
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



 

 

Teasing apart the interaction 

between HDAC4 and Ankyrin2 in 

Drosophila neuronal function 

 

 

 

A thesis presented in partial fulfilment of the requirements 

for the degree of 

 

Master of Science  

in  

Biochemistry 

 

School of Fundamental Sciences 

Massey University, Manawatu, New Zealand 

 

 

Sarah Jean Wilson 

2021 

 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

Abstract 
Histone deacetylase 4 (HDAC4) is a class IIa histone deacetylase that has previously been 

implicated in a range of neurodevelopmental and neurodegenerative diseases which 

involve deficits in memory and cognition. Overexpression of HDAC4 in the Drosophila 

brain impairs memory, therefore making Drosophila an ideal genetic model system to 

further investigate the molecular pathways through which HDAC4 acts. A recent genetic 

screen in Drosophila for genes that interact in the same molecular pathway as HDAC4 

identified the cytoskeletal regulator Ankyrin2 (Ank2). The Ank2 protein plays a pivotal 

role in maintaining the stability and plasticity of the spectrin-actin cytoskeleton by 

organising the distribution of ion channels and cell adhesion molecules, which is essential 

to normal learning and memory formation. Both overexpression of HDAC4 and 

knockdown of Ank2 result in similar deficits in Drosophila brain development and long-

term memory formation, suggesting that these two proteins may interact together in such 

processes. 

HDAC4 contains an N-terminal ankyrin repeat binding motif and it was hypothesised that 

HDAC4 interacts physically with the ankyrin repeat region at the N-terminus of Ank2, 

however, no physical interaction was detected via co-immunoprecipitation. Further 

investigation was then carried out to elucidate the nature of the genetic interaction 

proposed between HDAC4 and Ank2. In doing so, it was observed that nuclear 

accumulation of HDAC4 is required for this interaction, however, the presence of the 

HDAC4 ankyrin repeat binding motif is not required. This is consistent with the finding 

that HDAC4 does not bind Ank2 and indicates that the interaction between HDAC4 and 

Ank2 is indirect.  

It was also identified that Ank2 and HDAC4 are both required for Drosophila eye 

development as knockdown of Ank2 paired with overexpression of HDAC4 resulted in a 

severe novel “blueberry” phenotype that has not yet been characterised for these genes. 

Furthermore, it was observed that Ank2 was required for normal growth and 

morphogenesis of dendrites in the visual system, whereby both knockdown of Ank2 and 

overexpression of HDAC4 disrupt dendrite morphogenesis. These data provide further 

understanding of the roles of HDAC4 and Ank2 in Drosophila neuronal function, and the 

establishment of the molecular pathway in which HDAC4 and Ank2 act will be essential 

in unravelling additional mechanisms involved in the processes of learning and memory. 



iv 

Acknowledgements 
What an experience 2020 has been. Coronavirus hit, lockdown was imminent and before 

we knew it, we were ringing in the New Year. 

First and foremost, I would like to thank my supervisor Dr. Helen Fitzsimons for this 

incredible opportunity and endless support. Her enthusiasm, patience and guidance has 

helped me get through the massive amount of reading, writing, re-writing, and 

experimentation which I undertook in this project. Again, thank-you. 

To my lab mates, come friends, Andy, Hannah, Maddie and Wei, thank-you all for your 

support and helpful suggestions as well as the welcome conversations about coronavirus 

and politics, it is suffice to say, I have learnt a lot over the past two years. I would also 

like to thank the biomedical lab group for the weekly lab meetings, it has been a pleasure 

to learn what everyone’s projects are all about.  

A special thank-you to Ana Claasen for all that you do for our lab, from finishing off 

experiments to making fly food. I would also like to thank you for taking me under your 

wing and teaching me many of the basic techniques that we use on a daily basis. 

To Dr. Matthew Savoian and Raoul Solomon of the Manawatu Microscopy and Imaging 

Centre (MMIC) thank you both for the patience, guidance and assistance when I was 

learning to use the Confocal and Scanning Electron Microscopes. 

I would also like to thank Ann Truter and Cynthia Cresswell, without whom SFS would 

struggle to function. 

A special thanks to Dr. Silvia Schwartz, whose PhD lead to this Masters project, and 

without her prior knowledge and preliminary experiments, I would have been seriously 

out of my depth.  

This project was funded by the Royal Society of New Zealand Marsden Fund, and I would 

again like to thank Dr. Helen Fitzsimons for granting me a scholarship through this fund, 

in which I am most grateful for. 

Lastly, I would like to express my deepest gratitude to my friends and family, without 

their unconditional love and support I would not have been able to get through these past 

two years. To my parents, thank you for everything you have done and continue to do for 



v 

me, I am eternally grateful. To Glen, my wonderful fiancée, thank you for your 

continuous support, love and patience, I could not have done this without you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

Coronavirus Statement 
As a consequence of the New Zealand nationwide lockdown, Massey University closed 

down between March 23rd 2020 to May 18th 2020. The ramifications of this closure period 

were not limited to those two months outside of the laboratory as all experiments 

involving fly crosses that were set prior to the lockdown had to be abandoned. Following 

the University re-opening, these crosses required resetting for a second time, which 

entailed approximately eight weeks of preparation before the progeny required for the 

experimental assays emerged. This resulted in a loss of approximately four months of 

time in the lab and as a consequence, several objectives were unable to be completed as 

planned, which are described below: 

Objective 2: Due to time constraints, the western blot performed was only able to be 

completed once without any semi-quantitative analysis, rather than the minimum three 

repetitions. This was due to it being one of the last experiments to be started. 

Objective 3: Due to time constraints, the western blot was performed in duplicate to allow 

for a semi-quantitative analysis to be performed, however the results remain inconclusive 

due to variability. This blot was planned to have been repeated at least one more time. 

Objective 5: The experiment on the effect of HDAC4 overexpression and Ank2 

knockdown on the morphogenesis of dendrites in the visual system was completed, 

however, it was initially planned that the DmHDAC4 nuclear-restricted transgene and 

DmHDAC4 transgene with a mutated ankyrin repeat binding domain would also be 

expressed in combination with Ank2 knockdown in the visual system, to compare these 

effects to those that were seen in the Drosophila eye. 

Objective 6: It was initially planned that approximately 20 brains per genotype would be 

analysed for the phenotypes from either knockdown of Ank2, overexpression of HDAC4, 

or both in combination, however, HDAC4 overexpression alone resulted in a phenotype 

that was too severe, requiring this experiment to be repeated at a lower temperature 

(which would result in a lower level of transgene expression). Due to time constraints 

crosses were unable to be set and raised at a lower temperature, therefore, this experiment 

remains incomplete. 

A further experiment was removed entirely from the project due to lack of time. This 

experiment was to examine the impact of altering the expression of Ank2 and HDAC4 
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on the arrangement of the actin cytoskeleton by measuring the ratio of filamentous actin 

(F-actin) to monomeric globular actin (G-actin). 
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1.1 Neurodegenerative and neurodevelopmental disorders 

Precise spatial and temporal regulation of gene expression is necessary for the correct 

development of the brain, which involves the morphogenesis of billions of neurons and 

organisation of trillions of synapses into functional neuronal networks. Genetic and 

epigenetic dysregulation of these processes can lead to a range of neurodevelopmental 

disorders that result in clinical features including intellectual disability, developmental 

delay and autism, the underlying causes of which are usually undetermined. 

Late-onset neurodegenerative disorders cause gradual degeneration of the nervous 

system, impaired cognitive function and death of neurons. Such disorders include 

Alzheimer’s disease (Weller & Budson, 2018), Parkinson’s disease (Przedborski, 2017) 

and Huntington’s disease (Kumar et al., 2015). Characteristics of these include impaired 

motor function, loss of cognitive abilities and memory impairments. In recent years, as 

healthcare continues to improve the aging population continues to rise, resulting in an 

ever-increasing incidence of dementia. Alzheimer’s disease makes up between 60-80% 

of dementia diagnoses (Neugroschl & Wang, 2011). In New Zealand there was a 29% 

increase in Alzheimer’s prevalence over a five-year timespan between 2011 and 2016 

resulting in 62,287 individuals being diagnosed. This number is expected to increase by 

more than double to 170,212 by the year 2050 (Dementia economic impact report 2016, 

2017). Worldwide there are 50 million individuals living with dementia, with a new case 

being identified every three seconds, this number is expected to triple by 2050 to a 

massive 152 million people suffering from dementia (Patterson, 2018). As there are 

currently no effective treatments for dementia, a better understanding of the molecular 

processes that are required for normal cognitive function and how these processes are 

disrupted in neurodegenerative disease is imperative. 

 

1.2 Studies of learning and memory 

Neurons transmit and receive signals to and from other neurons via synapses, the 

junctions through which electrochemical signals are transferred (Sudhof & Malenka, 

2008). Neurons are comprised of dendrites that receive signals from neighbouring 

neurons (Sidiropoulou et al., 2006), the axon initial segment; which initiates an action 

potential (Foust et al., 2010), the axon; which transmits the action potential signal over a 
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long distance, and the axon terminal where this signal is transmitted through the synapse 

(Sudhof & Malenka, 2008). Neurotransmitters are small molecules released into the 

synapse following firing of an action potential. This action potential travels down the 

axon to the axon terminal which depolarizes the membrane, triggering opening of the 

voltage-gated calcium channels allowing for an influx of calcium to enter the presynaptic 

axon terminal resulting in the release of a neurotransmitter (Reece et al., 2014; van der 

Kloot & Kita, 1974). These neurotransmitters are released into the synaptic cleft and bind 

to receptors on the post-synaptic dendrite which triggers an action potential in the 

following neuron (Figure 1.1). Neurotransmitters can also bind to voltage-gated sodium 

channels which then open and allow positive charge to flood the negative resting cell 

(Cantrell et al., 1999). This influx of positive charge depolarizes the cell and activates the 

firing of an action potential (van der Kloot & Kita, 1974). This action potential is initiated 

at the axon initial segment and is propagated down the axon by the myelin sheaths and 

nodes of Ranvier to the axon terminal (Arancibia-Carcamo & Attwell, 2014; Foust et al., 

2010; Nickel & Gu, 2018).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Schematic of the synaptic connection between an axon and dendrite. In the axonal 

presynaptic terminal, neurotransmitters are gathered into synaptic vesicles where they are released 

into the synaptic cleft following depolarization of the membrane by the firing of an action 

potential. This causes the voltage-gated Ca2+ channels to open allowing an influx of calcium to 
enter the presynaptic terminal. Neurotransmitters then bind to receptors on the postsynaptic 
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dendrite or are recaptured by the presynaptic terminal and repackaged into new synaptic vesicles. 

Abbreviations: Ca2+ = Calcium. Original artwork created with reference to Thomas Splettstoesser 

(www.scistyle.com) and Sudhof and Malenka (2008). 

 

Learning is the biological process of acquiring information and knowledge from the 

surrounding environment, and memory is the retention and storage of information that 

can be recalled (Bailey & Kandel, 1993). 

Two independent types of memory are formed which utilise different systems. Short-term 

memory is formed via covalent modifications of pre-existing proteins which facilitate 

transient alterations in the synapse including increased neurotransmitter release and 

increased clustering of ion channels. This type of memory results in a transient increase 

in synaptic strength, i.e. an increase in the size of the post-synaptic response following 

activation and lasts between a few minutes to an hour. Long-term memory is retained for 

a longer period of time and requires synthesis of new proteins to form new synaptic 

connections, whereas short-term memory is protein synthesis independent (Alberini, 

2011; Guan et al., 2002; Kandel et al., 2014; Kennedy, 2013). 

The formation of long-term memory requires expression of genes that encode proteins 

involved in rearrangement of the actin cytoskeleton to enable the growth of synapses as 

well as other plasticity-related genes (Lamprecht & LeDoux, 2004). There are 

approximately 100,000 synapses per neuron, albeit only a small subset of these undergo 

synaptic plasticity when a memory is formed (Halassa et al., 2007). Further research is 

therefore required to understand how gene expression is regulated during memory 

formation and how signals are sent to and from specific synapses for appropriate synaptic 

growth. 

 

1.3 Drosophila as a model system for neuroscientific research 

The use of the small model organism Drosophila melanogaster is ideal for molecular 

dissection of memory processes due to the abundance of tools that have been developed 

for genetic manipulation in order to alter the expression of a specific gene (Brand & 

Perrimon, 1993; Dukas, 2008; McGuire et al., 2004) to activate or suppress specific 

neuronal pathways to determine the effect on learning and memory (Margulies et al., 

2005). In addition, 75% of genes that have been implicated in human genetic disorders 

http://www.scistyle.com/
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are conserved in Drosophila (Lloyd & Taylor, 2010; Pandey & Nichols, 2011; Reiter et 

al., 2001). 

Behavioural assays have also been developed to evaluate learning and memory in a 

quantitative manner, for example, the courtship suppression assay. This assay utilises the 

associative learning of a male fly following rejection from a non-receptive female fly. 

Following the learned rejection, the male fly is then placed with a new non-receptive 

female where his courting abilities are monitored. If the memory of the male is intact, he 

remembers the rejection he was shown during training and will display reduced courtship 

behaviour towards the unresponsive mated female (Ejima & Griffith, 2011). 

The Drosophila brain is comprised of approximately 100,000 neurons (Chiang et al., 

2011; Huang et al., 2018), and a region of the brain that is of particular focus in memory 

research is the mushroom body. This region has gained attention as McBride et al. (1999) 

previously demonstrated that a structurally intact mushroom body is essential for normal 

memory formation, whereby both chemical ablation and mutations causing defects in the 

mushroom body structure resulted in impairments in short and long-term memory 

formation. 

 

1.3.1 The mushroom body 

The Drosophila mushroom body is a bilateral structure which was compared to the 

cerebral cortex in vertebrates when it was initially identified by Félix Dujardin in 1850. 

The mushroom body receives input from olfactory projection neurons which sense 

odorants. The axons of these olfactory projection neurons synapse with the dendrites of 

Kenyon cells, which are the intrinsic neurons of the mushroom body (Turner et al., 2008). 

There are approximately 2,500 Kenyon cells which cluster their cell bodies at the 

posterior dorsal region of the brain and extend their dendrites anteriorly into the calyx. 

The Kenyon cell axons are then bundled to form the ventrally projecting peduncle which 

then bifurcates into vertical and medial lobes (Technau & Heisenberg, 1982) (Figure 1.2). 
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Figure 1.2. Schematic depiction of the Drosophila brain. (A) Anterior depiction of the 
Drosophila brain showing the Kenyon cell bodies extending their axons through the ventrally 

projecting pedunculus where these axons then bifurcate to form the distinct α/α’ vertical lobes 

and β/β’ and γ medial lobes. (B) Posterior depiction of the Drosophila brain showing the 
organisation of the Kenyon cell bodies which extend their dendrites anteriorly into the calyx. 

Abbreviations: AL = antennal lobe, OL = optic lobe. Original artwork created with reference to 

Lee et al. (1999), Schwartz (2016), and Technau and Heisenberg (1982). 

 

There are three Kenyon cell subtypes which differentiate sequentially throughout larval 

and pupae development. The first population of Kenyon cells to be born are the γ neurons, 

which form between the initial larval and the mid-third instar larval stages, where axons 

are bundled to form the medial γ lobes. The α’/β’ neurons are then formed between the 

mid-third instar larval stage and pupal formation before lastly the α/β neurons are formed 

following pupation. The α/α’ axons bundle together to form vertical lobe structures, while 

the β/β’ axons bundle to form additional medial lobes (Lee et al., 1999). These axonal 

bundles create the L-shape characteristic of the Drosophila mushroom body.  

The Kenyon cells are also innervated by extrinsic modulatory neurons, which includes 

several types of dopaminergic neurons, the activity of which is critical for normal memory 

formation (Ito et al., 1998; Kim et al., 2007). 

 

1.3.2 The Drosophila compound eye 

The Drosophila compound eye is also a valuable model system for neuroscientific 

research where neurodevelopmental and neurodegenerative abnormalities can be easily 

visualised as perturbations in ommatidial patterning and these phenotypes can be semi-

quantitatively assessed. Furthermore, photoreceptors are specialised neurons, and the 

molecular pathways that occur within photoreceptors are likely to be conserved in other 

α 
α’ 

β’ 
β 

γ 
Pedunculus 

Calyx Kenyon cells Kenyon cells Calyx 

AL AL 

OL OL OL OL 

A B 



7 

neuronal populations. The compound eye is comprised of between 700 and 800 neatly 

aligned hexagonal ommatidia with evenly dispersed mechanosensory bristles. Each wild-

type ommatidium is composed of eight rhabdomeric (R) photoreceptor cells (R1-8), two 

primary, six secondary and three tertiary pigmentation cells as well as four cone cells that 

secrete lens matter. Differentiation in the ommatidial cells occurs in the posterior of the 

eye imaginal discs (Freeman, 1997). The morphogenetic furrow sweeps anteriorly across 

the imaginal discs leaving a wake of differentiated ommatidial cells (Ready et al., 1976). 

The eight photoreceptor cells differentiate in a specific order, R8 is first to differentiate 

posterior to the furrow before R2 and R5, followed by R3 and R4, then R1 and R6, and 

lastly R7. (Freeman, 1996; Tomlinson & Ready, 1987). Next to form are the cone cells 

and pigmentation cells which are configured during the second mitotic wave a few rows 

posterior to the morphogenetic furrow (Ready et al., 1976). The development and 

differentiation of the R7 photoreceptor is the most well-characterised due to analysis of 

the sevenless (sev) gene. A fly with a background devoid of sev resulted in progeny 

lacking the formation of the R7 photoreceptor while the rest of the eye developed 

normally (Campos-Ortega et al., 1979; Harris et al., 1976). Sev was shown to drive R7 

differentiation, however sev was not sufficient for R7 formation, nor is it involved in 

determining the identity of the cell (Freeman, 1997). 

A single ommatidium shares three interommatidial mechanosensory bristles with its 

neighbouring ommatidia (Kumar, 2012). The organisation of the ommatidia and bristles 

is invariant amongst wildtype flies and disruption, or disorganisation of these features is 

easily observable as a “rough eye” phenotype, which can be semi-quantitatively scored 

through analysis of light micrographs or scanning electron micrographs.  

Analysis of the rough eye phenotype is a common method used to determine whether two 

genes interact genetically (Figure 1.3). A genetic interaction occurs when two or more 

genes act in the same molecular pathway. It is suggested that if the resulting phenotype 

from the combination of two genetic mutations is more severe than the additive effect of 

each mutation individually, synergy is occurring (Perez-Perez et al., 2009). A genetic 

interaction suggests a functional relationship between the two genes; however, it does not 

provide evidence as to whether the protein products interact physically. If a genetic 

interaction is identified between two genes, then further analysis, such as investigation of 

their expression patterns, subcellular distribution or binding partners can be carried out in 

order to further understand how these genes act together in a particular cellular process. 



8 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Rough eye phenotype enhancement screen. This is a genetic eye screen that is 

performed on the Drosophila compound eye to identify a genetic interaction. (A) No change in 

phenotype was observed when the expression level of gene A is altered in the eye (eg, by 

overexpression, RNAi knockdown or mutation). (B) A mild rough eye phenotype is observed 
when expression of gene B is altered, resulting in mild ommatidia disorganisation. (C) Alteration 

in expression of genes A and B result in a severe rough eye phenotype where fusion and severe 

disorganisation is observed. The resulting phenotype is more severe than the additive effect of 
each phenotype associated with gene A and gene B individually, therefore, this is indicative of a 

synergistic interaction, meaning that these genes are involved in the same genetic pathway. Figure 

from Schwartz (2016), reproduced with permission. 

 

1.3.3 The Drosophila visual system 

As rearrangement and growth of the actin cytoskeleton at dendritic spines is required for 

both neuronal morphogenesis and memory formation (Borczyk et al., 2019), it would be 

ideal to assess the impact of alterations in expression of candidate memory genes on 

dendritic growth. The morphology of dendrites differs greatly among neuronal subtypes, 

dependent on location and function. Dendritic arbours can range from singular thin fibres 

to large intricate complexes of dendritic spine-like protrusions (Cline, 2001; Libersat & 

Duch, 2004). 

The Kenyon cells of the mushroom body are an ideal model system when looking at 

abnormalities of the brain as the mushroom body is a prominent structure and defects in 
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development of the mushroom body lobes (bundled axons) are relatively simple to 

visualise and score. Kenyon cells also contain dendritic arbours; however, these are small 

and appear to be more variable (Zhu et al., 2003), making then difficult to study. 

In contrast to the Kenyon cells, the visual system contains giant dendritic arbours that 

develop in a stereotypical fashion and have been well-characterised. Flying insects rely 

heavily on vision and these visual inputs are largely carried out by giant neurons in the 

lobula plate of the lobula complex (Dvorak et al., 1975). The lobula plate of a common 

housefly contains two systems of giant neurons, namely the horizontal and vertical 

systems. The horizontal system is comprised of three giant neurons, whereas the vertical 

system contains nine which span their dendritic arbours across the dorsal-ventral axis of 

the lobula plate (Scott et al., 2002). In the Drosophila optic lobe there is a group of six 

visual interneurons called lobula plate tangential cells (LPTCs) which are structurally 

similar to the vertical system neurons seen in the housefly. These LPTCs contain spine-

like protrusions that are enriched in actin. This enrichment drives dynamic processes 

making the spines a site of synaptic contact. (Leiss et al., 2009). The development of these 

spines can be easily assessed via confocal microscopy, where alterations in branching 

patterns, number of branches, and spine density can be quantitatively measured 

(Freymuth & Fitzsimons, 2017). Further morphological analyses have been undertaken 

to fully characterise the dendritic tracing of each of the six LPTCs using mosaic analysis 

with a repressible cell marker (MARCM) single cell labelling techniques to allow for 

independent identification of each neuron (Scott et al., 2002). 

 

1.3.4 Genetic manipulation of Drosophila 

A favourable feature of Drosophila as a model system is its amenability to be genetically 

manipulated, which allows for analysis of gene function as well as neuronal circuitry. The 

generation of transgenic flies is a simple and routine procedure and flies can be 

engineered to express any transgene in almost any tissue. The development of the 

UAS/GAL4 system for tissue specific regulation of gene expression significantly 

enhanced the utility of gene manipulation in Drosophila tissues by way of its “mix ‘n’ 

match” system in which any promoter can be paired with any transgene for tissue-specific 

expression (Brand & Perrimon, 1993). 
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1.3.4.1 The UAS/GAL4 system 

The UAS/GAL4 system is a bipartite system that takes advantage of the yeast 

transcriptional transactivator GAL4, which binds an upstream activating sequence 

(UAS). Transgenic flies are generated which carry a construct with the GAL4 gene fused 

downstream of a tissue-specific enhancer, termed a GAL4 driver. These flies are then 

crossed with a second line carrying the UAS fused with a downstream target transgene of 

interest. In the F1 progeny of this cross, GAL4 is expressed and binds to regulatory sites 

on the UAS to induce expression of the downstream transgene in a specific tissue (Brand 

& Perrimon, 1993; Fischer et al., 1988) (Figure 1.4). Thousands of GAL4 driver lines that 

express GAL4 in specific tissues and cell-types are available for purchase from stock 

centres, thus a transgene can be expressed in a tissue or cell-specific manner simply by 

crossing a UAS-transgene line to the appropriate GAL4 driver (Jenett et al., 2012). UAS 

lines have also been developed for expression of many Drosophila genes, as well as 

libraries carrying UAS elements fused to inverted repeats or short hairpin RNA (shRNAs) 

that target specific Drosophila genes for RNA interference (RNAi) mediated knockdown 

(Dietzl et al., 2007). 

 

 

 

 

 

 

 

 

Figure 1.4. Schematic of the UAS/GAL4 bipartite system in Drosophila. This system allows 

for tissue-specific expression of a transgene of interest. Virgin female flies carrying a tissue 

specific enhancer fused upstream of the transcriptional transactivator GAL4 are crossed to male 
flies carrying an UAS fused to a transgene of interest. In the F1 progeny, GAL4 binds to 

regulatory sites on the UAS-inducing tissue-specific expression of the downstream transgene. 

Original artwork created with reference to Brand and Perrimon (1993). 
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1.3.4.2 The TARGET system 

The utility of the UAS/GAL4 system can be further increased through a modified version 

referred to as the Temporal And Regional Gene Expression Targeting (TARGET) system. 

This system utilises the GAL80 protein which binds to GAL4 to inactivate it, thus 

repressing transcription. The TARGET system allows for spatiotemporal gene expression 

regulation by using a temperature sensitive mutant of GAL80, referred to as GAL80ts 

which inhibits GAL4 activated transcription at 18˚C. When the temperature is raised to 

30˚C, GAL80ts is inactivated through a conformational change, allowing initiation of 

GAL4-dependent transcription (McGuire et al., 2004; Suster et al., 2004) (Figure 1.5). 

The temporal regulation of gene expression is particularly important in the study of 

memory as many genes involved in molecular pathways of memory are also required for 

normal brain development, thus, the ability to induce overexpression or knockdown of a 

gene in the adult brain will avoid any potential confounding developmental effects.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. The TARGET system in Drosophila. (A) At 18°C GAL80ts is active and binds to 

GAL4 preventing GAL4 from binding to regulatory sites on the UAS and initiating transgene 

expression. (B) Once the temperature is raised to 30°C, GAL80ts is no longer able to bind GAL4 
due to a conformational change, thus GAL4 is now free to bind to regulatory sites on the UAS 

and initiate downstream transgene expression. Original artwork created with reference to 

McGuire et al. (2004). 
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1.4 Epigenetic regulators of memory formation 

The formation of memories is reliant on precise spatial and temporal regulation of 

expression of genes required for synaptic plasticity and memory. In the last decade there 

has been an increased focus on epigenetics and the role that it plays in the regulation of 

gene expression. Epigenetic regulation refers to the alteration of gene expression without 

changing the DNA sequence. Instead, epigenetic regulators modify chromatin by the 

addition of epigenetic marks which results in increased or decreased expression of a 

specific gene (Jaenisch & Bird, 2003). 

