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Improved estimation of eigen vector of covariance matrix is considered under un-
certain prior information ( UPI) regarding the parameter vector. Like statistical mod-
els underlying the statistical inferences to be made, the prior information will be
susceptible to uncertainty and the practitioners may be reluctant to impose the ad-
ditional information regarding parameters in the estimation process. A very large
gain in precision may be achieved by judiciously exploiting the information about the
parameters which in practice will be available in any realistic problem.

Several estimators based on preliminary test and the Stein-type shrinkage rules
are constructed. The expressions for the bias and risk of the proposed estimators
are derived and compared with the usual estimators. We demonstrate that how
the classical large sample theory of the conventional estimator can be extended to
shrinkage and preliminary test estimators for the eigenvector of a covariance matrix.
It is established that shrinkage estimators are asymptotically superior to the usual
sample estimators. For illustration purposes, the method is applied to three datasets.

1 Introduction

Principal component analysis (PCA) is a classical multivariate technique and it has become
increasingly popular in multivariate statistical theory and applications. PCA takes its place
in many applications such as detection, recognition, image processing and compression.
Using PCA, the red, green and blue color channels of an image can be transformed into
three different, de-correlated channels. PCA is widely used in signal processing and neural
computing. In some application areas, this is also called the (discrete) Karhunen-Love
transform, or the Hotelling transform. In biometric applications, principal components are
frequently interpreted as independent factors determining the growth size and shape of
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an organism. Tipping and Bishop (1999) discuss the probabilistic approach to PCA. A
comparative study of principal component analysis techniques with applications to neural
networks is given in Calvo, Partridge and Jabri (1998). PCA involves a mathematical
procedure that transform a set of correlated response variable into a smaller set of un-
correlated variables called principal components. We refer to book by Jolliffe (2002) for
comprehensive treatment on the subject. More importantly PCA is a function of eigen
vectors and hence the motivation of this paper. In the present investigation the problem of
estimating the eigen vectors is considered. Noting that the eigen vectors is the essence of a
principal component procedure. The eigen vectors determine the direction of the maximum
variability. In order to estimate the population principal components we need to estimate
the corresponding eigen vectors.

Let X be an m x 1 random vector with mean vector pu and positive definite covariance
matrix 3. Let A, Ag, -+, A\(> 0) be the characteristic roots interchangeably with eigen
values of ¥ and let E = (e, ez, -+ ,e,) be an m x m orthogonal matrix such that

E'XE = A = diag(A1, Ao, -, Am),

so that e; is the ith eigen vector of ¥ corresponding to eigen value A;. Let Y1 = €/ X, Y5 =
e X, Y, = e, X, then Cov(Y) = A, so that Y;,---,Y,, are all uncorrelated and
Var(Y;) = X\, i =1,--- ;m. The components Y7, ---.Y,, of Y are called principal compo-
nents of X. Hotelling (1933) developed the principal component procedure. In multivariate
data analysis, an experimenter is often encountered with a large set of correlated variables.
Principal components usually serve as intermediate steps in much larger studies. PCA is
frequently used by the practitioner to extract the main relations in data of high dimension-
ality.

Here we are primarily interested in the estimation of coefficient e; of the jth principal
component that may be equal to a specified value €. This information may be regarded
as uncertain prior information (UPI) regarding parameter vector e;.

The statistical objective is how to incorporate this information in the estimation process.
Generally speaking, consequences of incorporating UPI depend on the quality or reliability
of information introduced in the estimation process. This uncertain prior information,
in the form of the null hypothesis, can be used in two different ways in the estimation
procedure. In the first place, it is natural to perform a preliminary test on the validity of
the U PI in the form of parametric restrictions, and then choose between the restricted and
unrestricted estimation procedure depending upon the outcome of the preliminary test.
This idea was initially conceived by T. A. Bancroft in 1944. However, this may be partly
motivated by the remarks made by Berkson (1942). In the later case, the James-Stein
estimation procedure is adopted. For the past three decades, the researchers have paid
considerable attention to the James-Stein type estimation, in the small sample as well as
in the large sample set-up. Readers may find the sufficient amount of developments in the
current literature. James and Stein (1961) presented an explicit form of an estimator, which
dominates the classical estimator for the mean vector of a multivariate normal distribution.
Their estimator shrinks the usual estimator towards a null vector and such an estimator
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is generally called a shrinkage estimator (SE). However, there is no reason why the usual
sample estimator must shrink towards the null vector. In general, we may shrink the
classical estimator towards any arbitrary fixed vector. That is what we intend to do in this
communication. We plan to shrink the classical estimator of e; towards an arbitrary vector
e7.

Thus, there are other estimation strategies available which are theoretically superior
and often lead to efficient methods of estimation. To this end, the preliminary test and
Stein-type estimators are a family of superior estimation methods that use historical data
or uncertain prior information. The basic principle behind these estimators is simple yet
very powerful. If there is some prior information (or prior estimates) available from the
past, then it can be used to improve the estimate for the current estimation problem.

1.1 Motivating examples

Let us consider the following examples to motivate the problem at hand.

