ori gl et
aOri gl et
w.525l g36l 984 e.O

0700 070d 07a0 07ad 07n0 07nd 07k0

C.Elegans Neural

0

50

100

150

200

250

300

350

400

450

0. k- Rando
1. k- Rando
mOri raRgla et dO.

0w00 0w05 0w10 0w15 0w20 0w25 0w30

C.Elegans Metabolic

Figure 6.7: Size of the largest connected component in complex networks as vertices
are removed in order from highest to lowest degree. The networks used are those listed
in Table 2.1. The x-axis shows the proportion of vertices removed, the y-axis shows
the number of vertices in the largest component. The experiments were repeated on
0K and 1K random graphs (as per Section 3.1).

6.3. COMBINING HEURISTICS WITH PARAMETERS 109

Physicists 1 - Feedback edge set

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

20000

40000

60000

80000

1e+05

120000

140000

160000

180000

0K Random network
1K Random network
Original network

Physicists 2 - Feedback edge set

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

50000

1e+05

150000

2e+05

250000

3e+05

350000

4e+05

450000

0K Random network
1K Random network
Original network

Enron - Feedback edge set

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

20000

40000

60000

80000

1e+05

120000

140000

160000

180000

0K Random network
1K Random network
Original network

Gnutella - Feedback edge set

0.00 0.05 0.10 0.15 0.20 0.25

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

0K Random network
1K Random network
Original network

Blogs - Feedback edge set

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0K Random network
1K Random network
Original network

Internet - Feedback edge set

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

3000

6000

9000

12000

15000

18000

21000

24000

27000

0K Random network
1K Random network
Original network

Neural - Feedback edge set

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

200

400

600

800

1000

1200

1400

1600

1800

0K Random network
1K Random network
Original network

Metabolic - Feedback edge set

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

200

400

600

800

1000

1200

1400

1600

1800

0K Random network
1K Random network
Original network

Figure 6.8: Sizes of minimum feedback edge sets in complex networks as hubs and
activation sets are removed with majority thresholds (r = 0.5). The networks used
are those listed in Table 2.1. The x-axis shows the proportion of vertices removed, the
y-axis shows the size of the feedback edge set. The experiments were repeated on 0K
and 1K random graphs (as per Section 3.1).

110 CHAPTER 6. HEURISTICS FOR TARGET SET SELECTION

Physicists 1 - Vertex cover upper bound

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

0K Random network
1K Random network
Original network

Physicists 2 - Vertex cover upper bound

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

0K Random network
1K Random network
Original network

Enron - Vertex cover upper bound

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

0K Random network
1K Random network
Original network

Gnutella - Vertex cover upper bound

0.00 0.05 0.10 0.15 0.20 0.25

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0K Random network
1K Random network
Original network

Blogs - Vertex cover upper bound

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

200

400

600

800

1000

1200

1400

1600

1800

0K Random network
1K Random network
Original network

Internet - Vertex cover upper bound

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0K Random network
1K Random network
Original network

Neural - Vertex cover upper bound

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

30

60

90

120

150

180

210

240

270

0K Random network
1K Random network
Original network

Metabolic - Vertex cover upper bound

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

50

100

150

200

250

300

350

400

450

0K Random network
1K Random network
Original network

Figure 6.9: Upper bounds for minimum vertex covers in complex networks as hubs
and activation sets are removed with majority thresholds (r = 0.5). The networks used
are those listed in Table 2.1. The x-axis shows the proportion of vertices removed, the
y-axis shows the vertex cover upper bound. The experiments were repeated on 0K and
1K random graphs (as per Section 3.1).

6.3. COMBINING HEURISTICS WITH PARAMETERS 111

Physicists 1 - Largest component

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0K Random network
1K Random network
Original network

Physicists 2 - Largest component

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

0K Random network
1K Random network
Original network

Enron - Largest component

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

0K Random network
1K Random network
Original network

Gnutella - Largest component

0.00 0.05 0.10 0.15 0.20 0.25

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0K Random network
1K Random network
Original network

Blogs - Largest component

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

200

400

600

800

1000

1200

1400

1600

1800

0K Random network
1K Random network
Original network

Internet - Largest component

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

3000

6000

9000

12000

15000

18000

21000

24000

27000

0K Random network
1K Random network
Original network

Neural - Largest component

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

30

60

90

120

150

180

210

240

270

0K Random network
1K Random network
Original network

Metabolic - Largest component

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

50

100

150

200

250

300

350

400

450

0K Random network
1K Random network
Original network

Figure 6.10: Size of the largest connected component in complex networks as hubs
and activation sets are removed with majority thresholds (r = 0.5). The networks used
are those listed in Table 2.1. The x-axis shows the proportion of vertices removed, the
y-axis shows the number of vertices in the largest component. The experiments were
repeated on 0K and 1K random graphs (as per Section 3.1).

112 CHAPTER 6. HEURISTICS FOR TARGET SET SELECTION

The results for the experiment removing hubs and activation sets are shown in

Figure 6.8 for feedback edge set number, Figure 6.9 for vertex cover number, and

Figure 6.10 for the size of the largest component. All of the parameters fall much faster

than they did in the original experiment where hubs only were removed. However, it

is still true that the feedback edge set number and the size of the largest component

become small at about the same point, and so the benefit of using an FPT algorithm

over a brute force search remains marginal.

6.4 Summary

This chapter began by comparing three heuristics for minimum target set, known or

adapted from the literature: hubs-first, the Shakarian-Paulo-Reichman algorithm, and

the marginal-gain algorithm of Kempe et al. (2005). It was found that of these, the

hubs-first algorithm has the best overall performance in terms of the size of the target

set computed. This suggests that in typical complex networks, the hubs make a good

target set for the entire network.

A novel heuristic was introduced in Section 6.2, which was designed to be applied in

a distributed manner. A sequential version of the same algorithm was also presented.

The distributed algorithm shows superior performance to SPR for high proportional

thresholds, and comparable performance for lower thresholds. The running time is also

considerably less than SPR in practice because the algorithm finishes after a very small

number of rounds (SPR usually takes a number of rounds proportional to the number

of vertices in the network, but the distributed algorithm completes within 50 rounds

even on networks with tens of thousands of vertices).

Finally, an attempt was made to combine heuristic approaches to minimum tar-

get set with the parametrized algorithms discussed in Section 5.3. A combination of

the hubs-first heuristic algorithm, and the feedback edge set number and vertex cover

number parametrized algorithms was considered. An algorithm based on this hybrid

approach would remove high degree vertices from the network, adding them to the

target set, until one of the two parameters (feedback edge set number or vertex cover

number) became small enough in the remainder of the network to permit an exact

solution (to the remainder of the problem) by a parametrized algorithm.

The viability of this approach was tested experimentally by progressively removing

hubs from the networks listed in Table 2.1, and measuring the relevant parameters

(feedback edge set number and vertex cover number). The size of the largest component

was also measured, as this is also expected to decrease as vertices are removed, and if

the largest component is small then a brute force solution is practical.

It was found that all the parameters measured fall far more rapidly in the original

6.4. SUMMARY 113

complex networks than in randomized versions of those networks. However, the feed-

back edge set numbers and vertex cover numbers do not fall much more rapidly than the

size of the largest component. This suggests that the benefit of using a parametrized

algorithm for the final phase is marginal, because by the time a parametrized algorithm

is practical, brute force is also practical. Hence, no attempt was made to implement

the hybrid algorithm.

The next chapter continues to explore the idea of making relatively small modi-

fications to a network, in order to achieve better performance for carefully designed

heuristic algorithms. Rather than removing vertices, the following chapter will explore

how edges can be added to a network to enable the computation of a smaller target

set, or a larger activation set (in the case of the maximum activation set problem).

114 CHAPTER 6. HEURISTICS FOR TARGET SET SELECTION

Chapter 7

Shrinking a target set by edge

augmentation

The previous chapter considered a hybrid algorithm for minimum target set selection,

where part of the problem is solved by a heuristic algorithm which operates by greed-

ily removing high degree vertices (hubs) from the network (the hubs-first heuristic

described in Section 6.1.1). It was found that the network parameters discussed in

Section 5.3 fall rapidly as hubs are removed. Once these parameters become suffi-

ciently small, the remainder of the problem can then be solved exactly using one of the

parametrized algorithms.

One limitation of such an algorithm is that it would not necessarily find a sig-

nificantly smaller target set than a purely heuristic algorithm. The number of hubs

that must be removed to get small parameters is about 5% - 10% of the total number

of vertices in the network, a large number considering the sizes of complex networks.

Heuristic algorithms such as SPR (Section 6.1.3) can often find target sets of about

this size (see Figure 6.1 as evidence), and the optimal vertices to include in a target set

are not necessarily the hubs. If a smaller target set is required than what is computed

by heuristics, then another approach will be necessary.

