
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

GED

A G~NERALISED SYNTAX EDITOR

A Thesis Presented in Partial Fulfilment of the Requirements

for the Degree of Master of Sci.ence in Computer Science

at Massey Uni~ersity

Gio-vanni Serafino Moretti

1984

MASSEY UNIVERSITY

~1~111111111111111111111111
1061308248

ABSTRACT

This thesis traces the development of a full-screen
3yntax-directed editor - a type of editor that operates on a
program in terms of its syntactic tree structure instead ~f
its sequential character representation.

The editor is table-driven, reading as input an extended BNF
syntax of the target language. It can therefore be used for
any language whose syntax can be defined in EBNF. Print
formatting information can be included with the syntactic
definition to enable programs to be pretty-printed when they
are displayed.

The user is presented with a pretty-printed skeletal outline
of a program with the currently selected construct
highlighted and all required syntactic items provided by the
editor. Any constructs with alternatives, such as
"<statement>", which occurs in many languages, are initially
denoted by a placeholder in the form of a non-terminal name
(i.e. "<statement>") which is expanded when the user
indicates which alternative is wanted. All symbols entered
by the user are parsed immediately and any erroneous symbols
rejected, making it impossible to create a syntactically
incorrect program. The editor cannot detect semantic errors
as no semantic information is available from the EBNF syntax.
However the first use of all identifiers is flagged by the
editor as an aid to the detection of undeclared identifiers.

A "help" area at the bottom of the screen continuously
displays a list of the correct next symbols and the syntactic
definition of the currently selected program construct. This
display, together with a multi-level "undo" command and the
provision of a skeletal program by the editor, provides a way
of exploring the various constructs in a programming
language, while ensuring the syntactic correctness of the
resultant program.

l

2

3

Table of Contents

Program Preparation - The Traditional Approach ••••••••••••••••••••• 1
1.1 Integrat~d Programming Environments •••••••••••••••••••••••••••• 3
1.2 Interpretive BASIC Systems ••••••••••••••••••••••••••••••••••••• 3
1.3
1.4
1.s
1.6
1.7
1.a
1.9
1.10

GED
2. l
2.2
2.3
2.4
2.s
2.6
2.7
2.8
2.9
2. 10
2.11
2.12
2.13

GED
3.1
3.2
3.3
3.4
'3. 5
3.6
3.7
3.8
3.9
3. 10
3. J l
3.12
3.13
3.14
3. 15
3 .16
3.17
3. 18
3.19

Keyvord Entry • ••••••••.•••••.••••••.•••••.•••••••••.•...•.•.••• 4
Syntax-Directed Editing Environments ••••••••••••••••••••••••••• s
Cornell Program Synthesiser •••••••••••••••••••••••••••••••••••• 7
ALOE - A Language Oriented Editor ••••••••••••••••••••••••••••• 16
Editor Allan POE - A Pascal Oriented Editor ••••••••••••••••••• 28
COPAS - A Conversational Pascal System •••••••••••••••••••••••• 34
"Z" - The 95% Program Editor •••••••••••••••••••••••••••••••••• 40

Sutn1nary •• 42

- Giovanni's Editor •••.••.••..•.•••.••. ••••••••••••••••••• .••. 44
Language Input Definition ••••••••••••••••••••••••••••••••••••• 45
The User's View .••••••..•••••••..••.•..••..•••....•.••••...••• 50
The Display .•.•••..•••••...•.••...•.••••..•••................. 51
Inserting User Input ••..••••.••.••..•••••..•.•...•............ 53
Displaying Optivnal and List Placeholders ••••••••••••••••••••• 55
Cursor Movement Commands ••••••••••••••••••••••••••••••.••••••• 56
Marking and Returning to Marked Nodes ••••••••••••••• , ••••••••• 62
Toe Delete Command - FS ••.•••••••••.••..•••••••...•..•..•.•... 64
The Insert Command - F6 ••••••••••••••••••.••••••••••••.••••••• 67

Reading and Writing Files •••••••••••••••••••••••••••••••••••• 67
Undo Function - Fl2••69
A Command Summary in Function Key Order ••••••••••••••.••••••• 70
Sunnna ry • •••••••••.•••••••••.••••••••••••.••••••.•••••.•.••••• 7 2

- Its Internal Architecture ••••••••••••••••••••••••••••••••••• 73
The Input Language SyntaX•••••••••••••••••••••••••••••••••••••73
Definition of the Extended BNF Accepted by GED •••••••••••••••• 77
Requirements of the Internal Syntactic Representation ••••••••• 85
Representating Tokens of the Meta and User Languages •••••••••• 87
Describing the Names Of Productions ••••••••••••••••••••••••••• 90
Non-terminal Syntax NodeS•••••••••••••••••••••••••••••••••••••92
Concatenation and Alternation of Productions •••••••••••••••••• 93
The Data Structure used to Represent Optional Symbols •.••••••• 98
The Data Structure used to represent the List Construct ••••••• 99

Storing a Representation of the User's Program •••••••••••••• 105
Recording the State of a Parser Without a Stack ••••••••••••• 106
The Initial Form of the Program Node Tree ••••••••••••••••••• 108
The Program Node Field Definittons •••••••••••••••••••••••••• 112
Automatic Inclusion of Necessary Terminal Symbols ••••••••••• 116
The Cursor - the Concept of a "Current Node" •••••••••••••••• 119
Where does the Cursor Stop?•••••••••••••••••••••••••••••••••l19
The Inclusion of User Symbols into the Program Tree ••••••••• 123
The Structure Created by the Expansion of Loop Nodes •••••••• 130
Unparsing - Deriving a Display from the Program Tree ••••••• 132

3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

4 The
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4. 10
4.11

Defining Layout - A Table-Driven Pretty Printer ••••••••••••• 134
GED Print Formatting Commands ••••••••••••••••••••••••••••••• 137
Associating Formatting Commands with the Syntax ••••••••••••• 138
Generating the Screen Display ••••••••••••••••••••••••••••••• 143
Optimising the Rewriting of the s~reen Display •••••••••••••• 144
The Impleraentation of User Commands ••••••••••••••••••••••••• 146
Primary Cursor Movement Commands •••••••••••••••••••••••••••• 146
Reading and Writing the Program and Clipped Subtrees •••••••• 147
The Clip/Delete and Insert CommandS•••••••••••••••••••• • ••••l51
Marking, and Moving to, Specific Nodes in the Program ••••••• 154
The Implementation of the "Undo" Command •••••••••••••••••••• 155

Implementation of Syntax-Editors for New Languages ••••••••••• 156
Preparing the Extended BNF Grammar ••••••••••••••••••••••••••• 157
A Case Study - The Implementation of a Snobol Editor ••••••••• 159
Areas of Alteration in the Snobol Grammar •••••••••••••••••••• 165
Are Identifiers, Numbers, Strings and Comments ••••••••••••••• 166
Hiding Optional Placeholders ••••••••••••••••••••••••••••••••• 167
Removing the Production for <BLANKS> from the Snobol ••••••••• 170
Rewriting the Pr~ductions to Remove Common Start Symbols ••••• 170
Defining the Print Formatting Commands ••••••••••••••••••••••• 173
The Implementation of Pascal and Lisp Editors •••••••••••••••• 174

Problems Encountered in the Addition of Formatting •••••••••• 178
Summary • ••.•. • 180

5 Conclusions ••••••••••••.••.••.•.•..•.•• . ••..•.••••••••• • ••••••••• 182
5. l
s.2
5.3
5.4
s.s
5.6
5.7

A Short Description of the System••••••••••••••••••••••••••••l82
The Realisation of Design Goals •••••••••••••••••••••••••••••• 182
Generality of the Editor•••••••••••••••••••••••••••••••••••••l83
Ease of Setting-UP•••l84
Ease of Use •••••••••••••••••••••••••••••••••••••• ••••••••••• • 185
Future DevelopmentS••l86
Final Thought • • • ••••••••••••••••••••• • •••••••.••.•••••••.••• • 18 7

Acknowledgements •• 188

Bibliography.• ...•• • .•.•••••••••••••••••••.••••••.••.••••••••••••..• 189

Chapter 1

Introduction

1 Program Preparation - The Traditional Approach

The most coml'DOn method of program preparation involves the repeated use

of a text-editor and a compiler. This method has an inherent

limitation - even if the user is sitting at a terminal, it enforces an

essentially batch mode of operation. The programs are prepared, and

then submitted to a compiler for verification and translation. There

are .two error classes that could be eliminated if the editor itself was

cognizant of the syntax of the programming language in use. The first

class is composed of errors that violate the lexical grammar of the

language and the second of errors in the constructive syntax the

productions that define how the lexical symbols may be combined.

Lexical Limitations

A text ~ditor accepts programs, as an arbitrary sequence of characters,

whereas logically a program is a sequence of \D'lique symbols •
•

Some of

these symbols are required by the syntax, others occur in

syntactically-ordered pairs or groups and some may be chosen by the
'

programmer.

The only items in a program whose textual nature is significant are

identifiers, n~bera, strings and comments. These are composite items

consisting of sequences of characters, and the fact that reserved words

Chapter l Introduction 2

are externally represented as sequences of chara~ters is irrelevant and

in this context misleading. It is irrelevant because although reserved

words look like identifiers, they are treated in the syntax as unique

symbols - a single incorrect character destroys the validity of a

reserved word, whereas even several altered characters may leave a

symbol still conforming to the syntax of an identifier.

More importantly, in this context it is misleading to treat reserved

words as character sequences as it leads the user to think of a program

as being composed of characters, not symbols. A text editor, having no

knowledge of program syntax, manipulates the program as text,

reinforcing this view.

Structural Limitations

A text editor has no knowledge of the syntactic structure of a program.

Therefore common errors such as unbalanced bracketing symbols and the

omission of ~required symbols are not rec~gnised at a stage where 1t is
~

possible to correct them easily. Only later, during the compilation of

the program, will these errors be detected, and then

correction will be impossi~le.

immediate

lf the editor knew the target language ayntax then these syntactic

errors could either be detected immediately and corre~ted, or

prevented.

Chapter 1 Introduction 3

1.1 Integrated _rogramming Environments

The integration referred to here is that of the editor and the program

that actually translates the user's program, be it compiler or

interpreter. The most common such translators are interactive systems

for the language BASIC but languages with dynamic data structures like

APL, LISP and SNOBOL are also usually interpreted and often

interactive.

Tradit·.i.onal interactive systems were in general originally designed for

use with printing terminals and have had a line-oriente~ syntax the

slow speed of such terminals made the interactive editing of multi-line

syntactic items impractical.

versions of BASIC, LISP,

Examples of this approach are interactive

APL and the JOSS system although the most

common by far is BASIC. For a language with an appropriate syntax,

line oriented program entry is easy to use on both fast and slow speed

terminals as the incremental parsing alerts the user to errors in a

line as soon as that line is entered.

1.2 Interpretive BASIC Systems

The BASIC language was developed for teaching and was specifically

designed to be interective. The reasons for this are threefold:

(a) The input is checked for errors at the end of each line and

erroneous lines may be corrected immediately.

(b) An altered program is immediately executable without the need

to invoke a compiler or leave the BASIC system.

Chapter 1 Introduction 4

(c) A line trace is available during execution and it is possible

interactively to find and alter the values of all variables for

debugging purposes.

This first two of these are the most important, as having a single

environment in which to create, edit and execute programs is an

important contributor to BASIC'a ease of learning and use. As the

system can be left in "BASIC Mode", beginners do not need to learn

about the operating syst.am and edltor environments.

1.3 Keyword Entry

A letter from Mr G.J. Tee of the Auckland University Computer Science

Department contains a reference to what must be one of the earliest

systems for the entry of complete keywords in a single keystroke: "I

visited the ~mputer Centre at the University of Moscow during the

International Congress of Hathe1118ticians, in about June 1966. 1 saw

there card punches being used to prepare ALGOL source programs, with

the key-board including keys for the reserved words in ALGOL. For

instance, one key had the Russian equivalents of BEX;IN and END as the

lower-case and upper-case symbols" [Tee 1983]. More recently the

Sinclair ZX81 and the Spectrum microcomputers have their BASIC

interpreters and keyboards arranged ao that any keyword can be obtained

by depressing (possibly in conjuction with a shift key) an

appropriately labelled single key [Vickers 1980.1982]. This helps to

avoid spelling errors and to ease program entry. '11le use of keyword

entry reduces the program entry time simply by reducing the number of

characters that need to be typed - this ta especially valuable for

Chapter l Introduction 5

beginner who are often unfamiliar with a keyboard - and thereby reduces

the opportunity for error. The editing of existing lines of program is

also symbol oriented, with keywords being skipped, added and deleted as

single entities. The systems are interpretive and check the syntax on

a line-by-line basis which also contributes to their ease of use. This

single keystroke toker. entry is the first form of syntax-directed

program entry tc be widely available.

1.4 Syntax-Directed Editing Environments

In the BASIC systems discussed in the pre, :ous section, the user is

constrained by the syntax of language being entered and it is

lmpossible to construct erroneous program units larger than a single

line without the generation of an error message.

A contrasting technique 111ade possible by the widespread availability of

high-speed terminals has been the development of full-screen editors

that provide an window into a file 1 instead of a view based on lines.

Su~h editors may provide commands for editing the file in textual

constructs word processors deal with lett~r•, words, lines,

sentences, paragraphs and pages - or alt~ ·. natively provide an editing

environment in which the editing units are not textual but syntactic.

Given the high speed at which the screen may be redrawn, the ayntactic

constructs need not be line-oriented and can therefore extend ove~

several lines.

Chapter 1 Introduction 6

Syntax-directed editors permit the user to create programs that conform

to the syntax of the programming language in use. The BASIC systems

previously discussed are line-oriented examples of syntax-directed

editing environments. More recently. syntax-directed editors for

languages with a nested syntactic constructs have been developed.

Theee .include the Cornell Program Synthesiser for PL/C (a subset of

PL/1) [Teitelbaum 1981], the ALOE syntax-editor generator [Medina-Mora

1981], the POE editor for PASCAL [Fischer 1981] and the COPAS system

for Pascal [Atkinson 1981]. The Z editor [Wood 1981] is a text editor

but has features relating to program structure normally found ~nly in

true syntax-directed editors .

Each of these editors will be discussed to illustrate the user's view

of the editor and the commands available. Where relevant the internal

structure is also discussed.

Chapter 1 Cornell Program Synthesi~er 7

1.5 Cornell Program Synthesiser

The st~ted goals for the program syntheBiser [Teite.lba~m 1981] were to

provide"•••• a unified programming environment that sti~ulates program

conception at a high level of bbstr~ction, promotes programming by

step-wise refinement, spares the user from mundane and frustratin~

syntactic details while editing programs, and provides extensive

diagnostic facilities during program execution." 'nle synthesiser is

designed on the pre~ise that programs are not text but hierarchical

structures, and should be constructed and manipulated as such. The

language implemented is PL/C, an instructional subset of PL/1.

nte Cornell Synthesiser was first used on PDP-lls under Unix anc later

on TERAK microcomputers. The microcomputer implementation has been

used for teaching introductory computing students and bas received most

use on relatively small programs.

The User's View

The user is presented with a skeleton of a program into which new

atateaaents and expreasi~ns may be incorporated. This approach

automatically enforces a top-down view of a program. The synthesiser

is designed to be used with a high speed video terminal and provides

the user with a window into the program in ita current state of

refinement. After the ueer baa indicated which file is being created

and that the "main" procedure is to be edited. the display has the form

ahown in fig 1.1.

Chapter l Cl'rnell Program Synthesiser

/* s.omment */
abs: PROCEDURE OPTIONS (MAIN);

{declaration}
{statement}
END abs;

Fig 1.1 - Initial display of PL/C main procedure.

8

Notice that the prcgram even in its initial ctate 13 a correct

sentential form (i.e. structurally correct). This feature is common

to most syntax-directed editors. The lowercase words on the display

indi~ate where the user may inse~t extra constructs into the program.

These words are called "placeholders." The replacement of placeholders

is the only way in which the user can ~lter the form of the program.

This implies a hierarchical structure as the repl,cement of one

placeholder may itself contain other placeholders.

The cursor is denoted by underlining in these examples and indicates

wich placeholder is currently selected for refinement. Braces are

used to indicate iteration and square brackets are used to indicate

optional terminel symbols or productions, according to the conventio~s

of Extended BNF as defined by Pagan (1981).

Inoertiou c:,f User Input

There are two method& of program entry. The !irat is to request the

inclcsion of a "temple.te" - a prede{iued compound syntactir. structure

such as a complete IF statement. The second is to enter a "phraee" - a

111ethnd of enteri ·tg text not constrained by the language syntax.

Chapter 1 Cornell Program Synthesiser 9

Templates

A template is requested by typing its name and then pressing a special

function key. Examples of names are ".i" for an IF statement, ".pl"

for a PUT LIST statement and ".dw" for a DO - WHILE statement. When a

template is ,;equested, the editor checks to ensure that the stru<".ture

is valid at the current cursor location. If so, then the structure is

included in program and the display is altered to reflect the change.

An erroneous request is detected immediately and the command rejected.

Consequently while the program may be incomplete, it is always

structurally correct. If the cursor in fig 1.1 was on the placeholder

for "statement" and the user requested the IF template the display

would become:

/*comment*/
abs: PROCEDURE OPTIONS (MAIN);

{declarations}
IF (£_ondition)

THEN statement
ELSE statement

END abs;

Fig 1.2 - After Requesting an IF Template

Notice that it is not necessary to fill in the placeholders in order.

Both "comment" and "declarations" may be expanded later.

The cursor is positioned at the fia.qt placeholder within the new

template. In this example the placeholder "condition" does not have

any associated templates. All expressions (including "cundition") are

entered purely as text. An expression is therefo~e one example of a

"phr11ae."

Chapter l Cornell Program Synthesiser 10

Phrases

The user's view of an expression doesn't usually correspond to the

internal parse tree and therefore the manipulation of expressions as

syntactic entities can be awkward. To avoid this, assignment

statements and expressions are entered and edited as text, and then

parsed. Phrase editing appears to the user just like full-screen text

editing. Directing the cursor away from the phrase invokes the pars2r

and the user is notified of any errors. Errors in phrases are

permitted and the user may ignore them, but an erroneous phrase will

remain highlighted until it is either made correct - by ~orrecting the

phrase or declaring any undeclared variables - or deleted. In t~e case

of undeclared variables, the highlighting would disappear as soon as

the variable was declared.

Comments are treated as phrases and can therefore be entered and

manipulated as text in the usual fashion.

Moving the Cursor
'

The commands for moving the cursor reflect the underlying syntactic

structure of the program. The cursor may be moved to placeholders, to

phrases, and to the first symbol in a template. This means that the

cursor may be moved to the IF, the "condition" or either of the

"statement" pla,::eholders in fig 1.2 but not to any symbols entered by

the editor itself such as the THEN or ELSE. There is no way to alter

the IF statement template, it can only be expanded or deleted. The

movement commands are given in table 1.

Chapter 1

up/down

left/right

RETURN

Cornell Program Synthesi~er 11

Move to previous/next template, phrase or pl~ceholder.

Like up/down but also stops at every character wi-:hin a

phrase.

Move to next template, phrase, placeholder or optional

placeholder within lists.

long up/down Move to previous/next template, phrase or placeholder

long RETURN

\,/

not at a structurally deeper nesting level.

Like RETURN but not at a great~r nesting level.

Move to previous/next immediately enclosing program

element. Eg a "\" would move from inside an IF

statement to the IF.

Table 1 - Cornell Synthesiser Cursor Movement Commands

Note - The "tong" command is a single key on the TERAK microcomputers

and is used as a prefix to the main command.

Optional Placeholders

There are many options and optional items that are possible during the

entry of a program. To display all of these is confusing and would

quickly clutter the screen. To display optional components in lists of

elements, such as the possibility of a statement between two others in

a list of statements, the RETURN key is used. To display the optional

part of a placeholder, such as the possible label on every statement,

the ".o" command ts used.

Chapter! Cornell Program Synthesiser 12

Moving Sections of Program

Templates and phrases may be clipped from a program and inserted

elsewhere. When either is clipped the original placeholder will

reappear. The cursor can then be moved and the clipped section

inserted elsewhere. The commands are as follows:

.clip Hove template or phrase to the file CLIPPED

.delete Move template or phrase to the file DELETED

,mv "Filename" Move template or phrase to the file "Filename"

• insert Insert CLIPPED at current cursor location

.ins "Filename" Insert "Filename" at current cursor location

Table 2 - Synthesiser Program Modification Comm.ands

Comments

The insertion of comments is restricted to three places; after

variable declarations, the "comment" field of a procedure template~ and

the "comment" field of a comment template.

The comment template ls a compound item, a combination of a comment and

a subordinate list of statements. This unusual structure is used to

provide elision, a feature whereby the etatefth'!nte themselves are not

displayed, just tho comment. This is used to hide tr-relevant detail

when displaying program structure by enabling more of it to fit on the

screen at once. For example, suppose the program outline in fig 1.2

had been expanded to:

Chapter 1 Cornell Program Synthesiser

/*comment*/
abs: PROCEDURE OPTIONS {MAIN);

{declaration}
IF (cond i.t ion)

THEN
/* exchange x and y */

temp• x;
.!. - y;
Y • x;

ELSE statement
END abs;

Fig 1.3 - IF Statement Before Elision

13

The statements "temp-x; X • y; y - X; II are subordinate to the

comment"/* exchange x and y */." Typing the command"< ••• >" would

cause the statementtj to disappear and be replaced by"•••" {fig 1.4).

The statements themselves are not deleted, just not displayed. This

permits the detailed functions of a program to be suppressed to display

the overall structure. Typing< ••• > again would cause the statements

to reappear.

Chapter l Cornell Program Synthesiser

/*comment*/

abs: PROCEDURE OPTIONS (MAIN);
.{declaration}
IF (condition)

THEN
/* exchange x and y */

.!. ••

ELSE statement
END abs;

Fig 1.4 - IF Statement after Elision

(The cursor is on the first of the three dots)

Execution Capabilities

14

During the construction of a program, code is generated for each

template and a pr.ogram may be executed, even if it is incomplete. If

an unexpanded template is encountered, execution is suspended. The

template may at that stage be refined and execution continued. During

execution the display can be di·.rided into three sections; one to

display the output of the program, one to display the program source

code being executed and~ third to display the current values of any

desired scalar ~variables.

As programs would normally run too quickly for the display to be of any

use, execution may be slowed or single stepped.

If execution has changed a variable before the user has stopped thQ

display, execution may be run in reverse for a limited number of

program steps.

Quapt•r 1 Conell troara 8711theeiaer 15

The aynthaaiaar ia a functiontna a711ta-clirected editor with a powerful

execution and cl•buaaing facilitiea for PL/C. It baa been uecl

aucceaafully to teach proar...tna to lara• mahara of atadeata.

Chapter 1 ALOE - The GANDALF System Editor Generator 16

1.6 ALOE - A Language Oriented Editor

The ALOE language oriented editor generator is part of the GANDALF

project at carnegie-Mellon University. The ALOE (A Language Oriented

Editor) System is unusual in that it is a syntax-directed editor

generator. It has been used to build editors for numerous languages,

the more well-known ones being C [Kernigan 1978], PASCAL (Jensen 1974]

and ADA {Ada 1980]. Developing an AL~E editor for a new language

involves generating a description of that language in accordance with

the grammar for ALOE descriptions. Since this grammar ~ay be defined

syntactically, another ALOE editor tailored for its own input syntax,

is used instead of a text editor to prepare descriptions. When seen in

terms of the GANDALF project whose aims are the construction of many

System Development Environments, large programs, and many programmers,

the reason for this generality is evident [Habermann 1982].

The ALOE is described in its user manual as:

" ••• a tool which supports the construction and manipulation of

tree structures while guaranteeing their syntactic correctness"

{Medina-Mora 1981].

The program is represented inside the ALOE as an abstract syntax tree

which ls manipulated directly by the user. It is important to note

that a syntax tree is distinct from a parae tree. In a parse tree the

nodes are operators whereas in a syntax tree they are the non-terminals

of the language. ,This distinction is important because a syntax tree

raore closely resemb~es the user's view of a proaram than does a parae

tree.

Chapter l ALOE - The GANDALF System Editor Generator 17

The User's View

The screen is initially divided into two windows. but this {like all

attributes of the system) is user definable. These windows display the

program itself and a one line status display. Errors, requests for

help, and displays of clipped subtrees all cause extra windows to be

overlaid on top of the current display.

The Cursor

The cursor is a highlighted region. as distinct from the point cursor

used in the Cornell Synthesiser. This is to give a clear indication of

the extent of the subtree covered by the cursor whereas a point-cursor

would be ambiguous. Cursor movement is not defined in terms of the

textual display but is described as part of the unparsing scheme - the

definition of how the internal syntax trees should be displayed.

Unparsing schemes and their uses will be described later.

Constructive Commands

The tree created by the ALOE will have aome nodes that cannot be

expanded without more input from the user. These nodes correspond to

the Cornell Synthesiser's placeholders - in this context these nodes

are known as "meta-nodes." Whenever the current node is a meta-node it

is possible for the user to generate a subtree by ,intering the name of

the operator or its synonym. The cursor will be placed at the first

meta-node within the subtree if there is one or at the next meta-node

if there isn't. It is possible to cause terminal aymbols to appeaT

automatically in newly generated subtrees.

Chapter 1 ALOE - 'lbe GANDALF System Editor Generator 18

Moving the Cursor

The following editing commands are common to all ALOE editors:

._IN

• _OUT

• NEXT

• _PREVIOUS

• HOME

.BACK

Move the cursor to the first meta-node within the

current subtree.

Move the cursor to the parent of the current node •

Move to the next meta-node at the same level. If none

exist then move to the next meta-node at the same

nesting level as the parent node. This continues

recursively until either a new meta-node is found or the

remainder of the tree has been searched. If no

meta-nodes remain the the cursor stays at its current

node •

Move to the previous meta-node in the same manner as

._NEXT

Move to the root node of the current window. If the

current node is already the root node then move to the

root node of previous window.

Swap the cursor's current position with its last ,

position •

• FIND "what" Search the current window for an occurrence of "what".

The last string given is used again if none is supplied.

".GLOBALFIKD" is used in the same manner to search all

windows.