Stocks Data:  Consider the monthly rates of rate return for four or more stocks at a given
stock exchange. Generally speaking, the observations for successive weeks appear to be
independently distributed. However, the rate of return across stock are correlated since as
one expects stocks tend to move together in response to general economic conditions. A
financial analyst wishes to compute a few sample principal components of monthly rates
of return. For example, the first component may be an equally weighted sum, or index
of the stocks. Perhaps this component may be called a general stock-market component,
or simply a market component. The second component may represent a contrast between
two major stocks. It might be called an industry component. In most cases most of the
variation in stock returns is due to market activity and uncorrelated industry activity. The
analyst suspects that the eigen vectors of this month’s return may not differ from the past
few months average and hence wishes to calculate the sample principal components of this
month’s rates for a return that incorporates the prior information. This make sense since
it is unusual that users rely on only current sample data for the estimation of returns,
volatility, and correlation for the variable of interest in the study.

Application in Genetics:  Geneticists are often concerned with the inheritance of charac-
teristics that can be measured several times during an animal’s lifetime. For the purpose of
illustration consider body weights for 100 female mice that were obtained immediately after
birth of their first 4 litters. We consider the situation that correlations may be close enough
to provide uncertain prior information regarding first eigenvector. In some cases, the first
principal component may account for most of the variation. The average post-birth weights
is fairly well explained by the first principal component. Jolicoeur and Mosimann (1960)
studied the relationships of size and shape for painted turtles measured carapace length,
width and height. For the male turtles the PCA indicates that the first principal compo-
nent explains approximately 96% of the total variance, which has interesting subject-matter
interpretations. Since the first principal component may be viewed as logarithm(volume)
of a box with adjusted dimension. In order to use the proposed methodology one needs
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to have the prior knowledge about the first eigenvector only which may be taken nearly as
\/% for each entry, but may not be equal.

1.2 Statement of the problem

Let X, Xs,---X,be the random sample from a multivariate normal population with
mean vector p and positive definite covariance matrix 3. Further, we assume that the
(unknown) eigen values (A1, -+, \,;,) of the covariance matrix ¥ are distinct and positive.
Let ey, - ,e,, be the corresponding normalized eigen vectors. We try to motivate this
problem from two viewpoints. First, suppose that it were thought a priori likely, though
not certain, that e; = e3, where €7 is a specified m x 1 vector e} = (e%,,---e%,,)". We are
interested in the estimation of coefficient e; of the jth principal component under the above
information. The restriction stated in the form of the null hypothesis is

H,: e; =ej. (1.1)
This information can be used to construct preliminary test and shrinkage estimators. Sec-
ond, one may apply the Bayesian methodology to obtain an empirical Bayes estimator.

Various authors including Olkin and Selliah (1977) considered the problem of estimating
3. directly by perturbing the eigenvalues of the sample covariance matrix. Ahmed (1998)
and Dey (1988) estimated the eigenvalues using shrinkage methods. Leung (1992) consid-
ered the estimation of eigenvalues of the scale matrix of the multivariate F' distribution.
Joarder and Ahmed (1996) considered the estimation problem for a multivariate ¢ distribu-
tion. Daniels and Kass (2001) proposed the shrinkage estimation for covariance matrices.
Recently, Judge and Mittelhammer (2004) applied shrinkage technique in semiparametric
regression model.

A plan of this paper is as follows. The estimators are formally introduced in Section
2. The properties of the estimators are investigated in Section 3. Some computational
analysis is presented in Section 4. Examples based on real data are given Section in 5 and
section 6 summarizes the findings.

2 Large-sample estimation strategies

Assume that the data x;, X9, - - - X, represent n independent drawings from a m-dimensional
normal population with mean vector g and covariance matrix 3. These data yield the sam-
ple mean vector X, and the sample covariance matrix S. Let e, --- ,e,, be the normalized
eigen vectors of the sample covariance matrix S corresponding to eigen values Ay ,S\m.
We call éjU the unrestricted estimator (UE) of e;. Note that éjU of e; is based on sam-
ple data only and hence does not incorporate the UPI in estimating e;. However, it may
be advantageous to use the available UPI to obtain improved estimates. In the following
sub-sections, we introduced some improved estimation methodologies.
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2.1 Simple shrinkage estimator

Our objective is to identify a weighted linear combination of éjU and e] with smaller

expected quadratic risk than the sample estimator éjU. Toward, this end, define a simple
shrinkage (SS) estimator of e; as

6% =wel + (1 -w)é,”, we(0,1), (2.1)
where w is a constant, called the shrinkage coefficient. One might consider w and (1 — w)
as two weighted constants of €7 and éjU respectively. The value of w reflects the degree of
confidence in the UPIL. The proposed estimator éjs % is a linear and convex combination of
éjU and e} via a fixed value of . This is an example of the simple shrinkage estimator:
the sample estimator is ‘shrunk’ towards e]. The result is a biased estimator with a smaller
risk near the hypothesized value.

2.2 Shrinkage preliminary test estimation

The shrinkage preliminary test (SPT) estimator of e; is defined by
&% =& I(T; < ciua) + € 1T} 2 ctna), (22)

where /(A) is an indicator function of a set A. 7; is a test-statistic for the null hypothesis H,
in (1.1) and will be given in the next section. For w = 1, we obtain the simple preliminary
test estimator (PT) given by

¢, = &1(T; < cluw) + 61T = cu). (23)

Both preliminary test estimators are convex combinations of éjU, éjSS and éjU and non-

sample information (e;?) respectively, via a test-statistic for testing H,. These estimators
abound in a wide range of statistical applications, as evidenced by the bibliography by
Giles and Giles (1993). In recent literature a discussion about preliminary testing can be
found in Magnus (1999), Ohanti (1999), Reif and VIcek (2002), Khan and Ahmed (2003).

