Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Molecular characterisation of PHA synthase and the *in vivo* synthesis of functionalised PHA beads with surface immobilised proteins

A thesis presented in partial fulfilment of the requirements of the degree of Master of Science in Microbiology at Massey University, Palmerston North, New Zealand.

Jason Wong Lee 2011

Abstract

Polyhydroxyalkanoates (PHAs) are naturally occurring biopolyesters, synthesized by a large range of bacteria and deposited as small spherical water-insoluble cytoplasmic inclusion bodies containing hydrophobic polyester core surrounded by a phospholipid monolayer and associated embedded proteins. The most common form of PHA identified in bacteria is polyhydroxybutyrate (PHB).

Formation of PHA beads requires three important enzymes with PHA synthase (PhaC) being the most important, catalysing the final stereo-selective conversion of (R)-3-hydroxyacyl-CoA thioesters into PHA. Increasingly beads are used as microbeads, which display surface immobilised proteins for a range of applications in biotechnology and medicine.

However, functionalised PHA beads are largely produced in Gram-negative bacteria which contain endotoxins that are known to co-purify with the beads and are considered undesirable in medical applications. In addition, despite extensive research towards understanding PHA synthases, to date no structural data is currently available.

Here it was shown that functionalised PHB beads can be produced *in vivo* for both the purification of antibodies and the display of medically relevant antigens (e.g. Hepatitis C) on the surface of PHB beads from the Gram-positive bacterium *L.lactis*. In addition, it was shown that PHA synthase from *R.eutropha* can be highly overproduced, remains largely soluble and can be purified to greater than 90 % purity.

The results demonstrated and supported the use of PHB beads as a platform for the production of functionalised PHA beads suitable for a large range of biotechnological or medical applications. Although no structural data for PHA synthases are currently available, our results demonstrate progress towards obtaining a three-dimensional protein structure for PHA synthase (PhaC).

Acknowledgement

"Success, 100 % persistence and a bit of luck"

I would like to first of all give special thanks to my supervisor Professor Bernd Rehm for allowing me the opportunity to do my Masters qualification under his supervision. I would also like to thank Bernd and a special mention to Zoe Jordens for their time, guidance and encouragement during my postgrad years.

Special thanks goes out to Jane Mullaney for her encouragement, support and technical know how at the start of my postgrad year. Also, special thanks to Anika Jahns and Ian Hay for their endless expertise and help when required. In addition, special thanks to Andrew Sutherland-Smith, Greg Sawyer and everyone else in the protein engineering lab for their time, advice, and help with things protein related.

Thanks to my all my colleges in the Rehm lab, Paul Blatchford for all those coffee breaks and to everyone at IMBS.

This would not have been possible if it wasn't for Tracy Thompson and Polybactics who provided financial assistance during my final year of postgrad.

And last but not least, thanks to my wonderful girlfriend Yifang Tay for her endless encouragement and support.

Table of contents

Abstract	I
Acknowledgements	II
Table of contents	III
Abbreviations	VI
List of Figures	VII
List of tables	Х
Chapter1: Introduction	1
1.1 Polyhydroxyalkanoates (PHAs): Bacterial polyesters	1
1.2 PHA synthases	3
1.2.1 Classification of PHA synthases	3
1.2.2 Catalytic mechanism	6
1.3 α/β-hydrolase superfamily	7
1.4 Lactococcus lactis as a production host	11
1.5 Biogenesis and structure of PHA inclusions	14
1.5.1 In vitro PHA bead formation	18
1.5.2 Structure of PHA beads and their bead associated proteins	19
1.6 Applications of PHA granules as bio-beads	21
1.7 Aim and objectives of the study	28
Chapter2: Materials and Methods	32
2.1 Strains and plasmids	32
2.1 Strains	32
2.1.2 Plasmids	32
2.2. Primers	34
2.3 Liquid media	35
2.3 1 Luria-Bertani (LB) media	35
2.3.2 M17 and GM17 media	35
2.4 Solid media	35
2.4 1 X-Gal medium	35
2.4.2 Nile-red medium	36
2.5 Antibiotic stock solution and final concentrations	36
2.5 Antibiotic stock solution and final concentrations 2.6 Cultivation conditions	37
2.6 1 PHA accumulating conditions	37
2.6.2 Protein production	37
2.7 Selection on solid media	38
2.7 1 Blue/white selection	38
2.7.2 Nile-red selection	38
2.8 Long term storage of bacterial strains	38
2.8 1 Strain revival	39
2.9 Preparation of competent cells	39
2.9.1 Competent E. coli	39
2.9.2 Electro-competent L lactis	40
2.10 Transformation and electronoration	40
2.10.1 Transformation of <i>E. coli</i>	40
2.10.2 Electroporation of <i>L. lactis</i>	41
r · · · · · · · · · · · · · · · · · · ·	