This chapter concerns an alternative approach to finding a small target set, in which

the network is augmented with new edges to ensure that a small target set does indeed

exist. This is done in such a way that the small target set is easily computed. The

hope is that it will be possible to add a relatively small number of edges to the network

in order to achieve a much smaller target set.

For the kinds of network where the target set problem is most relevant, i.e. social

networks and communications networks, edge augmentation strategies could be easily

applied (by encouraging new connections between users of an online social network, or

by adding new links to a communications network for example).

The edge augmentation approach can be sensibly applied to both the minimum

115

116 CHAPTER 7. SHRINKING A TARGET SET BY EDGE AUGMENTATION

target set selection problem (described in Section 5.1), and the maximum activation

set problem (described in Section 5.2). Section 7.1 of this chapter discusses three

augmentation strategies for the minimum target set selection problem, and Section 7.2

discusses four augmentation strategies for the maximum activation set problem.

7.1 Augmentation for minimum target set selection

This section proposes three strategies for augmenting networks with new edges, so that

the networks have small target sets that can be easily computed. This is done in the

context of the minimum target set selection problem explained in Section 5.1, using the

“tipping” model introduced in that chapter.

All three of the proposed strategies are based on the SPR (Shakarian-Paulo-Reichman)

algorithm described in Section 6.1.3. Recall that the SPR algorithm operates by main-

taining δ(v) = d(v) − t(v) for every vertex v where d(v) is the degree of v and t(v)

is the threshold of v. At each step a vertex with minimum, but non-negative, δ(v) is

removed from the network, until every vertex has negative δ(v). Note that d(v) may

change as vertices are removed from the network, but t(v) remains constant. Vertices

with negative δ(v) must be added to the target set because they cannot be activated

by their neighbours (which have been removed from the graph).

This suggests a way to achieve a smaller target-set: in addition to removing vertices

with small non-negative δ(v), add edges adjacent to vertices with negative δ(v). This

will allow at least some vertices to maintain a non-negative δ(v), and thus avoid being

placed in the target set. Three variations on this idea are considered:

Local : Following every round of the SPR algorithm, if δ(v) for any vertex v has

become negative, then add edges between v and NN(v) where NN(v) is the set of

vertices of distance no greater than 2 from v. Edges are added to v until δ(v) = 0. v

is connected to vertices u ∈ NN(v) in order of increasing δ(u).

Long-range: As for the local strategy, except that v may be connected to any

other vertex in the network. v is connected to vertices u in order of increasing δ(u).

Eventually, this process produces a target set no larger than the highest threshold in

the network.

Shrink : Run the SPR algorithm until all vertices have negative δ(v). Then select

the vertex v with the largest (closest to 0) δ(v), and add enough edges adjacent to v

to make δ(v) = 0. Remove v from the target set and continue. As with the long-range

strategy, this processes produces a target set no larger than the highest threshold in

the original network when enough edges are added.

7.1. AUGMENTATION FOR MINIMUM TARGET SET SELECTION 117

The local strategy is designed to model a situation where it is easier to add short-

range edges. For example, in a social network it is likely to be easier to encourage edges

between vertices that already share a common neighbour, than between arbitrary ver-

tices. Restricting the extra edges to neighbours of neighbours reduces the effectiveness

of this edge augmentation strategy, because when δ(v) < 0, there may not be enough

eligible edges to prevent v from going into the target set. The size of the effect can be

seen by comparing the local and long-range strategies.

All three strategies place edges where they are most needed to prevent vertices

from being forced into the target set, therefore, it is hypothesised that the addition of a

relatively small number of edges will cause a large reduction in the size of the computed

target set. The local strategy is likely to produce the smallest decrease in the size of

the target set, since it is severely restricted in what edges it may add to the network.

The shrink strategy is likely to be the most effective, since each edge added by that

strategy contributes to the δ(v) of two vertices that would otherwise go into the target

set. This is not necessarily the case for the long-range and short-range strategies.

7.1.1 Experimental results

The relative performance of the three edge augmentation strategies was compared ex-

perimentally. For each of the networks listed in Table 2.1, and for 0K and 1K ran-

domized versions of those networks, target sets were computed after augmenting edges

according to each of the three strategies (local, long-range, and shrink).

For each trial, an upper bound l was imposed on the number of edges that could be

added. Then, each of the augmentation strategies was run, adding as many edges as

possible up to l, and the size of the target set was computed. The method for computing

the target set is based on the Shakarian-Paulo-Reichman algorithm and varies for each

of the three strategies as previously described. For each network (including the random

networks) 100 trials were performed with l ranging from 0 to m (the number of edges

in the network). Each new trial begins with the original (not augmented) network, or

in the case of the random networks, a freshly randomized copy of the original network.

To reduce the number of parameters in the experiments, only one threshold assign-

ment was tested. All of the experiments used proportional thresholds with a ratio of

0.5 (i.e. the majority thresholds scheme). Under this scheme, the threshold t of a vertex

v is computed as t(v) = max(1, 0.5 · d(v)) rounded to the nearest integer, where d(v)

is the degree of v.

The results of these experiments are shown in Figure 7.1 for the local strategy,

Figure 7.2 for the long range strategy, and Figure 7.3 for the shrink strategy.

Notice that for all the strategies used, the target set falls rapidly to a small (but non-

zero) size. This is because under every strategy tested, the number of vertices between

118 CHAPTER 7. SHRINKING A TARGET SET BY EDGE AUGMENTATION

0 50000 100000 150000

0

800

1600

2400

3200

4000

4800

5600

6400

7200

Original Network
0K-Random
1K-Random

Physicists 1

0 100000 200000 300000 400000

0

900

1800

2700

3600

4500

5400

6300

7200

8100

Original Network
0K-Random
1K-Random

Physicists 2

0 10000 200000 210000

0

300

2400

9200

9800

7100

4900

4600

1500

5700

Original Network
0K-Random
2K-Random

Enron

0 10000 20000 30000 40000

0

200

400

600

800

1000

1200

1400

1600

1800

Original Network
0K-Random
1K-Random

Gnutella

0 5000 10000 15000

0

50

100

150

200

250

300

350

400

450

Original Network
0K-Random
1K-Random

Blogs

0

6

12

18

24

30

36

42

48

54

Original Network
0K-Random
1K-Random

C.El egans ENgurne

0 500 1000 1500 2000 0 500 1000 1500 8000

0

6

12

84

38

40

46

52

24

78

Original Network
0K-Random
1K-Random

C.El egans EMgtnboeic

Figure 7.1: Plots of the computed target set sizes when edges are added according to
the local strategy as described in Section 7.1, on the networks listed in Table 2.1 and
random networks as described in Section 3.1. The target sets are computed by the SPR
algorithm (Section 6.1.3). The x-axis shows the maximum number of edges that may
be added, ranging from 0 to the number of edges in the network. The y axis shows the
number of vertices in the computed target set.

7.1. AUGMENTATION FOR MINIMUM TARGET SET SELECTION 119

0 50000 100000 150000

0

800

1600

2400

3200

4000

4800

5600

6400

7200

Original Network
0K-Random
1K-Random

Physicists 1

0 100000 200000 300000 400000

0

900

1800

2700

3600

4500

5400

6300

7200

8100

Original Network
0K-Random
1K-Random

Physicists 2

0 10000 200000 210000

0

300

2400

9200

9800

7100

4900

4600

1500

5700

Original Network
0K-Random
2K-Random

Enron

0 10000 20000 30000 40000

0

200

400

600

800

1000

1200

1400

1600

1800

Original Network
0K-Random
1K-Random

Gnutella

0 5000 10000 15000

0

50

100

150

200

250

300

350

400

450

Original Network
0K-Random
1K-Random

Blogs

0

1

23

42

49

87

34

36

75

58

Original Network
0K-Random
2K-Random

C.El egans ENgurne

0 700 2000 2700 4000

0

1

23

42

49

87

34

36

75

58

0 700 2000 2700 4000

Original Network
0K-Random
2K-Random

C.El egans EMgtnboeic

Figure 7.2: Plots of the computed target set sizes when edges are added according to
the long-range strategy as described in Section 7.1, on the networks listed in Table 2.1
and random networks as described in Section 3.1. The target sets are computed by the
SPR algorithm (Section 6.1.3). The x-axis shows the maximum number of edges that
may be added, ranging from 0 to the number of edges in the network. The y axis shows
the number of vertices in the computed target set.