It is known that the preliminary test estimators are sensitive to departure from H, and
may not be perfect for all e; (Cohen, 1968). Further, for the multivariate normal mean
vector, Stein (1956) and James and Stein (1961) considered a shrinkage estimator which
dominates the sample mean vector. Their basic theory has been extended in various direc-
tions. To avoid the imperfection in preliminary test estimation, we propose two variants of
shrinkage estimators in the following sub-section.

2.3 Doubly shrinkage estimation

We adopt the Stein-rule estimation approach to obtain the estimators that will dominate
éjU over the entire parameter space notwithstanding of how correct the UPI is. First, we
propose the doubly shrinkage (DS) estimator as follows:

67" =& + {1 - (m-3)T,'}(&;" — &)

=¢" —w(m—-3)T,7'(6;" —e;°), m>4.

(2.4)
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Note that for w = 1, we get the ordinary shrinkage estimator (OSE), based on Stein-rule
éjs = éjU — (m — 3)7}71<éjU — ejo), m 2 4. (25)

The proposed shrinkage estimators use the test-statistic 7; to combine the sample data
with the hypothesis H,. In this respect their course of action is like the preliminary test
estimator. However, the estimator based on the preliminary test uses the statistic 7; to

select between éjS S and the unrestricted estimator whereas the proposed estimator éjD s

uses the test statistic 7; to shrink the estimator éjU towards the éjS S

Remark 1: Noting that éjD % is not a convex combination of éjSS and éjU because
[(m — 3)7, '] may be greater than 1.

Remark 2: Shrinkage estimator has a alarming peculiarity of over shrinking which may
make the coordinates of shrinkage estimator have a different sign from the coordinates of
the maximum likelihood estimator. One may agree on adjusting the magnitude of éjU, but
the change of sign is somewhat a grave matter and it would make a practitioner rather
uncomfortable if 7; near zero is observed. However, it is important to note that this
behavior does not adversely affect the risk performance of the shrinkage estimators.

A small adjustment of the shrinkage estimators leads to a convex combination of éjU and
éjs 5. We trim éjD S with its positive-part and propose the positive-part doubly shrinkage
(PDS) estimator which may be written as

éjDSJr == éjU — w(m — 3),];_1(6AjU — e;?)
—w{l — (m — 3)’];_1}](’]} <m—3)(&" —e?), m>4.

J

(2.6)

Naturally, this estimator prevents changing the sign of éjU because if 7; is observed small
éjD 5T assumes the value of éjSS . We shall later see that the DS estimator is dominated by
its truncated version. For w = 1, we obtain ordinary positive-part shrinkage estimator is

defined as

6" =¢" —(m-3)T7'(&" —¢)

—{1—(m —=3)T; "} I(T; <m — 3)(6,Y —e;%), m>4. 27)

For review of the shrinkage estimators, we may refer to Kubokowa (1998), Hoffmann
(1992), Brandwein and Strawderman (1990), Stigler (1990), Ahmed and Saleh (1999), and
Ahmed and Sen (2004) among others.

Remark 3: We have defined several possible estimators for the parameter vector of
interest. Although the proposed estimators no longer preserve the unit norms, however,
the risk performance of these estimators is superior to that of éjU.

In the present investigation we shall study the properties of the proposed estimators
under an asymptotic set up in the light of the usual weighted quadratic loss function.
Considering a sequence of local alternatives { K}

+ (2.8)

. — . . — a2
Ky :e;=e;,, where e; =e]

9
=
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The asymptotic distribution function (ADF) of {\/n(e} — e;)} is given by

G(y) = lim P{Vn(e] —e;) <y}, (2.9)

n—oo

where e;* is any estimator of e; for which the limit in (2.9) exists. Further, M =
[ -+ [yy'dG(y). Then, the asymptotic distributional risk (ADR)is defined by ADR(e}; e;) =
trace(VM), where V is a given positive semi-definite matrix.

3 Main results

Anderson (1963) established the following theorem which gives asymptotic distribution for
the sample eigenvetors e;.

Theorem (Anderson, 1963):  Let X be an m x 1 random vector from a multivariate
population with mean vector p and positive definite covariance matrix 3. Suppose that the
eigen values of 3 are Ay, Ao, - -+ , A (> 0) and let e, €9, - - - , €, be corresponding normalized
eigen vectors. Label eq,---€,, be the normalized eigen values of the sample covariance
matrix S corresponding to eigen roots Ay, - - - ,5\m(> 0). If )\, is a distinct root, then as
n — oo, n%(éjU — e;) has a limiting multivariate normal distribution with mean vector 0
and covariance matrix I', N,,(0,T), where

L=\ Zm: Xm: {O\]i—)\)?} ee;.

i=1 j#i
It is important to note that covariance matrix I' is singular. Further, we may represent
I' as follows
2

I = E;)D{)E),

where
Ej) = (e1,e2,-- ,€j_,€j11, - ep)
A Al Y A
D%j):diag<”—12,...7 172971 -, iAj+1 2’“.’]—2)

Let us define the following transformation

z =D Eynz(e" —e)),

then the limiting distribution of z is X, _1(0,I), where I is an identity matrix. Thus,
7z = [n2(6;" — ¢,)/Qn2(6;" — ),

where Q = E(j)D(_ﬁE’( ;- Hence the limiting distribution of z'z is chi-square distribution
with m — 1 degrees of freedom. The matrix Q may be displayed in the following relation

Q=\N2""-2I+ 1y
Aj
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Hence, the limiting distribution of the following quadratic form

N
N|=

[n (&Y —e;)]

“ 1
(éjU — ej)]/ ()\J'Sl —21 -+ 5\-8) [n

J

is a central chi-square distribution (Anderson, 1963). Further, it can be shown that

< 1
T,=n ()\jei'Sleﬁ + S\—e]o-'Sejo- — 2)

J

is distributed asymptotically as a central chi-square distribution when the null hypothesis
in (1.1) is true with (m — 1) degrees of freedom. For given (0 < « < 1), the critical value
of 7; may be approximated by X?n_m, the upper 100a% point of the chi-square distribution
with (m — 1) degrees of freedom under H,.