Chapter 1 ALOE - The GANDALF System F.ditor Generator 19

With the exception of .BACK and .FIND, any of the above can be prefixed

with a repetition count.

Help Facilities

".HELP" will display either a list

synonyms (if the current node is

of language commands and their

a meta-node) or a list of editing

commands.

Tree Mantpulation Commands

.CLIP treename To clip the current tree into a named subtree •

• INSERT treename Insert the named tree at the current position. For

an insertion to be c~rrc;t the current node must be a

meta-node and the subtree must be a valid expansion

of it •

• DELETE

• ,REPLACE

Delete the current aubtree. tf the current node is

an element of a list then replace it with its

meta-node otherwise delete it •

This is the same as DELETE except t;hat if the current

node is an element of a list, it is deleted b~t a

meta-node left in its place. This meta-node will

become the new current node •

• NEST <operator> Clip the current subtree and nest it in a subtree of

root node "operator." Although no example 1s given,

from the written description this command appe_ara to

act in the following way: If the current subtree was

<statement.> then the command ".NEST IF" would clip

Chapter l ALOE - The GANDALF System Editor Generator 20

the current <statement>, insert an IF ·~tatement and

then search for the first occurrence of <statement>

inside the IF statement and insert the

subtree there •

clipped

• TRANSFORM name Change the operator of the current node to "name."

This will work only if the tree definiti~ns are

identical.

List manipulation commands

Four commands exist to extend a list in both the forward and reverse

directions (.APPEND & .PREPEND) and to include new meta-nodes inside a

list (.EXTEND & .BEXTEND - Extend Backwards).

Text Editing

".EDIT" is a co1111D8nd to invoke EMACS, an extensible screen editor

[Stallman 1981) to edit constants or text nodes. When the uaer returns

to the ALOE the screen will show the updated text.

Checkpointtns

'lbe ALOE will write out a checkpoint file after a set numbe~ of tree

modifying commands. 'ftle number is usually thirty but can be altered

during the definition of the ALOE.

Action Routines

Action routines are optional but can be included to be called by the

editor in various situations. 'nteae routine• can perform such actions

Chapter 1 ALOE - The GANDALF System F.ditor Generator 21

as semantic checking, emitting code or manipulating the syntax tree

itself.

Unparsing Schemes

The display format for these trees is defined in one or possibly many

"unparsing" schemes. 'n\e unparsing ache11e is used to define how the

internal syntax tree is to be displayed. The unparsing scheme is

defined in terms of print formatting coanands, examples of which are;

incr~asing and decreasing the current indentation level, returning to

the left margin, and skipping to a new line. This means that the

display format may change depending on which unparsing scheme 1s in

force at the time. This can be used to provide different display

formats depending on either tree-depth or position of the tree relative

to the cursor. Both elision and altered formats are possible. Figs

1.s, 1.6 and 1.7 illustrate the refortll8tting and elision that is

po~sible by altering the unparaing scheme.

Chapter 1 ALOE - The GAtmALF System Editor Generator

PROG~A~ program_name;
VAR f, found : boolean; ch: char;
BEGIN

found:• false;
REPEAT

IF condition THEN
f :• found

ELSE£:• not found;
writeln(f);
read(cb);

UNTIL ch• 'Z';
writeln(f);

END;

Fig 1.5 - ALuE Display - Cursor on the IF Statement

22

can be displayed as above if the cursor is on the IF statement, or as

PROGRAM program_name;
VAR f, found : boolean; ch
BF.GIN

found:• false;
REPEAT

char;

~

IF condition THEN f :• found ELSE f:• not found;
writeln (f) ;
read (ch);

UNTIL ch• 'Z';
writeln(f);

END;

Fig 1.6 - IF statement no longer under curPor so reformatted

or if the cursor is mov'ed further down the program, aa:

Chapter 1 ALOE - The GANDALF System Editor Generator 23

PROGRAM program_name;
VAR f, found : boolean; ch char;
BF.GIN

found:• false;
REPEAT

<statements>
UNTIL ch• 'Z';
writeln(f);

END;

Fig 1.7 - As cursor moves aWS:f - IF statement is Elided

The unparsing scheme can be used to alter the display format, for

example reformatting the THEN and ELSE parts to show the whole IF

statement on one line (fig 1.6), or to hide subtrees to provide elision

(fig 1.7). The unparsing scheme can be altered dynamically, either by

the user to cater for different layout preferences, or automatically to

provide elision.

Extended Commands

It is ~ossible to cause the editor to execute routines which manipulate

the tree and/or start up other UNIX processes. These user-written

routines can call a set of library routines to access and manipulate

the syntax tree. These library routines are provided so the editor can

retain control of modifications made to the tree, in order to guarantee

its correctness. The user routines can be written in any language that

is load-compatible under UNIX.

Chapter 1 ALOE - The GANDALF System Editor Generator 24

ALOE Input Grammar

The example language has two statement types - PRINT and FOR. This

illustrates the form of input grammar required by an ALOE editor.

Language Name: INTERP

Root Op~rator: PROGRAM

{ /* terminal operators*/

LOOPVAR •

INT -

{v}

(0) "@s"

action <none>

synonym:

{c}

II It • , ,

(0) "@c"

action: aINT

synonym: "I" ;

EMPTYSTEP • {s}

(0) "l"

act ion: <none>

synonym: <none>;

}

{ /* non-terminal operators*/

PROGRAM • stmts

(0) "@1"

- It's a variable

- Unparse scheme - print name

- It's a constant

- Print its constant value

- Name of procedure to call

- Start 1n Column 1

Chapter 1

PRINT -

FOR -

PLUS -

STMTS ..

ALOE - lbe GANDALF System Editor Generator

action: <none>

synonym: <none>

precedence: <none>

Filenode;

<exp>

(0) "print @0"

action: <none>

synonym: <none>

precedence: <none>

Non-filenode;

- Subtree stored in a file

- PRINT follow by <exp>

loopvar exp exp stepexp stmts

(0) "for @l • @2 to @3 step @4@+@n@5@-"

(1) "for (@l • @2; %1 <• @3; %1 •+ @4)@+@n@5@-"

action: <none>

synonym: <none>

precedence: <none>

Non-filenode;

exp exp

(0) "@l + @2"

action: <none>

synonym: tt+"

precedence: 1

Non-filenode;

<stmt>

(0) "@0@n"

action: <none>

ayrionym: <none>

- print expansion of stmt,

and skip to new line

25

Chapter 1

}

ALOE - The GANDALF System Editor Generator

precedence: <none>

Non-filenode;

26

The"@" followed by a number refers to a particular item in the

definition list. In the definition of the POR statement for example @l

refers to the "loopvar" and @5 refers to "stmts". The other symbols

preceded by "@" or "%" define various actions to control the display .

formatting.

The FOR statement has two unparsing schemes defined. This means that

the print formats can be either:

Either for i • 4 to 8 step 2

pli~t (i + 3) ~ i, t

Meta-node Clqsses

(I* ... Classes *I

stmts • STMTS ;

exp • INT LOOPVAR PLUS

loopvar • LOOPVAR;

;

stepexp • INT PLUS EMPTYSTEP

atmt • PRINT FOR;

}

;

for (i • 4; i <• 8; i -+2)

print (i + 3) * i, i

Chapter l ALOE - The GANDALF System Editor Generator 27

The classes define the valid expansions for a meta-node. ~ example,

either an integer, a loop variable or a PLUS node (which will itself

have expressions as its leaves) is a valid subtree for the "exp"

meta-node. The ALOE system is designed as a general purpose

syntax-directed editing system. To generate a new ALOE, the language

grammar is defined and translated into tables and then linked to any

action routines needed and any other environment-specific routines.

Details of an ALOE editor for a simple language and its action routines

are described in detail in "ALOE Users' and Implementors' Guide"

[Medina-Mora 1981}.

Chapter 1 Editor Allan POE 28

1.7 Editor Allan POE - A Pascal Oriented Editor

POE [Fischer 1981] is more similar to the Cornell Synthesiser than to

ALOE, previously described. It is specifically designed for Pascal

although versions for other languages are envisaged. "nle commands for

cursor movement, and the display format are similar to those in the

synthesiser, but the method of insertion is by entering the required

symbols, not by command. The program is automatically pretty-printed

and checked for structural correctness.

The User's View

This initial ~isplay of a program is shown in fig 1.8. Although it is

not explicitly stated in the reference, the cursor appears to be a

point cursor, not a highlighted region.

PROGRAM <ID> (<FILE ID LIST>) ;
{LABELS}
{CONSTANTS}
{TYPES}
{VARS}
{PROCEDURES}
BEGIN

{STMT LIST}
END.

~lg 1.8 - Initial Display of F.ditor Allan POE

Optional and Required Placeholders

The symbols in fig 1.8 surrounded by"<" and">" are placeholders whose

expansion is required before the program is complete. Placeholders

surrounded by"(" and"}" are optional. Notice that this uae of brace•

in the syntactic meta-notation is different from that used in the

synthesiser, where braces are used to indicate iteration.

Chapter 1 Editor Allan POE 29

Insertion of User Text

In order to insert symbols the user moves the cursor to the required

placeholder and then types the actual Pascal or the start symbol of the

production. Tvo examples given in the reference are entering "VAR

i:integer" to obtain a variable declaration from {VARIABLES} and IF to

obtain a complete IF statement template. Whether the editor provides

the colon and prompts for <TYPE> (in the VAR example) is not described.

The template provided for the IF statement is shown in fig 1.9. POE

like the other editors mentioned guarantees structural correctness.

However, if the user enters a symbol that is erroneous in the current

positi~n, POE, unlike the Synthesiser and an ALOE, attempts to fit the

symbol into its most logical position. For example, entering THEN at a

statement prompt will also cause the insertion of an IF template.

Incorrect replacements can simply ~e deleted. The display after the

replacement of {STMT} with the IF template is shown in fig 1.9.

PROGRAM <ID> (<FILE ID LIST>) ;
BEGIN

IF <EXPR.>
THEN {STMT}
{ ELSE CLAUSE} ;
{ MORE STMTS}

END •

Fig 1.9 - After Replacement of {STMT} with IF Template

Notice that the optional placeholder• have diaappeared. They are

diaplayed only if they occur after th~ curaor. Once the curaor moves

past the optional prompts, they are auppreaaed and not redisplayed

unless apecifically requeated, whereever the cursor 1• moved.

a.apter 1 lditor All• IOI 30

CyrftJ 19'.Y P!i

'h aid portuUf.tJ, th• arrow ad factS.oa kaJa foad OIi MDJ tenatnal.•

are aot u•. lutead tile aclautioa •rk •1" 11 •ed to indicate a

ca r:t followtq.

Chapter 1 Editor Allan POE

The commands relating to cursor movement are shown in table 3.

Space bar

Back space

Return

!b

lf

!d

lg

lG

!t

!B

Move cursor one symbol right.

Move cursor one symbol left.

Move to leftmost symbol on the next line.

Back one screen

Forward one screen

Down half a screen

Top of program

Bottom of program

Top of screen

Bottom of screen

Table 3 - POE Cursor Movement Commands

31

Unlike both the synthesiser and the ALOE, no commands are provided for
'

moving in syntactic increments larger than one symbol.

Deletions

The DELETE key is used to delete the smallest syntactic unit containing

the current ayrabol. Successive DELETEs will delete succ~asively larger

section• of the proaram - the most nested being the firat to be

deleted. Thi• can be thought of aa replacing templates with their

placeholder• (inatead of the other way around). Thia corresponds to

ascendina th• tr•• repr•••ntation of the program deleting expansions of

Chapter 1 'Editor Allan POE 32

non-terminal derivations. This form of deletion is not designed for

replacement, the clipped subtree is no longer accessible. To enable

the user to recover from commands with unexpected results, an "und~"

command 111 provided.

flle Undo Command

To recover from editor command errors, the user can enter "lu". "nlis

vill undo the effect of the laat command. Multiple undo commands are

also handled. The effect is to undo the most recent commands excluding

the undo commands themselves. To actually undo an undo, the "!U"

command can be used.

Copying and Replacement Co111mands

Structures that would have been de~.eted if the DELETE key had been

used, can instead be moved to named subtrees. These subtrees can be

edited if necessary and inserted at other points in the program. Only

a syntactically valid subtree may be inserted.

Prompting Commands

Although the editor prompts the user with a name relating to the symbol

expected as a replacement for a placeholder (e.g. STMI' for statements)

at ti~e• this level of prompting will be insufficient. A collllll8nd is

provided ("1p") to display the opti<'nfl, one at a tiae. For example, if

the user requeats help on the poasible expansion• of (STMT}, the first

option displayed will be "(STKT) -> nothtn1", then "{STM'l') --> (LABEL)

(UNLABELLED STMT)"• Only one option is displayed at a time. and the

Chapter 1 Editor Allan POE 33

list rolls around, reverting to the first option if the list runs out.

If the user enters "!e" the currently selected option becomes the

replacement for the placeholder.

Elision

Subtrees can be elided only by the specific command "1>". To revert to

the unelided form, the complementary command 11 1<" must be given. No

auto1Datic elison or tagging of comment fields is supported.

Execution Capabilities

The POE system can also execute programs, but unlike the synthesiser it

will do only so if they are complete (no remaining placeholders) and

are semantically correct. During execution, pro~ram input is taken

from the keyboard and output is displayed on the screen.

Chapter 1 COPAS - A Conversational Pascal System 34

1.8 COPAS - A Conversational Pascal System

The COPAS system (Atkinson and North 1981] is an interactive Pascal

program development system developed at the University of Sheffield.

It more closely resemble~ an amalgaaation of an editor and a compiler

than the systems previously described.

Acceptance and Execution Modes

The COPAS system has an 11Acceptance Mode" and an "Execution Mode." The ...
distinction between the acceptance mode employed here and the methods

of program construction previously described is marked. During program

entry under the COPAS system, the user is effectively using a

conventional text editor. There are no constraints imposed by the

editor relating to the Pascal syntax. Each line is verified as it is

entered. If an error ts made the user can only modify lines prior to

and including the line in error. When the program is complete the user

is notified.

added.

The program may then be executed or extra program lines

Chapter 1 COPAS - A Conversational Pascal System 35

The User's View

The version of COPAS described is intended for u . · on a printing

terminal and so the editing commands illustrated relate directly to a

line-oriented text editor.

The initial command is "Accept program-name" and the system responds

with the first line of a Fascal program numbered as line O (fig 1.10).

0 PROGRAM demo (input, output);
1~

~~g 1.10 - Initial View of Program under COPAS

and t~i user must enter the remainder of the program. The input is

bs;.ifered into lines and errors may be corrected using the BACKSPACE key

in the usual way.

With the exception of ACCEPT, all the editing commands available to the

user could be from a conventional line-oriented text editor. They are

listed in table 4.

ACCIPT program-name Provide a standard program heading line.

BREAK line-nos

CHANGE line-nos

DELETE line-noa

HOVE from to

PR.INT line-noa

SpUt lines

The indicated line ta to have character• inserted,

deleted.

Delete a line

Move a ••t of lines.

Print the indicated section of the program

Chapter 1 COPAS - A Conv~rsational Pascal System 36

REPLACE line-nos Same as DELETE followed by INSERT but TRACE status

(see later) is maintained.

ACCEPT data Accept data without providing a line nu:nber.

Table 4 - COPAS Editing Commands

The "line-nos" may be either a single line number, a range of lines or

a set of lines or ranges.

After Lhe first line printed by the system in response to the "Accept

demo" command, further lines may be entered by the user. The system is

already expecting text so an "INSERT" command is unneccessary.

If the user entered the lines shown in fig 1.11, and the END was

misspelt as "ENF" the system would respond with:

Note: All user input is underlined.

0 PROGRAM demo (input, m,q,ut);
10 begin
20 write('Hi There')~
30 .!.!l{
30 enf

END or; expected
Now what?

~ig 1.11 - Initial Entry of a proarag under COPAS

The user can now correct line 30 and the program would be immediately

accepted without a request _from the uaer. It wouldn't be executed but

the user would be notified that it had been accepted.

Chapter 1 COPAS - A Conversational Pascal System

If line 20 is replaced with the "REPLACE" command to become:

20 writeln('The date is the' 1 date};

Identifier not declared
Now what? I 25 { Insert line 25}
You cannot edit beyond line 20

Correcting Errors

37

Errors found during the parse may be modified by the user by editing

the program text in the manner of a conventio,.1a!. text-oriented editor•

There is however one constr&int - no t~xt after the first error may be

edited, only preceding text.

Collecting all the COPAS exampl~s given so far into a sample terminal

session will indicate how the system is used.

Note All user input is undeTlined.

Chapter 1 COPAS - A Conversational Pascal System

ACCEPT demo

0 PROGRAM demo (input, output);

. 10 begin
r

20 write('Hi There');

30 enf

30 enf

...

END or . expected t

Now what? REPLACE 20

20 writeln ('The date

Identifier not declared

Now what? INSERT 25

is the' 1

You cannot edit beyond line 20

Now what? INSERT 5

5 var date: integer;

Program accepted

Now what? PRINT

0 PROGRAM demo (input, output);

5 var date: integer;

10 BPl;tN

{Replace line 20}

date) i

{ Insert line 25}

{ Insert line 5}

{Print complete program}

20 vriteln(-The date is the-, date);

30 END.

Now what?

!ig 1.12 - A Sample COPAS Terminal Session

38

Chapter 1 COPAS - A Conversational Pascal System 39

Execution Capabilities

COPAS can only execute complete programs. If a run-time error occurs,

the user can request a display of all currently visible (i.e. in

scope) scalar variables including parameters. If the error ~as the

attempted use of an undefined scalar variable then the user can provide

a value and request that execution be continued. All other errors

cause execution to be abandoned. The TRACE command is provided to

enable the user to find the values of variables while a program is

executing. It will set a trace flag on a line or set of lines. During

execution, if COPAS encounters a line with it~ tra~e flag set, it

displays the line number and the values of any variables changed by the

execution of that line. If no argument is given for the trace command,

all lines are traced.

Internal Representation

The text is converted into tokens and then stored as a linked list of

lines. The

attempted,

complete program is

If the compilation

recompiled each time acceptance is

is error-free then an interpreter

executes an intermediate code representation generated by the compiler.

This method of operation would be too slow for large programs but the

system was intended for student programs (which are usually small) and

its speed has proven satisfactory.

Chapter 1 Z - The 95% Program Editor 40

1.9 "Z~' ··· The 95:Z Program Editor

Z is a full screen text editor which although it has no knowledge of

program syntax, can pretty-print programs, skip complete synt~ctic

structures and provide elision of nested syntactic constructs [Wood

1981). I have included it in this survey to illustrate the diversity

of approaches taken to provide editing based on a program's structure.

The User's View

The user impression of the text as manipulated by the editor is of a

window into a plane of text that can extend infinitely in both the

horizontal and vertical directions.

Although there are many commands in Z for textual manipulation and word

processing, those of interest in this context are those concerned with

the manipulation of and movement Jy syntactic entities. They include

automatic indentation, balancing of matched pairs of tokens (such as

parentheses), movement in syntactic increments, and elision.

The authors have augmented the editor with a table that describes the

tokens of the language. This table in~lcates which tokens should cause

tabbing and backtabbing and ~lao which tokens occur in pair•, two

exa11plea being ''begin end" and !>arentheaea. All the language

dependent capabilites are baaed on the information contained in this

table - no knowledge of the syntax is available.

Ch:\pter 1 Z - The 95% Program Editor 41

The Many Uses of Indentation

Using the list of tab and backtab tokens, Z can pretty-print the

program. Once the program is in this format the provision of skipping

over syntactic units of the program becomes straightforward. The

editor can move in complete syntactic units using the same visual cues

as the programmer - the indentation level.

Elision

Eliding sections of program text is done in the same manner. The

"ZOOM" command has one operand which indicates the maximum level of

indentation to be displayed. A zoom level of zero displays only the

top level lines - the procedure headings and declarations - and a zoom

level of infinity displays the whole program. This pr.ovide~ elision

related to the nesting level ~f structures but cannot provide elision

related to the position of a structure relative to the program cursor.

Balanced Expressions

Using the list of which tokens open and close balanced expressions, the

editor can move over balanced expressions and structures as single

units. The editor can also provide the matching right braeketing

symbol for the most recent unbalanced conatruct. If there isn't a

current unbalanced construct the editor will indicate the position of

the most recent balanced construct.

Chapter 1 Z - The 95% Program Editor 42

This system currently includes tables for LISP, BLISS, PASCAL, RATFOR

(rational FORTRAN) and APL.

1.10 Summary

The syntax-directed editors in this chapter illustrate a wide variety

of approaches to incorporating knowledge of a programming l&nguage

syntax into an editor.

With the exception of COPAS, all of the editors display the program in

a pretty-pzinted form vhich is immediately updated whenever the program

is modified. Features available only on video terminals ~uch as

highlighting section~ of the program provide a view of the program

unattainable on slow or printing terminals.

Whether or not the versions of COPAS intended for video instead of

printing terminals follow this approach is unclear.

There is more diversity in the types of user commands than in the

display formats. Commands for easily moving around and manipulating

the displayed program are crucial, especially if the editor inserts

templates for complete constructs in their syntactically correct place

rather than at the current cursor position. Thia can cause the cursor

to jump ahead an unexpected amount and insert an unexpected construct.

The user must be able to revert to the previous state without undue

difficulty.

Chapter 1 Z - The 95% Program Editor 43

The use of an editor for more than one language is approached only by

the ALOE system, but the input form of grammar it uses is completely

different from the more conventional forms of a syntax definition.

This precludes its use without learning a new f•,rm of grammar

specification and rewriting the grammar for the new language.

This thesis explores the development of a syntax-directed editor that

has as its input the language specification in extended BNF notation.

The language syntax is not written into the editor but is read in as

data at the start of an editing session. To enable the editor to

pretty-print the program, print formatting information is read in as

well. From the information contained in the syntax, the editor

provides a program outline, complete with all the

symbols. Placeholders arc left for non-terminal

require further information from the user.

required terminal

derivations that

The notation used for the language description is powerful and easy to

use. This makes the generation of a syntax-directed editor for a new

language straightforward. The editor has ao far been used to construct

programs in PASCAL, LISP and SNOBOL. To add languages it is necessary

only to define their grammar in extended !NF.

Chapter 2

GED - A Purely Syntax Directed Editor

2 GED - Giovanni's Editor

This thesis describes the development of a syntax-directed editor in

which the syntax is not implicitly built into the editor, but is

defined in a standard machine-readable notation. Because of this

feature, the editor may be initialised with the syntax for any language

and will thereupon become a syntax-directed editor for that language.

The language syntax is input in Extended BNF and may be augmented with

pretty-printing (program formatting) information if the final program

layout is important. The programmer, on starting to use the system is

presented with a skeletal outline of the program in the appropriate

language and this can tDOdified by expanding the placeholders provided

by the editor. The syntactic production represented by the current

placeholder, and the set of next symbols that would be correct at the

cursor position are also displayed. This provid~• the user with a

simple way of exploring the constructs of the language.

The use of a standard notation (Extended BNF) for the language

definition precludes the detection of semantic errors, as a one level

syntax definiLion does not include the necessary 1nfol'll8tion for this.

Therefore type mismatches and undeclared identifier• (in languages that

treat these as errors) will not be detected. However, the occurrence

of undeclared or· incorrect identifiers due to omission of a decla~ation

Chapter 2 GED - A Purely Syntax Directed Editor 45

or misspelling is a common error.

editor provides an indication

used.

As an aid to their detection, the

every time a new identifier symbol is

nie 1-.se of a two-level grammar [van Wijngaarten, 1969] would enable

these errors to be detected, but two-level definitions are very complex

and not widely understood. Consequently, although their use would

render a syntax-directed editor very powerful, it would place a

pragmatic restriction on its general applicability.

nie examples that follow use the language Pascal. This is for

consistency and is not meant to imply that the editor is tailored to

Pascal. An example using Lisp will be included later.

2.1 Language Input Definition

The editor builds an internal data structure representation of the

grammar from the input Extended BHF version. The structure mimics the

form of each definition and the definition can therefore be regenerated

fro~ it. A simplified grammar for Pascal in the editor input f~rmat is

shown in fig 2.1 and its corresponding data structure shown in fig 2.2.

The first four lines define the structure of identifiers by enumerating

the set of characters that may start. an identifier ,nd those that may

occur after the first character. nie grammar in fig 2.1 will allow the

use of "" (as in "firat_node") within a Pascal identifier but not as

its start chdracter. ibis echeme will also allow initial characters

that are not permitted with1n an identifier body. An example of this

Chapter 2 GED - A Purely Syntax Directed Editor 46

is the use of"&" as a reBerved word flag in SNOBOL - The "&" may be

used only as the initial character (eg "&ANCHOR").

IDENTIPIER_START_SET

abcdefghijklmnopqrstuvwxyzABCDEFGHIJICLMNOPQRSTUVWXYZ

IDENTIFIER_BODY_SET

abcdefghijklmnopqrstuvwxyzABCDEFGHIJ1CLMNOPQRSTUVWXYZ01234567890_

<program>::• PROGRAM <pr~gram_name> (<liat_of_files>] ; <block> • $

<program_name> ::• IDENTIFIER $

<list_of_files>::• <file_name> { , <file_name>} $

<file_name> : :• IDENTIFIER $

<block> ::• BEXiIN <statements> END $

<statement a> 1:• ••••• Defn of a list of statements and do on •• $

$$

Fig 2.1 - Editor Input Grawr for Pascal Subset

The layout b fr•• format. Each definition is terminated by a "$"

character aud the c0111plet• grammar by two "$" charact~ra.

Chapter 2 GED - A Purely Syntax Directed Editor 47

This is to allow the skipping of erroneous definitions at the grammar

input stage.

indicating

The error recovery while reading the syntax is limited to

which symbol was encountered and the symbol actually

received. lben the remainder of the syntactic p~rt of the definition

is then skipped. If a print format part of the definition is present

(detailed in chapter 3), is parsed separately. The error handlers for

both the syntactic and formatting parts attempt to leave any erroneous

definitions in such a state that their use will not cause the editor to

fail.

Root Node of S9nt~ctic Date BtTuctuTe

<:prog_n•••>
Non-t111l
Nert

0 Alt o
NTptr

IDENTIFIER
Ter•inal

Nert o
Alt o

IDENTIFIER

T•r111tnaJ
N•rt o
Alt o

.. " .