Chromatin is a complex of DNA and protein found in the nucleus of eukaryotic cells and 

is highly structured allowing for compact organisation of DNA inside the nucleus as well 

as regulation of transcription. Chromatin is comprised of double stranded DNA wrapped 

1.67 times around a histone octamer containing two of each of the four core histone 

proteins (histones H2A, H2B, H3, and H4), creating a nucleosome. Nucleosomes are 

connected by a short piece of linker DNA creating the characteristic “beads on a string” 

conformation (Heslop-Harrison & Schwarzacher, 2013; Rattner & Hamkalo, 1978; 

Verreault, 2000) (Figure 1.6).  

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Schematic showing the composition of a nucleosome. A single nucleosome consists 
of eight core histones (H2A, H2B, H3, and H4). Each octamer is then wrapped 1.67 times with 

double stranded DNA consisting of 146 base pairs (bp) (Richmond & Davey, 2003). A length of 

linker DNA joins two nucleosomes together to form the classic “beads on a string” (Rattner & 
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Hamkalo, 1978) chromatin structure. Original artwork created with reference to Starkman et al. 

(2012). 

 

Opposing post-translational modifications to the nucleosome such as 

acetylation/deacetylation (Sterner & Berger, 2000), methylation/demethylation (Zhang & 

Reinberg, 2001), and phosphorylation/dephosphorylation (Nowak & Corces, 2004) on 

core histone tails determine how tightly packed the nucleosomes are by changing the 

conformation of the histone tails leading to differences in nucleosome packing which in 

turn establishes the accessibility of the DNA to RNA polymerase and other transcription 

factors. Histone acetyl transferases (HATs) acetylate N-terminal lysine residues to 

neutralise their positive charge leading to a weaker interaction between the histone tail 

and the DNA, resulting in a relaxed chromatin conformation. Histone deacetylases 

(HDACs) remove these active chromatin marks, thereby condensing chromatin to a point 

at which transcription factors can no longer access the DNA, therefore, repressing 

transcription (Cho et al., 2005; Foglietti et al., 2006). Opposing activities of HATs and 

HDACs modify histone tails of core histones to epigenetically regulate gene expression. 

 

1.4.1 Histone deacetylases  

HDACs are a family of enzymes that are best known for their role in transcriptional 

repression via histone deacetylation. There is however, increasing focus on their roles in 

both deacetylation of non-histone targets as well as the roles of some HDAC family 

members that are independent of histone deacetylation (Gaughan et al., 2002; Glozak et 

al., 2005; Schwartz et al., 2016). 

In vertebrates there are eleven HDACs that are separated into four different classes based 

on their homology to yeast HDACs. Class I is comprised of HDAC1, 2, 3, and 8 which 

have high deacetylase activity and are primarily localised in the nucleus (Grozinger et al., 

1999; Grozinger & Schreiber, 2002; Hildmann et al., 2006; Kao et al., 1999; Somoza et 

al., 2004). The class II HDACs lack deacetylase activity and are separated into Class IIa 

and IIb, Class IIa consists of HDAC4, 5, 7, and 9 and Class IIb consists of HDAC6 and 

10. Class IIb are primarily localised to the cytoplasm, whereas Class IIa HDACs shuttle 

between the nucleus and cytoplasm (Bertos et al., 2001; Chawla et al., 2003; Fischle et 

al., 2001; Grozinger et al., 1999; Grozinger & Schreiber, 2002; Hildmann et al., 2006; 
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Kao et al., 1999; Schlumm et al., 2013). Class IV contains only HDAC11, which localises 

to both the cytoplasm and nucleus and is the least well-characterised of all the HDACs. 

Class I, II and IV HDACs share similarities with yeast HDACs in that they are all zinc 

(Zn+) dependent and NAD+ independent. Lastly, Class III HDACs are Sirtuins which are 

NAD+ dependent and Zn+ independent. Sirtuins 1-7 exhibit their deacetylase activity on 

a wide range of proteins and are not limited to histone deacetylation (Grozinger & 

Schreiber, 2002) (Figure 1.7). 

 

Class Human Protein structure Length 

(aa) 

Primary 

Localisation 

I HDAC1  482 Nucleus 

 HDAC2  488 Nucleus 

 HDAC3  428 Cytoplasm/ 

Nucleus 

 HDAC8  377 Nucleus 

IIa HDAC4  1084 Cytoplasm/ 

Nucleus 

 HDAC5  1122 Cytoplasm/ 

Nucleus 

 HDAC7  912 Cytoplasm/ 

Nucleus 

 HDAC9  1011 Cytoplasm/ 

Nucleus 

IIb HDAC6  1215 Cytoplasm 

 HDAC10  669 Cytoplasm 

IV HDAC11  347 Nucleus 

 

Figure 1.7. Schematic representations of the domain structures of human HDACs. The 

catalytic domain is represented in black; serine sites for phosphorylation are highlighted in 
yellow; the MEF2 binding domain is detailed in green; the zinc finger domain on HDAC6 is 

shown in blue and the leucine rich region of HDAC10 is shown in purple. Sirtuins 1-7 are not 

illustrated in this figure Abbreviations: aa = amino acids. Original figure created with reference 

to Morris and Monteggia (2013). 
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There are five highly conserved HDACs in Drosophila: Rpd3 (Fitzsimons & Scott, 2011; 

Gregoretti et al., 2004; Rundlett et al., 1996) and HDAC3 (Zhu et al., 2008) are 

homologous to Class I mammalian HDACs. HDAC4 is the sole Class IIa HDAC, HDAC6 

is homologous to the human Class IIb HDACs, and HDAC11 is homologous to the Class 

IV human HDAC11 (Cho et al., 2005; Foglietti et al., 2006). 

 

1.5 HDAC4 

HDAC4 contains a number of important regulatory domains that are highly conserved 

across vertebrates and invertebrates. These include a Myocyte Enhancer Factor-2 (MEF2) 

binding domain, a nuclear localisation sequence (NLS) and a conserved ankyrin repeat 

binding domain, all located at the N-terminus (Miska et al., 1999; Wang et al., 2005; 

Wang & Yang, 2001; Zhao et al., 2005). HDAC4 also contains a nuclear export sequence 

(NES) and a deacetylase domain at the C-terminus (Wang et al., 1999; Wang & Yang, 

2001). 

Regulation of the subcellular distribution of HDAC4 occurs via nucleocytoplasmic 

shuttling in response to synaptic activation. HDAC4 nuclear import requires binding of 

the transcription factor MEF2 to HDAC4, however, upon binding, the transcriptional 

activity of MEF2 in the nucleus is inhibited (Chawla et al., 2003; Wang & Yang, 2001). 

The HDAC4/MEF2 repressive complex is relieved by a calcium/calmodulin dependent 

kinase (CaMK) that phosphorylates three conserved serine residues on HDAC4 (S246, 

S467 and S632 of human HDAC4). This phosphorylation creates docking sites on 

HDAC4 for protein chaperone 14-3-3 to bind to dissociate HDAC4 from MEF2. During 

this detachment, the nuclear export sequence (NES) located at the C-terminus of HDAC4 

is unmasked, resulting in HDAC4 being sequestered into the cytoplasm (Bertos et al., 

2001; Chawla et al., 2003; Grozinger & Schreiber, 2000; McKinsey et al., 2006; Z. Wang 

et al., 2014). 

Drosophila HDAC4 shares 57% amino acid identity and 84% sequence similarity with 

human HDAC4 (Fitzsimons et al., 2013) (Figure 1.8). A key point of difference between 

human and Drosophila HDAC4 is that human HDAC4 has a tyrosine to histidine 

mutation that renders it catalytically inactive. In contrast, Drosophila HDAC4 does not 

contain this mutation, therefore, retaining its catalytic activity (Lahm et al., 2007; 
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Mielcarek et al., 2013; Sando et al., 2012). Human HDAC4 can however recruit the 

deacetylase activity of Class I HDACs to indirectly repress transcription and also repress 

transcription in a deacetylase-independent manner by binding to and inhibiting the 

activity of transcription factors such as MEF2 as mentioned above (Lu et al., 2000; Miska 

et al., 1999; Wang et al., 1999). 

 

 

 

 

 

 

Figure 1.8. Conserved domains of Drosophila and human HDAC4. A single isoform of each 

HDAC4 protein, (Human HDAC4 GenBank accession NP_006028 and Drosophila HDAC4, 
isoform D, GenBank accession NP_572868). The MEF2 binding domain is highlighted in green; 

14-3-3 binding sites are detailed in yellow; the nuclear localisation sequence is highlighted in 

blue, the ankyrin repeat binding domain is shown in red; the deacetylase domain is seen in black 

and the nuclear export sequence is highlighted in orange. Abbreviations: aa = amino acids. 

Original artwork created with reference to Fitzsimons et al. (2013). 

 

There is a wide distribution of HDAC4 in the vertebrate nervous system and it has been 

seen that the rodent brain is enriched in HDAC4 mRNA (Grozinger et al., 1999; Wang et 

al., 1999). Within the mouse brain HDAC4 is predominantly localised to the cytoplasm, 

which includes the axons and dendrites in most brain regions, however, this varies with 

respect to nuclear localisation. For example, immunostaining for HDAC4 in the 

hippocampus revealed that HDAC4 was present in the majority of neuronal nuclei as well 

as in the cytoplasm. However, in specific cell populations like the dentate granule cells, 

HDAC4 was absent from nuclei. HDAC4 has also been observed at synapses, but because 

it dynamically shuttles between the nucleus and cytoplasm in a calcium dependent 

manner, the level of HDAC4 at specific synapses may also be dynamic leading to 

inconsistent visualisation (Darcy et al., 2010). 

Drosophila HDAC4 is expressed throughout the brain including the mushroom body, 

where it localises to the axons that bundle to form the mushroom body lobes as well as 

the calyx in which the Kenyon cell dendrites project into (Technau & Heisenberg, 1982). 

Similarly to the pattern observed in the mouse brain, nuclear localisation of HDAC4 
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occurred in only a subset of Kenyon cells containing nuclear puncta (Fitzsimons et al., 

2013), indicating that regulation of the subcellular distribution of HDAC4 differs among 

populations of neurons. 

 

1.5.1 HDAC4 and neurodevelopmental and neurodegenerative disease 

Over recent years data from numerous studies have implicated the dysregulation of 

HDAC4 expression and/or subcellular distribution in several neurodevelopmental and 

neurodegenerative disorders. A deletion of the human chromosomal region 2q37, in 

which HDAC4 resides, results in 2q37 deletion syndrome (previously referred to as 

Brachydactyly mental retardation syndrome), with clinical features including 

developmental delay, behavioural issues, autism spectrum disorder and a phenotypically 

severe facial dysmorphism (Morris et al., 2012; Williams et al., 2010). Haploinsufficiency 

of HDAC4 is thought to be the underlying genetic cause (Villavicencio-Lorini et al., 2013; 

Williams et al., 2010). 

Dysregulation of nucleocytoplasmic shuttling resulting in increased nuclear accumulation 

of HDAC4 has also been associated with Alzheimer’s disease (Wu et al., 2016), 

Parkinson’s disease (Wu et al., 2017) and ataxia telangiectasia (Li et al., 2012). 

Alzheimer’s disease is a progressive neurodegenerative disease that is the most common 

form of dementia (Neugroschl & Wang, 2011). It is associated with the presence of β-

amyloid oligomers, plaques and neurofibrillary tangles in the cerebral cortex, resulting in 

synaptic loss and neuronal death (Alonso et al., 1996; Shen et al., 2016). An analysis of 

the brains of mice expressing amyloid precursor protein (APP), the proteolysis of which 

produces β-amyloid, and post-mortem brains from individuals with Alzheimer’s disease 

revealed that the level of accumulation of HDAC4 in the nucleus directly correlated with 

the severity and onset of the disease in both cases (Herrup et al., 2013; Shen et al., 2016). 

Alpha-synuclein (α-syn) deposits in neurons have been associated with Lewy body 

disease which is a family of disorders that include Parkinson’s disease. α-syn is seen to 

play a central role in Parkinson’s disease as point mutations of the α-syn gene have been 

associated with familial Parkinson’s (Polymeropoulos et al., 1997). Model systems 

including transgenic mice and Drosophila have been utilised to model these mutations 

which have resulted in phenotypes which share similarities with features associated with 

Parkinson’s disease (Masliah et al., 2005). In a mouse model of Parkinson’s disease, 
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overexpression of the A53T mutant of α-syn followed by treatment with the neurotoxin 

1-methyl-4-phenylpyridinium (MPP+) resulted in nuclear accumulation of HDAC4 in 

dopaminergic neurons (Wu et al., 2017). 

Furthermore, HDAC4 has been associated with ataxia telangiectasia which is a 

neurodegenerative disease caused by a mutation of the Atm gene. In a mouse Atm-/- model, 

neurodegeneration was associated with nuclear accumulation of HDAC4, which was due 

to hypophosphorylation. In contrast, expression of cytoplasmic HDAC4 improved the 

Atm-/- phenotype suggesting a neuroprotective role of cytoplasmic HDAC4 (Li et al., 

2012). 

These disorders are all associated with impairments in cognitive function, and as HDAC4 

is also required for synaptic plasticity and memory formation in animal models 

(Fitzsimons et al., 2013; Kim et al., 2012; Sando et al., 2012) this suggests that 

dysregulation of HDAC4 could be involved in the cognitive deficits associated with these 

disorders. 

 

1.5.2 HDAC4 and memory 

Kim et al. (2012) generated mice with a brain-specific conditional knockout of HDAC4 

(thereby avoiding skeletal deformities that had been observed in HDAC4 null mice) and 

observed that these mice displayed impaired spatial memory (Kim et al., 2012). Similarly, 

in Drosophila, RNAi knockdown of HDAC4 in the mushroom body prevented long-term 

memory formation but not short-term memory or learning, which are protein synthesis 

independent (Fitzsimons et al., 2013). Together these studies demonstrate that HDAC4 is 

essential for long-term memory formation. However, it has also been observed that 

increased levels of HDAC4 also impairs memory formation (Fitzsimons et al., 2013). 

Notably, the expression of a nuclear-restricted HDAC4 mutant in the mouse brain 

prevented spatial memory formation. This mutant was lacking the entire C-terminal 

domain of HDAC4, which includes the deacetylase domain, indicating that this effect is 

independent of deacetylation (Sando et al., 2012). In Drosophila, overexpression of 

HDAC4 in the mushroom body impairs long-term memory formation, however, short-

term memory was unaffected. Similarly to the observations in mice, an HDAC4 mutant 

carrying an amino acid substitution in the active site rendering the deacetylase domain 
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catalytically inactive, also impaired long-term memory acquisition (Fitzsimons et al., 

2013). 

HDAC4 mutants with altered subcellular distribution were then generated to further 

investigate whether the impairments in long-term memory were due to the nuclear or 

cytoplasmic pools of HDAC4. Expression of a nuclear-restricted mutant (3SA) in the 

adult brain via the TARGET system significantly reduced the formation of long-term 

memory compared to wild-type, whereas expression of a cytoplasmically-restricted 

mutant (L175A) had no effect (Main, 2019). The effect of nuclear-restricted HDAC4 on 

development of the mushroom body was also investigated where this nuclear 

accumulation induced a range of mushroom body defects including impaired axon 

elongation and termination. In comparison, expression of L175A resulted in few 

mushroom body defects, with the majority of brains appearing wild-type (Main, 2019). 

In eye development, expression of 3SA resulted in a severe rough eye phenotype with a 

significant loss of pigmentation, whereas L175A resulted in a wild-type array of 

ommatidia and normal pigmentation (Main, 2019). Taken together, the data from these 

studies indicate that memory and neurodevelopmental impairments in Drosophila are 

attributed to a nuclear accumulation of HDAC4. 

To investigate transcriptional changes associated with the Drosophila HDAC4 

overexpression-induced impairments, RNA sequencing (RNA-seq) was performed on the 

heads of brains in which HDAC4 was overexpressed. Global gene expression changes 

were not observed as a total of only 26 genes were differentially expressed (Schwartz et 

al., 2016). Similarly, when hHDAC4 3SA was overexpressed in the Drosophila brain, a 

mere 28 genes were differentially regulated (Main, 2019). Together, these data suggest 

that HDAC4 has minimal effect on transcription and is likely to also act through non-

transcriptional mechanisms. 

A subsequent investigation into genes which genetically interact with HDAC4 was then 

carried out by Schwartz et al. (2016) to identify genes in the same molecular pathway as 

HDAC4 via a rough eye phenotype enhancer screen (Section 1.3.2). Overexpression of 

HDAC4 in photoreceptors produced a mild rough eye phenotype, thus regulators of 

HDAC4 can be identified as genes that enhance or suppress the rough eye phenotype 

when their expression is altered in the presence of HDAC4 overexpression. One hundred 

and twenty-five RNAi lines were screened to find target genes that had minimal 
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phenotypes when individually knocked down, but when combined with HDAC4 

overexpression resulted in an enhanced rough eye phenotype, indicative of a genetic 

interaction. From this screen, the cytoskeletal regulator Ankyrin2 was identified and 

selected for further investigation into the nature of its interaction with HDAC4 and 

whether this interaction is important in neuronal development and/or memory formation 

(Schwartz, 2016). 

 

1.6 Ankyrin proteins 

Ankyrins are adapter proteins that aid in the binding of integral transmembrane proteins 

to the underlying spectrin-actin cytoskeleton (Cunha & Mohler, 2009). Since they were 

first documented in erythrocytes, three vertebrate ankyrin genes have been identified. 

ANKYRIN1 is localised to neurons and a range of tissues including brain, heart and 

skeletal muscle (Birkenmeier et al., 1993; Gallagher et al., 1997; Lambert et al., 1990). 

ANKYRIN2 is also expressed in a variety of tissues including brain, heart, kidney, lung 

and skeletal muscle (Cunha & Mohler, 2009). ANKYRIN3 is expressed in heart, kidney, 

lung and skeletal muscle tissues as well as unmyelinated neurons in the brain where it is 

an essential component in the assembly of the axon initial segment (Cunha & Mohler, 

2009; Devarajan et al., 1996; Kordeli et al., 1995; Thevananther et al., 1998). 

The structure of a canonical ankyrin is highly conserved among species. An N-terminal 

membrane binding domain contains 24 ANK-repeats, where each unit contains a 33 

amino acid motif, comprised of two alpha helices connected via a loop region (Mosavi et 

al., 2002). This ANK-repeat region is then followed by a spectrin binding domain with 

an inserted ZU5 domain aiding in spectrin based protein interactions, a death domain, and 

a C-terminal variable regulatory region (C. Wang et al., 2014) (Figure 1.9). 
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Figure 1.9. Schematic of a canonical long ankyrin isoform. Ankyrins contain an N-terminal 

membrane binding domain comprised of 24 ANK-repeat units. This is followed by a spectrin 
binding domain with a ZU5 domain inserted to aid in spectrin binding, followed by a death 

domain and a C-terminal variable regulatory domain. Original artwork created with reference to 

Schwartz (2016). 

 

Ankyrins play a pivotal role in providing the cell with synaptic and structural stability by 

regulating the distribution and organisation of integral transmembrane proteins at the 

spectrin-actin cytoskeleton. Such proteins include cell adhesion molecules; L1-CaMs, 

neurofascin and neuroglian, clathrin and tubulin, and anion exchangers and ion channels; 

Na+/K+ ATPase and H+/K+ ATPase (Mohler et al., 2002). 

When a dendrite receives synaptic input from neighbouring cells, this signal is then 

propagated to the cell body of the neuron, where an action potential is initiated at the axon 

initial segment. This signal is then propagated down the axon to the axon terminal. In the 

majority of vertebrate neurons, the axon initial segment is located at the proximal axons 

where the polarity of neurons is sustained by ankyrins. At the axon initial segment, 

ankyrins act as scaffolding proteins in order to maintain a separation between the 

somatodendritic region (where the cell body and dendrites reside) and the axonal 

compartment (consisting of the axon and axon initial segment) (Garrido et al., 2003; Pan 

et al., 2006; Zhou et al., 1998). 

In both vertebrates and invertebrates, HDAC4 contains an ankyrin repeat binding domain 

which mediates protein-protein interactions (McKinsey et al., 2006; Wang et al., 2005). 

Within the HDAC4 ankyrin repeat binding domain region there is a highly conserved 

leucine and proline rich region known as the PxLPxI/L motif that is found in a diverse 

number of binding proteins, including but not limited to HDAC4 and HDAC5 (Xu et al., 

2012). The mammalian ankyrin repeat-containing proteins, Ankyrin repeat family A 

N C 

24 ANK-Repeat Region 

Spectrin Binding Domain 

ZU5 Domain 

Death Domain 

Variable Regulatory Domain 
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protein 2 (ANKRA2) and Regulatory factor X associated ankyrin-containing protein 

(RFXANK) bind to HDAC4 via this highly conserved PxLPxI/L motif (Figure 1.10). The 

ankyrin repeat region of both proteins share 62% sequence identity and crystal structures 

have demonstrated that the middle three ankyrin repeats of ANKRA2 bind to specific 

residues within the PxLPxI/L motif on HDAC4 in a sequence specific lock and key 

manner. RFXANK however, binds with a much lower affinity. A modification in the 

PxLPxI/L motif where a serine within the sequence was phosphorylated, resulted in a 

reduction in the binding affinity of ANKRA2 with HDAC4, consequently this also 

produced a new docking site for 14-3-3 proteins, sequestering HDAC4 into the cytoplasm 

(Xu et al., 2012). 

 

 

 

 

 

 

Figure 1.10. The conservation of the ankyrin repeat binding domain of HDAC4. Human and 

Drosophila HDAC4 contain a highly conserved ankyrin repeat binding domain with a 76.5% 

identity. Figure from Schwartz (2016), reproduced with permission. 

 

1.6.1 Mammalian ANKYRIN-G 

Human ANKYRIN3 (ANK3) is expressed throughout the nervous system and encodes the 

protein ANKYRIN-G (ANK-G) which is a necessary component in the assembly of the 

axon initial segment, the region that splits the somatodendritic compartment from the 

axonal compartment in the neuron (Garrido et al., 2003; Pan et al., 2006; Zhou et al., 

1998). The long isoforms of ANK-G have been characterised to aid in stabilising the axon 

initial segment scaffold which spans from the plasma membrane to microtubules 

(Leterrier et al., 2017). ANK-G recruits and anchors ion channels, which are important in 

maintaining cell polarity and L1-cell adhesion molecules (L1-CaMs) to the axon initial 

segment (Huang & Rasband, 2018). This accumulation of membrane bound proteins 

creates a diffusion barrier separating the somatodendritic compartment from the axonal 
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compartment, therefore when ANK-G is lost, this recruitment and stabilisation is also lost 

(Zhou et al., 1998), making ANK-G the master regulator of the axon initial segment. 

Recently it has been observed that ANK3 is implicated in intellectual disability, where a 

homozygous truncating frameshift mutation affecting only the long isoform of ANK3 was 

identified as the first case of a familial mutation of ANK3. Along with intellectual 

disability, this mutation was also associated with epilepsy, hyperactivity, and behavioural 

issues (Iqbal et al., 2013). ANK3 has also been implicated in bipolar disorder (Tesli et al., 

2011), autism spectrum disorder (Bi et al., 2012), attention deficit hyperactivity disorder 

(ADHD) (Iqbal et al., 2013) and ANK3 SNPs have been associated with schizophrenia 

(Athanasiu et al., 2010; Yuan et al., 2012) as well as late onset Alzheimer’s disease 

(Morgan et al., 2008).  

The closest homologues to ANK-G in Drosophila are Ankyrin1 (Ank1) and Ankyrin2 

(Ank2) (Iqbal et al., 2013). The role of Ank1 in Drosophila courtship memory was 

recently investigated and it was found that reducing the amount of Ank1 had no impact 

on the formation of long-term courtship memory (Schwartz, 2016). Human ANK-G and 

Drosophila Ank2 share 57% amino acid similarity across the entire protein and 71.2% 

identity over the ankyrin repeat region (Schwartz, 2016). 

 

1.6.2 Drosophila Ankyrin2 

Ank2 is encoded by the Dank2 gene from which a large number of Ank2 splice isoforms 

are transcribed. The protein products of these isoforms vary in subcellular distribution 

and functionality. Ank2-S denotes the short isoforms of Ank2 which localise to the cell 

soma, Ank2-M denotes the medium sized isoform of Ank2 which localises to axons, 

Ank2-L denotes the long isoform of Ank2 which also localises to axons, and Ank2-XL 

denotes the extra-long isoform of Ank2 which localises to neuronal cell bodies (Appendix 

6.4). The long and extra-long isoforms of Ank2 are required for synaptic plasticity and 

maintenance whereas the short isoforms are not (Koch et al., 2008). All Ank2 isoforms 

contain the highly conserved N-terminal ankyrin repeat domain which has recently been 

demonstrated to control the presynaptic localisation of Ank2. This localisation is 

important as Ank2 is an essential regulator of synaptic stability in Drosophila where it 

functions by organising the subcellular distribution of transmembrane binding proteins 

(Weber et al., 2019). 
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In Drosophila the distribution and localisation of Ank2 has been established from 

embryogenesis through to adulthood. In the embryonic nervous system, the expression of 

all isoforms of Ank2 are generally restricted to the embryonic peripheral neurons and 

central neurons. Within the central and peripheral embryonic nervous system, the long 

isoform of Ank2 is localised specifically to the nerve tracts which are found in the axonal 

extensions, whereas the short isoforms of Ank2 are localised to the cell bodies (Hortsch 

et al., 2002). In the adult fly, Ank2 is primarily expressed in the brain, where it localises 

specifically to the axonal tracts and bundled axons which form the mushroom body lobes, 

as well as the optic and antennal lobes (Schwartz, 2016). 