Note that for fixed alternatives it is straightforward to show that 7; is a consistent test.
For this obvious reason all the estimators will be ADR equivalent to éjU while éjss will
have a unbounded ADR. To avoid this technical difficulty we confine to a sequence of local
alternatives {K(,)} defined in relation (2.8) and have the following useful lemmas.

Lemma 3.1:  Under local alternatives and usual regularity conditions as n increases
V(&Y —e;°) =N N,,(6,I'). Hence, the test statistic 7; is distributed asymptotically as
a non-central chi-square distribution with (m — 1) degrees of freedom and non-centrality

parameter A = §' Q4.
Let us define asymptotic distributional bias vector (adbv) of an estimator e of e; as

adbv(e}) = lim E{\/n(e; —e;}.
Further, we transform various bias functions in scalar (quadratic) form by defining
gb(e]j) = [abdv(e})]'Q[abdv(e;)],

Thus, qb(e;) is called quadratic bias of an estimator €} of parameter vector e;.

It is seen that only éjU is an asymptotically unbiased estimator of e;. On the other
hand, adbv(éjss) is —wd, hence the quadratic bias of éjSS is @w?A. Thus, quadratic bias of
éjS % increases with A without an upper bound. This estimator will achieve the property
of unbiasedness if and only if A = 0 which in return it requires d to be a null vector.

Theorem 3.1: The adbv of éjSP is
adbv(éjsp) = —W5Hm+1(X3n_1,a§ A),

where H,,(x ;A) stands for the non-central chi-square distribution function with non-
centrality parameter A and m degrees of freedom. This expression is established by using
the results of Lemma 3.1.
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The quadratic bias is gb(6;”") = @2 A[Hpi1 (X2 _1.0; A)]?. Obviously, the gb of €;°" is
a function of A, @ and a. As a function of A (for fixed w and «), it starts from 0 increases
to a point, then is decreased gradually to zero. As a function of a for fixed A and w, it
is a decreasing function of o with a maximum value @w?A at a = 0 and 0 at o = 1. The
statistical properties of é]-P may be obtained for @ = 1 in the qb(éjsp ).

Theorem 3.2: Using Lemma 3.1 the bias expression for éjD % is

adbv (6,7%) = —w(m — 3)6 E(x;2,(A)),

where E (x;2(A)) = [7 272 dH,,(z ; A). Hence gb(6;”%) = @?(m — 3)2A[E (x>0 (A))].
E(x;51(A)) is a decreasing log-convex function of A. Hence, the gb of ;7% starts at A =0
then decreases to a point and then increases towards the origin.

Figure 1 validates the behavior of the quadratic bias of the proposed estimator.
Theorem 3.3: By virtue of Lemma 3.1 the expressions for adbv and gb €; 3. 5T are given

in the following relations, respectively

adbv(6;”"") = ~wd [Hy1(m — 3;8) + B{x;, 1 (A) (X711 (A)) > (m — 3))}]

gb(6,7%%) = @A [Hypa (m — 3;A) + E{x; 21 (A) (%11 (A)) > (m —3))}]”.

DS+) DS+

The graph of qb(€; follows the same pattern as that of éjDS. However, €; is less

biased than that of €,”° for all @ € [0,1).
[Figure 1 about here]

Now, we provide asymptotic distributional risk analysis for the proposed estimators
under local alternatives.

It is seen that ADR of 6,V has a constant value trace(VT). The ADR of &;°% is
(1—w)*trace(VT') +w?d'V4. It is an unbounded function of A and satisfies the inequality

(1 —@)?r(VL) 4w AChyn(VT) < ADR(6;°) (3.1)
< (1-@)%tr(Vl) +@*AChy.(VT), ’
where Chyin(A) and Chyay(A) are the smallest and the largest eigen values of the matrix
A. Thus, the two bounds of ADR (€,%%) intersects with the ADR(€,V) at

2—w tr(VI) _2—w tr(VI)
= OhvD) 4 Am = T

A=

respectively. Also, if
0<A<A (3.2)

then éjSS has a smaller ADR than that of éjU. On the other hand, if A,, < A then éjU
has a smaller ADR than éjSS.
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Theorem 3.4: Under local alternatives and as n — oo, the ADR of éjs P s

ADR(6;°" e;) = trace(VT) — w(2 — w)trace(VL) Hpy1(Xp-1.05 D)

/ 3.3
OV 20 s (210 A) — (2 — @ a0 1 A O

Proof:  We use the same argument as in Ahmed (2001) to arrive at the above relation
(and thereby avoiding the proof).
From relation 3.3 it is clear that if

(2 — @)tr(VL) Hppa (X1 (@); A)
V=S Gl (V) BH (01 (00 8) — (2~ %) s (02 () A

(3.4)

then the ADR of éjs P is smaller than that of éjU. As « (the level of significance) ap-
proaches to 1, ADR(¢;°") tends to ADR(&;”). This is also true when A — oo. Un-
doubtedly, at A = 0, the ADR(¢;°"") assumes the smallest possible value, i.e., tr(VT){1 —
@(2 — @)Hpmy1(X3,_1(a); 0}, which keeps on increasing crossing the line tr(VT), reaches
to maximum then decreases monotonically to the ADR(€,").

