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ABSTRACT 

Dirichlet 's theorem describes the structure of the group 

of units of the ring of algebraic integers of any algebraic number 

field. This theorem shows that any unit can be written in terms of a 

fundamental system of units . However Dirichlet 's theorem does not 

suggest a ny method by which such a fundamental system of units 

(or indeed any units) can be obtained. 

This thesis looks at three types of algebrai c number fields 

for which a fundamental sys tem of units contains one unit, the so 

called fundamental unit. rn · each cas e properties of units and the 

problem of obtaining a fundamental unit are discussed, 

Chapter one i s an introductory chapter which summar i ses the 

basic theory relevant to algebraic number fields of arbitrary degree . 

Basic properties of units and Dirichlet's theorem are also given. 

Chapter two looks at units of Quadratic fields, Q(Jd). Units 

of imaginary quadratic fields are mentioned briefly but the chapter 

is mainly concerned with the more complicated problem of obtaining 

real quadratic units. The relevant theory of simple continued 

fractions is presented and the way in which units can be obtained from 

the simple continued fraction expansion of Jd is outlined. The 

chapter then also looks at some recent papers dealing with the length 

of the period of Jd and concludes by showing how units can be obtained 

from the simple continued fraction expansion of (1 + Jd)/2 when 

d = 1(mod 4). 



Chapter three looks at units of pure cubi c fie'ids, The 

basic properties of pure cubic units are developed and reference is 

made to various algorithms which can be used to obtain pure cubi c 

units . The main purpose of this chpater is to present the results 

of the paper ' Determining the Fundamental Unit of a Pure Cubic Field 

Given any Unit' (J eans and Hendy [1 97?]) . However in this thesis a 

different approach to that of the paper is used and for two of the 

results sharper bounds have been obtained, Several examples are 

given using the algorithm which is developed from these results, 

Chapter four, which is original work, investigates the 
1 

quartic fields, Q(d~), where dis a square-free negative integer, 

iii 

Similarities between these quartic fields and the pure cubic and real 

quadratic fields are developed of which the main one is a quartic 

analogue of the results given in the paper mentioned above, 

The examples given in chapter three required multiprecision 

computer programs and these programs have been listed in appendix one, 
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1 INTRODUCTION 

This chapter gives a short summary of the basic theory which 

is relevant to this thesis. While the contents of this chapter have 

not been derived from any particular source, texts such as Richman 

[1971], Adams and Goldstein [1976], Clark [1971], Maxfield and 

Maxfield [1971], Cohn [196?], Niven and Zuckerman [1972], and 

Samuel [1970] give varying degrees of coverage of the material to be 

summarised in this chapter. 

Notation 

The symbols defined below will have the same meaning 

through out the thesis. 

z+ 

z 

Q 

R 

Z[a.' p). 

( a,b) 

[ ) 

i 

the set {1, 2, 3, 4, ... } 

the set of rational integers 

the set of rational numbers 

the set of real numbers 

the module {a
1
a. + a

2
f3la

1
,a

2 
E Z] 

the greatest common divisor of the integers a, b. 

the greatest integer function 

the square root of minus one, 

In general, Greek letters will denote algebraic numbers and letters 

of the Roman alphabet will denote rational integers. 

Algebraic Fields 

Let F be a number field, that is Fis a subfield of the 

field of complex numbers. The polynomial 



p(x) n . n-1 
= a X + a 

1
x + . . . . + a

1
x + ao n n-

a "f r O, a. E F, 
n J. 

is called a polynomial over F and the set of all such polynomials 

forms an integral domain denoted by F[ x] . . · p is said to be of degree 

n, written deg (p) = n. A manic polynomial is one in which the 

leading coefficient, a, is unity. 
n 

A number, a, is algebraic over F if it is the zero of some 

polynomial f E F( x] . _. 

Theorem 1.1 

If a is algebraic over F, there exists a unique polynomial 

f E F(a,) such that 

i) f(a) = 0 
f 

ii) f is manic 

iii) if g E F(x] -and g(a) = 0 then fjg 

f is called the minimal polynomial for a and the degree of a is 

defined to be equal to deg(f). 

Theorem 1.2 

n = deg (a)} forms a number field which is a simple extension of F. 

It is the smallest field that contains both a and F. 

n-1 
If f3 = b 0 + b1a + . • + bn-i a E F(a) then 

b0 , b1 , ... , bn_ 1 are called the coefficients of f3. 

2 

I ,' 

II 



Theorem 1,3 

F(a.) is·a vector space over F with basis 1, a, , , , n-1 
' a.. 

Consequently any BE F(a) is algebraic over F and deg(~)~ deg (a), 

3 

F(a.) is an algebraic extension of F. II 

The minimal polynomial for a can be factored as n distinct 

linear factors in C, 

Then - 1 numbers a.
1

, a.
2 . . . ' a. 1 are called the conjugates of a.. 

n-

Theorem 1.4 

Let ~ E F(a.). Then B n-1 = b
0 

+ b
1
a. + ... + b -- a. - where 

n-1 

n = deg (a) and b. E F. Let g be the minimal polynomial for B. Define 
J 

where the a. are the conjugates of a.. 
J 

Let h ( x) = ( x - ~ )( x - B 1 ) . • . ( x - ~ n _ 1 ) 

Then i) 

ii) 

iii) 

iv) 

v) 

each ~- is either equal to ~ or is a conjugate of ~. 
J ... 

h is a monic polynomial and h E F[x]" 

h =~ where deg (g) X p = deg (a.)' P E z+ 

N(B) = ~~1~2 ~n-1' called the norm function 

(with respect to F(a.)) is a multiplicative 

homomorphism from F(a.) into F 

n -
N(~) = (-1) a, where a is the constant term of the 

0 0 

polynomial h. 

* i) and ii) follow from consideration of the automorphisms of 
F(a., a.

1
, ••• , a.n_

1
), the splitting field for f over F. 

II 



Algebraic Numbers, Number Fields and Integers 

If we take F =Qin the previous section then any a 

algebraic over Q is called an algebraic number, Q(a) is . called an 

algebraic number field, and for any~ E Q(a) N(~) is necessarily a 

rational number. 

Example 1.1 

As an illustration of theorem 1.4, consider~= 3 + sJ2, 

whose minimal polynomial over Q is 

f(x) 2 = X - 6x ~ 41 

If we consider~ to be an element of Q(J2) ,then 

~1 = 3 - sJ2 ' 

h
1
(x) 2 

6x 41 f(x) = X - - = 
' 

and N1(~) = -41 

¼ If we consider~ to be an element of Q(2) then 

~1 = 3 sJ2 
' 

~2 = 3 + sJ2 = ~ 

~3 = 3 - sJ2 = ~1' 

h
2
(x) 4 3 

46x
2 + 492x + 1681 = X - 12x 

= (f(x)) 2 

and N/~) = 1681 = (N1(~))2 

An algebraic integer is •an algebraic number whose minimal 

polynomial has integer coefficients. Consequently the norm of an 

algebraic integer is a rational integer. 

II 



Theorem 1. 5. 

The algebraic integers of qn algebraic number field, Q(a), 

form an integral domain (denoted by Z(a)). Z(a) is often referred to 

5 

as the ring of algebraic integers of Q(a), // 

Recalling has defined in theorem 1.4 we have that for 

~EQ(a), 

~ E Z(a) ~ h has integer coefficients. 

This fact is used when we determine the form of the algebraic integers 

of a particular Q(a). 

The only rational numbers which are also algebraic integers 

are the rational integers, Z, and for any ring of algebraic integers, 

Z(a), we have Z c Z(a). 

An integral basis of Q(a) is a set of elements 

. , 0k E Z(a) such that every SE Z(a) can be written 

uniquely in the form S = m101 + m202 + ... + ~0k where 

m
1

, m
2

, ... , ~ E Z. Every Z(a) has an integral basis and an 

integral basis of Z(a) is also a basis of Q(a). 

If 0
1

, 

. 0(1) conJugates . , 
J 

0 2' . . 

0~2)' • 
J 

basis is the determinant, 

, 0 is a basis of Q(a) and if 0. has 
n J 

0~n-i) then the discriminant of the , J 



= 

e(n-1) 
1 

e(n-1) 
2 

e(n-1) 
3 • 

9 
2 

n 

The discriminant of a basis of Q(a) is a rational number. If the 

basis is also an integral basis of Q(a) then the discriminant of the 

basis is a rational integer. Each integral basis of Q(a) has the 

same discriminant. Thus the discriminant of .any integral basis of 

Q(a) is also called the discriminant of the field Q(a). 

Example 1.2 

Let a = ✓a, d a square-free integer. In chapter two we 

will see that 

i) 1, ✓d forms an integral basis when d = 2, 3(mod 4) 

6 

ii) 1, (1 + Jd)/2 forms an integral basis when d = 1(mod 4) 

Thus when d = 2, 3(mod 4) 

= 

and when d - 1(mod 4) 

= 

2 
1 

1 -✓d 

1 

1 

(1+✓d)/2\ 
2 

( 1-Jd)/2 

= 4d 

= d 



Units of- the Ring of Algebraic Integers of Q(a.) 

. -1 
If~ E Z(a.) and~ 1 0 then~ E Q(a.), If we also have 

that ~-
1 

E Z(a.), then~ is called a unit of Z(a.), 

Theorem 1. 6 

~ E Z(a.) is a unit ~ N(~) = ± 1. 

Proof 

Let the minimal polynomial for~ be 

m m-1 
f(x) = x + a X · + ... + a

1
x + a , a. E Z 

m-1 0 J 

Then a 0 1 0 (otherwise f would not be minimal) and f(~) = 0. Thus 

we have 

The polynomial 

-1 1 
is the minimal polynomial for~ and clearly~- E Z(a.) precisely 

when a
0 

= ± 1. The theorem now follows since N( ~) is a power of a
0 

multiplied by± 1. (Theorem 1.4 v)). 

The inverse of~ is given by 

where the~- are as defined in (1). 
J 

If~ and y are algebraic integers of Q(a.) and (~ly) is a 

unit then we say that~ and y are associates. 

7 

II 



The units of Z(a.) form a multiplicative group whose 

structure is described in the following theorem due to Dirichlet, 

Theorem 1.7 

Let a be an algebraic number and f its minimal polynomial. 

Suppose that f has r real roots and 2s non- r eal roots, that is 

deg(a) = r + 2s. Then there exist units D
1

, ~
2

, ... , Dt, where 

t = r + s - 1, such that every unit, D, of Z(a) may be written as 

E Z 

wheres is some root of unity contained in Z(a). 

Proof 

8 

[ Samyel , 1970, p60], [Delqne and Faddeev, 1964 , p28] // 

The number of possible values for sis finite and in the 

case that a is real or a has real conjugates the only values for s 
are ± 1. 

The set of units D
1

, D2 , ..• , Dt is referred to as a 

fundamental system of units of Z(a). Such a system is not unique 

since if D
1

, D
2

, ... , ~tis a fundamental system then so is 

a1 
When t = 1, we can write any unit of Z(a) as sD

1 
for some 

unit D
1 

E Z(a). In such a case we call D
1 

a fundamental unit. It 

is easily shown that ~
1 

must be such that there is no unit whose 

magnitude lies between 1 and ID
1

1, and that the only other fundamental 

±1 
units are of the form sD

1 
• Consequently there are only a finite 



number of fundamental units when t = 1, (If a is real or has a real 

conjugate then there are four hmdamental uni ts), It is usual to 

define precisely one of these units as the fundam~ntal unit of Z(a). 

Example 1. 3 

Let a be a real quadratic irrational, then t = 1 and there 

is one unit in any fundamental system. Let ~
1 

E Z(a) be the smallest 

unit greater than unity. 

-1 -1 
Then each of ~1 , D1 , -D1 and -~

1 
is a fundamental unit. 

9 

We take ~
1 

as the fundamental unit. II 

When tis greater than one, the situation i s more complex. 

Firstly , there are always units whose magnitudes are arbitrarily close 

to unity and, secondly, from any given fundamental system of units it 

i s possible to derive an infinite number of distinct fundamental 

systems. For example , the set ~
1

, D
2

, . , ~t give rise to the 

p 
systems D

1
D

2
, D

2
, ... , Dt, where pis any integer. Consequently, 

a fundamental system cannot be characterised when t > 1 in a manner 

similar to the case when t = 1. 

In the following three chapters we shall confine our 

attention to cases where t = O, 1. 

The problem of finding all the units of Z(a) is effectively 

solved by finding a fundamental system of units. Dirichlet's 

theorem offers no help in this area and we have to look to other 

areas of mathematics (for example, continued fractions) to find 

algorithms which can be used to calculate units in algebraic number 



fields and theory which enables us to determine whether or not a 

system of units is fundamental. 

10 



2 UNITS OF QUADRATIC FIELDS 

An algebraic number field of degree two is called a quadratic 

field. If Q(a) is a quadratic field then a is the root of polynomial , 

f, of degree two -

f(x) 

Thus a is of the form 

2 a= (-a
1 

± JD)/2, D = a1 

11 

Since Dis a rational number we can write D = p/q where p, q E Zand 

(p', q) '= 1. Furthermore, we can write pq = s 2d wheres, d E ·z ·and dis· 

square-free. 

Thus 

Since b 0 and c0 are rational we have Q(a) = Q(Jd). Consequently we need 

only consider those fields of the form Q(Jd) where d E Z, d; O, 1 and 

dis square-free. In so doing we cover all possible quadratic fields. 

The Algebraic Integers of Q(Jd) 

If~ is any element of Q(Jd) then~= a+ bJd, a, b E Q. The 

quadratic polynomial for~ is 

g(x) = (x (a+ b./d))(x - (a - b./d)) 

2 2 
Thus the norm of~ with respect to the field Q(Jd) is N(~) = a - b d. 

~ will be an algebraic integer of Q(Jd) (a quadratic integer) if and only 

if 2a and N(~) are rational integers. Clearly a= k/2 for some integer 

k. Letting b = L0/q where 1 0 and q are relatively prime integers, we 



obtain 

k
2 2 

~ q 4 n 2d = 4 2 NQ q m, 

Consequently q2
l4t~d and so q = 1, 2 (since dis square-free and 

12 

(q, t
0

) = 1). Therefore we may write b = t/2 where tis some rational 

integer. 

We also have the following conditions which are consequences of 

2 2 
the fact that k - t d = 0 (mod 4) 

i) k - .R, = 0 (mod 2) when d = 2, 3 (mod 4) 

ii) k = t (mod 2) when d = 1 (mod 4). 

These necessary conditions for~ to be an algebraic integer are also 

sufficient conditions and so the ring of integers of Q(Jd) is 

i) Z(Jd) = {( k + tJd)/2jk, .R, E Z, k = i,(mod 2)} 

when d 1(mod 4). 

ii) Z(Jd) = {(k + tJd)/2jk, .R, E Z, k - t - O(mod 2)) 

when d 2, 3(mod 4). (1) 

Uni ts of z(Jd) 

The structure of the group of units of z(Jd) may be determined by 

Dirichlet's theorem. The minimal polynomial for Jd over Q is 

2 
f(x) = x - d. When dis positive f has two real roots while when d 

is negative both roots are non-real. By theorem 1.7 we expect the 

following 



a) , d < b - Z(Jd) has a finite number of units 

each unit is a root of unity. 

b) d > 0 - Z(Jd) has an ·infinite number of units -

each unit may be written as 

± ~~ (n E Z) where ~O is a fundamental unit. 

The norm of a quadratic unit gives rise to the diophantine 

equation 

To find units of Z(Jd) we seek solutions of (2) with k, J, subject to 

the restrictions in (1). 

a) d < 0 

13 

(2) 

Since k 2 - J, 2d 2:: o, it is obvious that any solution of ( 2) must 

have I kl ' I.el ~ 2. Thus the solutions of ( 2) are 

k = ± 2, .e = 0 for each d, 

k = ± 1, .e = ± 1 ford = -3, 

and k = o, J, = ± 2 for d = -1. 

These solutions meet the restrictions given in (1) and so the units of 

Z(Jd) are 

ford= -1 the units are± 1, ± i - the fourth roots of 

unity, 

for d = -3 the units are ± 1, (± 1 ±J-3)/2 - the sixth 

roots of unity, 

£or d # -1, -3 the units are± 1 - the square roots of 

unity. 



b) d > 0 

As already noted, all units of Z(Jd) may be expressed as 

± ~n(n E Z) where~ is one of the four fundamental units of Z(Jd). 

Since exactly one of these four units is greater than one we can 

uniquely define the fundamental unit to be the s mallest unit greater 

than one. Henceforth ~d will denote the fundamental unit of z(Jd). 

Some Properties of Real Quadratic Units 

If~ = (k + i,Jd)/2 is any unit of z(Jd) then so are 

N(~)(k - i,Jd)/2 = ~ 
-1 

N(~)(-k + i,Jd)/2 
-1 

= -~ ' 

and (-k -i,Jd)/2 = -~ 

14 

When~ i ± 1 exactly one of these four units is greater than one and so 

we have 

Lemma 2. 1 

If~= (k + i,Jd)/2 is a unit then~> 1 if and only if 

k,t:.::_1. II 

Thus if ~d = (k +R✓d)/2, then k, J, is the minimum positive solution of 

(2). That is, k and J, are positive and if m, n is any other positive 

solution of (2) then k ~ m and J, ~ n. 

Lemma 2.2 

If d = 1(mod 8) and~= (k + i,Jd)/2 is a unit of Z(Jd) then 

k - J, - O(mod 2). That is~ E Z[1, /d]. 



15 

Proof 

If k - £ = 1(mod 2) then k
2 

t
2
d = O(mod 8). . I I 

Using these two lemmas we can obtain a lower bound on the size of Tjd. 

