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ABSTRACT

This thesis provides a fundamental investigation of robust control, both the issues of
robust controller design and robustness analysis of control systems are addressed. The
techniques presented evolve from time domain descriptions of linear systems and employ
state space approaches. A comprehensive review of the field is given and several
significant advances are presented. These include some new design and analysis
techniques and some new perspectives on existing techniques. The thesis is fundamental
in nature, systematically developing and criticising algorithms and methodologies. Some
numerical examples are employed to illustrate the results.

Robust control addresses problems caused by discrepancies between nominal system
models used for conventional controller design and analysis, and actual 'real' systems.
Much of the classical work in the field assumed no knowledge of possible (or even
probable) uncertainties and considered system tolerance to some general, imprecise
classes of discrepancy. This tended to lead to conservative designs which degraded
system performance to an unnecessary extent.

The modem trend is to provide a ‘precise’ prediction of possible (probable) uncertainties,
described by an uncertainty model. This aims to avoid the consideration of unfeasible
discrepancies which often caused the conservatism and will tend to minimise performance
degradation. However, tolerance to further (hopefully small) unpredicted uncertainties
should still be considered as such residual discrepancies will always exist. This modern
trend is supported in this thesis and one of the main potential benefits of the new
methodologies will be less conservative designs.

The principle contributions include: systematic methods for the design of cost-optimal
robust controllers for both full state feedback and output feedback systems. These
explicitly consider a nominal system model and an admissible domain of uncertainties and
also provide some inherent robustness to residual uncertainties. Furthermore, a new
method for the analysis of the robustness of given full state feedback controllers is
presented. For an admissible domain of uncertainty of given structure, the maximal
magnitude is determined such that stability and performance criteria are upheld.
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This thesis is concerned with uncertainties in system models which affect control system
performance. The analysis is performed predominantly in the time domain using state
space approaches. The ability of a controller to perform satisfactorily in the presence of
uncertainty is called "Robustness", it is the motivation behind entire works and to which
increasing attention is being paid. The current theories of designing a feedback controller
such that the controlled system has good robustness (Robust Controller Design) and
analysing the robustness for a given controlled system (Robustness Analysis) have been
summarised in this thesis and have been further developed. It is believed that a robust
feedback control system is necessary for many applications and hence that it will have a
great effect on industrial control practice.

1.1 ROBUST CONTROL

Mathematical models are commonly used in the design and analysis of control systems.
They will not give a totally accurate description of the real system and this discrepancy
may lead to operational problems: performance degradation or even instability. Robust
control aims to tackle the problems created by such discrepancies. The field may
essentially be divided into two areas: robust controller design, this aims to produce
controllers which can tolerate plant/model discrepancies and robustness analysis, for any
given controller this enables us to evaluate how much discrepancy may be tolerated. To
expand further, robustness has two facets: stability robustness and performance
robustness. In the presence of plant/model discrepancy, stability robustness describes the
ability to remain stable and performance robustness describes the ability to minimise
performance degradation (as measured by some performance index). Robustness is a
critical attribute for satisfactory operation of control systems and hence is very important
for industrial applications. The slow acceptance of advanced modem control algorithms
in industrial applications may be attributed to the insufficient attention paid to the
robustness issue. It is now common for controller design and analysis methodologies to

explicitly consider robustness.

To perform robust controller design or robustness analysis, a model of the discrepancy,
often termed model uncertainty, between the nominal model and the real plant is needed.
It is necessary to have a description, termed the uncertainty model, of the possible
uncertainties which the controller should tolerate. Uncertainties may be described in two
ways: parametrically or nonparametrically. Parametric uncertainty models describe
possible parameter variations thus prescribing admissible changes in parameter values in
the nominal model that should be tolerated. Typically such changes will occur due to

variations in masses, stiffness or inertia's in a dynamic system. Nonparametric uncertaint
y Y p Y
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models give a more general description of possible model/plant discrepancies, they are
commonly expressed as additive constrained transfer functions. = Nonparametric
discrepancies will typically occur when high order dynamics are neglected during model
reduction, linearisation of a nonlinear system model and due to the approximation of
continuum by lumped parameter models. In addition to the predicted, likely discrepancies
described above, a control system should tolerate some, preferably small amount, of
unpredicted discrepancy as this will always arise. This is termed the need for inherent

robustness to unknown residual uncertainty.

So, for controller design and analysis we are typically given a nominal model, an
uncertainty model and some unknown residual uncertainty. Thus, design and analysis are
performed with respect to both the nominal model and the uncertainty model and the
system's ability to tolerate both modelled and residual unknown uncertainty is considered.
However, if the uncertainty is believed to be negligible or no prediction of it may be
made, there may be no uncertainty model available. In this case design and analysis is
performed with respect to the nominal model alone and it's ability to tolerate some
unknown residual uncertainty is considered. In such cases it is likely that a larger residual

unknown uncertainty will have to be tolerated.

By definition, the discrepancy between the nominal system model and the 'real’ system can
never be exactly known thus some prediction of it is made. When the nominal model
does not adequately describe the 'real’ system then tolerance to such discrepancy will
prevent undesirable performance degradation, this is the reason of robust controller
design. However, when a control system is made robust, an opposite consequence must
be taken, i.e., when the nominal model adequately describes the 'real’ system the
performance of a robust controller is often worse than that of a controller ‘optimised' for
the nominal model alone. There is an inherent trade off between robustness and
performance when the system behaves as the nominal model. So robust controller design
and analysis requires a precise prediction of possible uncertainties, if the prediction is too
conservative or simply imprecise then unnecessary performance degradation will result, if
it is too optimistic then the control system may not be able to tolerate discrepancies that

actually arise.

Robustness to plantUmodel discrepancy is related to but not equivalent to robustness to
process disturbance or measurement noise. The latter is often termed disturbance/noise
rejection or sensitivity reduction. Techniques for creating robustness to disturbance/noise
such as Heo design, have been applied to the plant/model discrepancy robustness problem

with varying degrees of success. An alternative approach is to transfer the plant/model
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discrepancy problem to an equivalent one of disturbance/noise rejection and then to

employ a sensitivity reduction technique.

This thesis generally addresses multivariable feedback controllers, however, for the
purposes of robust controller design and analysis these are further delineated into full
state feedback controllers and dynamic output feedback controllers. Other configurations
such as partial state feedback or static output feedback controllers exist but their

robustness is not explicitly considered.

1.2 REVIEW OF PREVIOUS WORK AND RELATED LITERATURE

Over the past six decades there has been a great deal of interest in the problem of robust
control and this can be divided into two areas: nominal model based and uncertainty
model based. Nominal model based methods for design do not generally refer explicitly
to an uncertainty model, the design is often performed iteratively with rcspect to some
analysis procedure. Such analysis procedures include gain and phasc margin or Heo
bound criteria. The major drawback with nominal model based methods is that they tend
to produce conservative designs and hence unnecessarily large performance degradation.
This is essentially due to the lack of explicit consideration of existing information of
uncertainty in the design, thus the development of uncertainty model bascd methods was
motivated. Uncertainty model based methods typically refer to both a nominal system
‘model and an uncertainty model thus the robustness can be tailored to tolcrate predicted
plant/model discrepancies.

1.2.1 Nominal model based robust design and analysis

The "robust control problem" appeared in the literature for the first time in the early
thirties, it was firstly studied as a "sensitivity reduction problem" by Black (1927), Bode
(1945) and Nyquist (1932), hence the period from 1927 to 1960 can be called the
classical sensitivity design period. The focus during this period was on stability, sensitivity
reduction and noise suppression in single-input single-output (SISO) systems. A good
review of these works can be found in Horowitz (1963).

The next major period was between 1960 and 1975, this is called the state variable period.
A number of key state-variable concepts, such as controllability, observability, optimal
linear quadratic state feedback, optimal state estimation (Kalman filtering), etc., were
introduced in the early 1960's by R. E. Kalman, and some major results associated with
this period may be found in Anderson and Moore (1971). At the same time, there were
also some attempts to extend SISO sensitivity results to MIMO systems (Cruz, 1973).
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Unfortunately, the problem of robusmess of plant uncertainty was largely ignored during

this period.

The foundation of modemn robust control was also laid in this period by two important
papers. Zames (1963) introduced the concept of the "small gain" principle which plays a
key role in robust stability criteria and Kalman (1964) demonstrated that for SISO
systems optimal linear quadratic (LQ) state feedback control laws had some very strong
robusmess properties in terms of gain and phase margins. Safonov (1977) demonstrated
that these gain and phase margins results extended to MIMO systems for gain and phase
variations in each input channel to the plant. Unfortunately, when state-estimate feedback
is used instead of state feedback, Doyle (1978) showed that these desirable robustness
properties vanish. This caused a resurgence in the interest in robuswmess and started the

modem robust control period which is still very active.

The first major result of the modem period was from Doyle and Stein (1979) who were
able to show that the desirable robusmess properties of the optimal LQ state feedback
control law could be recovered by suitable design of the Kalman filter in the feedback
loop. This idea motivated the development of the LQG/LTR (linear-quadrauc-Gaussian
loop transfer recovery) approach by Doyle and Stein (1981). Safonov (1980) presented a
generalised stability criterion which was useful for the study of robusmness in multivariable
systems, this book also contains an excellent summary of LQG robusmess and stability
results and it is the first book on feedback systems to include the term robust.

One powerful method of the modem period is the He= optimisation control technique. The
investigation of H= optimisation of control systems was begun by Zames (1979). He
found that a possible way to reduce the sensitivity of control system is the minimisation of
the H= norm of the sensitivity function of a SISO linear feedback system. The He
optimisation design method based on frequency domain methods and transfer function
descriptions is comprehensively described by Frances (1987). Doyle et. al (1989)
provided a solution of the H= optimal control problem for regular systems by state space
methods. This gives a useful controller synthesis methodology from a state space time
domain problem description. When it was recognised that the H= optimisation approach
can deal with robustness far more directly than the current optimisation methods, it was
soon extended to more general problems. Kwakemaak (1993) in his summary paper,
provides a comprehensive review of how robust control systems may successfully be

designed by H~ optimisasion.
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Mixed H2/H= optimal control design is introduced by Bemstein and Haddad (1989),
Rotea and Khargonekar (1991), they attempt to design a controller such that a H2 norn
performance measure is minimised subject to an H= norm constraint. However, direct
analytic solutions to this design problem are not yet available. The problem of mixed
H2/H= optimal control design is still not totally solved and is currently receiving much

attention.

This section has reviewed previous work on controller design and analysis which is based
on a nominal system model and assuming no knowledge of the uncertainties. However, it
1s acknowledged that, if some reasonably accurate prediction of the possible uncertainties
may be made then less conservative design may be achieved. Thus uncertainty model

based robust controller design and analysis has evolved.

1.2.2 Uncertain model based robust design and analysis

Over the past two decades there has been a great deal of interest in the problem of robust
control to avoid the conservative description of uncertainty, some robust design and
analysis methods based on uncertainty models have been developed in the modemn robust
control period. A notable recent paper (Douglas and Athans, 1994) promotes a design
method which offers robustmess against both modelled parametric uncertainties and

residual unknown uncertainties.

Early work concentrated on the guarantee of stability for all admissible modelled
uncertainties using Lyapunov stability theory (Barmish et al., 1983; Barmish and Galimidi,
1986 and Chen, 1988), and they lead to the concept of quadratic stability for uncertain
linear systems. A Riccati equation approach to the design of such robust stabilising
controllers was developed by Petersen and Hollot (1986), Petersen (1987) and
Khargonekar et al. (1990). Furthermore Khargonekar et al. (1990) established a
connection to H= controller synthesis, this enables results on H= control to be applied to
the problem of robust stabilisation. However, none of these methods address the issue of

cost performance.

Chang and Peng (1972) presented the Guaranteed Cost Control approach which provided
an upper performance bound for all admissible uncertainty values. Uncertainty was
present in the system matrix alone and the admissible domain was described by a specific
structured format. Here the nominal system model is in state space form and the
performance measure is taken to be the maximum of a quadratic cost function over all

admissible parameter variations. This approach leads to a guaranteed level of
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performance (guaranteed-cost) for permissible parameter variations and is an early
attempt to design for both robust performance and robust stability. Continuing research
had been made by Kosmidou (1987), Bemstein and Haddad (1988), Liuo and Yang
(1987) and Kosmidou (1990). Luo et al. (1993) presented a method to find optimal
robust linear quadratic regulators (RLQR) based on an exhaustive numerical search, an
analytic method was presented by Petersen and McFarlane (1992) and further developed
by Jiang and Clements (1993) and Petersen (1994). The concepts of Guaranteed Cost
Control approach are used by Khargonekar et al. (1990), Petersen (1991) and Xie and
Souza (1990) to develop robust H= state feedback controller design methods which
provide Hee norm bound guarantees for classes of uncertain systems.

Since it is not usually possible to measure all state variables of the plant, it is not usually
possible to implement the state feedback solution and often output feedback controllers
should be used. In the area of robust dynamic output feedback control, Jabbari and
Schmitendorf (1991) and Jabbari and Schmitendorf (1993) proposed a method which
considers closed loop robust stability, it uses a full state feedback RLQR design method
to provide a robust control law then a high gain observer is employed to estimate the
systcm states. A drawback of these design methods is that they do not tend to the
nominal observer design when the uncertainties tend to zero. Xie et al. (1992) proposed a
method which designs a robust controller to stabilise an uncertain system with a
prescribed level of disturbance attenuation for all admissible parameter uncertainties.

Robustness analysis based on uncertainty models may give a good measure of the
robusmness of a controlled system. A technique by Neto et al. (1992) derives robustness
bounds with respect to a given state feedback controller and bounded parametric
uncertainty, for uncertainties within these bounds stability is guaranteed. Luo et

al. (1993), Chen and Dong (1989) and Sobel et. al (1989) analysed the robustness
of a standard Linear Quadratic Gaussian (LQG) controller with respect to some given
uncertainty model, however these methods tend to be conservative since they are based

on the Bellman-Gronwall inequality.

1.3 AIMS AND STRUCTURE OF THE THESIS

In this section an overview of some of the issues in robust control is given, an attempt is
made to describe the state-of-the-art for each. The contributions made in this thesis in
each area are then described. The issues are divided in those relating to full state
feedback and those to dynamic output feedback and further into those with a given
nominal system model alone and those with both nominal system model and uncertainty
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model (Table 1.1). Methods of robust controller design and robustness analysis will be

addressed for each problem in tum.

Robust Control Problems Full State Feedback | Dynamic Output Feedback
Nominal model alone Problem 1 Problem 2
Nominal and uncertainty Problem 3 Problem 4
models

Table 1.1. Overview of Issues in Robust Control

Problem 1

The design of full state feedback controllers given a nominal system model may be
approached by either LQR or Hee methods. The LQR method is suitable when the
control objective is to minimise a quadratic cost function and it is known to provide good
robustness to unknown uncertainties (or inherent robustness). Anderson and Moore
(1789) provided a comprehensive review of the method and demonstrate that it provides
good gain and phase margins. Hee methods are suitable when the control objective is to
minimise the sensitivity to process disturbance and measurement noise and they have also

been shown to possess good robustness properties (Khargonekar et al., 1990).

A method is developed and presented in Chapters 2 and 3 which offers some criteria
which, if satisfied, will guarantee the robust stability of any full state feedback control
system to a given uncertainty. Thus, the inherent robustness to parametric uncertainties
offered by both of these methods and in fact for any given full state feedback controller,

may be determined.

Problem 2

There are several controller design methods available here: LQG, LQG/LTR, He and
RLQG (mirumum entropy Heo). The LQG method is suitable when the control objective
can be described as the mirumisation of a quadratic cost function, however, it was shown
to have poor robustness (Doyle, 1978) and thus the LQG/LTR method was developed
(Doyle and Stein, 1981). This enables the robustness properties of the LQR method to be
recovered by the deployment of a high gain observer or by adjusting the weighting
matrices in the quadratic cost function, see Chapter 3. As for the full state feedback
problem, Hee methods may be applied and will offer good robustness properties. The

robustness of these techniques is reviewed in Chapter 3.
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Minimum entropy Hee control (Mustafa and Glover, 1989) uses the cost function
weighting matrices to determine suitable definitions for the disturbance and performance
vectors of the Heo problem. Thus it attempts to combine the robustness properties of Heo
control with the cost optimal properties of LQG control. In Section 6.2 of this thesis the
method is developed from the perspective of improving the robustness of the LQG
solution (Marsh and Wei, 1995). The technique produced is identical to that of Mustafa
and Glover (1989) however the new perspective is believed to offer valuable insight into

the method.

For any given dynamic output feedback controller, the level of robustness to unknown
uncertainties may be evaluated by calculating a suitable Hee norm bound, this is discussed
in Chapters 2 and 3. The analysis method is based on the 'small gain theorem' (Zames,
1963) and uses the state space solutions to Hee problems presented by Doyle et al.
(1989).

Problem 3

The Robust LQR (RLQR) method (Chapter 4) is suitable for the design of robust full
state feedback controllers given a nominal model and an uncertainty model. It will
provide a controller which guarantees stability for all admissible uncertainties and
provides minimal performance degradation across the admissible domain. As for the LQR
method, it is shown to posses good inherent robustness to unknown residual uncertainty.
The method is an extension to that of Petersen (1994), a broader range of uncertainty
descriptions is accommodated and a different solution technique and proof of optimal
performance degradation are offered. A generalised version of this methodology, applied
to partial state feedback systems was presented by Wei and Marsh (1994). An alternative
technique is robust Hee controller synthesis (Khargonekar et al., 1990) this extends the
disturbance/noise rejection and robustness properties of the Heo technique to classes of

uncertain systems.

A new method of robustness analysis for full state feedback control systems with a given
uncertainty model is presented in Chapter 5 (also Wei and Marsh, 1995). For a given
controller and performance degradation requirement, a bound for the uncertainty can be
found such that the controlled system remains stable and the performance degradation is
within the requirement over the admissible domain. An alternative approach is permitted
to design a controller such that a performance criterion may be specified and a robustness
bound found which may then be used to specify the uncertainty magnitude for the design
procedure. Thus a robust controller is designed using the performance criterion as a
design variable and a (maximal) robustness bound is offered. It should be noted that
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though this approach may be taken iteratively using the standard RLQR approach, this
method permits a direct one-step solution.

Problem 4

The RLQG method presented in Chapter 6 and by Marsh and Wei (1995) enables
dynamic output feedback controllers to be designed for a class of uncertain systems and
provides some inherent robustness to unknown uncertainty. The modelled uncertainty is
assumed to lie within some measurable domain the magnitude of which is a design
parameter. The Hee normal bound constraint is the other design parameter and the
method extends the validity of this, and thus provides a stability guarantee, to all
admissible parametric uncertainties. An alternative approach to dynamic output feedback
controller design could be approached by extending Heo techniques to cover such classes

of uncertain systems. The author is not aware of any literature on such approaches.

The analysis of the robustness of any given dynamic output feedback controller to a given
class of modelled uncertainties and some unknown residual uncertainties is a very
challenging problem. It is possible to give a general robustness analysis of an arbitrary
dynamic output feedback controller to unknown residual uncertainties, this is discussed in
Problem 2, but to extend that guarantee to all members of a class of uncertain systems is
believed to be very difficult. However, since good robustness properties are guaranteed
for the RLQG design method and general analysis of robustness is not believed to be an

important requirement.

This outlines the state-of-the-art in the areas considered and aims to put the contributions
of this thesis into context. The thesis is organised as follows: the fundamentals of robust
control are described in Chapter 2; configurations, notation and terminology are
introduced. Descriptions are given of nominal system and uncertainty models in both the
frequency and time domains and of some common performance objectives of control
system design. Finally robustness principles are introduced, this Chapter provides the core

of the whole thesis.

The inherent stability robustness of some well-known modem control system design
techniques is assessed in Chapter 3. These include LQR, H= and H2/H= for full state
feedback controllers and LQG, LQG/LTR, H= and H2/He for dynamic output feedback
controllers. These techniques normally refer to nominal system models alone for
controller design. This Chapter attempts to quantify each technique's robustness subject to

model uncertainty.
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In Chapter 4, an optimal full state feedback RLQR design methodology is presented for
systems with bounded parametric uncertainties, it offers both good stability robustness
and good performance robustness. Robustness analysis for full state feedback control
systems is addressed in Chapter S. Both stability robustness and performance robustness
for classes of uncertain systems are analysed, this is a new approach and is one of the
main contributions of this thesis. It is shown that the RLQR presented offers excellent

stability and performance robustness.

A new RLQG design technique for dynamic output feedback controllers is presented in
Chapter 6. It is believed to be less conservative than other approaches in many
circumstances. For systems with bounded parametric uncertainties the method guarantecs
both robust stability to admissible uncertainties and some inherent robustness to unknown
residual uncertainties. System perfortnance is also explicily considered with respect to a
quadratic cost function. In essence the method enables the designer to trade off
robustness to modelled uncertainty, inherent robustness to unknown residual uncertainty
and cost performance. The thesis is concluded by Chapter 7 which provides a general

discussion of the results and outlines areas of further work in robust control.



CHAPTER 2

FUNDAMENTALS OF ROBUST CONTROL

Fundamentals of Robust Control...............cccceiiiiiinneeiiiiiiiseeiiciissneeeiccsssnieccssnnes 12
2.1 Description of Control SySIeMS ..........cccviiiiierrs e 13
2.1.1 Description Of SYSIEIMS ........cceeeeeeeerieiiiiiiiiiiiieieeeaeeeeeeeaeeeeeaeneeeees 13

2.1.2 Description of controlled SyStems...........cooeuveeeiruemeecniiieeneeeeene. 15

2.2 Description of Uncertain SYSIemS ........ccueeriiiiiieriiieanie e e eeee e e 16
2.2.1 Models of parametric UNCETMAINLY ..........ccoouueeirreereernniiieenneeeeneens 17

2.2.2 Models of nonparametric Uncertainty ............cccocceeemeeeeennueeennnen. 18

2.2.3 Modelling of uncertain SYSIemS .........coccuueeeereeeiniiiieeeeeeeaeiee e 19

2.2.4 Effect of uncertainties on the closed loop behaviour..................... 20

2.3 Performance Measures for Controlled Systems .........c..cccceveiiiiiciiiiienineeens. 22
2.3.1 SUADIIILY .oeciiie e e e 22

2.3.2 Integral-quadratic cost performance ..............ccceueeneceiiiiieeenneeenene 24

2.3.3 H2-norm perfOrmance ...........ooooeieiiiiiiiiiiici e 25

2.3.4 H=-norm performance ............ccceeueieeueienieeeiinieniiceseeee e seeeeenenes 27

2.4 Robustness of Control SyStems. ...........ccoeiiiiieiiiiiieniiie e 31
2.4.1 S1ability rODUSINESS .......oocveeeeioeeie e 31

2.4.2 Performance robUSINESS ......cooemee e 37



Chapter 2. Fundamentals of Robust Control 13

As noted in the previous Chapter, robust control may be summarised as the problem of
analysing and designing a controller for a system that contains significant uncertainty. To
define the problem more precisely, a number of elements will be carefully developed in

this chapter which will be a fundamental part of this thesis.

Classes of plant models, uncertainty models, and performance measures will be
introduced as a background, then some important results will be developed which will be
used throughout the thesis. These include the description of uncertain systems and

uncertain controlled systems, as well as conditions of robustness.

2.1 DESCRIPTION OF CONTROL SYSTEMS

For simplicity, the work in control system design and analysis in this thesis will be done
under the assumption that the process to be controlled has a linear input-output behaviour
and a model of the plant is available. The model is a mathematical description of the plant
and, sometimes, the control objective or performance vector, will also be presented as

part of it.

2.1.1 Description of systems

Therc are two common linear multvarniable plant model descriptions used here; state-
space models and transfer-function matrix models. Generally, the state-space model of a

linear, time-invariant, {inite dimensional system is given by:

{ x = Ax+Bu state equation
y=Cx+Du  output equation B
Where xe ®™ the state vector

A e R™ system matrix whose elements are constant

Be R™ input matrix whose elements are constant

ue R™ the input vector

ye R™ the output vector

CeR™ output matrix whose elements are constant

De R™ feedthrough matrix whose elements are constant

For plant subject to stochastic disturbance/noise inputs, the state-space variable model is

extended to:
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x =Ax+Bu+Ed
(2.1.2)
y =Cx+Du+Fv
where de R™ vector of random Gaussian white noise disturbance process
ve R vector of random Gaussian white noise measurement noise process
E e R disturbance weighting matrix
F € R*** measurement noise weighting matrix

It is assumed d and V are uncorrelated, that is Edv'] = 0, their mean values are zero, i.c.,
€ld]= E[V1=0, and their iniensities matrices are W and V respectively:
E[d(t)dT(T)] = W(t—1)

Ev)VT(r)] = Vé(t-7)
and for sunpuciy, 111s a1so assumea that D=0 for model (2.1.1) and (2.1.2).

The system outputs may be further delineated into measured outputs and a performance
vector, this will produce a general state-space model which can be described in following
form:
x=Ax+B,u+B
z=Cx+Du
y=Cx+D,»

(2.1.3)

[d]

Where @ is a vector of the union of disturbance and noise processes as: (0=|_VJ, it may

include reference inputs, disturbances and noisc. The performance vector z may include
errors, performance vectors, process outputs and control inputs. The intemnal
compensation signals are represented by vectors y and u, and correspond to the sensor

signals and actuator demands, respectively.

A transfer-function matrix model may be also uscd to describe a system, this is denoted:

L{y(1)] _ y(s)
G(S)=—""—"T"="= 2.1.4
RTINS (2.1.4)
Where u(s) Laplace transform of input vector u(t)
y(s) Laplace transform of output vector y(t)

This can be related to the state space representation (2.1.1) by:
G(s)=C(sI-A)"'B+D

The system description methods mentioned in this section will be used throughout the rest

of the thesis.
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2.1.2 Description of controlled systems

This thesis is concemed with design and analysis of feedback controllers, which can be
divided into two distinct types: state feedback controllers and output feedback controllers.
To enable the state-feedback controller to be used, all the states must be measurable, this
is known as a full information system. Because of the considerable design experience
available on full state feedback control systems, as well as some useful properties such
systems can provide, state feedback controller design could be a very powerful tool for
attaining control objectuves and hence, it has been extensively studied in this thesis.
However, it is not always possible to implement the state-feedback solution, the reason is
that it is not always possible to measure all the state variables of the plant. So sometimes
an output feedback controller should be used. In fact, an output feedback controller is

more practicable than a state feedback controller.