For @w = 1, we obtain the comparison of éjU and éjP . Thus, éjP performs better than
¢,V whenever A is in the interval

tr(VL) Hpyr (x5, 1 (a); A)
Chunax(VE{2H 1 (X1 (X1 (@); A) = Hig3(X5, 1 (a); A}

Interestingly, while comparing the right hand side of (3.4) to that of (3.5) we find that &;°"
provides a wider range than é]-P in which it has a smaller ADR than éjU. This indicates
that the performance of éjSP is relatively superior to éjP .

If A =0, then the ADR of ¢;°° takes the value (1 — @)?r(VT) whereas ADR of 6;°"
is tr(VL){1 — @(2 — @)Hpmi1(x2,_1(a); 0}. The ADR difference at A =0 is

0<A<

(3.5)

ADR(6,%%) — ADR(6,°7) = (2 — @){1 — Hps1(xa_1(0),0)}.

It is concluded that éjSS performs better than éjSP under H,. However, for A # 0, the
ADR difference shows that éjS % performs better than éjS P whenever

(2 = @)tr(VI){L — Hp1 (X7, 1(@): A)}
Chinax( VI @ = 2Hp 41 (X701 (a); A) + (2 = @) Hias (X1 (@) A)}

0<A<

S

It can be safely said that neither éjSS nor € P is asymptotically admissible with respect

to each other.

Theorem 3.5: For large n , the ADR function for éjD S* under the local alternatives is

ADR(6;"°" e;) = ADR(6,”" e;) — w’trace(VT)
E[{1 — (m = 3)x;i1 (D) I(x41 (D) < (m = 3)] (3.6)
+wd' V[ E[2{1 — (m = 3)x;51 (D) H (X331 (D) < (m = 3)] '
~wB{1 = (m = 3)x;.%5(A) I 5(A) < (m = 3)]],

I
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where

ADR(8;7% e;) = trace(VT) + 8'Vw(m — 3)[4 + w(m — 3 E(xpts(A)) (3.7)
—w(m — 3)trace(VE){2E(x;,51 () — c(m = 3)E(x, 5 (A)}.
Proof.  We derive the above expressions by using the argument as in Ahmed (2001) and
after some tedious algebra and repeated application of Stein’s identities.
We determine the value of w at which minimum is attained for the ADR of éjD S Using
the Stein’s identity

E[,2(A)] = (p+2)E[x, 15 (A)] = AE[x,{4(A)],

taking p = m — 1 in the above identity then
E[Xmi1(A)] = (m = 3)E[x;11(A)] = AE[x;,45(A)].

Let g1 = E[x;h5(A)], g2 = E[x;51(A)] and g3 = E[x;;41(A)]. Then Agy = go— (m—3)g3
Hence,

ADR(8;7% e;) = (m —1)+ A(m —3)g1(4 + w)(m — 3))w
—w(m —3)(m —1)[2g, — w(m — 3)g3]
= @?[(m — 3)*Agy + (m — 3)*(m — 1)gs] + w[4Ag1(m — 3)—
2g2(m — 1)(m — 3)] + (m — 1).

Noting that this is a quadratic function of w, it has form aw? + bw + ¢ and a > 0. Then
this function has minimum at the point —%. In this case

o = b 2g2(m—1)(m—3)—4Ag1(m—3)
°© T 22 2(m—3)2[Agi+(m—1)g3]
g2(m—1)—2Agy

= (m-3)[Agi+(m—1)gs]’

Now by applying the Stein’s identity for Ag; both in numerator and denominator, we get

g2(m — 1) — 292 + 2(m — 3)gs

(m—3)[g2 — m —B)ga + (m— ga]

Wy —

DS is attained at @, = 1. Further, it can be seen

Thus, the minimum of ADR function of €;
that ADR of éjD % decreases as w increases.
In order to investigate the comparative properties of the proposed estimators, let us

consider the class of positive semi-definite matrices S defined by

tr(VI) - 4+w(m—3)}.

S = {V : Cho(VT) = 5 (3.8)

We find that
ADR(6;7°" e;) < ADR(€,7° e;) < ADR(€,", e;),
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for all A and V € §. Thus éjD 5* is asymptotically superior to the other two estimators
for m > 4.
Under the null hypothesis the ADR of éjSP and of éjDS+ are

ADR(6,°F e;) = tr(VI){1 — (2 — @) Hyps1 (2, (@); 0)1,

m _
The ADR difference is
ADR(éjDS+7 e]) — ADR(é]SP7 e]) = t?”(VF)w(2 - w) {Hm+1 (X?%lfl(OZ); 0) - —— i)} )
m —_—

which is positive if a belongs to the set

A, = {a  Hy (02 (0),0) > 2 3} |

m—1

If a € A,, then ADR(6,”°%) > ADR(é,°" ¢;) for all w € [0,1). In this case clearly &;°"
performs better than éjD 5F otherwise éjD 5* is superior. If we are willing to ignore those
values of « that fall in A(«) then under H,

ADR(€;”°" e;) < ADR(¢;"%, e;) < ADR(g;°" ¢;),

with strict inequality holds for some A. However, it is evident that as A departs from 0, i.e.,
H, is violated then the dominance picture changes. Nevertheless, as A — oo, these three

estimators are asymptotically equivalent. Otherwise, the curves of ADR of éjS P éjD S and

éjD 5F intersect for the set A,, and none of the estimators are asymptotically admissible
relative to each other. However, for those values of o ¢ A, the picture remains as in the
above relation. We conclude this section with the following remark.