120 CHAPTER 7. SHRINKING A TARGET SET BY EDGE AUGMENTATION

0 50000 100000 150000

0

800

1600

2400

3200

4000

4800

5600

6400

7200

Original Network
0K-Random
1K-Random

Physicists 1

0 100000 200000 300000 400000

0

900

1800

2700

3600

4500

5400

6300

7200

8100

Original Network
0K-Random
1K-Random

Physicists 2

0 10000 200000 210000

0

300

2400

9200

9800

7100

4900

4600

1500

5700

Original Network
0K-Random
2K-Random

Enron

0 10000 20000 30000 40000

0

200

400

600

800

1000

1200

1400

1600

1800

Original Network
0K-Random
1K-Random

Gnutella

0 5000 10000 15000

0

50

100

150

200

250

300

350

400

450

Original Network
0K-Random
1K-Random

Blogs

0512134Ori gna l 5
Netw43ol k
Ketw43ol k

N KNNNN - NNNN RNNNN dNNNN

N

mNN

KNNN

KmNN

- NNN

- mNN

RNNN

RmNN

dNNN

dmNN

Internet

0

1

23

42

49

87

34

36

75

58

0 700 2000 2700 4000

Original Network
0K-Random
2K-Random

C.El egans ENgurne

0 500 1000 1500 8000

0

6

12

84

38

40

46

52

24

78

Original Network
0K-Random
1K-Random

C.El egans EMgtnboeic

Figure 7.3: Plots of the computed target set sizes when edges are added according
to the shrink strategy as described in Section 7.1. The networks are those listed in
Table 2.1, and the random networks are as described in Section 3.1. The target sets
are computed by the SPR algorithm (Section 6.1.3). The x-axis shows the maximum
number of edges that may be added, ranging from 0 to the number of edges in the
network. The y axis shows the number of vertices in the computed target set.

7.1. AUGMENTATION FOR MINIMUM TARGET SET SELECTION 121

which edges may be added decreases as the processes continues, and eventually no

more edges can be added. For the local and long-range strategies, edge augmentation

is interleaved with the SPR algorithm, which removes vertices from the graph. Hence,

the longer the process continues, the fewer vertices are available to connect with new

edges. The shrink process explicitly removes a vertex from the network after each

round of edge augmentation, and again this reduces the pool of new edges that could

be added.

In all of the networks tested, and for every strategy used, the target set reaches

its smallest size after the number of edges is increased by about 20%. However, in

most networks the target set is close to this minimum after an increase in the number

of edges by only 5% − 10%. The local and long-range strategies take slightly longer

to reach their minimums than the shrink strategy, and the shrink strategy generally

produces the smallest target set. As seen by comparing Figures 7.1 and 7.2, the local

strategy is usually significantly outperformed by the other two strategies in terms of

the final size of the target set.

For the shrink strategy, the algorithm generally performs better on the original net-

works than on the 0K random networks; although the effect is sometimes weak. The

behaviour of the 1K random networks is distinct from the original networks, and typ-

ically sits in between the original networks and the 0K random networks. This implies

that there is another factor involved in the rapid decrease in the size of the computed

target set, other than the degree distribution, although the degree distribution is clearly

relevant.

For the local and long-range strategies, the rate of decrease of the size of the com-

puted target set as edges are added is essentially the same for the original networks and

all the random networks. However, there are significant differences in the sizes of the

eventual target sets. This is likely due to the nature of these two algorithms that edges

cannot be added adjacent to vertices that have already been removed. The placement

of the early augmented edges can therefore have a large effect on the eventual size of

the target set.

The placement of the augmented edges is largely determined by degree, hence for

the long-range strategy the 1K random networks show similar behaviour to the original

networks, whereas the 0K random graphs show different (typically smaller) minimal

target sets.

For the local strategy, both the 0K and 1K random networks typically produce

smaller final target sets that the original networks. This is most likely due to the

clustering effect, described in Section 2.2.4. Complex networks are known to have

relatively high clustering coefficients, which means that neighbours of neighbours are

more likely to be connected than in random networks. This further reduces the number

122 CHAPTER 7. SHRINKING A TARGET SET BY EDGE AUGMENTATION

of places where edges may be added under the local strategy, leading to much smaller

target sets for the randomized networks than for the original networks.

One final irregularity that can be seen in Figures 7.1 and 7.2 is that sometimes the

size of the computed target set actually increases when edges are added. This is partly

a random effect from using a different random graph for each data point. Notice,

however, that the effect also shows up occasionally in the original networks (see for

example Figure 7.2, ‘C. Elegans Metabolic’). In such cases, the effect may be due to

the Shakarian-Paulo-Reichman algorithm effectively choosing vertices based on degree,

which is altered when edges are added. This could cause the algorithm to stray further

from the optimal path.

7.2 Augmentation for maximum activation set

This section attempts to apply the edge augmentation strategies discussed in the pre-

vious section to the maximum activation set problem. Recall from Section 5.2 that the

maximum activation set problem is to find a target set of size k (for some fixed k) that

activates the maximum number of vertices in the network.

The version of the maximum activation set problem described in Section 5.2 is based

on the SIR model (described in that chapter), where instead of every vertex having

an activation threshold, there is a global infectivity constant β. At each step of the

activation process, every vertex attempts to activate all of it’s unactivated neighbours,

and succeeds (for each vertex) with probability β.

Since this is a probabilistic process, the quantity to maximise is in fact the expected

size of the activation set. The only known method for computing the expected size of

the activation set σ(A(T)) from a target set T is by repeated trials of the activation

process (Kempe et al., 2005). The expected size of the activation set is the mean of

the activation sets computed in all the trials.

In order to compare strategies for edge augmentation, it is necessary to compute

an approximately optimal target set in the augmented networks. The optimal approx-

imation algorithm for maximum activation set, given by Kempe et al. (2005), is to add

the next vertex that results in the largest increase in the expected size of the activation

set. The approximation factor is 1 − 1/e − ε, where e is the base of the natural loga-

rithm (Kempe et al., 2005). This is an O(nmkN) algorithm, where n is the number of

vertices in the network, m is the number of edges, N is the number of trials and k is

the maximum size of the target set.

An optimisation of the Kempe et al. (2005) algorithm is offered by Chen et al.

(2009). The optimised algorithm has a running time of O(mkN), which is achieved by

computing σ(A(T ∪ v)) simultaneously for every vertex v (as opposed to the original

7.2. AUGMENTATION FOR MAXIMUM ACTIVATION SET 123

algorithm where it is computed per vertex, each vertex costing O(mkN) time to com-

pute). This algorithm is referred to as the optimised marginal gain algorithm, and is

used throughout the remainder of this chapter to compute the target sets.

The optimisation works as follows: for each trial, every edge in the network is either

removed or kept with probability β (the infectivity constant). The activation set from

any subset of vertices T can then computed as
⋃

v∈T C(v) where C(v) is the connected

component in the derived network that contains v. This is equivalent to computing the

activation set from T by simulating the activation process, except that the expensive

steps (computing the derived network and finding the connected components) need

only be done once per trial.

The augmentation strategies explored in Section 7.1 cannot be directly applied to

the maximum activation set problem under the SIR model (since they rely on the

Shakarian-Paulo-Reichman algorithm, which is not applicable to the SIR model). In-

stead, the following modified strategies are used:

Neighbours: Edges are added between the neighbours of high degree vertices. This is

similar to the local strategy for the minimum target set selection problem (Section 7.1).

The justification is that in real-world networks (such as social networks), it is probably

easier to add edges between vertices that are already close together (vertices that have

short distances between them). High degree vertices are prioritised because they are

more likely to become infected (due to their high degree), and so they can be expected

to pass on the infection to a significant number of their neighbours.

Distance: Pick a vertex v at random, and compute the distances from v to every

other vertex in the network (by breadth first search for example). For all vertices u

such that distance(v, u) is maximal, the edge vu is added. The process is repeated with

a new random v until the desired number of edges have been added to the network.

Here the justification is that long range connections may allow the infection to spread

to, and hence to seed parts of the network that would otherwise be too far away from

the target set.

For the minimum target set selection problem, the most successful edge augmen-

tation strategy operated by first computing a target set, then using that target set to

guide the augmentation process. That strategy (the shrink strategy) is not directly

applicable to the maximum activation set problem, where the goal is to maximise the

activation set rather than to minimise the target set. However, two strategies based on

this concept were considered:

Distance from target set : Compute a target set T using the optimised marginal gain

algorithm. Use a breadth first search to compute the distances of all the vertices in the

network from T . Add edges from randomly selected vertices v ∈ T to vertices outside

124 CHAPTER 7. SHRINKING A TARGET SET BY EDGE AUGMENTATION

T , in order from the farthest to the closest vertex, choosing randomly when multiple

vertices are the same distance from T .

Dead-patches : This strategy attempts to connect the target set to patches of vertices

that are otherwise unlikely to be activated (perhaps because they are relatively isolated

from the rest of the network). First, the activation probability pa(v) is computed for

every vertex v. This is done by performing a large number of trial activations (using

the optimisation of Chen et al. (2009)), and counting how many times each vertex

is activated. Then, the following statistic is computed for every vertex v: D(v) =

pa(v) +
∑

u∈N(v) pa(u)/|N(v)| where N(v) is the set of vertices adjacent to v. Edges

are added between randomly selected vertices in the target set T and vertices v outside

T in order from lowest to highest D(v), in the same fashion as for the distance from

target set strategy.

