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Three teachers of year 7 and 8 learners explored pedagogical approaches that exemplified 

current research on maximising opportunities for students to engage with and learn from 

challenging mathematics tasks. This study examined the learning opportunities afforded by 

the task enactments in the teachers’ classrooms.  The study also considered teachers’ 
perspectives on a planning and lesson structure that exemplified explored approaches, and 

the challenges teachers experienced in implementing the tasks and approaches.  

 

Reforms in mathematics education that have called for change in how teachers view 

mathematical knowledge, the value and purpose of social interaction in the classroom, and 
teachers’ role as participants in classroom discourse, have influenced pedagogical 

approaches to the enactment of classroom tasks.  Relevant literature was reviewed that 

illustrated the importance of tasks in affording opportunities for students to engage in 

meaningful mathematical practices and discourse, and construct conceptual mathematical 

understanding.  Evidence was provided that teachers’ pedagogical decisions and actions play 
a significant role in optimising opportunities for student learning from tasks, and that 

teachers’ task implementations are mediated by their intentions, goals, knowledge, attitudes 

and beliefs.  

 
The qualitative methodology chosen for this study aligned with case study and design-based 

research approaches.  Multiple data sources were collected, and systematic analysis and 

triangulation of data alongside collaboration between the researcher and participant teachers 

strengthened the research findings. 

 
The study revealed the influence of task selection on the type of mathematical activity 

afforded value in classrooms. The planning template and lesson structure prompted 

purposeful decision-making that strengthened teachers’ task enactments, including explicit 

consideration of mathematical ideas inherent in tasks, students’ prior understandings, and the 

role of task variations in supporting students’ access to tasks.  The study demonstrated that 
different enactments from the same planning resulted in contrasting opportunities for student 

learning.  A noteworthy difference was the extent to which the mathematical ideas inherent 

in the task were explicitly addressed by teachers. 

 
The results revealed the impact of teachers’ decisions when selecting and implementing 

classroom tasks, and offered insights into purposeful pedagogical actions that teachers could 

incorporate into their practice to maximise opportunities for their students to learn 

mathematics.   
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There is widespread agreement that teachers’ selection and implementation of classroom 

tasks significantly influences students’ development of conceptual mathematical 

understanding (e.g., Anthony & Walshaw, 2007; Blackwell, Trzesniewski, & Dweck, 2007; 

Boaler, 2016; Middleton & Jansen, 2011; Stein, Smith, Henningsen, & Silver, 2009; 

Sullivan, Clarke, & Clarke, 2013; Sullivan, Walker, Borcek, & Rennie, 2015). Carefully 

chosen tasks based on cogent and significant mathematics play an important role in 

motivating and activating student thinking, promoting mathematical discourse and 

reasoning, fostering connections between important mathematical ideas, and developing an 

orientation to persistence (Anthony & Walshaw, 2007; Blackwell et al., 2007; Middleton & 

Jansen, 2011; Sullivan & Davidson, 2014).  The choice of tasks determines the mathematical 

content students learn, their perceptions of their potential to make sense of mathematics, and 

their view on the nature, worth and relevance of mathematical activity (Anthony & 

Walshaw, 2009; Sullivan, Clarke, & Clarke, 2013). 

Day-in and day-out, the cumulative effect of students’ experiences with 

instructional tasks is students’ implicit development of ideas about the nature of 

mathematics – about whether mathematics is something they can personally make 

sense of, and how long and how hard they should have to work to do so. (Stein et 

al., 2009, p. 1) 

      

Studies have established links between gains in student achievement and the adoption of 

inquiry-based approaches using rich tasks (e.g., Boaler & Staples, 2008; Stein & Lane, 

1996).  From a five-year project analysing task implementation in hundreds of classrooms 

Stein et al. (2009) reported that students’ learning gains were greatest in classrooms where 

tasks consistently encouraged high-level student thinking and reasoning, and least where 

tasks were consistently procedural.  

 

When implementing rich tasks in classrooms, specific pedagogical actions of teachers 

optimise opportunities for student learning.  The Third International Mathematics and 

Science Study (TIMMS) 1999 Video Study of lessons from Year 8 classrooms made 

comparisons of a number of teaching dimensions including “the ways classrooms are 

organised in different countries, the kinds of mathematics problems presented to students, 

and the ways problems are worked on during classroom lessons” (Hiebert & Stigler, 2004, p. 

11).  No significant difference was reported between higher and lower performing countries 
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in the relative emphasis given to problems designed to teach skills and those designed to 

give students opportunities to develop a connected understanding of mathematical ideas. 

However, a compelling difference was noted in teachers’ implementations of tasks. In higher 

performing countries teachers were more likely to implement tasks in ways that gave 

students opportunities to illuminate the connections and relationships embedded in tasks, 

whereas in less high performing countries the teachers “almost always stepped in and did the 

work for the students or ignored the conceptual aspect of the problem when discussing it” 

(Hiebert & Stigler, 2004, p. 12).   

 

Mathematical tasks with high-level cognitive demands are difficult to implement well. 

Difficulties and reluctance to implement high-level tasks are related to teachers’ intentions 

for the task, their mathematical knowledge, and their beliefs regarding learning mathematics 

(Sullivan, Clarke, & Clarke, 2013).  During task enactment there is a tendency for tasks to be 

transformed by teachers’ use of traditional teaching routines into less demanding tasks thus 

limiting their learning potential (Stein, Grover & Henningsen, 1996), or for teachers to over-

explain tasks in an attempt to make them more accessible to struggling students (Hiebert & 

Stigler, 2004).   

 

In the intermediate years of schooling additional factors come into play that can affect the 

successful adoption of challenging tasks and associated instructional practices. The 

mathematics concepts that students (and teachers) are expected to understand become more 

complex and can challenge teachers’ own mathematical knowledge, fuelling a tendency to 

adopt traditional procedural teaching approaches (Sullivan, Walker et al., 2015; Young-

Loveridge, 2007).   

 

Reforms introduced in New Zealand through the widespread implementation of the National 

Numeracy Development Project (NDP) explicitly advocated the importance of multiple 

solution strategies for mathematical problems. However, an unintended interpretation of the 

NDP materials led to endorsement of essentially procedural instruction of teacher-selected 

calculation strategies as quasi-algorithms (Young-Loveridge, 2010).  An inclination to 

procedural instruction is also driven by concerns that students who have not mastered the 

basics from the primary curriculum will not be able to access higher-level tasks and instead 

require a programme concentrating on simplification and repetition (Sengupta-Irving, 2016). 

 

The use of ability groupings within or across classes is prevalent in New Zealand 

intermediate schools, even though there is little or no evidence to support that these practices 

support students’ learning (Education Review Office, 2013).  Students in the resulting ‘low 
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ability’ groups are commonly denied access to rich learning experiences (e.g., Boaler & 

Sengupta-Irving, 2016; Clarke, Cheeseman, Roche, & van der Schans, 2014).  This 

exacerbates adolescents’ already heightened consciousness of social comparisons and ability 

self-awareness during a critical time for the formation of their perceptions of themselves as 

learners (Blackwell et al., 2007).  

 

Adopting teaching approaches that use challenging tasks, that emphasise reasoning and 

problem solving, and that support learners to choose their own solution paths requires 

teachers to challenge their own mindsets.  It demands that they seize opportunities to practise 

implementing rich tasks in ways that emphasise mathematical reasoning, problem solving, 

and collaboration.  International studies have shown that by focusing on the details of 

teaching practice as an object of study, challenging mathematical tasks can be enacted in 

ways that promote the development of a rich connected understanding of big mathematical 

ideas for all students.  These details include how teachers pose problems, how they interact 

with students about mathematical content, how they work on problems with students, and 

how they engage with students sharing and justifying solution strategies.  This study aimed 

to build on this research within a New Zealand context. 

 

The purpose of this study was to explore how teachers can maximise the mathematical 

opportunities of cognitively demanding tasks in ways that benefit student learning.  The 

study involved supporting three teachers of Year 7 and 8 students to enact challenging 

mathematical tasks in ways that promoted the development of a rich connected 

understanding of big mathematical ideas. As part of the support the study explored the 

characteristics of appropriately challenging tasks and pedagogical actions that teachers use to 

encourage students to persist and to engage with mathematical practices that develop 

conceptual understanding. 

 

The study addressed the following research questions: 

1. How do teachers’ enacted pedagogies occasion opportunities for students to engage 

with and learn from cognitively demanding tasks?  

2. What challenges do teachers experience in implementing cognitively demanding 

tasks? 

3. Which elements of a planning approach and recommended lesson structure do 

teachers find helpful in implementing cognitively demanding tasks? 
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Chapter 2 reviews literature that provides a theoretical lens through which this study can be 

viewed.  Perspectives on mathematics teaching and learning that inform particular 

approaches to classroom tasks are reviewed, followed by studies on mathematical tasks and 

their enactment in classrooms.  Pedagogical actions that maximise students’ opportunities to 

learn from their work on tasks are outlined.   

 

Chapter 3 describes the research methodology used in this study.  Data collection and 

analysis methods are discussed, the research setting and schedule are described, and ethical 

considerations are reviewed. 

 

The results of the study are presented and discussed in chapters 4 to 8.  Chapter 4 outlines 

the support for teachers’ provided by the study.  Chapters 5 to 7 document the task 

implementations in the participant teachers’ classrooms.  Chapter 8 reviews the teachers’ 

perspective on the recommended approaches.  Chapter 9 presents the conclusions of the 

study.  
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There are fundamental assumptions about the nature of mathematics and mathematics 

teaching and learning that underpin this research and inform particular approaches to 

classroom tasks. Section 2.2 of this literature review examines theoretical perspectives on 

mathematics, teaching and learning.  It outlines the nature of mathematical activity, and 

current theories of learning that indicate the orientation of classrooms as communities of 

mathematical inquiry.  Section 2.3 examines the role of students’ disposition to persist with 

cognitively demanding tasks.   

 

Section 2.4 examines the research on classroom mathematics tasks.  It outlines the literature 

on task purposes, types and frameworks including aspects of tasks that are associated with 

maximising opportunities for students’ mathematical thinking.  The role of big mathematical 

ideas in classroom tasks is reviewed in section 2.5, and the role of teachers’ knowledge is 

considered in section 2.6.   

 

Section 2.7 reviews studies on the enactment of mathematical tasks in classrooms and 

outlines pedagogical approaches that support students’ learning of mathematical ideas.  

Section 2.8 outlines constraints that can influence teachers’ use of tasks.  The literature on 

differentiating learning when using demanding tasks with diverse learners is reviewed in 

section 2.9.  

 

Many students in New Zealand schools are not successful in mathematics, and their lack of 

success is customarily attributed to their lack of inherent ‘mathematical ability’. Many 

teachers view mathematics as an indisputable static body of knowledge and procedures to be 

memorised. Associated traditional teaching approaches of teacher procedural demonstration 

followed by multiple items for individual student practice provide succour for this 

perspective.  

 

An alternative notion of the nature of mathematics incorporates the activities and practices of 

working mathematicians (Boaler, 2002; Dossey, 1992; Hersh, 1997).  Holton (2010), a 

working mathematician, supports this view: 
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Mathematics is a way of looking at the world and trying to sort out its 

problems.  It seems to have presently accumulated an enormous number of 

facts, ideas and theorems. But, despite the way that maths is still taught in 

almost every classroom in the world, it is more than a collection of algorithms 

that, for some unknown reason appear to have to be known.  There is also a 

creative side to the subject – a place where new maths suddenly appears, 

sometimes even miraculously.  And the thing we have tried to suppress from 

the general public is that it is created by human intervention. (p. 21) 

 

Teachers’ conceptions of mathematics have a significant influence on the way in which 

mathematics is characterised and communicated in their classrooms (Boaler, 2002; Dossey, 

1992).  Teachers’ knowledge, attitudes and beliefs in turn inform decisions they make when 

selecting instructional material (Sullivan, Clarke, Michaels, & Mornane, 2012). The 

prevailing procedural view is characterised by the propensity of teachers to deliver a 

programme of “routine unrelated mathematical tasks which involve the application of learnt 

procedures and by stressing that each task has a unique, fixed and objectively right answer” 

(Ernest, 1991).   

 

Proponents of reform in mathematics education advocate a different approach based on the 

understanding of mathematics as a “personally constructed or internal set of knowledge” 

(Dossey, 1992, p. 22).  The emphasis in this perspective is on the doing of mathematics and 

the practices involved in that doing.  The activity of learning mathematics is a vehicle for 

acquiring mathematical knowledge, but as opposed to a traditional perspective that would 

regard the activity as distinct from the mathematical knowledge that is developed, more 

recent theories consider that “the practices of learning mathematics define the knowledge 

that is produced” (Boaler & Greeno, 2000, p. 172).  Although the goal for students in a 

traditional or reform classroom may be to learn similar mathematical content, students will 

have learned different forms of knowledge mediated by the beliefs that they develop about 

the nature of mathematics and learning in response to different teaching approaches. 

 

Mathematical knowledge and understanding is also mediated by collaboration, social 

interaction and context (Boaler & Greeno, 2000).  Social theories of learning position 

learners and learning within their social and cultural contexts. 

 

Notions of constructivism began with Piaget, who viewed learners as information processors 
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and knowledge as “that produced by the learner’s use of cognitive processes” (Walshaw, 

2007, p. 29).  Piaget argued that learners construct knowledge as they make connections 

between new and existing experiences that occur when they interact with the environment. 

He contended that learning is the result of disequilibrium caused by exposure to cognitive 

conflict or ambiguity.  Learners seek to maintain a state of cognitive equilibrium so must 

reorganise their cognitive structures to achieve a new state of equilibrium. (St George & 

Sewell, 2014; Walshaw, 2007).    

 

Later constructivists have placed more emphasis on the learners’ active construction of 

knowledge.  Anthony (1996) argued that active learning refers to a learning environment in 

which the students are given a sense of autonomy and control over the direction of their 

learning activities, and also indicates “a quality of the pupils’ mental experience in which 

there is active intellectual involvement in the learning experience characterised by increased 

insight” (p. 350).  If teachers adhere to the first interpretation only, and provide their students 

with open-ended tasks, and hands-on activities, successful construction of meaningful 

knowledge will not necessarily result (Anthony, 1996).  The second interpretation of active 

learning suggests that effective learning tasks need not only to be hands-on but also to be 

minds-on, and that the teacher plays an important role in upholding a high press for 

conceptual thinking (Anthony, 1996; Taber, 2011).  Taber (2011) described teaching 

informed by constructivist learning theory as optimally guided instruction, a balance 

between explicit teacher strategies including providing suitable learning tasks, and 

scaffolding and monitoring student-centred activity.  

 

Social constructivist or socio-cultural theories, originating in the work of Lev Vygotsky, 

argued that knowledge acquisition is fundamentally a social rather than cognitive process.  

Vygotsky maintained that while taking place in individual minds, all learning results from 

social interaction, meaning is socially constructed through communication, activity and 

interactions with others, and learning is mediated through cultural tools in particular through 

language (Simon, 1995; Swan, 2005).  An important concept in Vygotsky’s theory of 

learning is the zone of proximal development. The zone of proximal development (ZPD) is 

described as “the distance between the actual developmental level as determined by 

independent problem solving and the level of potential development as determined through 

problem solving under adult guidance or in collaboration with more capable peers” 

(Vygotsky, 1978, p. 86). 

 

The notion of teaching as scaffolding or responsive guided assistance helps to explain how 

socio-cultural theory is enacted in classrooms (St. George & Sewell, 2014).  If a learner is 



 8 

attempting a task that is beyond their current level of expertise, but within their ZPD, then 

scaffolding such as modelling, questioning or fostering connections can be provided so that 

the learner can achieve the task with support (Taber, 2011).  Lerman (1998) argued that the 

zone of proximal development lies within learning activity and that the task prompts that 

activity.  He proposed that the zone might be aligned with the group or classroom, rather 

than exclusively with the individual learner.  Featherstone et al. (2011) suggested that group-

worthy tasks that fall into the zone are those where no one in the group can complete the task 

alone but students can make progress if they collaborate.  “Learning occurs as students work 

in the space in which they can succeed only with the aid of others and become able to 

perform tasks independently for which they earlier needed help” (p. 109).  Tasks that enable 

this type of learning afford multiple entry points and pathways through the task, and offer 

learners with varying prior knowledge opportunities to contribute and to use each other as 

intellectual resources (Sullivan, Mousley, & Jorgensen, 2009). 

 

Situated theories of learning describe social interactions as a mechanism for learning, and 

argue that learning is embedded in ongoing participation within a community (Walshaw, 

2007).  Neither individual learning nor social participation is privileged in this theory.  

Recent research in mathematics education provides support for socio-cultural situative 

theories of learning (Boaler, 2000, 2002; Boaler & Greeno, 2000).  Boaler (2002) found that 

students from traditional mathematics classes who predominantly worked through textbooks 

were less able to use mathematics in new situations that required novel practices than 

students from classes where practices of negotiation, interpretation and creating shared 

mathematical understandings occurred.  She argued that social practices not only provide a 

context for mathematics learning, but furthermore participation in social practices is what 

mathematics learning is. 

 

Opportunities for learners to construct meaningful mathematical knowledge in the classroom 

are strengthened by an environment that supports and values participation of all students, 

where social norms encourage collaboration and negotiation of meaning, and where multiple 

perspectives are respected and incorporated into collective knowledge creation (Swan, 

2005).  The New Zealand Curriculum implicitly supports this view and challenges teachers 

to cultivate within their classes a learning community where “everyone, including the 

teacher is a learner; learning conversations and learning partnerships are encouraged; and 

challenge, support and feedback is always available” (Ministry of Education, 2007, p. 34).  
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Building on the work of Cobb and McClain (1999), Sullivan, Zevenbergen, and Mousley 

(2002) described a socio-mathematical framework that explains two complementary norms 

of activity within a community of mathematical inquiry.  The first dimension, mathematical 

norms, are described as “principles, generalisations, processes and products that form the 

basis of the mathematics curriculum and serve as the tools for teaching mathematics itself” 

(p. 650).  The second dimension, socio-cultural norms, are described as the “usual practices, 

organisational routines and modes of communication that impact on approaches to learning, 

types of responses valued, views about legitimacy of knowledge produced and 

responsibilities of individual learners” (p. 650).  Within an inquiry classroom neither 

mathematical nor socio-cultural norms are prioritized. Their interrelationship offers 

explanation of how the pedagogical actions of teachers as they enact classroom tasks, and 

the intellectual activity of students as they engage with the tasks, result in mathematical 

meaning negotiated through discursive dialogue (Hunter, 2008; Sullivan et al., 2002).   

