Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

GED

A GENERALISED SYNTAX EDITOR

A Thesis Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Science in Computer Science

at Massey University

Giovanni Serafino Moretti

1984

MASSEY UNIVERSITY

AR

1261308248

ABSTRACT

This thesis traces the development of a full-screen
s3yntax-directed editor - a type of editor that operates om a
program in terms of its syntactic tree structure instead cf
its sequential character representation.

The editor is table-driven, reading as input an extended BNF
syntax of the target language. It can therefore be used for
any language whose syntax can be defined in EBNF. Print
formatting information can be included with the syntactic
definition to enable programs to be pretty-printed when they
are displayed.

The user is presented with a pretty-printed skeletal outline

of a program with the currently selected construct
highlighted and all required syntactic items provided by the
editor. Any constructs with alternatives, such as

"<statement>", which occurs in many languages, are initially
denoted by a placeholder in the form of a non-terminal name
(L.e. '"<statement>") which 1s expanded when the user
indicates which alternative 1s wanted. All symbols entered
by the user are parsed immediately and any erroneous symbols
rejected, making it 1impossible to create a syntactically
incorrect program. The editor cannot detect semantic errors
as no semantic information is available from the EBNF syntax.
However the first use of all identifiers is flagged by the
editor as an aid to the detection of undeclared identifiers.

A "help" area at the bottom of the screen continuously
displays a list of the correct next symbols and the syntactic
definition of the currently selected program construct. This
display, together with a multi-level "undo" command and the
provision of a skeletal program by the editor, provides a way
of exploring the various constructs in a programming
language, while ensuring the syntactic correctness of the
resultant program.

Table of Contents

I Program Preparation = The Traditional Approachecececccesssssscesesssel

. L]
0 O~ S W N -

o

Pt et e et et et et et it et
.

N
g
o

.
e = O 00~ OB W N

W - QO

RN NN N
o ¥ % 8 e & a8 .

LF%]
2]

.
—-—-c)a:n|a~UI¢~uih>P‘g

. 8 . & @ - . & -

Wl W W wwwwwww

W

. s
Pt e
w N

3.14

w W W
- .
—
~ v

3.18

w
.

-
L]

Integrated Programming EnvironmentSeeeccssssssccscssscsscsnssssssssel
IntErptEt1VE BASIC Systems..-............................-.....3
Keyword Entryeeseccceccccccssccscscccccccacscccsssssssssssnasnnsssh
Syntax-Directed Editing EnvironmentS«ssccecceccscsscccsaccaccned
Cornell Program Synthesiserssssesssscsscsscsccccscasssccsssssscel
ALOE - A Language Oriented EditOTesccscsccccssscsssssssssssassalb
Editor Allan POE - A Pascal Oriented EditOresscsceccccssssassel8
COPAS - A Conversational Pascal SySteMescscaseccccssssesssocssslb
NZW - The 95% Program Editorasssnsassnssansssssssnessssassseestl

Summary....--..--.-.........-o-.-o--.-.-..................--.42

= Gliovannl *s EdLEoresvesswssmavweevessawssaupesseesssesvesee el
Language Input Definitionccessccsscacsscccncccssssrsnsssnsscsencasdd
The User's View-......-......................-................50
The Display....-.-....-.-.........-.......................--..51
Inserting User INpuUlesssssssscsscsssasssssroansscscsssssnsssnsanedl
Displaying Optional and List PlaceholderS..ceccecccsccscccseed5
Cursor Movement CommandSesessscssscsscssssssssssnsssnssesscnnsadbd
Marking and Returning to Marked NodeSeeescececcertcceresacncsssb2
The Delete Command = FSecesccossnsccscsssssssesascsasnsnsssassbd
The Insert Command - F&---.----uoooo-o.-n-o...oooo-o.clooaoo..&?
Reading and Writing FileSeessesescscsvsssscsscsssscsnssasesncab?
Undo Function - FIZ.....................-.-.....-...-....-.-.69
A Command Summary in Function Key Order.cceseccscscscsesessss70

Sumary...l......l..........‘ll....-l.‘i.....'......".....‘-?2

= Its Internal Architectur@icccssesscesssssnncessscsnnssncncsall
The Input Language Syntax----o.o..-.o..........-........-.-ooo?3
Definition of the Extended BNF Accepted by GEDescscscassnsssee??
Requirements of the Internal Syntactic Representationesssssss85
Representating Tokens of the Meta and User LanguageSesssssceso87
Describins the Names Of ProductionSieeccssssccssessscsonseeceedd0
Non-terminal syﬂtax NodeSeessoessassssesesannesssnsanssnnnnsnned
Concatenation and Alternation of ProductionSeescssccscscesssss93
The Data Structure used to Represent Optional SymbolSe.seesss..98
The Data Structure used to represent the List ConstrucCte......99
Storing a Representation of the User’s Programsssscccsseeeesl05
Recording the State of a Parser Without a Stackeeecccesccessal06
The Initial Form of the Program Node Tree€ecssecsscsssssscssssl08
The Program Node Field DefinitionS.ccceccceccccccccscssaaseesll2
Automatic Inclusion of Necessary Terminal SymbolS.:cecsessseellb
The Cursor - the Concept of a "Current Node".eeseevseseseaselld
Where does the Cutaor stop?lllllll.l.illll..l.l.ll‘.....l...llg
The Inclusion of User Symbols into the Program Treee.esss:.123
The Structure Created by the Expansion of Loop NodeS...ss...130
Unparsing = Deriving a Display from the Program Tree..s....132

3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

.=
]

0
1

Pl - S T L - - R -
— =D 00N OB W N -

Defining Layout - A Table-Driven Pretty Printerccccccsceceseel3é
GED Print Formatting Commandsessesses snwss swnssonesssinenssld?
Associating Formatting Commands with the SyntaX.seeeceesesss.138
Generating the Screen Displayeececessescscoccccscscnsscsasssldl
Optimising the Rewriting of the Screen Displayeeeceessessssssléd
The Implementation of User CommandSceccecscsccoccsccacsessssldb
Primary Cursor Movement CommandSecesseccccsscsscssssessessveseldb
Reading and Writing the Program and Clipped Subtrees..ssss..l47
The Clip/Delete and Insert CommandSssssassssvasssserervinsanldl
Marking, and Moving to, Specific Nodes in the Program.......l154
The Implementation of the "Undo" Command.sssssssscscsscasseal’s

Implementation of Syntax-Editors for New LanguageSeescecsecsssesl56
Preparing the Extended BNF Grammaresssccscsssssssssssesssssssl3’?
A Case Study - The Implementation of a Snobol Editor.seess...l59
Areas Of AltEration 1“ the Snobol Grammar.-...............---165
Are Identifiers, Numbers, Strings and CommentSc.eecescecsssssslbb
Hidiﬂg Optional Placeholders--.......a-...-.-.-....-'.....-..167
Removing the Production for <BLANKS> from the Snobol.c.sesss.170
Rewriting the Prnductions to Remove Common Start Symbols.....l170
Defining the Print Formatting CommandSeeeccecccccccccessscssssl?3
The Implementation of Pascal and Lisp EditorSceccccccscccscseal’lé
Problems Encountered in the Addition of Formattingessssesssal78

Sumary.l-iiﬂc.ll......llt-.d--lltll-.lcnnn--------c.-.-----lso

5 G nclusions-........------.-....................................olaz

o
1
2
3
4
5
6
7

A Short Description of the Systeémecscssssccecccsccsensessssceal82
The Realisation of Design GoalSessssssscescccsscsssocanensssal82
Generality of the EditOrececcscesssscssescsosssccssccsscsescsaal83
Ease of SEtting-up-.........---..........-.........-.....---.184
Ease Of US@eeesvevscsncacscsscstssssscsscssncsnssnsnnscnsssesl85
Future DevelopmentSeccssesscssssccssssssssssassssssscssssssssl8B6
Final Thought-...-.----.......-......-...................-.-.187

Acknowledgementsc........................-..--.-.-.-..-.------.-----188

Bibliograph}'l..'-"..‘l..l."'..I..I.'......'..lI.I...'........lll..lsg

Chapter 1

Introduction

1 Program Preparation = The Traditional Approach

The most common method of program preparation involves the repeated use
of a text-editor and a compiler. This method has an inherent
limitation - even if the user is sitting at a terminal, it enforces an
essentially batch mode of operation. The programs are prepared, and
then submitted to a compiler for verification and translation. There
are .two error classes that could be eliminated if the editor itself was
cognizant of the syntax of the programming language in use. The first
class is composed of errors that violate the lexical grammar of the
language and the second of errors in the constructive syntax =~ the

productions that define how the lexical symbols may be combined.

Lexical~L1mitations

A text editor accepts programs, as an arbitrary sequence of characters,
whereas logically a program is a sequence of unique symbols. Some of
these symbols are required by the syntax, others occur in

syntactically-ordered pairs or groups and some may be chosen by the

programmer.

The only items in a program whose textual nature 1is significant are
identifiers, numbers, strings and comments. These are composite items

consisting of sequences of characters, and the fact that reserved words

Chapter 1 Introduction 2

are externally represented as sequences of characters is irrelevant and
in this context misleading. It is irrelevant because although reserved
words look like identifiers, they are treated in the syntax as unique
symbols - a single incorrect character destroys the validity of a
reserved word, whereas even several altered characters may leave a

symbol still conforming to the syntax of an identifier.

More importantly, in this context it is misleading to treat reserved
words as character sequences as it leads the user to think of a program
as being composed of characters, not symbols. A text editor, having no
knowledge of program syntax, manipulates the program as text,

reinforcing this view.

Structural Limitations

A text editor has no knowledge of the syntactic structure of a program.
Therefore common errors such as unbalanced bracketing symbols and the
omigaion of _required symbols are not recognised at a stage where it is
possible to correct them easily. Only later, during the compilation of
the program, will these errors be detected, and then immediate

correction will be impossidle.

I1f the editor knew the target language syntax then these syntactic

errors could either be detected immediately and corrected, or

prevented.

Chapter 1 Introduction 3

l.1 Integrated .cogramming Environments

The Integration referred to here 1s that of the editor and the program
that actually translates the user’s program, be it compiler or
interpreter. The most common such translators are interactive systems
for the language BASIC but languages with dynamic data structures like

APL, LISP and SNOBOL are also usually 1interpreted and often

interactive.

Traditional interactive systems were in general originally designed for
use with printing terminals and have had a line-orientei syntax = the
slow speed of such terminals made the interactive editing of multi-line
syntactic items impractical. Examples of this approach are interactive
versions of BASIC, LISP, APL and the JOSS system although the most
common by far is BASIC. For a language with an appropriate syntax,
line oriented program entry is easy to use on both fast and slow speed
terminals as the incremental parsing alerts the user to errors in a

line as soon as that line is entered.

1.2 Interpretive BASIC Systems

The BASIC language was developed for teaching and was specifically

designed to be interactive. The reasons for this are threefold:

(a) The input is checked for errors at the end of each 1line and
erroneous lines may be corrected immediately.
(b) An altered program is immediately executable without the need

to invoke a compiler or leave the BASIC system.

Chapter 1 Introduction 4

{c) A line trace is available during execution and it is possible
interactively to find and alter the values of all variables for

debugging purposes.

This first two of these are the most important, as having a single
environment in which o create, edit and execute programs is an
important contributor to BASIC’s ease of learning and use. As the
system can be 1left in "BASIC Mode", beginaners do not need to learn

about the operating system and editor environments.

1.3 Keyword Entry

A letter from Mr G.J. Tee of the Auckland University Computer Science
Department contains a reference to what must be one of the earliest
systems for the entry of complete keywords in a single keystroke: "I
visited the cvomputer Centre at the University of Moscow during the
International Congress of Mathematicians, in about June 1966. 1 saw
there card punches being used to prepare ALGOL source programs, with
the key=-board including keys for the reserved words in ALGOL. For
instance, one key had the Russian equivalents of BEGIN and END as the
lower-case and upper-case symbols" [Tee 1983]. More recently the
Sinclair ZX81 and the Spectrum microcomputers have their BASIC
interpreters and keyboards arranged so that any keyword can be obtained
by depressing (possibly 1in conjuction with a shift key) an
appropriately labelled single key [Vickers 1980,1982]. This helps to
avoid spelling errors and to ease program entry. The use of keyword
entry reduces the program entry time simply by reducing the number of

characters that need to be typed - this is especially valuable for

Chapter 1 Introduction 5

beginner who are often unfamiliar with a keyboard - and thereby reduces
the opportunity for error. The editing of existing lines of program 1is
also symbol oriented, with keywords being skipped, added and deleted as
single entities. The systems are interpretive and check the syntax on
a line-by-line basis which also contributes to their ease of use. This

single keystroke toker entry is the first form of syntax—directed

program entry tc be widely available.

l.4 Syntax-Directed Editing Environments

In the BASIC systems discussed in the pre\ .ous section, the user 1is
constrained by the syntax of language being entered and it 1is
impossible to comstruct erroneous program units larger than a single

line without the generation of an error message.

A contrasting technique made possible by the widespread availability of
high-speed terminals has been the development of full-screen editors
that provide an window into a file, instead of a view based on lines.
Such editors may provide commands for editing the file imn textual
constructs - word processors deal with letters, words, lines,
sentences, paragraphs and pages - or alte.natively provide an editing
environment in which the editing units are not textual but syntactic.
Given the high speed at which the screen may be redrawn, the syntactic

constructs need not be line-oriented and can therefore extend over

several lines.

Chapter 1 Introduction 6

Syntax-directed editors permit the user to create programs that conform
to the syntax of the programming language in use. The BASIC systems
previously discussed are 1line-oriented examples of syntax-directed
editing environments. More racently,‘ syntax-directed editors for

langusages with a nested syntactic constructs have been developed.

These include the Cornell Program Synthesiser for PL/C (a subset of
PL/1) [Teitelbaum 1981), the ALOE syntax-editor gemerator [Medina-Mora
1981], the POE editor for PASCAL [Fischer 1981) and the COPAS system
for Pascal [Atkinson 198l1]. The Z editor [Wood 1981] is a text editor
but has features relating to program structure normally found only in

true syntax=-directed editors.

Each of these editors will be discussed to illustrate the user’s view
of the editor and the commands available. Where relevant the internal

structure is also discussed.

Chapter 1 Cornell Program Synthesiser 7

1.5 Cormell Program Synthesiser

The stated goals for the program synthesiser [Teiteibaum 1981] were to
provide ".... a unified programming environment that stirulates program
conception at a high 1level of abstraction, promotes programming by
step-wise refinement, spares the user from mundane and frustrating
syntactic details while editing programs, and provides extensive
diagnostic facilities during program execution." The synthesiser 1is
designed on the premise that programs are not text but hierarchical
structures, and should be constructed and manipulated as such. The

language implemented is PL/C, an instructional subset of PL/l.

The Cornell Synthesiser was first used on PDP-lls under Unix and later
on TERAK microcomputers. The microcomputer 1implementation has been
used for teaching introductory computing students and has received most

use on relatively small programs.

The User’s View

The user is presented with a skeleton of a program 1into which new
statempents and expressions may be incorporated. This approach
automatically enforces a top-down view of a program. The synthesiser
is designed to be used with a high speed video terminal and provides
the user with a window into the program in 1its current state of
refinement. After the user has indicated which file is being created

and that the "main" procedure is to be edited, the display has the form

shown in fig l.l.

Chapter 1 Cornell Program Synthesiser 8

/* comment */

abs: PROCEDURE OPTIONS (MAIN);
{declaration}
{statement)}
END abs;

Fig 1.1 = Initial display of PL/C main procedure.

Notice that the prcgram even 1in 1its initial state i3 a correct
sentential form (i.e. structurally correct). This feature is common
to most syntax-directed editors. The lowercase words on the display
indicate where the user may insert extra constructs intc the program.
These words are called "placeholders." The replacement of placeholders
is the only way in which the user can alter the form of the program.
This implies a hierarchical structure as the replacement of one

placeholder may itself contain other placeholders.

The cursor is denoted by underlining in these examples and 1indicates

which placeholder 1is currently selected f£for refinement. Braces are

used to indicate iteration and square brackets are used to {indicate
~

optional terminal symbols or productions, according to the conventions

of Extended BNF as defined by Pagan [1981).

Insertiou cf User Iuput

There are two methods of program entry. The first is to request the
inclusion of a "template" ~ a predefined compound syntactin structure
guch as a complete IF statement. The second is to enter a "phrase" - a

method of enteri:g text not constrained by the language syntax.

Chapter 1 Cornell Program Synthesiser 9

Templates

A template is requested by typing its name and then pressing a special
function key. Examples of names are ".i" for an IF statement, ".pl"
for a PUT LIST statement and ".dw" for a DO - WHILE statement. When a
template is requested, the editor checks to ensure that the structure
is valid at the current cursor location. If so, then the structure is
included in program and the display is altered to reflect the change.
An erroneous request is detected immediately and the command rejected.
Consequently while the program may be incomplete, 1t 1s always
structurally correct. If the cursor in fig l.l was on the placeholder
for "statement" and the user requested the IF template the display

would become:

/* comment */
abs: PROCEDURE OPTIONS (MAIN);
{declarations}
IF (condition)
THEN statement
ELSE statement
END abs;

Fig 1.2 = After Requesting an IF Template

Notice that it is not necessary to fill in the placeholders d4n order.

Both "comment" and "declarations" may be expanded later.

The cursor is positioned at the fiiat placeholder within the new
template. In this example the placeholder "condition" does not have
any assoclated templates. All expressions (including "cundition") are
entered purely as text. An expression is therefore one example of a

"phrase."

