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AIMS and OBJECTIVES 
of the PROJECT 

Keywords: System identification, Simulation, Anti-aliasing filtering. 

In order to satisfy the Nyquest criterion for sampling, signals must be band limited. 

This is usually achieved by using low pass analog filters which must be placed before 

sampling (these filters are called anti-aliasing filters). These filters have some effect on 

the identification of systems. The aim of this project was to determine these effects. 

The objectives were to: 

1) Choose systems with different natural frequencies 

2) Simulate these systems 

3) Apply a PRBS (Pseudo Random Binary Sequence) input and log the output 

4) Sample this data 

5) Transfer sampled data to MATLAB 

6) Find the best model using the MATLAB identification toolbox 

7) Simulate the filters 

8) Pass the output data through these filters 
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9) Repeat (5) and (6) 

10) Simulate additive measurement noise 

11) Add noise to the output of the system 

12) Repeat (8) and (9) 

13) Compare the real data with model data 

14) Calculate the error criterion (J) for each case 

Finally, a suitable parameter was to be identified which could be used to design 

effective anti-aliasing filters. 
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SUMMARY 

Research was conducted to determine the effect of anti-aliasing filters on the 

identification of dynamic systems. Systems were simulated in the continuous simulation 

package ESL. The system response to a PRBS (Pseudo Random Binary Sequence) was 

recorded. Simulated noise was added and passed through a number of simulated analog 

filters. The systems were identified using the MATLAB identification toolbox. 

Two standard filters (Butterworth and Chebychev) were used with cut-off frequencies 

between ffis (natural frequency of the system) and 20 times ffis. 

Results showed that carefully designed filters could improve the performance of the 

identification algorithm in the presence of non-white high frequency additive noise. 

However for noise free measurements the filters degraded the performance of 

identification algorithms. This performance could be observed in the identified models 

steady state error, overshoot and settling time when subject to a step input. 

In the experiments performed, the lowest order (and in one case second order) filters 

with cut-off frequency of ffin= 5ros, gave the best results. 
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CHAPTER 

1 

INTRODUCTION 
and 

LITERATURE REVIEW 

In order to study the effects of anti-aliasing filters on the accuracy of model 

identification it is necessary to have an understanding of the following subjects: 

I. Systems and Models 

II. Identification 

III. Signal Processing 

IV. Simulation 

These subjects are introduced in this chapter. 

1.1 SYSTEMS AND MODELS 

'A system is defined as "a wide range of more or less complex objects, whose behavior 

we are interested in studying, affecting, or controlling" (Lennart Ljung, 1983). Some 

examples we could mention are: 

• An armature controlled de-motor: Where we would like to control speed of the 

motor using the input voltage applied to the armature. 
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• An inverting amplifier circuit : Where we would like to control the output voltage 

by changing the resistance. 

• A paper machine: Where we would like to control the quality of the paper by 

changing consistency, temperature, speed, etc. 

• A telephone communication channel: Where we would like to design a filter for the 

receiver to produce high voice quality. 

• A time series of data (e.g., sales, unemployment, or rainfall figures): Where we 

would like to predict the future in order to act properly now. 

A Model is defined as the knowledge of the properties of a system. The model may be 

given in any one of several different forms, for example: 

• Mental or intuitive models: Knowledge of the system's behaviour is summarized in a 

person's mind. Like a driver's model of an automobile. 

• Graphic models: Properties of the system are summarized in a graph or in a table. 

An example could be a Bode diagram for the frequency response of a linear system. 

• Mathematical models: There are sometimes mathematical relationships between 

variables, like Kirchhoff s law of voltages around a loop. 

For many purposes only mental models are required, but for complex design problems 

mathematical model are necessary. 

1.1.1 Obtaining A Model Of A System 

There are two ways of building a mathematical model of a system. 

(1) physical modeling: By looking inside the system to find the physical laws that 

govern the system's behaviour, a mathematical model can be constructed. 

(2) Identification: Often because of incomplete of the knowledge of the system, 

direct modeling may not be possible. Furthermore, physical modeling can be quite 

time-consuming and may produce an unnecessarily complex model. In such cases, 

signals produced by the system can be used to construct a model. This procedure is 

called identification. 
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1.1.2 Model Classification 

System models can be classified according to the type of equations used to describe 

them. First we can distinguish between continuous, discrete, and hybrid systems. A 

continuous system is one for which variables change continuously with respect to time. 

In a discrete-time system, variables change only at distinct (finite) instants of time. In 

some physical applications, both discrete-time and continuous variables may exist; thus, 

they are termed hybrid systems. 

In some systems dependent variables are functions of more than one variable and will 

have partial derivatives instead of an ordinary derivative. 

Models can also be distinguished by whether they have distributed-parameters or 

lumped-parameters. In a distributed-parameter model, the dynamic behaviour is 

described in terms of partial differential equations, for example the expressions for 

voltage and current at all points along a transmission line. A lumped-prameter model is 

characterized at only a finite number of points and uses ordinary differential equations. 

For a physical inductor, a lumped model representation includes only a resistance, R, 

connected in series with an equivalent single inductance, L. When dealing with a 

lumped-parameter model, one may discretize in time, resulting in a discrete-time model 

that is described by a difference equation. 

A further distinction between models is linear and nonlinear. Linear systems are those 

satisfying the following conditions: (a) multiplying system input by a constant results in 

multiplication of its output by the same constant, and (b) the system response to a 

number of inputs applied together (simultaneously) is the sum of individual responses 

when each input is applied individually. Nonlinear systems are the ones for which these 

two conditions do not hold. 

Another classification is into deterministic and stochastic models. In a stochastic 

model, the relationships are described in terms of probabilities only whereas in a 

deterministic all relationships are certain (if known). 
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As a summary, models can be classified in 6 different ways depending on the system 

properties and model representations. 

Property 

time 

space . 

signal type 

statistical nature 

mathematical nature 

model representation 

Axis Range 

dynamic, steady state 

distributed, lumped, non distributed 

continuous, hybrid, discrete 

deterministic, stochastic 

linear, nonlinear, chaotic 

differential, difference, behavioural 

1.2 SYSTEM IDENTIFICATION 

System identification is referred to as "the determination of a mathematical model for 

a system or a process by observing its input-output relationships" (Hsia, 1977). Using 

input-output data we find the parameters of a system model. 

Over the last decade great progress has been made in system identification methods. 

This has been helped by the need to design better control systems. This is especially 

true where there are time-varying parameters in a plant and its environment. Here, 

adaptive systems are needed to maintain optimal performance. 

Recently, there has been very much progress toward the application of system 

identification techniques to physiological, biomedical, ecological, transportation and 

sociological problems. In addition, the availability of modern theory and complex 

computational algorithms has caused the fast growth of system identification 

technology. 
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1.2.l Formulation And Classification Of The System Identification 

Shown in figure 1.1 is a system with input and output and the method of identification 

problem. The system model to be found is the mathematical equation that relates the 

input to the output at all times. 

In order to obtain such a model, a variety of inputs fed into the system. Having 

observed the responses, the input-output data are then processed to determine the 

model. On the basis of the amount of prior knowledge about the system, the 

identification can be classified into two categories. 

DISTURBANCE 

INPUT SYSTEM TO BE 
--.---- IDENTIFIED 

ADC 

SYSTEM 
MODEL 

ADC 

OUTPUT 

MEASURING 
INSTRUMENT 

ANTIALIASING 
FILTER 

Fig. 1.1 Block Diagram Representation of the System Identification Problem. 

1. The complete identification problem: this means that nothing is known about the 

basic properties of the system before hand. This type of the problem is also referred to 

as a black box problem. 

2. Partial identification problem: in this category, some basic characteristics of the 

system, such as linearity, bandwidth, and so on, are assumed to be known. However, the 

order of the equations or the values of some coefficients are unknown. This situation is 

also called a gray box problem. 
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Fortunately, in practice, the majority of engineering systems are of the latter type. In 

many cases, the structure of the system is known and only a set of parameters in the 

model equation is left to be determined. Thus the modeling problem is reduced to that 

of parameter identification. 

From the viewpoint of system theory, the determination of the unknown parameters 

from the exact input-output data is possible. In reality, however, the input-output data 

are corrupted by measurement noise and the determination of system parameters is 

essentially a statistical-estimation problem. 

The procedures for carrying out system identification can be divided into the 

following steps: 

1. Specify and parameterize a class of mathematical models that represents the system 

to be identified. 

2. Apply an appropriately chosen test signal (PRBS was used in the experimental 

phase of this project) to the system and record the input-output data. If the system is in 

continuous operation and a test signal is not permitted, then we must use the normal 

operating data for identification. 

3. Perform the parameter identification to select the model that best fits the statistical 

data. 

4. Perform a validation test (In the experimental phase of this project real data was 

compared with model data with the same input) to see if the model chosen adequately 

represents the system with respect to final identification objectives. 

5. If the validation test is passed, the procedure ends. Otherwise, another class of 

model must be selected and steps (2) through (4) performed until a validated model is 

obtained (Hsia, 1977). 

To give a better feeling for the role identification plays in applications two examples 

are considered. 

EXAMPLE 1. (Prediction of Power Demand) The demand for electricity from a 

power system changes over time. These changes in somewhat predictable with time of 
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day and over the week, month, or year. Efficient electricity production needs good 

predictions of the load some hours ahead. 

Prediction of the power demand needs a model of its random component. This 

random component itself may depend on circumstances, e.g., the weather, that may 

vary with time. Therefore using a predictor that adapts itself is desirable. 

The above is an example of adaptive prediction. Sometimes the predictions 

themselves may be of interest as the following example demonstrates. 

EXAMPLE 2. (Digital Transmission of Speech) The transmission of speech over a 

communication channel is increasingly done digitally. The transmission line has limited 

capacity so efficient use is important. If the next sample is predicted at both the 

transmitter and the receiver, one need transmit only the difference between the actual 

and the predicted value (prediction error). Because of the prediction error is smaller 

than the signal itself, it needs fewer bits to transmit. This technique is known as 

predictive coding in communication theory. Prediction of the next value depends on the 

character of the transmitted signal. For speech, this character varies with the different 

sounds being pronounced. Efficient use of the predictive encoding requires the model 

used by the predictor to be adaptive. 

The area of adaptive control is concerned with the study and design of controllers and 

regulators that adjust to varying properties of the controlled object. This is currently a 

very active research area (Lennart Ljung, 1983). 

1.2.2 Parameter Estimation Methodology 

There are a number of parameter estimation techniques that have been applied to the 

identification problem. They include the methods of maximum likelihood, least squares, 

cross-correlation, instrumental variable, and stochastic approximation. 

In all estimation techniques, the optimal model is found by minimising some error 

criterion. Error criterion can be defined in many ways leading to many possible optimal 
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models. Some error criteria use; difference between parameter estimates and the true 

values (parameter error), the difference between the system output and the model 

output for similar inputs (output error), or, the difference between the model equation 

and the measured input and output data (equation error). 

There are two modes in which identification can be done. In off-line identification, the 

input-output data is first observed and then model parameters are estimated based from 

the complte data set. In on-line identification, the parameter estimates are recursively 

calculated at every sampling interval from the new data and used to correct and update 

the existing estimate. This is termed recursive identification, real-time identification, 

adaptive algorithm, or sequential estimation. 

There are numerous system identification methods, both off-line and on-line. One 

method for classifying them is: 

I. Classical Methods:(mostly off-line) 

(a) Frequency Response Identification 

(b) Impulse response identification by deconvolution 

(c) Step response identification 

(d) Identification from correlation functions 

(e) Identification using spectral density functions 

(f) Pseudo random binary sequences (PRBS) 

lll. Model Adjustment Techniques: 

(a) Least-squares (recursive) 

(b) Generalized least squares (recursive) 

(c) Instrumental variables 

(d) Maximum likelihood (recursive) 
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1.2.3 Classical Methods Of System Identification 

A number of classical methods will now be described. They are classical only in that 

they have been in use for longer than the modern techniques. 

1.2.3.1 Frequency Response Method 

The frequency response method is based upon the Bode diagram of frequency 

response. 

In this method, sine-waves with different frequencies are used as inputs and the 

steady-state output is observed. Both the magnitude ratio and the phase shift between 

the output and input are measured. Let G(s) be the transfer function of the system, then 

G(jw) is the frequency response, i.e., 

G(jw)=M(w).ei<l>(w)= ~~:~ (1.01) 

where M is the ratio of the magnitudes, and <I> is the phase shift between the output 

and the input. 

The plot of M(co) and <j>(co) against w(log scale) can then be used to estimate the 

various break-frequencies (poles and zeros) of the transfer function (figurel.2). 
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Fig. 1.2 Frequency response curves for a second-order syslem given by G(s) = 
2 2

~ n • 
S + (J) S + (J)2 

n n 

Arter Sinha and Kuszta, 1983. 

1.2.3.2 Identification From Step Response 

The simplest input for identification is a step input; produced by suddenly switching 

off (or on) an input voltage (or current), or by suddenly opening (or closing) an input 

valve, etc. An ideal step is physically impossible to construct, but the approximation is 

close if the rise-time of the step input is much shorter than the period of the highest 

frequency in the system. 