For the last two strategies, where a target set is computed first and then used to

guide the augmentation process, the target set is not recomputed following the edge

augmentation. The goal of these strategies is to increase the expected size of the

activation set from the same target set. This differs from the first two strategies, which

aim to alter the structure of the network so that a well-chosen target set can achieve a

larger activation set than would have been possible in the original network.

Another strategy, which might give better results, would have been to compute a

target set using the marginal gain algorithm, then for each edge e compute the expected

marginal gain in the activation set from adding e to the network. Then, add edges in

order of decreasing marginal gain. This approach was not used because even if the

marginal gain from each potential edge e is not recomputed between adding edges,

there are still O(n2) edges that could be added (in a sparse network), and each one

requires a large number of trial runs of the O(n) activation process to compute the

expected marginal gain. The overall cubic running time is not fast enough for such an

algorithm to be practical.

The hypothesis is that adding a relatively small number of well-placed edges to a

network will result in a much larger activation set from the same sized target set. This

is evaluated experimentally.

7.2.1 Experimental evaluation

The four augmentation strategies for maximum activation set were compared experi-

mentally. These experiments presented two difficulties over the experimental evaluation

of the minimum target set selection problem in Section 7.1.1. Firstly, there is an extra

variable for the maximum activation set problem: the size of the target set k. Sec-

ondly, the optimised marginal gain algorithm that is required to compute the expected

7.2. AUGMENTATION FOR MAXIMUM ACTIVATION SET 125

sizes of the activation sets has a running time of O(nNk), and is considerably slower

in practice than the O(n2) Shakarian-Paulo-Reichman algorithm that was employed in

for minimum target set selection.

These two challenges lead to a simplified experimental design. The infectivity con-

stant β was fixed at a value that would ensure that a reasonably large target set would

be required to activate the entire network. If the infectivity constant were excessively

high, then there would be little improvement to be made by any augmentation strategy,

except for extremely small target sets. Specifically, informal trials were used to choose

the value β = 0.05 as meeting these requirements.

The size of the target set k was allowed to vary from 1 to 50, in increments of 5, so

that it is possible to compare the relative effects of adding more vertices to the target

set with augmenting edges. For each value of k, and for each of the augmentation

strategies, a target set was computed, along with the expected size of the activation

set from that target set. The augmentation strategies can then be compared with each

other according to how large an activation set they produce.

The number of edges to add was also fixed, at 1000 edges. This number was chosen

after preliminary trials suggested that the edge augmentation strategies would not be

very effective for maximum activation set. If any of the edge augmentation strategies

have the desired property that adding a small number of edges produces a much larger

activation set, then adding such a large number of edges should produce a significant

increase in the expected size of the activation set, especially on the smaller and sparser

networks.

Since the networks used in these experiments (those listed in Table 2.1) cover a range

of sizes and densities, the proportional number of edges to add effectively varies across

the different networks. If the augmentation strategies behave as did those described

in Section 7.1, then there should be a noticeable increase in the expected sizes of the

activation sets even on the large networks.

Two additional “augmentation strategies” were included in the experiments as con-

trols. The none strategy does not add any edges, it is used as a baseline with which to

compare the effects of the other augmentation strategies. It also enables comparisons

between the relative effects of augmenting edges and adding more vertices to the target

set.

The random augmentation strategy adds edges between endpoints chosen uniformly

at random (in such a way that the simple graph constraint is maintained). The inclusion

of the random strategy allows one to conclude whether or not the other strategies are

more or less effective than chance.

126 CHAPTER 7. SHRINKING A TARGET SET BY EDGE AUGMENTATION

1 5 10 15 20 25 30 35 40 45 50

Physicists 1

None
Random
Neighbours
Distance
Dead Patches
Distance from TS

0.00

0.02

0.04

0.06

0.08

0.0

0.1

0.2

0.3

0.4

1 5 10 15 20 25 30 35 40 45 50

Physicists 2

None
Random
Neighbours
Distance
Dead Patches
Distance from TS

0.00

0.01

0.20

0.21

2 1 20 21 30 31 40 41 50 51 10

Enron

None
Random
Neighbours
Distance
Dead Patches
Distance from TS

0.000

0.001

0.020

0.021

0.030

0.031

0.040

0.041

2 1 20 21 30 31 40 41 50 51 10

Gnutella

None
Random
Neighbours
Distance
Dead Patches
Distance from TS

0.0

0.1

0.2

0.3

0.4

1 5 10 15 20 25 30 35 40 45 50

Blogs

None
Random
Neighbours
Distance
Dead Patches
Distance from TS

0.00

0.01

0.02

0.03

0.04

1 5 10 15 20 25 30 35 40 45 50

Internet

None
Random
Neighbours
Distance
Dead Patches
Distance from TS

0.0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20 25 30 35 40 45 50

C.Elegans Neural

None
Random
Neighbours
Distance
Dead Patches
Distance from TS

0.00

0.01

0.20

0.21

0.30

0.31

0.40

0.41

2 1 20 21 30 31 40 41 50 51 10

C.Elegans Metabolic

None
Random
Neighbours
Distance
Dead Patches
Distance from TS

Figure 7.4: Expected size of activation set following several different edge augmen-
tation strategies. The x-axis shows the size of the target set k, the y-axis shows the
size of the activation set as a proportion of the vertices in the network. The expected
size of the activation set is computed as the mean over 100 trial runs of the activation
process, 95% confidence intervals indicate the level of variance over those trials. As
explained in Section 7.2.1, the infectivity constant β is fixed at 0.05, and the number
of edges to augment is fixed at 1000. The none and random strategies are controls.

7.2. AUGMENTATION FOR MAXIMUM ACTIVATION SET 127

7.2.2 Interpretation of results

The results from the experiments are presented in Figure 7.4. The first thing to note is

that the effects of the edge augmentation strategies are related to the sizes and densities

of the networks (refer to Table 2.1). This is because the number of edges to augment

was fixed at 1000, so relatively more edges are augmented in the smaller and sparser

networks.

The random strategy is usually outperformed by the distance-based strategies (neigh-

bours, distance, dead-patches, and distance from target set), as expected. This indi-

cates that the effects of those strategies are due to the informed placement of the edges,

not merely due to the resulting increase in the density of the network. However, the

activation sets following the distance based augmentation strategies are only marginally

larger than following the random strategy.

By comparing the distance-based strategies with the “none” strategy for higher

values of k (the size of the target set), one can compare the relative effects of adding

edges versus adding vertices to the target set. Specifically, Figure 7.4 allows one to

compare adding 5 vertices to the target set and adding 1000 edges to the network.

Even though such a large number of edges are added, the edge augmentation strategies

are only marginally more effective than adding more vertices to the target set.

The benefit of adding edges seems to be independent of the size of the target set.

The Gnutella and Neural networks do show an interesting effect where the strategies

that augment based on a pre-computed target set (dead-patches and distance from

target set) are relatively more effective when k is small. This could be because with a

smaller target set, the mean distance from the target set is higher and there are more

likely to be “dead-patches” of vertices that don’t become activated.

A final observation is that the neighbours strategy, which connects vertices of dis-

tance 2, is surprisingly effective. In the Gnutella network, neighbours is the most

effective strategy, in the Internet, Enron, and Physicists 1 networks it performs equally

as well as the most effective strategies. The only network where the neighbours strategy

performs poorly relative to the other strategies is the blogs network. This hints that the

clustering properties of complex networks (explained in Section 2.2.4), including social

networks, are highly relevant to how well infections spread throughout the network.

This is somewhat counter to intuition, which would suggest that it is mainly the short

average distances of complex networks that allow a small target set to infect a large

proportion of the network.

128 CHAPTER 7. SHRINKING A TARGET SET BY EDGE AUGMENTATION

7.3 Summary

This chapter has explored an approach to the minimum target set selection and max-

imum activation set problems, where new edges are added to the network to enable

the computation of a smaller target set (in the case of the minimum target set selec-

tion problem), or a larger activation set (in the case of the maximum activation set

problem). The hope was that a much smaller target set (or a much larger activation

set) could be achieved by adding a relatively small number of edges to a network. In

the case of minimum target set selection, this would be analogous to the results of

Section 6.3 where large reductions in important network parameters were achieved by

removing relatively small sets of vertices.

For each problem, several different edge augmentation strategies were devised. Lo-

cal strategies add edges between neighbours of neighbours, increasing the clustering

coefficient of the network. This is based on the assumption that such short-range edges

may be less expensive to add to a real network (a social network for example). The

long-range strategies are permitted to add edges anywhere in the network, and were

expected to perform better than the local strategies.

For the minimum target set selection problem (Section 7.1), three strategies were

attempted. Both the local and long-range strategies produced a rapid decrease in the

size of the target set, as desired. The local strategy was found to have a tendency to get

“stuck”, whereas the long-range strategy can continue for longer, ultimately producing

a smaller target set than the local strategy. The most effective strategy was one where

a target set was precomputed, then edges were added within the target set to reduce

the number of vertices that must be targeted. This strategy (called shrink) was found

to produce the fastest decrease in the size of the target set, and the smallest ultimate

target set.