Firsdy the state feedback controller is considered for the system which can be described
by the state space model (2.1.1). The closed loop system can be described as Fig. 2.1. The
state feedback controller can be described by:

u(t) = -Kx(t) (2.1.5)

Where matrix K is the vector of static gains.

:

Fig. 2.1 Full state feedback controlled system

Secondly the dynamic output feedback controller, K(s), which is commonly described by
a dynamic system representation, is considered for the system (2.1.1). The closed loop

system can be described as Fig. 2.2.
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! K(s) ](

Fig. 2.2 Output feedback controlled system

In this thesis K(s) is only considered as a proper, dynamic output feedback controller
with the same order (or less) as the plant and which may be described as:

K(s)=C.(sI-A,)"'B,

Alternatively, the control input may be related to the measured output by the following
state space description:

{C =AG+B.y

u=C.c (2.1.6)

Where ¢ is the state vector of the dynamic controller.

2.2 DESCRIPTION OF UNCERTAIN SYSTEMS

Linear time invariant models which are used in control system design can only
approximately describe the actual dynamics of a plant. This means that some differences
exist between the nominal model and actual plant, and this difference is called "model
uncertainty”. To permit robustness analysis and robust controller design, this model
uncertainty may be described by an uncertainty model. Two possible types of uncertainty

models, parametric and nonparametric, are presented and discussed in this section.

Parametric uncertainty models are motivated by an imprecise knowledge of the
parameters of the system. The structure of the model equations can be determined by
means of the basic laws of physics and engineering, but the numerical values of the
parameters are only known within tolerances. If the model parameters are estimated
experimentally, the remaining uncertainties depend on the level of disturbances that

excited the plant during the experiment. Parameter variations and nonlinearities have to be
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omitted if the system is to be described by a linear model. Sensor or actuator failures
which, from the controller point of view, yield changes or even restrictions of the input-
output behaviour of the plant, parameter drifts, or parameter variations caused by moves

of the operating point, also belong to this source of model uncertainties.

Nonparametric uncertainty models offer a general description of model uncertainty. Such
an uncertainty model may be suitable if the nominal model has been reduced in order to
simplify calculations or to avoid difficulties that arise from the high complexity of the
complete model. For instance, parasitic dynamically elements in actuators, transmitters or
measurement devices are often neglected. Besides that, if the controller has to be designed
when the system to be controlled is stil under construction, then there might be some

estimates of the static or dynamic behaviour of the plant.

Furthermore, thesc uncertainty models may also be characterised as structured or
unstructured models. If a suitable structure is known for the uncertainty model, then this
may be used to give a more precise description of the uncertainty, else, the default is to
use an unstructured uncertainty model. Descriptions of parametric and nonparametric

uncertainty models are now given in more detail.

2.2.1 Models of parametric uncertainty

Parametric uncertainties are those that can be compensated for by correcting the model
parameter values. Normally, parametric uncertainty is denoted in an uncertainty model by
some uncertain elements, and these uncertain elements may be bounded by some kind of
norm. A system with parametric uncertainties can be described as:
{x =(A+AA)x+(B+AB)u
y =(C+AC)x

or G(s) =(C+AC)(sI-(A+AA))'(B+AB)

To illustrate the different types of parametric uncertainty models, we just consider the
state variable model here, and for simplicity, a closed loop system x = (A +AA)x will be

considered. The general form for parametric uncertainty model of the uncertain term AA

1S a matrix norm bounded structured format:
AA = NO(1)M

Where N and M are constant matrices which imply the structure of uncertainty, the
uncertain matrix, ®(t), is constrained by the maximal singular value, i.e., G(®(t)) <€.
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Two special cases of this format are considered:

(D). Scalar norm bounded structured parametric uncertainty:

AA = Eini 1=1,2,...,r, where A, are constant structure matrices, q; are

bounded scalar parameters with |qi|s €. This is a structured parametric

uncertainty model.

(2). Unstructured norm bounded parametric uncertainty:

When N and M arc identty matrices, AA can only be described as an
unstructured parametric model, which is constrained by the maximal singular
value, 1.e., G(AA) <Et.
Hence, in this thesis, the parametric uncertainties AA AB and AC are generally modclled
using norm bounded, structured, parametric uncertainty models as:

(AA =N,®, ()M, 6’(¢_(l)}$£l
[1=1AB=N,®, ()M, .5(®, (1)) <€

lac=N®. (M, 5@, (1) <e

2.2.2 Models of nonparametric uncertainty

Nonparametric uncertainty models represent the uncertainty which can not be represented
in terms of the parameters of the nominal model, so it represents the general case of the

system uncertainty. A system with nonparametric uncertainty may be described as:
G(s) =G, (s) +AG(s)

where  G,(s) = C(s1-A)™'B is the nominal model of the system.

The nonparametric uncertainty may be modelled generally in additive nonparametric
format:

b/

=G, (s) +AG(s) = Gy (s) +NA(s)M
u(s)
Where N and M are constant matrices which imply the structure of the uncertainty. A(s)

represents a nonparametric uncertainty matrix which could typically be constrained by an
H~ norm, 1.e., "A(s)lL <.

Two special cases of this description are:

(1). X9 _ (I+L(s))G,(s)

u(s)
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Where L(s) represents an output multiplicative unstructured nonparametric
uncertainty which could be constrained by a norm, i.c., [L(jo)| < ¢ (w).
y(s)

(2). —— =G, (s)(I+L(s))
u(s)

Where L(s) represents an input multiplicative unstructured nonparametric
uncertainty which could be constrained by a norm, i.e,, "L(j(o)" <l ().

2.2.3 Modelling of uncertain systems

Uncertain systems are normally described in one of following two ways: firstly, we
assume that the system has uncertainties, but no information about these uncertainties 1s
available, (i.c., system with unknown uncertainty). In this case, only the nominal model is
used for robust controller design and robustness analysis, the closed loop system should
have some inherent robustness which can guarantee the robust stability and performance.
The unknown uncertainty could be described by parametric or nonparametric models, or

even both, such as:

Real system = nominal model + unknown uncertainty

or {% = (C+AC,)(sI-A—AA,)" (B+AB,)+AG(s)

Where AG(s) 1s the nonparametric part of the unknown uncertainty, and AA ,, AB, and

AC, are the parametric part of the unknown uncertainty.

Secondly, we assumed that part of the uncertainty can be represented by some parucular
parametric uncertainty model. This representation of parametric uncertainty should be
used in the design and analysis to give a precise description of model uncertainty and thus
avoid conservatism. Normally, since it is impossible to describe all model uncertainty with
a parametric uncertainty model, so to guarantee robustness, it is assumed that there also
exists an unknown residual uncertainty for this uncertain system. This residual unknown
uncertainty could have a nonparametric part AG(s) and parametric parts AA , AB, and
AC,. Hence the closed loop system should be robust for modelled uncertainties and also

has some inherent robustness included for the unknown uncertainty.

Real system = nominal model + modelled uncertainty + unknown residual uncertainry

or ﬂ:(cwcp +AC,)(sI-A-AA -AA ) (B+AB, +AB,)+AG(s)

u(s)



Chapter 2. Fundamentals of Robust Control 20

Where AA |, AB_ and AC, are modelled (parametric) uncertainties of the system. Due to

the omnipresence of unknown uncertainty, a practical and reasonable control system
should always be designed with some inherent robustness included for it.

2.2.4 Effect of uncertainties on the closed loop behaviour

To summarise the results from the previous section, for the system with a nominal model,
modelled uncertainties and residual unknown uncertainty, it is necessary to study the
effect of the unknown uncertainty for the robust design and robustness analysis. The
general description of the system of concern can be found as:

¥

) (C+AC)(sI-A-AA) " (B+AB)+AG(s)
Wherc AA=AA +AA , AB=AB_+AB, and AC=AC, +AC, are all possible parametric

uncertainties of the system such as modelled uncertainties and the parametric part of the

residual unknown uncertainty.

For full statc feedback control design and analysis, uncertain controlled systems with the

above uncertainty can be described by Fig. 2.3.

]

» AG(s)
s

K [=

Fig. 2.3 Full state feedback control system with uncertainty

It is clear that the transfer function between input and output can be described as:

y(s)

o (C+AC)(sI-A -AA —(B+AB)K) ™ (B+ AB) + AG(s) (2.2.1)

For a stable nonparametric uncertainty AG(s), the stability of the closed loop system only
depends on the closed loop behaviour (sI-A-AA-(B +AB)K)™; it is clear that
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uncertainties AG(s) and AC do not affect this behaviour. Hence to design a control
system with good robustness means finding a full state feedback controller, K, such that
the closed loop system has good robustness subject to uncertainties AA and AB, ie.,
only uncertainties AA and AB will affect the robustness of controlled system in robust

design and analysis.

For dynamic output controller design and analysis, uncertain controlled systems with
modelled as well as unknown uncertainty can be described by Fig. 2.4.

>l AG(s) }

{ K(s) |<

Fig. 2.4 Output feedback control system with uncertainty

[t is evident that both parametric and nonparametric uncertainties will affect the closed
loop behaviour, so both should be considered in the robust control design and analysis

procedure. However, since (2.2.1) may be rewritten as:

gia =C(sI-A)"'B+I(s,A,B,C,K,AA,AB,AC)

u(s)
=G, (s)+AG(s)

Where I'(s,A,B,C,K,AA,AB,AC) is a function whose formulation can be found by
some algebraic manipulation. So the parametric uncertainty, AA, AB, AC, can also be

represented as a special case of the nonparametric uncertainty AG(s).

Hence, for the unknown uncertainty, it is reasonable to consider nonparametric
uncertainty AG(s) only because good robustness for this will provide some inherent
robustness for the parametric uncertainty parts, AA , AB_ and AC,. So for simplicity, we

will only consider the additive nonparametric uncertainty part, AG(s), of the unknown
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uncertainty for robust design and analysis of output feedback control systems. For less
conservative design, modelled uncertainties AA |, AB_, AC_ = should be always considered

in robust design and analysis.

2.3 PERFORMANCE M EASURES FOR CONTROLLED SYSTEMS

The ultimate objective of control system design is that the controller performs "well"
when it is implemented on the real plant. To assess this objective it 1S necessary to
establish performance measures for controlled (or closed-loop) system; the following
general measures are used in this thesis:

. Stability

. Dynamic performance

. Robustness

In this section the first two of them; stability and dynamic performance will bc
introduced. Dynamic performance will be further broken down into integral quadratic

cost, H2 and H= norm performances. Robustness is the focus of this thesis it will bc

discussed in detail in §2.4.

2.3.1 Stability

Stability, of course, is always a necessary performance requirement in control systcm
design. Simply stated, a system is stable if for every bounded input, the output is also
bounded. This is normally referred to as bounded-input bounded-output (BIBO) stability.
Since it usually is not easy to measure every possible input and output of a system, BIBO
stability is difficult to determine, we therefore consider further two stability definitions,

asymptotic stability and Lyapunov stability.

Consider a closed loop system which is described in state space by:
(x=Ax
{ (2.3.1
L y = CoX

1). Asymptotic stability
The system (2.3.1) is said to be asymptotically stable if the output, y(t), is, such that, for
any initial condition:

limy(t)=0

A necessary and sufficient condition (Ogata 1990) of asymptotic stability for above

system is:

Ref\ (A()}<0, Vi when (Co, Ay) is observable. (23.2)
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Since for uncertain systems it is not easy to find the exact eigenvalues of the system

matrix, A,, the test for asymptotic stability is difficult to employ. It is necessary to

0!
introduce the following stability measurement method which will play an important role in

the robust stability analysis of control systems.

2). Lyapunov stability
A general sufficient condition for a system to be stable is that there exists a scalar
function, V(x,t), that has a continuous first partial derivative and satisfies the conditions:

. V(x,t) is positive definite.

. V(x,t) is negative definite.

This function is known as a Lyapunov function and its existence is a sufficient condition
of system stability. This sufficient condiuon is a very useful judgement of stability,

particularly to nonlinear systems.

A special case of the Lyapunov stability applicable to linear time-invariant systems,

which is generally referred to as quadratic stabiliry, is given in the following Lemma:

Lemma 2.3.1 For any positive definite matrix Q, the closed-loop system x = A x is
quadratic stable if and only if there exists a positive definite matrix P which

satisfies the so-called Lyapunov matrix equation:

AP+PA +Q=0, or AP+PA <0 (2.3.3)

Furthermore, this makes V =x"Px a valid quadratic Lyapunov function for
the systemas P>0= V>0 and V=x"(AJP+PA )x<0.

Proof is given by Ogata (1990), pp. 733

To extend this result to linear time-varying systems, consider the following Corollary.

Corollary 2.3.1 The linear time-varying system x = A, (t)x is asymptotically stable if

there exists a positive definite matrix P such that the following expression is
valid for all time t € [0, o0):

Aj()P+PA (1)<0 (2.3.4)

Proof: If there exists a positive definite matrix P such that the expression (2.3.4) can be
held for all time te [0,e), then scalar function V(x,t)=x"Px is a valid quadratic

Lyapunov function for this system, and the system is said to be quadratically stable. *
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The Lyapunov stability condition therefore provides a useful stability criterion, the
quadratic stability measure, which is important in the stability analysis of control systems
described by state space equations. It is also particularly useful for robust stability
analysis. This measure is fundamental to the Riccati equation approach of robust

stabilising controller design.

There may exist many controllers which can stabilise the system. To compare them and
find the most useful one, it is necessary to introduce some measures of dynamic
performance; such as integral-quadratic cost performance, H2 norm performance and H=

norm performance.

2.3.2 Integral-quadratic cost performance

Of the various performance measures of system input and output energies, the integral-
quadratic cost performance is very popular in control design. Consider the plant which is
modelled by the deterministic plant model (2.1.1), the common description of the integral-

quadratic cost performance measure is:
J=J:(XTQx+uTRu)dl (2.3.5)

and the integral-quadratic cost performance measure of the closed loop system is:

J= J:xTQOxdt (2.3.6)
with Q,=Q+K'RK
If the plant is subject to stochastic disturbance/noise inputs and described by the model

(2.1.2), the common description of the integral-quadratic cost performance measure is:

1 (i
J=liml—2J; (x"Qx +u"Ruldt (2.3.7)
0

tg oo

and the integral-quadratic cost performance measure of the closed loop system is:

Yels
—55[, X" Q,xdt (2.3.8)

J=lim

Lg—te= [0

Where for all of these descriptions, Q = 0 and R>0 are performance weighting matrices.

These cost values can be calculated from the following Lemma.
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Lemma 2.3.2 For a stable closed-loop system, x = A x, with initial state vector,
x(0) =x,, and performance index (2.3.6), the cost value is given by:

J = xyPx,.

Where P is the positive definite solution of the Lyapunov equation:

AP+PA,+Q,=0 (2.3.9)

Proof: If P is the positive definite solution (2.3.9), then
Q,=—(A;P+PA,)

hence
J= -Jo"xT(Agm PA,)xdt

__[r9 T
= J; = (x Px)dt
=x(0)"Px(0) — x(c0) " Px(c0)

Since the closed loop system is stable, x(o0) =0, so it follows that J = x;Px,, thus proving
Lemma 2.3.2. *

For the system subject to stochastic disturbance/noise inputs, we have that:

Lemma 2.3.3 For the closed-loop system, x = A ,x+Ed, where d is assumed to be
the vector of Gaussian random disturbance process driving the plant whose
covanance matrix is (2.1.2) the performance index as (2.3.8), the cost value
is: J=tr(PQ,). Where P is the positive definite solution of the Lyapunov

equaton:

A,P+PAT+ETWE =0 (2.3.10)

Proof: The proof of this Lemma can be found in Kwakernaak & sivan (1972) 4

A possible objective of the control system design here could be to find a stabilising
controller, u(t), such that the above cost performance value is minimal. Some powerful
and popular control design methods, such as LQR and LQG address to this objective, will

be introduced in the next chapter.

2.3.3 Hz2-norm performance

The H2 norm is a measure of system input and output energies. Consider a closed loop
system description of system (2.1.3), where a full state feedback controller, u = Kx, has

been employed to relate state to control input.
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{x =Ax+B o

z=Cyx

It's transfer function can be described as

_HS) o DAY
G(s)= 5y = Co(s1=A0)"B,

Then the H2 norm can be defined for the above transfer function as:

e .
lcel, =JgLTr{G(jm) G(jw) dw 23.11)

Where * means conjugate transpose, and (2.3.11) will be finite if the closed-loop system
is stable. The H2 norm may be computed in the following way (Doyle, et. al 1989).

Lemma 2.34 Let L_ be the controllability Gramian of (A,, B,) and L, the
observability Gramian of (A, C,). These can be found from

AL, +LAJ+BB] =0 (2.3.12)
AL _+L_A,+C;C,=0 (2.3.13)
Then the H2 norm is given by

Il = Tr(L.ClC,) = Tr(L,B,BT) 2.3.14)

The H2 norm performance measure is closely related to the integral-quadratic

performance measure, to show this relationship, suppose that the H2 norm of the transfer

: z(s) . .
function G(s) =—— is given by:

axs)

Ices)l, = JTr(PCIC,)

Where the controllability Gramian P is the positive definite solution of the following
Lyapunov equation:

A,P+PA;+BB] =0 (2.3.15)
If we choose CgC0 =Q, and the disturbance is assumed to have identity covariance

matrix, i.e., W = I, then by comparison with Lemma 2.3.3 it follows that:
2
IG®l, = w(PQ,) =1

Hence, for a system with a particular performance weighting and uncorrelated Gaussian
disturbances, the H2-norm performance will give the same measure as the integral-

quadratic cost performance.
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2.3.4 H~-norm performance

The peak value of a frequency response is called the H= norm. This is a powerful measure

of the disturbance rejection and noise suppression ability of systems. It can be interpreted
as the maximum energy gain over the whole frequency range. In this section the H= norm
performance of the control system will be described. The use of the He norm measure to

robustness will be discussed in next section.

Before continuing, an understanding of the concepts of singular values is necessary. The
singular values of a rank r matrix, M e R™", denoted o, are the non-negative square-

roots of the eigenvalues of M™M ordered such as that 6, >c, 2...20,. If r<n then there
are n-r zero singular values. Furthermore, there exist two unitary matrices U e R™™and

Ve R™, and a diagonal matrix, £e R™", such that

M™M=UZV' = Uﬁ; g}vT

Where X =diag(o,,0,,...,0,). This reprcsentation 1s called the singular-value
decomposition(SVD) of matrix M. The greatest singular value, ,, is denoted 6(M)=0,;
the n-th singular value (i.e., the least singular value) is denoted (M) =0¢,. Some useful

properties of singular values are given here:

(1.  oM)<r, M) <TM)

and o(M) =-1—

2). ™ exists, 6(M) =
(p2). If M~ exists, G(M) M

(p3). S(aM)=|alG(M), wherc a is any scaled paramcter.
(p4). GM+N)<G(M)+G(N), and G(MN) < G(M)G(N)
(P5).  o(M)-G(N)< M +N) < a(M)+G(N)

(P6).  max{6(M),5(N)}<T(M NJ]) <2 max{G(M), 5(N)}

o _[m]
(p7). max{G(M),5(N)}< G(LNJ)
(p8). max-.jlml-Jl SoM)< nmaxi'JImi.jl

®9). X & =Tr(M™™)
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To use these concepts and properties in an He optimisation design method, let us study

the He= norm measure of the control system. Consider a stable transfer function

G(s) = y( ) The He norm can be defined, in the frequency domain, as

u(s)
IG(s)| =Sup(BG(jw)) (2.3.16)

To interpret the H= norm as the maximum energy gain, suppose G(s) describes a stable
dynamic system with input vector u(t) and output vector y(t). Let u(t) be bounded in

energy by which we mean that the total input energy is finite, i.e.,
total input energy = ‘[:u(l)Tu(t)dt

Then the square root of the maximum energy gain from input to output over all non-zero

u(t) is equal to the H= norm of G(s):

j y() y()dt

-Sup O{G(Jm)] =|G(s) 2.3.17)
"<0 l u()Tu(v)dt " "

Hence, the H~ norm is a powerful measure of the disturbance rejection and noise

suppression ability of system.

The following Lemma will present some important relationships between He norm

performance and quadratic stability through the use of Riccati equations.

Lemma 2.3.5 For a system G(s) = C(sI-A)™'B

(1). |Ges)|_ <7, if and only if there exists a positive definite matrix P which

satisfies
AP +PA +7;’PBB'P+C'C<0 (2.3.18)
(2). If [A, C] is observable, then this condition may be relaxed to:

ATP+PA +7;PBB"P+C'C=0 (2.3.19)

Proof: (1). (Sufficient): Assume that there exists a positive definite matrix, P, which
satisfies (2.3.16). We can then define two constant matrices Q, > 0 and E, as follows:

A™P+PA +7;’PBB'P+C'C+Q, =0
EE, =C'C+Q,

then we obtain
A'P+PA +y;’PBB'P+E E =0
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and since (joP) + (jwP) =0 it follows that
—(joI-A)'P-P(jwl-A)+v;’PBB'P+E(E, =0 (2.3.20)
Where * means take the conjugate transpose. Premultiply (2.3.20) by v;' €jwI—A)™T and
postmultiply by ;' (joI—- A)™ to obtain:
Py (jol-A) "' +7; ol - A) TPBBP(jol - A)™'

(2.3.21)
+7.26jwl - A) TEJE, (jol - A)" =y 6wl -A) TP =0

Premultiply (2.3.21) by B and postmultiply by B, defining:

H(jo)=v;B"wl-A)"PB
and

G,(s)=E,(sI-A)"'B
to obtain:

—H(jo)-H'" (jo)+H(jo)H" (j0)+7;’G| (0)G, (jo) =0 (2.3.22)

ic,  I-[I-HGw)] [I-H(jo)- 71, ’G )G, (jo) =0
1-v;'G ()G, (jw) = 0

so I-7'GTw)G(jw) -1, B oI -A) " Q, (jol-A) B 20
Since B should be full column rank and Q, is positive definite, it is clear that for finitc ®,

Y BT (jwl-A)TQ,(joI-A)'B >0

So I-7.’G"(jw)G(jw) > 0 (2.3.23)
Therefore
lc®l. <,

(Necessary): If ||G(s)||_, <Y, then it follows that
Y5 G (jw)G(jw) < 1

Using this inequality and from the results of Brockett (1970) we find that there exist
matrices, P > 0 and Q, >0, such that:

A"P+PA +Y;’PBB"P+C'C<0 (2.3.24)

This implies that:

ATP+PA +y;’PBB'P+C'C<0

The proof of result (2) could be obtained in (Lemma 4 of Doyle 1989). *
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Corollary 2.3.5 It is also evident that, for any finite positive parameter Y,. if the
transfer function G(s) for given system satisfies "G(S)IL <Y, this implies that

there exists a positive definite matrix, P, which satisfies (2.3.18) so the system

is stable by the use of Lemma 2.3.1.

A further useful result can be found in the following Lemma by the use of the properties

of singular values.

Lemma 2.3.6 For any appropriately dimension matrices, B, and C,, it follows that:

[E}SI—AO)_I[B B

2“C(SI—AO)_IB"_

Proof: From the properties (P6) and (P7) of singular values, we can easily find that:

el . [ c(s1-4,)"[B B)]
[C,J‘S"A") SR e PR |

From the property (P6) of singular values, it fallows that:

FC(sl—Aﬂ)"l[B B,]]

C,(s1-A,)'[B B)]

> c(s1-4,)"[B B

]

Since  [C(s1-A,)"[B B,]"“:”[Ctsl—Ao]-]B C(SI_AG)ABI]“_

From the property (P7) of singular value, it follows that:

I[C(sI—Ag)-]B C(s1-A. 1"'31]”z"c(sl-Ao)"B‘L
So

2|cist-A,) B .

I:C]JSI—AO)'I[B B

G

In this section some different kinds of performance measures of control systems have been
introduced, stability guarantee, integral quadratic cost and He performance will be the

main objectives of control design in this thesis.
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2.4 ROBUSTNESS OF CONTROL SYSTEMS

In this section, measures of the robustness of uncertain systems described by nominal
model and unknown uncertainty will be established. Hence, only a nominal model with
some assumed uncertainties is available for robust design and robust analysis. From the
discussions of §2.2.4, the unknown uncertainty should be described as parametric
uncertainty for a state-feedback control system, but for a dynamic output feedback
control system, unknown uncertainty should be described in general as an additive
nonparametric uncertainty. In robustness analysis there are two principle concems,

namely, stability robustness and performance robustness.

As a preliminary, we introduce the following result from linear algebra which will be used

to derive the subsequent results.

Lemma 2.4.1 For any matrices X , Y and a full rank matrix v with appropriate

dimensions:

. |
(i). X'Y+Y'X< (I,XTX+EYTY, for any scalar o.> 0

» 1
(). X'Y+Y'X< ax"'vx+a Y'V'Y, foranyoa>0and V>0

Proof: Since
1 1 1
X" X+—YY-XTY-YTX = (=Y -JaX)T (= Y-vJaX) >0
o o ¥ YR (g e

So the result of (i) follows. Similarly, since

1 v v
oX"VX+=YTV'Y-XTY - YTX = (—= Y -VaV#X) (—=Y - JoV%X) > 0

o \/E Vo
So the result of (ii) also follows. *

2.4.1 Stability robustness

Stability robustness concerns the problem of whether the system remains stable for all
plant uncertainty within a specific class of uncertainties. A related problem involves

determining the largest class of uncertainties under which stability is preserved.

As discussed in §2.2.4, the unknown uncertainty should be described as parametric
uncertainty for state feedback control system, or for an output feedback control system,
unknown uncertainty should be described as nonparametric uncertainty. Hence in this
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section two kinds of uncertain controlled system will be studied: uncertain systems with
assumed parametric uncertainty and a state feedback controller, and uncertain systems

with assumed nonparametric uncertainty and an output feedback controller.