D•ftnltion of <Bt•t•••nt•>

,r erefvc,&101

"END"

•T'atn•l
N•1t o
Alt o

,a, a.a - Pete ltrus,ur, t,r ,,, eeesel 1,,,,,

0

•T•tnal
N•at o
lllt 0

Non-t•l
N•rt
lllt 0
NT tr

48

Ter111inal
N•1t o
Alt o

Ch.apter 2 GED - A Purely Syntax Directed Editor 49

When the data structure is used to guide a parser, it is possible to

scan the structure and find which symbols may possibly come next. In

fig 2.2 for example, examining the definition of <program> it is

evident that the symbol PROGRAM must be present it bas no

alternative. The non-terminal "<list_of_files>" has an alternative of

EMPTY - a terminal symbol that matches any input symbol - and is

therefore optional. The ae·nicolon, the non-terminal "<block>" and the

dot arc also required. However <block> producesBPX;IN and END and so

these too are required. From the syntax alone, the initial form of a

program can be deduced and (with a little pretty-printing) displayed

(fig 2s3). The undefi~ed non-terminal productions are represented by

the na'IJle of the non-terminal symbol.

'

PROGRAM <program_name> [<list_of_files>] ;

Brt;IN
END •

Correct Symbols : identifier
Syntax ::• <program_name>

Fig 2.3 - Program Form derived from Syntax Definition

The EBNF syntax may be regenerated from the structure, and so it ts

possible to provide at all times a display of the production currently

being parsed and a list of all the possible input symbols (fig 2.3).

Neither of these uses any information other than that contained in the

input grammar itself, ao these displays can be generated for eny input

grammar.

Chapter 2 GED - A Purely Syntax Directed Editor 50

In order to enable the editor to associate the print-formatting

commands W1.th the correct parts of a program, such information is input

a the s~me time as the corresponding part of the grammar. The details

of the print formatting commands will be described in chapter 3. Here,

it is sufficient to note that the layout of any production can be

defined in the input grammar. From the information contained in the

syntactic definition the editor presents the user with skeletal program

(fig 2.4).

2.2 The User's View

The display after the editor has been invoked and initialised with the

grammar of Pascal is shown in fig 2.4. The current position of the

parser within the data structure (to all intents and purposes, the

program) is indicated by a highlighted non-terminal r.ame or terminal

symbol. In the printed examples given here highlighted regions are

underlined. 'nle internal mechanism used by the editor to store the

user program is a list of nodes, which parallels the syntactic data

structure. 'nle exact structure will be fully described in chapter 3.

However it is important to note that the structure forms a tree with
'

non-terminal definitions being the nodes and terminal symbols forming

the leaves.

Chapter 2 GED - A Purely Syntax Directed F.ditor

PROGRAM <program name>;

BEX;IN
END •

Correct Symbols : identifier
PO-HELP I Syntax::• <program_name>

Fig 2.4 - The Initial Appearance of a Pascal Program

2.3 The Display

51

The first twenty lines are dedicated to the user's program, the next

line is the statu; line (usually blank) for warnings and questions

unrelated to the program, and the last three lines display the help

information.

The HELP area normally shows:

1) A list of all the symbols that would be correct at

the current cursor location.

2) An Extended BNF definition of the section of the

pro'aram under the cursor.

Alternatively, depression of PO (the "zeroth" function key) will

display a brief explanation of the effect• of all the functlon keys, in

the HELP area. A prompt to this effect (PO• HELP) is always on the

screen.

Chapter 2. GED - A Purely Syntax Directed Editor 52

nte techni 1,1ue of using a highlighted cursor region rather than a point

cursor, to indicate the current position of the parser is similar that

adopted in the ALOE editors, and here it is used to clarify the

operatiou of the DELETE command. Because the user program is stored in

the editor in a data structure whose nodes are organised in the same

way as those of the syntactic data structure, the current "position" in

the program data structure may either correspond to a leaf node (a

terminal symbol) or a non-terminal node (a non-te-cminal symbol) in the

syntactic data structure. In the latter case, a DELETE command will

remove as much of the entered program as corresponds to the complete

syntactic subtree of the non-terminal node. If only a point cursor

were used, the extent of the subtree about to be deleted would be

ambiguous, so a highlighted region that covers the current node and its

complete subtree is used - the extent of the cursor is now unambiguous.

Chapter 2 GED - A Purely Syntax Directed F.ditor 53

2.4 Inserting User Input

The symbols surrounded by angla brack~ts such as <file_identifier> are

called placeholders and wherever they appear, the user must enter

something. To expand a placeholder, the uaer must first position the

cursor on the appropriate placeholder (see later for an explanation of

the "appropriateness" of a placeholder) and enter a symbol. The symbol

entered must be one of those listed in the "correct symbols" list in

the HELP display.

User input is buffered into lines to enable typing errors to be

corrected with the backspace key in the usual way. A line is accepted

by the editor when either the RETURN key or one of the special function

keys is pressed.

If the user's : input is correct at the cursor position then the

placeholder is expanded to include the new symbol or production and the

display will reflect the change. Erroneous entries will cause the

terminal to beep to alert the user to the correct alternatives at the
..

bottom of the screen. Pl~ceholders may be expanded in any order, so

declarations may be added as necessary.

In fig 2.4, both the position of the cursor on the placeholder

<program_name> and the contents of the help display indicate that an

identifier is the only valid symbol. Typing any identifier, "de1110" f<.••

example, will cause the program to change to the representation shown

in fig 2.s. The entry of anything other than an identifier would cause

the editor to display the erroneous symbol on the atatua line and emit

Chapter 2 GED - A Purely Synr.ax Directed Editor

a beep at the user as a warning - the program would be \lllaltered.

PROGRAM demo [<list o! files>] ;

BIDIN
END •

First Occurrence
Correct Symbols
FO•BELP I Syntax

of ldentifier : demo
(Nothing

::• [<list_of_files>]

Fig 2.5 - "Demo" is entered as the program name

54

The ."First Occurrence of ldentif ier : " message appears whenever the

editor encounters a new identifier. In languages requiring variables

to be declared this message should occur only in declarations Its

occurrence outside declarations indicates an undeclared identifier.

The message is accompanied by a beep.

Referring back to fig 2.5, it can be seen that the <list of files>

pro4uction is optional. The entry of a left parenthesis will cause the

entry of the "list of files" template and the display will change to

that in fig 2.6. Pressing RETURN will cause the c~rsor to skip to the

next possible place that the user can enter a symbol. RETURN is one of

several keys that will move the cursor to the next possible point of

user input. A complete list of cursor commands will be given ahortly.

Chapter 2 GED - A Purely Syntax Directed Editor

PROGRAM demo (<filename>) ;

BEX;IN
END •

Correct Symbols : identifier
FO•RELP I Syntax::• <file_name>

Fig 2.6 - After Entering a"(" to start a list of files

2.5 Displaying Optional and List Placeholders

55

The skeletal programs in figs 2.4, 2.5 and 2.6 lack declarations and

statements. These are two examples of optional sections of program

that are known to the editor but s~e not displayed to avoid cluttering

the screen.

However, when the cursor is on one of these optional placeholders, it

is displayed and the "correct symbols" field in the HELP area will show

a list of symbols, each of which will select a particular option. This

is illustrated by the appearance of [<liat_of_filea>] placeholder in

fig 2.s. The inclusion of the word NOTHING in the list of correct

symbols {udicates that the placeholder is optional.

These commands are bound to the arrow and function keys on the Visual

200 terminal. The association of specific key sequences with futactions

is localised within the program and would be eaay to modify to suit

other types of terminals.

Chapter 2 GED - A Purely Syntax Directed Editor 56

2.6 Cursor Movement Commands

The only places the cursor wi.11 stop are placeholders, including

optional and list placeholders, and symbols entered by the user. The

cursor cannot be positioned on any symbol that is required by the

context and the syntax, as such symbols are automatically inserted by

the editor. It must be possible to stop the cursor on user-entered

symbols so that they may be changed if required.

RETURN key

Move to the next possible alteration

optional and list placeholders.

point

This

including

makes the

optional and list placeholders, if any, visible. The

return key only functions in this fashion when the line

is empty.

<-I-> Back/ Forward Arrows

Move to the previous/next possible insertion point _ or

user-entered symbol. 'ntia causes the cursor to stop at

any point that any modification is possible (alteration

points).

Top - F7

program.

Move to the firat alteration point in the

Fl/F2 - Reveraa/rorward Symbol Search

The uaer 1• prompted for a terminal symbol and the

curaor ia moved to th• appropriate occurrence of that

Chapt~r 2 GED - A Purely Syntax Directed Editor

symbol (towards the top (Fl) or the bottom (F2) of the

program). If the symbol cannot be found, a message to

that effect is displayed. The entry of an empty line

as the search symbol will result in the last symbol

being reused and to avoid confusion, the editor

redisplays the last symbol before proceding with the

search. This pro111pt is for the user's benefit and

prevents the case of the NOT FOUND message being

returned when the last symbol is not as the user

remembered • The repetition key (Fl3) will cause the

command to be repeated, using the same symbol.

The search command is useful for quick movement around

the program and for locating all instances of a

specific symbol. Unlike a conventional editor's string

search, searching for "b" will find only the locations

where ''b" is used as a complete symbol, not all

occurrences of the letter "b", such as in B)!X;IN. When

it ts ~ used to search for comments or strings, all

occurrences of these construct~ are stopped on the

actual string or comment is not examined. As moat

seaLching is for identifiers and reserved words, this

in not normally inconvenient. To skip through the

program locating the "repeat" key can be used.

57

Chapter 2 GED - A Purely Syntax Directed Editor

F3/F4 - Previous/Next Placeholder

Move the cursor to the previous/next essential

placeholder.

Up Arrow Key

ASCEND the program tree. This will cause the cursor to

encompass (and therefore highlight) larger and larger

sections of the program. It is used in preparation for

a CLIP or DELETE command.

Down Arrow Key

ThiG command is used in two different ways, the first

is to DESCEND the program tree to the first possible

alteration point. This is broadly speaking the

opposite of the ASCEND command. 'lite other use of the

down-arrow is to force the generation of a subtree for

an optional or list node. The use of this command is

discussed below.

58

Chapter 2 GED - A Purely ~yntax Directed Editor 59

Examples Showing the Use of Cursor Movement Comands

PROGRAM demo (<file_name>) ;
[LABEL]
BEGIN
END •

Correct Synbols
FO•HELP I Syntax

: LABEL Nothing
::• [LABEL <label> { • <label>}; J

Fig 2.7 - After Bitting RETURN while on <file name>

The "<file_name>" placeholder is left in position to indicate that a

filename is required and the cursor moves to the optional la~el

declaration placeholder. If no labels were wanted. pressing RETURN

again would skip to the next alteration point the constant

declarations (fig 2.8).

PROGRAM demo (<file_name>) ;
[CONST}
B!X;IN
END •

: CONST Nothing Correct Symbols
FO-BELP I Syntax

;]
::• {CONST <CONST_defn> {;<CONST_defn>}

Fig 2.8 - The Prompt for the Optional Constant Declarations

Entering "CONST" would cause the insertion of a template for Pascal

constant declaration• (fig 2.9). The terminal aymbola "•"and";"

must be present in a conatant declaration and are therefore provided by

the editor. Identifier•, numbers and atrinaa ate treated as terminal

symbols in the gra1111ar but as they require further definition fro~ the

Chapter 2 GED - A ?urely Syntax Directed Editor

user, the appropriate placeholder is left as a prompt.

PROGRAM demo (<file_name>) ;
CONST

<constant name>• <constant> ;

BEGIN
END •

Correct Symbols identifier
FO•HELP I Syntax::• <constant_name>

Fig 2.9 - The display after requesting a CONST declaration

60

Entering a constant name "cl", in accordance with the help information,

causes the name to be incorporated into the program. "nle cursor moves

to the next possible alteration point (see fig 2.10).

particular, the list of correct symbols.

PROGRAM demo (<file_name>) ;
CONST

cl• <constant>;

BtX;IN
END •

First Occurrence of Identifier : cl

Note, in

Correct Symbols : number identifier+ - string
FO-HELP I Syntax::• <constant>

Fig 2.10 - A Liat of Correct Start SY'lllbols for <Constant>

Entering any of a number, an identifier or a string would cauae the

entry to replace the placeholder "<constant>". The entry of"+" would

cause the "<conatant>" placeholder to change to "+ <conatant_value>"

and the help infonaatt.on to ahov that "<conatant_value>" could be

either a "number" or an "identtf ier" <••• fia 2 .11) •

Chapter 2 GED - A Purely Syntax Directed Editor

PROGRAM demo (<file_name>) ;
CONST

cl•+ <constant>;

BFJ:HN
END •

Correct Symbols : number identifier
FO-HELP I Syntax::• <constant_value>

Fig 2.11 - The Development of a Constant Declaration

61

Notice that the "First Occurrence ••• " message has disappeared. The

messages on the status line are transient and will disappear as soon as

when the user presses any key.

The Use of the DOW-ARROW to Force Subtree Generation

There are occasions !fflen the occurrence of multiply nested list or

optional node will cause sections of a program to be unreachable. For

example, consider the top-level grammar for Snobol in fig 2.12.

<program>::• {<statement>)

<statement>::• (<label>) (<subject>] (<rest_of_Snobol>]

Fig 2.12 - Top Level Grammar for Snobol

The initial display will ehow "{ <atatement>)" and the help

information that a label is an identifier. There is no way to tell the

editor that an identifier entered is to be used•• the subject, not the

label. Hitting RE~URN doesn't help•• the only alteration point is the

Chapter 2 GED - A Purely Syntax Directed Editor 62

current node the cursor doesn't move. An method of expanding the

<statement> placeholder to "[<label>] [<subject>] [<rest of Snobol>]"

is needed, with the cursor on <label>. Pressing RETURN would then skip

to the next alteration point - "[<subject>]" - as required. When the

cursor is on an optional or list node the DOWN-ARROW key will force the

expansion of an optional or an iterated subtree to enable the cursor to

be pos1.tioned on the required placeholder within the subtree. No

conf,1sion between the two uses of the DOWN-ARROW key should occur, as

it functions as an EXPAND command only on optional or list nodes that

have no expansion (in which case descending doesn't make sense). All

all other times it behaves as a DESCEND command.

2.7 Marking and Returning to Marked Nodes

In order to enable very rapid movement around the program, markers,

labelled A to Z, are provided. Case differences are ignored. The

effect of these markers is to associate a letter with the current node.

To associate a marker with the current cursor position the user presses

the SET-MARKER key (F8). The prompt - "Set Which Marker A-Z ? " is

provided by the editor. A reply of any letter will set a marker, any

other key will cause the command to be ignored - with an appropriate

message. To return to that node the user gives a MOVE-TO-MARKER

command (P9) followed by the name of the marker. In Pascal, marker "C"

could be used for constants, "T" for Types and "V" for variable,. 'l'he

marker• of the current node and the marked node are swapped, so givina

the coD1Dand again with the same marker name will restore the cursor to

the original position. Attempting to mov• to an unset ~•rker will

cause the meHage "Marker ha• not b• aet" to appear on the atatua line,

- : ·.,

Cllapter 2 '.,,-:_:
., . :

••t bu ao otlaer ef lect •

Chapter 2 GED - A Purely Syntax Directed Editor 64

2.8 The Delete Command - F5

The DELETE command deletes the section of program currently under the

cursor. After DELETE has been invoked, the cursor moves to the parent

of the deleted subtree. Therefore, repeated invocations of DELETE vill

delete successively larger sections of the prcgram. The dl'!leted

section of the program is not irrecoverably lost but is copied to a

file called "CLIPPED". This section of the program may be recovered

either by using the iNSERT command to reinsert this CLIPPED section of

the program or by using the UNDO command (see later).

The delete command canals~ be used to change identifiers, numbers and

strings. As illustrated above, if the cursor is on an identifier and

the DELETE key pressed, the identifier is replac~d by its appropriate

placeholder. For example, if the cursor was moved to DEMO and tl.e

DELETE key pressed, the placeholder would revert to <program_name> and

a new name could be entered.

To delete templates, the curE..:,r is moved to any node in the template

and the ~rP-AR.ROW key is pre11sec! repeatedly, until the curaor covers the

construct to be deleted. 'l1le DELETE command will now remove the

complete region under the cur•or. It is still aaved in the CLIPPED

file. If too many aacend commands are given (repeated use of the

UP-AR.ROW key from any initial posit~on would eventually cause the

curaor to encompass the entire program), the "undo" command ahould be

u•ed to restore the cur•or to ita previou1 poaition, not the

DOWN-ARROW. The DESCEND command (down-arrow) doe• 110ve the cur1or down

tho tree, but to the firat alteration point, vhich 1• u•ually much

Chapter 2 GED - A Purely Syptax Directed Editor 65

further down the tree than intended.

A sequence of repeated ASCEND commands is illustrated in figs 2.13 to

2.15. Notice that the "corn~ct symbols" and "syntax" fields in the

help area change as the cursor ascends the syntax tree.

PROGRAM demo (<file_name>) ;
CONST

cl • + 97;

BB;IN
IF <factor> THEN

BEGIN
write (<factor>) ;

END
ELSE

BEGIN
.h. [<qualifier>] ;

END ;
END.

: identifier Correct Symbols
FO•HELP I Syntax ::• <variable> ([:•<expression>])

..
Fig 2.13 - The Start of the Assignment Statement is under the Cursor

Chapter 2 GED - A Purely Syntax Directed Editor

PROGRAM demo (<file_name>)
CONST

cl•+ 97 ;

Bf.XHN
IF <factor> ~~EN

BEGI:?
~rite (<factor>) ;

END
ELSE

_1:1:'~..Il!
JL.i.

E!ID i
END •

66

Correct Symbols :identifier goto begin if case while repeat
for with reset rewrite read readln write writeln Nothing
FO•HELPISyntax ::• [<simple_statement>l<structured_stmt>]

Fig 2.14 - Ascending the Syntax Tree from "b" to Compound Stmt

PROGRAM demo (<file_name>) ;
CONST

cl•+ 97;

BIOOIN
IF <factor> THEN

BF.GIN
write (<factor>) ;

END
ELSE

BF.GIN

L.l
END i

END •
Correct Symbols
FO•HELP I Syntax

ELSE Nothing
::• [ELSE <statement>]

lig 2.15 - The Optional ELSE part is under the Cursor

Entering the DELETE command at the stage shown in flg 2.15 would ~emove

the ELSE part of the IF statement and replace it with the "~lee"

placeholder "(ELSE)". Entering the UP-ARROW command again would cause

the complete IP atatemant to be covered by the cursor. It could then

Chapter 2 GED - A Purely Syntax Directed Editor 67

be deleted and possibly inserted elsewhere by being recalled from the

clipped file. The contents of the CLIPPED file are never deleted, ju&t

overwritten by other DELETE comtMnds. Therefore the contents of the

CLIPPED file uaay be inserted repe3tedly.

The ASCEND command stops on nodes that have productions as their names,

on optional node, and list nodes. On occasions the cursor does not

ascend as far as the user intends and the command must be repeated.

This is dependent on the number of productions in the original input

syntax - the more productions, the more places there are to stop.

2.9 The Insert Command - F6

This command inserts the most recently clipped section of program at

the current cursor position. The editor attempts to incorporate all of

the clipped subtree at the current cursor position, However any error

will cause the insertion to be abandoned. '11\e status line will, as

before, indicate the erroneous symbol. The clipped section of the

program may be inserted at more than one location as required.

2.10 Reading and Writing Files

The editor provides commands to write its current program and later, to

read it back again. These commands are detailed below.

WRITE [filename] - Pll

The current program is written to two filee, a plain text file suitable

for input to a compiler or ·tnterpretvr, and a code file for reading

Chapter 2 GED· A Purely Syntax Directed Editor 68

back into the editor. Both files have a suffix: the plain text file

has the language name and the GED code file is suffixed by ".GED". For

example, if the language ·~as Paocal and the command "WRITE DEMO" given,

the files "DEMO.PASCAL" and "DEMO.GED" would be written. If no

filename is given the input filename is used. The lack of both an

input and output filename is an error.

READ filename - FJO

The GED code file of the given filename is read into the editor. For

example, to continue work on the file "demo", the command "READ DEMO"

is given. The editor appends its code suffix and reads the file

"demo.ged". The named file is inserted at the current cursor position,

without erasing the current program. To read in a complete program the

display must be in its initial state - this can be achieved •.rith the

ASCEND and DELETE commands. This deletes the current program (if any)

and could be done by the READ command itself, but in order to limit the

number of comm.ands, this is not done.

The input to the editor is designed to be essentially a program without

compulsory terminal symbols, and this would aeem to preclude the input

of files containing r.~mplete programs or sections of ~rogram. However,

the editor ignores all redundant symbols in the input stream and it is

therefore possible to modify e~isting programs, to include useful

subroutines or to continue writing a partially completed program using

GED.

Chapter 2 CED - A Purely Syntax Directed Edi.tor 69

2.11 Undo Function - Fl2

The editor provides the ability to unwind previously entered commands.

This provides a means to explore the editor commands without causing

irreversible alterations to the program tree. Modifications made to

the program during an INSERT operation are ignored by the UNDO coanand

to avoid filling the undo stack. Therefore after an INSERT command,

the UNDO may be used to restore the program to the state it was in

prior to the insertion.

Chapter 2 GED - A Purely Syntax Directed Editor 70

2.12 A Command Summary in Function Key Order

FO Change the HELP display between the "Current

Production/Correct Symbols" display and a brief summary

of the Function key commands.

Fl Search Backwards for a user entered symbol.

F2 Search forwards for a user entered symbol.

F3 Move to previous required placeholder.

F4 Move to next required placeholder.

F5 Delete the region under the cursor (Use with Up-arro~).

F6 Insert the last deleted region at the cursor position.

F7 Go to first alteration point in the program.

F8 Set a marker at t~e current cursor position.

P9 Return to a previously set aarker.

Chapter 2

FlO

Fll

Fl2

Fl3

RETURN Key

Left-Arrow

Right-Arrow

Up-Anow

Down-Arrow

GED - A Purely Syntax Directed Editor 71

Read a Ced-format file.

Write both a Ged-format and a print file of the

program.

Undo the recent modifications to the program.

Repeat the last command - Most useful for Searches.

Move to the next alteration position 1n the program.

Move to the last alteration point before the cursor.

Same as Return - for consistency.

Move the cursor up the program tree to encompass more

of program Used in preparation for a DELETE command

(F5).

Move into the subtree of the current to first

alteration point. If the current node is a optional

node or list node without a subtree (it's unexpanded)

then create one, and then move to the first alteration

point 111 the new subtree.

Chapter 2

ESC ESC

2 .13 Summary

GF.J> - A Purely Syntax Directed Editor 72

Redraw the screen - useful if it has been corrupted in

some way (e.g. system messages).

The editor described in this chapter is designed to cater for a very

wide variety of programming languages while preventing all syntactic

errors. The editcr is economical in terms of keystrokes required and

while requiring a different approach to the construction of a program,

is not difficult to use. The display of the current production under

the cursor and the list of correct symbols, together with the undo

facility provide a gentle introduction to the constru~ts of the

language. Thii environment, while strange for those accustomed to the

more conventional methods of program creation, may be especially suited

to beginners who have no unlearn1ng to do.

Chapter 3

GED - Its Internal Architecture

3 GED - Its Internal Architecture

This chapter describes the data structures used within the editor to

represent the syntax and the user's program, and the methods of

manipulating and lllO".ing around these structures in order to pro'\'ide the

facilities described in chapter 2. 'The topics covered are: the syntax

and its internal representation, the representation of the user

program, and the implementation of user commands.

GED is written in PASCAL, using only the non-standard features of the

"otherwise" option on a CASE statement and the ability to associate an

external filename with an internal name inside the RESET and REWRITE

statements.

~

3.1 The Input Language Syntax

GED is intended to be a syntax-directed &ditor that reads the syntax of

the desired user language as data. Therefore, a 11&chine readable

syntax notation must be used. The moat common form of syntax notation

is BNF [Backus 1959), but the use of recursion to pro'\'ide repetition

and the use of an explicit EMPTY symbol render the notation clum.sy and

obscure. Traaline (ayntax) diagrams are another common form of eyntax

notation but the notation ie graphical and thereeore not euitable for

direct entry into a machine. Th• eyntactic notation TWIJI [Lyons 1983]

Chapter 3 GED - Its Internal Architecture 74

- a machine-readable form of the tramline diagram - could have been

used but as BNF and its variants are more widely understood, a variant

of Extended BNF has been chosen as the input for GED.

The ma. r limitation of BNF is its clumsy method of handling repetition

and optionality using recursion and the empty string. Wirth (1977]

suggested a syntactic notation derived from BNF that avoids the use of

an explicit symbol for the empty string by adding constructs · for

optionality and repetition "[ZZZ]" to indicate that ZZZ is

optional, and"{ zzz }" to indicate that zzz may occur zero or more

times.

In terms of standard BNF:

<D> ::• [zzz] is equivalent to: <D> ::• ZZZ I <empty>

<D> : :- { zzz } is equivalent to: <D> ::• ZZZ <D> I <empty>

<empty> : :•

However, the syntactic notation suggested by Wirth differ• from

standard BNF in its method of specifying terminal and non-terminal

symbols. Instead of delimiting non-terminal oymbols with angle

brackets and letting terminal symbols represent themselves. his

notation delimits terminal aymbola with quotation marks and does not

delimit non-terminals•

defined as:

For ex1111ple •. a simple "IF statement" would be

Chapter 3 GED - Its Internal Architecture 75

BNF <if statement>::• IF <expression> ~HEN <statement>

Wirth if statement • "IF" expression "TllEN" statement

The use of quotation marks around terminal symbols in Wirth's notation

has the advantage that no conflict arises between the use of a symbol

in both the meta-notation and the language being defined.

GED uses the extensions of braces to indicate repetition, square

brackets to indicate optionality, and parentheses to indicate grouping

as suggested by Wirth, but leaves the remainder of the meta-notation

intact - consistent with standard BNF. This is in accordance with the

extensions suggeeted by Pagan [1981]. CED will therefore accept either

standard BNF or this variant. Should it be desired to change the input

format to conform c0111pletely to that suggested by Wirth, only minor

changes. to the syntax building procedures would be necessary.