Chapter 1 Cornell Program Synthesiser 10

Phrases

The user’s view of an expression doesn”t wusually correspond to the
internal parse tree and therefore the manipulation of expressions as
syntactic entities can be awkward. To avoid this, assignment
statements and expressions are entered and edited as text, and then
parsed. Phrase editing appears to the user just like full-screen text
editing. Directing the cursor away from the phrase invokes the parsar
and the user 1s notified of any errors. Errors in phrases are
permitted and the wuser may ignore them, but an erroneous phrase will
remain highlighted until it is either made correct - by correcting the
phrase or declaring any undeclared variables - or deleted. In the case

of undeclared variables, the highlighting would disappear as soon as

the variable was declared.

Comments are treated as phrases and can therefore be entered and

manipulated as text in the usual fashion.

Moving the Cursor

The commands for moving the cursor reflect the underlying syntactic
structure of the program. The cursor may be moved to placeholders, to
phrases, and to the first symbol in a template. This means that the
cursor may be moved to the IF, the '"condition" or either of the
"statement" placeholders in fig 1.2 but not to any symbols entered by
the editor 1itself such as the THEN or ELSE. There is no way to alter
the IF statement template, it can only be expanded or deleted. The

movement commands are given in table 1.

Chapter 1 Cornell Program Synthesiser ; 11

up/down Move to previous/mext template, phrase or placeholder.

left/right Like up/down but also stops at every character within a
phrase.

RETURN Move to next template, phrase, placeholder or optional
placeholder within lists.

long up/down Move to previous/next template, phrase or placeholder
not at a structurally deeper nesting level.

long RETURN Like RETURN but not at a greater nesting level.

Nad Move to previous/mext 1immediately enclosing program

element. Eg a "\" would move from 1inside an IF

statement to the IF.

Table 1 - Cornell Synthesiser Cursor Movement Commands

Note - The "long" command is a single key on the TERAR microcomputers

and is used as a prefix to the main command.

Optional Placeholders

There are many options and optional items that are possible during the
entry of a program. To display all of these is confusing and would
quickly clutter the screen. To display optional components in lists of
elements, such as the possibility of a statement between two others in
a list of statements, the RETURN key is used. To display the optional
part of a placeholder, such as the possible label on every statement,

the ".0" command is used.

Chapter ! Cornell Program Synthesiser 12

Moving Sections of Program

Templates and phrases may be clipped from a program and inserted
elsewhere. When either 1s clipped the original placeholder will
reappear. The cursor can then be moved and the clipped section

inserted elsewhere. The commands are as follows:

.clip Move template or phrase to the file CLIPPED
.delete Move template or phrase to the file DELETED

v "Filename" Move template or phrase to the file "Filename"
.insert Insert CLIPPED at current cursor locatiom

+ins "Filename" Insert "Filename" at current cursor location

Table 2 = Synthesiser Program Modification Commands

Comments
The insertion of comments 1s restricted to three places; after
variable declarations, the "comment" field of a procedure template, and

the "comment" field of a comment template.

The comﬁent template is a compound item, a combination of a comment and
a subordinate list of statements. This unusual structure is used to
provide elision, a feature whereby the statements themselves are not
displayed, just the comment. This is used to hide irrelevant detail
when displaying program structure by enabling more of it to fit on the
screen at once. For example, suppose the program outline in fig 1.2

had been expanded to:

Chapter 1 Cornell Program Synthesiser 13

/* comment */
abs: PROCEDURE OPTIONS (MAIN);
{declaration}
IF (condition)
THEN
/* exchange x and y */
temp = x;
x=y;
y = x;
ELSE statement
END abs;

Fig 1.3 - IF Statement Before Elision

22 are subordinate to the

The statements "temp=x; x =y; y = x;
comment "/* exchange x and y */." Typing the command "<...>" would
cause the statements to disappear and be replaced by "..." (fig 1l.4).
The statements themselves are mnot deleted, just not displayed. This
permits the detailed functions of a program to be suppressed to display

the overall structure. Typing <...> again would cause the statements

to reappear.

Chapter 1 Cornell Program Synthesiser 14

/* comment */

abs: PROCEDURE OPTIONS (MAIN);
{declaration)
IF (condition)
THEN
/* exchange x and y */
ELSE statement
END abs;

Fig 1.4 - IF Statement after Elision

(The cursor is on the first of the three dots)

Execution Capabilities

During the construction of a program, code 1s generated for each
template and a program may be executed, even if it is incomplete. If
an unexpanded template is encountered, execution 1is suspended. The
template may at that stage be refined and execution continued. During
execution the display can be divided 1into three sections; one to
display the output of the program, one to display the program source
code being executed and a third to display the current values of any

desired scalar variables.

As programs would normally run too quickly for the display to be of any

use, execution may be slowed or single stepped.

If execution has changed a variable before the user has stopped the

display, execution may be run in reverse for a limited number of

program slepse.

Chapter 1 Cornell Program Synthesiser 15

The synthesiser is a functioning syntax-directed editor with a powerful
execution and debugging facilities for PL/C. It has been used

successfully to teach programming to large numbers of students.

Chapter 1 ALOE = The GANDALF System Editor Generator 16

1.6 ALUE - A Language Oriented Editor

The ALOE language oriented editor generator 1is part of the GANDALF
. project at Carnegie-Mellon University. The ALOE (A Language Oriented
Editor) System is unusual in that it is a syntax-directed editor
generator. It has been used to build editors for numerous languages,
the more well-known ones being C [Rernigarn 1978], PASCAL [Jensen 1974]
and ADA |[Ada 1980]. Developing an ALOE editor for a new language
involves generating a description of that language in accordance with
the grammar for ALOE descriptions. Since this grammar may be defined
syntactically, another ALOE editor tailored for its own input syntax,
is used instead of a text editor to prepare descriptions. When seen in
terms of the GANDALF project whose aims are the construction of many
Sysfem Development Environments, large programs, and many programmers,

the reason for this generality is evident [Habermann 1982].

The ALOE is described in its user manual as:
" ... a tool which supports the comstruction and manipulation of
tree structures while guaranteeing their syntactic correctness"

{Medina-Mora 1981).

The program is represented inside the ALOE as an abstract syntax tree
which {8 manipulated directly by the user. It is important to note
that a syntax tree is distinct from a parse tree. In a parse tree the
nodes are operators whereas in a syntax tree.they are the non-terminals
of the language. ,This distinction is important because a syntax tree

more closely resembles the user’s view of a program than does a parse

tree.

Chapter 1 ALOE = The GANDALF System Editor Generator 17

The User’s View

The screen is initially divided into two windows, but this (like all
attributes of the system) is user definable. These windows display the
program itself and a one line status display. Errors, requests for
help, and displays of clipped subtrees all cause extra windows to be

overlaid on top of the current display.

The Cursor

The cursor is a highlighted region, as distinct from the point cursor
used in the Cornell Synthesiser. This is to give a clear indication of
the extent of the subtree covered by the cursor whereas a point-cursor
would be ambiguous. Cursor movement is not defined in terms of the
textual display but is described as part of the unparsing scheme - the
definition of how the internal syntax trees should be displayed.

Unparsing schemes and their uses will be described later.

Constructive Commands

The tree created by the ALOE will have some nodes that cannot be
expanded without more input from the user. These nodes correspond to
the Cornell Synthesiser’s placeholders - in this context these nodes
are known as "meta-nodes.” Whenever the current node is a meta-node it
is possible for the user to generate a subtree by entering the name of
the operator or its synonym. The cursor will be placed at the first
meta-node within the subtree if there is one or at the next meta-node
if thgre isn’t. It_is possible to cause terminal symbols to appear

automatically in newly generated subtrees.

Chapter 1

ALOE - The GANDALF System Editor Generator 18

Moving the Cursor

The following editing commands are common to all ALOE editors:

._OUT

._NEXT

._PREVIOUS

«_HOME

«BACK

Move the cursor to the first meta-node within the
current subtrze.

Move the cursor to the parent of the current node.

Move to the next meta-node at the same level. If none
exist then move to the next meta-node at the same
nesting level as the parent node. This continues
recursively until either a new meta-node i3 found or the
remainder of the tree has been searched. If no
meta-nodes remain the the cursor stays at 1its current
node.

Move to the previous meta-node in the same manner as
»_NEXT

Move to the root node of the current window. If the
current node 1is already the root node then move to the
rpot node of previous window.

Swap the cursor’s curfent position with its last

position.

.FIND "what" Search the current window for an occurrence of "what".

The last string given is used again if none is supplied.

".GLOBALFIND" is used in the same manner to search all

windows.

Chapter 1 ALOE - The GANDALF System FEditor Generator 19

With the exception of .BACK and .FIND, any of the above can be prefixed

with a repectition counte.

Help Facilities

".HELP" will display either a 1list of language commands and their

synonyms (if the current node 1is a meta-node) or a list of editing

commands .

Tree Manipulation Commands

+CLIP treename To clip the current tree into a named subtree.

«INSERT treename Insert the named tree at the current position. For
an insertion to be corre:t the current node must be a
meta-node and the subtree must be a valid expansion
of it.

-DELETE Delete the current subtree. If the current node 1is
an element of a 1list then replace it with its
meta-node otherwise delete it.

<REPLACE This is the same as DELETE except that if the current
node is an element of a list, it 1is deleted but a
meta-node left in 1its place. This meta-node will
become the new current node.

«NEST <operator> Clip the current subtree and nest it in a subtree of
root node "operator." Although no example is given,
from the written description this command appears to
act in the following way: If the current subtree was

<gtatement.> then the command ".NEST IF" would clip

Chapter 1 ALOE - The GANDALF System Editor Generator 20

the current <statement>, insert an IF 'statement and
then search for the first occurrence of <statement>

inside the IF statement and insert the clipped

subtree there.
.TRANSFORM name Change the operator of the current node to '"name."

This will work only 1f the tree definitions are

identical.

List manipulation commands
Four commands exist to extend a list in both the forward and reverse
directions (.APPEND & .PREPEND) and to include new meta-nodes inside a

1ist (.EXTEND & .BEXTEND - Extend Backwards).

Text Editing
"_EDIT" is a command to invoke EMACS, an extensible screen editor
[Stallman 1981] to edit constants or text nodes. When the user returns

to the ALOE the screen will show the updated text.

Checkpointing
The ALOE will write out a checkpoint file after a set number of tree

modifying commands. The number 1is usually thirty but can be altered

during the definition of the ALOE.

Action Routines

Action routines are optional but can be included to be called by the

editor in various situations. These routines can perform such actions

Chapter 1 ALOE - The GANDALF System Editor Generator _ 21

as semantic checking, emitting code or manipulating the syntax tree

itself.

Unparsing Schemes

The display format for these trees is defined in cne or possibly many
"unparsing” schemes. The unparsing scheme is used to define how the
internal syntax tree is to be displayed. The unparsing scheme 1is
defined in terms of print formatting commands, examples of which are;
increasing and decreasing the current indentation level, returning to
the left margin, and skipping to a new line. This means that the
display format may change depending on which unparsing scheme 1is 1in
force at the time. This can be wused to provide different display
formats depending on either tree-depth or position of the tree relative
to the cursor. Both elision and altered formats are possible. Figs
1.5, 1.6 and 1.7 1illustrate the reformatting and elision that is

possible by altering the unparsing scheme.

Chapter 1 ALOE - The GANDALF System Editor Generator

PROG2AM program name;
VAR £, found : boolean; ch : char;
BEGIN
found := false;
REPEAT
IF condition THEN
£ := found
ELSE f:= not found;
writeln(£f);
read(ch);
UNTIL ch = "2’
writeln(f);
END;

Fig 1.5 = ALUE Display - Cursor on the IF Statement

can be displayed as above if the cursor is on the IF statement, or as

PROGRAM program_name;
VAR f, found : boolean; ch : char;
BEGIN

found:= false;

REPEAT

IF condition THEN f := found ELSE f:= not found;

writeln(f);
read(ch);
UNTIL ch = “Z2°;
writeln(f);
END;

Fig 1.6 - IF statement no longer under cureor so reformatted

or if the cursor is moved further down the program, as:

22

Chapter 1 ALOE - The GANDALF System Editor Generator 23

PROGRAM program name;
VAR £, found : boolean; ch : char;
BEGIN
found:= false;
REPEAT
<statements>
UNTIL ch = “2°;

writeln(f);
END;

Fig 1.7 = As cursor moves away - IF statement is Elided

The unparsing scheme can be used to alter the display format, for
example reformatting the THEN and ELSE parts to show the whole IF
statement on one line (fig l1.6), or to hide subtrees to provide elision
(fig 1.7)« The unparsing scheme can be altered dynamically, either by

the user to cater for different layout preferences, or automatically to

provide elision.

Extended Commands

It is possible to cause the editor to execute routines which manipulate
the tree and/or start up other UNIX processes. These user-written
routines can call a set of library routines to access and manipulate
the syntax tree. These library routines are provided so the editor can
retain control of modifications made to the tree, in order to guarantee
its correctneas. The user routines can be written in any language that

is load-compatible under UNIX.

Chapter 1 ALOE - The GANDALF System Editor Generator 24

ALOE Input Grammar

The example language has two statement types — PRINT and FOR. This

illustrates the form of input grammar required by an ALOE editor.

Language Name: INTERP

Root Operator: PROGRAM

{ /* terminal operators */
LOOPVAR = {v} - It’s a variable
| (0) "@s" - Unparse scheme - print name

| action <none>

| synonym: "," ;

INT = {c} It“s a constant

l (0) ll@cll

Print its constant value

| action: aINT

Name of procedure to call
| synonym: "#" ;

EMPTYSTEP = {s} =
I (0) lllll
| action: <none>

| synonym: <none> ;

}
{ /* non-terminal operators */
PROGRAM = stmts

| ¢0) "e1" | - Start in Column 1

Chapter 1

PRINT
FOR =
PLUS -
STMTS

action: <none>
synonym: <none>
precedence: <none>
Filenode;

<exp>

(0) "print @0O"
action: <none>
synonym: <none>
precedence: <none>

Non=-filenode;

ALOE - The GANDALF System Editor Generator 25

— Subtree stored in a file

- PRINT follow by <exp>

loopvar exp exp stepexp stmts

(0) "for @l = @2 to @3 step @4@+@n@5@-"

(1) "for (@1 = @2; X1 <= @3; X1 =+ @4)@+Gn@5@-"

action: <none>
synonym: <none>

precedence: <none>

~Non=-filenode;

exp exp

(0) "e1 + e2"
action: <none>
synonym: "'+"
precedence : 1
Non-filenode;
<stmt>

(0) "@o@en"
action: <none>

synonym: <none>

- print expansion of stmt,

and skip to new line

Chapter 1 ALOE - The GANDALF System Editor Generator 26

| precedence: <none>

| Non-filenode;

The "@" followed by a number refers to a particular item in the
definition list. In the definition of the FOR statement for example @l
refers to the "loopvar" and @5 refers to "stmts". The other symbols

preceded by "@"' or "2" define various actions to control the display

formatting.

The FOR statemen: has two unparsing schemes defined. This means that

the print formats can be either:

Either for i = 4 to 8 step 2 OR for (1 = 4; {1 <= 8; 1 =+2)

priat (£ + 3) » 4, { print (1 +3) 4, 1

Meta-node Classes

(/* " Classes */

stmts = STMTS 3

exp = INT LOOPVAR PLUS ;
loopvar = LOOPVAR ;

stepexp = INT PLUS EMPTYSTEP ;
stmt = PKRINT FOR ;

}

Chapter 1 ALOE - The GANDALF System Editor Generator 27

The classes define the valid expansions for a meta-node. ¥ example,
either an integer, a 1loop variable or a PLUS node (which will itself
have expressions as its leaves) 1s a valid subtree for the "exp"
meta-node. The ALOE system 1s designed as a general purpose
syntax-directed editing system. To generate a new ALOE, the language
grammar 18 defined and translated into tables and then linked to any
action routines needed and any other environment-specific routines.
Details of an ALOE editor for a simple language and its actiom routines
are described in detail in "ALOE Users’ and Implementors’ Guide"

[Medina=-Mora 1981].

Chapter 1 Editor Allan POE 28

1.7 Editor Allan POE - A Pascal Oriented Editor

POE [Fischer 1981) is more similar to the Cormell Synthesiser than to
ALOE, previously described. It 1is specifically designed for Pascal
although versions for other languages are envisaged. The commands for
cursor movement, and the display format are similar to those in the
synthesiser, but the method of insertion is by entering the required
symbols, not by command. The program is automatically pretty-printed

and checked for structural correctness.

The User‘s View

This initial <isplay of a program is shown in fig 1.8. Although it 1is
rot explicitly stated 1in the reference, the cursor appears to be a

point cursor, not a highlighted region.

PROGRAM <1D> (<FILE ID LIST>) ;
{LABELS)}
{CONSTANTS)
{TYPES)
{VARS)
{PROCEDURES}
* BEGIN

{STMT LIST)}
END .

Fig 1.8 -= Initial Display of Editor Allan POE

Optional and Required Placeholders

The symbols in fig 1.8 surrounded by "<" and ">" are placeholders whose
expansion is required before the program 1is complete. Placeholders
surrounded by "{" and ")}" are optional. Notice that this use of braces
in the syntactic meta-notation 1s different from that used in the

synthesiser, where braces are used to indicate iteration.

Chapter 1 Editor Allan POE 29

Insertion of User Text

In order to insert symbols the user moves the cursor to the required
placeholder and then types the actual Pascal or the start symbol of the
production. Two examples given in the reference are entering "VAR
i:integer" to obtain a variable declaration from {VARIABLES} and IF to
obtain a complete IF statement template. Whether the editor provides

the colon and prompts for <TYPE> (in the VAR example) is not described.