Remark 4: If m < 3, one would prefer the use of éjSP against éjSS as the size of A
is usually unknown. However, if m > 4, then éjD 5* is the most desirable candidate as an
estimator of e;, unless the size of A is known to be very small, in this case éjs S will have

the smallest ADR.

4 Some computed risk analysis

We realize that T is a singular matrix for computational sake we may choose V.= Q. In
this case, 'V = A and

tr(VI) = trace(Qr') = trace(Eg; E{;) =
trace(I — e;e) = trace(I) — trace(e;e}) =
m — trace(eje;) =m — 1.
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Thus, in sequel we consider V = Q to facilitate numerical computation of the various ADR
functions and with this substitution, we have the following Lemma.

Lemma 4.1:
ADR(e] .ej) =m—1, (4.1)

ADR(ejSS, ej)=(1—w)*(m-1)+z’A (4.2)
ADR(éjSPv ej) = (m - 1)[1 - w(Q - w)Hm—l—l(X?n—l,a; A)]
+AL2wH 1 (X105 A) — (2 — @) Hins (X, 1,03 A)
ADR(6;"% e;) =m —1+ Aw(m —3)[4+ w(m —3)|E(x;}5(A))
—w(m = 3)(m — D{2E(x; 1 (A)) — w(m = 3)E(x;, 11 (A)},
ADR(&;7°" e;) = ADR(6;"% e;) — @w*(m — 1)
{1 = (m = 9,2 (AP0, (A) < (m - 3) 0.4
+@A[ER2{1 = (m = 3)x,,51 (D) H (x7,41 () < (m = 3)] '
—wB[{1 - (m = 3)x; 5(A) I (G s(A) < (m = 3)]].

We have numerically calculated the values of ADR of the estimators versus A at selected
values of m, a and w. The results are presented graphically in Figures 2-3. These graphs
validate our analytical findings as discussed in the previous section. Not surprisingly,
proposed Stein-rule estimators outshine their competitors in the entire parameter space
induced by non-centrality parameter A. However, it is important to note that for small
values of w the performance of éjss is worth considering. In these cases the éjs  dominates
the rest of the estimators in a very large parameter space. All the estimators have maximum
risk gain over the éjU at A = 0 and the value of the improvement is a decreasing function
of A. However, at A = 0, the improvement of éjSS over éjU is the largest as compared to
other proposed estimators, which decreases as A increases without a bound. The value of
the improvement of éjSP over é] follows a similar pattern, however, it is bounded in A.
On the other hand, both éj and e]D 5* improve upon éjU in the entire parameter space.

(4.3)

[Figures 2-3 about here]

5 Examples

In this section we present three examples for practical purposes.

FExample 1:  'We return to the second motivating example described in the Section 1, and
consider the analysis of the data provided in Jolicoeur and Mosimann (1960). In a study
of size and shape relationships for painted turtles, they measured carapace length, width,
and height.

The natural logarithms of the dimensions of 24 male turtles have sample mean vector
X = [4.725,4.478,3.703]', and covariance matrix

11.072 8.019 8.160
S=10"21 8019 6.417 6.005
8.160 6.005 6.773
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A principal component analysis yields the first estimated principal component
el = [0.683,0.510,0.523],

which explains 96% of the total variance. There is some evidence that the corresponding
population correlation matrix may be of equal-correlation and positively correlated. This
information is very well used to specify the value of first the eigenvector. Thus, the first
eigenvector may be specified as \/ig plus a perturbation to ensure that the eigenvalues of
covariance matrix are distinct. With this remark we may specify e; as follows

e] = [0.70,0.50,0.51]".
The usual sample estimate is
el =1[0.683,0.510,0.523],

so the data does seem to be consonant with the prior belief. Further, we find 7; = 0.9722
for testing the prior belief null hypothesis. In this example, we have m = 3, hence with
2 degrees of freedom, the critical value for a 5% significance test is X%27-05) = 5.99, so the
prior belief hypothesis is tenable. Using w = 0.5, we have applied some of the estimators
defined in this communication to this set of data with the following results.

&% = &% = [0.6900, 0.5050, 0.5165]".

We recommend applying pretest estimation in this situation. Noting that in this example
we cannot use the Stein-rule estimators due to a dimensional restriction, i.e. m > 4. The
application of Stein-rule estimators is given in the following example.

Example 2: Returning to the first motivating example, we consider monthly rates of re-
turn for four stocks, Mobil, Texaco, IBM and DEC (Digital Equipment Company) for the
period January 1978 through December 1986. That monthly data set is on pages 109-111,
Stock Market Analysis Using the SAS System: Portfolio Selection and Evaluation published
by the SAS institute, 1994. The observations in 108 successive months appear to be inde-
pendently distributed, but the rates of return across stocks are correlated. This is expected
since, stocks tend to perform together in response to general economic situations.

Let x1,--- , x4 denote observed monthly rates of return for Mobil, Texaco, IBM and
DEC, respectively. Then a principal component analysis using SAS yields the following
summary.

x = [0.0171,0.0121,0.0103,0.0182]’

and
0.0060 0.0041 0.0009 0.0024

0.0041 0.0057 0.0007 0.0005
0.0009 0.0007 0.0030 0.0018
0.0024 0.0005 0.0018 0.0082
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The eigenvalues and corresponding normalized eigenvectors of S are given below.