I. Systems with assumed parametric uncertainty and a state feedback controller

For a system and given full state feedback controller, K, only uncertainties AA and AB,
which are the parametric part of the unknown uncertainty, will affect the stability

robustness of the closed loop system. The effects of uncertainties AA and AB can be
united in AA, by: AA,=AA+ABK, so for full state feedback controlled system,

without loss of generality, we can only consider the closed loop system uncertainty:
AA,=NO®(t)M, where N and M are constant matrices which imply the structure of

uncertainty, the uncertain matrix is constrained by singular value. Hence consider an
uncertain system described as:

x=(A,+NO(t)M)x (2.4.1)
with E(CD(l)) <e. The problem studied here is to find a condition such that the uncertain
system (2.4.1) can remain stable for all admissible uncertainty. Since the uncertain matrix
is time-varying, from Corollary 2.3.1, uncertain system (2.4.1) will be robustly stable if,

(A, +NO()M)"P+P(A,+N&(1)M) < 0 (2.4.2)
has a positive definite solution, P > 0. It is obvious that to check this for all admissible
&(t) is impossible, the following result will give a basic theory of the robust control

design and analysis techniques for the system with parametric uncertainties.

Lemma 2.4.2 Consider the uncertain system (2.4.1), if there exists a parameter a > 0,

such that

1
AP, +P A +0e’P,NN'P, +EMTM <0 (2.4.3)

has a positive definite solution, P,, then this solution also satisfies expression (2.4

Proof: Suppose there exists a parameter o >0 such that (2.4.3) has a positive definite
solution, P,, from (1) of Lemma 2.4.1 and G(dt)) <¢ it follows that for this positive

definite matrix P, we always have that:
1
(N&()M)"P, + P, (N(OM) < 0 P,NN'P, + —M'M

then adding this to (2.4.3) it follows that
(Ao+N¢(L)M)TPO+P0(A0+N(D(L)M)<0 (2.4.4)
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This means that there exists a positive definite solution which satisfies (2.4.4). From the
definition of the Corollary 2.3.1 we know that system (2.4.1), x = (A, + N®(t)M)x, is

quadratically stable. .

So the existence of a positive definite solution for (2.4.3) is sufficient to guarantee the
robust stability of uncertain system (2.4.1). Alternatively, a robust stability corollary may
be established in the form of an H= norm.

Corollary 2.4.2 System x=(A,+AA )x is stable for all AA,=N®()M with
S(d(n) <e if

IMsT-A0)"'N|_< ¥ (2.4.5)
or, if there exist any two matrices N,, M, and any & > O such that:

M, (s1-A,)"'N,|_ <1 (2.4.6)

€
and esM"M <M M,; —NN" <NN;
o

Proof: It is clear that if
3
aeM'M <M;M,; —NN'<NN;
o
then there exist two matrices B, and C, such that

€
MM, =0cM'M+C|C,;; N/N;=—NN"+B B/
o

rJ_M [ £ 1
M, =| ‘:f :|and ND=L‘EN B |

le.

So from Lemma 2.3.6 we find that if the system satisfies (2.4.6), then it will satisfy
(2.4.5). However, from Lemma 2.3.5 it follows that if (2.4.5) is satisfied, then there exists

a positive solution for the following
2
3
ATP+PA +PENNTTP+0LMTM <0
From Lemma 2.4.1 we can find that
(A +NO()M)"P+P(A +NI(1)M) <0

Hence V =x"Px is a Lyapunov function and the system will be robustly stable. *
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II. Systems with assumed nonparametric uncertainty and an output feedback
controller
From §2.2.4 we know that parametric part AA, AB and AC of unknown uncertainty are
some special cases of non-parametric part AG(s), and it is rcasonable to consider
nonparametric AG(s) only because good robustness for non-parametric uncertainty part
AG(s) will provide some inherent robustness properties for the parametric uncertainty
parts AA, AB and AC. Hence we consider an uncertain system described in §2.2.2 as:
G(s) = G,(s)+NA(s)M 24.7)
Where A(s) is uncertain matnx and its size is bounded by ||A(s)|L <n. Matrices N and M

could describe the structure of non-parametric uncertainty, if the uncertainty is

unstructured, then N and M can be chosen as identity matrices.

To establish a general condition for robust stability of the uncertain system, consider the
closed loop system of uncertain system (2.4.7) with a dynamic output fecdback controller

K(s) could be presented by Fig. 2.5:
>l A(s) }

Yo Uo

y
- >| Gy (s) 5 S

|| K(s) ==

Fig. 2.5 The uncertain closed-loop system

Furthermore, diagram of Fig. 2.5 can be transferred to the following form:
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Fig. 2.6 The transferred uncertain closed-loop systcm

Then we can get the diagram for the Small Gain Theorem as:

Fig. 2.7 The diagram for the Small Gain Theorem

The well-known Small Gain Theorem is introduced in the following (Balas, 1991):

35

Lemma 2.4.3 The closed loop system shown in Fig 2.7 is stable for all uncertainty
A(s) with [[AGw)|_ <n, if

T ( jm)||_, < ﬁ (2.4.9)

However, Tu°y° (s) can be found from the Fig. 2.8.
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Fig. 2.8 The diagram for the certain system part

So T, , (s) =MK(s)[1+G,(s)K(s)]"'N

General state space descriptions of such plant with transfer function G,(s) and dynamic
output feedback controller K(s) were given in §2.1.1 and §2.1.2 which can be represented
as:

x =Ax+Bu ¢=Ac+Be

=[5 2,

G,(s)= {y:Cx

It is clear from the Fig. 2.8 that
u=y, e=y+Mu,_, y, =Ny,.
Then closed loop transfer function from u, to y_ can be found as:

T, (5)=C,(sI-A,)"'B, (2.4.10)

Where

[ A BC] B [0 ]
Av=lpc a | Co=l0 NG Bo=|yp |

So from Lemma 2.4.3 an alternative interpretation of this robust stability criterion can be

formulated as the corollary 2.4.3.

Hence, for the system with nominal model and nonparametric uncertainty, to improve the
robustness of the closed loop system subject to this non-parametric uncertainty implies to

design the controller such that Tu.,y,( j(o)“ can be reduced. The choice of N and M

depends on the structure of uncertainty which the open loop system will have, if we don't
know anything of uncertainty structure, then matrices N and M should be chosen as

identity matrix.
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Corollary 2.4.3 If the H= norm of the transfer function of the closed loop system
(2.4.10) satisfies the condition of

T, (jo) ﬁ 24.11)

then the system will be robustly stable to the non-parametric uncertainty
AG(s) = NA(s)M with [|A(jw)]_ <.

2.4.2 Performance robustness

Robust stability is the minimum requirement for a control system with significant modecl
uncertainties. However, robust stability alone is often not enough, once it has been
satisfied, it is of interest to investigate quantitatively the performance degradation within a
given uncertainty domain. In most cases, long before the onset of instability, the closed-
loop performance will degrade to the point of unacceptability. Hence a "robust
performance” measure is necessary for system analysis, such a measure can be indicated
by the worst case performance associated for a given level of uncertaintes.

Here we also consider the uncertain system described by a nominal model and unknown
uncertainty, for simplicity, only robustness of integral-quadratic cost performance (or H2
norm) for the full state-feedback controlled system is considered. The case of output
feedback controlled systems is very complex, it is an interesung issue but beyond the

scope of this thesis.

Consider the same uncertain closed loop system of (2.4.1) with initial state vector
x(0) =x,.

x=(A,+AA (1))x where AA (1) =NDOM, T(d(1)) <e
If the performance index is given by (2.3.6) as

J= Io"xTQOxdt
then we try to apply Lemma 2.3.2, the cost performance is J =xjPx,, where P is the
constant positive definite solution of the following Lyapunov equation:

(A, +AA (1)"P+P(A,+AA (1))+Q, =0 (2.4.12)
or (A, +NO(OM)'P+P(A, +ND(t)M)+Q, =0

Since the closed loop system is a time-varying system, and it is impossible to find a time-
invariant solution P > 0 for the above equation, so the result of Lemma 2.3.2 can not be

directly used here to solve the performance matrix of this uncertain system. However,
since the time-varying uncertain matrix ®(t) is constrained by ?)'(d)(t))Se, a bound
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matrix P, can be found. This is the upper limit of all possible solutions for (2.4.12) over
all admissible values of d(t) and all te [0,o). The following Lemma will provide a

method to find the cost bound for the uncertain closed loop system (2.4.1) over all
admissible values of d(t).

Lemma 2.4.4 If for any positive definite matrix P, there exists a bound function
O(N,M,P), such that:

(AA,(1))"P+P(AA (1)) <O(N,M,P) (2.4.13)

Then there exists a cost performance bound J, = x;P,x, over all admissible
values of ®(t) and all t € [0, ).
ie. J<J, =x,P.x,, where P, is the positive definite solution of the following

Riccati equation:

ATP+PA,+O(N,M,P)+Q, =0 (2.4.14)

Proof: Choosing P =P, and adding (2.4.13) to (2.4.14) it will follow that the following
cxpression will be hold for all admissible values of ®(t) and all time t € [0, ) :

(A, +AA ()P, +P, (A, +4A,(1))+Q, <0 (2.4.15)

this means that if (2.4.14) has a positive definite solution P, this solution will also satisfy
the expression (2.4.15) for all time t € [0, o).

Following we will prove that the value x]P,x, is a bound for the cost J=x]Px, for all
admissible values of & (t) and all time te [0,e), i.e., J<J, =x P,x,. From (2.4.15) we
find that:

Q, S—(Ay+AA (1))"P, —P (A, +AA (1)) (2.4.16)
or xTQux S —x"[(A,+AA (1))"P, +P (A, +AA (1))]x (2.4.17)

SO
J= Jﬂ" xTQ xdt < —Iﬂ" X"[(A, +AA,(1))"P, +P, (A, +AA (1))]xdt

- d 7
S_'[) TPt (2.4.18)
< xT(0)P,x(0) —xT (o) P, x(o0)
<xT(0)P,x(0)

Since (2.4.15) has a positive definite solution, according to the Lemma 2.4.2, the closed
loop system should be stable, hence x(=)=0, the bound of cost performance can be found

ey AT T
as J =x,Px, < x,Px,. *
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From (i) of Lemma 2.4.1 it follows that for any given P > 0, we always have that:

(AA, (1)) P+P(AA(1)) = (N&(M)"P +P(N(1)M)

: 1
S0 (AA (1)) "P+P(AA (1) < aezPNNTP+aMTM (2.4.19)
Hence for uncertain system (2.4.1), a bound function can be found as:
2 T l T
O(N,M,P) = as“PNN P+EM M

The cost bound J is the maximum possible cost for all admissible values of dXt), if J, is
acceptable, this means the degradation of the cost value is small enough over all
admissible values of uncertain matrix @Xt), thus the system has good performance

robustness.

The performance robustness may be measured by a performance degradation parameter ,
or performance robustness index p, defined as:

_ x; (P, —P,)x,

T
XoPoXq

x100%

where P, >0 is the performance matrix of the certain part of the closed loop system as
Lemma 2.3.2. This gives a measure of the possible relative cost variation across the
admissible domain of uncertainties. It can be noted that if no uncertainty is presented, i.e.,
N®(t)M=0, then p=0, there is no performance degradation. For a given parametric
uncertainty Nd(t)M, a relatively small performance bound J, produces a small

performance degradation and the system is said to have good performance robustness.

To design a controller which provides the system with good performance robustness
means: to choose a fixed controller such that (1) the closed loop system has robust
stability, (2) performance degradation rate p isas small as possible.

So in this section, we use the closed loop system with parametric uncertainty as an
example to show the performance degradation of different controllers. The concept of
good performance robustness was also presented. To conclude, a robust control system is

required to have both good stability robustness and good performance robustness.
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Unavoidable differences between mathematical models and real world systems can result
in degradation of control-system performance including instability. Hence, a good
technique of control system design should provide a certain level inherent robustness. In
this chapter, robust stability conditions developed in §2.4.1 will be used to assess the
stability robustness of some common control solutions applied to the nominal model. The
chapter is divided between full state feedback control and dynamic output feedback
control systems. For full state feedback control systems we have argued that robustness
to parametric uncertainty should be studied and for dynamic output feedback control

systems, robustness analysis to nonparametric uncertainty is necessary.

The following is a summary of some common control solutions that are declared as

"Optimal controller design" for some particular control performance measures:

(1).  For full state feedback control design, LQR design secks to minimise the total
transfer of energy from systcm input to output. He= optimisauon design seeks to
minimise the peak in the frequency spectrum of the cnergy transfer. However,

H2/H optimisation design tries to find the optimal controller for a combination of

these objectives.

(2).  For dynamic output feedback control design, LQG design has the same objective
as LQR. LQG/LTR tries to recover the stability robustness of the LQR design. H
= and H2/H~ design tries to find the optimal controller for a combination of thesc

objectives.

We will state, without giving derivation, how to implement the above modem control
design techniques based on a nominal model. Then the inherent stability robustness
analysis of the resulting systems will be examined according to the robustness principles
developed in Chapter 2. Analysis results will tell us, based on the nominal model, which
controller design techniques are robust, (i.e., some inherent robustness is offered by this

design technique), which are not.

Analysis will also confirm some well-known results such as: the LQR and He design
methods can provide some inherent robustness, the LQG optimal design can not. The

LQG/LTR design can be used to recover the robustness of the LQR design for output

feedback systems.



Chapter 3. Robustness Analysis of Some Existing Controller Design Techniques 42

3.1 SYSTEMS WITH FULL STATE FEEDBACK CONTROLLERS

As noted in §2.2.4, for state feedback control design methods, it is only necessary to
consider the parametric part of unknown uncertainty. To analyse the robustness of the
closed loop system with full state feedback controller, the result of §2.4.1 is recalled here:

Remark 3.1.1 System x=(A,+AA,)x is robustly stable with AA; =N®(t)M (the
parametric part of unknown uncertainty) and G(dXt)) <€ if there exist two
matrices N;, M, and any o > 0 such that:

€
IMy(s1-A,)"'Ny|_ <1, and 0eM™ <M™M,; —NNT<NN;

So generally, to analyse the stability robustness of a closed loop system with full state
feedback controller means to find the suitable matrices N,, M, such that the following

condition i1s satisfied:

IM,(s1-A,)"'N,|_ <1

This result will be applied to some existing state feedback controller design tcchniques
such as, LQR, H» and H2/H=.

3.1.1 Linear Quadratic regulator design

Since the beginning of the sixties, Linear Quadratic Regulator design (LQR) has becn
viewed as an important design technique for linear system control. The associated Riccau
equation solution provides the optimal state feedback controller that can minimise the
cost function of the closed-loop system. The Riccati equation itself can be solved by some
very efficient numerical procedures. For these reasons, LQR design has become very

popular (Anderson and Moore, 1990).

Let us consider a system that has been introduced in §2.1.1, whose nominal model and

initial condition are given as:
x = Ax+Bu; x(lo)zxo (3.1.1)

Where the vector x is the state of the system (assumed to be available for control), the
vector u is the control signal vector. Matrices A and B have compatible dimensions and
the pair (A, B) is supposed to be stabilisable. The design objective here is to find a full
state feedback controller that can stabilise the plant described by the nominal modcl
(3.1.1) and minimise the quadratic cost function that has been given in chapter 2 as:
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J= L"(xTQx+uTRu)dt (3.1.2)

Where Q>0 and R >0 are weighting matrices. The solution of controller which can
minimise cost function J is given by
u=-Kx; K=R'BP (3.1.3)
Where P is the positive definite solution of the algebraic Riccati equation:
A"P+PA-PBR'B'P+Q=0 (3.1.4)

For any initial condition x,, from Lemma 2.3.2, the minimal value of the cost function
(3.1.2) is J, = xoPx, .

Defining the closed loop system as
A,=A+BK=A-BR'B'P (3.1.5)
The above optimal closed loop system is stable with finite performance index if and only
if: (pp. 48, Anderson & Moore, 1990)
[A, B] is stabilisable and [A, \/Q] is detectable.

Now, let us consider the robustness criterion for standard LQR design technique. From
(3.1.4) and (3.1.5) we find that:

AP+PA +PBR'B'P+Q=0

According to Lemma 2.3.5 it follows that:
Wast-a'BYRT] <1 (3.1.6)

Subject to the Remark 3.1.1, the suitable matrices N,, M, can be found that M, = \/6
and N, =BvVR™ . Hence, if there exists a positive parameter o such that the following

conditions are satisfied:

£
oeM™™ < Q; ENNT <BR'BT (3.1.7)

the LQR controller can provide the stability robustness guarantee to the uncertainty
AA, = NO(t)M with 6(F(t)) <e.

To summarise the robustmess analysis of LQR Design, it follows that:

(1. LQR Design can provide the minimal integral-quadratic performance for nominal

system models.
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(2). There are some inherent robustness properties in LQR Design and the robust

stability condition is given as (3.1.7).

@. Since the inherent robustness of LQR Design depends on weighting matrices Q
and R, and these two matrices are normally used for tuning the cost
performance, so the inherent robustness is coupled to the choice of the cost
function and sometimes, "blindly" designing a LQR controller based on the

nominal system does not guarantee to provide enough inherent robustness for the

actual system.

3.1.2 H controller design

When designing a control system, one often assumes the plant is subject to some inputs,
such as disturbances and sensor noise. It is always desircd to reduce the effect of thesc
inputs on the outputs of the closed loop system, this disturbance or noise rejcction is also
a very important performance requirement of a control system. As mentioned in §2.3.4,
H= norm offers a good performance measure for disturbances/noise rejection and hence,
the standard He optimisation design problem is to find a controller to minimisc thc He
norm of the transfer matrix from disturbances/noise to the outputs (i.e., best disturbance

Or noise rejection).

Consider a linear system described as (2.1.3) which has been introduced in §2.1.1 (Doyle
et al. 1989):
{x = Ax+B,w+B,u

z=Cx+Du (3.1.8)

Where x is the state vector (assumed to be available for feedback), u is the control signal,
®@ is the disturbance vector and z is the performance vector. The matrices A and B, have
compatible dimensions and the pair (A, B,) is supposed to be stabilisable, matnx D, is
required to be full column rank, and for simplicity, it is assumed that D{C, = 0.

The design objective here is to find a controller u=Kx such that the He norm bound of
the transfer function from disturbances/noise @ to the performance vector z is minimal,

1.e., to minimise 7Y, such that:

I <7,

o |c,+DK)s1-A-BK)"'B| <¥. (3.1.9)
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From Lemma 2.3.5 we know that expression (3.1.9) requires the existence of a positive
definite matrix P which satisfies

(A+B,K) P+P(A+B,K)+yPB,B"P+K™D'D,K +C'C, <0 (3.1.10)
A controller that satisfies that is:

K_=-(D/D,)"'B]P, (3.1.11)
Where P, is the positive definite solution of the following expression:

A"P,+P,A-PB,(D/D,)"B]P,+y.’P,B,B/P,+C[C, <0 (3.1.12)

Y., may be reduced to find the optimal controller K .

Now, let us consider the robustness criterion for this H= controller design technique,

defining the closed loop system as:
,=A+B,K_=A-B,(D'D,)"B;P,
then from (3.1.12) we find that A, satisfies:

AJP,+PA +K'D/DK_+y’P,BB/P,+C/C, <0 (3.1.13)

m

From the result of Lemma 2.3.5 it follows that:

I, +DK,)(s1-A,) "B <, (3.1.14)

From Corollary 2.3.5, the stability of the closed loop system can be ascertained by
expression (3.1.14), and the minimal H= norm value is the minimal value of y_ such that

a positive definite solution can be found for the Riccati equation (3.1.12).

So according to the Remark 3.1.1 itcan be found that M and N, can be chosen as:

ol G

M, =7, l-DleJ, and N,=v."B,

Hence, if there exists a positive parameter o such that the following conditions are
satisfied:
. = £
aeM™ <y (CIC,+K-.DDK _); -&NNT <y.B B/ (3.1.15)
The H= optimal controller can pr-vide a stability robustness guarantee to the uncertainty

AA ;= NO(1)M with 6(F(t)) <¢t.

To summarise the robustness anzivsis results for the He Controller Design, it follows
that:
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(1). He Optimal Design minimises the maximal singular value of the transfer function

matrix from disturbances/noise to the performance vector. Hence the best

disturbance/noise rejection in this sense has been given to the closed loop system.

(2). At the same time, H~ Optimal Design provides a certain level inherent

robustness for the closed loop system.

3). Since the robustness of H= Optimal Design depends on performance matrices C,

and D,, and these two matrices are normally considered for the disturbance

rejection, so the robustness of the controlled system is coupled to the disturbance

rejection and sometimes, “blindly" applying He-norm Optimisation Design based

on the nominal model does not guarantee to provide cnough inherent robustness

for the actual system.

3.1.3 Mixed Hz2/H= controllers design

Design of control systems almost always involves trade-offs among competing objectives.

The desired controller is often required to meet several different performance and

robustness goals, and normally all of these can not be met simultancously. One method of

studying the trade-off among competing objectives is a certain constrained
controller synthesis problem, so called mixed H2/H= synthesis problem.

optimal

Consider the linear time-invariant system shown by Fig.3.1, which is similar to the general

description (2.1.3) but with two performance vectors:

71

——
G(s) P>z

(0]

u

4@4_

Fig. 3.1 The mixed H2/H= state feedback controlled system

Its nominal model can be described by the state equations:
x=Ax+B,u+Bw
z,=Cx+Du
z,=C,x+D,u

(3.1.16)
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Where z, and z, are performance vectors. The matrices A, B, have compatible
dimensions and the pair (A, B,) is supposed to be stabilisable, matrices D, and D, are

required to have full column rank, and for simplicity, it is assumed that:
T
DlTCl =0; D,C,=0.
The design objective of the H2/H= control system is to find a controller u=Kx such that:

( 1 ) "Tmzl

”<'Y°.

@. [Tl =||(c2+1)2Km)(sl—Ao)"B,”2 is minimised subjected to (1).

From Lemma 2.3.5 we know that condition (1) means to find a control matrix K such

that there exists a positive definite solution for the following expression: .
i -1 T g TR S1~T
(A+B,K) P, +P(A+B,K)+7;'P,B,B'P,+7;'K'D'D,K +7,'C’C, <0

From Lemma 2.3.4 the condition (2) means that to find a control matrix K such that there

exists a minimal positive definite solution for the following expression:
(A+B,K) P, +P,(A+B,K)+K™DID,K +CIC, <0 (3.1.17)

Since no analytic solution for the optimal H2/H= problem is available, consider the
following sub-optimal design procedure that minimises an upper bound of H2

performance subject to the H= norm requirement.

A combined requirement that firstly guarantee the H= norm condition and also considers

the H2 performance can be described as:
(A+B,K) P+P(A+B,K)+7;'PB,BTP —

+K™(v,'D/D, +D]D,)K +(7;'C[C, +C]C,) <0 h

Evidently for any C, and D,, if (3.1.18) has a positive definite solution, this implies
condition (1) can be satisfied. If we relax the H= norm constraint, i.e., Y, =<0, then
(3.1.18) becomes (3.1.17), i.e., pure H2 optimal design. For a finitc 7y,, (3.1.18) gives an
upper bound for the performance matrix of (3.1.17),1.e., P, <P.

For a given H*» norm bound v,, a sub-optimal solution for the mixed H2/H= controller

that gives a minimal solution of P can be found for (3.1.18) as:
K, =—(v;'D{D,+D;D,)"B;P, (3.1.19)
Where P; < P 1s the positive definite solution of the following equation:

AP, +P,A ~P.B,(7;'D/D,+D;D,)"B]P,y;'P,B,B/P, +(v;'CIC, +CIC,) <0 (3.1.20)
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To consider the performance of the closed-loop system, let us define the closed loop
system as: A, =A+B,K _, then from (3.1.20) it follows that A, satisfies the following

expression:
AJP,+P,A,+Y;'PBBP,+v,'(C,+DK _)'(C,+DK ) &)
+(C,+D,K_)"(C,+D,K_)<0 o
From Lemma 2.3.5 it follows that:
(C,+DK_) | }
Ko i fsl-Ao) ‘B <7, (3.1.22)
Yo (C,+D,K ) .

=1
So from Lemma 2.3.6 it is clear that I‘(Cl +D,Km)(sl— Ao) B,H <Yo-

Relating to §2.3.3, The H2 norm can be found for the sub-optimal control system as:

...

p = ||(C2 +D2K,,,)(SI—A0)-IB,"2 < {Tr(PoB,B,T)}'V: (3.1.23)

Since P, < P, so (3.1.23) gives a minimal H2 performance bound subject to the condition

"Tzl I
the value 7y,. If a smaller 7y, is chosen, then closed loop system will have good robustness

<Y,. From expression (3.1.21), it is clear that there is a trade-off between P, and

but the cost performance will have more degradation, and if a larger 7y, is chosen, thc

closed loop system will have better cost performance and the robustness will be degraded.
When vy, =, the equation (3.1.18) will be the samec as (3.1.17), the HYH= design

becomes the standard LQR design.

Now, let us consider the robustness criterion for this control design method, according to
the Remark 3.1.1 we know that
[y:2(C,+D,K )]
Mo =[YO ( 1 1 m)J’ and No ='YE”2B1
(C,+D,K )

Hence, if there exists a positive parameter ¢ such that the following conditions are

satisfies:
and aeM™ <y, (C,+DK _)(C,+DK_)+(C,+D,K ) (C,+D,K,_) (3.1.24)
iNNT <v;'B,BT (3.1.25)

The mixed H2/He sub-optimal control system can provide the stability robustness
guarantee to the uncertainty AA, = N®(t)M with G(F(t)) <e.
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To summarise the robustness analysis result for the mixed H2/H= sub-optimal controller

design, it follows that:

(1). H2/H= design provides an H~ norm bound for the transfer function matrix from
disturbances to the output, so a certain level of disturbance rejection will be

provided.

(2). H2/H= design also provides a minimal H2 norm bound subject to an He norm
condition of the transfer function from inputs to the outputs, this means the

closed loop system has sub-optimal cost performance.

3). There is a trade-off between the H2 norm performance and He= norm
performance, (or disturbance rejection and cost value). When ¥, = oo, the H2/H=

design tums to standard LQR design.

(4). At the same time, similar to H= opumal control design theory, H2/H= provides
some inherent robustness propertics for the closed loop system, but this inherent

robustness is also coupled to the weighting matrices of the performance vectors.

3.1.4 Discussions of full state feedback control systems

In this section, several full state feedback controller design methods are stated and their
robustness criteria are assessed by the use of the principles of robustness derived in
Chapter 2. Generally, since only the parametric part of the unknown uncentainty affects
the closed-loop system with full state feedback controller, to analyse the robust stability
of a closed loop system mcans to look for suitable matrices N,, M, such that the

following is satisfied:

IMg(sT-A)'N|. <1

From the analysis of LQR design, H= optimal design and mixed H2/H= optimal design,
we can always find some suitable matrices N;,, M, such that the above He norm
requirement can be satisfied. Hence the closed loop system with full state feedback
controller can really provide some inherent stability robustness, that is, all full state
feedback controller design techniques possess some robustness and at the same time they

are also "optimal” for input output energy transfer or disturbance/noise rejection.