If the system model is of the first-order, only two pieces of information are required: 

(i) the steady-state response to the step input and (ii) the time constant. 

For a second-order system model (with two poles and no zero), there are two 

situations: (1) when the two poles are real and (2) when the poles are a complex 

conjugate. To find these from measurements of (a) steady-state response, (b) maximum 

overshoot, (c) time required to reach the first-peak, and (d) time required to reach 50% 

of the steady-state value(for overdamped systems) can be easily derived. 

Consider the underdamped second-order system described by the transfer function 

o.)2 
G(s) - " 

- S2 + 2~rons + ro; 
(1.02) 



The response of this system to a unit step is given by 

where 

and 

It can easily be shown that the maximum response is given by 

M = I +e-sn:IJ3 pt 

and it occurs at 
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(1.03) 

(1.04) 

(1.05) 

Hence, by measuring Mpt• the value of the damping ratio, ~. can be calculated from 

equation (1.04). Finally equation (1.05) can be used to determine the undamped natural 

frequency, wn. See Fig. 1.3. ( Dorf, 1980). 

1.0+0 

I 
f-r,,-j I P~:k Set~ing 

-T, time time 

Time 

Rise time 

Fig. 1.3. Step response of a control system (Eq. 1.3). Afler Dorf, 1980. 

1.2.3.4 Correlation Method 

The techniques of step input or sinusoid input are applicable only to the identification 

of linear systems. In addition, response testing with these input functions is not always 

practical because of the existence of system noise. Therefore we need techniques that 



18 

can be used to identify both linear and nonlinear systems which will not be affected by 

noise. 

The correlation method is based on applying a random input to the process, and takes 

a simpler form if the input is a white noise input. 

The input-output relationship for a linear time invariant system may be written as 

y(t)= J w(t-'t)x('t)d't = J w('t)x(t-'t)d't 
0 0 

The cross-correlation between the input and output is obtained as 

<l>yxC0) = E[y(t).x(t-0)], assuming stationariness 

= E[f w(t)x(t-'t)d't.x(t-0)] 
0 

= J w(t).E[x(t-t)x(t-0)]dt 
0 

= f w(t)<l>x/0 - 't)dt 
0 

For the particular case when the input x(t) is white noise, we have 

<l>x/0 - 't) = 0(0 - 't), 

where o(t-k) represents the unit impulse or delta function occurring at t=k. 

Hence, for this case, 

<l>y/0) = f w(t).o(0 - t)dt 
0 

= w(0) 

Thus <l>yxC0) is the same as the impulse response of the system at t=0. 

1.2.3.5 Spectral Density Functions 

(1.06) 

(1.07) 

(1.08) 

(1.09) 

In the frequency domain, the response of a linear system is characterised by the 

frequency response function H(jm). This function is the Fourier transform of the 

impulse response h(t). For deterministic signals, the Fourier transforms of input and 

output, X(jm) and Y(jm) respectively, are related by 
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Y(iro) = H(iro).X(iro) 

The amplitude gain at any frequency ro, defined as the ratio (output amplitude) / 

(input amplitude), is I H(iro) I. At the same frequency, since power is proportional to 

(amplitude)2, the power gain, defined as the ratio (output power) / (input power) is 

I H(iro) I 2. For systems with real parameters, H(-jro) is the complex conjugate of H(iro). 

Hence I H(-jro) I is identical to I H(iro) I, and the power gain is thus an even function of 

frequency. 

If the input to this system has a power spectrum <l>x/ro) then the power spectrum 

<l>y/ro) of the output signal y(t) is given by 

<l>y/ro) = H(-jro)H(iro)<l>x/ro) = I H(iro) I 2<Px/ro) 

For system identification purpose, knowing <l>x/ro) and <l>y/ro), I H(iro) I can be 

found, and thus the magnitude curve of the Bode plot can be . drawn (See 

Schwarzenbach and Gill, 1984). 

1.2.3.6 Pseudo Random Binary ,Sequences (PRBS) 

One of the most interesting and useful signals for system identification work is a 

12seudo random .b.inary ~equence (PRBS). This is a practical white noise signal that can 

easily be generated by digital circuit, or digital computer. The PRBS is a periodic 

sequence that takes on only two values. The times at which transition can occur are 

multiples of a specified time interval, l'.1t, and the state for any succeeding interval is 

nearly independent of the state in any preceding interval. 

An example of such a signal is shown in figure 1.4. This signal has a periodic 

autocorrelation function shown in figure 1.5. We see that the autocorrelation function 

closely approximates the delta function of an ideal white noise. The approximation can 

be adjusted by changing N and l'.1t. 



One Period = NA! 
, N = 15 I 

x(I) ..,._ -- ---------------------: 

+a ,--- -

I 
I 

0 . : 

-a~--__, 

Fig. 1.4 A 15-bit Pseudo-random Binary Sequence (PRBS). After Hsia, 1977. 

121" _-'-----,H--+------+-+-t----T 
I 

Ht.I 

a = Sl1nal Amplitude H = Lonrth of Stq1.11nc1 

61 = Time D1nllon of One Band 

Fig. 1.5 Autocorrelation Function of PRBS. After Hsia 1977. 
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A computer program to generate the PRBS was written to use in the experimental 

phase of this project (see appendix 1 ). 

Because of the very small perturbations, the PRBS signal can be applied for testing a 

system under operating conditions. This technique possesses some advantages over 

other techniques like (a) since the signal is periodic, a short recording time and minimal 

computational are required, (b) the method is highly immune to noise. 

1.2.4 Off-Line Methods for System Identification 

In this chapter will be discussed one off-line method (Least-squares) for estimating 

the parameters of a linear model from the input-output data of a single-input single

output system and interested reader is referred to Sinha and Kuszta, 1983 to find more 
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detail about both this technique and the Instrumental variables method (Both are used in 

the experimental phase of this project). It will be assumed that the order of the model is 

known a priori, and that equispaced samples of the input-output data are available. 

1.2.4.1 Estimation of the parameters of a Discrete-Time Model from Noise-Free 

Input-Output Data 

Consider the single-input single-output system shown in Fig. 1.6. Using z-transforms, 

the input-output relationship is given by 

----~'"'1 H(z) ]1------ xk 

Fig. 1.6 

In the form of a difference equation, equation ( 1.10) is written as below, 

where 

m n 

xk = '°' a-uk . - ~b-xk . ,L_; I - I L.J I -I 

i=o i=I 

xi@ x(iT) 

ui@ u(iT) i=l,2, ... 

(1.10) 

(1.11) 

Thus, our problem is the determination of the parameters aa , a1 , ... •¾ ,b1 , ... ,b
0 

from the input-output data. 

Collecting the various sets of xi and ui, equation (1.11) may be concatenated.to give 

the following matrix equation 

[ Uk Uk-I Uk-m -Xk-1 -Xk-2 -Xk-n 

l Uk+! Uk Uk- m+I -Xk -Xk-1 -Xk-n+I 

Uk+ p-1 Uk +p-2 Uk+ p- m - I - Xk + p- 2 - Xk + p-3 - Xk + p-n -1 



or 

where 

~{ Uk Uk-1 

Uk+l Uk 

Uk+ p-1 Uk +p-2 

e 

and 

aa 
al 

xk 

Xk+l 

¾i = 
b1 

bz 
Xk+p-1 

Uk- rn -Xk-1 -Xk-2 

Uk- rn+l -Xk -Xk-1 

Uk+ p - rn - 1 - Xk + p -2 - Xk + p -3 

¾i ~ parameter vector 
b1 

bz 

~ concatenated output vector 
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(1.12) 

(1.13) 

-:k_-n:1 ] 

- Xk + p- n -1 

(1.14) 

(1.15) 

(1.16) 

It may be noted that if A~ is a square nonsingular matrix (i.e., p=m + n +I and det A~ -:t:-

0), then one may obtain the parameter vector simply as 

0 = (A~tl xk (1.17) 



1.2.4.2 Weighted Least-Squares Estimates Of Parameters From Noise

Contaminated Data 
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The result derived in the previous section is of theoretical interest only, since the 

measurements are always contaminated with noise. In such practical situations, one may 

model the system as shown in Figure 1.7, where the measured output is shown as 

( 1.18) 

Fig. 1.7 

It is assumed that {ni} is a white Gaussian noise sequence. 

Substituting equation (1.18) into (1. 11), we obtain 

m n T 

Yk = LA Uk - i - I biYk -i + vk = <l>k e + vk (1.19) 

i=o i=I 
where 

(1.19a) 

and 
n 

vk = nk+ L,bink-i (1.20) 

1=1 

are called the output or equation errors. 

Equation (1.19) may be concatenated, as before, to give 

AP e = Yp- vp (1.21) 
where 
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Uk Uk-I Uk-m -Yk- I -Yk-2 -Yk-n 

[ llk+I Uk Uk-m+l -yk -Yk-1 -Yk-n+l 
~-

Uk+p- I Uk+p-2 Uk+p-m-1 -Yk+p-2 -Yk+p-3 -Yk+p-n-1 

] 
@ concatenated observation matrix (1.22) 

and 

@ concatenated measurement vector (1.23) 

Yk+p- I 

Because the presence of noise, it is now needed more than (m+n+ 1) equations to 

estimate the parameter vector from equation (1.21); i.e., now 

p > m+n+l (1.24) 

Let us say the estimate of 0, based on the p sets of input-output data as ~ P • If we 

assume that ~ P is the optimal estimate of the parameter vector, then the optimal 

estimate of the output vector, y P, would be written 

Yp= AP ~p (1.25) 

On the base of the minimisation a performance index, J, (Sinha and Kuszta, 1983 pp. 

29-33) we have 

~ = (AT A )•I AT y 
p p p p p 

The estimate given by equation (1.26) is called the least squares estimate. 

A more general form is 

(1.26) 

(1.27) 

where w is positive definite symmetric matrix. Note that making w = I, changes 

equation (1.27) into equation (1.26). The least squares solution is a special case of the 

present solution, which is called the weighted least squares solution. A number of 

important questions about equation (1.27) are now considered. 
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1.2.4.3 Conditions for the Existence of the Weighted Least-Squares Solution 

First of all, we must know when a solution to this equation exists, as it requires the 

inversion of the matrix A! w AP. In general, the matrix A! AP will be nonsingular if the 

input sequence satisfies one of the following conditions: 

(i) { ud is a random sequence 

(ii) { ui} is a pseudo random binary sequence(PRBS) 

1.3 FILTERING 

In many applications it is of interest to change relative amplitudes of the frequency 

components in signal or perhaps eliminate some frequency components entirely, a 

process referred to as filtering. Since the spectrum of output for linear systems is that of 

the input multiplied by the frequency response of the system, filtering can be 

accomplished using of such systems with an appropriately chosen frequency response. 

This represents one of the very important applications of linear time-invariant systems. 

1.3.1 Butterworth And Chebychev Filters 

For a given number of poles, and hence a given degree of filter, the Butterworth 

response provides a passband magnitude characteristic that is as flat as possible near 

ro=O, at the expense of a slow transition from the passband to the stopband region. 

Because of this, Butterworth response is sometimes referred to as maximally-flat. 

Figure 1.8 shows a set of Butterworth response curves, normalized to a 3db cut-off 

frequency of 1 rad s-1• Here n is the order of the filter, which is equal to the number of 

poles in the transfer function. The higher the order of the filter the closer the magnitude 

response comes to the ideal box-car (brick-wall) characteristic. 

In many applications some ripples in the passband can be tolerated. By allowing the 

passband magnitude response to ripple in a controlled way, the Chebychev filter trades 
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off the flatness of the passband response for a greater rate of cut-off in the transition 

region. A Chebychev filter is specified in terms of its number of poles (order) and the 

magnitude of its passband ripple. 

IH(iw)I 

Ideal brick-wall response 

11'1/2 

w/rad s-1 

Fig. 1.8 Normalized Butterworlh magnilude response curves 

Figure 1.9 compares the response of a seventh-order Chebychev filter, with a 

passband ripple of 1.5 db, with that of seventh-order Butterworth filter. 

IH(iw)I 

w/rad s-1 

Fig 1.9 Comparison of Butterworth and Chebychev 
magnitude responses for n=7. 

These analog lowpass filters are commonly employed as anti-aliasing filters, that are 

applied to continuous-time signals before analog-to-digital conversion. They are also 

suitable as interpolation filters to convert pulses, having amplitudes proportional to the 

value of the elements in the discrete time sequence, into signals that are continuous in 

time. 
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1.3.2 Sampling 

Sampling theorem discusses about certain conditions which samples of a continuous

time signal must have to be recoverable. 

In moving pictures, which consist of a time sequence of individual frames, when these 

samples are viewed at a sufficiently fast rate we get an accurate representation of the 

original continuously moving scene. 

Much of the importance of the sampling theorem also lies in its role as a bridge 

between continuous-time signals and discrete-time signals. 