 

Teachers in inquiry classrooms reposition themselves as participants in the discourse, and 

engage in collaborative endeavours with learners resulting in co-construction of shared 

meaning (St George & Sewell, 2014).  Although this constitutes a shift in power and 

authority from the teacher alone to sharing with the learner, the teachers’ role is no less 

critical (Hunter, 2008; Sengupta-Irving, 2016).  The inquiry classroom teacher fosters 

student responsibility for active learning, supports student authority to solve mathematical 

problems for themselves, ensuring learners are publicly credited as authors of their ideas, 

and promotes student accountability for how their mathematical thinking connects with 

others (Hunter, 2008; Sengupta-Irving, 2016; Stein, Engle, Smith, & Hughes, 2008).  

Practices in inquiry classrooms may include small group collaborative activity that 

maximises students’ opportunities to use language and tools to make sense of mathematics, 

and whole class discussions where students share and justify their solution methods, and 

evaluate and reflect on strategies (Anthony & Hunter, 2005; Hunter, 2008).  

 

A further theory of learning that provides a useful framework for thinking about learning 

related to classroom tasks is variation theory (Marton, Runesson, & Tsui, 2004).  Unlike 

other theories that hypothesise about learning independent of the content to be learned, 

variation theory focuses on the learning of specific content.  The goals of teaching are 

described as objects of learning; what is planned by teachers as intended objects, what is 

implemented in classrooms as enacted objects, and learning as experienced by students, lived 

objects (Askew, 2012).  Marton et al. (2004) argued that discernment is a core process in 
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learning, and variation in learning experiences provides opportunity for discernment.  

Variation theory provides a framework for thinking about the design and sequence of tasks 

that maximize the likelihood of the desired mathematical objects being discerned, and the 

teachers’ intended object of mathematical learning matching the students’ lived object.  

 

In order to engage with cognitively demanding tasks students need to be willing to persist in 

the face of difficulty.  Clarke et al. (2014) describe persistence as student activity that 

includes, “concentrating, applying themselves, believing they can succeed, and making an 

effort to learn” (p. 47).  The association between cognitively demanding tasks and 

persistence is described in PISA in Focus (Organisation for Economic Co-operation and 

Development, 2014) as follows: 

Teachers’ use of cognitive-activation strategies, such as giving students 

problems that require them to think for an extended time, presenting problems 

for which there is no immediately obvious way of arriving at a solution, and 

helping students to learn from their mistakes, is associated with student drive. 

(p. 1) 

  

A barrier to implementing challenging tasks is that teachers consider that many students lack 

persistence when confronted with a problem they are not sure how to solve (Sullivan, Aulert 

et al., 2013; Sullivan, Clarke, & Clarke, 2013; Sullivan, Walker et al., 2015).  Finding ways 

to encourage students to persist involves understanding the motivational characteristics of 

learners that contribute to increased persistence, enhancing the value of mathematical 

activity and optimising learners’ orientation to engage with challenge (Middleton & Jansen, 

2011; Sullivan et al., 2011). 

 

Drawing on a meta-analysis of research studies on classroom culture, Rollard (2012) 

recommended that classrooms foster a learning goal orientation rather than a performance 

goal orientation.  Learning goal orientation is characterised by the learners’ desire to develop 

conceptual understanding and skills, and incorporates beliefs that success is the result of hard 

work (Dweck & Leggett, 1998).  Multiple studies (e.g., Harackiewicz, Barron, Pintrich, 

Elliot, & Thrash, 2002; St George, Riley, & Hartnett, 2014) have found that students who 

develop learning goals are more likely to persist in the face of challenge, demonstrate self-

regulatory adaptive behaviours, are more likely to take responsibility for success and less 

likely to deny responsibility for failure.  Performance goal orientation is characterised by the 

desire to compare favourably against the performance of others, i.e. an outward appearance 
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of competence.  Students who adopt performance goals are more likely to avoid risk taking 

and challenging tasks due to fear of failure, to believe that ability is the cause of their 

successes, and that lack of ability causes their failures (Dweck & Leggett, 1998; Sullivan et 

al., 2011).  

 

The work of Carol Dweck (2002, 2010) has been influential in establishing that people hold 

two different kinds of beliefs about intelligence.  Those with a fixed mind-set believe that 

ability or intelligence is fixed for each individual whereas those with a growth mind-set 

believe that ability or intelligence is malleable and can be augmented through learning.  

Students whose views of intelligence have been reoriented toward a malleable view are more 

likely to be learning oriented, more comfortable with taking risks and more willing to 

persevere with challenging tasks (Blackwell et al., 2007; Dweck, 2007, 2010).   

 

 Instructional practices that engender the development of a learning goal orientation and 

growth mindset can have a major impact on students’ motivation, persistence and self-belief 

(Dweck, 2007; Middleton & Jansen, 2011).  Strategies that encourage students to persist 

include teachers’ expectations of student success, valuing errors as part of learning, belief 

that students can learn even if they do not complete the task, empowering students to choose 

their own approaches to the task, and allocating enough time for lesson review (Sullivan, 

Aulert et al., 2013; Sullivan et al., 2011).  

 

Tasks given to students serve as bridges between student learning and key mathematical 

concepts. Tasks are defined by Sullivan, Clarke, and Clarke (2013) as “information that 

serves as the prompt for student work, presented to them as questions, situations and 

instructions that are both the starting point and the context for their learning” (p. 13), and by 

Stein and Smith (1998) as a “segment of classroom activity that is devoted to the 

development of a particular mathematical idea” (p. 9).   

 

The focus of the first definition above is the information teachers present.  The focus of the 

latter is the classroom activity that surrounds the tasks.  Together, tasks and activity largely 

determine the nature of student learning.  Tasks that require students to perform a memorised 

procedure in a routine manner, for example, will lead to different learning than tasks that 

require students to think conceptually and make connections (Stein & Smith, 1998; Stein et 

al., 2009).  Anthony and Walshaw (2007), in a synthesis of research evidence, elaborate on a 
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range of conceptual task types and learning opportunities as follows:   

Tasks that require students to engage in complex and non-algorithmic thinking 

promote exploration of connections across mathematical concepts; tasks that 

require students to model their thinking promote reflection; tasks that require 

students to discern invariants and variation, and structure, promote 

generalisation; tasks that require students to interpret and critique data promote 

the disposition of ‘scepticism’; tasks that require students to ‘notice and 

wonder’ promote the disposition of curiosity; and tasks that provide 

opportunities for ‘mathematical play’ promote conjecture and exploration. (p. 

95)  

 

Although initially teachers select a task type and purpose that aligns with their goals for 

instruction, the nature of tasks can change as they are implemented in the classroom.  

 

Stein et al. (1996) developed a framework (Figure 2.1) to represent how tasks unfold as they 

pass through three phases.  In phase 2, the task as it appears in instructional materials (i.e. 

phase 1) may undergo change as the teacher introduces it in the classroom.  The task 

introduction may vary from an in-depth discussion of mathematical ideas to simply handing 

out problem sheets and instructing students to get started (Stein & Lane, 1996).  The third 

phase represents the task as implemented by the students.  How students approach the task 

and engage with the content is ultimately what influences student learning.  

Figure 2.1   Mathematical Tasks Framework (Stein et al., 1996) showing relationship among various task-
related variables and student learning. 
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This framework represents what many researchers maintain, (e.g., Hiebert & Stigler, 2004; 

Horoks & Robert, 2007; Sullivan, 2009; Sullivan, Clarke, & Clarke, 2013) namely that tasks 

can change their character once implemented, as they are mediated by teacher and student 

goals, knowledge and intentions and the socio-cultural and mathematical norms of the 

classroom.  Marton et al. (2004) described this process of converting tasks to lessons, from 

the frame of reference of variation theory, as intended, enacted and lived objects, and 

pointed out that even when a lesson is enacted as the teacher intended, the lived objects of 

students are their subjective experiences and may result in different learning than either 

intended or enacted.  

 

Worthwhile tasks are those that promote reasoning, explanation, justification, thinking, 

creativity and reflection, and encourage students to actively construct and make connections 

between networks of mathematical ideas (e.g., National Council of Teachers of 

Mathematics, 2014; Sullivan, Clarke, & Clarke, 2013).  

 

Scholars and researchers have largely agreed on the characteristics of tasks that promote 

meaningful engagement in this way.  Tasks that generate multiple solution paths such as trial 

and error, discovering and using patterns, or applying a generalised approach promote the 

rich discourse of explanation and justification (Stein & Lane, 1996).  Problems that afford 

multiple connected representations and different possible solution types encourage students 

to explore and look for patterns, and promote communication and discussion of alternatives 

(Sullivan, Mousley et al., 2009).  Non-routine tasks provide optimal conditions for cognitive 

development, for evaluation of existing understandings and relational construction of new 

knowledge (Sullivan, Clarke, & Clarke, 2009).  Sullivan et al. (2011) also recommended 

tasks with multiple entry points that afford students opportunities to plan their own approach, 

to choose their own strategies, goals, and level of accessing the task. 

 

From a motivational perspective, Middleton and Jansen (2011) recommend that when 

selecting tasks teachers consider complementary dimensions of interest, challenge, and 

control.  They contend that students’ interest in a task can be engaged by a meaningful 

context or communication of the inherent value of the activity; an appropriate level of 

challenge requires students to expend effort to achieve success; and provision of elements of 

choice, be it between different activities, solution methods or alternative representations, 

empowers students and supports their sense of agency. 
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Researchers have examined tasks according to the nature of thinking processes required for 

students to engage successfully with the task. Baumert et al. (2010) characterised tasks as 

“cognitively activating” and Stein et al. (1996) as “high cognitive demand”.  The 

classification system developed by Stein et al. resulted in four categories of cognitive 

demand, two of which describe higher levels and two of which describe lower levels of 

demand. Mathematical tasks with higher-level demands prompt students to actively explore 

and understand the nature of mathematical concepts and relationships or foster the use of 

procedures that are meaningfully connected with concepts or understanding.  Tasks that 

encourage the use of procedures or algorithms in ways that are not connected to 

understanding or concepts, or that focus on memorisation or the replication of previously 

memorised facts or procedures place lower-level cognitive demands on students. Stein et 

al.’s (1996) taxonomy is summarised in Table 2.1. 

 
 Table 2.1    Levels of cognitive demand ordered from highest to lowest, their definitions and examples. 
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In using the framework to analyse the demand of classroom tasks, Stein et al. (2009) warned 

that superficial features, such as the use of manipulatives, real-world contexts or requiring 

multiple steps could mask a low-level task so that it appeared to be a high-level task, and 

asserted that it is the thinking processes that are elicited by the task that should be 

considered.   

 

Multiple researchers (e.g., Boaler & Staples, 2008; Jackson, Garrison, Wilson, Gibbons, & 

Shahan, 2013; Marshall & Horton, 2011; Stein & Lane, 1996; Sullivan, Mousley et al., 

2009) have established links between dimensions of instructional tasks, associated thinking 

processes and learning gains.  Stein and Lane (1996) analysed hundreds of tasks using the 

conceptual task framework above and established that the greatest student gains related to 

tasks that “engaged students in high-levels of cognitive processing, especially those that 

encouraged non-algorithmic forms of thinking associated with the doing of mathematics” (p. 

74).  However, they also found that high-demand tasks that were implemented in ways that 

students were not engaged in high-level thinking resulted in only moderate student 

performance gains.  Although selection of a worthwhile task did not guarantee students’ 

engagement at a high level, it was noted that starting with a procedural task would almost 

certainly guarantee its absence.  

 

Boaler and Staples’ (2008) study of two schools with very different approaches found that 

teachers who used mixed-ability groups using exploratory, open tasks resulted in students 

achieving significantly better results than those using a more traditional text-based approach.  

They reported that it was the lowest attaining students who benefitted most materially from 

these approaches.  

 

In a study investigating the relationship between teaching and learning, Hiebert and Wearne 

(1993) found that students who were given fewer tasks that were longer and more focused on 

mathematical ideas as opposed to mechanical procedures were associated with greater gains 

in student performance.  

 

The importance of presenting students with tasks that engage with worthwhile mathematics 

and explicitly focusing instruction on big mathematical ideas is widely recognised (e.g., 

Anthony & Walshaw, 2007; Askew, 2013; Siemon, Bleckly, & Neal, 2012).  It is, however, 

difficult to find agreed upon definitions of big mathematical ideas in the literature or succinct 
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information to guide teachers in planning instruction.  The New Zealand Curriculum 

(Ministry of Education, 2007) categorises mathematical content into three strands, each 

represented by a number of achievement objectives.  An example, “students will solve 

problems and model situations that require them to use a range of multiplicative strategies” 

(Ministry of Education, 2007, level 4 achievement objective) illustrates the lack of 

description of any big mathematical ideas that underpin this activity.  Teachers, in looking to 

curriculum documents for guidance, organise the content of their mathematics programmes 

accordingly into topics (e.g. addition and subtraction, measurement-area) that do not in 

reality reflect the recommended focus on big mathematical ideas (Sullivan, Clarke, Clarke et 

al., 2012). 

 

From scholars there is also ambiguity.  Schifter and Fosnot (1993) defined big mathematical 

ideas as “the central, organising ideas of mathematics – principles that define mathematical 

order” (p. 35).  Charles (2005), on the other hand, emphasised the learning of mathematics, 

and defined a big mathematical idea as “a statement of an idea that is central to the learning 

of mathematics, one that links numerous mathematical understandings into a coherent 

whole” (p. 10).  Askew’s (2013) suggestion that big ideas should be both “mathematically 

significant as well as individually and conceptually significant” (p. 7), links the previous 

definitions by connecting historical paradigm shifts in mathematical reasoning and learners’ 

shifts in reasoning as they grasp big ideas. 

 

Charles’ (2005) definition is complemented with an associated list of 21 possible big 

mathematical ideas with examples provided of mathematical understandings for each.  This 

list significantly contains no information on possible learning trajectories beyond what is 

implied by the format of the list.  Because of limited guidance for teachers from curricula or 

research on incorporating big mathematical ideas, a clear grasp of both subject matter 

knowledge and pedagogical content knowledge is required to inform teachers’ decisions as 

they select mathematics tasks, plan lessons, make adaptations during instruction and reflect 

on their students’ progress.  

 

Teachers’ subject matter knowledge encompasses knowledge of the mathematics needed to 

solve the task, knowledge of how to represent mathematical ideas and provide explanations, 

and knowledge to understand students’ various solution strategies (Ball, Thames, & Phelps, 

2008).  Teachers’ pedagogical content knowledge includes knowledge of learning 

progressions, knowledge of how to sequence and evaluate instruction and knowledge of 
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students and how they learn (Ball et al., 2008).  Simon (1995) argued that both perspectives 

are interrelated, that teachers’ perceptions of students’ mathematical understandings are 

structured by their understandings of the mathematics in question.  

 

To frame a programme of instruction around tasks that focus on key mathematical ideas and 

build on students’ existing understandings, and to situate the tasks in contexts that are 

engaging but do not become the end goal of the learning experience, nor blur the 

mathematical content, is complex.  Sleep (2012) argued the importance of teachers 

articulating their mathematical purpose in the planning stages so that associated tasks and 

student activity can be oriented to engage students with the mathematical point of the lesson.   

 

Research studies have demonstrated the challenge this presents.  In a study that examined 

teacher knowledge and the use of tasks, Sullivan, Clarke et al. (2009), found that creating a 

lesson out of a task (which is bigger,  or ?) was problematic.  Many teachers were not 

aware of the range of solution strategies students might use, had difficulty describing the 

mathematical content of the task, and struggled to translate the task into a worthwhile lesson. 

 

An exploratory study (Charalambous, 2008) investigating the unfolding of tasks in a series 

of lessons delivered by two teachers, one with high subject matter knowledge and one with 

low, reported that the teacher with the high knowledge consistently maintained the cognitive 

demand of the tasks during presentation and enactment, urged her students to use multiple 

representations and pressed students to articulate and justify their thinking. On the other 

hand, the teacher with low knowledge often proceduralised the tasks, placed more emphasis 

on remembering and applying formulae and rules, and maintained the level of demand in 

only half of the lessons under study.  It cannot be assumed that a teacher who understands 

the content necessarily understands effective methods to teach it.  However, without a clear 

grasp of mathematical ideas, there is a tendency for teachers to adopt surface features of 

curriculum reform and attempts to make a mathematics task interesting can sacrifice 

mathematical meaning and accuracy (Anthony & Walshaw, 2007; Sleep, 2012; Stein et al., 

2009).  

 

A worthwhile task alone cannot guarantee student learning.  Various authors have described 

explicit pedagogical actions that teachers can incorporate into their practice to maximise 

students’ opportunities to learn from tasks.  These include talk moves (Chapin & O'Connor, 

2007); the ‘advancing children’s thinking’ framework (Fraivillig, 2001); the mathematics 
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communication and participation framework (Hunter & Anthony, 2011); steering instruction 

to the mathematical point (Sleep, 2012); practices for orchestrating productive mathematics 

discussions (Smith & Stein, 2011) and maintenance of high-level cognitive demand (Stein et 

al., 2009).  Drawing from these complementary frameworks three inter-related and 

overlapping themes emerge: the maintenance of cognitive demand, maintenance of 

mathematical focus and fostering productive discourse.  

 

Mediated by teachers’ and students’ goals, knowledge, beliefs, and attitudes as they are 

implemented in the classroom, it is not unusual for the cognitive demands of a task to be 

unwittingly or purposefully altered during the implementation phase (Stein et al., 2009). 

Reasons for this may include teachers’ desire to avoid anticipated negative reactions from 

students (Sullivan, Walker et al., 2015), or their assumption that the best way to assist 

students who are facing difficulty accessing the task is to specify step-by-step instructions or 

an explicit procedure to follow (Sullivan et al., 2011).  As a consequence, teachers instead of 

students are doing the mathematics, the thinking and reasoning, and students are deprived of 

important opportunities to learn.  These teacher actions may also occasion students’ views of 

themselves as helpless learners, and affect their motivation and orientation to persist 

(Dweck, 2007; Middleton & Jansen, 2011).  Other common practices associated with decline 

in cognitive demand include an emphasis on correctness, completeness, and speed, often at 

the expense of prioritising meaning and conceptual understanding (Stein & Smith, 1998).   

 

Various authors have advocated the importance of teachers consciously planning to maintain 

the cognitive demand of tasks (e.g., Jackson et al., 2013; Stein & Smith, 1998; Sullivan, 

Walker et al., 2015).  In their comprehensive research on the use of classroom mathematics 

tasks Stein and Smith (1998) identified factors associated with the maintenance and decline 

of high-level demands (see Table 2.2).  

 
Table 2.2 Factors associated with maintenance and decline of high-level tasks (Stein & Smith, 1998, p. 274). 
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These suggestions concur with those suggested by other authors (e.g., Chapin & O'Connor, 

2007; Fraivillig, 2001).  Fraivillig (2001) recommended three interrelated pedagogical 

actions to support students’ problem solving: eliciting encourages multiple solution 

pathways and fosters discussion, justification, and elaboration; supporting fosters students’ 

tenuous understanding of their own and others’ solutions methods and includes reminding 

students of conceptually similar problems; and extending focuses on the analysis and 

comparison of students’ solutions and pathways to encourage generalisation.  