To date, research in Drosophila has focused on the role that Ank2 plays in the larval 

neuromuscular junction (Koch et al., 2008). The neuromuscular junction is the synapse 

between a neuron and muscle cell, important for transmitting signals to the muscle cell 

(Cohen et al., 2007). Mutation of Ank2-L results in disassembly and retraction of the 

neuromuscular junction due to a lack of protein recruitment, stability and synaptic 

plasticity, resulting in morphological defects which disrupt neuron excitability (Pielage 

et al., 2008). A total loss of Ank2 results in synaptic bouton withdrawal and dissolution 

of the synaptic microtubule cytoskeleton resulting in failure of microtubule binding to 

associated proteins, and extension to synaptic boutons (Koch et al., 2008). A deletion of 

part of the ankyrin repeat domain (repeats 7-24) resulted in defects in Ank2-L localisation 

at the neuromuscular junction where Ank2-L was no longer present in the presynaptic 

terminal (Weber et al., 2019).  

Additional studies have also investigated an interaction between Ank2 and the 

Drosophila L1-CaM homologue Neuroglian and another cytoskeletal regulator Moesin 

in the mushroom body of axons, specifically in the axon initial segment (Siegenthaler et 

al., 2015). 

In Drosophila there is an axon initial segment-like domain which resides in the γ-lobe of 

the mushroom body (Trunova et al., 2011). As described in section 1.6.1 a loss of ANK-

G in the mammalian system leads to issues at the axon initial segment. If there is 

conservation between mammalian ANK-G and Drosophila Ank2 it is proposed that a loss 

of Ank2 at the axon initial segment-like domain would cause dysregulation and a lack of 

protein recruitment. This could lead to issues involving cell polarity which could have a 

destructive effect on action potential firing and axonal protein transport. In larval brains, 
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a direct in vivo interaction between Ank2 and Neuroglian has been established via co-

immunoprecipitation (Enneking et al., 2013) as well as a yeast-two-hybrid in vitro 

investigation (Bouley et al., 2000). However, in embryos it was seen that Neuroglian was 

transported and localised to axons in which Ank2 was lacking, suggesting that in 

Drosophila although there is a direct interaction between the two proteins, Ank2 does not 

recruit Neuroglian during embryogenesis (Hortsch et al., 2002). It has also been 

characterised that although Neuroglian is an important binding partner for Ank2 stability 

and maintenance, it is seen that the localisation of Ank2 is not dependent on Neuroglian 

(Bouley et al., 2000). 

Similarly, Drosophila synaptic localisation also relies on the complex formation between 

Ankyrins and L1-CaMs, as this complex lays down a foundation for the assembly of other 

binding partners and voltage-gated channels. It has been observed that a deletion of ANK-

repeats 13-18 resulted in a large reduction of Ank2 localisation in axons and at the 

synapse (Weber et al., 2019). The ankyrin repeat domain does not only regulate the 

targeting and localisation of the ankyrin itself, but also has a role in mediating the 

localisation of other isoforms of Ank2. It was seen that mutations resulting in a deficiency 

of the ankyrin repeat domain on Ank2-L resulted in a lack of Ank2-XL targeting at the 

presynaptic terminal, and vice versa. Therefore, there is a co-dependent relationship 

between the ankyrin repeat domain of one Ank2 isoform and the localisation of a second 

Ank2 isoform (Stephan et al., 2015).  

Following identification of a genetic interaction between HDAC4 and Ank2, Schwartz et 

al. (2016) investigated the requirement for Ank2 in development of the mushroom body 

and in long-term memory formation. RNAi knockdown of Ank2 in the developing 

mushroom body resulted in similar defects to those observed for HDAC4 overexpression 

including defects in axon elongation and termination as well as guidance deficits. Ank2 

is also specifically required for normal long-term memory formation, as its knockdown 

in the adult brain resulted in impairments to long-term memory with no effect on short-

term memory in the courtship suppression model of memory (Schwartz, 2016). The 

specific role of Ank2 in long-term memory formation is not yet known. 
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1.7 A relationship between HDAC4 and Ank2 

As described in section 1.5.2, in an attempt to identify the pathway through which 

HDAC4 regulates memory formation, Ank2 was identified as a gene which interacted 

genetically with HDAC4. This gene was then selected for further study due to its 

expression in the mushroom body as well as the presence of an ankyrin repeat binding 

domain on HDAC4. If these two proteins interact physically, it could then be 

hypothesised that HDAC4 could influence memory formation by somehow modulating 

Ank2 activity at the spectrin-actin cytoskeleton. This interaction was further supported 

through evidence that overexpression of HDAC4 and knockdown of Ank2 both result in 

similar phenotypes including impaired long-term memory formation and developmental 

deficits in axon elongation and termination in the mushroom body (Fitzsimons et al., 

2013; Main, 2019; Schwartz, 2016). 

Given that HDAC4 contains an ankyrin repeat binding domain, it is hypothesised that 

HDAC4 and Ank2 interact physically to regulate the formation of long-term memory and 

neuronal development, however it has not yet been investigated whether HDAC4 binds 

physically to Ank2. 

The aim of this study is to further investigate the nature of the proposed interaction 

between HDAC4 and Ank2 and its importance in normal neuronal development in the 

brain. This will involve firstly investigating whether HDAC4 and Ank2 interact 

physically via co-immunoprecipitation. Other potential indirect interactions will also be 

investigated, including whether Ank2 regulates the subcellular distribution of HDAC4. 

The rationale for this approach is that increased nuclear HDAC4 results in deficits in 

memory and neuronal development, thus if Ank2 were to bind HDAC4 and tether it 

outside of the nucleus, a reduction of Ank2 could result in increased nuclear HDAC4 and 

thus a more severe phenotype. The nature of the genetic interaction in the Drosophila eye 

will also be investigated to determine whether it is through nuclear localisation of HDAC4 

and if the interaction is dependent on the presence of the ankyrin repeat binding domain 

of HDAC4. Finally, it will be investigated whether the genetic interaction between 

HDAC4 and Ank2 is also necessary for normal dendrite and axon morphogenesis in the 

brain. The specific objectives are as follows: 
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1. To determine whether there is a physical interaction between HDAC4 and 

Ankyrin2 in the Drosophila brain. 

 

2. To examine whether HDAC4 regulates the expression of Ank2. 

 

3. To determine whether Ank2 regulates the expression and/or subcellular 

distribution of HDAC4. 

 

4. To investigate the nature of the genetic interaction between HDAC4 and Ank2 in 

the Drosophila compound eye. 

 

5. To establish whether a genetic interaction between HDAC4 and Ank2 is required 

for dendrite morphogenesis in the Drosophila visual system. 

 

6. To establish whether a genetic interaction between HDAC4 and Ank2 is required 

for axon morphogenesis in the mushroom body. 
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2 Materials and Methods 
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2.1 Drosophila melanogaster fly strains 

The Drosophila fly strains that were used in this study are listed in Appendix 6.1. For 

consistency and clarity, throughout the following sections, all fly strains will be referred 

to by the shorthand name only, as opposed to their full genotype. 

Drosophila gene and protein nomenclature in this thesis is consistent with the established 

protocols approved by FlyBase and are outlined in 

(https://wiki.flybase.org/wiki/FlyBase:Nomenclature). These protocols detail that if a 

gene name begins with an uppercase letter, the gene is named after the mutant phenotype 

that is dominant to the normal wild-type. If a gene name begins with a lowercase letter, 

the gene is named after the mutant phenotype which is recessive to the normal wild-type. 

Genes which are named after the product of a protein contain an uppercase first letter and 

mammalian gene symbols are written in italics, whereas protein symbols are not written 

in italics. 

 

2.1.1 Fly strain maintenance 

Flies used for experimental purposes were raised on a 12-hour light/dark cycle on 

standard fly media at 25˚C, exceptions are otherwise indicated in specific sections. 

Standard fly media was produced by combining 10 g agar, 40 g yeast, and 110 g polenta 

with 1 L of dH2O which was then brought to the boil before simmering for 2 minutes with 

constant stirring. This mixture was then taken off the heat and 130 g white sugar was 

added along with 3.3 g of Moldex (methyl 4-hydroxybenzoate) dissolved in 37 mL 96% 

ethanol and 20 mL molasses, which was then mixed thoroughly. Approximately 8 mL of 

this mixture was then poured into 30 mL vials (LabServ) or 40 mL was poured into 100 

mL bottles when larger quantities of progeny were required. Once the food was set it was 

sprinkled with yeast and plugged with either a foam plug (vials) or a sponge plug (bottles). 

 

2.2 Genetic Crosses 

To collect virgin female flies for genetic crosses, adult flies were removed from the stock 

vials/bottles in the morning. Female flies do not mate within eight hours following 

https://wiki.flybase.org/wiki/FlyBase:Nomenclature
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eclosion, therefore virgin females can be collected before eight hours have elapsed. Five 

virgin females and five males were mated together in a 30 mL vial with 8 mL of standard 

fly media or 15 virgin females and 15 males were mated together in a 100 mL bottle with 

40 mL standard fly media. After five to seven days, adult flies were removed, with 

progeny expected to eclose after ten days at 25°C. 

 

2.3 Drosophila brain isolation 

Flies were anesthetised with CO2 before being placed in a petri dish on ice. Using a pair 

of sharpened Dumont #5 forceps under a stereomicroscope, each fly was submerged in 

ice cold PBST (1x PBS and 0.5% Triton X-100), the head capsule was removed to expose 

the brain, and then fatty tissue and air sacs surrounding the brain were removed. The 

brains were transferred to a 1.75 mL microcentrifuge tube containing fresh PBST on ice 

using a glass Pasteur pipette before being fixed in PFAT/DMSO (4% paraformaldehyde 

in 1x PBS, 0.1% Triton X-100 and 5% DMSO) for 20 minutes. Following this, brains 

were either washed twice with 100% methanol for 5 minutes each before being stored 

long term at -20˚C in 100% methanol or processed immediately for 

immunohistochemistry (Section 2.3.1). 

 

2.3.1 Immunohistochemistry on isolated fly brains 

Brains stored at -20˚C were rehydrated in 50% methanol/PBST for 5 minutes, then 

washed 4 x 5 minutes in 1x PBST. Brains were then incubated in immunobuffer (5% 

normal goat serum in 1x PBST) at room temperature (RT) for three hours. Following this, 

brains were incubated in primary antibody (Table 2.1) diluted in immunobuffer overnight 

at RT. Brains were then washed with 1x PBST for 2 quick washes then 3 x 5 minute 

washes before being incubated overnight at 4˚C with appropriate fluorescent secondary 

antibodies (Table 2.2) diluted in immunobuffer.  

Following secondary antibody incubation, brains were then again washed with 1x PBST 

for 2 quick washes then 3 x 5 minute washes. Brains were then mounted onto a 

microscope slide in 50 μL of antifade (1 mL 10x PBS, 9 mL glycerol and 0.2 mg/mL n-

propyl gallate), a coverslip was then added and sealed with nail polish. 
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Brains were imaged with the Leica SP5 DM6000B confocal microscope (Manawatu 

Microscopy and Imaging Centre). Z-stacks were collected with an optical section size of 

1 µm for mushroom body images and 0.5 µm for LPTC images in the optic lobe. These 

images were then analysed using ImageJ where maximum projections of each Z-stack 

produced singular static images for analysis. 

 

Name Target Class Host Source Dilution 

Ab290 GFP Polyclonal Rabbit Abcam IHC - 1:20,000 

WB - 1:4,000 

Nc82 Bruchpilot Monoclonal Mouse DSHB IHC – 1:100 

aa 1655-

1912 of 

SP2523 

(Ankyrin2) 

Ankyrin2-L Polyclonal Rabbit Dr Aberle. 

Heinrich 

Heine 

University, 

Düsseldorf 

 

IHC – 1:1,000 

Anti-HA 

High 

Affinity 

(3F10) 

HA-tag Monoclonal Rat Sigma 

Aldrich 

IHC – 1:500 

WB – 1:1,000 

Ab9106 Myc-tag Polyclonal Rabbit Abcam IHC – 1:200 

WB – 1:500 

12G10 

αTubulin 

Tubulin Monoclonal Mouse DSHB WB – 1:500 

1D4 anti-

Fasciclin II 

Fasciclin  

(FasII) 

Monoclonal Mouse DSHB IHC – 1:20 

 

Table 2.1. List of primary antibodies used in immunohistochemistry and western blotting 

with corresponding dilutions. Abbreviations: IHC = Immunohistochemistry, WB = Western 

Blotting, DSHB = Developmental Studies Hybridoma Bank. 
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Name Target Species Origin 

Species 

Source Dilution 

Alexa Anti-Rat 647 Rat Goat Sigma 

Aldrich 

IHC – 1:500 

Alexa Anti-Mouse 

555 

Mouse Goat Sigma 

Aldrich 

IHC – 1:500 

Alexa Anti-Rabbit 

488 

Rabbit Goat Sigma 

Aldrich 

IHC – 1:500 

Rat HRP Rat Goat Abcam WB – 1:10,000 

Mouse HRP Mouse Goat Sigma 

Aldrich 

WB – 1:20,000 

Rabbit HRP Rabbit Goat Sigma 

Aldrich 

WB – 1:40,000 

Veriblot for IP 

Detection Reagent 

Rabbit Total 

IgG 

- Abcam WB – 1:4000 

 

Table 2.2. List of secondary antibodies used in immunohistochemistry and western blotting 

with corresponding dilutions. Abbreviations: IHC = Immunohistochemistry, WB = Western 

Blotting. 

 

2.4 Drosophila protein extraction 

2.4.1 Fly head isolation 

Adult flies were anesthetised in FlyNap (Carolina) before a scalpel was used to separate 

the fly heads from their bodies. The heads were then placed into a 1.75 mL 

microcentrifuge tube on ice. Heads were then stored at -80˚C until total protein was ready 

to be isolated. 

 

2.4.2 Total protein isolation from Drosophila heads 

Total protein isolation from Drosophila heads was performed by adding 50 μL RIPA 

buffer (150 mM NaCl, 0.1% Triton X, 0.5% Sodium deoxycholate, 0.1% SDS, 50 mM 

Tris, pH 8.0, and cOmplete EDTA-free protease inhibitor (Roche)) to approximately 50 

fly heads in a 1.75 mL microcentrifuge tube. Using a motorised mortar and pestle, the 
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tissue was homogenised by pulsing 3 x 10 seconds before centrifuging at 13,000 x g for 

2 minutes at 4˚C to pellet cellular debris, the supernatant was then transferred to a new 

chilled 1.75 mL microcentrifuge tube. Whole cell lysates were then quantified 

immediately using the BCA Protein Kit (Section 2.5) or stored at -80˚C.  

 

2.4.3 Cell fractionation from Drosophila heads 

Cell fractionation was performed on 50 fly heads per sample using the NE-PER Nuclear 

and Cytoplasmic Extraction Kit (ThermoFisher Scientific) according to the protocol 

outlined in Maitra et al. (2019). Drosophila heads were briefly homogenised in 100 µL 

Cytoplasmic Extraction Reagent I with 1x protease inhibitors (cOmplete EDTA-free 

protease inhibitor (Roche)). The lysate was then incubated on ice for 10 minutes before 

the addition of 5.5 µL of Cytoplasmic Extraction Reagent II followed by centrifugation 

at 10,000 x g for 5 minutes at 4°C. The resulting supernatant (cytoplasmic fraction) was 

dispensed into a new chilled 1.75 mL microcentrifuge tube and kept on ice until quantified 

(Section 2.5) or stored at -80°C. The remaining pellet was then resuspended with 50 µL 

Cytoplasmic Extraction Reagent I with 1x protease inhibitors. The suspension was then 

incubated on ice for 10 minutes before 2.75 µL of the Cytoplasmic Extraction Reagent II 

was added and centrifuged at 10,000 x g for 5 minutes at 4°C. The resulting supernatant 

(Wash I) was collected into a new chilled 1.75 mL microcentrifuge tube and kept on ice 

until quantified (Section 2.5) or stored at -80°C. The above wash step was repeated a 

second time to yield Wash II. The pellet was then resuspended in 50 µL Nuclear 

Extraction Reagent with 1x protease inhibitors and incubated on ice for 40 minutes before 

being centrifuged at 10,000 x g for 10 minutes at 4°C. The resulting supernatant (nuclear 

fraction) was collected into a new chilled 1.75 mL microcentrifuge tube and retained on 

ice for a short period of time or stored at -80°C (Maitra et al., 2019). 

 

2.5 Protein quantification 

The Pierce BCA Protein Assay Kit (ThermoFisher) was used to quantify protein 

concentrations alongside a set of standards to produce a standard curve according to the 

manufacturer’s instructions. Each standard was measured in duplicate and each sample 

in triplicate. Absorbances were read using the BioTek PowerWave XS plate reader and 
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analysed in Excel to determine the protein concentration (mg/mL) from the standard 

curve.  

 

2.6 SDS-PAGE and Western Blotting 

Following lysate preparation and protein quantification, lysates were subject to sodium 

dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) to separate proteins 

in a sample based on size. For this 30 µg of lysate diluted in RIPA buffer was added to 

5x Laemmli buffer (2% SDS, 5% 2-mercaptoethanol, 10% glycerol, 0.01% bromophenol 

blue, 60 mM Tris HCl, pH 6.8) to a final concentration of 1x. In order to reduce and 

denature the proteins, samples were then boiled at 95°C for five minutes. Samples were 

then loaded into a pre-cast polyacrylamide gel (Mini Protean TGX 4%-20%, Bio-Rad) 

which was then submerged in 1x Running buffer (25 mM Tris, 190 mM glycine, 0.1% 

SDS) prior to electrophoresis. The gel was then electrophoresed at 200 V for 

approximately 35 minutes, or until the dye front had reached the bottom of the gel. 

The proteins in the gel were then transferred to a nitrocellulose membrane (Amersham 

Protran premium 0.45 µm nitrocellulose, GE Healthcare LifeScience) by placing the gel 

with the membrane directly on top of it between two pre-soaked pieces of blotting paper 

and two pre-soaked sponge pads before tightly closing the sandwich in a plastic cassette. 

The cassette was then submerged in 1x Transfer buffer (25 mM Tris, 190 mM glycine, 

0.1% SDS, 20% methanol) at 4°C. Proteins were transferred to the membrane at 100 V 

for 60 minutes. The membrane was then stained with Ponceau-S (0.1% Ponceau, 5% 

acetic acid) for five minutes to confirm the presence of protein before being rinsed with 

dH2O until the membrane was clear of Ponceau stain. 

The membrane was then incubated with gentle agitation in 5% blocking buffer (5% (w/v) 

skim milk powder in 1x TBST (20 mM Tris, 150 mM NaCl, 0.1% Tween-20)) at RT for 

60 minutes to prevent non-specific antibody binding. The membrane was then washed for 

3 x 5 minute washes in 1x TBST before being incubated overnight at 4°C with primary 

antibody (Table 2.1) specific for the protein of interest diluted in 1% blocking buffer (1% 

skim milk (w/v) in 1x TBST). The following day, the membrane was washed with 1x 

TBST for 6 x 5 minute washes before being incubated at RT for 60 minutes with the 

secondary antibody (Table 2.2) diluted in 1% blocking buffer. The membrane was then 
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washed for 3 x 5 minute washes in 1x TBST before the secondary antibody was detected 

using Amersham ECL Prime Western blotting detection reagent (GE Healthcare) and the 

Azure Biosystems c600 imaging system. 

 

2.7 Immunoprecipitation / Co-immunoprecipitation 

The Pierce Classic IP Kit (ThermoFisher Scientific) was used according to the 

manufacturer’s instructions. Total protein was isolated (Section 2.4) and quantified 

(Section 2.5). Between 500-1000 μg lysate was combined with 1 μL of appropriate 

primary antibody (Table 2.1) to create an antibody/protein complex. 

Protein A/G agarose beads were then incorporated to bind to the antibody/protein 

complex to pull-down the proteins of interest. These proteins were then eluted in 2x Non-

reducing lane marker sample buffer (2x Non-reducing lane marker, 20 mM DTT) before 

being boiled at 100°C for 5 minutes to reduce and denature proteins. The samples were 

then centrifuged at 1,000 x g at 4°C for 60 seconds to collect the eluate (Figure 2.1).  

Samples were then separated by SDS-PAGE and transferred to a nitrocellulose membrane 

for detection (Section 2.6) with a specific primary antibody (Table 2.1) and conjugate 

secondary antibody (Table 2.2).  
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Figure 2.1. Schematic of the process involved in immunoprecipitation and co-

immunoprecipitation assays. Primary antibody specific to the target protein is combined with 

pre-cleared whole cell head lysate and incubated O/N at 4°C. Protein A/G beads were then added, 

binding specifically to the antibody bound to the target protein of interest and all associated 
proteins. The lysate was then centrifuged before the elution buffer was added. The Protein A/G 

beads, antibody, target protein and associated proteins were then dissociated. The eluate was then 

separated by SDS-PAGE and western blotted. In an IP assay, the target protein was detected using 

the same antibody used in the pulldown assay. For a co-IP assay, the associated protein can be 
detected using an antibody specific for the associated protein. Abbreviations: O/N = overnight, 

IP = immunoprecipitation, co-IP = co-immunoprecipitation. 

 

2.8 Drosophila eye phenotype analysis 

2.8.1 Light microscopy 

Flies were frozen at -20°C overnight, before being thawed and analysed under the 

stereomicroscope (Olympus SzX12, DP controller imaging software, zoom 108, exposure 

time: 1/20 seconds). Eye phenotypes were analysed based on pigmentation differences, 

ommatidia organisation and physical eye size and shape. 
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2.8.2 Scanning electron microscopy 

F1 progeny from the same vials as those that were imaged by light microscopy were 

placed into a new vial containing a small disc of paper towel soaked in water to allow the 

flies to remove food residue from their eyes one day prior to scanning electron 

microscopy (SEM) preparation. Flies were then anesthetised with FlyNap (Carolina) 

before being transferred to a vial of primary modified Karnovsky’s fixative (3% 

gluteraldehyde, 2% formaldehyde in 0.1 M phosphate buffer, pH 7.2) and Triton X-100 

and vacuum infiltrated until entirely wet. Flies were then transferred into fresh fixative 

and incubated at RT for eight hours. Three washes, each lasting 10 minutes in phosphate 

buffer (0.1 M, pH 7.2) were performed before being dehydrated in a series of graded 

ethanol steps (25%, 50%, 75%, 95%, 100%) each lasting 10 minutes before finally being 

incubated for 1 hour in 100% ethanol. Following this incubation, samples were then 

critical point dried using liquid CO2 and 100% ethanol (Polaron E3000 series II critical 

point drying apparatus). Following fixation, the abovementioned sample processing was 

conducted by Mr Raoul Solomon at the Manawatu Microscopy and Imaging Centre 

(MMIC), School of Fundamental Sciences, Palmerston North. 

The samples were then mounted onto aluminium stubs before being sputter coated in gold 

(Baltex SCD 050 sputter coater), these stubs holding the samples were then imaged using 

the FEI Quanta 200 Environmental Scanning Electron Microscope at an accelerating 

voltage of 20 kV. Eye phenotypes were analysed based on bristle formation, ommatidia 

disorganisation and fusion in accordance with Table 3.1. 
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3 Results 
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3.1 Investigating a physical interaction between HDAC4 and Ank2 

In an attempt to identify the molecular pathway through which HDAC4 acts in neurons, 

Schwartz et al. (2016) carried out a genetic enhancer screen in the Drosophila eye and 

identified Ank2 as a gene that genetically interacts with HDAC4 during eye development. 

A subsequent investigation found that knockdown of Ank2 in the mushroom body also 

impairs long-term memory formation (Schwartz, 2016) similarly to that seen in HDAC4 

overexpression (Fitzsimons et al., 2013), suggesting that the mechanism through which 

HDAC4 modulates long-term memory may involve an interaction with Ank2. 

The N-terminal region of HDAC4 contains an ankyrin repeat binding domain consisting 

of a PxLPxI/L motif which in mammalian cells has been characterised to bind to the 

ankyrin repeat region of proteins such as ANKRA2 and RFXANK (Xu et al., 2012). It 

can therefore be speculated that Drosophila Ank2 may physically interact with 

Drosophila HDAC4 through binding to the conserved PxLPxI/L motif in the ankyrin 

repeat binding domain.  

Prior to investigating a physical interaction, the expression patterns of endogenous Ank2 

and HDAC4 were examined, with the rationale that for a physical interaction to occur in 

the mushroom body in vivo, Ank2 and HDAC4 must be endogenously expressed in the 

same neuronal subtypes in the mushroom body. 

There is currently no antibody available that is specific to Drosophila HDAC4, therefore 

a line carrying HDAC4::YFP was used to characterise the endogenous expression pattern 

of HDAC4 in the brain. HDAC4::YFP contains an insertion of YFP into the second intron 

of the endogenous HDAC4 gene. The YFP gene is flanked with splice acceptor and donor 

sites, resulting in an internal fusion of YFP into the HDAC4 protein (Figure 3.1). 