2.11 DNA manipulation	41
2.11.1 Plasmid isolation and concentration	41
2.11.1.1 Alkaline lysis	41
2.11.1.2 High Pure Plasmid isolation kit (Roche)	42
2.11.1.3 Plasmid isolation from L. lactis	42
2.11.1.4 Clean and concentrator kit (Zymo)	43
2.11.2 PCR	43
2.11.3 Determination of DNA concentration	44
2.11.4 DNA hydrolysis with restriction endonucleases	44
2.11.4.1 Isopropanol precipitation of DNA	45
2.11.5 Agarose gel electrophoresis (AGE)	45
2.11.5.1 DNA molecular size standards	46
2.11.6 Agarose gel DNA fragment recovery	46
2.11.7 Dephosphorylation of 5' ends (Antarctic phosphatase)	46
2.11.8 DNA A-tailing and ligation (pGEM T-easy system)	47
2.11.9 DNA ligation (T4 DNA ligase)	47
2.11.10 DNA sequencing	48
2.12 PHA extraction, preparation and analysis of compounds and lower	48
molecular weight products	
2.12.1 Cell disruption	48
2.12.1.1 Bugbuster® Protein Extraction Reagent	48
2.12.1.2 Cell disruptor	49
2.12.1.3 French press	50
2.12.2 Isolation of PHA from crude extracts (Ultracentrifugation)	50
2.12.3 Nile-red detection	51
2.12.4 Gas chromatography-mass spectrometry (GC/MS)	51
2.12.5 Transmission electron microscopy (TEM)	51
2.12.6 Analysis of Lactate and Acetate	51
2.12.6.1 Lactate assay	52
2.12.6.2 Acetate assay	52
2.13 General methods for protein analysis	52
2.13.1 Protein determination	52
2.13.1.1 Bradford protein assay	52
2.13.1.2 UV measurement at 280nm	53
2.13.2 Sodium dodecylsulfate gel electrophoresis (SDS-PAGE)	53
2.13.2.1 Preparation of protein samples and running conditions	55
2.13.2.2 Protein Marker Broad Range	55
2.13.2.3 Protein staining with Coomassie brilliant blue	56
2.13.3 Maldi-TOF mass spectrometry	56
2.13.4 Determination of fusion protein activity on PHA beads	57
2.13.4.1 Enzyme-linked immunosorbent assay (ELISA)	57
2.13.4.2 IgG binding assay	58
2.13.5 Cleavage of fusion protein	59
2.13.6 Protein attinity purification	59
2.13.6.1 His-Spin protein Miniprep	60
2.13.6.2 HIS-Trap HP (5ml)	60
2.13. / Analytical gel filtration chromatography	60
2.13.9 Hanging drop/Sitting drop technique	61