The symbols"<"/'>","[","]","{","}", "I","(",")","$","$$" are part ..
of the meta-language but may also be part of the language being

defined. To enable the use of these symbols within the syntax

definition, one of two escape characters - either" or' - is used.

The presence of either of these before another symbol remo~e• any

special aignificance that the symbol normally has in the meta-notation.

For example, to indicate that parentheaea may surround an expression

the syntax definition would be:

Chapter 3 GED - Its Internal Architecture

<expression>::• '(<expression>')

OR

<expression> : :• "(<expression> ")

76

Although in these examples both single and both double qu~tes have been

used, the choice is arbitrary, and they can be mixed.

Chapter 3 GED - Its Internal Architecture 77

3.2 Definition of the Extended BNF Accepted by GED

<syntax_definition> ::• <lexical info>

<definition> { <detinition>} '$$ $

<definition> : :• <left_hand_side> ": :• <right_hand_side>

[printformat <print format definition>]'$$

<lexical info> : :• [IDENTIFIER_START_SET <set of characters>]

[IDENTIFIER_BOOY_SET <set of characters>]

[START_COMMENT <character>)

[END_COHMFNT <character>]

[COMMENT_COLUMN number>• 1 & •<132 }

[STRING_DELIMITER <set of characters>]

[DELIMITER { :BLANK

:END_OF_LINE

<set of characters>

}

] $

<left_hand_side> : :• '< <non_terminal_ume> "> $

<right_hand_•ide> ::• <concatenated_rhe> ('I <concatenated_rhe>} $

<concatenated_rh1> ::• <right_hand_optiona> {<right_hand_optiona>) $

Ch4pter 3 GEO - Its Internal Architecture

<right_hand_options>::• '{ <right_hand_side> '}

, [<right_ban~_side> ']

'(<right_hand_side> ')

<primiti,,e_rhs>

<primiti"e_rbs> : :- '< <non_terminal_name> '>

'" <token>

"' <token>

<token>

IDENTIFIER

NUMBER

STRING

C.JHMENT

<non_terminal_name> ::• Any character sequence excluding>

- Use "> for >

<token> : :• - I'<> I'<• I '< I > >• $

+ I- I * I ;

, (,) I , [.,] ., { "}

I - \ I ' ., I :• •

<print format> Will be defined later.

$$

•

Fig 3.1 - Definition of the Exteftded BNF accepted by G£»

78

$

$

$

& I @ I

?

I z I

$ $$

Chapter 3 GED - Its Internal Architecture 79

.!!2.t!,: The symbols 11
: BLANK" and 11

: END-OF-LINE" are used to include the

blank and the end of line character in a set. The reasons for this

will be discussed later.

The EBNF grammar may be augmented by print formatting information which

is associated with each terminal or non-terminal in the syntax. This

is to enable the implementor of an editor to specify how programs are

to appear when they are printed. This function does not affect the

actual form of the input grammar and ma7 be omitted entirely if

desired. The formatting commands will be described in detail after the

internal representation of the user's program has been defined.

'11le symbols IDENTIFIER, NUMBER, STRING and COMMENT are unusual, as

althoush they may represent a required terminal symbol, the editor

cannot know which identifier, number, string, or comment will be

entered by the user, and therefore cannot fill in the correct terminal

symbol (in the way that is possible with a commc or BEGIN). 'nlerefore

these symbols are treate~ in the syntax as terminal symbols, but are

known to the editor to be composite - the actual symbol to be en~red

by tbe user. As the form of each of these symbols differs between

languages, their syntax is defined in the <lexical info> section of the

syntax definition which must precede their firat uae.

% <- Thia ia a comment, indicated by a "X" in column one
IDENTIFIER_STAltT_SET set of character•
IDENTIFIER_BODY_SET set of characters
DELIMITERS set of character•
•• other lexical definition••••

<lloot Mode> :i• <rest of production•>
< ••••• > :1• rest of ayntactic definition•

$
$ $$

Chapter 3 GE~ - Its Internal Architecture 80

Defining the Syntax of Identifiers

To accomodat~ the wide variety of keywords and reserved words in ~Jmmon

use, the characters that may start an identifier and those that may

occu~ after the first character are speclfled as part of the syntax

definition. 'lbe keywords IDENTIFIER_START_SET and IDENTIFIER BODY SET
. - -

denote the begir1ning of each set respecti"ely. All the characters

following the keyword (excluding blanks) become part of the set. The

list is terminated by the end of the line.

The regular expression definition of an identifier is:

IDENTIFIER_START_CRAR { IDENTIFER_BODY_CBARACTER}

where the braces mean "zero or more of".

For Pascal the definition of ldentifi~r ts:

IDENTIFIER_START_SET

abcdefghijklmnopqrstuvwxyzABCDEFGHIJICLMNOPQRSTUVWXYZ

__ -L_

IDENTIFIER_BODY_SET

. abcdefghijklmnopqrstuvwxyzABCDEFGHIJlCLMNOPQRSTUVWXYZ0123456789

These sets are used as the defaults if the definition of either of the

identifier start or body sets (or both) are omitted. Note that the use

of separate sets for the start and body of an identifier caters for the

case of character• that can occur only at the start of an identifier

(such as the "&0 in SNOBOL), and characters that cannot start an

identifier but are allowed in its body, auch as the digtts in many

Chapter 3 GED - Its Internal Architecture 81

languages, the underline in some Pascal implementations, the dot in

SNOBOL and the dash in COBOL.

Defining String Delimiters

Strings are delimited in most languages by the single quote, but the

use of double quotes is also common. The characters that delimit a

string lllclY be defined by the user with the STRING_DELIMITER

psuedo-definition. As before, all Jollowing characters on the line

(excluding blanks) will become str1.ng delimiters.

Once the editor has recognised the sJart uf a string, all characters up

to the matching string delimiter, or the end of the line will be

included in the string. If no matching quote is found on the same

line, one is provided - no warning ls issued. The use of both single

and double quotes as string delimiters (as in SNOBOL) permits the other

type to be used as part of the string (e.g. "It's" or "'hello"'). For

example:

PASCAL STRING_DELIMITER
,

SNOBOL STRlNG_DELIMITER , II

If no string delimiters are defined, the single and double quotes will

be treated as tokens without any special significance.

Chapter 3 GED - Ice Internal Architecture 82

Defining the Comment Syntax

GED is capable of handling coLDDent enclosed in a pair of bracketting

symbols, cODUOente preceded by a particular symbol terminating the

logical record (at any position within it) and comment preceded by a

particular symbol at a particular position in the record. As GED does

not pro~ide any mechanism for editing comments, to alter a comment it

must be replaced. To pre~ent the user from creating an arbitrarily

long comment, which would then be unalterable, the maximum comment

~ength 1s one line. This means that long comments must be broken in

many single line comments.

The presence of symbol in the START-COMMENT set (which i s defined in

the syntax) indicates the start of a comment. If an END-COMMENT symbol

has been defined, all characters between the start and ene of comment

symbols become part of the comment. This caters for languages that

bracket comments with special symbols, such as the use of left and

right braces in Pascal, and the exclamation mark (as both the opening

and closing Sl!Dbol) as in PLZ-SYS [Snook 1978] .

The tlefinitir.,n of a START-COMMENT symbol, but not an END-COMMENT aymbol

indicates that the remainder of the line after the start symbol is a

comment. Thia con~ention is used in Burroughs Extended ALGOL in which

a"%" is used as a logical end of record. Some languages ha"\fe the more

restricti~e convention that a certain symbol indicates the start of a

comment, but only if it is in a particular position on a line. For

example, Snobol uses an asterisk in column one aa the collllllent flag. In

this case, the correepondi~g column must be defined in a COHMENT_COLUMN

Chapter 3 GED - Its Internal Architecture 83

declaration. If the COMMENT-COLUMN declaration is omitted, no fixed

column is necessary for the START-COLUMN symbol.

The following declarations show the options for these

languages:

different

PASCAL

PLZ-SYS

Burroughs ALGOL

SNOBOL

START_COMMENT {

END_ COMMENT }

START_COMMENT

END_COMMENT !

START COMMENT

START_COMMENT

COMMENT_COLUMN

%

*
1

Defitting Delimiter Symbols

Comment surrounded by { & }

Comment surrounded by'

Comment is rest of line after%

Comment is rest of line

after"*" in column 1.

Host languages ignore certain

formatting purposes and to

delimiters are the blank aud

characters, using

terminate tokens.

them only for

'n\e most common

the end-of-line character. Howe'ier

languages exist in which other symbols may be freely used for

formatting purposes but are otherwise ignored. The language PLZ-SYS is

unusual in this respect, as no punctuation is defined in the language -

there ~re no epecific statement, declaration or expreaaion delimiter••

"nle comma, semicolon, colon, blank, tab, line-fe~d, return and

page-feed character• may be freely intermi•ed with the aymbol• of the

Chapter 3 GED - Its Internal Architecture 84

language. For GED to handle this type of language, there must be some

method of specifying that certain charactere are to be ignored. The

DELIMITER set is used to do this. GED's pretty-printer will reformat

the program when it is regenerated; ao only the printable characters

(comma, semicolon, colon), the blank, and the end-of-line character

ueed to be specified. The inclusion of the blank and end-of-line

characters in the set is awkward, as the blank is used for formatting

purposes and is therefore ignored,, ·and the END-OF-LINE indicates the

end of a set. Therefore special symbols are necessary to represent

these two characters within a set - the symbols :BLANK and :END-OF-LINE

are used. These symbols, if present, must occur directly after the

symbol DELIMITERS as otherwise multi-character lookahead would be

required to determine that ":BLANK" meant the blank, and not the

characters "." . "B" "L" "A" "N" and "IC"• All remaining printable

charact-.rs on the line will be incorporated in the set.

For examp~Ei!:

PASCA;.. DELIMITERS:BT,ANK:END-OF-LINE

PLZ-SYS DELIMITERS:BLANK:END-01-LINE, i

Chapter 3 GED - Its Internal Architecture 85

3.3 Requirements ~f the Internal Syntactic Representation

When using a syntax-oriented editor, the user cannot be expected to

enter the program in a continuous stream from start to finish.

Mistakes and forgotten items will cause the user to edit different

s~ctions of the program in a more or less random order. For example,

the user may request an IF statement, enter FOUND as the first part of

the (IF) "<expression>", and then receb,e the message "First Occurrence

of identifier . • FOUND" meaning it hasn't been declared. The user

may then want to stop entering the partially complete <e~pression> and

move back to the \fariable declarations to declare "FOUND". In the

process, it may also be necessary to ~jen add new T'lPE and CONST

declarations. There must be no requirement that suspended partially

coQplete parses be resumed in the re\ferse of the order in which they

were suspended - users have their attention distracted or forget. The

parsing technique used in a syntax-oriented editor must be able to

handle the suspension of a incomplete parse of one production (e.g.

<if_statement> is incomplete), and the resumption of any other

partially complete production.
~

With respect to their order in the

final program, the input stream of tokens may be discontinuous (because

of a jump from one production to another). and may not include all the

symbol• that will be present in the final program, as required

terminal• will be in•ertAd b~ th,~ editor. For example, the input

symbols for the above example (omitting cursor mo...,ement commands) would

resemble "IF POUND VAR FOUND BOOLEAN".

Chapter 3 GED - Its Internal Architecture 86

The disconnected nature of program d8"elopment greatly constrains the

choice of par9ing technique that may be used in a syntax-directed

editing environment, if syntactic correctness of the program is to be

guaranteed at all times. This goal could be attained by reparsing the

complete program after the entry of every symbol, but this is too

wasteful of processing power to be viable.

As the parse of productions may be suspended and resumed in an

arbitrary order, the state of the parser which production it's

parsing and where it's up tc within that production must be

accessible, so this information can be saved and restored. A parser

that stores this information implicitly cannot be used as ~here is no

way to access the current state. An exalllple of this type of parser is

the recursive descent parser, in which the parser state is distributed

throughout the chain of return address and local variables on the stack

- which is inaccessible. It is therefore imposs~ble to save and

restore the parser's current state. Thia saving and restoring of the

current etate is akin to a process ewap, and could form the baai• of an

interesting reeearch topic, a short description of which is given in

chapter fi~e.

A requirement of this implementation is that the syntax be regenerated

for display purpo•••• '11\e regenerated syntax is used for the

placeholder ~rompta and to display the production currently being

parsed• aa a guide to the uaer. '11\e editor is intended to read the

language syntax as data, and eo no information regarding the ayntax may

·be implicit (written into the code) in the paraer itaelf.

Chapter 3 GED - Its Internal Architecture 87

l1le mechanism chosen is to represent the data structure is a network of

trees. Each EBNF definition corresponds directly to one of the trees,

and the nodes containing non-terminal symbols are linked to the tree

defining their syntax. It is this interlinking of the trees that gives

the structur~ its network aspect. 'lbe structure is based on one

developed by Wirth (xxxx] for BNF, adapted to accomodate the loop and

optional constructs, and to enable the 3yntax to be regenerated from

the data structure. Each node in the structure (the syntax) may define

either a terminal symbol, or be a pointer to other syntax nodes.

Before describing the interconnection of these nodes and their fields,

it is necessary. to define the representation of terminal symbols within

the editor.

3.4 Representation of the Tokens of the Meta and User languages

A lexical analyser which breaks up the input character stream into

tokens is used to scan both the input syntax and user's input. The

output of the scanner is a sequence of tokens stored in three global

variables t "token" t "tokem,alue", and "string_node". "Token" is an

enumerated type and indicates the type of token. Some examples are:

SDIICOLON, DOT, DOLLAR, TWO_DOLLARS, STAR. PLUS, BmIN, WHILE,

IDENTIFIER, NUMBER, STRING, and COMMENT. IDENTIFIER, NUMBER, STRING

and COMMENT require further information to identify which input symbol

was entered. The variables "tokem,alue" and "etring_node" are used for

this - these two variable are optional, unlike "token" which is always

defined.

Chapter 3 GED - Its Internal Architecture 88

For identifiers• "tokenvalue" contains the symbol-table index of the

particular identifier. To conserve apace (because of Pascal's lack of

strings). the spelling of identifiers and reserved words (e.g. IF) is

not held in the aymbol-table itself. but in a global string area. The

symbol-table contains an index into the atring area and the length of

the identifier. Therefore once the symbol-table index of identifier is

known, its spelling may be found.

In the case of NUMBER, "tokenvalue" contains the number's value. For

STRINCs and COMMEN'rs, the global variable "string_node" contains a

pointer to a record containing the string (or comment), its length and

its delimiting characters.

Token, Tokenvalue and String-node

Routines are provided within the scanner so that,, given the triplet

"token, tokenvalue, and string_node" for a particular token, the
.

scanner can regenerate its textual form. 11\erefore it is unnecessary

to store n textual representation of a program it can be

" reconstituted from its stream of tokens. Obviously all formatting

information is lost when this is done. Although a triplet is alwnya

stored when it ia necessary to identify a token uniquely, !or b~evity

the triplet rill be referred to aa a "aymbol". These symbols are

store~ in one variant of the nodes that make up the ayntax the

"terminal" variant of the syntax node.

Chapter J GED - Its Internal Architecture 89

A variant record structure is used to represent the th~e~ different

types of wyntax record node. A tag field with tbe record indicates tbe

variant applying to a particu~ar node which may be one of "terminal",

"header" and "non-terminal". fllese are used to represent terminals,

the names of productions, and non-terminals productions respectively.

flley will be covered in turn.

The Representation of Terminal Symbols within the Syntax Tree

The terminal variant of the syntax node has three field to contain the

"token", "tokenvalue" and "string_node" fields of the token it

represents. For example, nodes representing a semicolon, WHILE, an

identifier,

information.

a number and a string would contain the following

~emicolon TOKEN • SEMICOLON
TOKENVALUE • unused
STRING_NODE • unused

WHILE TOKEN • WHIL'f

.. TOKENVALUE • unused
STR.ING_NODE -un,1eed

found (identifier) TOKEN • IDTOKEN
TOKENVALUE • S)'1:.bol-table index of "found"
STllING_NODE • unused

19731 TOKEN • NUMBER
TOKENVALUE • 19731
STIUNG_NODE • unused

Chapter 3 GED - Its Internal Architecture 90

'hello' (string) TOKEN
TOKENVALUE
STRING_NODE

string
length
start_char
end_char

• STRING
• unused
- 0

I Points at string node
V

hello
5 ,
, The start and end chars

may be different for
comments.

All tokens stored within the editor may be traced back to terminal

syntax nodes.

J.5 .Qescribing ~he Names Of Productions

A node i~ associated with the left-hand-side of each production and is

used to store the production's name, and point to its definition. This

node is called a header (syntax) node. All the header nodes are linked

together by the pointe~ field ALT (see diagram below) and so by

following the links all productions (and their names) can be found.

This enables a search for the appropriate definition to be undertaken

when linking a non-terminal node into the rest of the structure.

" Because the names of non-terminal productions are delimited by"<" and

">" tu the input syntax, the non-terminal nat11e may contain any

printable character. Blanks may be present in the production's name,

but are ignored when the name is stored. This is to enable the uae of

blanks to tidy the layout of the syntax, but avoid the problems that

would occur if <withetatement>, <vi.th statement>. < with statement>

were deemed to be different. Rote that the representation of

non-terminal names is quite distinct from the representation of

identifiers - any printable character may be uaed inside a non-terminal

Chapter 3 GED - Its Internal Architecture 91

name.

Header syntax nodes contain two pointer fields which point to the (the

header node of) the next production and to the syntax nodes

corresponding to the right hand side

reapecti"ely.

of

For example, the productions:

<Z> : :• A

<Y> : :• B

<X> : :• C are represented as:

o Root Node of Syntax Description
I
I
V

Type• Header
Name• <Z>
Next 0--------------> Type• Terminal
Alt o Name·· "A"

I Next• nil
I Alt • nil
V

Type• Header
Name• <Y>
Next o----------> Type• Terminal
Alt o Name • "B"

I Next• nil
I Alt • nil
V

Type • Header
Name• <X>
Next o--------->
All; • nil

Type• Terminal
Name • "C"
Next • nil
Alt • nil

the EBNF definition

Chapter 3 GED - Its Internal Architecture 92

When the end of the grammar is encountered, any production with a null

"next" field (no associated production) has its name printed with the

message "No Definition for <undefined name>" •

..
Now that terminal symbols and productions hl.l"le been defined, some

mechanism of describing aequenc~s of these items is necessary. To

accomplish this, a new form of node ia used.

3.6 Non-terminal Syntax Nodes

The non-terminal node is used to construct sequences of nodes, to

indicate alternative productions, and to prcn-ide a mechanism to

represent the optional and list produr.tions.

l1le "non-terminal" syntax node has a "next", an "alternative" and a

"definition" field. These fields are to refer to the successor to the

oroduction pointed at by the current node or a possible alternative to

it. However as the non-terminal node does not define a terminal

symbol, some method of indicating which production must be paraed is

necessary. the "definition" field is used for this and points to other

syntax nodes, which may be terminal nodes, header nodes, or other

non-terminal nodes. The non-terminal node provides the mechanism to

build up the attucturea neceaaary to repre1ent the construct• of

extended BNF. 'nle following examples illustrate the ~•rioua conatruct,

an~ their corresponding data structure.

Chapter 3 cm - Ira IDternal Architecture 93

1.1 eoncatenatton and Alt•rutton of Prodyctton•

Th• preaence of aequencea or alternatt~•• ln a ar r alvaya cau••• ao

extr• l•~•l o(ayntax nodes to be coaet ructed. Sequence• of

production• are repreaented ln the data etructure by • llet of

non-ter11tnal nod••• tbelr "next" polnt~r• lndlcattna the follovtaa

non-ter111nal node la the ••qu.ence (fl& 3.2). The aon-teralnal poloter•

aay point to any tt .. ayntactlc coaatruct. includin1 other aequetae••·

> Type • lon-Tal Type • llon-Tal Type • lloa-Tal
Next o- -> llut O• > llext - nu
Alt - on Alt • nil Alt • all
NTptr 0 lffptr 0 !ffptr 0

I I I
I I I
I I I
y V V

lat thing in 2nd thing in Lut thing la
aequence aequence aequence

Fig 3.2 - sntax Mode Structure uaed to 1e2reaent Seguence•

Alternati~e• in the graamar also cause the generation of another layer

in Nie a111tax atructure (fig 3.3). Thia layer being diatiact froa the

layer of nodes used to indicate concatel'\Atiou. ~eepiag the layer• for

the different conatructa separate siapltfies the regeneration of the

printable repreaentation of the syntax.

Chapter 3 GED - Its Internal Architecture 94

------> Type • Non-Tml Type • Non-Tml Type • Non-Tml
N~xt • Nil Next • nil Next • nil
Alt o-----------> Alt o----------> Alt • nil
NTptr 0 ~Tptr 0 NTptr o

I I
I I
I I
V V V

1st Alternati've 2nd Alternati've Last Alternathe

Fig 3.3 - Syntax Node Structure used to Represent Alternati~es

Regenerating the printable representation of the syntax corresponds to

treating the syntactic structur~ for each production as a tree, end

then performing a depth-first scan over the tree, stopping whene~er a

header node is encountered. A pointer to a header node is not traced

any further. The na~e of the production is printed instead.

Examples of Simple Syntactic Productions and their Representation

<Z> :•AB is represented as:

Type • Header
Name • <Z>
Next o----------> Type -Non-Tml Type • Non-Tml
Alt • nil Next o--------> Next • nil

Alt -nil Alt • nil
NTptr 0 NTptr 0

I
I
I
V V

Type • Terminal Type • Terminal
Name • "A" Name • "B"
Next • nil Next • nil
Alt •nil Alt • nil

Chapter 3 CED - Its Internal Architecture

Alternatives to a Production

<Z> :• A 8

Type• Header
Name• <Z>

ls represented as:

Next
Alt

0------------> Type• Non-Tml
• nil Next• nil

Alt 0------------->
NTptr o

I
I
I
V

Type• Terminal
Name • "A"
Next• nil
Alt • nil

Type• Non-Tml
Next • nU
Alt • nil
NTptr o

Type
Name
Next
Alt

I
I
I
V

• Terminal
• "B"
• nil
• nil

The Use of Non-terminal Names within Productions

<Z> ::• <Y> B
<Y> ::• A are represented as:

Type • Header
Name -<Z>
Next 0------------> Type a Non-Tml Type • Non-Tmi
Alt 0 Next o-----------> Next • nil

I Alt • nil Alt • nil
I NTptr 0 NTptr 0

I I I
I I I
I 1---------------- I
V V V

Type - Header Type • Terminal Type • Terminal
Name - <Y> Name • "A" Name • "B"
Next o---------> Next • nil Next • nil
Alt • nil Alt • nil Alt • nil

95

Chapter 3 GED - Its Internal Architecture

Example of Non-terMinal Symbols, and Alternation

<Z> ::• <Y> B
<Y> : :• '1. are represented as:

• Header
• <Z>

Type
Name
Next
Alt

0--------------> Type• Non-TIDl
o Next• nil

Type• Non-Tml
Next • nil

-I Alt o-----~-------> Alt • nil
NTptr o I NTptr o

I I
I I
I 1-------------~-------v V

Type• Header
Name• <Y>
Next 0------------->
Alt • nil

Type
Name
Next
Alt

• Terminal
• "A"
• nil
• nil

Exatnple of Grouped Symbols 1 & . • d Concatenation

<~Z> ____ :_:_•-~<~A B_) ___ c ts represented as:

Typt? • Header
Namf'? • <Z>
Next o---------->
Alt • nil

Type• Non-Tml
Next• nil
Alt o----------->
NTptr o

V
• Non-Tml Type

Next
Alt
NTptr

o-----

I
V

• nil
0

I

• Terminal
• "A"

I
I
I
I
I
V

Type•
Name•

I
I
I
V

Type • Terminal
Name • "B"
Next • nil
Alt • nil

Type
Next
Alt
NTptr

• Non-Tml
• nil
• nil

0

I
I
I
V

Type• Terminal
Name• "C"
Next• nil
Alt • nil

Tenainal
'B'

Type
Name
Next
Alt

• nil
• nil

Next• nil
Alt • nil

96

Chapter 3 GED - lta Internal Architecture

Example of Grouped Alternatt~es, and Concatenation

g> ::• (A f B) C is represented as:

Type • Header
Name• <Z>
Next o--·---------> Type • Non-Tlal Type• Non-t.l

Next • nil Alt • nil Next o------->
Alt • nil Alt • nil

NTptr o NTptr o

Type -

I
I
I
V
Non-·rml

• nil

I
I
I
V

• Terminal
• "C" Next

Alt
NTptr

o--------
Type
Name
Next
Alt

• nil

I
V

Type • Terminal
Name • "A"
Next• nil
Alt • nil

0 I
I
I
I
V

• nil

Type • Terminal
Name • 'B'
Next• nil
Alt • nil

Nested constructs fonn new subtrees in the data structure

97

and

therefore. when it is being used to guide a parser, the structure

should be scanned depth-first. A parsing procedure designed to work

with the constructs gi~en so far is illustrated in fig 3.4.

Chapter 3 GED - Its Internal Architecture

functlon PARSE (start_~ode: syntax_node_.J>tr)
~ar found : boolean;
begin

case start_node-.node_type of

boolean;

terminal begin {See tf input token same as in node)

98

found:• (input_token • etdrt_node-.token);
if found then Cet_next_to~en; {into globals)

end;

non_terminal : begin {Try Depth-first, then alternati~es)
found:• parse(stett_node·.non_terminal_.J>tr);
1f not found t;1en {TRY ALTERNATI\'£}

header
end; {case}
parse :• found;

end; {of PARSE}

found :• parse(start_~ode-.alternati~e);

if found then {Trace following pro~J~~ions)
found:• parse(start_noc:te·.nexr};

end;

: found :• parse(start_node-.next);

Fig 3.4 - Parsing Procedure to work vith Syntactic Data St~cture

3.8 The Data Structure used to Represent the Optional Symbol

In the constructs described so far there is no mechanism to describe

the empty production, and therefore no method of defining a structure

to represent the optional production (e.g. [Z]) or the iterated

production (e.g. {Z}). There must be some method in the structure of

indicating that if the current input symbol does not mc:tch the next

symbol in the grar.maar, then that production may be skipped. This

situation is co~ered in GED by defining a special terminal symbol named

"EMPTY" that will match any input symbol, and therefore not cause a

failur,p, of the parse. "EMPTY" is special in that it does not consume

the input symbol, which may then be matched against following

production~. Therefore EMPTY does beha~e in the same manner as the

production that deri~•• the empty string.