When d = S(mod 8) Tjd ~ (1 + Jd)l2 and in all other cases Tjd ~ 1 + Jd, 

Lemma 2. 3 

Let d = S(mod 8) and Tj = (k + tJd)l2 I± 1 be a unit such 

that k - t = 1(mod 2). 3 2 
Then T] E Z[1, ,/d] but T] ~ Z[1, Jd]. 

Proof 

Tj2 = 

and = 

We have 

and so 

However 

- k(1 + 7)(mod 8) 

- O(mod 8). 

Similarly 3k
2
L + t 3

d = O(mod 8) and thus ri
3 E Z[1, Jd]. II 

From the norm of a unit we have 

(k - tJd) = ± 2ITJ (3) 

Supposing Tj > 1 we obtain 

i) k = tJd ± 2ITJ (4) 

ii) Tj = (k +. tJd)l2 = k ± 1111 

and so lri - kl = 1111 • 

Thus, when T] is large, LJd and T] are close approximations to the integer 



"" 

k. In fact, for Tl> 4, knowledge of one of the values k, i, or Tl 

uniquely determines the values of the two integers k and£, In 

particular k = [£Jd + 112] and i, = [klJ? + 112]. 

Example 1 

Tl = (5564523 + 1543321J13)l2 is a unit of Z(J13) 

and has norm N(T}) = ( 55645232 
- 15433212 

X 13)14. 

We have k = 5564523, 

£Jd = 5564523.0000003594 ... , 

and Tl = 5564523.0000001797 ... 

If (3) is multiplied through by 21£ we obtain the most 

important form of approximation involving the coefficients k and£, 

(kl£ - Jd) = ± 2l£T} 

16 

II 

= 4li,(k + i,Jd). (5) 

Thus kl£ is a rational approximation to the irrational number Jd. The 

following theorem shows that the closeness of approximation may be 

considered to be a function of 1IL
2

. 

Theorem 2.1 

Let Tl= (k + £Jd)l2 > 1 be a unit of z(Jd). 

i) Fork= i, = O(rnod 2), set k0 = kl2, £ 0 = £12. 

Then Tl = kO + .e,OJd 

and lk
0
IL 0 - Jal< 11u~ 

ii) fork= i, = 1(mod 2) 

we have 

except for d=S,13. 



Proof 

i) lk/.t0 - Jd/ = 1l.t 0(k
0 

+ .t
0
Jd) from (5) 

$ 11£0(2.lld - 11~) from (4) 

But d ~ 2 and~~ 1 + Jd and so 

ii) 

( U 
0
Jd - 1IT)) > 2.l 

0 

jkl.l - Jd/ = 4l~(k + .tJd) from. ( 5) 

$ 41.l(UJd - 2ID) from (4) 

< 1IU
2 

when d ~ 21. 

From Lemma 2.2, the only values of d < 21 for which k - £ - 1(mod 2) 

may occur are d = 5 and d = 13. 

17 

II 

When this theorem is viewed alongs ide the theory of simple 

continued fractions, we find that the problem of finding the fundamental 

unit of Z(Jd) is solved. 

Simple Continued Fractions(s.c.f.) 

The following material (up to theorem 2,2) is covered by 

Chrystal [1959, II, pages 423 - 452], McCoy [1965, pages 96 - 119], 
I . 

Hardy and Wright [1960, pages 129 - 140], and Jones [1955, pages 76 - 91]. 

McCoy, Chrystal, and Jones also cover much of the material beyond 

theorem 2.2 with McCoy being the easiest to follow. However Chrystal 

covers more ground, especially on the form of the s.c.f. expansion of 

Jd. Pettofrezzo and Byrkit [1970, pages 149 - 205] give an easy to read 

introduction to this material but some of the later results are only 

stated without proof. 



A finite s,c.f, is an express~on of the form 

1 

1 

1 

a + 
m-1 

1 

a 
m 

Where a E Zand a ~ 1 for n ~ 2. The a are called the partial 
n n n 

18 

(6) 

quotients or terms of the -"S;~c.f.~ For convenience;-· the ·S-;'C.nf.,· (6) -·is ~ 

Any rational number can be represented as a finite s.c.f. and, 

conversely, any finite s.c.f. represents a rational number. 

The convergents of (6) are the rational numbers 

n = 1, 2, ,,.,, m. 

Clearly c is equal to the value of the s.c.f. (6). 
m 

An infinite s.c.f. is an expression similar to (6) which does 

not terminate. The convergents of an infinite s.c.f, are defined in the 

same manner as those of a finite s.c.f. 



If we define 

P1 = a1, qf 

P2 = a2p1 + 1, q2 

and pn = anpn-1 + p 2' n- qn 

for n ~ 3 

then + 
c = p /q V n E Z 

n n n 

A proof by induction shows that 

and consequently we have (pn' ~) = 1. 

convergent expressed in its lowest terms, 

19 

= 1 ' 

= a2 ' 

= a nqn-1 + qn-2 t 
(7) 

For any s.c.f. the convergents c
2
n+1 form a monotonic 

increasing sequence of rational numbers and the convergents c 2n form a 

monotonic decreasing sequence of rational numbers. Every odd numbered 

convergent is less than every even numbered convergent and if the s.c.f. 

is infinite the convergents tend to a limit as n . - w. Thus any infinite 

s.c.f. defines a unique irrational number. Conversely, any irrational 

number, x, can be represented as a unique infinite s.c.f. whose partial 

quotients are given by 

= 1/ ( x - a ) , n = 1, 2, 3, • . • , ( 8) 
n n 

th 
xn is called then complete quotient and xn = (an, an+i' an+ 2 , •... ) 

as a s.c.f. 

The convergents of the s.c.f. for a real number, x, form a 

sequence of increasingly better rational approximations to x. All 



convergents satisfy the inequality Ix~ pn/½j< 1!q~ and of every 

successive pair of convergents at least one satisfies the inequality 

Ix - p /q I< 1l2q
2

. The last inequality is, in fact, a sufficient 
n n n 

condition to guarantee that a given rational number, p/q, is a 

convergent of the s.c.f. for x. 

Theorem 2.2 

20 

If p, q E Zand Ix - plql< 1l2q
2 

then p/q is a convergent of 

the s.c.f. for x. 

Proof 

[Har~y and Wright, 1960, page 153], [McC9y, 1965, pages 

119 - 122]. 

Theorems 2.1 and 2.2 give us the connection between the 

coefficients of a quadratic unit and simple continued fractions. 

Theorem 2.3 

Let~= ( k +LJd)l2 > 1 be a unit of Z(Jd) such that either 

i) x ; y - 0(mod 2) 

or ii) x ; y - 1(mod 2) but d # 5, 13. 

Then k/L = p /q where p /a is a convergent of the s.c.f. for Jd. 
n n n !l 

Moreover, if k and Lare odd then k = pn and L =½'and if k and i 

are even then k = 2p and t = 2q. 
n n 

Proof 

II 

The theorem follows immediately from theorems 2.1 and 2.2 // 
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In particular~ the coefficents of the fundamental unit ar'e to 

be found amongst the convergents of the s'.c,f, for Jd, except in the 

cases when d = 5 and d = 13, However, by lemma 2,3, we can be assured 

3 
of finding ~din these two cases. 

Further theory will tell us which convergents of the expansion 

will give units but first we look at the form of the s.c.f. expansion of 

real quadratic surds of which Jd is a special case. 

Periodic s.c.f.s and the Expansion of Quadratic Surds 

A quadratic surd is an irrational number of the form 

(a+ 'b,./e)/c, where a, b, c and e are rational numbers withe> 0. Such 

a number can always be rewritten in the form (m + 'b,./d)/n where m, n, d 

and bare integers and m
2 = b 2

d(mod n). 

A periodic s.c.f. is an infinite s.c.f. for which there exist 

fixed integers rand m such that a = a for each n ~ m, We will n n+r 

assume that rand mare the minimum such _integers. Such a s.c.f, is 

denoted by 

The set of terms am' a m+1' 
. , am+r-1 is called the period and r is 

the length of the period. The set of terms a1, . . . , a 
m-1 

lS called 

the pre-period. For any n ~ m, the n 
th 

and (n + r)th complete 

quotients have the same expansion as s.c.f. and hence we have 

x = x , \..I n ~ m. 
n n+r v 

(10) 



Quadratic surds and periodic s.c.f. are linked by the 

following theorem. · 

Theorem 2.4 

A s.c.f. is periodic if and only if it is the expansion of a 

real quadratic surd. 

Proof 
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[Harµy and Wright, 1960, page 144]. II 

It is also possible to characterize those quadratic surds whose s.c.f. 

expansion is purely periodic, that is, the value of min (9) is one, 

Firstly we define a reduced quadratic surd to be a quadratic surd, 

(a+ b.jd)lc, with the property that (a+ b.jd)lc > 1 

and -1 < (a - b.jd)lc < 0. 

Theorem 2.5 

A s.c.f. is purely periodic if and only if it is the expansion 

of a reduced quadratic surd. 

Proof 

[McC9y, 1965, page 133] II 

The expansion of an irrational number is, in general, calculated 

by (8), but in the case of quadratic surds we have the following 

algorithm which simplifies the calculations. 

Algorithm 2.1 [Hen~y, 1975, page 1] 
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Let a= (a+ b../d)lc 'be an qlgebraic number .of Q(Jd), where 

a, b, c, d E Z. 
2 2 

Assume b d = a (mod c), 0 ~a< Jdl2, and d > 0 is riot 

a perfect square. Then in the s.c.f. expansion of a we have 

n = 1, 2, ... , 

where p = a Q - p n = 2, 3, . . . n n-1 n-1 n-1 
, 

Qn = (b 2d - P~)IQn-1 n = 2, 3, . . .. , 

and pl = a Ql = C . II ' 

It is easily shown that P and Q are always rational integers. 
n n 

[Chrystal, 1959, II, page 455]. Recalling the nth complete quotient 

x we have 
n 

x = (P + b../d)IQ . n n n 

th That is, the algorithm retains then complete quotient in the form of 

a quadratic surd. 

It is not always possible to recognize the end of the period 

by observation of the values of a alone. This is because the period or 
n 

pre-period may be periodic to some extent. 

However from (10) we have, when n = m, 

Thus P = P and Qm = Q (otherwise we would have Jd equal to some rn rn+r rn+r 

rational nwnber). Alternatively if· P = P and Q - Q for some s · s+t s - s+t 

integers sand t thens~ rn and rlt. If this was not so we could show 

that r or m was not minimal. Thus from the first occurrence of a 
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repetition of a pair P , Q we can determine the exact form (9) of the 
n n 

s.c.f. expansion. 

We also have the following connection between Pn-l' qn-l and 

Q . 
n 

Theorem 2. 6 

Let a and Q be as defined in Algorithm 2.1. 
n 

Set~ = p - a q (n ~ 1) where p lq is the nth convergent of a. 
n n n n --n 

n-1 
= (-1) c N(~n-l), n = 2, 3, 4, •.• 

Proof 

[Hen9y, 1975, pages 1, 2]. 

This theorem will enable us to recognize which convergents of the 

s.c.f. for ✓d give the coefficients of a unit without actually having 

2 2 
to calculate the value of pn-l - qn_ 1d. 

(For a= ✓d, N(~n-l) = N(pn-l = 

The Simple Continued Fraction Expansion of ✓d 

If we now take a= O, c = b = 1 in Algorithm 2.1, we obtain 

the s.c.f. for ✓d. Chrystal [195~, II, pages 460 - 467] proves the 

following properties of the s.c.f. for ✓d. 

II 

i) The preperiod contains exactly one term, a
1

. (This may 

also be proved from the fact that ✓d + [✓d] is a reduced quadratic surd). 

ii) The sequences P, Q , a exhibit the following symmetries. 
n n n 

(p(d) is the length of the period of ✓a). 
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n 1 2 3 p(d) - 1 p(d) p(d) + 1 p(d) + 2 p(d) + 3 ... 

p 
n 

a 
n 

0 

when n = 1. 

p3 p . 
2 p2 p3 

Q2 Q1 Q2 Q3 

a2 2a
1 a2 a3 

'a4, a3, a2, 2a
1

) 

iii) 0 ~ P < Jd, 0 < Q < 2,./d, 0 < a < 2,./d. P = 0 only n n n n 

iv) The middle of the period may be recognized by the first 

occurrence of either of the following conditions. 

a) p = p 
n n+1 

in which case p = p 
n+2' Q = Qn+1' a = a 

n-1 n-1 n-1 n+1 

p = p 
n+3' Q = Qn+2' a = a n-2 n-2 n-2 n+2 

etc., 

and the length of the period is even. 

b) Qn = Qn+1 and a = a 
n n+1 

in which case p = p 
n n+2 

p ~ 1 = p Q = Qn+2' a = a 
n- n+3' n-1 n-1 n+2 

p = p 
n+4' Q = Qn+3' a = a 

n-2 n-2 n-2 n+3 

etc., 

and the length of the period is odd. 

The advantage algorithm 2.1 has over (8) lies in the fact 

that at all times we are dealing with integers in the range Oto 2,./d. 

II 

If (8) is used to obtain the expansion of Jd it is not unusual to require 

the decimal value of Jd correct to at least Jd decimal digits. For 
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example, to calculate the expansion of ,./94- requires ,j94 correct to 13 · 

decimal places. 

Thus using (8), we often require multiprecision arithmetic for 

values of d larger than 100. _ However using algorithm 2.1 and a small 

calculator we can handle values of d as large as 10
8 

(on an eight digit 

calculator). 

An added bonus is that in view of iv) above we can recognize 

the expansion at its midpoint and no further work is required to obtain 

the complete expansion. 

The Fundamental Unit of Z(Jd) 

In view of theorem 2.6 the convergent p /q of Jd gives the 
n n 

coefficients of a unit if and only if Q - 1 or Q 
1 

= 4. The n+1 n+ 

values of n for which Qn = 1 follow a precise pattern. 

Theorem 2.7 

Qn = 1 if and only if n = t p(d) + 1, where tis some non­

negative integer. 

Proof 

If n = t p(d) + 1 then an= 2a1 
from (11) 

= [(P + Jd)/Q ]. 
n n 

Since Pn s a
1 

and [Jd] = a
1 

it is clear that we must have Pn = a1 and 

Qn = 1. 

Suppose that Q = 1. If n = 1 the result is trivial. Thus assume 
n 

n ~ 2. Since ·Jd - P < Q < Ja + P for n ~ 2 [Hickerson, 1973, page n n n 

430] it follows that Pn = a
1 

and thus an= Now P 
1 

= a Q n+ n n 
p 

n 
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- a 1 

Thus P . = P1+J: and Q . = Q
1 

., V j E z+, and so (n + j) - (1 + j) 
n+J n+J +J 

= n - 1 is a multiple of the period length i.e. n - 1 = t p(d) where 

27 

tis some positive integer. // 

The only time Qn = 4 can occur is when d = S(mod 8). However 

there is no way in which we can forecast if the value Q = 4 will 
n 

appear in the expansion of a particular Jd. 

We now have enough information to outline the way in which 

the fundamental unit of Z(Jd) may be obtained. 

i) d = 2, 3(mod 4), d = 1(mod 8). 

In this case ~d E Z[1, Jd] and so we look for those convergents which 

2 2 
give p - q d = ± 1. From theorems 2.6 and 2.7 this occurs precisely 

n n 

when n = t p(d) where t E Z+. (~
0 

is not defined so we disregard the 

fact that Q
1 

= 1). Since the coefficients of the fundamental unit are 

2 2 
the minimum positive solution of k

0 
- t

0
d = ± 1, and since the integers 

pn, q increase in size as n increases, it follows that n . 

The positive powers of ~dare given by 

(12) 

Thus the coefficients k
0

, t
0 

of ~d may be obtained by first obtaining 

the expansion of Jd from algorithm 2.1, then calculating l 0 = 4p(d) 

by (7) and finally obtaining k
0 

by (4), that is, by setting 

k = [L Jd + 1/2](except when~< 4). Using (4) to obtain k
0

, instead 
0 0 · · 

of actually calculating p (d) by (7), saves much work when p(d) is 
p 

large. 
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ii) d - S(mod 8) and d 1 s, 13, . 

There are two possibilities, 

a) lla. = ko + i, OJd, kO, i, 0 E z, 

b) lld = (k + i-Jd)/2, k, i, E z. 

If a) is the case then the coefficients of the fundamental unit will be 

given by the p(d)
th 

convergent of the expansion of Jd. If b) is the 

case then the p(d)
th 

convergent will give the coefficients of 11!, By 

considering 

lld = (k + tJd)/2, 

and 
3 3 2 2 3 

lld = ((k + 3kt d) + (3k i, + i, d)Jd)/8 = k0 + t 0Jd, 

we have that k < k
1 

< k
0 

and i, < 1
1 

< t
0 

(since k ~ 4 by (4) ). 

Consequently k/i, = pa/qa, k1/t1 = pb/qb, and k0/£ 0 = pp(d)/~(d)' 

where a< b < p(d) and Qa+l = Qb+l = 4. 

Since we are not able to tell in advance whether a) orb) is 

the case, the fundamental unit is found by expanding Jd by algorithm 

2.1 and noting the successive values of Q • The first occurrence of 
n 

Qn = 4 or Qn = 1 (n > 1) will give 

When lld E Z[1, fd], the positive powers of ~dare given by (12), 

otherwise we have 
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3t+1 
(pa+t p(d) p(d)Jd)/2, Tld = + qa+t t = o, 1 2, ·' . . . 

' 

3t+2 
(pb+t p(d) + qb+t p(d)Jd)/ 2 , 1, rid. = t = o, 2, . . . , 

and 3t 
+ qtp( d)Jd, 1, 2, 3, Tld = ptp(d) t = . . . , 

To complete this section we note that 

11
5 

= < 1 + Js) / 2, 

and 1113 = (3 + J13)'2. 