 

 

 

Figure 3.1. The HDAC4::YFP construct. The 22.6 kb HDAC4 locus is shown. The exons are 
shown as open boxes and the black boxes are representative of the translated regions. The YFP 

open reading frame is inserted into the HDAC4 gene downstream of the second exon at 1310 bp 

(Fitzsimons et al., 2013). The YFP is flanked by splice sites resulting in an in frame insertion into 

the HDAC4 protein. Figure from Fitzsimons et al. (2013), modified and used under the Creative 

Commons Attribution 4.0 International licence (doi: 10.1371/journal.pone.0083903). 

 

https://dx.doi.org/10.1371%2Fjournal.pone.0083903
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Brains were dissected and immunohistochemistry was performed using an anti-GFP 

antibody. Anti-GFP maintains the ability to detect YFP tagged proteins, as YFP is a close 

genetic variant of GFP with a high sequence consensus (Veening et al., 2004). 

HDAC4::YFP was expressed throughout the neuropil of the brain, with high expression 

detected in all lobes of the mushroom body (Figure 3.2A, B). Ank2 was detected with 

anti-Ank2-L, an antibody specific to Drosophila Ank2. The anti-Ank2-L antibody has 

previously been shown to bind to the long isoform of Ank2 (Ank2-L) with high specificity 

in the neuromuscular junction of Drosophila (Koch et al., 2008). Ank2 is expressed 

highly throughout axonal tracts of the brain, in particular the surroundings of the antennal 

lobes. Expression is fainter but still visible in the mushroom body and can be clearly 

distinguished in the alpha and gamma lobes (Figure 3.2C). 

 

 

 

 

 

 

Figure 3.2. Endogenous expression of HDAC4 and Ankyrin2 in HDAC4::YFP brains. (A, 

B) Maximum anterior projection of (A) w(cs10) control and (B) HDAC4::YFP brains illustrating 
the distribution of HDAC4::YFP using an anti-GFP antibody (green). (C) Anterior projection of 

HDAC4::YFP brains illustrating endogenous Ankyrin2 distribution using an anti-Ank2-L 

antibody (magenta). Abbreviations: AL = antennal lobe, OL = optic lobe. Objective 40x in oil. 

Scale bar = 100 µm. 

 

These results confirm that HDAC4 and Ank2 are both endogenously expressed in the 

mushroom body, and both localise to the axonal bundles of the mushroom body lobes. 

Thus, it is possible that HDAC4 and Ank2 may physically interact in mushroom body 

axons. 

A preliminary study by Schwartz (2016) investigated this interaction via GST pull-down 

to test an interaction between purified N-terminal GST-tagged HDAC4 protein that 

contains the putative ankyrin binding motif and a lysate from brains that carry an EGFP 

internal fusion in one of the smallest isoforms of Ank2. A weak interaction was detected, 

however, despite concerted efforts this result was unable to be reproduced (Dr H. 
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Fitzsimons, personal communication, 23 September, 2020), leaving it unclear as to 

whether HDAC4 and Ank2 interact. Rather than continue with this in vitro approach, a 

different strategy was taken in which epitope tagged Ank2 and HDAC4 were co-

expressed in brains and tested for an interaction via co-immunoprecipitation (co-IP). The 

basis of this approach is that successful immunoprecipitation (IP) will capture and purify 

the specific target protein along with any other associated proteins that interact either 

directly or within the same complex. 

For the co-IP, ideally, epitope-tagged full length HDAC4 and Ank2 would be co-

expressed for ease of pull-down and detection. This is particularly important for Ank2 

since the Ank2-L antibody is not suitable for western blotting. Ank2 contains at least ten 

transcripts, most of which are >14 kb (http://flybase.org/reports/FBgn0261788.html), 

which is prohibitively large making it difficult to amplify and subclone (Appendix 6.4). 

A 2268 bp N-terminal region of Ank2 that includes the ankyrin repeat region was 

therefore selected with the rationale that if HDAC4 interacts through this domain, this 

construct should be sufficient to mediate the interaction. The 2268 bp region of Ank2 was 

synthesised with a C-terminal 3x HA epitope tag and subcloned downstream of the 

upstream activating sequence (UAS) in the pUASTattB plasmid by Genscript (NJ, UAS) 

(Appendix 6.2). Transgenic flies were generated by Genetivision (Houston, TX, USA) 

via homologous recombination of the attB site on the plasmid into the attP landing site at 

chromosomal location 2R(57F5) in the VK22 strain. The strain created was hereafter 

termed Ank2190-946-HA, indicative of the position of the amino acids based off the 

reference Ank2 isoform Z (https://www.uniprot.org/uniprot/X2JC49). 

Prior to embarking on the co-IP, it was imperative to first confirm expression of the 

Ank2190-946-HA transgene via western blotting and immunohistochemistry. 

 

3.1.1 Confirmation of expression of Ank2190-946-HA via western blot 

To express Ank2190-946-HA in the brain, the UAS/GAL4 system was used (Section 

1.3.4.1). Female flies carrying the pan-neuronal driver elav-GAL4 were crossed to male 

UAS-Ank2190-946-HA as well as w(cs10) control flies. A standard crossing scheme is 

outlined in Figure 3.3. 

 

http://flybase.org/reports/FBgn0261788.html
https://www.uniprot.org/uniprot/X2JC49
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Figure 3.3. Example of a genetic crossing scheme. Chromosomes are shown in black and 

numbered accordingly. X/Y is chromosome 1 followed by chromosome 2. Chromosomes 3 and 
4 are both wild-type and not shown. This genetic cross between elav-GAL4 females and UAS-

Ank2190-946-HA males results in progeny that express Ank2190-946-HA throughout the brain. 

 

Whole cell lysates were generated from the heads of progeny and subjected to western 

blotting with anti-HA to detect Ank2190-946-HA (Section 2.6). A band was produced at the 

expected size of 90 kDa only in the Ank2190-946-HA lane, which was absent from the 

control, confirming expression of the transgene (Figure 3.4). 

 

 

 

 

 

 

 

Figure 3.4. Characterising expression of Ank2190-946-HA. Whole protein lysates extracted from 

fly heads were separated by SDS-PAGE and western blotted using an anti-HA antibody to probe 
for expression of Ank2190-946-HA. Ank2190-946-HA is seen at approximately 90 kDa. Protein loaded 

= 30 µg. 
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3.1.2 Confirmation of co-expression of Ank2190-946-HA and DmHDAC4-

Myc via immunohistochemistry 

A fly line carrying UAS-DmHDAC4 with a C-terminal 6x Myc tag was previously 

generated by Dr Helen Fitzsimons (Appendix 6.3). The UAS-DmHDAC4-Myc and UAS-

Ank2190-946-HA constructs were crossed into a single fly strain co-expressing both 

Ank2190-946-HA and DmHDAC4-Myc (Figure 3.5). 
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Figure 3.5. Crossing scheme to generate a UAS-Ank2190-946-HA; UAS-DmHDAC4-Myc 

homozygous line. In order to generate a line carrying both UAS-DmHDAC4-Myc (denoted 

DmHDAC4) on the 3rd chromosome and UAS-Ank2190-946-HA (denoted Ank2190-946) on the 2nd 
chromosome, fly strains carrying balancer chromosomes were utilised. Balancer chromosomes 

are used as they provide a selectable heritable trait which can be traced through multiple crosses 

and prevent recombination due to multiple inversions. w- is the background strain which has white 

eyes. Both the UAS-Ank2190-946-HA and UAS-DmHDAC4-Myc constructs are linked to the mini-
white (w+) gene which restores the red eye colour and is used as a selectable marker for presence 

of the transgene. w+ is dose dependent, with one copy typically conferring an orange eye colour 

and two copies resulting in a red eye colour. (A) Females homozygous for UAS-DmHDAC4-Myc 
on the third chromosome were crossed to males carrying the second chromosome balancer 

CyO/Sco (curly wings). F1 orange eyed, curly winged females were selected for the cross in (C). 
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(B) Females homozygous for UAS-Ank2190-946-HA on the second chromosome were crossed to 

males carrying the third chromosome balancer Sb; TM3 (stubble bristles). F1 orange eyed stubble 

bristled males were selected for the cross in (C). (C) Orange eyed curly winged females were then 
crossed to orange eyed stubble bristled males from crosses (A) and (B) respectively. F1 red eyed 

curly winged, stubble bristled females and males were collected. These were then crossed together 

before non-curly, non-stubble males and females were selected and crossed together to obtain a 
stable fly strain homozygous for both UAS-DmHDAC4-Myc and UAS-Ank2190-946-HA. 

Abbreviations: Sco = Scutoid, CyO = Curly of Oster balancer chromosome, Sb = Stubble, TM3 = 

3rd multiply-inverted balancer chromosome. 

 

To confirm that Ank2190-946-HA and DmHDAC4-Myc co-distribute in neurons, elav-

GAL4 females were then crossed to UAS-Ank2190-946-HA; UAS-DmHDAC4-Myc males, 

via a standard genetic cross similar to Figure 3.3, and brains of progeny were processed 

by immunohistochemistry (Section 2.3.1). 

Expression of Ank2190-946-HA was observed throughout the α, β, and γ lobes of the 

mushroom body, as well as the antennal lobes and multiple axon tracts throughout the 

brain (Figure 3.6A), which is consistent with the expression pattern of endogenous Ank2 

(Figure 3.2C). DmHDAC4-Myc also localised at high levels in the mushroom body with 

a predominance of protein observed in the α, β, and γ lobes (Figure 3.6B). The expression 

pattern within the mushroom body did not overlap completely, which can be seen 

specifically within the α lobes with Ank2190-946-HA higher at the tips (Figure 3.6C). It 

should also be noted that because only the N-terminus of Ank2 is present, the expression 

pattern may well differ from that of endogenous Ank2. Nonetheless, this confirms that 

both proteins have been successfully expressed in neurons and can be tested for a physical 

interaction via co-IP. 
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Figure 3.6. Charactering the expression and co-distribution of Ank2190-946-HA and 

DmHDAC4-Myc. (A) Maximum anterior projection of the brain showing distribution of Ank2190-

946-HA (denoted as Ank2190-946) with anti-HA (green) in the mushroom body lobes, antennal lobes 

and axonal tracts. (B) Maximum anterior projection showing the distribution of DmHDAC4-Myc 

(denoted as DmHDAC4) with anti-Myc (magenta) in the mushroom body lobes. (C) Merged 
image showing co-distribution in the α, β and γ lobes of the mushroom body lobes. Abbreviations: 

AL = antennal lobe. Objective 40x in oil. Scale bar = 100 µm. 

 

3.1.3 Immunoprecipitation of Ank2190-946-HA and DmHDAC4-Myc 

To test for a physical interaction between Ank2190-946-HA and DmHDAC4-Myc it was 

first important to demonstrate that each construct could individually be 

immunoprecipitated and confirm antibody specificity. Each fly strain (Ank2190-946-HA 

and DmHDAC4-Myc) was crossed to elav-GAL4 and whole heads of progeny were 

processed and subjected to IP (Section 2.7). Lysates containing Ank2190-946-HA or control 

were immunoprecipitated with anti-HA followed by SDS-PAGE separation and western 

blotting (Section 2.6) with anti-HA (Figure 3.7A). A band of expected size (90 kDa) was 

detected in the Ank2190-946-HA sample. Ank2190-946-HA was not detected in negative IP 

controls where either the pull-down antibody (anti-HA) or the protein A/G beads had been 
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omitted. Inputs contain DmHDAC4-Myc as a negative control and Ank2190-946-HA as a 

positive control for accurate anti-HA detection. 

Similarly, lysates containing DmHDAC4-Myc or control were immunoprecipitated with 

anti-Myc and protein A/G beads before being separated by SDS-PAGE and western 

blotting with anti-Myc (Figure 3.7B). A band of expected size (140 kDa) was observed 

in the DmHDAC4-Myc sample. DmHDAC4-Myc was absent from the negative IP 

controls either omitting the pull-down antibody (anti-Myc) or the protein A/G beads. 

Inputs include Ank2190-946-HA as a negative control and DmHDAC4-Myc as a positive 

control for accurate anti-Myc detection. A non-specific band of approximately 90 kDa is 

observed in all input samples which has been previously observed in this laboratory when 

western blotting fly head lysates with anti-Myc. 

Together these IP assays confirm antibody specificity of anti-Ha and anti-Myc to the 

tagged constructs. Since a successful co-IP has not previously been performed in our 

laboratory, an initial co-IP experiment was carried out on proteins that were known to 

interact in order to confirm the methodology.  
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Figure 3.7. Immunoprecipitation of Ank2190-946-HA and DmHDAC4-Myc. (A) Ank2190-946-

HA was immunoprecipitated and detected with anti-HA, whereas the negative control 
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DmHDAC4-Myc (denoted as con) was not immunoprecipitated. Ank2190-946-HA was not detected 

in negative IP controls omitting either anti-HA or protein A/G beads. Input samples contain 

DmHDAC4-Myc as a negative control and Ank2190-946-HA as a positive control. (B) DmHDAC4-
Myc was immunoprecipitated and detected with anti-Myc, whereas the negative control Ank2190-

946-HA (denoted as con) was not immunoprecipitated. DmHDAC4-Myc was not detected in the 

negative IP controls omitting either anti-Myc or protein A/G beads. Ank2190-946-HA and 
DmHDAC4-Myc were the respective negative and positive input controls. IgG bands are also 

observed between 25 to 55 kDa in all co-IP lanes. Proteins were measured in kDa. Abbreviations: 

IgG = immunoglobulin G. Input samples = 30 µg. 

 

3.1.4 Positive co-IP control 

A co-IP assay is a simple method that can be used to determine if two proteins physically 

interact in vivo. As opposed to an IP, a second antibody is used to probe a specific protein 

that is thought to be physically interacting with the original target protein, either as a 

direct physical interaction or within a complex. The N-terminal region of HDAC4 

contains a glutamine-rich region that mediates homotetramerisation (Guo et al., 2007). 

Given that HDAC4 has the ability to tetramerise, two differentially labelled HDAC4 

constructs can be co-expressed to form tetramers, and thus should co-IP with either tag. 

A standard genetic cross was performed between elav-GAL4, HDAC4::YFP virgin 

females and UAS-DmHDAC4-Myc males to attain progeny that co-express HDAC4::YFP 

and DmHDAC4-Myc in all neurons. Whole cell lysates from heads of progeny were 

immunoprecipitated with anti-GFP and detected with anti-Myc (Section 2.7). A band, 

albeit faint of approximately 140 kDa was detected, demonstrating a direct physical 

interaction (Figure 3.8A). 

A reciprocal co-IP was also carried out in which immunoprecipitation was performed 

with anti-Myc before being probed with anti-GFP (Figure 3.8B). A band of similar size 

(140 kDa) was expected and observed for this sample but not the controls. 

Together, the individual IP assays performed on Ank2190-946-HA and DmHDAC4-Myc 

have demonstrated antibody specificity and the co-IP performed on HDAC4::YFP and 

DmHDAC4-Myc demonstrate that the protocol can be used successfully to detect a direct 

physical interaction between two proteins. 
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Figure 3.8. Positive co-IP control blots. Western blots demonstrating successful co-IP of 
HDAC4::YFP and DmHDAC4-Myc. (A) Lysates containing DmHDAC4-Myc and 

HDAC4::YFP were subjected to IP with anti-GFP and probed with anti-Myc. Inputs include 

HDAC4::YFP as a negative control and DmHDAC4-Myc and the strain containing both 
HDAC4::YFP and DmHDAC4-Myc as positive controls. (B) A reciprocal co-IP in which anti-

Myc was used for IP followed by detection with anti-GFP. Inputs include DmHDAC4-Myc as a 

negative control and HDAC4::YFP and the strain containing both HDAC4::YFP and 

DmHDAC4-Myc as positive controls. Proteins were measured in kDa. Input samples = 30 µg. 

 

3.1.5 A physical interaction was not detected between Ank2190-946-HA and 

DmHDAC4-Myc via co-IP 

To determine whether there was an in vivo direct physical interaction between HDAC4 

and Ank2, whole brain lysates from heads of flies co-expressing Ank2190-946-HA and 

DmHDAC4-Myc were immunoprecipitated with anti-HA (Section 2.7) before being 
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subject to SDS-PAGE and western blotting (Section 2.6) with anti-Myc to detect Myc 

tagged DmHDAC4. A band of expected size (140 kDa) was not observed, even after 

prolonged exposure (Figure 3.9A). 

A reciprocal co-IP was then performed to accurately rule out an in vivo physical 

interaction, where anti-Myc was used to immunoprecipitate DmHDAC4-Myc and anti-

HA was used to detect Ank2190-946-HA, and again a band of the expected size (90 kDa) 

was not observed (Figure 3.9B). 
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Figure 3.9. Ank2190-946-HA and DmHDAC4-Myc do not physically interact via co-IP. 

Western blots on whole brain lysates from Ank2190-946-HA, DmHDAC4-Myc and a strain 

containing both Ank2190-946-HA and DmHDAC4-Myc following separation by SDS-PAGE. (A) 

Ank2190-946-HA; DmHDAC4-Myc immunoprecipitated with anti-HA, however, DmHDAC4-Myc 
was not detected upon probing with anti-Myc. Ank2190-946-HA was used as a negative control 

(denoted as control) and was immunoprecipitated with anti-HA before showing no detection with 

anti-Myc. DmHDAC4-Myc was not detected in negative IP controls where either anti-HA or 
protein A/G beads were omitted. Inputs include Ank2190-946-HA as a negative control and 

DmHDAC4-Myc and Ank2190-946-HA; DmHDAC4-Myc as positive controls. (B) In the reciprocal 

experiment, Ank2190-946-HA; DmHDAC4-Myc was immunoprecipitated with anti-Myc, however 

Ank2190-946-HA was not detected upon probing with anti-HA. DmHDAC4-Myc was used as a 
negative control (denoted as control) and was immunoprecipitated with anti-Myc before showing 

no detection with anti-HA. Negative IP controls were as stated above omitting either anti-Myc or 

protein A/G beads. Inputs include DmHDAC4-Myc as a negative control and Ank2190-946-HA and 
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Ank2190-946-HA; DmHDAC4-Myc as positive controls. Proteins were measured in kDa. Input 

samples = 30 µg. 

 

3.2 What is the molecular basis of the genetic interaction between 

HDAC4 and Ank2? 

3.2.1 Does HDAC4 regulate Ank2 expression? 

Given the lack of evidence for a physical interaction, an alternative explanation for the 

genetic interaction between HDAC4 and Ank2 in eye development could be that HDAC4 

represses expression of Ank2. Ank2 is required for normal photoreceptor development, 

as knocking down Ank2 to approximately 35% of wild-type expression (Schwartz, 2016) 

impaired normal eye development, as does overexpression of HDAC4 (Schwartz et al., 

2016). If increased expression of HDAC4 resulted in a reduction of Ank2 expression, then 

the combination of increased expression of HDAC4 with a knockdown of Ank2 could 

result in a further depletion of Ank2 to a level low enough to result in a loss of function 

and severely impaired development of photoreceptors. However, previous experiments in 

which RNA-seq was performed on the heads of flies in which a nuclear-restricted mutant 

of human or Drosophila HDAC4 was overexpressed in neurons revealed no significant 

change in Ank2 expression when compared to controls of the same genetic background: 

human HDAC4 vs control, log2fold change = -0.47, padj (p-value adjusted for multiple 

testing) = 0.499 (Main, 2019) and Drosophila HDAC4 vs control, log2fold change = 0.28, 

padj = 0.1455 (Wei Jun Tan and Dr Helen Fitzsimons, unpublished data). 

The possibility was also considered that HDAC4 overexpression could alter the amount 

or stability of Ank2 protein through an undetermined mechanism. As the Ank2 protein is 

prohibitively large and the Ank2 antibody is unsuitable for western blotting purposes, an 

Ank2::EGFP protein trap line consisting of an artificial EGFP exon inserted in frame 

within an Ank2 intron was obtained (Kyoto Stock Centre). The expression of 

Ank2::EGFP has been confirmed by western blot using anti-GFP which produced a band 

of approximately 75 kDa which is consistent with one of the smallest Ank2 isoforms 

(Ank2-S1) (Appendix 6.4) in which EGFP is inserted (Schwartz, 2016). This construct 

could therefore be used for further investigation of endogenous levels of Ank2-S1. 

In addition to investigating whether overexpression of wild-type HDAC4 alters the level 

of Ank2 protein, several HDAC4 mutants were also included so that if HDAC4 does alter 
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Ank2 protein levels, these mutants could shed light on the specific mechanism involved. 

Recently, transgenic flies expressing mutant variants of human HDAC4 (hHDAC4) were 

generated in which hHDAC4 is restricted to the nucleus (3SA mutant) or cytoplasm 

(L175A mutant) in order to determine the relative roles of the nuclear and cytoplasmic 

pools of HDAC4 in neuronal dysfunction. Expression of hHDAC4 3SA was demonstrated 

to be detrimental to mushroom body development, eye development and long-term 

memory formation (Main, 2019). Transgenic flies expressing the corresponding 

Drosophila nuclear-restricted mutant named 3A (to distinguish it from human 3SA), has 

also been generated by Dr Helen Fitzsimons (Appendix 6.3). It has recently been observed 

that nuclear-restricted Drosophila HDAC4 3A also impairs eye development and 

mushroom body development (Wei Jun Tan, unpublished data) similarly to the hHDAC4 

3SA mutant (Main, 2019). Other transgenic flies have also been generated, including two 

cytoplasmic-restricted Drosophila mutants ΔMEF2, which contains a mutation in the 

MEF2 binding domain, and ΔNLS, which contains a mutation in the nuclear localisation 

sequence, both of which impair HDAC4 nuclear import (Appendix 6.3). A catalytically 

inactive mutant Y1142H was also generated, which substitutes an essential tyrosine 

residue for a histidine residue rendering the Drosophila HDAC4 deacetylase domain 

inactive as is seen in human HDAC4 (Appendix 6.3) (Lahm et al., 2007; Mielcarek et al., 

2013; Sando et al., 2012). Another important component when uncovering whether 

HDAC4 regulates Ank2 is the ankyrin repeat binding domain on HDAC4 in which 

ankyrin repeat-containing proteins have been observed to interact with (Xu et al., 2012). 

A transgenic fly line harbouring Drosophila HDAC4 with amino acid substitutions within 

the PxLPxI/L motif of the ankyrin repeat binding domain (Section 1.6) which is predicted 

to abolish binding to ankyrin repeats (mutation of PSLPNI to ASAANA) was generated 

by Dr Helen Fitzsimons and named DmHDAC4 ΔAnk (Appendix 6.3). 

Elav-GAL4; Ank2::EGFP virgin female homozygotes were crossed to control w(cs10) 

(which is the background strain for Ank2::EGFP) as well as to each of the DmHDAC4 

wild-type and mutant transgenes via standard genetic crosses. Western blots were 

performed (Section 2.6) and probed for using anti-Myc as a control as all DmHDAC4 

transgenes have a C-terminal 6x Myc tag. Anti-GFP was used to probe for levels of 

Ank2::EGFP following crossing to the DmHDAC4 mutants (Figure 3.10). When 

compared to the controls, it is difficult to determine whether increased HDAC4 alters 

Ank2 protein levels or stability as the band intensity was variable. Furthermore, a pattern 
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was not visible when comparing the effect of nuclear vs cytoplasmic expression of 

HDAC4 on Ank2 as the two cytoplasmically restricted mutants DmHDAC4 ΔMEF2 and 

DmHDAC4 ΔNLS differed in their levels of Ank2 protein, therefore, the results of this 

blot remain inconclusive. Time constraints prevented this experiment from being 

repeated, however, these data show that each of the mutants were successfully expressed 

and repetition of the experiment and subsequent quantification of the bands will 

determine the impact of increased HDAC4 on Ank2 protein levels. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. The effect of DmHDAC4 regulation on Ank2 protein level. Western blot of whole 

head lysates demonstrate the effect of expression of different DmHDAC4 transgenes on 
Ank2::EGFP protein levels. Control consisted of elav-GAL4 crossed to w(cs10). All DmHDAC4 

transgenes are Myc tagged and crossed to elav-GAL4; Ank2::EGFP. Anti-Myc detected levels of 

DmHDAC4 expression. Anti-GFP detected Ank2::EGFP protein levels. Proteins were measured 

in kDa. Protein loaded = 30 µg. 

 

3.2.2 Does Ank2 regulate expression and/or subcellular distribution of 

HDAC4 protein? 

It was initially hypothesised that if HDAC4 and Ank2 physically interacted, that Ank2 

could potentially tether HDAC4 in the cytoplasm, thus when Ank2 was reduced, HDAC4 

would accumulate in the nucleus. This scenario is less likely based on the lack of detection 
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of a direct physical interaction between HDAC4 and Ank2. However, HDAC4 

localisation is critical and disruptions in this balance leads to neurodevelopmental or 

neurodegenerative phenotypes (Li et al., 2012; Wu et al., 2017; Wu et al., 2016) therefore, 

the impact of Ank2 knockdown on HDAC4 expression and subcellular distribution was 

examined. The Ank2 RNAi that was utilised in this study was sourced from the Vienna 

Drosophila Resource Centre. This RNAi targets a portion of the C-terminal domain of 

the extra-long, long and medium isoforms of Ank2 (Appendix 6.4). 