Chapter3: Results	62
3.1 Molecular characterisation of PHA synthase (phaC)	62
3.1.1 Construction of pET16b-His ₁₀ ZZC and pET16b-His ₁₀ C	62
3.1.2 Construction of pET14b-His ₁₀ GB1TEV Δ 1-93C	66
3.1.3 Construction of pET14b-His ₉ ZZTEVΔ1-93C	68
3.1.4 Plasmid expression and protein production	71
3.1.5 Purification and analysis	74
3.1.6 Proteolytic digest	77
3.1.7 Up scaling purification	79
3.1.8 Gel filtration chromatography	81
3.1.9 Crystal screening trials	84
3.2 In vivo polyhydroxyalkanoate inclusions	85
3.2.1 Construction of pET14b-ZZTEV∆1-93C	85
3.2.2 Plasmid expression and PHA bead biogenesis	89
3.2.3 Microscopy (FM and TEM) and GC/MS analysis	90
3.2.4 Functional assessment of the IgG binding domain	95
3.3 In vivo production of PHA in L. lactis	98
3.3.1 Construction of pNZ-HACAB and pNZ-HepCCAB	98
3.3.2 Plasmid expression and PHA bead biogenesis	102
3.3.3 FM and TEM analysis of PHB bead formation	104
3.3.4 Functional assessment of Hepatitis C beads in a mouse model	104
3.4 Phenotypic characterisation of <i>L. lactis</i> LDH mutants	107
3.4.1 Growth and pH analysis of recombinant L. lactis	108
3.4.2 Lactate and Acetate formation by recombinant L. lactis	110
3.4.3 Quantification of PHB in NZ strains under PHA accumulating	112
conditions	
Chapter4: Discussion	113
4.1 Molecular characterisation of class I PHA synthase (PhaC)	113
4.2 Production of PHA inclusions in vivo	121
4.3 <i>L. lactis</i> as a production host for PHAs displaying surface immobilised antigens	123
4.4 Characterisation of PHB biogenesis in LDH deficient L. lactis	125
Chapter5: Conclusion and future work	128
Chapter6: References	131

Abbreviations

°C	Degree Celsius
3HA _{MCL}	Medium chain length (R)-3-hydroxy fatty acids
3HA _{SCL}	Short chain length (<i>R</i>)-3-hydroxy fatty acids
3HB	3-hydroxybutyrate
AGE	Agarose Gel Electrophoresis
BSA	Bovine serum albumin
DMSO	Dimethyl sulfoxide
FM	Fluorescent Microscopy
GAP	Bead Associated Proteins
GC/MS	Gas chromatography mass spectrometry
HRP	Horse radish peroxidise
IgG	Immunoglobulin G
IMAC	Immobilised Metal Affinity Chromatography
kDa	Kilo Daltons
LDH	Lactate dehydrogenase
Maldi-TOF\MS	Matrix-assisted laser desorption ionisation time-of-flight
	mass spectrometry
PBS	Phosphate buffered saline
РНА	Polyhydroxyalkanoate
phaCAB	PHA operon
PhaC	PHA synthase
PhaE	Type II PHA synthase subunit
PhaP	Phasin regulatory protein
PhaZ	PHA intracellular depolymerase
РНВ	Polyhydroxybutyrate
RBS	Ribosome binding site
RE	Restriction endonuclease
SDS-PAGE	Sodium dodecyl sulfate gel electrophoresis
TEM	Transmission Electron Microscopy
TEV	Tobacco Etch Virus protease
WT	Wildtype

List of Figures

			Page
Figure	1	Primary structure of the PHA synthase from C. necator	5
Figure	2	Proposed chain elongation mechanism based on the α/β -hydrolase	7
		catalytic mechanism of the P. aeruginosa class II PHA synthase	
Figure	3	Secondary structure representation of a typical α/β -hydrolase fold	8
Figure	4	Threading models for PHA synthases	10
Figure	5	Schematic representation of the metabolism of glucose in L. lactis	13
Figure	6	Metabolic routes towards PHA biogenesis	15
Figure	7	Models for polyester bead self-assembly	17
Figure	8	Schematic representation of a PHA bead and its associated	19
		proteins.	
Figure	9	Potential applications of PHA beads produced in vivo and in vitro	26
Figure	10	Schematic representation of the PHA bead extraction process	50
Figure	11	Vapour diffusion	61
Figure	12	Construction of intermediate cloning plasmid pET16b-His10phaC	64
		for the generation of pET16b-His $_{10}$ ZZC.	
Figure	13	Construction of pET16b-His ₁₀ ZZC	65
Figure	14	Construction of pET14b-His ₁₀ GB1TEV∆1-93C	67
Figure	15	Construction of intermediate cloning plasmid pGEM-T	69
		His ₉ ZZTEV for generation of pET14b-His ₉ ZZTEV Δ 1-93C	
Figure	16	Construction of pET14b-His ₉ ZZTEV Δ 1-93C	70
Figure	17	SDS-PAGE gel demonstrating solubility using the ZZ domain of	72
		protein A	
Figure	18	SDS-PAGE gel of recombinant His-tagged PhaC production	73
Figure	19	SDS-PAGE PAGE gel of recombinant His-tagged PhaC cell lysis	74
Figure	20	SDS-PAGE gel of affinity purification fractions for His-tagged	76
		PhaC plasmids	
Figure	21	SDS-PAGE gel of TEV protease digestion of purified	78
		His ₉ ZZTEV Δ 1-93C, and His ₁₀ GB1TEV Δ 1-93C.	
Figure	22	Affinity purification of protein $His_{10}ZZC$ and $His_{10}GB1TEV\Delta1$ -	80
		93C using HisTrap HP on an AKTA explorer	