A1 = 0.01241650, .582086,0.511612,0.214029, 0.594660]’
A2 = 0.00641397, .386420, —.506979, 0.184045, 0.748185)’
A3 = 0.00251218, .054494, —.018083, 0.959331, —.276382]'

=[0

=[-

=[-
Ay = 0.00170143, e4 = [—.713362,0.693468,0.001664, 0.101058)’
Using the above information, we obtain the first two principal components

g1 = (&Y)'x = 0.582086z1 + 0.511612x5 + 0.21402925 + 0.594660z
go = (8Y)'x = —0.386420z; — 0.506979z5 + 0.1840455 + 0.748185.

These components, which account for 81.72% of the total sample variance. The first com-
ponent can be viewed as weighted sum of returns, weights are roughly equal except for
the IBM stock. The second component represents a contrast between oil stocks and Tech
stocks. Further, from the past data, the initial estimates of e; and e, available as

= [0.60,0.50,0.17,0.60]", €3 = [—0.40, —0.50, 0.30, 0.70]’

We calculate 77 = 0.8113 and 75 = 2.0058, respectively, for testing the prior belief null
hypotheses and with 3 degrees of freedom, the asymptotic critical value for a 5% sig-
nificance test is X%37_05) = 7.81. Hence, the prior belief hypotheses are tenable in both

cases. Hence, with = 0.5, first principal component is estimated by &7% = &F =

[0.5910, 0.5058, 0.1936, 0.5973)', and 625+ = &PS = [0.5931,0.5045, 0.1889, 0.5980]'. Simi-
larly, for @ = 0.5 the improved estimates of e, are 5% = &57 = [~0.3932, —0.5035, 0.2501, 0.7241]’,
and 605 = &DS = [0.3898, —0.5052,0.2170, 0.7362]'.

Ezxample 3 Di Vesta and Walls (1970) studied mean semantic differential ratings given
by fifth graders for a large number of words. These rating were obtained on the following
eight scales: friendly/unfriendly (1), good/bad (2), nice/awful (3), brave/not brave (4),
big/little (5), strong/weak (6), moving/still (7), and fast/slow (8). Based on the 292 words
and the raw data matrix given by Di Vesta and Walls we have the following;: A1 = 5.77 and

= [0.484,0.569,0.551,0.243,0.100, 0.232.0.087, 0.096]’".
Further, from the past experiment
e{ =[0.5,0.6,0.5,0.2,0.1,0.2.,0.2,0.1]".

We find 7; = 21.89 for testing the prior belief null hypothesis and with 7 degrees of freedom,
the critical value for a 5% significance test is X%7,,05) = 14.07. For @w = 0.5,

e7% = [0.4820, 0.5845, 0.5255, 0.2215, 0.1000, 0.2160, 0.1435.0.0980]’,

el — eP5 —[0.4842,0.5496, 0.5504, 0.2425, 0.1000, 0.2316, 0.0883, 0.0960)’.
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We note in this example the usual estimate is not very different from &7°, the positive part
is the same as the Stein-rule estimator and the pretest estimators reduces to the same value
as that of &Y. This is not surprising due to a large value of test statistic. Both &7 and

Stein-rule estimators adjust the magnitude of /. More importantly, both éP5" and éP*

are superior than &Y.

Example 4: European Marketing data are the percentage employed in different industries
in Europe countries during 1979. the job categories are agriculture, mining, manufacture,
power supplies, construction, service industries, finance, social and personal services, and
transport and communications. The sample mean and variance-covariance matrix are:

x = [19.1308,1.2538,27.0077,0.9077, 8.1654, 12.9577, 4.0000, 20.0231, 6.5462]

and

241.696 0.540 —73.114 —-2.340 —13.772 —52.484 —-9.592 —-79.291 -—12.221
0.540 0.941 3.026 0.148 —-0.041 —-1.761 —-1.205 —-1.862 0.211
—-73.114 3.026  79.109  1.016 5.702 6.538 —3.065 7.379 3.420
—2.340  0.148 1.016 0.142 0.037 0.348 0.116 0.340 0.196
S=|-13772 —0.041 5.702 0.037 2.708 2.681 0.075 1.778 0.888 |,
—52.484 —1.761  6.538 0.346 2.681 20983 4703  17.905 1.197
—-9.592 —-1.205 -3.065 0.116 0.075 4.703 7877  02.063  —0.960
—-79.291 —-1.862 7.379 0.340 1.778 17.905  2.063  46.643 5.397
—12.221 0.211 3.420 0.197 0.888 1.197  —0.960  5.397 1.936

respectively. The eigenvalues vector of the variance-covariance matrix is given below
A= [303.4850, 43.7109, 15.2184, 5.6404, 2.4445, 1.0459, 0.4209, 0.0652, 0.0019],

The principal components were constructed using the variance-covariance matrix. It
can be seen from the eigenvalues vector that the first two covariance principal components
explain about 93%of the variability of the European data set. The first two principal
components can be written as linear functions of the original nine variables as follows:

U1 = —0.8917z; — 0.001922 + 0.2712x3 + 0.008424 + 0.049625 + 0.192026 + 0.0311z7 + 0.2980z5 + 0.0454
y2 = 0.0070z1 — 0.0923z3 — 0.770323 — 0.012024 — 0.069025 + 0.2350x6 + 0.130127 + 0.566525 + 0.0098z

The first principal component has a high positive loading on the agriculture variable, x1,
and small loadings on all other job categories. This component may be interpreted as
distinguishing between countries with agricultural and industrial economics. The second
component can be viewed as a contrast between mining and social and personal services.
Further, from the past data, the initial estimates of e; and e, available as

9 = [—.90, —0.012,0.25,0.01,0.06, 0.15,0.04, 0.30, 0.098],

and
e; = [—0.007,—0.10,—0.80, —0.015, —0.07,0.20,0.15, 0.45, 0.283]’
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Ezample 5

Four measurements were made of male Egyptian skulls from five different periods rang-
ing from 4000 B.C. to 150 A.D.

