Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

EVALUATING A NOVEL UV DEVICE FOR WASTEWATER DISINFECTION

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Engineering

In

Environmental Technology and Sustainable Energy

At

Massey University,

Manawatu Campus, Palmerston North, New Zealand.

Confidential

Huijian Huang

2014

Abstract

UV disinfection is the most common method used in wastewater disinfection. However, some types of wastewater effluent have a low UV transmittance (UVT), which cannot be disinfected efficiently by a commercial UV reactor. A novel UV reactor (called the *project prototype*) was developed, which has a different type of reactor hydraulics than a typical commercial UV reactor. This change in hydraulics is believed to be an innovative method of improving the low UVT fluid disinfection. The main purpose of this project is to evaluate the feasibility the project prototype.

The settings of the project prototype were first refined, and then compared to a control reactor, which was used to mimic a commercial UV reactor (called the commercial unit) at a range of UV doses. The UV dose was manipulated by changing the number of operated UV lamps and operated flow rate of the reactors. The disinfection performance of the reactors was not only compared at conventional wastewater treatment plants, but also at stabilization ponds. Within the conventional wastewater treatment plants, the reactors were tested using the effluent from the primary, secondary and tertiary treatment stages. In total, the reactors were compared twelve times at seven different wastewater treatment sites.

The results show that the project prototype was, on average, 1.4 times worse than the commercial unit at treating tertiary wastewater, where the wastewater had a high UVT (55 to 65%). This high UVT value favours the use of the commercial unit, as it is designed for this UVT range. However, at a low UVT range, the project prototype performed, on average, 1.4 times better than the commercial unit, at treating secondary wastewater, where the wastewater had UVT of 22 to 55 %. In the stabilization pond tests, where the UVT was 11 to 25%, the project prototype performed 2.1 times better than the commercial unit on average, and up to 8 times better at one location. In the primary treatment test, where the UVT of the wastewater was extremely low (5%), the project prototype, on average, performed 4.5 times better than the commercial unit, and in one case up to 13 times better than the commercial unit.

The research found that the project prototype has an advantage when treating low UVT fluid and great potential in the commercial market. The project prototype performs better

than the commercial unit at stabilization ponds. This suggests that the project prototype would be a viable option for pond treated wastewater disinfection. In addition, the project prototype offers superior performance on primary treated wastewater. This indicates the potential application at marine outfalls (primary treated wastewater), and the possibility of primary wastewater disinfection for irrigation. Overall, this research confirms the feasibility of the novel reactor in wastewater disinfection.

Acknowledgements

I cannot express my profound gratitude and deep regards enough to my supervisors for their continued support and professional guidance. Firstly, Professor Andy Shilton (Massey University, New Zealand) who did not only provide valuable advice, but also technical and financial support throughout the project. Also, Doctor Nicola Brown (Massey University, New Zealand) who provided many constructive suggestions and helped me in many other ways throughout.

In addition to my supervisors, I was fortunate enough to conduct experiments in different wastewater treatment plants. I would like to acknowledge the Mike Monaghan at the Palmerston North wastewater treatment plant, Steve Nind at the Manawatu district council, Marcus Coley and Joel Dykstra at the Levin wastewater treatment plant and Grant Stuart and Dave Bassett at the Paraparaumu wastewater treatment plant. Without their help, I would not have such a valuable experimental data.

I would also like to thank Mr Aidan Crimp, who helped me a lot in the experiments and also gave me a lot of useful information and ideas. Also, I would like to acknowledge the many members of the technical staff from Massey University, who gave me a lot of help.

Last but not less, I would like to acknowledge my God. I believe that I would not be able to finish my master thesis without His help, as Proverbs 1:7 "The fear of the Lord is the beginning of knowledge, but fools despise wisdom and instruction".

This thesis is dedicated to my father Zhaoguang Huang and mother Qiaosheng Lu who always support me.