The Length of the Period of Jd 

The amount of work required to calculate a particular T}d 

depends on the length of the period of Jd. We have already seen that 

the period is of finite length and hence. 11d is obtainable in a finite 

number of steps. However it has long been known that the period is 

not only finite but is also bounded by some function .of d, 

Chrystal [195~, II, page 457] shows that p(d) < 2d in the 

following manner. In algorithm 2.1, the number of possible distinct 

pairs Pn, Qn (n > 1) · is [Jd] ,. [2,/d] < 2d, since O < Pn < Jd and 

o < Qn < 2,/d. The p(d) pairs of integers P2 , Q2; P3, Q3; ..• ; 

Pp(d)' Qp(d); Pp(d)+l'Qp(d)+l must all be distinct and hence we have 

p(d) < 2d. 

Recently several papers have been published which give much 

sharper bounds on the length of the period. 

Hickerson [1979, pages 429 - 432] refines the argument of 

Chrystal by taking into consideration the fact that Q j(d - P2 ). Thus 
n n 

." 



we have that the humber of paips P , Q 'that can occur when expanding 
n n 

Jd is bounded by the cardinality of the set 

30 

A result of Srinivasa Ramanujan enables Hickerson to obtain a bound on 

the cardinality of T(d),which is 

d½ + log 2/log log d + O(log log log d/(log log d)
2

) 
(13) 

Thus p(d) is also bounded by this expression. This result best 

describes the behaviour of the maximum length of the period as d - 00 • 

+ 
That is, given a o > O, 3 D0 E Z such that d > D0 implies 

1: + 0 
p(d) < d 2 

For a more precise bound we turn to Stanton, Sudler and 

Williams [197p, pages 525 - 536]. A bound in terms of 

L (1, x) = ~ <~ln)n-
1 

is obtained as 
n21 

p{d) < µ,/~ L(1, x)/{2h log a) 

where ~ is the discriminant of Q(Jd) 

(~jn) is the Kronecker symbol 

his the class number of Q(Jd) 

a = (1 + J5)/2 

µ = 1 if 17 d E Z[ 1, Jd] 

3 otherwise. 
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This is achieved as follows. It is easily 

shown that T) > a.p(d)_ Consequently p(d) < log T}/log a.. However 

T} =%and so p(d) <µlog T)d/log a.. The bound is then obTained by 

using the result log T}d = J~ 1(1, x)/2h. Since 1(1, x)< A log d, we 

1: 
have p(d) < Bd 2log d. The bulk of the paper is then concerned with 

finding numerical values for the constants A and B. The resulting 

bound is 

½ p(d) < 0.72 d log d, ford> 7 
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(14) 

Cohn [1977, pages 21 - 32] attacks the problem of finding an 

upper bound for p(d) by considering primitive classes of solutions of 

the equations 

2 
X - N , where (15) 

A class of solutions lS a set (± X ± y Jd)TJ~ , where X + YJd is a 

solution of (15), Tl1 lS the smallest positive power of T}d contained in 

z[ 1, Jd] such that N(ri
1

) = 1, and n is any integer. A primitive class 

is one in which (X, Y) = 1. (It is shown that this is well-defined 

that is, if x1 + Y1Jd and x
2 

+ Y~d are in the same class then 

(X
1

, Y
1

) = (x
2

, Y
2
)). From theorem 2.6 we know that each convergent 

pn/½ gives a primitive solution, and it is easily shown that each 

p + q Jd, 1 ~ n ~ p(d), is in a distinct primitive class. Consequently 
n n 

the number of distinct primitive classes of solutions of (15) is an 

upper bound for p(d). 

The major part of the paper is then concerned with finding an 

upper bound for the number of distinct primitive classes of solutions 

of (15). The resulting bound is 

( 16) 

which is also the bound for p(d). 
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Iri arriving at their' result Stanton et al show · that p(d) < 
1: 

. 52 d 2log d for d > D
1

. where D
1 

is a computable constant . 

2434.25 
(D

1 
~ 10 ). However Cohn's result implies that · 

A a constant 

1: 2 
= d 2 log d ((7/(2rr )) + A/log d) 

A/0.165 
Therefore, ford> e , Cohn's result is a sharper bound, and for 

sufficiently large d, Cohn's result gives the bound on p(d) as 

1: 
p(d) < .355 d 2 log d (17) 

Consequently as d : - 00 , the best bound we have for p(d) is given by (17). 

½ (For large d, (13) is greater than d log d). Lehmer (1969, page 139] 

k 
has suggested that p(d) may be as large as 0.3 d 2 log d for large d 

and so Cohn has noted that it is possible that (16) cannot be 

significantly i mproved upon. 

It should be remembered that although we have these upper 

bounds for p(d), the actual value of p(d) may lie anywhere in the range 

k 
1 to A d 2 log d. (A depending on which bound is appropriate). 

Example 2 

i) Ford = 1726 we have 

p(d) = 88 (Hicterson, 1973, page 429] 

k 
~ . 265 d2 log d . 

ii) For d = 1722 = 41
2 

+ 41 we have 

J1722 = (41, 2, 82) and p(d) = 2. II 

Thus it can be seen that the bound is not necessarily an indication of 
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the size of p(d), 

The bounds so far obtained are for arbitrary d. However, in 

many cases it is possible to lower the bound considerably, 

6 
Stanton et al show that ford> 1.27 x 10 (14) may be 

-t 
multiplied by 2 , where tis defined as 

t = (r 1 if dis the sum of two squares 
( 
(r - 2 otherwise 

and r is the number of distinct prime factors of~· 

Example 3 

Let d = 2 X 3 X 5 X 7 X 11 X 13 X 17 X 19 = 9,699,690. 

Then d - 2(mod 4) and so~= 4d, r = 8 and t = 6 since dis not the 

sum of two squares. Thus (14) would initially give 

½ p(d) < .72 d log d ~ 36074.7 , 

but multiplying by 2-t gives 

p(d) < 563.7 

In fact p( d) = 36 . 

Of course if we are to employ this fact in obtaining a sharper bound 

on p(d), extra work is required to factor d, and if d has few prime 

factors, little or no improvement on the bound will be obtained. 

II 

In many special cases it is possible to give the exact form 

of the s.c.f. expansion of Jd, and . hence the exact value of p(d). For 

example, letting d =a~+ r, where a
1 

= [Jd], we have 
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i) If r = .1, then Jd = (a
1

, _2a
1

) .and p(d) = 1. 

ii) If rl2a1, r -t-. 1, then Jd = (a
1

, 2a/r, 2a
1

) and p(d) = 2. 

iii) 
. + 2 

If 3 m, n E Z such that a = n(4m + 1) + m 
1 

and r = 4mn + 1, then Jd = (a1 , 2m, 2m, 2a
1

) and 

p( d) = 3 

These are easily verified by expanding the various forms of d by 

algorithm 2.1. The list can be extended to larger values of p(d). 

Finally it should be noted that there are infinitely many 

values of d for which the last two approaches offer no extra information 

about the size of p(d) and in these cases the only information we have 

is given by (14) and (16). 

An Alternative Approach ford= 1(mod 4) 

In this section we assume that d = 1(mod 4). An integral 

basis for Z(Jd) is 1, w = (1 + Jd)/2. Thus z(Jd) = {k + £ -wJk, i, E z}. 

The norm of any integer~= k + i, w E Z(Jd) is now given by 

N(~) = (k + i, w)(k t- i, w) where w = (1 - Jd)/2 (18) 

Suppose that~= (k
1 

+ LJd)/2 > 1 is a unit of Z(Jd). Then 

-1 
N(~)~ = (k

1 
- i,Jd)/2 is also a unft of Z(Jd) and may be written in 

terms of the integral basis as 

(k
1 

- i,Jd)/2 = (k - i, _w) where k = (k
1 

+ i,)/2 E Z 

Since k
1 

and i, are both positive it follows that k is positive. 

From (18) 
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Since 

we have 

f k ~ AJJj = 1/(k iw). 

fk - AJJI ~ 21(1 + Jd) 

k - ~ ;;:: AlJ - 21 ( 1 + Jd) 

= i-Jd 21(1 + Jd) 

> u, except when d = 5 and i, = 1, 2, 

This gives us a parallel to theorem 2.3. 

Theorem 2.8 

Supposed 1 5. If~= (k1 + i-Jd)l2 > 1 is a unit of Z(Jd), 
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then letting k = (k1 + i-)12 we have that k - AlJ -i 
= N(~)~ is a unit and 

!kll - wl < 112.e,
2 

. 

Since (k, i,) = 1 we have k = 

of the s.c.f. for w. 

The Expansion of w 

p ' i, n 
= o for some convergent p lq 

11 n n 

Since d = 1(mod 2), w can be expanded without adjustment by 

algorithm 2.1. To obtain some idea of the form of the expansion we 

firstly look at reduced quadratic surds associated with w. 

Let a 1 = [Jd] , and suppose that a
1 

is even. Then 

(a1 - 1 + Jd)l2 is a reduced quadratic surd and consequently it has a 

purely periodic s.c.f. 

Thus 

where 

as 

a.
1 

= [(a1 - 1 + Jd)/2] = a 1 - 1. We can rewrite (19) 

(a
1 

- 2)12 + w = ( a
1 

- 1, a
2

, . • • , a , 
r 

a - 1) 
1 

II 

(19) 
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and thus, since (a
1 

- . 2)/2 E z, 

In a similar manner we can derive 

w = (20) 

for the case where a1 is odd. Thus the period starts after the first 

term (except ford= 5 where (1 + Js)/2 = (1)). 

By slightly modifying Chrystal's proofs [195~, II, pages 

460 467] it is easily shown that when w is expanded by algorithm 

2.1 P , Q and a exhibit almost exactly the same relationships as they 
n n n 

do in the expansion of Jd. 

We have i) letting r be the length of the period and a= [w]. 

n 1 2 3 r - 1 r r + 1 

p p =1 p2 p3 . p4 p3 p2 n 1 

Qn Q =2 
1 Q2 Q3 Q3 Q2 Q1 

a a a2 a3 a3 a2 2a-1 
n 

P < Jd, . 1 s Q < 2Jd, , ii) 1 s 1 s 
n n 

iii) the middle of the period may be 

the same manner as for Jd. 

Recalling theorem 2.5 we have 

Q = 2 ( -1) n- i N ( 
n pn-1 q 1w) • n-

r + 2 r + 3 

p2 p3 

Q2 Q3 

a2 a3 

+ 
a < 2Jd, V n E Z n 

recognised in precisely 

( 21) 

Since (pn-i - 4n_ 1w) E Z(Jd), N(~n-i) must be a rational integer and so 

Qn is always even. Consequently P is always odd (since Q j(d - P
2

)) 
n n • n ' 



and ii) above may be modified to give O < an -< Jd_, V n, . 

Obtaining Units from the Expansion of w 

From (21) we have that pn_1 - ~_
1
w is a unit if and only 

if Q = 2. The values of n for which Q = 2 follow exactly the same 
n n 
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pattern as the one that was found for the values of n for which Q = 1 
n 

in the expansion of Jd. 

Theorem 2. 9 

Let r be the length of the period of~­

if n =tr+ 1, t = O, 1, 2, . 

Proof 

Let a1 = [Jd] an~ assume that a 1 is odd. 

n -/ 1. By extending a theorem of Hickerson [197~, 

Jd - p < Q < Jd + P for m> 1. Thus Jd - p < m m m n 

have p < Jd and P odd it follows that p = a1. n n n 

Q 

p 

Then Q = 2 if and only 
n 

Suppose Q = 2 and 
n 

page 430] we have 

and since we must 
n -

= a
1 

and Qn = 2 
n 

implies an= [(a1 + Jd)l2] = a 1 . Therefore Pn+ 1 = 2a1 
2 

Q = (d - a )12 However, since P
1 

= 1, Q
1 

= 2 and a 

a
1 

= a
1 

and 

= (a
1 

+ 1)12, 
n+1 1 · 

it follows that Pn+1 = P2 and Qn+ 1 = Q2. Thus (n + 1) - 2 = n - 1 is 

a multiple of r. 

Conversely, if n =tr+ 1 > 1, then from (20) we have an= a 1 . 

If Qn-/ 2 then Qn ~ 4 and an~ [(a1 + Jd)/4] = [a
1
1~] < a 1 . Thus we 

must have Qn = 2. 

Noting that Q1 = 2 completesthe proof for the case a 1 odd. 

The case where a
1 

is even is proved in a similar manner. II 
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In view of this theorem we have that (ptr ~ qtrw) is a unit 

for each t E Z+ th: 
The r convergent gives 

and so from theorem 2.8 we have . 

In fact the positive powers of Dd are given by 

Comparison 

Ford= 1(mod 4) we now have two ways in which Dd can be 

calculated. That is, we can use the expansion of Jd or the expansion 

of w. The question which naturally arises is whether one method is 

more efficient than the other. A comparison of the number of terms 

of the s.c.f. which must be calculated in order to obtain Dd for 

5 $ d $ 100005, d = 5(mod 8) gives the following results. 
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i) For 24.65% of the values of d the number of terms which 

must be calculated is the same. 

ii) 

Average No. terms using Jd Average No.terms using w 

5 $ :d $ 25005 21. 80 22.06 

5 $ d ~ 50005 29.66 29.95 

5 $ d $ 75005 35.48 35.75 

5 $ d $ 100005 40.12 40.40 
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These resuits suggest that there is slightly less work involved if the 

expansion of Jd is used, However the difference is so marginal that 

we can ignore it unless we wish to produce tables of ~d for a large 

number of d. 
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3 UNITS OF PURE CUBIC FIELDS 

Q(a.) is called a cubic field if the minimal polynomial for 

a. is a cubic. If a. is also the cube root of a rational number then 

Q(a.) is called a pure cubic field. We can assume without loss of 

generality that a. is the cube root of a positive cube-free rational 

'integer, d. 

The Integers of Q(d113 ) 

Let d be a positive cube-free rational integer and let 

o = d113 . We shall assume O E R and thus Q( O) will be a real field. 

We can write d = pq2 where p, q are two distinct relatively prime 

positive square-free integers . Any~ E Q(O) can be written as 

2 
~=a+ bO + c

0
o a, b, c

0 
E Q . 

. J:.2 -_ (p2 q4)1/3 --However, since u ( 2 ) 1/ 3 Q • • q p q , ~ is more conveniently 

written as 

~ = a+ bo + c0 

where (J = (p2q)1/3 and c = coq 

The conjugates of~ are 

~1 bbµ + 
2 

= a + c0µ 

and ~2 = a + boµ
2 

+ c(Jµ , 

where µ = (-1 + ✓-3)/2 . 

Thus the cubic polynomial for~ is 

g(X) = (X ~)(X ~1)(X - ~2) 

= x3 3ax2 + 3(a
2 

- pqbc)X - N(~) 
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(1) 
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where 

Theorem 3.1 

The integers of Q(o), o3 = 2 
pq , are the numbers 

~ = (x +yo+ z0)13' x, y, z_E z, 

2 with x = y = z = O(mod 3) when pq I± 1(mod 9) (type I fields), and 

x = py = qz(mod 3) when pq 2 = ± 1(mod 9) (type II fields), 

Proof 

Sved [1970, page 142] gives 1, o, ¢ as an integral basis for 

the integers of type I fields, and (1 +po+ q¢)/3, o, 0 as an integral 

basis for the integers of type II fields. 

For t ype I fie lds the statement in the theorem is obviously 

equivalent to that given by Sved. 

For type II fields we note 

i) ~ = (x +yo+ z0)13 = x(1 +po+ q0)13 + 

+ o(y - px)l3 + 0(z - qx)l3, x = yp(mod 3) ~ xp = y(mod 3) 

(since 31'P) and so (y - px)l3 is an integer. Similarly (z - qx)l3 is an 

integer and so~ can be expressed in terms of the integral basis given 

by Sved. 

ii) Let a, b, c E Z. 

Then a(1 + po + q.0)13 + bo + c0 = ( a. + (ap + 3b)o t (aq t 3c)0)13 

Letting X = a, y = ap + 3b, z = aq + 3c we have PY= ap 
2 

=a= x(mod 3) 

and qz = aq 2 = a= x(mod 3) Thus the statement in the theorem is again 

equivalent to that given by Sved. II 
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Units of Z(o) 

The minimal polynomial for 6 is f(X) = ·x3 - d. Since f has 

one real root and two non~real roots we have, by theorem 1.7, that 

there exists a unit~ E Z(o) such that any unit of Z(o) can be 

expressed in the form s~n, wheres is a root of unity and n is an 

integer. Since f has one real root we have thats=± 1. Thus there 

are four units which we could take as fundamental. Of these four 

units only one is greater than unity, We shall denote this unit by 

-1 
In many works ~d is taken as the fundamental unit. (For 

example, Sved [1970] and Beach, Williams and Zarnke [1971]). One 
I 

-1 
reason for doing this is that the coefficients of ~d are of the order 

of the square root of the coefficients of ~d· However Shanks 

[197~ , page 330] notes that for applications involving the 

fundamental unit of Z(o) it is usually preferable to use ~d as the 

fundamental unit. Since many of the results to be presented in this 

chapter involve units~> 1 we shall take ~d as the fundamental unit, 

We now develop some of the properties of cubic units. For 

the rest of this chapter we shall assume that Dis a unit of Z(o) such 

that 

= (x +yo+ z¢)/3 > 1. 

When Dis a unit of a type I field we shall sometimes write Din the 

form 

= 

where x = 3xo, y = 3yo and z = 3zo· 



. ..., 

From (1) the conjugates of Dare 

D1 = (x +yoµ+ z0µ 2)13 

and D11 = (x + yoµ 2 + z0µ)13, µ = (-1 + ,J-3)12 

Thus N(D) = T]TJ
1 D11 

3 3 2 3 2 
= (x + y pq + z p q - 3xyzpq)l27. 