 

An important role for the teacher during the implementation phase is to ensure that student 

activity remains aligned with the mathematical focus of the task (Anthony & Walshaw, 

2007; Sleep, 2012).  Sleep identified seven teaching moves to promote student engagement 

in the intended mathematical work, which she described as “steering instruction to the 

mathematical point”:  

1. attending to and managing multiple purposes,  

2. spending instructional time on mathematical work,  

3. spending instructional time on the intended mathematics,  

4. making sure students are doing the mathematical work,  

5. developing and maintaining a mathematical storyline,  

6. opening up and emphasising mathematical ideas, and  

7. keeping a focus on meaning.  (p. 942) 
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Reminding us that classroom activity can encompass multiple goals, both mathematical and 

non-mathematical, Sleep (2012) recommended attending to non-mathematical purposes, for 

example the use of contexts chosen to engage students’ interest, in ways that do not detract 

from the intended mathematical work.  A pertinent illustration can be found in the work of 

Hill et al. (2008) who described lessons where efforts to make mathematics engaging 

resulted in a focus on artistic endeavours with little or no mathematical value.  Sleep’s third 

point relates to teachers’ strategic selection of problems and student examples that draw 

attention to the mathematics that is, in the lexicon of variation theory, the intended object of 

learning.  A mathematical storyline responds to the need for coherence and a considered 

progression of mathematical ideas, again indicating the importance of teachers’ pedagogical 

content knowledge.   

 

Sullivan, Clarke, and Clarke (2013) suggested that teachers hone the mathematical focus of 

the lesson by working through the task prior to instruction utilising their understanding of 

their students’ prior knowledge.  By anticipating typical student responses teachers can 

prepare an appropriate lesson trajectory or storyline.  This does not mean that the teachers’ 

role is to sanction particular approaches as being correct, but rather to shape the activity to 

build on the collective sense-making of students (Stein et al., 2008).  Although elicitation 

and acceptance of multiple solution methods is a common feature of reform practices, the 

importance of pressing students’ use of more efficient solution methods while remaining 

sensitive to their current mathematical understandings, should also be stressed (Fraivillig, 

2001; Stein et al., 2008).  

 

Orchestrating productive conceptual classroom discourse is arguably teachers’ most 

sophisticated tool in advancing mathematical learning (e.g., Chapin & O'Connor, 2007; 

Hunter, 2008; National Council of Teachers of Mathematics, 2014; Smith & Stein, 2011).   

Task selection influences the type and level of discourse that is possible.  Meaningful 

discourse is generated by students’ justification of idiosyncratic solution strategies, which is 

unlikely to eventuate if limited thinking and reasoning is required to access the task. 

 

Chapin and O’Connor (2007) researched types of discourse used in classrooms, particularly 

the use of “talk moves” that support academically productive discourse.  The talk moves 

suggested are revoicing to clarify responses; repeating another student’s contribution; 

eliciting student reasoning; adding on to another’s strategy to promote connections; and 
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waiting to give all students enough time to compose their response thereby communicating 

an expectation that all students participate in the discourse.  

 

Communities of mathematical inquiry promote students’ engagement in mathematical 

discourse and argumentation.  Hunter (2008) reported how a group of teachers used a 

purposefully designed communication and participation framework, described as a “set of 

collective reasoning practices related to the communicative and performative actions that 

support effective mathematical inquiry practices” (Hunter & Anthony, 2011, p. 105), to 

scaffold the establishment of an inquiry community.  Lave and Wenger (1991) argued that 

participation in a community of practice changes as skills, attitudes and knowledge develop 

and the learner moves from peripheral to full participation.  This concurs with Hunter’s 

(2008) findings that participation in the learning community changed for both teachers and 

students as they became proficient in the adoption of discursive practices.  The challenges of 

implementing ambitious discourse practices are implicitly acknowledged within the 

framework (Hunter, 2008), which sequences gradual shifts in practice over three phases.  

She argued that scaffolding students’ participation in mathematical reasoning at higher 

intellectual levels resulted in improved argumentation skills, content understanding and 

increased teacher expectations. 

 

The work of Smith and Stein (2011) addressed teachers’ use of student responses to 

challenging tasks to orchestrate whole-class discussions.  Like Fraivillig (2001), Smith and 

Stein argued that eliciting students thinking and accepting multiple solution strategies was 

not enough; the teacher needed to guide and sequence classroom discussion towards 

important and worthwhile mathematics.  Their model of five practices specifically designed 

to support teachers to conduct whole-class discussions following students’ work on 

challenging tasks includes: 

1. anticipating likely student responses to challenging mathematical tasks;  

2. monitoring students’ actual responses to the tasks; 

3. selecting particular students to present their mathematical work during the 

whole-class discussion;  

4. sequencing the student responses that will be displayed in a specific order; 

and  

5. connecting different students’ responses and connecting the responses to 

key mathematical ideas. (Smith & Stein, 2011, p. 8) 

 

The contribution of Smith and Stein (2011) to the literature has been embedding of these 
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practices as a coherent package, where the use of each depends on the others.  Anticipation 

requires the teacher to solve the task they are planning for their students, to view the task 

through their students’ eyes, and consider students’ possible interpretations or 

misinterpretations (Stein et al, 2008).  While monitoring students’ work the teacher pays 

close attention to the mathematics within students’ conversations and solution strategies.  

During this phase the teacher selects particular students to share their work with the class and 

sequences responses to maximise the likelihood of the mathematical goals of the lesson 

being achieved and to maintain the coherence or mathematical storyline of the lesson (Sleep, 

2012; Stein et al., 2008).  To conclude the lesson, the teacher supports students to make 

connections between mathematical ideas inherent in the strategies and representations 

shared. Discernment of the same mathematics represented in different strategies and 

judgement on the efficiency of alternative strategies enhances students’ understanding of the 

underlying mathematics (Stein et al., 2008). In selecting strategies for presentation, teachers 

should not signal that strategies need to be validated by the teacher as worthy; or undermine 

students’ authority and sense-making by seeming to value some responses over others 

(Anthony & Walshaw, 2007; Stein et al., 2008). 

 

Leatham, Peterson, Stockero, and Van Zoest, (2015) added a further practice of recognising 

to the five above.  They focused on teachers’ recognition of critical moments in the 

enactment of lessons, on “expressions of student thinking that lose their instructional value if 

they are not acted on in the moment” (Leatham et al., 2015, p. 90).  They argued that the 

intersection of three critical characterisitcs, student mathematical thinking, mathematical 

signifiance and pedagogical opportunity, distinguish moments that provide potential to 

productively build on student thinking from others. This suggests that when deciding which 

path to pursue at critical moments in the lesson, teachers should consider more than 

mathematical content alone, but should take into account students’ thinking that may 

indicate paths that are more productive than others in their potential to develop mathematical 

sense-making (Anthony, Hunter, Hunter, & Duncan, 2015). 

 

Constraints teachers experience in using demanding tasks are predominantly related to the 

crucial role that teachers’ goals, knowledge, attitudes and beliefs play in informing 

pedagogical decisions and classroom socio-cultural and mathematical norms.  For example, 

Sullivan (2009) reported teachers’ reluctance to implement high-level tasks over concerns 

that students may be reluctant to take risks or expend effort in their learning and preferred 

closed tasks.  Teachers also expressed concerns they were “not always sure what maths will 
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come out of it” (Sullivan, 2009, p. 729) which suggests a lack of confidence in drawing on 

their own mathematical knowledge to respond to students’ idiosyncratic strategies. 

 

In instances where the activity of task enactment involves innovation in pedagogy, Horoks 

and Robert (2007) argued that the strength of teachers’ professional habits could act as a 

constraint:   

Some teachers are reluctant to let the students work in small groups even if they 

are convinced of the usefulness of this type of activity.  Some of them cannot 

easily give up their control over students while others are afraid of the possible 

noise in the class notably because it might disturb their colleagues. (p. 280) 

 

Further challenges stem from meeting the needs of learners from diverse cultural and 

mathematical backgrounds. 

 

Various authors have addressed characteristics of mathematics lessons that are successful 

with students from diverse backgrounds or those who experience difficulty (e.g., Hunter, 

2008; Hunter & Anthony, 2011; Lambert & Stylianou, 2013; Sullivan, Mousley et al., 2009; 

Sullivan, Mousley, & Zevenbergen, 2004).  Students who lack understanding of aspects of a 

complex task need supports to get started (Jackson, Shahan, Gibbons, & Cobb, 2012).  

Likewise, supports should be considered for students who are able to solve the task easily or 

quickly.   

 

Currently, many teachers address the needs of students experiencing difficulty by setting 

alternative goals for them, for example teaching them as a separate group, with different 

mathematical goals from the rest of the class, most likely at lower levels of cognitive 

demand and procedural in nature (Boaler & Sengupta-Irving, 2016; Stein et al., 1996).  To 

mitigate these practices, Sullivan, Clarke and Clarke (2013) suggested that students are more 

likely to learn significant mathematics and participate in the classroom community if 

teachers offer prompts that allow those students experiencing difficulty to engage in 

experiences related to the core task rather than pursuing alternative goals.  Other authors 

(e.g., Boaler, 2016; Lambert & Stylianou, 2013) have advocated that using open-ended tasks 

that offer multiple means of representation, engagement and strategic action provide greater 

access to mathematics for a wide variety of learners.  
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Sullivan and his colleagues (e.g., Sullivan et al., 2004; Sullivan, Mousley et al., 2009) 

proposed that a task variation that still afforded an appropriate problem solving opportunity 

could be posed to students who experienced difficulty engaging with the core task.  Students 

proceed with the support of the variation, or enabling prompt, and then once successful 

return to work on the original task (Sullivan et al., 2004).  Effective variations might include 

“reducing the required number of steps, simplifying the  modes of representing results, 

making the task more concrete or, reducing the size of the numbers involved” (Sullivan, 

Clarke, & Clarke, 2013, p. 19).  Sullivan et al. (2004) argued that supports such as these 

should be offered discreetly.  Less satisfactory approaches they observed included additional 

prompts offered to the class in public statements or as an “anybody who is unsure stay 

behind with me” approach, both of which draw unnecessary attention to those experiencing 

difficulty, nurture learned helplessmess and affect students’ inclination to seek help.   

 

There is a danger that students experiencing difficulty with tasks that afford multiple 

solution pathways do not extend their current levels of proficiency and merely reinforce 

current misconceptions (Sullivan, Mousley et al., 2009).  Sullivan and his colleagues 

recommended careful monitoring of students as they work and the provision of supporting 

prompts as required.  They noted “incidents throughout the research where relatively open-

ended questions allowed teachers to see where individuals and groups of students had a 

misunderstanding that needed whole-class attention” (p. 34), a position that concurs with 

Leatham et al. (2015) on recognising critical moments in lesson enactment where action is 

required. 

 

Students who finish the core task quickly can be provided with supplementary tasks, or 

extending prompts, that are related to the core task but elicit abstraction or generalisation and 

extend their thinking and activity (Sullivan et al., 2004).  Extending prompts have proved 

effective in keeping higher-achieving students productively engaged and supporting higher 

level, generalisable understandings (Sullivan, Clarke, & Clarke, 2013).  The purpose of 

extending prompts is to develop mathematical thinking on the same context as the core task, 

rather than students proceeding to the next stage of the lesson before the rest of the class 

(Sullivan, Mousley et al.,  2009).  

 

Pedagogical approaches to the enactment of classroom tasks have been influenced by 

reforms in mathematics education that have called for a change in how teachers view 

mathematical knowledge, the value and purpose of social interaction in the classroom and 
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teachers’ role as participants in classroom discourse.  Teachers’ knowledge, attitudes and 

beliefs about learning and mathematics inform their pedagogical decisions, and the socio-

cultural and mathematical norms in the classroom.  

 

Worthwhile mathematics tasks are those that promote reasoning, explanation, justification 

and collaboration.  In affording students opportunities to engage in meaningful mathematical 

practices and discourse, worthwhile tasks encourage active construction of networks of 

interconnected mathematical ideas.   

 

Multiple studies demonstrate that once implemented in classrooms, tasks are mediated by 

teacher and student goals, knowledge, and intentions and there is a tendency to reduce their 

cognitive demand and their efficacy for student learning.  The literature recommends explicit 

pedagogical actions that optimise opportunities for student learning from challenging tasks, 

which include actions associated with the maintenance of cognitive demand and 

mathematical focus, and strategies for fostering productive discourse.  

 

A challenge exists for teachers in implementing demanding tasks in ways that cater for the 

needs of learners from diverse cultural and mathematical backgrounds.  There is a growing 

body of evidence that supports initiation of learning through the use of a challenging task 

and differentiation of learning through task variations.   
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This chapter outlines the perspective and approaches that informed the design of the study.  

Section 3.2 describes how this study conforms to the principles of case study and design-

based research approach.  The role of the researcher is outlined in section 3.3 and data 

collection methods in section 3.4.  The setting and participants are introduced in sections 3.5 

and the research schedule in 3.6.  Section 3.7 describes the data analysis used in the study 

and includes discussion of validity and reliability.  Ethical considerations are outlined in 

section 3.8. 

 

The purpose of this study was to explore how teachers maximised the mathematical 

opportunities of cognitively demanding tasks in ways that benefitted student learning.  Three 

teachers implemented three tasks in their classrooms using a range of pedagogical 

approaches previously explored as part of a support programme facilitated by the researcher. 

Several propositions informed the design of the research.  The first proposition was that 

adoption of ambitious pedagogies where all students are supported to productively engage 

with cognitively demanding mathematical tasks is beneficial for student learning.  The 

second was that teachers experience constraints that hinder their use of such tasks in their 

classrooms, and the third that suggestions of pedagogical approaches and a lesson structure 

to facilitate the enactment of demanding tasks would be useful for teachers. 

 

The choice of methodology was influenced by several factors.  These included the role of the 

researcher and participants in the research, the desire to embrace holistic insights into teacher 

activity, and the socio-constructivist paradigm fundamental to this study.  The pedagogical 

approaches to classroom tasks proposed by the researcher likely differed from the participant 

teachers’ usual teaching practice so elements of innovation and intervention were further 

considerations.  

 

The research design aligns with the characteristics of a multiple case study approach, 

enabling the exploration of similarities and differences within and between cases, and 

supporting predictions and connections based on theory (Baxter & Jack, 2008; Hancock & 

Algozzine, 2011).  A case study approach to research “involves an empirical investigation of 
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a particular contemporary phenomenon within its real life context using multiple sources of 

evidence” (Robson, 1993, p. 146). A case is defined as a “phenomenon of some sort 

occurring in a bounded context” (Punch, 2009, p. 119).   

 

The case or phenomenon under investigation in this study was participant teachers’ 

enactment of a mathematical task in a classroom of year 7 and 8 learners, a system bounded 

by time and activity.  Each case consisted of the enactment of the same task in the three 

teachers’ classrooms.  As such, the three different tasks resulted in three cases for discussion.  

The research was guided by propositions and theoretical frameworks gleaned from the 

literature that informed the analysis of teachers’ actions and the details of their practice as 

the objects of study (Baxter & Jack, 2008).  Denscombe (2010) argued that the use of more 

than one research method meshes comfortably with the case study approach, which 

supported the assertion that a case study can be produced from design-based research.   

 

Design-based research, an approach used “for the study of learning in context through the 

systematic design and study of instructional strategies and tools” informs the formative 

nature of this study (Design-Based Research Collective, 2003, p. 5).  Key features of 

designed-based research include innovation, intervention, and iteration (Cobb, Confrey, 

diSessa, Lehrer, & Schauble, 2003).  By designing its elements and by conjecturing how 

these elements function together to support learning, design-based research aims to 

understand what Cobb et al. (2003) describe as a learning ecology: 

Elements of a learning ecology typically include the tasks or problems that 

students are asked to solve, the kinds of discourse that are encouraged, the 

norms of participation that are established, the tools and related material means 

provided, and the practical means by which classroom teachers can orchestrate 

relations amongst these elements. (p. 9) 

 

The learning ecology this study aimed to understand related to the types of tasks and teacher 

practices that impact on students’ engagement with mathematical ideas, their participation in 

productive mathematical discourse, and their willingness to persist in the face of challenge. 

The features of design-based research incorporated in this study included an intervention 

comprising a programme of support including suggested tasks and lesson elements to prompt 

participant teachers to adopt innovative practices, and iteration in that the implementation of 

each task was informed by the reflection of the participant teachers and the researcher on 

previous lessons.    
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The Design-Based Research Collective (2003) argued that this approach to research provides 

the means for practitioners and researchers to “work together to produce meaningful change 

in contexts of practice” (p. 6).  They argued that the relationship between the researcher and 

teachers impacts on the success of the intervention as collaboration not only ensures that 

local goals and constraints are considered alongside the researcher’s agenda, but also that 

shared ownership and commitment to the design enhances the likelihood of the innovation 

enduring in teachers’ practice. 

 

The socio-constructivist paradigm that underpins this research recognises the importance of 

subjective creation of truth and meaning without completely rejecting notions of objectivity.  

Teachers’ decisions and actions are the focus of this study so collaboration between the 

researcher and participants enabled the researcher to better understand participants’ 

perspectives and their actions.  The challenges of the researcher’s role as facilitator and 

objective observer of an intervention was described by the Design-Based Research 

Collective (2003) as “the dual intellectual roles of advocate and critic” (p. 7).  

 

The researcher in this study is an experienced teacher of year 7 and 8 students and is a 

colleague of the teacher participants.  Punch (2009) warns that possible disadvantages of 

researching your own school or context include “bias and subjectivity, a vested interest in 

the results, a lack of generalisability and ethical considerations” (p. 45).  An awareness of 

these issues allows them to be managed, and highlights the important role of the research 

supervisor as a check for possible subjectivity or vested interest.  The researcher recorded 

field notes and reflections to validate recollections, prevent errors and detect bias, but as 

Punch (2009) acknowledged, “there is no such thing as a position-free project” (p. 45).   

 

Consistent with both case study and design-based research, multiple data sources and 

multiple collection techniques were employed in order to gather a complete picture of each 

case (Baxter & Jack, 2008; Cobb et al., 2003).  Data generated by the study included 

qualitative data from video records of classroom lessons, self-reporting from teacher 

responses to free format questionnaires, semi-structured interviews and documentary data, as 

well as quantitative data from Likert-style survey items. 
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Classroom observations are a characteristic of design-based research methodology (Cobb et 

al., 2003).  This study recorded each of the three teachers implementing each of the three 

tasks, nine lessons in total.  The focus of the study was exploration and understanding of 

teacher actions that support learning during the enactment of the task, so data gleaned from 

the observations included the way that teachers posed the problems, how they interacted with 

students about the mathematical content, how they worked on problems with students, and 

how they prompted and engaged with students sharing and justifying solution strategies.  