1.3.3 Nyquist Criterion (Sampling Theorem) 

When sampling a continuous-time signal cA(t) to produce the sequence{cA(nTs)}, we 

want to ensure that all the information in the original signal is held in the samples. To 

determine the condition under which there is no information loss, let us consider cA(t) 

to have a bandlimited spectrum, or one for which 

CA(jQ) = 0 for IQ I >QM (1.34) 

as shown in Fig. l. lO(a). 

When cA(t) is sampled with sampling period Ts, then the spectrum of the sampled 

signal Cs(iQ) is the periodic extension of CA (iQ) with period 2re/Ts, as shown in Fig. 

l. lO(b). The form of Cs(jQ) in the frequency range [-re/ Ts , re/ Ts ] is identical to 

CA(iQ) if 

or (1.35) 

In this case, there is no overlap in the spectral components. 
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Fig. 1. 10 Relationship between continuous-time spectrum of a signal and the spectrum of the 
discrete-time sequence obtained by sampling the signal with sampling period Ts. (a) Original spectrum 

of continuous-time signal; (b) spectrum of sampled sequence when QM< 7t/ Ts (c) spectrum of sampled 

sequence when QM >7t/ Ts. The latter case illustrates the aliasing error. After Kuc,1988. 

If Ts is chosen to be greater than re/ QM, spectral overlap occurs in the periodic 

extension, and the form of Cs(jQ) in the range -n/ Ts ~ il< nl T
5 

is then no longer 

similar to CA(jQ) as shown in Fig. 1.lO(c). This overlap, caused by sampling at too low 

a rate, produces an irretrievable error in the spectral values, called aliasing. In other 

words aliasing refers to the fact that high-frequency components of a time function are 

folded back and appear as a low-frequency components if sampling rate is too slow. 

The true spectral shape is irretrievable since many different CA(jQ) functions can 

produce the same C5(jQ). Two possible candidates are shown in Fig. 1.11. 

Cs(jU) 

Fig. 1.1 I Two candidates for the continuous-time spectrum when aliasing occurs. After Kuc,1988. 
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A useful sampling measure is the sampling rate, fs= 1/ Ts. Recalling that Q =21tf, and 

defining f M as the highest frequency component in the signal, then no spectral overlap 

will occur if 

(1.36) 

To prevent aliasing error, more than two samples are required per period of the 

highest frequency sinusoidal component present in the signal. The smallest sampling 

rate before aliasing occurs for a particular continuous-time signal is called the Nyquist 

rate. 

The effect of aliasing errors is occasionally observed in films of moving cars in which 

the wheels appear to be turning in the direction opposite to that expected from the 

motion of the car. 

1.3.4 Anti-Aliasing 

Practically the frequency range of original continuous-time signal may be larger than 

the desired information. This commonly happens when a low frequency signal is 

contaminated by high-frequency noise. If this signal sampled by the Nyquist criterion 

for the desired analog signal, unwanted high frequency signals would cause aliasing 

errors to occur. 

To prevent aliasing errors caused by these undesired high-frequency signals, an 

analog lowpass filter, called an anti-aliasing filter, must be used. This filter is used 

before sampling and reduces the power in the analog signal for the frequency range 

beyond Q = re/ Ts. In practice, the spectral magnitude level for Q> re/Ts should be less 

than 1 % (- 40dB) of the desired signal spectrum to prevent significant aliasing. 

For example, suppose an analog signal have power in a large frequency range, but 

relevant information is only in the frequency range -QR ::::; Q ::::; QR· It is asked to 

determine the sampling period Ts. The Nyquist criterion tells us that Ts must be less 

than re/QR· If sampled at this rate, the higher frequency components in the analog signal 
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will be aliased into the relevant discrete-time signal. The anti-aliasing filter must satisfy 

two conditions: 

Condition 1. The components of the analog signal with frequencies less than QR must 

be negligibly attenuated by the filter. 

Condition 2. The components for IQ I~ 2rc/ Ts - QR must be attenuated strongly to 

prevent aliasing in the relevant range. After sampling, the components in this frequency 

range fall into the range -QR ~ Q ~ QR when the periodic extension is formed (Kuc, 

1988). 

1.4 SIMULATION 

Simulation is the process of understanding of the behaviour of a physical system by 

observing the behaviour of a model of the system. Thus, simulation is considered the 

science of experimenting with models. There are many purposes why simulation is 

valuable. For example, simulation is used to check and optimize the design of a system 

before its construction. Other purposes include analysis, tests of sensitivity, forecasting, 

safety, man-in-the-loop training and teaching. 

1.4.1 Computer Simulation 

Computer simulation is the technique of using computers to give, often in great detail, 

the performance of real systems. The purpose of the study is achieved by observing the 

model's behaviour under assumptions defined by the experimenter (user). There are 

some constraints in performing system simulation, for example the cost of model 

definition, software programming, data collection, etc. 

1.4.2 Digital Representation Of Signals 

As it is known, the variables for a continuous system have values for every point in 

time. On the other hand, a digital computer calculates values for the continuous 
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variables of a system at distinct points. Thus, a digital computer simulation of a 

continuous system is in fact a discrete-time system. 

A digital computer represents variables with a finite number of bits, and accuracy is 

limited by the value of the least significant bit. In general, this means that the digital 

equivalent of a continuous signal at a given point in time will be ±1/2 of the value of 

the least significant bit, which is referred to as quantization error. The number of bits 

used, and hence the accuracy of the results, is determined by the word length of the 

digital computer being used for simulation. 

Since numerical integration to solve the equation is fundamental, the next two 

sections will explain numerical integration techniques. 

1.4.3 Numerical Integration 

As noted before, the digital computer determines values for the continuous signals of 

the system being simulated by producing a series of discrete values. For example, the 

continuous function x(t) becomes a sequence of discrete values x(t0), x(t1), x(t2), .. 

. ,x(tk), x(tk+I) , ... ,x(~). Usually, the time interval between adjacent values is constant 

and represented by T=tk+I - tk. 

Although the discretization error is often critical, the primary source of error in 

representing a simulation variable x(t) at t=tk is found in the method used to calculate 

derivatives, commonly referred to as numerical integration. The root of the problem can 

be seen by a careful look at Taylor's series expansion xi+I in terms of xi, which can be 

written in the form 

Tdx- d2x- dnx. 
Xi+!= xi +Tr+ (T2 /2!) dtd + ... +(Tn /n!) dtnl (1.37) 

where T is the time interval and dxi /dt is the derivative of xi at t=ti. 
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This series gives the value of x at t=ti+I in terms of xi and its derivatives. Taylor's 

series can be used to derive several numerical integration formulas, but more important, 

it is the criterion used for evaluating almost all numeral integration techniques. 

As an example of a numerical integration method, consider the approximation by 

using only the first two terms of Taylor's series: 

(1.38) 

This equation is commonly referred to Euler's method, or the rectangular rule. 

In order to illustrate the use of Euler's method to develop a digital computer 

simulation, consider the first-order differential equation 

dx 
dt + ax(t) = r(t) (1.39) 

with x(t=0) = 0 and r(t)=l, a unit step input. To develop a discrete equivalent suitable 

for programming on a digital computer, Eq.(1.39) can be written as below 

dxi 
dt = -axi(t) + ri(t) (1.40) 

Use Eq. (1.40) for dx/dt in Eq. (1.38), this yield 

x. 1 = x. - aTx- +Tr-
1+ 1 1 1 

(1.41) 

Note that the continuous system response for a= 1 and r(t) = 1 is an exponential rise, 

as shown by the solid curve in Figure 1.12 with x0 = 0 (assumed). If a time interval of 2 

sec (T=2) is selected, then x1= (x0 - aTx0 + Tr0 )=2. Likewise, the value for x2 is x2 = (x1 

- aTx1 + Tr1) =0, and in a similar manner, x3 = 2, x4 = 0, ... The resulting output is as 

shown (labelled T=2) in Figure 1.12 and is obviously incorrect. Smaller values of T 

will cause the values of xi to gradually approach the correct value, x=l.0. Note that 

T=l results in output values of 1.0 at all intervals of time. As T becomes smaller , the 

discrete solution approaches the correct exponential rise shown in Figure 1.12; it is 
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obvious that the time interval for the digital simulation must be much shorter than the 

time constant of the system being simulated. 

w 
U) 

z 
0 

2.0 

1.5 

~ 1.0 
~ 

0.5 

0 0 

I \ I 
/ \ T•2.0 / 

I \ I 
o \ I 

/ "',T•l .5 \ / 

! :I:1-· Q_ 6 ~ - -=~~~ .;..--..---:,,llr-- - ~ -:::-/__ ~ 6 

I ! 0 

\ I 

\ / 
\ 
\ / 

a T•2. 0 

0 T•I .5 

\ I o ___ .._ __ _.,_ _________ ......,.. __ _,. 

O 2 3 4 5 6 

TIME (Seconds) 

Fig. 1.12 SoluLions Lo Eq. (1.41). AfLer Kheir, 1988 

The example problem in this section illustrates that a simple method exists for 

developing an equivalent difference equation for a differential equation. The example 

also illustrates the sensitivity of the solution to the size of the time interval T and 

clearly indicates a need to discuss the relationships between accuracy, computation 

time, and time interval. 

1.4.4 Errors In Numerical Integration 

In the example in the preceding section, a little thought would have indicated 

problems with T ~ 2. Since the time-constant for the differential equation in Eq.(1.39) 

is assumed to be 1 sec, trying to calculate values for larger than the time constant 

creates problems. Also, problems should have been anticipated from the use of only two 

terms of Taylor's series expansion because the contributions of the second and all higher 

order derivatives are missing. Thus Euler's method is referred to as a first order 
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numerical integrated technique. Techniques that include the effect of second order 

derivatives are referred to as second order methods and, in general, are more accurate 

than first-order techniques. Note that the inclusion of higher-order derivatives requires 

additional calculations for each value and will also need more computer memory. 

The most commonly algorithm is one of the Runge-Kutta family; 2nd order, 4th 

order, etc, where the Taylor series coefficient have been modified to improve the 

accuracy of the truncated series. Other methods are more involved and are usually 

identified by their originator ( e.g., Simpson, Adams, or Milne). 

The previous discussion might lead one to believe that smaller and smaller integration 

(time) intervals will result in improved accuracy . This is not always the case. Note that 

the derivative is approximated by a difference (xi+J - xi) and that smaller values of T 

cause the values of xi and xi+J to approach each other. Since the digital computer 

represents variables with a finite binary sequence, each value will have a finite 

truncation error. If Tis small enough so that xi+! and xi differ only by their truncation 

error, then (xi+! - xi) becomes zero and difference equation is no longer correct. Thus, 

the observation that accuracy improves directly with smaller and smaller time intervals 

has a limit, see Kheir (1988). 

1.4.5 Simulation Software 

In this section it will be discussed about some aspects of the software of digital 

computer simulation. In selecting a computer language, one would consider the 

following three areas to assess its efficiency: program execution speed, computer 

memory utilization, and language availability. 

1. In viewpoint of programming languages, machine language and assembly 

language are at the lowest level. 

Higher-level programming languages (also called general-purpose) allow the 

programmer to be removed from concerns related to machine operations. Examples of 
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these general-purpose languages are: BASIC, FORTRAN, COBOL, PASCAL,and 

ALGOL. 

2. High-level simulation languages also involve compiler, similar to high-level 

programming languages, but are specifically used for simulation applications. Most 

simulation languages require less programming time; moreover, it is simpler to change 

a model after being written. It is also easier to debug such programs. A unique feature 

of simulation languages is their basic building blocks. Among the earlier simulation 

languages are MIDAS, DYSAC, DSL, GASP, MIMIC, DYNAMO, GPSS, SIMULA, 

CSSL(Continuous System Simulation Language), and CSMP. More recent simulation 

languages include ACSL (Advanced Continuous Simulation Language), SDL, ESL, 

SIMNON, SLAM, and SIMAN. 

3. In its simplest form, a digital simulation package is a collection of routines 

(programs to be possibly compiled separately and then included as part of other 

program(s)). Today's simulation packages have not only full developmented, but, 

coupled with the available hardware, provide one of the most powerful tools for 

modeling and simulation activities in an interactive fashion. 

The interactive (conversational) mode of simulation means that the simulation process 

on the computer be interrupted for the purpose of asking, or reporting to, the user. 

Based on the information available from the computer, the human partner decides on 

what is next to be modified, executed, etc. 

Over the past two decades or so, attention has focused on developing simulation 

packages that are useful in many areas of applications. These packages have been 

packed on the educational processes and on activities in computer-aided design (CAD), 

computer-aided manufacturing (CAM), and, in general, in computer-aided engineering 

(CAE). 

Simulation languages usually differ in their logic, construction, flexibility, and ease of 

usage. These differences include: (a) the basic objective of the language, (b) algorithms 

for generating random numbers, (g) program initialization , (h) data entry, (i) output 
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reports and (j) methods for data analysis. Most simulation languages, however provide 

the following standard capabilities: (a) structured data input, (b) time-advance 

mechanism, (c) acceptable random-number generators. 