The norm of D may be rewritten as 

N(D) = D((x2 - pqyz) + (pz2 - xy)o + (qy 2 - xz)0)19 

Since the second term of (3) is positive definite we have that D and 

N(D) have the same sign. Thus we have 

Lemma 3.1 

If Dis a unit of Z(o) such that D > 1 then N(D) = 1 
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(2) 

(3) 

II 

Thus 
-1 2 2 

D = D1 D11 = ((x - pqyz) + (pz 2 xy)o + (qy - xz)0)19 

We now prove a theorem from which many of the later results of 

this chapter will be derived . 

Theorem 3 . 2 

Let D = (x +yo+ z0)13 > 1 be a unit of Z(o), 

o3 
= d > O, d cube free . 

Then i) 

iii) 
k 

< 3.471'rl 4 



'iv) /17 - x/ $ 2(A,/3+ 
1 . k 

B)/✓311~ < 2, 31/T] 2 

/ri - yo/ (A/3 + 
k k 

v) $ B) /T] 2 ~ 2/17 2 

j17 - z0 j $ . (&/3 + 
k k 

vi) B) /17 2 ~ 2/T] 2 

where A, B 2 2 
~ - 0 -and- A' +· B · =- 1 

Proof 

From (2) we have 

2 
T]

1 = (x +yoµ+ z0µ )/3, µ = (-1 + ✓-3)/2 

Similarly 

Thus 

= (x -(yo+ z0)/2)/3 + i(,/3oy ,/§0z)/6 

T]
11 = (x -(yo + z0)/2)/3 - i(,/3yo ,/3z0)/6 

= lri" j, and since 11TJ1
T]

11 = 1 we also have /ri'I 

Consequently we can set 

and 

l<x -(yo+ z0)/2)/3j 

l./3( yo - z0)/6j 

and then from (4) we have 

2 2 Thus A + B = 1 and A, B ~ 0 . 

k 
= A/T] 2 

k 
= B/T] 2 
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(4) 

( 5) 

(6) 

Rewriting (6) gives jyo 
k 

= 2J3 B/T] 2 which is iii) of the theorem. 

To obtain i) we note that 

X -(yO + z1J)/2 

and thus from (5) we have 



Ix~ (yo+ z0)12I 
k 

= 3A/Tl 2 

We obtain ii) in a similar manner. 

Using i) and ii) we now have 

Tl= (x +yo+ z0)/3 

k 
= x - 2(AJ3 + B)/,j3fl 2 

In a similar manner we have 

and so 

v) and vi) are obtained in the same manner as iv). 

To find an upper bound for AJ3 + B we set A= cos 0, 

·ec· 2 2) .. ✓ . B = sin since A + B = 1 and then maximize 3 cos 0 + sin 0 for 
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0 E [o, n/2]. Differentiating with respect to 0 and setting the result 

equal to zero produces 

cos 0 = ,j3 sin 0 ~ tan 0 = 1/J3 

Thus 0 = n/6 and the corresponding maximum is ,j3 cos TT/6 + sin n/6 = 2. 

The right hand side of each inequality now follows. II 

Thus when Tl is large the· four numbers Tl, x, yo, and z0 will be 

close approximations to each other, In particular we note that Tl is a 
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close approximation to a rational integer, (Compare the quadratic 

case where a similar result was obtained). 

Example 3.1 

Let 6 = 21
113

. From Sved [1970, page 144], 

T} = (5115 + 18546 + 6720)/3 

is a unit of Z(6). 

We have X = 5115 , 

yo= 5115,0454 . . . , 

k 
z0 = 5115.0372 ... , (3.47/Tj 2 = 0.048 ... ) 

and T} = 5115.0275 ... 

k k 
(2.31/'rj 2 = 0.0322 ... and 2ITJ 2 = 0.0279 ... ) 

It is fairly obvious from theorem 3.2 that when T} is large, 

II 

x, y and z will all be positive integers. In fact this is true for any 

unit T} > 1. 

Theorem 3.3 

Let T} = (x +yo+ z0)/3 be a unit of Z(6). Then T} > 1 if and 

only if x, y, z > 0. 

Proof 

Clearly x, y, z > 0 ~mplies T} > 1. To show that the 

converse is true we firstly show that for T} > 1 the coefficients 

x, y and z are non-zero. 

If at least one of x, y, z is zero then from theorem 3.1 we 

have x = y = z = O(rnod 3) and so we can write x/3 = x 0 , yl3 = y 0 , 

-,., 
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Suppose x = O. Then N(Tj) 
3 2 

= y
0
pq 1 which implies 

pqj1. However pq
2 > 1 and so pqf-1 . Thus x cannot be zero. If 

y = z = 0 then Tj = 1 which has been excluded from consideration. Thus 

the only cases left to consider are x, z 1 O, y = O and x, y 1 O, 

z = 0. 

Suppose y = 0. 
3 3 2 

Then N(Tj) =XO+ zap q = 1. 

are non-zero they must differ in sign and so 

(7) 

However 

3 
and so (7) implies Tj < 1. This contradicts the fact that Tj > 1. 

Thus y 1 O. 

If z = 0 then a similar argument leads to a contradiction. 

Thus x, y, z are non-zero. 

We now show that x, y, z > 0. From v) of theorem 3,2 we 

1: 
have ITJ - yoj < 2(since Tj 2 > 1)'. Thus yo> - 2 + Tj > - 1 and so 

y > - 1 since o > 1. Since y is non-zero it follows that y must be 

positive. Using vi) of theorem 3.2 shows that z must also be positive. 

From iv) of theorem 3.2 we now have 

X ~ -2.31 + Tj 

X > -1.31 



Thus x = ~1 or x > 0, 2 
If x = ~-1 then we must have pq - ± 1(mod 9) 

and thus pq ~ 10. Remembering that y, z > O, we have 

N(TJ) 
3 2 3 2 

= (-1 + y pq + z p q + 3yzpq)l27 

~ (-1 + 10 + 10 + 30)127 

> 1 

Thus x = -1 is impossible and so x > 0 • 

Using theorems 3.2 and 3.3 we can obtain a lower bound for 

Tjd. The method is shown in the following example. 

Example 3. 2 
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II 

a) Let d = 2. Then p = 2, q = 1 and Q(0)isatype I field. 

From theorem 3.2 vi) we have 

Theorem 3.3 shows that z > 0 and since z = 0(mod 3) we have z ~ 3. Thus 

k 
Tj ~ 30 - 2IT] 2 

d d 

k 
Since Tj 2 > 1 we obtain 

d 

Tj ~ 3 X 4113 - 2 > 2,76 . 
d 

k 
However this implies Tj~ > 1.66 and so we have 

Tjd ~ 3 X 4
113 

- 211.66 > 3.55 

Continuing in this iterative manner we obtain 



b) Let d = 10. Then p = 10, q = 1 and Q(6) is a type II 

field. We have z ~ 1 and so from vi) of theorem 3.2 

Starting with ~d = 1 we iterate as in the previous case and after 4 

steps obtain ~d > 3.6 . 

Pure Cubic Units and Simple Continued Fractions 
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II 

In chapter two we found that the problem of obtaining units 

of Q(Jd) was solved by the use of simple continued fractions. That we 

were able to do this · depended upon the fact that the coefficients of any 

unit greater than one gave a good rational approximation to Jd. 

Although theorem 3.2 shows that xly is a rational approximation to 

6, xlz is a rational approximation to 0, and ylz is a rational 

approximation to 016, the closeness of approximation is not good enough 

to guarantee that xly, xlz and ylz are convergents of the simple 

continued fraction for 6, 0 and 016 respectively, except in cases where 

x, y, z are 'small'. The following theorem defines what is meant by 

x, y, z 'small'. 

Theorem 3.4 

Let~= (x t yo+ z0)13 > 1 be a unit of Z(6). For type I 

fields we can write~= XO+ Yoo+ zo0 (xo, Yo, zo E z, X = 3xo, 

y = 3y
0

, z = 3z
0
), and we have 

2 
z

0 
< 96 0116 - 1 ~ y

0
lz

0 
is a convergent of 

the s.c.f. expansion of ~16 . 

For type II fields, except when d = 289,361, we have 



so 
· <, 

z < 6
2
0/48 - 1 ~ y/z is a convergent of 

the s,c,f, expansion of 0/6, 

Proof 

From theorem 3.2 we have 

and thus 

1: I 010 - y!zl < 2J3/z011
2 - (8) 

For type I fields 

zo < 96
2

-'1(1 - 2/3z
0
0)/16 

96
2

-'1(1 -
1: 

~ zo < 2/3z o-'111 2)/16 since T] > 1 

16 
2 < 2 1: 

~ zo 36 (3z
0
0 - 2/Tj2 ) 

~ 16z~ < 36
2
ri from theorem 3.2 

k 
~ 4z < J 36Tj 2 

0 

2 1: 
~ 4z

0 
< J3z

0
6ri 2 

k 2 
~ 2/J3zo6T]

2 < 1/2z
0 

( 9 ) 

From (8), ( 9 ) and theorem 2.2 we now have 

~ y
0
/z

0 
is a convergent of 

the s.c.f. for -'1/6 . 

When di 2 we have 36
2
/8 < 96

2
0/16 - 1 and thus 
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However 36
2
/8 < z ~ 36

2
/8z

0 
< 1 and so o , ? 

< 96
2
£l/16 -

2 
36

2
/8 < 2 . 2 

zo 1 ~ zo $ 36 /8 or zo, < 96 0/16 - 36 /8z
0 

~ zo < 96
2
0/16 

2 
- 36 /8z

0 

~ zo < 96
2
,0(1 - 2/3z00)/16 

Thus the result is now clear ford i 2. When d = 2 the result is trivial 

since 96
2
0/16 - 1 ~ 0.42 . 

For type II fields we can show (in a manner similar to the 

type I field case) 

2 2 
z < 6 0/48 - 6 /24z ~ y/z is a convergent of 

the s.c.f. for 0/6 

To complete the proof we must show that when di 289,361 

(10) 

2 
When 6 < 24 (10) clearly holds. (10) also holds when 6

2
/24 < 6

2
0/48 - 1 

since 
2 

6
2 
/24 6

2 
/24 < 6

2
0/48 z < 6 0/48 - 1 ~ z < or z < - 1 

~ z< 6
2
/24 or 6

2
/24 < z< 6

2
¢/48 - 6

2
/24z 

~ z < 6
2
0/48 -

2 
6 /24z . 

Consequently the only values of d for which (10) may not hold are those 

d for which 6
2 > 24 and 6

2
/24 > 6

2
0/48 - 1. 

We find by exhaustive testing of all possibilites that 289 

and 361 are the only values of rl that satisfy these inequalities. Thus 

when di 289, 361 (10) is true. // 

"" 



The other two _appro~imations (x/y to O and x/z to¢) give 

similar results. However , of the three, the approximation of y/z 

to 0/6 is the best for our purposes and so we shall confine our 

attention to this one approximation. 

It must be pointed out that we do not necessarily have 

(y, z) = 1 (nor (y
0

, z
0

) = 1 for type I fields). Thus it is possible 
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that y = kp , z = kq where p /q is a convergent of 0/6. However this 
n n n n 

extra complicating factor is easily taken care of as will be shown in 

example 3. 3. 

If any units are found by the use of s.c.f. (with the z 

coefficient satisfying the inequality in theorem 3.4) then,clearly, the 

first one found will be ~d. An example in which ~dis found by using 

s.c.f. will follow theorem 3.5. 

S . c . f. do not give a general method of obtaining cubic units 

but they can be used to obtain a lower bound for ~din those cases where 

units are not obtained. The bound obtained is in general much better 

than the bound obtained by the method shown in example 3.2. 

Theorem 3. 5 

For type I field we write ~d = x0 + y0o + z0¢ • 

Let 
2 

z
1 

= [ 96 ¢/16 - 1] 

Then either z
0 
~ z

1 
and thus y/z

0 
is a convergent of the s,c,f, for ¢/6 

For type II fields we have ~d = (x +yo+ z¢)/3 . 
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Supposed f 289,361 and let 

Then either z ~ z2 and thus y/z is a convergent of the s.c.f. for 0/6 

Proof 

The theorem follows immediately from theorems 3,2, 3,4. // 

The following example illustrates the results of the last two theorems. 

Example 3.3 

a) Let d = 52. Then Q(O) is a type I field and p = 13, 

q = 2, ~ = 02;2. Let~ - x + y 6 + z ~ 
P • 152 - o o op The value of z

1 
in theorem 

3.5 is 53 and thus if z 0 ~ 53 we will find y
0 

= kpn' z0 = k~ where 

p /q is a convergent of ~/6 (k E Z+). k is further restricted in that 
n n 

we must have 

1010 - p /q I< 1/2(kq )
2 

n n - n 

The first few terms of the expansion of ~/6, together with the 

corresponding convergents are given below. 

(t/J/6 = 1.866255 ... ) 

n 1 2 3 4 5 

a 1 1 6 2 10 
n 

pn 1 2 13 28 293 

qn 1 1 7 15 157 

(11) 



We now check all pairs kp , kq (kq $ 53) satisfying {11) by first 
· n n . n 

calculating the third coefficient · x; using theorem 3.2 

k 
i) clx - Yo6I < 1.16/n

2
). Since n52 > 30_ - 2 ~ 18,89 we have 

x; = [kpn9 + ½] We then calculate N(x; + kpno + kqn0) as the 

conclusive check, The results are set out below. 
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n = 1 kp1, kq1 do not satisfy (11) for any value of k. 

n = 2 . - kp2, kq
2 

satisfy (11) when k = 1. We have 

I = 7 and N(7 + 26 + ,el) = 5. XO 

n = 3 kp3, kq
3 

satisfy (11) when k I 49 and = 1,xo = 

N(49 + 136 + 7,el) = 25. 

n = 4 kp4, kq4 satisfy (11) when k = 1, 2. 

k = 1 I = 105 and N(1O5 + 286 + 15,el) = 79 XO 

k = 2 I = 209 and N(2O9 + 566 + 3O,el) = 1 XO 

Thus n 52 
= 209 + 560 + 3O,el. 

b) Let d = 167. Then p = 167, q = 1 and Q(6) is a type I 

field. We have z
1 

= 516 and ,el/6 = (167) 113 = 5.506878 

few terms and convergents of the s.c.f. for ,el/6 are 

n 1 2 3 4 5 

a 5 1 1 35 1 
n 

pn 5 6 11 391 402 

~ 1 1 2 71 73 

The first 

6 7 

5 2 

2401 5204 

436 945 
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The calculations for those kp , kq , with kq ~ ·515, which satisfy 
n n n 

(11) are set out below 

n k I N(x' + kp o + k~0) XO 0 n 

2 1 33 700 

3 1 61 28 

3 2 121 25 

3 3 182 35 

3 4 242 200 

5 1 2214 349 

6 1 13222 7 

Thus none of the possibilities with kq ~ 516 give a unit and so we 
n 

can conclude that z
0 
~ 517. Thus from theorem 3 . 5 we have 

k 
~

167 
> 3 X 5170 - 21(3 X 5170 - 2) 2> 47035 

If we had used the method of example 3.2 we would have obtained 

~167 > 90.7 
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II 

As can be seen from part b) of example 3.3, the lower bound 

obtained using s.c.f. is in general much better than the bound obtained 

using the method of example 3.2 (Although for type II fields with small 

d the bound obtained will be the same by either method). The extra work 

involved in obtaining the larger bound is small and the importance of 

being able to obtain a large lower bound for ~d will be seen in the 

last section of this chapter. 
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Obtaining Pure Cubic Units 

Since simple continued fr9ctions do not give a general method 

of obtaining pure cubic units, other algorithms have been developed 

for this purpose. Among these we have the Szekeres, Voronoi, Billevich 

and Jacobi-Perron algorithms, All four algorithms attempt to locate 

units lying between O and .1, The following comments relate to pure 

cubic fields, although all four algorithms can be used to obtain units 

in other algebraic number fields, 

Szekeres' algorithm [Szek,eres, 1970] and the Jacobi-Perron 

algorithm [Ber~stein, 1971] are generalizations of the idea of continued 

fractions to higher dimensions, Neither algorithm is guaranteed to 

locate units of Z(o) although in practice both algorithms are quite 

successful in this respect. In practice it appears likely that 

-1 [ Szekeres ' algorithm will almost always locate Dd. Sved 1979] used 

this algorithm to calculate units for 2 ~ d < 200, d cube-free. In all 

-1 cases Dd was obtained. Sved also used the algorithm to obtain as many 

-1 powers of each Dd as was practical. Only in a few cases were powers of 

Dd missed. The Jacobi-Perron algorithm is, in general, less efficient 

than Szekeres ' algorithm. 

Billevich's algorithm [Stefner and Rudman, 1976] is very 

inefficient when the coefficients of the fundamental unit are large and 

thus the algorithm is of little use in many cases. However the algorithm 

is guaranteed to locate D~
1 

whi.ch is not true of the Jacobi-Perron 

algorithm and Szekeres 1 algorithm, but this advantage is greatly 

outweighed by the inefficiency of _the algorithm in the cases where Dd 

is large. 
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Over the past century a, number of tables of (fundamental) pure 

cubic units have been published, Ma,rkoff [1892] produced a table of 

fundamental units for 2 $ d ~ 70, However subsequent tables have shown· 

that in two cases (d = 28, 55) Markoff obtained~~ and not ~d' 

Markoff's table of units is reproduced in Delone and Faddeev [1964, 

page 304]. In the following 70 years, tables of fundamental units were 

published by Nagell [1929], Wolfe [1923] (for d = 85 Wolfe gives ~~ 

and not ~d), Cassels [1950] and Selmer [1955]. Selmer's table is the 

most extensive of those so far mentioned. He gives a fundamental unit 

for each cube-free integer d with 2 $ d $ 100. 