The template provided for the IF statement is shown in fig 1.9. POE
like the other editors mentioned guarantees structural correctness.
However, 1f the user enters a symbol that is erroneous in the current
position, POE, unlike the Synthesiser and an ALOE, attempts to fit the
symbol into its most logical position. For example, entering THEN at a
statement prompt will also cause the 1insertion of an IF template.
Incorrect replacements can simply ‘e deleted. The display after the

replacement of {STMT) with the IF tempiate is shown in fig 1.9.

PROGRAM <ID> (<FILE ID LIST>) ;
BEGIN

IF <EXPR>

THEN {STMT)}

{ELSE CLAUSE)} ;

{MORE STMTS)
END L]

Fig 1.9 - After Replacement of {STMT th IF Template

Notice that the optional placeholders have disappeared. They are
displayed only 1f they occur after the cursor. Once the cursor moves
past the optional prompts, they are suppressed and not redisplayed

unless specifically requested, whereever the cursor is moved.

Chapter 1 Bditor Allan POE 30

Sursor Movemsnt
To aid portability, the arrow and function keys found on many terminals

are not used. Instead the exclamation mark "|” 4s used to indicate a
command following.

Chapter 1 Editor Allan POE 31

The commands relating to cursor movement are shown in table 3.

Space bar Move cursor one éymbol right.

Back space Move cursor one symbol left.

Return Move to leftmost symbol on the next line.
!b Back one screen

If Forward one screen

id Down half a screen

g Top of program

IG Bottom of program

It Top of screen

IB Bottom of screen

Table 3 - POE Cursor Movement Commands

Unk}ke both the synthesiser and the ALOE, no commands are provided for

moving in syntactic increments larger than one symbol.

Deletions

The DELETE key 1is used to delete the smallest syntactic unit containing
the current symbol. Successive DELETEs will delete successively larger
sections of the program - the most nested being the first to be
deleted: This can be thought of as replacing templates with their
placeholders (instead of the other way around). This corresponds to

ascending the tree representation of the program deleting expansions of

Chapter 1 Editor Allan POE 32

non-terminal derivations. This form of deletion is not designed for
replacement, the clipped subtree is no longer accessible. To enable

the user to recover from commands with unexpected results, an "undo"

command i3 provided.

The Undo Command

To recover from editor command errors, the user can enter "l!u". This
will undo the effect of the last command. Multiple undo commands are
also handled. The effect is to undo the most recent commands excluding

the undo commands themselves. To actually undo an undo, the "!U"

command can be used.

Copying and Replacement Commands

Structures that would have been deleted if the DELETE key had been
used, can instead be moved to named subtrees. These subtrees can be
edited if necessary and inserted at other points in the program. Only

a syntactically valid subtree may be inserted.

Prompti nds

Although the editor prompts the user with a name relating to the symbol
expected as a replacement for a placeholder (e.g. STMT for statements)
at times this level of prompting will be insufficient. A command 1is
provided ("!p") to display the options, one at a time. For example, if
the user requests help on the possible expansions of (STMT}, the first
option displayed will be "{STMT) ==> nothing", then "{STMT} -=> {LABEL}

{UNLABELLED STMT)". Only one option is displayed at a time and the

Chapter 1 Editor Allan POE 33

list rolls around, reverting to the first option if the list runs out.
If the user enters "!e" the currently selected option becomes the

replacement for the placeholder.

Elision
Subtrees can be elided only by the specific command "!>". To revert to
the unelided form, the complementary command "!<" must be given. No

automatic elison or tagging of comment fields is supported.

Execution Capabilities

The POE system can also execute programs, but unlike the synthesiser it
will do only so if they are complete (no remaining placeholders) and
are semantically correct. During execution, program input is taken

from the keyboard and output is displayed on the screen.

Chapter 1 COPAS - A Conversational Pascal System 34

1.8 COPAS - A Conversational Pascal System

The COPAS system [Atkinson and North 1981] 1s an 1interactive Pascal
program development system developed at the University of Sheffield.
It more closely resembles an amalgamation of an editor and a compiler

than the systems previously described.

Acceptance and Execution Modes

The COPAS system has an "Acceptance Hade"‘and an "Execution Mode." The
distinction between the acceptance mode employed here and the methods
of program construction previously described is marked. During program
entty under the COPAS system, the user 1s effectively using a
conventional text editor. There are no constraints imposed by the
editor relating to the Pascal syntax. Each line is verified as it is
entered. If an error is made the user can only modify lines prior to
and including the line in error. When the program is complete the user

is notified. The program may then be executed or extra program lines

added.

Chapter 1 COPAS -~ A Conversational Pascal System 35

The User’s View
The version of COPAS described 1is intended for u - on a printing

terminal and so the editing commands illustrated relate directly to a

line-oriented text editor.

The initial command is "Accept program-name" and the system responds

with the first line of a Fascal program numbered as line 0 (fig 1.10).

0 PROGRAM demo (input, output);
145

¥ig 1.10 - Initial View of Program under COPAS

and the user must enter the remainder of the program. The input {is

buffered into lines and errors may be corrected using the BACKSPACE key

" in the usual way .

With the exception of ACCEPT, all the editing commands available to the
user could be from a conventional line-oriented text editor. They are

listed in table 4.

~

ACCEPT program=-name Provide a standard program heading line.

BREAK line=-nos Split lines

CHANGE 1line-nos The indicated line i{s to have characters inserted,
deleted.

DELETE line-nos Delete a line

MOVE from to Move a set of lines.

PRINT line-nos Print the indicated section of the program

Chapter 1 COPAS - A Conv:rsational Pascal System 36

REPLACE line-nos Same as DELETE followed by INSERT but TRACE status
(see later) is maintained.

ACCEPT data Accept data without providing a line number.

Table 4 - COPAS Editing Commands

The "line-nos" may be either a single line number, a range of lines or

a set of lines or ranges.

After the first line printed by the system in response to the "Accept
demo" command, further lines may be entered by the user. The system is

already expecting text so an "INSERT" command is unneccessary.

If the user entered the lines shown in fig 1.l11, and the END was

misspelt as "ENF" the system would respond with:

Note: All user input is underlined.

-~

0 PROGRAM demo (input, ourput);

10 Dbegin
20 write(“Hi There’):
30 enf
30 enf
END or ; expected
Now what?
Fig l.11 = Initial Entry of a program ynder COPAS

The user can now correct line 30 and the program would be immediately
accepted without a request from the user. It wouldn’t be executed but

the user would be notified that it had been accepted.

Chapter 1 COPAS - A Conversational Pascal System 37

If line 20 is replaced with the "REPLACE" command to become:

20 writeln('The date is the’, date);

Identifier not declared
Now what? I 25 { Insert line 25 }
You cannot edit beyond line 20

Correcting Errors

Errors found during the parse may be modified by the user by editing
the program text in the manner of a conventional text-oriented editor.
There is however one constrzint — no t=xt after the first error may be

edited, only preceding text.

Collecting all the COPAS examplas given so far into a sample terminal

session will indicate how the system is used.

Note : All user input is underlined.

Chapter 1

COPAS ~ A Conversational Pascal System 38

ACCEPT demo

0 PROGRAM demo (input, output);

.10 begin E
20 write(“Hi There”);
30 enf
30 enf

END or ; expected
Now what? REPLACE 20 {Replace line 20}

20 writeln(“The date is the’, date);

-

Identifier not declared

Now what? INSERT 25 { Insert line 25)}

You canncot edit beyond line 20

Now what? INSERT 5 { Insert line 5}

5 yar date : integer;

Program accepted

Now what ? PRINT {Print complete program}
JIPROGRAM demo (input, output);
5 var date : integer;

10 BEGIN

20 writeln(’The date is the’, date);

30 END.

Now what?

Fig 1. = A Sample COPAS Terminal Session

Chapter 1 COPAS - A Conversational Pascal System 39

Execution Capabilities

COPAS can only execute complete programs. If a run-time error occurs,
the user can request a display of all currently visible (i.e. 1in
scope) scalar variables including parameters. If the error was the
attempted use of an undefined scalar variable then the user can provide
a value and request that execution be continued. All other errors
cause execution to be abandoned. The TRACE command 1is provided to
enable ehe user to find the values of variables while a program is
executing. It will set a trace flag on a line or set of lines. During
execution, if COPAS encounters a line with 1its trace flag set, it
displays the line number and the values of any variables changed by the
execution of that line. 1If no argument is given for the trace command,

all lines are traced.

Internal Representation

The text is converted into tokens and then stored as a linked 1list of
lines. The complete program 13 recompiled each time acceptance is
attempted. If the compilation 1is error-free then an interpreter
exécutes an intermediate code representation generated by the compiler.
This method of operation would be too slow for large programs but the
system was intended for student programs (which are usually small) and

its speed has proven satisfactory.

Chapter 1 Z = The 95X Program Editor 40

1.9 "ZV .- The 952 Program Editor

Z is a full screen text editor which although it has no knowiedge of
program syntax, can pretty-print programs, skip complete syntactic
structures and provide elision of nested syntactic constructs [Wood
1981]. I have 1included it in this survey to illustrate the diversity

of approaches taken to provide editing based on a program’s structure.

The User’s View

The user impression of the text as manipulated by the editor is of a
window into a plane of text that can extend infinitely in both the

horizontal and vertical directions.

Although there are many commands in Z for textual manipulation and word
processing, those of interest in this context are those concerned with
the manipulation of and movement .y syntactic entities. They include
automatic indentation, balancing of matched pairs of tokens (such as

parentheses), movement in syntactic increments, and elision.

The authors have augmented the editor with a table that describes the
tokens of the language. This table inulcates which tokens should cause
tabbing and backtabbing and ulso which tokens occur in pairs, two
examples being '"begin =~ end"” and vparentheses. All the 1language
dependent capabilites are based on the information contained in this

table - no knowledge of the syntax is available.

Chapter 1 Z - The 952 Program Editor 41

The Many Uses of Indentation

Using the list of tab and backtab tokens, Z can pretty-print the
program. Once the program is in this format the provision of skipping
over syntactic units of the program becomes straightforward. The
editor can move in complete syntactic units using the same visual cues

as the programmer - the indentation level.

Elision

Eliding sections of program text is done 1in the same manner. The
"ZOOM" command has one operand which indicates the maximum level of
indentation to be displayed. A zoom level of zero displays only the
top level lines - the procedure headings and declarations - and a zoom
level of infinity displays the whole program. This provides elision
related to the nesting level ¢f structures but cannot provide elision

related to the position of a structure relative to the program cursor.

gg;anéed Expressions

-

Using the 1ist of which tokens open and close balanced expressions, the
editor can move over balanced expressions and structures as single
units. The editor can also provide the matching right bracketing
symbol for the most recent unbalanced construct. 1f there 1isn’t a
current unbalanced construct the editor will indicate the position of

the most recent balanced construct.

Chapter 1 Z - The 95% Program Editor 42

This system currently includes tables for LISP, BLISS, PASCAL, RATFOR

(rational FORTRAN) and APL.

1.10 Summary
The syntax-directed editors in this chapter illustrate a wide variety
of approaches to incorporating knowledge of a programming language

syntax into an editor.

With the exception of COPAS, all of the editors display the program 1in
a pretty-printed form which is immediately updated whenever the program
is modified. Features available only on video terminals such as
highlighting sections of the program provide a view of the program

unattainable on slow or printing terminals.

Whether or not the versions of COPAS intended for video 1instead of

printing terminals follow this approach is unclear.

There is more diversity in the types of user commands than 1ian the
display formats. Commands for easily moving around and manipulating
the displayed program are crucial, especially if the editor inserts
templates for complete constructs in their syntactically correct place
rather than at the current cursor position. This can cause the cursor
to jump ahead an unexpected amount and insert an unexpected construct.

The user must be able to revert to the previous state without undue

difficulty.

Chapter 1 Z - The 952 Program Editor 43

The use of an editor for more than one language is approached only by
the ALOE system, but the input form of grammar it uses is completely
different from the more conventional forms of a syntax definition.
This precludes 1ts use without learning a new form of grammar

specification and rewriting the grammar for the new language.

This thesis explores the development of a syntax-directed editor that
has as its input the language specification in extended BNF notation.
The language syntax is not written into the editor but is read in as
data at the start of an editing session. To enable the editor to
pretty=-print the program, print formatting information is read in as
well. From the information contained in the syntax, the editor
provides a program outline, complete with all the required terminal
symbols. Placeholders are left for non-terminal derivations that

require further information from the user.

The notation used for the language description is powerful and easy to
use. This makes the generation of a syntax-directed editor for a new
language straightforward. The editor has so far been used to construct
programs in PASCAL, LISP and SNOBOL. To add languages it is necessary

only to define their grammar in extended ENF.

Chapter 2

GED -~ A Purely Syntax Directed Editor

2 GED - Giovanni‘s Editor

This thesis describes the development of a syntax=-directed editor 1in
which the syntax 1is not implicitly built 1into tne editor, but is
defined in a standard machine-readable notation. Because of this
feature, the editor may be initialised with the syntax for any language
and will thereupon become a syntax-directed editor for that language.
The language syntax is input in Extended BNF and may be augmented with
pretty-printing (program formatting) information if the final program
layout is important. The programmer, on starting to use the system is
presented with a skeletal outline of the program in the appropriate
language and this can modified by expanding the placeholders provided
by the editor. The syntactic production represented by the current
placeholder, and the set of next symbols that would be correct at the
cursor position are also displayed. This provides the user with a

simple way of exploring the constructs of the language.

The use of a standard notation (Extended BNF) for the language
definition precludes the detection of semantic errors, as a one level
syntax definition does not include the necessary information for this.
Therefore type mismatches and undeclared identifiers (in languages that
treat these as errors) will not be detected. However, the occurrence

of undeclared or incorrect identifiers due to omission of a declaration

Chapter 2 GED = A Purely Syntax Directed Editor 45

or misspelling is a common error. As an aid to their detection, the
editor provides an indication every time a new identifier symbol is

used.

The nse of a two-level grammar [van Wijngaarten, 1969] would enable
these errors to be detected, but two=level definitions are very complex
and not widely understood. Consequently, although their use would
render a syntax-directed editor very powerful, it would place a

pragmatic restriction on its general applicability.

The examples that follow use tﬁe language Pascal. This 1is for
consistency and 1is not meant to imply that the editor is tailored to

Pascal. An example using Lisp will be included later.

2.1 Language Input Definition

The editor builds an internal data structure representation of the
grammar from the input Extended BNF version. The structure mimics the
form of each definition and the definition can therefore be regenerated
from it. A‘Eiuplified grammar for Pascal in the editor input format is

shown in fig 2.l and its corresponding data structure shown in fig 2.2.

The first four lines define the structure of identifiers by enumerating
the set of characters that may start an identifier and those that may
occur after the first character. The grammar in fig 2.1 will allow the
use of "_" (as in "first_node") within a Pascal identifier but not as
its start character. This scheme will also allow 1initial characters

that are not permitted within an identifier body. An example of this

Chapter 2 GED - A Purely Syntax Directed Editor 46

is the use of "&" as a reserved word flag in SNOBOL - The "&" may be

used only as the initial character (eg "&ANCHOR").

IDENTIFIER START SET

abcdefghijklmmopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

IDENTIFIER BODY_SET

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890_

<program> ::= PROGRAM <program name> [<list_of_files>] ; <block> . §

<program_name> ::= IDENTIFIER $
<list_of_ files>::= <file name> { , <file_name> } $
<file_name> ::= IDENTIFIER $
<block> ::= BEGIN <statements> END $

<statements> $:= ...0s Defn of a list of statements and do on.. $

$9

Fig 2.1 = Editor Input Grammar for Pascal Subset

The layout is free format. Each definition 4is terminated by a "$"

character aud the complete grammar by two "$" characters.

Chapter 2 GED = A Purely Syntax Directed Editor 47

This 1is to allow the skipping of erroneous definitions at the grammar
input stage. The error recovery while reading the syntax is limited to
indicating which symbol was encountered and the seymbel actually
received. Then the remainder of the syntactic part of the definition
is then skipped. If a print format part of the definition is present
(detailed in chapter 3), 1s parsed separately. The error handlers for
both the syntactic and formatting parts attempt to leave any erroneous
definitions in such a state that their use will not cause the editor to

fail.

Root Node of Syntactic Data Structure

48

<programd PROCGRAM <prog_named>|ML<listofiles>2 - <block> e
Header Termina Non—tnv Nm‘l-—t.:_/ Terminal Hnn-tuu Terminal
Next o Next Next Next Next o Next Next o
Alt Alt o Alt o Alt o Alt o Alt o Alt o

J NTptr p NTptr o NTptr @
<prng_nann>/ IDENTIFIER L J link
Header Terminal Non—tml
ATt 5 S A
o oy
] NTptr sl N\

e

{listofiles>

/Fem'

Terminal
Next o

Alt o

<filename> . <filename>)
Non-tml Nan-tm]
Next o— Next
Alt o Alt
NTptr NTptr ¢

{ }link
Non-tml

<block>
Header
Next
Alt

“atatementsd
:rutn:i,,f”)' nun;t-l
e L 3] o
Alt o il
Niptr p

Cstatement>

Headear
Nezt O =

el Definition of

Alt-’,

(yResainser ot Prosucsions

<Statements>

Eis 2.2 — Data Structurs for the Pascal Bubset

Chapter 2 GED - A Purely Syntax Directed Editor 49

When the data structure is used to guide a parser, it 1is possible to
scan the structure and find which symbols may possibly come next. In
fig 2.2 for example, examining the definition of <program> 1t 1is
evident that the symbol PROGRAM must be present - it has no
alternative. The non-terminal "<list_of_files>" has an alternative of
EMPTY - a terminal symbol that maéches any input symbol - and is
therefore optional. The senicolon, the non-terminal "<block>" and the
dot are also required. However <block> produces BEGIN and END and so
these too are required. From the syntax alone, the initial form of a
program can be deduced and (with a little pretty-printing) displayed
(fig 2-3). The undefined non-terminal productions are represented by

the name of the non-terminal symbol.

