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AIMS and OBJECTIVES
of the PROJECT

Keywords: System identification, Simulation, Anti-aliasing filtering.

In order to satisfy the Nyquest criterion for sampling, signals must be band Hmited.

This is usuvally achieved by using low pass analog filters which must be placed before

sampling (these filters are called anti-aliasing filters). These filters have some effect on

the identification of systems. The aim of this project was to determine these effects.

The objectives were to:

1)
2)
3)
4)
5)
6)
7
8)

Choose systems with different natural frequencies

Simulate these systems

Apply a PRBS (Pseudo Random Binary Sequence) input and log the output
Sample this data

Transfer sampled data to MATLAB

Find the best model using the MATLAB identification toolbox

Simulate the filters

Pass the output data through these filters



9) Repeat (5) and (6)
10} Simulate additive measurement noise
11) Add noise to the output of the system
12) Repeat (8) and {(9)
13) Compare the real data with model data
14) Calculate the error criterion (J) for each case
Finally, a suitable parameter was to be identified which could be used to design

effective anti-aliasing filters.



SUMMARY

Research was conducted to determine the effect of anti-aliasing filters on the
identification of dynamic systems. Systems were simulated in the continuous simulation
package ESL. The system response to a PRBS (Pseudo Random Binary Sequence) was
recorded. Simulated noise was added and passed through a number of simulated analog
filters. The systems were identified using the MATLAB identification toolbox.

Two standard filters (Butterworth and Chebychev) were used with cut-off frequencies
between wg (natural frequency of the system) and 20 times @y,

Results showed that carefully designed filters could improve the performance of the
identification algorithm in the presence of non-white high frequency additive noise.
However for noise free measurements the filters degraded the performance of
identification algorithms. This performance could be observed in the identified models
steady state error, overshoot and settling time when subject to a step input.

In the experiments performed, the lowest order (and in one case second order) filters

with cut-off frequency of wp= S, gave the best results.



CHAPTER

1

INTRODUCTION
and
LITERATURE REVIEW

In order to study the effects of aati-aliasing filters on the accuracy of model
identification it is necessary to have an understanding of the following subjects:

I. Systems and Models

II. Identification

III. Signal Processing

IV. Simulation

These subjects are introduced in this chapter.

1.1 SYSTEMS AND MODELS

"A system 1s defined as "a wide range of more or less complex objects, whose behavior
we are interested in studying, affecting, or conmolling” (Lennart Ljung, 1983). Some

examples we could mention are:

o An armature controlled dc-motor: Where we would like to control speed of the

motor using the input voltage applied to the armature.



o An inverting amplifier circuit : Where we would like to control the output voltage
by changing the resistance.

e A paper machine: Where we would like to control the quality of the paper by
changing consistency, temperature, speed, etc.

o A telephone communication channel: Where we would like to design a filter for the
receiver to producé high voice quality.

e A rime series of data {(e.g., sales, unemployment, or rainfall figures): Where we
would like to predict the future in order to act properly now.

A Model is defined as the knowledge of the properties of a system. The model may be
given in any one of several different forms, for example:

o Mental or intuitive models: Knowledge of the system's behaviour is summarized in a
personls mind. Like a driver s model of an automobile.

» Graphic models: Properties of the system are summarized in a graph 6r in a table.
An example could be a Bode diagram for the frequency response of a linear system.

¢ Mathematical models: There are sometimes mathematical relationships between
variables, like Kirchhoff's law of voltages around a loop.

For many purposes only mental models are required, but for complex design problems

mathematical model are necessary.

1.1.1 Obtaining A Model Of A System

There are two ways of building a mathematical model of a system.

(1) physical modeling: By looking inside the system to find the physical laws that
govern the system's behaviour, a mathematical model can be constructed.

(2) Identification: Often because of incomplete of the knowledge of the system,
direct modeling may not be possible. Furthermore, physical modeling can be quite
time-consuming and may produce an unnecessarily complex model. In such cases,
signals produced by the system can be used to construct a model. This procedure is

called identification.



1.1.2 Model Classification

System models can be classified according to the type of equations used to describe
them. First we can distinguish between continuous, discrete, and hybrid systems. A
continuous system is one for which variables change continuously with respect to time.
In a discrete—time.system, variables change only at distinct (finite} instants of tme. In
some physical applications, both discrete-time and continuous variables may exist; thus,
they are termed Aybrid systems.

In some systems dependent variables are functions of more than one variable and will
have partial derivatives instead of an ordinary derivative.

Models can also be distinguished by whether they have distributed-parameters or
lumped-parameters. In a distributed-parameter model, the dynamic behaviour is
described in terms of partial differential equations, for example the cx.prcssions for
voltage and current at all points along a transmission line. A lumped-prameter model is
characterized at only a finite number of points and uses ordinary differential equations.
For a physical inductor, a lumped model representation includes only a resistance, R,
connected in series with an equivalent single inductance, L. When dealing with a
lumped-parameter model, one may discretize in time, resulting in a discrete-time model
that is described by a difference equation.

A further distinction between models is linear and nonlinear. Linear systems are those
satisfying the following conditions: (a) multiplying system input by a constant results in
multiplication of its output by the same constant, and (b) the system response 1o a
rnumber of mputs applied together (simultaneously) is the sum of individual responses
when each input is applied individually. Nonlinear systems are the ones for which these
two conditions do not hold.

Another classification is into deterministic and stochastic models. In a stochastic
model, the relationships are described in terms of probabilities only whereas in a

deterministic all relationships are certain (if known).
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As a summary, models can be classified in 6 different ways depending on the system

properties and model representations.

Property Axis Range
time dynarnic, steady state
space distributed, lumped, non distributed
signal type continuous, hybrid, discrete
statistical nature deterministic, stochastic
mathematical nature iinear, nonlinear, chaotic

model representation ' differential, difference, behavioural

1.2 SYSTEM IDENTIFICATION

System identification is referred to as "the determination of a mathematical model for
a system or a process by observing its input-output relationships” (Hsia, 1977). Using
input-output data we find the parameters of a system model.

Over the last decade great progress has been made in system identification methods.
This has been helped by the need to design better control systems. This is especially
true where there are time-varying parameters in a plant and its environment. Here,
adaptive systems are needed to maintain optimal performance.

Recently, there has been very much progress toward the application of system
identification techniques io physiological, biomedical, ecological, transportation and
sociological problems. In addition, the availability of modern theory and complex
computational algorithms has caused the fast growth of system identification

technology.
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1.2.1 Formulation And Classification Of The System Identification

Shown in figure 1.1 is a system with input and output and the method of identification
problem. The system model to be found is the mathematical equation that relates the
input to the output at all times.

In order to obtéin such a model, a variety of inputs fed into the system, Having
observed the responses, the input-output data are then processed to determine the
model. On the basis of the amount of prior knowledge about the system, the

identification can be classified into two categories.

SYSTEM TO BE OUTPUT

IDENTIFIED | >
HOISE HOISE, MEASURING
M | INSTRUMENT

¥ M
QL ANTIALIASING

FILTER FILTER FILTER

1 1

IDEHHHCM-’ ADC
ADC 10N TECHNIQ
i

SYSTEM
MODEL

Fig. 1.1 Block Diagram Representation of the System Identification Problem.

1. The complete identification problem: this means that nothing is known about the
basic properties of the system before hand. This type of the problem is also referred to
as a black box problem.

2. Partial identification problem: in this category, some basic characteristics of the
system, such as linearity, bandwidth, and so on, are assumed to be known. However, the
order of the equations or the values of some coefficients are unknown. This situation is

also called a gray box problem.
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Fortunately, in practice, the majority of engineering systems are of the latter type. In
many cases, the structure of the system is known and only a set of parameters in the
model equation is left to be determined. Thus the modeling probiem is reduced to that
of parameter identification.

From the viewpoint of system theory, the determination of the unknown parameters
from the exact inbut-output data is possible. In reality, however, the input-output data
are corrupted by measurement noise and the determination of system parameters is
essentially a statistical-estimation problem.

The procedures for carrying out system identification can be divided into the
following steps:

1. Specify and parameterize a class of mathematical models that represents the system
to be identified.

2. Apply an appropriately chosen test signal (PRBS was used in the experimental
phase of this project) to the system and record the input-output data. If the system is in
continuous operation and & test signal is not permitted, then we must use the normal
operating data for identification.

3. Perform the parameter identification to select the model that best fits the statistical
data.

4. Perform a validation test (In the experimental phase of this project real data was
compared with model data with the same input) to see if the model chosen adequately
represents the system with respect to final identification objectives.

5. If the validation test is passed, the procedure ends. Otherwise, another class of
model must be selected and steps (2} through (4) performed until a validated model is
obtained (Hsia, 1977).

To give a better feeling for the role identification plays in applications two examples
are considered.

EXAMPLE 1. (Prediction of Power Demand) The demand for electricity from a

power systemn changes over time. These changes in somewhat predictable with time of
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day and over the week, month, or year. Efficient electricity production needs good
predictions of the load some hours ahead.

Prediction of the power demand needs a model of its random component. This
random component itself may depend on circumstances, e.g., the weather, that may
vary with time. Therefore using a predictor that adapts itself is desirable.

The above is ﬁn example of adaptive prediction. Sometimes the predictions
themselves may be of interest as the following exampie demonstrates.

EXAMPLE 2. (Digital Transmission of Speech) The transmission of speech over a
communication channel is increasingly done digitally. The transmission line has limited
capacity so efficient use is important. If the next sample is predicted at both the
transmitter and the receiver, one need transmit only the difference between the actual
and the predicted value (prediction error). Because of the prediction error is smaller
than the signal itself, it needs fewer bits to transmit. This technique is known as
predictive coding In communication theory. Prediction of the next value depends on the
character of the transmitted signal. For speech, this character varies with the different
sounds being pronounced. Efficient use of the predictive encoding requires the model
used by the predictor to be adaptive.

The area of adaptive control is concerned with the study and design of controllers and
regulators that adjust to varying properties of the controlled object. This is currently a

very active research area (Lennart Ljung, 1983).

1.2.2 Parameter Estimation Methodology

There are a number of parameter estimation techniques that have been applied to the
identification problem. They include the methods of maximum likelihood, least squares,
cross-correlation, instrumental variable, and stochastic approximation.

In all estimation technigues, the optimal model is found by minimising some error

criterion. Error criterion can be defined in many ways leading to many possible optimal
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models. Some error criteria use; difference between parameter estimates and the true
values (parameter error), the différence between the system output and the model
output for similar inputs (output error), or, the difference between the model equation
and the measured input and output data (equation error).

There are two modes in which identification can be done. In off-line identification, the
input-output data is first observed and then model parameters are estimated based from
the complte data set. In on-line identification, the parameter estimates are recursively
calculated at every sampling interval from the new data and used to correct and update
the existing estimate. This 18 termed recursive identification, real-time identification,
adaptive algorithm, or sequential estimation.

There are numerous system identification methods, both off-line and on-line. One
method for classifying them is:

I. Classical Methods:{(mostly off-line}

(a) Frequency Response Identification
(b) Impulse response identification by deconvolution
(c) Step response identification
(d) Identification from correlation functions
(e) Identification using spectral density functions
(f) Pseudo random binary sequences (PRBS)
1ll. Model Adjustment Techniques:
(a) Least-squares (recursive)
(b) Generalized least squares (recursive)
(¢} Instumental variables

{d) Maximum likelihood (recursive)
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1.2.3 Classical Methods Of System Identification

A number of classical methods will now be described. They are classical only in that

they have been in use for longer than the modern techniques.

1.2.3.1 Frequency Response Method

The frequency response method is based upon the Bode diagram of frequency
TESpONSe.

In this method, sine-waves with different frequencies are used as inputs and the
steady-state output 18 observed. Both the magnitude ratio and the phase shift between
the output and input are measured. Let G(s) be the transfer function of the system, then
G(jw) is the frequency response, i.e.,

Y{jw)

Gw)=M(w).ei¥(@)= XGo)

{1.01

where M is the ratio of the magnitudes, and ¢ is the phase shift between the output

and the input.

The plot of M(w) and ¢{w) against w(log scale} can then be used to estimate the

various break-frequencies (poles and zeros) of the transfer function (figurel.2).



16

20 logM
1

é
O
~90°
1
1
o } <
-lBOO.l i © aly,

2
n

st+2{m s+’

Fig. 1.2 Frequency response curves for a second-order system given by G(s) =

Alter Sinha and Kuszla, 1983,

1.2.3.2 Identification From Step Response

The simplest input for identification is a step input; preduced by suddenly switching
off (or on) an input voltage (or current), or by suddenly opening (or closing) an input
valve, etc. An ideal step is physically impossibie to construct, but the approximation is
close if the rise-time of the step input is much shorter than the period of the highest
frequency in the system.

If the systemn model is of the first-order, only two pieces of information are required:
(1) the steady-state response to the step input and (i1} the time constant.