However, since these controller design techniques are based on the nominal system model

and some performance requirements, the inherent robustness of the closed loop system is
coupled to these performance requirements and sometimes, i.e., matnces N,, M, depend

on the parameters and performance weighting matrices. This means that "blindly"
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designing a controller does not guarantee to provide enough inherent robustness for the

actual system.

Some trade-off relations are also very interesting for the full state feedback controller
design, normally there are between the dynamic performance measure and robustness. A
good controller design should suitably consider these trade-off. In chapter 4 a robust
design technique for state feedback control systems will be presented which allows the
performance and robustness requirements to bc decoupled and a suitable compromise

reached.

3.2 SYSTEMS WITH DYNAMIC OUTPUT FEEDBACK CONTROLLERS

It has been shown that the closed loop system with full state feedback controller, such as
LQR, H= or H2/H=, will nomally provide good control performance (such as H2, H=
performance) as well as some inherent robustness. However, as discussed in §2.1.2, it is
not usually possible to implement the full state feedback solution. The reason is that it is
not usually possible to measure all the state variables of the plant. This is why often the

output controller must be used.

As noted in §2.2.4, for dynamic output feedback control designs, the nonparametric part
of unknown uncertainty AG(s) may be considered as a general case. A good controller

design technique should provide some inherent robustness properties subject to AG(s) .

A(s)

g

Yo

G, (s)

o

K(s)

Fig. 3.2 The uncertain closed loop system



Chapter 3. Robustness Analysis of Some Existing Controller Design Techniques 51

To analyse the robustness of the output feedback controlled system, the conclusion of
§2.4.1 is recalled here and will be applied to some common control system design

techniques.

Remark 3.2.1 For the uncertain closed loop system shown by Fig. 3.2, if the He

norm of T, (s) = C,(sI-A,)™'B, satisfies the condition of

1
Tooyo QO <,
i/ "... n
a stability robustness guarantee will be provided to the nonparametric
uncertainty AG(s) = NA(s)M with |A(jo)|_ <7.
Where
G,(s)=C(sI-A)'B
R [ A BC.] ¢,=[o NC] B [0 ]
"”[Bcc A, J o < °_|_MBC_|
and the dynamic output feedback controller u=K(s)y can be described as:

{C=ACQ+BJ
u=Cg

3.2.1 Linear Quadratic Gaussian (LQG) controllers design

The plant described by state-space form as (2.1.2) is recalled here:

{X=Ax+Bu+Ed

y=Cx+Du+Fv (3.2.1)

d is the vector of Gaussian random disturbance processes,V is the vector of Gaussian
random measurement noise processes. It is assumed d andv are uncorrelated, gdv']= 0,
their mean values are zero, €d]=&[v] =0, and their covariance matrices are W and V

respectively. It is also assumed that [A, B] is controllable and (A, C] is observable. The
objective here is to find a feedback control law for the input u that will minimise the

quadratic ‘cost":
. to
= lim —¢& {]0 (xTQx + uTRu) dt} (3.2.2)
Where €{...} denotes the 'expected’ or mean value, Q=>0, R>0 are weighting

matrices. This is known as the Linear Quadratic Gaussian (LQG) feedback design

problem.
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The solution of this problem depends entirely on the four matrices W, V, Q, R. As we
shall see, the LQG problem has a very complete theory, and its solution has some very
attractive properties (Kalman, 1964), so it has been very attractive to control theorists
since the 1960s. A separation principle holds for the solution of the LQG problem: it can
be obtained as the solution of two separate sub-problems. The first of these is the optimal
state estimation problem: given the model as above find the optimal estimate X of the
state x from observations of the inputs u and the outputs y. The solution to this sub-
problem is given by the Kalman filter, which is a special case of a state observer. The
second sub-problem is the deterministic state feedback problem that is the same as LQR
design. The separation principle says that the solution to the LQG problem is given by
using a Kalman filter to estimate the state, then passing that estimate through the optimal
state-feedback matrix, as if it were the true state, to form the controller input.

To solve the state feedback sub-problem it is first necessary to solve the following Riccati

cquation:

A"P.+PA-PBR'B'P.+Q=0 (3.2.3)
Which is to be solved for the matrix P_. As mention in §3.1.1, the optimal state feedback
matrix is given simply by: ‘

K. =R'B'P, (3.2.4)
Making the substitution u=-K _x we obtain

x=Ax+Bu=(A-BK )x (3.2.5)

and it can be shown that the matrix (A —BK ) has all its eigenvalues in the left half-plane,

so that the state feedback scheme is stable.
The state estimation sub-problem is solved by the Kalman filter, which is a state observer
with a particular feedback gain matrix, to obtain it, the following Riccati equation should

be solved

A'P,+P,A~P CT(FVF')CP, + EWE = 0 (3.2.6)
and the feedback gain matrix can be found as

K, =P,C"(FVF")" (3.2.7)
The Kalman filter itself has the state equation

x=(A-K,OX+Bu+K,y (3.2.8)

and it can be shown that all the eigenvalues of the matrix (A — K C) line in the left half-

plane, so that the Kalman filter is a stable system.
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When the full LQG solution is implemented, namely the combination of a Kalman filter
with optimal state feedback, then the state equation of the closed loop system becomes
[sﬂ [A-BK, BK, [x|[ Ed |

¢l o a-k.cle)|Ea-k,mv] (3.2.9)

Where e = x—X is the state estimation error.

Here we focus on the stability analysis of LQG design method, from the triangular nature
of the state evolution matrix we can deduce that the closed loop eigenvalues of the whole
scheme are union of the eigenvalues of (A —BK ) with those of (A —KC). Hence they
are all in the left half plane, and the whole system is stable. Notice that closed loop

stability comes automatically with this design method.

The fact that the nominal closed loop system is guaranteed to be stable does not imply
that we have a useful design, the measurement of robustness is also necessary. Since the
full LQG solution consists of the combination of optimal state feedback with a Kalman
filter, and from §3.1.1 we know that optimal state feedback control has good robustness,
and evidently Kalman filter is a special form of optimal state feedback control, so both of
them have well robustness properties, it might be expected that the full solution would
inherit these good properties. Unfortunately this is not (Doyel and Stein, 1979).

Now, let us consider the robustness criterion for standard LQG design technique. For
simplicity, the closed loop system equation (3.2.9) can be rewritten as

[x1  [x] [d]

LéJ= AOLeJ+E°LvJ (3.2.10)

Since above system is stable, so from Lemma 2.3.1 we know that for any positive (or
semi-positive) definite matrix C]C,, there exists a positive definite matrix P such that

A;P+PA +C;C,=0 (3.2.11)

But during the LQG design, we have not been given the guarantee that there exists a
positive definite solution for the following equation subject to any 7, :

AP+PA, +Y;’PBBP+C]C,=0 (3.2.12)

what we can guarantee is only equation (3.2.11) will have a positive solution, this means
only when Y, =, we can guarantee (3.2.12) has a positive definite solution. (where B,

and C, are defined in Remark 3.2.1)
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The He norm bound of Remark 3.2.1 can only be found as

g ]
T, (o) <= (32.13)

Hence, from the result of Remark 3.2.1, there is no robustness guarantee for LQG design

and its stability margins could be arbitrarily small, i.e., the size of uncertain matrix € — 0.

It should be also noted that there is no robustness guarantee does not mean no robustness

exists for particular controlled systems, some may have but some have not.

To summarise the LQG Design, it follows that:

(1. LQG Design can provide the minimal integral-quadratic performance for the

nominal plant, and the closed loop stability comes automatically.

(2). There is no robustness guarantee for LQG Design and its stability margins could
be arbitrarily small.

3.2.2 LQG/LTR controllers design

As mentioned in the previous section, the standard LQG problem can be obtained as the
solution of the optimal state estimation problem and the optimal state feedback problem,
and both of these two sub-problems have good inherent robustness, but the LQG has not.
To overcome this, the Loop Transfer Recovery (LTR) design procedure allows one to
design a full modified LQG control system, and to approach the good robustness
properties exhibited by either optimal state feedback, (or a Kalman filter). Hence there are
two versions of LTR (Anderson and Moore, 1990): one approaches good robustness of
the opumal feedback control, the other approaches the good robustness of the Kalman
filter. The first version consists of the following two steps.

(1). Design an optimal state feedback system.
Using the given weighting matrices Q and R to design a controller by the
standard LQR design method, which is the same as (3.2.3) and (3.2.4).
According the results of §3.1.1, good robustness properties come automatically

at this stage.

(2). Synthesise a Kalman filter in the following way.
Set W =ql, and V =1, where q is a positive real number. Then q is increased,

when q is large enough, the robustness of step (1) can be recovered.
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The second version is the dual of the first one

(D). Design a Kalman filter. .
Using the given weighting matrices W and V to design a Kalman filter which is
the same as (3.2.6) and (3.2.7). According the results of §3.2.1, good robustness

properties come automatically at this stage.

(2). Synthesise an optimal state feedback system in the following way.
Set Q=qgl, and R=I, where q is a positivc real number. Then q is increased, when

q is large enough, the robustness of step (1) can be recovered.

We will use the first version as an example to show how the LTR design rccovers the
robustness of the state feedback controlled system. The modified state estimation sub-

problem is solved by the Kalman filter:

PA"+P,A-P,.C'CP,+ql=0 (3.2.14)
and the feedback gain matrix can be found as

K,=PC'
Then (3.2.14) can also be rewritten as:

P, Ay, +P,Ay, +P.CTCP, +ql =0 (3.2.15)

where A, =(A-K,C).

Since the LQG/LTR design is actually the same as the optimal state feedback control with
a particular high gain observer, as the gain of the Kalman filter is increased to infinity, the
effect of nonparametric uncertainty AG(s) and parametric uncertainty AC will vanish,

hence only parametric uncertainties AA and AB should be considered here.

In the following we will use the LQG/LTR controller to recover the robustness of the full
statc feedback LQR controller. Let us consider the system (3.2.1) with parametric
uncertainties as:

{x =(A+AA)x+(B+AB)u+Ed

y = Cx+Fv (3.2.16)

Where uncertainties of this system can be represented as:
AA, = AA +ABK = N®(t)M

Recall the results in §3.1.1 it follows that if there exists a positive parameter o such that

the following conditions are satisfied:
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€
oeM™ < Q; ENNT <BR'BT (3.2.17)

then the full state feedback LQR control system can provide a stability robustness
guarantee to the uncertainty AA , with 6(d(t)) <€,

Now, we will prove that if a LQR full state feedback controller can provide the
robustness for the uncertainty AA , then a LQG/LTR controller can also do this.

Consider a LQR controller as:
K.=R™'B'P,
where P_ > 0 is the solution of the following equation:
AgP.+P.A, +P.BR"'B"P.+Q=0
and A, = (A -BK_). Suppose that condition (3.2.17) is satisfied, this means that LQR

can provide robustness for the uncertainty AA,, then compare the above Lyapunov

equation and condition (3.2.17) it follows that:
€
AJP.+PA  +P. ENNTP: +0eM™™M <0 (3.2.18)

The state equations of the closed loop system can be found as:

d[x] [a+aa-BK, BK, Tx][ Ed ]

dt e_I_I_ AA A—K[CJ_CJ+I_Ed—K‘P\'J (3.2.19)

Introducing a Lyapunov function for the closed loop system

P 0 x|
) =[x eT[o FfLJ

Where P, = P/ from (3.2.15), then we obtain, after standard manipulations, the following
derivative of the Lyapunov function:
. : 1PAL+AJP.+PAA+AATP, PBR'B'P.+AATP, [ x|
[1(x,e) = [x e

P.BR'B'P, +P,AA P A, +ALP, e

By the use of Lemma 2.4.1 it is found that:

I(x,e) <x'M x+e"M,e (3.2.20)
Where

M, =A;P +PA +P %NNTPC +(oe+BM™ (3.2.21)

&

BNNT )P, (3.2.22)

M, =P,(P,A;,+P,A,+PPBR'B'PP, +
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and o, B are scalar parameters introduced by Lemma 2.4.1. Substituting equation
(3.2.15) 1n (3.2.22) gives
€

B
From (3.2.21) and (3.2.18), we can always find a small enough B such that:

M, =-P,(P,C"CP, +qI-P,P.BR'B'P.P, ——NN")P, (3.2.23)

€
M, =A;P.+PA +PCENNTPC +(0e+BM™ <0 (3.2.24)

But for any small B when q is chosen large enough or q — oo, it always follows that:
3
B
So if the full state feedback LQR controller can guarantee the robust stability for the

uncertain system (3.2.16), then the modified LQG controller can also guarantee the robust
stability when q — oo, that is, the LQG/LTR design can recover the robustness of LQR

M, = _ﬁr (P, CTCPf +gl= PrPcBR_lBTP.:Pr - NNT)E <0 (3.2.25)

design.

The LQG/LTR design is actually the same as the optimal state feedback controller with a
particular high gain observer, or the optimal state estimation with high gain state
feedback. The robustness recovery procedure actually transfers the effect of model

uncertainties to system disturbances or performance weightings.

To summarise the LQG/LTR Design, it follows that:

(D). LQG/LTR design can recover the robustness of LQR design. The closed loop
stability comes automatically.

(2). LQG/LTR design does not consider the integral-quadratic performance, since it
uses the high observer or high gain state feedback, so the cost value could be

much worse.

(3). In addition to the requirement for LQG/LTR design, the system must be minimal

phase system.

3.2.3 H= controllers design

He optimisation output feedback controller design is partly motivated by the
shortcomings of LQG control design (Doyle et al., 1989), the basic idea'of He
optimisation design has been mentioned in §3.1.2. A standard compensated configuration
that is widely used in the H= literature is shown in Fig. 3.3.
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pe ) e
G(s)
u

y

Fig 3.3 H= output feedback controlled system

The design objective here is to find a controller K(s) for the plant G(s) such that the
transfer function characteristics from the external input vector @ to the performance
vector z are desirable. The input vector @ may include, for example, reference input,
disturbances and noise, the performance vector z may include errors, process outputs and
control inputs. The internal compensated signals are represented by vectors y and u, and

correspond to the sensor signals and actuator demands, respcctively.

The plant G(s) of (2.1.3) is recalled here with the following state-space form:

x =Ax+B,u+B,0
z=Cx+Dju (3.2.26)
y=Cx+D,n

It is assumed that [A, B,] is controllable, and [A, C,] is observable. For simplicity, we

also assume:
(Al). C/D,=0, DD, >0
(A2. BD];=0, D,D]>0

The design objective here is to find a sub-optimal dynamic output feedback controller
K(s) such that the following bound 7 is minimal.

It <v. (3.2.27)

The following results (Doyle et al. 1989) are normally used to solve the H= optimisation

problem:
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Lemma 3.3.2 There exists a controller such that the H= norm bound (3.2.27) is
satisfied if and only if Xm(XEY”)<Y,2“, and the two following Riccati

equations have positive definite solutions.
ATX_+X_A+X_(Yy?B,B]-B,(D'D,)"'B])X_+C/C, =0 (3.2.28)
AY_+Y_AT+Y_(y2C[C,-C](D,D;)"'C,)Y_.+B,B] =0 (3.2.29)
Moreover, when the above condition holds, one such controller is:
K_(s,v,)=F.(sI-A_)"'Z_L_ (3.2.30)

where

A_=A+Y’BB/X_+B,F.+Z_L_C,

F.=-(D/D,)'B]X_, L_=-Y_.C;(D,D))", Z_= ([—7;33@(‘_)“‘

Now for this standard H= optimisation design technique, let us consider the stability
robustness of the controlled system subject to the nonparametric uncertainty by the use of
Corollary 2.4.3.

Suppose for the system (3.2.26) we can find a controller as:
K(s)=C.(sI-A,)"B,

L=AL+B.y
or 2.
{ o=iC i (3.2.31)
such that the closed loop system satisfies the H= norm bound condition "Tm".,, <Ym- The

closed loop system can then be described as:
M1 a BZC{x] [ B, ]

j[c’ IFle.c, a. lcfflBD, P

{,ﬂ (3.2.32)
{ z=[Cl DC. CJ
[ B, 1
So T,.(s)=[C, D,CJsI-A,) LBCDI | (3.2.33)
where
A [ a Bl
*“|B.c, A

Then from the assumption (A1) and (A2) it follows that:
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]

:
DIT,.(9D; =[0 DIDCJGI-A)T p oo |
[l o )

le.,

[0]
D'T, (s)DI =D/D,[0 C_ ](sI- Ao)"LB JDzDI
From assumption (A1) and (A2) it also follow that:

[o]
[0 cist-4) |=(DID) DT, (DI (D,D])"

c

According to the definition in Remark 3.2.1, it can be shown that:

ol
T,, ()=N0 C]JsI-A,) 5 M

c

Hence
T,,.(s)=N(D/D,)"'D{T,(s)D;(D,D;)"'M (3.2.34)

From the properties of norm in §2.3.4 we find that

1., <500, D 510,01y M)

l1e.,

T, )] <SN®ID,) " D)TDI(D,D) M)y, (3235)
So to conclude, for arbitrary constant matrices D, D,, N and M, it follows that:

T, o <dr.l <.

where § is a positive scalar parameter. So any controller which can minimise the bound
T,,,|.. and from Remark 3.2.1, this

40Y0 [loo

¥, of |T,,|_ will also minimise the bound of

controller will provide some robustness for the closed loop system. Furthermore,
If N=D, and M=D,, then [T, (s)|_ <|T.|. <7

HDI=[;] and D, =[I 0], then

L (S)|L =T < v

To summarise the H=~ Optimal Controller Design, it follows that:

(1. H= Control Design minimises the maximum singular values of the transfer
function matrix from disturbances to the output, so disturbance/noise rejection is

optimal in this sense.
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(2. At the same time, H= Control Design provides good inherent robustness for the
closed loop system subject to unknown uncertainty. However, from (3.2.35), this
inherent robustness is coupled with the weighting matrices of performance

vector.

3). There is no consideration of H2 performance.

3.2.4 Mixed Hz2/H= controllers design

Similar to state feedback H2/H= controller design of §3.1.3, we consider the following

system that is described as:

u G(s) 72

Fig. 3.4 The mixed H2/H= output feedback controlled system

The mixed H2/H= problem is to find a dynamic output feedback controller K(s) such that
. ] <v.

2. [T, can be minimised subject o (1)

Currently, no analytic solution to this problem is known. Only some attempts have been
made to solve "modified" versions of optimisation problem. (Bernstein 1989 and Mustafa
1990)

3.2.5 Discussions of output feedback control systems

In this section, several output-feedback controller design methods are stated, without
derivation, and their robustness criteria are assessed by the use of to the principle of

robustness derived in Chapter 2.

Generally, to analyse the robust stability of a closed loop system with output-feedback

controller means to find an H= norm bound for Tu,y,(s)" . It is found that although the

LQG design can provide the minimal integral-quadratic performance for the nominal
Tuoyo(s)“ , so there is no

plant, since we cannot find a finite H~ norm bound for

robustness guarantee for LQG design and its stability margins could be arbitrarily small.
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To overcome this disadvantage of standard LQG design, a LQG/LTR can be used to
recover the robustness of LQR design. But since it uses the high gain observer (or high
gain state feedback), there is no consideration the integral-quadratic performance, so the
cost value could be much worse. The system is only applicable to minimal phase systems.
The He optimisation design can minimise the maximal singular value of the transfer
function matrix from disturbance to the output. At the same time, it can also provide
some good inherent robustness for the closed loop system subject to the unknown
uncertainty, however, this inherent robustness is coupled with the weighting matrices of
performance vector. The mixed H2/H= design can be used to find a dynamic output
feedback controller K(s) such that "T%IL can be reduced subject to "Tm-".., <Yo-

Unfortunately, no analytic solution to this problem is currently known.

There is a trade-off between dynamic performance and robustness, a good controller
design technique should consider this trade-off. From the analysis and synthesis of a
series of control design techniques based on nominal models of the system, it can be
found that some of these methods possess very good inherent robustness properties and
hence, they are powerful tools for practising control engineers. However, they have some
limitations that should be appreciated. The main problem is that inherent robustness of
closed loop system is normally coupled with the performance weighting matrices, and also
the potential for conservatism arises because all uncertainties are described as unknown
uncertainty. In practice, such uncertainty description is very general and imprecise, if this

can be avoided the design will be less conservative.
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For an uncertain system described by a nominal model and modelled parametric
uncertainties, Robust Control Design means to design a fixed state feedback
controller that can stabilise the closed loop system subject to these parametric
uncertainties and also provide some inherent robustness to residual unknown
uncertainty. At the same time, satisfactory closed loop performance for all

"admissible” plant is sought.

In §2.2.3 modelling of uncertain systems was addressed and two formats were expounded.
The first format was to represent the system by a nominal model and some unknown
uncertainty. For this case the controller is designed with respect to the nominal model
alone. A robustness condition has been found in Lemma 2.4.2 and robustness analysis of

state feedback controller designs was addressed in §3.1.

The second case assumes that some knowledge of the structure and magnitude of the
uncertainties are known, thus the system may be represented by a nominal model, some
modelled uncertainties and some residual unknown uncertainties. To avoid conservative
design and analysis, the uncertainty should be described parametrically when possible,
minimising the requirement for robustness to residual unknown uncertainty. For state
feedback systems, it was argued in §2.2.4 that the modelled uncertainty and unknown
residual uncertainty should be described by parametric uncertainty models. For such an
uncertain system with a quadratic cost function, an optimal full state feedback robust
controller design methodology is presented in this chapter which offers both good stability
robustness and good performance robustness. Robust stability is guaranteed for all
admissible uncertainties and the cost performance is guaranteed to lie within a specific
bound and furthermore, the worst case performance degradation is also proved to be
minimal. There is an inherent trade off between stability robustness and performance
robustness, and this may be illustrated by considering the designs resulting from varying
the magnitude of the admissible domain of uncertainty. Similar to normal LQR design, a
certain level inherent robustness properties are also provided with respect to the residual

unknown uncertainty.

The approach is presented for both norm bounded and matched norm bounded formats of
uncertainty in both system and input matrices but is readily extendible to other formats.
The methodology is an extension of the original work on guaranteed cost control (Chang
and Peng, 1972) which was further pursued by Petersen (1992). These papers considered
only uncertainty in the system matrix, Petersen (1994) extended this to cover uncertainty
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in the input matrix but only for the matched norm bounded case. The methodology is
developed in this chapter using a new result for the comparison of the solutions of two
related Riccati equations which, in the author's opinion, gives a significantly simpler

approach than Petersen (1994).

An equivalence is established between the robust LQR approach and the He control
approach for a suitably scaled version of the system. Hence, a complete solution to the
robust LQR design problem can be obtained through existing H= control techniques. The
existence of a solution is equivalent to the existence of an He optimal controller and
solutions have been obtained for a reasonably broad range of examples studied. If the
optimal robust LQR solution does not exist, then by releasing the cost requirement and
employing Lyapunov stability theory a robust stabilising controller could be looked for.

After the problem statement, a method will be developed for the system with uncertainties
which can be described by a norm bounded structure (4.1.2) in §4.2, then as a special casc
of this the matched norm bounded case (4.1.3) will be studied. The results allow a
quantitative argument describing the trade off between stability robustness and
performance robustness to be prescnted. In §4.3, it will be demonstrated how the RLQR
design method can be posed as an H= control design problem for a scaled certain system
hence allowing the existing H= numerical techniques to be used. Example systems will be

used in §4.4 to illustrate the implementation of the methodology.

4.1 PROBLEM STATEMENT

As discussed in §2.2.4, only parametric uncertainties AA and AB will affect the
robustness of state feedback control system, hence the uncertain systems to be studied in

this chapter will be described by the following state-space representation:
x() = (A+AA())x(t)+(B+AB())u(t); x(0)=x, (4.1.1)

Where AA(1), AB(t) are time-varying matrices which describe the parametric
uncertainties in system matrix A and input matrix B, they are constrained to lie within an
admissible domain. According to the discussions in §2.2.1, this domain may be bounded
by some singular values as:

{AA =N,®, ()M, T(®, (1) < 1}

AB =N, ®, ()M, G(d, (1)) <1 (4.1.2)

where N,, N,, M,, M, are given constant matrices.
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The full state feedback control law u= Kx will be considered in this chapter and the cost

performance is assessed by the quadratic cost criterion (2.3.5) as:
1= fo"(xTQx +u"Ru)dt (4.1.3)

where R and Q are weighting matrices which are assumed to be positive definite matrices.

The methodology described in this chapter aims to design a controller u = Kx which can
stabilise the uncertain system (4.1.1) and provide a minimal bound for the performance
index (4.1.3) for all admissible values of AA, AB. Like the optimal LQR control design
discussed in §3.1.1, the optimal robust LQR controller should also have some inherent

robustness properties for residual unknown uncertainty.

A important part of the problem is to choose suitable structural matrices N,,N,,M_,M_
and bounding matrices @, (t),® (t) to represent the given uncertainty model AA, AB in a
precise way. A precise description will lead to a less conservative robust controller. In
general this is a complex problem and no generally applicable algorithms are known. A
commonly used formulation is to ‘'match’' the uncertainty descriptions for AA, AB by

choosing:

N,=N,=N, @ ()=, (t1)=D(1)
This gives the special case of matched norm bounded uncertainty, which may be
described by:

I1, = {{AA,AB] = N&(1)[M, ,M, ]:G(d(1)) < 1} (4.1.4)

This issue is further discussed in §4.2.3.

4.2 ROBUST OPTIMAL CONTROLLER DESIGN

For a given controller u=Kx and uncertain system (4.1.1), the closed loop system can be
described as:

X(t)=(A,+AA)x(t) 4.2.1)
where

A,=A+BK, AA = AA +ABK (4.2.2)
Since the uncertainties (AA, AB) are constrained, a performance bound J, can be found
which is a bound for the cost over all admissible values of (AA, AB). The following will

provide a method, for systems with unmatched norm bound uncertainty (4.1.2) or
matched norm bound uncertainty (4.1.3), to find the performance bound by the use of the

result of Lemma 2.4.4.
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4.2.1 Systems with norm bounded uncertainty

For the uncertain system (4.1.1) with a controller u=Kx and unmatched norm bound
uncertainty (4.1.2), it follows that:

AA, =AA+ABK =N, ® (t)M, + N, ®, ()M, K (4.2.3)
and after choosing:

Q,=Q+K'RK (4.2.4)

The performance bound of the closed loop system can be found by the use of the result of
Lemma 2.4.4.