PROGRAM <program name> [<list_of_files>] ;

BEGIN
END .

Correct Symbols : 1identifier
Syntax $i= <program_name>

Ffa 2.3 - Program Form derived from Syntax Definition

The EBNF syntax may be regenerated from the structure, and so it 1is
possible to provide at all times a display of the production currently
being parsed and a 1list of all the possible input symbols (fig 2.3).
Neither of these uses any information other than that contained in the

input grammarlituelf. so these displays can be generated for sny input

grammar.

Chapter 2 GED - A Purely Syntax Directed Editor 50

In order to enable the editor to associate the print-formatting
commands with the correct parts of a program, such information is input
a the s me time as the corresponding part of the grammar. The details
of the print formatting commands will be described in chapter 3. Here,
it is sufficient to note that the layout of any production can be
defined in the 4{input grammar. From the information contained in the

syntactic definition the editor presents the user with skeletal program

(Fig 2.4).

2.2 The User’s View

The display after the editor has been invoked and initialised with the
grammar of Pascal 41s shown 1in fig 2.4. The current position of the
parser within the data structure (to all 1intents and purposes, the
program) is indicated by a highlighted non-terminal rame or terminal
symbol. In the printed examples given here highlighted regions are
underlined. The 1internal mechanism wused by the editor to store the
user program is a list of nodes, which parallels the syntactic data
structure. The exact structure will be fully described in chapter 3.
Howgvar it is important to note that the structure forms a tree with
non=terminal definitions being the nodes and terminal symbols forming

the leaves.

Chapter 2 GED -~ A Purely Syntax Directed Editor 51

PROGRAM <program name>;

BEGIN
END .

Correct Symbols : didentifier
FO=HELP | Syntax ::= <program_name>

Fig 2.4 - The Initial Appearance of a Pascal Program

2.3 The Display

The first twenty lines are dedicated to the user’s program, the next
line is the status line (usually blank) for warnings and questions
unrelated to the program, and the last three 1lines display the help

information.

The HELP area normally shows:

1) A list of all the symbols that would be correct at
the current cursor location.
2) An Extended BNF definition of the section of the

program under the cursor.

Alternatively, depression of FO0 (the "zeroth" function key) will
display a brief explanation of the effects of all the function keys, in
the HELP area. A prompt to this effect (FO = HELP) is always on the

screen.

Chapter 2 GED - A Purely Syntax Directed Editor 52

The technique of using a highlighted cursor region rather than a point
cursor, to 1indicate the current position of the parser is similar that
adopted in the ALOE editors, and here it 1is used to clarify the
operation of the DELETE command. Because the user program is stored in
the editor 1in a data structure whose nodes are organised in the same
way as those of the syntactic data structure, the current "position" in
the program data structure may either correspond ton a leaf node (a
terminal symbol) or a non-terminal node (a non-tetminal symbol) in the
syntactic data structure. In the latter case, a DELETE command will
remove as much of the entered program as corresponds to the complete
syntactic subtree of the non-terminal node. If only a point cursor
were used, the extent of the subtree about to be deleted would be
ambiguous, so a highlighted region that covers the current node and its

complete subtree is used = the extent of the cursor is now unambiguous.

Chapter 2 GED - A Purely Syntax Directed Editor 53

2.4 Inserting User Input

The symbols surrounded by angle brackasts such as <file_ identifier> are
called placeholders and wherever they appear, the user must enter
something. To expand a placeholder, the user must first position the
cursor on the appropriate placeholder (see later for an explanation of
the "appropriateness" of a placeholder) and enter a symbol. The symbol
entered must be one of those listed in the '"correct symbols" 1list 1in

the HELP display.

User input is buffered into 1lines to enable typing errors to be
corrected with the backspace key in the usual way. A line is accepted

by the editor when either the RETURN key or one of the special function

keys is pressed.

If the user’s 'input 18 correct at the cursor position then the
placeholder is expanded to include the new symbol or production and the
display will reflect the change. Erroneous entries will cause the
terminal to beep to alert the user to thae correct alternatives at the
bottom of fae screen. Pluaceholders may be expanded in any order, so

declarations may be added as necessary.

In f£1g 2.4, both the position of the cursor on the placeholder
<program_name> and the contents of the help display indicate that an
identifier 1s the only valid symbol. Typing any identifier, "demo" fc~-
example, will cause the program to change to the representation shown
in £1g 2.5. The entry of anything other than an identifier would cause

the editor to display the erroneous symbol on the status line and emit

Chapter 2 GED - A Purely Synrax Directed Editor 54

a beep at the user as a warning - the program would be unalterad.

ws

PROGRAM demo [<1list of files>]

BEGIN
END .

First Occurrence of Identifier : demo
Correct Symbols : (Nothing
FO=HELP | Syntax ::= [<list_of_files>]

Fig 2.5 = "Demo" is entered as the program name

The "First Occurrence of Identifier : " message appears whenever the
editor encounters a new identifier. In languages requiring variables
to be declared this message should occur only 1in declarations - 1Its
occurrence outside declarations 1indicates an wundeclared identifier.

The message is accompanied by a beep.

Referring back to fig 2.5, it can be seen that the <list of files>
production is optional. The entry of a left parenthesis will cause the
entry of the "list of files" template and the display will change to
that in fig 2.6. Pressing RETURN will cause the cursor to skip to the
next possible place that the user can enter a symbol. RETURN is one of
several keys that will move the cursor to the next possible point of

user input. A complete list of cursor commands will be given shortly.

Chapter 2 GED -~ A Purely Syntax Directed Editor 35

PROGRAM demo (<file name>) ;

BEGIN
END .

Correct Symbols : identifier
FO=HELP | Syntax ::= <file name>

Fig 2.6 — After Entering a "(" to start a list of files

2.5 Displaying Optional and List Placeholders

The skeletal programs in figs 2.4, 2.5 and 2.6 lack declarations and
statements. These are two examples of optional sections of program

that are known to the editor but are not displayed to avoid cluttering

the screen.

However, when the cursor is on one of these optional placeholders, it
is displayed and the "correct symbols" field in the HELP area will show
a list of symbols, each of which will select a particular option. This
i1s 1llustrated by the appearance of [<list_of_files>] placeholder in
fig 2.5. The inclusion of the word NOTHING in the 1list of correct

symbols {andicates that the placeholder is optional.

These commands are bound to the arrow and function keys on the Visual
200 terminal. The association of specific key sequences with fuuctions

is localised within the program and would be easy to modify to suit

other types of terminals.

Chapter 2 GED = A Purely Syntax Directed Editor 56

2.6 Cursor Movement Commands

The only places the cursor will stop are placeholders, 1including
optional and 1list placeholders, and symbols entered by the user. The
cursor cannot be positioned on any symbol that 1is required by the

context and the syntax, as such symbols are automatically inserted by
the editor. It must be possible to stop the cursor on user—entered

symbols so that they may be changed if required.

RETURN key

Move to the next possible alteration point 1including
optional and 1list placeholders. This makes the
optional and 1list placeholders, if any, visible. The
return key only functions in this fashion when the line

is empty.

<= /[=> Back / Forward Arrows

Move to the previous/next possible insertion point or
user-entered symbol. This causes the cursor to stop at
any point that any modification is possible (alteration

points).

Top = F7 Move to the first alteration point in the

program.

F1/F2 - se/Fo Q h

The user is prompted for a terminal symbol and the

cursor is moved to the appropriate occurrence of that

Chapter 2 GED - A Purely Syntax Directed Editor

symbol (towards the top (Fl) or the bottom (F2) of the
program). If the symbol cannot be found, a message to
that effect is displayed. The entry of an empty 1line
as the search symbol will result in the last symbol
being reused and to avoid confusion, the editor
redisplays the last symbol before proceding with the
search. This prompt is for the user’s benefit and
prevents the case of the NOT FOUND message being
returned when the last symbol 1is not as the user
remembered. The repetition key (F13) will cause the

command to be repeated, using the same symbol.

The search command is useful for quick movement around
the program and for locating all instances of a
specific symbol. Unlike a conventional editor’s string
search, searching for "b" will find only the 1locations
wvhere "b" 41s used as a complete symbol, mnot all
occurrences of the letter "b", such as in BEGIN. When
it is+« used to search for comments or strings, all
occurrences of these constructs are stopped on - the
actual string or comment 18 not examined. As most
searching is for identifiers and reserved words, this
in not normally 4nconvenient. To skip through the

program locating the "repeat" key can be used.

57

Chapter 2 GED - A Purely Syntax Directed Editor

F3/F4 - Previous/Next Placeholder

Move the cursor to the previous/next essential

placeholder.

Up Arrow Key

ASCEND the program tree. This will cause the cursor to
encompass (and therefore highlight) larger and larger
sections of the program. It is used in preparation for

a CLIP or DELETE command.

Down Arrow Key

This command is used in two different ways, the first
is to DESCEND the program tree to the first possible
alteration point. This 1is broadly speaking the
opposite of the ASCEND command. The other use of the
down-arrow is to force the generation of a subtree for
an optional or 1list node. The use of this command is

discussed below.

58

Chapter 2 GED - A Purely Syntax Directed Editor 59

Examples Showing the Use of Cursor Movement Commands

PROGRAM demo (<file_name>) ;

JLABEL] :
BEGIN
EN’D -

Correct Symbols : LABEL Nothing
FO=HELP | Syntax ::= [LABEL <label> { , <label> } ;]

Fig 2.7 - After Hitting RETURN while on <file name>

The "<file_name>" placeholder is left in position to indicate that a
filename is required and the cursor moves to the optional label
declaration placeholder. If no labels were wanted, pressing RETURN
again would skip to the next alteration point - the constant

declarations (fig 2.8).

PROGRAM demo (<file_name>) ;
[CONST]

BEGIN

END .

Correct Symbols : CONST Nothing
FO=HELP | Syntax ::= [CONST <CONST_defn> {;<CONST defn>}
3]

Fig 2.8 - The Prompt for the Optional Constant Declarations

Entering "CONST" would cause the insertion of a template for Pascal
constant declarations (fig 2.9)c The terminal symbols "=" and ";"
must be present in a constant declaration and are therefore provided by
the editor. Identifiers, numbers and strings are treated as terminal

symbols 1in " the grammar but as they require further definition from the

Chapter 2 GED - A Purely Syntax Directed Editor 60

user, the appropriate placeholder is left as a prompt.

PROGRAM demo (<file_name>) ;
CONST
<constant name> = <constant> ;

BEGIN
END .

Correct Symbols ¢ {identifier
FO=HELP | Syntax ::= <constant_name>

Fig 2.9 - The display after requesting a CONST declaration

Entering a constant name "cl", in accordance with the help information,
causes the name to be incorporated into the program. The cursor moves
to the next possible alteration point (see fig 2.10). Note, 1in
particular, the list of correct symbols.

PROGRAM demo (<file_name>) ;

CONST

cl = <constant> ;

BEGIN
END .

First Occurrence of Identifier : cl

Correct Symbols : number identifier + - string
FO=HELP | Syntax ::= <constant>

Fig 2.10 - A List of Correct Start S ols for <Constant>

Entering any of a number, an identifier or a string would cause the
entry to replace the placeholder "<constant>". The entry of "+" would
cause the "<constant>" placeholder to change to "+ <constant_value>"
and the help information to show that "<constant_value>" could be

either a "number" or an "identifier" (see fig 2.11).

Chapter 2 GED - A Purely Syntax Directed Editor 61

PROGRAM demo (<file_name>) ;
CONST
¢l = + <constant> ;
BEGIN
END .

Correct Symbols ¢ number identifier
FO=HELP | Syntax ::= <constant_value>

Fig 2.11 - The Development of a Constant Declaration
Notice that the "First Occurrence...” message has disappeared. The
messages on the status line are transient and will disappear as soon as

when the user presses any key.

The Use of the DOWN-ARROW to Force Subtree Generation

There are occasiuns when the occurrence of multiply nested 1list or
optional node will cause sections of a program to be unreachable. For

example, consider the top-level grammar for Snobol in fig 2.12.
<program> ::= { <statement> }
<statement> ::= [<label>] [<subject>] [<rest_of_Snobol>]

Fig 2.12 = Top Level Grammar for Snobol

The initial display will show "{ <statement> }" and the help
information that a label is an identifier. There is no way to tell the
editor that an identifier entered is to be used as the subject, not the

label. Hitting REIURN doesn’t help as the only alteration point is the

Chapter 2 GED - A Purely Syntax Directed Editor 62

current node - the cursor doesn’t move. An method of expanding the
<statement> placeholder to "[<label>] [<subject>] [<rest of Snobol>]"
is needed, with the cursor on <label>. Pressing RETURN would then skip
to the next alteration point = "[<subject>]" - as required. When the
cursor is on an optional or 1list node the DOWN-ARROW key will force the
expansion of an optional or an iterated subtree to enable the cursor to
be positioned on the required placeholder within the subtree. No
confusion between the two uses of the DOWN-ARROW key should occur, as
it functions as an EXPAND command only on optional or list ncdes that
have no expansion (in which case descending doesn’t make sense). All

all other times it behaves as a DESCEND command.

2.7 Marking and Returning to Marked Nodes

In order to enable very rapid movement around the program, markers,
labelled A to Z, are provided. Case differences are ignored. The
effect of these markers is to associate a letter with the current node.
To associate a marker with.the current cursor position the user presses
the %FT—HARKER key (F8). The prompt - "Set Which Marker A-Z ? " 4s
provided by the editor. A reply of any letter will set a marker, any
other key will cause the command to be ignored - with an appropriate
message. To return to that node the user gives a MOVE-TO-MARKER
command (F9) followed by the name of the marker. In Pascal, marker "C"
could be used for constants, "T" for Types and "V" for variables. The
markers of the current node and the marked node are swapped, so giving
the command agafn with the same marker name will restore the cursor to
the original posit;on. Attempting to move to an unset marker will

cause the message "Marker has not be set" to appear on the status line,

but has no other effect. |

Chapter 2 GED - A Purely Syntax Directed Editor 04

2.8 The Delete Command - F5

The DELETE command deletes the section of program currently uander the
cursor. After DELETE has been invoked, the cursor moves to the parent
of the deleted subtree. Therefore, repeated invocations of DELETE will
delete successively larger sections of the prcgram. The d=leted
section of the program 1is not irrecoverably lost but is copied to a
file called "CLIPPED". This section of the program may be recovered
either by using the iINSERT command to reinsert this CLIPPED section of

the program or by using the UNDO command (see later).

The delete command can alsc be used to change identifiers, numbers and
strings. As 1{illustrated above, if the cursor is on an identifier and
the DELETE key pressed, the identifier is replaced by 1its appropriate
placeholder. For example, if the cursor was moved to DEMO and thLe
DELETE key pressed, the placeholder would revert to <program name> and

a new name could be entered.

To delete templates, the cursor is moved to any node in the template
and~the 'P=-ARROW key is prensed repeatedly, until the cursor covers the
construct to be deleted. The DELETE command will now remove the
complete region under the cursor. It is still saved in the CLIPPED
file. If too many iscend commands are given (repeated use of the
UP-ARROW key from any initial position would eventuglly cause the
cursor to encompass the entire program), the "undo" command should be
used to restore the cursor to {ts previougs position, not the

DOWN=ARROW. The DESCEND command (down=-arrow) does move the cursor down

the tree, but to the first alteration point, which is usually much

Chapter 2 GED - A Purely Syntax Directed Editor 65

further down the tree than intended.

A sequence of repeated ASCEND commands is illustrated in figs 2.13 to
2.15. Notice that the "correct symbols" and "syntax" fields in the

help area change as the cursor ascends the syntax tree.

PROGRAM demo (<file_name>)

CONST
cl = 4+ 97
BEGIN
IF <factor> THEN
BEGIN
write { <factor>) ;
END
ELSE
BEGIN
b [<qualifier>] ;
END ;
END .

Correct Symbols : 1dentifier
FO=HELP | Syntax ::= <variable> ([:= <expression>])

Fig 2.13 - fhe Start of the Assignment Statement is under the Cursor

Chapter 2 GED - A Purely Syntax Directed Editor 66

PROGRAM demo (<file_name>) ;

CONST
cl =+ 97 ;
BEGIN
IF <factor> 'THEN
BEGIY
w“rite (<factor>) ;
END
ELSE
BEGIN
b;
END 3
END .

Correct Symbols :identifier goto begin if case while repeat
for with reset rewrite read readln write writeln Nothing
FO=HELP|Syntax ::= [<simple statement>|<structured_stmt>]

Fig 2.14 - Ascending the Syntax Tree from "b" to Compound Stmt

PROGRAM demo (<file_name>) ;

CONST
cl =+ 97 ;
BEGIN
IF <factor> THEN
BEGIN
write (<factor>) ;
END
SE
BEGIN
b
END
END .