The results for the maximum activation set problem (Section 7.2) were less promis-

ing. Similar local and long-range strategies to those used for the minimum target

set selection problem were employed (called neighbours and distance). Two additional

long-range strategies were attempted (dead-patches and distance from target set), based

on the idea of pre-computing a target set then augmenting the network so that that

particular target set activates more of the network. These strategies were found to be

generally less effective in increasing the size of the activation set than simply putting

more vertices in the target set.

It was not possible to use the same experimental design for the maximum activation

set problem as was used for the minimum target set selection problem. This is because

maximum activation set has an extra parameter (size of the target set k), and it is

more computationally expensive to compute a target set for maximum activation set

when using the optimal algorithm. The methodology that was chosen in Section 7.2.1

7.3. SUMMARY 129

is limited in that only very limited ranges for values of the parameters could be tested.

In particular, the number of edges to augment was fixed at 1000, and the infectivity

constant was fixed at β = 0.05.

Although the experiments for maximum activation set as described in Section 7.2.1

were essentially negative, it is not possible to rule out the possibility that edge augmen-

tation might be effective for different combinations of parameters. However, it is the

opinion of the author that the particular choices for the parameters were reasonable,

and that it is unlikely that edge augmentation would be effective for this problem (even

with higher β or larger target sets). The possibility remains, of course, that a more

sophisticated edge augmentation strategy could produce similar results for maximum

activation set as were achieved for minimum target set selection.

130 CHAPTER 7. SHRINKING A TARGET SET BY EDGE AUGMENTATION

Chapter 8

Conclusions

This chapter begins with a summary of the work presented in this thesis. This is

followed in Section 8.2 with a summary of the main findings of the research. Finally,

Section 8.3 considers the limitations of this thesis, and several directions in which the

research could be continued.

8.1 Summary

It is well-known that complex networks exhibit many kinds of non-random structure, as

was summarised in Chapter 2. This thesis was mainly interested in how that structure

can inform the design of algorithms operating on complex networks. A broad range

of network datasets were selected, as described in Section 2.1. In order to focus on

the structure that is common to complex networks, rather than the specifics of narrow

classes of networks, it was decided to project every network to a simple graph. In

this way, edge directions, edge weights, and self-loops were ignored, so all the networks

could be treated identically.

The large sizes of typical complex network datasets present a major challenge to

the design of algorithms for these networks. The networks used in this thesis (listed in

Table 2.1) ranged from 297 to 40, 421 vertices. Many complex networks are considerably

larger: see for example Ugander et al. (2011), who study the Facebook network which

has millions of vertices.

When dealing with such large datasets, it is not sufficient for an algorithm to run

in polynomial time in order for it to be tractable in a practical sense. For example,

Table 2.2 shows the mean distances in the networks described in Section 2.1. To

compute this quantity exactly, one must compute the shortest paths between all pairs

of vertices, which takes O(n3) time. This was found to be too slow in practice, and

instead a sampling approach was required. Experience with heuristic algorithms for

minimum target set and maximum activation set (from Chapters 6 and 7) suggests that

131

132 CHAPTER 8. CONCLUSIONS

O(n2) is the slowest running time that can be reasonably tolerated when processing

large networks.

Two closely related NP-complete problems, the minimum target set selection prob-

lem and the maximum activation set problem were introduced in Chapter 5. These

problems were used throughout the remainder of the thesis as a case study for how the

structure of complex networks affects the performance of various algorithms.

Throughout Chapters 5 to 7, a variety of approaches to the minimum target set

and maximum activation set problems were explored. The relative viability of each

approach, and the relative performance of the various algorithms that were devised,

was evaluated experimentally. These experiments consisted mainly of running the al-

gorithms on a set of real-world complex network datasets, listed in Table 2.1. In order

to ensure that the results were specific to complex network structures, and not merely

to chance, it was necessary to include random graphs in the experimental methodology.

Generating random graphs is a surprisingly difficult problem, and this was the

subject of Chapter 3. As explained in Section 3.1, the experimental methodology

employed in this thesis requires two kinds of random graphs, which are named 0K and

1K random graphs as per Mahadevan et al. (2006a). According to the definitions used

in this thesis, a 0K random graph is drawn uniformly at random from the space of

all simple graphs having a particular size and density. A 1K random graph, on the

other hand, is drawn uniformly at random from the space of all simple graphs having

a particular degree-sequence.

The difficult case is that of the 1K random graphs. Chapter 3 lists two well-known

procedures that generate 0K random graphs (The Erdős-Rényi procedure, and the ran-

dom rewiring procedure). There is also a popular procedure for generating 1K random

multigraphs (which may contain multiple edges and self-loops), the configuration model

described in Section 3.2.2. Chapter 3 explored several methods used in the complex

networks literature to generate 1K random simple graphs, including a generalisation

of the configuration model.

It was found that only one method is able to reliably (and efficiently) produce

1K random graphs. This being the random degree-preserving rewiring algorithm of

Gkantsidis et al. (2003), described in Section 3.3.2. This algorithm relies on a somewhat

obscure theorem in graph theory, first proved by Taylor (1980). An alternative proof

of the theorem is offered in Chapter 4. The alternative proof operates by directly

constructing a sequence of rewiring operations, as opposed to the original proof which

merely aims to prove the existence of such a sequence. By directly constructing the

sequence of operations, it was possible to derive an upper bound which is probably

close to optimal.

8.1. SUMMARY 133

8.1.1 Target sets for complex networks

For the minimum target set selection problem, as explained in Section 5.3, there are

several known algorithms that can solve this NP-complete problem in polynomial time

on limited classes of networks. Specifically, minimum target set selection is fixed-

parameter-tractable when parametrized by vertex cover number, cluster deletion num-

ber, and feedback edge set number (Nichterlein et al., 2010). The presence or absence

of these structures (small vertex covers, small cluster deletion sets, and small feedback

edge sets) in complex networks has not been well explored in the literature, so an at-

tempt was made to compute the exact values of all these parameters on the complex

networks listed in Table 2.1.

Since the computation of vertex cover number and cluster deletion number are both

NP-complete, computing exact values for large complex networks required advanced

FPT algorithms, as described in Section 5.3. In cases where it was not possible to

compute the parameters exactly, upper and lower bounds were computed instead. The

results of these computations show that all three parameters (vertex cover number,

cluster deletion number, and feedback edge set number) are too large in real-world

complex network datasets for the parametrized target set algorithms to apply.

Chapter 6 began an exploration of heuristic algorithms for minimum target set, since

minimum target set is inapproximable (Chen, 2009), and the known parametrized al-

gorithms cannot be directly applied. Experimental comparisons were made between

an obvious “hubs-first” greedy strategy, a recent heuristic algorithm by Shakarian and

Paulo (2012) and Reichman (2012), and a novel heuristic based on the SPR (Shakarian-

Paulo-Reichman) algorithm that can be applied in a distributed manner. The dis-

tributed heuristic was found to produce smaller target sets than the conventional SPR

algorithm for high proportional thresholds, and it was also the fastest of the algorithms

even when applied sequentially. However, the hubs-first approach still produced the

smallest target sets in most cases, suggesting that in typical complex network datasets,

the high degree vertices form a good target set.

An attempt was made in Section 6.3 to combine heuristics with parametrized algo-

rithms. It is well-known that progressively removing the highest degree vertices (the

hubs) rapidly causes the network to become disconnected. This suggested that the

hubs-first greedy heuristic could cause a decrease in some network parameters as hubs

are removed. At some point, the parameters become small enough that a parametrized

algorithm can be used to compute an exact solution for the remained of the network.

Experimental evaluation of this hypothesis showed that the feedback edge set and

vertex cover number parameters fall rapidly as hubs are removed. However, the point

at which the parameters become small enough to permit a parametrized solution is

close to the point at which the largest connected component becomes small enough to

134 CHAPTER 8. CONCLUSIONS

permit a brute force solution. Hence, any benefits of using such a hybrid algorithm

would be marginal.

The essential idea of the hybrid algorithm is that, due to the structure inherent in

complex networks, it may be possible to make a relatively small modification to the

network in order to achieve a large increase in the performance of some algorithm.

Chapter 7 explores a further variation on this idea, where instead of removing vertices

from the network, edges are added. The goal is to add a relatively small number of

edges to a network, in order to achieve a much smaller target set (in the case of the

minimum target set selection problem), or a much larger activation set (in the case of

the maximum activation set problem).

The experiments reported in Chapter 7 revealed that using an edge augmentation

scheme based on the SPR algorithm, it was indeed possible to add a relatively small

number of edges to a network in order to achieve a much smaller target set. However,

in the case of the maximum activation set problem, none of the edge augmentation

schemes tested were found to show this effect.

The results for maximum activation set suggest that adding more vertices to the

target set is more effective in increasing the size of the activation set than adding more

edges to the network (for the maximum activation set problem). It must be noted

however, that the experimental methodology used for maximum activation set was

limited, and it may be that the desired effect could be achieved with more thorough

experimentation.

