THE ROLE OF DYNAMIN-RELATED PROTEINS IN VACUOLE BIOGENESIS IN FISSION YEAST (Schizosaccharomyces pombe)

A thesis presented in partial fulfilment of the requirements for the degree of

> Master of Science in Biochemistry

At Massey University, Palmerston North, New Zealand.

Sarah Ruth Röthlisberger 2008

ABSTRACT

Dynamins are GTPases concerned with membrane tubulation and scission (Praefcke and McMahon, 2004). In the fission yeast, Schizosaccharomyces pombe, the dynamin-related proteins (DRPs) Vps1 and Dnm1 act redundantly in peroxisome biogenesis (Jourdain et al., 2008) but nothing is known about their other cellular roles. Fission yeast cells contain ~20 small, spherical vacuoles that undergo fission or fusion in response to environmental signals (Bone et al., 1998). S. pombe cells lacking Vps1 had smaller vacuoles with reduced capacity for fusion in response to hypotonic stress but enhanced fission in response to hypertonic conditions. Unlike wild type, $vpsI\Delta$ vacuoles showed no change in diameter in response to temperature stress. Vps1-Cgfp localised to the vacuolar membrane both in living cells and in isolated vacuoles. $vpsI\Delta$ cells showed close to wild type levels of vacuole protein processing and normal actin organisation and endocytosis. Overexpression of Vps1 caused a global transformation of vacuoles from spherical to tubular. Spherical vacuoles were restored by repression of *vps1* expression or by induction of vacuole fusion. Tubulation was blocked in the presence of GTP_yS and in a *vps1* mutant that lacked the entire GTPase domain. Vacuole tubulation was more extensive in the absence of a second DRP, Dnm1. The absence of Dnm1 abolished the hyper fission phenotype of $vps1\Delta$, whereas overexpression of Dnm1 induced vacuole fission. These results are consistent with a model of vacuole fission in which Vps1 creates a tubule of an appropriate diameter for subsequent scission by another DRP. Preliminary evidence suggests that Dnm1 serves the latter role.

ACKNOWLEDGEMENTS

There are many people I would like to thank. Firstly, I owe a big thank you to my supervisor Professor Jeremy Hyams, who supported and encouraged me the whole way through. I could not have imagined having a better supervisor! You have made me a pombe fan for life. Thank you to Dr Isabelle Jourdain for being such a great "little boss" and putting up with all my questions. You have taught me so many things. Thank you! Also, thanks to Chad for providing endless entertainment (sometimes at your expense) and practical help.

I gratefully acknowledge financial support from a Massey University Masterate scholarship.

Finally, I would like to thank my family and friends, wherever they are. Thanks to Bruce and Brenda for being my adoptive parents in New Zealand. To John, Raich, Ant, Dave and Lolita in Wellington: Thank you for your moral support and for all the fun times we spent together. A special thanks to John who helped me in my battle against Word. To Edilson, thank you for being with me each step of the way and for making me laugh in times of stress. I couldn't have done it without you. Lastly, to my parents, who have always given the best of themselves and encouraged me to do my best in all matters of life. To them I dedicate this thesis.

ABBREVIATIONS

- CDCFDA: 5[6]-Carboxy-2',7'-Dichlorofluorescein Diacetate
- CPY: Carboxypeptidase Y
- DAPI: 4', 6-diamidino-2-phenylindole
- DIC: Differential interference contrast
- DMSO: Dimethylsulfoxide
- DNA: Deoxyribonucleic acid
- dNTP: Deoxyribonucleotide triphosphate
- DRP: Dynamin-related protein
- EDTA: Ethylenediaminetetraacetic acid
- EMM: Edinburgh minimal medium
- GED: GTPase effector domain
- GFP: Green fluorescent protein
- GTP: Guanosine triphosphate
- Lat-A: Latrunculin A
- LB: Luria-Bertani medium
- MSA: Minimal supporting agar
- MT: Microtubule
- nmt1: No message in thiamine
- OD: Optical density
- PBS: Phosphate buffered saline
- PCR: Polymerase chain reaction
- PEG: Polyethylene glycol
- PH: Pleckstrin homology domain
- PRD: Proline-rich domain
- SH3: Src 3 homology
- TBZ: Thiabendazole
- Vps: Vacuolar protein sorting