Resent years have seen the development of a tremendous number of discrete, 

continuous, and combined discrete-continuous simulation languages. Among the widely 

used software is ESL which was used in this project. Interested reader about the 

characteristics of the other simulation language is referred to Kheir 1988, pp. 681-694. 

1.4.5.1 ESL 

ESL is an advanced continuous-system simulation language (CSSL) that is being 

developed under contract from the European Space Agency. ESL is designed to be 

portable and to run on computers supporting a FORTRAN 77 environment. 

ESL is characterised by its advanced programming concepts. These include: 

- Separation of model and experiment. 

- Capability of building models from submodels. 

- Optionally users may describe systems by a Graphical input program, rather than 

use conventional language form. 

- Advanced discontinuity handling. 

- Seven integration algorithms including three stiff methods. 

- Parallel segmentation. 

To implement ESL, an interpreter and a translator vers10n of the language are 

required. The interpreter translate the user's program into H-code and the translator 

converts the H-code to FORTRAN-77. The entire system is written in FORTRAN-77, 

as indicated by J. L. Hay (1989). 

ESL was developed on a PRIME 550 computer in the Simulation Laboratory of the 

University of Salford, England. 
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CHAPTER 

2 
MODEL SELECTION 

and SIMULATION 

In order to determine the anti-aliasing filters effect on the identification of different 

types of systems, the following systems were modelled: 

a) A simple second order linear system 

b) A nonlinear chemical system 

c) A nonlinear, discontinuous switching regulator 

These systems covered a wide range of natural frequencies from 1 to 7300 rad s-1 and 

a range of nonlinear behaviour. For the linear system, a discrete model could be 

obtained analytically and compared directly with the identified models, however in the 

other two cases only the behaviour of the system and the identified models could be 

compared. 

Each system will now be explained in detail. 
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2.1 SECOND ORDER LINEAR SYSTEM 

This system has a low-pass second-order Butterworth response with a 3-dB cut off 

frequency at 1 rad s-1 =(1/2rc) Hz. The transfer function of the system is: 

1 
H(s) = s2 + l.414s+ 1 

2.2 NONLINEAR REACTION SYSTEM 

A continuous stirred tank reactor system was considered in which bromine in solution 

combines to form bromine gas which escapes. The flow of bromine into the tank is 

given by: 

flow. concentration= F.Ci, 

and the flow out is F.C. 

The reaction rate is given by R = K 1.c2 where K 1 is a constant. 

The differential equation governing the system is 

where F = 0.5, K 1 = 1.0 and Cj has a value of 0.5 and is disturbed by a pseudo 

random binary sequence (PRBS). 

2.3 SWITCHED-MODE POWER REGULATOR 

This system was chosen (ESL Application Manual) because it exhibits discontinuous 

nonlinear behaviour with a high natural frequency. A switched-mode power regulator 

(SMPR) takes as input an un-regulated power supply voltage (Vs) and produces a 

stabilised output voltage (V 0 ) with minimal power loss. The level of the output is 

determined by a reference voltage (Vref). 
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Fig. 2.1 SMPR power circuit 
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The system is illustrated in figure 2.1 and 2.2. The equations governing the system 

are: 

Power circuit (Fig 2.1) 

(V c + I1*Rc) 
Io= (Ro+ Re) 



and for the control circuit (Fig. 2.2) 

V2'=V1/Ti 

Vip=G*(V1+V2) 

E- V1 
V1' = Tf 

The parameter values used in the simulation were: 

Parameter ,Yill!!,e 

G 1.0 

Vs 70.0 

L 21 

C 350 

0.0 

0.1 

25.0 

450.0 

20.0 

80 

none 

V 

µH 

µF 

n 
n 
n 
µs 

µs 

KHz 
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The pulse width modulator (PWM) with sampling frequency f O and mark space ratio 

w was modelled using a ramp generator and threshold detector, see figure 2.3 for a 

diagram illustrating the PWM operation. 

See Appendix B for a more detailed derivation of the model and the derivation of its 

parameters. 
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Fig. 2.3 Timing diagram for the PWM 
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2.4 SIMULATION STRUCTURE 

ESL was used as the simulation package in this project. ESL (European Simulation 

Language) is an advanced continuous system simulation language, which was 

developed to meet the simulation requirements of the European Space Agency. for 

more information about ESL, see Literature Review section 1.4.5.1. 

Each plant model and the anti-aliasing filter were simulated as ESL submodels 

(similar to procedures or subroutines). The input perturbations used were the output of a 

PRBS generator and the additive noise components were obtained from a sinusoid noise 

model. Both of these were also simulated as submodels. 

These submodels were interconnected as shown in figure 2.4 and controlled by an 

Experiment control section. 

PRBSGEN 
submooel 

PRBS y Noise 
(submooel 

llllt med.el 
'----ii! (submooel)i----~ 

EXPERJMENT CONTROL 

Fig 2.4 General Block Diagram of Simulation 

Data recorded were: 

Input perturbation 

Plant model output 

Plant model output with measurement noise 

Filtered noisy plant output 

PRBS 

y 

YNOISE 

FY 
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This data was stored on file for subsequent processing using the MATLAB 

IDENTIFICATION TOOLBOX. The simulation experiments were carried out at very 

short time steps (relative to the plant dynamics). In order to ensure that the collected 

data retained their analog nature, this data was then sampled at a lower rate for use in 

MATLAB. 

2.4.1 Pseudo Random Binary Sequence Generator 

A PRBS can be generated in ESL using the inbuilt random number generator to 

specify the next time the output is to change value. The magnitude and base frequency 

of the PRBS can be specified using two parameters to the submodel. 

See appendix A for the ESL program for the PRBS generator. 

2.4.2 Noise Simulation 

Measurement noise was simulated by adding to the output of each system a signal 

whose Power Spectral Density (PSD) could be controlled. This was generated using: 

N = Ar sin((2rcf + ffir)t) 

Where Ar and COr are random values whose range can be controlled. 

This gives a signal whose PSD has a peak at frequency f, a spread about this 

frequency governed by COr and a magnitude controlled by Ar. See Fig 2.5 for PSD's of 

the noise signals. 

The choice off and COr were dependant upon the system being simulated and were 

chosen to ensure no overlap occurred in the spectral distribution of the noise and 

system. 
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2.4.3 Filter Submode) 

The matrix and vector features of ESL were used to implement the anti-aliasing filters 

as a common model where the individual filters were characterized by parameters read 

in from a file. 

2.4.4 Linear System Submode) 

ESL accepts dynamic models as equations m natural form. This means that the 

transfer function of the linear system model required conversion to natural form before 

entry to ESL. This was accomplished using the transfer operator. See appendix A for 

ESL program. 

2.4.5 Nonlinear Reaction System Submodel 

Prime Notation, explicit multiplication and power operators defined in the ESL 

manual, were used to change the nonlinear system to ESL program. See appendix A for 

the ESL program. 

2.4.6 Switch Mode Power Regulator (SMPR) Submodel 

The discontinuity features of ESL were used to model the pulse width modulator and 

the limiter. These were used with explicit multiplication defined in ESL manual. See 

appendix A for the ESL program. 
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CHAPTER 

3 
FILTER SELECTION 

and SIMULATION 

For this work two standard filter types were selected; Butterworth and Chebychev. A 

number of different orders of filter were used with cut-off frequencies to cover the 

range from below the natural frequency of the system to almost twenty times the 

systems natural frequency. 

The ESL program for the filter uses one submode! to implement a general state space 

form of the filter and ten submodels to implement each of the Butterworth and 

Chebychev filters. The filters used were Butterworth and Chebychev filters of 1st, 2nd, 

3rd, 4th and 5th order. 

The state space form of the filter transfer function was obtained as follows. The general 

form of a linear, analog filter is: 
m 
LASi 

Y(s) = i=O X(s) 
n 

L,bisi 

i=O 

where n ~ m. 

By assuming bn = 1, we have 

(3.1) 
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Let 

(3.2) 

Then we have, 

(3.3) 

Extending the numerator terms to n-1 by setting an-1=an-2····=am+l=0.0 we have, 

(3.4) 

dz d2z ctn-1 z 
Let w1=z, w2=dt' w3= dt2 , ... ,wn= dtn-1 

Therefore we have, 
dw1 
dt=W2 

dw2 
dt=w3 

dwn-1 
dt -Wn 

dwn 
dt= x(t) - bn-lwn - bn-2Wn-1 - ... - b2w3 - b1w2 - bow1 

In matrix form, this become: 

dw1 
dt Wt 

dw2 
0 1 0 0 0 w2 0 

dt 0 0 0 1 0 0 W3 

x(t) 

0 0 0 0 1 
dwn-1 -bo -b1 -b2 -b 2 -b 1 

0 
n- n- Wn-1 1 dt 

dwn 
Wn 

dt 

or 
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w' = [ -b~... -b~-l ]w{~]x(t) 

This yields : 

A= [ 
0 I ] 

-bO··· -bn-1 B=[~] 

and from (3.4): 

D=O.O 

3.1 SIMULATION OF FILTERS 

Tables of common coefficients are obtainable for the transfer functions. The 

coefficients for the Butterworth and Chebychev filters used are shown overleaf (Fig 

3.1). These can be converted to the state space form above (eg. via MATLAB's tf2ss 

command). 

This state space form was implemented in ESL and tested by obtaining the frequency 

domain responses of the filters and comparing this with the expected response. 
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Table I Coefficients or normalized Butterworth polynomials (a 0 =a.= 1 for all 11). 

n a, a, a, a, a, a• a, a• a. 

1 
2 1.4142136 
3 2.0000000 2.0000000 
4 2.6131259 3.4142136 2.6131259 
5 3.2360680 5.2360680 5.2360680 3.2360680 
6 3.8637033 7.4641016 9.1416202 7.4641016 3.8637033 
7 4.4939592 10.0978347 14.5917939 14.5917939 10.0978347 4.4939592 
8 5.1258309 13.1370712 21.8461510 25.6883559 21.8461510 13.1370712 5.1258309 
9 5.7587705 16.5817187 31.1634375 41.9863857 41.9863857 31.1634375 16.5817187 5.7587705 

10 6.3924532 20.4317291 42.8020611 64.8823963 74.2334292 64.8823963 42.8020611 20.4317291 6.3924532 

Table 2 Butterworth pole locations. 

n•I nn2 n•3 n-4 n-5 n•6 n=7 n=8 n=9 n = 10 

-1.0000000 -0.7071068 -1.0000000 -0.3826834 -1.0000000 -0.2588190 -1.0000000 -0.1950903 -1.0000000 -0. I 564345 
±j0.7071068 ±j0.9238795 ±j0.9659258 ±j0.9807853 ±j0.9876883 

-0.5000000 -0.9238795 -0.3090170 -0.7071068 -0.2225209 -0.5555702 -0.1736482 -0.4539905 
±j0.8660254 ±j0.3826834 ±j0.9510565 ±jO. 707 l 068 ±j0.9749279 ±j0.83 I 4696 ±jO. 9848078 ±j0.89 I 0065 

-0.8090170 -0.9659258 -0.6234898 -0.8314696 - 0.5000000 -0.7071068 
±j0.5877852 ±j0.2588190 ±j0.7818315 ±j0.5555702 ±j0.8660254 ±jO. 7071068 

-0.9009689 -0.9807853 -0.7660444 -0.89 I 0065 
±j0.4338837 ±j0.1950903 ±j0.6427876 ±j0.4539905 

-0.9396926 -0.9876883 
±j0.3420201 ±j0.1564345 

Table 3 Coerficients or normalized Chebychev transrer functions (0.5 dB ripple, a. = I for all 11). 

n ao a, a, a, a, a, a, a, a, a• 

2.8627752 
2 1.5162026 1.4256245 
3 0.7156938 1.5348954 1.2529130 
4 0.3790506 1.0254553 1.7168662 1.1973856 
5 0.1789234 0.7525181 1.3095747 1.9373675 1.1724909 
6 0.0947626 0.4323669 1.1718613 1.5897635 2.1718446 1.1591761 
7 0.0447309 0.2820722 0.7556511 1.6479029 1.8694079 2.4126510 1.1512176 
8 0.0236907 0.1525444 0.5735604 1.1485894 2.1840154 2.1492173 2.6567498 1.1460801 
9 0.0111827 0.0941198 0.3408193 0.9836199 1.6113880 2.7814990 2.4293297 2.9027337 1.1425705 

10 0.0059227 0.0492855 0.2372688 0.6269689 1.5274307 2.1442372 3.4409268 2.7097415 

Table4 Chebychev pole locations (0.5 dB ripple). 

n • I n•2 n •3 n-4 n•5 n•6 n-1 n=B 

-2.8627752 -0.7128122 -0.626456S -0.1753531 -0.3623196 -0.0776501 -0.2561700 -0.0436201 
±jl.0040425 ±jl.0162529 ±jl.0084608 ±jl.0050021 

-0.3132282 -0.4233398 -0.1119629 -0.2121440 -0.0570032 -0.1242195 
±jl.0219275 ±j0.4209457 ±jl.0115574 ±jO. 7382446 ±j 1.006405 ±j0.8519996 

-0.2931227 -0.2897940 -0.1597194 -0.1859076 
±j0.6251768 ±j0.2702162 ±j0.8070770 ±j0.5692879 

-0.2308012 -0.2192929 
±j0.4478939 ±j0.1999073 

Fig. 3.1 Coefficients of nonnalized Butterworth and 
Chebychev transfer functions. 