Table of Contents

Αŀ	ostract			ii
Αc	knowl	edge	ements	iv
Lis	st of Fi	gure		ix
Lis	st of Ta	able.		.xiii
1.	Intr	oduc	tion	1
	1.1.	Вас	kground	1
	1.2.	Res	earch needs	1
	1.3.	The	potential market	2
	1.4.	Pro	ject aim and objectives	2
2.	Lite	ratui	re review	3
	2.1.	Wh	at UV light is	3
	2.1.	1.	UV light propagation behaviours	4
	2.1.	2.	Beer Lambert's Law	4
	2.2.	UV	disinfection mechanisms	5
	2.2.	1.	Wavelength and UV disinfection	6
	2.2.	2.	Repair mechanism	8
	2.3.	UV	emission & the technology	9
	2.3.	1.	Low pressure mercury lamp	. 10
	2.3.	2.	Medium pressure mercury lamp	. 11
	2.3.	3.	Other light technologies	. 11
	2.4.	Effe	ect of wastewater characteristics on UV disinfection	. 12
	2.4.	1.	UV transmittance (UVT)	. 13
	2.4.	2.	Total suspended solid (TSS)	. 14
	2.4.	3.	Microorganism concentration	. 15
	2.5.	UV	dose	. 15

	2.6.	The	effect of hydraulics on UV disinfection	17
	2.6	5.1.	Plug flow hydraulics vs. complete mix hydraulics	17
	2.6	5.2.	The effect of lamp spacing on UV disinfection	19
	2.6	5.3.	The effect of reactor configuration on UV disinfection	20
	2.6	5.4.	A concept of supercritical flow UV disinfection	21
	2.7.	Pric	or art	25
	2.7	'.1.	Common design in wastewater treatment	26
	2.7	'.2.	Review of thin film UV reactors	27
	2.7	'.3.	Reactors comparisons	39
	2.8.	Lite	rature review summary	42
3.	Me	ethod	and materials	43
	3.1.	Rea	octors	43
	3.1	.1.	The 2 nd generation	43
	3.1	.2.	The project prototype	44
	3.1	3.	The Commercial unit	48
	3.2.	Rea	ctor components and instrument	50
	3.2	.1.	UV lamps	50
	3.2	2.	Ballast	50
	3.2	3.	UV intensity meter	50
	3.2	.4.	Flow rate control device	50
	3.3.	Ехр	erimental procedure	51
	3.3	.1.	Comparison of the project prototype and the 2 nd generation	51
	3.3	.2.	Project prototype variable test	52
	3.3	.3.	Comparison of the project prototype and the commercial unit	52
	3.4.	Me	thods of analysis	61
	3.4	.1.	Pathogen indicator for wastewater test	61

	3.4	.2.	Bacteria enumeration	61
	3.4	.3.	UV Transmittance	62
	3.4	.4.	Total suspended solid	63
	3.4	.5.	Quality control	63
4.	Res	sults a	and discussion	65
	4.1.	Con	nparison of the project prototype and the 2 nd generation	65
	4.2.	Pro	ject prototype variable test	67
	4.2	.1.	The effect of sluice gate gap thickness on UV disinfection	68
	4.2	.2.	The effect of reaction chamber slope on UV disinfection	69
	4.2	.3.	The effect of reflector shape on UV disinfection	70
	4.3.	Con	nparisons of the project prototype and commercial unit	71
	4.3	.1.	Primary treated wastewater test	72
	4.3	.2.	Secondary treated wastewater test	77
	4.3	.3.	Tertiary treated wastewater test	82
	4.3	.4.	Stabilization pond treated wastewater test	86
	4.3	.5.	Summary of the project prototype and commercial unit comparison	95
	4.4.	Effe	ect of flow rate on UV disinfection	96
	4.5.	Wa	stewater characteristics that affect the UV disinfection	97
	4.5	.1.	The desirable wastewater for the project prototype	98
5.	Coi	nclusi	ions and recommendations	103
6.	Ref	eren	ce	105
7.	Ap	pendi	ix	110
	Appe	ndix :	1, Raw data	111
	Pre	-exp	erimental data (no used in the discussion)	111
	Pro	ject _l	prototype vs. second generation	113
	Pro	ject _l	prototype variation test	116