The iterative nature of the research approach enabled a sharper focus of the observations on 

successive task implementations. 

 

Observations as a record of events are open to subjective analyses.  The videotaped 

observations in this study were available to the participant teachers as well as the researcher 

which served to reveal or confirm participants’ perspectives, and established the data source 

as both trustworthy and rich.  Field notes and teacher input following the first round of 

observations informed the development of descriptive categories that in turn informed a 

more structured approach to subsequent observations.   

 

Teachers completed a questionnaire to elicit their perspectives at the end of the project 

(Appendix A).  The teachers rated descriptive items on a 5-point Likert-type scale where 1 

measured the most negative attitude and 5 the most positive with a notionally neutral score 

of 3 for each description.  Teachers also responded to free format questions designed to elicit 

data that provided illumination of the research questions. 

 

Group interviews provide opportunities for “the explicit use of group interaction to produce 

data and insights that would be less accessible without the interaction found in a group” 

(Punch, 2009, p. 147).   A semi-structured format was used for the group interview at the end 

of the project (Appendix B).  Participants’ responses and discussion centred on themes that 

offered insights aligned with the research questions, but the format allowed for additional 

questions that clarified or explored the responses.  The interview was recorded to facilitate 

the accurate recording of the data. 
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Further data collected in the study was documentary data.  This played an important role in 

facilitating data triangulation (Punch, 2009).  The documents collected revealed participants’ 

perspectives and interpretations and included teachers’ planning and evaluations, and 

students’ written recording of their mathematical solution strategies that illustrated student 

understanding.  

 

The research was undertaken at a New Zealand urban full primary school serving a low 

socio-economic community.  The participant teachers involved in the project were three 

teachers employed in the senior syndicate of 80 year 7 and 8 students working in three multi-

level classes.  The teachers represent a range of age, experience and confidence with 

mathematics teaching.  They have been assigned pseudonyms (Sally, Nanette, and Louise) 

and all have been allocated the female gender in order to protect their identities.   

 

The teaching study comprised three phases conducted over three months. 

 

In Phase One the participant teachers attended professional learning sessions facilitated by 

the researcher.  In the first session characteristics of worthwhile tasks were explored and in 

the second, pedagogies associated with successful implementation of tasks.  The third 

session incorporated a suggested lesson structure, selection of the first task and collaborative 

planning of the first lesson.  The next chapter describes the content of the professional 

learning sessions.  

 

Phase Two comprised iterations of teaching and reflection.  The teachers’ implementations 

of the tasks were observed and videoed.  As soon as practicable after teaching the lesson the 

teachers reflected on the task and its implementation.  The researcher and participant 

teachers met to reflect collectively on the first lesson and to plan the second.  

 

The iterative approach of collaborative planning followed by classroom implementation and 

reflection was repeated for three tasks.  Further research data collected in phase two included 

field notes, samples of student work, audio recordings of planning meetings and teachers’ 

written planning. 
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Phase three occurred after the enactment of task three.  The participant teachers completed 

the final questionnaire and took part in a semi-structured group interview.  

 

A feature of design-based research is that data collection and analysis occur concurrently 

(Denscombe, 2010).  In this study the researcher and participant teachers’ collaborative 

reflection on the data and ongoing analysis focused the teachers’ attention on their 

instructional decisions and effectuated adaptations to their practice in subsequent iterations.  

It also served to sharpen the researcher’s focus of the study.  The organisation of the research 

findings in chapters 5 to 7 represents each case study task.  Chapter 8 presents the teachers’ 

perspectives on the usefulness of the structures suggested by the project.  Chapter 9 presents 

the conclusion including claims and assertions generated from the research strengthened by 

retrospective analysis of the data, a distinctive feature of design-based research. 

 

Case study research typically comprises data from multiple sources converged in the analysis 

process rather than handled individually as “each data source is one piece of the puzzle with 

each piece contributing to the researcher’s understanding of the whole phenomenon” (Baxter 

& Jack, 2008, p. 554).  This study used approaches to analysis of qualitative data of 

reduction, display and drawing and verifying conclusions from data (Miles & Huberman, 

1994).  Video and audio data was transcribed and used together with teachers’ qualitative 

responses.  Stated intentions of the research were to document teachers’ processes of 

enactment and perspectives, so triangulating multiple sources and kinds of data was utilised 

to increase confidence in both the researcher’s interpretation and in teacher self-reported 

data. Reduction of the data illuminated similarities, differences, themes and patterns.  Punch 

(2009) argued “good qualitative analysis involves repeated and iterative displays of data” (p. 

175).  In this study data displays assisted in organising, compressing, comparing and 

assembling the information.  A repertoire of analytic techniques applied to the same body of 

data served to illuminate different aspects and enabled linking of the data to propositions.  

 

Within qualitative research validity refers to the accuracy and appropriateness of the data 

collected (Denscombe, 2010).  In this study triangulation of multiple data sources and types 

strengthened confidence in the data, as did collaboration between the researcher and the 

participant teachers enabling facts to be checked and interpretations to be corroborated or 
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revised.  This was particularly important as the dual role of researcher as facilitator and 

observer has implications for the credibility and trustworthiness of the research findings.  

Partnership and iteration, both features of design-based research, address the validity of 

research findings and typically result in increasing alignment of theory, design, practice and 

measurement over time (Design-Based Research Collective, 2003).  Retrospective analyses 

were contrasted with the analyses conducted while the study was in progress to strengthen 

credibility of the research claims. 

 

Reliability is concerned with consistency (Punch, 2009).  In this study the researcher and 

participants’ roles have been clearly described, multiple data sources and types have been 

used and systematic analysis carried out.  A lack of formal measures of student learning 

resulting from the teaching experiment could constitute a challenge to the reliability of the 

research, but the students were unlikely to achieve measurable differences in learning within 

the short time frame of the project, so any claims about student learning gains result from 

teachers’ indirect reporting.  This encompassed teachers’ perceptions of changes in students’ 

persistence as well as mathematical understanding and utilised teachers’ holistic knowledge 

of their students and their learning. 

 

The research project was designed and conducted in accord with the Massey University 

Code of Ethical Conduct for Research, Teaching and Evaluations Involving Human 

Participants (Massey University, 2015).  The project was reviewed and approved by the 

Massey University Human Ethics Committee prior to data collection.  Ethical considerations 

taken into account included respect for persons, minimisation of risk to participants, respect 

for privacy and confidentiality, and social and cultural sensitivity. 

 

Benefits and risks that required consideration included the time commitment of the 

participant teachers and their students to the project.  Lessons under study took place as part 

of the normal classroom programme and the research was conducted in a way that supported 

the education and welfare of children and teachers.  Consent was sought and obtained from 

the Board of Trustees of the school, participant teachers, the students and their parents or 

guardians.  All participants were provided with relevant information on which to base their 

decision (Appendices C, D, & E).    

 

A potential risk related to the school setting and the position of the researcher as a colleague 

of the teacher participants.  Ethical dilemmas anticipated with the shift in role from 
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colleague to researcher were minimised by clear communication of plans within the research 

framework to value and make visible the teachers' perspective throughout the process.  

Participant teachers were invited to collaborate on the analysis of data, and meetings were 

held at times and settings of the teachers’ choice.  No evaluations of teaching and learning 

programmes were made other than those grounded in the context of the study.  Because 

others in the school were aware of the teachers taking part in the study, guaranteeing 

anonymity was not possible, but the school and participants were assigned pseudonyms and 

no identifying information was included in any reports.  

 

The methodology chosen for this study was a case study and design-based research 

approach.  Multiple data sources including observations, questionnaires, interviews and 

documentary data were collected during three phases of research.  The three phases 

incorporated intervention, iterations of teaching and reflection and collection of concluding 

thoughts.  Systematic analysis and triangulation of data alongside collaboration between the 

researcher and participant teachers served to strengthen the validity and reliability of the 

research findings reported in subsequent chapters. 
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This chapter outlines Phase One of the research comprising the professional learning 

sessions for teachers.  Section 4.2 provides an overview of the sessions and session one is 

described in section 4.3.  The types of tasks which became the focus of the project are 

described in section 4.4.  Section 4.5 outlines the teachers’ second session.  A proposed 

lesson structure and planning template are outlined in section 4.6.  The chapter concludes 

with section 4.7 describing the third session.  

The goal of the teacher professional learning sessions was to build teachers’ capacity to 

engage their students with cognitively challenging mathematics tasks.  The research of 

Boston and Smith (2011), Stein et al. (2009), Smith and Stein (2011), and Sullivan and his 

colleagues (e.g., 2009, 2011, 2103, 2015, 2016) guided the design of the professional 

development sessions and selection of activities.  Boston and Smith (2011) outlined the 

success of their own research project implementing  a ‘task-centric’ approach to professional 

development.  They described the benefit of programmes which engaged teachers in critical 

analysis of tasks and argued that learning about the cognitive demands of tasks supported 

and shaped teachers’ thinking about the relationship between tasks and learning.  Other 

researchers have advocated the benefits of task-centric approaches to improving teacher 

practice (e.g., Stein et al., 2009; Watson & Sullivan, 2008). Sullivan, Mousley et al. (2009) 

argued: 

An important component of understanding teaching and improving learning is to 

identify the types of tasks that prompt engagement, thinking, and the making of 

cognitive connections, and the associated teacher actions that support the use of 

such tasks, including addressing the needs of individual learners. (p. 18) 

 

Activities for the sessions were planned with an awareness of the challenges that often exist 

in translating professional development into associated improvements in practice (Boston & 

Smith, 2011; Timperley, Wilson, Barrar, & Fung, 2007).  With this in mind, activities that 

represented the everyday authentic practice of teachers were at the heart of the sessions, 

including opportunities for teachers to solve, understand, and assess the cognitive demands 

of mathematics tasks, and to experience and explore pedagogies that support student learning 

during task implementation.  The activities were framed within the larger body of ideas 
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about the nature of mathematics teaching and learning discussed in the literature review.   

The intervention aimed to equip teachers with a set of tools to assist in the adoption of 

pedagogical approaches that support the use of cognitively demanding tasks.  These included 

a task analysis guide (Stein et al., 2009, p. 6; Appendix F), and a lesson structure and 

planning template (Appendix G) designed to prompt teachers to consider their pedagogical 

decisions at each phase of planning and implementation. 

 

The first two sessions for teachers were part of a whole-school mathematics professional 

development facilitated by the researcher.  The focus of the first was for teachers to solve, 

understand, and assess the cognitive demands of tasks as they appear in instructional 

materials i.e. in phase one of the Mathematical Task Framework (Stein et al., 1996).  

Participants solved and compared (see Figure 4.1) two tasks both focusing on the same 

mathematical content but requiring different levels and kinds of thinking.  

Teachers used the task analysis guide (Stein et al., 2009, p. 6; Appendix F) to sort 

mathematics tasks based on the thinking processes they demand from students.  The guide 

consists of lists of task characteristics at each of four levels of cognitive demand described 

by Stein et al. (2009) as memorisation, procedures without connections, procedures with 

connections, and doing mathematics.  The goals of this activity were to develop shared 

understandings and language for discussing mathematical tasks and to raise teachers’ 

 

Figure 4.1 Excerpt from Teacher Professional Learning Session One (adapted from Stein et al., 2009). 
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awareness that not all tasks are equal and that task differences impact on opportunities for 

student thinking and learning.  

 

Teachers were challenged to identify the level of demand of the tasks they had already 

planned to use the next day, and then to find or create an open-ended task that matched the 

criteria for doing mathematics and addressed the mathematical content and goals they 

intended to cover. 

 

There is substantial support for the argument that open-ended tasks promote meaningful 

engagement with mathematical ideas (e.g., Boaler & Staples, 2008; Sullivan, 2009).  A task 

is described as open when it has more than one possible solution path or response and thus 

promotes openness in student activity and in interactions between the students and the 

mathematical content (Sullivan, Clarke, & Clarke, 2013).  Sullivan, Walker et al. (2015) list 

four benefits of designing a task with multiple solution paths: 

• It allows a low “floor” for the task in that all students can find at least one 

solution readily; 

• There is an expectation that students will determine their own strategy for 

answering the questions and it is this opportunity for decision making that is 

engaging the students; 

• There is a high “ceiling” in which students who complete the learning task 

can seek to propose a generalisation; and 

• Having found their own solution strategy, the openness means that students 

can make unique contributions to class discussions. (p. 47) 

 

The tasks used in this research project as well as incorporating these positive characteristics 

of open-ended tasks, were also content specific, meaning they addressed mathematical topics 

that form the basis of the curriculum.  The tasks were also chosen to fit in with the topics that 

the participating teachers already planned to teach at the time the data was being collected.  

The content specific open-ended tasks used in this project, both in the teacher professional 

learning sessions and those chosen for the cases under study, were a mix of those drawn 

from available resources and those adapted or created by the researcher. 
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The set up and implementation of mathematics tasks i.e. phase two and three of the 

Mathematical Task Framework (Stein et al., 1996) was the focus of the teachers’ second 

session.  The session began with the researcher enacting a task explicitly modelling the use 

of a lesson structure and pedagogical approaches to support the maintenance of high level 

demand and differentiation of learning for a heterogeneous group through task variations. 

The lesson structure modelled is discussed in section 4.6.  The task chosen for this session 

(see Figure 4.2) is an adaptation of a problem widely available online or in mathematics 

texts.  

The task affords multiple solution strategies and representations, and opportunities for 

visualisation and creative thinking.  Various strategies to encourage generalisation and 

persistence were explicitly modelled (e.g., see Figure 4.3). 

 

Figure 4.2 Task from Teacher Professional Learning Session Two. 

 

Figure 4.3 Excerpt from Teacher Professional Learning Session Two. 
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Pedagogies associated with the successful implementation of demanding tasks were 

explored.  These included clear goals for the lesson based on conceptual understanding of 

mathematical relationships, selection of an appropriate open-ended task that has potential to 

help students accomplish those goals, and anticipation of student experience by exploring 

possible solutions, strategies, and representations (Smith & Stein, 2011).  Teachers’ 

pedagogical actions associated with the maintenance and decline of high-level cognitive 

demands were explored (see Figure 4.4).  The session concluded with discussion of the 

lesson structure modelled. 

 

 

The lesson structure advocated here is drawn from the work of Sullivan and colleagues (e.g., 

Sullivan, Askew et al., 2015, 2016) who explored a lesson structure that initiated learning 

through the use of a challenging task and differentiated learning through task variations.  The 

work of Marshall and Horton (2011) on inquiry instruction is also influential.  They analysed 

the structure of over 100 observed lessons particularly focusing on the order of instruction 

and concluded: 

When teachers give students an opportunity to explore the concepts prior to an 

 

Figure 4.4 Activity from Teacher Professional Learning Session Two (adapted from Stein & Smith, 1998, p. 

274).
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explanation, no matter whether the teachers or the students provide the 

explanation, the students think more deeply about the content.  If reasoning and 

critical thinking are instructional goals, then these results suggest that teachers 

should consciously provide opportunities for students to develop their ideas for 

themselves. (p. 99) 

A further influence is the framework for a three phase lesson structure, launch, explore, and 

summary, developed for use with cognitively demanding tasks by Lappan, Fey, Fitzgerald, 

Friel, and Phillips (2002).   

 

The launch is how the task is introduced to the students.  The information that teachers 

divulge or not at this stage is critical and requires careful planning. Jackson et al. (2012) 

argued that four crucial issues should be considered when planning a successful launch 

phase: ensuring that potentially problematic or unfamiliar contextual features of the task are 

discussed; key mathematical ideas inherent in the task are made explicit without hinting at 

particular strategies or procedures to find a solution; a common language is established to 

enable students to interpret the task appropriately and participate in subsequent discussion; 

and cognitive demand is maintained. 

 

Important features of the explore phase includes students engaging with the task for 

themselves rather than being told what to do (Stein & Lane, 1996) and enabling prompts 

offered only when students have been attempting the tasks for some time (Sullivan et al., 

2016).  Explicit pedagogical actions that teachers can use to support learning at this stage 

may include eliciting, supporting, and extending strategies (Fraivillig, 2001), monitoring 

students’ responses and selecting students to present their work later in discussion (Smith & 

Stein, 2011), recognising mathematically significant opportunities (Leatham et al., 2015), 

and actions to steer the instruction to the mathematical point (Sleep, 2012). 

 

The lesson review is an orchestrated whole-class discussion where student activity on the 

task is explored through sharing and justifying of solution paths.  The summary incorporates 

key pedagogical actions to maximise learning opportunities such as sequencing and 

connecting student responses to illuminate key mathematical ideas (Smith & Stein, 2011). 
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Multiple authors (e.g., Ball, 1993; Simon, 1995; Sullivan, Clarke, & Clarke, 2013) have 

argued the importance of teachers’ purposeful planning of the content, design, and sequence 

of mathematics lessons.  A mathematics task planning template (Appendix G) which 

incorporates the proposed lesson structure was developed by the researcher.  It prompts 

teachers to consider their decisions at different phases of task planning, introduction, and 

implementation, and to support students to ‘work like mathematicians’ encouraging 

persistence and generalisation.  Suggestions for using the practices for orchestrating 

mathematical discussions proposed by Smith and Stein (2011) are included, as are task 

variations in the form of enabling and extending prompts to support diverse learners 

(Sullivan, Mousley et al., 2009).  

 

The purpose of the third session was for the teachers participating in the research to select 

tasks for implementation and to explore the proposed lesson structure and planning template.  

The researcher presented examples of challenging tasks addressing an agreed upon topic. 

The suggested lesson structure was explored, the first task chosen from those presented and 

the first lesson was collaboratively planned.  The task and its implementation is presented in 

the next chapter.  

 

Phase One of the research, the intervention, comprised teacher professional learning 

sessions, the goals of which were to build teachers’ understanding of cognitively demanding 

tasks and their capacity to implement them in ways that support student learning.  The 

planning of the intervention sessions was informed by research.  Following the third session 

teachers were equipped with a lesson structure, planning template, and associated 

pedagogies to assist in the implementation of the first task.  
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This chapter outlines the teachers’ implementation of the first task.  Section 5.2 describes the 

task.  The remainder of the chapter describes the actions of teachers prior to, during and after 

the lesson as they endeavoured to maximise opportunities for student learning afforded by 

the task.  Section 5.3 describes the teachers’ collaborative preparation and planning.  Section 

5.4 outlines the task implementation in Nanette’s class, and section 5.5 in Sally’s.  The two 

lessons described are illustrative of the themes extracted from the data from all three 

teachers’ implementations of the first task.  For this reason, description of the third lesson 

was redundant. 