Let x1,--- , x4 denote observed monthly rates of return for Mobil, Texaco, IBM and
DEC, respectively. Then a principal component analysis using SAS yields the following
summary.

% = [0.0171,0.0121, 0.0103, 0.0182]’

and
0.0060 0.0041 0.0009 0.0024

0.0041 0.0057 0.0007 0.0005
0.0009 0.0007 0.0030 0.0018
0.0024 0.0005 0.0018 0.0082

The eigenvalues and corresponding normalized eigenvectors of S are given below.

S:

A= 0.01241650, &Y =[0.582086,0.511612,0.214029, 0.594660]’
Ay = 0.00641397, &Y = [—.386420, —.506979,0.184045,0.748185)’
A3 = 0.00251218, ey = [—.054494, —.018083,0.959331, —.276382]’
A= 0.00170143, ey = [-.713362,0.693468,0.001664,0.101058]’

Using the above information, we obtain the first two principal components

g1 = (&Y)'x = 0.582086z1 + 0.511612x5 + 0.21402925 + 0.594660z4
g = (&V)x = —0.386420z; — 0.506979z5 + 0.184045z5 + 0.748185z,.

These components, which account for 81.72% of the total sample variance. The first com-
ponent can be viewed as weighted sum of returns, weights are roughly equal except for
the IBM stock. The second component represents a contrast between oil stocks and Tech
stocks. Further, from the past data, the initial estimates of e; and e, available as

€9 = [0.60,0.50,0.17,0.60]", €3 = [—0.40,—0.50,0.30,0.70]'

We calculate 7; = 0.8113 and 75, = 2.0058, respectively, for testing the prior belief null
hypotheses and with 3 degrees of freedom, the asymptotic critical value for a 5% sig-
nificance test is X%37_05) = 7.81. Hence, the prior belief hypotheses are tenable in both
ASP
€1

cases. Hence, with @ = 0.5, first principal component is estimated by é7% =
[0.5910,0.5058, 0.1936, 0.5973]', and &P+ = &PS = [0.5931,0.5045,0.1889, 0.5980]'. Simi-

larly, for ©o = 0.5 the improved estimates of e, are 5% = &5F = [—0.3932, —0.5035, 0.2501, 0.7241]’,
and &Pt = &DS = [-0.3898, —0.5052, 0.2170, 0.7362]".

6 Concluding remarks

In this paper we continue the search started a few decades ago to find ways on improving on
conventional estimators. In the context of estimation of eigen vectors of covariance matrix,
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we consider methods for optimally combining, under quadratic loss, estimation problem
involving estimators under full and reduce models that have different sampling characteris-
tics. It is concluded that Stein-type estimators provide a superior (in the sense of quadratic
risk) basis for combining estimators and thus possibility of combining estimation problems.
The proposed estimation strategy can be extended in various directions. Research on the
statistical implications of proposed and related estimators is on-going. It may be worth
mentioning that this is one of the two areas Professor Efron predicted for the early 21st
century (RSS News, January 1995). Shrinkage and likelihood-based methods continue to
play extremely useful techniques for combining estimation problems.

Although the point estimation implications of proposed estimators are encouraging,
there are some roadblocks for the confidence set estimation. In linear models, at least in
an asymptotic setup, the estimator or the estimating function that yields the estimator, is
assumed to be (multi-) normally distributed. This enables to apply well known distribution
theory relating to quadratic forms that can be used to construct suitable confidence set. In
the multiparameter case, as encountered here, the Scfeffe and Tukey methods of construc-
tion of confidence sets in MANCOVA models, as well as classical likelihood ratio statistic
based confidence sets are most popular. However, if we look into the Stein-type and the
preliminary test estimators, even in the classical parametric cases, it is seen that are not
normally distributed even in an asymptotic setup. Although the distribution theory of
Stein-type estimators have been extensively investigated in the literature, the distribution
theory of such quadratic norms does not produce the fruitful result so as to facilitate the
construction of confidence sets having desirable properties. We need to attack this problem
from a somewhat different direction, and relegate this study to a future communication.

The asymptotic distribution theory of the proposed estimators and ADR of all the
estimators rest on the asymptotic normality of éjU and on the asymptotic non-central chi-
square distribution of the test statistic. We find that Stein type estimation strategies are
superior to éjU in the whole parameter space (induced by the noncentrality parameter A),
while the performance of simple shrinkage estimator and estimation techniques based on
the preliminary test rule are purely A dependant. It is important to note that shrinkage
estimators based on Stein rule can only be used for m > 3. Thus, in the present investigation
proposed shrinkage estimators are superior to usual estimators for m > 4 while éjU is
admissible for m = 1,2 and m = 3. Thus, the use of the shrinkage estimation may be
limited due to a dimensional restriction. As such, in up to trivariate cases we will be
unable to use the additional information in the estimation process. In this situation, we
recommend using estimators based on the preliminary-test rule. The analytical results are
well supported by the computational work presented in the graphs.
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