In recent years the calculation of fundamental units has been 

aided by the use of computers and consequently the tables published 

over the past few years have been more extensive than the earlier 

tables. 

As already mentioned, Sved [1970] used Szekeres 1 algorithm to 

-1 
calculate ~d for 2 $ d < 200. Wada [1970] gives a table of ~d for 

2 $ d < 250. The most recent, and also the most extensive table 

produced so far, is that of Beach, Williams and Zarnke (1971]. The 

-1 units in this table were calculated by Voronoi's algorithm and ~d 

is given for each cube-freed with 2 s d < 1000. 

Algorithm for Determining the Fundamental Unit of Z(O) given any Unit 

of Z(O) 

One of the drawbacks of Szekeres' algorithm is that there is no 

guarantee that the first unit obtained by the algorithm is in fact 

fundamental. Thus an algorithm which can determine whether or not a 

given pure cubic unit is fundamental would greatly enhance the value of 
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Szekeres' algorithm. In this section we shall develop such an 

algorithm. In addition, the algorithm will produce the fundamental 

unit in those cases where the given unit is notfundamenta.1, Thus if 

the algorithm was used in conjuction with Szekeres 1 algorithm we could 

be sure that any unit obtained by the combined algorithm was indeed 

fundamental. The amount of work required to test whether or not a unit 

is fundamental is small when compared with the amount of work required 

to obtain the unit by the use of Szekeres' algorithm. 

Before developing our algorithm we note that Delone and 

Faddeev[196~, pages 88-95] give an algorithm which can be used to 

determine whether or not a given cubic integer,~' is an integral 

power of some other cubic integer. However this algorithm is of most 

use when N(~) 1 ± 1. The algorithm also involves factoring of integers 

which are related to the coefficients of the cubic polynomial for~-

When Sis small this does not pose much difficulty but for large S the 

integers which must be factored will also be large and so the algorithm 

is not particularly efficient in the cases in which we will be interested. 

( f h . . d . 1096 
see the examples at the end o tis chapter which eal with ~167 ~ 

and ~~ 3 ~ 10
59

). 

Determining whether or not~ is fundamental is accomplished by 

determing whether or not there exists an integer, n > 1, such that 

~l/n is a unit. We have seen that it is possible to obtain a lower 

bound, L, for ~d such that ~d > L > 1. Thus we need only consider those 

n for which 

n < log ~/log L 
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Thus it is desirable that we can easily obtain a value for L which is 

as large as possible, Furthermore, it clearly suffices to check only 

those Di/n where n is a prime integer, Thus the number of checks 

which must be performed is finite, 

For a given integer, n, we check whether Dl/n is a unit as 

follows. 1/n Firstly we calculate D as a real number, Secondly we 

test to see if there exists an integer x such that Ix~ Dl/nj 

1/2n . 1/n < 2.31/D (theorem 3.2 iv)). If no such integer exists then D 

. . If h . . . h . . "bl h i/n is not a unit. t e test is positive ten it is possi et at D 

is a unit and the conclusive step is to calculate y and z from the 

inequalities of theorem 3.2 and then calculate N((x +yo+ z¢)/3), 

Thus if Dis not fundamental we will obtain a new unit 

Da such that D = D: (n prime). Although Da will not necessarily be 

fundamental it is clear that a finite number of repetitions of the 

above process will lead to Dd· 

The algorithm is now stated in full. 

Algorithm 3. 1 

Let D > 1 be a unit of the pure cubic field Q(o), o
3 

= 

d cube-free. Then Dd is obtained from Das follows, 

1 Obtain a lower bound, L, for Dd such that Dd > L ~ 1. 

(Use either the method of example 3.2 or the method of 

example 3. 3b)), 
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2 · Set r = 2 

3 Set N = [log _~/log L + 1] 

4 If r ~ N go to 11 

5 Set ~(r) = ~ 
1/r 

6 ]xE 
~ 

If z such that Ix - ~(r)j < 2,31/(~(r)) 2 go to 9 

7 Calculate y and z using theorem 3.2 

8 If N((x + y6 + z0)/3) = 1 go to 10 

9 Increment r to the next largest prime, go to 4 

10 Reset~ = ~(r), go to 3 

11 The current Vqlue of~ is fundamental. 

Stop. 

Notes 

a) At steps 6 and 7 multiple values of x, y and z are possible 

when ~(r) is small. However when ~(r) > 21.4 only one value of x, one 

value of y and one value of z is possible. 

b) The value of N calculated -in step 3 is the minimum integer, 

N, such that ~l/N < L. 

c) In step 8 we need only test if the norm is equal to+ 1. 

This is because units greater than one have positive norm (Lemma 3.1) // 

Practical Use of the Algorithm 

To satisfactorily perform the test at step 6 we need to 

calculate ~(r) to [3log10 ~(r)/2 + 2] decimal digits, and to calculate 

the norm of a suspected unit we must perform integer arithmetic with 

approximately [210~10 ~(r)] digits. (Using the expression 

2 2 2 
N(~) = (x(x - pqyz) + pqy(y q - xz) + zpq(z p - xy))/27) . 



Thus to use the algorithm we must De able .to calculate to at least 

. [log10 DJ decimal digits (in the case where D(2) is a suspected unit) 

and consequently multiprecision arithmetic computor programs * are 

96 
necessary (for example, D167 ~ 10 - see example 3.5). Of course to 

61 

obtain D, by the use of an algorithm such as Szekeres', we must be able 

to work with this number of digits and thus the algorithm does not call 

for any extra computational precision. In fact the amount of precision 

required decreases as the value of r increases (see example 3.4). 

The probability that a non-unit value of D(r) will satisfy the 

k 
test at step 6 would appear to be of the order 1/(D(r)) 2

, Thus, when 

D(r) is large, we expect that the test at step 6 will very rarely be 

satisfied when D(r) is not a unit. In practice we find that this is 

indeed so. (In the two examples at the end of the chapter we see that 

only those D(r) which are units satisfy the test at step 6). Thus the 

amount of work required to shown that D(r) is not a unit is usually 

very small. 

When D(r) does satisfy the test at step 6 of the algorithm we 

must then calculate y, z and finally N((x +yo+ z¢)/3). This involves 

a considerable amount of computation and it would be desirable to avoid 

such computation where possible. (When D(r) is a unit this computation 

cannot be avoided since the ultimate test for a unit is the computation 

of the norm). To make the algorithm more economic with regard to the 

amount of computation required we can add the following steps. 

* See Appendix 1 



i) From the norm equation for a positive unit we have 

3 - 3 3 
X + pq(y q + Z p - 3xyz) = 27N(Tj) = 27 

and so 3 
x - 27(mod pq) , 

Thus we add between steps 6 and 7, 

6a 3 If x ¥ 27(mod pq) go to 9. 

(This step would be acneved by first calculating x where 
pq 

"\., 

0 ~ x < pq and x - x(mod pq) and then testing the congruence of pq pq 
3 

x and 27 modulo pq). 
pq 
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ii) Step 7 can be expanded using inequalities of theorem 3,2 

7a 

7b 

k 
If ] y E z such that jyo - Tj(r)I ~ 2/(n(r)) 2 

k 
If ] z E z such that lz0 - Tj(r)I ~ 2/(n(r)) 2 

go to 9, 

go to 9. 

The addition of 6a is particularly effective when n(r) is 

small (less than 1000) since the probability that step 6 is satisfied 

by non-unit values of n(r) is relatively high in these cases, As a 

final point it should be noted that the computational economies 

introduced above are only of importance (that is, save some computation) 

in a small number of cases. This is because step 6 filters out almost 

all non-unit values of Tj(r) and thus steps 6a, 7a and 7b are rarely 

executed when Tj(r) is not a unit. 

We now give two examples which illustr~te the use of the 

algorithm and indicate the amount of work involved when it is applied 

to specific examples. The calculations were done on a B670O computer 

using the multiprecision programs listed in Appendix 1, 

Example 3.4 

Let d = 23, Then Q(o) is a type I field, Tj = xO + y Oo + zO0 
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is a unit .of Q( 6), whe:r>e 

XO = 251401129 6271379187 9829592761 

7258440514 . 3510195116 6439999601 

Yo = 88401156 3861048459 5086024628 

7875956789 8501378224 5618425660 

zo = 31084842 2280000275 0405930152 

0668641067 2496635313 4343732220 

Tl :=::: 754203388 8814137563 9488778285 

1775321543 0530585349 9319998803 

.0000000000 0000000000 0000000004 

:=::: 7.542 X 10
58 

(This Tl is obtained by taking the reciprocal of the sixth power of the 

unit given by Sved [1970]). Applying the algorithm we obtain 

L = 873.3 

(This bound is obtained in a manner similar to that of example 3,3b)). 

Consequently N = [log~7.542 X 10
58

)/log(873.3) + 1] 

= 21 

Firstly we test T1(2), the square root of Tl• 

Tl( 2) = 2746276367 8869134462 7557332202 

.9999999999 9999815705, 

and 
'k -15 

2.31/(1'1(2)) 2
::::: 4,41 X 10 

Thus the test at step 6 is positive and so we take 

X = 2746276367 8869134462 7557332203 
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Fo_r the test at step 6a we note that 

x = 3(mod 23) 

3 3 
and thus x - 3 = 27(mod 23). Therefore we proceed to calculate 

1')(2)/0 ~ 965683833 7882646905 0995173039 

. 9999999999 9999930631, 

1')(2)/0 ~ 339567160 0078384044 8684822730 

.0000000000 0000047179 

!.: -15 
Noting that 2/(1')(2)) 2 ~ 3.8 X 10 we see that 

y = 965683833 7882646905 0995173040, 

and z = 339567160 0078384044 8684822730, 

satisfy the inequalities of steps 7a and 7b respectively. The final 

test is to calculate N((x +yo+ z~)/3 which we find is unity. Thus 

T)(2) is a unit of Q(O). Consequently we replace~ by T)(2) and return 

to step 3 of the algorithm. 

N now takes the value 11. r still has the value 2 and so 

we calculate 

T)(2) ~ 52404 9269428640.024917 

This is clearly not a unit since the test at step 6 is negative. 

r is incremented to 3 and 

T)(3) ~ 6500020803.0000191071, 

1 . 

2.31/(1')(3))~ ~ 0.0000286 

Thus the test at step 6 is positive, so we take 

(12) 



X = 6500020803 , 

and note that x ; 3(mod 23), Thus the test in step 6a is positive 

and we calculate 

11< 3)16 ~ 2285627579,9999918228, 

11(3)10 ~ 803704110 ,0000005128, 

k 
and 21 ( 11( 3)) 2 

~ 0,0000248 

Thus we take 

y = 2285627580, 

z = 803704110 

and the calculation of the norm confirms that 11(3) is a unit. Thus 

11(3) replaces 11· 

N now takes the value 4. r has the value 3. (At (12), 11(2) 

was not a unit and so r = 2 need not be considered again) 

11(3) ~ 1866.257 and 
k 

2.311(11(3)) 2 ~ 0.053 
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and thus 11(3) is not a unit. r is now incremented to 5 which is greater 

than N. Thus we can stop and conclude that 

11 ~ 6500020803.0000191071 

is the fundamental unit of Q(o). II 

Example 3.5 

Let d = 167. Q(o) is a type I field and from Sved [197~] we 

have 
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· ,; 

Tl ~ 621050 064-0303132 6161103562 

8827556350 73624-78867 534-1597327 

4-816722532 9679837287 8103562731 

1528000987 .0000000000 0000000000 

0000000000 0000000000 0000000200 

1896095838 

~ 6.21 X 10
95 

is a unit of Q(o). ( This is the reciprocal of the unit given by Sved). 

Thus 

From example 3.3b) we have L = 47035. 

N = [log ~/log(47035) + 1] 

= 21 

The values of T1(r) which need checking are set out below. 

of these Tl(r) satisfy the test at step 6 of the algorithm. 

Tj( 2) ~ 78806729 6637992244 0050104080 

30564-69673 0335831406 .2371560251, 

Tl ( 3) ~ 85 3183020141 7547364081 

5443829075 .58054-48903, 

Tj( 5) ~ 1440871735 3864-111266 .29994924-24, 

Tl( 7) ~ 4838 7409603319 .6430345357, 

Tl( 11) ~ 5.11053133 5546616359, 

Tl( 13) ~ 23372332, 0124097584, 

Tj(17) ~ 431409.595, 

Tl(19) ~ 110088.893. 

Clearly, none 
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The ne?{t value of r, 23, is greater than N so we can stop and conclude 

that 

6. 21 X 10
95 

is the fundamental unit of Q(6), II 



68 

4 Units of Q(d¾), d '< O, d squa,re -free 

The third and final type of field, Q(a), in which the units 

of the ring of integers can be expressed as powers of a fundamental unit 

occurs when a is of degree four and a and its conjugates are non-real. 

A special case of this type of field is when a is the fourth root of a 

square-free negative integer. 

The Integers of Q(d¾) 

Let d be a square-free negative integer and let 6 = d¾. 

2 
Then Q(6) = {x +yo+ z6 + to

3 jx, y, z, t E Q}. 
3 

+ t
1

6 . Then the conjugates of 13 

are 131 + y16i 
2 63. = x1 z/> t 1 l, 

13 2 y16 
2 3 = X - + z

1
6 t16 ' 1 

and [3 = 
3 x1 - y 6i -1 

2 
z

1
6 + 63. t

1 
l 

The quartic polynomial for 13 is 

f(X) = (X - f3)(X - [3
1

)(X - 13
2

)(X - 13 3) 

4 3 
BX

2 - ex + N = X - AX + 

where A = 4x1 

2 2 
- 4dy 

1 
t

1 
, B = 6x

1 
- 2dz 

1 

C = 2 2 2 2 
4(x

1
(x

1 
- z

1
d) + d(z

1
(y

1 
+ t

1
d) 2x1y1t1)) , 

2 2 2 d(2x
1

z1 
2 2 2 

and N = (x1 + d(z
1 2y1t1)) Y1 t

1 
d) • 

Theorem 4.1 

The ring of integers of Q(6) is given by 

Z(o) = {(x +yo+ z6
2 

+ t6
3
)/4 j x, y, z, t E z) 

( 1) 

( 2) 

( 3) 

(4) 

(5) 
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with the .following restrictions on x, y, z, t. 

i) d = 1(mod 8) x = y = z = t(mod 2), x = z(mod 4), 

y - t(mod 4) . 

ii) d = S(mod 8) x = y :a z = t = 0 ( mod 2) x = z ( mod 4) , 

y - t(mod 4) 

iii) d - 2 , 3 ( mod 4) x = y - z = t - O(mod 4) 

Proof 

2 3 
Let 13 = x

1 
+ y 1 o + z1 o + t 1 o , x

1
, y 

1
, z

1
, t 1 E Q 

be an integer of Q(o). Then A, B, C and N above must be integers. 

Furthermore 13 2 = x
1 

- y 1o + z1o
2 

- t 1o
3 

is also an integer of Q(o) since 

it satisfies the same polynomial as 13 and is clearly an element of Q(o). 

Consequently 

2 2 2 2 2 
= (x1 + z

1
d - 2y1t 1d) + (2x

1
z1 - y1 - t 1d)o 

= E + Fo 2 
(6) 

is also an algebraic integer. However 13132 E Q(Jd) and is therefore a 

quadratic integer. From (1) of chapter 2 we have that E and F must 

be integers when d E 2, 3(mod 4), and when d = 1(mod 4) 2E and 2F must 

be integers. In either case we have from (6) 

2 2 
2(x

1 
+ z

1
d - 2y1t 1d) E Z (7) 

and 
2 2 

2(2x
1

z
1 

- y
1 

- t
1

d) E Z ( 8) 

Also, from (3) we have 

E Z (9) 

From (2) we have x
1 

= x/4 where x E Z. 
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Let ·y 
1 = Y/P, zi = z/q, t1 = t/r where Yo, zo, to' P' q, r E .z' 

(y O' p) = (zo, q) = (to, r) = 1 and p, q, r> 0. We shall show that 

p/4, q/4, and rl 4 and hence it will follow that we may write 

z1 = z/4, y 1 = y/4, t
1 

= t/4 where y, z and tare integers. 

From (7) 

2 2 
2(x /16 + z1d - 2y

1
t

1
d) E Z 

and so 
2 2 . 

x + 16z
1 

d - 32y 
1 

t
1 

d E az1: (10) 

From (9) 
2 2 

3x - 16z
1

d - 32y
1

t
1

d E SZ ( 11) 

Subtracting (11) from (10) gives - 2x
2 + 32z~d E SZ and thus 

32z~d E 2Z. Dividing by two gives 16z~d/q
2 

E Zand since (z
0

, q) = 1 

we must have q
2

/16d. Since dis square-free it follows that q/4. 

From (10) we now have that 32y
1

t
1

d is an integer. Thus 

32 2 2 2d3 
y1t1 E z (12) 

From (8) 
2 2 E 4z xz - Sy - 8t

1
d 

1 

2 
8t 2d E ~ 8y1 + z 

1 
(13) 

~ 32dy~ + 32t 2d2 E 4dz 
1 

(14) 

(12) and (14) imply that 32dy~ and 32t~d
2 

are both integers since their 

sum and product are both integers. Substituting for y
1 

gives 

32dy~/p
2 

E Z. Thus p
2

j32d and so pjB. Multiplying (13) by 8 gives 

2 2 2 
64y

0
/p + 64t

1
d E Z. I 2 2 

Since p 8 it follows that 64y
0
/p E Zand so 

64t~d must also be an integer. Thus 64t~d/r
2 

is an integer which 

implies that rjB (since dis square-free and (r, t
0

) = 1). 