To determine a bound for the uncertain AA , the result of Lemma 2.4.1 can be used here,
it follows that for any positive definite matrix P, constant matrix K and scaling parameters

a,,0, >0

sincc  AAJP+PAA, = AATP+PAA + (ABK)"P+PABK

1
and  AATP+PAA = (N,®,()M,)"P+P(N,®,(1)M,) < a,PN,NIP+a—MIM,

(ABK)"P+PABK = (N,®, ()M, K)"P+P(N, &, (1)M,K)
1
So (ABK)"P+PABK < azPNbNIP+;-KTMIMbK

Then a bound function © can be found as:
4
AAJP+PAA <PWP+W,+K"WK=0(M,,M,,N ,N,,P.K,a,a,) (42.5)

where W), W, and W, are defined by:

W. = T T _ M.:-Ma _ M:Mb
1 =o,N,N, +o,N,N,, W,= 5 = W, = o (4.2.6)
1 2

It should be noted that the subsequent results may be sensitive to the values chosen for O
and o, . These effectively describe the particular factorisation of the uncertainty and may
be searched to improve the results. Thus by the use of the uncertain bound (4.2.5) in

Lemma 2.4.4, a performance bound for the uncertain system can be found.



Chapter 4. The design of state-feedback optimal robust LOR 68

Lemma 4.2.1 Consider the uncertain system (4.1.1) with uncertainty bound (4.1.2)
and cost performance index (4.1.3). For any stabilising controller u=Kx, if
the following Riccati equation has a positive solution, P, >0,

(A+BK)'P, +P,(A+BK)+P,W,P, + W, +K"(R+ W,)K+Q=0  (4.2.7)

then J, = xP,x, is a bound for the cost values for all admissible (AA,AB ) such

that: J<J, (4.2.8)
Proof: This results can be found by the choosing A, =A+BK, Q,=Q+K'RK and
using bound (4.2.5) in Lemma 2.4 4. 2 2

The optimal robust controller which minimises this performance bound is sought; to
describe the effect of the controller on the performance bound, (4.2.7) is rewritten as:

AP, +P,A-P,BR'B'P,+P,WP, + Z(K,P,) +Q =0 (4.2.9)
wherc §=R+W3, 6=W2+Q 4.2.10)
and Z(K,P,)=[K+R'B"P,]"RIK+R'B"P,]>0 (4.2.11)

Now the effect of the controller is expressed explicidy through Z(K,P,). A new property
of solutions of modified Riccati equations developed here enables the effect on the
performance bound of the term Z(K,P,) to be quantified.

Lemma 4.2.2. For the following two Riccati equations:
A™P, +PA-PBR'BP,+PNN'P, +Z(K,,P)+Q=0 (4.2.12)
A"P,+P,A -P,BR"'B"P, +P,NN'P, + Z(K,,P,) + Q=0 (4.2.13)

with Z(K,,P)2Z(K,,P) for any positive definite matrix P, if equation
(4.2.12) has a positive definite solution, P, >0, then

(1) equation (4.2.13) will have a positive definite solution, P, > 0.
(i) P, <P

Furthermore, it follows that for all K for which (4.2.12) has a positive definite
solution, K will give a minimal solution if Z(K,P)2Z(K,,P) for all P.

Proof: Defining
HP)=Z(K,,P)-Z(K,,P)=>0

then (4.2.12) can be written as:

AP, +P,A -PBR™'B"P, +PNN"P, + Z(K,,P,) + H(P,)+ Q=0
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Substituting for Z(K,,P,) from (4.2.11) gives:

(A+BK,)™P +P (A+BK,)+PNN"P, + K]RK, +H(P,)+ Q=0 (4.2.14)
Similarly, (4.2.13) can be written as

(A+BK,)"P,+P,(A+BK,)+P,NN'P, + K]RK, +Q =0 (4.2.15)
Defining that A;=A+BK, and Q, = KJRK,+Q, (4.2.14) and (4.2.15) may be

rewritten as:
AP, +PA,+PNN'P,+H(P,)+Q, =0 (4.2.16)

and A P,+P,A +P,NN'P,+Q, =0 (4.2.17)

1) Since H(P)> 0 for any positive definite matrix P, so we get that H(P,) >0, and also
Quz 'I

0
H 172 (Pl )J

2.3.5 it follows that if equation (4.2.16) has a positive definite solution, then

o -I(sl -A.)'N
Hl/2 (Pl )J 0 "

So from Lemma 2.3.6 it follows that

Q, >0 since Q>0, so A, and must be observable. From the results of Lemma
0 0

<l

lQ¥2(s1-A)"'N|_ <1

Then from the results of Lemma 2.3.5 it is found that if equation (4.2.16) has a positive
definite solution, P, >0, the equation (4.2.17) will have a positive definite solution,

P, >0.

(i1) Equations (4.2.16) and (4.2.17) may be written as:
(A, +NN'P,)"P, +P,(A,+NN"P,) + PNN"P,
—PNN'P,—P,NN"P,+H(P,)+Q, =0 (L1
(A, +NN'P,)"P, +P,(A,+NN'P,)-P,NN"P, + Q, = 0 (4.2.19)
subtracting (4.2.19) from (4.2.18) yields:

(A, +NN'P,)"(P, - P,)+ (P, ~P,)(A,+NN"P,) + (P, - P,)NN"(P, -P,) + H(P,) = 0
So (A, +NNP,))"(P,-P,)+(P,-P,)(A,+NN"P,) <0
Since equation (4.2.17) has a positive definite solution, P, > 0, it is well known from the

Lemma | of Doyle et al. (1989) that A, +NNTP2 is stable, then from Lemma 2.3.1 it can
be deduced that since: H(P,) >0
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then (F,-P,)20 ie. P 2P, *

Hence, from Lemma 4.2.2, a controller K, which minimises Z(K,P,) for all P, will give

a minimal solution to (4.2.9) and hence a minimal performance bound. It is clear from
(4.2.11) that Z(K,P,) is minimised with a value of zero by choosing
K=K0=—§'IBTP,,_ Making this substitution in (4.2.9) yields a modified Riccati

expression for the minimal performance bound and leads to the following theorem.

Theorem 4.2.3. For the uncertain system (4.1.1) with uncertainty bound (4.1.2), if the

following Riccati equation
AP, +P _A-P BR'B'P +P WP, +Q=0 (4.2.20)

has a positive definite solution, P_ >0, then P_ <P, for any controller K for
which the Riccati equation (4.2.7) has a posiuve definite solution P,.

Furthenmore, choosing:
K,=-R B'P, (4.2.21)

will stabilise the uncertain system (4.1.1) for all admissiblc (AA, AB) and

provide a minimal performance bound.

Proof: The expressions for the minimal performance bound and optimal controller are
self evident from previous arguments. The same method as the proof of Lemma 2.4.2 will
be used here to prove asymptotic stability of the uncertain system (4.1.1) with the optimal
controller (4.2.21). From the definition of (4.2.21), equation (4.2.20) can be rewritten as:

(A+BK )"P_+P_(A+BK )+P.WP_+K'RK, +Q=0
r m m r m 1™ m r T

So equation (4.2.20) has a positive definite solution implies that the above equation will
also have a positive definite solution P_> 0. From the uncertainty constraint (4.2.5) it

follows that:
AA(P +P AA <P WP +W,+K WK,
Adding this expression to the above equation it follows that:
ATP_+P A_+K/RK,+Q<0
Where A = A+BK _+AA+ABK, is the closed loop sysitem matrix. So this positive
definite solution P_ > 0 satisfies:
AP +P A <-K'RK,-Q<0
So from the definition of the Lemma 2.3.1 it follows that the uncertain closed loop system

1s quadratically stable. L 2
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Hence, for a system with unmatched norm bounded uncertainties, a robust optimal LQ
control law is given by (4.2.21) which requires the solution of a modified Riccati equation
(4.2.20), this controller stabilises the uncertain system and provides a minimal
performance bound. At the same time, since the performance bound is dependent upon
the particular factorisation of the uncertainty, o, and o, may be searched to improve the

results.

Furthermore, from the proof of the above Theorem we know that there exists a P_ >0
such that:
ATP_+P A_+K'RK,+Q<0
ie. AP_+P_A_+P BR'RR'B'P_+Q<0
Then from Lemma 2.3.5, the active closed loop system satis{ies:

"Q“z(sl—Ac)_'Bﬁ"RUZIL <1

Relating this to the result of §3.1.1 of the standard LQR design, it is found that, in the
optimal RLQR design, there are also some inherent robustness properties for residual

unknown uncertainty of the system.

4.2.2 Systems with matched norm bounded uncertainty

In this section we consider the case when the parametric uncertainties of the system matrix
and the input matrix are matched as (4.1.2). The closed loop system of uncertain system
(4.1.1) is also described by (4.2.1) and again the uncertain terms may be bounded to yield

an equation for the performance bound.

For the uncertain system (4.1.1) with a stabilising controller u=Kx and norm bound

uncertainty (4.1.4), it follows that:

AA, = AA + ABK =N®(1)(M, +M K)

and also choosing: Q,=Q+K'RK, then the performance bound of the closed loop

system can be found by the use of the result of Lemma 2.4.4. To determine a bound for
the uncertain AA , the result of Lemma 2.4.1 can be used here, it follows that for any

positive definite matrix P, constant matrix K and scaling parameters o > 0, it follows that:

AATP +PAA, < AA™P +PAA + PABK + KTABP
=(M, +M,K)"®" ()NTP+PND(1)(M, + M, K)
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So by the use of Lemma 2.4.1 a bound function ©,, can be found as:
1
AATP+PAA, <aPNN'P+—(M, +M,K)"(M, +M,K)
e (4.2.22)
s
=0,(M,,M,,N,P.K,0)
Thus using similar steps as §4.2.1, i.e., replacing the uncertain bound in (2.4.22) by the
bound (4.2.22), then directly using Lemma 2.4 .4, the performance bound matrix P, is the
solution of the following Riccati equation:

(A +BK)"P, + P, (A +BK) +aP,NN'P,

1 T (4.2.23)
+E(M‘ +M,K)"M,+M,K)+Q+K'RK=0
Defining:
I T T -1 l T THT
Z(K,P,)=[(P,B +EM.M|=)):+K 127'((P,B +EM'M") >+K'] 20
(4.2.23) can be rewritten as
AP, +P,A, -P,BEZB'P, +aP,NN'P, + Z(K,P,)+Q, =0 (4.2.24)

where

1 1. 1
A=A-_B MM, Q, =aMf(l—Mh YM; )M, +Q and Z=(R+EMIMb)"

Again Lemma 4.2.2 may be employed and leads to the following result:

Theorem 4.2.4. For the uncertain system (4.1.1) with uncertainty bound (4.1.4), if the

following Riccati equation
A'P_+P A -P BYB'P_+oP NN'P_+Q, =0 (4.2.25)

has a positive definite solution, P_> 0, then P_ <P, for any controller K for
which the Riccati equation (4.2.23) has a positive definite solution P,.

Furthermore, choosing:
b3
K=K, =—E(OLBTPN+M:M,) (4.2.26)

will stabilise the uncertain system (4.1.1) for all admissible (AA, AB) and

provide a minimal performance bound.

Proof: The proof of this Theorem is similar to the proof of Theorem 4.2.3. *

Hence, for a system with matched norm bounded uncertainties, a robust optimal LQ
control law is given by (4.2.26) which requires the solution of a modified Riccati equation
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(4.2.25), this controller stabilises the uncertain system and provides a minimal

performance bound. As before, 0t may be searched to improve the results.

4.2.3 The choice of an appropriate uncertainty description

For a given uncertainty model (AA, AB), the choice of a suitable description I1 (4.1.2) or
[1,, (4.1.4) is critical to the design of less conservative RLQR controllers. In general this
is a complex task and no general algorithms are available, so some guidelines are given in
this section. In §4.1, the matched norm bounded uncertainty format was introduced,
however it will be shown that it is not always possible to represent the uncertainty as this
format without unnecessarily increasing the dimensions and singular values of
N,,®,(1),M, and N, D, (1), M,, such a increase would lead to an imprecise description.
However, it is also shown that if a matched norm bounded format is available, and giving
no unnecessary increase of the dimensions and singular values of uncertainties, then using

Theorem 4.2.4 will give a less conservative design than Theorem 4.2.3.

Conjecture 1: In general, a description which can make the dimensions and singular
values of the matrices W,, W, and W, in (4.2.6) as small as possible will give a less
conservative RLQR controller and also with a lower performance bound. This result is
evident from the proof of Lemma 4.2.2: consider equations (4.2.16) and (4.2.17), the

comparison result shows that if equation (4.2.16) has a positive definite solution,
P, > 0, the equation (4.2.17) will have a positive definite solution, P, > 0, and P, <P,.

From this comparison it can be deduced that less dimensions and singular values of the
matrices W,, W, and W, will give less conservative design.

Conjecture 2: Not every uncertainty (AA, AB) can be described in the matched norm
bounded format (without unnecessarily increasing the dimensionalty). This is

illustrated by the following simple example, consider

[0 0] [o,]

Ao ot e,

where I‘le <1 and |(p2| <1. Let us attempt to represent this with the matched norm

bounded format (4.1.4), for a minimal dimension representation we should choose

[o,

0] _
¢=LO (sz, and o(d)<1

Then N, ®(t) and M, can be chosen as:
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AB=|[ .

Lo e l1p.]

where p,, p, are arbitrary positive scalar parameters. Then to represent AA in the

Jrcp. e,

matched format it is required that

AA:U/' 0].5" O]-M.

A

Since the elements of suitable M, must be constant and not functions of ¢, and ¢,
and it can be shown that no suitable solutions exist, this uncertainty can not be
represented in a minimal dimension matchcd norm bounded format. It may be
possible to represent (AA, AB) in matched format by increasing the dimensions of
N, d(t), M, and N, &(t), M, but this will give lcss precise description.

Conjecture 3: When a particular matched norm bounded description I1_ (4.1.4) of (AA, AB)
is available it is found that using Theorem 4.2.4 (spccifically developed for this format)
will give a less conservative design than using the gencral Theorem 4.2.3.

Consider a uncertainty domain as I1 (4.1.2), assumc that the uncertainty is matched so we
may write:

N,=N,=N, and & (1)=& (1)=d(1)

Following the method for the general unmatched description we get an uncertainty bound
function O (4.2.5) as
MM, K'M/M, K
+
al al

O= (o, +0a,)PNN"P+
or by the specific method for matched uncertainty we get a bound function © (4.2.22) as
0, = aPNNTP+é(Ma +M,K)" (M, +M K)
for any given 0, and @, , we can choose 0.= 0, + 0., then:

MM, KTMTM K 1
0-0, = ——(M +M_K)"(M, +M,K)

o B o o)
(I.+(12 Q,

Hence, if a matched norm bounded format description is available Theorem 4.2.4 will give

a less conservative controller i.e. it will have a lower performance bound.
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Overall the choice of the 'best' description of the uncertainty is quite a complex problem to
which no general solution is known. However, some guidelines are firstly to choose a
description with minimal dimensioned structural matrices and secondly, if it is possible
within this constraint, choose a matched norm bounded format and employ the special

method (Theorem 4.2.4) for this case.

4.2.4 Relationship between stability and performance robustness

Let us now consider the trade off between stability robustness and performance

robustness. The norm bounded uncertainty description is used here but similar arguments
apply for the matched norm bounded case. The cost bound xjP,x, is a bound for the

maximum possible cost for all admissible values of (AA, AB). As defined in §2.4.2, the
performance robustness may be measured by performance degradation parameter p as:

- xg(Pb -Py)x,

T
XoPyX,

x100% (4.2.27)

where P, >0 is the performance matrix of the certain part of the system (4.1.1) when the
opumal LQR controller for the certain part is employed. For some given parametrc
uncertainties AA, AB, a relatively small performance bound P, produces a small
performance degradation rate and the system is said to have good performance robustness
and furthemnore, the minimal performance bound P_ gives a minimal performance

degradation rate, p,,.

It is desirable that a control system possesses both good stability robustness and
performance robustness. Stability robustness may be measured by the size of the
admissible domain specified for the uncertainties, (AA, AB) and to increase the size of
this domain W,, W, or W, should be increased. However, from (4.2.20) it can be
deduced that P, and thus p_ will also be increased and hence performance robustness
will be reduced. Thus, it is clear that there is an inherent trade off between stability
robustness and perforrnance robustness; if better stability robustness is required,
performance robustness must be reduced and conversely, if better performance robustness

1s required, stability robustness must be reduced.

4.3 RLQR DESIGN USING H~ DESIGN TECHNIQUES

The fast development of He optimisation design has produced many good design
techniques and tools. For easy computation of the robust LQR controller design, He=
controller design techniques may be applied to a suitably modified system. Firstly the He
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techniques will be introduced then they will be applied to uncertain systems for both norm

bounded and matched norrn bounded uncertainties.

4.3.1 H= controller design techniques

The design of full state feedback H= optimisation controller and the concept of quadratic

stabilisation with an He norm bound have been discussed in §3.1.2. Its result can be

recalled here: consider the system described as
{ x(1) = Ax(t)+B,0(t) + B,u(t)

z(t) = C,;x(t)+D,u(t) 4.3.1)

with  Q=D/D,>0

Remark 4.3.1. A full state feedback controller can stabilise the system and satisfy the
H= norm bound condition

"Tm"_, <Y (4.3.2)

if and only if the following modified Riccati cquation has a positive definite
solution P>0,

(A-B,Q'C/D,)"P+P(A -B,Q'C'D,)-PB,Q'BIP

1 433
+—PBBP+C/(I-D,Q'D/)C, =0 L
Yo
the required control law can be constructed as: u=K x with
K, =-Q"'(BJP+D/C,) (4.3.4) |
)

Hence, to design a controller which satisfies the H= norm bound (4.3.2) and stabilises the

system, use the positive definite solution of (4.3.3) in the expression (4.3.4).

4.3.2 RLQR design: norm bounded uncertainty case

Using H= controller design techniques, a RLQR controller for an uncertain system (4.1.1)
with norm bounded uncertainties (4.1.2) and quadratic cost function (4.1.3) is found.
Consider the following modified system with particular disturbance vector and
performance vector:

{ x(1) = Ax(t) + B,@(t) + B u(t)

z(t) = C,x(t) + D,u(t) (4.3.5)
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where A and B, =B are the system and input matrices of the certain part of (4.1.1) and

the uncertainty bound and cost function are encoded into the modified system thus:

[ o ] [ N ]
p l
M/JaTJ

where M and N are related to the weighting matrices Q >0 and R>0 in the cost function
by Q=M™ and R=N"N .

B, =[{Jo,N, ,[a_QN,,], C, J[MX/O?J" i[

0

The following theorem states that employing the He design technique to the modified

system will produce a RLQR controller for the uncertain system.

Theorem 4.3.2. Employing the H~ controller design technique, as describcd in
Remark 4.3.1, with y, =1 to the modified system (4.3.5) produces the same
controller as the RLQR design technique for any given uncertain systcm
(4.1.1) with norm bounded uncertainty (4.1.2) and quadratic cost function
(4.1.3).

Proof: From Remark 4.3.1, the H= controller is given by
=-Q'(B;P+D/C,) (4.3.6)

where P is the positve definite solution of
(A-B,Q'C'D,)"P+P(A -B,Q"'C/D,)-PB,Q'BIP

+PBB/P+C](I-D,Q'D])C, =0 &0
Since from the definitions for the modified system (4.3.5)
Q=DID, =R+MM, /o, and C'C,=Q+M™M,/o,, C'D, =0
(4.3.7) can be reduced to
A'™P+PA -PB,Q'BIP+PB B/P+C]C, =0 (4.3.8)
which can be shown to be identical to (4.2.14) and (4.3.6) can be written as
K, =-Q'B]P (4.3.9)

which is identical to (4.2.15). Hence the controller is identical to that produced by the
RLQR method in Theorem 4.2.3. *
So for Q > 0, there exists an optimal robust LQR solution for uncertain system (4.1.1) if
and only if there exists an H~ optimal controller with H= norm bound vy, =1.
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If an optimal robust LQR solution does not exist, i.e., there does not exist a positive
solution for equation (4.2.20) or (4.3.3), then we could turn to look for a robust

stabilising controller. Consider another system described as (4.3.1) but choose

N

The following Lemma states that employing the H= design technique to the modified
system will produce a robust stabilising controller for the uncertain system.

Lemma 4.3.3. Employing the H= controller design technique with y, =1 to the

modified system (4.3.5) subject to (4.3.10), a robust stabilising controller for
any given uncertain system (4.1.1) with norm bounded uncertainty (4.1.2) and

quadratic cost function (4.1.3) will be produced.

Proof: The proof is similar to that of Theorem 4.3.2. The H= controller which can
stabilise system (4.3.5) with |T,_| < 1 is given by

K, =-Q"'(B;P+D[C,) 4.3.11)
where P is the positive definite solution of
(A-B,Q'C/D,)"P+P(A-B,Q'C/D,)-PB,Q'B]P
+PB,B/P+C (I-DQ'D])C, <0 G
Since from the definitions for the modified system (4.3.5) subject to (4.3.10)
Q=D/D,=MM, /o, and C'C,=M'M_/a,, so C'D, =0
(4.3.12) can be reduced to
A'P+PA -PB,Q'B]P+PB,BP+C/C, <0
from (4.3.11) we find that K, = —Q“BIP and the above expression can be rewritten as:
(A+B,K,)"P+P(A+B,K,)+K[QK,+PBB/P+C]C, <0 (4.3.13)

Hence
A:P +PA_<0

where A_=A+B,K,+AA+ABK,

From the definition of the Lemma 2.3.1 it follows that the closed-loop system matrix A

1s quadratically stable. g
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4.3.3 RLQR design: matched norm bounded uncertainty case

Now consider the matched norm bounded case, using the same modified system as (4.3.5)

with following definitions:

[ o 1
B, ={WN, C, =|[M.74,/071J’ D, =
0

20 (4.3.14)

_

[M,/ e |

The following theorem states that employing the H= design technique to the modified

system will produce a RLQR controller for the uncertain system.

Corollary 4.3.4. Employing the H> controller design technique with y, =1 to the
modified system (4.3.5) subject to (4.3.14) produces the same controller as
the RLQR design technique for any given uncertain system (4.1.1) with
matched norm bounded uncertainty (4.1.4) and quadratic cost function
(4.1.3).

If an optimal robust LQR solution does not exit, i.e., there does not exist a positive
solution for equation (4.2.20) or (4.3.3), then we could turn to look for a robust
stabilising controller. Consider another system described as (4.3.5) but choose

B,=/N, C = [M /‘F}, D, LM /0@] (4.3.15)

The following Corollary states that employing the H= design technique to the modified

system will produce a robust stabilising controller for the uncertain system.

Corollary 4.3.5. Employing the H= controller design technique with y,=1 to the
modified system (4.3.5) subject to (4.3.15) produces a robust stabilising
controller for any given uncertain system (4.1.1) with norm bounded
uncertainty (4.1.2) and quadratic cost function (4.1.3).
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4.4 EXAMPLE APPLICATIONS OF THE METHOD

Examples are given here to demonstrate the application of the method and illustrate its
effectiveness in producing good performance robustness and furthermore to show that
care should be taken when formatting an uncertainty description. Example 4.1 shows that
the robust LQR control design has significantly better performance robustness for an
uncertain system than the standard LQR method. Example 4.2 shows that different
descriptions of the same uncertainty will yield different robust LQR control laws and that

a more precise uncertainty description will give improved performance robustness.

Example 4.1 Consider the following uncertain system, performance index and particular
initial condition:

[ o0 1] [o] [1]
= 10800 -3-06e,0 L1 X1

J= I(xTx+uTu)dl, or()<1, @<
0

A f{ull state-feedback control law is to be designed, the uncertainty constraint can be
described using the norm bounded uncertainty format (4.1.2) with AB=0, and
AA =N, @ ()M, where

[0 0] fos 0] [o,() 0 ]
Ne=loab Mo sl 2O 0 g0

with G(®, (1)) < 1.

The application of Theorem 4.2.3 provides the optimal RLQR controller, u =K x with
K =-R'B'P, =[-1.15, -0.67]

The best value for the scalar parameter was found to be o,=0.56 for this example (o, is

redundant here since AB=0). For comparison, by standard LQR design (3.1.2), a
controller u=-K x can be found for the certain part of the system with:

K, =[0.414, 0.290]

From the summary of the performance of the two controllers in Table 4.1 it can be seen
that, as expected, the LQR controller offers superior performance for the certain part of
the system (it is in fact optimal for this case). However, when the uncertainty is
considered, the performance bound for the RLQR controller is significantly lower and

hence an improved performance robustness index is achieved.
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Performance (Bound) for | Performance (Bound) for
LQR (K,) RLQR (K))
Certain System x,Px, 297 3.38
Uncertain System xP,x, 12.22 6.99
Performance Degradation
Parameter, p 341.16% 152.35%

Table 4.1. Comparison of performance of LQR and RLQR controllers.

Example 4.2 Consider the following uncertain system, performance index and particular

initial condition:

x(t)= (A +AA)x(t)+(B+AB)u(t)

J=I(xTx+uTu)dl, OS], x,=[1 1 0.5]T
0

where
[0 1
A =| 0 0
[—O.l -02 03

01

[0 0

:
] O

. AA=|0 0 0
J [0 0 0.5<p(t)J

B=[0 0 15", AB=[0 0 05¢(1)]

Controllers designed for various descriptions of this uncertainty will be compared for all

cases @, =@ =D =9I, then G(P)<1

(1) Norm bounded format 1: the uncertainty constraint can be described by:

AA =N d(t)M,, AB=N,d(t)M,, P=0l
[o 0 01
where N, =0.51, N =051, M, =0 0 0 M, =
[O 0 1

[0 o 1

From (4.2.20) and (4.2.21) the optimal RLQR controller, K, is found where

K, =[-0.9-4.59 -4.27)

and a minimal performance bound of 537.8 for the particular initial condition. The ‘best’

values for the scalar parameters were found to be o, = 0.025 and o, = 0.023.
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(1) Norm bounded format 2: In this case a description which can make the dimensions and
singular values of matrices W,, W, and W, defined in (4.2.6) less then format 1 will be

used to illustrate the Conjecture 1. The result will show that this format will give less

conservative design. Consider a new description of the uncertainties as:
[0 0 0]

N, =[0 0 0, N,=N,, M,=05N,, M,=[0 0 05]
00 IJ

Then from (4.2.20) and (4.2.21) the optimal RLQR controller, K, is found where

K, =[-0.93 -2.46 -3.27]
and a minimal performance bound of 19.31 for the particular initial condition. The ‘best’
values for the scalar parameters were found to bc o, =026 and o, =035. This

performance bound is significantly lower than that achieved using thc norm bounded

format (1), so the Conjecture 1 is illustrated.