TABLE OF CONTENTS

v

	Page
TITLE PAGE	i
ABSTRACT	ii
ACKNOWLEDGEMENTS	iii
ABBREVIATIONS	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	viii
LIST OF TABLES	X
1. INTRODUCTION	1
1.1. THE DYNAMIN SUPERFAMILY	2
1.1.1. Dynamin-related proteins in yeast	3
1.2. DYNAMIN FUNCTION	5
1.2.1. Endocytosis	5
1.2.2. The Golgi complex	7
1.2.3. Peroxisome biogenesis	8
1.2.4. Mitochondrial Division	9
1.2.5. Vacuoles	10
1.2.6. Membrane Tubulation	12
1.2.7. Dynamin GTPase Activity	13
1.3. PROJECT AIMS	15
2. MATERIALS AND METHODS	16
2.1. MOLECULAR BIOLOGY	17
2.1.1. FISSION YEAST PLASMIDS	17
2.1.2. OLIGONUCLEOTIDE PRIMERS	18
2.1.3. POLYMERASE CHAIN REACTION (PCR)	19
2.1.3.1. Standard PCR	19
2.1.3.2. PCR using Expand TM High Fidelity (Roche)	19

2.1.3.3. PCR product purification 20

2.1.4. PLASMID I	SOLATION	20
2.1.5. <i>S. pombe</i> DN	JA ISOLATION	20
2.1.6. DNA QUAN	JTIFICATION	21
2.2. YEAST STRAIL	NS AND CULTURES	21
2.2.1. MEDIA		21
2.2.1.1. Standar	d rich medium (YES)	21
2.2.1.2. Edinbur	rgh minimal medium (EMM)	21
2.2.1.3. Minima	ll supporting agar (MSA)	22
2.2.2. YEAST TRA	ANSFORMATION	22
2.2.3. STRAINS		23
2.2.4. GROWTH		24
2.2.4.1. S. pomb	be growth	24
2.2.4.2. Overex	pression of genes under the control of the <i>nmt1</i> promoter	25
2.2.5. FISSION YI	EAST CLASSICAL GENETICS	25
2.2.5.1. Genetic	crosses	25
2.2.5.2. Random	n spore analysis (RSA)	26
2.3. CELL BIOLOG	Y	26
2.3.1. STAINING		26
2.3.1.1. Nuclear	staining	26
2.3.1.2. Cell wa	ll staining	27
2.3.1.3. Actin st	aining	27
2.3.1.4. Microtu	ibule immunofluorescence	27
2.3.2. DRUGS		28
2.3.2.1. Latrunc	ulin A	28
2.3.2.2. TBZ		28
2.3.3. VACUOLES	3	29
2.3.3.1. FM4-64	4	29
2.3.3.2. CDCFI	DA	29
2.3.3.3. Vacuolo	e fusion and fission	30
2.3.4. MICROSCO	PPY AND ANALYSIS	30
2.3.4.1. Electron	n microscopy	30
2.4. BIOCHEMISTR	XY	30
2.4.1. CARBOXY	PEPTIDASE Y (CPY) ANALYSIS	30
2.4.2. VACUOLE	ISOLATION	31