3.1498757 1.1400664 

n=9 n = 10 

-0.1984053 -0.0278994 
±jl.0032732 

-0.0344527 -0.0809672 
±jl.0040040 ±j0.9050658 

-0.0992026 -0.1261094 
±j0.8829063 ±j0.7182643 

-0.1519873 -0.1589072 
±j0.6553170 ±j0.4611 541 

-0.1864400 -0.1761499 
±j0.3486869 ±j0.1589029 
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CHAPTER 

4 
EXPERIMENTS 

This chapter describes the series of experiments that were designed to observe the 

effects of including an anti-aliasing filter in the measurement data stream. In order to 

determine these effects it was necessary to obtain the best identified model of each 

system. This was achieved by simulating each system and generating noise free outputs 

for the pseudo random binary input disturbance required by the identification methods 

(see figure 4.0). These noise free outputs were then sampled (with a sampling rate fast 

enough to ensure no aliasing) and used to obtain the identified models. It is known 

[refer to section 1.3.3] that the quality of the model so obtained depends upon the 

sampling interval so the experiments were repeated at various sampling rates. 

ESL MATI.AB 

y Yh Camp-
J Identification arison Model System PRBS program 

y 
progr 

PRBS 

Fig 4.0 Block diagram of the noise-free experiments 



50 

The quality of the model was determined by comparing the performance of the model 

against the simulation using input and output data not used during the identification. An 

error criterion (J), which compared the real output data with that of the model under the 

same input (PRBS), was defined as follows: 

where Yi is real data from ESL, 

f i is data from the model, 

n 

L/Yi -)\)2 

i=l 

n is the number of data points (n=lOO) 

J is the error criterion 

Two sets of experiments were performed using the anti-aliasing filters. These were; 

a) filtered, noise free data 

b) filtered data with zero mean and bandwidth limited noise added prior to filtering 

(in effect measurement noise). 

In section 4.4 the methods of the identification used are explained. 

4.1 EXPERIMENTS WITHOUT FILTERING 

To determine the effect of aliasing errors, an experiment was performed in which the 

system and noise blocks were included (fig 4.1). The error criterion J was calculated 

and compared with that obtained from the best model (noise-free). 

This experiment would be expected to show that the model affected by aliasing was 

much worse than that of the noise-free model. 



ESL I 
I 
I 
I 

YNOISE} 

MATLAB 

Identific ati 
Program 

BS 

Fig 4.1 Experiments without filtering 

PRBS 

4.2 FILTERED NOISE FREE EXPERIMENTS 
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In this experiment an anti-aliasing filter was included in the system but no noise was 

added. Butterworth and Chebychev filters of different order and cut-off frequency were 

used and the error criterion was calculated. The following block diagram shows this 

step. 

ESL I 
I 
I 
I 

MATI.AB 

:FY Identificationi----111 Model 
program 

PRBS 

Fig 4.2 Block diagram of the filtered noise free experiments 

Comp- J 

4.3 FILTERED DA TA WITH NOISE EXPERIMENTS 

In this experiment noise was added into the system used in section 4.2. Various orders 

of Butterworth and chebychev filters were used. For each one an initial cut-off 

frequency Cron) below the natural frequency of the system was chosen. The simulation 
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was run and the error criterion calculated. This was repeated for increasing values of 

ESL MA1LAB 

FY Ide otificati-
System 

PRBS 

Fig 4.3 Block diagram of the filtered data with noise experiments 

4.4 IDENTIFICATION METHODS USED IN 

EXPERIMENTS 

Compa.ri- 1 

program 

The identification algorithms used were the ARX (Autoregressive eXogeneous 

variable) and the IV4 method (Instrumental Variables method four) (see MATLAB 

identification toolbox). 

One thousand input-output data points were collected from the process as the input 

was changed in a random fashion between two levels. The sampling interval is known. 

Six hundreds data points were used for the identification and one hundred were used to 

calculate the error criterion, J. 

We want to find an ARX model, which is usually written 

A(q-1 )y(t) = B(q-1 )u(t-nk) + e(t) 

where B and A are polynomials in delay operator q-1: 

A(q-1) = 1 + aiq-1 + ... +anaq-na 

B(q-1) = b1 + b2q-l + ... +bnbq-nb+ 1 

The reason for the term ARX is that the model is a combination of an 

autoregressive(AR) part, A(q-1 )y(t), and a control part, B(q-1 )u(t). The control signal is 

known as the eXogeneous variable, hence the X. 
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We want to fit to the data a model of the following form (the best form resulted 

from experiments) : 

y(t) + a 1y(t-T) + a2y(t- 2T) = b1 u(t-T) + b2u(t-2T) 

or in the z domain 

in the form of transfer function we have 

TI& b1z-l + b2z-2 b1z + b2 

U(z) = l+a1z-l + a2z-2 = z2 + a1z + a2 

MATLAB gives the coefficients b1 , b2 , a 1 ,and a2 . 
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CHAPTER 

5 
RESULTS 

and DISCUSSION 

This chapter includes, separately, the results for each system studied and its 

accompanying discussion. The input, output and comparison between real data and 

model data graphs for the best model and noise only experiment of each system are 

shown. For each system four graphs are shown in addition to four tables summarising 

values of the error criterion (J) with filter alone and noise plus filter. Since the transfer 

function of the first system is known, comparisons between the step response of the 

various forms of the real continuous system, the analytical discrete system and 

identified model are shown. 

Appendix C shows the effect of the different filters on the identified model. 

5.1 SECOND ORDER LINEAR SYSTEM 

The transfer function of the system is 

H(s) = 
s2 + 1.414s+ 1 

1 
so that H(s) I s=O =1.0 (5.1) 
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Using the zero order hold transform method (see MATLAB Control System Toolbox 

page CR-11) and sampling time, 0.3, this can be analytically transformed to: 

H(z) = 0.039z + 0.0338 so that H(z) I z=l = 1.0 (5.2) 
z2-1.5815z + 0.6543 

The closed loop transfer function of (5.1) is: 

H(s) = 
1 

so that H(s) I s=0 = 0.5 (5.3) 
s2 + 1.414s + 2 

The discrete form corresponding to this is: 

H(z) = 0.0387z + 0.0336 
z2 - 1.5098z + 0.6543 

so that H(z) I z=l = 0.5003 (5.4) 

The best sampling time for this system was found as T=0.3 and the best parameters 

for the PRBS were found as MAG=0.5 and MAXT=8.0. After substitution of these 

parameters and then sampling the output of ESL program (STUDY.OUT) with T=0.3, 

the sampled data were transferred into MATLAB. 

The identified model by ARX method was: 

H(z) = 0.0364z + 0.0298 
z2 - l.5883z + 0.6574 

so that H(z) I z=l = 0.958 (5.5) 

The closed loop of the identified model was: 

I 
H(z) I op 

H(z) cl = 1 +H(z) I op or 

I o.o364z + 0.0298 I 
H(z) cl = 2 so that H(z) cl z=l = 0.489 

z - 1.5519z + 0.6872 
(5.6) 

From comparison of (5.2) with (5.5) it can be seen they are almost the same. 
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Fig 5.1 shows the step response of the continuous system (5.1) and its analytical 

discrete form (5.2) for open loop and closed loop. Fig 5.2 shows the analytical discrete 

system and identified model for open loop and closed loop. 

The identified model was found by transferring one thousand input-output data points 

from the ESL program on the PC to the DEC-VAX. 600 data points were then selected 

for building a model. To evaluate how well the model fit the data, a simple test was to 

run a simulation whereby real input data was fed into the model, and to compare the 

simulated output with the actual, measured output. For this a portion of the data that 

was not used to build the model, for example points 900 to 1000 were selected (see Fig 

5.3). 

It can be seen that the model was quite capable of describing the system, even for data 

that were not used in calculating the fit. The best model gave a J value of 0.0039. 

Fig 5.4 shows the effect of aliasing on the identified model. J value for this identified 

model is 0.0237 and if one compares it with that of the best model it shows why should 

use an anti-aliasing filter to remove the effect of the aliased noise. We should, however, 

be very careful to design the best filter to obtain the lowest J. Table 2 show J's for 

different cut-off frequencies of the Butterworth filter. For the first order filter with 

ffin=5 we have the best response. 

To quantify the effect of the filter on the identified model, the step response of the 

closed loop identified model without filter and with two kinds of filter was found. Fig 

5.5 shows the step response of the identified closed loop system without filter and with 

a Butterworth filter. From the plots, three effects of the filter on the identification can 

be seen: 

I. Increases the steady state error. 

II. Increases the overshoot. 

III. Increases the settling time. 

The same results was obtained for Chebychev filters (Fig 5.6). When the cut-off 

frequency of the filter (ron) is less than the natural frequency of the system (ros=l) the 

effect of the filter is much greater. As ffin of the filter increases, the effect of the filter 
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can be seen to decrease. When the degree of the filter goes up, the settling time after a 

step response increases, especially with a low cut-off frequency. 

Fig 5.7 shows the cut-off frequency of the Butterworth filter versus error criterion (J) 

for different orders of filter. In Fig 5.7, when COn increases, J deceases but does not 

reach that of the best model (J=0.0039). Fig 5.8 shows the cut-off frequency of the 

Chebychev filter versus J for filters of different order. In Fig 5.8 it can be seen that 

when COn increases, J decreases, but never reaches that of the best model. When the 

degree of the filter increases the range of J values increases. Beyond 10 times the 

bandwidth of the system it does not really matter which degree of filter is used. 

Therefore, from the viewpoint of realization a first order filter is best. The same results 

are obtained with both identification methods, ARX and IV 4. 

Noise was now added into the system. The results for the Butterworth and Chebychev 

filters are shown in tables 2 and 4 respectively. Plots of COn versus J are shown in Fig 

5.9 and 5.10. The minimum J value was obtained for a filter of order 1. 
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Table 1 System l_only Bumerworth Filter Table 2 System l_Noise and Butterworth Filter 

FILTER J I FILTER J 

SlBlro0.8 0.0350 _I SlNBl(l){).8 0.0450 

S1Blro2 0.0175 SlNB lro2 0.0178 

S1Blro3 0.0137 SlNBlro3 0.0153 

S1Blro4 0.0115 SlNBlro4 0.0142 

S1Blro5 0.0107 SlNBlro5 0.0136 

S1Blro16 0.0075 SlNBlro16* 0.0250 

S1B2ro0.8 0.0387 S1NB20){).8 0.0442 

S1B2ro2 0.0219 S1NB2ro2 0.0190 

S1B2ro3 0.0157 S1NB2ro3 0.0155 

S1B2ro4 0.0131 S1NB2ro4 0.0146 

S1B2ro5 0.0116 S1NB2ro5 0.0142 

S1B2ro16 0.0087 S1NB2ro16 0.0227 

S1B3ro0.8 0.0404 S1NB3ro0.8 0.0429 

S1B3ro2 0.0280 S1NB3ro2 0.0241 

S1B3ro3 0.0198 S1NB3ro3 0.0165 

S1B3ro4 0.0160 S1NB3ro4 0.0149 

S1B3ro5 0.0139 S1NB3ro5 0.0146 

S1B3ro16 0.0091 S1NB3ro16 0.0181 

S1B4ro0.8 0.0399 S1NB4ro0.8 0.0416 

S1B4ro2 0.0327 S1NB4ro2 0.0291 

S1B4ro3 0.0239 S1NB4ro3 0.0184 

S1B4ro4 0.0192 S1NB4ro4 0.0156 

S1B4ro5 0.0164 S1NB4ro5 0.0149 

S1B4ro16 0.0096 S1NB4ro16 0.0153 

S1B5ro0.8 0.0390 S1NB50){).8 0.0402 

S1B5ro2 0.0356 S1NB5ro2 0.0334 

S1B5ro3 0.0276 S1NB5ro3 0.0204 

S1B5ro4 0.0222 S1NB5ro4 0.0169 

S1B5ro5 0.0189 S1NB5ro5 0.0158 

S1B5ro16 0.0102 S1NB5ro16 0.0148 

• S lNB lrol6 means system 1 with noise and Butterworth filter n=l, (l)n=l6. 
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Table 3 System 1_ only Chebychev Filter Table 4 Systeml _ Noise and Chebychev Filter 

FILTER J FILTER J 
SlClw0.8* 0.0412 SlNClw0.8 0.0425 

S1Clro2 0.0250 SlNClro2 0.0225 

S1Clro3 0.0187 SlNClro3 0.0175 

S1Clco4 0.0150 SlNClco4 0.0150 

S1Clro5 0.0127 SlNClro5 0.0125 

S1Clro16 0.0092 SlNClrol6 0.0170 

S1C2w0.8 0.0402 S1NC2w0.8 0.0422 

S1C2ro2 0.0235 S1NC2ro2 0.0204 

S1C2ro3 0.0162 S1NC2ro3 0.0150 

S1C2co4 0.0132 S1NC2co4 0.0139 

S1C2ro5 0.0117 S1NC2ro5 0.0137 

S1C2ro16 0.0087 S1NC2ro16 0.0189 

SIC3w0.8 0.0429 SlNC3w0.8 0.0449 

S1C3ro2 0.0179 S1NC3ro2 0.0163 

S1C3ro3 0.0137 S1NC3ro3 0.0128 

SIC3co4 0.0119 S1NC3co4 0.0137 

S1C3ro5 0.0109 S1NC3ro5 0.0146 

S1C3ro16 0.0086 S1NC3cpl6 0.0203 

S1C4w0.8 0.0406 S1NC4w0.8 0.0407 

SIC4ro2 0.0135 SlNC4ro2 0.0146 

S1C4ro3 0.0119 S1NC4ro3 0.0167 

S1C4co4 0.0112 S1NC4co4 0.0191 

S1C4ro5 0.0105 S1NC4ro5 0.0201 

S1C4ro16 0.0086 S1NC4ro16 0.0316 

S1C5w0.8 0.0430 S1NC5w0.8 0.0392 

S1C5ro2 0.0150 S1NC5ro2 0.0169 

SIC5ro3 0.0104 S1NC5ro3 0.0231 

S1C5co4 0.0104 S1NC5co4 0.0251 

S1C5ro5 0.0102 S1NC5ro5 0.0255 

• SlClw0.8 means system 1 with Chebychev filtern=l, ffin=0.8. 
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5.1.1 Discussion (System 1) 

As the filter cut-off frequency increases, identification of the system becomes easier 

because the filter passes more of the system bandwidth with less distortion. This is 

continues until Uln (cut-off frequency of the filter) reaches 10 times the bandwidth of 

the system at which point all of the information concerning the system passes through 

the filter and therefore leaves J constant (Fig 5.11). 