Figure	23	Analytical gel filtration chromatography on an AKTA explorer	82
		100 for protein His ₁₀ ZZC	
Figure	24	Gel filtration chromatography on an AKTA explorer 100 for	83
		protein $His_{10}GB1TEV\Delta 1-93C$	
Figure	25	Gel filtration chromatography on an AKTA explorer 100 for	84
		protein His ₉ ZZTEVA1-93C	
Figure	26	Construction of intermediate cloning plasmid pGEM-T ZZTEV	87
		for the generation of pET14b-ZZTEV Δ 1-93C	
Figure	27	Construction of pET14b-ZZTEV∆1-93C	88
Figure	28	SDS-PAGE gel of isolated PHA beads produced in vivo from	90
		E. coli	
Figure	29	Fluorescence microscopy images of PHA beads produced in E.	92
		coli	
Figure	30	TEM analysis of His-tag fusion on PHA beads formed in vivo	93
Figure	31	His-tag effect on bead size distribution	94
Figure	32	Functional assessment of the ZZ domain on PHB beads produced	95
		in vivo from <i>E. coli</i> by ELISA.	
Figure	33	Functional assessment of the GB1 domain on PHB beads	96
		produced in vivo from <i>E. coli</i> by ELISA.	
Figure	34	IgG binding assay for in vivo PHA beads from E. coli	97
Figure	35	SDS-PAGE gel of the IgG binding assay elution fraction from	97
		PHA beads produced in vivo by recombinant E. coli	
Figure	36	XbaI + SpeI double digest of pNZ-HACAB and pNZ-HepCCAB	99
Figure	37	Construction of plasmid pNZ-HACAB	100
Figure	38	Construction of plasmid pNZ-HepCCAB	101
Figure	39	SDS-Page gel of L. lactis isolated beads harbouring pNZ plasmids	103
Figure	40	Fluorescence microscopy images of L. lactis harbouring pNZ-	105
		HACAB and pNZ-HepCCAB expressed under PHB accumulating	
		conditions	
Figure	41	TEM analysis of L. Lactis NZ9000 expressing plasmid pNZ-	106
		HepC <i>CAB</i>	

Figure	42	Restriction analysis of pNZ-CAB from NZ9000, NZ9010 and	107
		NZ9020 transformants	
Figure	43	Growth curves of L. lactis NZ9000, NZ9010, & NZ9020	109
		harbouring plasmids pNZ-CAB & pNZ-8148	
Figure	44	Lactate production by recombinant L. lactis NZ9000, NZ9010 and	110
		NZ9020 under PHB accumulating conditions	
Figure	45	Acetate production by recombinant L. lactis NZ9000, NZ9010	111
		and NZ9020 under PHB accumulating conditions	

List of tables

Table	1	The four classes of PHA synthase	3
Table	2	Bacterial strains used in this study	32
Table	3	E. coli plasmids used in this study	33
Table	4	L. lactis plasmids used in this study	34
Table	5	Primers used in this study	34
Table	6	Antibiotic stocks and final concentrations	36
Table	7	λ -DNA molecular size standard	46
Table	8	GeneRuler 100 bp DNA ladder plus	46
Table	9	Protein Markers	55
Table	10	Theoretical molecular weight of the PHA synthase fusion	89
		proteins as predicted by ProtParam	
Table	11	GC/MS results for PHB accumulation in vivo synthesised	91
		beads	
Table	12	Effects of aerobic and anaerobic cultivation conditions on	112
		PHB accumulation in L. lactis NZ9000, NZ9010 & NZ9020	