Firstly, it was examined whether the level of total HDAC4 protein in the cell was altered 

when Ank2 RNAi was expressed, knocking down the longer Ank2 isoforms. As there is 

currently no Drosophila HDAC4 antibody suitable for detecting endogenous HDAC4 by 

western blotting, the previously established HDAC4::YFP trap line (Section 3.1) was 

used to detect levels of HDAC4. Virgin female flies carrying elav-GAL4 and 

HDAC4::YFP were either crossed to w(cs10) (the background strain for HDAC4::YFP) 

or alleles carrying UAS-Ank2 RNAi via standard genetic crosses. Whole cell lysates were 

generated and examined via western blot (Section 2.6) using an anti-GFP antibody to 

detect expression of HDAC4::YFP (Figure 3.11A). From these blots, it appears there may 

be a slight increase in HDAC4::YFP expression when Ank2 is knocked down. To further 

analyse this, a normalised intensity plot was produced, where it was observed that there 

was a statistically significant increase in the level of HDAC4 protein when Ank2 was 

reduced in the whole cell (Figure 3.11B). 
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Figure 3.11. Ank2 knockdown alters total HDAC4 protein levels. (A) Whole head lysates from 
negative control flies (elav-GAL4 crossed to w(cs10)), positive control flies (HDAC4::YFP 

crossed to w(cs10)) and HDAC4::YFP crossed to Ank2 RNAi flies were subjected to SDS-PAGE 

and western blotting using anti-GFP to detect endogenous HDAC4. Protein loaded = 30 µg. (B) 

Bands were quantified from two replicate western blots to produce a normalised intensity plot 
showing the level of expression of HDAC4::YFP normalised to tubulin. Bars indicate +/- SEM. 

* = p < 0.05, Two-tailed unpaired Student’s t-test, p-value = 0.04. 

 

Prior to the investigation of whether knockdown of Ank2 alters the subcellular distribution 

of HDAC4, the cell fractionation protocol required optimisation. In the past there has 

been difficulty in preparing nuclear fractions from Drosophila heads with minimal 

cytoplasmic contamination (Dr H. Fitzsimons, personal communication 22 June, 2020), 

therefore the NE-PER kit (Thermo) was selected as a protocol specifically detailing the 

use of this kit on Drosophila heads was available (Maitra et al., 2019). Following nuclear 

and cytoplasmic fractionation, western blotting was performed (Section 2.6) with 

antibodies to the nuclear lamin protein and the cytoplasmic alpha-tubulin protein in order 

to determine the purity of the fractions. Lamin was detected clearly only in the nuclear 

fraction, whereas tubulin was detected strongly in both the cytoplasmic and nuclear 

fractions (Figure 3.12A), indicating that the nuclear fraction was contaminated with 

cytoplasmic protein. The protocol was optimised by adding two wash steps between the 

collection of the cytoplasmic fraction and the final collection of the nuclear fraction as 

detailed in section 2.4.3. The resulting western blots were probed with anti-lamin and 

anti-tubulin. Lamin was again only found in the nuclear fraction, whereas tubulin was 

observed in all fractions, however, following the duplicate wash steps tubulin was present 
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at a significantly lower level in the nuclear fraction (Figure 3.12B). This optimisation 

allowed the impact of Ank2 knockdown on the subcellular distribution of HDAC4 to now 

be assessed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Cellular fractionation optimisation. (A) CF and NF of flies were subjected to 

SDS-PAGE and western blotting with anti-lamin to detect the nuclear fraction and anti-tubulin to 

detect the cytoplasmic fraction. (B) CF, W1, W2 and NF of flies were subjected to SDS-PAGE 
and western blotting using anti-lamin and anti-tubulin. Additional wash steps decreased the 

cytoplasmic contamination in the NF. Protein loaded = 30 µg. Proteins were measured in kDa. 

Abbreviations: CF = cytoplasmic fraction, W1 = wash 1, W2 = wash 2, and NF = nuclear fraction.  

 

To characterise the subcellular distribution of HDAC4 following knockdown of Ank2, 

virgin female flies carrying the pan-neuronal elav-GAL4 driver and HDAC4::YFP were 

crossed to male flies harbouring the UAS-Ank2 RNAi construct via a standard genetic 

cross in order to knockdown Ank2 in all neurons during development. elav-GAL4 flies 

were also crossed to w(cs10) flies (the background strain of HDAC4::YFP) as a negative 
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control. Nuclear and cytoplasmic fractions were isolated from heads of the progeny of 

each of the two crosses (Figure 3.13A). 

In the cytoplasmic fraction there appeared to be a slight increase in HDAC4::YFP 

expression when Ank2 was knocked down, but this was not significant (Figure 3.13B). In 

the nuclear fraction a doublet band was observed in each lane, however, as there was a 

single band also detected in the control, it was concluded that the topmost band was non-

specific anti-GFP binding. The level of HDAC4::YFP expression was relatively equal 

between each of the nuclear fractions showing that there was no significant difference in 

HDAC4 protein levels in the nucleus following Ank2 knockdown during development 

(Figure 3.13C).  

 

 

 

 

 

 

 

 

 

Figure 3.13. Ank2 knockdown during development does not significantly affect HDAC4 

expression and subcellular localisation. Western blots demonstrating the nuclear and 
cytoplasmic subcellular distribution of HDAC4::YFP. (A) Nuclear and cytoplasmic head lysates 

from progeny of elav-GAL4 flies crossed to w(cs10) (denoted as control), HDAC4::YFP crossed 

to w(cs10) and HDAC4::YFP crossed to Ank2 RNAi were subjected to SDS-PAGE and western 
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blotting with an anti-GFP antibody. In the nuclear fraction a doublet band is present in both 

samples consisting of HDAC4::YFP, where the topmost band was also observed in the negative 

control, indicative of non-specific anti-GFP binding. Anti-lamin was used as a marker for the 
nuclear fraction and anti-tubulin was used as a marker for the cytoplasmic fraction. Protein loaded 

= 20 µg. Proteins were measured in kDa. (B) Quantification of two replicate HDAC4::YFP bands 

in the cytoplasmic fraction, where no significant difference was observed on knockdown of Ank2. 
Two-tailed unpaired Student’s t-test was performed, p-value = 0.132. (C) In the nuclear fraction, 

no significant difference was observed on knockdown of Ank2 following quantification of two 

replicate bands. Two-tailed unpaired Student’s t-test was performed, p-value = 0.96. n.s = not 

significant. Abbreviations: A.U = arbitrary units. 

 

As Ank2 knockdown in neurons during development results in impaired brain 

development (Schwartz, 2016), the TARGET system (Section 1.3.4.2) was used to restrict 

Ank2 knockdown to the adult brain in case an abnormal brain structure impacted HDAC4 

protein levels. Elav-GAL4, HDAC4::YFP flies were crossed to Tub-Gal80ts (Gal80ts 

under control of the alpha-tubulin promoter) as a control, and to Tub-Gal80ts; Ank2 RNAi 

to allow for temporal control of Ank2 knockdown. Flies were raised at 18°C (at which 

transgene expression is inhibited) and following eclosion, adult flies were then placed at 

30°C for three days to induce expression of Ank2 RNAi. In both the cytoplasmic and 

nuclear fractions it appeared that the knockdown of Ank2 in the adult brain slightly 

reduced the level of HDAC4::YFP (Figure 3.14A), however this difference was not 

statistically significant (Figure 3.14B, C). 

These data suggest that Ank2 may regulate the total protein level of HDAC4, as there was 

an overall increase in HDAC4::YFP when Ank2 was reduced in the developing brain. 

There was, however, no significant alteration in the subcellular distribution of HDAC4 

when Ank2 was knocked down in the developing brain or when it was restricted to 

adulthood. These experiments, therefore, require repetition to determine if these results 

are reproducible. 
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Figure 3.14. Ank2 knockdown in the adult brain does not significantly affect HDAC4 

expression and subcellular localisation. Western blots demonstrating the nuclear and 
cytoplasmic subcellular distribution of HDAC4::YFP. (A) Nuclear and cytoplasmic head lysates 

from progeny of elav-GAL4 crossed to w(cs10) (denoted as control) and HDAC4::YFP crossed 

to either Tub Gal80ts as a control or Tub-Gal80ts; Ank2 RNAi to induce Ank2 knockdown 
specifically in the adult brain. HDAC4::YFP was detected with anti-GFP, where again, in the 

nuclear fraction a doublet band was present, indicative of non-specific anti-GFP binding. Anti-

lamin was used as a marker for the nuclear fraction and anti-tubulin was used as a marker for the 

cytoplasmic fraction. Protein loaded = 20 µg. Proteins were measured in kDa. (B) In the 
cytoplasmic fraction, no significant difference was observed between samples following 

quantification of two replicate western blot bands. Two-tailed unpaired Student’s t-test was 

performed, p-value = 0.312. (C) In the nuclear fraction, no significant difference was observed 
between samples following quantification of two replicate bands. Two-tailed unpaired Student’s 

t-test was performed, p-value = 0.446. n.s = not significant, A.U = arbitrary units. 

 

3.3 Examining the genetic interaction between HDAC4 and Ank2 

in photoreceptors 

The results generated in this study indicate that HDAC4 and Ank2 do not interact 

physically therefore, the previously identified genetic interaction in the Drosophila eye 

A 

0

2000

4000

6000

8000

10000

Tub-Gal80ts Tub-Gal80ts; Ank2
RNAi

N
o

rm
al

is
ed

 in
te

n
si

ty
 (A

.U
)

0

2000

4000

6000

8000

10000

Tub-Gal80ts Tub-Gal80ts; Ank2
RNAi

N
o

rm
al

is
ed

 in
te

n
si

ty
 (A

.U
)

B C n.s n.s 

50 

250 

 
130 

 
70 

95 

WB: α-GFP 

WB: α-lamin 

WB: α-tubulin 

 

^ 

Cytoplasm Nucleus 

C
o

n
tr

o
l 

C
o

n
tr

o
l +     + 

+-     + 

+     + 

+-     + 

HDAC4::YFP 

Tub-Gal80ts; Ank2 RNAi kDa 

 



63 

(Schwartz, 2016) was further examined in an attempt to shed light on the nature of this 

interaction. 

One unanswered question so far is whether the activity of HDAC4 in the nucleus or 

cytoplasm is required for the genetic interaction. Investigating this could aid in narrowing 

down the pathway through which HDAC4 and Ank2 interact. 

As the expression of nuclear-restricted human HDAC4 3SA displayed detrimental 

phenotypes in mushroom body, eye and long-term memory development (Main, 2019), 

investigating the role that the corresponding Drosophila HDAC4 3A mutant plays in 

conjunction with Ank2 RNAi in eye development was of interest. Therefore, the genetic 

interaction between wild-type DmHDAC4 and Ank2 could be compared to that of 

DmHDAC4 3A and Ank2. 

A second unanswered question is whether the genetic interaction is dependent on binding 

of ankyrin repeat protein(s) to HDAC4. If not, this would provide further confirmation 

that the genetic interaction between HDAC4 and Ank2 is not through direct physical 

binding. To this end, examining the eye phenotype resulting from expression of 

DmHDAC4 ΔAnk, a transgene which contains a mutated ankyrin repeat binding domain, 

would unveil whether binding of ankyrin repeat-containing proteins is essential for the 

HDAC4 overexpression-induced rough eye phenotype and whether HDAC4 can retain 

the genetic interaction with Ank2. 

 

3.3.1 A phenotypic eye screen showing the effect of Ank2 knockdown in 

combination with Drosophila HDAC4 mutants 

To test for a genetic interaction between Ank2 and the DmHDAC4 mutants, the glass 

multimer reporter (GMR) driver was used to drive expression in all post mitotic cells 

posterior to the morphogenetic furrow in the developing eye (Freeman, 1996). The eyes 

of the F1 progeny were then analysed via light microscopy (Section 2.8.1) and scanning 

electron microscopy (SEM) (Section 2.8.2). 

To provide a semi-quantitative analysis of SEM images, a rough eye phenotype scoring 

system was developed to categorise the severity of the rough eye phenotype. The scoring 

system produced a score from 0 – 1, with 0 appearing wild-type and 1 the most severe 

phenotype. The system was as follows; 0 (wild-type) consisted of normal ommatidia 
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alignment with no fusion and a wild-type array of mechanosensory bristles positioned 

between each ommatidium. A score of 0.25 (mild) was given if one of the following 

phenotypes was observed: between 5 - 10 instances of multiple bristles from one pore or 

missing bristles, mild ommatidia disorganisation or fusion of ommatidia in up to two 

areas. A score of 0.5 (moderate) was given if all mild phenotypes were collectively 

observed or if one of the following phenotypes was observed; between 10 – 20 instances 

of multiple bristles from one pore or missing bristles, moderate disorganisation or fusion 

of ommatidia in up to five areas. A score of 0.75 (major) was given if all moderate 

phenotypes were collectively observed or if one of the following phenotypes was 

observed: more than 20 instances of multiple bristles from one pore or missing bristles, 

major disorganisation, fusion of ommatidia in up to 10 areas with few large areas of fusion 

or up to 50 collapsed ommatidia. A score of 1 (severe) was given if all major phenotypes 

were collectively observed or if one of the following phenotypes was observed: severe 

disorganisation, fusion in more than 10 areas or multiple large patches, more than 50 

collapsed ommatidia or severe collapsing of ommatidia resulting in central hole-like 

cavities (Table 3.1). This semi-quantitative analysis was based on observations of 

phenotypes resulting from overexpression of HDAC4 in previous studies in this 

laboratory (Schwartz et al., 2016) as well as the more severe phenotypes resulting from 

expression of two copies of HDAC4 (Schwartz, 2016). 
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Table 3.1. Semi-quantitative rough eye phenotype analysis. Scoring system developed for 

analysis of SEM images of fly eyes from each mutant genotype. 

 

Control flies (GMR-GAL4 crossed to the background w(cs10) strain) showed 

predominantly normal ommatidia alignment and no evidence of ommatidia fusion (Figure 

3.15A). Knockdown of Ank2 resulted in a moderate rough eye phenotype where collapsed 

ommatidia were observed in the scanning electron micrographs. Ommatidia were slightly 

misaligned and there were patches lacking mechanosensory bristle formation (Figure 

3.15B). In a previous study overexpression of wild-type HDAC4 resulted in a mild rough 

eye phenotype (Schwartz, 2016), however, in this current study, the phenotype was 

slightly more severe as the flies were raised at a two-degree higher temperature of 27°C. 

At this temperature the GAL4 transcriptional transactivator was more active and therefore 

drives a higher level of transgene expression (Duffy, 2002), resulting in a moderate rough 

eye phenotype. This consisted of disorganised ommatidia alignment with few areas of 

ommatidia fusion (Figure 3.15C). Expression of the nuclear restricted DmHDAC4 3A 

mutant resulted in a slightly more severe rough eye phenotype compared to wild-type 

DmHDAC4 with misaligned and fused ommatidia as well as a lack of bristle formation 

(Figure 3.15D). Expression of DmHDAC4 ΔAnk also resulted in a moderate rough eye 
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phenotype consisting of ommatidia fusion and misalignment (Figure 3.15E), indicating 

that the ankyrin binding domain is not required for the HDAC4 overexpression-induced 

eye defects. It should also be noted that the phenotype analysed under light microscopy 

of the DmHDAC4 ΔAnk eyes appeared slightly more severe than wild-type DmHDAC4 

with a pronounced loss of pigmentation, which was not observable in the SEM images. 

When Ank2 RNAi and either wild-type or each DmHDAC4 transgene were co-expressed, 

a severe rough eye phenotype consisting of major areas of ommatidia fusion and severe 

misalignment was observed for all three genotypes (Figure 3.15 F, G, H), indicative of a 

genetic interaction.  
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Figure 3.15. Ank2 RNAi enhancement of the DmHDAC4 overexpression-induced rough eye 

phenotype. Light and scanning electron microscope (SEM) images of the rough-eye phenotypes. 
GMR-GAL4 was used to express the following UAS-fused transgenes in the eye. (A) w(cs10), (B) 

Ankyrin2 (Ank2), (C) DmHDAC4, (D) DmHDAC4 3A, (E) DmHDAC4 ΔAnk. (F) DmHDAC4 and 

Ank2 RNAi, (G) DmHDAC4 3A and Ank2 RNAi, (H) DmHDAC4 ΔAnk and Ank2 RNAi. Scale 

bars are as indicated in figure. 

 

The semi-quantitative rough eye phenotype scores were calculated and averaged for each 

genotype (Table 3.2). These scores were taken from analyses of the SEM images. 
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Table 3.2. Rough eye phenotype scores. The frequency of each phenotype was denoted as a 

percentage with phenotypes ranging from wild-type to severe. The total number of compound 

eyes analysed are seen in the far-right column denoted as n. 

 

Statistical analysis revealed that there was a significant increase in severity of the rough 

eye phenotype for the wild-type DmHDAC4 and DmHDAC4 ΔAnk transgenes when co-

expressed with Ank2 RNAi (Figure 3.16 A, C). Although DmHDAC4 3A co-expressed 

with Ank2 RNAi resulted in a severe phenotype in 100% of eyes, this was not statistically 

significant in comparison to the DmHDAC4 3A transgene expression, as expression of 

DmHDAC4 3A alone resulted in a significantly severe rough eye phenotype (Figure 3.16 

B). It should be noted that this scoring system is arbitrary as the biological relevance for 

relative weighting of phenotypes is not known. When the phenotype scores are averaged, 

it appeared that the phenotypic effects were additive, however when the proportion of 

eyes exhibiting a severe phenotype were compared, a synergistic interaction was observed 

(Figure 3.16 D). 

 

 

 

 

Genotypes Wild-type 

(0) 

Mild 

(0.25) 

Moderate 

(0.5) 

Major 

(0.75) 

Severe 

(1) 

n 

w(cs10) 71% (15) 29% (6) 0% 0% 0% 21 

Ank2 RNAi 5% (1) 14% (3) 14% (3) 24% (5) 43% (9)  21 

DmHDAC4 0% 11% (2) 47% (9) 21% (4) 21% (4) 19 

DmHDAC4; Ank2 

RNAi 
0% 0% 0% 20% (4) 80% (16) 20 

DmHDAC4 3A 0% 0% 10% (2) 50% (10) 40% (8) 20 

DmHDAC4 3A; 

Ank2 RNAi 
0% 0% 0% 0% 100% (13) 13 

DmHDAC4 ΔAnk 0% 0% 50% (10) 20% (4) 30% (6) 20 

DmHDAC4 ΔAnk; 

Ank2 RNAi 
0% 0% 0% 11% (2) 89% (17) 19 
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Figure 3.16. Phenotype scores for the DmHDAC4 transgenes and Ank2 RNAi. The average 

rough eye phenotype scores of each genotype are shown. Bars indicate +/- SEM. * = p < 

0.05, ** = p < 0.01 following one-way ANOVA and post-hoc Tukey test for significance. 
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w(cs10):DmHDAC4; Ank2 RNAi = 0.001, Ank2 RNAi:DmHDAC4 = 0.011, 

DmHDAC4:DmHDAC4; Ank2 RNAi = 0.001. (B) p-values: w(cs10):Ank2 RNAi = 0.001, 

w(cs10):DmHDAC4 3A = 0.001, w(cs10):DmHDAC4 3A; Ank2 RNAi = 0.001. (C) p-

values: w(cs10):Ank2 RNAi = 0.001, w(cs10):DmHDAC4 ΔAnk = 0.001, 

w(cs10):DmHDAC4 ΔAnk; Ank2 RNAi = 0.001, DmHDAC4 ΔAnk:DmHDAC4 ΔAnk; 

Ank2 RNAi = 0.001. (D) The percentage of eyes displaying severe phenotypes are shown 

for each genotype. * = p < 0.05, ** = p < 0.01 following one-tailed Fisher’ s exact test. 

p-values: Ank2 RNAi:DmHDAC4; Ank2 RNAi = 0.247, Ank2 RNAi:DmHDAC4 3A; 

Ank2 RNAi = 0.0006, Ank2 RNAi:DmHDAC4 ΔAnk; Ank2 RNAi = 0.0028, 

DmHDAC4:DmHDAC4; Ank2 RNAi = 0.0004, DmHDAC4 3A:DmHDAC4 3A; Ank2 

RNAi = 0.0005, DmHDAC4 ΔAnk:DmHDAC4 ΔAnk2; Ank2 RNAi = 0.0002. 

 

In addition to the severe eye phenotypes observed above, it was also noted that the eye 

was physically smaller when Ank2 RNAi was co-expressed with each DmHDAC4 

transgene compared to wild-type control eyes. This notable phenotype was therefore, 

investigated in more detail. 

Co-expression of Ank2 RNAi with each of the DmHDAC4 transgenes resulted in smaller 

and more deformed eyes (Figure 3.17). A reduction in eye size may suggest activation or 

upregulation of apoptotic signalling pathways, for example, the wingless pathway, which 

has recently been implicated in compound eye patterning and is essential in pupal cell 

death (Cordero et al., 2004). 

To determine the sizes of each eye for comparison between genotypes, ImageJ software 

was used to draw a line surrounding the eye and calculate the area in arbitrary units. 
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Figure 3.17. Reduced eye sizes observed when DmHDAC4 transgenes are co-expressed with 

Ank2 RNAi. Compared to w(cs10) control eyes, co-expression of Ank2 RNAi with wild-type 
DmHDAC4, DmHDAC4 3A and DmHDAC4 ΔAnk resulted in physically smaller eyes. Scale bar 

is as indicated in the figure. 

 

The scanning electron microscopy images that were attained for the rough eye phenotype 

analysis were measured for eye shape and size. Wild-type male Drosophila are smaller 

in body and head size (Mathews et al., 2017), which is not accounted for in this analysis, 

however, as all samples contained this combination of males and females this level of 

variability is controlled between samples. For this reason, all eye measurements were 

plotted as box and whisker graphs to demonstrate the distribution of eye sizes. 

The co-expression of Ank2 RNAi with either wild-type or mutant DmHDAC4 resulted in 

significantly smaller eyes than w(cs10) control eyes. Co-expression of wild-type 

DmHDAC4 and DmHDAC4 ΔAnk with Ank2 RNAi also resulted in significantly smaller 

eyes than each transgene individually (Figure 3.18A, C), however, co-expression of 

DmHDAC4 3A and Ank2 RNAi did not significantly reduce eye sizes compared to 

DmHDAC4 3A alone (Figure 3.18B). 
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Figure 3.18. Box and whisker plot showing eye area changes observed by co-expression of 

DmHDAC4 transgenes and Ank2 RNAi. Scanning electron microscope images were analysed 

in ImageJ to produce area measurements of each eye within a sample. Box and whisker plots were 
produced with the coloured dots showing each eye measurement. ** = p < 0.01 following one-

way ANOVA and post-hoc Tukey test for significance. (A) p-values: w(cs10):Ank2 RNAi = 

0
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0.007, w(cs10):DmHDAC4 = 0.009, w(cs10):DmHDAC4; Ank2 RNAi = 0.001, Ank2 

RNAi:DmHDAC4; Ank2 RNAi = 0.001, DmHDAC4:DmHDAC4; Ank2 = 0.001. (B) p-values: 

w(cs10):Ank2 RNAi = 0.007, w(cs10):DmHDAC4 3A = 0.001, w(cs10):DmHDAC4 3A; Ank2 
RNAi = 0.001, DmHDAC4 3A:DmHDAC4 3A; Ank2 RNAi = 0.285. (C) p-values: w(cs10):Ank2 

RNAi = 0.007, w(cs10):DmHDAC4 ΔAnk = 0.001, w(cs10):DmHDAC4 ΔAnk; Ank2 RNAi = 

0.001, DmHDAC4 ΔAnk:DmHDAC4 ΔAnk; Ank2 RNAi = 0.001. n = number of eyes per sample. 

 

This analysis of the reduction in eye size further confirms the genetic interaction 

previously observed between Ank2 RNAi and wild-type DmHDAC4, and that the 

presence of the ankyrin repeat binding domain is not required for the genetic interaction 

between HDAC4 and Ank2. The phenotypes observed when the DmHDAC4 3A transgene 

is co-expressed with Ank2 RNAi in the eye becomes more severe, further suggesting that 

the genetic interaction with Ank2 is mediated through nuclear HDAC4.  

 

3.3.2 Characterisation of additional eye phenotypes that were observed 

Knockdown of Ank2 in the eye produced an interesting phenotype, where in over 60% of 

the eyes analysed, a large proportion of the ommatidia were collapsed inwards. As this 

was a common occurrence only within this genotype it is possible that this is a major 

phenotype that has not yet been reported for this gene. It appears as if the centre of each 

ommatidia was initially formed before collapsing in on itself (Figure 3.19A). 

Co-expression of wild-type or DmHDAC4 transgenes with Ank2 RNAi resulted in 

ommatidia containing a central hole-like cavity (Figure 3.19 B, C, and D). As opposed to 

the phenotypes seen when Ank2 was knocked down, these holes appear to be more severe 

than the collapse of an ommatidia. These hole-like structures appear as pin pricks in the 

centre of the ommatidia usually in large areas of ommatidia fusion and could be referred 

to as a previously characterised “blueberry phenotype” (Basler et al., 1990). Further 

analysis of this phenotype may assist in identifying the molecular pathways through 

which HDAC4 and Ank2 act to regulate neuronal development in the eye. 
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Figure 3.19. “Blueberry” phenotype observed upon Ank2 RNAi and DmHDAC4 transgene 

co-expression. Scanning electron microscopy demonstrated malformation or degenerative 

phenotypes when DmHDAC4 mutants were co-expressed with Ank2 RNAi. (A) GMR-GAL4 
induced expression of Ank2 RNAi results in malformed or degenerated R7/8 photoreceptors in 

the ommatidia creating a group of collapsed ommatidia. (B, C, D) Co-expression of (B) 

DmHDAC4, (C) DmHDAC4 3A, (D) DmHDAC4 ΔAnk and Ank2 RNAi resulted in degenerated 
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ommatidia resulting in necrotic craters in the centre of the ommatidia, indicative of the 

“blueberry” phenotype. Scale bars are as indicated in figure. 