-40-0 
"'s= \.o 

I 
I 
I 

\o 

\o 

Fig 5 .11 Relation between the bandwidth of the system and cut-off frequency of the filter 

A higher order filter is seen to increase J because the increasing phase distortions in 

the pass band of the filter effect the identification (Fig 5.12). 
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Fig 5.12 The effect of the phase distortions on J 

With noise added to the system, J will decrease initially with increasing ffin and then 

increase. This is because, initially, the filter passes more information about the system, 

which the identification algorithm can use to find the best model. Beyond 5 times the 

plant bandwidth, however the noise also begins to pass through the filter and 

detrimentally affecting the identification algorithm (Fig 5.13). 

Fig 5.13 Relation between noise added system and filter 
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5.2 NONLINEAR REACTION SYSTEM 

Before experimentation on filters a suitable sampling time and suitable PRBS 

parameters were needed. Values that produced a sufficient bandwidth of excitation were 

T=0.1 for the sampling time with MAG=0.5 and MAXT=3 for the PRBS parameters. 

The best identified model for this system was: 

H(z) = 0.0393z - 0.0061 
z2 - l.1230z + 0.2038 

for which J= 0.0019. 

Fig 5.14 shows the input (PRBS), the output and the real/ best model comparisons. 

Fig 5.15 shows the effect of aliasing on the identified model. The response of the 

model identified with added noise but no filter shows clearly that high order modes 

(probably corresponding to the noise) have been identified whereas the low order 

modes are not identified at all. The value of J for this identified model is 0.0086 that 

compared with the best model (J=0.0019) it is obvious that we should use an anti

aliasing filter. However, we should be very careful to design a suitable filter. For 

example in this case only first order Butterworth filter with cut-off frequency 4 rad s-1 

gives the lowest J (see table 6). 

Figs 5.16 and 5.17 are plots of J value against con for Butterworth filters and 

Chebychev filters respectively. Figs 5.18 and 5.19 show the results when noise was 

added to the system. 

5.2.1 Discussion (System 2) 

The response of the system to a step input was obtained by ESL and then the Power 

Spectral Density of the system was plotted. From this graph the natural frequency of the 

system was determinated at the half power point (cos= 4). 
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From Figs 5.16 and 5.17 it can be seen that when the filter cut-off frequency increases 

J decreases because more of the frequency of the system passes through the filter. 

Beyond 10 times the plant bandwidth (ron?:'.:lO*ros) it does not really matter which filter 

is chosen. A first order filter is therefore preferred for realisation since all filters will 

pass the total system bandwidth. 

Figs 5.18 and 5.19 show the effect of the filter on identification when noise was added 

to the system. The value of J increases as ffin passes beyond 3 times the plant bandwidth 

since the noise can then pass through to the identification algorithm. 
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Table 5 System 2_ only Butterworth Filter Table 6 System 2_ Noise and Butterworth Filter 

FILTER J FILTER J 
S2Blw0.8 . 0.0088 S2NB1w0.8* 0.0129 

S2Blro2 0.0080 S2NB1ro2 0.0074 

S2Blco4 0.0060 S2NB1co4 0.0060 

S2B lro16 0.0034 S2NBlro16 0.0062 

S2Blco40 0.0029 S2NB1co40 0.0069 

S2B lro80 0.0029 S2NB1ro80 0.0078 

S2B2w0.8 0.0101 S2NB2ro0.8 0.0152 

S2B2ro2 0.0093 S2NB2ro2 0.0100 

S2B2co4 0.0070 S2NB2co4 0.0072 

S2B2ro16 0.0037 S2NB2ro16 0.0071 

S2B2co40 0.0036 S2NB2co40 0.0080 

S2B2ro80 0.0036 S2NB2ro80 0.0091 

S2B3w0.8 0.0097 S2NB3w0.8 0.0144 

S2B3ro2 0.0105 S2NB3ro2 0.0105 

S2B3co4 0.0084 S2NB3co4 0.0079 

S2B3ro16 0.0042 S2NB3ro16 0.0075 

S2B3co40 0.0038 S2NB3co40 0.0080 
S2B3ro80 0.0038 S2NB3ro80 0.0086 

S2B4w0.8 0.0095 S2NB4w0.8 0.0142 

S2B4ro2 0.0104 S2NB4ro2 0.0114 

S2B4co4 0.0091 S2NB4co4 0.0090 
S2B4ro16 0.0045 S2NB4ro16 0.0077 
S2B4co40 0.0041 S2NB4co40 0.0080 

S2B4ro80 0.0041 S2NB4ro80 0.0083 

S2B5w0.8 0.0094 S2NB5ro0.8 0.0140 

S2B5ro2 0.0098 S2NB5ro2 0.0136 

S2B5co4 0.0097 S2NB5co4 0.0100 

S2B5ro16 0.0048 S2NB5ro16 0.0079 

S2B5co40 0.0043 S2NB5co40 0.0081 

* S2NB1ro0.8 means system 2 with noise and Butterworth filter n=l, CDn=0.8. 
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Table 7 System 2_ only Chebychev Filter Table 8 System 2 _ Noise and Chebychev Filter 

FILTER J FILTER J 
S2Clw08 0.0104 S2NC1ro08* 0.0150 

S2Clro2 0.0093 S2NC1ro2 0.0095 

S2Clro4 0.0069 S2NC1ro4 0.0070 

S2Clro16 0.0029 S2NC1ro16 0.0060 

S2Clro40 0.0025 S2NC1ro40 0.0071 

S2Clro80 0.0025 S2NC1ro80 0.0080 

S2C2w08 0.0100 S2NC2ro08 0.0155 

S2C2ro2 0.0099 S2NC2ro2 0.0101 

S2C2ro4 0.0077 S2NC2ro4 0.0073 

S2C2ro16 0.0040 S2NC2ro16 0.0073 

S2C2ro40 0.0034 S2NC2ro40 0.0080 

S2C2ro80 0.0034 S2NC2ro80 0.0088 

S2C3w08 0.0097 S2NC3ro08 0.0145 

S2C3ro2 0.0108 S2NC3ro2 0.0102 

S2C3ro4 0.0086 S2NC3ro4 0.0080 

S2C3ro16 0.0039 S2NC3ro16 0.0086 

S2C3ro40 0.0033 S2NC3ro40 0.0086 

S2C3ro80 0.0034 S2NC3ro80 0.0091 

S2C4w08 0.0095 S2NC4ro08 0.0147 

S2C4ro2 0.0099 S2NC4ro2 0.0116 

S2C4ro4 0.0096 S2NC4ro4 0.0098 

S2C4ro16 0.0037 S2NC4ro16 0.0096 

S2C4ro40 0.0036 S2NC4ro40 0.0095 

S2C4ro80 0.0036 S2NC4ro80 0.0096 

S2C5w08 0.0093 S2NC5ro08 0.0155 

S2C5ro2 0.0108 S2NC5ro2 0.0126 

S2C5ro4 0.0106 S2NC5ro4 0.0108 

S2C5ro16 0.0036 S2NC5ro16 0.0105 

S2C5ro40 0.0036 S2NC5ro40 0.0106 

S2C5ro80 0.0036 S2NC5ro80 0.0109 

• S2NClro0.8 means system 2 with noise and Chebychev filter n=l, ron=0.8. 
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5.3 Switched-Mode Power Regulator 

PRBS parameters of MAG=0.5 and MAXT=0.00009 were found to give a suitable 

excitation spectrum for this system. The best sampling time was found to be T=l2.5E-

6. 

The best identified model was: 

with J=0.0071. 

H(z) = 0.1082z + 0.0579 
z2 - 0.6603z - 0.0681 

Various orders of the identified models were examined, but the second order model 

above gave the lowest J. 

Fig 5.20 shows the system input, system output and real/ best model comparisons. 

The experiment with additive noise and no filter gave J=0.0110 (Fig 5.21). 

Comparing this J with that of the best identified model, we can see the effect of the 

aliasing on the identified model. If we are careful enough to design the best filter 

(second order Wn=50000, J=0.0077) we can reduce the effect of aliasing on the 

identified model. 

Because of the discontinuity (internal noise) in this system the results are different 

from the two previous systems. Figs 5.22 and 5.23 show the results of this system with 

different orders of the Butterworth and Chebychev filters respectively. Fig 5.24 and 

5.25 show the results when noise was added. 

5.3.1 Discussion (System 3) 

Figs 5.22 and 5.23 clearly show that, for both Butterworth and Chebychev filters a 

second order filter produces the best identification results. Again an increase in J is seen 

for Wn > 5 times the plant frequency as noise begins to pass through the filter to the 

identification algorithm. 
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The system, due to the pulse width modulation and the oscillator has its own internal 

noise. So the effect of the filter with no measurement noise will therefore not be as 

good as for systems 1 and 2. The effect of the variable noise on the identification is not 

easily determined. 

As measurement noise is included (Fig 5.24 and 5.25) the identification becomes 

more sensitive to the filter. It can be seen that the best ron is for n=2. 

The model determined from the noisy data without filtering appears from fig 5.21 to 

have given excessive weigh to the high frequency modes of the system. Notice in fig 

5.21 for points between O to 20 where low frequency components in the real data is 

significant as is not generated by this model. 
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Table 9 System 3_ only Butterworth Pille Table IO System 3_ Noise and Butterworth Filter 

FILTER J FILTER J 
S3Blw5 0.2305 S3NB1w5 0.0135 

S3Blw12 0.1235 S3NBlco12 0.0128 

S3Blw25 0.0522 S3NB1w25 0.0110 

S3Blw50 0.0195 S3NB1w50 0.0087 

S3Blco80 0.0121 S3NB1w80 0.0082 

S3Blcol20 0.0113 S3NBlw120 0.0103 

S3B2w5* 0.0137 S3NB2w5 0.0133 

S3B2co12 0.0127 S3NB2w12 0.0124 

S3B2co25 0.0092 S3NB2w25 0.0100 

S3B2w50 0.0091 S3NB2w50 0.0077 

S3B2co80 0.0116 S3NB2w80 0.0109 

S3B2co120 0.0149 S3NB2w120 0.0139 

S3B3co5 0.0134 S3NB3w5 0.0131 

S3B3w12 0.0134 S3NB3w12 0.0132 

S3B3co25 0.0145 S3NB3w25 0.0128 

S3B3co50 0.0097 S3NB3co50 0.0097 

S3B3co80 0.0100 S3NB3w80 0.0092 

S3B3co120 0.0132 S3NB3w120 0.0147 

S3B4w5 0.0134 S3NB4w5 0.0130 

S3B4co12 0.0140 S3NB4w12 0.0138 

S3B4w25 0.0175 S3NB4w25 0.0143 

S3B4co50 0.0133 S3NB4w50 0.0153 

S3B4co80 0.0120 S3NB4w80 0.0153 

S3B4w120 0.0115 S3NB4w120 0.0105 

• S3B2ffi5 means system 3 with Butterworth filter n=2 ffin=5000. 
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Table 11. System 3_ only Chebychev Filler Table 12. System 3_ Noise and Chebychev Filter 