 

 

This task, adapted from Sullivan, Clarke, and Clarke (2013), is an open-ended task, in that it 

has a range of possible solution methods and responses.  The task addresses content across 

all three strands of the mathematics and statistics learning area of the New Zealand 

Curriculum (Ministry of Education, 2007).  It provides challenge in a meaningful context 

(height), and promotes engagement by incorporating a personal dimension for students (their 

own height).  The task as it appears above i.e. in phase one of the Mathematical Task 

Framework of Stein et al. (1996) (see Figure 2.1) is a doing mathematics task as it requires 

students to explore and understand the nature of the mathematical concept of average (the 

arithmetic mean), no solution pathway is explicitly suggested by the task, and it requires 

multiple steps and complex thinking and reasoning.  

 

The teachers collaboratively planned the implementation of the first task using the suggested 

lesson structure and planning template.  The planning template (Appendix H) supports 

teachers to consider the big mathematical ideas inherent in the task and generate a 

Looking for Three More 

Four people in this room have an average height of 158cm.   

You are one of them.   

Who are the other three? 
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hypothetical learning trajectory that acknowledges and values both teachers’ goals for 

instruction and students’ thinking and understanding (Simon, 1995).  

 

The first step in the planning meeting was to identify the mathematical focus of the task 

which the teachers identified as 'the concept of average'.  At this stage, refining this focus to 

specific mathematical goals for the lesson was problematic for the teachers.  An illustrative 

response, What is average? What is a typical height in our class? (S-PreT1) 1  lacks 

specificity and only vaguely relates to the multiple concepts addressed by the task.  Because 

teachers are more likely to use challenging tasks if they understand the mathematics 

involved and its potential (Sullivan et al., 2016), the researcher joined the teachers’ 

discussion to refine appropriate goals for the lesson.  It was agreed that ‘average’ in this 

problem referred to the ‘arithmetic mean’.  The following goals were decided: 

• develop conceptual and procedural understanding of average i.e. a fair share or 

centre of balance conceptualisation, and procedurally know how to calculate the 

average from a set of scores,  

• know own height in centimetres and measure height to the nearest centimetre. 

• estimate sets of four scores that can average 158cm and demonstrate awareness of 

more than one possible solution.  

• understand the influence on the average of changing one or more scores. 

 

Lesson design entails connecting teachers’ mathematical understanding and their hypothesis 

about students’ understanding (Simon, 1995).  In this case the teachers thought that the task 

would be very challenging for many students because it requires complex reasoning 

involving several strands of mathematics understanding.  Sally, in particular, expressed 

concern about her range of students and what this means in terms of what I will have to set 

up for my students to all engage with the same task (S-PreT1).  To address anticipated 

difficulties, the teachers decided to focus on the measurement aspects of the task on the 

previous day.  This included students measuring and recording their heights and displaying 

these publicly, thus providing visual prompts to support students to get a sense of their own 

and others’ heights and get buy in from the students (N-PreT1).   

 

The teachers had little confidence that many students had prior experience of the 

1 The following notation is used to reference the teacher planning meetings and interviews. S refers to the initial 
of the teacher pseudonym. PreT1 refers to the pre-task 1 planning meeting, TransT1 refers to the transcript of the 
lesson implementation for task 1 and PostT1 refers to the post-task 1 interview etc. 
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mathematical concept of average (mean).  The planning indicated their decision to use a 

visual prompt of a line drawn at 158cm on the classroom wall to support students to 

understand their own height in terms of the average (158cm), and to support 

conceptualisation of average as a balance point.  The planning also indicated that the 

teachers would ascertain previous experience and understanding of average during the task 

launch, and provide sufficient explanation to scaffold students into the task.   

 

The teachers worked through the task with the purpose of anticipating students’ possible 

solutions and strategies.  They anticipated that many students would use the visual prompts 

provided to consider their height as above or below the average and search for someone else 

an equal distance on the other side of average.  This conceptualisation of average as a 

balance point, exemplifies the property that the sum of deviations from the average is zero 

( .   

 

Some students may use the add-then-divide procedure ), starting with a random 

selection of students then likely using trial and error, swapping students in and out to achieve 

the desired average.  The teachers anticipated that this approach would support students to 

recognise the effect that changing scores has on the average, and consequently make 

informed choices of heights to include or exclude.  Some students may already understand 

the relationship between scores and the average and intuitively manipulate the formula for 

average (   ⇒ ) and look for four students with a total height of 632cm. 

 

The teachers planned enabling prompts to provide appropriate scaffolding for students 

struggling to get started while still supporting them to be challenged by the intended 

mathematics in the task.  The teachers’ discussion acknowledged the importance of 

maintaining cognitive demand and awareness of research reporting teachers’ tendency to 

reduce the cognitive demands of tasks when assisting students facing difficulty (Stein et al., 

2009; Sullivan et al., 2011). The enabling prompts planned were: 

• Solve the problem with just two students who have an average height of 158cm. 

• Find the average height of your group.  What does this tell you? 

• What if the average of the four people was 150cm?  

• Find four students with a total height of 600cm. How could this help you to work on 

the task? 
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Extending prompts planned to extend the thinking and activity of students who finished the 

task quickly included: 

• Find a second set of students whose average is 158cm. 

• Use your solution to find four students whose average is 159cm. 

 

The students were typically organised into like-achievement groups for mathematics lessons, 

but the teachers decided in the planning meeting that for this lesson the students would 

choose their own groups.  The benefits of mixed-ability groupings were discussed from both 

a mathematical and growth mindset perspective, but concerns were expressed that the 

students who were usually in the ‘low-ability’ groups would struggle with the openness of 

the task and the persistence required to overcome potential difficulties. 

 

In order to support collaborative work on the task each self-selected group of three or four 

students could include one or more of their heights as ‘You are one of them’ referred to in the 

task.  

   

As indicated in the written plan Nanette had focused on measurement of height in the 

previous day’s lesson and students’ previously measured heights were displayed on the 

classroom wall. 

 

It was clear that Nanette had also discussed average with the students the previous day.   

Remember how yesterday we had 3 students up the front and we looked at 

average, so the average height was where I put the magnet between them. 158 is 

where the magnet is. 158 is the average. (N-TransT1) 

In the post lesson interview Nanette recalled:  

We placed a magnet where we thought the average height of the students might 

be, focusing on the fact that it would be in the middle of the heights and then we 

worked out the average.  I chose three people because it made it a slightly 

different problem, different enough to not give it all away today. (N-PostT1). 

 

The four-minute task launch consisted of Nanette reading the task to the students, and 

reminding them of the previous day’s activity (as above).  She concluded with: 
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For this task you’re going to need to move around the room.  You’re going to 

need to have conversations with people.  You need to find their heights.  I want to 

see lots of movement and talking and thinking.  We’ve got plenty of time to get on 

with this today, plenty of time to work it out.  If you’re struggling put your hand 

up, I’ll come around. (N-TransT1) 

 

Following the launch, Nanette was very busy helping students who had immediately 

accepted her offer for assistance and gathered around her.  She initially responded by 

providing an unplanned prompt, namely the procedure for calculating average: Get four 

students’ heights, add them together and divide by four (N-TransT1).  Seven minutes into the 

explore section of the lesson Nanette approached the researcher and acknowledged the 

difficulty she was having responding to the students’ requests for help: I find it really hard 

not to tell them (N-TransT1).  

 

Although prompting students to use the add-then-divide rule was intended to be helpful it did 

not lead to a successful solution for most of these students.  The prompted procedure allowed 

them to access the first step (calculating the average height of four chosen people), after 

which many struggled to make sense of the task, mostly adopting a random trial and error 

approach (Figure 5.1).  

 

Five of the 12 students who used this approach successfully found a solution.  Their use of 

 

Figure 5.1 Procedure and trial and improve strategy, Example 1 
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the add-then-divide rule together with a trial and improve approach promoted an emerging 

understanding of how the scores affected the average (Figure 5.2). 

 

A group of students had experienced difficulty getting started, but had not sought assistance 

from the teacher early in the lesson.  When Nanette realised they were struggling she 

prompted: Find the average height of your group. What does this tell you? (N-TransT1).  

The students in this group were all 156cm tall and were initially confused about whether it 

was possible to have an average if all the scores were the same.  In reaching a consensus on 

this issue these students conceptually explored their own understandings about average and 

successfully solved the task using a centre-of-balance approach. 

Chris: We are all 156cm so our average is 156 

James: That’s too short then. We need to ditch someone and get a different 

person. We could use (teacher). 

Anton: She’d be nearly 2m. We need someone who’s 164cm. 

Chris: Why 164? 

Anton: Because that is 6 over the average. We are 2 under the average each. 

2,4,6; 6 for all of us so we need someone who is 6 over.  

(N-TransT1) 

  

The total height (632cm) approach ( ) was used by four students all of whom 

successfully found at least one solution.  This solution strategy promoted conceptual 

understanding that supported generalisation and several students found multiple solutions.  It 

is possible that these students’ prior understanding was more advanced, although the 

 

Figure 5.2 Procedure and trial and improve strategy, Example 2 



 47 

illustrative student work sample (Figure 5.3) suggests that this student’s understanding 

developed as he worked through the task. 

 

The students spent 30 minutes exploring the task, and of the 21 students present, 13 

identified at least one correct solution.   

 

For the lesson summary Nanette selected three groups to share their solution strategies 

representing the three approaches adopted.  Nanette later explained her decision to start with 

the centre-of-balance approach.  Their strategy was different to everybody else’s, it was 

simple and those who hadn’t got it yet would be able to understand (N-PostT1).  

 

The group chosen to share next had successfully used the procedural approach, swapping in 

students’ heights until the required average was reached.   

Nanette: What were their heights?

Ray: 157, 152, 164 and 159. 

Nanette: And what did you do with those numbers? 

Ray: Added them together which was 632 and divided by 4, we got 158. 

Nanette: So you added all these together and got 632. 632 was the magic number. 

Who else got 632? (N-TransT1) 

 

Figure 5.3 Solution using total height approach. 
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These students were not initially aware of the importance of 632, the total height, but 

Nanette’s emphasis connected this strategy to the final strategy shared, the total height 

approach.  Nanette reiterated the connection at the conclusion of the lesson. 

So Danny started the opposite way to Ray’s group.  She started with finding the 

total height she needed altogether which is the same number 632, the average 

height times 4. (N-TransT1) 

 

This section discusses Nanette’s enacted pedagogies in relation to opportunities occasioned 

for students to engage with and learn from the task.  The discussion is informed by the 

researcher and teacher’s reflection on the data collected from the lesson observation and the 

subsequent teacher meeting, further strengthened by retrospective analysis. 

 

Nanette was concerned initially that the students in her class would not make progress 

without assistance.  They were unaccustomed to being given tasks that they did not 

immediately have a strategy for solving, and the classroom norms were such that the 

students saw it as the role of the teacher to provide one.  Nanette reflected: I had a lot of 

resistance for the first couple of minutes but this died down. Knowing my enabling prompts 

better would be something I could improve on, I just needed to be patient in the beginning to 

let students find their feet.  They surprised me, they could do so much more than I gave them 

credit for (N-PostT1).  Previous research (e.g., Clarke & Peterson, 1986) has recognised that 

teachers’ intentions to act are informed by their knowledge, beliefs, values and attitudes as 

well as the constraints they anticipate experiencing.  Although Nanette was aware of 

recommended approaches to implementing challenging tasks and had anticipated and 

prepared for student difficulty she acknowledged how difficult this was especially as it 

involved altering ingrained practices.  

 

Ultimately the students who were provided with the unplanned procedural prompt were the 

least likely to successfully solve the task.  Nanette’s adaptation lowered the cognitive 

demand of the task.  In relation to the framework and taxonomy developed by Stein et al. 

(1996) the task was transformed from a doing mathematics task (in instructional materials) 

to procedures without connections for the students whose approach was unconnected to 

meaning, and procedures with connections for those students whose use of the procedure and 

trial and improve strategy resulted in an emerging understanding of how the scores affected 

the average.  
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The group of students who used the centre-of-balance approach also lacked prior knowledge, 

but without provision of an explicit pathway by the teacher, they used each other as 

intellectual resources in collective sense-making.  Likewise, the students who generated 

multiple solutions were those that devised their own methods.  This is consistent with 

findings in the literature (e.g., Marshall & Horton, 2011; Sullivan et al., 2016) that students 

who have opportunities to develop their ideas for themselves prior to an explanation think 

deeply about the content and are more likely to develop conceptual understanding. 

 

Nanette made purposeful decisions selecting and sequencing strategies and responses during 

the lesson review.  She felt confident that the sequence chosen maintained a coherent 

argument, but felt that there would have been value in creating a shared record of strategies 

so that connections could be more clearly seen.   

 

As an early career teacher, confident in her own mathematical knowledge and ability, 

Nanette felt that teaching this task challenged me to think about how students see maths.   I 

can do the task but it’s really hard for me to think how other people might do it. (N-PostT1).  

Nanette’s comments reflect the well documented challenges teachers face in translating their 

own mathematical knowledge into worthwhile lessons (Ball et al., 2008; Sullivan, Clarke et 

al., 2009). Ball (1993) pointed out that teachers must have a “bi-focal perspective – 

perceiving mathematics through the mind of the learner while perceiving the mind of the 

learner through mathematics” (p. 159). 

  

In Sally’s class the students had also measured and recorded their heights the previous day 

and although there had been some discussion about average no procedure for calculating 

average had been provided.  Sally reiterated:  

So we’re looking at Geoff’s height (144), and Kyle’s (163).  So there’s something 

happening between Geoff and Kyle, there’s clearly a height difference isn’t 

there?  We have 144 and 163, what does that say about 158?  Is it somewhere 

between those two? (S-TransT1) 

The remainder of the task launch addressed the establishment of classroom norms, 

reinforcing for students that they can learn from each other, and: it’s important to set goals 

and decide next steps (S-TransT1).  It was unclear whether this referred to mathematical 

goals.  
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The students worked in self-selected groups, except a 'working group' of six students the 

teacher deemed would need further support. She gathered them to work with her.  The goals 

for this group were altered from those for the original task.  

 

Sally was kept busy predominantly with the ‘working group’, leaving them on two occasions 

to monitor other students’ work and to offer enabling prompts.  After 20 minutes Sally was 

aware that most students although engaged were not making progress towards a 

mathematical solution. Sally called the class together and reiterated her expectations.

I notice some people are moving forward in this now – that’s fantastic. Some 

people have drawn it, some people have put it in order, those kinds of things.  

One of things you need to be thinking about, how are we going to use that 

information? Leila said we could add them together and divide, and we could use 

google if we needed that information, ok?  So we need to be thinking about some 

of the things we have discussed, what could we use? (S-TransT1) 

 

It became clear that ‘setting goals and deciding next steps’ Sally had emphasised earlier 

related to problem solving strategies displayed on the wall.  These included ‘Draw a 

picture.’ and ‘What information have you been given? How can you use this information?’.  

Sally’s description of students’ strategies, namely some people have drawn it in, some 

people have put it in order (S-TransT1) was an accurate account of many student 

approaches, presumably prompted by the problem solving strategies recommended to them 

(see Figure 5.4).  However, in many cases, these strategies did not result in the intended 

mathematics of the task being addressed.   

 

Figure 5.4 Strategy that does not address intended mathematics 
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Only two of the 20 students successfully solved the task.  

 

For the lesson summary Sally selected three groups to share their solution strategies.  A 

student from the ‘working group’ shared that he had chosen four people, drawn them and 

recorded their heights.   

 

The second group Sally asked to share had attempted to solve the main task.  Isabel’s 

strategy (see Figure 5.5) and explanation were based on partial understanding that the 

average was the midpoint of two heights, and a misconception that ‘averages’ calculated for 

many combinations of two heights could then be combined to form an overall average.  

Sally questioned and prompted Isabel to clarify her reasoning, but Isabel’s explanation was 

confusing and ultimately her misconception and incorrect solution remained unchallenged.   

 

The summary concluded with Emma’s successful solution strategy. 

You can figure out the average by balancing it out, like 2 under average and 2 

higher. I had 151, 161, 154 and 162.  Take 3 off 161 and put it on 155 you get 

158, and take 4 off 162 and put it on 154. Altogether the numbers would be 158, 

158, 158, 158 

You can have it uneven like 1 taller and 3 smaller like 179, 152, 148, 153 

179 is 21 over 158 

152+6=158   148+10=158   153+5=158 and 6+10+5=21 so it’s 21 under. 

 (S-TransT1) 

 

Figure 5.5 Isabel’s solution demonstrating misconception 
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There were a group of students who Sally did not believe would be successful with the task.  

Unlike Nanette’s approach which ultimately resulted in all students having the opportunity to 

engage with the main task at some level, and in some cases surprise her, Sally transformed 

the task demands and goals for these students right from the outset.  The self-fulfilling 

prophecy of lack of expectation and success that entraps these students is supported by 

research.  Students placed in low-ability groups are commonly denied access to rich learning 

experiences, and are therefore less likely to be exposed to higher order mathematics thinking 

or ideas.  The resulting low achievement further exacerbates their own and others’ views of 

themselves as helpless learners and promotes belief that they lack inherent ‘mathematical 

ability’ (Boaler & Sengupta-Irving, 2016; Clarke et al., 2014; Dweck, 2007; Middleton & 

Jansen, 2011). 

  

Sally’s decision to spend her time with the ‘working group’ affected her ability to support 

other students while they explored the task.  Previous research (e.g., Leatham et al., 2015; 

Sullivan et al., 2016) has recognised the importance of monitoring and recognising students’ 

mathematical thinking, solutions, and misconceptions during this stage of the lesson.  

Isabel’s explanation was undoubtedly confusing, but Sally had also not adequately 

monitored her work during the explore phase and was subsequently ill-prepared to respond 

to her strategy, explanation or misconception.  

 

The orientation of the teacher towards the development of student agency was clear, with 

most students allowed and encouraged to choose their own solution strategy.  Sally, a 

confident experienced teacher conversant with the lexicon of pedagogy, prides herself on 

creating student-focused programmes and a classroom environment where multiple 

perspectives are respected and incorporated into collective knowledge creation.  However, of 

the two complementary norms of activity that constitute the socio-mathematical framework 

described by Cobb and McClain (1999) and more recently by Sullivan et al. (2002), socio-

cultural norms were prioritized over mathematical norms in this lesson.   

 

The focus on non-mathematical purposes at the expense of clearly articulating the 

mathematical point of the lesson contributed to students’ difficulty in engaging with the big 

mathematical ideas inherent in the task.  The mathematical emphasis of the launch on the 

difference between heights and the average’s location between those values, failed to orient 

the student activity towards the intended mathematics.  In the lesson summary, student work 

was accepted without challenge, and opportunities to clarify mathematical misconceptions or 
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to illuminate or connect mathematical ideas were not taken.  This result concurs with 

descriptions of teachers’ difficulties in steering instruction towards intended mathematical 

goals discussed in the literature (e.g., Sleep, 2012; Sullivan, Clarke, & Clarke, 2013).  