* BZ = {O, ± 8, ± 16, ... } 
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· <, 

We now show that r = 8 or p = 8 is impossible. Suppose , 

p = 8. : 2 2 2 2 
From (13)_ we have 64y /P + 64t0d/r = O(mod 8). Since 

p
2

j32d we must have 2jd and from (p, y) = 1 we have that y is odd. - 0 0 
2 2 2 2 

Thus 64y0/p = 1(mod 8). Consequently 64t
0
d/r = -1(mod 8). However 

the last congruence is impossible when rj8 and 2jd. Thus pt 8 and so 

2 2 
This now gives 64y

0
/p = 4m, (m E Z), and so from (13) we 

2 2 2 2 
have 4m + 64t

0
d/r = O(mod 8). Thus 64t

0
d/r = O(mod 4). This 

congruence cannot hold when r = 8, (r, t
0

) = 1, and dis square-free. 

Therefore r 1 8 and so rj4. 

Consequently we now have~= (x + y6 + z6 2 
+ t6 3)/4 with 

x, y, z, t E Z. 

We now develop the relationships between x, y, z, t modulo 4. 

we have 

and 

1) d = 2, 3 ( mod 4) 

Since E and F of (6) must be integers 

2ytd - O(mod 16) 

2xz - y
2 

- t
2
d = O(mod 16) 

a) d = 2(mod 4) - since 2jd we must have x
2 = O(mod 2) 

from (15). Thus 2jx. This implies that x 2 - 2ytd = O(mod 4) and 

therefore z
2
d = O(mod 4). Since 4}d we must have 2jz. From (16) we 

2 2 I I now have y + t d = O(mod 8) and since 2 d we must have 2 y and 

(15) 

(16) 

consequently 2jt. Since y, z, t, dare all even we now have, from (15), 

2 - I x = O(mod 8) and so 4 x. This then implies that z
2
d - O(mod 8) and so 

4jz. Similarly 4jy and 4jt. 
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b) 2 2 d = 3(mod 4) - from (15) we have x + z d = O(mod 2) 

and so x = z(mod 2). ·similarly y = t(mod 2). If y and tare both even 

2 2 · 
then from (15) x + z d = O(mod 8) and so x and z must be even. 

Similarly x, z even implies y, t even. Thus x = y = t = z(mod 2). 

2 2 
However from (16) we have 2xz - y - t d = O(mod 4) and this 

congruence is impossible when x, y, z, tare odd. Therefore we must 

have x = y = z = t = O(mod 2). 

Suppose neither x nor z is divisible by 4. Then 

x
2 

+ z 2d = O(mod 16) and so 2ytd = O(mod 16). This is only possible if 

4jy or 4jt. Thus we can be sure that at least one of x, y, z, t must 

be divisible by 4. However from (15) and (16) it follows that if one 

of x, y, z, tis divisible by 4 then the other three must also be 

divisible by 4. 

Thus ford= 2, 3(mod 4), x = y - z - t - O(mod 4). 

2) d - 1(mod 4). 

In this case we only require 2E and 2F of (6) to be integers 

and so we have 

2 2 
X + z d 

2 
2xz - y 

2ytd - O(mod 8) 

t
2

d - O(mod 8) 

(17) 

(18) 

From (17) x2 + z2 = O(mod 2) and thus x = z(mod 2). Similarly from (18) 

we have y = t(mod 2). Suppose y, tare even. Then from (17) 

x2 + z2d = O(mod 8) and this can only be true when x, z are even. In a 

similar manner we have x, z even ~mplies y, t even (from (18)). Thus 

x = y = z = t(mod 2). 
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a) d - 1(mod 8) suppose x = ,y = z - t = 1(mod 2). 

Then from (17) 0 
2 2 

- x + z d - 2ytd = 1 + 1 - 2yt(mod 8). Thus 

yt - 1(mod 4) and soy - t(mod 4). Similarly x = z(mod 4). Suppose 

x, y, z, tare even. 2 2 · 
Then, from (17), x + z = O(mod 8) and so 

x = z(mod 4). Similarly y = t(mod 4). 

b) d = S(mod 8) suppose that x, y, z, t are odd. Then., 

from (17), 0 
2 2 

- x + z d - 2ytd - 1 + 5 - 2yt ( mod 8) . Thus yt = 3(mod 4) 

and soy= -t(mod 4). Similarly x = -z(mod 4). If ~ -is an integer then 

so is ~m = (x + y 6 + z 6
2 

+ t 6
3
)/4, where x, y , t , z E {-1, iJ 

m m m m m m m. m 

) 2 ,. 3 
and x - x(mod 4), y = y(mod 4 , etc. (This follows since 1, 6, 6 , v m m 

are integers). By replacing ~m with-~ if necessary we can assume 
m 

that X = 1 and consequently z = -1. Since y = -t(mod 4) we will have m m 

ymtm = -1. For the integer ~m we have (from ( 4)) 

(x 2 z 2d) 
2 

t 2d) O(mod 16) X - + dz (y + - 2x y t d -m m m m m m mm m 

Substituting, we obtain 

1(1 - d) + d(1 + d) - 2d - 1 - d
2 

- O(mod 16) 

2 
However, d = S(mod 8) implies 1 - d = 8(mod 16). Thus x, y, z, t all 

odd leads to a contradiction. Consequently x = y = z = t = O(mod 2). 

From (17) x
2 

+ 5z
2 

- 10yt - O(mod 8) 

- O(mod 8) 

x = z(mod 4). 

Similarly, from (18), y - t(mod 4). 

Thus the necessity of th_e conditions given in the theorem has 

been shown. 



Ford - 2~ 3(mod 4) it is obvious that the conditions are 

sufficient. 

Ford= S(mod 8) (2 + 20
2 )14 and o are clearly integers of 

Q(o). ((2 + 20
2

)14 is in fact a quadratic integer). All of the 
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numbers described in part ii) of the theorem can be obtained from these 

two integers by using the operations of addition and multiplication. 

Thus the conditions given in ii) are sufficient. 

When d = 1(mod 8) we can obtain all the numbers described in 

i) of the theorem by additions and multiplications of the numbers 

2 3 2 
(1 + O + O + O )14, (1 + O )12, and o. It is easily verified (using 

(2), (3), (4), (5)) that these numbers are integers of Q(o) and thus 

t he conditions given in i) are sufficient. II 

(At no stage in this theorem did we make any assumptions on the sign 

of d and therefore the result given in the theorem also describes the 

¾ integers of Q(d) when dis a positive square-free integer). 

Units of 
4 

Z(o) (o = d < o, d a square-free integer) -------
2 

The norm of any integer~= (x +yo+ zo + to
3 )14 is given by 

Thus the norm of any integer is non-negative and consequently any unit, 

~' has norm N(~) = 1. 

Let~= (x +yo+ zo
2 

+ .to
3 )14 be a unit of Z(o). Then 

~, = (x - yo+ zo
2 

- to 3)14 is a conjugate of~ and is also a unit of 

Z(o) since N(~) = N(~' ). Therefore the product 
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-, 
(x 

2 2 2yt.d)/16 + 2 2 
t

2
d)/16 rrri = +, z d ... 6 (2xz - y -

is also a unit. However, as previously noted, the product rrri' is a 

quadratic integer and hence it is a unit of Z ( 6 2 ) . Recalling the units 

of Z(6 2) from chapter 2 we have 

i) ford= -1 rrri' = ± 1, + • 
- i and so 

either 
2 

X + z
2
d 2ytd = ± 16 and 2xz 

2 
t

2
d 0 y = 

2 
or X + z

2
d 2ytd = 0 and 2xz -

2 
t

2
d y = ± 16 

ii) for d = -3 rrri' = ± 1, {± 1 ± J-3)/2 and so 

either 
2 

z
2
d 2ytd 16 -and 2xz 

2 
t

2
d 0 X + = ± y = 

2 
z

2
d or X + - 2ytd = ± 8 and 2xz -

2 
t

2
d 8. y = ± 

iii) ford 1- -1, -3 rrri' = ± 1 and thus 

2 2 
2ytd 16 and 2xz - y 

2 2 (19) X + z d - = ± - t d = 0 

Since the product rrri' is always a root of unity, g , 

we have D-l = s-1D'. Thus ID- 1
1 = ID' I and IT1'l' I = 1 for any unit of 

Z( 6). 

In the following sections we will need to express~ and~, in 

the form a+ bi, a, b ER. To do this we must fix the value of 6 as 

. th f d one particular 4 root o . Henceforth we shall assume that 

Lemma 4.1 

Let D = (x + y6 + z6
2 + t6

3
)/4 be a unit of Z(6), 6

4 
= d < O, 

d square-free. Then 
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"" 

.and 11' = (x - yD
1 

+ tD
3

)14 + i( zD
2 

- yD1 tD
3

)14, 

I i{I 1J2; 
1 

j ( d 
3 /i:; j I J2 . where Dl = D2 = I d~j, and n

3 
= 

Proof 

· 2 3 
11 = (x +yo+ zo + to )14 

The expression for 11' is obtained in a similar manner. 

The conditions given in (19) enable us to prove the following 

property of the polynomial for 11· 

Lemma 4.2 

Supposed 1 -1, -3. Then in the polynomial (1) for the unit 

2 3 
(x +yo+ zo + to )14 E Z(o) we have C =±A. The sign taken agrees 

. h h . f 2 2d 2 d wit t e sign o x + z - yt . 

Proof 

2 
C = (x(x 

2 2 2 
z d) + dz(y + t d) - 2xytd)l16 

= (x(x
2 

+ z
2

d - 2ytd) + dz(-2xz + y
2 

+ t
2
d))l16 

= A(x
2 

+ z
2

d - 2ytd)l16 + dz(-2xz + y
2 

+ t
2
d)l16. 

2 2 2 2 
From (19) we have x + z d - 2ytd = ± 16 and - 2xz + y + t d = 0. 

II 

Thus C =±A and the sign taken agrees with the sign of x
2 

+ z
2

d 2ytd. II 

From theorem 1.7 we know that any unit of Z(o) can be written 
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n as l;rJd where T)d is a fundamental unit of Z( 6), n E Z and i; is a root 

of unity. Since 6 has non--real conjugates there is the possibility of 

roots of unity other than± 1. 

Roots of Unity in Z(6) 

Theorem 4.2 

Let 64 
= d be a square-free negative integer. The only roots 

of unity in ZC6) are 

i) 3 
± 1, ± i, ± 6, ± 6 when d = -1, the eighth roots of 

unity, 

ii) ± 1, (± 1 ± ,N)/2 when d = -3, the sixth roots of unity, 

iii) ± 1 when di -1, -3. 

Proof 

Let 1 =(x + y6 + z6
2

+ t6
3

)/4 be a root of unity of Z(6). 

Then from lemma 4.1 we have 

Since lril = 1 for a root of unity we have 

ri' must also be a root of unity when rJ is and so we also have, from 

lemma 4.1, 

From the two pairs of inequalities we obtain lx/2j s 2 and 

jzn
2
;2j s 2, that is lxl s 4 and jzn

2
1 s 4, for any root of unity. 

Since lzn
2
j s 4 the possible values for z are O, ± 1, ± 2, ± 3, ± 4. 
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If z = ± 4 then D
2 

$ 1 and so the only po~sible ,value of d 

. 1 Th. 1 d th f · ~2 · is - . is ea s to e roots o unity± u = ± i, 

z = ± 3 is a possibility only when d = 1(mod 8). However we 

must also have 3D
2 

$ 4 and no value of d satisfies both these 

requirements. 

If z = ± 2 then d = 1(mod 4) and D2 $ 2, Thus d = ~3 is the 

only possibility. Since x = z(mod 4), x = ± 2 and we obtain the units 

(± 1 ± J-'3)12. These units are sixth roots of unity. Four other units 

with x = -z = ± 2 are also obtained but they are not roots of unity. · 

(see example 4.5 ii)). 

If z = ± 1 then d = 1(mod 8) and D
2 

$ 4. Thus the 

possibilities are d = -7, -15. We must also have x = ± 1, ± 3 with 

x = z(mod 4). The only units satisfying these conditions are 

2 3 2 3 
±(3 - 6 - 6 - 6 )14 and ±(3 + 6 - 6 + 6 )14 when d = -7. However 

these are not roots of unity. 

If z = O then x = O or x = ± 4. With x = ± 4 we get the 

roots of unity± 1(for each d). With x = 0 we obtain the units 

3 
± 6, ± 6 when d = -1. These are eighth roots of unity. 

Algorithm to Determine the Fundamental Unit of Z(O) given any Unit of 

Z(O) 

II 

The main purpose of this chapter is to show that an algorithm 

similar to algorithm 3.1 can be developed for the quartic case. The 

remainder of this chapter will move in this direction. 
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F9r the rest of this chapter we will assume that~ is a unit 

of Z(O) such that lnl > 1. 

We now prove a theorem around which we will build the 

algorithm. 

Theorem 4.3 

Let d = o4 be a square-free negative integer. 

If TI= (x +yo+ zo
2 

+ to
3

)14 is a unit of Z(o), lnl > 1, then we have 

TI= H + Ii, H, IE R, and 

and 

Proof 

lxl2 - Hj $ 11lnl, 

lzn212 - II $ 11lnl 

From lemma 4.1 we have H = (x + yD
1 

- tD
3

)14 and 

I= (zD
2 

+ yD
1 

+ tD
3

)14. We also have 

Thus 

and 

Ix - yD1 + tD3ll4 $ 11lnl, 

lzD2 - yD1 - tD3ll4 $ 11lnl 

Rewriting the last two inequalities we have 

and 

j2xl4 - (x + yD1 - tD3)14I $ 11lnl, 

j2zD214 - (zD2 + yD1 + tD3)14I ~ 1/lnl 

The result is now clear. 

(20) 

(21) 

II 
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Corollary 

For any unit' Tl = ( X + yo + zo 
2 + to 

3
) I 4 E Z( 0)' . I Tl 1· > 1, 

we have 

i) Ir/ ~ lzlD/2 - 1IIT1l 

ii) IHI ~ lxll2 - 1IIT11 • 

Proof 

From theorem 4.3 we have jzD2/2 - rj ~ 1IIT1l < 1. If z ¢ 0 

then lzlD2 > 2(since lzl = 1 implies jdj ~ 7). Thus z and I must have 

the same sign and so lzD 212 - rj = I jzjD 2 - jrj I and i) follows. If 

z = 0 the inequality is trivial. 

Similarly if lxl > 2 or x = O, inequality ii) holds. 

If lxl = 1, then from lxl2 - Hj ~ 1IIT11 we see that either x and Hare 

of the same sign or else ITll < 2. If x and Hare of the same sign then 

the inequality holds and if ITll < 2 then the inequality is trivial 

(since the right-hand side will be negative). 

Thus the real and imaginary part of T) are very closely related to the 

integers x and z. Furthermore, y = (x + izD
2

)12 = (x + zo 2)12 is an 

integer of Q(o 2) and 

I T) - y I = I ( H - xi 2) + i (I - zD / 2 ) I 

~ 1IIT11 + 1IIT11 = 2IIT1I 

Thus T) is a close approximation to an integer of Q(o2 ). This compares 

with the previous cases (chapters 2 and 3) where the units were close 

approximations to rational integers. 

II 



Example 4.1 -

Let d = -10. Then n = (5755 ·+ 28326 + 4326 2 - ~526 3 )14 

is a unit of Z(6). 

We have n ~ 2877. 999671 + 683.052053i, 

I ri- 1 I ~ .000338 
' 

xl2 = 2878 
' 

and zD/2 ~ 683.051975 

Also In - (xl2 + zDil2)j ~ .000414 

~ 21n- 1 1 

Before defining the fundamental unit of Z(6) we need the following 

lemma. 

Lemma 4.3 

Let 71 = H + Ii be a unit of Q(6), lnl > 1, H, IE R. Then 

H = 0 implies d = -1. 

Proof 

Suppose H = 0. Then from theorem 4.3 we have lxl2j < 1. 

Thus x = 0 or x = ± 1. 

If x = 0 then since H = 0 = (x + yD
1 

- tD3)14 we have tD3 = 
1 

.81 

II 

YD1 and thus Ylt -- jd~j. Since y, t E Zand dis square-free this can 

only be true when d = -1. 

Suppose x = ± 1. Then d = 1(mod 8) and so jaj ~ 7. If 

lzl ~ 3 then from the corollary to theorem 4.3, jrj > jzjn212 - 1 
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~ 3,./7/2 - 1 > 2.96, and thus l~I > 2.96, However from theorem 4,3 

we also have x = ± 1 implies 11;2 - ol ~ 1/l~I and thus l~I ~ 2. 

Consequently lzl ~ 3 is impossible and so z = ± 1. Substituting 
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x = z = ± 1 in (19) gives 1 + d - 2ytd = ± 16 and so dj17 or dl1s. 

Since d - 1(mod 8) the only possibility is d = -15. However there is 

no unit in Z(b) , d = -15, with x = z = ± 1. Thus x = ± 1 and H = O is 

impossible. // 

When di -1, -3 there are four fundamental units in Z(O) . If 

-1 -1 
one of these units is~ then the other three are-~,~ and-~ Of 

these units precisely one has both a positive real part and magnitude 

greater than one. We shall arbitrarily choose this unit to be the 

fundamental unit and denote it by ~d' 

When d = -1 there are sixteen units which would serve as a 

fundamental unit and when d = -3 there are twelve units which would 

serve as a fundamental unit. (In each case twice the number of roots 

of unity in Z(O)). We shall not define ~d for these two cases. 