FILTER J FILTER J 
S3Clw5 0.0145 S3NC1m5 0.0138 

S3Clro12 0.0160 S3NClm12 0.0144 

S3Clro25 0.0140 S3NC1ro25 0.0135 

S3Clm50 0.0110 S3NC1m50 0.0121 

S3Clro80 0.0125 S3NC1m80 0.0125 

S3Clw120• 0.0158 S3NClm120 0.0155 

S3C2m53 0.0137 S3NC2m53 0.0134 

S3C2m123 0.0132 S3NC2m123 0.0127 

S3C2m253 0.0101 S3NC2m253 0.0111 

S3C2m54 0.0096 S3NC2m54 0.0085 

S3C2ro84 0.0120 S3NC2m84 0.0111 

S3C2w124 0.0154 S3NC2m124 0.0144 

S3C3m53 0.0133 S3NC3m53 0.0130 

S3C3w123 0.0138 S3NC3m123 0.0137 

S3C3m253 0.0154 S3NC3m253 0.0129 

S3C3ro54 0.0117 S3NC3m54 0.0111 

S3C3m84 0.0157 S3NC3m84 0.0142 

S3C3ml24 0.0190 S3NC3m124 0.0176 

S3C4m53 0.0154 S3NC4m53 0.0291 

S3C4ml23 0.0183 S3NC4m123 0.0174 

S3C4m253 0.0363 S3NC4m253 0.0159 

S3C4m54 0.0128 S3NC4ro54 0.0157 

S3C4m84 0.0186 S3NC4m84 0.0146 

S3C4ro124 0.0225 S3NC4ro124 0.0205 

• S3C1Wl20 means system 3 with Chebychev filter n=l Wn=120000. 
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CHAPTER 

6 
CONCLUSIONS 

The results produced by this research have shown that we must use a filter, otherwise 

we will get models in which the higher frequency modes belonging to the noise are 

identified rather than the lower frequencies belonging to the system. The following 

conclusions can also be drawn: 

1) Lower order filters are recommended for identification, however, we should be 

very careful to design the filter with a suitable cut-off frequency to achieve the lowest 

error criterion (J), otherwise we will get worse results. 

2) For filters in the absence of measurement noise, the step response of the closed loop 

identified model has a larger steady state error, overshoot and settling time. As the cut

off frequency of the filter increases the effect of the filter decreases. 

3) When measurement noise is added two cases arise: 

a. When 0.8Ws s; Wn s; kros the error criterion (J) decreases with an increase in ron. 

Where Wn is the cut-off frequency of the filter, ros is the natural frequency of the 

system, k is a constant and depends on the characteristics of the system and possibly the 

noise spectrum. For the systems simulated k=5 for the linear system, k=3 for the 

nonlinear system and k=6 for the nonlinear discontinuous system. 

b. When Wn > kros J increases with Wn· 



Recommendation for further work include: 

i) choosing more test systems 

ii) Using variable noise bandwidth to determine the effect of this on the ratio= ffin 
ffis 

iii) using other identification methods 
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APPENDIX A 

Listings of the ESL programs for systems 1, 2 and 3 are given here. 



STODY 

INCLUDE "PRBSGEN"; 
INCLUDE "FILTER"; 
INCLUDE "LINEAR"; 

ESL PROGRAM FOR SYSTEM l 

PROCEDURE Noise(REAL:FREQ,TIME)RETURN REAL; 
REAL:N; N:=SIN((2.0*3.14*FREQ+RAND(l))*TIME); 
RETURN N*RAND(l); 
END Noise; 

MODEL DATALOG (REAL:FY); 

--ESL program DATALOG 

INCLUDE "FILTERB2"; 
REAL :PRBS,Y,YNOISE; 
CONSTANT REAL :MAG/0.5/,MAXT/8.0/,FREQ/5.0/; 
FILE:Outfile; 

INITIAL 
REWRITE Outfile,"STUDY.OUT"; 

DYNAMIC 
PRES := PRBSGEN(MAG,MAXT); 
YNOISE := Y +Noise(FREQ,T); 
FY :Z := FILTER(A,B,C,D,YNOISE); 
Y := LINEAR(PRBS); 

STEP 
TABULATE Outfile,T ,PRBS,Y,YNOISE,FY; 

END DATALOG; 

-- Experiment 

-- Definition of experiment to be carried out on system 
REAL: FY; 

-- Logical repeat variable 
LOGICAL: YES; 

-- Define integration control parameters 
TSTART := 0.000000E+00; TFIN := 300.0; CINT := 1.0; DISERR := 0.lO000OE-03; 
INTERR := 0.l00000E-02; ALGO := 2; NSTEP := 10.0; FY:=RAND(-1); 

LOOP 
-- Invoke model 

DAT ALOG(FY); 
PRINT "STUDY COMPLETED"; 

-- Output simulation results 
PRINT "TABULATED RESULTS ARE:"; 
TABULATE FY; 
READ "Do you want another run?" ,YES; 
TERMINATE NOT YES; 
INTERACT; 

END_LOOP; 

END_STUDY 
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STUDY 

INCLUDE "PRBSGEN"; 
INCLUDE "FILTER"; 
INCLUDE "NLINEAR"; 

ESL PROGRAM FOR SYSTEM 2 

PROCEDURE Noise(REAL:FREQ,TIME)RETURN REAL; 
REAL:N; N:=SIN((2.0*3.14*FREQ+RAND(l))*TIME); 
RETURN N*RAND(l); 
END Noise; 

MODEL DAT ALOG (REAL:FY); 

--ESL program DATALOG 

INCLUDE "FILTERB2"; 
REAL :CS,PRBS,CSNOISE; 
CONST ANT REAL :MAG/0.5/,MAXT/3.0/,FREQ/50.0/; 
FILE:Outfile; 

INITIAL 
REWRITE Outfile,"STUDY.OUT"; 

DYNAMIC 
PRBS 
CSNOISE 
FY,Z 

:= PRBSGEN(MAG,MAXT); 
:= CS+Noise(FREQ,T); 

cs 

STEP 

:= FIL TER(A,B,C,D,CSNOISE); 
:=NLINEAR(PRBS); 

TABULATE Outfile,T,PRBS,CS,CSNOISE,FY; 

END DAT ALOG; 

-- Experiment 

-- Definition of experiment to be carried out on system 
REAL: FY; 

-- Logical repeat variable 
LOGICAL: YES; 

-- Define integration control parameters 
TSTART := 0.000000E+00; TFIN := 100.0; CINT := 1.0; DISERR := 0.lO0000E-03; 
INTERR := 0.l00000E-02; ALGO := 2; NSTEP := 100.0; FY:=RAND(-1); 

LOOP 
-- Invoke model 

DATALOG(FY); 
PRINT "STUDY COMPLETED"; 

-- Output simulation results 
PRINT "TABULATED RESULTS ARE:"; 
TABULATE FY; 
READ "Do you want another run? ",YES; 
TERMINATE NOT YES; 
INTERACT; 

END_LOOP; 

END_STUDY 
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STUDY 

INCLUDE "REALPL"; 
INCLUDE "PICONT"; 
INCLUDE "LIMIT"; 
INCLUDE "MODULT"; 
INCLUDE "PRBSGEN"; 
INCLUDE "FILTER"; 
INCLUDE "SMPR"; · 

ESL PROGRAM FOR SYSTEM 3 

PROCEDURE Noise(REAL:FREQ,TIME)RETURN REAL; 
REAL:N; N:=SIN((2.0*3.14*FREQ+RAND(l))*TIME); 
RETURN N*RAND(l); 
END Noise; 

MODEL DATALOG(REAL:FY); 

--ESL program DAT ALOG 

INCLUDE "FILTERB2"; 
-- Circuit constants 
CONST ANT REAL: L/2. lE-5/ J{L/0.0/,CC/3.SE-4/ ,Rc/0.1/,FREQ/80000.0/; 
CONST ANT REAL: VllC/0.0125/,Tf/2.0E-5/,MAG/0.5/,MAXT/0.00009/ ,R0/25.0/; 
CONSTANT REAL: V2IC/0.50/,Ti/4.5E-4/,G/l.0/,Vsn0.0/; 
CONSTANT REAL: LL/0.05/,UL/0.95/,Vref/50.0/; 
CONST ANT REAL: Td/0.0/,PERIOD/l .25E-5/; 

-- Circuit variables 
REAL:V0,IO,Vin,IL,IC,VC,E,Vl,Vip,W,PRBS,VrefP,V0NOISE; 

FILE: OUTFILE; 
-- Logical variables 
LOGICAL: TRAN_ON,IDIODE; 

INITIAL 
REWRITE OUTFILE,"STUDY .OUT"; 

-- Initialse circuit state variables 
VC:= 50.0; 
IL:= 0.0; 

DYNAMIC 
-- Output current and voltage 

IO := (VC+IL*Rc)/(R0+Rc); 
VO := SMPR(IO); 
PRBS := PRBSGEN(MAG,MAXT); 
VREFP := VREF+PRBS; 
V0NOISE:= V0+NOISE(FREQ,T); 
FY,Z := FILTER(A,B,C,D,V0NOISE); 

-- Capacitor current 
IC:= IL-IO; 

-- Error signal 
E:= VrefP-V0; 

-- Call to filter submode! 
Vl:= REALPL(VlIC,Tf,E); 

-- Call to PI controller submode! 
Vip:= PICONT(V2IC,Ti,G,Vl); 

-- Call to limiter submode! 
W:= LIMIT(LL,UL,Vip); 

-- Determine transistor state (call to PWM submode!) 
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TRAN_ON:= MODULT(Td,W,PERIOD); 
-- Determine diode state (conducting if IL>=0.0) 
!DIODE:= IL>= 0.0; 

-- Determine state of input voltage to LC stage 
Vin:= ifTRAN_ON then Vs 

else_if !DIODE then 0.0 
else VO; 

-- Current through inductor 
IL':= (Vin-RL *IL-V0)/L; 

-- Voltage across capacitor 
VC':= IC/CC; 

COMMUNICATION· 
PREPARE "SMPR",T,VREFP,V0,V0NOISE,FY; 
TAB ULA TE OUTFILE,T,VREFP,V0,V0NOISE,FY; 

END DAT ALOG; 
-- EXPERIMENT 
-- Define variable circuit parameters 

REAL: FY; 
-- Logical repeat variable 
LOGICAL:YES; 
-- Define integration control parameters 

ALGO:=RK.4; CINT:= 6.25E-6; NSTEP:= 1.0; TFIN:=12.5E-3; 
FY :=RAND(- I); 

LOOP 
--Invoke model 
DAT ALOG(FY); 
PRINT "STUDY COMPLETED"; 
--Output simulation results 
PRINT "TABULATED RESULTS ARE:"; 
TABULATE FY; 
READ "Do you wantanotherrun?",YES; 
TERMINATE NOT YES; 
INTERACT; 
END_LOOP; 

END_STUDY 
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SubmodeJ LINEAR for system 1 

SUBMODEL LINEAR(REAL:Y := REAL:PRBS); 

-- ESL subprogram LINEAR 

DYNAMIC 
Y:=1RANSFER(l/(S**2+1.414*S+l))*PRBS; 

STEP 
PREPARE "LINEAR", T,PRBS,Y; 

END LINEAR; 

SubmodeJ NLINEAR for system 2 

SUBMODEL NLINEAR(REAL: CS:= REAL: PRBS); 

-- ESL subprogram NLINEAR 

REAL :F,Ci,Kl; 
INITIAL 
cs:= 0.5; 

DYNAMIC 
F :=0.5; 
Ci := PRBS+0.5; 
Kl:= 1.0; 
CS' :=F*Ci-F*CS-Kl *CS**2; 

STEP 
PREPARE "NLINEAR",T,PRBS,CS; 

END NLINEAR; 

SubmodeJ SMPR for system 3 

SUBMODEL SMPR(REAL:V0 := REAL:IO); 

--ESL subprogram SMPR 

CONST ANT REAL:R0/25.0/; 
DYNAMIC 
VO :=IO*R0; 

ENDSMPR; 
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Submodel MO DUL T for system 3 

SUBMODEL MODULT(LOGICAL: Y:= REAL: Td,sig,per); 

-- Logical pulse width modulator which generates a logical 
-- pulse train with specified period and a mark-space 
-- ratio. An initial delay is permitted, and the initial 
-- output may be specified as 1RUE or FALSE. The calling 
-- sequence is: 

-- y:= MODULT(Td,sig,per) 

-- where, 

-- Td is the time at which the pulse train starts. If 
Td >= 0.0, y will remain FALSE for Td seconds. If 

-- Td < 0.0, pulse train will remain TRUE for 
-- (-Td) seconds. 
-- sig is the modulating signal in the range [0,1], 
-- per is the period of the pulse train in units of T. 

-- The output is a memory variable. 