Chapter 3 CEO - lta Int, ,al Archite~ture

Example of an Optional Production

For exaMple, <Z> ::• [A] B 1a represented as:

Type • Header
Name • <Z>

O·----------> Type• Non-Tml Next
Alt • n · l Next o---------->

Type• Non-TIDl
Next • nil

Sp~cial

Alt • nil
NTptr o

I
I
I
V

Type• Hon-Tml
Next• nil

Alt • nil
NTptr o

V
Type • Terminal
Name • "B"

Noc e Indicating--->
the OPTIONAL
Production Alt o------ Next • nil

ntptr o

V
Type • Terminal
Name• "A"
Next• nil
Alt • nil

Optional Production

I
Alt • uil

V
Type• Terminal
Name• EMPTY
Next • nil
Alt • nil

This node will match any input
symbol without consuming it.

3.9 The Data Struct11re used to represent the List Construct

99

The list construct differs from the optional construct only in the
..

number of times the production may be present. For an optional

production, the production may be present once or not at all. This is

represented by either a parse of the non-termiLal pointer of the node

indicating the optional production (indicated in the diagram abo..,,e), or

a match of the EMPTY production (represented by the terminal node

EMPTY). If howe..,,er, the "next" field of the special node pointed to

itself, the non-terminal field could be parsed as long as the input

symbol matched the optional production. This is illustrated below:

Chapter 3 GED - Its Internal Architecture

Example of an Iterated Production

For example, <Z> ::• {A} B ls represented as:

Type • Header
Name• <Z>
Next
Alt

o---------> Type• Non-Tlal Type
Next
Alt
NTptr

• Non-1'11ll
• nil Next o--------->

Alt • nil
NTptr o

• nil
• nil

0

I
I
I
V

Node Indicating
Repeated
Production

--->
V V

Type• Non-Tml
Next o----- Type

Name
Next
Alt

• Terminal
• "B"

Alt o-------- • nil

Type
Name
Next
Alt

I
V

NTptr

• Terminal
• "A"
• nil
• nil

Repeated Production

0

I
I
I
I
I
V

• nil

Type • Terminal
Name • EMPTY
Next • nil
Alt • nil

This node will match any input
symbol without consuming it.

100

When e~ent~ally the input symbol is not in the start set of the

iterated production, the EMPTY field will match, terminating the list.

If the input symbol is not in the start set of the repeated production,

the node EMPTY will match immediately, therefore the production pointed

at by the "non-terminal" pointer of the special may be present zero,

one or many times. The modified parsing procedure to handle the

presence of the empty symbol (and therefore the optional and list

productions) is shown in figs.

Chapter 3 GED - Its Internal Architecture

function PARSE (start_node : syntax_node_ptr) boolean;
var found, token_match, empty_match : boolean;
begin

case start_node-.node_type of
terminal begin {See if input token same as in node}

101

token_match :•(atart_node-.token•input_token);
empty_match :•(start_token-.node • EMPTY);
found:• (token_match OR empty_match);

non_termina!

{Don't consume token if EMPTY match)
tf token_utch then get_next_token;

e~;

begin {~:, Depth-first, then alternati~es}
found:• parse(start_node-.non_terminal_ptr);
if not found then {TRY ALTERNATIVE)

found:• parse(start_node-.alternative);

if found then {Trace following productions}
found:• parse(start_node-.next);

end;

header : found :• parse(start_node-.next);
end; {case}
parse :• found;

end; {of PARSE}

Fig 3.5 - Parsing Procedure including knowledge of EMPTY symbol

The EBNF grammar in fig).1 is LLl and may therefore be parsed by a

recursi~e descent parser to build a graph structure representation of

the s111tax. The syntactic data structure is built by a recursive

descent parser designed to parse the syntax given in fig 3.1. 'nle

first production in the syntactic lefinition is alway taken to be the

root node. This is arbitrary, but in practise 1~es not cause any

inconvenience.

Chapter 3 GED - Its Internal Architecture 102

An example of the data structure built for a small grammar (fig 3.6) is

illustrated in fig J.7. In order to enable the diagram to fit on one

page. in fig 3. 7 and in all future diagrams of the syntactic data

structure. when terminal symbols occur in a sequence (e.g. PROGRAM is

~he first of a sequence}, ~he terminal symbol will be drawn as though

it were part of the parent node - the one used to link the items in a

sequence together. This is simply to clarify the diagrams by

eliminating a le~el from the stru~ture. It is not to be construed as

indicating a change in the syntactic structure from that pre~iously

defined.

<program> ::• PROGRAM <program_name> [<output_file>] ; <block>

<program_name>::• identifier

<output_file> ::• identifier

<block> ::• Bf.X;IN <statement>; {<statement>;} END

<statement> ::•IDENTIFIER:• <expression>
IF <expression> THEN <statement>

<expression> ::• IDENTIFIER
$$

NUMBER

Fig J.6 - Syntax used to Illustrate Syntactic Data Structure

$

$

$

$

$

$

Chapter)

ROOT _NJDE

CED - Its Internal Architecture

IDENTIFIER

Te.,.ainel ,
Alt

IDENTIFIER

T•"•in•l
Neat
Alt

<,.,.01_naae5I

Non-tal ,
Alt

NT '"

<•••"•••ion>
Non-tal
.... t
Alt
NTptP

IDENTIFIER

Tef'ainel
Neat
Alt

<••P"•••ion
Non-tal
Neat o
Alt o
NTpt"

•THEN•

NUf9Elt

Teratnel
Neat
Alt

E113·7- Pel• ISrvctvr• r,r Sb• ot:ssnr •t fl• a.

103

Chapter 3 GED - Its Internal Architecture 104

The Syntax Node Variants - A Summary

Each syntax node defines eithe~ a terminal symbol or a pointer to other

syntax nodes. A taJ field in each node indicates its type. which can

be either a terminal symbol. a non-terminal (a pointer to other nodes).

or a ''header" node - a node defining the start of a production. The

header node corresponds to the left hand side of an extended BNF

definition.

The use of a separate type of node for a header is because of the need

to regenerate the syntax tree. The print procedures recursi~ely scan

the syntax tree, but the must stop when a header node is encountered.

Only the non-terminal name mus: be printed. not a trace of the actual

production. Otherwise. the

11 IF <expression> THEN <statement>"

regenerated

would not contain

syntax

the

for

names

"<expression>" and "<statement>". Instead, all the possible options

and alternati~es that <expression> and <statement> aay deri~e would be

enumerated explicitly. In the case of the grammar in fig 3.6,

<expression> would be expanded to "IDENTIFIER NUMBER';, and

<statement> would be expanded to "IDENl'IFICR :• <expression> IF

<expression> THEN <statement>". Also it is possible to get into an

infinite recursi~e loop, as would happen in this IF statement (as

<statement> occurs within the IF statement).

Chapter) GED - Its Internal Architecture 10~

3.10 §toring a Representation of the User's Program

The representation of a program must satisfy two primary requirenaents.

The first is the ability to suspend a parse at any stage and carry oo

with another production, which may, itself, have been suspended. the

second ls to enable a printable representation of the program to be

obtained, even if the program is incomplete.

Although the organisation of the data structure used to represent the

syntax 1s obviously closely related to that of the user'& pr~gram, it

is not suitable for storing such a program. A syntactic item such as

<expression> ls defined only once in the syntax data structure, where~s

many instances of it may occur in a program. Conversely, the syntax is

capable of specifying an arbitrary number of repetitions of a

construct, but has no way of recording the actual number of

occurrences. This information must be recorded in the parsing

procedures, either implicitly or explicitly.

The parsing function given in fig 3.5 will parse an input stream and

return a verdict of success or failure (as true/false), but it is not

directly suitable as the parser for a syntax-directed editor. This is

because, like a recursive descent parser, it remembers which

productions have yet to be completed in the trace ~f return addresses

on the (implicit) return address stack. Therefore the parsing function

is satisfactory for a continuous strea2 of input tokens, but not the

disjoint segments of input (intended for different productiocs) found

in a syntax-editing environment.

Chapter 3 GED - Its Internal Architecture 106

~-11 Recording th~ State of a Paree~: ... 1!!.tlt.!>ut a Stac~

To store the state of the user's program, GED uses a data structur~

wi.th the same topography as the syntactic data structurP., but which

contains only the terminal symbols and non-terminal productions

actually present in the user's program in its current state of

refinement.

The nodes in this structure are called "prograo nodes" to distinguish

them from the nodes used to repr~sent the syntax {syntax codes). Each

program node contains a pointer !nto the syntactic data structure to

define the syntax of the object {terminal or non-terminal) it

represents.

Each instance of a syntactic construct (such as <statement> or

<expression>) causes the creation of new progr~m nodes that represent

just that construe~. Therefore no ambiguity can arise regarding the

actual number of of occurrences any oue construct - only a specific

number of program nodes pointing to it will be encountered in the

program tree•

Although a grammar may specify an infinite number of ~iable strings,

any par:icular program will contain only a saall number. The pointer

to the sy:itactic definition enables the editor to determine whether an

input symbol is in the start set of the syntactic productions

associated with a particular program node. For example, if a

<statement> is ,ossible at a partic~lar place in a pr~gram, a program

node is allocated to indicate this. The node's definition field

Chapter 3 GED - lts Internal Architectur~ 107

pointer to the header node for the production <statement>, and provides

the necessary link between the current atatr of the program and all of

its possible syntactically correct deri~a:ions.

A program node whose definition field points to a non-terminal

production, such as <statement>, may not as yet h-1·,e any terminal

symbols associated t."i th it. Su~h a program node is known as a

placeholder - it is standing in for, as yet unspecified. terminal

symbols. Placeholders occur when a non-terminal production has

alternntives, 9uch as the ~arious types of statement, but the user has

not indicated which option is wanted. A prograro that contains

placeholders is ob~iously incooplete, as the very pres enc,, of

placeholders means there are productions that do not produce terminal

symbols. Howe'\fer, as the editor is designed to be interacth,e, a

displayablP representation for placeholders must be found.

The obvious solution, and the one uBed in GED, is to display the

syntactic derivation of placeholders instead. It is therefore crucial

that ,tJ printable representation of the syntax be obtainable from the

syntactic data structure. To make sense, the display should not trace

any header nodes encountered (i.e. "<statement>" should be displayed,

not tbs·, options of IF <expr> THEN... & WHILE <expr> DO • • • & • ••) •

Oaapter l CID - It• lnt•r•l uc•ttecture lOI

1.12 P!t Ialtlfi. Pora of tht lt91FM Id• JUt

'ftle tnlttal fora of the proar- IIOd• tree I.a ataplJ that of tba t ..

lnel a,atu d•flattloa (fta 3.1).

<, ... ,_n--.>

<0111.-ooolon>
Ho
AU o

+

,

,,,
.,

JDENTll'IE1t

ToPainol
Nolt 0
Alt 0

IDENTIFIE1t

To.-alnol
..... 0
Alt 0

Non-tal
Moat o-­
Alt o
NTpt?

•
<os,.-ossion>

Non-tal ,
Alt o
NT11h-

IIIENTJFIDI

Ne11-tal
Alt o
NT11t•

I: J Un•
N111-tal 0
AU
NTpt.-

LODP-+Dt
S.,ntoa

., .
Ot"alnal
Neat•
Alt o

<os,l'Osslon>
Non-tel
Neat o
Alt o
Irr ti"

0

.... 11101
N•at o
AU o

U.TV
ToT"ai--.

Nost o
Alt o

C. ... Mill
-tell •nz

input••• ol

108a

\
\

\

Chapter 3 CED - Its Internal Architecture 109

A program node ls allocated for all productions, all possible

pr~Juctions and all terminal symbols present that are directly

derlvable from the root node and are essential to form a complete

t>rogram. This ts why <block> has been expanded to "Btx;IN <statements>

. . . END" •

The program node tree lays out the order of the productions (and

point~rs to their definitions) that must be present fer the program to

b~ valid. It is at this point that this parser differs from the more

usual table-dri~en parser.

The expansion of a placeholder c~uses GED to create new program node~.

This is illustrated by the expansion of <statement> to an IF statement

in fig 3.9. This is distinct from the use of a data structure to guide

a recursive parser. Rather than remembering which productions have yet

to be completed on a stack, the parser stores this information 1s

stored expl:citly in the newly created layer in program nooe tree.

Therefore the nesting of one <statement> vithin another does not cause
~

any information to be saved implicitly. 'lbe expansion of the newly

created statement placeholder to another IF statement is shown in

fig 3.10. All information concerning the state of the parse is encoded

in the state of the program node cree.

Chapter 3 CED - lts Internal Archtt~ct~re 110

Koot Nole ef ,~•IP•• No•• TPee

Fig 3.9 - Th~ Expansion of statement to If statement_

Chapter 3 GED - Its lntern•l Architecture 11 l

~--· ~ ,. , .. .

Fig 3.10 - The expansion of If statement to an If statement

Chapter 3 GtD - Its Internal Architecture 112

3.13 The Program Node Field Definitions

The Program node PNODE TYPE field

This is a tag field indicating which variant oi a pr~~rsm node 1•

represented by this node.

symbol" and "pl.1ceholder".

There are two major "arianta, "terminal

For "tenainal symbol" program nodes, the actual symbol re.p.re.se.nt.e.d i.s

stored in the program node itself. Sufficient infonution la sa"ed in

the node to enable the symbol to be regenerated for display purposes.

A program node that has not been expar.ded is called a "placeholder".

For "placeholders" program nodes, the def tnit ion of the node in terms

of the syntax is indicated by the "de fin it ion" field.

The two other "ariants,, "loop node" and "optional" program nodes

indicate the "zero or more" {{A}) and "zero or one" ([A]) constructs

respecti"ely. This tag field is, strictly speaking, redundant. 'nle

~

oame information could always be obtained by following the "definition"

field pointer to the syntax e,,ery time the program node type is needed

- vhich is often. Fo~ clarity during programming, and run-time

efficiency this field has been included.

The Program node DEFINITION field

This field always points into the aynt&X definition. It indicates

which syntactic production must be satisfied to completely expand the

current node. For example, if a statement was necessary at a

Chapter 3 GED - lts Internal Architecture 113

particular point, this would be denoted by a program node with its

definition field pointing to the header for <atatemen:> in the syntax

tree (figs).7, 3.8). As the definition field ts always present, a

printable representation is always available for all program nodes.

For placeholders, the syntactic derivation is printed and for terminal

symbols, the actual symbol.

The Program node EXPANSION field

This link is a pointer to the expanded (more detailed) definition of

the syntax definition pointed at by the current node. This expansion

is in terms of other program nodes. An example would be a node that

pointed to the syntactic production for <statement>. If the expansion

field was not null, it would point to the possible expansions of

<statement> in terms of terminal symbols and placeholders. One

expansion could be an IF statement (fig).9). If howe~er, the

expansion pointer is currently nil, then no more detail is available

about a particular derivation.

When a program is complete all the expansion fields, with two

exceptions, will be be non-nil. The exceptions are for terminal

symbols and for optional productions (loop nodes and optional nodes).

For terminal program nodes, the node contains the definition of the

symbol it represents and therefore no further expansion is possible.

In the case of optional productions ([A] or {A}), the program is

complete without further expansion, and so the expansion field may be

nil.

Chapter 3 CED - Its Internal Architecture 114

The Program node CONTRACTION field_

This is a pointer to the ancestor of this program node. It is the

t'pposite of the "expansion" link.

will eventually lead to the root node.

Following the contractions link~

ThJ root node is the only

program node that may have a null cool.action pointer. The root

program node will have its definition field pointing to the root node

of the syntax definition always the first production. This field

enables the user to ascend to program tree and is used to encompass

sections of the program in preparation for a delete command. 'Ibis will

be explained later.

The Program node NEXT field

This is the pointer to the nodes at the same logical level. The "next"

field provides the links necessary to indicate sequential productions

as in "PROGRAM <program-name> ;

field of NlL.

The Program node PREVIOUS field

" The last node in a list has a next

This is the opposite of the "next field". lhe first program node in a

list has a "previous" field of nil. As will be explained later, this

field is used to repair pointers when performing an UNDO operation.

Chapter 3 GED - Its Internal Architecture llS

Suspending a Parse

The existence of the program node tree pena1ta the parse to be

suspended or resumed at any stage, aa the current state of the parse 1s

stored explicitly in the program nodes themsel~ea. 11\is is illustrated

in figs 3.9 & 3.101 where the placeholder for <statement> has been

expande~ before those for <program name> and [<output file>). '11\e need

for an expansion of <program name> is indicated by the presence of the

"placeholder" prograll\ node with a null expansion field. Note that the

syntactic definition is a"ailable through the pointer to <program name>

in the syntax. As the syntax for <program name> cannot deri"e DIPTY,

an expansion is required. Bowe...,er 11 this does not apply to the paren i.

node of the <output file> as chis node may deri"e EMPTY and therefore

need not be expanded.

Chapter 3 GED - Its Internal Architecture 116

3.14 Automatic Inclusion of Necessary Terminal Symbols

The editor will automatically include all non-optional terminal

symbols. This is illustrated by the inclusion of the END to match

BEGIS, and a THEN when the IF of an if statement is entered. There ar~

howe~er, many other symbols that aust be pre~ent, some examples from

Pascal being the colon in a type definition, and the dot at the end of

a program. These are also included.

The location of terminal symbols for automatic inclusion is aided by

the parallel nature of the program and syntax node trees. If a program

node has as its definition a syntax node which defines a terminal

symbol and has an "alternati"e field" of nil, then that symbol!!!:!!£. be

present in the final program and is provided without user inten,eution.

This automatic inclusion is necessary not only at the top le..,el but

must be applied recursi..,ely as any productions included may contain

other required productions and terminal symbols. A single level of

this is illustrated in fig 3.7 with the production "<block>", which is

necessary. Therefore as the BP.GIN and END that occur within <block>

ha"e no alternati..,es, they must be included also. This automatic

inclusion is propagated as far as possible to include all non-optional

terminal symbols in all non-optional productions.

The automatic inclusion of symbols stops vhen an choice of directions

is indicated by the syntax (the "alternathe" field is not nil).

Further de..,elopment of the program node being built is abandoned, but

its definition field still points to the production with alternati~es.

Chapter 3 CED - It• Internal Architecture 117

When the uaer indicates by entering a aymbol which alternative is

wanted, that alternative together Vi.th all necessary tub-productions

and non-optional ter11inal symbols will be included.

An exception is made in the case of any placeholder• that derive the

terminal symbols "identifier", "number" and "at ring" aa the actual

symbol must be provided by the uaer. However, if the automatic

inclusion of non-optional expansions ls carried to the liait, the

information provided by the upper level placeholders can be lost as

placeholders are alway reduced to "identifier", "nucber" or "string".

This is illustrated in fig 3.11, where the placeholder <proLname> has

been expanded to "identifier".

This is syntactically correct, but from a user's point of view, it is

<,"'ow_n-•>
tt.•4'•1"' , --­
AU

.. ,. ...

IDENTIFIER~ ~~1:n1~n
T•r•f.n•J
N•at
"lt

EU J1
'No'• Un••••nftf 9&Y1I • l•SStr l!ttNS - L14YiDI <PrPI nn,, ---- ------

much more informative to have the placeh~lder "<prog_name>" instead of

"identifier". The "help" information vill atill •hov that an

Chapter l GED - Its Internal Architecture 118

identifier is a correct choice. In order to inhibit the development of

these undesirable expansions, the editor checks its syntax before

building the expansion of a subtree, to see if it e~entually produces

just one of "identifier", "number" or "string". If so, no further

e~pansion is done. This lea~es the upper le~el placeholder unexpanded

and therefore its name is used as the prompt.

Chapter 3 CED - Its Internal Architecture 119

3.15 The Cursor - the Concept of a "C11rrent Node"

At any stage, a single program node must be aelecteii or :he target for

any alterations to the progrJtll tree by ti•e user. The "cursor" is a

pointer to that node and through its "definition" field to the

syntactic definition of that n::>de. This is the production that can be

parsed if the user enters a symbol. The cursor position will be

changed by one of two actions. The first is the entry of a correct

input symbol, in which case the cursor will mo~e to the next possible

insertion point. The second is the entry of a cursor movement command-

3.16 lnlere does the Cursor Stop?

The cu~sor can, by various co~nds, be made to stop on all ~'llexpanded

placehclders and optit,ual nodes!' on all loop r.odes and on specific

user-entered symbols (otherwise they couldn't be changed). These are

its primary stopping points. During the creation of subtrees (by

expanding a placeholder, optional or loop node) the cursor will stop

sequentially on each unex?anded placeholder, optional or loop node in

the subtree. If the ori~ind node is a loop node, then once all the
~

nodes in the subtree have been expanded (or skipped) the cursor will

again stop on the loop node to permit another subtree. The cursor will

then move to the next insertion point in the program, regardless of

which subtree it is in.· This ocder is illustrated for a small program

in fig 3.12.

Chapter 3 GED - Ita Internal Architecture 120

0
Fig 3.12 - Stopping Nodes from from Beginning to End

Chapter 3 GED - lts Internal Architecture 121

In addition, for purposes of del~ttng specific subtrees, the cursor uy

be made to ascend the tree (to encompass aore and more of the prograa).

It Will atop only on program nodes that correspond to complete

syntactic productions (i.e. the definition field points at a header

node), optional nodes and loop nodes. 'Dlis ae4ns that only subtrees

corresponding to syntactic units aay be clipped or deleted. 'Dle

stopping nodes while ascending the program are shown in fig 3.13. 'ftle

"ascend" command (Up-arrow) only alters the cursor position. It is

non-destr--act1',e as distinct from the "delete" command which reao"es the

subtree below the current node.

Chapter l GED - It• Internal Architecture 122

0
Fig 3.13 - Stopping Nodes while Ascending Program Tree

C?lapter 3 GED - It• Internal Architecture 123

3.17 The Incluaion of User Syabola into the Program Tree

Any symbol that 111ay etart the syntactic production• directly deri~able

from the definition field of the current program node ta acceptable at

the cursor position. For example, in fig J.7, the <atateaent>

placeholder has as altemati~ea either the aeaignaent atateaent or the

IF ~tateaent. 'lberefore the only acceptable eymbols are eit4er an

IDENTIFIER or an IF. Th~ entry of any eymbol by the ueer vtll cawte

the editor to attempt to find a aatcb among the etart ayabole of all

the alternati~e productions deri~able from the current node. One of

three things can nov happen, depending on whether or not the eylll,ol 1•

in the current node's atart set and if not, whether the current node

can deri~e the eapty production.

The SYlllbol is Rot in the Start Set of the Current~

If the input eyabol is not the start symbols for the any of the

productions and no production can deri~e t~e ewpty symbol, then the

ayabol is incorrect in the current context. The user is notified of an

error.

If the production may deri~e th~ empty ayabol, then following prograa

nodes are checked to see if the input a,-,ol !sin their start sets.

If not, then the aymbol ia incorrect (ar. the current position) and the

user is notified. If a program node vith the syaiol in its atart aet

is found, it is treated as though it were the current node. and the

syabol used to expand it. An exaaple of this would be the entr::, of

"IF" vtth the curaor on the optional node "(<output_name>}" (fig 3.8).

"IF" ie a reaened vord used in <stateaent> and is therefore not an

Chapter 3 GED - It• Internal Architecture 124

identifier and so not in the &tart •et of <output_naa-=>. Bove"er,

<output_aame> is optional and therefore

examined. The reaened word IF may start

placeholder for <atateaent> la expanded

following prograa nodea are

• <atate•nt> and 80 the

to "IP

<statement>". '111e effect is aa if the cureor vaa on

<expr•••ion> THEN

the <statement>

node. If the expansion aelected by the lookahead ia •• the u•er

intended, all ia well. Bove"er if not, the •udden chanae in the

position of the curaor and the incorporation of an unexpected con•truct

at an unexpected location can be confuaiq. Although the lookahead can

produce unexpected results, it la useful, •• it a"oid• the need to

locate the specific node for a known input •Jllbol accurately. Note

that this lookahead vill only akip o,,er optional nodes - the occurrence

of a required placeholder will cause the search to be abandoned. An

unexpectecl expansion caused by the lookahead can remo"ed with the undo

command, vbich vill also cestore the cursor to its pre"ioua position.

If a Snbol 1• in the Start Set of the Current Node

If the current node poia.ta at "identifier", "number" or "etring" and

the input ~syabol 1• one of these claaaea of syabols, then a teraioal

symbol prograa node ia created and the actual ayabol stored in it• The

expan3ion f~eld of the current node ia changed to point to this nev

program oode. 'flleae are the only pauedo-terainals that aay be expanded

to actua! terainal symbols.

All other terainal symbols are used to guide the editnr. 'l'he autoaatic

inclusion of terainal ayabols and subtrees (t.e. production•) can only

proceed while no aahigutty exists regarding the possible next •Jllbol.

Chapter 3 GED - Its Intemal Architecture 125

In other words, until an alternati~• ta encountered in the ayntax. An

input aymbol pro~ided by the uaer indir.ates wich alternati~e ia wanted

and enables the editor to continue its coaatruction of the proaraa

tree. 'lbere are two foraa the •lternati~ea can take, they can be

either terainal ayabols or pointer• to.other productions.

The firat caae, when the alternatt~e• are terminal symbols, require• no

special treat~nt. 'nle entry of one of the correct ter~inal aymbola

will cause that Eyabol to be incorporated into the progra•. This is

done by creating a new program node (of type "terminal sy,mol"), ••~tng

the new symbol in the node, and linking the new node into the program

tree, as the expansion of the current node (fig 3.14).

The second case, that of non-terminal alternati~es, is potentially much

lnattal •••~•hold•r foT
th• protr•• n•••

...... " , _...,. __
AU

Aft•r t~• u••r h••
•nt•r•d ·IJEPIO·-
• valid id•ntif1PT

fi• 3 14 - Tb• lncpr••r•tipn pf• Trr•in•l sue,91 into Tttl

110re comples. 'l'he complexity arises because a non-terminal production

may point to other non-terminal productions to an arbitrary depth.