 

3.4 Investigation of the neurodevelopmental role of HDAC4 and 

Ank2 in dendrite morphogenesis 

Following confirmation that HDAC4 and Ank2 interact genetically during eye 

development, it was investigated as to whether this interaction was also important in the 

morphogenesis of dendrites, since the synaptic plasticity that underlies learning and 

memory requires rearrangement of the actin cytoskeleton at dendritic spines (Lamprecht 

& LeDoux, 2004). 

During Drosophila embryonic and larval stages, Ank2 mutants display a reduction of 

dendritic branching. In Drosophila dopaminergic neurons, knockdown of Ank2 resulted 

in decreased dendritic branching points, leading to a reduced total branch length and a 

lack of branching complexity (Avery et al., 2017). Ank2 is also required for maintaining 

the dendritic spines in the mouse hippocampus as Ank2 knockout mice have reduced 

dendritic spine complexity (Piguel et al., 2019). In addition, in the mouse hippocampus, 

it was observed that a double knockout of HDAC4 and HDAC5 resulted in an increase in 

dendrite arborisation, thereby increasing the complexity at the dendritic spines (Zhu et 

al., 2019). Interestingly, in cultured rodent hippocampal neurons increased nuclear 

HDAC4 also resulted in a reduction in the complexity and length of dendritic branching, 

however, the number of dendritic spines remained unchanged (Litke et al., 2018). 

Currently, it is not yet known whether Drosophila HDAC4 plays a role in dendrite 

morphogenesis. 

This study initially aimed to investigate whether wild-type Drosophila HDAC4 interacts 

with Ank2 in dendrite morphogenesis similarly to the approach taken in the eye, and if an 

interaction was observed, it would then be of interest to investigate the previously 

described DmHDAC4 mutant transgenes.  

In addition, since knockdown of HDAC4 impaired memory formation in both rodents 

(Kim et al., 2012) and Drosophila (Fitzsimons et al., 2013) (Section 1.5.2) and dendrite 

arborisation in the mouse as described above, it was also investigated whether there was 

a genetic interaction when both HDAC4 and Ank2 were reduced. This would suggest that 
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HDAC4 and Ank2 act together to promote normal memory formation, in addition to 

requiring an interaction with Ank2 to elicit the impairments resulting from increased 

nuclear abundance of HDAC4. 

Branching and elongation of Kenyon cell dendrites is difficult to visualise therefore, the 

LPTCs of the visual system were used as a model (Section 1.3.3). 

The vertical system consists of six neurons that span the dorsal-ventral axis of the lobula 

plate (Scott et al., 2002) and can be genetically targeted with the 3A-GAL4 driver which 

promotes expression predominantly in these neurons. The dendrites of the vertical system 

can be visualised by genetic tagging with Lifeact which is an F-actin binding protein fused 

to GFP, which acts as a marker for the F-actin rich dendrites and is thus ideal for simple 

visualisation (Riedl et al., 2008). 

Normal dendritic shaft growth differs between each of the six neurons in the visual system 

(VS) (Figure 3.20). The most lateral neuron (VS1) contains a main dendritic shaft that 

extends laterally before sweeping ventrally. This cell often contains one or more major 

dorsal projecting branches. The VS2 neuron is the next most laterally projecting cell, this 

neuron differs from the VS1 as the main shaft is less complex and often lacks branches, 

however, the main dendritic shaft also projects laterally before sweeping and extending 

ventrally. VS3 and VS4 both consist of a ventrally sweeping main shaft and a major dorsal 

projecting branch. VS3 appears to extend its main shaft more laterally than that of VS4. 

The major VS4 dorsal projecting branch extends almost as far as the ventrally projecting 

main shaft. VS5 and VS6 are characterised by their main dendritic shaft predominantly 

extending into the dorsal region of the lobula plate with smaller less complex branches 

extending ventrally. VS5 can be distinguished from VS6 as it often projects two major 

branches from the main dendritic shaft. One of the branches extends ventrally, while the 

other extends into the lateral region of the lobula plate. VS6 however contains one major 

branch which extends ventrally and is observed to be the closest branch to the medial 

region of the lobula plate (Scott et al., 2002). 
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Figure 3.20. Characteristic normal dendrite growth in the visual system LPTCs. (A) 

Confocal micrograph demonstrating the characteristic branching pattern in the LPTCs. (B) 

Cartoon trace of the confocal micrograph showing the dendritic branching of each of the six 
vertical system neurons (VS1-6). Abbreviations: D = dorsal, V = ventral, M = medial and L = 

lateral, VS = vertical system. Scale bar = 50 µm. 

 

Image stacks produced from confocal microscopy were analysed, and a semi-quantitative 

scoring system was employed to distinguish a normal from an abnormal phenotype. An 

abnormal phenotype included shortened, thinned and a total loss of one or more of the 

main dendritic shafts as compared to a wild-type representative control image. 

Representative images of normal and abnormal phenotypes are shown in Figure 3.21.  
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Figure 3.21. Representative images of the phenotypes observed in the LPTCs. (A) 
Characteristic normal phenotype, all six vertical system neurons are present and labelled 1-6. (B) 

Abnormal phenotype resulting in shortened vertical system neurons (white arrows) and a thinned 

VS5 dendrite (white asterix). (C) Abnormal phenotype resulting in a total loss of two vertical 

system neurons, the remaining neurons are numbered. Scale bar = 50 µm. 

 

A normal phenotype consisted of the wild-type organisation of LPTCs in a single 

hemisphere and was scored as 0. An abnormal phenotype consisted of one or more of the 

main LPTC dendritic shafts being shortened, thinned or entirely missing, resulting in a 

phenotype different from the normal wild-type, and was scored as 1. Brain hemispheres 

were therefore scored as normal or abnormal compared to the stereotypic control. It 

should however be noted that a significant proportion of wild-type brains also differed 

from the stereotypic control as there was a large amount of variability in all samples. This 

was due to difficulty in the staining technique and subsequent confocal imaging; 

therefore, further optimisation is required. In a proportion of brains, it was difficult to 

identify and differentiate individual branches due to a high level of staining, whereas in 

other brains the LPTCs were not visible due to weak staining. Due to these difficulties 

the LPTCs were too variable to analyse each of the abnormal phenotypes individually as 

there were a large proportion of LPTCs which consisted of a combination of shortened, 

thinned and missing dendrites. Scores were then calculated as a percentage of normal to 

abnormal within a single genotype before being displayed in a bar graph to demonstrate 

the proportion of normal to abnormal dendrite morphogenesis observed in the vertical 

system LPTCs. 

The total shaft and major branch length inclusive of all six neuronal shafts and their major 

visible branches were also measured to provide a quantitative assessment of dendritic 
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branching. The ImageJ plugin, NeuroAnatomy contains a programme called SNT where 

branching trace plots can be reproduced from the dendritic arborizations (Avery et al., 

2017). Total shaft and branch lengths were traced and calculated before being plotted into 

a box and whisker graph. 

A static confocal projection of a wild-type LPTC branching dendrite was traced using the 

SNT tracer programme to produce a tracing plot containing branches of all six neurons 

and their visible associated major branches. These measurements were then added 

together to produce a total sum branch length. This traced plot proved difficult to visually 

interpret; therefore, an overlay image was traced to produce a plot where all dendrites 

were easily defined (Figure 3.22). 

This dendritic tracing was then performed on each confocal projection for each genotype 

to produce box and whisker plots.  

 

 

 

 

 

 

 

 

 

Figure 3.22. Tracing plot of a characteristic LPTC dendritic arbour. (A) Confocal microgram 
of the characteristic LPTCs. (B) Dendritic trace using the SNT tracer programme in ImageJ. (C) 

A simplified coloured diagram of the characteristic dendrite trace displaying all six vertical 

system neurons. Scale bar = 50 µm. 

 

3.4.1 Characterisation of the genetic interaction between HDAC4 and Ank2 

in dendrite morphogenesis 

Female flies carrying the 3A-GAL4; UAS Lifeact driver were crossed to w(cs10) as a 

control and individually to UAS-Ank2 RNAi, UAS-HDAC4, and UAS-HDAC4 RNAi 
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flies, then also flies carrying both UAS-HDAC4 and UAS-Ank2 RNAi, as well as UAS-

HDAC4 RNAi and UAS-Ank2 RNAi via standard genetic crosses. F1 progeny were then 

dissected (Section 2.3), subjected to immunohistochemistry (Section 2.3.1) and imaged 

via confocal microscopy. Each genotype was then assessed and the proportion of normal 

to abnormal phenotypes were detailed in Table 3.3. 

 

Genotype Normal Phenotype Abnormal Phenotype n 

w(cs10) 60% 40% 20 

Ank2 RNAi 16.7% 83.3% 18 

HDAC4 29.4% 70.6% 17 

HDAC4; Ank2 RNAi 18.7% 81.3% 16 

HDAC4 RNAi 52.6% 47.4% 19 

HDAC4 RNAi; Ank2 RNAi 29.4% 70.6% 17 

 

Table 3.3. Proportion of normal vs abnormal phenotypes induced by HDAC4 mutants and 

Ank2 RNAi in the visual system LPTCs. Each proportion is expressed as a percentage with the 

number of LPTCs analysed for each sample in the far-right column denoted as n. 

 

Individual knockdown of Ank2 resulted in a significant increase in the proportion of 

thinned, shortened and missing dendritic shafts compared to control brains, indicating 

that Ank2 is required for normal dendritic branching in the adult visual system. 

Overexpression of HDAC4 had a similar phenotype, but not significantly different 

compared to control brains. The combination of both Ank2 RNAi and HDAC4 resulted in 

a similar number of abnormalities as each mutation individually, suggesting that HDAC4 

and Ank2 do not interact genetically in dendrite morphogenesis (Figure 3.23A). 

HDAC4 knockdown did not result in a significantly different level of dendritic 

abnormalities compared to control LPTCs and the number of defects resulting from the 

co-expression of Ank2 RNAi and HDAC4 RNAi was similar to that of Ank2 knockdown 

alone (Figure 3.23B). 
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Figure 3.23. The percentage of abnormal phenotypes in LPTCs induced by HDAC4 mutants 

and Ank2 RNAi. Each bar represents the percentage of abnormal phenotypes observed with the 

genotype. w(cs10) LPTCs were used as a control in which the LPTCs resulting from each HDAC4 

and Ank2 mutant were compared to. (A) HDAC4 and Ank2 RNAi were expressed individually 

and together. Statistical significance for each genotype compared to control is denoted as (*), * = 
p < 0.05, ** = p < 0.01. Statistical significance was determined using one-tailed Fisher’s exact 

test. p-values: w(cs10):Ank2 RNAi = 0.0089, w(cs10):HDAC4; Ank2 RNAi = 0.0186. (B) HDAC4 

RNAi and Ank2 RNAi were expressed individually and together. Statistical significance for each 
genotype compared to control is denoted as (*), ** = p < 0.01 following one-tailed Fisher’s exact 

test. p-values: w(cs10):Ank2 RNAi = 0.0089. n = total number in the sample. 

 

The LPTCs were then traced using the ImageJ SNT tracer programme to measure the 

total length of all LPTC dendrites per optic lobe to demonstrate whether alterations in the 

level of HDAC4 or Ank2 result in growth and extension defects. The total length of the 

LPTCs included the six main dendritic shafts and all major distinguishable branches. 

Although the wild-type control sample consisted of some of the longest total LPTC 

dendrite lengths there was a large amount of variability across all samples due to 

inconsistencies in staining and imaging. From these data, although there is a significant 

difference in dendrite morphology, the growth and extension of LPTC dendrites show no 

significant difference between the wild-type control group and the Ank2 and HDAC4 

mutants, therefore it is unable to be definitively concluded whether alterations in the level 

of HDAC4 and Ank2 alter growth and extension of dendrites in the LPTCs (Figure 3.24). 
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Figure 3.24. Alterations in the level of HDAC4 and Ank2 do not affect the growth and 

extension of the visual system LPTCs. Dendrite branching reconstruction plots and 

measurements were produced using ImageJ software NeuroAnatomy (SNT). Total branch lengths 

were displayed as box and whisker plots with the coloured dots detailing each individual sum of 

the six dendritic shafts and major branches in each optic lobe within a genotype. w(cs10) LPTCs 
were used as a control in which the LPTCs resulting from each HDAC4 and Ank2 mutant were 

compared to. (A) HDAC4 and Ank2 RNAi were expressed individually and together. A one-way 

ANOVA was performed with post-hoc Tukey test and determined that there was no significant 
difference in total dendrite length between each genotype. (B) HDAC4 RNAi and Ank2 RNAi 

were expressed individually and together. A one-way ANOVA was performed with post-hoc 

Tukey test and determined that there was no significant difference in total dendrite length between 

each genotype. n = total number in sample, n.s = not significant. 
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3.5 Investigation of the neurodevelopmental role of Ank2 and 

HDAC4 in axon morphogenesis in the mushroom body 

Both overexpression of HDAC4 (Main, 2019) and knockdown of Ank2 (Schwartz, 2016) 

result in significant mushroom body developmental deficits including impaired axon 

elongation and termination. Given the importance of the mushroom body in long-term 

memory, the final investigation of this thesis was to determine whether HDAC4 and Ank2 

genetically interact during axon morphogenesis in the mushroom body. Firstly, Ank2 

RNAi was expressed in all neurons with the elav-GAL4 driver. The resulting phenotype 

displayed characteristics of developmental defects in mushroom body lobe formation, 

growth and extension. There was a wide range of different defects observed, from wild-

type (Figure 3.25A), to thinned lobe formation, indicative of a subset of axons not 

elongating (Figure 3.25B) to missing lobes, indicative of a complete lack of axon 

elongation in all axons of a cell subtype (Figure 3.25C) and axonal guidance defects 

(Figure 3.25D, E). The most extreme phenotype observed in this genotype was a 

combination of thinned lobes, missing lobes, axon bundling, guidance and growth defects 

(Figure 3.25F). 
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Figure 3.25. Mushroom body phenotypes resulting from Ank2 RNAi at 25°C. 

Immunohistochemistry on whole mount brains using anti-FasII to label the mushroom body 
revealed a range of morphological defects in development. elav-GAL4 driven Ank2 RNAi flies 

were raised at 25°C. Static confocal projections from z-stacked images were produced and 

resulted in (A) a characteristic normal phenotype, (B) thinned α-lobe, (C) missing β-lobe, (D) 
guidance deficit in which the β-lobes are extending vertically rather than medially, (E) guidance 

deficit in which the α-lobes are extending medially rather than vertically, and (F) a combination 

of defects. White arrow = thinned lobe, white asterix = missing lobe, white arrowhead = guidance 

defect, blue asterix = axon bundling defect. Objective 40x in oil. Scale bar = 100 µm. 

 

Overexpression of HDAC4 resulted in a much more severe phenotype in which the 

mushroom body lobes were entirely absent (Figure 3.26B) compared to the wild-type 

control (Figure 3.25A). As expected, co-expression of Ank2 RNAi and HDAC4 produced 

the same phenotype (Figure 3.26C), thus it could not be determined as to whether the 

HDAC4 and Ank2 interact under these experimental conditions. 

Due to the severity of the HDAC4 overexpression phenotype, a semi-quantitative scoring 

analysis was unable to be performed to determine whether Ank2 knockdown rescues the 

HDAC4-induced mushroom body phenotype.  
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Figure 3.26. Mushroom body phenotypes from HDAC4 overexpression and Ank2 RNAi at 

25°C. Immunohistochemistry on whole mount brains using anti-FasII to label the mushroom 

body. Static confocal projections from z-stacked images were produced. elav-GAL4 was crossed 

to each transgene and w(cs10) as a control. (A) Control brains displayed a normal mushroom body 
phenotype. (B) HDAC4 overexpression resulted in a lack of mushroom body morphogenesis. (C) 

HDAC4 overexpression co-expressed with Ank2 RNAi also prevented mushroom body formation. 

White asterix = missing lobe. Objective 40x in oil. Scale bar = 100 µm. 
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4 Discussion and Future 

Directions 
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The data presented in this thesis furthers the understanding of the relationship between 

HDAC4 and Ank2. A direct physical interaction was not detected; however, it was 

identified that the genetic interaction was mediated through nuclear HDAC4 and does not 

require the presence of the ankyrin repeat binding domain on HDAC4. It was also 

identified that Ank2 is required for dendrite morphogenesis in the visual system LPTCs 

and increased expression of HDAC4 disrupts their normal development, however, Ank2 

and HDAC4 do not appear to interact in LPTC branching. A novel observation was also 

made where knockdown of Ank2 combined with overexpression of HDAC4 impaired 

photoreceptor development and resulted in the “blueberry” phenotype that has not 

previously been characterised for these genes. 

 

4.1 There is not a direct physical interaction between HDAC4 and 

Ank2 

In an effort to further examine the nature of the interaction between HDAC4 and Ank2 a 

strategy was adopted in which co-immunoprecipitation was carried out on brain lysates 

co-expressing HDAC4 and the N-terminal portion of Ank2 in order to determine whether 

a physical interaction occurs between these two proteins.  

Reciprocal co-IPs were performed alongside appropriate controls and it was concluded 

that there is either no direct physical interaction between HDAC4 and the ankyrin repeat-

containing region of Ank2, or the interaction is present albeit too weak to be detected 

using this experimental approach. 

The co-IP that was used as a positive control interaction is transient as HDAC4 monomers 

interact via weak interactions in which they tetramerise to form a four-helix bundle. The 

equilibrium between the monomer and tetramer species undergoes rapid changes in 

solution, implying that the tetrameric interactions are weak and unstable (Guo et al., 

2007). This suggests that the co-IP is sensitive enough to detect the unstable HDAC4 

tetramer interaction therefore, even if the interaction between HDAC4 and Ank2 is a 

weak one, it should be readily detected. This does however provide an opportunity to 

further optimise the co-IP protocol for detection of weaker interactions. It would also be 

ideal to use the full length Ank2 protein as there is the possibility that other regions of the 

Ank2 protein may be essential in stabilising the interaction. 
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In a previous study in this laboratory, a GST pull-down assay was employed where 

purified GST-tagged HDAC4 was combined with a cytoplasmic lysate from whole bodies 

of flies containing an EGFP-tagged short isoform of Ank2. A weak band indicating a 

physical interaction was detected, however this band was not clearly defined and this 

result was unable to be replicated, therefore it was not clear if it was “real” or an artefact 

(Schwartz, 2016). 

Similarly, a second modified in vitro GST pull-down experiment combining both purified 

GST-tagged HDAC4 and purified Ank2, as opposed to a cytoplasmic lysate, would 

conclude whether HDAC4 and Ank2 have the ability to interact. However, this still would 

not provide insight into whether HDAC4 and Ank2 interact in vivo. 

To further the results from this study, FRET could be used as another method for 

investigating a direct physical interaction between two proteins in vivo. FRET is 

fluorescence resonance energy transfer, which demonstrates the transfer of energy 

between two molecules (Sekar & Periasamy, 2003). This methodology could be used to 

determine whether HDAC4 and Ank2 are in close enough proximity to one another for 

FRET to occur. HDAC4 would be tagged with a donor chromophore, while Ank2 would 

be tagged with an acceptor chromophore, if the two proteins reside in close proximity the 

changes in fluorescence of the donor chromophore can be monitored using fluorescence 

confocal microscopy to detect a protein-protein interaction (Sekar & Periasamy, 2003). 

Although the results in this study demonstrate that HDAC4 and Ank2 do not interact via 

a direct physical interaction, the possibility of an indirect interaction cannot be ruled out 

as HDAC4 may be acting on Ank2 through mechanisms such as histone and non-histone 

deacetylation, gene expression or SUMOylation. 

 

4.2 Ank2 may regulate the level of HDAC4 protein 

As a physical interaction between HDAC4 and Ank2 was not observed, it was next 

investigated whether HDAC4 regulates the level of Ank2 protein. 

This was considered feasible as HDAC4 has been shown to promote deacetylation of non-

histone targets (Gaughan et al., 2002; Glozak et al., 2005) and has been implicated in 

promoting SUMOylation (Zhao et al., 2005) which can alter protein stability (Müller et 

al., 2001). HDAC4 has also been demonstrated to interact with Ubc9, a SUMO E2 



90 

conjugation enzyme, during long term memory formation (Schwartz et al., 2016) and 

HDAC4 itself is also regulated by SUMOylation (Kirsh et al., 2003).  

The results from this analysis were inconclusive due to variability in protein loading and 

there was no correlation between the subcellular distribution of HDAC4 and Ank2 protein 

levels. Incomplete lysis of nuclei may account for such a result. As DmHDAC4 3A resides 

solely in the nucleus, incomplete lysis may appear to reduce DmHDAC4 3A levels. It is, 

therefore, unlikely that there would be a significant difference in the level of Ank2 

between wild-type and nuclear-restricted DmHDAC4 overexpression. This experiment 

requires at least an additional two repetitions with bands quantified in order to draw any 

conclusions; however, this was not possible due to time constraints, therefore, no firm 

conclusion could be drawn as to whether overexpression of HDAC4 alters Ank2 protein 

levels. 

An early hypothesis, when it was unknown whether HDAC4 and Ank2 physically interact 

was that Ank2 may tether HDAC4 in the cytoplasm, which would prevent the detrimental 

mutant phenotypes associated with nuclear-restricted HDAC4. Although it was 

subsequently determined that there was not a detectable physical interaction present 

between HDAC4 and Ank2, this does not rule out the possibility that Ank2 somehow 

regulates the subcellular distribution of HDAC4 in an indirect manner. Knockdown of 

Ank2 during development resulted in a higher level of total HDAC4 protein, however this 

result requires confirmation. In addition, to avoid potential confounding developmental 

effects, an experiment is yet to be carried out in which knockdown of Ank2 is restricted 

to the adult brain, to determine whether the total HDAC4 protein levels are also increased, 

similarly to that observed during development. There was no significant change in 

subcellular distribution of HDAC4 on knockdown of Ank2, however these blots were only 

repeated twice due to time constraints and further optimisation and repetition with band 

quantification is required to confirm these data and determine whether the subcellular 

distribution correlates with the total level of HDAC4 from whole cell lysates. 

Although as yet there is no definitive conclusion as to whether Ank2 regulates HDAC4 

subcellular distribution, the protocol for nuclear and cytoplasmic fractionation of 

Drosophila brain lysates has now been significantly optimised for future experiments. 

Further optimisations may include the addition of a third wash step and the use of a 
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different antibody to remove the non-specific band that was detected in the nuclear 

fraction with anti-GFP to obtain a more clearly defined, pure nuclear fraction. 

The importance of these future experiments are that they will aid in understanding the 

nature of the genetic interaction between HDAC4 and Ank2; if a knockdown of Ank2 

reduces HDAC4 protein levels, it is difficult to elucidate how the genetic interaction 

occurs as HDAC4 would be reduced back to wild-type levels, which should result in a 

less severe phenotype. 

 

4.3 Nuclear HDAC4 interacts genetically with Ank2 

In an effort to understand the nature of the interaction between HDAC4 and Ank2, the 

genetic interaction previously detailed was further examined with the use of a range of 

Drosophila HDAC4 mutants. The aim of this experiment was to determine the subcellular 

pool of HDAC4 that is important for the genetic interaction with Ank2, as well as whether 

this interaction is dependent on the presence of the ankyrin repeat binding domain. Wild-

type DmHDAC4, DmHDAC4 ΔAnk, and nuclear restricted DmHDAC4 3A were expressed 

in Drosophila photoreceptors individually and in conjunction with Ank2 RNAi. As 

previously observed by Schwartz (2016), individual HDAC4 overexpression and Ank2 

knockdown resulted in a mild rough eye phenotype. These phenotypes were however 

more pronounced in this study as the flies were raised at a two-degree higher temperature 

(27°C compared to 25°C). The GAL4 transactivator is more active at higher temperatures 

and thus promotes higher expression of the transgenes (Duffy, 2002). The more efficient 

knockdown of Ank2 uncovered a unique phenotype best understood as a mild “blueberry” 

phenotype that was not readily observed at 25°C (Section 4.5.2). 

When DmHDAC4 3A was co-expressed with Ank2 RNAi, a much more severe phenotype 

was observed than with either construct alone, suggesting that the genetic interaction 

between HDAC4 and Ank2 may be mediated through the presence of nuclear HDAC4. 

This suggests that in the nucleus, the activity of HDAC4 may be impairing a pathway 

involved in eye development in which Ank2 acts in, such that when Ank2 is also reduced, 

this specific molecular pathway breaks down, resulting in eye deficiencies. 

The regulatory role that HDAC4 plays in eye development is currently unknown, 

therefore there are many possible mechanisms in which overexpressing wild-type and 
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nuclear-restricted HDAC4 alters the affected developmental pathways. As opposed to 

human HDAC4, Drosophila HDAC4 retains its catalytic activity by having a functional 

deacetylase domain. This may mean that nuclear HDAC4 may be deacetylating non-

histone proteins and altering their activity in eye development pathways. As previously 

mentioned, HDAC4 has also been proposed to play a role in SUMOylation (Schwartz et 

al., 2016; Zhao et al., 2005), which can alter the activity, stability and/or subcellular 

distribution of a protein, such that its normal role in the cell may be altered (Müller et al., 

2001). These could possibly be proteins that activate or repress Ank2 activity, resulting 

in impaired development or defects of the spectrin-actin cytoskeleton due to a lack of ion 

channel and cell adhesion molecule recruitment. 