REAL: start,ramp; 
INITIAL 
ifTd > 0.0 then 

Y:=FALSE; 
start:= TSTART+Td-per; 

else_if Td < 0.0 then 
Y:=TRUE; 
start:= TST ART +ABS(Td)-per*sig; 

else 
Y:=TRUE; 
start:= TST ART; 

end_if; 
DYNAMIC 

ramp:= (T-start)/per; 
when ramp >= sig then 

Y:=FALSE; 
when ramp >= 1.0 then 

start:= start+per; 
Y:=TRUE; 

end_when; 

ENDMODULT; 
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Submode! PICONT for system 3 

SUBMODEL PICONT(REAL: y:= REAL: IC,TC,K,x); 

-- This submodel defines a proportional plus integral (PI) 
-- controller. The calling sequence is: 

-- y:= PICONT(IC,TC,K,x) 

-- where, 

-- IC is the integrator initial condition, z(TSTART) = IC, 
-- TC is the time constant of the integrator, 
-- K is the proportional gain, 
-- x is the input variable. 

-- The differential equations are given by, 

z' = x([C 

-- y = K*(x+z) 

-- and the equivalent Laplace Transform function is, 

y(s) K 
---- = K + ---- . 
x(s) s*TC 

-- The output is an algebraic variable. 

REAL: z; 
INITIAL 

z := IC; 
DYNAMIC 
z' := x([C; 
y := K*(x+z); 

ENDPICONT; 
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Submodel LIMIT for system 3 

SUBMODEL LIMIT(REAL: y:= REAL: LL,UL,x); 

-- A limiter sets lower and upper limits on the amplitude 
-- of an input variable. The calling sequence is: 

-- y:= LIMIT(LL,UL,x) 

-- where, 

-- LL is the lower limit, 
-- UL is the upper limit, 
-- x is the input variable. 
-- N.B. UL> LL. 

-- y is given a value such that, 

-- y = X, if LL < X < UL, 
--y = UL, ifx >= UL, 
--y = LL, ifx <= LL. 

-- The output is an algebraic variable. 

REAL: range,xnorm; 
INITIAL 
if LL >= UL then 

print"**** Error in LIMIT: Limits not consistent"; 
STOP; 

end_if; 
range:= UL-LL; 

DYNAMIC 
xnorm:= (x-LL)/range; 

y:= if xnorm > 1.0 then UL 
else_if xnorm < 0.0 then LL 

else x; 

END LIMIT; 
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Submodel REALPL for system 3 

SUBMODEL REALPL(REAL: y:= REAL: IC,P,x); 

-- Generates a real pole transfer function. The calling 
-- sequence is: 

-- y:= REALPL(IC,P,x) 

-- where, 

-- IC is the initial condition, y(TST ART) = IC, 
-- Pis a constant, 
-- x is the input variable. 

-- The differential equation is given by, 

-- P*y'+y = X 

-- and the equivalent Laplace Transform function is, 

-- y(s) 1 

-- x(s) P*s + 1 

-- The output is a memory variable. 

INITIAL 
y:= IC; 

DYNAMIC 
y':= (x-y)/P; 

ENDREALPL; 
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Submodel PRBS for an systems 

SUBMODEL PRBSGEN( REAL: PRBS := REAL: MAG,MAXT); 

-- ESL subprogram PRBSGEN 

REAL:NEXT; 
INTEGER: I; 

INITIAL 
I:= 1; 
PRBS:=MAG; 
NEXT:=RAND(-MAXT); 

DYNAMIC 
WHEN T >= NEXT THEN 

NEXT := T + RAND(MAXT); 
PRBS := I*MAG; 
I:= -I; 

END_WHEN; 
END PRBSGEN; 

Submodel Filter for all systems 

SUBMODEL FILTER (REAL: FY ,Z(*):=REAL: A(*,*),B(*),C(*,*),D(*),INPUT); 

--ESL subprogram FILTER 

INITIAL 
Z(4):=0.0; 

DYNAMIC 
Z':=A *Z+B *INPUT; 
FY :=C*Z+D*INPUT; 

STEP 
PREPARE "FILTER",T ,FY.INPUT; 

END FILTER; 
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MATLAB Program for Identification 

% We select the first 600 data points for building a model. For convenience, the input

output vectors are merged into a matrix: 

z=[fy(l:600) prbs(l:600)]; 

%Let us first take a look at the data, we can select the values between sample numbers 

400 and 600 for a closeup, and at the same time obtain correct time scales, with: 

idplot(z,400:600,0.3) 

% xlabel('Input(PRBS) & Output without noise and filter. System_l Best Model') 

% print 

% We can remove the constant levels and make the data zero mean with 

z=detrend( z); 

%Now let us fit to the data a model of the form: 

% y(t)+aly(t-T)+a2y(t-2T)=blu(t-T)+b2u(t-2T) (1.1) 

%where T is the sampling interval. This model, known as an ARX-model,tries to 

"explain" or compute the value of the output at time t,given previous values of y and u. 

The best values of the coefficients a 1, a2, b 1 and b2 can be computed with: 

th=arx(z,[2 2 l]); 

% The numbers in the second argument tell arx to find a model (1. 1) with 2 a

parameters, 2 b-parameters and 1 delays. The result is stored in the matrix th in a some 

what coded form. The sampling interval is stored in normalized form (equal to 1.0) in 

element th(l,2). To specify the actual sampling interval, enter 

th(l,2)=0.3; 

There are several ways to display and illustrate the computed model. with 

present(th) 

% the coefficient values of(l.1) and their estimated standard deviations are presented 

on the screen. 

pause % press any key to continue. 

% We can remove the constant levels and make the data zero mean with 'detrend'. 
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%Next, you might ask, can we evaluate how well the model fits the data? A simple test 

is to run a simulation whereby real input data is fed into the model,and to compare the 

simulated output with the actual, measured output. For this we select a portion of the 

data that was not used to build the model, for example from sample 900 to 1000: 

yp=detrend(y(900: 1000) ); 

up=detrend(prbs(900: 1000) ); 

yh=idsim(up,th); 

plot([yp yh]),pause 

% title('Real data VS model data without noise and filter. System_l Best Model') 

% print 

MATLAB program for error criterion (J) 

ydiff=yp(900: 1000)-yh; 
ydiff sq u=ydiff *ydiff; 
yroot=sqrt(ydiff squ); 
J=yroot/100 
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APPENDIX B 

System 3 is explained here in more detail. 



2.3 Switched-Mode Power Regulator 

2.3.1 Circuit Elements 

I. Power Circuit 
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The power circuit consists of a switch (transistor plus diode), an inductor/capacitor 

(LC) filter stage and the load resistance R0 . The logical output of the PWM (pulse

width modulator), drives the switch which connects the supply voltage (V
5

) to the LC 

filter. 

There are two modes of operation of the SMPR. These depend on the current (I1) 

flowing into the LC filter, and are known as the discontinuous and continuous mode. In 

the discontinuous mode, I1 returns to zero during each period (of the PWM) whereas, in 

the continuous mode it dose not. The results presented, clearly show the distinction 

between these two modes of operation. 

It is easy to explain the action of the SMPR with reference to the voltage input (Vin) 

to the LC filter which determines I1. There may be three states during each period of the 

PWM: 

(1) When the transistor is ON it effectively connects the supply voltage to power 

circuit, ie: 

Yin= Vs 

(2) During the period when the transistor is ON, the inductor will store energy. 

When the transistor switches OFF, this stored energy will be transferred by I1 

continuing to flow through the free-wheeling diode which is forward biased. Hence, Vin 

is the voltage across the diode when conducting and assuming a perfect diode: 

Yin= 0.0 

(3) The energy stored, and also I1, will decay to zero and the diode will stop 

conducting. Then Vin is in parallel with, and equal to the sum of the voltage drop 

across the inductor (ie R1*I1) and the output voltage (V 0). In this case, however, I1 will 

be zero and so: 
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The above describes the discontinuous mode of operation, whereas in the continuous 

mode state (3) does not apply as the system changes directly from state (2) back to state 

(1). 

The current I1 is given by the differential equation : 

The output current (10 ), output voltage (V 0 ), capacitor current (le) and capacitor 

voltage (V c) have the following dynamic equations: 

(V c + I1*Rc) 
Io= (Ro+ Re) 

Vo=Io * Ro 

le= I1 - Io 

Ve'= le/ C 

II. Pulse-Width Modulator 

The function of the PWM (pulse-width modulator) is to provide the timing pulses to 

the base of the transistor which in turn controls the state of the transistor. The PWM 

works by using a ramp timing waveform as shown in Fig 2.3 There are two input 

signals, namely: 

(i) the sampling frequency (fo), 

(ii) the mark-space ratio control signal (w). 

Note that fo is the output pulse frequency which has a mark-space ratio of w. 

The action of the PWM is described as follows: 

The slope of the ramp waveform (RAMP) is such that it's value is 0.0 at the start of 

a period and 1.0 at the end. This is achieved by calculating the ramp as : 

RAMP= time/period 

where time is the time from the start of the current period. 

Initially the output (which may be HIGH or LOW, ie 1 or 0) is set HIGH. As the 

ramp rises, two separate triggering points are passed. First, when the value of the ramp 
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becomes equal to the input w, the output becomes LOW. Second, when the ramp 

becomes equal to 1.0 (which occurs at the end of each period), the output returns to 

HIGH state and the ramp is reset to 0.0. The process is then repeated. Note, 

0.05:S:w:S:0. 95 (see limiter). 

III. Limiter 

The mark-space ratio control signal input to the PWM must not be too large or too 

small. It can be seen from Fig 2.3 that if this signal is greater than 1.0 or less than 0.0 

then it will be outside the range of the ramp waveform, and so a limiter is used to keep 

the signal within this range. 

The limits should be close to 0.0 and 1.0 whilst, giving a reasonable tolerance. For 

this reason a 5% cut-off was chosen giving the upper and lower limits: 

UL= 0.95 and LL= 0.05. 

IV. PI Controller 

The controller, shown m Fig 2.2, is a proportional plus integral controller. The 

equations of the controller are : 

V2' = V1/ Ti (1) 

and 

Vip=G*(V1+V2) (2) 

It is assumed supply voltage Vs = 70.0, and output resistance is 25.0 Ohms. The 

output of the PWM causes the transistor to operate and pass 70 volts to the power 

circuit when the PWM output is a maximum. It therefore has an effective gain of 

approximately 70 and the gain G of the PI controller may be chosen to be: 

G= 1.0 

The integrating time constant (Ti) is such that the oscillatory action introduced by the 

LC filter stage in the power circuit is removed. From control theory this can be found 

using Zeigler-Nichols rules for 'PI' controllers. That is: 

Ti= Tu /1.2 

where 

Tu= (2.0 * n) I wn 



con is the natural frequency of oscillation . 

The natural frequency of the LC filter is given by: 
1 

con= SQRT(L * C * (1 +Re/ Ro)) 

The values of L, C, R1 and Re are selected as follows: 

L = 2. lE-5 Henrys C = 3.5E-4 Farrads 

R1 = 0.0 Ohms Re= 0.1 Ohms R0 = 25.0 Ohms 

Substituting values for L, C, Re and R0 we obtain the value of Ti as: 

Ti = 4.5E-4 seconds. 

V. Filter 
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The purpose of the filter is to reduce the ripple introduced by the sampling frequency 

(fo) of the PWM. 

The transfer function of the filter is given by: 

Vl(s) = l+(LTf) * E(s) 

from which the differential equation is: 

Vl' = E ~~1 

To achieve satisfactory filtering the filter's break frequency (fb) is given by: 

fb = fo/10 

Hence the time constant (Tf) of the filter is: 

which gives: 

Tf = 2.0E-5 seconds. 

This gives an attenuation of 0.1 at the ripple frequency (fo = 80 KHZ). 

The switched-mode power supply can be represented in ESL by the model 

DAT ALOG shown in Appendix A. The power circuit is described by algebraic and 

differential equations, whilst, the control circuit is described by calls to the submodels. 
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The dynamic action of the power circuit LC filter stage is described by the 

equations given above. The state variables V c and I1 are initialised in the INITIAL 

region. 

The discontinuous mode action of Vin is described by means of an ' if ' statement 

within the DYNAMIC region of the model. Two logical variables are declared, these 

being TRAN_ON (which is the output of the submodel MODULT and , therefore 

determines whether the transistor is ON or OFF), and IDIODE (which represents the 

conducting state of the diode, and is TRUE for forward biasing, ie when I1 ~ 0.0). 

By means of the ' if' statement Vin is set to : 

Vin== Vs if TRAN_ON is TRUE 

Vin== 0.0 ifTRAN_ON is FALSE but IDIODE is TRUE 

Yin== VO if TRAN_ON is.FALSE and IDIODE is FALSE 

The error voltage (E) is calculated by simple subtraction. The outputs of the blocks 

in the control circuit are obtained by calls of their respective submodels. 

The COMMUNICATION region contains appropriate statements for output and 

plotting. 
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APPENDIX C 

This appendix shows the effect of the different filters on the identified model. The 

filters were chosen from the best response of each order of the filter for systems 1, 2 

and 3 (refer to tables to find J). 
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Real data VS model data with Noise and Ch_Filter. System_3 n==2, wn,,,,50000 
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Real data VS model data with Noise and Ch_Filter. System_3 n=3,wn=50000 
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Real data VS model data with Noise and Ch_Filter. System_3 n=4,wn=80000 
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