Care auet be taken tn this case to •~oid losing intermediate

Dlaft•r J 12'

Chapter 3 CED - lta Internal Architecture 127

Building PrograQ Node• on Aacent

The problems with non-terminal alternathes arise becr••ee it le no

longer sufficient to simply to identlfy the input symbol as being one

of the valid ayaabols and to change the expansion field of the current

node to point to a new program node incorporating this •yabol. If this

approach was adopted it is possible to skip some productlona

completely, as is illustrated by the oaission of the intenaedtate

product ion "<middle>" in fig 3. 15. ThitJ is avoided by building the

necessary program nodes at the lowest le~el (where input symbol

matches) and then as the recursion unwinds, for any nodes whose "next"

field is not nil. building a level of program nodes at this

intermediate level. The lover level nodes are then link~d in as the

expansion field of the first node (fig 3.16).

Because all essential non-terminals are automatically included in the

structure. The entry of a single keyword can cause the generation of

multiple layers of program nodes.

Thi~ scheme does not lose productions, but does ha~e aide effect• in an

apparently unrelated section of the editor. As vill be explained

presently, it is possible to associate formatting coaunds with any

synt.sx node. These commands are executed during the scan of the

progra• node tree (via the derivation pointer cf each node) in order to

pretty-print the regenerated program. If only those syntax nodes with

non-null "next" fields are included while building the program during

ascent, any formatting commands associated vith the omitted nodes will

be ignored. For this reason, when traci:ig the asc~nt of the syntax

Chapter 3 GED - lta Internal Architecture

tree.• program node ia created for all ayntax nod••·

• <••••1•>
• <•ottoa)

<llottoe> • F

•
NJS9ED

Ftt 1~ • Q~•--~ v••• to lllvst••t• 911,,•• P•o•vctton•

frro"•ovs ••••nston o, <top> .,,.r •nt•, of ., •• 01 ·e·

•a•

128

Chapter 3 GED - lta Internal Architecture

<to, >

<•Ufh>

r <•t114111•:>

· • <llottoa:>

<lllotto•> ., f

I

"188f0

~ti IN - ~ra-.r u••• to lllu•tret• •••,P•• ~ro.iuttton•

ft• &Ob - c,rr,,s E111n1ton •• <\11> 1tt1r Ent-1 •• •£•

129

Chapter 3 CEO - Its Internal Architecture 130

J.18 The Structure Created by the Expansion of Loop Node•

n,e expanston of a loop node aust be treated apecially as, unlike all

other program nodes, it may ·oe expanded repeatedly. "A'' la a \ralld

expansion ~f {A}, but the node be uy still be considered as

uc.expanded, as an indefinite number of "A"s are "v:lld input symbols

deri\rable direc:.ly from the placeholder for {A}. fllis ls different

from most placeholders which are initially unexpanded and the once

expanded, are no longer considered when searching fo1· unexpanded nodes .

The initial form of a loop program node ls identical t~ a placeholder

node - lt has a null expansion field, and as usual. a pointer to its

syntactic definition (fig 3.17).

If a ~alid input symbol is entered, then an expansion subtree will be

PT'OfT'.ta Nod•

Eap•nsion is initiollv nil

fl•? 11 - •01t1~1 rvr• et bPRR PttttH "°''
produced as vtth any placeholder prograa node. At that stage the

Chapter 3 CED - It• Internal Architecture 131

cursor could descend into the eubtree to any poa1ible 110dtficetion

points (i.e. any placeholder. loop or optional nod••>· Mow~er. the

loop node, vhile it has one expansion. ta atill a ~•lid candidate for

further expansion. The entry of the aame eymbcl causes another

instantiation of the subtree. The original loop node has already beer.

expanded and therefore its expansion field is in use. Therefore, there

is no attachment ;x>int for the newly created ~nd any subsequent

subtrees. In this case, a new instance of the loop node is created as

the current node's neighbour (i.e. "next" of current node points at

the new loop node) (fig 3.18). All further instances of the loop node

suotree are handled in the same manner. This meth~d has the desirable

property that, by delinking the nevly created loop node, it and its

complete subtree may be remo~ed from the program tree as a sir.gle unit

- in the complementary manner to its creation. Note that the newly

created loop node has the same ancestor as the original loop node - it

is at th~ same logical le~e~. 9S it should be.

Suntu

f,r,t E111n1ion ltctnf l11en1&an

f&• 3 18 - Attach Point of l•cgnf i•••n•aon of bPIP Npf•

Chapter 3 GED - :ta Internal Architecture 132

3.19 Unparalng the Program - Deri~ing a Diaplay from the Program Tree

The current state of the uaer'• program ta atored 1n the program nod~

tree and it le aolely froa tbia rep~eMeotatton that a listing of the

program is generated. No form of text representation is saved with the

ex-:eption of the "spelling" of the ueer.-defined terminal symbols. To

regenerate the program, ear.h program node ts ~isited in turn, with the

"expansion" field of a node unparsed recurshely before that node's

"next" field - a depth-first scan. Bo~er, not all the program nodes

need have their names printed. Only the leaf nodes of the tM'e

terminal symbol and unexpanded placeholder nodes - should be printed.

The print representatio~ of a terminal program node is simply the

terminal symbol that it represents. Unexpanded placeholder program

nodes must also have a printable representation, but this can't be in

terms of terminal symbols - there aren't any (yet). Instead, the n~~e

of the requisite non-terminal syntactic production is used. 'This is

always available as every program node contains a pointer to its

syntactic definition •

..
Unexpanded optional and loop nodes are are only displayed when they lie

within the subtree of the current node. To always show all the

optional parts of a program is confusing - it clutters the screen with

extraneous detail.

Th~ display of a loop node is treated in a ·special fashion. as it aay

be expanded many times. If it has been expanded but does not lie under

the cursor then only its subtree is printed, as with any other expanded

placeholder or optiona! node. For example, if {<statement>} had been

Chapter 3 GED - Its Internal Architecture 133

expanded to "Z :• 1", it would be displayed as "Z :• l"• If hove"lfer,

the loop node is v~thln the subtree of the current node (i.e. Under

the cursor), then after unparsing its subtree, the name of th~t node ls

printed again, to indicate that an~ther instantiation ts possible.

Therefore if the abo'\fe loop node "{ <statement> }" ns under the

cursor, it would be displayed not as "Z :• l" b.it as "Z :• l

{<statement>}". This clearly indicat£s the possibility of another

<statement>.

Note that there has been no mention of formatting the regenerated

program in any

required, the

pretty-printing

way. If f1>rmattlng

EBNF definition if the

instructions, as t~e

information about program layout.

of the

grammar

syntax

regenerated program is

is augmented with

itself contains no

Chapter 3 CED - Ita Internal Architecture 134

3.20 Defining the Program Layout - f. Table-Dri~en Pretty-Printer

In a syntax-directed editor that ta intended t~ ~e language

independent, it ts essential that the user be able to define the screen

layout of th~ resultant program. flits infor.ution cannot, in general,

be found from the ayntax specification, as there are many different

ways to format the same syntac~4.c prcduction. One poaaiole method

would be to deri~e th• formatting informatioa fro• the !ayout of the

syntax specification. In other words, mimic the layout of the syntax

when regenerating the program. Bove~er, this methol has •e~ere

limitations, some of which are:

1) !fa production starts in certain colu1111, does this mean that it

must always atart in that column?

2) tf a non-terminal name is longer than "n" characters, but the

following ayntax ite111 must start in column "n", bow is this

handled?

3) Line skips in the syntax definition are ambiguous. Are they: to

make it (the syntax uefinltion) easier to read, to try and get a

syntax item into its correct column, or to indicate a line-feed in

the displayed rrogram?

Chapter 3 ,;ED - Its Internal Architecture 135

This is too reatricti"lte for general uae. To o"ltercome these

limitations, the use of explicit foraattin~ ~ommands ts neceaaary. A

study of current programming languages pro~ides a guide as to which

formatting commands should be pro~ided. There are four major styles of

program layout:

l) Fixed column oriented - as in FORTRAN and COBOL.

2) Semi-column oriented as in Snobol - the firdt column has special

significance. usually for labels. 'nle remainder of the line is

free format. This format is also common in a3semblers.

3) Free forinat but line-oriented as in BASIC.

4) Free format with a nested structure as in PASCAL, ALGOl. and PL/1.

This format also clarifies the structure of Lisp programs.

The first two require absolute column-oriented commands. A production

must be able to be placed in. or not placed in, a certain column. In ..
Snobol and Fortran a statement label 9 ~f present, must start in column

one. The remaining parts of Snobol statements may occur in any of the

other col "m:.s. Therl? fore a " 'i.\B column-no" commanc! 1 s required . The

a"ltailability of a NEW. L•E command is assumed.

'nle free-format line-oriented layout requires only that the adjacent

productions be pr~nted adjacent to one another - no nev collllll8nds are

required.

Chapter 3 CED - lta Internal Architecture 136

The fourth class, that of nested construct, free-format languages also

require tabbing but relattve to the indentation le~el of a previo~a

construct, not a fixed colu11n. 'nlese relati~e tabbing levels are

referred to as the indentation le\fel. To cater for these languages,

INDENT and OtrrDENT commands are pro~ided. 'l'be&e increase and decrease

the current indentation le~el by a fixed number of columns.

To control the layout of the regenerated program, GED allowa a list of

print formatting commands to be associated vith any terminal symbol or

non-terminal in the syntax. The formatting information is optional and

if omitted, the program tree will be printed vithout any regard to the

number of char3cters that will fit on one screen line. Consequently,

print formatting cocmands should as least define vhich productions

start on a new line.

Chapter 3 CED - Its Internal Architecture 137

J.21 CED Print Formatting Commands

The print formatting commands pro~ided by GED are listed in table 1.

The actual commands are those starting with an"@" character. nae

uppercase text is~~ pro~ide a English vo~d to associate with P.ach one.

The use of the English is of course possible, but as s~~eral commands

are usually necessary for each terminal symbol o~ non-terminal, the

formatting definitions would become long and unwieldy.

@?

@n

@l

PRINL-HE: Print the terminal symbol or non-terainal

associated with this node. 'n\is is necessary as a separate

command as there are occasions when the current node should

be displayed only after the exacution of other formatting

commands (e.g. skipping to a nev line). 'nlerefore the

ob~ious default action of always printing the cu~rent program

name first (or last) is not always satisfactory.

NEWLINE . . Skip to a new line. W'nether or not the next

character is printed in column one will depP.nd on the current

indentatlon le~el. If tt is not zero the appropriate number

of spaces will be skipped first.

MARGIN . . Set the indentation le~el to z~ro, to take effect

on the next newline.

ChaptP.r 3

@>

@<

@t num

GED - Ite Internal Architecture 138

INDENT : Increase the indentatlon le~el, to take effect on

the next line aklp.

UNDENT : Decredae the indentation l~el. to take effect on

the next line skip. If the indentation le~el la already

zero, this command is ignored.

TAB : Tab to column "mm". This command takes effect

imaediately, unlike "@l", "@<" and ''@>". If the tab column

is not between 1 and 132 an error message gi~en.

Table 1 - GED Print Formatting Commands

3.22 The Method of Associating Formatting Commands with the Syntax

In order to associate print formatting information with each production

it is necessary to augment the EBNF definition. One possibllity was to

interlea~e print format.ting commands with the EBNF. The augmented EBNF

definition necessary to lay out an IF statement is shown in fig 3.19.

In the following examples, layout is used only for presentation and is

iinored by GED. In human terms hove~er, it clearly indicates the

intended layout and therefore tends to reduce errors when deri~ing the

formatting commands.

Chapter 3 CED - Its Internal lrchitecture 139

<if etmt> ::•IF@? <expression>@?

<statement>

THEN @?@>@n

@? @<@:,

@? @> @n

@?@<@n

[ELSE

<s~atement>

1

Fig 3.19 - Format Information f?L an IF Statement

This looka somewhat cryptic, but is read as follows:

For IF - Print itself (i.e. "IF").

For <expression> - If the expression has been eY.panded then print its

expansion, otherwise print the non-terminal name

(i.e. <expression>. The line so far would consist

of '~IF <expression>" or (simpl7 as an example)

"IF velue>lS + x".

For TREN

For <statement>

- Pri.nt itself, increase i. . • e indentation l~el (to

take effect on the next line) and then skip to a new

line.

- If <statement> bas been expanded

expansion. If not, then print

then print its

its name (t .e.

"<statement>"), decreas~ the indentation level and

skip to a new line. 'Ibis will leave the indentation

Chapter 3

For ELSE

CED - Its Internal Architecture 140

le,.,el the same a~ when the IF was encountered.

Therefore as long as "(ELSE <statement>}" maintains

>:he current indentation le"el. all f ollo':ling

cc~structa will be correctly indented.

- If the ELSE option h•d been requested, then "ELSE"

is print~ at the current indentation le"el (t.e. in

alignment with the IF). Then the indentation le"el

is increased (to in~~nt the following statement) and

a new line started.

For <atatement> - Print "<statement>" or its expansion, decrease the

ind~ntatton le"el and skip to a new line.

Noctce that any nested constructs, such as <statement>, must presen,e

the current indentation le"el. In the abo"e example, if the "THEN

<statement>" 3ltered the indentation le"\fel, the ELSE and its following

<statement> would be out of alignment with the IF. The

print-formatttug commar.ds are executed in order to allow some actions

to preceed others, such as skipping to a new line before (or after)

printing the dert"\fation (or name) of :he current node.

The method chosen to incorporate the formatting information is similar

to that used in the ALOE sy~tem and consists of a print formatting

definition that follows, and has the same structure as, the EBNF

definition. This method (fig 3.20) is marginally more complex to use

Chapter 3 GED - lts Internal Architecture 141

than interiea~ing the formatting information with the syntactic

definition (fig 3.19) as extra information mu•t be included to indicate

which fonDa:ting commands are to be associated with each syntactic

item. It doea howe~ar ha~e the advantage that it doean't alter the

existine EBNF definition and doesn't introd~ce extraneous aymbcls that

aren't part of the syntactic EBNF definition. If the formatting

commands follow the syntactic definition, they may then be added after

the grammar has been written without altering the existing definitions.

Also the problem of distinguishing between symbols, syntactic

meta-symbols and formatting meta-symbols no longer arises.

The keyword PRINTFORMAT terminates the current EBNF syntax definition

and signals the start of the format definition. In order to associate

the appropriate formatting commands with each tert:linal or non-terminal.

the flag character "&" is used. It indicates the start of formatting

inf~~--.ation for the ~ext syntactic item (terminal ~r non-terminal).

'nle commands to display the IF statement using the trailing print

formatting definition are shown in fig 3.20. (The reason for the

digits after each ampersand vill be explained shortly.)

Chaptet' 3 GED - Its Internal Architecture

<if statement>::• IF <expression> THEN

<stat~lllent>

print format

[ELSE

<statement>

]

&l@? &2@?

&4 @? @< @n

[&4 @? @> @n

&6 @? @< @r.

l

&3 @? @> @n

142

Fig 3.20 - The Use of a Trailing Print Format Definition

The formatting commands given in fig J.20 are the same as those gi.,,en

in the interleaved example with the addition of"& <number>11 and square

brackets. The ampersand is necessary to associate the formatting

commands with the different syntax items, but the number and the square

brackets are redundant. Both are added to provide some consistency

~

checks while adding the print format information to the previously

constructed syntax tree. The number after the ampersand should always

be the same as an internal counter which starts Gt one and is

incremented vhene.,,er a new syntax item is started - ~n 11!;,ery "&", "[",

"{" and "(". A discrepancy signals an error. The syntactic

meta-symbols of braces, parentheses, square brackets, and the

alternation bar must all be present in the format definition and in the

same relati"e position as in the syntax definition. An error here also

causes an appropriate message.

Chapter 3 GED - Its Internal Architecture 143

The Default Prir.~ Format

The default ac•ion is to print the naae or derivation of each node, for

un~xp11~ded and expanded nodes reepecthely. This is equhalent to "@?"

(i.e. PRINT-ME} being associated with every node. For a large

percentage of the Rymbols in a gr&111Dar, and as a result most definition

do not ha~e any formattiag commands. Those productions th&t require

specific formatting action must have a PRINTFORMAT definition, and must

define the layout of every part of the current production. It is not

possible to define half of a production and default the rest.

J.23 Generating the Screen Display

As mentioned previously, the current display of the user's program is

found from a depth first scan of the program node tree. During this

scan, the "print format" field of the syntax node associated with each

program node is examined, to locate the formatttng commands (if any)

that should be executed before and after displaying the program node.

The obscure phrase displaying the program node - is necessary, as
..

there are seven different trpes of program node which require different

display formats (independent of the user defined formatting commands).

These are listed in -.able 2.

Type of Program node

Terminal program node

Expanded placeholder

Unexpanded placeholder

prints as

prints as

prints at1

Displays

'lbe actual terminal symbol.

Trace of the expansion subtree

'lbe name of lts non-terminal

Chapter 3 GEO - Its Internal Architec:ure 144

Expanded optional node

Unexpand~d optional node

Unexpanded loop node

Expanded loop node

prints as

prints a~

prints a,

prints as

Trace of the expansion subtree

[<name> or 1st symbol)

e.g. [<filename>) or [ELSE]

{ <naae> or 1st symbol}

e.g. { <atateaent>} or(.}

Trace of expansion subtree

followed by

{ <name> or 1st symbol}

Table 2 - Print Fomts of Different Program.Nodes Types

The output from the display procedure could be displayed directlJ b~t

this would in~ol~e rewriting the complete screen after most user input.

Gi~en that often the current and next screens are similar, some form of

optimisation is possible.

3.24 Optimising the Rewriting of the Screen Display

The out?ut from the program tree diRFlay procedure is all directed

through a procedure that ha~dles single character output.

destined for the screen is buffered into a circular buffer

Any output

of lines

until either: the region under the cursor occupies the entire screen;

the cursor region is center~d on the screen; or the program is

exhausted. 'nle characters are buffered in order to record the current

image on the screen and so a~oid rewriting any positions that ha~e not

Chapter 3 CED - lts Internal Architecture 14S

altered. The e:drt and end of the highlighted cursor region are found

by recording the position of the buffer pointer before and after

unparsing the subtree of the current node. Tne display is normally in

half intensity with only the region (subtree) under the cursor

intensified. The current image on the screen (sa...,ed in an "old_baage"

buffer) is then compared vtth that in the current buffer and only those

characters that differ. or differ in intensity are redrawn. This is

done in a straightforward manner using only the terminal commands of

cursor x/y addressing, erasing the remainder of a line and erasing the

screen. 'nle ablli~y of the tenainel to display in two ~isually

different modes (e.g. full and half intensity) is necessary to clearly

~elimit the extent of the subtree under the cursor. tor terminals that

support the ope=ations of inserting and deleting both lines and

chara~ters 9 the redisplay algorithm described by Gosling [1981] would

probably result in superior performance although the algorithm would

have to be adapted to handle the use of dual intensities. The display

routines, while not set up for a variety of terminals, have all the

terminal control functions localised into a set of proc edures {e.g.

"ecase_screen", "posit ion_cursor (x ,y)" • ''bright", 11subdued") which are

calle~ when necessary. This clarifies the code and facilitates the

adaption of GED to terminals other than the Visual 200 by localising

the terminal dependencies. The ability to display half snd full

lnt~nsity is desirable. although normal and inverted ~tde~ would

suffice.

Chapter 3 GEr - Its Internal Architecture 146

3-25 The Implementation of User Commands

3.26 Primary Cursor Mo"ement Commaods

The "arianta of the cursor mo"ement commands are all handled by two

tree-walking proced~res (to handle forward and backward searches), and

a boolean function to indicate when a ~alid st~p node has been found.

The use of a singl~ function tc test whether a program node satisfies

the search conditions enables the use of only two tree-walking

procedures (for forward and backward) to handle searches for many

diff<:?rent types of program nod~s. 'l'he function, "is_stop_node", has

three boolean parameters: "searching", "stop_on_optional_nodes" and

"stop_on_user_nodes" which are set up by vhiche"er procedur~ calls the

function.

The parameter "se&rct.ing" indic~tes that the stop node must match the

current token and is the method of implementing the forward and re"erse

- symbol searches. The parameter "stop_on_optional_nodes" will cause the

procedure to flag all unexpanded optional, and all loop nodes, whereas

"stop_on_user_nodes" will only stop on symbols entered by the user.

Unless a spe~ific coken is being searched for (i.e. searching• true),

any unexpanded placeholders are treated as stop nodes by defawt.

Fo~ example, the forward 9earch for the next modification point, (The

"->" key) has both "stop_on_user_nodet:" and "atop_oo_optional_nodes"

set to true. 'lberefore the cursor will stop on any user entered nodes,

any optional nodes, and by default, any unexpanded placeholders.

Chapter 3 GED - Its Internal Architecture 147

The Use of a Default Argument ~or the Symbol Search Functions

If either the "repetition" command is gi"en, or 3n e~pty line is

entered as the reply to the prompt for the search symbol, the last

symbol searched for in either a forward or a reverse search is used.

In this case the actual symbol being searched for is displayed ~fter

the query as a cor.firmaticn that the symbol iR as the user remembered.

If the symbol cannot be found, the prompt message ts o·,erlaid with "NOT

FOtr.ro --> ", lea"ving the sy:nbol itself intact •

.
i

Therefore "Forward Search for: hello"

becomes "NOT FOUND -->: hello"

This, like all status line messages, disappears when the next key is

pressed.

3.27 Reading and Writing the Program and Clipped s,~btrees to Disk

To sa~e the program on disk as a listing file is straightforward the

routine that handles all single character output redirects it to a disk

file. The list file will be an exact duplicate of the non-optional

1tems in the user program as seen on the screen. All required

placeholders remain but any currently "visible optional placc?holders are

totally suppressed, as they are not required in a complete program.

To sa~e the current state of the prcgram node tree in a format suitable

for recreating the tree is more awkward. Ideally a memory image would

be sa-ved. 1bis would enable the exact state of the editor in its

current •tate to be presened. How~-ver, as Paacal does not pro-vide ary

Chapter 3 GED - Its Internal Archtr,cture 148

wsy to sa~e arbitrary data structures in a file, th~re can be no

standard way of sa~ing the current state of a program in this fashion.

Therefore. the writing and subsequent reading of the data structure

must be handled explicitly.

It would be possible to write out a trace of the program nod~ tree,

referring to each node by its id-number (which is unique) and to which

nodes ea~h of its fiel~s pointed. This approach could b~ made to work

but is ~ery complex as it entails presening the complete tree together

with all the program node tag fields and for terminal nodes, tl,e

termina~ symbol stored in the node. The user would ha~e to ensure that

the syntax did not alter between one run and the next. as the program

nodes refer to the syntax tree. Either the names of the productions or

syntax node id-numbers would ha~e to be prese~ed, depending on how the

program nodes referred to the syntax (by name or number). 'fflese

limitations are too se~ere to be acceptable.

~

The use of the regenerated ~~ogram text is another method of sa~ing the

program, or any subtree. Unfortunately, the list format ·s not

suitable as input for GED as it contains many redundant symbols - those

automatically included by the editor - and possible placeholders, which

may be in so11e contexts indistinguishable from the user program.

Consider a language that had a construct to starting with a left angle

bracket followed by an identifier - for example the array specification

in Snobol

symbols?

would this represent a placeholder or two user-entered

Chapter 3 GED - Ita Internal A.·chitcct1Jre 149

These problems are only a distraction - given that all placeholders

wer~ originally inserted by the editor, why save them? Only those

symbols originally entered by the user need be &4ved, together vith

sufficient tnfo'!'mation to ensure that they are used to expand the

correct subtrees. Any subtree (including the complete prograa) may be

sa"ed by •.,riting a text file consisting of only those symbols entered

by the user, any necessary commands to skip o"er optional and loop

placeholders. 11\is for1'\at

editor - th£ input stream is

keyboard. An example the

is concise and easily read back into the

take, from disk instead of from the

two files written by the "Save Program"

command for a small program are shown in figs 3.21 & 3.22. Fig J.21 is

the program listing file and fig 3.22 is the corresponding symbol file.

Chapter 3 GED - Its lnte1·nal Architecture

PROGRAM di3k_io_demo ;
CONST

line_length • 80;
backspace•'?' ;

TYPE
line_type • ARRAY [1 •• 80 J OF char ;

Vil
line_~uffer : line_t1pe;

PROCEDURE getline (Vil length: integer) ;
V.:\R

count : intee~r ;
ch : char ;

BF.GIN
count :• 0 ;
WRILE (NOT EOLN) AND (count< line_length) DO

BEGIN

END ;

BF.GIN
END •

read (ch) :
IF ch• backspace THEN

BEGIN

ELSE

END ;

IF count> 0 THEN
count :• count - 1 ;

END

BEGIN
count :•count+ 1;
line_buffer [count] :•ch;

END;

Fig~3.21 - A complete Pascal program as listed by GED

150

disk_io_demo ->->CONST line_length 80 ->; backspace'?'->-> ffPE
line_type ARRAY l 80 -> char -> -> VAR line_buffer -> line_type -::. ->
PROCEDURE g~tline (VAR length-> integer->-> -> -> VAR count ->
integer-> ; ch-> char->->-> count->:• 0 -> 'WHILE (NOT EOLN ->
-> A1'9D (count->< line_length -> ->->BF.GIN read-> ch->-> IF ch
-> • backspace->-> BF.GIN IF count->> 0 ->count->:• co\Dlt -> - 1
-> ->->ELSE BEGIN count->:• count->+ l -> line_buffer [count ->
-> -> ->:•ch->->->->->->->

Fi.g 3.22 - 'nle Ged code file Corresponding to Program of Fig 3.21

Chapter 3 GED - Its lnt•rnal Architecture 151

Note - Apart from replacing the nonprintable escape sequence for moving

the cursor vith 11->" (for display purposes), these listings are as

output by GED.

The symbol file also has the advantage that it is readable for

diagnostic purposes. With this rJOde of program I/0, the syntax checks

are implicit. The program or subtree, when read back into the editor

is subjected to all the usual checks on user input. If the file

contains any errors then the user is notified of the erroneous symbol

and the insertion of the file is abandoned. This i~ consistent with

inserting only complete and correct syntactic constructs; however the

checking is implici~ly done while reading the program - there is no

header on the file indicating the type of production to follow.