2.4.3. WESTERN BLOT	31
3. RESULTS	33
3.1. VPS1 IN FISSION YEAST	34
3.1.1. Vps1 sequence and domains	34
3.1.2. Vps1 characterisation	34
3.2. VPS1 AND VACUOLE MORPHOLOGY	43
3.2.1. Loss of Vps1 affects vacuole size but not vacuole function	43
3.2.2. Vps1 is involved in vacuole fusion and fission	45
3.2.3. Vps1 is present at the vacuole membrane	47
3.2.4. Overexpression of Vps1 results in vacuole tubulation whilst	
overexpression of Dnm1 results in vacuole fission	49
3.2.5. Tubular vacuoles are microtubule and actin dependent	52
3.2.6. Vps1 GTPase activity is required for vacuole morphology	56
4. DISCUSSION	59
4.1. Vps1 has different functions in <i>S. pombe and S. cerevisiae</i>	60
4.2. Vps1 is involved in vacuole fission and fusion	61
4.3. Dnm1 acts together with Vps1	62
4.4. Vps1 tubulates vacuoles	63
4.5. GTP hydrolysis by Vps1 is necessary for tubule formation and vacuole fission	63
4.6 The microtubule and actin cytoskelatons regulate tubular vacuales	64
4.0. The interotubule and actin cytoskeletons regulate tubular vacuoles 4.7 A model for vacuole fission in fission yeast	65
	00
5. CONCLUSIONS AND FUTURE PERSPECTIVES	67
6. APPENDICES	70
6.1. PLASMID MAPS	71
6.1.1. pREP41 Vector	71
6.1.2. pREP41-Ngfp Vector	71
6.2. STOCK SOLUTIONS	72
6.3. MANUSCRIPT	73
7. BIBLIOGRAPHY	95

vii

LIST OF FIGURES

Page

Figure 1.1.	Domain structure of the dynamin superfamily	2
Figure 1.2.	Dynamins are involved in many cellular processes	5
Figure 1.3.	EM image showing vesiculation at the plasma membrane	6
Figure 1.4.	Peroxisomes in dynamin deletion mutants	8
Figure 1.5.	Mitochondria in a dynamin mutant	9
Figure 1.6.	Dnm1p is arranged as an asymmetric ring around mitochondria	10
Figure 1.7.	The balance between vacuole fusion and fission in S. pombe	11
Figure 1.8.	Localisation of Vps1p-GFP around the vacuole	11
Figure 1.9.	Dynamin-mediated tubulation	12
Figure 2.1.	Constructs made in this study	18
Figure 3.1.	Vps1 protein sequence alignment	35
Figure 3.2.	<i>vps1</i> Δ is slightly temperature sensitive at 36°C	36
Figure 3.3.	Vps1 is not required for vacuolar protein sorting	38
Figure 3.4.	Vps1 is not required for endocytosis	39
Figure 3.5.	Actin patches in $vpsI\Delta$ are polarised to the growing cell tips, but are	
	more sensitive to Lat-A	40
Figure 3.6.	$vps1\Delta$ is more resistant to Lat-A	42
Figure 3.7.	The absence of Vps1 does not exacerbate an actin phenotype	43
Figure 3.8.	Vps1 controls vacuole size	44
Figure 3.9.	The dynamin-related proteins Vps1 and Dnm1 are involved in vacuale	•
	morphology	46
Figure 3.10.	Overexpression of Ngfp-Vps1 and Vps1-Cgfp	48
Figure 3.11.	Vps1 localises to the vacuole membrane	49

Figure 3.12.	Vps1 induces vacuole tubulation	50
Figure 3.13.	Tubular vacuoles	51
Figure 3.14.	Dnm1 induces vacuole fission	53
Figure 3.15.	Tubular vacuoles are microtubule-dependent	54
Figure 3.16.	Tubular vacuoles are actin-dependent	55
Figure 3.17.	A disrupted cytoskeleton reduces the formation of tubular vacuoles	56
Figure 3.18.	Vps1 GTPase activity is required for vacuole tubulation	57
Figure 3.19.	GTPγS blocks tubule formation	58
Figure 4.1.	A model for vacuole fission in fission yeast	66

ix

LIST OF TABLES

Table 1.1.	S. cerevisiae and S. pombe notation	3
Table 1.2.	Reported functions of the dynamin-related proteins in	
	Saccharomyces cerevisiae and Schizosaccharomyces pombe.	4
Table 2.1.	Plasmids used in this study	17
Table 2.2.	Primers used in this study	19
Table 2.3.	Strains used in this study	23
Table 3.1	Fusion and fission indices	47
Table 3.2.	Mean vacuole diameter in cells treated with $GTP\gamma S$	57
Table 6.1	Salt Stock (50x)	72
Table 6.2.	Vitamin Stock (1000x)	72
Table 6.3.	Mineral Stock (10,000x)	72
Table 6.4.	Supplements added to the media	72