8.2 Main findings

The original aims of this thesis, as listed in Section 1.3, were twofold: to attempt to

identify previously unnoticed structure in complex networks, and to explore how the

structure inherent in complex networks can be leveraged algorithmically.

An attempt was made to find new structure in complex networks that could be

exploited algorithmically, but no such structure was be found. In particular, testing on

a range of complex networks concluded that most complex networks do not have small

vertex covers, small cluster edge deletion sets, or small feedback edge sets, all of which

would be very useful properties if they were present.

In order to improve on existing heuristics for the target set problems, an approach

was taken in which the network is modified in order to “strengthen” the structure that

is already there. This lead to the main finding of this thesis: that is is often possible to

make small modifications to the structure of complex networks, in order to achieve large

gains in the performance of suitably tuned heuristic algorithms. The author considers

this a positive result for the second of the aims of this thesis.

8.3. FUTURE WORK 135

Experimental comparisons with random networks show that the results of this re-

search are specific to complex networks, and must therefore be due to the unique

topological features of these networks. Finding an algorithm to generate the random

networks, one of the objectives listed in Section 1.3, proved to be more challenging

than expected. This work ultimately lead to a novel proof of a theorem concerning the

rewiring of graphs, which was presented in Chapter 4.

8.3 Future work

There are several directions in which this work could be continued. One such direction

would be to continue searching for previously unnoticed structure in complex networks.

However, it is the opinion of the author that one is unlikely to find any stronger structure

in complex networks than what is already known. Experience suggests that the main

topological structures in complex networks, the heavy-tailed degree distribution and

the small-world effect, are only a weak form of structure, and that complex network

topologies are in fact more random than the literature would suggest.

An obvious limitation of the experiments presented in this thesis is that they rely

on a small sample of only eight network datasets. Relatively speaking, these datasets

are of small and medium size. None have more than 50, 000 vertices, whereas the

largest complex networks studied to date have millions of vertices. Furthermore, all

the network datasets were projected down to simple undirected graphs, ignoring the

potentially rich topologies created by directed edges, edge weights, and multiple edges.

An important direction for future work, therefore, would be to scale up the experiments

with more networks, and larger network datasets. This would make it practical to

differentiate between directed and undirected networks, for example, and the results of

the experiments may differ significantly between them.

Finally, the goal of this thesis was to find general techniques for designing algorithms

to operate on complex networks. The algorithms developed, however, are particular to

the target set problems which were used as a case study in this thesis. The next step

in this research would be to attempt to apply the key concept, of making modifications

to a network, to other network problems.

136 CHAPTER 8. CONCLUSIONS

Bibliography

Faisal N. Abu-Khzam, Rebecca L. Collins, Michael R. Fellows, Michael A. Langston,

W. Henry Suters, and Christopher T. Symons. Kernelization algorithms for the

vertex cover problem: Theory and experiments. ALENEX/ANALC, 69, 2004.

Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004 U.S.

election: divided they blog. In Proceedings of the 3rd international workshop on

Link discovery, LinkKDD ’05, pages 36–43, New York, NY, USA, 2005. ACM. ISBN

1-59593-215-1. URL http://doi.acm.org/10.1145/1134271.1134277.

Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A. Huberman.

Search in power-law networks. Phys. Rev. E, 64:046135, Sep 2001.

J Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespignani.

Large scale networks fingerprinting and visualization using the k-core decomposition.

In Advances in neural information processing systems, pages 41–50, 2005.

José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, Alessandro Vespignani,

et al. K-core decomposition of internet graphs: hierarchies, self-similarity and mea-

surement biases. Networks and Heterogeneous Media, 3, 2008.

Yael Artzy-Randrup and Lewi Stone. Generating uniformly distributed random net-

works. Phys. Rev. E, 72:056708, Nov 2005.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.

Science, 286:509–512, 1999.

Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical processes on

complex networks, volume 1. Cambridge University Press Cambridge, 2008.

Mohsen Bayati, Jeong Kim, and Amin Saberi. A sequential algorithm for generat-

ing random graphs. In Moses Charikar, Klaus Jansen, Omer Reingold, and José

Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Al-

gorithms and Techniques, volume 4627 of Lecture Notes in Computer Science, pages

326–340. Springer Berlin / Heidelberg, 2007.

137

138 BIBLIOGRAPHY

Oren Ben-Zwi, Danny Hermelin, Daniel Lokshtanov, and Ilan Newman. An exact

almost optimal algorithm for target set selection in social networks. In Proceedings

of the 10th ACM conference on Electronic commerce, EC ’09, pages 355–362, New

York, NY, USA, 2009. ACM. ISBN 978-1-60558-458-4.

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang. Complex networks:

Structure and dynamics. Physics Reports, 424:175–308, 2006. ISSN 0370-1573.

Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs

of bounded treewidth. The Computer Journal, 51:255–269, 2008.

Hans L. Bodlaender and Arie M.C.A. Koster. Treewidth computations I. Upper bounds.

Information and Computation, 208:259 – 275, 2010. ISSN 0890-5401.

Béla Bollobás and Oliver Riordan. Mathematical results on scale-free random graphs.

Handbook of graphs and networks, 1:34, 2003.

Ulrik Brandes. A faster algorithm for betweenness centrality. The Journal of Mathe-

matical Sociology, 25:163–177, 2001.

Jianer Chen, Iyad Kanj, and Weijia Jia. Vertex cover: Further observations and further

improvements. In Peter Widmayer, Gabriele Neyer, and Stephan Eidenbenz, editors,

Graph-Theoretic Concepts in Computer Science, volume 1665 of Lecture Notes in

Computer Science, pages 313–324. Springer Berlin / Heidelberg, 1999.

N. Chen. On the approximability of influence in social networks. SIAM Journal on

Discrete Mathematics, 23:1400–1415, 2009.

Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social

networks. In Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, KDD ’09, pages 199–208, New York, NY,

USA, 2009. ACM. ISBN 978-1-60558-495-9.

Aaron Clauset, Cristopher Moore, and M. E. J. Newman. Hierarchical structure and

the prediction of missing links in networks. Nature, 453:98–101, may 2008. ISSN

0028-0836.

Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions

in empirical data. SIAM Review, 51:661–703, 2009.

Reinhard Diestel. Graph Theory. Graduate Texts in Mathematics. Springer-Verlag,

New York, 2 edition, 2000.

S. N. Dorogovtsev and J. F. F. Mendes. Evolution of networks with aging of sites.

Phys. Rev. E, 62:1842–1845, Aug 2000.

BIBLIOGRAPHY 139

S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. k-core organization of complex

networks. Phys. Rev. Lett., 96:040601, Feb 2006.

S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Critical phenomena in complex

networks. Rev. Mod. Phys., 80:1275–1335, Oct 2008.

Rodney G. Downey and Michael R. Fellows. Fundamentals of parameterized complexity.

Undergraduate Texts in Computer Science, Springer-Verlag, 2012.

Jordi Duch and Alex Arenas. Community detection in complex networks using extremal

optimization. Phys. Rev. E, 72:027104, Aug 2005. URL http://link.aps.org/doi/

10.1103/PhysRevE.72.027104.

P. Erdős and A Rényi. On the evolution of random graphs. In Publication of the

Mathematical Institute of the Hungarian Academy of Sciences, pages 17–61, 1960.

Paul Erdős and T. Gallai. Graphs with prescribed degrees of vertices. Mat. Lapok, 11:

264–274, 1960.

Alessandro Ferrante, Gopal Pandurangan, and Kihong Park. On the hardness of opti-

mization in power-law graphs. Theoretical Computer Science, 393:220 – 230, 2008.

ISSN 0304-3975.

Yong Gao. Treewidth of Erdős-Rényi random graphs, random intersection graphs, and

scale-free random graphs. Technical report, University of British Columbia, Aug

2009.

Johannes Gehrke, Paul Ginsparg, and Jon Kleinberg. Overview of the 2003 KDD Cup.

ACM SIGKDD Explorations Newsletter, 5(2):149–151, 2003.

C. Gkantsidis, M. Mihail, and E. Zegura. The Markov chain simulation method for

generating connected power law random graphs. Proceedings of the Fifth Workshop

on Algorithm Engineering and Experiments, 111:16, 2003.

Kwang-Il Goh, Eulsik Oh, Hawoong Jeong, Byungnam Kahng, and Doochul Kim.

Classification of scale-free networks. Proceedings of the National Academy of Sciences,

99:12583–12588, 2002.

Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data

clustering: Fixed-parameter algorithms for clique generation. In Rossella Petreschi,

Giuseppe Persiano, and Riccardo Silvestri, editors, Algorithms and Complexity, vol-

ume 2653 of Lecture Notes in Computer Science, pages 108–119. Springer Berlin

Heidelberg, 2003. ISBN 978-3-540-40176-6.