3.28 The Clip/Delete and Insert Commands

Given that the program node tree is strictly hierarchical and that all

program constructs are represented as subtrees, any construct can be

remo~ed in its entirety by deleting the pointer to it from the node

above~- that is, deleting the expansion pointer of its parent node.

This is perfectly satisfactory as the action of a "delete" command, but

some method of "clipping" a subtree and ~ing it elsewhere is also

desirable. If the "deleted" subtree is sa"ed in some form, it can form

the basis of a composite 11IIIO\la'' c~mmand (i.e. delete, mo"e cursot' and

insert).

Chapter 3 CED - lte Internal Architecture U2

To insert this dclet~d subtree elsewhere, the expansion field of

another program node is altered to point the delinked subtree and the

contraction pointer of the subtree adjusted to point to its new parent.

Note that if the only nodes whose subtrees may be deleted are

restricted to those whose syntactic definitions are complete

productions and the expansions of optional and loop nodes, this will

restrict deletions and insertions tu complete syntactic constructs. To

retain the syntactic integrity of the program, the attach point must

ha~e the same syntactic derivation as the clipped subtree. 'nlerefore,

a statement that had been clipped out at the le~el of

"<stuctured_statement>" would not

expansion for "<statement>"

be an immediately acceptable

their non-terminal derivations are

different. A search of the definition for <statement> would be needed

to establish this equivalence. Often a section of code is not to be

moved but copied. The direct manipulation of the tree in this manner

will work for moving a single subtree. but not if the subtree is to be

replicated. In that case. in order to prevent unexpected side effects

if the subtree is altered. or e~en worse. moved, any replication of the

subtree muat cause a new copy to be created.

The method of saving the program to disk. by ~-rittng a compressed

symbol file. can be considered a special case of sa~ing an arbitrary

subtree. It can therefore be us '. to save deleted subtrees also. In

order to insert these subtrees elsewhere, the input stream can be taken

from the file, as it done when reading a complete program. No problems

exist with replicating the subtree it is _. as if the user bad

re-entered the same symbols as were used to create the original

Chapter 3 GED - It• Internal Architecture 153

subtree. Also no problems exist with the syntactic equivalence - the

acceptability of each syuibcl is checked individually, rather than

chP.cking the syntactic equivalence of the complete structure.

When deleting a loop node from a 11st, the previous and next nodes are

altered to skip the deleted loop node. This has tha visible effect of

closing up the elements of list, to eliminate the deleted subtree.

(fig 3.23)

As the deleted SY'Ulbol sequences are not wanted after the completion of

Synt ..

E&ral En1r,1pn Jfli[tl IHIDl&I!!

ILSECQND ~XPNffilDN 15 QELEJER, IECQME§

Pri,o•rt i 111n1i1n JII hf Eu1nti10

Fit 3 23 • u,, """ of P•hting Ant ,,, I Lht pf Lo91 NpfH

the editing ses•ion, these could be saved in memory rather than on

disk. Row~er, aa the same procedure vlll write both program and

subtrees, tbe speed of disk I/0 is satisfactory, and there are

effecti~ely no •ize constraints or memory management problems with the

disk based system, the use of a memory based mechanism for presenlng

Chapter 3 CED - Its Internal Architecture 1S4

subtrees has not been attempted.

Ascending the Program tree to Locate Deletion Subnodes

In order t~ clip/delete sections of program larger than individual

&)'1Dbols, it ta essential to be able to ascend the program tree until

the required section of the program is under the cursor. On the

screen, this subtree will be highlighted to clearly delimit the extent

of cursor. When ascending the program tree, the cursor must not stop

at e~ery program node. Many apparently redundant nodes are created by

the editor to keep in alignment vith the syntactic data structure.

These are not'lllally transparent t~ the user, and should remain so.

Therefore, when using the "••cend" command the cursor will only stop on

program nodes that correspond to complete syntactic productions (i.e.

the definition field points to a "header" syntax node), on optional and

on loop nodes.

3.29 Marking, and Mo~ing to, Specific Nodes in the Program Node Tree

To enable rapid cursor mo~ement to specific usar-defined nodes in the

tree, a 11st of marke~s ta pro~ided. The markers are referred to by a

letter and simply aasoc1ate th• current position of the cursor with a

letter. The case diattnctt~~• are tanored. If a command is gi~en to

mo~e to an uninitialtaed aarker. an error aeaaage is gi~en.

nie markers are moat u•eful for aktpptng o~er lara~ sections of the

program, enabling actions such as returning to . the type or '\tariable

declarations in one command. 'Iba "mo"e to urker'· command swaps the

'\talue of the current node and that associate~ vith the letter. If the

Chapter 3 GED - lts Internal Architecture 155

end of the declarations ha~e been marked, the fi~•t mo~e c01111Und will

mm,e the cursor to the cu\·rent ~nd of the declaratiou list. A

declaration may then be added and the move command given again,

returning the cursor to its original posttto,1 and updating the marlcer

position to the new end of the list. 'nlis stmplif1e£ adding elements

to a list from arbitrary points in the program.

3.30 'nle lmplemantation of the "Undo" Command

'nle undo command ts impletDented by keeping a stack of the position of

the cursor before each command vas executed, and which node, if any,

was altered during its execution. 'nle number of comunds that can be

undone is limited by the size of undo stack which is currently set at

thirty. Some command'l, such as "delete" when removing elements from a

li$t, alter not one but two nodes. However, this is not a problem as

each program node te doubly linked to its contraction, its expansion,

and each of its neighbours. Therefore, knowing the links in one

direction is sufficient to enable the others to be re-established.

Chapter 4

Language Implementation Consid~rations

4 ~ Implementation o~ Synt~-Editors for New Languages using GED

The implementation of a syntax-directing editing environment usir.t GED

ia a sizable project, e~en if t~e languag~ grammar is available in an

extended BNF format. This chapter will discuss the problems vhtch were

encountered in building editors for Pascal, Snobol and Lisp. n,ese

grammars co~er a wide ~ariety of programming styles and types of

languages, and are sufft~~ently different to indicate the strengths and

weaknesses in the design of the editor.

There are two distinct stages in the implementation of an editor for a

new language. The first is the preparation of the language syntax in

EBNF and the second is adding .the print formatting information to the

&Y'l\tax. Although both of these are vell defined, in practice the

syntactic definition is usually 110dified

110st useful placeholder prompts and

iterati~ely

a pleasing

to pro~ide

layout.

the

The

aodifications made to the grammars of ae~e~al languages ~n~ the

addition of foraaatcing information will be discussed in turn.

Chapter 4 Language Implementation Conatderattona 157

4.1 Preparing the Extended BNF Grawr

The syntax of the programming language muat be definable in extended

BNF and must confor11 to the requtreaenta of an LLl grammar (i.e. in

each pr,duction there may be no left recursion and no replicated atart

symbols). A grammar that ta free of left recursion but does not

~onfo~ to the second condition vill be accepted by

productions will ne"er be parsed. For example,

''<Z> : :• A I A B", the input symbol "A" vill al,..ays

GED, but some

in the production

match the first

alternati'Ve and therefo~e "AB" will ne"er be parsed. 'nle reason for

thts is e'V!dent from the manner in which GED searches the syntax tree -

the first production that matches the input symbol is the one parsed.

The remo"al of multiple start symbols from a grammar can be

accomplished by factoring the productions (e.g <Z> ::• A [BJ).

The actual definitions of programming languages are rarely LLl as i~

illustrated by the excerpt from the Pascal grammar in fig 4.l (taken

from the "Pascal User Manual and Report" [Jensen 1974]), and lat<?r in

the grammar ef Snobol.

<simple statement> ::• <assignment statement>

<proced11re statement>

<go to statement>

<empty>

<assignmenc statement>::• <"\,ariable> :• <expression>

·<function identifier>:• <expression>

Chapter 4 Language Implementation Consideration-

<procedure statement> ::• <procedure identifler>

<procedure identifier>

158

(<actual parameter> {,<actual parameter>})

Fig 4.1 - Standard Grammar fo1· Pascal 1& Not LLl

The problem& wi th the grammai in fig 4.1 are these: at the level of

<simple statement>, both <assign.nent statement> and <procedure

statement> produce <identifier>. Within <assignment statement> and

<procedure statement> both alternatives also produce <identifier>.

Therefore if a parse1 ~as at the <simple statement> ~ode and the input

symbol was an identifier. it has no way of determining which

alternative to parse. The input symbol would obvio~9ly be correct. but

as part of vhich production? The grammar must be rewritten to remo~e

the ambiguity. If the informatinu obtained frOlll the variable and

procedure declaration~ was a~ailable (from a symbol table). no

ambiguity would exist. The symbol table would indicate whether the

id'entifier was a ~ariable 9 a function name, or a procedure that had, or

did not have, parameters. GED is designed to work solely from the

syntactic definition and therefore has no symbol table. One of the

aims of this thesis was to in~estigate the ~iability of this approach.

Chapter 4 Language Iaplementatioo Conaideratione 159

4.2 A Cae~ Study - The Implementation of a Snobol &!itor

The starting point fer the imple•ntation of a ayntax edftor for a nev

language iP its syntax definition. 'lbe grammar ueed here is from "'rhe

SNOBOL4 Programming Language" [Griswold 1971). 'lbe notation used ia

slmilar to EBNF, but differs 16 the vay of defining optional

productions and liate of productions. The gra11111ar shown ia fig 2 is a

transliteration into EBNF, but is otherwise unal~ered. Thia is only

the preliminary step as the grammar ia still not in a form that is

suitable for input to GFJ>.

Chapte: 4 Language Implementation Coneider~tions 160

Unmodified Definition of Snobol in Extended !NF

<digit> ::• ll213l415l6l718l9

<letter> ::• AIBICIOIEIFIGIBIIIJIKILIHINIOIPIQIRISITIUIVIVIXIYIZ

<alphenu~eric> ::• <letter> <digit>

<identifier>

<blanks>

<integer~

<real>

<operator>

<unary>

<string>

<sliteral>

<dliteral>

<literal>

<element>

<operation>

<expression

<arg.list>

<function.call>

<reference>

<label>

<subject.field>

<pattern.field>

<object.field>

::• <letter> { <alphanumeric> I • I_}

::• one or more blank characters

::• <digit> {<digit>}

::•<integer>. [<int~gc~>)

: :• ,- I ? I $ I • I !
+ I - I @ I "I"

: :• <operator>

&

::• one or more EBCDIC characters

::•'<string>'

: :• " <string> "

::• <sliteral' <dliteral> integer I real

::• {<unary>} (<identifer>
<literal>
<function.call>
~:-eference> ·
(<expres~ion>)

)

::• <element> <binary> (<element> I <expression>)

::• [<blanks>) [<element> I <operation>] {<blanks>]

: :• <expression> { , <-:- itpression> }

::• <identifier> "(" <arg.list> ")"

: :- <identifier> "<" <arg.list> ">"

::• <alphanumeric> <string>

: :- <bl&nks> <element>

::- <blanks> <expression>

. ·-.. <blanks> <expression>

Chapter 4

<equal>

<goto>

<goto .field>

<eos>

<assign.stmt>

<match.stmt>

<repl.stmt>

<degen.stmt>

<end.stmt>

<statement>

Language Implementation Considerations

: :•

: :•

: :•

<blanks>•

"("<expression>")" I"<" <expression>">"

<blanks>: [<blanks>)
(goto

)

S <goto>
F <goto>

I
<blanks> (F <goto>)
<blanks> (S <goto>]

::• END-OF-LINE

::• [<blanks>] (; I <eol>)

::• [<label>) <subject.field> <equal>
[<object.field>) [<goto.field>] <eos>

::• [<label>] <subject.field> <pattern.field>
!<goto.field>] <eos>

161

::• [<label>] <subject.field> <pattern.field> <equal>
[<object.field>] (<Joto.field>] <eos>

::• [<label>][<subject.field>J[<coto.field>]<eos>

::• END [<blanks> [<label> I END]J <eos>

::• <assign.stmt>
<d~;en .stmt>

<match.stmt> I <repl.stmt>
<end.stmt>

<comment .line> : :• * <::tring> END-OF-LINE

Fig 4.2 - Official Syntax of Snobol4 in EBNF

Chapter 4 Language Implementation Considerations 162

n,~ grammar muRt be modified in the following vays:

a) 'nle delimiters "S" and"$$" must be appended to each production

and the last production respectively.

b) 'nle definition for identifiers must be con~erted to start and

continue sets, because otherwise the editor would assume that the

individual characters were separate tokens and would separate them

with spaces.

c) Strings must be defined in terms of their delimiters.

d) GED requires that comments be defined in terms of either their

start character or their delimiters. Snobol uses an asterisk in

column one as a comment flag, and therefore both the comment start

character and the comment column must be defined.

e) nte grammar contains a specific symbol for an

condition, a symbol unknown to EBNF.

End-of-line

f) nte grammar has a specific representation for blanks - a lexical

item unknown to the editor.

g) Several productions in the grammar contain alternatives that begin

with the same symbol. The grammar must be factored to remove the

multiple start symbols. An obvious example is <statement> in

Chapter 4 Language Implementattr:. Considerations 163

which all the options start with [<l~bel>), but a more subtle
.

example is the production for <element>. It may start vi.th etth~r

an <identifier>, a <function.call> or a <reference>. hove~er both

<function.call> and <reference> also produce <ideotifler>.

h) Print formatting information must be added to nine of the total of

24 productions.

Chapter 4 Language laplementation Coneiderattone 164

%---------------------------~--------- ·-· --------------------------
% SNOB~-L SYNTAX as input to the GED Syntax Editor
%
STRING DELIMITER "'
START_COHMENT *
COMMENT_COLUMN l
DELIMITERS:blank:end_of_line
IDENTIFIER_START_SET &abcdefghtjklmnopqrstu,,wxyzABCDEFGHIJICLMNOPQRSTUVW
XYZ

IDENTIFIER_BODY abcdefghijklmnopqrat~vwxyzABCDEFCHIJKLHNOPQRSTUWXYZ012
3456789. %-------------------- -~------.__ ______________________ _
<program>

<comment>
print format

<identifier>

<integer>

<operator>

<unary>

<binary>
print format

<literal>

<element>

<expression>

<arg.list>

: :• { [<statement> J [<comment> J }

: :• COMMENT
&l@?@n

: :• IDENTIFIER

: :- NUMBER

: :• " I ? I '$1 • I * I I 1+1- I
@ I .. I I & ! I

::• <operator>

: =- [<operator> **]
[&l@s@?@s &2@s@?@s)

::• STRING I <integer> [• <integer>]

::• {<unary>} (<identifier> [<parameter.list>]
<literal>
"(<expression>")

)

::- [<element> { <binary> <element>} J

::• <expression> { , <expression>}

<!)arameter.list>: :• "(<arg.list> ") I '< <arg.list> ">

<label~

<subject.field>
print format

<pattern.field>
print format

<object.field>
printfoniat

<equal>

: :• IDENTIFIER

: :• <elea~nt>
&l@s@?

::• <expresslon>
&l@s@?

::• <expression>
&l@a~?

: :• -

$

$

$

$

$

$

$

$

$

$

$

$

$

ChaptLC 4 Language lmplement~tt~n Considerations

printformat. &l@s@?

<goto>

<goto.field>

::•'(<expression>') I '<<expression>->

: :• : (<goto>
S <goto>
F <goto>

)

[F <goto>)
[S <goto>)

% Tab to ~oluiJlll 50 before printing the colon

print format &l@s@t50@? (&2@7
&3@? &4@?@s (&5@? b6@?]
&7@? &8@?@s (&9@? &10@?]

)

% The enc.of.line inserted by the pretty.printer forms the end

165

$

$

$

% of statement if";" missing. ie instead of <eos>::•; I end_of_line

<eos> : :• [;]

<end.stmt> ::•
printformat

<statement> ::•
print format

END [[<label>
&l@s@? [[&2@s@?

END])
&3@s@?]]

[<label>] <stmt,goto,or.end>
[&l@?] &2@?

<stmt,goto,or.end>::• <stmt_body> I <goto.field>

<stmt_body> ::• <subject.field>

<eos>
&l@?@n

<end.stmt>

((• (<object .field> l] I

$$

<pattern.field> [• [<object.field> J J
)

(<goto.field> J

Fig 4.3 - The Grammar of Snobol ready for input to GED

4.3 Areas of Alteration in the Snobol Grammar

$

$

$

$

$

With the exception of the productions delimiters ("$" & .. $$"), Che

addition of formatting information, and the removal o: multiole start

symbols, all the modificattons to the ~rammar result from ~nobol's

incorporation of complete lexical information into - he syntax.

Examples of these occur in the definition of <iden~ifier>, <string> and

Chapter 4 Languase Implementation Conalderationa 166

<blank>. and format-sensiti~e construc,a. 'nleae constructs include ti.~

use of the end-of-line character. and tl~ requirement that certain

constructs. such as comments and labels, aust start in the first

column.

4.4 Are Identifiers, Numbers, Strings and Cowots Productions?

Syntactically these items can be defined as any other p~oduction in the

EBNF syntax. and could therefore be handled in the sam@ fashion. In

traditional compilers. for reasons of efficiency, this is not done.

Instead, a lexical analyser (a scanner) is used to collect the input

stream into the basic symbols of the language before any parsing is

done. GED uses a scanner, not for efficiency, but for the pragmatic

reasons discussed be!ov. In the following discussion, the identifier

iP used as an example, although the comments apply equally to numbers,

strings, and coanents.

The editor should provide for convenient entry ~f identifiers as single

entities in the usual fashion. 'nlat is. no prompting should be needed

while enteri~ .g an identifier. If howe~er, the production <identifier>
~

was implemented using the same technique as the remainder of the

syntactic definition (i.e. as <letter> {<alphanumeric>l•I_}), the

optional part ~{<alphanumeric>l•I }" would reappear e~ery time the

cursor IIO\/ed past the identifier. 'nlis is unnatural in use as

identifiers. numbers a~d strings are usually treated as composite

(multi-character) items only at the time of their initial entry. 'nley

are not subject t~ incremental modification (i.e. the addition of new

characters) at some later time. 'Ibis can be contrasted with

Chapter 4 Language Implementation Considerations 167

"<statement> {<statement>}". in which the later addition of extra

statements is possihle. Notice that the boundary between the lexical

and syntactic constructs must be determined by th•! writer of the

grammar - it is not e~ident from the syntax itself •

•

4.5 Hiding Optional Placeholders

The abm,e example highlights one point that must be considered by the

writer of a new input grammar for GED - it is esse~tial to minimize the

number and appearance of opttonal placeholders. If this is not don~.

many unexpected placeholders appear, which is discon~erting to the user

and makes movement around the program clumsy. Optional placeholders

represent optional productions in the syntax and so they cannot be

removed - this would alter th~ language. They can only be htdden.

There are two methods of hiding optional placehol~ers. The first is to

use the fact that GED displays only the firs~ option in a list of

alternatives as a prompt. For example, every statement in Pascal may

be prefixed by a label. ThP-refore, the d2finition of <statement> could

be ~written as "[<label>] <statement>". However, this would cause the

"[<label>)" prompt to appear before every <statement> prompt, vhen in

practice it is rarely used. By rewriting t:he grammar as "<statement> I

<label> <statement>", this is 8'foided. 'nle first option, "<statement>"

is used as the prompt, but the syntax help display still shows the the

complete production (including the option&l label), and the start

symbols include that for <label>.

Chapter 4 Language tmplementation Coneiderati~oe 168

Alternati...,ely, productions related to program format (such as the

n<blanks>" prcduction in Snobol) may be omitted and theit function

taken over by the print formatter.

insert a space when one is required.

The pretty-printer ts used to

It may be a~2ued that this is 1DOdifying the syntax, but EBNf cannot

represent blanks anyway their des=ription is in English. More

importantly, if the productions regarding optional blanks vere not

removed from the syntax, the placeholder [<blanks>] vould reappear

sufficiently often to becoNe annoying. Also, the requirea placeholder

<blanks> would ha"e to be represented as "<blank> {<blank>}". This

would be another source of irritation as the cursor stopred on

{<blank>} each time each time it was encountered.

It is not possible to state categorically that optional placeholders

should, or should not, be displayed. A subjective decision on the part

of the language implementor is necessary in order to determine their

relevance, and only those judged rele...,&nt should be displayed.

Definition of Snobol Identifiers

The syntax of identifiers is defined in GED by enumerating the

characters that may start and continue an identifier. For example, in

the definition of fig 4.2, an identifier must start with a letter and

may have any number of following letters, digits, dots and unde~scores.

The definition of these sets in a form compatible with GED is

illustrated in fig 4.4.

Chapter 4 Lang~age lapleMntatlon Coneideration•

IDENTIFIER_START_SET &abcdefg.,ljkbnopq~s~u,.,wxyz

ABCDEFGHIJIQ.HNOPQRSTUVWXYZ

IDENTIFIER_BODY abcdefgh1jkl~opqrstu"wxyz

ABCDEFGHIJl'.l.HNOPQRSTUVWXYZ0123456789._

Fig 4.4 - 'lbe Lexical Specification of Snobol Identifiers

169

NotP - An ampersand has been added to the identifier start aet in order

to 2llow it to be used at the start of resen,ed words.

lefining the Strings in Snobol

:he original grammar defines strings as ~~bit=ary sequences of

characters surrounded by either single or double quotes, whereas GED

-~fines strings in terms of their delimiting characters. 'lberefore the

definition which was:

<literal>

<sliteral>

<dliteral>

<string>

becomes:

: :•

::-

: :•

::-

<sliteral>

,
<string>

,

"<string>"

Any sequence

SThING_DELIMITER "
,

<literal> : :• STllING

<dliteral>

of characters

Chapter 4 Language Impleaentation Con•ideratione 170

4.6 Remo~ing the Production for <BLANJCS> from the Saobol Synta~

The Snobol syntax uaea productions to apecify atrtngs of blanks. 'nlese

productions are uaed either as separators (one or more blanks) or for

formatting purposes (zero or more). GED uses a pretty-printer to

fomat regenerated programs and therefore the use of blanks fer

formatting ta redundant. Therefore, the productio11 "(<blanks>]" can be

omitted. Bowe~er, aingle blanks are still needed as separators. 'nlese

could be pro~ided by retaining the production <blanks> which is defined

as "one or aore blanks" but this would require the definition of a n~w

lexical it@m BLANK. This has not bee11 done. 'l'he production "<blanks>"

1s also omitted and the print-fonaatter ts used to insert a apace where

one is required. This is illustrated below.

<blanks> ::• one or more blank characters

<subject.field> ::• <blanks> <element>

BECOMES

<aubject.fleld>

p~intformat

: :• <element>

&l @a@? Print apace (@a) before

printing <element>(@?)

4.7 Rewriting the Productions to Remo,,e Comm>n Start Symbols

Productions must often be factored to remo~e COIIUllOn start symbols. The

production <statement> in Snobol is a example of this. E\,ery type of

statement aay start vith a label and ha~e a <goto> fie-ld. Also most

~ariants have a subject field. 'lbe syntax of <statement> (vith

<blanks> remo~ed) is reproduced below.

Chapter 4

<aaatgn.,tmt>

<aatch.stmt>

<repl.stmt>

<degen.stmt>

<end.stmt>

<statement>

Language laple .. utatton Cooaiderattona

::• (<label>] <subject.field> <equal>

(<object.field>) (<goto.field>] <eos>

.:• (<label>] <subject.field> <pattern.field>

(<goto.field>) <eos>

171

::• [<label>] <subject.field> <pattern.field> <equal>

[<object.field>] [<goto.field>] <eoa>

::• [<label>J[<subject.field>J[<goto.field>]<eos>

::• END [<blank3> [<label> I END]] <eos>

::• <assign.stmt> I <matc~.stmt> I <repl.stmt> I

<degen.stmt> <end.stmt>

This format is too complex to se~ clearly the form of each ~ariant, and

ao each non-terminal name is abbrftiated here to enable each production

to fit on one line. With the exception of the equal sign, all the
..

names represent non-terminals and so the angle braekets may also be

omitted.

assgn.sat : :• (1) s • [o] (gto] <eos>

match.stat ::• [1] s p [gto] <eos>

replace.stat : :- [1] s p • [o] [gto] <eos>

degen.atat : :• [1] [s] [gto] <eos>

statement : :• assgn.smt I match.smt I replace .sat I degen.sat

Chapter 4 Language I•r·luiaentation Conatderattona 172

All the abo~e productions start "1th an optional label, and a.oath""• a

subject. Th~ <end.statement~ ia oaitted here aa its start aymbola

differ from those in the abo~e at•tementa, and ao it doesn't enter into

the factorisation. It aimplifiea the factorisation if the degenerate

statement is replaced by tvo productiona, one with a subject and one

without. By reordering the resultant list, the following list of

productions is obtained.

assgn.smt : :- (ll s - [o) [gtoJ <eos>

degenl .stmt : :• (l] s [gto] <e.:>s>

match.scmt : :• [1] 8 p [gto] <eos>

replace.stmt ::• [1] 8 - [o) [gto] <eos>

degen2.'itmt : :• [l] [gt:o] <eos>

statement ::• assgn . smt I match.sat I replace.smt I degen.amt

Th~se factor neatly into a production that starts with an optional

label, and ia followed by t~ alternati~ea, one with a subject part and

one without.

<stmt> : :• 111 (s [pl [• [o]]] (gto] <eos>

Substituting the production names:

<stat>::• (<label>] [<eabject> [<pattern>] [•[<object>]]) [goto) <eoa>

Chapter 4 Language Iapleaentatlon Conalderattone 173

This will always show the possibility of a pattern raplacement when in

practise, direct asslgnraent is mre com1110n. The productions can be

altered to ha~e the optional pattern as a alternati~e. The productions

below, ccpted from the syntax used for GED, show the alterations.

<e11d.stmt> : :• END [[<label> I END})

<statement> ::• [<label>] <~tmt,goto,or.end> <eos>

<stmt,goto,or.end>::• <stmt_body> I <goto.field> I <end.stmt>

<stmt_body> ::• <subject.field>

([• [~object.field> l]

<pattern.field> (• [<object.field> J]

)

[<goto.field>]

Some productions ha~e been relabelled as non-terminals 80 the

non-terminal names will be used as th~ placeholder prompts • ..

4.8 Defining the Print Formatting Commands

Minimal print ~urmatting is needed to lay out a r•ienerated Snobol

program - each statement or comment is printed on a separate line. The

only other formatting commands are those needed to insert£ blank were

a <blanks> production has been remo~ed. kJ GED, by default 9 prints all

productt,""t& aide-by-side, moRt productions do not need formatting

commands.

