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ABSTRACT

Although subsurface drainage of pasture soils is widely practiced
in New Zealand there is little information available which details the
likely benefits of such drainage schemes. As drainage is becoming
increasingly expensive there is a need for more quantitative data on which
to base assessments of the likely cost—-effectiveness of proposed schemes.

The effect of subsurface drainage on certain soil and plant properties
was investigated at a research site on a sheep and beef farm 6 km from
Palmerston North. The soil type was a yellow-grey earth, with poor
drainage due to water perching on the fragipan. Of nine plots, each
0.4 ha in area, three were left undrained and six were mole drained.

Three of the drained plots had conventional pipe collecting drains and
the other three used major mole channels as collecting drains. The
research site was grazed as part of the normal farm rotation. Data were
collected in 1981 prior to the installation of drains, then from 1982 to
1984.

Watertable levels were monitored in a series of four groundwater
observation wells on each plot and the gravimetric water content of the
top 30 mm of each plot was determined on a regular basis from soil cores.
Soil temperature measurements were made at 50 mm depth on a pipe-mole
and undrained plot, using thermistor thermometers, and at 100 mm depth on
all the pipe-mole and undrained plots using mercury-in-glass thermometers.

Pasture growth rates were measured in caged areas using a
capacitance pasture meter and by mowing. Residual pasture left by the
grazing animal was determined using small quadrats, the pasture meter and
by visual assessment. Botanical composition was determined by point

analysis and dissection of samples removed from the caged areas. Available
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soil nitrogen, phosphorus and sulphur in the top 75 mm of each plot, and
the total levels of these three nutrients in grass and clover grown on
the plots, were measured using standard procedures. Two radioactive
isotopes (32P and 35S) were used simul taneously to study the plant root
activity on the undrained and pipe-mole plots.

Data from groundwater observation wells showed that mole drainage
was very effective at lowering the watertable following heavy rain in
winter or spring. There was no significant difference between water-
table depth on the pipe-mole and mole-mole plots. The close proximity
of the watertable to the surface on the undrained plots was reflected in
high soil water content values for the top 30 mm of soil.

Differences in water content of the surface soil between drained
and undrained plots did not affect the levels of extractable phosphate,
sulphate, ammonium or nitrate or the pH in the top 75 mm of soil. Soil
temperature measurements at 50 and 100 mm depth showed that drained plots
did not warm any more quickly in spring than did undrained plots. A
simple mathematical analysis confirmed that the lowering of the soil heat
capacity by drainage would not be expected to affect soil temperature
significantly in a yellow-grey earth under pasture.

There was little difference in pasture growth rates and utilisation
during the very dry winter and spring of 1982, but during mob grazing in
the wetter winter of 1983 utilisation was approximately 257 greater on
drained than undrained plots. Subsequently, utilisation of pasture by
sheep which were set stocked in spring continued to be poorer on the
undrained plots, with approximately 35% more residual dry matter
remaining on the undrained than on the drained plots. From the time of
mob grazing in July until the end of spring both mowing and the pasture
meter data showed that growth rates were approximately 30% greater on

the drained plots.



iv

Point analysis at the end of spring revealed that on the undrained
plots there was a 3-fold increase in the incidence of weeds, a 4-fold
increase in the incidence of bare ground and a 2-fold decrease in the
incidence of clover compared with the drained plots. Almost
identical results were obtained from herbage dissections.

There was also a decrease in the concentrations of N, P and S in
the dry matter of grass and clover grown on the undrained plots compared
with that grown on the drained plots. These differences were for the
most part small and ephemeral.

Isotope uptake studies showed that in winter drainage enabled both
grass and clover roots to extract both sulphate and phosphate from a
greater depth, with approximately 6% of the relative root activity
occuring at 40 - 80 mm depth on the undrained plots compared with
approximately 15% on the drained plots. In spring, approximately 16%
of the relative root activity was at 80 - 200 mm depth on the undrained
plots compared with approximately 26% on the drained plots.

The benefits of drainage became apparent only after grazing on a
wet soil and were probably due to the effect that drainage had on the
water content and so strength of the surface soil. Drainage increased
the bearing strength of the surface soil, minimizing treading damage to
both the sward and the soil structure and therefore enhancing both
pasture utilisation during grazing, and subsequent regrowth.

A simple mathematical model was developed, which used weather data
to predict the watertable levels in both drained and undrained soil.

By varying certain soil properties and drainage design parameters within

the model, the limiting steps in the drainage process in the Tokomaru

silt loam were investigated. The model was also designed to calculate

the number of days over the winter—-spring period on which the surface soil

would be so wet that grazing would have the adverse consequences described

A



above. In a year of average rainfall, mole drainage reduced the number
of such 'unsafe' grazing days from 69 to 10. By comparing the number
of 'unsafe' grazing days for different rainfall regimes some idea of

the cost-effectiveness of drainage may be ascertained.
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