(11) Matched norm bounded format: It is clear that these formats arc matched norm

bounded format, so let us use the special description (4.2.4) with

[0 0 ol

N=|[0 0 OI

0 0 1

M, =05N, M,=[0 0 05

From (4.2.25) and (4.2.26) an optimal RLQR controller, K, is found where
K, =[-079 -196 -2.16]

and a minimal performance bound of 16.06 for the particular initial condition. The 'best’
value for the scalar parameter was found to be 0t=0.52 in this case. This perfortnance
bound is significantly lower than that achieved using a norm bounded format to describe
the same uncertainty constraint and in general, if it is possible to describe the uncertainty
with a matched norm bounded format then this will result in better performance than if a

norm bounded format is used.
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4.5 DISCUSSION

A robust LQR design methodology is presented which guarantees both closed loop
stability for all admissible uncertainties and provides a minimal performance bound. The
inherent trade off between stability robustness and performance robustness can be
illustrated by considering the effect of increasing the magnitude of the uncertainty domain.
It is shown how the RLQR design problem may be presented as an H~ design problem for
a scaled version of the nominal system and that for suitable choices of the disturbance and
performance vector identical controllers are produced. This enables the numerical
techniques developed for the solution of H= problems to be employed to implement the
RLQR method described here. The performance robustness is sensitive to the precise
format in which the uncertainty bound is described and it is shown that a format giving a

precise description will give good robust performance.
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The stability robustness analysis of full state feedback controlled systems has been
discussed in chapter 3. It was shown that existing design techniques offer some inherent
stability robustness to unknown residual uncertainty. This chapter will focus on the
analysis of the robustness of full state feedback controlled systems with modelled
parametric uncertainties; both the ability to remain stable and maintain a prescribed level
of performance are assessed. Some robustness bounds are developed for a given closed
loop system, these bounds describe the largest magnitude of uncertainty for which the
system can both be guaranteed to remain stable and to satisfy a given performance
criterion. Furthermore, a maximal robustness bound will be developed in this chapter.
This is a sufficient condition for the existence of an Robust LQR controller produced by
the technique of chapter 4. The adoptiuvn of the resulting controller will guarantee closed
loop stability and the adherence of the performance criterion for all admissible
uncertainties. This robustness analysis technique enables the trade off between

performance and robustness to be quantitatively assessed.

A standard approach in robust controller design is to usc the magnitude of the uncertainty
bound as a design variable, thus for all admissible uncertaintics a (minimal) performance
bound is offered. The robustness analysis technique developed here permits an alternative
approach to controller design: a performance criterion may be specified and a robustness
bound found which may then be used to specify the uncertainty magnitude for the design
procedure. Thus a robust controller is designed using the performance criterion as a
design variable and a (maximal) robustness bound is offered. It should be noted that
though this approach may be taken iteratively using the standard approach, this method
permits a direct one-step solution. It is also known that there is an inherent trade off
between the level of performance that may be guaranteed and the magnitude of
uncertainty for which such a guarantee is valid, ie. a trade off between robustness
(magnitude of uncertainty bound) and performance (worst case performance bound). This
robustness analysis technique provides a succinct method to quantitatively assess this

trade off.

A recent technique paper published by Neto (1992) derives robustness bounds with
respect to a parametric uncertainty, for uncertainties within these bounds stability is
guaranteed. This concept is extended in this chapter to permit the guarantee of a
performance criterion and generalised for a larger class of uncertainty structures. It will
also be shown that Neto's result is a special cases when the requirement of performance

robustness is released. The methodology described here is also described in the paper of
Wei & Marsh (1995b).
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S.1 PROBLEM STATEMENT

From the discussion in §2.2.4, only parametric uncertainties AA and AB affect the
robustness of state feedback control system, the nonparametric uncertainties do not affect
the robustness. Hence the uncertain systems to be studied here can be described by the

following state-space representation:

x(1) = (A+AA)x(1)+(B+AB)u(t), x(0)=x, @Slel)

As in definition (4.1.2), uncertainties AA, AB are norm bounded time-varying matrices

which are assumed to lie in a measurable domain defined as:
_ {AA =N,®, ()M, (@, (1)< e}

L. (5.1.2)
AB =N, D, ()M, o(P, (1) <e

where N, N,, M,, M, are constant matrices describing the structure of the
uncertainty, they could be identity matrices if no information of the uncertainty structure is
known. The size of the uncertainty domain is described by a single parameter, €, this is
called the robustness parameter. In chapter 4, to design a robust controller, the magnitude
of the uncertainty bound is given, so by suitable choiceof N,, N,, M,, M,, the valuc

of € can be chosen as 1, but in this chapter, € will be a variable.

The full state feedback control law u = Kx will be considered in this chapter, and the cost

performance is assessed by the quadratic cost criterion (2.3.5) as:

J= Jo"(xTQx +u"Ru)dt (5.1.3)

Where Q and R are assumed to be positive definite matrices. The performance of the

uncertain system cannot generally be evaluated since the precise system description is
unknown and it is common to consider a performance bound J,. In this study it is

proposed to characterise the performance of the uncertain system by a performance
parameter, B, such that the following cost criterion is guaranteed to be satisfied for all

admissible uncertainties:
J. <SPl (5.1.4)
where J, is the optimal cost performance of the certain system, (when AA = AB =0). So

in this case, the performance degradation parameter is required to satisfy:
P<(B-1Dx100%.

The first objective relates to the analysis of the robustness of a given system; for a given
uncertain system (5.1.1), controller u=Kx and performance parameter [, determine a
bound £, for € for which the performance adheres to (5.1.4). This bound is called the

robustness bound and a simple expression for it is developed in §5.2.1. It should be noted
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that this guarantee of adherence to (5.1.4) implies that the cost will be finite which is
sufficient to guarantee closed loop stability, i.e., robustness requirements of stability and
performance could be satisfied. Furthermore, if the guarantee of closed loop stability is
the sole goal then a stability robustness bound should be found for this given controller by

considering the limit as 3 tends to infinity.

The RLQR controller design methodology of chapter 4 will produce, if it exists, a
controller which will provide a minimal performance bound. The second objective is, for a
given perforrance parameter 3, find a maximal robustness bound €,, for € for which the

existence of an RLQR controller is guaranteed and furthermore, show that such a
controller will guarantee ihe adherence of (5.1.4) for any € <g,,. It will further be shown
that this bound is maximal, ie. €,, 2€,. This bound is dcveloped in §5.4 and can be

described by a simple expression dependent only on the system parameters and the optimal

LQR controller for the certain system.

5.2 ROBUSTNESS BOUND FOR A GIVEN CONTROLLER

For a given uncertain system (5.1.1), controller u=Kx and performance parameter 3, a
robustness bound €, for € will be determined for which the performance adheres to

(5.1.4). It will also be shown that this guarantee of adherence to (5.1.4) implies that the
cost will be finite which is sufficient to guarantee closed loop stability.

Let us firstly recall the optimal LQR design for the certain part of system (5.1.1) from
§3.1.1, then a minimal value P, for P can be found by selecting:

K=K,=-R™'B'P, (5.2.1)
where P, is the unique positive definite solution of algebraic Riccati equation:

A"P,+P,A-P,BR"'B'P,+Q =0 (5.2.2)
and the optimal cost is given by

Jo =xPpx, (5.2.3)
As in §4.2, for the uncertain system (5.1.1) with control matrix K, the result of Lemma
2.4.1 can be used here to find the performance bound for the uncertain system. Since

AAJP+PAA = AATP+PAA + (ABK)"P+ PABK

According to the result of Lemma 2.4.1, for any positive definite matrix P, constant
matrix K and set of positive scalars {OLl ,(Xz,ﬁ}, it follows that:
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AATP+PAA = (N, @, ()M,)"P+P(N,® (1)M,)

<t ZpN NP+ MM,
B o

1

and
(ABK)"P+PABK = (N, ®, ()M, ,K)"P+P(N,®, ()M K)
<2 ZLpN NTP+ 2K ™M™, K
B o,
SO
(AA + ABK)"P+P(AA +ABK)
o a B B
<EP(ENNT+=2N.NHP+—M™ +—K™™ K
EP(Ba;Bbb) a].aaz b b
where W,, W, and W, are defined by:
e T T owo=PMM. W= oM™ 5.2.4
W, =E(0~1N.Na +0a,N,N,), 2= R Y = RALES (5.2.4)
| 2
So a bound function © can be found as:
A =
AAJP+PAA <PWP+W,+K"W,K=0(M,M,,N_,N,,P) (5.2.5)

Thus providing an altemative description of the admissible domain of AA, AB. It should
be noted however, that the size of the domain is still described by the robustness

parameter € .

According to Lemma 4.2.1, a performance bound for the uncertain system may be found
using the Lemma 2.4.4 to the uncertain system (5.1.1) with cost performance index
(5.1.3) and a given stabilising control law u=KXx, if the following Riccati equation

(A+BK)'P, +P,(A+BK)+P,WP, +W,+Q+K " (R+W,)K =0 (5.2.6)
has a positive solution P, >0 for all admissible (AA, AB), then the cost is bounded by

J2 1, =x Pik; (5.2.7)

Before the main result, it is necessary to introduce a new lemma which is used throughout
this chapter to compare the solutions of two modified Riccati equations.
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Lemma 5.2.1 For the following two modified Riccati expressions with any T, > 0:
AP, +PA-PMM'P,+PNN'P, +T, <0 (5.2.8)
A"P,+P,A-P,MM'P,+P,NN'P, + T, =0 (5.2.9)
if there exists P, >0 which satisfies inequality (5.2.8), then

(1) Equation (5.2.9) will have a positive definite solution P, >0.

(i) P, <P,

Proof: Lemma 4.2.2 can be used to prove this result.
Defining [T, >0, T, =Q, MM" =BR™'B", s0 (5.2.8) and (5.2.9) can be rewritten as

A™P,+PA-PBR'B'P,+PN NP, +Q+L'L=0 (5.2.10)
A"P,+P,A-P,BR"'B"P, +P,NN"P,+Q =0 (5.2.11)

Recall definition (4.2.11) as:

Z(K,P)=[K+R"'B"P]'"R[K+R'B"P]> 0 (5.2.12)
After choosing:

K,=RL-R"'B"P (5.2.13)

K,=-R"'B"P ‘ (5.2.14)

then
Z,(K,P)=L"L and Z,(K,,P)=0

So for any P >0, it follows that
Z,(K,,P)2Z,(K,,P) (5.2.15)
then (5.2.10) and (5.2.11) can also be rewritten as
AP +PA - PlBﬁ“'BTPl +PNN/P,+Q+Z,(K,,P,)=0 (5.2.16)
A"P,+P,A-P,BR"'B"P,+P,NN"P,+Q+Z,(K,,P,)=0 (5.2.17)

Hence Lemma 5.2.1 can now be proved using (5.2.16), (5.2.17) and (5.2.15) to Lemma
422 2

Following two kinds of bound will be studied, one is robustness bound which consider

both robustness of stability and performance, the other is the robust stability bound which

only consider the robust stability.
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5.2.1 Robustness bound

In the following Theorem the results of Lemma 5.2.1 are used to derive an expression for

the robustness bound €, :

Theorem 5.2.2 For the uncertain system (5.1.1) with a given control law u=Kx and a
given finite positive parameter 3 such that A; = A +BK is stable, if there

exist positive parameters o, ,0, such that & >0 and the robustness

parameter € satisfies:
SR (5.2.18)

then: (1) the uncertain system will be robustly stabilised by this given controller.
(2) P, <PP,,ie., J, <PJ,

where (A denotes maximum eigenvalue)

g, = I/ (Qay) (5.2.19)
Q=P,(a,N,N! +a,N,N} )P, (5.2.20)
[ = 1 -
¢>K=(1-E)|\ RK+(1—E)Q—Q—M,M,
' (5.2.21)

1
-(K-K,)"R(K —Ko)—a—KTM{MbK
2

Proof: Firstly it i1s assumed that the robustness parameter € satisfies (5.2.18) and then it is
shown that this guarantees P, <8P, and hence (5.1.4) holds.

From Theorem 7.7.3 of Hom and Johnson (1991) if A>0 and B >0, then B<A if and
only if X(BA") < 1. So the definition (5.2.19) enables the condiuon (5.2.18) for € to be

expressed as

Q< b, (5.2.22)
From (5.2.6), (5.2.20) and (5.2.21) it follows directly that

£’Q=pP,W,P,

and
Ry

B

Lot I w, T T
b, =(1-2)K'RK+(1-7)Q-——7"-(K-K;) R(K-K_;)-=K"W,K

B B p

substituting this into (5.2.22) gives
B’P,W,P,+ W, +K'WK < (B-DK'RK-B(K-K,)"R(K-K,)+(B-1)Q (5.2.23)

and collecting terms
B’P,W,P,+ W, +K" (W, +R)K +Q+BK'B'P, + BP,BK <

-BP,BR'BTP,+BQ S
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From (5.2.2) it follows that for any finite parameter 3:
B(A™P,+P,A-P,BR'B'P,+Q) =0 (5.2.25)

allowing (5.2.24) to be simplified to
(A +BK)"BP, + PP, (A + BK) +B’P,W,P,+ W, +Q+ K" (W, +R)K <0 (5.2.26)

The preceding steps are simply a transformation of the condition for € in (5.2.18); € is
expressed through W, and for any € satsfying (5.2.18) the inequality (5.2.26) will hold.
This inequality may be considered as a Riccati expression in BP, similar to (5.2.10) which

is positive by definition (5.2.2).

Let us now consider the performance bound for the system for any given value of €. The
uncertainty bound can be described through (5.2.6) and (5.2.7) and from Corollary 4.2.1,
if the following Riccati equation has a solution P, >0,

(A+BK)"P, +P,(A+BK)+P,WP, + W, +Q+K"(W,+R)K=0  (5.2.27)

then P, is a performance bound matrix.

By setting M=0, Lemma 5.2.1 can now be used to compare the Riccati expressions
(5.2.26) and (5.2.27); since for an € satisfying (5.2.18) there exists BP,>0 which satisfies
(5.2.26), then equation (5.2.27) will have a positive solution P, > 0, and furthermore,

P, <BP, (5.2.28)

So to summarise, if € satisfies (5.2.18) then (5.2.26) will hold and (5.2.28) is implied
which is sufficient to guarantee (5.1.4) for any x,. Furthermore, if (5.2.27) has a positive

definite solution, then this solution also satisfies:
(A+BK +AA + ABK)"P, +P,(A +BK+AA + ABK) <0
Above expression can be obtained by adding (5.2.27) to (5.2.7), from Corollary 2.3.1 it

follows that if (5.2.27) has a positive definite solution, then the uncertain system (5.1.1)

can be robustly stabilised by this given controller u=Kx. 2

Thus, for a given full state feedback control law, the performance robustness bound &, is
given in (5.2.19). The scalar parameters o, and o, may be searched to maximise g .
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5.2.2 Robust stability bound

Robust stability is often a core goal of control design, so it is necessary to consider the
bound of uncertainty for which a given controller can guarantee robust stability. Firstly,
let us consider the relationship between the robustness bound €, and the performance
parameter [3, the following result shows that if 3 is increased €, also increases.

Lemma 5.2.3 For a given [ if there exist 7Y,,Y, such that d)K([}) >0, then for any
B, > P these V;, Y, give <DK(B,) >0and e (Bl) >€ B)-

Proof: Since Q+KTRK >0 and from (5.2.21) it follows that
1 1

&, (B)—P, (B) = 3B (Q+K™RK)20 (5.2.29)

so If B<P,, then &, (B,) =D, (P).

From the definition in (5.2.20) and since and Q>0, &, (B,) and ®,(B) are positive

definite matrices, it follows that

O (B2 (B) = Py (B) <D (B)
= Q' (B)Q" < e (B)*

hence
MQ Dy (B Q) < M@ (BI)
and
MQDY (B) < MQD (B))
Hence from the definition (5.2.19) it can be deduced that € B) < € ( Bl ).

From this result it is clear that the robustness bound for a given controller is maximised in
the limit as 3 tends to infinity. No performance guarantee may be given as Theorem 5.2.2
applies for finite 3 only, but the following Lemma will show that for any finite B and
€ <€, the cost value is guaranteed to be finite, this is sufficient to guarantee closed loop

stability, hence a stability robustness bound is presetted.
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Lemma 5.2.4 For the uncertain system (5.1.1) with a given control law u=Kx such
that A; = A +BK is stable, if there exist positive parameters ,,, such that

®, >0 and the robustness parameter € satisfies

E<Ege (5.2.30)
then the given control law can stabilise the uncertain system.

Where € is defined as in (5.2.20) and

-4
e =lim(e )=1/x (Qds (5.2.31)
= K

KS

1 I
o, =lim(@®,) =K'RK+Q-—M'M, -—K'M{M,K
KS B—w( K) Q o, a o, b b (5-2.32)

-(K-K,)"R(K-K,)

Proof: The initial stages of the proof of Theorem 5.2.2 may be repeated to show that
et = pZQ< by Substituting for € and &, from (5.2.20) and (5.2.32) respectively

gives

1 1
uzpo(alNaN;r * aszNI)Po +a_M:Ma e KTMIMbK (5.2.33)

1 Q,

<K'RK+Q-(K-K,)"R(K-K,)
From Lemma 2.4.1 we can derive

(AA + ABK)"P, + P,(AA + ABK)

1 |
<u’Py(a,N,NT +0,N,N])P, +a—MIM, +—K™™[M,K

1 Qa,

hence from (5.2.33)

(AA +ABK)"P,+P,(AA+ABK)<K"RK+Q—-(K-K,)"R(K-K,)
cxpanding and substituting for K from (5.2.1) gives

(AA + ABK +BK)"P, +P,(AA + ABK +BK) < Q—P,BR"'BP,
Adding AP, + P,A to both sides and substituting from (5.2.2) gives

AP, +PA <A"P,+P,A+Q-P,BR'B"P, =0 (5.2.34)

Proposing V =xTP0x >0 as a Lyapunov function; since x = A x and from (5.2.34) it can
be deduced that V =x"(A,"P,+P,A_)x <0, hence V is a valid Lyapunov function and

the system is guaranteed to be stable. (also from Corollary 2.3.1) 2

NB. An altemative proof is possible by extending Theorem 5.2.2 to show that
£< EK(B) = P, < 3P, hence for € < él_{n(ex(B)) , P, is finite and the system is stable.
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So, a stability robustness bound will be found from the above Lemma, and from the result
of Lemma 5.3.2, it always follows that: €, < &,.

5.3 ANALYSIS AND SYNTHESIS

Two particular controllers: optimal LQR and optimal robust LQR controller will be used
in this section to demonstrate the application of results derived in above section. Their
robustness bounds and robust stability bounds will be found for the uncertain system
(5.1.1) with norm bounded uncertainties described as (5.1.2). These bounds will also be

related to the robustness condition of §3.1.1.

5.3.1 Robustness bound for optimal LQR control system

The optimal LQR controller for the certain system is commonly proposed, hence it is very
interesting to study it's stability robustness and performance degradation and relate it to
the stability robustness analysis described in this chapter. Here the optimal LQR
controller is used to evaluate the robustness bound €, and the stability robustness bound

€5 for this special case. The following results can be found directly from Theorem 5.2.2

by choosing the given controller as the optimal LQR controller (5.2.1).

Corollary 5.3.1 For the uncertain system (5.1.1) with optimal LQR controller (5.2.1),
if there exist positive parameters o,,0, such that ®, >0 and the robustness

parameter € satisfies
ESE (5.3.1)
then: (1) uncertain system will be robustly stabilised by LQR controller.

(2) P, <PP,.ie. ], <PJ,

Where €2 was defined in (5.2.20) and
g, = /%4 (Qo}) (5.3.2)

I T TSR S
E E)Q“E?M.Ma*a_lKoMbeKo (5.3.3)

Furthermore, a stability robustness bound for LQR controller can be found as:

g<e, (5.3.4)

®, =(1--)K;RK,+(1-

where
&5 =lim(e, ) = 1/V(Qd7L) (5.3.5)
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. T 1 T 1 TaaT

1 2

This stability robustness bound may be related to the stability robustness analysis method
developed in §3.1.1. If the robustness parameter € satisfies the stability robustness bound
(5.3.4) then:

2 .
Q<D 1e.

1 1
£’P,(o,N,NT +a,N,N])P, < KOTRK0+Q—OL—MIM. _—y KIM'M K, (5.3.6)

1 2
Defining the uncertainty description of the closed loop system as:
a
AA, =N,®, (UM, +N,d, (UM, K =Nd(t)M

]
A o _I th,(t) 0 | a 11|
where N:‘/(TI{Na \[OL:TN"J' ¢’(l)=L 0 d)h(L)J’ M= a_lh/gMbKUJI

Using the above definitions, (5.3.6) can be rewritten as:

2 T i T T
o,e°P,NN P°+a M'M<K RK;+Q
i
From the definition for K (5.2.1) it follows that:
2 il 1 T -lpT
o, £°P,NN P°+a—M M<PBR B 'P,+Q (5.3.7)

1

This is directly comparable with the robust stability condition (3.1.7).
aM™<Q; —NNT<BR-BT
o
1
It is clear that above condition could be a special case of (5.3.7) with o, =—. If there
(073

exists a positive o such that above conditions are satisfied, then condition (5.3.7) will also
be satisfied. It can also be shown that the stability robustness bound € ¢ which is given in
(5.3.4) for the uncertain system with the optimal LQR controller is similar to that
developed in Neto et al. (1992). Thus the result described here is less conservative than

traditional method the described in §3.1.1.

5.3.2 Robustness bound for optimal robust LQR control system

A optimal robust LQR controller design method has been developed in chapter 4 and it is
proved that RLQR can provide both good stability and performance robustness. In this
section, robustness analysis will be made for the uncertain system (5.1.1) with the optimal
RLQR controller (4.2.26). Since the design of RLQR controller requires the specification
of a bound of uncertain parameter, so it will be very useful and interesting to find a bound
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for the uncertain parameter such that there exists a optimal RLQR controller which can
stabilise the uncertain system (5.1.1) and satisfy the performance degradation requirement.

Consider the performance bound for the system for any given value of €; for a given
controller u=Kx, the performance bound will be given by the solution P, of (5.2.8) if
P, > 0. The RLQR controller u =K x for the uncertain system (5.1.1) is given (Theorem

4.3.4) by
K =—(R+W,)"'B™P_ (5.3.8)
if the following equation has a positive definite solution P_>0:
A™P_+P_A—-P_B(R+W,)'B'"P,+P WP _+W,+Q=0 (5.3.9)

NB. It can also be shown that P_ is a minimal performance bound matrix, ie. P_ <P,.

Then the robustness bound &, is developed in the following theorem:

Theorem 5.3.2 For the uncertain system (5.1.1) and performance parameter [, if
there exist positive parameters Q.,,Q, such that @, >0 and the robustness

parameter € satisfies
eE<gy (5.3.10)
then an RLQR controller (5.3.8) exists such that:
(1) the uncertain system will be robustly stabilised by LQR controller.
() P, < PP,,i.e.,J, <PJ,
Where Q is defined as in (5.2.20) and

£y = 1/A(QO7) (5.3.11)
1 R MM, _ ™,
¢RL=(1—E)Q+K§R(E+—;—2—")‘RKO—Kgm(O- a. (5.3.12)

Proof: The proof is similar to that for Theorem 5.2.2, firstly it is assumed that the
robustness parameter € satisfies (5.3.10) and then it is shown that this guarantees the
existence of an RLQR controller which if employed guaranteces that (5.1.4) will be

satisfied.

Following the initial steps of the proof of Theorem 5.2.2, condition (5.3.10) may be

rewritten as

£2Q< @, (5.3.13)

From (5.2.20) and (5.2.6) it follows that
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£2Q = BP,W,P,

and (5.3.12) gives

W,

1 -
oy = (1= 5)Q+PKGR(R + W) RK, ~ K RK, ~ =

Substituting these into (5.3.13) gives
B’P,W,P, - B’P,B(R+ W,)'B"P, + W, + Q < —BK'RK, + PQ

again (5.2.25) allows this to be simplified to
ATBP, +BP,A - B’P,B(R+ W,)"'B"P, + B’P,W,P, + W, +Q <0 (5.3.14)

which is again simply a transformation of the condition for €(5.3.10) and may be
considered as a Riccati expression in P, similar to (5.2.10).

Lemma 5.2.1 can again be used to compare the modified Riccati expressions (5.3.14) and
(5.3.9); since for € satisfying (5.3.10) there exists BP,>0 which satisfies (5.3.14) then part
(1) states that equation (5.3.9) will have a positive solution P_>0 which guarantees the

existence of the RLQR controller and furthermore part (i) gives
P_<PP, (5.3.15)

So if € satisfies (5.3.12) then (5.3.14) will hold and (5.3.15) is implied which is sufficient
to guarantee (5.1.4) for any x, 2

If stability robustness is only considered the stability robustness bound €g5, can again be
found such that if € <ggg then an RLQR controller exists such that the uncertain system

will be robustly stabilised.

Corollary 5.3.2 If there exist positive parameters o, such that @, >0 then there

exists a maximal stability robustness bound €., given by

_ 1
Eiii. =§L“E‘.(£R’-):W (5.3.16)
L

RS
such that if € <, then the uncertain system is guaranteed to be stable, where

T T

-1
M M MM
‘DasL:gim(‘DRL):Q*“ KER(—:; b) RK, - K RK, - (; : (5.3.17)
2o 2

1

B and Q was defined in (5.2.20)
Proof: Firstly we can prove that for given f if there exist &, ., such that &, >0 then

forany g, ((B,) < €g.5(B) implies B, < f.
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From the proof of Lemma 5.2.3, g, < (B,) <&g s(B) implies that D, (B) <D (P, ie.,
D, (B,) =Dy s (B) <0, from the definition (5.3.20) it can be shown that:
(l—i)Q+KgR[(5+M)" ~(5+M)"]RKO <0
B B By o B
and above relationship can only implies 3, <. Hence, for a ¢ with E<Eps » there will
exist a finite B such that a RLQR controller can be designed for the uncertain system,

which can guarantee the closed loop system to be stable and the cost criterion (5.1.4) will

also be satisfied. 2 J

5.4 THE MAXIMAL ROBUSTNESS BOUND

In this section a maximal robustness bound ¢,, i1s developed for a given system and
performance parameter 3. It will be proved that the maximal robustness bound g,, is
provided by a RLQR controller. For any € <&,, a suitable controller is shown to exist and
if employed will guarantee that the cost criterion (5.1.4) is satisfied. This robustness
bound is independent of the actual controller employed and is shown to be a maximal
bound, ie. €, 2 €4

It will now be shown that this robustness bound is maximal for all controllers.