Although few changes in gene expression were observed between nuclear and 

cytoplasmically restricted HDAC4 (Main, 2019; Schwartz, 2016), the possibility that 

HDAC4 could be altering gene expression in a small subset of cells which would not have 

been detected by RNA-seq could not be ruled out. Thus far the genetic interaction 

between HDAC4 and Ank2 has been restricted to the photoreceptors in the eye. RNA-seq 

was performed on whole heads of flies which is inclusive of the eye, therefore 

photoreceptor cells were present in the lysate subjected to RNA-seq. However, these 

photoreceptor cells would make up a small subset of the total number of cells in the lysate. 

If the interaction was only present in the eye, this small number of photoreceptor cells 

would not induce a large change in gene expression, therefore, would not have be detected 

by RNA-seq. 

 

4.3.1 The genetic interaction does not depend on the presence of the ankyrin 

binding domain on HDAC4 

Co-expression of DmHDAC4 ΔAnk and Ank2 RNAi induced a significantly more severe 

rough eye phenotype compared to each transgene individually, indicative of a genetic 

interaction. Thus, the genetic interaction observed in the previous study by Schwartz 

(2016) was not mediated through Ank2 binding to the PxLPxI/L motif of the ankyrin 

repeat binding domain on HDAC4. These results are consistent with the finding that there 

was no detectable physical interaction between HDAC4 and Ank2. 
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Ankyrin binding does however play a role in the HDAC4 overexpression-induced eye 

phenotype, as it was observed that the DmHDAC4 ΔAnk phenotype was more severe than 

wild-type DmHDAC4. In the light microscopy images, it was seen that the DmHDAC4 

ΔAnk mutant resulted in a particularly more pronounced loss of pigmentation. In an 

experiment carried out in parallel to this study by Dr Helen Fitzsimons, the eye 

phenotypes of flies homozygous for wild-type DmHDAC4 or DmHDAC4 ΔAnk revealed 

an even more significant difference between wild-type DmHDAC4 and the DmHDAC4 

ΔAnk mutant with respect to pigmentation loss (Dr H. Fitzsimons, personal 

communication, 18 December, 2020). 

It would, therefore, be useful to perform fractionation experiments on wild-type 

DmHDAC4 and the DmHDAC4 ΔAnk mutant to determine the subcellular distribution of 

HDAC4. This would show whether there is an increased level of nuclear HDAC4 when 

the DmHDAC4 ΔAnk mutant is expressed, which could account for the more severe rough 

eye phenotype observed. These results could also suggest whether there are any additional 

ankyrin repeat-containing proteins binding to HDAC4 and regulating its subcellular 

distribution. This could be of interest as it has recently been demonstrated that mutations 

of L351 and L354 of human HDAC4 abolishes binding of the ankyrin repeat containing 

protein ANKRA2 (Xu et al., 2012), therefore, it is possible that other ankyrin repeat-

containing proteins are being displaced in the DmHDAC4 ΔAnk mutant. 

The original rough eye enhancer screen (Schwartz, 2016) also identified that RFXANK 

interacts genetically with HDAC4. RFXANK encodes an ankyrin repeat-containing 

protein. Mammalian RFXANK is a paralogue of ANKRA2 and has also been 

demonstrated to bind to HDAC4 via the PxLPxI/L motif (Xu et al., 2012). This suggests 

that Drosophila RFXANK may also interact with HDAC4 via this binding motif to 

regulate the subcellular distribution of HDAC4, however analyses such as a GST 

pulldown or co-IP are still required to determine whether RFXANK interacts physically 

with nuclear HDAC4 and whether the interaction is mediated through the PxLPxI/L 

motif. 

To determine additional candidate proteins which may interact with nuclear HDAC4 via 

the PxLPxI/L motif, immunoprecipitation mass spectrometry (IP-MS) (ten Have et al., 

2011) could be performed. Wild-type DmHDAC4, nuclear-restricted DmHDAC4 3A and 

DmHDAC4 ΔAnk would be subject to IP-MS where HDAC4 would be pulled down in 
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order to identify associated proteins. These can then be compared to determine what 

proteins interact with nuclear HDAC4 and whether this interaction is mediated through 

the PxLPxI/L motif in the ankyrin repeat binding domain. As nuclear accumulated 

HDAC4 has been implicated in numerous neurodevelopmental and neurodegenerative 

diseases, it is hypothesised that if interactions with any ankyrin repeat-containing proteins 

alter the subcellular distribution or stability of HDAC4, these proteins may be useful 

targets for the development of treatments (Figure 4.1). 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Model of the proposed genetic interaction between HDAC4, Ank2 and 

unidentified ankyrin repeat-containing protein(s). In a normal neuron, HDAC4 shuttles 

between the nucleus and cytoplasm and Ank2 is localised to the axons, axon terminals and the 

dendrites. The genetic interaction between Ank2 and HDAC4 remains undetermined but relies on 

nuclear HDAC4 and does not require the ankyrin repeat binding domain. The interaction could 
therefore potentially be through histone or non-histone deacetylation pathways, gene expression 

alterations or SUMOylation. It is also proposed that other unidentified ankyrin repeat-containing 

protein(s) bind via the ankyrin repeat binding domain on HDAC4 and restrict its nuclear entry. 
Disruption to this interaction ie. in the DmHDAC4 ΔAnk mutant, HDAC4 may then accumulate 

in the nucleus, exacerbating the developmental deficits observed in the Drosophila eye. 

Abbreviations: ARP = ankyrin repeat-containing protein. 

 

4.4 What is the nature of the interaction between HDAC4 and 

Ank2? 

One hypothesis is that both HDAC4 and Ank2 may influence each other in an indirect 

manner in specific cellular regions known to be important in neurodevelopment, synaptic 

activation/remodelling and long-term memory formation. 
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4.4.1 The role in the mushroom body 

Previous studies of mushroom body axon morphogenesis showed that overexpression of 

HDAC4 (Main, 2019) and knockdown of Ank2 (Schwartz, 2016) resulted in mushroom 

body defects. This study replicated these findings with knockdown of Ank2 resulting in a 

variety of different mushroom body defects including axon elongation and termination 

defects. Overexpression of HDAC4 however resulted in complete loss of the mushroom 

body lobes. In order to be able to determine whether there is a genetic interaction between 

HDAC4 and Ank2 in the mushroom body axons, the severity of the HDAC4 

overexpression phenotype would need to be reduced. In a parallel study in the laboratory, 

a strain in which the UAS-HDAC4 construct is inserted at a different genomic location 

was used to examine mushroom body development. This strain resulted in a lower level 

of HDAC4 expression and less severe phenotypes which include defects in axon 

elongation and termination (Wei Jun Tan, unpublished data). Alternatively, the TARGET 

system provides precise control of gene expression as the level of expression can be 

increased or decreased by changing the temperature, where the level of expression is 

proportional to temperature, with minimal expression at 18°C and maximal expression at 

30°C (Schwartz, 2016). A temperature could then be identified at which HDAC4 

expression produces a minimal phenotype, thus allowing investigation of whether co-

expression of Ank2 RNAi enhances the HDAC4 overexpression-induced phenotype. 

In the mushroom body axons Ank2 binds the cell adhesion molecule Neuroglian which 

is the sole Drosophila orthologue of the L1-CaM family of proteins (Bieber et al., 1989). 

Similarly to Ank2, Neuroglian is required for normal axon growth and guidance in the 

mushroom body (Siegenthaler et al., 2015). Aside from binding to Ank2, Neuroglian has 

also recently been shown to bind to a second cytoskeletal regulator protein, Moesin, 

creating a ternary complex between Ank2, Neuroglian and Moesin (Siegenthaler et al., 

2015) (Figure 4.2). 
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Figure 4.2. The ternary complex found in Drosophila mushroom body axons. The Kenyon 

cell dendrites project into the calyx and the axon travels down through the peduncle where the 

axon bifurcates forming the vertical α lobe and the medial β lobe. Ank2 is localised in the axons 
where it binds to the L1-CaM Neuroglian through the FIGQY motif. Moesin, another ankyrin 

repeat-containing protein also binds to Neuroglian through the FERM motif, therefore, producing 

a ternary complex structure in the axons of the mushroom body. Original artwork with reference 
to the following literature, Lee et al. (1999), Siegenthaler et al. (2015), and Technau and 

Heisenberg (1982). 

 

Moesin plays an essential role in modifying the membrane cytoskeleton in neuronal 

morphogenesis (Karagiosis & Ready, 2004) and it has recently been discovered to 

genetically interact with HDAC4 in the previously performed rough eye phenotype screen 

(Schwartz, 2016). As with Ank2 and Neuroglian, reduction of Moesin also shows similar 

disruption to mushroom body development, resulting in defects in axon elongation and 

termination (Freymuth, 2016; Freymuth & Fitzsimons, 2017).  

Given the striking similarity of these phenotypes with HDAC4 overexpression, it is 

hypothesised that HDAC4 may influence the complex formed between Ank2, 

Neuroglian, and Moesin. This, however, does not imply that HDAC4 acts in a complex 

with these proteins. It would be interesting to determine whether protein levels (by 

western blot) and the subcellular distribution (by cell fractionation) of each of these 

proteins is altered when HDAC4 is overexpressed and analyse whether the binding 

abilities within the complex are disrupted via co-IP. If these binding abilities and 
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processes are disrupted by HDAC4 overexpression, it can then be ascertained as to 

whether overexpression of Ank2, Neuroglian and/or Moesin improves these phenotypes. 

As the cell adhesion molecule L1 is SUMOylated in mouse neurons (Lutz et al., 2012), it 

is possible that the Drosophila L1-CaM orthologue Neuroglian may also be SUMOylated. 

This SUMOylation may be a process by which HDAC4 indirectly interacts with Ank2. 

To investigate this, a co-IP approach could be taken whereby a Neuroglian-specific 

antibody would be used to pull down Neuroglian, followed by detection with a SUMO 

specific antibody in the presence and absence of HDAC4 overexpression. 

 

4.4.2 The role in memory formation 

Fitzsimons et al. (2013) identified that overexpression of HDAC4 throughout the α/β, 

α’/β’ and γ neurons of the mushroom body resulted in impairments in long-term courtship 

memory formation, whereas short-term memory remained intact. To narrow down the 

specific neurons responsible for inducing this memory impairment, HDAC4 

overexpression was restricted to each lobe independently, where it was seen that 

overexpression of HDAC4 specifically in the γ neurons was responsible for the long-term 

memory deficit (Fitzsimons et al., 2013). 

Interestingly, knockdown of Ank2 specifically in the γ-neurons also impaired the 

formation of long-term courtship memory (Schwartz, 2016) and strikingly, in accordance 

with the similarity in mushroom body defects, knockdown of Moesin resulted in the same 

phenotype (Freymuth, 2016; Freymuth & Fitzsimons, 2017) as Ank2 knockdown 

(Schwartz, 2016) and HDAC4 overexpression (Fitzsimons et al., 2013). Thus far, the role 

of Neuroglian in memory formation remains undetermined. As Neuroglian is a cell 

adhesion molecule rather than a cytoskeletal adaptor protein like Ank2 and Moesin, it 

would be beneficial to understand whether it is also required for long-term memory 

formation. Knockdown of Ank2 (Schwartz, 2016), Moesin (Freymuth & Fitzsimons, 

2017), and Neuroglian (Siegenthaler et al., 2015) all result in mushroom body deficits, 

therefore, it is hypothesised that knockdown of Neuroglian would also result in long-term 

memory formation defects similar to what was observed when Ank2 and Moesin were 

knocked down (Freymuth & Fitzsimons, 2017; Schwartz, 2016). 
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The γ-lobe of the mushroom body is a site of long-term memory formation in Drosophila 

(Zhao et al., 2018), and interestingly, there is an axon initial segment-like domain in the 

γ-lobe of adult flies (Trunova et al., 2011). In mammals, the axon initial segment is an 

essential component of the neuron as it is the site of action potential initiation. The human 

homologue of Ank2, ANK-G, is an essential component of the axon initial segment as it 

stabilises the axon through recruitment of ion channels and L1-CaMs to maintain cell 

polarity (Garrido et al., 2003; Huang & Rasband, 2018; Pan et al., 2006; Zhou et al., 

1998). It can therefore be hypothesised that in Drosophila, binding and clustering of wild-

type levels of Ank2, Moesin and potentially Neuroglian at the axon initial segment-like 

domain in the γ-lobe of the mushroom body is essential for long-term memory formation. 

As wild-type levels of HDAC4 are also required in the γ-lobe for normal memory 

formation (Fitzsimons et al., 2013), it can be speculated that through some indirect 

mechanism HDAC4 may be regulating this complex formed between Ank2, Neuroglian, 

and Moesin at the axon initial segment-like domain in order to maintain cytoskeletal 

stability and long-term memory formation. To further examine the relationship between 

these proteins, it would be of interest to also determine whether the overexpression of 

Ank2 or Moesin could improve the long-term memory impairments induced by the 

overexpression of HDAC4. 

 

4.5 What is the molecular basis of the observed rough eye 

phenotypes? 

4.5.1 Reduction of eye sizes attributed to apoptosis 

The co-expression of nuclear-restricted DmHDAC4 3A and Ank2 RNAi resulted in 

significantly smaller eyes compared to the wild-type control, suggesting an upregulation 

of apoptosis. 

The wingless signalling pathway is required for normal Drosophila eye patterning in 

which apoptosis of specific ommatidial cells is triggered during pupation (Cordero et al., 

2004). Notch signalling is also important in eye development for promotion and inhibition 

of neural differentiation, which is required for successive steps of R8 determination 

(Baker et al., 1990; Cagan & Ready, 1989). It is possible that there could be an interaction 

occurring between HDAC4, Notch, and Ank2 in the wingless signalling pathway, 
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whereby apoptosis becomes upregulated leading to a reduction in the size of the 

Drosophila eye. Interestingly, Notch is also required for long-term memory formation 

(Presente et al., 2003), and contains an ankyrin repeat domain consisting of six ankyrin 

repeats that are each 33 amino acids long (Zweifel et al., 2003). It would therefore be 

worthwhile to determine whether there is an interaction between Notch and the PxLPxI/L 

motif in the ankyrin repeat binding domain of HDAC4, and if this interaction occurs in 

photoreceptors and/or Kenyon cells in the mushroom body. 

In contrast to the current study, HDAC4 has been reported to protect cells from 

endoplasmic reticulum (ER) stress-induced apoptosis by an interaction with the activating 

transcription factor 4 (ATF4) (Zhang et al., 2014). Overexpression of HDAC4 in 

HEK293T cells resulted in retention of ATF4 in the cytoplasm, thereby inhibiting the 

transcriptional activity of ATF4 which induces apoptosis. Overexpression of HDAC4 

therefore appears to confer a protective role against ER stress-induced apoptosis, which 

could be attributed to the recently identified neuroprotective role of cytoplasmic HDAC4 

(Li et al., 2012). 

In order to determine whether cytoplasmic HDAC4 has a neuroprotective role in 

Drosophila eye development it would be necessary to test the effect that the 

cytoplasmically restricted DmHDAC4 mutants (DmHDAC4 ΔMEF2 and DmHDAC4 

ΔNLS) have on the development of the eye. If cytoplasmic DmHDAC4 has a 

neuroprotective role it is hypothesised that expression of these mutants in the eye may 

improve the detrimental phenotypes observed when nuclear-restricted DmHDAC4 3A is 

overexpressed.  

 

4.5.2 The “blueberry” phenotype 

It was observed that when Ank2 RNAi was co-expressed with wild-type DmHDAC4, 

nuclear-restricted DmHDAC4 3A and DmHDAC4 ΔAnk, hole-like cavities were produced 

in large groupings of ommatidia. These holes were not observed in specific patterns and 

were not seen in all eyes within the samples, however, a common feature that was 

observed was that these cavities only formed in ommatidia that were fused to at least one 

other neighbouring ommatidia. The observed phenotype is known as the “blueberry” 

phenotype which is a severe lens defect (Basler et al., 1990). This is speculated to be a 

result of dysregulation in the development and terminal differentiation of cone cells and 
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surrounding primary pigment cells (Charlton-Perkins & Cook, 2010) and has been 

associated with mutation in the Bar gene. Bar- mutants display cavity-like holes in the 

ommatidium where several layers of the lens becomes damaged forming a cavity in the 

centre of the ommatidia (Higashijma et al., 1991). It is therefore possible that a 

knockdown of Ank2 is affecting the development of cone cells by impairing the ability to 

secrete lens matter. If so, when paired with overexpression of HDAC4, this phenotype is 

exacerbated resulting in severe lens damage and hole-like cavities in the centre of the 

ommatidia. This could be further investigated by examining whether HDAC4 

overexpression and/or Ank2 knockdown alters the expression of Bar and whether this 

could be rescued by increasing the expression of Bar. 

 

4.6 Wild-type levels of HDAC4 and Ank2 are required for normal 

dendrite morphogenesis in the optic lobes 

Both HDAC4 and Ank2 appear to interact genetically in the Drosophila eye. It was 

therefore investigated as to whether this interaction also occurred during morphogenesis 

of dendrites. The LPTCs of the Drosophila visual system were chosen as a model system 

to investigate dendrite morphogenesis as they have a stereotypical well-characterised 

structure, are actin enriched for simple visualisation and produce and grow dendritic 

spine-like protrusions which are an underlying essential process in learning and memory 

(Leiss et al., 2009; Scott et al., 2002). 

Ank2 was found to be required for normal dendritic morphogenesis of LPTCs and 

HDAC4 overexpression resulted in a high proportion of dendritic abnormalities, however, 

there was no evidence of a genetic interaction between HDAC4 and Ank2 in the 

morphogenesis of LPTC dendrites. 

To further these findings, nuclear and cytoplasmic mutants of HDAC4 could also be 

examined to demonstrate whether nuclear DmHDAC4 3A is also responsible for the 

morphological defects observed from overexpressing wild-type DmHDAC4, as was 

observed in the Drosophila eye (Section 4.3).  

The overall branch length measurements taken from the LPTCs would have demonstrated 

differences in the growth and extension of dendrites. In this study however, these 

measurements were difficult to produce and quantify even in the wild-type LPTCs. 
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Therefore, an alternative method would be to examine the rearrangement of the actin 

cytoskeleton at dendritic spines as this is an important process in the formation of new 

memories (Lamprecht & LeDoux, 2004). This rearrangement involves the transition of 

monomeric globular G-actin to filamentous F-actin, where the distribution of F-actin can 

be visualised using the F-actin GFP marker Lifeact (Riedl et al., 2008). To further 

elucidate the roles that HDAC4 and Ank2 play in actin rearrangement co-IP assays could 

be performed on whole head lysates of flies expressing different DmHDAC4 mutants and 

Ank2 RNAi. F-actin bound to Lifeact would be pulled down and detected with an 

optimised anti-Actin antibody. If a relationship is observed in a co-IP assay, this would 

provide further evidence that HDAC4 and Ank2 interact to regulate the rearrangement of 

the actin cytoskeleton leading to the formation of new memories. 

 

4.7 Conclusion 

It has been well documented that alteration in expression and subcellular distribution of 

HDAC4 is associated with neurodevelopmental and neurodegenerative diseases, and loss 

of Ank2 also results in similar neurodevelopmental deficits. In addition, both HDAC4 

and Ank2 are required for normal memory formation in animal models. As HDAC4 and 

Ank2 were shown to genetically interact in Drosophila, the aim of this study was to 

determine the nature of this interaction to provide further understanding of their 

involvement in normal memory formation and neuronal development. 

It was discovered that there is not a direct physical interaction present between the ankyrin 

repeat region of Ank2 and HDAC4, however, further insight into the genetic interaction 

was revealed. It was determined that nuclear HDAC4 is responsible for the genetic 

interaction observed in the Drosophila eye, and that the ankyrin repeat binding domain 

on HDAC4 is not necessary for this interaction to occur. A novel discovery was made 

where Ank2 RNAi co-expressed with wild-type DmHDAC4 overexpression resulted in a 

rare “blueberry” phenotype that has not yet been associated with either HDAC4 or Ank2. 

It was also demonstrated that both Ank2 and HDAC4 are required for normal dendrite 

morphogenesis in the Drosophila visual system, and when HDAC4 is in excess, 

morphological defects ensue. 
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To conclude, an understanding of the relationship between HDAC4 and Ank2 by 

investigation of other genes that may be involved would aid in understanding the 

mechanisms of the molecular pathway that these genes act in and how these pathways are 

implicated in neurodevelopmental and neurodegenerative disease and memory disorders. 

Unravelling these pathways could lead to an expansion of studies into mammalian models 

where an understanding of the proteins involved, and the effects of dysregulation could, 

in the future, aid in potential therapeutic approaches to assist in neurodevelopmental and 

neurodegenerative disease and memory disorders. 
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6.1 Fly strains 

Fly strains 

(Shorthand names) 

Genotype Source 

w(cs10) w[CS10] R.Davis 

elav-GAL4 w[CS10],P{w[+mW.hs]=GawB}elav[C

155] 

BDSC 458 

Ank2190-946-HA; 

DmHDAC4-Myc  

w[CS10]; PBac{y+-attP-3B}VK22, 

UAS-Ank2-repeat-HA; UAS-

DmHDAC4(WT)-Myc. Inserts into 

VK22(2R) 57F5 and P2:(3L) 68A4 

H.Fitzsimons 

DmHDAC4-Myc 

(DmHDAC4) 

w[CS10]; P{y[+t7.7]=CaryP}attP2, 

UAS-DmHDAC4(WT)-Myc. Insert into 

P2:(3L) 68A4 

Genetivision, USA 

Ank2190-946-HA 

(Ank2190-946) 

w[CS10]; PBac{y+-attP-3B}VK22, 

UAS-Ank-repeat-HA. Insert into 

VK22(2R) 57F5 

Genetivision, USA 

HDAC4::YFP w[CS10];P{w[+mW.hs]=GawB}elav[C

155],CPTI-000077 

H.Fitzsimons 

Ank2 RNAi [wCS10]; P{attP,y[+],w[3`] CG42734 VDRC 107369 

HDAC4 w[CS10]; P{3xP3-RFP=attP-86F}, 

UAS-DmHDAC4 

Helen Fitzsimons 

HDAC4; Ank2 

RNAi 

w[CS10]; CG42734 RNAi (VDRC 

107369); P{3xP3-RFP=attP-86F}, 

UAS-DmHDAC4 

Helen Fitzsimons 

HDAC4 RNAi w[CS10]; P{GD9446}v20522 VDRC #20522 

Ank2::EGFP w[CS10]; PBac{EGFP-

IV}ank2[KM0104] 

Kyoto Stock Centre 

#109758 

3A GAL4; UAS 

LifeAct 

w[CS10]; P{w[+mW.hs]=GawB}3A, 

pUAS[Lifeact-GFP/CyO] 

Helen Fitzsimons 

GMR-GAL4 w[CS10]; P{w[+mC]=GAL4-

ninaE.GMR}12 

Bloomington Stock 

Center 1104 
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DmHDAC4 3A w[CS10]; P{y[+t7.7]=CaryP}attP2, 

UAS-DmHDAC4-3A-Myc. Insert into 

P2:(3L) 68A4 

Genetivision, USA 

DmHDAC4Δ NLS w[CS10]; P{y[+t7.7]=CaryP}attP2, 

UAS-DmHDAC4-ΔNLS-Myc. Insert into 

P2:(3L) 68A4 

Genetivision, USA 

DmHDAC4 ΔMEF w[CS10]; P{y[+t7.7]=CaryP}attP2, 

UAS-DmHDAC4-ΔMEF2-Myc. Insert 

into P2:(3L) 68A4 

Genetivision, USA 

DmHDAC4 ΔAnk w[CS10]; P{y[+t7.7]=CaryP}attP2, 

UAS-DmHDAC4-ΔAnk-Myc. Insert into 

P2:(3L) 68A4 

Genetivision, USA 

DmHDAC4 Y1142H w[CS10]; P{y[+t7.7]=CaryP}attP2, 

UAS-DmHDAC4-Y1142H-Myc. Insert 

into P2:(3L) 68A4 

Genetivision, USA 

 

Table 6.1. Genotypes and sources of Drosophila melanogaster strains used in this study. 

Abbreviations: R. Davis: Professor Ron Davis, The Scripps Institute, Florida. BDSC = 

Bloomington Drosophila Stock Centre. Genetivision, USA. VDRC = Vienna Drosophila 

Resource Centre, Kyoto Stock Centre, Japan. 

 

6.2 Ank2190-946-HA sequence 

The 23 ANK repeats of Ankyrin2 are highlighted in red. The C-terminal 3x-HA tag is in 

bold. 

  1 MSNANGLNAL HLASKDGHIH VVSELLRRGA IVDSATKKGN TALHIASLAG QEEVVKLLLE 

 61 HNASVNVQSQ NGFTPLYMAA QENHDAVVRL LLSNGANQSL ATEDGFTPLA VAMQQGHDKV 

121 VAVLLESDTR GKVRLPALHI AAKKDDVKAA TLLLDNDHNP DVTSKSGFTP LHIASHYGNQ 

181 NIANLLIQKG ADVNYSAKHN ISPLHVAAKW GKTNMVSLLL EKGGNIEAKT RDGLTPLHCA 

241 ARSGHEQVVD MLLERGAPIS AKTKNGLAPL HMAAQGEHVD AARILLYHRA PVDEVTVDYL 

301 TALHVAAHCG HVRVAKLLLD RNADANARAL NGFTPLHIAC KKNRLKVVEL LLRHGASISA 

361 TTESGLTPLH VAAFMGCMNI VIYLLQHDAS PDVPTVRGET PLHLAARANQ TDIIRILLRN 

421 GAQVDARARE QQTPLHIASR LGNVDIVMLL LQHGAQVDAT TKDMYTALHI AAKEGQDEVA 

481 AVLIENGAAL DAATKKGFTP LHLTAKYGHI KVAQLLLQKE ADVDAQGKNG VTPLHVACHY 

541 NNQQVALLLL EKGASPHATA KNGHTPLHIA ARKNQMDIAT TLLEYGALAN AESKAGFTPL 

601 HLSSQEGHAE ISNLLIEHKA AVNHPAKNGL TPMHLCAQED NVNVAEILEK NGANIDMATK 

661 AGYTPLHVAS HFGQANMVRF LLQNGANVDA ATSIGYTPLH QTAQQGHCHI VNLLLEHKAN 

721 ANAQTVNGQT PLHIARKLGY ISVLDSLKTI TKEDETAAGG GYPYDVPDYA GYPYDVPDYA 

781 GSYPYDVPDY A 
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6.3 HDAC4 variant sequences 

DmHDAC4-Myc 

Wild-type DmHDAC4 isoform D, aa 1 to 1252 with a C-terminal 6x-Myc tag sequence 

(bold). 