As in the previous case (algorithm 3.1) the algorithm is based 

on the approximation to an integer by~- (In this case the approxima­

tion is to a quadratic integer). We use the inequalities given in 

theorem 4.3 to pick out possible units from the complex numbers 

1/p 
~ , p = 2, 3, 5, 7, . The coefficients x, y, z, t of any 

possible unit can be calculated as follows . 

1) x and z are obtained from the inequalities of theorem 4.3 

2) adding (20) to (21) we have 
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(22) 

and soy can be obtained. -

3) tis obtained from (20) 

The norm of a suspected unit can then be calculated and a conclusive 

result obtained. Thus we now have a method by which a complex number 

may be tested to see whether or not is is a unit of Z(o). 

To make the algorithm workable we need a lower bound, L, for 

the magnitude of ~d such that L > 1. The following e xamples show how 

this may be done. 

Example 4.2 

Let d = -2 and ~d = (x +yo+ z6
2 

+ to
3)14 = H + Ii, H, IE R. 

We have x = z = O(mod 4). If x = 0 or z = 0 then from (19) we have 

2 2 
y + t d = 0. This is only possible when d = -1 or when y = t = 0 

(and hence~=± 1, ± i). Thus x, z t 0. (In fact we have the general 

result that x, z t O for any~ where j~j t 1 and d t -1). 

and 

From the corollary to theorem 4.3 we have 

I xi 2 I - 1/ I ~d I ;S;; I HI , 

lzo212j - 11l~al ;5; III . 

Since l~al > 1 and lxl, jzj ~ 4 we obtain jHj > 1, jij > 1.828 and thus 

j~dj > 2.08. We can now use the new lower bound for l~al in an 

iterative manner to give jHj > 1.519, jrj > 2.347 and thus l~dj > 2.795. 

Several further iterations give l~al > 3. II 

This method works well ford= 2, 3(mod 4) but cannot be used 

successfully ford= 1(mod 4) when jaj is small. However in that case 
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a bound can be obtained as follows. 

Example 4. 3 

( 
2 3 · 

Let d = -15 and Dd = x +yo+ zo + to )/4 = H + Ii, 

H, IE R. Suppose IDdl < 3. Then IHI< 3 and jij < 3. From the 

corollary to theorem 4.3 we have /xi ~ 2(jHj + 1/IDdl) < 8 and from 

(19) we have x2 = ± 1(mod 15). Thus lDdl < 3 implies x = ± 1, ± 4. 

From the corollary to theorem 4. 3 we also have ] z I < 2. 07 and so _ 

lzl = ± 1, ± 2. (In the previous example it was shown that z = 0 is 

not possible). 

Since x = z(mod 4) we are left with the possibilities 

x = z = ± 1. Neither possibility leads to Dd and so we conclude that 

Before presenting the algorithm we must consider one problem 

which arises in the quartic case which we did not have to contend with 
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in the pure cubic case. Suppose we were given the unit D 
2 

= -Dd and had 

to determine the fundamental unit. Merely testing D
1
/p for 

p = 2, 3, 5, 
k 

. , would not be sufficient since D2 = ± iDd is not a 

unit of Z(o) unless d = -1. When d = -1, -3 the problem is further 

compounded by the presence of eighth and sixth roots of unity. 

Consequently we shall excluded= -1, -3 from the following algorithm. 

(However a fundamental unit for each of these cases will be given in 

the examples at the end of the chapter. 

When d 1 -1, -3 we can overcome the problem by testing both 

h k 1/p 
D 2 and ( -D) 2

• When p > 2, p prime, there is no problem since (-D) = 

-(D11P). However it is possible that we would end up with -Da rather 
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than TJd• (Assuming that 1111 > 1). 

Algorithm 4.1 

Assumed t -1, -3. Let T} be any unit of Z(o) such that 

1111 > 1. Then the fundamental unit of Z(o) may be obtained as follows. 

(If T} = H + Ii then Re(Tj) = H, Im(17) = I). 

1 . Obtain a lower bound, L, for the magnitude of T}d such that 

L > 1 

2 

3 

4 

5 

6 

7 

8 

Set 17(2) 

If l11(2)j< L go to 26 

If .lJ x E Z such that lx/2 - Re(17(2))1 < 1/l11(2)j go to 8 

If .lJ z E Z such that lzD
2
/2 - Im(17(2))j < 1/j17(2)I go to 8 

Calculate y, t from (20 ) and (22) 

If N((x +yo+ zo 2 + to 3)/4) = 1 then set T} = 17(2) and go to 2 

Set 17( 2) 
k 

= (-17)2 

9 If .:4J x E Z such that lx/2 - Re(Tj(2))1 < 1/l17(2)j go to 13 

10 If.:$ z E Z such that jzD
2
/2 - Im(T}(2))1 < 1/j17(2)j go to 13 

11 Calculate y, t from (20) and (22) 

12 
2 3 If N((x +yo+ zo + to )/4) = 1 then set T} = 17(2) and go to 2 

13 Set p = 3 

14 Set N = [1ogj17j/logL + 1] 

15 If p ~Ngo to 26 

16 Set T)(p) = 1111P (any one of the p pth roots) 

17 Set µ(p) = 111P (any primitive pth root of unity) 

18 Set j = 1 

19 If .:4J x E Z such that lx/2 - Re(Tj(p))I < 1/ITJ(p)I go to 23 

20 If l z E Z such that lzD
2
/2 - Im(17(p))j < 1;j17(p)I go to 23 

21 Calculate y, t from (20) and (22) 
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22 

23 

24 

25 

26 

27 

Notes 
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If N((x + ~6 + z6
2 

+ t6
3

)/4) = 1 then set D = D(p), go to 14 

If j ~ p then increment p to the next largest prime, go to 15 

Set j = j + 1 

Set D(p) = D(p).µ(p), go to 19 

If Re(D) < 0 then set D = -D 

Stop, Dis the fundamental unit 

i) When j~(p)j is small there is the possibility of several 

values of x, y, z, tat steps 4, 5, 6, 9, 10, 11, 19, 20 and 21. All 

possibilities must be checked. However when ID( p) j > 4 only one value 

of x and one value of z are possible , and when ID(p)j > 10 only one 

value of y and one value oft are possible. 

ii) Since the units of Z(6) will, in general, be non-real 

th 
numbers we must check all pp roots of D· Steps 17, 18, 23, 24, 25 

of the algorithm ensure that this is done. // 

We now give an example to illustrate the use of the use of the 

theorem. 

Example 4.4 

Using algorithm 4.1 we show that the following units are 

fundamental. 
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d Tia 

-2 1 - ,/ - 63 

-5 2 + 26 + 62 

-6 1 - 46 - 46
2 - 26

3 

-7 ( 3 + 6 - 62 + 6
3

)/4 

-10 27 + 126 + 62 - 36
3 

(These units were obtained by exhaustive testing of small values of 

x, y, z, t). 

d = -2 

1 - 6
2 

- 6
3 ~ 2.189 - 2.603i, 

and 
2 3 

l1 - 0 - 0 I~ 3.402 
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From example 2 we have L = 3. Thus 1 - 6
2 

- 6
3 

is the fundamental unit 

2 3 k 2 3 
since I 1 - 6 - 6 j 2 < L and Re( 1 - 6 - 6 ) > 0. 

d = -5 

2 + 26 + 6
2 ~ 4.115 + 4.351i, 

In a manner similar to example 2 we obtain L = 4.6 and thus 

2 + 26 + 6
2 

is the fundamental unit. 

d = -6 

1.995 - 19.646i, 

and j 1 -46 19.747 

W h L 5 03 d · 1~½1 < L h = 1 - 4x - 4x
2 

- 2x
3 

. e ave = • an since . 1 we ave T)_
6 

v v v 
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d = · -7 

(3 - 6 - r/ 1. 223 - · 1. 710i 

and 2.102 

In the manner of example 3 we will obtain a lower bound L. Suppose 

l11dl < 1.5. Then from the corollary to theorem 4.3 we have lxl < 5. 

However from (19) we have x2 = ± 16 = ± 2(mod 7) . Thus lxl = 3, 4. 

From the corollary to theorem 3.4 we also have that jzj < 1.89 and so 

lzl = 1. (z = 0 is only possible when d = -1). Therefore the only 

possibility is lzl = 1 and lxl = 3 (since x = z(mod 4)). This leads to 

the unit we started with (and its associates) and so we can conclude 

l11_ 7I > 1.5. Thus we can take L = 1.5. ½ Since (2.102) < 1.5 we 

conclude that (3 - 6 - 62 - 6
3

)14 is the fundamental unit. 

d = -10 

27 + 126 + 62 - 36
3 

~ 54.018 + 6.322i, 

and /27 + 126 + 6
2 

- 36
3 j ~ 54.387 

k k 
We have L = 6.4 and thus we must check i) 2 and (-71) 2 

k k 
71 2 ~ 7.362 + 0.429i and l11 2 I ~ 7.374 

Ford= -10 we must have x = 0(mod 4) and clearly no x = O(mod 4) 

k 
satisfies step 4 of the algorithm. Thus 71 2 is not a unit. 

k k 
(-71) 2 ~ -0.429 + 7.362i and IC-71) 2 I ~ 7.374 

k 
No value of x = 0(mod 4) satisfies step 9 of the algorithm ar:d so (-71) 2 

is not a unit. Step 14 of the algorithm sets N = 3 and so we stop. 

Thus 71_ 10 = 27 + 126 + 6
2 

- 36
3

. II 
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Finally we give a fundamental unit for _each of the cases d = ~-1 and 

d = - 3. 

Example 4. 5 

i) A unit of Z((-1)¼) is o + o2 + 63. If o + o2 + o3 is 

not a fundamental unit then there must exist a unit,~. such that 

Thus letting~= H + Ii, we have from the corollary to theorem 4.3 

1.554 > IHI ~ lx/21 - 1, 

and 

Thus~ must have l x l, lzl < 5 . 108 and so the possibilities are 

l x l = O, ± 4 and l z l = O, ± 4 . However the only units we are led· to 

f · . f " " 2 + 6 3 , d h . are roots o unity or associates o u + u an so no sue ~ exists. 

Thus O + o2 + o3 is a fundamental unit of Z((-1)¼) . 

ii) In a similar manner to i) it can be shown that 

(1 - o - o2 
- 6

3
)/2 is a fundamental unit of Z((-3)¼). II 
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APPENDIX 1 

Multiprecision Arithmetic Computer Progr~ms 

Many computational problems arising in number theory require 

considerably more precision than is normally available on a calculator 

or computer. Consequently it is necessary to develop multiprecision 

arithmetic computer programs to handle the calculations encountered 

in problems such as examples 3.4 and 3.5. 

The algol procedures listed in this appendix, which were 

developed on a B6700 computer, were written in order that the 

calculations required by algorithm 3.1 could be performed. The 

procedures listed cover all the basic arithmetic operations and can 

easily be extended to cope with other multiprecision computations 

which arise in number theory. 

For these procedures multiprecision numbers are stored in 

one dimensional integer arrays. The procedures use two types of 

multiprecision numbers 

a) Multiprecision Integers (m.p. integers) 

An m.p. integer, x,is stored in an integer array, X, 

according to the equation 

x = x[-2J~x[o] t x[1] ~ 10
10 

+ x[2] x 10
20 

+ .. . + x[n] ~ 10
10

n) 

where x[-2) = ± 1 and O ~ X[j] ~ 10
10

. X[-1) is set equal ton. That 

is, x[-2) _.. contains the sign of x, X[-1] contains the number 

n = [log
10

lxl/10] (the 'length' of x), and x[oJ, .x[1J, , ... , x[n] 

. h . d f . b 1010 1 d. . t ' contain t e magnitu e o x in ase 1g1 s , 



Example 1 

The integer x ~ ~1234567892 1234567891 1234567890 

would be stored in the array, X, as follows 

x[-2] - -1 ; x[-1] , - 2 

x[o] - 1234567890 

X[1] - 1234567891 

x[2J - 1234567892 II 

b) Multiprecision floating point numbers (m.p.f.p. numbers) 

An m.p.f.p. number, y, is stored in an integer array Y 

according to the equation 

y = Y[-2](Y[O] X 10-lO(n+1 ) + Y[1] ? 10- 10n + ... + Y[n] X 1010 )10lOY[n+ 1] 

where Y[-2] = ± 1, 0 ~ Y[j] ~ 10
10

, and Y[-1] ,= n. 

Example 2 

. i) The integer of example 1 is converted to a m.p.f.p. 

number by setting X[3] ~ 3. 

ii) The number y = 126.2539286742 0397627891 

is stored in an integer array Y as follows 

Y[-2] - 1 ; Y[-1] , - 2 

Y[O] 

Y[l] 

Y[2] 

Y(3] 

-
-
-

397627891 ; 

2539286742 ; 

126 ; 

1 II 
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Zero is stored as an m.p. integer as 

x[-2] ,= 1; x[-1] ,= x(oJ 7 o -~ . ' 

For the floating point representation of zero we add X(1] 7 O. 

We now briefly describe the procedures . (The procedures 

assume that the array which is to hold the result of an operation has 

been declared large enough to hold the result). Unless otherwise 

stated the arrays which are parameters of the procedures need not be 

distinct. 

TRANS (X, Y, F): 

X, Y are m.p. integers. Fis an integer which is set equal 

to 1 when Xis an m.p.f.p. number and zero otherwise. 

Result : y .- X 

ADD(Y, Z); 

Y, Z are m.p. integers of the same sign, 

Result: z - y + z 

MULTIADD (X, Y, Z); 

X, Y are m.p. integers, Z is an integer array. 

Result: Z - X + Y 

SIMPLEMULT (SMALL, BIG, PRODUCT): 

SMALL is a single precision integer and BIG is an m.p. 

integer. PRODUCT is an integer array. 

Result: PRODUCT.- BIG* SMALL 

MULTIMULT (NUM1 , NUM2 , PRODUCT)_; 

NUM1 , NUM2 are m.p, integers and PRODUCT is an integer 

array. 



Result:' PRODUCT - NUM1 * NUM2 

SIMPLEDIV (I, A, Q, REM); 

A is an m.p. integer. · Q is an integer array. I is a 

single precision integer and REM is an integer identifier. REM and I 

must be distinct . 

Result Q - [jAj/,jij] * sign (A/I) 

REM - A - Q ~-: I 

SD (D, A, Q); 

Used by MULTIDIV to produce 1 'digit' of QUOT. 

MULTIDIV (DIVS, DIVD, QUOT, REM) ; 

DIVS and DIVD are rn.p. integers, QUOT and REM are integer 

arrays. All four arrays should be distinct . 

Result: QUOT - [jDIVDI/IDrvs/J * sign (DIVD/ DIVS) 

REM - DIVD - QUOT* DIVS 

CHOP (X, N); 

Xis an rn . p.f.p . number. N is a positive single precision 

integer. 

Result: . h d b lO d' . Xis c oppe to N ase 10 igits. 

(No change if x[-1] .:5: N - 1). 
·' 

FPADD (X, Y, Z); 

X, Y are m.p.f.p. numbers and Z is an integer array. 

Result: Z - X + Y (exact) 

SFPMULT (I, A, PROD); 

Floating point equival~nt of SIMPLEMULT (exact result) 

SFPDIV (I, A, Q); 
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I is a single precision integer and A is a m.p.f.p. number. 
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Q is· an integer array, 

Result: Q 
. 10 

A/I (to A[-1] + 1 b~se 10 digits) 

FDIV (D, A, Q, N); 

D, A are m.p.f.p. numbers, Q is an integer array . D, A, Q 

should be distinct arrays . N is a positive single precision integer. 

Result : Q - AID (to N base 10
10 

digits ) 

FMULT (X, Y, PROD) ; 

Floating point equivalent of MULTIMULT. Result is exact. 

NR (N, D, S , X); 

N, Sare positive single precision integers, Dis an 

rn . p.f.p . number and Xis an integer array. 

Result: X -
D1/N 10 

(to S base 10 digits) 

Using Newton-Raphson iteration . 

The arrays declared at the beginning of the listing which 

follows are working arrays for some of the procedures . They are not for 

general use. 