For a second-order system model (with two poles and no zero), there are two
situations: (1) when the two poles are real and (2) when the poles are a complex
conjugate. To find these from measurements of (a) steady-state response, (b) maximum
overshoot, (¢} time required to reach the first-peak, and (d) time required to reach 50%
of the steady-state value(for overdamped systems) can be easity derived.

Consider the underdamped second-order system described by the transfer function

2

w
G(s) = 5+ 20ws + @ for {<1 (1.02)
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The response of this system to a unit step is given by

c(t) = 1- %e'cmn[ sin(w, Bt+0) (1.03)

where

B=1J1-£2 and 6= tan*‘%

1t can easily be shown that the maximum response is given by

MPl = ]+gimf (1.04)
and it occurs at

T
T,= Bo, (1.05)
Hence, by measuring M, the value of the damping ratio, {, can be calculated from

equation (1.04). Finally equation (1.05) can be used to determine the undamped natural

frequency, ®,. See Fig. 1.3. ( Dorf, 1980).

Mp == ——————
Percent e
. overshoot “
1.0+4 N _L
@ e AT ——e———
g VUG i . WS ——— o) e
0.9}——————-{I i I 1
1.0—3 I' : | |
M ! '
Il [ f
TR i
11 : I
' | i
M
1 : :
- 11
B'é | I i f
. T T Time
I'_T r:—{ Pepk SetLlsing
T time time
Rise time

Fig. 1.3. Siep response of a contro! sysiem (Eq. 1.3). After Dorf, 1980.

1.2.3.4 Correlation Method

The techniques of step input or sinusoid input are applicable only to the identification
of linear systems. In addition, response testing with these input functions is not always

practical because of the existence of system noise. Therefore we need techniques that
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can be used to identify both linear and nonlinear systems which will not be affected by
noise.

The correlation method is based on applying a random inpat 1o the process, and takes
a simpler form if the input is a white noise input.

The input-output relationship for a linear time invariant system may be written as

y(©=[wtix@dt = [ wnx@-ndt (1.06)
0 [+

The cross-correlation between the input and output is obtained as
Gy (6) = Ely(t).x(t-8)], assuming stationariness

= B[ [ w(D)x(t-1)dt.x(-8)]
Q

= fw(’r).E[X(t—T)x(t*e)]dT
0

= [w(1)9,,(0 - T)dr (1.07)
4]

For the particular case when the input x(t) is white noise, we have

0.x(6 - 1) =3(6 - 1), (1.08)
where 8(t-k) represents the unit impulse or delta function occurring at t=k.
Hence, for this case,
0,(8) = [W(1).8(8 - 1)t
= WO(B) (1.09)

Thus ¢,,(8) is the same as the impulse response of the system at 1=0.

1.2.3.5 Spectral Density Functions

In the frequency domain, the response of a linear system is characterised by the
frequency response function H(jw). This function is the Fourier transform of the
impulse response h{1}. For deterministic signals, the Fourier transforms of input and

output, X(j®) and Y(jw) respectively, are related by
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Y{jo) = HGw). X(w)

The amplitude gain at any frequency @, defined as the ratio (output amplitude) /
{input amplitude), is|H(jc)) |. At the same frequency, since power is proportional to
(amplitude)z, the power gain, defined as the ratic (output power) / (input power) is
|H(jcn) |2, For systems with real parameters, H{-j®) is the complex conjugate of H(jw).
Hence |H(-ja)) | ié identical to IH(jm) | , and the power gain is thus an even function of
frequency.

If the input to this system has a power specttum ¢, (®) then the power spectrum

(@) of the output signal y(t) is given by

0,y () = HEOHOW (@) = [HGw) |20, (w)
For system identification purpose, knowing ¢,,(®) and ¢, (o), fH(jco)l can be
found, and thus the magnitude curve of the Bode plot can be drawn (See

Schwarzenbach and Gill, 1984).

1.2.3.6 Pseudo Random Binary Sequences (PRBS)

One of the most interesting and useful signals for system identification work is a
pseudo random binary sequence (PRBS). This is a practical white noise signal that can
easily be generated by digital circuit, or digital computer. The PRBS is a periodic
sequence that takes on only two values. The times at which transition can occur are
multiples of a specified time interval, At, and the state for any succeeding interval is
nearly independent of the state in any preceding interval.

An example of such a signal is shown in figure 1.4. This signal has a periodic
autocorrelation function shown in figure 1.5. We see that the autocorrelation function
closely approximates the delta function of an ideal white noise. The approximation can

be adjusted by changing N and At.
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Fig. 1.4 A 15-bit Pseudo-random Binary Sequence (PRBS). After Hsia, 1977.
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Fig. 1.5 Autocorrelation Function of PRBS. After Hsia 1977,

A computer program to generate the PRBS was written to use in the experimental
phase of this project (see appendix 1).

Because of the very small perturbations, the PRBS signal can be applied for testing a
system under operating conditions. This technique possesses some advantages over
other techniques like (&) since the signal is periodic, a short recording time and minimal

computational are required, (b) the method is highly immune to noise.

1.2.4 Off-Line Methods for System Identification

In this chapter will be discussed one off-line method {Least-squares) for estimating
the parameters of a linear model from the input-output data of a single-input single-

output system and interested reader is referred to Sinha and Kuszta, 1983 to find more
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detail about both this technique and the Instrumenta! variables method (Both are used in
the experimental phase of this project). It will be assumed that the order of the model is

known a priori, and that equispaced samples of the input-output data are available.

1.2.4.1 Estimation of the parameters of a Discrete-Time Model from Noise-Free

Input-Output Data

Consider the single-input single-output system shown in Fig. 1.6. Using z-transforms,

the input-output relationship is given by

X apta,z! +.+a_z ™
@) _ ey - 2 o

= 1.10
Uz 1+b,z 4. 4b z (1-10)
Uy Hlz) "%
Fig. 1.6
In the form of a difference equation, equation {1.10) is written as below,
Xk = Z aiUk_i ~ Eblxkvl (1.1 I)
i:{) =i
where
x; & x(iT)
u; & u(iT) i=12,..

Thus, our problem is the determination of the parameters a, , 8, , ... ,a_, ,b; , ... ,b,

from the input-output data.

Collecting the various sets of x; and u, equation (1.11) may be concatenated.to give

the following matrix equation

Uy Uy U K-t K2 “Xgon
Uy U U -Xg "Xy “Xg - n+l

Yspt Ukspz - Wapomot “Xksp2 " Xewps o " Xgiponol



or

where

and

2y
!
— %
. Ag+1
A i=
by
b
2 — Xgap1=
b, —
Ake =X,
Wm “Ki) ~Xg-2
Uy me1 “Xy "Xy
Uisp.m-1 ~Xk+p-2 " Xgspos

— xk+p-1—

8 parameter vector

4 concatenated output vector
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(1.12)

(1.13)

S

"Xy n+l

- xk+p-n-l

(1.14)

(1.15)

(1.16)

It may be noted that if A;; is a square nonsingular matrix (i.e.,p=m +n+land det A, #

0), then one may obtain the parameter vector simply as
H = (A;{)“1 X,

(1.17)
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1.2.4.2 Weighted Least-Squares Estimates Of Parameters From Noise-

Contaminated Data

The result derived in the previous section is of theoretical interest only, since the
measurements are always contaminated with noise. In such practical situations, one may

model the system as shown in Figure 1.7, where the measured output is shown as

Yy =X; +nj (1.18)

k
)

4y ———= RO

k
Xy

Fig. 1.7

It is assumed that {n;} is a white Gaussian noise sequence.

Substituting equation (1.18) into (1.11), we obtain

m a 'I‘
}’k“—‘zaiuk-a' zbiyk-i+vk=¢ke+vk (1.19)
i=0 i=
where
T
G, =[ YW Uy o Uem Yer Yz - Vil ] (1.19a)
and
n
Vi =00t Dby (1.20)

i=1
are called the output or equation errors.

Equation (1.19) may be concatenated, as before, to give

A98=yp-vp (1.21)
where
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Uy Uy y o Wy “Yk-1 “Yeozo e “Ykon
Uy, g Uy e Ug i ¥k “Ye-1 o Ykensl
A =
d
uk+p— 1 uk+p~2 T uk+p-m-l _Yk+p-2 “yk+p-3 o "Yk-i-p-n- 1

4 concatenated observation matrix (1.22)

and
¥x
Yk+1

Yo = ’ A concatenated measurement vector (1.23)

"‘“yk-t-p -
Because the presence of noise, it is now needed more than (m+n+1) equations to
estimate the parameter vector from equation (1.21); i.e., now

p > m4n+] (1.24)

Let us say the estimate of 0, based on the p sets of input-output data as 8 - 1f we
assume that Qp is the optimal estimate of the parameter vector, then the optimal
estimate of the output vector, i\fp, would be written

Yo=A, 0, (1.25)

On the base of the minimisation a performance index, J, (Sinha and Kuszta, 1983 pp.

29-33) we have
T R T
0, = 8) ATy, (1.26)

The estimate given by equation (1.26) is called the leasr squares estimate.

A more general form is
8 = (A, WA 1A} wy, (1.27)

where w is positive definite symmetric matrix. Note that making w = I, changes
equation (1.27) into equation (1.26). The least squares solution is a special case of the

present solution, which is called the weighted Ileast squares solution. A number of

important questions about equation (1.27) are now considered.
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1.2.4.3 Conditions for the Existence of the Weighted Least-Squares Solution

First of all, we must know when a solution to this equation exists, as it requires the
inversion of the matrix AgwAp. In general, the matrix Ag A, will be nonsingular if the
input sequence satisfies one of the following conditions:

) fu} ié a random sequence

(i1} {u;} 1s a pseudo random binary sequence(PRBS)
1.3 FILTERING

In many applications it 1s of interest to change relative amplitudes of the frequency
components in signal or perhaps eliminate some frequency compenents entirely, a
process referred to as fiitering. Since the spectrum of output for linear systems is that of
the input multiplied by the frequency tesponse of the system, filtering can be
accomplished using of such systems with an appropriately chosen frequency response.

This represents one of the very important applications of linear time-invariant systems.

1.3.1 Butterworth And Chebychev Filters

For a given number of poles, and hence a given degree of filter, the Butterworth
response provides a passband magnitude characteristic that is as flat as possible near
w=0, at the expense of a slow transition from the passband to the stopband region.
Because of this, Batterworth response is sometimes referred to as maximally-flat.

Figure 1.8 shows a set of Butterworth response curves, normalized to a 3db cut-off
frequency of 1 rad s'1. Here n is the order of the filter, which is equal to the number of
poles in the transfer function. The higher the order of the filter the closer the magnitude
response comes to the ideal box-car (brick-wall) characteristic.

In many applications some ripples in the passband can be tolerated. By allowing the

passband magnitude response to ripple in a controlled way, the Chebychev filter trades
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off the flatness of the passband response for a greater rate of cut-off in the transition
region. A Chebychev filter is specified in terms of its number of poles (order) and the

magnitude of its passband ripple.

[H(je)

| \
13773

o {deatl brick-wall response

Fig. 1.8 Normalized Butlerworth magnitude response curves

Figure 1.9 compares the response of a seventh-order Chebychev filter, with a

passband ripple of 1.5 db, with that of seventh-order Butterworth filter.

1 Gl

!
]
f
§
i
i
L
i wirad s

Fig 1.9 Comparison of Buiterworth and Chebychev
magnitude responses for n=7,

These analog lowpass filters are commonly employed as anti-aliasing filters, that are
applied to continuous-time signals before analog-to-digital conversion. They are also
suitable as interpolation filters to convert pulses, having amplitudes proportional to the
value of the elements in the discrete time sequence, into signals that are contipuous in

time.
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1.3.2 Sampling

Sampling theorem discusses about certain conditions which samples of a continuous-
time signal must have to be recoverable.

In moving pictures, which consist of a time sequence of individual frames, when these
samples are viewed at a sufficiently fast rate we get an accurate representation of the
original continuously moving scene.

Much of the importance of the sampling theorem also lies in its Tole as a bridge

between continuous-time signals and discrete-time signals.

1.3.3 Nyquist Criterion {Sampling Theorem)

When sampling a continuous-time signal c,(t) to produce the sequence{c,(nT,}}, we

want to ensure that all the information in the original signal is held in the samples. To

determine the condition under which there is no information loss, let us consider c,{t)

to have a bandlimited spectrum, or one for which

C.i=0 for [Q]>0Q, (1.34)

as shown in Fig. 1.10(a).