Comparison of project prototype and commercial unit	120
Appendix 2, Patent review note	169
Scopus patent search	169
Google patent search results	176
Appendix 3, Froude number calculations	190
Appendix 4, Reflector designs	191
Appendix 5, Commercial unit design	192
Appendix 6, UV lamp- GPH840N2/S	196
Appendix 7, Ballast Information Sheet	197
Appendix 8, Flow meter information	198
Appendix 9, Wastewater consistency check	199
Appendix 10, Reliability of the sample analysis	200
Appendix 11, Statistical analysis of the results	202
P-value of 2 nd generation prototype vs. project prototype	202
P-value for the project prototype variable test	203
Regression analyses of the project prototype vs. commercial unit	204
Wastowator characteristics that affect the LIV disinfection	207

List of Figure

Figure 2-1, Range of electromagnetic waves	3
Figure 2-2, Irradiation profile of a single lamp in fluid (adapted from Masschelein & Rice	<u>,</u>
2002, p. 86)	4
Figure 2-3, Chemical reaction of thymine dimer (Bolton & Cotton, 2008, p. page 28)	6
Figure 2-4, Disrupted DNA (Bolton & Cotton, 2008, p. 28)	6
Figure 2-5, UV absorbance of DNA or RNA bases (Masschelein & Rice, 2002, p. 63)	7
Figure 2-6, Relative UV absorbance of some microorganism and DNA (Bolton & Cotton,	
2008, p. 29)	7
Figure 2-7, Spontaneous emission illustration (Masschelein & Rice, 2002, p. 10)	10
Figure 2-8, Comparison of low pressure mercury lamp (LP) and medium pressure merc	ury
lamp (MP) emission spectrum with DNA absorptivity (USEPA et al., 2006, pp. 2-21)	10
Figure 2-9, Lifetime of low pressure mercury lamp (LightTech)	11
Figure 2-10, Dose response curve of microorganisms (Chang et al., 1985)	16
Figure 2-11, Two types of hypothetical dose distribution, adapted from USEPA et al. (20)06,
pp. 2-10)	18
Figure 2-12, Hypothetical Reactor A and Reactor B	19
Figure 2-13, illustration of hydraulic boundary layer	20
Figure 2-14, Different UV reactors that were assessed in Wols et al. (2011) study	21
Figure 2-15, The supercritical flow UV reactor (Shilton & Sykes, 2009)	23
Figure 2-16, Steriflo 900 (Shilton & Sykes, 2009)	24
Figure 2-17, Steriflo Channel reactor (Shilton & Sykes, 2009)	24
Figure 2-18, Typical open channel system, (a) horizontal lamps position; (b) vertical lam	р
position (Metcalf & Eddy, 2003, p. 1302)	26
Figure 2-19, Typical close channel system, (a) perpendicular lamp position; (b) parallel l	amp
position (Metcalf & Eddy, 2003, pp. 1304-1305)	27
Figure 2-20, UV reactor in Lu et al. (2010) study	28
Figure 2-21, Typical thin film UV reactor for juice/cider (Koutchma, 2008)	29
Figure 2-22, UV reactor configuration in Oppenheimer et al. (1959)	31
Figure 2-23, Special valve design for the reactor (Shama et al., 1996)	32
Figure 2-24. UV reactor designed by Shama et al. (1996)	32