Chapter 4 Language lmplementa•;ion Conaiderattona 174

The print formatting commands associated with <statement~ and ,comaent>

simply print either the prompt or the expansion of their placeholder,

and then &kip to a new line. Syntactically. the <goto.field> ~ould be

printed immediately after the earlier part• of the statement but it ia

much easier to read a Snobol program if the goto part ts aligned on the

right-hand side of the page. 'Ibis is done by preceding the printing of

the <goto .field> with a "tab to column 50" (@t50) cemmand. n,is will

cause all the <goto.fjeld> expansions to be aligned at column 50. If

however the cursor is already beyond colwm SO, no gap would be

inserted before printing the":" that starts the <goto> part. 'n\is

would violate the syntax which specifies that a leading blank is

necessary. There!ore the print formatting commands associated with the

colon are:

@s @t50 @?

"meanir.g print a spsce" • "tab to column 50", and print symbol& (" :")

Although the complete list of changes necessary to implement the Snobol

editor seems long, the total time taken was only about two man days. A
..

custom built system would, of course, take much longer to implement.

4.9 The Implementation of Pascal and Lisp F.ditors

The major problems associat~d with implementing a Pascal editor were

the same as those that occurr~d during the implementation of ~nobol.

The grammar had to be factored to re110~e replicated start symbols and

extra productions added to cause the non-terminal names (such as <l!st

of files>) to be used as a prompt. For example, the production

Chapter 4 Language Implementation C~nsiderationa 175

<heading> ::• PROGRAM <program_name> ("(<name>{, <name>}")] ;

would cause the left parenthes1s to be used as the prompt for the

optional list of files. lbe prompt "((]" is much lees informati"e than

the 11 [<list_of_files>]'c prompt gi.,,1:!n if the abo"e construct is written

as:

<heading> ::• PROGRAM <program_name> [<list_of_files>] ;

<liat_of_files> ::• "(<name>{, <name>}")

Thesv alterations become easier to predict with practice. Although

rewriting the gra~r to remo~e left recursion and replicated start

symbols could be mechanised, the complete process of the grammar

preparation cannot. This is because many of the decisions, such as

factoring out the part of productions (e.g. <list_of_files> abo.,,e)

into a separate prod~ction, are based on reasons of style and the

relati"e occurrence of certain constructs. Another example would be

the definition of the labelled statemeni:

"<atatement>l<label><atatement>" instead of

in

the

Pascal

more

..
"[<label>]<state!llent>", in order to hide the rarely used label.

as

ob~1ous

Aa GED will not ex,:,and a placeholder that leads to altei-nati~es,

differing intem.ediate le~el productions can be pro.,,ided to act _as

prompts. This is most clearly illustrated by the syntax of a minimal

aubP.~t of LISP, in which ~irtually e~erything produces an S-expression.

This ia illustrated in fig 4.5.

Chapter 4 Language lmplmaentation Conatderatione

<t.iap Program> ::• <a-expression> { <a-expression>)

print format &l@?@n@n { &2@?@n@n }

<a-expression> ::• <atom> <list>

<list> : :• .. ((<lisp-function>
<a-expression> { <a-expression>}")

printfonut &l@? (&2@?
&3@? { &4@? } &5@?

)

<lisp-function>::• COND <pred_&_reault> ")

CAR <a-expression> ")

CDR <a-expression> ")

DEFUN <function-name> <parameter list>
<function-body> ")

CONS <new-head> <old-list> ")

printformat

<pred_&_result>

printformat

&l@?@>@n &2@?@<
&4@? &5@?
&7@? &8@?
&10@? &11@? &12@?@>@n

&13@?@<
&15@? &16@? &17@?

: :• "(<predicate>
{"(<predicate>

&l@? &2@?
{&5@? &6@?

<predicate > ::• <a-expression>

<result> ::• <a-expression>
..

<function-name> ::• identifier

<function-body> ::• <list>

&3@n@?
&6 @?
&9 @?

&14@n@?
&18 @?

<result>
<result>

&3@?
&7@?

")
"}}
&4@?@n
&8@?@n}

<parameter list> : =- " (<parameter> {<parameter>}")

<parameter> ::- identifier

<new-head> ::• <a-expression>

<old-list> ::• <a-expression>

<atcm> ::• identifier I number

Fig 4.5 - Syntax of LISP Subset

I

176

$

$

$

$

$

$

$

$

$

$

$

$

$

$ $$

Chaptrr 4 Language lllpleaentation Conaideratin~s 177

For example. the CORD construct 1• displayed as

(COND
(<predicate> <result>)

)

which is much more inforaati~e than:

< cm;n
(<s-exp> <a-exp>)

)

The same applies to tne parameter lists and body of function
definitions. 1'le distinction is t.aportant as it =emo~es a source of
ambiguity. The editor has the knowledge of -.hich part of the syntax is
currently being expanded end this information should be constantly
available to the user.

Thr layout defined by Lhe print formatting commands in the Lisp graamar
above is illustrated by the following function (wich is to look up
atom X in a list Y) as output by GED.

(DEFUN lookup (x y)
(COND

)
)

((eq y nil)nil)
((eq x (CAR y))(CAR (CDR y)))
(t (lookup x (CDR (CDR y))))

Wh~ defining Lisp one must decide whether a list of a-expressions

should be printed on the same line, or be separated and indented. For

example, a parameter list such as "(ab c)" should be printed on one

line but the COND construct, with its multiplicity of predicates and

results is auch easier to read if the predicate and result are indented

from the COND and displayed one (pair) per line, as illustrated above.

Syntactically, there is no difference. as COND is an atoa. Bove,,er,

unless a distinction is made the resulting format is unacceptable. To

handle the two different cases the graaaar ts factored and the leading

left p~renthesia of made part of the production <llat>. Until it is

Chapter 4 Language Impl ... ntation Con•ideration• 178

known whether the contents of the li•t ar.e going to be a CORD ~r a

DEFUN it is impoaaible to determine if a line-feed is necessary befor,~

printing the ~ight parenthesis.

made pa~t of each alternati"e.

'lberefore the right parenthesis f.s

4.10 Problems Encount•:ec! in the Addition of Formatttng cownds

Constructs that require indentation for part of a production but de, not

ha~e a terminating symbol, such as the list of constant definitions in

a constant declaration, can present problems.

<const_declaration> production was defined as

For example, if the

<const_declaration> ::• CONST <const_defn>;
{ <const_defn>; }

priutformat &l@?@>@n •2@?
{ &4@?

&l@?@n
&S@?@n}

then the output would be fonaatted as

CONST
cl• l;
c2 • 2;
VAR ••• <- Indentation le~el is incorrect

The CONST is printed, the indentation le"el increased and t;hen a new

line is started. 'l'he constant definitions are printed on separate

lines, all ind~nted one le"el, which is correct. Bowe"er there is no

place to put &n "undent" one level (@<) command to reset the

indentation le"~l after th~ last definition in the list. n.ta can b~

handled in se"eral ways. If the construct always starts in a specific

column (in this case, column one}, then the tab rather than the ilident

comand may be ueed to altgn the constant definitions. For example:

Chapter 4 Language lmpleMntatton Considerations

<conat_declaration> ::• CONST <const_defn>;

print format &l@?

will format the output as

CONST cl• l;
c2 • 2;

{ <conet_defn>; }

&2@t7@?
{&4@t7@?

&J@?@n
l5@?@n}

VAR... <- Indentation is Correct

179

'11lis technique is only applicable if the construct is at a known

~olumi. More generally, the production can be rewritten a~:

<constant_definitions> ::• CONST

print format &l@?@>@n

<const_list>

&2@?@<@n

<const_list> ::• <constant_definition>; { <constant_definltion>;}
printformat &l@? &2@? { &l@n@? &4@?}

This will format the output in th~ aaae manner as the pre~ious example.

Fortunately, it is rarely necessary to rewrite the grammar simply to

presene the indentation le~el, as this problem only occurs when the

indented construct is an explicit list. Another example of a
.

production with an indented production (without a balancing symbol on

which to place an "undent" command) is the "while" statemetit. Bove,.,er,

as the indented production (<statement>) is not a explicit list, no

problems occur. '!be produccion and its formatting commands are:

<while statement> ::• WILE <expression> DO
<statement>

printformat &l@? &2@? &l@?@>@n
&4@?@<@n

Chapter 4 Language Iaple-ntation Con•iderattons 180

'nlis will format a while statement correctly,

indented with respect to the WHILE and

inde·.1tat!on le,.,el.

with <statement> being

it will also reset the

Lisp is intermediate in formatting coaplexity between Pascal, whose

wealth of indented constructs renders it by far the moat complex, and

Snobol. which is the simplest. Apart from inserting blanks and tabbing

to the right-hand side of the page for the destination parts of a

statement, all Snobol productions use the default fot'llatting

(side-by-side).

4.11 Summary

The implementation of a syntax-directed editor for a new language

appears to

from the

be a major unde~taking, but is much easier than is apparent

written description of the problems. The remo'\tal of

replicated start symbols is the major area in which the syntax must be

structurally altered. Extracting segments of a grammar and turning

them into new productions to pro'\tid~ descripti'\te prompts may be

performed ittrati'\tely once the grammar is LLl. 'lbe largest part of the

syntax preparation is in defining the print formatting information

associated with each syntactic item. Bowe,.,er, this is not because of

any deficiency in GED it is a necessary prerequesite whene~er a

pretty-print~r is being defined for a new language.

While the a110unt of wcirk necessary to implement a syntax-directed

editor using GED is still significant. the time taken to bring up an

editor for a new language is much less than thac required to implement

Ill

_. a .,.ca fna t11e ... t.1111.. 11n n..aus.c,, ta '°ell ... t .. -

1-. -t111ete _. alterba die tr••&attoa of CM ..-asna, die

w of a .. c.-.,nc, .. ratller ,._ a ,ato•• wlttea .. ltor ._ lllell co

ftC@Q Jqd lte

9!:fpter 5

Concluaiona

5.1 A Short Description of the Syatea

Thia thesis baa traced the dev•lopaent of GPJ>, a full-screen

syntax-directed editor that te language-independent. 'ftle editor

initially reads in as data a language syntax augmented vith lexical and

pretty-printing information, and ia subsequently capable of

syntax-oriented editing of programs in that language.

To aid the end-user, GED provides a skeletal program and

insertions and alterations. It continuously displays

production and all p~ssible correct input symbols.

prompts for

the current

AsJ incorrect

symbols are not accepted, no incorrect constructs can be incorporated

in the program being built.

5.2 The Realisation of Design Goals

During the editor's development, three main goals were pursued. These

were:

1. It should be general. 'nlat is, it should be able to be set up to

edit any (or nearly any) progr-ing language.

2. It should be easy to set the editor up for a nev language. It vas

considered that an editor which accepted a BHF language syntax as

Chapter 5 Concluaiona 183

ita only controlling input would be uxtully eaay to set up, and

that any information which needed to be apectfied in addition to

the BNF detracted from this.

3. It should be easy for even the naive user to edit programs with

GED. Colloquially, it should be user-friendly.

The following three sections of this chapter investigate the extent to

which these goals have been achieved.

5.3 Generality of the EditoT.

GED is capable of handling any language which can be defined in BNF

(t.e. it deals with context-free languages.) Many programming

languages are defined in BNF (or a variant thereof) but are, in fact,

context-sensitive, because they require identifiers to be declared.

GED handles this case by flagging the first case of each user-defined

symbol. This permits the use of the editor to alter declarations (or

spellings) ls necessary to avoid "syntactic" error...essages from the

c0111piler. In this way, languages with declarations are included in the

set which can be handled, and a handy spelling-checker is available

when editing any type of language.

It is considered that the goal of generality has been achieved.

Chapter S Conclu.ious 184

5.4 Ease of Setting-yp

In initialising the editor, th~ aajor task is the input of the language

syntax. MJ this is represented in BNF, the most videly used syntax

specification language, it is straightforward in most ca•~•· Bovever,

there are tvo types of information which the editor needs, but which

are not present in BNF.

'nle first ia the lexical grammar of the user-defined aymbols in the

language. lt is possible (cf. Snobol) to specify such a Rramaar in

BNF, but this is rarely done. It has therefore been necessary to

incorporate a facility for the analysis of lexical syntax into GED, and

to preface each EBNF graanar vith such a syntax. Although siaple, the

lexical analyser is general and vill suffice for a wide V6riety of

languages.

The second ty~~ of information missing from a BNF syntax specification

concerns program layout. It is widely acknowledged that layout can be

used as a powerful aid to program comprehensibilit~, but a syntax

specification contains no information about layout. A sillple notation

for specifying indentation and other prettypri~ting features, which

needs only to be applied to some productions (e.g. those whose

components can be expected to extend over several lines), and which can

be incorporated into the BNF input syntax, ~as been devised.

Although the amount of work necessary to aet up cm for a parcicular

language is certainly non-trivial (amounting to an average of slightly

leas than one man-week for the languages used as examples), it is

enormously leas than would be required for the implementation of a

Chapter 5 Concluaiona 185

custom-designed syntax-oriented editor. Olangee in language eyntax can

be incorporated with ease into GED, mereaa a custom-designed editor

would, in moet cases, need major revrtttng.

5.5 Ease of Use

No major public trials of the editor have been atte1Dpted, because of

the difficulty of fitting in vith the academi~ year, •• GED vaa

completed towards the end of one acadeaic year and this thesis vaa due

at about the beginning of the next. However, informal trial• have

indicated that it is an easy system to use, more particularly f~r nev

users who do not have preconceived ideas of hov an editor "ought" to

ace on their program.

An area of difficulty encountered by some users concerns ascending •~d

descending the program tree. Language definitions are not designed to

facilitate this process, and often the ~umber of commands necessary to

reach a particular location in the tree is excessive. Bovev~r,

judicious massaging of the syntax by the implementor can alleviate this

problem ~o aOllle extent.

A similar problem relates to the mnemonic value of the names used for

the various productions within the language. They are often obscure.

but. again. the i1Dplementor can easily substitute more meaningful

names.

The s1stem is easy to edtt With. It removes one of the bug~ears of nev

userH - the program vith more error messages than statements. In an

envtromaent with ::iany languages, it guarantees consistency of operation

Chapter S Concluaiona 186

of syntax-or!ented editoca.

5.6 Future Developments

This work has suggested two significant areas for future research. flle

first is a different technique for implementing the editor, while the

second is a major increase in its functional capabilities.

As ve have seen, the ordinary recursive descent parser's aethod of

storing the state of a parse implicitly in its stack of return

addresses is impractical for a S'!r.ltax-directed

should be possible to implement one ss a

editor. However, it

multi-process recursive

descent parser which forks a new process fer each production being

parsed. As each parse would have its ovn stack, no information would

be lost when a process was suspended. Only the parser corresponding to

the production c,1rrently under the cursor would receive input symbols,

and movement of the cursor would thus automatically suspend one parse

and resume another.

As the syntax-oriented editor incorporates a significant portion of a

compiler, it seems natural to speculate about eliminating the gap

between the two; i.e. developing a syntax-oriented editor which can

execute the programs which it is used to build. This would require

each syntactic production to be folloved by a specification of its

associated semantics in some interpretable language (e.g. Lisp), and

would also require the inclusion of generalised symbol-table

manipulations. -It is difficult to see how this could all be

accoapl1Jhed without loss of generality, but it is an intriguing

Chapter 5 Concluai011• 187

problea nevertheleaa.

5.7 Pinal Thought

A syntax-directed editor 1• to proar...tag vhat a vord-proc•••o~ 1• to

Bngli•h• loth are duiped to aiaplify the taak of document

preparation - the difference• occur only in the entities being

manipulated.

Acknowledgements

I would like to acknowledge the assistance given by my supervisor, Mr

Paul Lyons, in the preparation of this thesis. His pertinent

questions and critical coaents contributed much to this thesis and its

writeup.

My wife Anne contributed in a different way - through her support and

understanding d~ring many afternoons and evenings spent alone.

[Achugbue 81]

[Ada 80]

[Allen 81]

(Archer 79]

(Archer 81]

[Atkinson 81]

[Barach 81]

[Brown 81]

[Chamberlin 81]

[Cherry 81)

[Cohen 70)

[Demers Sij

Bibliography

Achu~bue Jo. "On the Line Breaking Problem in Text
Formatting". S1.gplan Notices, Vol 16, Nu 6, June
1981, pl17.

United States Depart~ent of Defenr.e. "Reference
Manual for the Ada programming Languaz~". 80 Proposed
StandarJ Document.

Al.l\:!ll T, Nix R, Perli& A. "PEN~ A Rierachical
Document Editor"• Sigplan Notices. Vol 16. No 6, June
1981, p74.

Archer J (Jnr) 9 Shore A. "A Program Development
System Execution Super,,isor", Report I TR 79-397.
Department of Computer Science 9 Cornell Uni"e

Archer J (Jnr), Conway R.. "COPE: A Cooperati've
Programming F.n"ironment", Report # TR. 81-459.
Department of Computet Science, Cornell University

Atkinson L V, North S D. "COPAS Con,.,ersational
Pascal System". Software Practice and Experience, Vol
11. 1981, pp 819-829.

Barach D a. Taenzer DH. Wells RE. "The Design of
the PEN Video Editor Display Module". Sigplan
Notices, Vol 16 9 No 6, June 1981, pl30.

Brown P J. "Dynamic Program Building", Software
Practice and Experience. Vol 11. 1981 9 pp 831-843.

Chamberlin DD, King Jc. Slutz
B w. "JANUS, An Interacti"e
Composition"• Sigplan Notices.
1981. p82.

DR, Tedd SJ P, Wade
System for Document

Vol 16 9 No 6. June

Cherry L. "Computer Aids for Writers". Sigplan
Notices. Vol 16, No 6, June 1981 9 p61.

Cohen D J • G'ltlieb C c. "A List Structure Form of
Grammars foi: Syntactic Analysis"• Computing Surveys.
Vol 2. Nol, March 1970.

Demers A9 Reps T. Teitelbaum T. "Incremen~al
e~aluation for attribute grammars with &fplication to
syntax-directed editors"• 8th POPL Conference. ,_Pl05.

[Deutsch 81 J

[Ell tot 82 J

(Englund Sl]

(Feiler 81]

[Fischer 811

[Fraser 81]

[Goldfarb 811

[Good 81]

[Gosling 81]

[Gutz 81]

[Habermann 82)

[Hammer 81]

[Hansen 71]

Bibliography 190

Deutsch H s. "Software Project Veriflcation and
Validation (Tutorial)", IEEE Computer Magazine, April
1981, p54.

Elliot B. "The Design of a Simple
Software Practice and Experience,
375-384.

Screen Editor",
Vol 12, 1982, pp

Englund R M. "The Coming Decade of Inno'\tation A
Workshop Report", IEEE Computer Magazine, April 1981,
p77.

Feiler P H, Medina-Mora R.
Programming En'\tironaent", IEEE SW
p44.

"An Incremental
Engineering 1981,

Fischer C, Johnson G, Mauney J. "An Introduction to
Release 1 of Editor Allan Poe", CS Tech Report #451,
Uni'\tersity of Wisconsin, Madison.

Fraser C W. "Syntax Directed Editing of General Data
Structures", Sigplan Notices, Vol 16, No 6, June
1981, pl7.

Goldfarb CF. "A Generalised Approach To Document
Markup", Sigplan Notices, Vol 16, No 6, June 1981,
p68.

Good M. "Etude and the Folklore
Design", Sigplan Notices, Vol
p34.

of User Interface
16, No 6, June 1981,

Gosling J. "A Redisplay Algorithm", Sigplan Notices,
Vol 16, No 6, June 1981, pl23.

Gutz S, Wasserman A I, Spier M J. "Professional
Development Systems for the Professional Programmer",
IEEE Computer Magazine, April 1981, p45.

Haberm~nn A N. "System De\telopment En'\tironments" in
"Tools & Notions for Program Construction" An
Advanced Course• edited by D. Neel. Cambridge
Uni\tersity Press (1982). p247.

Hammer M, Ilson R, Anderson T, Gilbert E, Good M et
al. "An Implementation of ETUDE, An Integrated and
Interacti"e Docum-.!nt Production System". Sigplan
Notices, Vol 16, No6, June 1981. pl37.

Hansen W J. "Creation of Hierachic Text With a
Computer Display", PhD Thesis - Stanford, Report#
ANL-7818. , Argonne National Laboratory, Argonne,
Illinois.

[Iv i.e 77 J

[Jensen 74}

[Kernighan 81)

[Kernighan 80)

[Lakos 82}

[Lesk 75]

[Lyons 83]

Bibliography

hie E L. "The Programmer's Workbench A
for Software De"elopment", Communicat tons
October 1977, Vol 20, No 10, p746.

19 l

Machine
of ACM,

Jenaen, K and Wirth, N. "Pascal User Manual and
Report", Springer Verlag, 1974

Kernighan B w. "PIC - A Language for Typesetting
Graphics", Sigplan Notices, Vol 16, No 6, June 1981,
p92.

Kernighan, B.w. and
Software Series:
Prentice-Hall ?978.

Ritchie, D.M. Prentice Hall
"The C Programming Language"

Lakos CA, McDermott Ts. "Interfacing with the User
of a Syntax Directed Editor", Report #R 82-3
Department of Information Science, Uni~ersity of
Tasmania, Hobart.

Lesk, M.E. "LEX - a l'!xical analyser generator",
CSTR 39, Bell Laboratories, Murray Hill, New Jersey.

"TWIJI - A Written Version of the Tramline Syntax
Notation", Personal communication from P.J.Lyons,
Computer Science Department, Massey U,i~ersity,
Palmerston North, New Zealand.

[Medina-Mora 81) Medina-Mora R,
Implementors'
Department of
University.

Notkin D
Guide",
Computer

s. "ALOE Users' and
Report #CHO-CS-81-145.
Science, Carnegie-Mellon

[Mikelsons 81)

[Morris 81]

[Osterweil 81]

[Pagan 81)

{Reid 81)

Mikelsons M. "Prettyprinting
Environment", Sigplan Notices,
1981, pl08.

Morris J M, Schwartz M D.
Language-Directed Editor for
Languages", Sigplan Notices, Vol
p28.

in ,n Interactive
Vol 16, No 6, June

"The Design of a
Block Structured

16, No 6, June 1981,

Osterweil L. "Sof twace F.n"\fironment Research:
Directions for the Next Fi"e Years", IEEE Computer
Magazine, April 1981, p35.

Pagan, F G. "Formal Specification of Progamming
Languages: A Panoramic Primer" Prentice-Ball Inc
(1981} Englewood Cliffs, New Jersey, pp 21-22

Reid B K, Hanson D. "An Annotated Bibliography of
Background Material on Text Manipulation", Sigplan
Notices, Vol 16, No 6, June 1981, pl57.

[Reps 81 J

[Snook 78]

Bibliography 192

Reps t. "Optimal-time lncr~mentd semantic analysis
for syntax directed editors.", Cornell Unl.,,erslty, TR
81-453.

Snook T, Bass C, Roberta J, Nahapet1an
"Report on the Programming Lanttuage
Springer-Verlag, Nev York, 1978.

A, Fay M.
PLZ/SYS",

[Stallman 81] Stallman RM. "EMACS - The Extensible Customisable
Self-Documenting Display &iitor", Sigplan Notices,
Vol 16, No 6, June 1981, pl47.

(Stromfors 81) Stromfors O, Jonesjo L. "The Implementation and
Experiences of a Structure Oriented Editor11

1 Sigplan
Notices, Vol 16, No 6, June 1981, p22.

[Tee 831 Personal communication from G.J.Tee, Computer Science
Dept, Uni "ersi ty of Auckland, New Zea laud.

[Teitelbaum 80) Teitelbaum T. "The Cornell Program Synthesizer: A
Tutorial Introduction'', Report I TR 79-381 (revised
1980). Department of Computer Science, Co

[Teitelbaum 80) Teitelbaum T, Reps T. "The Cornell Program
Synthesizer: A Syntax-Directed Programming
Environment", Report # TR 80-421. Department of
Computer Science. Cornell Uni.,,ersity.

[Teitelba.m 81) Teitelbaum T, Reps T, Horwitz s. "The Why and
Wherefore of the Cornell Program Synthesiser.",
Sigpl~n Notic~s, Vol 16, No 6, June 1981, p8.

[Teitelbaum 81] Teitelbaum t..., Masinter L. "The !nterlisp Programming
En"ironment" IEEE Computet Magazine, April 1981, p25 .

[Teitelbaum 81)

[Turba 81]

[Van Wyk 81]

[Vickers 80]

[Vickers 82]

Teitelbaum T,
Synthesiser:
En"\lironment",
1981, Vol 24.

Reps T.
A Syntax

Communications
Nfl 9. pS63.

"The Cornell Program
Di.ected Programming

ot the ACM, September

Turba TN. "Checking for Spelling and Typographical
Errors in Computer-Based Text .. , Sigplan Notices, Vol
16, No 6, June 1981, p51.

Van Wyk C J. "A Typesetting Langua~e"" Sigplan
Notices, Vol 16, No 6, June 1981, p99.

Vickers, s. "ZX81 Basic Programming", Sinclair
Research Limited, Cambridge England (1980).

Vickers, . s. "ZX
Sinclair Research

Spectrum Basic Programming",
Limited, Cambridge England (1982).

[Walker 81)

[Wassersaan)

[Waters 82)

[Wirth 77)

[Wood 81]

Bibliogr11phy 193

Walker J H. "The Docu11ent Editor: A Support
En"iron11ent for Preparing Technical Documents"•
Sigplan Notices, Vol 16. No 6, June 1981 9 p44.

Wasserman A I. "Automated De"elopment Em, ironments"
Uni"ersity of California, San Francisco

Waters R c. "The Programmers Apprentice: ICnowledgc
Based Program F.diting". IEEE Transactions on Software
Engineering, Vol SE- 8, No 1, January 1982.

Wirth N. "What Can we do about the Unnecessary
D1"ersity of Notation for Syntactic definitions?"•
CACM No"ember 1977. Vol 20, no 11 pp 822-823.

Wood S R. "Z The 95% Program Editor"• Sigplan
Notices, Vol 16 9 No 6 9 June 1981, pl.