When c,(t) is sampled with sampling period T, then the spectrum of the sampled
signal C,(jQ) is the periodic extension of C,(j€2) with period 27/T,, as shown in Fig.
1.16(b). The form of C.(j{?) in the frequency range [-w/ T,, #/ T,] is identical to
C,(82) if

o T, > L, or T, <7/ Qy {1.35)

In this case, there is no overlap in the spectral components.
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Fig. 1.10 Reiationship between continuous-time spectrum of a signal and the spectrum of the
discrete-time sequence obtained by sampling the signal with sampling period T,. {a) Original spectrum

of continuous-time signal; {b} spectrum of sampled sequence when < 7/ T, {c) spectrum of sampled
sequence when $,,>r/ T,. The latier case illustrates the aliasing error. After Kue,1988.

If T, is chosen to be greater than 7/ £, spectral overlap occurs in the periodic
extension, and the form of C(j€2) in the range -7/ T, € Q< @/ T, is then no longer
similar to C,(j€2) as shown in Fig. 1.10(c). This overlap, caused by sampling at t00 low
a rate, produces an irretrievable error in the spectral values, called aliasing. In other
words aliasing refers to the fact that high-frequency components of a time function are
folded back and appear as a low-frequency components if sampling rate is too slow.
The true spectral shape is irretrievable since many different C,(G2) functions can

produce the same C,(j€2). Two possible candidates are shown in Fig. 1.11.

Galjsy)

2x a

Fig. 1.11 Two candidates for the conlinnous-1ime spectrum when aliasing occurs. After Kuc,1988.
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A useful sampling measure is the sampling rate, = 1/ T . Recalling that Q =2xf, and
defining f,, as the highest frequency component in the signal, then no spectral overlap
will occur if

f,> 26y, (1.36)

To prevent aliasing error, more than two samples are required per period of the
highest frcqucncyl sinusoidal component present in the signal. The smallest sampling
rate before aliasing occurs for a particular continuous-time signal is called the Nyqguist
rate.

The effect of aliasing errors is occasionally observed in films of moving cars in which
the wheels appear to be turning in the direction opposite to that expected from the

motion of the car.

1.3.4 Anti-Aliasing

Practically the frequency range of original continuous-time signal may be larger than
the desired information. This commonly happens when a low frequency signal is
contaminated by high-frequency noise. If this signal sampled by fhc Nyquist criterion
for the desired analog signal, unwanted high frequency signals would cause aliasing
€IT0IS 0 OCCUr.

To prevent aliasing errors caused by these undesired high-frequency signals, an
analog lowpass filter, called an anti-aliasing filter, must be used. This filter is used
before sampling and reduces the power in the analog signal for the frequency range
beyond £ = n/ T,. In practice, the spectral magnitude level for Q> n/T, should be less
than 1% (- 40dB) of the desired signal spectrum to prevent significant aliasing.

For example, suppose an analog signal have power in a large frequency range, but

relevant information is only in the frequency range -Q, < Q < Q. It is asked to
determine the sampling period T,. The Nyquist criterion tells us that T, must be less

than 1/€2,. If sampled at this rate, the higher frequency components in the analog signal
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will be aliased into the relevant discrete-time signal. The anti-atiasing filter must satisfy

two conditions:

Conditior: 1. The components of the analog signal with frequencies less than Qp must

be negligibly attenuated by the filter.

Condition 2. The components for |l> 2m Tg - £z must be attenuated strongly to

prevent aliasing in the relevant range. After sampling, the components in this frequency

range fall into the range -Qp < Q < £ when the periodic extension is formed (Kuc,

1988).

1.4 SIMULATION

Simulation is the process of understanding of the behaviour of a physical system by
observing the behaviour of a model of the system. Thus, simulation is considered the
science of experimenting with models. There are many purposes why simulation is
valuable. For example, simulation is used to check and optimize the design of a system
before its construction. Other purposes include analysis, tests of sensitivity, forecasting,

safety, man-in-the-loop training and teaching.

1.4.1 Computer Simulation

Computer simulation is the technique of using computers to give, often in great detail,
the performance of real systems. The purpose of the study is achieved by observing the
model's behaviour under assumptions defined by the experimenter (user). There are
some constraints in performing system simulation, for example the cost of model

definition, software programming, data collection, etc.

1.4.2 Digital Representation Of Signals

As 1t 1s known, the variables for a continuous systern have values for every point in

time. On the other hand, a digital computer calculates values for the continuous
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variables of a system at distinct points. Thus, a digital computer simulation of a
continuous system is in fact a discrete-time system.

A digital computer represents variables with a finite number of bits, and accuracy is
limited by the value of the least significant bit. In general, this means that the digital
equivalent of a continuous signal at a given point in time will be £1/2 of the value of
the least signiﬁcaﬁt bit, which is referred to as quantization error. The number of bits
used, and hence the accuracy of the results, is determined by the word length of the
digital computer being used for simulation.

Since numerical integration to solve the equation is fundamental, the next two

sections will explain numerical integration techniques.

1.4.3 Numerical Integration

As noted before, the digital computer determines values for the continuous signals of
the system being simulated by producing a series of discrete values. For example, the
continuous function x(t) becomes a sequence of discrete values x(ty), x(t,), x(t,), . .
SX(t), x(t,q) » - - x({t,). Usually, the time interval between adjacent values is constant
and represented by T=¢,,, - 1.

Although the discretization error is often critical, the primary source of error in

representing a simulation variable x(t) at t=t, is found in the method used to calculate

derivatives, commonly referred to as numerical integration. The root of the problem can

be seen by a careful look at Taylor's series expansion x,,; in terms of x;, which can be
written in the form

4% i
o Tl

Tdx;
Xy =X + o+ (T2 /21)

dt (1.37)

where T is the time interval and dx; /dt is the derivative of x, at t=t,.
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This series gives the value of x at t=t,; in terms of x; and its derivatives. Taylor's
series can be used to derive several numerical integration formulas, but more important,
it is the criterion used for evaluating almost all numeral integration technigues.

As an example of a numerical integration method, consider the approximation by

using only the first two terms of Taylor's series:

Tdx;
dt

X: (1.38)

w1 =Xt

This equation is commonly referred to Euler's method, or the rectangular rule.
In order to illustrate the vse of Euler's method to develop a digital computer

simulation, consider the first-order differential equation

dx

dt +ax(t) =1 (1.39)

with x{t=0} = 0 and r(t)=1, a unit step input. To develop a discrete equivalent suitable

for programming on a digital computer, Eq.(1.39) can be written as below

dxi
- -ax;{t) + 5;{t) (1.40)

Use Eq. (1.40) for dx;/dt in Eq. (1.38), this yield

Xy = X; -alx; +Tr, (141
Note that the continuous system response for a = 1 and r(t) = 1 is an exponential rise,
as shown by the solid curve in Figure 1.12 with x, = 0 (assumed). If a time interval of 2
sec (T=2) is selected, then x,= (x, - aTx, +Tr,;)=2. Likewise, the value for x, is x,= {x,
- aTx, +Tr;) =0, and in a similar manner, x; = 2, x, = 0,. . . The resulting output is as
shown (labelled T=2) in Figure 1.12 and is obviously incorrect. Smaller values of T
will cause the values of x; to gradually approach the correct value, x=1.0. Note that
T=1 results in output values of 1.0 at all intervals of time. As T becomes smaller , the

discrete solution approaches the correct exponential rise shown in Figure 1.12; it is
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obvious that the time interval for the digital simulation must be much shorter than the

time constant of the system being simulated.
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/ \ /
1.54 o \ F
/ \ Tmi.5 N /
" / N \ /
2 o /
Ei.o A/{_T-_i.'g_a—-—- —-—-—k—-— g ——--.-:.:;E-.ﬂ-.-.;::g
1
- / NoX” ’
/ \ / g T=2.0
0.5 \ // o T=1.5
\ A T=l.0
/
Ny
AW
0 ; "
0 i Z 3 3 5 &

TIME {Seconds)

Fig. 1.12 Solations 10 Eq. (1.41). Afler Kheir, 1988

The example problem in this section illustrates that a simple method exists for
developing an equivalent difference equation for a differential equation. The example
also illustrates the sensitivity of the solution to the size of the time interval T and
clearly indicates a need to discuss the relationships between accuracy, computation

time, and time interval.

1.4.4 Errors In Numerical Integration

In the example in the preceding section, a litile thought would have indicated
problems with T 2 2. Since the time-constant for the differential equation in Eq.(1.39)
is assumed to be 1 sec, trying to calculate values for larger than the time constant
creates problems. Also, problems should have been anticipated from the use of only two
terms of Taylor's series expansion because the contributions of the second and all higher

order dertvatives are missing. Thus Euler's methed is referred to as a first order
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numerical integrated technique. Techniques that include the effect of second order
derivatives are referred to as second order methods and, in general, are more accurate
than first-order techniques. Note that the inclusion of higher-order derivatives requires
additional calculations for each value and will alse need more computer memory.

The most commonly algorithm 1s one of the Runge-Kutta family; 2nd order, 4th
order, etc, where the Taylor series coefficient have been modified to improve the
accuracy of the truncated series. Other methods are more involved and are usually
identified by their originator ( e.g., Simpson, Adams, or Milne).

The previous discussion might lead one to believe that smaller and smaller integration

(time) 1ntervals will result in improved accuracy . This is not always the case. Note that

the derivative is approximated by a difference (x;,, - x;} and that smaller values of T
cause the values of x; and x;,; to approach each other. Since the digital computer
represents variables with a finite binary sequence, each value will ﬁavc a finite
truncation error. If T is small enough so that x,,, and x, differ only by their truncation

error, then (X;,; - X; ) becomes zero and difference equation is no longer correct. Thus,

i+1

the observation that accuracy improves directly with smaller and smaller time intervals

has a limit, see Kheir (1988).

1.4.5 Simulation Software

In this section it will be discussed about some aspects of the software of digital
computer simulation. In selecting a computer language, one would consider the
following three areas to assess its efficiency: program execution speed, computer
memory utilization, and language availability.

1. In viewpoint of programming languages, machine language and assembly
language are at the lowest level.

Higher-level programming languages (also called general-purpose) allow the

programmer to be removed from concerns related to machine operations. Examples of
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these general-purpose languages are: BASIC, FORTRAN, COBOL, PASCAL,and
ALGOL. -

2. High-level simulation languages also involve compiler, similar to high-level
programming languages, but are specifically used for simulation applications. Most
simulation languages require less programming time; moreover, it is simpler to change
a model after bein.g written. It is also easier to debug such programs. A unique feature
of simulation langnages is their basic building blocks. Among the earlier simulation
languages are MIDAS, DYSAC, DSL, GASP, MIMIC, DYNAMO, GPSS, SIMULA,
CSSL(Continuous System Simulation Language), and CSMP. More recent simulation
languages include ACSL (Advanced Continuous Simulation Language), SDL, ESL,
SIMNON, SLAM, and SIMAN.

3. In its simplest form, a digital simulation package is a collection of routines
{programs to be possibly compiled separately and then included as ﬁart of other
program(s}). Today's simulation packages have not only full developmented, but,
coupled with the available hardware, provide one of the most powerful tools for
modeling and simulation activities in an interactive fashion.

The interacrive (conversaticnal) mode of simulation means that the simulation process
on the computer be interrupted for the purpose of asking, or reporting to, the user.
Based on the information available from the computer, the human partner decides on
what 13 next to be modified, executed, etc.

Over the past two decades or so, attention has focused on developing simulation
packages that are useful in many areas of applications. These packages have been
packed on the educational processes and on activities in computer-aided design (CAD),
computer-aided manufacturing (CAM), and, In general, in computer-aided engineering
{CAE).

Simulation languages usually differ in their logic, construction, ﬂexiﬁility, and ease of
usage. These differences include: (a) the basic objective of the language, (b) algorithms

for generating random numbers, (g) program initialization , (h) data entry, (i) output
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reports and (j) methods for data analysis. Most simulation languages, however provide
the following standard capabilities: (a} structured data input, (b) time-advance
mechanism, (¢) acceptable random-number generators.

Resent years have seen the development of a tremendous number of discrete,
continuous, and combined discrete-continuous simulation languages. Among the widely
used software is IESL which was used in this project. Interested reader about the

characteristics of the other simulation language is referred to Kheir 1988, pp. 681-694.
1.4.5.1 ESL

ESL is an advanced continuous-system simulation language (CSSL) that is being
developed under contract from the Eurcpean Space Agency. ESL is designed to be
portable and to run on computers supporting a FORTRAN 77 environment;

ESL 1s characterised by its advanced programming concepts. These include:

- Separation of model and experiment.

- Capability of building models from submodels.

- Optionally users may describe systems by a Graphical input program, rather than
use conventional language form.

- Advanced discontinuity handling.

- Seven integration algorithms including three stiff methods.

- Paralie]l segmentation.