Correct Symbols : ELSE Nothing
FO=HELP | Syntax ::= [ELSE <statement>)

Fig 2.15 - The Optional ELSE part i8 under the Cursor

Entering the DELETE command at the stage shown in fig 2.15 would remove
the ELSE part of the IF statement and replace it with the "else"
placeholder "[ELSE]". Entering the UP-ARROW command again would cause

the complete IF statement to be covered by the cursor. It could then

Chapter 2 GED - A Purely Syntax Directed Editor 67

be deleted and possibly inserted elsewhere by being recalled from the
clipped file. The contents of the CLIPPED file are never deleted, just
overwritten by other DELETE commands. Therefore the contents of the

CLIPPED file may be inserted repeatedly.

The ASCEND command stops on nodes that have productions as their names,
on optional node, and list nodes. On occasions the cursor does not
ascend as far as the user intends and the command must be repeated.
This is dependent on the number of productions in the original input

syntax - the more productions, the more places there are to stop.

2.9 The Insert Command - F6

This command inserts the most recently clipped section of program at
the current cursor position. The editor attempts to incorporate all of
the clipped subtree at the current cursor position, However any error
will éause the insertion to be abandoned. The status line will, as
before, indicate the erroneous symbol. The clipped section of the

program may be inserted at more than one location as required.

2.10 Reading and Writing Files

The editor provides commands to write its current program and later, to

read it back again. These commands are detailed below.

WRITE ilename] = Fl1
The current program is written to two files, a plain text file suitable

for input to a compiler or interpreter, and a code file for reading

Chapter 2 GED - A Purely Syntax Directed Editor 68

back into the editor. Both files have a suffix: the plain text file
has the language name and the GED code file is suffixed by ".GED". For
example, if the language was Fascal and the command "WRITE DEMO" given,
the files "DEMO.PASCAL" and '"DEMO.GED" would be written. If no
filename is given the input filename 18 used. The lack of both an

input and output filename is an error.

READ filename - FJO

The GED code file of the given filename is read into the editor. For
example, to continue work on the file "demo", the command "READ DEMO"
is given. The editor appends 1ts code suffix and reads the file
“demo.ged". The named file is inserted at the current cursor position,
without erasing the current program. To read in a complete program the
display must be 1in 1its initial state - this can be achieved with the
ASCEND and DELETE commands. This deletes the current program (if any)
and could be done by the READ command itself, but in order to limit the

number of commands, this is not done.

The input to the editor is designed to be essentially a program without
compulsory terminal symbols, and this would seem to preclude the input
of files containing complete programs or sections of program. However,
the editor ignores all redundant symbols in the input stream and it is
therefore possible to modify existing programs, to include wuseful

subroutines or to continue writing a partially completed program using

GED.

Chapter 2 GED - A Purely Syntax Directed Editor 69

2.11 Undo Function - F12

The editor provides the ability to unwind previously entered commands.
This provides a means to explore the editor commands without causing
irreversible alterations to the program tree. Modifications made to
the program during an INSERT operation are ignored by the UNDO command
to avold filling the undo stack. Therefore after an INSERT command,
the UNDO may be used to restore the program to the state it was in

prior to the insertion.

Chapter 2 GED - A Purely Syntax Directed Editor 70

2.12 A Command Summary in Function Key Order

FO - Change the HELP display between the 'Current
Production/Correct Symbols" display and a brief summary

of the Function key commands.

Fl - Search Backwards for a user entered symbol.

F2 = Search forwards for a user entered symbol.

F3 = Move to previous required placeholder.

F4 - Move to next required placeholder.

F5 — Delete the region under the cursor (Use with Up-arrow).
F6 = Insert the last deleted region Qt the cursor position.
F7 - Go to first alteration point in the program.

F8 - Set a marker at the current cursor position.

F9 ~ Return to a previously set marker.

Chapter 2

F10

Fll

Fl2

F13

RETURN Key
Left-Arrow
Right-Arrow
Up-Arrow
Dowvn=-Arrow

GED - A Purely Syntax Directed Editor 71
Read a Ged-format file.

Write both a Ged-format and a print file of the

program.

Undo the recent modifications to the program.

Repeat the last command - Most useful for Searches.
Move to the next alteration position in the program.
Move to the last alteration point before the cursor.
Same as Return - for consistency.

Move the cursor up the program tree to encompass more
of program ~- Used in preparation for a DELETE command
(F5).

Move into the subtree of the current to first
alteration point. If the current node is a optional
node or list node without a subtree (it°s unexpanded)

then create one, and then move to the first alteration

point ia the new subtree.

Chapter 2 GED -~ A Purely Syntax Directed Editor 72

ESC ESC - Redraw the screen = useful if ic¢ has been corrupted 1in

some way (e.g. system messages).

2.13 Summary

The editor described in this chapter is designed to cater for a very
wide variety of programming languages while preventing all syntactic
errors. The editcr is economical in terms of keystrokes required and
while requiring a different approach to the construction of a program,
is not difficult to vse. The display of the current production under
the cursor and the 1list of correct symbols, together with the undo
facility provide a gentle introduction to the construrts of the
language. This environment, while strange for those accustomed to the
more conventional methods of program creation, may be especially suited

to beginners who have no unlearning to do.

Chapter 3

GED = Its Internal Architecture

3 GED - Its Internal Architecture

This chapter describes the data structures used within the editor to
represent the syntax and the wuser’s program, and the wmethods of
manipulating and moving around these structures in order to provide the
facilities described in chapter 2. The tcpics covered are: the syntax
and its internal representation, the representation of the user

program, and the implementation of user commands.

GED is written in PASCAL, using only the non-standard features of the
"otherwise" option on a CASE statement and the ability to associate an

external filename with an internal name inside the RESET and REWRITE

statements.

“~

3.1 The Input Language Syntax

GED is intended to be a syntax-directed editor that reads the syntax of
the desired user language as data. Therefore, a machine readable
syntax notation must be used. The most common form of syntax notation
is BNF [Backus 1959), but the use of recursion to provide repetition
and the wuse of an explicit EMPTY symbol render the notation clumsy and
obscure. Tramline (syntax) diagrams are another common form of syntax
notation but the notation is graphical and therefore not suitable for

direct entry into a machine. The syntactic notation TWIJI [Lyons 1983)

Chapter 3 GED - Its Internal Architecture 74

- a machine-readable form of the tramline diagram - could have been
used but as BNF and its variants are more widely understood, a variant

of Extended BNF has been chosen as the input for GED.

The ma r limitation of BNF is its clumsy method of handling repetition
and optionality using recursion and the empty string. Wirth [1977]
suggested a syntactic notation derived from BNF that avoids the use of
an explicit symbol for the empty string by adding constructs for
optionality and repetition - "[2ZZ]" to indicate that ZZZ 1is
optional, and "{ zzz }" to indicate that zzz may occur =zero Or more

times.

In terms of standard BNF:
<D> ::= [ZZZ] is equivalent to: <D> ::= 22Z | <empty>
<D> ::= { Z2Z } is equivalent to: <D> ::= 2ZZ <D> | <empty>
<empty> ::=

However, the syntactic notation suggested by Wirth differs from
standard BNF in 1its method of specifying terminal and non-terminal
symbols. Instead of delimiting non-terminal symbols with angle
brackets and letting terminal symbols represent themselves, his
notation delimits terminal symbols with quotation marks and does not
delimit non~terminals. For example, a simple "IF statement" would be

defined as:

Chapter 3 GED = Its Internal Architecture 75

BNF : <if statement> ::= IF <expression> THEN <statement>

Wirth : 1ifstatement = "IF" expression "THEN" statement .

The use of quotation marks around terminal symbols in Wirth“s notation
has the advantage that no conflict arises between the use of a symbol

in both the meta-notation and the language being defined.

GED uses the extensions of braces to 1indicate repetition, square
brackets to indicate optionality, and parentheses to indicate grouping
as suggested by Wirth, but leaves the remainder of the meta-notation
intact - consistent with standard BNF. This is in accordance with the
extensions suggested by Pagan [1981]. GED will therefore accept either
standard BNF or this variant. Should it be desired to change the input
format to conform completely to that suggested by Wirth, only minor

changes to the syntax building procedures would be necessary.

The symbols "< "> "[","]","{","}", "™, "(", "), "$", "$$" are part
of th; meta-language but may also be part of the language being
defined. To enable the use of these symbals within the syntax
definition, one of two escape characters - either " or ° - is used.
The presence of either of these before another symbol removes any
special significance that the symbol normally has in the meta-notation.

For example, to indicate that parentheses may surround an expression

the syntax definition would be:

Chapter 3 GED - Its Internal Architecture 76

<expression> ::= “(<expression>)
OR

<expression> ::= "(<expression> ")

Although in these examples both single and both double quntes have been

used, the choice is arbitrary, and they can be mixed.

Chapter 3 GED -~ Its Internal Architecture 77

3.2 Definition of the Extended BNF Accepted by GED

<syntax_definition> ::= <lexical info>

<definition> { <detinition> } “§$ $

<definition> ::= <left_hand_side> "::= <right_hand_side>

[printformat <print format definition>]°$ $

<lexical info> ::= [IDENTIFIER START SET <set of characters>)
[IDENTIFIER BODY_SET <set of characters>]
[START_COMMENT <character>]
[END_COMMFNT <character>]
[COMMENT_COLUMN number >= 1 & =<132]
[STRING_DELIMITER <set of characters>]
[DELIMITER { :BLANK |
:END_O!:‘_LINE |
<get of characters>
}
1 $
<left_hand_side> t:= “< <non_terminal_name> ‘> $

<right_hand_side> t:= <concatenated_rhs> *| <concatenated_rhs>) $

<concatenated_rhg> ::= <right_hand_options> {<right_hand options> } $

Chapter 3 GED - Its Internal Architecture 78
<right_hand_options>::= ‘{ <right_hand_side> °} |
‘[<right_hand_side> ‘] I
“(<right_hand_side> °) |
<primitive_rhs> $
<primitive_rhs> ::= < <non_terminal_name> ‘> |
‘" <token> I
"’ <token> I
<token> I
IDENTIFIER |
NUMBER I
STRING I
COMMENT $
<non_terminal_name> ::= Any character sequence excluding > $

<token>

<printformat>

- Use "> for >

timom |T<> |f<= | "< |

% = | %]
PC Rl
= 0% 4" 1

Will be defined later.

$ Isslsfel
¥ 13 121
511 1421%1

$ 88

Fig 3.1 ~ Definition of the Extended BNF accepted by GED

Chapter 3 GED - Its Internal Architecture 79

Note: The symbols ":BLANK" and " :END-OF-LINE" are used to include the
blank and the end of 1line character in a set. The reasons for this

will be discussed later.

The EBNF grammar may be augmented by print formatting information which
is associated with each terminal or non-terminal in the syntax. This
is to enable the implementor of an editor to specify how programs are
to appear when they are printed. This function does not affect the
actual form of the 1input grammar and may be omitted entirely if
desired. The formatting commands will be described in detail after the

internal representation of the user’s program has been defined.

The symhols IDENTIFIER, NUMBER, STRING and COMMENT are unusual, as
although they may represent a required terminal symbol, the editor
cannot know which identifier, number, string, or comment will be
entered by the user, and therefore cannot f£ill in the correct terminal
symbol (in the way that is possible with a comma or BEGIN). Therefore
these symbols are treated 1in the syntax as terminal symbols, but are
known to the editor to be composite = the actual symbol to be entered
by the wuser. As the form of each of these symbols differs between

languages, their syntax is defined in the <lexical info> section of the

syntax definition which must precede their first use.

2 <= This is a comment, indicated by a "%" in column one
IDENTIFIER_START SET set of characters

IDENTIFIER_BODY_ SET set of characters
DELIMITERS set of characters
«e Other lexical definitions «..

<Root Node> ::= <rest of productions> $
Corsved ii= rest of syntactic definitions $ $8

Chapter 3 GED - Its Internal Architecture 80

Defining the Syntax of Identifiers

To accomodate the wide variety of keywords and reserved words in common
use, the characters that may start an identifier and those that may
occur after the first character are specified as part of the syntax
definition. The keywords IDENTIFIER_START_SET and IDENTIFIER BODY_SET
denote the beginning of each set respectively. All the characters
following the keyword (excluding blanks) become part of the set. The

list is terminated by the end of the line.

The regular expression definition of an identifier is:
IDENTIFIER _START_CHAR { IDENTIFER_BODY_ CHARACTER }

where the braces mean '"zero or more of".
For Pascal the definition of Identifier 1is:

IDENTIFIER_START_SET
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
-~ TILS
IDENTIFIER_BODY_SET

_abcdefghijklmnmopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

These sets are used as the defaults if the definition of either of the
identifier start or body sets (or both) are omitted. Note that the use
of separate sets for the start and body of an identifier caters for the
case of characters that can occur only at the start of an 1identifier
(such as the "&" 1in SNOBOL), and characters that cannot start an

identifier but are allowed in its body, such as the digits 1in many

Chapter 3 GED - Its Internal Architecture 81

languages, the underline in some Pascal implementations, the dot in

SNOBOL and the dash in COBOL.

Defining String Delimiters

Strings are delimited in most languages by the single quote, but the
use of double quotes 1s also common. The characters that delimit a
string may be defined by the user with the STRING_DELIMITER
psuedo-definition. As before, all following characters on the line

(excluding blanks) will become string delimiters.

Once the editor has recognised the start of a string, all characters up
to the matching string delimiter, or the end of the 1line will be
included in the string. If no matching quote is found on the same
line, one is provided - no warning Ils issued. The use of both single
and double quotes as string delimiters (as in SNOBOL) permits the other

type to be used as part of the string (e.g. "It“s" or “"hello"”). For

example:
PASCAL STRING_DELIMITER :
SNOBOL STRING_DELIMITER * "

1f no string delimiters are defined, the single and double quotes will

be treated as tokens without any special significance.

Chapter 3 GED - It¢s Internal Architecture 82

Defining the Comment Syntax

GED is capable of handling coument enclosed in a pair of bracketting
symbols, comments preceded by a particular symbol terminating the
logical record (at any position within it) and comment preceded by a
particular symbol at a particular position in the record. As GED does
not provide any mechanism for editing comments, to alter a comment it
must be replaced. To prevent the user from creating an arbitrarily
long comment, which would then be unalterable, the maximum comment
iength is one 1line. This means that long comments must be ﬁroken in |

many single line comments.

The presence of symbol in the START-COMMENT set (which is defined 1in
the syntax) indicates the start of a comment. If an END-COMMENT symbol
has been defined, all characters between the start and end of comment
symbols become part of the comment. This caters for languages that
bracket comments with speciai symbols, such as the use of left and
right braces in Pascal, and the exclamation mark (as both the opening

and closing symbol)} as in PLZ-SYS [Snook 1978).

The definition of a START-COMMENT symbol, but not an END-COMMENT symbol
indicates that the remainder of the line after the start symbol is a
comment. This convention is used in Burroughs Extended ALGOL in which
a “%" is used as a logical end of record. Some languages have the more
restrictive convention that a certain symbol indicates the start of a
comment, but only 41f 4t 18 in a particular position on a line. For
example, Snobol uses an asterisk in column one as the comment flag. In

this case, the corresponding column must be defined in a COMMENT_COLUMN

Chapter 3 GED - Its Intermal Architecture 83

declaration. If the COMMENT-COLUMN declaration is omitted, no fixed

column 1is necessary for the START-COLUMN symbol.

The following declarations show the options for these different

languages:

PASCAL START_COMMENT { Comment surrounded by { & }
END_COMMENT }
PLZ-SYS START_COMMENT ! Comment surrounded by

END_COMMENT

Burroughs ALGOL START _COMMENT 2 Comment is rest of line after %

SNOBOL START_COMMENT * Comment is rest of line

COMMENT_COLUMN 1 after "*" in column 1.

Defiting Delimiter Symbols

Most languages ignore certain characters, using them only for
formatting purposes and to terminate tokens. The most common
delimiters are the blank aud the end-of-line character. However
languages exist in which other symbols may be freely used for
formatting purposes but are otherwise ignored. The language PLZ-SYS is
unusual in this respect, as no punctuation is defined in the language -
there are no specific statement, declaration or expression delimiters.
The comma, semicolon, colon, blank, tab, line-fead, return and

page-feed characters may be freely intermixed with the symbols of the

Chapter 3 GED - Its Internal Architecture 84

.language. For GED to handle this type of language, there must be some
method of specifying that certain characters are to be ignored. The
DELIMITER set 1s used to do this. GED’s pretty-printer will reformat
the program when it 1is regenerated, so only the printable characters
(comma, semicolon, colon), the blank, and the end-of~line character
need to be specified. The inclusion of the blank and end-of-line
characters in the set is awkward, as the blank is used for formatting
purposes and is therefore ignoréd, and the END-OF-LINE indicates the
end of a set. Therefore special symbols are necessary to represent
these two characters within a set - the symbols :BLANK and :END-OF-LINE
are used. These symbols, if present, must occur directly after the
symbol DELIMITERS as otherwise multi-character lookahead would be
required to determine that ":BLANK" meant the blank, and not the
characters ":" "B" "L" "A" "N" and "K". All remaining printable

characters on the line will be incorporated in the set.
For example:
PASCAL DELIMITERS : BLANK : END-OF-LINE

PLZ=-SYS DELIMITERS : BLANK : END=-OF=-LINE , ; :

Chapter 3 GED - Its Internal Architecture 85

3.3 Requirements cof the Intermal Syntactic Representation

When using a syntax-oriented editor, the user cannot be expected to
enter the program in a continuous stream from start to finish.
Mistakes and forgotten items will cause the user to edit different
sections of the program in a more or less random order. For example,
the user may request an IF statement, enter FOUND as the first part of
the (IF) "<expression>", and then receive the message "First Occurrence
of identifier : FOUND" - meaning it hasn’t been declared. The user
may then want to stop entering the partially complete <expression> and
move back to the variable declarations to declare "FOUND". 1In the
process, it may also be necessary to then add new TYPE and CDN;T
declarations. There wmust be no requirement that suspended partially
couplete parses be resumed in the reverse of the order in which they
were suspended - users have their attention distracted or forget. The
parsing technique used in a syntax-oriented editor must be able to
handle the suspension of a incomplete parse of one production (e.g.
<if_statement> 1s incomplete), and the resumption of any other
part{glly complete production. With respect to their order in the
final program, the input stream of tokens may be discontinuous (because
of a jump from one production to another), and may not include all the
symbols that will be present in the final program, as required

terminals will be inserted by th: editor. For example, the input

symbols for the above example (omitting cursor movement commands) would

resemble "IF FOUND VAR FOUND BOOLEAN".