 

Substantial evidence indicates teachers’ knowledge of mathematics informs their intentions 

for lessons and influences their effectiveness in facilitating mathematical learning (e.g., 

Charalambous, 2008; Sullivan et al., 2016).  Mathematics lessons are shaped by the planned 

direction of the lesson and teachers’ ability to interpret and respond to students’ 

mathematical thinking in the moment. Sally’s implementation of the first task was impeded 

by lack of mathematical clarity.  Although aware of recommended pedagogies and the desire 

not to routinise the activity, opportunities were missed to monitor and fully understand 

students’ invented strategies, and she appeared to be uncertain about aspects of the 

mathematical content. 

 

This chapter has described two teachers’ implementations of the first task.  The teachers 

collaboratively created a plan for instruction, although during implementation teachers 

adapted this to suit their teaching style and context.   

 

Two very different implementations of the same task demonstrated that tasks change their 

character as they are implemented in classrooms mediated by teachers’ beliefs, goals and 

intentions for instruction, their mathematical subject matter knowledge, and pedagogical 

content knowledge.  The lessons confirm the applicability of the framework and taxonomy 

of Stein et al. (1996, 2009), and corroborate the work of other researchers regarding the 

impact teachers’ knowledge has on their effectiveness in facilitating students’ mathematics 

learning.  
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The previous chapter demonstrated that teachers’ beliefs, goals, intentions, and knowledge 

mediate their implementation of classroom tasks.  Evidence was provided that different 

implementations of the same task resulted in different experiences for students and different 

opportunities to learn mathematics.    

 

This chapter outlines the teachers’ implementation of the second task.  Similar to the 

previous chapter the findings are reported in four sections.  Section 6.2 describes the task 

and section 6.3 the teachers’ preparation and planning.  Section 6.4 outlines the task 

implementation in Sally’s class, and section 6.5 describes Louise’s implementation. 

 

 

This task is adapted from Beesey, Clarke, Clarke, Stevens, and Sullivan (1998).  The task 

provides challenge in a meaningful context, namely money, although the task only nominally 

concerns money.  Task complexity relates to students’ understanding of multiple aspects of 

measurement, their choices of possible solution pathways, and understanding the impact of 

measurement precision and accuracy on their solutions. 

 

Topics discussed at the planning meeting included the mathematical focus of the lesson, 

strategies to support student persistence, accountability and collaboration, anticipated 

solutions and difficulties, and strategies that teachers could use in the summary section of the 

lesson to facilitate participation, engagement, and understanding. 

 

Measuring Money 

You have won a prize!  Your prize can be one of:

• two metres of $1 coins (lying flat) 

• one square metre of 10 cent pieces (edges touching, lying flat) 

• a one litre container full of 20 cent pieces   

• one kilogram of $2 coins 

Which prize would you choose?   
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The mathematical goals for the lesson were: 

• devise measurement strategies for measuring multiple attributes (length, area, 

capacity, weight) of various collections of money. 

• generate estimations and/or apply proportional relationships to samples rather than 

counting all. 

• understand the influence of precision and accuracy of measurements on the final 

solution. 

 

Uncomfortable about the ‘zone of confusion’ her class had experienced at the beginning of 

the previous lesson, Sally felt that scaffolding to support them to overcome initial barriers 

would increase the likelihood of task success.  Specific strategies she suggested included:  

1. explicit teaching of skills for students to work through the ‘zone of confusion’, 

2. teacher rather than student selected groups, and   

3. the teacher taking greater control over progress through the task by separating it into 

four parts and directing the students to work on one aspect of the task each day over 

four days.   

In relation to the third point, Nanette argued I don’t think we need to scaffold that much, not 

for the whole class (N-PreT2).  In directing the learning closely, the teacher risks lowering 

the task demands, adversely affecting opportunities for connections between the attributes 

measured and diminishing student authority to decide their own solution path (Stein et al., 

2009).  Having reflected on the tension between the shift in agency and authority towards 

student-centred activity advocated in inquiry classrooms and the desire for teachers to direct 

student learning, the teachers decided not to control students’ progress through the task so 

closely. 

 

The teachers wanted to create groups where students with varying prior knowledge would 

support each other to access the task, a notion that is supported in the literature.  

Featherstone et al. (2011) described a challenging group-worthy task as one that positions 

the zone of proximal development within the learning activity prompted by the task and 

where students’ success with the task arises from and depends on collaboration.  Hatano and 

Inagaki (1991) argued:  

A group as a whole usually has a richer data base than any of its members for 

problem solving.  It is likely that no individual member has acquired or has ready 
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access to all needed pieces of information, but every piece is owned by at least 

one member in the group. (p. 341) 

Sally reflected that the groupings are really important as everyone in the group has got to be 

able to contribute at a level that will be valued and valuable to the group as a whole (S-

PostT2). 

 

There was an expectation that students without sufficient prior knowledge of measurement, 

in particular metric units associated with each attribute and conversions between units, 

would experience difficulty.  The area and volume aspects of the task are more challenging. 

Teachers anticipated that most students would solve the task for a smaller area (or volume) 

and scale up their solution as required (see Figure 6.1).  This could result in misconceptions 

with scaling up area and volume calculations, and potential for computational difficulties. A 

range of solutions was expected depending on the level of accuracy and precision students 

applied to the problem.   

 

 

Scaffolding in the form of enabling prompts included: 

• How many $1 coins would fit on your ruler? 

• Draw a 10cm by 10cm square.  How many 10c pieces could you fit in this area if 

you put them in, or draw them in, with edges touching? 

• Can you think of a way to work this out without counting each coin? 

• Draw a square metre on the floor. 

• What are the measurements of a one litre container?  

• How many coins would fit into this side, (or area) of the container? 

 

Figure 6.1 Teachers’ anticipated solution strategy for area task 
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Likewise, extending prompts included: 

• Will the same dollar value of coins fit into other containers that have a different 

shape but still hold one litre?   

 

Sally’s task launch, similar to task one, focused on students’ use of learning strategies.  

Explicit instruction guided student activity and metacognition.  Talk with your group about 

the task.  Make a plan how you are going to approach the task.  What is the task asking of 

you? What do you need to do to work it out?  Remember our strategies.  You might draw a 

picture, make a table or a chart, guess and check or something else (S-TransT2). 

The students spent 12 minutes planning their approaches, during which time Sally moved 

amongst the groups.  The class shared their plans and aspects of the task were clarified. 

 

The students, working in groups, spent two days exploring the task.  Seven out of the eight 

groups accurately calculated the value of two metres of $1 coins (see Figure 6.2) and of one 

kilogram of $2 coins. 

 

Five groups calculated the value of one square metre of 10 cent pieces, some using the 

anticipated method visualising the square metre as made up of smaller more manageable 

areas and scaling up (see Figure 6.3), while other solution methods illustrated abstract 

conceptualisations not requiring the support of a visual representation (see Figure 6.4). 

 

Figure 6.2 Value of 2m of $1 coins 
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Six groups attempted to find the value of one litre of 20 cent pieces.  As anticipated this task 

elicited varying degrees of precision resulting in divergent solutions.  One group (see Figure 

6.5) used the dimensions of a 20cent coin (d=2.1cm, h=1.5mm) to image a cube with sides 

of 2.1cm that contained a stack of 14 coins. (1.5mmx14=21mm).  They calculated how many 

times the volume of this small cube (9.261cm3) would fit into a litre (1000cm3).

 

 

Figure 6.3 Value of square metre of 10c pieces, Example 1. 

 

Figure 6.4 Value of square metre of 10c pieces, Example 2. 
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Other groups used the containers provided to estimate how many coins would fit across the 

bottom and visualised stacks of coins (see Figure 6.6). 

 

 

The lesson summary consisted of mini-summary sessions where groups of students 

compared their solutions and methods with another group who had tackled the same task.  

Some students shared solutions to the length task only, thus limiting their access to the more 

challenging aspects of the problem.  Diverse solutions were presented in the groups who 

shared their solutions to the area and volume tasks, resulting in examples of student-led 

discussions where misconceptions were challenged and issues of accuracy and precision 

were scrutinised.  Students in one group, trying to account for the variations in their 

solutions, considered whether the shape of the one litre container would impact on how 

many coins it would hold, thereby extended their thinking about the relationship between the 

lengths and shapes of sides to the volume of the container. 

 

 

 

Figure 6.5 Value of one litre of 20 cent pieces, Example 1 

 

Figure 6.6 Value of one litre of 20 cent pieces, Example 2 
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Sally reflected in the post-lesson discussion that the implementation of task two was more 

successful than the first and identified two reasons.  Firstly, she believed the task offered 

greater opportunities for all students to engage, and secondly her deliberate use of specific 

actions facilitated greater student engagement. 

 

The completed student work samples provided evidence that the task was more accessible by 

the students and suggested high levels of engagement.  From a motivational perspective, the 

task satisfied the two complementary dimensions of challenge and control.  Completion of 

the task was undoubtedly challenging, but some aspects were more accessible than others, 

exemplifying a “low floor, high ceiling” task where differentiation for diverse learners is 

built into the task itself.  The task also afforded student decision making, offering multiple 

possible methods as well as which aspect of the task to work on first, thereby increasing 

students’ sense of control.  This is consistent with Middleton and Jansen’s (2011) argument 

that opportunities for choice empower students, support their sense of agency and increase 

task interest. 

 

Teachers’ decisions and actions impact on engagement and learning opportunities for 

students.  With this in mind, Sally’s intentions in managing the summary section of the 

lesson as student-led mini-summaries, were to facilitate participation of all students, to value 

diverse student responses and to support students who lacked confidence. She was aware that 

students who engage in both the ‘explore’ and ‘explain’ components of the learning process, 

are more likely to gain conceptual understanding by making sense of their own and others’ 

strategies (Marshall & Horton, 2011).  In some of the mini-summary sessions, the groups of 

students were able to examine their work critically, formulate explanations and connections 

in the absence of the teacher.  In others, the sharing session did not result in productive 

discourse that challenged students’ existing mathematical thinking.  

 

In an inquiry classroom teachers balance their role between supporting students’ authority 

and agency for their learning, and being accountable for upholding high level of rigorous 

conceptual mathematical thinking (Anthony, 1996; Anthony & Walshaw, 2007).  Sally’s 

decision to hand control for orchestrating the discussion to the students potentially put at risk 

opportunities to move students thinking to new levels of understanding.  Smith and Stein 

(2011) argue that at this crucial point in the lesson the teachers’ role is to skillfully devise 

responses and questions that make the mathematics visible and understandable as “the key to 

connecting is to make sure that the mathematics to be learned is openly addressed” (p. 50).  
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For her task launch, Louise read the problem to the students, advised them of their working 

groups and gave organisational instructions for the use of available equipment.   

 

The students spent two days exploring the task.  After the two sessions, all eight groups had 

solutions for the length and weight aspects of the task, although not all were correct.  Six 

groups had attempted the area task, and four had attempted the volume task.  Several group 

solutions were based on erroneous mathematical assumptions, including that one square 

metre was the same as four metres, or that one litre of coins weighed one kilogram.   

 

Louise orchestrated a lesson summary that addressed each aspect of the task separately.  The 

length task summary is described below and is illustrative of Louise’s decisions and actions 

for other aspects of the task. 

 

Louise selected two groups of students to share during the lesson summary.  The first group 

shared a counting strategy where they iterated two coins along a two metre length of string 

resulting in a count of 100 coins.  Louise prompted the second group to connect and compare 

their strategy to the previous group: 

Louise: You got the same answer, but you didn’t lay the coins down.  Explain how 

your strategy was different. 

Roy: We measured each coin. They’re 2cm, so we added 50 of them to make 1m. 

1m would be $50 so 2m is $100. 

Ricky (interrupting): Why didn’t you just halve the 200?  Each coin is 2cm, you 

have 2m which is 200cm, so halve the 200. 

Louise: That’s an interesting way of solving it that I hadn’t thought of. Very cool. 

So these answers are all $100, is that what everyone got? 

Leslie: I got $20. 

Louise: Did you use the same method or something different? 

Leslie: I used fractions. I started with  of 2m would be 2 coins, so  would be 

20 coins which is $20, but I think it’s wrong. (L-TransT2) 

Ricky’s solution, which Louise had not noticed as she monitored student activity during the 

explore phase of the lesson, represented a flexible understanding of the relationship between 
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the measurement and the number of coins.  Louise was also not aware of Leslie’s strategy or 

of her misconception that 2 coins corresponded with   of 2m rather than  of 2m.  

Although Leslie herself noted that she made an error she didn’t understand what her error 

was, and this was not addressed.  

 

Louise reflected that her minimalist approach to the launch of this task was a reaction to her 

task one lesson where she had over-prepared the students for the task.  She acknowledged 

that the first day spent on task two did not go well. I didn’t pose the task well.  On the first 

day they didn’t really know what to do and so I was working really hard moving amongst the 

groups to motivate them and to clarify parts of the task (L-PostT2).  

 

Important roles of a task launch are to clarify key mathematical ideas and relationships and 

to establish a common language that enables students to interpret the contextual and 

mathematical features of the task appropriately (Jackson et al., 2012, 2013; Stein & Lane, 

1996).  Louise’s failure to address these at the outset appeared to affect how students 

participated in solving the task.  The establishment of a shared understanding of key 

mathematical ideas may have cleared up misunderstandings and incorrect assumptions that 

marred some solution approaches.  

 

Louise’s lack of task introduction also affected her work in subsequent phases of the lesson.  

As the students were not supported to understand key aspects of the task in the launch, 

Louise spent the next phase of instruction explaining the task to individuals or groups of 

students.  Even with an adequate task launch the teacher may need to provide additional or 

different information about the task to students, for example enabling prompts to support 

them to begin the task or to solve it in a productive way.  However, Louise’s time spent 

reintroducing the task during the explore phase was not productive and affected her ability to 

be able to monitor and recognise students’ mathematical thinking, solutions, and 

misconceptions, and subsequently carefully select students’ responses for the concluding 

whole class discussion (Leatham et al., 2015; Smith & Stein, 2011).  The strategies Louise 

selected for sharing in the task summary lacked rigour, and neither Ricky’s strategy, which 

provided a more efficient approach, nor Leslie’s strategy, which demonstrated a 

misconception, were explored beyond the student presentation.  

 

This analysis of Louise’s lesson has focused on the relationship between the task launch and 

other phases of the lesson, and the implications this has on opportunities for student learning.  
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Due to the nature of this study the relationships reported here are descriptive and cannot be 

claimed to be causal, but are consistent with findings reported in the literature.  Jackson et al. 

(2013) reported from a study of 165 middle-grades mathematics teachers’ instruction that the 

task setup phase is crucial for students’ opportunities to engage in rigorous mathematical 

activity.  They suggested that teachers’ decisions and actions during the task launch are 

“related to the extent to which students are able to participate in concluding whole-class 

discussions in high-quality ways” (p. 679). 

 

This chapter has described two teachers’ implementation of the second task, Measuring 

Money.  The discussion has illustrated the role that the nature of the task and the task launch 

plays in maximizing opportunities for student learning.  These lessons illustrate how 

opportunities for choice empower students, support their sense of agency and increase task 

interest.  The results also concur with other studies that have identified that the setup phase 

of instruction influences students’ participation in high-demand activity over the remainder 

of the lesson.  
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Evidence was presented in the previous chapter that task characteristics and the task launch 

influence opportunities for student learning. In particular teachers’ decisions and actions 

when launching the task impact on opportunities for student engagement during the explore 

and summary phases of the lesson.   

 

This chapter describes the implementation of the final task.  The task and teachers’ planning 

for its implementation are outlined in sections 7.2 and 7.3 respectively.  Section 7.4 

describes the task implemented in Nanette’s class.  

 

 

 

 

This task, adapted from Sullivan, Clarke, and Clarke (2013), encourages students to connect 

their understanding of length to their visualisation of a 3-dimensional box.  It is an open-

ended task that offers students opportunities to generalise their approach to find multiple 

solutions. 

 

The teachers recorded their collaborative planning for the implementation of the task on the 

template provided (Appendix G).  Excerpts from this planning including mathematical goals 

for the lesson, anticipated solutions, strategies, representations, and difficulties, and enabling 

and extending prompts are reproduced below in Figure 7.1.   

Wrap the Present 

I have wrapped a gift box with one metre of ribbon.   

The bow at the top used 30 cm of this. 

What might be the dimensions of the box? 
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Nanette showed the students some presents she had already wrapped.  As you can see I have 

been busy wrapping presents.  I am wondering what size box we could possibly decorate 

with a metre of ribbon?  Because I want a decent-sized bow on top, we are going to use 

30cm of the ribbon to tie a nice bow (N-TransT3).  She demonstrated how to wrap the ribbon 

around a box, ensuring that the students understood that the ribbon covered all the faces and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Excerpts from teachers’ planning for task 3
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created a cross on both the top and bottom face.  Nanette communicated enjoyment and 

curiosity about the task, and the students’ applause after she finished tying the ribbon 

demonstrated that she had caught their interest.  She continued the launch by eliciting input 

from multiple students explicitly clarifying the mathematical purpose of the task and 

developing shared understanding of mathematical language used in the problem (e.g. 

dimensions).  

 

The students spent 40 minutes exploring the task.  All groups except for one found at least 

one correct solution.

 

The group whose solution was incorrect were diverted from the intended problem by 

measuring the dimensions of an actual box.  They calculated the ribbon required to wrap this 

box.  Although they were not successful in solving the intended task, they did demonstrate 

understanding that the ribbon required was height x 4 + width x 2 + length x 2 (see Figure 

7.2).   

 

 

 

 

 

 

 

 

Figure 7.2 Strategy from measuring an actual box 
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The solution from several groups assumed the box was a cube (see Figure 7.3). 

 

 

 

 

 

 

 

 

 

 

 

 

Common difficulties students experienced were visualising the box and representing 

solutions.  Some students were more successful than others at creating 2-dimensional 

representations of the 3-dimensional shape (see Figure 7.4).  

 

The groups who found multiple solutions presented their solutions in tables, or used 

symbolic notation (see Figures 7.5 and 7.6), validating these representational tools as useful 

for supporting the discovery of multiple solutions. 

 

Figure 7.3 Assuming box was a cube 

 

Figure 7.4 Students’ solution representation 
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Nanette asked the group of students with the incorrect solution to share their strategy first.  

These students demonstrated the measurements they had made on the actual box and were 

able to clearly articulate the connection between the box’s measurements and the length of 

 

Figure 7.5 Approach resulting in multiple solutions, Example 1

 

Figure 7.6 Approach resulting in multiple solutions, Example 2
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ribbon required.  With the teacher’s support they also articulated shared language for their 

measurements (height, width, length). 

 

Nanette asked the next group to explain how they used similar thinking in their solution but 

used it to solve the intended problem. 

Like Manaki, we knew we needed 4 heights but we just chose 5cm for our height 

(4x5=20).  We chose 10cm for another side and we knew we needed two of those 

(2x10=20).  That left 30cm for the last two sides, so it was 15cm each. 