To implement ESL, an interpreter and a translator version of the language are
required. The interpreter translate the user's program into H-code and the translator
converts the H-code 10 FORTRAN-77. The entire system is written in FORTRAN-77,
as indicated by J. L. Hay (1989},

ESL was developed on a PRIME 550 computer in the Simulation Laboratory of the

University of Salford, England.
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CHAPTER

2

MODEL SELECTION
and SIMULATION

In order to determine the anti-aliasing filters effect on the identification of different
types of systems, the following systems were modelled:

a) A simple second order linear system

b) A nonlinear chemical system

¢) A nonlinear, discontinuous switching regulator

These systems covered a wide range of natural frequencies from 1 to 7300 rad s-! and
a range of nonlinear behaviour. For the linear system, a discrete model could be
obtained analytically and compared directly with the identified models, however in the
other two cases only the behaviour of the system and the identified models could be
compared.

Each system will now be explained in detail.
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2.1 SECOND ORDER LINEAR SYSTEM

This system has a low-pass second-order Butterworth response with a 3-dB cut off

frequency at 1 rad s-! =(1/2r) Hz. The ransfer function of the system is:

1

H(S) = 2 1 414541

2.2 NONLINEAR REACTION SYSTEM

A continuous stirred tank reactor system was considered in which bromine in solution
combines to form bromine gas which escapes. The flow of bromine into the tank is
given by:

flow . concentration = F.C;,

and the flow out is F.C.

The reaction rate is given by R = Kl.C2 where K7 is a constant.

The differential equation governing the system is

dC

o7 = FCi -FC-K1.C?

where F = 0.5, K1 = 1.0 and Cj has a value of 0.5 and is disturbed by a pseudo

random binary sequence (PRBS).

2.3 SWITCHED-MODE POWER REGULATOR

This system was chosen (ESL Application Manual) because it exhibits discontinuous

nonlinear behaviour with a high natural frequency. A switched-mode power regulator

(SMPR} takes as input an un-regulated power supply voltage (V¢) and produces a
stabilised output voltage (Vo) with minimal power loss. The level of the output is

determined by a reference voltage (Vief).
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Fig, 2.2 SMPR conurol circuit, After ESL manual
The system is illustrated in figure 2.1 and 2.2. The equations governing the system

are:

Power circuit (Fig 2.1)

. (Ve + IjxR)
07 (Rp+Rp)
Vo=1Io*Rg

Ie=11-Ig

Ve =1./C
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and for the contrel circuit (Fig. 2.2)

Vo' =Vi/Ti
Vip =G * (Vi +Vy)
E-Vy
Vi= Tf
The parameter values used in the simulation were:
Parameter Value Unit
G 1.0 none
Vg 70.0 Vv
L 21 uH
C 350 UF
Rj 0.0 2
Re 0.1 Q
Rg 25.0 Q
T; 450.0 s
Tr 20.0 s
fa 8G KHz

The pulse width modulator (PWM) with sampling frequency f, and mark space ratio
w was modelled using a ramp generator and threshold detector, see figure 2.3 for a
diagram illustrating the PWM operation.

See Appendix B for a more detailed derivation of the model and the derivation of its

parameters.

} + '
period !1 perijod ,2 period
4 !

T

Fig. 2.3 Timing diagram for the PWM
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2.4 SIMULATION STRUCTURE

ESL was used as the simulation package in this project. ESL (European Simulation
Language) is an advanced continuous system simulation language, which was
developed to meet the simulation requirements of the Eurcpean Space Agency. for
more information about ESL, see Literature Review section 1.4.5.1.

Each plant model and the anti-aliasing filier were simulated as ESL submodels
{similar to procedures or subroutines). The input perturbations used were the output of a
PRBS generator and the additive noise components were obtained from & sinusoid noise
model. Both of these were also simulated as submodels.

These submodels were interconnected as shown in figure 2.4 and controlled by an

Experiment control section.

PRES
FY ;lC&llected

PRBSGEN | PRBS
v Data

{subrmedel)

EXPERIMENT CONTROL

Fig 2.4 General Block Diagram of Simulation

Data recorded were:

Input perturbation PRBS
Plant model output Y
Plant model output with measurement noise YNOQISE

Filtered noisy piant output FY
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This data was stored on file for subsequent processing using the MATLAB
IDENTIFICATION TOOLBOX. The simulation experiments were carried out at very
short time steps {relative to the plant dynamics). In order to ensure that the collected
data retained their analog nature, this data was then sampled at a lower rate for use in

MATLAB.

2.4.1 Pseudo Random Binary Sequence Generator

A PRBS can be generated in ESL using the inbuilt random number generator to
specify the next time the output is to change value. The magnitude and base frequency
of the PRBS can be specified using two parameters to the submodel.

See appendix A for the ESL program for the PRBS generator.

2.4.2 Noise Simulation

Measurement noise was simulated by adding to the output of each system a signal

whose Power Spectral Density (PSD) could be controlled. This was generated using:

N = A, sin((2nf + o)t)

Where A; and @y are random values whose range can be controlled.

This gives a signal whose PSD has a peak at frequency f, a spread about this

frequency governed by ®; and a magnitude controlled by Ap. See Fig 2.5 for PSD's of

the noise signals.

The choice of f and @, were dependant upon the system being simulated and were

chosen to ensure no overlap occurred in the spectral distribution of the noise and

system.
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243 Filter Submodel

The matrix and vector features of ESL were used to implement the anti-aliasing filters
as a common model where the individual filters were characterized by parameters read

in from a file.

2.44  Linear System Submodel

ESI. accepts dynamic models as equations in natural form. This means that the
transfer function of the linear system model required conversion to natural form before
entry to ESL. This was accomplished using the transfer operator. See appendix A for

ESL program.

2.4.5 Nonlinear Reaction System Submodel

Prime Notation, explicit multiplication and power operators defined in the ESL
manual, were used to change the nonlinear system to ESL program. See appendix A for

the ESL program.

2.4.6 Switch Mode Power Regulator (SMPR) Submodel

The discontinuity features of ESL were used to model the pulse width modulator and
the limiter. These were used with explicit multiplication defined in ESL manual. See

appendix A for the ESL program.
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CHAPTER

3

FILTER SELECTION
and SIMULATION

For this work two standard filter types were selected; Butterworth and Chebychev. A
number of different orders of filter were used with cut-off frequencies to cover the
range from below the natural frequency of the system to almost twenty times the
systems natural frequency.

The ESL program for the filter uses one submodel to implement a general state space
form of the filter and ten submodels to implement each of the Butterworth and
Chebychev filters. The filters used were Butterworth and Chebychev filters of 1st, 2nd,
3rd, 4th and 5th order.

The state space form of the filter transfer function was obtained as follows. The general
form of a linear, analog filter is:

m

> st

1=0
n

Zbisi
i=0

Y(s) = X(s)

wheren 2 m .

By assuming b, = 1, we have

apS™ + 2y STL 4 A M2 4 days? +a;s +ag

Y(s) = X{s) (3.1

gl +bn,18n"1+bn_28n'2 + ... +b282+b15+b0



Let

X(s)
Sn+bn,18n'1+bn_25n‘2 + ... +b2$2+b13+b(}

Z(3) =

Then we have,

Y(s) = {a,s™ + a1 +az osM2 + L 42,52 +a;s +a)Z(s)

Extending the numerator terms to n-1 by setting ap_1=a, 5....5a,;,.1=0.0 we have,

gl dn-2z dmz dm-lz
y(t) = a5 gl + a5 42 +..F &, g + ap.1 g1 +.+ agz

dz. d2z dn-lz
Let wy=z, wp= T W3=’““'“”d12 yere 2V wdt“'l
Therefore we have,
sz
dt ™2
sz
de =73
de_l
dt o
dwp
"'a“{"= X(t) - bn-lwn - bn_zwn_l - e m b2W3 - bIWZ - b{)Wl
In matrix form, this become:
~ dwy T
di — W -
sz _ — _‘0_
T 0 1 0 © 0 W2 0
' 0 0 1 0 0 w3
s o RO
- 0 0 0 0 1 ' :
: 0
¥t L by by by e bpg bpy o w 1
dt i
dwy, — ¥n =
L dp -

or
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(3.2)

(3.3

(3.4)
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' 0 I 0
W=l bge.. -bp1 [MLI x(1)
This yields :

A= [ Abg___ -b;_l ] B= m

and from (3.4):
C:[a() a d» .. an_ll D=0.0

3.1 SIMULATION OF FILTERS

Tables of common coefficients are obtainable for the wansfer functions. The
coefficients for the Batterworth and Chebychev filters used are shown overleaf (Fig
3.1). These can be converted to the state space form above {eg. via MATLAB’s tf2ss
command).

This state space form was implemented in ESL and tested by obtaining the frequency

domain responses of the filters and comparing this with the expected response.



Table 1 Coclficients ol normalized Butterworth polynomials (a9 = g, = 1 for all n).
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L] a, 2 ay a, a, ay a, dy ay
1
2 1.4142136
k] 2 0000000 20000000
4 26131259 34142136 26131259
5 3.2360680 5.226068() 5.2360680 3.23600680
] 3.8637032 14641076 9.1416202 74641016 18637033
7 4.493%592 10.0978347 14.591791% 145917939 100978347 44939592
S 5125809 13.137%03112 218461510 256883559 21.8461510 13.1370712 51258309
9 57587705 16587187 31.1624375 41985636857 4].9863857 311634375 165817187 5758705
14 6.3924532 204317291 428020611 648823963 74.2334292 G4.8823363 428020611 204317291 63924532
Table 2 Butterworth pole locations.
Al n=2 frae } nad =5 ne=f Hw 7 n=8 Aw9 n= 10
= 10000000 —07071068 — (0000000 —QIR826834 -~ .000000) 02588190 — LOOOODO0  —~00950903 — 1LOGOOOIO0  — 0.1 564345
+j0.2071068 +)0.9238735 +]0.9£59258 +i0.9807853 +j0.937688)
—0.5000000  —0.9238729% 03090170 —0.7071068 —0.2225209 05555702 —0.1736482 —0.4519905
1i0.8660254  +j0.3826834 4i0.9510565 +£j0.7071068 j0.5749279 jORII4ES6 +D.SS4B0IE  4j0.8F10065
~0B090I70 —0.9659258 —0.6214898 08314696 —05000000 —0.7071068
+jO.SBT7852  +£j0.258B{50 4jO.7BIBIIS  £j0.5555707 +jO.B66U2SA  +0.7071068
~-0.9009689  —-09R07853  —0.7660444 - 0DB910065
+i0.4338837 +j0.195090) +j0.6427876  +j0.4519905
—0.9396926 — 09576821
£j0.3420201  £30.1564345
Table 3 Coefficients of normalized Chebychev transfer functions (0.5 dB ripple, a, = 1 for ail #).
n a, a, a a, a, a, a, 2; a, ag
H 2.8627752
2 1.5162026 1.4256245
] 07156938 [.5348754 12533130
4 0.3790506 1.0154553 1.TI68662 11971856
5 0.17892M G.7525181 13095747 19373825 11724909
6 00947626 0.4323669 11718613 15897635 2.171R446 11591761
7 00447309 .2820722 0.7556511 1.6479029 1.86%4079 2412651G 1.1512176
g 0.0236907 01525444 G.5735604 1.1485894 21840154 2.1492173 26567498 1.1460801
b4 0OIL1527 00941198 03408193 0.9836199 1.6113880 27814990 24293297 29027337 1.1425705
o

0.0059227 0.0492853 0.2372688 05269689 1.5274307 21442372 1.4409268 2709115

3.1498757 11400664

Table 4 Chebychev pole localions (0.5 dB ripple}.

=l nm2 n=} nomd nes H=6 A=7 =2 r=9 n= ¢
-28627752 07128122 06254565 —0.1753531 —0.26231%6 00776501 —0.25651700 —0.0436201 01984053 — 0027994
£ OIS +71.086252% +)L.0084608 + 10050021 +j1.0032732
—0.3132282  -042331398 ~0.111962¢ —02121440 -DO570032 01242195 —0.0344527 —0.0809672

+£j1.0219275 104209457 1jIOL1S574  +j0.7382446  jLOGE4D5  +j0.B51999%

—0.2931227 02857940 —0.1597194 —0Q.18590%6
1j0.6251768  £j0.2702162 £j0.8070770  +i0.5692879

~0.2308012 —0.2192929
+)0.4478939  +j0.199%073

+j1.0040040  +j0.9050658

—-0.0992026 -0.1261094
+j0.882%063  +j0.7182643

—01519873  —0.[589072
+J0.655M70  +j0.4611541

—D.1864400  —0.176149%
+]J0.3486869 - j0.1589029

Fig. 3.1 Coefficients of normalized Butterworth and
Chebychev transfer functions.
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CHAPTER

4

EXPERIMENTS

This chapter describes the series of experiments that were designed to observe the
effects of including an anti-aliasing filter in the measurement data stream. In order to
determine these effects it was necessary to obtain the best identified model of each
system. This was achieved by simulating each system and generating noise free outputs
for the pseudo random binary input disturbance required by the identification methods
(see figure 4.0). These noise free outputs were then sampled (with a sampling rate fast
enough to ensure no aliasing) and used to obtain the identified models. It is known
[refer to section 1.3.3] that the quality of the model so obtained depends upon the

sampling interval so the experiments were repeated at various sampling rates.

mSL |: MATLAB

PRES ‘ [——Hdeniificalion Muadel arison !
- System 1 FRES | orogram ¥ pmgm_'

TPRBS

Fig 4.0 Block diagram of the necise-free experiments
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The quality of the model was determined by comparing the performance of the model
against the simulation using input and output data not used during the identification. An

error criterion (I}, which compared the real cutput data with that of the model under the

same input (PRBS), was defined as follows:

where Yj is real data from ESL,

Y; is data from the model,

n is the number of data points (n=100)

J is the error criterion

Two sets of experiments were performed using the anti-aliasing filters. These were;

a) filtered, noise free data

b) filtered data with zero mean and bandwidth limited noise added prior to filtering

(in effect measurement noise).