Chapter 3 GED - Its Internal Architecture 86

The disconnected nature of program development greatly comnstrains the
choice of parsing technique that may be used in a syntax-directed
editing environment, if syntactic correctness of the program is to be
guaranteed at all times. This goal could be attained by reparsing the
complete program after the entry of every symbol, but this is too

wasteful of processing power to be viable.

As the parse of productions may be suspended and resumed in an
arbitrary order, the state of the parser =~ which production it’s
parsing and where 1it’s up tc within that production - must be
accessible, so this information can be saved and restored. A parser
that stores this information implicitly cannot be used as rhere 1is no
way to access the current state. An example of this type of parser is
the recursive descent parser, in which the parser state is distributed
throughout the chain of return address and local variables on the stack
- which 1is 1inaccessible. It 1is therefore imposs’ble to save and
restore the parser’s current state. This saving and restoring of the
current utatt 1s akin to a process swap, and could form the basis of an

interesting research topic, a short description of which is given in

chapter five.

A requirement of this implementation is that the syntax be regenerated
for display purposes. The regenerated -syn:ax is used for the
placeholder prompts and to display the production currently being
parsed, as a guide to the user. The editor is intended to read the
language syntax as data, and so no information regarding the syntax may

‘be implicit (written into the code) in the parser itself.

Chapter 3 GED - Its Internal Architecture 87

The mechanism chosen is to represent the data structure is a network of
trees. Each EBNF definition corresponds directly to one of the trees,
and the nodes containing non-terminal symbols are linked to the tree
defining their syntax. It is this interlinking of the trees that gives
the structure its network aspect. The structure 1s based on ome
developed by Wirth [xxxx] for BNF, adapted to accomodate the loop and
optional constructs, and to enable the syntax to be regenerated from
the data structure. Each node in the structure (the syntax) may define
either a terminal symbol, or be a pointer to other syntax nodes.
Before describing the interconnection of these nodes and their fields,

it is necessary. to define the representation of terminal symbols within

the editor.

3.4 PRepresentatioa of the Tokens of the Meta and User languages

A lexical analyser which breaks up the input character stream into
tokens is used to scan both the input syntax and user’s input. The
output of the scanner is a sequence of tokens stored 1in three global
variables, "token", '"tokenvalue", and "string_node". "Token" is an
enum;rated type and indicates the type of token. Some examples are:
SEMICOLON, DOT, DOLLAR, TWO_DOLLARS, STAR, PLUS, BEGIN, WHILE,
IDENTIFIER, NUMBER, STRING, and COMMENT. IDENTIFIER, NUMBER, STRING
and COMMENT require further information to identify which input symbol

was entered. The variables "tokenvalue" and "string node" are used for

this - these two variable are optional, unlike "token" which is always

defined.

Chapter 3 GED -~ Its Internal Architecture 88

For identifiers, "tokenvalue" contains the symbol-table index of the
particular identifier. To conserve space (because of Pascal’s lack of
strings), the spelling of identifiers and reserved words (e.g. IF) 1is
not held in the symbol-table itself, but in a global string area. The
symbol-table contains an index into the string area and the length of
the identifier. Therefore once the symbol-table index of identifier is

known, its spelling may be found.

In the case of NUMBER, "tokenvalue" contains the number’s value. For
STRINGs and COMMENTs, the global variable "string node" contains a
pointer to a record containing the string (or comment), its length and

its delimiting characters.

Token, Tokenvalue and String-node

Routines are provided within the scanner so that, , given the triplet
"token, tokenvalue, and string node” for a particular token, the
scanner can regenerate its textual form. Therefore it 1is unnecessary
to store a textual representation of a program - it can be
reconstituted from its stream of tokens. Obviously all formatting
information is 1lost when this is done. Although a triplet is always
stored when it is necessary to identify a token uniquely, for brevity
the triplet will be referred to as a "symbol". These symbols are
stored in one variant of the nodes that make up the syntax = the

"terminal"” variant of the syntax node.

Chapter 2 GED - Its Internal Architecture 89

A variant record structure is used to represent the th.ee different
types of syntax record node. A tag field with th; record indicates the
variant applying to a particular node which may be one of "terminal”,
"header" and "non-terminal™. These are used to represent terminals,

the names of productions, and non-terminals productions respectively.

They will be covered in turn.

The Representation of Terminal Symbols within the Syntax Tree

The terminal variant of the syntax node has three field to contain the
"token", "tokenvalue" and "string node" fields of the token it
represents. For example, nodes representing a semicolon, WHILE, an

identifier, a number and a string would contain the following

information.

Semicolon TOKEN = SEMICOLON
TOKENVALUE = ynused
STRING_NODE = unused

WHILE TOKEN = WHILY

” TOKENVALUE = ynused

STRING_NODE = unused

found (identifier) TOKEN = IDTOKEN
TOKENVALUE = Syrbol-table index of "found"
STRING_NODE = unused

19731 g TOKEN = NUMBER

TOKENVALUE = 19731
STRING_NODE = unused

Chapter 3 CED - Its Internal Architecture 90

‘hello’ (string) TOKEN = STRIKG
TOKENVALUE = ynused
STRING_NODE = o
| Points at string node

v
string hello
length 5
start_char ‘ The start and end chars
end_char . may be different for

comments.

All tokens stored within the editor may be traced back to terminal

syntax nodes.

3.5 pDescribing the Names Of Productions

A node 13 associated with the left-hand-side of each production and 1is
used to store the production’s name, and point to its definition. This
node is called a header (syntax) node. All the header nodes are linked
together by the pointer field ALT (see diagram below) and so by
following the links all productions (and their names) can be found.
This enables a search for the appropriate definition to be undertaken

when linking a non-terminal node into the rest of the structure.

Because the names of non-terminal productions are delimited by "<" and
">" in the 1input syntax, the non-terminal name may contain any
printable character. Blanks may be present in the production’s name,
but are ignored when the name is stored. This is to enable the use of
blanks to tidy the layout of the syntax, but avoid th; problems that
would occur 1f <withstatement>, <with statement>, < with statement>
were deemed to be different. Note that the representation of
non~terminal names 1s quite distinct from the representation of

identifiers - any printabie character may be used inside a non-terminal

Chapter 3 GED - Its Internal Architecture 91

name .

Header syntax nodes contain two pointer fields which point to the (the

header node of) the next production and to the syntax nodes

corresponding to thé right hand side of the EBNF definition

respectively.

For example, the productions:

<Z> ::= A
<Y> ::= B

<X> ::= C are represented as:

o Root Node of Syntax Description
I
I
v
Type = Header
Name = <Z>
Next o > Type = Terminal
Alt o Name = "A"
| Next = nil
| Alt = nil
v
Type = Header
Name = <Y>
Next o > Type = Terminal
Alt o Name = "B"
| Next = nil
| Alt = nil
v
Type = Header
Name = <X>
Next o > Type = Terminal
Alt = nil Name = "C"
Next = nil
Alt = nil

Chapter 3 GED - Its Internal Architecture 92
When the end of the grammar is encountered, any production with a null
"next" field (no associated production) has its name printed with the
message "No Definition for <undefined name>".

v
Now that terminal symbols and productions have been defined, some
mechanism of describing sequences of these 1items is necessary. To

accomplish this, a new form of node is used.

3.6 Non-terminal Syntax Nodes

The non-terminal node is used to construct sequences of nodes, to
indicate alternative productions, and to provide a wmechanism to

represent the optional and list productions.

The "non-terminal" syntax node has a "next", an "alternative" and a
"definition" field. These fields are to refer to the successor to the
production pointed at by the current node or a possible alternative to
it. However as the non-terminal node does' not define a terminal
symbol, some method of indicating which production must be parsed 1is
necessary. The "definition" field is used for this and points to other
syntax nodes, which may be terminal nodes, header nodes, or other
non-terminal nodes. The non=-terminal node provides the mechanism to
build up the structures necessary to represent the conatructs of

extended BNF. The following examples illustrate the various constructs

and their corresponding data structure.

Chapter 3 CED - Irs Internal Architecture 93

3.7 Concatenation and Alternation of Prodyctions

The presence of sequences or alternatives in & grammar alvays csuses an
extra level of syntax nodes to be constructed. Sequences of
productions are represented in the data structure by a list of
non=-terminal nodes, their "next” pointers {ndicating the following
non-terminal node in the sequence (fig 3.2). The non-terminal pointers

may point to any item syntactic coamstruct, including other sequences.

> Type = Non-Tasl Type = Non-Tal Type = Fon-Tml
Next o > HNext o > HNext = nil
Alt = pil Alt = nil Alt = nil
NTptr o NTptr o NTptr o
| | !
| | |
| i |
v \'4 v
lst thing in 2nd thing in Last thing in
sequence sequence sequence
Fig 3.2 - Syntax Node Structure used to Represent uences

Alternatives in the grammar also cause the generation of another layer
in the syatax structure (fig 3.3). This layer being distinct from the
layer of nodes used to indicate concatenation. Keeping the layers for
the different constructs separate simplifies the regeneration of the

printable representation of the syntax.

Chapter 3 GED - Its Internal Architecture 94

------ > Type = Non-Tml Type = Non-Tml Type = Non-Tml
Next = Nil Next = nil Next = nil
Alt o > Alt o > Alt = nil
NTptr o NTptr o NTptr o
v v v
l1st Alternative 2nd Alternative Last Alternative

Fig 3.3 - Syntax Node Structure used to Represent Alternatives

Regeneraring the printable representation of the syntax corresponds to
treating the syntactic structure for each production as a tree, and
then performing a depth-first scan over the tree, stopping whenever a
header node 1s encountered. A pointer to a header node is not traced

any further. The name of the production is printed instead.

Examples of Simple Syntactic Productions and their Representation

<Z> := A B is represented as:

Type = Header
Name = <Z>

Next o > Type = Non-Tml Type = Non-Tml
Alt = nil Next o > Next = nil
Alt = nil Alt = nil
NTptr o NTptr o
I I
I I
I |
\'4 v
Type = Terminal Type = Terminal
Name = "A" Name = "B"
Next = nil Next = nil
Alt = nil Alt = nil

Chapter 3

GED - Its Internal Architecture

Alternatives to a Production

<Z> 1= A (B

Type = Header
Name = <Z>
Next o

is represented as:

Alt = nil

> Type
Next
Alt

NTptr

Type
Name
Next
Alt

The Use of Non-terminal Names

Non=Tml
nil

< ———0 0

Terminal
n A"
nil
nil

95

Type = Non-Tml
Next = nil

Alt = nil
NTptr o

|

|

|

\'J
Type = Terminal
Name = "'B"
Next = nil
Alt = nil

within Productions

<Z> ::= <Y> B

———

<Y> ::= A are represented as:
Type = Header
Name = <Z>
Next o > Type = Non-Tml
Alt o Next o--
= i Alt = pil

| NTptr o

I I

I !

|1

vy
Type = Header Type = Terminal
Name = <Y> Name = "A"
Next o > Next = nil
Alt = nil Alt = nil

Type = Non-Tmli
> Next = nil

Alt = nil
NTptr o
i
I
|
v
Type = Terminal
Name = "B"
Next = nil
Alt = nil

Chapter 3 GED - Its Internal Architecture

Example of Non-terminal Symbols, and Alternation

<Z> ::= <Y> | B
<Y> ::= A are represented as:

Type = Header

Name = <Z>
Next o > Type = Non-Tul Type = Non=-Tml
Alt o Next = nil Next = nil

| Alt o > Alt = pnil

| NTptr o NTptr o

| | |

| I I

|| I

vyv v
Type = Header Type = Terminal Type = Terminal
Name = <Y> Name = "A" Name = "B"
Next o > Next = nil Next = nil
Alt = nil Alt = nil Alt = nil

Example of Grouped Symbols, = .d Concatenation

<Z> ::= (A B) | C is represented as:

Type = Header
Name = <Z>

Next o > Type = Non-Tml Type = Non-Tml
Alt = nil Next = nil Next = nil
Alt 0 > Alt = nil
NTptr o NTptr o
I I
| |
I I
v v
Type = Non-Tml Type = Terminal
Next o-- ———— Name = "C"
Alt = nil | Next = nil
NTptr o | Alt = nil
| |
———— |
| |
v v
Type = Terminal Type = Terminal
Name = "A" Name = ‘B°
Next = nil Next = nil
Alt = nil Alt = nil

Chapter 3

GED - 1ts Internal Architecture

Example of Grouped Alternatives, and Corcatenation

SE> 33w

Type = Header

Name = <Z>

Next U=+ =memmea===

Alc

Nested construc:ts

therefore, when

should be scanned depth-first.

it

(A | B) C is represented as:

Next o
Alt = nil
NTptr o

|

|

|

v

Type = Non-Tal
Next = nil

Alt Q== ————————
NTptr o |
| |
——— |
| I
Vv v
Type = Terminal Type
Name = "A" Name
Next = nil Next
Alt = nil Alt
form new subtrees in the
is being wused to

Type = Non=-Tml

Next = nil
Alt = nil
NTptr o
i
|
I
v
Type = Terminal
Name = "C"
Next = nil
Alt = nil
= Terminal
= "B’
= nil
= nil
data structure

A parsing procedure

designed to

with the constructs given so far is illustrated in fig 3.4.

97

and

guide a parser, the structure

work

Chapter 3 GED - Its Internal Architecture 98

function PARSE (start_node : syntax_node_ptr) : boolean;
var found : boolean;

begin
case start_node”.node_type of
terminal : begin {Sec if input token same as in node)

found := (input_token = start_node”.token);
if found then Get_next_token; {(into globals)
end;

non_terminal : begin {Try Depth-first, then alternatives)
found:= parse(stert_node”.non_terminal_ptr);
1f not found then {TRY ALTERNATIVE}
found :~ parse(start_node”.alternative);

if found then {Trace following procac.:ions}
found:= parse(start_node”.next);
end;

header : found := parse(start_node”.next);
end; {case)}
parse := found;
end; {of PARSE}

Fig 3.4 - Parsing Procedure to_work with Syntactic Data Structure

3.8 The Data Structure used to Represent the Optional Symbol

In the constructs described so far there is no wmechanism to describe
the empty production, and therefore no method of defining a structure
to represent the optional broduction (e.g. [Z]) or the iterated
production Ee.g. {Z2}). There must be some method in the structure of
indicating that if the current input symbol does not mztch the next
symbol in the grammar, then that production may be skipped. This
situation is covered in GED by defining a special terminal symbol named
"EMPTY" that will match any input symbol, and therefore not cause a
failure of the parse. "EMPTY" is special in that it does not consume
the input symbol, which may then be matched against following
productions. Therefore EMPTY does behave 1in the same manner as the

production that derives the empty string.

Chapter 3 GCED - Its Int. nal Archite-ture 99

Example of an Optional Production

For example, <Z> ::= [A] B 1is represented as:

Type = Header
Name = <2>

Next 0 ===wc—ee-- > Type = Non-Tml Type = Non=-Tml
Alt = n'l Next o > Next = nil
Alt = nil Alt = nil
NIptr o NTptr o
I I
| |
| I
Special v v
Noce Indicating =---> Type = Non-Tml Type = Terminal
the OPTIONAL Next = nil Name = "B"
Production Alt Q== ——————— Next = nil
ntptr o | Alt = nil
I |
—————— |
| |
v '
Type = Terminal Type = Terminal
Name = "A" Name = EMPTY
Next = nil Next = nil
Alt = nil Alt = nil
Optional Production This node will match any input

symbol without consuming {t.

3.9 The Data Structure used to represent the List Construct

The list construct differs from the optional construct only 1in the
numbe; of times the production may be present. For an optional
production, the production may be present once or not at all. This is
represented by either a parse of the non-termiral pointer of the node
indicating the optional production (indicated in the diagram above), or
a match of the EMPTY production (represented by the terminal nrode
EMPTY). If however, the '"next" field of the special node pointed to
itself, the non-terminal field could be parsed as long as the input

symbol matched the optional production. This is illustrated below:

Chapter 3 GED = Its Internal Architecture 100
Example of an Iterated Production
For example, <2Z> ::= {(A) B 1is represented as:
Type = Header
Name = <2>
Next o > Type = Non-Tml Type = Non-Tuml
Alt = nil Next o Next = nil
Alt = nil Alt = nil
NTptr o NTptr o
I I
| eweewe I
I | I
v Vv | v
Node Indicating ==--=> Type = Non-Tml | Type = Terminal
Repeated Next O==—=———— Name = "B"
Production Alt O~—eeewaecne Next = nil
NTptr o | Alt = nil
I |
—————— I
I I
v v
Type = Terminal Type = Terminal
Name = "A" Name = EMPTY
Next = nil Next = nil
Alt = nil Alt = nil
Repeated Production This node will match any input
symbol without consuming it.
When eventually the input symbol 1s not in the start set of the

iterated production, the EMPTY field will match, terminating the list.