20+20+30=70 and another 30 for the bow makes 1m (N-TransT3). 

 

Two further groups shared their solutions.  First, a group who had assumed that the box was 

a cube, followed by a group who had generated multiple solutions.  Nanette challenged each 

group to compare their strategy to the one before and supported them to do this.  She also 

pressed the students to clearly communicate and justify their solutions by eliciting input 

from other students.  For example, she asked:  Do you believe what Danny is saying? Is she 

convincing you? If not, think of a question to ask her that will help her give a clearer 

explanation (N-TransT3). 

 

Nanette remarked that this was her best lesson yet.  This was the most challenging task, but I 

really thought about and practised my introduction. It was the best I’ve done so far, and that 

made a difference to them getting started (N-PostT3).  Nanette solicited input from the 

students during the task launch to clarify contextual features and key mathematical ideas, 

and to develop a common language.  The involvement of multiple students in the initial 

discussion served to reposition the task from a teacher problem to a problem of the 

community of learners, encouraging the students to take ownership.  Nanette’s adaptations to 

the task launch to suit her own teaching style resulted in a launch that clarified contextual 

features and key mathematical ideas and fostered students’ enthusiasm.  The previous 

chapter and the literature (e.g., Jackson et al., 2013) support the claim that characteristics of 

a task launch influence the quality of the concluding discussion. 

 

Nanette’s plenary session consisted of four separate presentations of different ways to solve 

the problem.  Because she had monitored student activity during the explore phase Nanette 

was able to select, scaffold, and sequence the presentations in ways that focused attention on 

the mathematical ideas that were the purpose of the lesson and supported the development of 

a generalised solution.  Specifically, Nanette wanted students to understand the relationship 
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between the measurements of length and representations of a box.  Her initial focus on 

students sharing their measurements of an actual box supported other students to connect 

their solutions to a concrete object.  She made connections to labelled diagrams, drawn by 

both students and herself, and a symbolic representation (2l+2w+4h).  Many students may 

have struggled to write this symbolic rule independently, but Nanette related their verbal 

descriptions to the rule and pressed them to use it to test their own solutions.  

 

Although it is not possible to claim that Nanette’s implementation of Wrap the Present 

directly contributed to student learning, it was apparent in her lesson that the students were 

engaged in the learning process.  Student work samples illustrated both effort and 

mathematical reasoning, and 14 of the 20 students contributed to the whole-class discussion 

in substantive ways.  Nanette’s deliberate use of the five practices recommended by Smith 

and Stein (2011) to orchestrate a lesson summary supported students to engage in 

mathematical discourse and argumentation.  She encouraged the students to engage in 

activities that support a community of mathematical inquiry, including sharing responsibility 

for sense-making by justifying their mathematical reasoning and connecting their ideas to 

those of others. 

 

This chapter has described one teacher’s implementations of the final task.  Using a plan for 

instruction collaboratively created by all three teachers, Nanette’s implementation 

incorporated pedagogical decisions and actions that supported her students’ understanding of 

key mathematical ideas and their engagement in productive mathematical discourse.  
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The descriptive accounts of lessons in previous chapters offered insights into the relationship 

between teachers’ intentions, actions, and learning opportunities for students.  The data 

presented was derived from observations of lessons and teacher meetings and documentary 

data, and although analysis was corroborated by the participant teachers it was nonetheless 

subject to the researcher’s interpretation.  The data presented in this chapter is from the 

teachers’ perspective and provides an alternative lens through which to view this study.  

 

This chapter outlines the teachers’ perspectives on the usefulness of approaches suggested 

for planning and implementing challenging tasks.  Section 8.2 presents data on the 

usefulness of the planning template, and section 8.3 on opportunities afforded by the lesson 

structure.  Challenges experienced by the teachers are discussed in section 8.4. 

The data presented in this section on the usefulness of the planning template were from two 

sources.  These were teachers’ responses to a survey (Appendix A) completed by the three 

teachers following the implementation of the final task, and their comments made in a 

subsequent group interview.  The survey contained both Likert scale-type items and free-

response questions.  Likert-type survey data by itself should be interpreted with caution, but 

when considered alongside teachers’ qualitative responses and comments made during the 

interview, a credible insight into the teachers’ perspective can be presented. 

 

Teachers rated elements of planning according to their perceived importance when preparing 

to implement a challenging task.  Table 8.1 presents the profile of responses that rated 

statements about planning elements from not needed (NN), to very important (VI).  The two 

negative responses, not needed (NN) and not important (NI), and the neutral response, not 

sure (NS), were not selected by any of the teachers for any of the items so have been 

aggregated in the data.  The teachers’ exclusive selection of the positive responses, 

important (I) and very important (VI), indicates that they found the supports provided by the 

planning structure useful.  

 

 

 

 



 72 

Table 8.1 Frequency of teacher responses to statements about planning 

Teacher understanding of the big mathematical ideas inherent 
in the task.  1 2 

Enabling prompts for students experiencing difficulty.   3 
Extending prompts for students who complete the task quickly.  1 2 
Anticipating possible questions.   3 
Anticipating possible misconceptions.   3 
Anticipating possible solution strategies.  1 2 
Having completed the task yourself.   3 

In an open-ended survey response Nanette stressed the importance of doing the problem as a 

teacher and thinking about how the students will solve it (N-PostT3).  In the subsequent 

interview she elaborated on the challenges of seeing and connecting two potentially differing 

perspectives on the task; looking for mathematical possibilities, and also anticipating 

possible methods, solutions, representations, and misconceptions through the eyes of her 

students.  She commented: I have to really think about whether the ways students solve the 

problems show whether they fully understand the concepts (N-PostT3).  Her comments 

indicate a cognizance of the value of students’ work for illuminating mathematical 

understandings and what Simon (1995) describes  as the “ongoing and inherent challenge to 

integrate the teachers’ goals and direction for learning with the trajectory of students’ 

mathematical thinking and learning” (p. 121).   

 

A further theme that emerged from teachers’ responses was the value they placed on 

collaboration.  Comments included:  

Planning the tasks together has been really helpful.  Even as teachers we see 

different possibilities (L-PostT3) 

Getting clear mathematical goals at the start is key and that is difficult for us so 

it’s great to have each other’s support to get those right (S-PostT3). 

The latter comment acknowledges the value of teacher collaboration in ameliorating the 

difficulty many teachers face in articulating the mathematical purpose of tasks, a point that 

aligns with discussion in this study and in the literature (e.g., Sullivan, Clarke et al., 2009; 

Sullivan, Clarke, Clarke, & Roche, 2013).  

 

The teachers indicated that the planning template, although initially overwhelming, was 

helpful.  Sally commented there’s more accountability in this planning (S-PostT3).  Nanette 

added it makes you think about the task you’re giving the students and why you’re giving it 

to them.  Last year I was like here is a task for you to show me that you can use my strategy. 

I didn’t really think of the task or the students as the things that drive the learning (N-
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PostT3).  This indicates a pedagogical shift in emphasis for Nanette, from the teacher as the 

key player in the classroom, to the students.   

 

The teacher responses indicated both awareness of and adoption of approaches that occasion 

opportunities for students to engage with and learn from cognitively demanding tasks. 

Although no causal links can be claimed, it does appear that the template served its intended 

purpose in prompting teachers to consider mathematical purposes of their lesson, and relate 

their decisions at different phases of task planning, introduction, and implementation to 

evidence-based practices.     

Teachers rated statements about task implementation related to elements of the proposed 

lesson structure according to their perceived level of importance.  Table 8.2 presents the 

profile of the responses.  The two negative responses, NN and NI, were not selected by any 

of the teachers for any of the items so have been aggregated in the data presented in the 

table.  

 

Table 8.2 Frequency of teacher responses to statements about task implementation 

Explaining the mathematical purpose of the task to the 
students  1 2  

Clarifying relevant mathematical language with the 
students   3  

Not telling the students how to solve the problem    3 

Giving the students time to struggle with the task before 
intervening  1 1 1 

Provision of prompts that differentiate the task (enabling 
and extending)   1 2 

Allowing students to develop their own method of 
solution   1 2 

Selecting particular student responses for presentation to 
the class and giving these students advance notice that 
they will be asked to explain what they have done. 

 1 1 1 

Sequencing student responses so that the reporting is 
cumulative.   2 1 

Making connections between student strategies.   2 1 

In comparison to their perspective on the planning structure, the variance in responses on 

lesson implementation, including three not sure responses, suggests less confidence in 

teachers’ perception of the importance of some elements.  It also illuminates possible 
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explanations for teachers’ pedagogical decisions.  For example, lack of surety of the 

importance of ‘explaining the mathematical purpose of the task to the students’ may account 

for why a teacher may explain (or not) the mathematical purpose of a task sufficiently when 

implementing it in her class.  This indication that teachers’ pedagogical decisions and actions 

are influenced by their intentions, goals, and knowledge concurs with both the framework 

used to guide this research and findings discussed in earlier chapters. 

 

There was general agreement amongst the teachers of the importance of the task launch.  

Louise’s comment is representative of their perspective.  I think the launch is the key, 

making sure the kids have the prior knowledge to be able to start the task, doing enough to 

trigger their interest, but not too much that you do the work for them (L-PostT3). 

 

In terms of advantages for student engagement and learning, comments included:  

Students using their own strategy or adopting one from another student that 

makes sense to them is far more effective than us telling them what to do.  Some 

kids and not necessarily the ones we might see as smart came up with ways that 

are easier than the way I solved the problem (N-PostT3). 

Some kids stepped up during the three tasks that wouldn’t usually shine (L-

PostT3). 

Such responses indicate teachers’ awareness of the benefits afforded by multiple strategies 

and differing perspectives for promoting sense-making, self-efficacy, and creativity.  

 

The teachers emphasised the important role task variations in the form of enabling and 

extending prompts played in the implementation of the lesson.  The enabling prompts were 

brilliant especially if you know them well so you don’t get sucked in to telling a student how 

to solve the task (N-PostT3).  The prompts afforded teachers the opportunity to facilitate 

engagement of all students and ensure that everyone was able to engage with the same 

problem at a level of demand conducive to learning.  Careful planning of the prompts 

ameliorated teachers’ acknowledged difficulty that there was a tendency for ‘made in-the-

moment’ instructional decisions to result in lowering task demands.  

Challenges teachers reported experiencing in the implementation of tasks predominantly fell 

into two categories: difficulties engaging ‘students who are not risk-takers’, and pedagogical 

aspects such as when students come up with a strategy that you haven’t thought of or 

stopping yourself from telling students how to solve the task (N-PostT3). 
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Teachers expected that catering for the range of mathematical understanding within the class 

would be their greatest challenge, but reported that trying to engage students with the task 

who were reluctant to take risks in their learning and get started without a prescribed 

pathway was more challenging.  The teachers identified students’ fixed mindset and lack of 

orientation to persist as key inhibitors.  They also identified improvement in students’ risk-

taking and persistence as the project progressed.  

I didn’t have as many issues in the last lesson as in the first. They knew they 

weren’t expected to get the answer quickly and that was ok (L-PostT3).  

If we started off the year like this and ran it through the first and second terms to 

where we are now we would see a drastic change in kids’ mindsets (N-PostT3). 

 

Many researchers (e.g., Blackwell et al., 2007; Dweck, 2007; Middleton & Jansen, 2011) 

have highlighted the influence of students’ mindset on their motivation, persistence, and self-

belief, but have also noted the role that instructional practices including task choice, teacher 

expectations, and empowerment of students to select their own pathways play in influencing 

students’ goal orientation and mindset.  This suggests that teachers’ increasing expertise in 

posing the tasks and pedagogical choices made during their implementation, including 

consistent messages on the value of effort, along with the open-ended challenging nature of 

the tasks themselves, may have contributed to a reduction in negative responses from 

students.  It is worth noting that comments made by teachers as the project progressed 

suggest a change in the teachers’ mindset as well.  Initial concerns about whether 

challenging tasks would be suitable for all of their learners (see Chapter 5) were replaced by 

an articulated belief in the capacity of all students to achieve success with the tasks.   

 

This chapter has outlined the teachers’ perspectives on the usefulness of approaches 

suggested by the study for planning and implementing challenging tasks.  The teachers’ 

responses indicated that the lesson documentation and proposed structure for implementation 

were helpful.  Although challenges were still experienced implementing the tasks, teachers 

expressed the view that they were aware of improvements across the three lessons.  

 

Alignment exists between the perspectives of the teachers articulated in this chapter and 

descriptions of their practice in earlier chapters.  This strengthens confidence that their 

comments were derived from their practice rather than merely reproducing messages from 

the intervention, and that together the data can be used to credibly illuminate the research 

questions. 
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The purpose of this study was to explore how teachers can enact challenging tasks in ways 

that maximise opportunities for students’ mathematical learning.  Specifically, the research 

was designed to (i) examine how teachers’ enacted pedagogies occasioned opportunities for 

students to engage with and learn from cognitively demanding tasks; (ii) explore teachers’ 

perspective on the use of a planning approach and lesson structure that exemplified 

particular pedagogical approaches to the implementation of challenging tasks; and (iii) 

illuminate the challenges teachers experienced in implementing the open-ended tasks 

suggested by the study.    

 

Through examination of three cases, this study aimed to understand a learning ecology 

related to the types of tasks and teacher practices that impact on students’ engagement with 

mathematical ideas, their participation in mathematical discourse, and their willingness to 

participate in the face of challenge.  It should however be noted that this learning ecology 

was situated within real classrooms, and it was beyond the scope of the study to capture all 

of the complexities of teaching and learning within the classroom communities.  

Consideration of the complexities of classroom practice, combined with the small scale of 

this study, means that although interpretation of the results can offer insights into the ways in 

which students can be supported to engage with and learn from cognitively demanding tasks, 

further larger scale research is required to substantiate these findings.  

 

While mindful of the potential limitations of the study, this chapter draws together findings 

presented in earlier chapters which jointly serve to illustrate the important role that teachers’ 

pedagogical decisions and actions play in mediating students’ opportunities to learn from 

tasks.  This chapter overviews how teachers in this study experienced and enacted the series 

of challenging tasks, and in particular how their decisions in relation to tasks, their planning 

and their implementation, afforded or constrained opportunities for students’ mathematical 

learning.  Implications for classroom practice and teacher professional learning, and 

suggestions for further research are drawn from these conclusions. 
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A central assumption of this study was that task choice is essential to effective teaching of 

mathematics.  Although, teachers’ task selection decisions were not a focus of the study, 

opportunities afforded by the selected tasks for promoting valued activity was a point of 

discussion.  In particular, it was noted that teachers’ and students’ perceptions of what kinds 

of mathematical activity were valued appeared to be influenced by the nature of the tasks 

used.  As opposed to previously valued activity, for example accurate completion of a task 

using a teacher prescribed strategy, activities that were prompted by engagement with the 

tasks in this study included exploration of mathematical ideas, student decision making and 

authority to choose their own approaches, justification of methods, representations and 

solutions, and discovery of patterns that supported generalised conceptual understanding.   

 

As the project progressed, teachers’ perceptions shifted towards tasks as vehicles for 

activating learning, as opposed to demonstrating performance.  This was evidenced by 

teachers’ explicit promotion of the value of effort, collaboration, multiple student 

perspectives, and students’ selection of their own pathway through a problem.  Likewise, 

observed improvements in students’ engagement and persistence, and a reduction in their 

negative responses as the project progressed suggested a similar shift in students’ 

perceptions.  Sullivan, Aulert et al. (2013) described similar findings, and suggested that 

teachers can influence students’ persistence by presenting them with challenging tasks and 

actively promoting a culture that values effort and challenge in their classrooms.  

 

The presence of particular task characteristics is associated with potential for promoting 

valued mathematical activity that affords opportunities for students to engage with and learn 

from tasks (Anthony & Walshaw, 2007; Stein & Smith, 1998; Stein et al., 2009).  The 

content specific open-ended tasks that were part of this study, for example, afforded multiple 

solutions, methods, and representations, and promoted generalisation and conceptual 

understanding of important mathematical ideas.  Of particular value to the teachers 

participating in the study were task characteristics that enabled a wide variety of learners to 

access the mathematics associated with the task. Such tasks were aptly described as tasks 

that are easy to start but hard to finish.  Other researchers (e.g., Boaler, 2016; Lambert & 

Stylianou, 2013; Sullivan, Clarke, & Clarke, 2013) have argued that open-ended tasks that 

offer multiple means of representation, engagement, and strategic action provide greater 

access to mathematics for a wide variety of learners.   
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In this study, teachers found the use of a suggested planning template helpful with the 

process of turning tasks into lessons.  The template (see Appendix G) served its intended 

purpose of prompting teachers to make purposeful pedagogical decisions in relation to 

elements of planning that researchers (e.g., Smith & Stein, 2011; Sullivan, Askew et al., 

2015; Sullivan et al., 2016) have argued maximise students’ opportunities to learn from 

tasks.  These include explicit consideration of the mathematical ideas inherent in the task and 

of students’ prior knowledge they bring to the task, and what this signifies in terms of 

possible student approaches, representations, solutions, and potential difficulties.   

 

The participant teachers emphasised the important role that task variations, in the form of 

enabling and extending prompts, played in supporting all students to access the task in 

meaningful ways.  Thoughtful planning of these prompts provided teachers with an 

alternative strategy to support struggling students, and ameliorated teachers’ 

acknowledgement that their made in-the-moment instructional decisions often resulted in 

lowering task demands.  The tendency for task demands to be unwittingly or purposefully 

altered by teachers during implementation has been well documented (e.g., Stein et al., 

2009).  Teachers’ initial concerns that the tasks presented were unsuitable for their low-

attaining students, were in part mitigated by planning of and use of enabling prompts.    

 

Teachers recognised that working through the tasks themselves was a very important 

element of lesson planning.  Working through the task prior to instruction promoted a 

beneficial bi-focal perspective, namely a focus on both the mathematical potential of the 

task, and the opportunities and challenges it may afford for students’ emerging 

understanding.  This process, however, highlighted the different levels of knowledge that 

teachers brought to the discussion.  Besides their knowledge of the mathematics needed to 

solve the task and of their students’ current understandings, other areas of knowledge that 

influenced the planning process included teachers’ theories about mathematics teaching and 

learning, their beliefs about valued mathematical activity, and their knowledge of 

mathematics in general including knowledge of appropriate representations, materials, and 

models.  Within the workshop process, the teachers recognised the value of collaborative 

planning in mediating possible shortcomings in teacher knowledge.  They recognised the 

benefit of multiple perspectives and that in working together they were able to learn from 

each other especially where they lacked confidence in their own level of knowledge.  This 

was particularly evident when identifying and articulating key mathematical ideas that 

underpinned the tasks used.   
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Lessons in this study illustrated that teachers’ implementation of the same task, from the 

same planning, did not necessarily result in the same lesson or in the same opportunities for 

students to learn mathematics.  From the observed lessons it became clear that planned 

objects of learning, recorded as mathematical goals for the lesson in the teachers’ plan, were 

transformed into different objects of learning as they were introduced and implemented in 

the classrooms, which in turn resulted in varying learning experiences, or lived objects, for 

students.  The teachers’ collaborative planning sessions resulted in in-depth and useful 

planning for each task.  However, the trajectory of the lesson and subsequent opportunities 

for students to learn from the tasks were also influenced by the teachers’ unrehearsed in-the-

moment decisions made as they interpreted and responded to students’ mathematical 

thinking as the lesson proceeded.  Whether lesson adaptations were planned prior to 

instruction or occurred spontaneously as the lesson progressed the resulting variations 

reflected teachers’ different intentions, understandings, teaching style, classroom norms, and 

expectations.  These results concur with what many researchers maintain (e.g., Clarke & 

Peterson, 1986; Stein et al., 2009; Sullivan, Askew et al., 2015; Sullivan et al., 2016), 

namely that teachers’ actions are informed by their intentions, and their intentions are in turn 

informed by their knowledge, goals, attitudes and beliefs.   