In section 4.4 the methods of the identification used are explained.

4.1 EXPERIMENTS WITHOUT FILTERING

To determine the effect of aliasing errors, an experiment was performed in which the

system and noise blocks were included (fig 4.1). The error criterion J was calculated

and compared with that obtained from the best model (noise-free).

This experiment would be expected to show that the model affected by aliasing was

much worse than that of the noise-free model.



ESL ,
]
!

MATLAR

]
PRBS ¥ ] YMOISE  [ldentification
System Nedse 4|)l:

BS

Fig 4.1 Experiments without filiering

4.2 FILTERED NOISE FREE EXPERIMENTS
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In this experiment an anti-aliasing filter was included in the system but no noise was

added. Butterworth and Chebychev filters of different order and cut-off frequency were

used and the error criterion was calculated. The following block diagram shows this

step.

ES], MATLAB

FY | Identification

FRES s Y B
ystem iites program

PRES

Th

Model

FRBS

Fig 4.2 Block diagram of the filtered noise free experiments

4.3 FILTERED DATA WITH NOISE EXPERIMENTS

Comp-
Iisom

prograr

-

In this experiment noise was added into the system used in section 4.2. Various orders

of Butterworth and chebychev filiers were used. For each one an initial cut-off

frequency (@) below the natural frequency of the system was chosen. The simulation
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was run and the error criterion calculated. This was repeated for increasing values of

®p.
]
ESL ! MATLAB
) Yh
YHOISE ! - Corpar- 1
PRBY Y - ! FY ) Identficat- Mode} o0 L)
Systern Noise al ; on program Y roga
1
! TPRBS PRES !”
1
1
!
]
I
3
3

Fig 4.3 Block diagram of the filtered data with noise experiments

4.4 IDENTIFICATION METHODS USED IN
EXPERIMENTS

The identification algorithms used were the ARX (Autoregressive eXogeneous
variable) and the 1V4 method (Instrumental Variables method four) (see MATLAB
identification toolbox).

One thousand input-output data points were collected from the process as the input
was changed 1n a random fashion between two levels. The sampling interval is known.
Six hundreds data points were used for the identification and one hundred were used to
calculate the error criterion, J.

We want to find an ARX model, which is usually written

Alg Dy = B@ Hult-nk) + e

where B and A are polynomials in delay operator q'l:

Algly=1+ajql +.. +apqna

B(@ ) =by +byq !l + ... +bppg b1

The reason for the term ARX is that the model is a combination of an
auforegressive(AR) part, A(q‘l)y(t), and a control part, B(q'l)u(t). The control signal is

known as the eXogeneous varable, hence the X,
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We want to fit to the data a model of the following form (the best form resulted

from experiments) :

y() + a1y(t-T) + apy(t- 2T) = byu(t-T) + bpu(t-2T)

or in the z domain

Y(2) + a1z 1Y (@) + a32-2Y(2) = b1z 1U(2) + 22y U(z)

in the form of transfer function we have

Y(z) blz‘1 + bzz"z bjz+bp
U@ 1+agzl +ayz2

Zz‘f‘aIZ“l‘az

MATLAB gives the coefficients by , by , ay ,and ap .
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CHAPTER

S

RESULTS
and DISCUSSION

This chapter includes, separately, the results for each system studied and its
accompanying discussion. The input, output and comparison between real data and
model data graphs for the best model and noise only experiment of g¢ach system are
shown. For each system four graphs are shown in addition to four tables summarising
valu_es of the error criterion (J) with filter alone and noise plus filter. Since the transfer
function of the first system is known, comparisons between the step response of the
various forms of the real continuous system, the analytical discrete system and
identified model are shown.

Appendix C shows the effect of the different fiiters on the identified model.
5.1 SECOND ORDER LINEAR SYSTEM

The transfer function of the system is

1

== sothat H(s)|g_g=1. 5.1
Zratn omet HOleo=10 6D

H{s)
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Using the zero order hold transform method (see MATLAB Control System Toolbox

page CR-11) and sampling time, 0.3, this can be analytically transformed to:

0.039z + 0.0338

H{z) = that H -1=1.0 5.2
=3 ssrserogsm © P H@ e ©:2)
The closed loop transfer function of (5.1} 1s:

H(s) = 1 so that H(s) | ¢ = 0.5 (5.3)

s2+1.4145+2

The discrete form corresponding to this is:

0.0387z + 0.0336
72 - 1.5098z + 0.6543

H(z) = so that H(z) | ,=1 = 0.5003 (5.4

The best sampling time for this system was found as T=0.3 and the best parameters
for the PRBS were found as MAG=0.5 and MAXT=8.0. After substitution of these
parameters and then sampling the output of ESL program (STUDY.OUT) with T=0.3,
the sampled data were transferred into MATLAB.

The 1dentified model by ARX method was:

0.0364z + 0.0298
z2 - 1.5883z + 0.6574

H(z) = so that H(z)| ;=1 =0.958 (5.5)

The closed loop of the identified model was:

Hz) o
H@) | o = m‘;—p or

0.0364z +0.0298
72 - 1.5519z + 0.6872

H@) ¢ = so that H(Z) | o] poq = 0.489  (5.6)

From companson of (5.2) with (5.5) it can be seen they are almost the same.
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Fig 5.1 shows the step response of the continuous system (5.1) and its analytical
discrete form (5.2) for open loop and closed loop. Fig 5.2 shows the analytical discrete
system and identified model for open loop and closed loop.

The identified model was found by transferring one thousand input-output data points
from the ESL program on the PC to the DEC-VAX. 600 data points were then selected
for building a model. To evaluate how well the model fit the data, a simple test was to
run & simulation whereby real input data was fed into the model, and to compare the
simulated output with the actual, measured output. For this a portion of the data that
was not used to build the model, for example points 900 to 1000 were selected (see Fig
5.3).

It can be seen that the model was quite capable of describing the system, even for data
that were not used in calculating the fit. The best model gave a J value of 0.0039.

Fig 5.4 shows the effect of aliasing on the identified model. J value for this identified
model is 0.0237 and if one compares it with that of the best model it shows why shouid
use an anti-aliasing filter to remove the effect of the aliased noise. We should, however,
be very careful to design the best filter to obtain the lowest J. Table 2 show J's for
different cut-off frequencies of the Butterworth filter. For the first order filter with
w,=3 we have the best response.

To quantify the effect of the filter on the identified model, the step response of the
closed loop identified model without filter and with two kinds of filter was found. Fig
5.5 shows the step response of the identified closed loop system without filter and with
a Butterworth filter. From the plots, three effects of the filter on the idenﬁﬁcatiou can
be seen:

I. Increases the steady state error.

II. Increases the overshoot.

III. Increases the settling time.

The same results was obtained for Chebychev filters (Fig 5.6). When the cut-off

frequency of the filter (wp) is less than the natural frequency of the system (@¢=1) the

effect of the filter is much greater. As w, of the filter increases, the effect of the filter
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can be seen to decrease. When the degree of the filter goes up, the settling time after a
step Tesponse increases, especially with a low cut-off frequency.

Fig 5.7 shows the cut-off frequency of the Butterworth filter versus error criterion (J)
for different orders of filter. In Fig 5.7, when ®, increases, J deceases but does not
reach that of the best model (J=0.0039). Fig 5.8 shows the cut-off frequency of the
Chebychev fiiter versus J for filters of different order. In Fig 5.8 it can be seen that
when @y, increases, J decreases, but never reaches that of the best model. When the
degree of the filter increases the range of J values increases. Beyond 10 times the
bandwidth of the system it does not really matter which degree of filter is used.
Therefore, from the viewpoint of realization a first order filter is best. The same results

are obtained with both identification methods, ARX and IV4.

Noise was now added into the system. The results for the Butterworth and Chebychev
filters are shown in tables 2 and 4 respectively. Plots of w, versus J are shown in Fig

5.9 and 5.10. The minimum J value was obtained for a filter of order 1.
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15 . : * Contin}xous System Open Loop

]
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0.5
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0 5 10 15 20 25 30 35 40 45 50

0.6 Closaii Loop Dliscrcte Siystcm

0.4

!

0 E i ' E
0 5 10 15 20 25 30 35 4) 45 50
Fig 5.1 3Step response of continuous system and its

discrete in open loop and closed loop forms.
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Arilalytical !DiscrcteiS ystem Ppcn Lopp

0.5

'

0 i i i i 1 i i i i

0 5 10 15 20 25 30 35 40 45 50

40 45 50

L i i i i

20 25 30 35 40 45 50

Identiflled Model Close(} Loop
. ! :

0.6 ! ~ ! ! !
35 8 O s -

0
0 5 10 15 20 25 30 35 40 45 20

Fig 5.2 Step response of the analytical discrete system
and identified model in two forms open loop and closed
loop.
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Fig 5.3 Input and output for system 1 and comparison
between real data and model data.
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Fig 5.5 Step response of the closed loop identified model
without filter and with different Butterworth filters.
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Fig 5.6 Step response of the closed loop identified mode)

without filter and with different Chebychev filters.
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Table 1 System 1_only Butiterworth Filter

Table 2 System 1_Noise and Butterworth Filter

FILTER J FILTER J
S1B1w0.8 0.0350 i SINB1w0.8 0.0450
S1Blw2 0.0175 SINBla2 0.0178
S1Blw3 0.0137 SINBiw3 0.0153
S1Blwd 0.0115 S1INBlw4 0.0142
S1Blw5 0.0107 SINBlw5 0.0136
S1Blwi6 0.0075 SINBlwlé' 0.0250
S1B2w0.8 0.0387 SINB2w0.8 0.0442
S1B2w2 0.0219 SINB2w?2 0.0190
S1B23 0.0157 SINB2m3 0.0155
S1B2m4 0.0131 SINB2w»4 0.0146
S1B2w5 0.0116 SINB2w3 0.0142
S1B2w16 0.0087 SINB2w16 0.0227
S1B3w0.8 0.0404 SINB3w0.8 0.0429
S1B3w2 0.0280 SINB3w2 0.0241
S1B3w3 0.0198 SINB3w3 0.0165
S1B3w4d 0.0160 S1NB3w4 (0.0149
S1B3w5 0.0139 SINB3w5 0.0146
S1B3wl6 0.0091 SINB3wi6 0.0181
S1B4w0.8 0.0399 S1NB4ux.8 0.0416
S1B4w2 0.0327 S1NB4wm?2 0.0291
S1B4m3 0.0239 SINB4w3 (0.0184
S1B4w4 0.0192 SINB4w4 0.0156
S1B4w3 0.0164 SINB4w5 0.0149
S1B4wl6 0.0096 SINB4w16 0.0153
S1B5w0.8 0.0390 SINB5w{.8 0.0402
S1B5m2 0.0356 SINBSw?2 0.0334
S1B5w3 0.0276 SINB5®3 0.0204
S1B5w4 0.0222 SINBS5w4 0.0169
S1B5w5 0.0189 SINB5w5 0.0158
S1B3m16 0.0102 SINB5w16 0.0148

* SINB1w16 means system 1 with noise and Butterworih filier n=1, 10,=16.
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Table 3 Systam i_ only Chebychev Filter

FILTER J
S1C1w0.8° 0.0412
S1CTw2 0.0250
S1CIw3 0.0187
51Clo4 0.0150
S1Clws 0.0127
S1Clwl6 0.0092
S1C2w0.8 0.0402
S1C2w2 0.0235
S1C2w3 0.0162
S1C2m4 0.0132
S1C2m5 0.0117
S1C2m16 (.0087
S1C3w.8 0.042%
S1C3w2 0.017%
S1C3w3 0.0137
S1C3w4 0.0119
S1C3w5 0.0109
SiC3wi16 0.0086
S1C40x).8 0.0406
S1C4w2 0.0135
S1C4m3 0.0119
S1C4m4 0.0112
S1C4w5 0.0105
S1C4w16 0.0086
S1C50.8 0.0430
S1C5m2 0.0150
S1C5w3 0.0104
S1C50m4 0.0104
S1C5w5 0.0102