If the input symbol is not in the start set of the repeated production,
the node EMPTY will match immediately, therefore the production pointed

at by the "non-terminal” pointer of the special may be present zero,

one or many times. The modified parsing procedure to handle the

presence of the empty symbol (and therefore the optional and list

productions) is shown in fig 5.

Chapter 3 GED - Its Internal Architecture 101

function PARSE (start_node : syntax_node_ptr) : boolean;
var found, token_match, empty match : boolean;

begin
case start_node” .node_type of
terminal : begin {See if input token same as in node}

token_match :=(start_node”.token=input_token);
enpty_match :=(start_token".node = EMPTY);
found:= (token_match OR empty_match);
{Don‘t consume token if EMPTY match)
if token_match then get_next_token;

end;

non_terminal : begin (T:y Depth-first, then alternatives)
found:= parse(start_node”.non_terminal_ptr);
if not found then {TRY ALTERNATIVE)
found := parse(start_node”.alternative);

if found then {Trace following productions}
found:= parse(start_node” .next);
end;

header : found := parse(start_node”.next);
end; {case)}
parse := found;
end; {of PARSE}

Fig 3.5 = Parsing Procedure including knowledge of EMPTY symbol

The EBNF grammar in fig 3.1 is LL1 and may therefore be parsed by a
recursive descent parser to build a graph structure representation of
the syntax. The syntactic data structure is built by a recursive

descent parser designed to parse the syntax given in fig 3.1. The

first production in the syntactic definition is alway taken to be the

root node. This 1s arbitrary, but in practise 4ves not cause any

inconvenience.

Chapter 3 GED = Its Internal Architecture 102

An example of the data structure built for a small grammar (fig 3.6) is
illustrated in fig 3.7. In order to enable the diagram to fir on one
page, in fig 3.7 and in all future diagrams of the syntactic data
structure, when terminal symbols occur in a sequence (e.g. PROGRAM 1is
the first of a sequence), the terminal symbol will be drawn as though
it were part of the parent node - the one used to link the 1tem$ in a
sequence together. This 1is simply to clarify the diagrams by
eliminating a level from the structure. It is not to be construed as

indicating a change in the syntactic structure from that previously

defined.
<program> ::= PROGRAM <program name> [<output_file>] ; <block> $
<program_name>::= identifier $
<output_file> ::= identifier $
<block> ::= BEGIN <statement> ; { <statement> ; } END $
<statement> ::= IDENTIFIER := <expression> |

IF <expression> THEN <statement> $
;gxpressi.on) ::= IDENTIFIER | NUMBER $

-

Fig 3.6 - Syntax used to Illustrate Syntactic Data Structure

Chapter 3 GED - Its Internal Architecture 103

ROOT _NODE
<program> FROORAMN <prog_name /' (Covtfiled) T <hlochkd>
Header Terainal Non-tal Non-tml Terminal Non-tma)
Nest o Nert Nest o Nest Neit o |Nest
alt Alt Alt Alt Alt Alt
} NTptr » NTptr NTptr o
<pru!_nuo>/' IDENTIFIER £ J link /
Headeor Terainal Non—-tal
Next o] Nest Nest
Alt } Alt Alt
N‘l’l rp

IDENT IF 1ER]|

Terminal

Next

Alt
<block> ="BECIN" (statunont)/ LD
Header Terainal Non-tml A Termina
Nezt o MNext Next o~ Nert
Alt T Alt Alt Alt

NTptr »

!

€ 21link
Non-tal

Cstatement>
MNon-tml Tersinal Termins
Nezt o— Nert Mest
Alt Alt Alt
NTptr
il f
IDENTIFIER ST <paxpressiond fhlqm
match Il'i!
Terainal Terminal Non—-tal input symbol
Next Next o Nesxt
Alt Alt Alt
NTptr o—d

“1F~ <nurl||lnn)/ "THEN"
/ Teraina
Next

Terainal Non-tml
Neit o Nest o-/
Alt Alt Alt
NTptr a
e
IDENT IF 1ER
Terminsl
2t
Alt *—

Chapter 3 GED - Its Internal Architecture 104

The Syntax Node Variants - A Summary

Each syntax node defines either a terminal symbol or a pointer to other
syntax nodes. A tag field in each node indicates its type, which can
be either a terminal symbol, a non-terminal (a pcinter to other nodes),
or a "header" node - a node defining the start of a production. The

header node corresponds to the left hand side of an extended BNF

definition.

The use of a separate type of node for a header is because of the need
to regenerate the syntax tree. The print procedures recursively scan
the syntax tree, but the must stop when a header node 1s encountered.
Only the non-terminal name must be printed, not a trace of the actval
production. Otherwise, the regenerated syntax for
"IF <expression> THEN <statement>" would not contain the names
"<expression>" and '"<statement>". Instead, all the possible options
and alternatives that <expression> and <statement> may derive would be
enumerated explicitly. In the case of the grammar in fig 3.6,
<expression> would be expanded to "IDENTIFIER | NUMBER'", and
<statement> would be expanded to "IDENTIFILR := <expression> | IF
<expression> THEN <statement>". Also it 1{is possible to get into an

infinite recursive loop, as would happen 1in this IF statement (as

<statement> occurs within the IF statement).

Chapter 3 GED - Its Internal Architecture 105

3.10 Storing a Representation of the User’s Program

The representetion of a program must satisfy two primary requirements.
The first 1is the ability to suspend a parse at any stage and carry oan
with another production, which may, itself, have been suspended. The
second is to enable a printable representation of the program to be

obtained, even if the program is incomplete.

Although the organisation of the data structure used to represent the
syntax is obviously closely related to that of the user’s program, it
is not suitable for storing such a program. A syntactic item such as
<expression> is defined only once in the syntax data structure, whereas
many instances of it may occur in a program. Conversely, the syntax is
capable of specifying an arbitrary number of repetitions of a
construct, but has no way of recording the actual number of
occurrences. This information must be recorded in the parsing

procedures, either implicitly or explicitly.

The parsing function given in fig 3.5 will parse an 1input stream and
return a verdict of success or failure (as true/false), but it is not
directly suitable as the parser for a syntax-directed editor. This is
because, like a recursive descent parser, it remembers which
productions have yet to be completed in the trace 2f return addresses
on the (implicit) return address stack. Therefore the parsing function
is satisfactory for a continuous stream of input tokens, but not the

disjoint segments of input (intended for different productiomrs) found

in a syntax-editing environment.

Chapter 3 GED - Its Internal Architecture 106

3.11 Recording the State of a Parser Without a Stack

To store the state of the user’s program, GED uses a data structurc
with the same topography as the syntactic data structure, but which
contains only the terminal symbols and non-terminal productions

actually present 1in the user’s program 1in 1its current state of

refinement.

The nodes in this struccure are called '"program nodes" to distinguish
them from the nodes used to represent the syntax (syntax rnodes). Each
program node contains a pointer into the syntactic data structure to
define the syntax of the object (terminal or non-terminal) it

represents.

fach instance of a syntactic construct (such as <statement> cr
<expression>) causes the creation of new program nodes that represent
just that construcr. Therefore no ambiguity can arise regarding the
actuzl number of of occurrences any one construct - only a specific
number of program nodes pointing to it will be encountered in the

program treee

Although a grammar may specify an infinite number of wviable strings,
any particular program will contain only a small number. The poianter
to the syntactic definition enables the editor to determine whether an
input symbol 1is in the start set of the syntactic productions
associated with a particular program node. For example, if a
<statement> is vpossible at s particvlar place in 2 program, a program

node is allocated to indicate this. The node’s definition field

Chapter 3 GED - Its Internal Architecture 107

pointer to the header node for the production <statement>, and provides
the necessary link between the current statr- of the program and ali of

its possible syntactically correct deriva:tions.

A program node whose definition field points to a non=terminal
production, such as <statement>, may not as yet have any terminal
symbols associated with 1it. Such a program node {s known as a
placeholder - it 1is standing in for, as yet unspecified, terminal
symbols. Placeholders occur when a non-terminal production has
alternatives, such as the various types of statement, but the user heas
not indicated which option 1is wanted. A program that contains
placeholders is obviously incomplete, as the very presence of
placeholders means there are productions that do not produce terminal
symbols. However, as the editor 1is designed to be interactive, a

displayable representation for placeholders must be found.

The obvious solution, and the one used in GED, 1is to display the
rsyntactic derivation of placeholders instead. It is therefore crucial
that a printable representation of the syntax be obtainable from the
syntactic data structure. To make sense, the display should not trace
any header nodes encountered (i.e. "<statement>" should be displayed,

nct th: options of IF <expr> THEN... & WHILE <expr> DO .c. & ...).

Chapter 3 GED = Its Internal Architecture 108

3.12 The Initia; Form of the Program Mode Tree
The initial form of the program node tree is simply that of the top
level syntax definition (fig 3.8).

108a

e Root Ncie of Progras Node Tree

PROORAM <{prog_nams> (CoutPiled] np - <plockd>
TERMINAL PL ' HOLDER OPTI0MNAL TERMINAL TERMINAL
Syntas Synta:z ¢ Syntas Syntes Synta:
{programd> Cprog_naasd / (<outfilad] . <hbleck)>
uoacur u-n-t- uun-t-: Termtinall/ | Mon-tal
1t o o Mest o-| [Mest o
A!t Alt] Ait] Alt o Alt]
’ 2 Niptr o NTptr ¢ NTptr ¢
<praog_nase> | IDENTIF IER L 3 1lint
MHeader / Terainal Man-tal |
1t o Mext o Nezt o
Alt Alt o Alt [-
) : NTstr o \
— _/
<esutfile>| »[IDENTIFIER
: Terminal
Neit o
Alt o

Synta:

Cstatement)>

g

LOOP-HDR
Sgntaa

{<statement))

\

{

<plock>] “BEQIN- <statement> Iy { Flint “END"
Hoader| Tl‘r-inl!/ Non—-tel 4 Teraina Non-Tal erminal
Next ot Nezxt MNezt o it Next o Ne:xt o
Alt Alt o Alt [Alt o Alt [Alt o
r NTptr o NTptr o
€ >1ink
Mon—tal

<statement> / . EMPTY
Non—-tal Terainal Teraina
Nezxt o MNext o it o
o Alt o Alt o Alt o
7 NTptr o
2 _/
b
<statementd plmENTIFIEN/ "m® <ezpressiond ‘lh%s.-ul
masc an
nal insl Non—tm] i ts s!ol
"ﬂ:!’./ Tl.l::t :/" l.l::t":- Nezt o nee .
Alt Alt Alt o Alt
“IF" /F <espression> /f
Terminal NMon—tml 'l‘-r-uul
Next o Nezt o— |
A!t .l

Header
Next
Alt

C{pspressiond>

Fig 3-§ — Combination of Progrems Node Tres and Byntax Tree

Chapter 3 CED - Its Internal Architecture 109

A program node {s allocated for all productions, all possible
productions and all terminal symbols present that are directly
derivable from the root node and are essential to form a complete

program. This is why <block> has been expanded to "BEGIN <statements>

LN END" L

The program node tree lays out the order of the productions (and
pointers to their definitions) that must be present fcr the program to
be valid. It is at this point that this parser differs from the more

usual table-driven parser.

The expansion of a placeholder causes GED to create new program nodes.
This is illustrated by the expansion of <statement> to an IF statement
in fig 3.9. This is distinct from the use of a data structure to guide
a recursive parser. Rather than remembering which productions have yet
to be completed on a stack, the parser stores this information is
stored explicitly imn the newly created layer in program node tree.
Therefore the nesting of one <statement> within another does not cause
.
any information to be saved 1implicitly. The expansion of the newly
created statement placeholder to another IF statement is shown in
fig 3.10. All information concerning the state of the parse is encoded

in the state of the program node tree.

Chapter 3 CED - 1ts Internal Architecture 110

<prograad> —e Koot Mode of Progres Node Tree

PL "HOLDER
Byrtaz o

"PROCRAM <prog_named> [<outfiled> i
TERMINAL PL "HOLDER OPTIONAL " TERMINAL
Byntaiz o Syntaz o Syntaz o Bynta: o

— i
<statemen’ - {<statementD) “END" \
PL‘MOLDER [LOOP-HDR [*—| TERMINAL
Syntar o Syntar o Syntas ©

"1F" Cespressiond
e 71 Lo 2 A
TERMINAL OPTI1ONAL
Syntax © Syntas o .

Fig 3.9 - The Expansion of statement to 1f statement

Chapter 3 GED - Its Internal Architecture 111

—a Root Node of Prograa Mode Tree

<prog_named (<outfiled> .y

PL *HOLDER oPTIONAL [TERMINAL [*
Syntez o Synta:r o Synta: o

a

{Cstateomontd)

LOOP - HDR
Synts:r o

"PECIN" CatatementD

TERMINAL PL ‘HOLDER
Syntaz o Bynta: o

PL "HOLDER

OPTIONAL
Synta: o

Syntar o

Fig 3.10 - The expansion of If statement to an If statement

Chapter 3 GED - Its Internal Architecture 112

3.13 The Program Node Field Definitions

The Program node PNODE TYPE field

This is a tag field indicaring which varfant oi a prozram node 1is
represented by this node. There are two major variants, '"terminal

symbol" and "placeholder".

For "terminal symbol" program nodes, the actual symbol represented is
stored in the program node itself. Sufficient information i3 saved in

the node to enable the symbol to be regenerated for display purposes.

A program node that has not been expanded is called a "placeholder”.
For “placeholders" program nodes, the definition of the node in terms

of the syntax is indicated by the "definition" field.

The two other variants, "loop node" and '"optional” program nodes
indicate the '"zero or more" ({A)}) and "zero or one" ([A]) constructs
respectively. This tag field is, strictly speaking, redundant. The
same information could always be obtained by following the "definition"
field pointer to the syntax every time the program node type is needed
- which 1is often. For clarity during programming, and run-time

efficiency this field has been included.

The Program node DEFINITION field

This field always points into the syntax definition. It 1indicates
which syntactic production must be satisfied to completely expand the

current node. For example, if a statement was necessary at a

Chapter 3 GED - Its Internal Architecture 113

particular point, this would be denoted by a program node with {ts
definition field pointing to the header for <statemen:> in the syntax
tree (figs 3.7, 3.8). As the definition field is always present, a
printable representation is always available for all program nodes.

For placeholders, the syntactic derivation is printed and for terminal

symbols, the actual symbol.

The Program node EXPANSION field

This link is a pointer to the expanded (more detailed) definition of
the syntax definition pointed at by the current node. This expansion
is in terms of other program nodes. An example would be a node that
pointed to the syntactic production for <statement>. If the expansion
field was not null, it would point to the possible expansions of
<statement> in terms of terminal symbols and placebolders. One
expansion could be an IF statement (fig 3.9). If however, the
expansion pointer 1is currently nil, then no more detail is available

about a particular derivation.

When a program 1is complete all the expansion fields, with two
exceptions, will be be non-nil. The exceptions are for terminal
symbols and for optional productions (loop nodes and optional nodes).
For terminal program nodes, the node contains the definition of the
symbol it represents and therefore no further expansion 1is possible.
In the case of optional productions ([A] or ({(A}), thke program is

complete without further expansion, and so the expansion field may be

nil.

Chapter 3 GED - Its Internal Architecture 114

The Program node CONTRACTION field

This is a pointer to the ancestor of this program node. It 1is the
cpposite of the '"expansion” 1link. Following the contractions links
will eventually lead to the root node. Th: root node 1is the only
program node that may have a null cont.action pointer. The root
program node will have its definition field pointing to the root node
of the syntax definition - always the first production. This field
enables the user to ascend to program tree and is used to encompass
sections of the program in preparation for a delete command. This will

be explained later.

The Program node NEXT field

This is the pointer to the nodes at the same logical level. The "next"
field provides the links necessary to indicate sequential productions
as in "PROGRAM <program-name> ; ". The last node in a list has a next

field of NlL.

The Program node PREVICUS tigld

“~

This is the opposite of the "next field". The first program node in a

list has a "previous" field of nil. As will be explained later, this

field is used to repair pointers when performing an UNDO operation.

Chapter 3 GED - Its Internal Architecture 115

Suspending a Parse

The existence of the program node tree permits the parse to be
suspended or resumed at any stage, as the current state of the parse is
stored explicitly in the program nodes themselves. This is illustrated
in figs 3.9 & 3.10, where the placeholder for <statement> has been
expanded before those for <program name> and [<output file>]. The need
for an expansion of <program name> is indicated by the presence of the
"placeholder" program node with a null expansion field. Note that the
syntactic definition is available through the pointer to <program name>
in the syntax. As the syntax for <program name> cannot derive EMPTY,
an expansion 1is required. However, this does not apply to the paren.
node of the <output file> as this node may derive EMPTY and therefore

need not Be expanded.

Chapter 3 GED - Its Internal Architecture 116

3.14 Automatic Inclusion of Necessary Terminal Symbols

The editor will automatically include all non-optional terminal
symbols. This 1is 1llustrated by the inclusion of the END to match
BEGIN, and a THEN when the IF of an if statement is entered. There are
however, many other symbcls that must be present, some examples from
Pascal being the colon in a type definition, and the dot at the end of

a program. These are also included.

The location of terminal symbols for automatic inclusion is aided by
the parallel nature of the program and syntax node trees. If a program
node has as 1its definition a syntax node which defines a terminal
symbol and has an "alternative field" of nil, then that symbol must be

present in the final program and is provided without user interveution.