Figure 2-25, Open channel, low head UV reactor (Mamane et al., 2010)	33
Figure 2-26, UV source component, (a) Top view of the reactor UV source; (b) Side view	of
reactor UV source (Mamane et al., 2010)	33
Figure 2-27, UV dose measurement of the open channel, low head UV reactor (Mamane	e et
al., 2010)	34
Figure 2-28, UV liquid steriliser (Snowball, 2012)	35
Figure 2-29, Fluid disinfection apparatus from Snowball (2009)	36
Figure 2-30, Fluid disinfection apparatus and system from Snowball (2007)	37
Figure 2-31, Ultraviolet fluid disinfection system from Horton et al. (2002)	38
Figure 2-32, Ultraviolet wastewater disinfection system and method from Horton (2002	!) 39
Figure 3-1, Pictures of the reactors in the project (A: the 2 nd generation; B: the project	
prototype; C: the commercial unit)	43
Figure 3-2, Sketch of the 2 nd generation	44
Figure 3-3, Adjustable gap of the 2 nd generation	44
Figure 3-4, Sketch of the project prototype; A: 3D sketch, B: 2 D sketch	45
Figure 3-5, The adjustable sluice gate of the project prototype	46
Figure 3-6, Demonstration of flow slope adjustable of the project prototype	47
Figure 3-7, Parabola reflector (A: top of reflector; B: underside of the reflector; C: reflector	tor
on the project prototype)	47
Figure 3-8, Square reflector (A: top of reflector; B: underside of the reflector; C: reflector	or on
the project prototype)	48
Figure 3-9, Sketch of the commercial unit	49
Figure 3-10, Relationship between watt per flow and UV dose in a reactor, data from	
Nieuwstad et al. (1991)	53
Figure 3-11, PNWWTP process	56
Figure 3-12, Levin WWTP treatment process	56
Figure 3-13, Experimental set in the aerated lagoon pond	57
Figure 3-14, Paraparaumu WWTP process	58
Figure 3-15, Fielding WWTP process	58
Figure 3-16, Experimental set up in Rongotea stabilization pond	59
Figure 3-17, Shannon pond system and the experimental set up	60
Figure 3-18, Foxton beach pond system and the experimental set up	60

Figure 3-19, Colilert test procedure (adapted from IDEXX Laboratories, 2013)62
Figure 4-1, Box plot of the project prototype performance vs. 2 nd generation performance,
at the sluice gate gaps of 2, 4 and 6 mm, treating low UVT wastewater66
Figure 4-2, Box plot of the project prototype performance vs. 2 nd generation performance,
at the sluice gate gap of 2 mm, treating high UVT wastewater67
Figure 4-3, Box plot of the project prototype performance at the sluice gate gaps of 2, 4, and
6 mm, treating high and low UVT wastewater68
Figure 4-4, Box plot of the project prototype performance at the reaction chamber slopes of
0, 30 and 60 degree, treating high and low UVT wastewater69
Figure 4-5, Box plot of the project prototype performance using the parabola and square
shaped reflectors, treating both high and low UVT wastewater71
Figure 4-6, E. coli log reduction of the reactors in the PNWWTP primary treated test;
Commercial unit: E. coli log reduction of the commercial unit; prototype at 500 L/min: E. coli
log reduction of the project prototype at flow rate of 500 L/min; likewise for the rest of the
figures72
Figure 4-7, E. coli log reduction of the reactors in the Levin WWTP primary treated test 74
Figure 4-8, p/c of the project prototype and commercial unit in the primary treated
wastewater test
Figure 4-9, E. coli log reduction of the reactors in the PNWWTP secondary treated
wastewater test
Figure 4-10, E. coli log reduction of the reactors in the Levin WWTP secondary treated
wastewater test
Figure 4-11, E. coli log reduction of the reactors in the Paraparaumu WWTP secondary
treated wastewater test80
Figure 4-12, p/c of the project prototype and commercial unit in the secondary treated
wastewater test81
Figure 4-13, E. coli log reduction of the reactors in the PNWWTP tertiary treated wastewater
test83
Figure 4-14, E. coli log reduction of the reactors in the Fielding WWTP tertiary treated
wastewater test85
Figure 4-15, p/c of the project prototype and commercial unit in the tertiary treated
wastewater test86

Figure 4-16, E. coli log reduction of the reactors in the first Rongotea stabilizati	on pond test
	88
Figure 4-17, E. coli log reduction of the reactors in the second Rongotea stabili	zation pond
test	89
Figure 4-18, E. coli log reduction of the reactors in the first Shannon stabilization	on pond test
	90
Figure 4-19, E. coli log reduction of the reactors in the second Shannon stabiliz	ation pond
test	91
Figure 4-20, E. coli log reduction of the reactors in the Foxton Beach stabilization	on pond test
	93
Figure 4-21, p/c of the project prototype and commercial unit in the stabilization	on pond
treated wastewater test	94
Figure 4-22, summary of the reactor comparison in different type of wastewater	ers95
Figure 4-23, performances of the reactors at PNWWTP	98
Figure 4-24, p/c vs. UVT	99
Figure 4-25, p/c vs. TSS	100
Figure 4-26, p/c vs. initial <i>E. coli</i> concentration	101
Figure A-7-1, design of parabola shaped reflector	191
Figure A-7-2, design of square shaped reflector	191
Figure A-7-3, commercial unit design (a)	192
Figure A-7-4, commercial unit design (b)	193
Figure A-7-5, weir design of the commercial unit	194
Figure A-7-6, lamp positions of the commercial unit	195
Figure A-7-7, information of the UV lamps used in the project	196
Figure A-7-8, information of the ballast used in the project	197
Figure A-7-9, information of the flow meter used in the project	198
Figure A-7-10, E. coli concentration of the secondary treated wastewater from	PNWWTP in a
period of 45 minute	199
Figure A-7-11, CEL vs experimental results	200
Figure A-7-12, comparison of CEL, second comparison	201