140 BIBLIOGRAPHY

S. Louis Hakimi. On realizability of a set of integers as degrees of the vertices of

a linear graph. Journal of the Society for Industrial & Applied Mathematics, 10:

496–506, 1962.

Philipp Haller and Martin Odersky. Actors that unify threads and events. In Coordi-

nation Models and Languages, pages 171–190. Springer, 2007.

Vaclav Havel. A remark on the existence of finite graphs. Casopis Pest. Mat, 80:1253,

1955.

Young Hyun, Bradley Huffaker, Dan Andersen, Emile Aben, Matthew Luckie, K. C.

Claffy, and Colleen Shannon. The IPv4 Routed /24 AS Links Dataset, 2009.

URL http://www.caida.org/data/active/ipv4_routed_topology_aslinks_

dataset.xml.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence

through a social network. In Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining, KDD ’03, pages 137–146, New

York, NY, USA, 2003. ACM. ISBN 1-58113-737-0.

David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a diffusion model

for social networks. In Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia

Palamidessi, and Moti Yung, editors, Automata, Languages and Programming, vol-

ume 3580 of Lecture Notes in Computer Science, pages 1127–1138. Springer Berlin

Heidelberg, 2005. ISBN 978-3-540-27580-0.

Maksim Kitsak, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik,

H. Eugene Stanley, and Hernán A. Makse. Identification of influential spreaders in

complex networks. Nature Physics, 6:888–893, 2010.

Jon Kleinberg. Complex networks and decentralized search algorithms. In Proceedings

of the International Congress of Mathematicians (ICM), volume 3, pages 1019–1044,

2006.

Bryan Klimt and Yiming Yang. Introducing the Enron corpus. In First conference on

email and anti-spam (CEAS), 2004.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification

laws, shrinking diameters and possible explanations. In Proceedings of the eleventh

ACM SIGKDD international conference on Knowledge discovery in data mining,

KDD ’05, pages 177–187, New York, NY, USA, 2005. ACM. ISBN 1-59593-135-X.

BIBLIOGRAPHY 141

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification

and shrinking diameters. ACM Transactions on Knowledge Discovery from Data

(TKDD), 1(1):2, 2007.

Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Com-

munity structure in large networks: Natural cluster sizes and the absence of large

well-defined clusters. Internet Mathematics, 6:29–123, 2009.

Ted G. Lewis. Network Science. Wiley, 2009.

L. Li, D. Alderson, R. Tanaka, J. C. Doyle, and W. Willinger. Towards a theory of scale-

free graphs: Definition, properties, and implications (extended version). Technical

report, California Institute of Technology, Pasadena, CA, USA, Jan 2005.

Priya Mahadevan, Dmitri Krioukov, Kevin Fall, and Amin Vahdat. Systematic topol-

ogy analysis and generation using degree correlations. ACM SIGCOMM Computer

Communication Review, 36:135–146, 2006a.

Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov, Xenofontas Dimitropoulos,

K. C. Claffy, and Amin Vahdat. The internet as-level topology: three data sources

and one definitive metric. SIGCOMM Comput. Commun. Rev., 36:17–26, January

2006b. ISSN 0146-4833.

S. Maslov, K. Sneppen, and A. Zaliznyak. Detection of topological patterns in complex

networks: correlation profile of the internet. Physica A Statistical Mechanics and its

Applications, 333:529–540, feb 2004.

S. Micali and Vijay V. Vazirani. An O(
√|V | · |E|) algorithm for finding maximum

matching in general graphs. In 21st Annual Symposium on Foundations of Computer

Science, pages 17–27, 1980.

Stanley Milgram. The small world problem. Psychology today, 2:60–67, 1967.

Michael Molloy and Bruce Reed. A critical point for random graphs with a given degree

sequence. Random Structures & Algorithms, 6:161–180, 1995. ISSN 1098-2418.

George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: structural properties

and algorithms. Mathematical Programming, 8(1):232–248, 1975.

M. E. J. Newman. The structure of scientific collaboration networks. Proceedings of the

National Academy of Sciences, 98(2):404–409, 2001. URL http://www.pnas.org/

content/98/2/404.abstract.

M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701, Oct

2002.

142 BIBLIOGRAPHY

M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45:

167 – 256, 2003.

M. E. J. Newman. Modularity and community structure in networks. Proceedings of

the National Academy of Sciences, 103:8577–8582, 2006.

M. E. J. Newman and M. Girvan. Finding and evaluating community structure in

networks. Phys. Rev. E, 69:026113, Feb 2004.

André Nichterlein, Rolf Niedermeier, Johannes Uhlmann, and Mathias Weller. On

tractable cases of target set selection. In Otfried Cheong, Kyung-Yong Chwa, and

Kunsoo Park, editors, Algorithms and Computation, volume 6506 of Lecture Notes

in Computer Science, pages 378–389. Springer Berlin / Heidelberg, 2010.

André Nichterlein, Rolf Niedermeier, Johannes Uhlmann, and Mathias Weller. On

tractable cases of target set selection. Social Network Analysis and Mining, 3:233–

256, 2013. ISSN 1869-5450.

Rolf Niedermeier and Peter Rossmanith. A general method to speed up fixed-

parameter-tractable algorithms. Information Processing Letters, 73:125–129, 2000.

Jaideep Ray, Ali Pinar, and C. Seshadhri. Are we there yet? When to stop a Markov

chain while generating random graphs. In Anthony Bonato and Jeannette Janssen,

editors, Algorithms and Models for the Web Graph, volume 7323 of Lecture Notes in

Computer Science, pages 153–164. Springer Berlin Heidelberg, 2012. ISBN 978-3-

642-30540-5.

Daniel Reichman. New bounds for contagious sets. Discrete Mathematics, 312:1812 –

1814, 2012. ISSN 0012-365X.

Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the gnutella network:

Properties of large-scale peer-to-peer systems and implications for system design.

arXiv preprint cs/0209028, 2002.

Paulo Shakarian and Damon Paulo. Large social networks can be targeted for viral

marketing with small seed sets. In Proceedings of the 2012 International Conference

on Advances in Social Networks Analysis and Mining (ASONAM 2012), ASONAM

’12, pages 1–8, Washington, DC, USA, 2012. IEEE Computer Society. ISBN 978-0-

7695-4799-2.

Yilin Shen, Dung T. Nguyen, Ying Xuan, and My T. Thai. New techniques for approx-

imating optimal substructure problems in power-law graphs. Theoretical Computer

Science, 447:107–119, 2012. ISSN 0304-3975.

BIBLIOGRAPHY 143

Isabelle Stanton and Ali Pinar. Constructing and sampling graphs with a prescribed

joint degree distribution. J. Exp. Algorithmics, 17:3.5:3.1–3.5:3.25, sep 2012.

Richard Taylor. Constrained switchings in graphs, pages 314–336. Number 884 in

Lecture Notes in Mathematics. Springer, 1980.

J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the Facebook

social graph. ArXiv e-prints, Nov 2011.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks.

Nature, 393:440–442, 1998.

J. G. White, E. Southgate, J. N. Thompson, and S. Brenner. The structure of the

nervous system of the nematode C. Elegans. Phil. Trans. R. Soc. London., 314:

1–340, 1986.

144 BIBLIOGRAPHY

Appendix A

Description of software tools

The highly experimental nature of this thesis necessitated the development of a range

of software tools in order to perform computations on large networks, and to coordinate

the many computations that comprise each experiment. Due to the relatively large size

of the networks considered in this thesis (hundreds to tens of thousands of vertices),

efficiency was a major concern in the development of this software. In order to get the

best performance out of modern computer architectures, it is essential to perform as

many computations as possible in parallel. Thus, the software was architected in such

a way as to exploit parallelism, while minimising the burden this inevitably places on

the programmer.

Another major concern was the ease with which new experiments could be de-

veloped. It was found that the primary difficulty was with new code. Testing new

algorithms, or new variations on old algorithms, usually requires new code. New code

was found to be prone to failure due to unanticipated corner cases. Since an experiment

may take a long time to complete (several days for example), the software was designed

so that if an experiment failed, then it could be restarted from the point at which it

failed. In this way, bugs could be fixed, and updated code deployed without necessarily

having to restart a long experiment from the beginning.

This appendix begins with a high level overview of the architecture of the soft-

ware that was developed for this thesis (Section A.1). Section A.2 explains the DSL

(Domain-Specific Language) that was developed in order to coordinate the various com-

putations that make up each experiment. Section A.3 describes some of the details of

how the system was implemented. Finally, Section A.4 describes some limitations of

the software, and some directions in which it could be further developed.

145

146 APPENDIX A. DESCRIPTION OF SOFTWARE TOOLS

A.1 Architecture

The software follows a client-server architecture. The server component is responsible

for running the computations that make up each experiment, and collating the results.

The client component is a GUI (Graphical User Interface) which can be used to monitor

and control the server. The client is connected to the server by a network socket, so

the client and the server need not be running on the same physical machine. In fact,

the intention is for the server component to run on a remote server, which can then be

controlled by the client component.