 

 

As part of the study the teachers explored the use of a three-phase lesson structure that 

incorporates a task launch, explore, and summary.  Concurring with previous studies (e.g., 

Sullivan, Askew et al., 2015; Sullivan et al., 2016), teachers reported that they found this 

structure useful in facilitating the conversion of cognitively demanding tasks into lessons.   

However, this study suggests that several factors in relation to teachers use of this lesson 

structure impacted on students’ opportunities to learn from the tasks.   

 

Lessons observed in this study supported others’ findings (e.g., Jackson et al., 2013) that the 

way in which the task is introduced influences how students participate in solving the task, 

and how teachers work during subsequent phases of the lesson.  Task launches that were 

well rehearsed, interactive, engaged students’ interest, clarified understanding of key 

mathematical ideas and of contextual features of the task, established expectations and 

support for students to engage in purposeful mathematical activity associated with the task. 

Moreover, an effective launch released the teacher to monitor and support learning, and to 

intentionally select and sequence student responses for the subsequent summary phase of the 

lesson.  Teachers’ failure to find the optimal balance between too little or too much 
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instruction during the launch tended to result in unproductive use of teacher and student time 

throughout the lesson, ultimately impacting on students’ opportunities to learn mathematics.  

 

Implicit in the explore phase of the lesson structure are opportunities for students to develop 

their own pathway through the problem, rather than following a prescribed solution path.  

Consistent with findings in the literature (e.g., Marshall & Horton, 2011; Sullivan et al., 

2016), students in this study who devised their own methods, particularly those who 

purposefully collaborated in collective sense-making, appeared to be more likely to think 

deeply about the content and develop conceptual understanding.  Teachers recognised that 

not telling the students how to solve the problem was a very important element of task 

implementation, aligning with a constructivist perspective (e.g., Simon, 1995) that students 

construct their own understandings rather than absorb the understandings of their teachers.  

This does not however, mean that teachers’ role in successful task implementations is to 

leave the students to their own devices, but rather to strike a balance between supporting 

students’ agentic learning and upholding a high press for conceptual mathematical thinking.  

 

The teachers’ role in the summary phase was particularly important for promoting 

conceptual understanding.  In the study, teachers who had noticed and monitored student 

activity during the explore phase were more likely to be able to sequence the students’ 

presentations in ways that focused attention on the mathematical ideas that were the purpose 

of the lesson and support the development of a generalised solution.  Specific teacher actions 

observed during successful summaries included teachers’ press for justification and sense-

making, eliciting multiple student perspectives on the presentations shared, and creating a 

shared public record of students’ representations, strategies, and solutions to facilitate 

comparisons and connections. 

 

The extent to which teachers are able to explicitly address the intended mathematical ideas 

of the lesson during the summary phase of the lesson has a significant impact on students’ 

opportunities to learn the mathematics inherent in the task (Marshall & Horton, 2011; Smith 

& Stein, 2011; Sullivan, Askew et al., 2015; Sullivan et al., 2016; Sullivan, Clarke, & 

Clarke, 2013).  Managing end of lesson summaries is challenging, and it was no surprise that 

this phase of the lesson afforded challenges for the teachers in this study.  Missed 

opportunities to illuminate or connect mathematical ideas were illustrated in observed 

lessons when students’ strategies, solutions or misconceptions were accepted without 

challenge, justification or clarification.  In some cases, non-mathematical goals became the 

focus of the lesson at the expense of spending instructional time on the intended 

mathematics.  Teachers’ pedagogical actions associated with the establishment of a 
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community of inquiry were observed, such as explicit value placed on multiple students’ 

perspectives, learning through participation in discourse, and the establishment of classroom 

norms that encourage metacognition and student authority.  However, in some lessons 

observed, these teacher actions were not accompanied by orientation of the student activity 

towards the rigorous mathematical content that should have been at its heart.   

 

Although it was within the scope of this study to recognise when opportunities to maximise 

the learning potential of tasks had been overlooked, it was beyond its scope to identify the 

reasons for teachers avoiding or disregarding such opportunities.  However, considering the 

possible impact on students’ opportunities to learn mathematics, further investigation is 

warranted as to the extent to which teachers’ lessons deliver the full mathematical potential 

of the task, can be attributed to their own mathematical knowledge.  The association between 

teachers’ ability to maintain high press for understanding of the mathematical focus of the 

lesson with their own mathematical knowledge has been consistently argued in the literature 

(e.g., Charalambous, 2008; Sullivan, Clarke, & Clarke, 2013), and it persists as a problem 

for the profession.   

 

Prior to this study, the participant teachers were conversant with inquiry approaches to 

teaching in other curriculum areas, but had not explored a problem-based inquiry aproach to 

teaching mathematics.  Throughout the study they committed considerable time and energy 

to collaborative inquiry and the adoption of new pedagogial approaches.  As the project 

progressed, the teachers involved incorporated the recommended pedagogies into their 

classroom practice and into their lexicon of lesson reflections with increasing fluency and 

intuition.  By the end of the project, they were advocates for the benefits of using cognitively 

demanding tasks and were committed to continuing to develop their expertise in 

implementing them using pedagogies and approaches explored in this project.  

 

This study demonstrated that building professional development efforts around cognitively 

demanding open-ended mathematical tasks has merit.  This approach offers a vehicle for 

supporting teachers to challenge their pedagogical understandings and current knowledge of 

mathematics while meeting the demands of essential everyday activities of teacher practice.  

Findings from this study also suggest that there is value in further research on the role that 

teacher collaboration could play in a task-centric approach to teacher professional learning.  

The processes involved in teachers’ collaborative planning include sharing their own 
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strategies, solutions and representations as well as those they anticipate may be used by their 

students.  These processes have potential to influence the teachers’ construction of new 

mathematical understanding as well as the adoption of new pedagogical approaches.  Other 

research on task-centric approaches to improving teacher practice (e.g., Boston & Smith, 

2011; Johnson, Severance, Penuel, & Leary, 2016) has argued this approach increases 

teachers’ use of cognitively demanding tasks and their understanding of how tasks influence 

students’ learning.  The proposition that this approach also has potential to address teachers’ 

mathematical content knowledge and promote ambitious teaching practices is worthy of 

further investigation. 

The intention of this research was to examine teachers’ enactment of challenging tasks and 

describe and evaluate their pedagogical actions in relation to students’ opportunities to learn. 

The study supported three teachers of year 7 and 8 learners to adopt pedagogical approaches 

that supported student learning from challenging tasks, and suggested the use of a flexible 

set of tools and approaches to support the planning and implementation of lessons.  The 

results offer insights into issues relevant to the practice of teachers of mathematics, and 

confirm the applicability of findings from previous research studies (e.g., Stein et al., 2009; 

Sullivan, Askew et al., 2015; Sullivan, Aulert et al., 2013; Sullivan et al., 2016) to the New 

Zealand context, namely that teachers’ decisions as they select and implement mathematics 

tasks for their students significantly influence opportunities for those students to engage with 

and learn the mathematics inherent in the tasks. 
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1. Of the 3 tasks that you tried which worked the best? What made this more successful 

than the others? 

 

2. What do you see as advantages of using this type of task in your teaching? 

 

3. What makes teaching with tasks such as these difficult?  What are the challenges of 

using this type of task? 

 

4. What benefits (or otherwise) do you see for student learning through using rich 

tasks? 

 

5. What would encourage you to use rich tasks more often in your mathematics 

programme? 
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Dear  

 

I am currently on a Teachers’ Study Award carrying out a research project to complete a Masters in 

Mathematics Education through Massey University. My thesis is a study exploring how teachers can 

maximise the mathematical opportunities of cognitively demanding tasks in ways that benefit student 

learning.  The study will focus on supporting teachers of Year 7 and 8 students to enact challenging 

mathematical tasks in their classrooms.  

 

(Name of teacher/s) have informally agreed to participate in a collaborative teaching research process 

in which we will focus on the challenge of how we provide rich mathematical experiences for students 

so that all of our diverse learners can engage with the tasks and ultimately learn the maths behind 

them.  These teachers will be formally approached following B.O.T. approval of the study.  The parents 

and students will be informed of the nature of the study through information sheets. 

 

The teacher involvement will entail attending an introductory after school session where we will explore 

some background research on the characteristics of appropriately challenging tasks and pedagogical 

actions that teachers use to encourage students to persist and to engage with mathematical practices 

that develop conceptual understanding, and teaching 3 lessons using cognitively challenging tasks with 

their classes.  Prior to each lesson there will be an after school planning session where, with myself 

and the other teachers involved, we will collaboratively plan the implementation of the task. These 

lessons will be audio or video recorded, so that the teacher and I can reflect on them after the lesson is 

finished.  The video will be focussed on the teacher’s words and actions, not on the students, as the 

research study is looking at what teachers can do to support students’ maths learning.  If students 

wish, we can further ensure that they are not in the line of sight of the video at all by making certain 

that they are sitting in a learning space other than the room where the videoing is taking place.  The 

teachers will fill in a survey at the end of the project I will interview them about their teaching 

experiences with the tasks. 

 

The study will take place over two months incorporating the latter part of term two and the first few 

weeks of term three. 

All project data will be stored in a secure location, with no public access, and will be used for this 

research only and for any publications arising from this research.  All data collected for this study will 

be destroyed after five years. The school name and names of all participants will be changed to 

maintain anonymity. 

 

Please note that you have the following rights in relation to your school participation in this study: 



 96 

• withdraw from the study during the first three weeks; 

• ask any questions about the study at any time during participation; 

• provide information on the understanding that the participants’ names will not be used unless you 

give permission to the researcher; 

• be given access to a summary of the project findings when it is concluded. 

 

If you have any questions about the project you are welcome to discuss them with me personally: 

Kat Freeman: Phone 021 069 4750; Email katf@carisbrook.school.nz 

 

or contact my supervisors at Massey University (Palmerston North) 

 

Professor Glenda Anthony, Co-Director Centre for Research in Mathematics Education: Phone: 06 356 

9099 Extn 84406; Email: G.J.Anthony@massey.ac.nz 

 

This project has been reviewed and approved by the Massey University Human Ethics Committee: 

Northern, Application 16/19.  If you have any concerns about the conduct of this research, please 

contact Dr Andrew Chrystall, Chair, Massey University Human Ethics Committee: Northern, telephone 

09 414 0800 x 43317, email humanethicsnorth@massey.ac.nz. 

 

Yours sincerely, 

Kat Freeman 

 

 

 
This consent form will be held for a period of five years. 

 

We have read the information sheet and have had the details of the study explained to me.  Our 

questions have been answered to our satisfaction, and we understand that we can ask further 

questions at any time. 

We agree to _____________________________________________________________ 

________________________________________________________________________

________________________________________________________________________

participating in this study under the conditions set out in the information sheet. 

 

Signature: _________________________________________  Date: __________________________ 

 

Name (printed): _____________________________________________________________________ 
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Dear 
 

I am doing a research project to complete a Masters in Mathematics Education through Massey 

University. My thesis is a study exploring how teachers can maximise the mathematical opportunities of 

cognitively demanding tasks in ways that benefit student learning.  The study will focus on supporting 

teachers of Year 7 and 8 students to enact challenging mathematical tasks in their classrooms.  

 

I would like to formally invite you to be part of a collaborative teaching research process in which we 

will focus on the challenge of how we provide rich mathematical experiences for students so that all of 

our diverse learners can engage with the tasks and ultimately learn the maths behind them.  

 

Your involvement will entail: 

• attending an introductory after school session where we will explore some background research 

on the characteristics of appropriately challenging tasks and pedagogical actions that teachers 

use to encourage students to persist and to engage with mathematical practices that develop 

conceptual understanding.  

• teaching 3 lessons using cognitively challenging tasks with your class.  Prior to each lesson there 

will be an after school planning session where, with myself and the other teachers involved, we 

will collaboratively plan the implementation of the task.  

• filling in a survey after the third lesson 

• answering some interview questions after the third lesson. 

• keeping a journal recording any reflections of the process of planning and implementation of the 

tasks. 

 

The lessons and final interview will be audio or video recorded.  During any time when you are being 

recorded you may ask that the audio or video be turned off and any comments that you have made be 

deleted.   

 

The study will take place over two months incorporating the latter part of term two and the first few 

weeks of term three. 

 

All project data will be stored in a secure location, with no public access, and will be used for this 

research only and for any publications arising from this research.  All data collected for this study will 

be destroyed after five years.  Your name or anything else that might identify you will not be used in the 

written work, or any oral presentation or publication.  The school name and names of all participants 

will be changed to maintain anonymity. 
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Please note that you are under no obligation to accept this invitation and should you decide to 

participate, you have the right to: 

• decline to answer any particular question; 

• withdraw from the study during the first three weeks; 

• ask any questions about the study at any time during participation; 

• provide information on the understanding that your name will not be used unless you give 

permission to the researcher; 

• ask for the recorder to be turned off at any time during observations or interviews; 

• be given access to a summary of the project findings when it is concluded. 

 

If you have any questions about the project, you are welcome to discuss them with me personally: 

Kat Freeman: Phone 021 069 4750; Email katf@carisbrook.school.nz 

 

or contact my supervisors at Massey University (Palmerston North) 

Professor Glenda Anthony, Co-Director Centre for Research in Mathematics Education: Phone: 06 356 

9099 Extn 84406; Email: G.J.Anthony@massey.ac.nz 

 

This project has been reviewed and approved by the Massey University Human Ethics Committee: 

Northern, Application 16/19.  If you have any concerns about the conduct of this research, please 

contact Dr Andrew Chrystall, Chair, Massey University Human Ethics Committee: Northern, telephone 

09 414 0800 x 43317, email humanethicsnorth@massey.ac.nz. 

 

Yours sincerely, 

Kat Freeman 

 

This consent form will be held for a period of five years. 

I have read the information sheet and have had the details of the study explained to me.  Any question 

that I have asked has been answered to my satisfaction, and I understand that I can ask further 

questions at any time. 

I agree to participate in this study under the conditions set out in the information sheet. 

I agree to being audio-taped. 

I agree to being video-taped. 

 

Signature: _______________________________________  Date: _____________ 

 

Name (printed): ______________________________________________________
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Dear Students and Parents/Caregivers 

 

My name is Kat Freeman and this year I am studying for my Masters in Mathematics Education 

through Massey University. My research project is a study exploring how teachers can best use 

challenging maths tasks in their classes in ways that support student learning.  

 

Your teacher has agreed to participate in the study and the Board of Trustees has also given their 

approval.  Your teacher and I are going to plan three lessons using challenging tasks that she/he will 

deliver to the class as part of your usual mathematics programme.  These lessons may be structured a 

little differently than your usual maths lessons, but apart from that you might not even notice any 

difference.  

 

These lessons will be audio or video recorded, so that the teacher and I can reflect on them after the 

lesson is finished.  The video will be focussed on the teacher’s words and actions, not on the students, 

as the research study is looking at what teachers can do to support students’ maths learning.  The 

video will not focus on your face, but as you participate in regular classroom interactions it is possible 

that some teacher student exchange is recorded. At no point in the reporting of the research will 

student names or identifying information be attached to any reported dialogue.  If you wish, we can 

further ensure that you are not in earshot or line of sight of the video at all by making certain that you 

are working in a learning space other than the room where the videoing is taking place.  With your 

permission, I might sometimes collect copies of your maths written work that illustrates the learning that 

you have done.  You have the right to refuse to allow the copies to be taken. 

 

All of the information gathered will be stored in a secure place and used only for this research.  After 

the completion of the research the information will be destroyed. 

Your name or anything else that might identify you will not be used in the written work, or any oral 

presentation or publication.  The school name and names of all participants will be changed to maintain 

anonymity. 

 

I would like to invite you, with your parent’s permission to be part of this study. If you do not wish to 

take part you will be seated in a different learning space during these teaching sessions. Please 

discuss all of the information in this letter with your parents before you give consent to participate. 

 

Please note that you have the following rights.  

• to say that you do not want to participate in the study; 

• to withdraw from the study at any time; 
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• to refuse to allow copies of your written work to be taken; 

• to ask questions about the study at any time; 

• to participate knowing that you will not be identified at any time; 

• to be given a summary of what is found at the end of the study. 

 

If you have any questions about the study you are welcome to discuss them with me personally: Kat 

Freeman: Phone 021 069 4750; Email katf@carisbrook.school.nz 

 

or contact my supervisors at Massey University (Palmerston North) 

Professor Glenda Anthony, Co-Director Centre for Research in Mathematics Education: Phone: 06 356 

9099 Extn 84406; Email: G.J.Anthony@massey.ac.nz 

  

This project has been reviewed and approved by the Massey University Human Ethics Committee: 

Northern, Application 16/19.  If you have any concerns about the conduct of this research, please 

contact Dr Andrew Chrystall, Chair, Massey University Human Ethics Committee: Northern, telephone 

09 414 0800 x 43317, email humanethicsnorth@massey.ac.nz. 

 

Yours sincerely, 

Kat Freeman 

 

This consent form will be held for a period of five years. 

 

I agree to participate in this study under the conditions set out in the information sheet. 

I do not agree to participate in this study under the conditions set out in the information 

sheet and have indicated my preferred arrangement below. 

I wish to be seated out of screenshot of the video  

I wish to work in an alternative supervised space. 

 

Student’s Signature: _______________________________  Date: _____________ 

 

Name (printed): ______________________________________________________ 
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This consent form will be held for a period of five years. 

 

I agree to ________________ participating in this study under the conditions set out in the 

information sheet. 

I do not agree to ________________ participating in this study under the conditions set 

out in the information sheet, and have indicated my preferred arrangement below. 

Please arrange for my child to be seated out of screenshot of the video 

Please arrange for my child to work in an alternative supervised space. 

 

Parent’s Signature: _______________________________  Date: ______________ 

 

Name (printed): ______________________________________________________ 
  



 102

 

 



 103

 



 104

 

 

 