FILTER J
SINC1w0.8 | 0.0425
SINCla? 0.0225
SINCl®3 0.0175
SINClw4 0.0150
SINClw$ 0.0125
SINClel6 | 0.0170
SINC200.8 | 0.0422
SINC2w2 0.0204
SINC2@3 0.0150
SINC204 0.0139
SINC205 0.0137
SINC2016 | 0.0189
SINC3w0.8 | 0.0449
SINC3w2 0.0163
SINC303 0.0128
SINC3wd 0.0137
SINC3w5 0.0146
SINC3wl6 | 0.0203
SINC4w0.8 | 0.0407
SINC4w? 0.0146
SINC4)3 0.0167
SINC4w4 0.0191
SINC4wS5 0.0201
SINCdwi6 | 0.0316
SINC5@0.8 | 0.0392
SINC502 0.0169
SINC503 0.0231
SINC5w4 0.0251
SINC505 0.0255

* §1C1w0.8 means system 1 with Chebychev filter n=1, ,=0.8.
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Table 4 System] _ Noise and Chebychev Filter
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5.1.1 Discussion (System 1)

As the filter cut-off frequency increases, identification of the system becomes easier

because the filter passes more of the system bandwidth with less distortion. This is

continues until @, {cut-off frequency of the filter) reaches 10 times the bandwidth of

the system at which point all of the information concerning the system passes through

the filter and therefore leaves J constant (Fig 5.11).
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Goip | L
~-4o0.0 : ///t >
o= ?-0 ! e SYystem
|
alB P l :
(Fain I :
| [
I
|
: |
I
! 1 3 y
wg=lo ¥y 1o Tilter

Fig 5.11 Relaiion between the bandwidth of the system and cut-off frequency of the filter

A higher order filter is seen to increase J because the increasing phase distortions in

the pass band of the filter effect the identification (Fig 5.12).
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With noise added to the system, J will decrease initially with increasing oy and then

increase. This is because, initially, the filter passes more information about the system,
which the identification algorithm can use to find the best model. Beyond 5 times the
plant bandwidth, however the nolse also begins to pass through the filter and

detrimentally affecting the identification algorithm (Fig 5.13).
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Fig 5.13 Relalion between noise added system and filter
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5.2 NONLINEAR REACTION SYSTEM

Before experimentation on filters a suitable sampling time and suitable PRBS
parameters were needed. Values that produced a sufficient bandwidth of excitation were
T=0.1 for the sampling time with MAG=0.5 and MAXT=3 for the PRBS parameters.

The best identified model for this system was:

0.0393z - 0.0061
72 - 1.1230z + 0.2038

H(z) =

for which J=0.0019.

Fig 5.14 shows the input (PRBS), the output and the real / best model comparisons.

Fig 5.15 shows the effect of aliasing on the identified model. The response of the
mode] identified with added noise but no filter shows clearly that high order modes
{probably corresponding to the noise) have been identified whereas the low order
modes are not identified at all. The value of J for this identified model is 0.0086 that
compared with the best model (J=0.0019) it is obvious that we should use an anti-
aliasing fiiter. However, we should be very careful to design a suitable filter. For
example in this case only first order Butterworth filter with cut-off frequency 4 rad s1
gives the lowest J {(see table 6).

Figs 5.16 and 5.17 are plots of J value against w, for Butterworth filters and
Chebychev filters respectively. Figs 5.18 and 5.19 show the results when noise was

added to the system.

5.2.1 Discussion (System 2}

The response of the system to a step input was obtained by ESL and then the Power
Spectral Density of the system was plotted. From this graph the natural frequency of the

system was determinated at the half power point (g = 4).



73

From Figs 5.16 and 5.17 it can be seen that when the filter cut-off frequency increases
J decreases because more of the frequency of the system passes through the filter.
Beyond 10 times the plant bandwidth (p=10%wg) it does not really matter which filter
is chosen. A first order filter is therefore preferred for realisation since all filters will

pass the total system bandwidth.

Figs 5.18 and 5.19 show the effect of the filter on identification when noise was added
to the system. The value of J increases as wp, passes beyond 3 times the plant bandwidth

since the noise can then pass through to the identification algorithm.
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Table 5 System 2_ only Butterworth Filter

FILTER J FILTER J
S2B1w0.8 0.0088 S2NB1w0.8" | 0.0129
S2B1w2 0.0080 S2NB1m2 0.0074
S2Blod 0.0060 S2NB1oM 0.0060
S2B1wlé 0.0034 S2NB1w16 0.0062
S2B1wA40 0.0029 S2NB 140 0.0069
S2B1w80 0.0029 S2NB 180 0.0078
S2B2w(.8 0.0101 S2NB2w0.8 0.0152
S2B2w2 0.0093 S2NB2w?2 0.0100
S2B2w4 0.0070 S2NB2w¢4 0.0072
S2B2w16 0.0037 S2NB2wl16 0.0071
S2B2w40 0.0036 S2NB2w40 0.0080
S2B2w80 0.0036 S2NB2®m80 0.0091
S2B3w0.8 0.0097 S2NB3w0.8 0.0144
S2B3a2 0.0105 S2NB3w2 0.0105
S2B304 0.0084 S2NB3uw4 0.0079
S2B3w16 0.0042 S2NB3mwl6 0.0075
S2B3w40 0.0038 S2NB3M0 0.0080
S2B3w80 0.0038 S2NB3ws0 0.0086
S2B4w0.8 0.0095 S2NB4@(.8 0.0142
S2B4w2 0.0104 S2NB4w?2 0.0114
$2B4m4 0.0091 S2NB4w4 0.0090
S2B4m16 0.0045 S2NB4w16 0.0077
S2B4n40 0.0041 S2NB4m40 0.0080
S2B4w80 0.0041 S2NB4w80 0.0083
S2B5w0.8 0.0094 S2NB5w0.8 0.0140
S2B5a2 0.0098 S2NB5m?2 0.0136
S2BSw4 0.0097 S2NB5w4 0.0100
S2B5wl6 0.0048 S2NB5mw16 0.0079
S2B5w40 0.0043 S2NB5@40 0.0081

* S2NB1w0.8 means system 2 with noise and Butterworth filter n=1, w,=0.8.

80

Table 6 System 2_ Noise and Butterworth Filter



Table 7 System 2_ only Chebychev Filier  Table 8 System 2 _ Noise and Chebychev Filler

FILTER J FILTER J
S2C1w08 0.0104 S2ZNC108* (.0150
S2C1w2 0.0093 S2ZNClw2 0.0095
S2C1od 0.0069 SZNClo4 0.0070
S2Clwlé 0.0029 S2NClwl6 0.0060
S2C1w40 0.0025 S2NC1w40 0.0071
S2C1w80 0.0025 S2NC1w80 0.0080
S2C2w08 0.0100 SZNC2a08 0.0155
S2C2m2 0.0099 S2NC2w2 0.0101
S2C2w4 0.0077 S2ZNC204 0.0073
S2C2w16 0.0040 S2ZNC2w16 0.0073
S2C2w40 0.0034 S2ZNC2w40 0.0080
S2C2080 0.0034 S2ZNC2w80 0.0088
S2C3w08 0.0097 S2NC3w08 0.0145
S2C3w2 0.0108 S2NC3w2 0.0102
S2C3mw4 0.0036 S2ZNC3w4 0.0080
S2C3w16 0.0039 S2NC3wl16 0.0086
S2C3w40 0.0033 SZNC3w40 0.0086
S2C3w80 0.0034 S2NC3w80 0.0091
S2C4008 0.0095 S2ZNC4x08 0.0147
S2C402 0.0099 S2NC4w2 0.0116
S2C4w4 0.0096 S2ZNC4m4 (0.0098
S2C4w16 0.0037 SZNC4w16 0.0096
S2C4040 0.0036 S2NC4040 0.0095
S2C4w80 0.0036 S2NC4m80 (.00%6
S2C5008 0.0093 S2ZNC5w08 0.0155
S2C5w2 0.0108 SZNC5w2 0.0126
S2C504 0.0106 S2NC5m4 0.0108
S2C5w16 0.0036 S2NC5wl6 0.0105
S2C5040 0.0036 SINC5w40 0.0106
S2C5w80 (.0036 S2NC5w80 0.0109

* §2NC1w0.8 means sysiem 2 with noise and Chebychev filter n=1, w,=0.8.
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5.3 Switched-Mode Power Regulator

PRBS parameters of MAG=0.5 and MAXT=0.00009 were found to give a suitable
excitation spectrum for this system. The best sampling time was found to be T=12.5E-

6.

The best identiﬁcd model was:

0.1082z + 0.0579
72 . 0.6603z - 0.0681

H(z) =

with J=0.0071.

Various orders of the identified models were examined, but the second order model
above gave the lowest J.

Fig 5.20 shows the system input, systemn output and real / best model comparisons.

The experiment with additive noise and no filter gave J=0.0110- (Fig 5.21).
Comparing this J with that of the best identified model, we can see the effect of the
aliasing on the identified model. If we are careful enough to design the best filter
(second order @,=50000, J=0.0077) we can reduce the effect of aliasing on the
identified model.

Because of the discontinuity (internal noise) in this system the results are different
from the two previous systems. Figs 5.22 and 5.23 show the results of this system with
different orders of the Butterworth and Chebychev filters respectively. Fig 5.24 and

5.25 show the results when noise was added.

5.3.1 Discussion (System 3)

Figs 5.22 and 5.23 clearly show that, for both Butterworth and Chebychev filters a

second order filter produces the best identification results. Again an increase in J is seen

for wy, > 5 times the plant frequency as noise begins to pass through the filter to the

wdentification algorithm.
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The system, due to the pulse width modulation and the oscillator has its own internal
noise. So the effect of the filter with no measurement noise will therefore not be as
good as for systems 1 and 2. The effect of the variable noise on the identification is not
easily determined.

As measurement noise is included (Fig 5.24 and 5.25) the identification becomes
more sensitive to the filter. It can be seen that the best wy, is for n=2.

The model determined from the noisy data without filtering appears from fig 5.21 to
have given excessive weigh to the high frequency modes of the system. Notice in fig
5.21 for points between O to 20 where low frequency components in the real data is

significant as is not generated by this model.
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Real data VS model data without Noise and Filter, System_3 Best Model
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Real data and Model data for System 3.
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Real data VS model data only Noise.without filter System_3
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Tabie ¢ Systern 3_ only Buterworth Filte ‘Table 10 System 3_ Noise and Butterworth Filter

FILTER J FILTER J
S3B1ws 0.2305 S3NBl1wS 0.0135
S3Blmwl12 0.1235 S3NBlwl2 0.0i28
S3B1w25 0.0522 S3NB1w25 0.0110
S3B1wSs0 0.0195 S3NB1®350 0.0087
S3B1w80 0.0121 S3NB1w80 0.0082
S3Blwl20 0.0113 S3NB1wI120 0.0103
S3B2w5* 0.0137 S3NB2w53 0.0133
S3B2mwi2 0.0127 S3NB2wi2 0.0124
S3B2w25 0.0092 S3INB2w25 0.0100
S3B2ws0 0.0091 S3NB2w50 0.0077
S3B2m80 0.0116 S3NB2w80 0.0109
S3B2w120 0.0149 S3NB2w120 0.0139
S3B3m5 0.0134 S3NB3w5 0.0131
S3B3wi2 0.0134 S3NB3wl2 0.0132
S3B3w25 0.0145 S3NB3®25 0.0128
S3B3w50 0.0097 S3INB3®50 0.0097
S3B3m80 0.0100 S3NB3w80 0.0092
S3B3wl120 0.0132 S3NB3wi20 0.0147
S3B4ws5 0.0134 S3NB4m5 0.0130
S3B4w12 0.0140 S3NB4®12 0.0138
S3B4wm25 0.0175 S3NB4w25 0.0143
S3B4w50 0.0133 S3NB4w50 0.0153
S3B4w80 0.0120 S3NB4ws0 0.0153
S3B4wi20 0.0115 S3NB4®120 0.0105

* $3B2w5 means system 3 with Butterworth filter n=2 0=5000.