INTEGER ARRAY XXX,ZZZ,YYY,VVV[-2:150)"; 
PROCEDURE TRANS(X~Y,F);INTEGER - F;INTEGER ARRAY X,Y(-2); 

BEGIN INTEGER I: 
FOR l:•-2 STEF? 1 UNTIL X(-1) DO Y[l]: .. X[I]; 
IF F=1 THEN Y[I] :_-=X[I) 

ENO OF TRANS: 
PROCEDURE ADO(Y,Z): INTEGER ARRAY Y,Z[-2); 

BEGIN INTEGER I ,J: 
J : =SI ZE ( Z )- 3 : 

IF J GTR Z[-1) THEN FOR I; .. (Z[-1 )+1) STEP 1 UNTIL J 
DO Z[I]:=0; 

J:aY(-1): 
FOR I:-0 STEP 1 UNTIL J DO 

BEGIN 
Z[I): .. Z[I] + Y[I]; 

IF Z[I] GTR 9999999999 
THEN BEGIN 

Z[I]:=Z[I)-10000000000; 
Z[I+1) :•Z[I+1 ]+1 

END; 
J:=MAX(Z[-1] ,Y(-1) )+1; 

END 

IF Z[J) NEQ O THEN Z[-1]:=J ELSE Z[-1]:=J-1; 
END OF ADD; 

PROCEDURE MULTIADO(X,Y,Z); INTEGER ARRAY X,Y,Z[-2); 
BEGIN INTEGER I; LABEL L1; 

L 1 

IF X[-2]=Y[-2] THEN BEGIN 
FOR I:=--2 S TEP 1 UNTIL X[-1] 00 ZZZ[I]:=X[I]; 

ADO(Y,ZZZ) END 
EL SE BEGIN 

FOR J:..,Q S TEP 1 UNTIL X(-1] DO 
ZZZ[l]:= 9 999999999 -X[I]: 

ZZZ[O) : .. zzz[ 0]+1; 
ZZZ(-1] ; .. X[-1]; 

IF Y[-1] GTR X[-1] THEN BEGIN 
FOR I:=(X[-1)+1) STEP 1 UNTIL Y[-1] DO 

ZZZLI): .. 9999999999; 
ZZZl-1]:=Y[-1] END; 

I:-= ZZZ[-1]+1; 
ADD{Y,ZZZ); 

IF ZZZ[l]=1 THEN 

ENO 

BEGIN ZZZ(-1] :=-ZZZ[-1 ]-i: 
Z Z Z [ -2 ] : • Y [ -2 ] ; 

WHILE ZZZ[ZZZ[-1))=0 DO ZZZ[-1):=-*-1 
IF ZZZ(-1]=-1 THEN BEGIN 

ZZZ(-1]: .. Q; ZZZ[-2]:c1 END 
END 

ELSE 
BEGIN FOR I:=0 STEP 1 UNTIL ZZZ[-1] DO 

ZZZ[I):•9999999999 -ZZZ[I]; 
ZZZ[O) :• * +1; 
I: •D; 

IF ZZZ[I]=10000000000 
THEN BEGIN ZZZ[I+1} :-=*+1; 

ZZZ[I]:=0 ; 
I:=* +1; 

GO TO L1 END; 
ZZZ[- 2 ]: .. X[-2] : 

WHIL E ZZZ[ZZZ[-1])=0 DO ZZZ[-1]:=*-1 
END 

TRANS{ZZZ,Z,Oj; 
ENO OF MULTIADD; 
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. PROCEDURE SIMPLEMULT(SMALL,BIG,PRODUCT); VALUE SMALL: 
INTEGER SMALL: INTEGER ARRAY BIG,PRobucT[-2]; 
BEGIN INTEGER I,J,CARRY; DOUBLE PROD ,M; 

CARRY:mO; . 
IF SMALL• 0 OR (BIG[~1]-0 ANO BIG[O]=O) 

THEN BEGIN PRODUCT[-2]:=1: 
PROOUCT(-1]:-0;PRODUCT(0]:•0 END 

ELSE BEGIN J:a SIGN(SMALL)*SMALL: 
FOR I:-0 STEP 1 UNTIL BIG[-1] DO BEGIN 

PROD:• J MUX BIG[I) + CARRY; 
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CARRY:• ENTIER(PROD/10000000000); 
M:=CARRY MUX 10000000000; 
PRODUCT[I]:-INTEGER(SINGLE(PROD-M)) END; 
I: ... BIG[-1]+1; 

IF CARRY-0 THEN PRODUCT[-1]:•I-1 
ELSE BEGIN 

PRODUCT [I]:= CARRY; 
PROOUCT[-1]:sl END; 

PRODUCT[-2]:=SIGN(SMALL)*BIG[-2] END 
END OF SIMPLEMULT; 

PROCEDURE MULTIMULT(NUM1,NUM2,PRODUCT); 
INTEGER ARRAY NUM1,NUM2,P ROO UCT[-2]; 

BEGIN 
INTEGER I ,J ,K: 

IF (NUM1[-1]=0 AND NUM1[0)=0) OR (NUM2[-1)o:O AND 
NUM2[0).,0) 

THEN BEGIN PRODUCT(-2 ):=1; 
PROOUCT[-1) :=0; 
PROOUCT[O) :=0 

ENO 
ELSE BEGIN 

FOR I:= 0 STEP 1 UNTIL (SIZE(ZZZ)-3) DO ZZZ[I):•O: 

END 
END OF MULTIMULT: 

FOR I:=0 STEP 1 UNTIL NUM1[-1] DO 
BEGIN 

SIMPLEMUL T ( NUM 1 [I), NUM2, YYY); 
FOR J:=0 STEP 1 UNTIL YYY[-1) DO 

ZZZ[I+J):• ·1 + YYY[J] 
IF ENTIER(I/50)*50=I THEN BEGIN 

Z Z Z [ - 1 ] : = I +NU M 2 [ - 1 ) +2 ; 
SIMPLEMULT(1,ZZZ,ZZZ) END; 

END; 
K:=NUM1 (-1 ]+NUM2[-1); 
FOR I:• 0 STEP 1 UNTIL K DO 

BEGIN 
J:=ENTIER( ZZZ[I)/10000000000); 

PROOUCT[I):= ZZZ[I]-10000000000*J; 
ZZZ[I+1) :=*+J 

END; 
PRODUCT[K+1]:= ZZZ[K+1]; 
IF ZZZ[K+1 ]=0 THEN PRODUCT[-1] ; .. K 

ELSE PROOUCT[-1):-K+1; 
PRODUCT [-2] : .. NUM 1 [ -2] *NUM2 [-2) 



PROCEDURE SIMPLEDIV(I,A,Q,REM);VALUE I;INTEGER I,REM; 
INTEGER ARRAY A,Q[-2]; 

BEGIN INTEGER J,K,L; DOUBLE M,N; K:-0; 
L: .. I *SIGN ( I ) ; 

FOR J: .. A[-1] STEP -1 UNTIL 0 
DO BEGIN M:=K MUX 100DOOOOOOO+A[J]; 

Q[J]:- ENTIER(SINGLE(M/L)); 
N; .. Q[J] MUX L; 
K:= INTEGER(SINGLE(M-N)) 

END; 
REM ;aK*A[-2]; 

IF Q[A[-1]]-0 THEN Q[-1]:-A[-1)-1 
ELSE Ql-1):aA[-1); 

Q[-2]; .. A[-2]*SIGN(I); 
IF Q[-1]=-1 THEN BEGIN Q[-1):=0;Q[-2):•1 END 

END OF SIMPLEDIV: 
PROCEDURE SD(D,A,Q);INTEGER ARRAY D,A[-2];INTEGER Q; 

BEGIN DOUBLE M;INTEGER I,J;INTEGER AR RAY SAVE(-2:A[-1)); 
LABEL L1,L2; 

I:=A(-1]:J:=D[-1]; 
M:=(D[J-1]+1)/10000000000; M:=D[J)+M; 

IF IoJ THEN M:-A[I]/M 
EL SE M : = ( A [ I ] MU X 1 0 0 0 0 0 0 0 0 0 0 + A [ I -1 ] ) / M ; 

Q:aENTIER(SINGLE(M)); 
FOR J:-=-2 STEP 1 UNTIL I DO SAVE[J]:aA[J]; 
SIMPLEMULT(-Q,D,A); 
FOR J:•O STEP 1 UNTIL A[-1) 00 

IF SAVE[J)<A[J] THEN BE GIN 
SAVE[J]:- SAVE [J)+100 000000 00-A[J]; 
SA VE [ J + 1 ) : = * - 1 EN 0 

EL SE SA VE [ J ] : -=*-A [ J ] ; 
WHILE SAVE[SAVE[-1)).Q OD SAVE(-1):=*-1; 
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IF SAVE(-1]=-1 THEN BEGIN SAVE[-1):=0;GO TO L1 END 
IF (SAVE[-1]<0[-1)) OR (SAVE[-1]=0(-1) ANO 

SA VE [SAVE [ -1 ] ] <D [ D [ -1 ] ] ) 
THEN GO TO L1; 

FOR J:=-2 STEP 1 UNTIL SAVE(-1) DO A[J):=SAVE[J]: 
MULTI ADO (A ,O ,A); 

IF A(-2]=-1 THEN GO TO L1; Q:=*+1; 
FOR J:=-2 STEP 1 UNTIL A(-1] DO SAVE[J]:=A(J]; 

MUL TIADO (A ,O ,A); 
IF A[-2)=-1 THEN GO TO L1; Q:=*+1; GO TO L2; 

L1: FOR J:•-2 STEP 1 UNTIL tiAVE(-1] DO A[J):uSAVE[J]; 
L2 : END OF SO: 



PROCEO~RE MULTIDIV(DIVS,DIVO,QUOT,REM): 
INTEGER ARRAY DIVS,DIVO,QUOT,REM(-2): 

BEGIN INTEGER ARRAY SAVE[-2:0IVD[-1]): 
INTEGER I,J,K,M;LABEL L1; 

IF DIVS(-1]•0 AND DIVS[O]aO THEN BEGIN QUOT[0]:=-1: 
GO TO L 1 END: 

IF DIVD[-1]<DIVS[-1] 
THEN BEGIN QUOT[O]:mQUOT[-1]:•D: 

QUOT [ -2 ] : • 1 : 
FOR K : • - 2 STE P 1 UN TI L D I VD [ - 1 ] 

00 REM [K]:,.,DIVD[K]; 
GO TO L1 END: 
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M:aOIVS(-2]: DIVS(-2):=-1: I:sOIVS[-1)-1: J:aOIV0[-1]: 
FOR K:=-2 STEP 1 UNTIL J DO SAVE[K]:=DIVD(K]: 

FOR K:•O STEP 1 UNTIL I OD OIVD[K]:=SAVE[J-I+K]: 
DIVD(-2]:•1: DIVD(-1]:,=I: J:,.*+1: QUOT[-1]; .. J-I: 

QUOT [ -2] : .. M *SA VE [ -2] : 
FOR K:•QUOT(-1] STEP -1 UNTIL ODO 

BEGIN 

END: 

FOR J:uOIVD[-1] STEP -1 UNTIL ODO 
DIVD[J+1]:=DIVO[J] : 
DI VD [ 0 ] : "'SA VE [ K ] : 
DI VD [ -1 ] : = * + 1 : 
IF DI VO [DI VO [ -1 ] ] = 0 THEN DI VO [ - 1 ] : = *-1 : 

IF OIVD[-1] GEQ I THEN SD(DIVS,OIVO,QUOT[K]) 
ELSE QUOT[K]:=0 

IF QUOT[QUOT[-1]]c0 
THEN BEGIN QUOT[-1):=*-1: 

IF QUOT[-1)=-1 
THEN BEGIN QUDT[-1):- 0 ; QUOT[-2):-1 ENO 

END: 
FOR K:a-1 STEP 1 UNTIL DIVD [-,] 

DO AEM[K]:=DIVD[K]; REM(-2]:=SAVE[-2]: 
FOR K:=-2 STEP 1 UNTIL SAVE[~1] DO OIVD[K]:=SAVE[K]: 

DIVS[-2] :=M: 
L1: END OF MULTIOIV: 

PROCEDURE CHOP(X,N): VALUE N; INTEGER N; INTEGER ARRAY X[-2]: 
BEGIN INTEGER I,J; 

IF X(-1] GTR (N-1) 
THEN 8 E GIN I : = X [ -1 ] -N + 1 : 

END OF CHOP: 

FOR J:=0 STEP 1 UNTIL N 
DD X[J]:-X[J+I]: 

X[-1]:=N-1 
END 



PROCEDURE FPADD{X,Y,Z):INTEGER ARRAY X,Y,Z[-2]: 
BEGIN INT EGER EX,EY,XO,YO,I,J,K: 

PROCEDURE AD(A,B):INTEGER ARRAY A,B[-2]: 
BEGIN I:=(XO-YO)*SIGN(XO-YO): 

FOR J:=A[-1] STEP -1 UNTIL 0 
DO VVV[J+I]: .. A[J]: 

FOR J : • 0 STEP 1 UNTIL ( I -1 ) 
DO VVV[J]:=0: 

VVV[-2]:=A[-2]: VVV[-1]: .. A[-1]+I: 
IF VVV[-1] GEQ B(-1] THEN K:=VVV(-1] 

E L SE K : = B [ - 1 ] : 
MULTIADO(VVV,B~VVV): 

ENO OF SB: 
EX:=X[X(-1 ]+1]: EY:=Y[Y[-1 ]+1]: 

XO:=EX-X(-1]: YO:•EY-Y[-1]: 
IF XO"" YO 

THEN BEGIN IF Y(-1] GEQ X[-1] THEN K:=Y[-1] 
EL SE K : .. X [ -1 ] : 

MULTIADD{X,Y,VVV): 
END 

ELSE IF XOcYO THEN AD(Y,X) 
ELSE AD(X,Y): 

IF EY GEQ EX THEN VVV[VVV[-1]+1]:=EY+VVV(-1)-K 
EL SE V V V [ V V V [ -1 ] + 1 ] : = E X + V V V [ - 1 ) -K : 

IF VVV(-1]=0 AND VVV[D)=O THEN VVV[1]:=0; 
TRANS (VVV ,z, 1): 

END OF FPAOD; 
PROCEDURE SFPMULT(I,A,PROO);VALUE I;INlEGER I; 

INTEGER ARRAY A,PR00(-2]; 
BEGIN INTEGER K,J;K:=A[-1];J:=A[K+1]; 

SIMPLEMULT(I,A,PROD); 
IF PR00(-1]cK THEN PROO[K+1]: .. J 

EL SE PRO C [ K +2 ] : = J + 1 ; 
IF PROO[O]=O ANO PROD(-1]=0 THEN PROD[1]:=0 

END OF SFPMUL T; 
PROCEDURE SFPDIV(I,A,Q);VALUE I; INTEGER I; 

INTEGER ARRAY A,Q[-2]; 
BEGIN INTEGER J,K ,E; K:=A[-1];E:=A[K+1); 

SIMPLEDIV(I,A,Q,J): 
IF Q[K]=O 

THEN BEGIN 
Q[K+1] :=E-1: Q[-1) :=K; 

FOR K:=Q[-1) STEP -1 UNTIL 1 
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DO Q[K]:=Q[K-1); 
Q[O]:=ENTIER(SIGN(J/I)*(J/I)*10000000000) 

END 
EL SE Q [ K + 1 ] : = E 

ENO OF SFPOIV: 

SSE lVERSIT'( 

l. JP.AR'( 



PHDCEDURE FDIV(D,A,Q,N);VALUE N: INTEGER N: 
INTEGER ARRAY D,A,Q[-2): 
BEGIN INTEGER I,P,EA: 

P:&N+D[-1):EA:=A[A[-1)+1); 
IF A[-1)<P 

THEN BEGIN IF (SIZE (A )-3)<P 
THEN RESIZE(A[*),P+3,RETAIN); 

P : .. *-A [ -1 ) : 
FDA I:=A(-1) STEP -1 UNTIL 0 

DO A[I+P] :=A[I): 
FOR I:=(P-1) STEP -1 UNTIL 0 

DO A[I]:=D: 
A[-1):=*+P 

ELSE P:=D: 
MULTIDIV(D,A,YYY,ZZZ): 
IF YYY[-1]=(A[-1]-D[-1]} 

END 

THEN BEGIN YYY[YYY[-1]+1]:=EA-D[D[-1]+1 ]+1: 
CHOP(YYY,N} END 

EL SE Y Y Y [ Y Y ,, [ - 1 ] + 1 ] : =EA -D [ D [ - 1 ] + i ] : 
A[-1): .. *-P: 
IF P NEQ O THEN 

TRANS(YYY,Q,1}: 
ENO OF FDIV: 

FOR I:=0 STEP 1 UNTIL A[-1) 
DO A[I]:=A[I+P]: 

A[A[-1 ]+1) :=EA 

PROCEDURE FMULT(X,Y,PROD):INTEGER ARRAY X,Y,PROD[-2): 
BEGIN INTEGER M,EX,EY: 

EX::zX[X[-1 ]+1]: 
EY: .. Y[Y[-1)+1]: 
M:c:X[-1 ]+Y[-1 ]+ 1: 

MULTIMULT(X,Y,PROO); 
IF PR00[-1]=M THEN PROD[PROD[-1]+1]:=EX+EY 

ELSE PROO[PR00[-1]+1]:=EX+EY-1; 
IF PR00[-1)=0 AND PROO[D]=D THEN PR00[1]:=0 

END OF FMULT; 
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PROCEDURE NR(N,O,S,X): VALUE N,S: INTEGER N,S;INTEGER ARRAY o,x[-2): 
BEGIN DOUBLE POWER,APPROX,OIFF: INTEGER J,EX; LABEL LEND; 

PROCEDURE ITERATE(K);VALUE K;INTEGER K; 
BEGIN INTEGER I; 

END; 

TRANS(X,XXX ,1); 
FOR I:=N-3 STEP -1 UNTIL ODO 

BEGIN FMULT(X,XXX,XXX); 
CHOP(XXX,K+1) ENO; 

FD IV { XXX, 0, XXX ,K ) ; SF PM ULT ( N-1 , X, X); 
FPAOO(X,XXX,X) ;SFPOIV(N,X,X); 

IF N=1 THEN BEGIN TRANS(O,X,1); GO TO LEND ENO; 
J::a0[-1); 

PO ViE R : == D [ J _, ) / 1 0 0 (10 n Ori Cl On ; PO WE R : :a* +O [ J ] ; 
PO WER:=DLOG(POWER); POWER:==*+(O[J+1 )-1 )*10; 

APPROX: .. POWER/N; 
EX:2ENTIER((APPROX/10)); 

DIFF:=APPROX-EX*10;J:=ENTIER(OlFF); DIFF:s*-J; 
X(-2):=X(-1 ]:•1; 

APPROX:=10**J*DEXP(OIFF*OLN(10)); 
X ( 1 ] : =ENT IE R (APPROX ) ; 
APPROX:=(APPROX-X[1])*10000000000; 

X[O]:~ENTIER(APPROX); 
X(2]:=EX+1; 
IF X[1]=0 THEN BEGIN X[0]:,.1;X(1):=EX;X[-1):=0.ENO; 

J:=2: 
WHILE J+1 LEQ S DD 

BEGIN ITERATE (J+1): J :=J*2 ENO; 
CHOP(X,ENTIER(S/2+1)); 

ITERATE (X[-1 ]+2): ITERATE (S+1); CHOP(X,S); 
LENO:ENO OF NR; 
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