   1 MSSPDDRIPI HDLPSEAGSD ERLLHITPAT LTLDFKPHPA VDIDQQIMEL KKSQELQKQR 

  61 LINSFQEQSK QMELEHKLQL EHKYQFAVNS HGAFQELRNE SMVTAAAAAV AQEQHRQQLH 

 121 QQQQQHQQQQ QQQQHQQQQQ QQQARGRDGM KLKQNCSANA SPEVKQILNC FILSRKSQAA 

 181 ASNGTTTTSP YRNRGVVKSS SGESLPAGTV TSAHPYKIPQ PPPSLLKYES DFPLRKTAAE 

 241 PNLLKIRLKQ SVIERKARIG GPAGARRHER LLQAAQRRQQ KNSVLTNCNS TPDSGPNSPP 

 301 SAAALAVGVV GSRGSPTSAP IQEENEEGSQ YQPGQRSSIN DLPLFSSPSL PNISLGRPHL 

 361 PNSAQAHAQV NAQVAAQAQA QAQAQAQAHA MFAALAAAQG GCGQPGYYNP LGMAFVGRQP 

 421 APLAMIPATG IAPQQPSPVV RSASATSTSS SQASLVGDVA PPQAHAASTI LPSSSSYMQQ 

 481 LGSVAGSGVN LHAAAVAAAA AAAAAAGSLP PTNSHGHGHG SHAHPHPHAH GHGHGHGHGI 

 541 YAGHQHNVPI TDAQVAQVHL HKQGHRPLGR TQAAPLPLGH PMLTGAVQLN VVQTHYENSE 

 601 AERQAYEHQV VNQKVRQTVL TRSGAAAAAA AAAGVSVVRE AQLKEEDDDS AAEVMDLTDK 

 661 KKPPKTVLTS TIATSTSQNL PEALAAAAAA AAYRAPHNAS SNSASATKSG IKLRDQEYLQ 

 721 QQREQLLLLQ QEEELAKSLM RPLSRTLASP LVPLGPHGLS QIPDTGQQPA PIATSSSADH 

 781 IPPVNLSLPH RQHRQLMSTL YASQLRNHQP SASGSPPHKV TTGLAYDPLM LKHSCICGDN 

 841 AQHPEHSGRL QSVWARLNET DLVKRCDRLR ARKATQEELQ TVHTEAHAML FGSNQCQLSR 

 901 PKLENTLSAS FVRLSCGGLG VDLDTTWNEH HTATAARMAA GCVIDLALKT AKGDLRNGFA 

 961 VVRPPGHHAE ANLAMGFCFF NSIAIAAKLL RQRMPEVRRI LIVDWDVHHG NGTQQAFYQS 

1021 PDILYLSIHR HDDGNFFPGT GGPTECGSGA GLGFNVNISW SGALNPPLGD AEYIAAFRTV 

1081 VMPIARSFNP DIVLVSSGFD AATGHPAPLG GYHVSPACFG FMTRELLQLA NGKVVLALEG 

1142 GYDLAAICDS AQECVRALLG DPAAPIAKAE LERPPCQNAI NTLQKTIAIQ QTHWPCVRML 

1201 EHTVGLSALE TLKVEHDESE TINAMAGLSM QSMHRTLSRD DSEEPMDQDE TKGGGEQKLI 

1261 SEEDLNEMEQ KLISEEDLNE MEQKLISEED LNEMEQKLIS EEDLNEMEQK LISEEDLNEM 

1321 ESLGDLTMEQ KLISEEDL 
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DmHDAC4 3A 

Mutations of three conserved serine residues in human HDAC4 prevent 14-3-3 binding, 

which is required for nuclear export, therefore accumulating HDAC4 in the nucleus. The 

corresponding Drosophila amino acids S239, S573 and S748 that have been mutated to 

alanine are shown in red bold. The C-terminal 6x-Myc tag sequence is in bold. 

   1 MSSPDDRIPI HDLPSEAGSD ERLLHITPAT LTLDFKPHPA VDIDQQIMEL KKSQELQKQR 

  61 LINSFQEQSK QMELEHKLQL EHKYQFAVNS HGAFQELRNE SMVTAAAAAV AQEQHRQQLH 

 121 QQQQQHQQQQ QQQQHQQQQQ QQQARGRDGM KLKQNCSANA SPEVKQILNC FILSRKSQAA 

 181 ASNGTTTTSP YRNRGVVKSS SGESLPAGTV TSAHPYKIPQ PPPSLLKYES DFPLRKTAAE 

 241 PNLLKIRLKQ SVIERKARIG GPAGARRHER LLQAAQRRQQ KNSVLTNCNS TPDSGPNSPP 

 301 SAAALAVGVV GSRGSPTSAP IQEENEEGSQ YQPGQRSSIN DLPLFSSPSL PNISLGRPHL 

 361 PNSAQAHAQV NAQVAAQAQA QAQAQAQAHA MFAALAAAQG GCGQPGYYNP LGMAFVGRQP 

 421 APLAMIPATG IAPQQPSPVV RSASATSTSS SQASLVGDVA PPQAHAASTI LPSSSSYMQQ 

 481 LGSVAGSGVN LHAAAVAAAA AAAAAAGSLP PTNSHGHGHG SHAHPHPHAH GHGHGHGHGI 

 541 YAGHQHNVPI TDAQVAQVHL HKQGHRPLGR TQAAPLPLGH PMLTGAVQLN VVQTHYENSE 

 601 AERQAYEHQV VNQKVRQTVL TRSGAAAAAA AAAGVSVVRE AQLKEEDDDS AAEVMDLTDK 

 661 KKPPKTVLTS TIATSTSQNL PEALAAAAAA AAYRAPHNAS SNSASATKSG IKLRDQEYLQ 

 721 QQREQLLLLQ QEEELAKSLM RPLSRTLASP LVPLGPHGLS QIPDTGQQPA PIATSSSADH 

 781 IPPVNLSLPH RQHRQLMSTL YASQLRNHQP SASGSPPHKV TTGLAYDPLM LKHSCICGDN 

 841 AQHPEHSGRL QSVWARLNET DLVKRCDRLR ARKATQEELQ TVHTEAHAML FGSNQCQLSR 

 901 PKLENTLSAS FVRLSCGGLG VDLDTTWNEH HTATAARMAA GCVIDLALKT AKGDLRNGFA 

 961 VVRPPGHHAE ANLAMGFCFF NSIAIAAKLL RQRMPEVRRI LIVDWDVHHG NGTQQAFYQS 

1021 PDILYLSIHR HDDGNFFPGT GGPTECGSGA GLGFNVNISW SGALNPPLGD AEYIAAFRTV 

1081 VMPIARSFNP DIVLVSSGFD AATGHPAPLG GYHVSPACFG FMTRELLQLA NGKVVLALEG 

1142 GYDLAAICDS AQECVRALLG DPAAPIAKAE LERPPCQNAI NTLQKTIAIQ QTHWPCVRML 

1201 EHTVGLSALE TLKVEHDESE TINAMAGLSM QSMHRTLSRD DSEEPMDQDE TKGGGEQKLI 

1261 SEEDLNEMEQ KLISEEDLNE MEQKLISEED LNEMEQKLIS EEDLNEMEQK LISEEDLNEM 

1321 ESLGDLTMEQ KLISEEDL 
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DmHDAC4 ΔAnk 

Mutations of L351 and L354 of human HDAC4 abolishes binding of ANKRA2 (Xu et 

al., 2012). The consensus sequence for human ANKRA2 binding is the PxLPxI/L motif 

which is also present in Drosophila HDAC4. If either P349, L352, P352 or I354 of human 

HDAC4 are mutated to alanine, binding of HDAC4 to ANKRA2 is abolished. These 

amino acids are highlighted in bold red. 

342 LPLYTSPSLPNITLGLP Hs HDAC4 

342 LPLFSSPSLPNISLGRP Dm HDAC4 

In Drosophila HDAC4 these amino acids were mutated to alanine, as shown in bold blue, 

with a C-terminal 6x-Myc tag sequence (bold). 

342 LPLFSSPSLPNISLGRP Dm HDAC4 

342 LPLFSSASAANASLGRP Dm HDAC4 ΔAnk 

   1 MSSPDDRIPI HDLPSEAGSD ERLLHITPAT LTLDFKPHPA VDIDQQIMEL KKSQELQKQR 

  61 LINSFQEQSK QMELEHKLQL EHKYQFAVNS HGAFQELRNE SMVTAAAAAV AQEQHRQQLH 

 121 QQQQQHQQQQ QQQQHQQQQQ QQQARGRDGM KLKQNCSANA SPEVKQILNC FILSRKSQAA 

 181 ASNGTTTTSP YRNRGVVKSS SGESLPAGTV TSAHPYKIPQ PPPSLLKYES DFPLRKTAAE 

 241 PNLLKIRLKQ SVIERKARIG GPAGARRHER LLQAAQRRQQ KNSVLTNCNS TPDSGPNSPP 

 301 SAAALAVGVV GSRGSPTSAP IQEENEEGSQ YQPGQRSSIN DLPLFSSASA ANASLGRPHL 

 361 PNSAQAHAQV NAQVAAQAQA QAQAQAQAHA MFAALAAAQG GCGQPGYYNP LGMAFVGRQP 

 421 APLAMIPATG IAPQQPSPVV RSASATSTSS SQASLVGDVA PPQAHAASTI LPSSSSYMQQ 

 481 LGSVAGSGVN LHAAAVAAAA AAAAAAGSLP PTNSHGHGHG SHAHPHPHAH GHGHGHGHGI 

 541 YAGHQHNVPI TDAQVAQVHL HKQGHRPLGR TQAAPLPLGH PMLTGAVQLN VVQTHYENSE 

 601 AERQAYEHQV VNQKVRQTVL TRSGAAAAAA AAAGVSVVRE AQLKEEDDDS AAEVMDLTDK 

 661 KKPPKTVLTS TIATSTSQNL PEALAAAAAA AAYRAPHNAS SNSASATKSG IKLRDQEYLQ 

 721 QQREQLLLLQ QEEELAKSLM RPLSRTLASP LVPLGPHGLS QIPDTGQQPA PIATSSSADH 

 781 IPPVNLSLPH RQHRQLMSTL YASQLRNHQP SASGSPPHKV TTGLAYDPLM LKHSCICGDN 

 841 AQHPEHSGRL QSVWARLNET DLVKRCDRLR ARKATQEELQ TVHTEAHAML FGSNQCQLSR 

 901 PKLENTLSAS FVRLSCGGLG VDLDTTWNEH HTATAARMAA GCVIDLALKT AKGDLRNGFA 

 961 VVRPPGHHAE ANLAMGFCFF NSIAIAAKLL RQRMPEVRRI LIVDWDVHHG NGTQQAFYQS 

1021 PDILYLSIHR HDDGNFFPGT GGPTECGSGA GLGFNVNISW SGALNPPLGD AEYIAAFRTV 

1081 VMPIARSFNP DIVLVSSGFD AATGHPAPLG GYHVSPACFG FMTRELLQLA NGKVVLALEG 

1142 GYDLAAICDS AQECVRALLG DPAAPIAKAE LERPPCQNAI NTLQKTIAIQ QTHWPCVRML 

1201 EHTVGLSALE TLKVEHDESE TINAMAGLSM QSMHRTLSRD DSEEPMDQDE TKGGGEQKLI 

1261 SEEDLNEMEQ KLISEEDLNE MEQKLISEED LNEMEQKLIS EEDLNEMEQK LISEEDLNEM 

1321 ESLGDLTMEQ KLISEEDL 
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DmHDAC4 ΔMEF2 

Amino acids shown to be important for MEF2 binding to human HDAC4 (Jayathilaka et 

al., 2012; Wang & Yang, 2001) and are highlighted in bold red. The alignment between 

human and Drosophila HDAC4 identified the MEF2 binding domain at amino acids 162-

175 in Drosophila HDAC4. 

162 TEVKMKLQEFVLNK Hs HDAC4 

162 PEVKQILNCFILSR Dm HDAC4 

Conserved residues in Drosophila shown in bold blue were mutated to alanine, with a C-

terminal 6x-Myc sequence (bold). 

162 PEVKQILNCFILSR Dm HDAC4 

162 PEVAQIANCFALSR Dm HDAC4 ΔMEF2 

   1 MSSPDDRIPI HDLPSEAGSD ERLLHITPAT LTLDFKPHPA VDIDQQIMEL KKSQELQKQR 

  61 LINSFQEQSK QMELEHKLQL EHKYQFAVNS HGAFQELRNE SMVTAAAAAV AQEQHRQQLH 

 121 QQQQQHQQQQ QQQQHQQQQQ QQQARGRDGM KLKQNCSANA SPEVAQIANC FALSRKSQAA 

 181 ASNGTTTTSP YRNRGVVKSS SGESLPAGTV TSAHPYKIPQ PPPSLLKYES DFPLRKTAAE 

 241 PNLLKIRLKQ SVIERKARIG GPAGARRHER LLQAAQRRQQ KNSVLTNCNS TPDSGPNSPP 

 301 SAAALAVGVV GSRGSPTSAP IQEENEEGSQ YQPGQRSSIN DLPLFSSPSL PNISLGRPHL 

 361 PNSAQAHAQV NAQVAAQAQA QAQAQAQAHA MFAALAAAQG GCGQPGYYNP LGMAFVGRQP 

 421 APLAMIPATG IAPQQPSPVV RSASATSTSS SQASLVGDVA PPQAHAASTI LPSSSSYMQQ 

 481 LGSVAGSGVN LHAAAVAAAA AAAAAAGSLP PTNSHGHGHG SHAHPHPHAH GHGHGHGHGI 

 541 YAGHQHNVPI TDAQVAQVHL HKQGHRPLGR TQAAPLPLGH PMLTGAVQLN VVQTHYENSE 

 601 AERQAYEHQV VNQKVRQTVL TRSGAAAAAA AAAGVSVVRE AQLKEEDDDS AAEVMDLTDK 

 661 KKPPKTVLTS TIATSTSQNL PEALAAAAAA AAYRAPHNAS SNSASATKSG IKLRDQEYLQ 

 721 QQREQLLLLQ QEEELAKSLM RPLSRTLASP LVPLGPHGLS QIPDTGQQPA PIATSSSADH 

 781 IPPVNLSLPH RQHRQLMSTL YASQLRNHQP SASGSPPHKV TTGLAYDPLM LKHSCICGDN 

 841 AQHPEHSGRL QSVWARLNET DLVKRCDRLR ARKATQEELQ TVHTEAHAML FGSNQCQLSR 

 901 PKLENTLSAS FVRLSCGGLG VDLDTTWNEH HTATAARMAA GCVIDLALKT AKGDLRNGFA 

 961 VVRPPGHHAE ANLAMGFCFF NSIAIAAKLL RQRMPEVRRI LIVDWDVHHG NGTQQAFYQS 

1021 PDILYLSIHR HDDGNFFPGT GGPTECGSGA GLGFNVNISW SGALNPPLGD AEYIAAFRTV 

1081 VMPIARSFNP DIVLVSSGFD AATGHPAPLG GYHVSPACFG FMTRELLQLA NGKVVLALEG 

1142 GYDLAAICDS AQECVRALLG DPAAPIAKAE LERPPCQNAI NTLQKTIAIQ QTHWPCVRML 

1201 EHTVGLSALE TLKVEHDESE TINAMAGLSM QSMHRTLSRD DSEEPMDQDE TKGGGEQKLI 

1261 SEEDLNEMEQ KLISEEDLNE MEQKLISEED LNEMEQKLIS EEDLNEMEQK LISEEDLNEM 

1321 ESLGDLTMEQ KLISEEDL 
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DmHDAC4 ΔNLS 

The NLS in human HDAC4 consists of three arginine-lysine rich clusters (Wang & Yang, 

2001), which are highlighted in bold red. 

242 NLKLRSRLKQKVAERRS---SPLLRRKDGPVVTALKKRP Hs HDAC4 

242 NL-LKIRLKQSVIERKARIGGPAGARRHERLLQAAQRRQ Dm HDAC4 

Conserved residues in Drosophila are shown in bold blue, these were mutated to alanine 

residues with a C-terminal 6x-Myc tag sequence (bold). 

242 NLLKIRLKQSVIERKARIGGPAGARRHERLLQAAQRRQ Dm HDAC4 

242 NLLAIALAQSVIEAAARIGGPAGAAAHERLLQAAQRRQ Dm HDAC4 ΔNLS 

   1 MSSPDDRIPI HDLPSEAGSD ERLLHITPAT LTLDFKPHPA VDIDQQIMEL KKSQELQKQR 

  61 LINSFQEQSK QMELEHKLQL EHKYQFAVNS HGAFQELRNE SMVTAAAAAV AQEQHRQQLH 

 121 QQQQQHQQQQ QQQQHQQQQQ QQQARGRDGM KLKQNCSANA SPEVKQILNC FILSRKSQAA 

 181 ASNGTTTTSP YRNRGVVKSS SGESLPAGTV TSAHPYKIPQ PPPSLLKYES DFPLRKTAAE 

 241 PNLLAIALAQ SVIEAAARIG GPAGAAAHER LLQAAQRRQQ KNSVLTNCNS TPDSGPNSPP 

 301 SAAALAVGVV GSRGSPTSAP IQEENEEGSQ YQPGQRSSIN DLPLFSSPSL PNISLGRPHL 

 361 PNSAQAHAQV NAQVAAQAQA QAQAQAQAHA MFAALAAAQG GCGQPGYYNP LGMAFVGRQP 

 421 APLAMIPATG IAPQQPSPVV RSASATSTSS SQASLVGDVA PPQAHAASTI LPSSSSYMQQ 

 481 LGSVAGSGVN LHAAAVAAAA AAAAAAGSLP PTNSHGHGHG SHAHPHPHAH GHGHGHGHGI 

 541 YAGHQHNVPI TDAQVAQVHL HKQGHRPLGR TQAAPLPLGH PMLTGAVQLN VVQTHYENSE 

 601 AERQAYEHQV VNQKVRQTVL TRSGAAAAAA AAAGVSVVRE AQLKEEDDDS AAEVMDLTDK 

 661 KKPPKTVLTS TIATSTSQNL PEALAAAAAA AAYRAPHNAS SNSASATKSG IKLRDQEYLQ 

 721 QQREQLLLLQ QEEELAKSLM RPLSRTLASP LVPLGPHGLS QIPDTGQQPA PIATSSSADH 

 781 IPPVNLSLPH RQHRQLMSTL YASQLRNHQP SASGSPPHKV TTGLAYDPLM LKHSCICGDN 

 841 AQHPEHSGRL QSVWARLNET DLVKRCDRLR ARKATQEELQ TVHTEAHAML FGSNQCQLSR 

 901 PKLENTLSAS FVRLSCGGLG VDLDTTWNEH HTATAARMAA GCVIDLALKT AKGDLRNGFA 

 961 VVRPPGHHAE ANLAMGFCFF NSIAIAAKLL RQRMPEVRRI LIVDWDVHHG NGTQQAFYQS 

1021 PDILYLSIHR HDDGNFFPGT GGPTECGSGA GLGFNVNISW SGALNPPLGD AEYIAAFRTV 

1081 VMPIARSFNP DIVLVSSGFD AATGHPAPLG GYHVSPACFG FMTRELLQLA NGKVVLALEG 

1142 GYDLAAICDS AQECVRALLG DPAAPIAKAE LERPPCQNAI NTLQKTIAIQ QTHWPCVRML 

1201 EHTVGLSALE TLKVEHDESE TINAMAGLSM QSMHRTLSRD DSEEPMDQDE TKGGGEQKLI 

1261 SEEDLNEMEQ KLISEEDLNE MEQKLISEED LNEMEQKLIS EEDLNEMEQK LISEEDLNEM 

1321 ESLGDLTMEQ KLISEEDL 

 

 

 

 

 

 



131 

DmHDAC4 Y1142H 

In human HDAC4, the H976Y mutation restores catalytic activity that is present in 

other HDACs including Drosophila HDAC4, this however, is lost in human HDAC4 

(Lahm et al., 2007). In Drosophila the corresponding amino acid is Y1142 which is 

mutated to H in order to catalytically inactivate Drosophila HDAC4. 

1137 LEGGHD Hs HDAC4 

1137 LEGGYD Dm HDAC4 

1137 LEGGHD Dm HDAC4 Y1142H 

 

   1 MSSPDDRIPI HDLPSEAGSD ERLLHITPAT LTLDFKPHPA VDIDQQIMEL KKSQELQKQR 

  61 LINSFQEQSK QMELEHKLQL EHKYQFAVNS HGAFQELRNE SMVTAAAAAV AQEQHRQQLH 

 121 QQQQQHQQQQ QQQQHQQQQQ QQQARGRDGM KLKQNCSANA SPEVKQILNC FILSRKSQAA 

 181 ASNGTTTTSP YRNRGVVKSS SGESLPAGTV TSAHPYKIPQ PPPSLLKYES DFPLRKTAAE 

 241 PNLLKIRLKQ SVIERKARIG GPAGARRHER LLQAAQRRQQ KNSVLTNCNS TPDSGPNSPP 

 301 SAAALAVGVV GSRGSPTSAP IQEENEEGSQ YQPGQRSSIN DLPLFSSPSL PNISLGRPHL 

 361 PNSAQAHAQV NAQVAAQAQA QAQAQAQAHA MFAALAAAQG GCGQPGYYNP LGMAFVGRQP 

 421 APLAMIPATG IAPQQPSPVV RSASATSTSS SQASLVGDVA PPQAHAASTI LPSSSSYMQQ 

 481 LGSVAGSGVN LHAAAVAAAA AAAAAAGSLP PTNSHGHGHG SHAHPHPHAH GHGHGHGHGI 

 541 YAGHQHNVPI TDAQVAQVHL HKQGHRPLGR TQAAPLPLGH PMLTGAVQLN VVQTHYENSE 

 601 AERQAYEHQV VNQKVRQTVL TRSGAAAAAA AAAGVSVVRE AQLKEEDDDS AAEVMDLTDK 

 661 KKPPKTVLTS TIATSTSQNL PEALAAAAAA AAYRAPHNAS SNSASATKSG IKLRDQEYLQ 

 721 QQREQLLLLQ QEEELAKSLM RPLSRTLASP LVPLGPHGLS QIPDTGQQPA PIATSSSADH 

 781 IPPVNLSLPH RQHRQLMSTL YASQLRNHQP SASGSPPHKV TTGLAYDPLM LKHSCICGDN 

 841 AQHPEHSGRL QSVWARLNET DLVKRCDRLR ARKATQEELQ TVHTEAHAML FGSNQCQLSR 

 901 PKLENTLSAS FVRLSCGGLG VDLDTTWNEH HTATAARMAA GCVIDLALKT AKGDLRNGFA 

 961 VVRPPGHHAE ANLAMGFCFF NSIAIAAKLL RQRMPEVRRI LIVDWDVHHG NGTQQAFYQS 

1021 PDILYLSIHR HDDGNFFPGT GGPTECGSGA GLGFNVNISW SGALNPPLGD AEYIAAFRTV 

1081 VMPIARSFNP DIVLVSSGFD AATGHPAPLG GYHVSPACFG FMTRELLQLA NGKVVLALEG 

1142 GHDLAAICDS AQECVRALLG DPAAPIAKAE LERPPCQNAI NTLQKTIAIQ QTHWPCVRML 

1201 EHTVGLSALE TLKVEHDESE TINAMAGLSM QSMHRTLSRD DSEEPMDQDE TKGGGEQKLI 

1261 SEEDLNEMEQ KLISEEDLNE MEQKLISEED LNEMEQKLIS EEDLNEMEQK LISEEDLNEM 

1321 ESLGDLTMEQ KLISEEDL 
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6.4 Ank2 RNAi transcript targets 

 

 

 

 

 

Figure 6.1. Ank2 gene and transcript targets by the Ank2 RNAi construct. The Ank2 gene 

(Flybase ID: FBgn0261788) is shown in blue with the main transcripts; Ank2-XL, Ank2-L, Ank2-
M, Ank2-S1, and Ank2-S2. dsRNA-GD12247 was the Ank2 RNAi that was used throughout this 

study which targets the Ank2-XL, Ank2-L and Ank2-M isoforms and does not target the two 

short isoforms depicted here. Modified figure from 

(https://flybase.org/jbrowse/?data=data%2Fjson%2Fdmel&loc=3L%3A7645525..7732948&trac
ks=Gene_span%2CRNA%2Cpcr_product_5&highlight=). Abbreviations: VDRC = Vienna 

Drosophila Resource Centre, dsRNA = double stranded RNA. 
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