List of Table

Table 2-1, Wastewater characteristic that effect on UV disinfection (Metcalf & Eddy, 200)3,
p. 1309)	13
Table 2-2, Lu <i>et al</i> . (2010) experimental data	29
Table 2-3, comparison of prior art with project prototype	40
Table 3-1, Reactors operational conditions in the early stage	54
Table 3-2, Modified reactors operational conditions	54
Table 3-3, Summary of the UV trials	55
Table 4-1, summary of the effect of flow rate on the project prototype	96
Table A-1, summary of key words search	.169
Table A-2, Scopus patent search summary	. 170
Table A-3, google patent search summary	. 177
Table A-4, Found number at each setting	.190
Table A-5, p-value of Figure A-7-12 results	. 201
Table A-6, P-values of 2 nd generation vs. project prototype at different sluice gate gaps a	it
low UVT wastewater condition (Figure 4-1)	. 202
Table A-7, p-values of reactors performance at different sluice gate gaps at low UVT	
wastewater conditions (Figure 4-1)	. 202
Table A-8, p-values of 2 nd generation vs. project prototype at different UVT wastewater	
conditions (Figure 4-2)	.202
Table A-9, p-values of reactors performance at different UVT wastewater conditions	. 202
Table A-10, p-values of the project prototype performance at different sluice gate gaps a	at
both UVT wastewater conditions (Figure 4-3)	. 203
Table A-11, p-values of the project prototype performance at different UVT wastewater	
conditions (Figure 4-3)	.203
Table A-12, p-values of the project prototype performance at different reaction chambe	r
slopes at both UVT wastewater conditions (Figure 4-4)	. 203
Table A-13, p-value of the project prototype performance at different UVT wastewater	
conditions (Figure 4-4)	.203
Table A-14, p-values of the project prototype with different reflector at both UVT	
wastewater conditions (Figure 4-5)	. 203

Table A-15, p-values of the project prototype performance at different OVT wastewater
conditions (Figure 4-5)203
Table A-16, Regression analyses of PNWWTP primary treated wastewater test (Figure 4-6)
204
Table A-17, Regression analyses of Levin primary treated wastewater test (Figure 4-7) 204
Table A-18, Regression analyses of PNWWTP secondary treated wastewater test (Figure 4-9)
204
Table A-19, Regression analyses of Levin WWTP secondary treated wastewater test (Figure
4-10)
Table A-20, Regression analyses of Paraparaumu WWTP secondary treated wastewater test
(Figure 4-11)
Table A-21, Regression analyses of PNWWTP tertiary treated wastewater test (Figure 4-13)
205
Table A-22, Regression analyses of Fielding WWTP tertiary treated wastewater test (Figure
4-14)
Table A-23, Regression analyses of the first Rongotea stabilization pond treated wastewater
test (Figure 4-16)
Table A-24, Regression analyses of the second Rongotea stabilization pond treated
wastewater test (Figure 4-17)206
Table A-25, Regression analyses of the first Shannon stabilization pond treated wastewater
test (Figure 4-18)206
Table A-26, Regression analyses of the first Shannon stabilization pond treated wastewater
test (Figure 4-19)206
Table A-27, Regression analyses of the first Shannon stabilization pond treated wastewater
test (Figure 4-20)
Table A-28, p-values of the tests comparison for the commercial unit207
Table A-29, p-values of the tests comparison for the project prototype207