Theorem 5.4.1 For the uncertain system (5.1.1) and performance parameter 3, a
maximal robustness bound €,, can be found as

Eu = Ep, 2y (5.4.1)

Proof: From (5.2.21) and (5.3.3), also by the use of (5.2.6), a similar relationship to
(5.2.30) can be deduced
¢, —b, =K, R'(R+W,)'R"'K,-K;RK-K'RK, +K"(R + W,)K
=(K-(R+W,) 'K TR+ W, }{(K-(R+W,)"'K,}
$O D, D20
and a similar method to that used to prove Lemma 5.2.1 can be used to show:
€y =E€p 2Eg. ®

As for €, it may be deduced that if 3 is increased €,, also increases.
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Lemma 5.4.2 For given B if there exist o,,a, such that @,,(B)>0 then for any
B, > B these a,, 0, give <I>M(ﬁ,)>0 and eM(B,)>eM(B2).

where &, (B) = ®, (B)
Proof: The proof follows that of Lemma 5.2.3, from the definition (4.6) it can be shown
that ®,,(B,) > ®,,(B) which implies that &, (B,) > &y (B)- *

If stability robustness is only considered the maximal stability robustness bound g,, can
again be found as
(5.4.2)

Epms =Epst = Egs

The maximal bound of uncertain parameter such that there exist a robust LQR controller
1 €5, and it always follows that:

B BB, (5.4.3)

The trade off between performance and robustness of an uncertain system is illustrated in
Figure 5.1. The maximal bound of the robustness parameter g,, is plotted against the
performance parameter [ as the independent variable. This describes the robustness of
the system by specifying the maximum size of the uncertainty for which the given

performance criteria can be guaranteed.

Let us consider the robustness bound as (3 varies. For 3 just greater than | a strong cost
criterion 1s specified. Here the performance bound of the uncertain system is only
permitted to be slightly greater than the optimal performance of the certain system. For
such performance parameters a small €,, results. Hence, only for small uncertainties may
the cost criterion be guaranteed. Conversely, for larger 3 a weaker cost criterion is
specified and so the performance bound of the uncertain system is permitted to be higher,
consequently larger €,, result. In the limit as 3 tends to infinity, no performance criterion
is given and the sole requirement is closed loop stability. €,, will asymptotically approach

its maximum value €,,.

This analysis enables us to analyse the trade off between performance and robustness and
choose a suitable value for B as a design criteria. There are two conceptually differing
approaches to robust controller design. The one proposed in chapter 4 assumes that the
design criteria will be posed as an uncertainty bound description ie. given €, for which a
controller is developed which offers a minimal performance bound for all admissible
uncertainties. Thus € is a design variable and a controller offering a maximal performance

and hence maximal [ results.
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An altemnative approach is to specify a performance criteria via § as a design criteria for
the controller. To facilitate this, the method described here may be used to first calculate
€, Which may then be used as a design variable in the RLQR design method in chapter 4.
The resulting controller is guaranteed to satisfy the specified performance criteria. It
should be noted that the resulting performance bound may be significantly less than that

given in the design criteria, hence the controller design may be conservative.

€ A

-
! B

Fig. 5.1 Maximal Robustness Bound .V. Perforrnance Parameter.

S.S APPLICATION AND EXAMPLE

An example uncertain system is used to illustrate the calculation of robustness bounds for
given values of performance parameter. Maximal robustness bounds and those offered by
the optimal LQR controller for the underlying certain system will be compared. The

trends over values of B demonstrate the trade off between performance and robustness.

The example uncertain system is a member of the class (5.2.1) with

[0 1 ol [0 o o | Tol [ o ]

A=|O 0 ll, AA(t)zIO 0 0 I, B=|O|, AB(t)=| 0 |
[—l -2 3J [O —0.1A(1) 0.2A(t)J [I.SJ [0.2A(t)J

The uncertainties are parameterised by a single time-varying process A(t), which is
bounded as IA(1)| <¢, thus the admissible domain of uncertainty may be described by [

i
with M, =M, =[0 0 1], N,=[0 -01 02], N, =02
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In the cost function, Q and R are appropriately sized identity matrices. Consider the
particular case =10, for

K=K,=[-0.54, -2.16, -4.81]

a robustness bound is given by g, = I/ A (Q®d3) for &, >0.

A gradient optimisation is performed over 7y,, Y, to maximise €, this results in €,=2.72
for v,=0.048 and y,=0.11. To validate the performance criteria, a performance bound
P, > 0 may be evaluated from (5.2.8) using these values of v,, ¥, and [, this will satisfy
BP, —P, 2 0. The maximal robustness bound is given by ¢, = 1/?4(94);;) for ®,, >0,
optimisation over Y,, Y, results in €,, = 4.64 for v,=0.042 and y,=0.25. To validate the
existence of an RLQR controller Theorem 4.1 is employed for &=¢,,= 4.64, choosing
similar values for v,, vy, and B, gives a positive definite solution to (5.3.9) which is a
minimal performance bound and K =[-0.27, -5.93, -17.1], furthermore the performance

criterion is satisficd as P, —P_2>0.

Values of €, and €,, for various [3 are given in the following Table, this illustrates the
trade off between performance and robustness. For small B, e.g. B=1.1, only small
uncertainties are permitted and the robustness of the LQR controller is near maximal,
however for larger B, larger uncertainties are permitted and the RLQR controller clearly

offers significantly greater robustness. Furthermore, as § — o, €, and €,, approach the
respective stability robustness bounds of g,,=3.02 and ¢,,,=7.50.

=
B 1.01 1.1 1.5 2 5 10 105 M

Ex 0.03 0.27 1.00 1.51 2.42 2.72 3.02 302

Epm 0.03 0.28 1.14 1.84 3.64 4.64 7.47 7.50

These maximal robustness bounds, as well as the trade-off between performance and

robustness are also shown in Fig. 5.2.
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5.6 DISCUSSION

A robustness analysis procedure for a given closed loop system is presented. This
produces a robustness bound with respect to a performance criterion such that for any
uncertainty within this bound it 1s guaranteed that the performance criterion will be met.
An expression for a maximal robustness bound for a given system subject to a
performance criterion is developed. This bound is sufficient to guarantee the existence of
an RLQR controller which enables the adherence of the performance criterion to be

guaranteed.

The inherent trade of f between robustness and performance may be quantitatively assessed
using this robustness analysis method. It is shown, both in general and for a specific
example system, that if greater performance bounds are permitted then larger robustness
bounds result. Conversely, if lower performance bounds are demanded then smaller
robustness bounds result. An alternative approach to robust controller design is proposed
which effectively uses a performance criterion as the design parameter and is valid for

uncertainties within a resulting (maximal) robustness bound.
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From chapter 3, the standard LQG control design theory can not guarantee good stability
robustness and its stability margin can be arbitrarily small, the existence of system
uncertainty may degrade the system performance or even destabilise the closed loop
system. So in recent years, increasing attention has been paid to the design of dynamic
output feedback controllers that can stabilise the uncertain system and guarantee the cost
performance, the H= performance or both to lie within a specified bound. For the system
with modelled uncertainties and residual unknown uncertainty, a design technique of the
robust state feedback controller (RLQR) has been presented in chapter 4. It is proved that
this robust LQR can provide optimal robustness of stability and performance. However,
since it is often not possible to measure all state variables, the output feedback controller

1s more practicable.

In this chapter, a new design methodology has been developed for robust dynamic output
feedback controllers that is applicable for systems with parametric uncertainty. The
method guarantces robust stability of the system for all uncertainties within a given
admissible domain, the magnitude of this domain is treated as a design parameter. As
discussed in §2.2.4, for simplicity, the residual unknown uncertainty is considered to be
nonparametric, robustness subject to it may be measured by the H= norm bound of the
system. Thus the desired H= norm bound is also treated as a design parameter for the
method. Cost performance with respect to a quadratic cost function is explicitly
considered and the problem is initially posed in the LQG format. A relationship
established between LQG solutions and He solutions allows the robust LQG design
problem to be translated to an H= problem with explicit reference to the cost function.
Thus the controller is designed by employing the established solution technique to the H=
problem for the specified level of nonparametric robustness. System performance is also
inherendy considered in the design with respect to a quadratic cost function. Though no
optimality is proved, informal analysis and example applications have produced good
performance subject to the robustness constraints specified. In essence the method
enables the designer to trade off robustness to parametric uncertainty, robustness to

nonparametric uncertainty and cost performance.

After the problem statement, a robust LQG design method will be developed for the
system with only nominal model in §6.2, then the system with parametric uncertainties will
be considered in §6.3, the robust LQG controller will be found for the system with norm
bounded or matched norm bounded uncertainties, it will also be demonstrated how the
RLQG controller design method can be posed as an He control design problem for a
scaled certain system hence allowing the existing H= numerical techniques to be used. In
§6.4, example systems will be used to illustrate the implementation of the methodology.
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6.1 PROBLEM STATEMENT

As mentioned in §2.2.3, both parametric and nonparametric uncertainties effect the
stability and performance robustness of dynamic output feedback controlled systems, to
avoid conservative design, for a system with modelled (parametric) uncertainty, robust
controller design should refer to the uncertainty model. The system with modelled
uncertainty to be studied may be described by the following state-space representation:
x(t) = (A+ AA(t)x(t) + (B, + AB(t))u(t)+ Ed

6.1.1
y(t) =(C, + AC(t))x(t) +Fv ( )

Where x € R” is the state vector, ue R" is the control vector, y € R is the observation
vector, d is the vector of disturbance inputs and V is the vector of measurement noises.
The system 1s linear and all disturbance and noise processes are assumed to be

uncorrelated Gaussian white noise processes, and have covariances W and V respecuvely.

Related to §2.2.1, the plant uncertainties AA(t), AB(t), AC(t) are assumed to lie within an
admissible domain and may be described by:
AA(t)=N,®,(H)M,
[MT=1AB(t) =N, ®, ()M, (6.1.2)
AC(t) =N_®,()M_

Where N, ,M_,N,,M_,N_,M_ are constant matrices describing the structure of the
admissible domain and the magnitude is constrained by o(®.(t))<e for i=l, 2 and 3,
where, 6 denotes maximum singular value. As a special case of this, matched normn
bounded uncertainties may be described by

~ {[AA(tx AB()] =N, ®()[M,,M,]

AC(1) =N d(1)M, (6.1.3)

with G(P(t)) <e.

The controller is to be designed with reference to a quadratic cost criterion of the form:

1 ¢fTo
J= lim ?ﬂ: (x"Qx +u"Ru)dt (6.1.4)
[ Smand ]

Where R >0 and Q 20.

The design criteria are to produce a dynamic output feedback controller that will
guarantee stability for all admissible values of parametric uncertainties AA(t), AB(t) and
AC(t), to guarantee an H~ norm bound such that a prescribed level of nonparametric
plant uncertainty AG(s) may be tolerated. Furthermore, the reference cost function is
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implicitly considered in the controller synthesis and good cost performance is sought

subject to the above robustness constraints.

6.2 DESIGN OF ROBUST LQG CONTROLLERS BASED ON NOMINAL
MODELS

In §3.2.1 and §3.2.3, the LQG and H~ controller design techniques are presented, and
from the robustness analysis in §2.4.1, it follows that the robustness of the closed loop
system against nonparametric uncertainty can be measured by the H= norm bound of the
T,,,. (s)"_ﬁ the greater the robustness. In this

transfer function T, (s), the smaller

section, a design approach is proposed in this section which offers a compromise between
cost perforrnance and robustness against nonparametric uncertainty, and it is also found
that the LQG and H= controller design techniques are equivalent under certain conditions.
This leads to the development of a robust LQG controller design approach that enables a

compromising controller to be found.

6.2.1 Comparison of LQG and H= designs

The certain part of the system (6.1.1) will be cdnsidcred here
x=Ax+B,u+Ed

y=Cyxt Ry 621

A stabilising controller that minimises the cost function (6.1.4) can be found by the LQG
design method in §3.2.1. By the use of the separation principle, a dynamic LQG output
feedback controller is combined by a Kalman filter and a full state feedback controller as:

K=K, (sI-A,)"'K, (6.2.2)

where A _=A+B,K_-K,C,, K ,=-R'B]P,, K, =PCI(FVF")"

P: A'P.+PA-PB,R"'BIP.+Q=0
P: AP, +PA"-P.C;(FVF")'C,P,+EWE" =0

For comparison the H= in (6.2.1), this system may be described in the format used for the
standard H~ design method (3.2.26) by choosing w= [dT DT]T and the noise/disturbance

input matrices with respect to the LQG format as:

B,=[VEWET 0], D,=[0 VFVF| (6.2.3)

So
T

B/D,=0, BB/ =EWE', D,D] =FVF



Chapter 6. Optimal Robust LOG Controller Design 107

Consider also the selection of a particular performance vector z with reference to the cost
function such that:

,[6} [0l
G :[ o DI_LJEJ (6.2.4)

So C'p,=0, C/C,=Q, DD, =R (6.2.5)

It may be noted that the constraints (Al) and (A2) in §3.2.3 are satisfied. The H= design
method provides a controller that will stabilise the system (3.2.26) and satisfy the
following H> norm bound:

||Tm||.. <Yo | (6.2.6)

where y, may be treated as a design parameter. Then according to Lemma 3.3.2, y, =co
impliesP_ =X_, P,=Y_,s0 A =A_, K _=F,, K =L_ Thus the LQG controller
solution (6.2.2) is a special case of the He controller solution for this particular

perfornmance vector and disturbance/noise vector, giving an equivalent solution when

Yo =°°-

Reference to Corollary 2.4.3 illustrates that the LQG solution offers no stability
robustness guarantee against nonparametric uncertainty, this is consistent with the analysis

in chapter 3.

6.2.2 Proposed robust LQG design approach

It is proposed that a compromise between cost performance and robustness to
nonparametric uncertainty may be found by employing the H= design technique to the
system with particular performance vector (6.2.4) for a finite H= norm bound v,. The
robustness analysis results in Corollary 2.4.3 and (6.2.5) have shown that 7y, gives a
measure of nonparametric robustness, with a lower bound relating to greater robustness.
It has also been shown that if the bound is chosen to be infinite then the solution is

equivalent to that of the LQG approach that is known to be cost optimal. It has been
found from example applications that the cost monotonically increases as 7, is reduced.

Thus, it is proposed that suitable choice of 7y, can yield a suitable compromise controller
solution. This is consistent with (Mustafa and

Glover, 1990) where this result is the subject of an unproved conjecture. To complete the
analysis, a result is given to calculate the cost performance for any given dynamic output

controller:
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Lemma 6.2.1 For the system (6.2.1) and a given stabilising controller
K(s)=C_(sI-A,)"'B_, the cost performance (6.1.4) J(At,B(,CC) 1s given

by tr(PR)

where P: A,P+PAl+V=0
= [@q o ] - [EWET 0
‘[0 CZRCCJ’ ’[ 0 BFVF'B’ J

[ A B,C.]
and A, is the system matrix of the closed loop system, A, =[B c. A
c 2

c

Proof: This result can be direcly found from Lemma 2.3.3 by using the above A, and
substituting R for Q,, and V for EWE"

6.3. DESIGN OF ROBUST LQG CONTROLLERS

In this section, the robust LQG approach will be extended to systems with parametric
uncertainty. In addition to a compromise between cost performance and nonparametric
robustness, it 1s required to guarantee robust stability such that the system is guaranteed to
remain stable for all admissible parametric uncertainty. The basic approach is similar to
that proposed in the previous section where the problem is translated into the He format
with a performance vector chosen with respect to the quadratic cost function. To
accommodate the parametric uncertainty, the disturbance/noise and performance vectors
of the H= description are suitably appended. It is then shown how robust stability and
nonparametric robustness may be guaranteed by an He controller designed for this
appended system. The He norm bound specified relates to the magnitude of the
admissible domain and for ease of explanation the result is initially expounded for a simple

relationship.

As mentioned in §6.1, there exist two formats of parametric uncertainty descriptions;
norm bounded uncertainty (6.1.2) and matched norm bounded uncertainty (6.1.3). They

will be considered separately in this chapter.

6.3.1 Systems with norm bounded uncertainty

By using the definitions in (6.2.3) and choosing the performance vector as (6.2.4) the
system with parametric uncertainty (6.1.1) may be written in the H~ format as:
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x=(A+AA)x+(B,+AB)u+B,0
z=Cx+Dju (6.3.1)
y=(C,+AC)x+D,w
Consider also a certain system with appended disturbance/noise input vector, @ and
performance vector, Z.

x=Ax+B,u+B®

z= Cx+Du {2
y=Cx+D,®

where
El ! [Bln Onblxde]’ ﬁz — [Omﬂxmhl Dzn] and

T "N 1 H_l-oncl.xmdl]
Clzl-ondlxmclJ’ D, _[ D,

and (with reference to definition (6.1.2))

N, N 1 [N 1
B]n - —= b B]JE SRnblxmhl, Dzn =L c D;Je mndhmd?
Lo, o,
-
oM 1
P | nclxmel I—abe odixmd|
C,=[oM_[eR , D =[ e X
n c J [\] Dl
| ¢,

ml, mbl denote the dimensions of B, etc. and a,,,, 0 are positive scalar parameters.

Then the robust stability and nonparametric robustness of the system with parametric
uncertainty (6.3.1) may be related to the H~ norm bound of the appended certain system

(6.3.2):

Theorem 6.3.1 If a linear dynamic output feedback controller K(s) can stabilise the

appended certain system (6.3.2) with ”TmlL < % then K(s) can stabilise
and guarantee "Tm”_ < % for the uncertain system (6.3.1), for all admissible

uncertainties (6.1.2).

Proof: It is supposed that the controller K(s) can be realised as:
K(s)=C_(sI-A,)"'B, (6.3.3)

Applying this controller to system (6.3.2), the closed loop system can be described as

x=AXx+B,®

z=Cyx
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with .
[ A B,C] — [ B, ] -
- ¢ =l = D,C 6.3.4)
AO |_BcC2 Ac J, BG BcDI i Co [C1 ] C] (
or by the transfer function:
G() C(l A)"B—z(i)—
o(S o(S 0 E(S) o3

From Lemma 2.3.5, if "Tm."_ <}/, then there exits a positive definite solution for the

following Riccati expression:

ATP+PA, +€PBoBoP+CoCo <0 (6.3.5)

Now consider the application of controller (6.3.3) to system (6.3.1), the resulting closed

loop system can be described as:

=|A,+AA )x+B,®
( 0 0) 0 (6.3.6)
z=Cx
with
AA [ A% - 2BG4 B—r B, | C,=[c, p,C] (6.3.7)
“_[BCAC o f U_LBCDJ’ ot e o
or by the transfer function:
G,(s)=C,(sI-A,-AA,))"'B, —&— (6.3.8)
o(s) . L5,
From Lemma 2.3.5 we know that a sufficient condition to guarantee "T«nlL < % and

thus, from Lyapunov stability theory in §2.3.2, robust stability of the system described by
(6.3.8) is that there exists a positive definite solution to the following Riccati expression:

(A, +AA,)"P+P(A,+AA,)+e’PB BIP+C|C, <0 (6.3.9)

From definition (6.3.7), the uncertain terms in (6.3.9) may be expanded as:

AA ABCT [ AA  ABC.]
B_AC J PI_BAC 0

[AA oT  [aAa o] [0 ABC.T
o o +p[0 H JP (6.3.10)

[0 ABC, 0]

o o ] |B.AC o:[' P[BAC o)

Substituting (6.1.2) in to (6.3.10) it follows that

AAJP+PAA, =[
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T n il T Na Na
AATP+PAA, =M, 0] &f(t o |+ o (DM,
N N
+0 Mch]Td)I(t{ 0"j|1P+P|i 0"}15(1)[0 M,C.]
r .o [ oT P[ 0 ]m
+{M, 0] @}t BN | P*BN, L()[M,

By the application of Lemma 2.4.1 to each pair of terms on the right hand side of above

and subsequent collecting of terms yields the following inequality:

AATP+PAA  <e’PYP+Y, (6.3.11)
where
[N,NT N,NT o |
pe + P =
i a b
= BN, NTBT =0
o =
a MM, +a’M[M,_
Y, = mm.c |2
| 0 achMbeCc

From the definitions in (6.3.4) and (6.3.7) it can be shown that

¥ =BoBy—B B!, ¥, =CoCo—CIC, (6.3.12)
Substituting in (6.3.11) gives:

AATP+PAA, <£?P(B,B; —B,B])P+C,C; - CIC,

This inequality is valid for any positive definite P and addition to inequality (6.3.5) with

subsequent cancellation of terms gives:
(A, +AA,)"P+P(A,+AA,)+£’PB B;P+C;C, <0 (6.3.13)

This expression is identical to (6.3.9). Thus if there exists a positive definite solution to
(6.3.5) then a posituve definite solution exists for (6.3.13) and hence (6.3.9). Thus

”Tm”_ < % for (6.3.2) is sufficient to guarantee "TmlL < % and stability for (6.3.1). &

Hence, a controller may be designed by standard H= techniques for such an appended
system that will guarantee the robust stability and provide an He norm bound for a system
with parametric uncertainty. However, thus far there is a fixed relationship between the
given magnitude of parametric uncertainty and the H= norm bound produced. Since the
He= norm bound is known to dictate the compromise between nonparametric robustness

and cost performance such a fixed relationship may not be desirable. A more flexible
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approach may be offered by decoupling the size of the H= norm bound from the
magnitude of the admissible domain of parametric uncertainty effectively offering the
designer an extra degree of freedom. It is shown how this decoupling may be achieved by
suitable description of the given admissible domain. Thus for any given admissible domain

of parametric uncertainty an arbitrary H~ norm bound may be specified enabling it to be

treated as an independent design parameter.

Consider a given admissible domain of parametric uncertainty (6.1.2), for simplicity,
consider only AA(t): (Similar steps may be applied to AB(t), AC(t))

AA()=N.® ()M,, B(® (1) <e (6.3.14)
This may be equivalently described by
@, (1) _ .
BAM) =8N, =M, =N§OM,, 5(® (1) < % (6.3.15)
where
< L)) 5
N, =8N, d=—0-, 7, =y

For an appended system created in a similar manner to system (6.3.2) with respect to this
description, employing Theorem 6.3.1 states that a controller that provides an H= norm
bound of vy, for the appended system is able to guarantee robust stability for this
admissible domain and an H~ norm bound of y,. Thus by suitable choice of &, an
arbitrary H= norm bound may be chosen for any given admissible domain. The choice of
& will dictate N, (similarly N, and N_) which are used in the appended system and hence

dictate the controller produced.

If no robust LQG controller exists, i.e., there does not exist a linear dynamic output
feedback controller that can stabilise the appended certain system (6.3.2) with

Il < )%
focus on the stability robustness. A new appended system should be used in this case:

it is possible to omit the consideration of the performance robustness and

<

x=Ax+B,u+B0

Z=Cx+Dyu (6.3.16)
y=C,x+D,0

where
B, = [Bln 0nblx:nd2]’ ﬁz s [Ondemhl Dzn]

_ [- C -l _ [Oncb(mdl}
D, =
D

lo
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B, =|—|2_. %P.jlle QRublxmbl D,, ={% Tng}E QRodxmdz
a b &
Cln =[Zaxa}e mndxml, D, =[a£§b}e QRodixmdl

where 11> 0 is a very small parameter which is used to guarantee that (6.3.12) is a non-

singular system, i.e.,
n’D/D, >0, n’D,D] >0
So essentially, the explicit reference to the LQG cost function is removed. Then a

stabilising dynamic output controller for the uncertain system (6.3.1) can be found from
the following result:

Lemma 6.3.2 If a linear dynamic output feedback controller K(s) can stabilise the

appended certain system (6.3.16) with "Taﬁ = 7o then K(s) can stabilise

and guarantee "TmlL < }é for the uncertain system (6.3.1), for all admissible

uncertainties (6.1.2).

Proof: The proof of this Lemma is similar to the proof of Theorem 6.3.1.

It should be noted that the scalar parameters o,,,, . may bc searched to find the
controller that offers the best cost performance subject to the given robustness
constraints. A bound for the cost performance of the uncertain system may be calculated

using the following Lemma.

Lemma 6.3.3 For an uncertain system (6.3.1) with admissible domain of parametric

uncertainty (6.1.2) employing any given stabilising controller as (6.3.3), a bound
J,(A_,B_,C,) for the cost performance (6.1.4) is given by:

J,(A_,B_,C,)=t(P,B,B;) (6.3.17)
Where P, it the positive definite solution of the following equation:

AP, +P A, +e’P¥P, +C,C, =0 (6.3.18)

and B, ¥, and EO are defined in (6.3.7), (6.3.11) and (6.3.4) respectively.

Proof: The deployment a controller as (6.3.3) to system (6.3.1) results in an uncertain
closed loop system as given in (6.3.6). A fundamental result in robust optimal control
(Doyle et al., 1989), states that the cost performance of such a closed loop system may be
given by:
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J(A,,B,,C,)=tr(PB,B;) (6.3.19)
where P is the positive definite solution of the following Riccati equation:
(Ay+AA))"P+P(A,+AA,)+CIC, =0
Expanding and substituting from (6.3.12) this can be expressed as
ATP+PA,+AAP+PAA -, +C;C, =0 (6.3.20)

Since the uncertainty AA, is a time-varying matrix, and it is impossible to find a time-

invanant solution for P > 0 for (6.3.20). However, since the time-varying uncertain matrix
®,(t) is constrained by B'(Q)i(t)) <¢, a bound matrix P, can be found. This is the upper

limit of all possible solutions for (6.3.20) over all admissible values of ®,(t) and all
te [0,00).