Table 11. System 3_ only Chebychev Filter

Table 12. System 3_ Noise and Chebychev Filter

FILTER J FILTER J
S3C1w5 0.0145 S3NClw5 0.0138
S3CIwl2 0.0160 S3NClwl2 0.0144
S3C1w25 0.0140 S3NClw25 0.0135
S3C1w50 0.0110 S3INC1w50 0.0121
S3C1w80 0.0125 S3NC1m80 0.0125
S3C1w120" 0.0158 S3NClw120 | 0.0155
S3C2w53 0.0137 S3INC2®53 0.0134
S3C2w123 0.0132 S3NC2w123 0.0127
S3C2w253 0.0101 S3NC20253 0.0111
S3C2w54 0.0096 SINC2w54 0.0085
S3C2w84 0.0120 S3NC2m84 0.0111
S3C2w124 0.0154 SINC2mw124 0.0144
S3C3w53 0.0133 S3NC3w53 0.0130
S3C3wl123 0.0138 S3NC3w123 0.0137
S3C3w253 0.0154 S3ANC3w253 0.0129
S3C3w54 0.0117 SINC3w54 0.0111
S3C3w84 0.0157 SINC3w84 0.0142
S3C3m124 0.0190 S3INC3wl124 0.0176
S3C4w53 0.0154 S3NC4w53 0.0291
S53C4w123 0.0183 S3INC4w123 0.0174 -
S3C4w253 0.0363 S3NC4w253 0.0159
S3C4w54 0.0128 S3NC4w54 0.0157
S3C4m84 0.0186 S3NC4m84 0.0146
S3C4wi24 0.0225 S3INC4wi24 0.0205

* §3C10120 means system 3 with Chebychev filter n=1 w,=120000.
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CHAPTER

6

CONCLUSIONS

The results produced by this research have shown that we must use a filter, otherwise
we will get models in which the higher frequency modes belonging to the noise are
identified rather than the lower frequencies belonging to the system. The following
conclusions can also be drawn:

1) Lower order filters are recommended for identification, however, we should be
very careful to design the filter with a suitable cut-off frequency to achieve the lowest
erTor criterion (J), otherwise we will get worse results.

2) For filters in the absence of measurement noise, the step response of the closed loop
identified model has a larger steady state error, overshoot and settling time. As the cut-
off frequency of the filter increases the effect of the filter decreases.

3) When measurement noise is added two cases arise:

a. When 0.8 < 0y, < koyg the error criterion (J) decreases with an increase in @p,.
Where ), is the cut-off frequency of the filter, wg is the natural frequency of the
system, k 1s a constant and depends on the characteristics of the system and possibly the
noise spectrum. For the systems simulated k=5 for the linear system, k=3 for the
nonlinear system and k=6 for the nonlinear discontinuous system.

b. When wy, > ko J increases with wy,.



Recommendation for further work include:
i} choosing more test systems

it) Using variable noise bandwidth to determine the effect of this on the ratio = g"
s

iii) using other identification methods
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APPENDIX A

Listings of the ESL programs for systems 1, 2 and 3 are given here.
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STUDY

INCLUDE "PRBSGEN";
INCLUDE "FILTER",
INCLUDE "LINEAR";

PROCEDURE Noise(REAL:FREQ,TIME)RETURN REAL;
REAL:N; N:=SIN{{(2.0*3.14*FREQ+RAND{1))*TIME);
RETURN N*RAND(1);

END Noise;

MODEL DATALOG (REAL:FY);

--ESL program DATALOG

INCLUDE "FILTERB2";
REAL :PRBS,Y,YNOISE;
CONSTANT REAL :MAG/0.5/,MAXT/8.0/,FREQ/5.0/;
FILE:Qutfile;
INITIAL
REWRITE Qutfile,"STUDY.QUT";

DYNAMIC
PRBS = PRBSGEN(MAG,MAXT);
YNOISE = Y+Noise(FREQ,T);
FY.Z = FILTER(A,B,C.D,YNOISE};
Y = LINEAR{PRBS);
STEP
TABULATE Ouifile, T,PRBS,Y, YNOISE FY;
END DATALOG;
-- Experiment

-- Definition of experiment to be carried cut on system
REAL: FY;
-- Logical repeat variable
LOGICAL: YES;
-- Define integration control parameters
TSTART := 0.00000CE+00; TFIN :=300.0; CINT :=1.0; DISERR := 0.100000E-03;
INTERR := 0.100000E-02; ALGC :=2; NSTEP :=10.0; FY:=RAND{-1);

LOOCP
-- Invoke model
DATALOG(FY),
PRINT "STUDY COMPLETED",
-- Qutput simulation results
PRINT "TABULATED RESULTS ARE:";
TABULATEFY;
READ "Do you want anocther run? ", YES;
TERMINATE NOT YES:
INTERACT;
END_LOOP;

END_STUDY
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STUDY

INCLUDE "PRBSGEN",

INCLUDE "FILTER";

INCLUDE "NLINEAR";

PROCEDURE Noise(REAL.FREQ.TIME)RETURN REAL;
REAL:N; N:=SIN{(2.0%3. I4*FREQ+RAND(1))*TIMEY},
RETURN N*RAND{1);

END Noise;

MODEL DATALCG (REALFY);

--ESL program DATALOG

INCLUDE "FILTERB2"
REAL :CS,PRBS,CSNOISE;
CONSTANT REAL :MAG/0.5/, MAXT/3.0/ FREQ/S0.0/;

FILE:Qutfile;
INITIAL
REWRITE Qutfile,"STUDY .QUT™:
DYNAMIC
PRBS = PRBSGEN(MAG,MAXT);
CSNOISE = CS+Noise(FREQ,T);
FY.,Z := FILTER(A,B,C,D,CSNOISE);
CSs :=NLINEAR(PRBS);
STEP

TABULATE Qutfile,T.PRBS,CS,CSNOISE FY;

END DATALQG;

-- Experiment
-- Definition of experiment to be carried out on system
REAL: FY;
-- Logical repeat variable
LOGICAL: YES;
-- Define integration contro! parameters
TSTART := 0.000000E+Q0; TFIN = 100.0; CINT :=1,0; DISERR := 0.10000GE-0Q3:;
INTERR := 0.1000C0E-02; ALGO :=2; NSTEP := 100.0; FY:=RAND{-1);

LOGCP
-- Invoke model
DATALOG(FY);
PRINT "STUDY COMPLETED™;
-- Qutput simulation resulls
PRINT "TABULATED RESULTS ARE:";
TABULATEFY;
READ "Do you want another run? ", YES:
TERMINATE NOT YES;
INTERACT;
END_LCOP;

END_STUDY
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STUDY

INCLUDE "REALPL",
INCLUDE "PICONT";
INCLUDE "LIMIT";
INCLUDE "MODULT™,;
INCLUDE "PRBSGEN";
INCLUDE "FILTER";
INCLUDE "SMPR"; -
PROCEDURE Noise(REAL:FREQ TIMERETURN REAL;
REAL:N; N:=SIN((2.0*3. 14*FREQ+RAND{1}*TIME);
RETURN N*RAND(1};

END Noise;

MODEL DATALOG(REAL:FY);

--ESL program DATALQOG

INCLUDE "FILTERB2";
- Circuit constants

CONSTANT REAL: L/2.1E-5/ RL/0.0/,CC/3.5E-4/ Re/0.1/, FREQ/80000.0/;
CONSTANT REAL: V1IC/0.0125/,Ti/2.0E-5/, MAG/0.5/ MAXT/0.00009/,R0/25 07,

CONSTANT REAL: V2IC/0.50/, Ti/A.5E-4/,G/1.0/,Vs/T0.0/;
CONSTANT REAL: LLA.05/, UL/G.95/,Vref/50.0/;
CONSTANT REAL: Td/0.0/ PERIOD/1.25E-5/;
-- Circuit variables
REAL:V0,10,Vin ILIC,VC E,V1,Vip,W PRBS, Vre{P,VONOISE;
FILE: QUTFILE;
-- Logical variables
LOGICAL: TRAN_ON,IDIODE;
INITIAL
REWRITE OUTFILE,"STUDY QUT";
-- Initialse circuit state variables
VC:= 50.0;
IL:=0.0;
DYNAMIC
-- Qutput current and voltage
I = (VC+IL*Rc)/(RO+RC);
V0 = SMPR(I0};
PRBS :=PRBSGEN{MAG MAXTY)
VREFP := VREF+PRBS;
VONOISE:= VO+NOISE(FREQ,T);
FY.,Z :=FILTER(A B,C,D,VONOISE};
-- Capacitor current
IC:= IL-10;
-- Error signal
E:= VrefP-VO;
-- Call o filter submodel
V1:= REALPL(V1IIC,T{,E);
- Call 1o PI controller submodel
Vip:= PICONT(V2IC,Ti,G,V1);
-- Cali 1o limiter submodel
W= LIMIT(LL UL, Vipj;
-« Determine transistor state (call to PWM submodel)

99



TRAN_ON:= MODULT(Td, W PERIOD),
-- Determine diode state (conducting if IL>=0.0)
IDIODE:=IL »=0.G;
-- Determine state of inpat voltage to LC stage
Vin;= if TRAN_ON then Vs
else_if IDIODE then 0.0
else VO,
-- Current through inductor
IL= (Vin-RL*IL-VO)/L;
-- Voliage across capacilor
V= 1IC/CC;
COMMUNICATION -
PREPARE "SMPR",T,VREFP,V(,VONOISE FY;
TABULATE QUTFILE,T,VREFP,VO,VONOISE FY;

END DATALOG,;

-- EXPERIMENT

-- Define variable circuit parameters
REAL: FY;

-- Logical repeat variable

LOGICAL:YES,;

-- Define integration control parameters

ALGG:=RK4; CINT:=6.25E-6; NSTEP:= 1.0; TFIN:=12.5E-3;

FY:=RAND{-1};

LOOP

--Invoke model

DATALOG(FY);

PRINT "STUDY COMPLETED",
--Output simulation results

PRINT "TABULATED RESULTS ARE:";
TABULATE FY;

REATD "Do you want another run?", YES;
TERMINATE NOT YES;

INTERACT;

END_LOOP;

END_STUDY
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Submodel LINEAR for system 1

SUBMODEL LINEAR(REAL:Y := REAL:PRBS):

-- ESL subprogram LINEAR

DYNAMIC
Y:=TRANSFER{1/(S**2+1.414*$+1))*PRBS;
STEP
PREPARE "LINEAR", T,PRBS,Y:

END LINEAR;

Submode] NLINEAR for system 2

SUBMODEL NLINEAR(REAL: CS:= REAL: PRBS);

-- ESL subprogram NLINEAR

REAL :FCiLKI;
INITIAL
C8:=0.5;
DYNAMIC
F =0.5;
Ci = PRBS+0.5;
Ki:=1.0;
CS' :=F*Ci-F*(C8-K1*C8*+2;
STEP
PREPARE "NLINEAR" T PRBS,CS:

END NLINEAR;

Submodel SMPR for system 3

SUBMODEL SMPR(REAL:V0 := REAL:10);

--ESL subprogram SMPR

CONSTANT REAL:R0/25.0/;
DYNAMIC
¥0 :=I0*R0;

END SMPR;
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Submodel MODUL T for system 3

SUBMODEL MODULT(LOGICAL: Y:= REAL: Td,sig,per};

-- Logical pulse width modulator which generates a logical
-~ puise train with specified pericd and a mark-space

-- ratio. An initial delay is permitted, and the initial

-- output may be specified as TRUE or FALSE. The calling
-~ sequence is:

- y:= MODULT(Td,sig,per)
-- where,

-- Td 1s the time at which the pulse train starts. If

- Td»>=0.0, y will remain FALSE for Td seconds. If
- Td < 0.0, pulse train will remain TRUE for

--  {-Td} seconds.

-- sig is the modulating signal in the range {0,1],

-- per is the period of the pulse train in units of T.

-~ The outpul is @ memory variable.

REAL: start,ramp;
INITIAL
if Td > 0.0 then
Y:= FALSE;
start:= TSTART+Td-per;
else_if Td < (.0 then
Y:=TRUE;
start= TSTART+ABS{Td)-per*sig;
else
Y:= TRUE;
start:= TSTART;
end_if;
DYNAMIC
ramp:= (T-start)/per;
when ramp >= sig then
Y:= FALSE;
when ramp >= 1.0 then
start:= start+per;
Y:=TRUE;
end_when;

END MODULT;
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m I PECONT for svstem

SUBMODEL PICONT(REAL: y:= REAL: IC,TC,K,x);

-- This submodel defines a proportional plus integral (PI)
-- conirolier. The calling sequence is:

-- yi= PICONT({C,TC,X x)
-« where,

-- IC is the integrator initial condition, z(TSTART) = IC,
-- TC is the time constant of the integrator,

-- K is the propertional gain,

-- X is the input variable,

-- The differential equations are given by,

- z'=x/TC
- y=K*(x+z)

-- and the equivalent Laplace Transform function is,

- ys) K
o =Kt e,
-- x(s} s*TC

-~ The cutputi is an algebraic variable.

REAL: z;
INITIAL

z:=1C;
DYNAMIC

2 = xfTC;

y = K¥{(x+z);

END PICONT;



Submodel LIMIT for systern 3

SUBMODEL LIMIT(REAL: y:= REAL:; LL,UL x);

-- A limiter sets lower and upper limits on the amplitude

-- of an input variable. The calling sequence is:

-~ y:=LIMIT(LL,UL x)
-- where,

-- LL is the lower limit,

-- UL is the upper limit,

-- x is the input variable.
--NB, UL >LL.