Each experiment running on the server is represented by a Job object. The server

creates a new directory for each job, and the outputs from the job are placed in that

directory. Each Job consists of one or more Tasks. The Tasks represent the individual

computations that go into each experiment. Computing the average distance of a

network, for example, is a single Task. The code to perform a task is contained in an

object called a Tool. The tools are similar in operation to UNIX processes: each tool

reads in one or more files, processes the data, and produces one or more output streams

which can be redirected to files, or to other Tools.

The server includes a primitive plugin mechanism that permits ordinary OS pro-

cesses to be used as Tools. Thus, one can define a Tool in any programming language.

This turned out to be useful for the later experiments in this thesis, where it was

necessary to reimplement computationally expensive algorithms in the C programming

language in order to achieve maximum performance. It also allowed scripts written in

the R statistical programming language to be directly integrated into the experiments,

automating the collation and presentation of experimental results.

The server maintains a log of every Task that is run. If the server is terminated

during an experiment, this log can be used to restart the experiment with the task that

was running when the termination occurred. The log also records any errors produced

by Tasks. This is useful for dealing with newly written Tools which often contain bugs

that only manifest on large inputs. If an experiment fails due to a buggy Tool, then it

can be restarted (after deployment of the updated Tool), repeating only the parts that

failed the last time around. The logging mechanism proved especially helpful for long

experiments, which are more likely to fail due to their length and complexity.

Each Job on the server is specified using a DSL (explained in Section A.2). This

DSL describes how the inputs and outputs of various Tools are connected in order to

produce the desired results. The DSL is designed in such a way that the server can

deduce the data dependencies between the Tasks that make up each Job. This allows

the server to safely run Tasks in parallel, without requiring any additional effort from

the programmer.

A.2. JOB SPECIFICATION DSL 147

A.2 Job specification DSL

The job specification DSL (Domain Specific Language) is used to specify the Tasks

that make up a Job. A more general scripting language, such as UNIX shell scripts,

could have been used for this purpose. The advantage of using a custom DSL is that it

can be tailored to the task at hand, in this case specifying the Job in such a way that

the Tasks can be run in parallel.

The DSL consists of symbol definitions, tool invocations, and three operators to

encode the various ways Tasks are allowed to depend on each other. Symbol definitions

are one of the following (where x is a symbol, value is a number or a string value,

num is an integer or floating point number, and values is a comma separated list of

value s:

• x = value

• x = num to num by num

• x = {values }

Symbol definition is regarded as a kind of trivial Task, with no inputs. Note that

the second two symbol definitions define one symbol to have multiple values. In these

cases, the symbol definition Task has multiple outputs.

Task invocations are as follows (where tool is the name of a Tool, and parameter-name

is the name of a parameter to the Tool):

• tool parameter-name value, parameter-name value, ...

The number of inputs to, and outputs from a tool invocation Task depends on the

tool. Some have no inputs (such as tools that generate graphs), some have one input,

others have multiple inputs (such as tools for data collation).

The operators used to connect the tasks are:

• |, the “flat map” operator

• >>, >>>, the “tie” operators

• ;, the alternatives operator

The flat map operator (task | task) gathers all the outputs from the Task on

the left into a list. The elements of that list become inputs to the Task on the right,

which is run once for each input in the list. This is called a flat map operation because

the outputs from all invocations of the Task on the right are collated together into a

single list. Thus, Cartesian products can be written like so:

148 APPENDIX A. DESCRIPTION OF SOFTWARE TOOLS

• x = 1 to 10 by 1 | y = 1 to 10 by 1 | ...

The tie operator (task >> task) is similar to the flat map operator, except that

it feeds all the outputs from the Task on the left into a single invocation of the Task

on the right. This is used mainly for collation.

The alternatives operator (task ; task) performs both the Task on left and the

Task on the right independently of each other. This is used to specify tasks that do

not depend on each other (and can therefore be run in parallel).

The scope of the tie operator (>>) does not extend over the alternatives operator.

This is so that it is easy to define multiple independent sub-jobs ending in a collation

step. A variation on the tie operator, >>> is used when it is necessary to extend the

scope over alternatives. Additionally, parentheses can be used to control the scope of

the various operators.

Since Tasks can only be connected by these three simple operators, it is easy (in

theory at least) to deduce which Tasks may run in parallel, and where it is necessary

to add synchronization. For the flat map operator, invocations of the Task on the right

may begin as soon as outputs become available from the Task on left. Each invocation

of the Task on the right is independent of the others, so they can all run in parallel.

The tie operator, on the other hand, inhibits parallelism. The Task on the right cannot

run until all its inputs are available.

In practice, a great deal of parallelism is possible with this simple DSL. In fact it is

similar to, although not directly inspired by, Google’s famous map-reduce architecture.

A.2.1 An example

The following is the specification that was used to generate Figure 2.3:

data | (

k = "real" | kcore_distribution;

k = "1k" | fast-r1k-rewire times 100 | kcore_distribution;

k = "0k" | fast-r0k-rewire times 100 | kcore_distribution >>>

lineplot title "k-core Distribution", xlabel "shell", ylabel "size"

)

The data tool outputs a predefined set of networks (in this case the networks listed

in Table 2.1). The kcore distribution tool computes the k-core distribution of a

network, and the fast-rx k-rewire tools transform networks by randomly rewiring

them as described in Chapter 3. The lineplot tool produces a line plot from its

inputs. This code produces one line plot for each of the original networks, and they are

assembled by hand to produce the final figure. (In the final version of this thesis, the

A.3. IMPLEMENTATION 149

lines representing the randomized graphs were removed as they were not sufficiently

relevant to Chapter 2).

A.3 Implementation

The Scala programming language was selected for the implementation of the server

and client components. A major advantage of the Scala programming language is

that it is designed to compile for the JVM (Java Virtual Machine), which greatly

eases deployment of the server code to a remote server. Scala is also a higher level

programming language than Java (the standard JVM programming language), with a

more powerful type system inspired by the functional programming language Ocaml.

This makes it more convenient for the programmer, particularly when implementing

complex software such as was required for this thesis.

Another useful feature of Scala is its Actor API for concurrency (Haller and Odersky,

2007). The Actor API models a concurrent system with many small objects (“actors”)

that communicate only be sending messages to each other. It is often easier to reason

about actor based algorithms than traditional lock based algorithms. Another benefit

is that Scala’s implementation of actors does not require an OS thread for each actor,

which means that many actors can run simultaneously without consuming too many

system resources.

Scala proved to be an ideal language for implementing the job specification DSL.

The functional style parser combinators library makes writing a parser almost as easy as

writing a formal grammar, without the hassle of external tools (i.e. compiler compilers).

Interpreting the syntax tree is made convenient by pattern matching. In an imperative

style language such as C, or Java, implementing a DSL can be a major undertaking. In

Scala, the parsing and interpretation parts are easy. The only difficulty was ensuring

the right semantics for concurrency.

Initially, the Tool components were also developed in Scala. This presented some

challenges. Most of the tools in this thesis implement graph algorithms, and so they

require a graph library of some sort. It was found early on that the standard open-

source graph libraries for the JVM do not scale past a few hundred vertices. Therefore,

a custom graph library was developed. The main challenge is fitting the entire graph

into memory, especially since some algorithms require multiple copies of the same graph.

The solution was to use an adjacency list to represent the graph, with a few modifi-

cations to improve the asymptotic performance. The standard adjacency list structure

consists of a linked list of vertices, and for every vertex, a linked list of the neighbours

of that vertex. Therefore, determining if two vertices are adjacent is an O(n) operation.

This is much too slow for large graphs.

150 APPENDIX A. DESCRIPTION OF SOFTWARE TOOLS

The modified adjacency list uses a dynamic array to store the vertices, giving con-

stant time vertex lookup, and amortized constant time vertex append. Instead of linked

lists to store the vertices, sorted arrays are used. This gives logarithmic lookup time

and high compactness, at the expense of making edge insertion more expensive. In

practice, though, most vertices have low degree, so edge insertion is not a performance

issue. Now it is an O(log(n)) operation to determine if two vertices are adjacent.

This graph library was ported to the C programming language when it became

necessary to re-implement the more computationally expensive algorithms in that lan-

guage. Both the C, and the Scala versions of the library were extensively tested using

automated unit tests. For the Tool implementations in Scala and C, informal testing

was deemed sufficient.

A.4 Limitations and future work

The high-level architecture of this software system is not specific to network analy-

sis. The same DSL and server architecture could easily be applied to other domains

involving the transformation and collation of large amounts of data.

The main limitation of the software as it stands is that the concurrency was im-

plemented for a shared memory machine. Modern high performance computing archi-

tectures are based on distributed computing, where communication between processes

happens over network sockets. The solution to this limitation, clearly, is to migrate

away from the Scala Actors API, which does not provide the flexibility required for a

distributed environment. The concurrency part of the server could, for example, be

reimplemented on top of the industry standard MPI (Message Passing Interface) API.