From (6.3.11) we know that for any positive definite matrix P,, it follows that
A
AATP, +P,AA,, SE'P Y P, +¥, =O(P,, 'V, ¥,)

Then from the result of Lemma 2.4.4 it can be shown that (6.3.17) is a bound for the cost
of the uncertain system (6.3.19). *

It should be noted that the cost bound does not depend upon the particular description of

the given admissible domain as any scaling factor & introduced as in (6.3.15) would have
a self-cancelling effect on € and ¥, in (6.3.18). However, the scalar parameters
a,,a,,o, used to define ¥, and C, in (6.3.18) do effect the resulting cost bound and may

be searched to find a minimal cost bound. The search over these parameters is purely to
find a minimal cost bound for a given controller and is independent of the search

performed during the controller design.

In summary, to design a robust hybrid LQG/H= controller for system (6.3.1) with
admissible domain of parametric uncertainty (6.1.2) the following steps should be

followed:

1) Choose values for the design parameters: the magnitude of the admissible domain,
€ and the desired He norm bound v,.

ii)  Choose a suitable description of the admissible domain by suitable choice of &
(6.3.15).

i) Create an appended system similar to (6.3.2)

iv)  Apply the standard H~ design techniques to the appended system for the chosen
value of y,.
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During step iv) the scaling parameters a.,, o, , 0, may be searched to provide a controller
that offers the best cost performance subject to the robustness constraints given in step 1).
A bound for the cost performance of any given controller may be found by employing
Lemma 6.3.2 and again searching the scaling parameters will yield the minimal bound.
Thus to find the controller that offers the best cost performance a nested search of scaling

parameters 1s required.

Thus a controller is produced which offers robust stability to parametric uncertainties
within the admissible domain of magnitude € and nonparametric robustness as measured
by the H~ norm bound 7y,. Furthermore, cost performance is implicitly considered by
choosing the performance vector with respect to the quadratic cost function. Example
applications have shown that for a given admissible domain magnitude the cost
performance is monotonically decreasing for increased H= norm bound, however again
complexity of the relationship in Lemma 6.3.2 has prevented the establishment of a

general result.

6.3.2 Systems with matched norm bounded uncertainty

System uncertainty can often be described in matched norm bounded format, to avoid
conservative design, a different controller should be designed for such special cases. To
design a robust LQG controller for the uncertain system (6.3.1) with matched
uncertainties (6.1.3), we again consider a certain system with appended disturbance/noise

input vector, ® and performance vector, z.
x=Ax+B,u+B®
z=Cx+Dyu (6.3.21)
y=C,x+D,®

where

_ _ . |' C . nclxmdl
Blz[B“ Onblxde], DZ‘—"[OUdemhl Du, Q:Londll:wl}’ DI =[OD :|

[N
B, =|—=%

Bl]e S{nblxmbl, Dzn _:[% DZ]G %ndZdeZ’

[ Oy c

[-a M 1
— | ’ I aclxmcl I‘("l:chllb
C,.= acMcJe R , D, =[ =

]E %ndlxmdl
Cl

1
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Then the robust stability and nonparametric robustness of the system with parametric
uncertainty (6.3.1) may be related to the H= norm bound of the appended certain system

(6.3.21):

Theorem 6.3.4 If a linear dynamic output feedback controller K(s) can stabilise the
e » then K(s) can stabilise

appended certain system (6.3.21) with

and guarantee "TWIL < }é for the uncertain system (6.3.1), for all admissible

uncertainties (6.1.3).

Proof: From Lemma 2.3.5 we know that a sufficient condition to guarantee "TMIL < %

and furthermore robust stability of the system described by (6.3.21) is that therc exists a
positive definite solution to the following Riccati expression:

(A, +AA,)"P+P(A,+AA,)+e’PBB]P+CIC, <0 (6.3.22)

From definition (6.3.7), the uncertain terms in (6.3.22) may be expanded as:
[ AA  ABC, 'IT [ AA  ABC.]
+
[B AC 0 J [18 AC 0
[aA 0T  [aA 0] [0 ABC,T

[ J P+P|. 0 J 0 J P (6.3.23)

[0 ABCc:HiO of [ o o]
o o [flBac o/F*HBac o

AATP+PAA,

+

Substituting (6.1.3) in to (6.3.23) it follows that

AATP+PAA,=[M,, Mch]TCDT(t){ JP+PL J(D(t)[M M,C,|

0 0
+M, o]TdaT(u[BNIPHIB i er(l)[Mc 0]

By the application of Lemma 2.4.1 to each pair of terms on the right hand side of above
and subsequent collecting of terms yields the following inequality:

AAP+PAA  <e’P¥P+Y, (6.3.24)
where
]
3 0
=| e [>0

c c [

[ BNN’”BTJ
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ALMIM, +aiM{M, o MIM,C, }
b= aEbCIM:MI; G'EI)CIMIMI:CC -

From the definitions in (6.3.4) and (6.3.7) it can be shown that
¥ =BoBs-B,B!, ¥,=CoCo-CiC, (6.3.25)

Then same method as the proof of Theorem 6.3.1 can be used here to complete the proof.
.

A bound for the cost performance of the uncertain system may be calculated using the

following Lemma.

Lemma 6.3.5 For an uncertain system (6.3.21) with admissible domain of parametric
uncertainty (6.1.3) employing any given stabilising controller as (6.3.3), a bound
J,(A_,B_,C,) for the cost performance (6.1.4) is given by:

J,(A.,B_,C)=1u(PB,B;)

Where P, it the positive definite solution of the following equation:

AlP,+P,A, +e’PYP,+C/C,=0

6.4 EXAMPLES

Two example applications are considered here to illustrate the methodology. In Example
6.1, the Robust LQG method is applied to a certain system and it is shown how the
method enables a compromise to be found between cost performance and nonparametric
robustness. In Example 6.2 robust LQG method is applied to a system with parametric
uncertainties and it is shown how a compromise may be found between parametric

robustness, nonparametric robustness a cost performance.

Example 6.1
Consider a certain system that may be described by (6.2.1) with

[0 1 o] Ir(ﬂl lfﬂ

A={0 0 1| B,=0}, E=|I2
Ll -2 —1J H {2.5J
C,=[1 1 0], F=1

The variances of the noise and disturbance processes are both assumed to be unity: W=1,
V=I. The weighting matrices in the cost function (6.1.4) are given as:
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]fl 0 01|
Sl P

To implement the method the system is first expressed in the He~ format (3.2.26) by
choosing B, and D, as (6.2.3) and defining the performance vector by the choice of C,
and D, as (6.2.4). Robust LQG controllers may be designed by employing the standard
H~ design technique Lemma 3.3.2 (Doyle et al., 1989) to this system for suitable values
of Yo. The two extremes are: the LQG controller, y, =, giving optimal cost
performance and; the H= sub-optimal controller for which the smallest permissible value
of Yo (found to be y, =6.02) is used giving maximal nonparametric robustness. Several
values of 7Y, are selected, choosing Y, between these values produces a compromising
controller. The actual nonparametric robustness and cost performance may be analysed by

minimising Y, in Lemma 2.3.5 and Lemma 6.2.1 respectively.

The performance and robustness of the LQG controller and H= output controller are

shown in Table 6.1:

Controllers Cost J Guaranteed H- Actual
norm bound H~ norm
LQG 49.98 = 8.23
He- 5884 6.02 6.01
Robust LQG 1 118.1 6.5 6.23
Robust LQG 2 75.89 7 6.77
Robust LQG 3 53.74 10 8.47

Table 6.1 Robust LQG Design

The relationship between the H= norm constraint and the cost performance is shown in
Fig. 6.2.
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Fig. 6.1 The Cost performance Via H= norm Constraint.
Example 6.2

Consider an uncertain system with parametric uncertainty as

{)k(t) = (A + AA())x(1) + (B, + AB(1))u(t)+ Ed
y(1) = (C, + AC(1))x(t)+Fv

with the parameter matrices as:

A_Ll -3] [1] é, [s ol [1 0]
Tlis 2} P} @0 of BEFEo 4
assume that the uncertainties of system can be modelled as:

_[ig,v) 0] B_|—0.05(pg(l)-| Ac_r0.2(p3(l) 0

o of 2% o } ‘[ 0 0.1@,(¢)J

where @, (t), {1 = 1,2,3} are uncertain values varying in [—8, E].

The cost performance index used here is

J=lim —f' (x"Qx +u"Ru)dt

To—n-T

with the weighting matrices and the noise covariances as:
fo2 0] =i [1 0] v [2 0]
Lo oz} R We[p 2} Vo 1

The cost value of certain part can be found to be: J, =0.23
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(1). Datum Case.

As a datum, it is assumed that the magnitude of the admissible domain of parametric
uncertainty is €=1, as described in section 6.2.1, the system may be translated to H=
format (6.3.2). To provide robustness to nonparametric uncertainty, a H= norm bound of

1 is required, 1.€.,
Ir..]. <1

Then, a nominal description of the structure of the admissible domain of uncertainty may
be given as the form of (6.1.3) with:

N,=rm, M, =[1 0, N, =m, M, =005
Lo] Lo]

fo2 o] [1 0] |ge=1, i=123
No=l ¢ ok ™=, N o, (0] ge=1, i=12,

Hence an appended system is created in H= format as (6.3.2) and a controller designed
with the standard H= technique Lemma 3.3.2 (Doyle et al., 1989) for y,=1. A search

over the scalar parameters yielded the best controller for:
o, =25 «,=03, o =11

then a robust stabilising controller

[-647 -389] [111 001]

A=l 102 301} B=|oo3 0.23J’ C.=[-035 —088]

can be found such that closed loop system satisfies "Tm"_ <1, the cost performance

bound is J, = 0.456.

(2). Increasing parametric uncertainties:
To illustrate how the parametric robustness may be increased, the magnitude of the
admissible domain of parametric uncertainty is increased to €=1.2. So still considering

the same structure uncertainties

:f Llg,(t) O] ABJO'OS"’?“”‘ AC:{OQ(pJ(t) 0 1
0 0 | o 0 01g,(0))

but ¢, (t) is varying in [-1.2, 1.2], i=1, 2 and 3, and the robustness requirement for non-
parametric uncertainty is also
.. <1

To achieve the datum He norm bound the admissible domain may be redescribed as

(6.3.15) with 6 =1.2, thus uncertainties can be redescribed as:
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[132] _ [
N, = 12N, [ J Nb=l-2N.,=|'0

|‘()|_|?|<e_l i=123

Again a standard H= controller is designed for the suitably appended system y,=1. A

search over the scalar parameters yielded the best controller for:
o, =25 a,=03, o =10

then a robust stabilising controller

[—675 —-434] (122 003]

A=l 1101 -334) B=loos 022} C.=[-020 -13]

J, =0568l.

(3). Increasing nonparametric uncertainty:
To illustrate how the nonparametric robustness may be increased, the required H~ norm
bound is reduced to y, = 0.6, the datum admissible domain is retained, i.c., the robustness

requirement for nonparametric uncertainty as
IT.|. <06

To achieve this the admissible domain may be described as (6.3.15) with §=0.6, thus

uncertainties can be redescribed as:

[066] _ [06] _ [012 0 ]
N, = 06N, [ J Nh=0.6Nb=[0J, N, =06N_ =

3.t )l-‘ﬁ e—— i=123

Now a standard H= controller is designed for the suitably appended system with y, = 0.6.

A search over the scalar parameters yielded the best controller for:
o, =25 a,=03 o =11

then a robust stabilising controller

[-568 -7.12] [122 -004]

Ac=| 295 —e18) Be=[-o13 031} C.=[0ss -413]

can be found such that closed loop system has ”Tm".., < 0.6, the cost performance bound

is J, =05139.
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Performance Summary:
The results are summarised in following table, it is illustrated how either the parametric

robustness (Case 2) or the nonparametric robustness (Case 3) may be increased compared

to the datum (Case 1) but this will result in inferior cost performance.

€ for Design Yo for design Js
Case 1 | ] 0.454
Case 2 1.2 ] 0.568
Case 3 ] 0.6 0.514

6.5 DISCUSSION

A controller design approach is illustrated in this section that offers a compromisc
between parametric robustness, nonparametric robustness and cost performance.
Magnitude of the admissible domain of parametric uncertainty and an H~ norm bound
rclating to the permissible size of nonparametric uncertainty arc trcated as design
parameters and the system is guarantecd to be stable subject to these constraints. The

controller is realised by the solution of a standard H~ problem constructed with explicit

reference to a performance cost function.

It is also clear that if we use nominal model only, the designed control system must allow
for large unknown residual uncertainty, so a low He norm bound is required. However, if
we design controller based on both nominal model and parametric uncertaintes, the

unknown residual uncertainty should be smaller, so a high H= norm bound is allowed.
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This thesis is a partial result of my three years research work on robust control system
design and analysis. The core of the thesis can be divided into two fields. One is the
development of some robust controller design techniques for systems subject to
uncertainties, such that the stability of the controlled system can be guaranteed and the
performance degradation is minimal. The another is to analyse the robust properties of a
given controlled system, such that a robust stability bound of uncertainties can be
determinated subject to the requirements of robust stability and a specific performance

degradation rate.

To conclude this thesis, a summary of results and discussions will be given in the next
section. The robust controller design and robustness analysis methodologies presented
aim to be less conservative than traditional methods. Two of the major weakness
rcmaining in the field at present are: for robust controller design, only the worst casc
uncertainty is considered, this may make the controlled system unnecessarily conservative.
Secondly, for robustness analysis, the criteria for adherence to performance specifications
are generally sufficient not necessary, again tending to unnecessary conservativeness. To

advance these areas, some interesting and significant future work will be discussed.

7.1 SUMMARY OF RESULTS AND DISCUSSIONS

Robust controller design and robustness analysis addressees a broad range of problems
which are considered for state feedback and dynamic output feedback systems separately.
Two robustness measures, stability robustness and performance robustness, are considered

in the robust design and analysis procedures.

7.1.1 Fundamentals: Description of System Models and Associated
Uncertainties

The system used for robust controller design or robustncss analysis may be described
either by a nominal model alone or a nominal model and an uncertainty model. Since it is
impossible to a account for all uncertainty, there always exists some residual unknown
uncertainty. A good robust controller design technique should provide a certain level of
inherent robustness to such unknown residual uncertainty. By representing the majority of
the uncertainty precisely with an uncertainty model, the level of robustness to residual

uncertainty may be reduced, this will provide a more focused, less conservative design.
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The description of the uncertainty is critical and will have a direct effect on the
conservativeness of the controller or robustness bound produced. Uncertainties may be
described parametrically or nonparametrically, with or without some fixed structure.
There is great potential for conservativeness as both types of uncertainty description are
worst case: Nonparametric uncertainties are characterised by a H= norm bound and
parametric uncertainty by a maximum singular value. Thus any uncertainty included in the

admissible domain unnecessarily may have a significant effect.

Some attention has been paid to the choice of uncertainty description for structured
parametric uncertainties. Overall the choice of the 'best’ description of the uncertainty is
quite a complex problem to which no general solution is known. However, some
guidelines are firstly, to choosc a description with minimal dimensioned structural matrices
and secondly, if 1t 1s possible within this constraint, choose a matched norm bounded

format and employ the special methods for this case.

It is noted that even for a fixed structured parametric uncertainty: AA = N®(t)M, there
arc some different ways to describe it, this is because we can always choose different
parameters to give a description as: AA =(aN)<b(t)(%). This method has been used

throughout this thesis. It is illustrated by examples that the best value of o can be found by
the searching to optimise the particular goal. For systems with two or more uncertainty

items, there could exist two or more scaling parameters.

For state feedback control systems, only parametric uncertaintics effect the closed loop
system performance, if the state feedback controller can robustly stabilise the system with
parametric uncertainties, then for any bounded (i.e., stable) nonparametric uncertainty, the
stability robustness of the closed loop system will also be guaranteed. However, for
systems with output feedback controllers, both parametric and nonparametric uncertainties
in the system will effect the closed loop system performance. Thus, to guarantce
robustness both parametric and nonparametric uncertainty need be considered. So state

feedback and output feedback systems are treated separately in this thesis.

7.1.2 Robust Controller Design

1). Robust LQR Design for State Feedback Controlled Systems
A RLQR design methodology is presented in this thesis which both guarantees good
stability robustness and performance robustness. Stability robustness of the closed loop
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system is guaranteed for all admissible parametric uncertainties and the cost performance
is guaranteed to lie within a specified bound and degradation of performance is proved to
be minimal.

The robust LQR methodology can also be implemented by employing existing He
techniques on a scaled system, numerical tools for the solution of such problems are now
commonly available. There is an inherent trade off between the stability robustness and
performance robustness. As the size of the admissible domain of uncertainty is increased,
the stability robustness (range of uncertainty for which system is guaranteed to remain
stable) should be naturally increased. However, the performance degradation will also
increase, hence the performance robustness decreases. Finally, as mentioned in section 7.1,
the performance robustness is sensitive to the description of uncertainties and the selection

of scaling parameters.

2). Robust LQG Design for Dynamic Output Feedback Controlled Systems

To overcome the inadequate robustness of traditional LQG design, a RLQG design
methodology is presented which both guarantees good stability robustness and
performance robustness. The RLQG controller is designed with respect to both a
parametric uncertainty and unknown residual uncertainty. The residual unknown
uncertainty is modelled nonparametrically, robustness subject to it may be measured by the
H= norm bound of the system. The desired H=~ norm bound and the magnitude of the
admissible domain of parametric uncertainty are treated as design parameters. An
interconnection between standard H= design for a certain system and RLQG design for an
uncertain system has been established. On the basis of on this interconnection and the use
of He design theory for a scaled certain system, the RLQG controller can guarantee
closed loop stability for all admissible uncertainties and provide a cost performance bound.
It is shown that an inherent trade off exists between stability robustness and performance

robustness.

Both RLQR and RLQG robust controller design techniques are based on the worst case of
admissible uncertainty. Hence the performance bound, is also considered as the worst case

and often, the real performance value could be much less than this bound.

7.1.3 Robustness Analysis

1). Stability robustness analysis:



Chapter 7. Conclusions and Future Work 127

On the basis of robustness principles, a systematic framework is constructed to analyse the
stability robustness of some current modemn control design methods such as LQR design,
He design and H2/H= design for state feedback control systems and LQG design,
LQG/LTR design, H= design and H2/H= design for dynamic output feedback control
systems. These methods are normally applied to systems which are only described by
nominal models. According to previous discussions, for state feedback controlled systems,
it is reasonable to consider unknown parametric uncertainty only. However, for output
feedback controlled systems, both unknown parametric and nonparametric uncertainties
should be considered, but for simplicity, all uncertainty may be represented by a

nonparametric model.

When the robustness of LQR design, H= design, H/H= design and LQG/LTR design is
analyscd, if the H= norm bound of the appropriate closed loop system is finite, then the
controlled system has some inherent robustness to unknown residual uncertainty.
However the H= norm bound of the LQG design is infinite, this implies that there is no
inherent robustness. It is also found that although LQR design, H= design, H2/H= design
and LQG/LTR design can have good inherent robustness to unknown uncertainty, this
robustness is coupled with other design parameters. For example, in LQR design the
robustness is coupled with the weighting matrices of the cost function, and in H= design it
coupled with the weighting matrices of the disturbance and performance vectors. So it is
quite possible that there is insufficient inherent robustness when we design a robust
control system based on the nominal system model alone, and furthermore, the design
result could also be conservative since no information of the uncertainty is used.

2). Performance robustness analysis:

Stability robustness is not enough for a good robust control system design, in most cases,
long before the onset of instability, the closed loop performance will degrade to the point
of unacceptability, hence the variation of the control performance should be also
concemed for all admissible uncertainties. It is clear that for an uncertain system it is
impossible to find the exact performance value, however, since the uncertainties
considered here are constrained by some kind of bound, a performance bound of the
closed loop system can be found over all admissible uncertainties. The performance
robustness considered in the thesis is the measure of maximal performance degradation,
hence to design an "optimal" robust controller means to minimise the performance

degradation, i.e., to minimise the performance bound over all admissible uncertainties.
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3). Robust uncertain bounds:

The robustness analysis is also considered for systems with parametric uncertainties. The
relationship between the size of uncertainties and both stability and performance
robustness is studied. For the robust stability and a given performance degradation
requirement, some uncertainty bounds were found for a general given controller. The
results are also applied to LQR controllers and RLQR controllers. It is evident that for any
given robustness requirements, the maximal robustness bound can be provided by RLQR
design. An expression for a maximal robustness bound for a given system subject to a
performance criterion is developed which is controller independent. This bound is
sufficient to guarantee the existence of an RLQR controller which enables the adherence
of the performance criterion to be guaranteed. The stability robustness bound can be
obtained by relaxing the performance degradation requirement. It is shown that for the
particular case of stability robustness bounds of LQR controllers this method agrees with a
previous result by Neto et. al. (1992), and furthermore, the maximal stability robustness
bound is provided by RLQR design.

An alternative approach to robust controller design is proposed which effectively uses a
performance criterion as the design parameter and the controller produced will satisfy this
performance criterion subject to uncertainties within a resulting (maximal) robustness
bound. The inherent trade off between robustness and performance may be quantitatively
assessed using this robustness analysis method. It is shown, both for general and a specific
example system, that if greater performance bounds are permitted then larger robustness
bounds result. Conversely, if lower performance bounds are demanded then smaller

robustness bounds result.

7.2 CONCLUSIONS

This thesis reviews and develops the fundamentals of robust controller design and
analysis, the contributions can be divided into four areas which relate to full state feedback
and dynamic output feedback; based on a given nominal system model alone and both
nominal system model and uncertainty model. Methods of robust controller design and

robustness analysis have been addressed for each area.

Many techniques, such as LQR, Hee or H2/Heo methods, exist to design full state feedback
controllers based on a nominal system model. These techniques have also been shown to

provide inherent robustness for controlled systems. However, the level of inherent
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robustness is coupled with design parameters relating to nominal system performance. For
given controlled systems, some robustness conditions were developed to determine their
inherent robustness such that if they were satisfied, the robust stability to a given
uncertainty would be guaranteed. Thus, it is found that all existing full state feedback

control design techniques will provide a certain level of inherent robustness.

For systems with both parametric uncertainties and some unknown uncertainty, a
technique to design optimal full state feedback robust controller, the robust LQR design
methodology, is presented which both guarantees closed loop stability for all admissible
parametric uncertainties and provides a minimal performance bound. At the same time,
the RLQR can also provide some inherent robustness for the unknown uncertainty. The
inherent trade off between stability robustness and performance robustness can be
illustrated by considering the effect of increasing the magnitude of the uncertainty domain.
It has also been shown that this methodology can be implemented by employing existing H
= techniques on a scaled system. The performance robustness is sensitive to the precise
format in which the uncertainty bound is described and it is shown that a format giving a

precise description will give good robust performance.

In the face of both parametric uncertainty and some unknown uncertainties, a robustness
analysis procedure for a given full state feedback controlled system is presented. This
produces a robustness bound with respect to the given controller for a given performance
degradation requirement such that for any uncertainty within this bound it is guaranteed
that the performance degradation will meet the requirement. An expression for a maximal
robustness bound for a given system subject to a performance criterion is developed which
is controller independent. This bound is sufficient to guarantee the existence of an RLQR
controller which enables the adherence of the performance criterion to be guaranteed. The
inherent trade off between robustness and performance may bc quantitatively assessed
using this robustness analysis method. It is shown, both in general and for a specific
example system, that if greater performance bounds are permitted then larger robustness
bounds result. Conversely, if lower performance bounds are demanded then smaller
robustness bounds result. An altemative approach to robust controller design is proposed
which effectively uses a performance criterion as the design parameter and is valid for

uncertainties within a resulting (maximal) robustness bound.

Applying the robustness measures developed in thesis to determine the inherent robustness
of existing controller design methods provides good agreement with some well-known
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result: full state feedback controllers have good inherent robustness; the LQG has poor
robustness and the LQG/LTR method enables the robustness properties of the LQR
method to be recovered by the deployment of a high gain observer or controller. Hee
methods can offer good robustness properties. However, for all these methods, the cost

performance is compromised to achieve desired robustness in non-systematic way.

For a nominal system and unknown uncertainty, the RLQG design method, which uses the
cost function weighting matrices to determine suitable definitions for the disturbance and
performance vectors of a related Hee problem, is employed to overcome the robustness
shortage of LQG design. The level of inherent robustness to unknown uncertainties may
be evaluated by calculating a suitable Hee norm bound for a scaled Hee control system. By
increasing the level of inherent robustness, cost performance degradation will also be
increased. The technique is similar to minimum Entropy Hee controller design but 1s
motivated from the perspective of making the LQG method more robust. Given some
parametric uncertainty the RLQG controller design provides both good stability and cost

performance robustness for all admissible values of uncertainty.

Thus the RLQG offers a compromise between parametric robustness, nonparametric
robustness and cost performance. Magnitude of the admissible domain of parametric
uncertainty and an He norm bound relating to the permissible size of nonparametric
uncertainty are treated as design parameters and the system is guaranteed to be stable
subject to these constraints. The controller is realised by the solution of a standard He
problem constructed with implicit reference to a performance cost function. These results
allowing extension to systems with parametric uncertainty permit the explicit use of a
parametric uncertainty model in the design. This offers the designer greater flexibility to

reach a compromise between cost performance and robustness.

7.3 FUTURE WORK

In author's option, a main area requiring attention is the reduction of the conservatism of
the current robust design and analysis methods. This will make robust control systems
more practical and reasonable. Since the current control design methods consider only the
worst cases of uncertainties, the conservative design of both stability and performance
robustness result, hence some new robustness principles are desired to reduce this
conservatism. The main aim in robustness analysis should be to find less conservative,

sufficient and necessary robustness criteria for given controlled systems.
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Some specific work related to optimal robust LQR and LQG controller design still needs
to be done. For robust LQR design, it is important to find existence conditions for the
controller solution. Also, since the uncertainty description has a significant effect on the
robust controller design, a method to describe uncertainty optimally would be very useful.
It has been shown that the performance of the closed loop system is sensitive to the
selection of the scaling parameters, so it is necessary to develop a method to choose these
parameters optimally. For the RLQG design, a simple existence condition for the
controller solution will be very useful for the designer. At the same time, the optimality of
the cost value subject to H~ norm constraint needs to be studied. To complete the
methodology, it is also necessary to develop a method to choose the scaling parameters

optimally.

To advance the field, the methods need to be tested by application to realistic problems.
For a particular uncertain system with output feedback controller, several design methods
such as LQG, H= optimal, LQG/LTR and Robust LQG can be used and some comparison
made. Stability and performance robustness could be two measures of this comparison. To
test this, some benchmark problems (Nie and Bemnstein, 1991) could be studied.
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