-- y is given a value such that,
-~y=x,ifLL « x < UL,
--y=UL,if x »>= UL,

—-y= LL, if x <=LL.

-- The output is an algebraic variable.

REAL: range,xnorm;
INTTIAL
if LL »= UL then
print "**** Error in LIMIT: Limits not consistent™;
STOP;
end_if;
range:= UL-LL;
DYNAMIC
xnorm:= (x-LL)/range;
y:= if xnorm > 1.0 then UL
else if xnorm < 0.0 then LL
else x;

END LIMIT;
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1hm ! REALPL for m

SUBMODEL REALPL{REAL: y:= REAL: IC.Px);

-- Generates a real pole transfer function. The calling
- Sequence is:

-- y:==REALPLICPx}

-- where,

- IC ig the initial condition, y{TSTART) = IC,
-- P Is a constant,
-- % 1§ the input variable,

-- The differential equation is given by,
- P*¥y4y=x

-- and the equivalent Laplace Transform function is,

yis) 1

-- The output is a memory variable,

INITIAL
y:=1C;

DYNAMIC
yi= (x-y)/P;

END REALPL;
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m ] PRBS for all svstem

SUBMODEL PRESGEN{ REAL: PRBS := REAL: MAG MAXT);

-- ESL subprogram PRBSGEN

REAL: NEXT;
INTEGER: I;
INITIAL
I:=1;
PRBS:=MAG;
NEXT:=RAND(-MAXT};
DYNAMIC
WHEN T »>= NEXT THEN
NEXT =T + RAND(MAXT);
PRBS := [*"MAG;
I:=-I;
END_WEEN;
END PRBSGEN;

model Fitter for all svstem:

SUBMODEL FILTER (REAL: FY Z{*:=REAL: A(**},B(*),C(*,*),D(*),INPUT);

--ESL subprogram FILTER

INITIAL
Z(4):=0.0;
DYNAMIC
Zh=A*7+B*INPUT;
FY :=C*Z+D*INPUT;,
STEP
PREPARE "FILTER" T, FY,INPUT;
END FILTER;
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MATLAB Program for Identification

%We select the first 600 data points for building a model. For convenience, the input-
output vectors are merged into a matrix:

z=[fy(1:600) prbs(1:600)];

%Let us first take a look at the data, we can select the values between sample numbers
400 and 600 for a closeup, and at the same time obtain correct ime  scales, with:
idplot(z,400:600,0.3)

% xlabel('Input(PRBS) & Output without noise and filter. System_1 Best Model’)

% print

%We can remove the constant levels and make the data zero mean with

z=detrend(z);

JoNow let us fit to the data a model of the form:

% y(t)y+aly(t-T)+a2y(t-2T)=b lu(t-T)+b2u(t-2T)  (1.1)

%where T is the sampling interval. This model, known as an ARX-model,tries to
"explain” or compute the value of the output at time t,given previous values of y and u.
The best values of the coefficients ay, ap, by and by can be computed with:

th=arx(z,[2 2 1]);

% The numbers in the second argument tell arx to find a model (1.1) with 2 a-
parameters, 2 b-parameters and 1 delays. The result is stored in the matrix th in a2 some
what coded form. The sampling interval is stored in normalized form (equal to 1.0) in
element th(1,2). To specify the actual sampling interval, enter |

th(1,2)=0.3;

There are several ways to display and illustrate the computed model. with

present(th)

% the coefficient values of(1.1} and their estimated standard deviations are  presented
on the screen.

pause % press any key to continue.,

% We can remove the constant levels and make the data zero mean with 'detrend’.
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%Next, you might ask, can we evaluate how well the modetl fits the data? A simple test
is to run a simulation whereby real input data is fed into the model,and {0 compare the
stimulated output with the actual, measured output. For this we select a portion of the
data that was not used to build the model, for example from sample 900 to 1000:
yp=detrend(y(900:1000));

up=detrend(prbs(900:1000));

yh=idsim{up,th);

plot([yp yh]),pause

% title('Real data VS model data without noise and filter. System_1 Best Model)

% print

MATLAB pnrogram for error criterion {J)

ydiff=yp(900:1000)-vyh;
yditffsqu=ydiff *ydiff;
yroot=sqri(ydiffsqu};
J=yroot/100
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APPENDIX B

System 3 1s explained here in more detail.
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2.3 Switched-Mode Power Regulator
2.3.1 Circuit Elements

1. Power Circuit

The power circuit consists of a switch (transistor plus diode), an inductor/capacitor
(LC) filter stage and the load resistance R,. The logical output of the PWM (pulse-
width modulator), drives the switch which connects the supply voltage (V) to the LC
filter.

There are two modes of operation of the SMPR. These depend on the current (1))
flowing into the LC filter, and are known as the discontinuous and continuous mode. In
the discontinuous mode, Ij returns to zero during each period (of the PWM)} whereas, in
the continuous mode it dose not. The results presented, clearly show the distinction

between these two modes of operation.

It is easy to explain the action of the SMPR with reference to the voltage input (Vi)
to the LC filter which determines Ij. There may be three states during each period of the
PWM:

(1) When the transistor is ON it effectively connects the supply voltage to power
circuit, ie:

Vin = Vs

(2) During the period when the transistor is ON, the inductor will store energy.
When the transistor switches OFF, this stored energy will be transferred by I)
continuing to flow through the free-wheeling diode which is forward biased. Hence, Vi
is the voltage across the diode when conducting and assuming a perfect diode:

Vin=0.0

(3) The energy stored, and also I}, will decay to zero and the diode will stop

conducting. Then Vjp iIs in parallel with, and equal to the sum of the voltage drop

across the mductor (ie Ry#I)) and the output voltage (V). In this case, however, [] will

be zero and so:
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Vin = Vg
The above describes the discontinucus mode of operation, whereas in the continuous

mode state (3} does not apply as the system changes directly from state (2) back to state

(1.

The current 1j is given by the differential equation :
II'=(Vig -Rxlj - Vo) /L
The output current (I,), output voltage (V), capacitor current () and capacitor

voltage (V) have the following dynamic equations:

(Vc + II*RC)
lo="(Ry +Ry)

Vo=Is*Rg
Ie=0-1Io
Ve =1./C
II. Pulse-Width Modulator
The function of the PWM (pulse-width modulator) is to provide the timing pulses to
the base of the transistor which in turn controls the state of the transistor. The PWM

works by using a ramp timing waveform as shown in Fig 2.3 There are two input

signals, namely:
(i) the sampling frequency (fo),
(i) the mark-space ratio control signal {w).
Note that fo is the output pulse frequency which has a mark-space ratio of w.
The action of the PWM is described as follows:
The stope of the ramp waveform (RAMP) is such that it's value is 0.0 at the start of
a period and 1.0 at the end. This 1s achieved by calculating the ramp as :
RAMP = time/period
where time is the time from the start of the current period,
Initially the output {which may be HIGH or LOW, ie | or 0) is set HIGH. As the

ramp mises, two separate friggering points are passed. First, when the value of the ramp
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becomes equal to the input w, the output becomes LOW. Second, when the ramp
becomes equal to 1.0 (which occurs at the end of each period), the output returns to
HIGH state and the ramp is reset to 0.0. The process is then repeated. Note,
0.05<w<0.95 (see limiter).

III. Limiter

The mark-space ratio control signal input to the PWM must not be too large or 100
small. It can be seen from Fig 2.3 that if this signal is greater than 1.0 or less than 0.0
then it will be outside the range of the ramp waveform, and so a limiter is used to keep
the signal within this range.

The limits should be close to 0.0 and 1.0 whilst, giving a reasonable tolerance. For
this reason a 5% cut-off was chosen giving the upper and lower limits:

UL =0.95 and LL = 0.05.

1v. PI Controller

The controller, shown in Fig 2.2, is a proportional plus integral controller. The
equations of the controller are :

Vo = Vi/T; (1)
and
Vip=G=# (V1 + V3 (2)

It is assumed supply voltage Vg = 70.0, and output resistance is 25.0 Ohms. The
output of the PWM causes the transistor to operate and pass 70 volts to the power
circuit when the PWM output is a maximum. It therefore has an effective gain of
approximately 70 and the gain G of the PI controller may be chosen to be:

G=1.0

The integrating time constant (T;) is such that the oscillatory action introduced by the
LC filter stage in the power circuit is removed. From control theory this can be found
using Zeigler-Nichols rules for 'PI' controllers. That is:

where

Ta=CO0=m/w,
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®, is the natural frequency of oscillation .

The natural frequency of the LC filter is given by:
1
“n = SQRT(L + C + (1 +R¢ /Ry))

The values of L, C, Ry and R, are selected as follows:
L =2.1E-5 Henrys C =3.5E-4 Farrads
R)=0.0 Ohms R.=0.10Ohms Rgy=25.00hms
Substituting values for L, C, R; and R we obtain the value of Tj as:

T; = 4.5E-4 seconds.

V. Filter
The purpose of the filter is to reduce the ripple introduced by the sampling frequency
(fo) of the PWM.

The transfer function of the filter is given by:

1
Vi(s) =m * E(s)

from which the differential equation is:
, E-VI
VI'= Ts

To achieve satisfactory filtering the filter’s break frequency (fb) is given by:

fb = fo/10

Hence the ume constant (Ty) of the filter 1s:
Tr=1/ 2+mxfb)
which gives:
Tf=2.0E-5 seconds.
This gives an attenvation of 0.1 at the ripple frequency (fo = 80 KHZ).
The switched-mode power supply can be represented in ESL by the model
DATALOG shown in Appendix A. The power circuit is described by algebraic and

differential equations, whilst, the control circuit is described by calls to the submodels.
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The dynamic action of the power circuit LC filter stage is described by the

equations given above. The state variables V. and Ij are initialised in the INITIAL

region.

The discontinuous mode action of Vj, is described by means of an " if ' statement
within the DYNAMIC region of the model. Two logical variables are declared, these
being TRAN_ON. {which is the output of the submodel MODULT and , therefore
determines whether the transistor is ON or OFF), and IDIODE (which represents the
conducting state of the diode, and is TRUE for forward biasing, ie when I} = 0.0).

By means of the " if ' statement Vin is set 1o :

Vip= Vg if TRAN_ON is TRUE
Vin=0.0 if TRAN_ON is FALSE but IDIODE is TRUE
Vin = Vo if TRAN_ON is FALSE and IDIODE is FALSE

The error voltage (E} is calculated by simple subtraction. The outputs of the blocks
in the control circuit are obtained by calls of their respective submodels.

The COMMUNICATION region contains appropriate statements for output and

plotting.
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APPENDIX C

This appendix shows the effect of the different filters on the identified model. The
filters were chosen from the best response of each order of the filter for systems 1, 2

and 3 (refer to tables to find J).
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Real data VS model data with Noise and Bt-filter. System_1 n=1,wn=5
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Real data VS model data with Noige and Bt_Filter. System_I n=2,wn=>5
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Real data VS mnodel data with Noise and Bt_Filter. Systemn_1 n=3,wn=5
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Real data VS model data with Noise and Bt_Filter. System_1 n=4,wn=5
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Real data VS model data with Noise and Bt_Filter. Systein_] n=5,wn=16
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Real data VS model data with Noise and Ch_Filter, System_1 n=2,wn=5
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Real data VS model data with Noise and Ch_Filter. Systemn_1 n=3,wn=3
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Real data VS model data with Noige and Ch_Filter. System_]1 ned,wn=2
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Real data VS model data with Noise and Ch_Filter. System_1 n=5,wn=2
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Real data VS model data with Noise and Bt_Filter, System_2 n=2,wn=16
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Real data VS model data with Noise and Bt_Filter, System_2 n=3,wn=16
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Real data VS model data with Noise and Bt_Filter. System_2 n=4,wn=16
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Real data VS model data with Noige and Bt_Filter. System_2 nu5,wn=16
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Real data VS model data with Noise and Ch_Filter. System_2 n=3,wn=4
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Real data VS model data with Noise and Ch_Filter. System_2 n=5,wn=16
0-2 T T T T T

0.15

0.1

0.05

solid line=real data

dot linemmode] data

o

o

LA
T

t
e
Yo

T

1
=
J—
Ch

I

[

025, 20 40 60 80 100 120

. INPUT #1
0.5 [~ l‘—‘ T 1 "~ T T T T T
Or il
"005 1 i 1 |_L- 1 I 1 ) M

40 42 44 46 48 50 52 54 56 58 60
Input(PRBS) & Qutput with Noise and Ch-Filter.System_2 n=5,wn=16



134

Real data VS model data with Noise and Bt-filter. System_3 n=1,wn=80000
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Real data VS model data with Noise and Ch_Filter, System_3 n=2,wn=50000
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Real data VS model data with Noise and Ch_Filter. System_3 n=4,wn=80000
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