This automatic inclusion is necessary not only at the top level but
must be applied recursively as any productions included may contain
other required productions and terminal symbols. A single 1level of
this is {llustrated in fig 3.7 with the production "<block>", which is
necessary. Therefore as the BEGIN and END that occur within <block>
have no alternatives, they must be included also. This automatic
inclusion is propagated as far as possible to include all non-optional

terminal symbols in all non-optional productions.

The automatic inclusion of symbols stops when an choice of directions
is indicated by the syntax (the ™alternative"” field 1is not nil).
Further development of the program node being built is abandoned, but

its definition field still points to the production with alternatives.

Chapter 3 GED - Its Internal Architecture 117

When the user indicates by entering a symbol which alternative is
wanted, that alternative together with all necessary gub-productions

and non-optional terminal symbols will be included.

An exception is made in the case of any placeholders that derive the
terminal symbols "identifier", "number" and "string" as the actual
symbol must be provided by the user. However, 1if the automatic
inclusion of non-optional expansions 1is carried to the limit, the
information provided by the upper level placeholders can be lost as
placeholders are alway reduced to "identifier", "number" or "string".
This is illustrated in fig 3.1!, where the placeholder <prog name> has

been expanded to "identifier".

This is syntactically correct, but from a user’s point of view, it is

~ Tp.oheet T
s node
<prog_name> - GOOD

Whereas

4&——————0oThe prompt fros

this node is
=jdentifier™ — BAD

DENT ntactic
<prol-ﬂ...>___‘_,,a”'Aﬁ X SFLES Definition
Terainal
“'".::", = Nezt

Alt Alt

much more informative to have the placeholder "<prog_name>" instead of

“"identifier". The "help"” information will still show that an

Chapter 3 GED = Its Internal Architecture 118

identifier is a correct choice. In order to inhibit the developmen: of
these undesirable expansions, the editor checks 1its syntax before
building the expansion of a subtree, to see if it eventually produces
Just one of "identifier", "number" or "string". I1f so, no further
expansion is done. This leaves the upper level placeholder unexpanded

and therefore its name is used as the prompt.

Chapter 3 GED - Its Internal Architecture 119

3.15 The Cursor - the Concept of & "Current Node"

At any stage, a single program node must be selected ar the target for
any alterations to the progrum tree by tire user. The "cursor" is a
pointer to that node and through 1its "definition"” field to the
syntactic definition of that node. This is the production that can be
parsed if the user enters a symbol. The cursor position will be
changed by one of two actions. The first is the entry of a correct
input symbol, in which case the cursor will move to the next possible

insertion point. The second is the entry of a cursor movement command-

3.16 Where does the Cursor Stop?

The cursor can, by various commands, be made to stop on all unexpanded
placehclders and opticial nodes. on all loop rnodes and con specific
user-entered symbols (otherwise they couidn‘t be changed). These are
its primary stopping points. During the creation of subtrees (by
expanding a placcholder, optional or loop node) the cursor will stop
sequentially on each unexpanded placeholder, optional or loop node in
the subtree. If the original node is a loop node, then once all the
nodes in the subtree have been expanded (or skipped) the cursor will
again stop on the loop node to permit another subtree. The cursor will
then move to the next insertion point in the program, regardless of
which subtree 1it is in. This ocrder is illustrated for a small program

Chapter 3 GED - Its Internal Architecture

—=2 Root Mode of Progras Node Tree

<programd>

PL "HOLDER
Syntar o

<hblochk>

TERMINAL
Sgntas o

{<outfile>

OPTTONAL
Syntax o

YERMINAL
Syntaz o

PL 'HOLDER

TERMINAL
Syntaz o

 Syntaz 9

OPT10NAL
Synta: o

<{statement)

PL “HOLDER
Byntazx o

Fig 3.12 - Stoppirg Nodes from from Beginning to End

120

Chapter 3 GED - Its Internal Architecture 121

In addition, for purposes of deleting specific subtrees, the cursor may
be made to ascend the tree (to encompass more and more of the program).
It will stop only on program nodes that correspond to complete
syntactic productions (i.e. the definition field points at a header
node), optional nodes and loop nodes. This mesns that only subtrees
corresponding to syntactic units may be clipped or deleted. The
stopping nodes while ascending the program are shown in fig 3.13. The
“"ascend" command (Up-arrow) only alters the cursor position. It is
non-destructive as distinct from the "delete" command which removes the

subtree below the current node.

Chapter 3 GED - Its Internal Architecture

<programd e« Roet Node of Pregrae Wede Tree
PL *HOLDER
Syntaz ©

prog_named> (<outfiled> <hlochk>
2L MOLDER [€—| oeviomaL [TERMINAL
Syntas o Syntaz o Syntaz o
o
*BEQIN" Cstatementd {Cstatement>) “END"
TERMINAL PL ‘HOLDER [LOOP-HDR J*| TERMINAL
Syntaz o Syntaz o Sgntas o Syntasz ¢

“IF= <ezpressiond
T

TERMINAL O TIONAL TERSINAL PL*

Syntaz © Syntaz o Syntar o Sygntaz o

{expressiond

OPTIONAL
Syntaz o

Fig 3.13 - Stopping Nodes while Ascending Program Tree

122

Chapter 3 GED - Its Internal Architecture 123

3.17 The Incluaion of User Symbols into the Program Tree

Any symbol that may start the syntactic productions directly derivable
from the definition field of the current program node is acceptable at
the cursor position. For example, in f£fig 3.7, the <statement>
placeholder has as alternatives either the assignment statement or the
IF atatement. Therefore the only acceptable symbols are either an
IDENTIFIER or an IF. The entry of any symbol by the user will cause
the editor to attempt to find a match among the start symbols of all
the alternative productions derivable from the current node. Ome of
three things can now happen, depending on whether or not the symbol 1is
in the current node’s start set and if not, whether the current node

can derive the empty production.

The Symbol is Not in the Start Set of the Current Node

If the input symbol is not the start symbols for the any of the
productions and no production can derive the empty symbol, then the
symbol is incorrect in the current context. The user is notified of an

€rror.

If the production may derive the empty symbol, then following program
nodes are checked to see if the input symbol is in their start sets.
If not, then the symbol is incorrect (ar the current position) and the
user is notified. If a program node with the symbol in its start set
is fcund, it is treated as though it were the curreat node, and the
symbol used to expand 1it. An example of this would be the entry of
"IF" with the cursor on the optional node " [<output_name>]" (fig 3.8).

"IF" is a teservéd word used in <statement> and is therefore not an

Chapter 3 GED - Its Internal Architacture 124

identifier and so not in the start set of <output_name>. Howvever,
<output_name> is optional and therefore following progranm nodes are
examined. The reserved word IF may start a <statement> and 80 the
placeholder for <statement> 1is expanded to "IF <expression> THEN
<statement>". The effect is as if the cursor was on the <statement>
node. If the expansion selected by the lookahead 1s as the user
intended, all is well. However if no%, the sudden change in the
position of the cursor and the incorporation of an unexpected comstruct
at an unexpected location can be confusing. Although the lookahead can
produce unexpected results, it 1is useful, as it avoids the need to
locate the specific node for a known input symbol accurately. Note
that this lookahead will only skip over optional nodes - the occurrence
of a required placeholder will cause the search to be abandoned. An
unexpected expansion caused by the lookahead can removed with the undo

command, which will also restore the cursor to its previous position.

If a Symbol is in the Start Set of the Current Node

If the current node points at "identifier", "number" or "string"” and
the input .symbol 1s one of these classes of symbols, then a terminal
symbol progran node is created and the actual symbol stored in it. The
expansion ffeld of the current node is changed to point to this new
program node. These are the only psuedo-terminals that may be expanded

to actual terminal symbols.

All other terminal symbols are used to guide the editor. The automatic
inclusion of terminal symbols and subtrees (i.e. productions) can only

proceed while no ambiguity exists regarding the possible next symbol.

Chapter 3 GED « Its Internmal Architecture 125

In other words, until an alternative is encountered in the syntax. An
input symbol provided by the user indicates which alternative is wanted
and enables the editor to continue its construction of the program
tree. There are two forms the slternatives can take, they can be

either terminal symbols or pointers to.other productions.

The first case, when the alternatives are terminal symbols, requires no
special treatment. The entry of one of the correct terainal syubols
will cause that <cymbol to be incorporated into the program . This is
done by creating a new program node (of type "terminal symbol"), saving
the new symbol in the node, and linking the new node into the progran

tree, as the expansion of the curreat node (fig 3.14).

The second case, that of non-terminal alternatives, is potentially much

initial placsholder for After the user has
the progras name entered “DEMO"-
a valid identifaier

<pr > IDENTIFIER fL. ntactic
i =='inition
Header Terminal
Neat O Nest
1t Alt
- T r £ Term t

wmore complex. The complexity arises because a non-terminal production
may point to other non-terminal productions to an arbitrary depth.

Care wust be taken in this case to avoid losing intermediate

Chepter) GED - Its Imteraal Arvchitscture

productions (see next sectiom).

Chapter 3 GED - Its Internal Architecture 127

Building Program Nodes on Ascent

The problems with non-terminal alternatives arise becrse 1t 1is no
longer sufficient to simply to identlfy the input symbol as being one
of the valid symbols and to change the expansion field of the current
node to point to a new program node incorporating this symbol. If this
approach was adopted 1t 1is possible to skip some productions
completely, as is illustrated by the omission of the intermediate
production "<middle>" in f£ig 3.15. This 1s avoided by building the
necessary program nodes at the lowest level (where input swymbol
matches) and then as the recursion unwinds, for any nodes whose "next”
field is not nil, building a level of program nodes at this
intermediate level. The lower level nodes are then linked in as the

expansion field of the first node (fig 3.16).

Because all essential non-terminals are automatically included in the

struccture. The entry of a single keyword can cause the generation of

multiple layers of program nodes.

This, scheme does not lose productions, but does have side effects in an
apparently unrelated section of the editor. As will be explained
presently, it is possible to associate formatting commands with any
syntax node. These commands are executed during the scan of the
program node tree (via the derivation pointer cf each node) in order to
pretty-print tha regenerated program. If only those syntax nodes with
non-null "next" fields are included while building the program during
ascent, any formatting commands associated with the omitted nodes will

be ignored. For this reason, when traciag the ascant of the syntax

Chapter 3 GED - Its Internal Architecture 128

tree, a program node is created for all syntax nodes.

<top> = {middle> 1 B
<mirddled> = {pottom> MISSED
<bottom> = F

Fig 13a - Cramssr vied to Illustrate Skipped Productions

- Root of Progrem Node Tree

Syntax

frroneous esipansion of <top>
/ efter entry of symbol "E-

/c linot of Syntaz Node Tree

/v <midéled> —ar

Header
Next o

Alt Jr

<bottom>

Header
Nezt o=
Alt

Chapter 3 GED - Its Internal Architecture 129

<top. r <{Mmiddle>]]
<mide)ed> -m {hottomd> RNISSED
<bottom> = F

Fig 168 - Crammer vsed to lllustrate Shipped Productions

& Root of Program Node Tree

<middle>

PL ‘HOLDER
Syntax

<middle>

<middle>

PL ‘HOLDER
Syntar

[<middle bottomd> "MISSED"
MNon-tal Terminal
Next o Nezxt

Alt Alt
Niptr

Chapter 3 GED - Its Internal Architecture 130

3J.18 The Structure Created by the Expansion of Loop Nodes

The expansion of a loop node oust be treated specially as, unlike all
other program nodes, it may be expanded repeatedly. "A" is a valid
expansion of (A), but the node be may still be considered as
urexpanded, as an indefinite number of "A"s are v:1id input symbols
derivable direc:ly from the placeholder for {A}). This 1is different
from most placeholders which are 1initially unexpanded and the once

expanded, are no longer considered when searching for unexpanded nodes.

The initial form of a loop program node is identical tu a placeholder
node = it has a null expansion field, and as usual, a pointer to its

syntactic definition (fig 3.17).

If a valid input symbol is entered, then an expansion subtree will be

Syntaz {statements> = { {statement> .)

Program Neode
{<statemaentd;)

LOOP -HEADER
Syntasz

L o Expansion is initislly nil

@
Terminal
Hext

Alt

To Header Node for <{statement>>

Fig 2.17 - Initia) form of Looo Progras Node
produced as with any placeholder program node. At that stage the

Chapter 3 GED - Its Internal Architecture 131

cursor could descend into the subtree to any possible wmodificstion
points (i.e. any placeholder, loop or optional nodes). However, the
loop node, while it has one expansion, is still a valid candidate for
further expansion. The entry of the same symbcl causes another
instantiation of the subtree. The original loop node has already beer
expanded and therefore its expansion field is in use. Therefore, there
is no attachment point for the newly created =nd any subsequent
subtrees. In this case, a new instance of the loop node is created as
the current node’s neighbour (i.e. "next™ of current node points at
the new loop node) (fig 3.18). All further instances of the loop node
suotree are handled in the same manner. This method has the desirable
property that, by delinking the newly created loop node, it and 1{its
complete subtree may be removed from the program tree as a single umit
= in the complementary manner to its creation. Note that the newly
created locop node has the same ancestor as the original lcop node - it

is at the same logical levei, as it should be.

Syntas {stetements> .= { CatatementY> i)

{Cstatementd;)

LOOP-HEADER
Syntax: o

i<statement)>:)

LOCP-HEADER
Byntaz o

Chapter 3 GED -~ Its Internal Architecture 132

3.19 Unparsing the Program - Deriving a Display from the Program Tree

The current state of the user’s program is stored in the program necde
tree and it 1is solely from this representation that a listing of the
program is generated. No form of text representation is saved with the
exzeption of the "spelling"” of the user-defined terminal symbols. To
regenerate the program, eacrh program node 1s visited in turn, with the
"expansicn" field of a node unparsed recursively before that node’s
"next" field = a depth-first scan. However, not all the program nodes
need have their names printed. Only the 1leaf nodes of the tree -
terminal symbol and unexpanded placeholder nodes - should be printed.
The print representatioa of a terminal program node 1is simply the
terminal symbol that it represents. Unexpanded placeholder program
nodes must also have a printable representation, but this can’t bé in
terms of terminal symbols -~ there aren“t any (yet). Instead, the name
of the requisite non-terminal syntactic production is used. This is

always available as every program node contains a pointer to its

syntactic definition.

Unexpanded optional and loop nodes are are only displayed when they lie
within the subtree of the current node. To always show all the

optional parts of a program is confusing - it clutters the screen with

extraneous detail.

The display of a loop node is treated in a special fashion, as it may
be expanded many times. If it has been expanded but does not lie under
the cursor then only its subtree is printed, as with any other expanded

placeholder or optiona2l node. For example, if {<statement>)} had been

Chapter 3 GED - Its Internal Architecture 133

expanded to "Z := 1", it would be displayed as "Z := 1", If however,
the loop node is within the subtree of the current node (i.e. Under
the cursor), then after unparsing its subtree, the name of that node is
printed again, to indicate that another instantiation 1is possible.
Therefore if the above loop node “{ <statement> }" was under the
cursor, it would be displayed not as “Z := 1" but as "Z :=1
{<statement>}". This clearly indicates the possibility of another

<gstatement>.

Note that there has been no mention of formatting the regenerated
program in any way. If formatting of the regenerated program is
required, the EBNF definition . the grammar 1is augmented with
pretty—printing instructions, as the syntax 1itself contains no

information about program layout.

Chapter 3 GED = Its Internal Architecture 134

3.20 Defining the Program Layout - & Table-Driven Pretty-Printer
In a syntax-directed editor that s intended to ©e language

independent, it is essential that the user be able to define the screen
layout of the resultant program. This information cannot, in general,
be found from the syntax specification, as there are many different
ways to format the same syntac*‘c prcduction. One possiole method
would be to derive the formatting information from the layout of the
syntax specification. In other words, mimic the layout of the syntax
when regenerating the program. However, this method has severe

limitations, some of which are:

1) If a production starts in certain column, does this mean that it

must always start in that colummn?

2) 1If a non-terminal name is longer than "n" characters, but the
following syntax item must start in colummn "n", how is this

handled?

3) Line skips in the syntax definition are ambiguous. Are they: to
make it (the syntax uefinition) easier to read, to try and get a

syntax item into its correct column, or to indicate a line-feed in

the displayed program?

Chapter 3 oED - Its Internal Arcaitecture 135

This is too restrictive for general use. To overcome these
limitations, the use of explicit formatting commands is necessary. A
study of current progrsmming languages provides a guids as to which
formatting commands should be provided. There are four major styles of

program layout:

i) Fixed column oriented - as in FORTRAN and COBOL.

2) Semi-column oriented as in Snobol - the first column has special
significance, usually for 1labels. The remainder of the line 1is
free format. This format is also common in assemblers.

3) Free format but line-oriented as in BASIC.

4) Free format with a nested structure as in PASCAL, ALGOl. and PL/1.

This format also clarifies the structure of Lisp programs.

The first two require absolute columm-oriented commands. A production
must‘be able to be placed in, or not placed in, a certain columm. 1In
Snobol and Fortran a statement label, if present, must start in column
one. The remaining parts of Snobol statements may occur in any of the

other col'm.s. Therefore a "™iAB column-no" command is required. The

availability of a NEW LJE command is assumed.

The free-format line-oriented iayout requires only that the adjacent
productions be printed adjacent to one another - 1o new commands are

required.

Chapter 3 GED - Its Internal Architecture 136

The fourth class, that of nested construct, free-format languages alsc
require tabbing but relative to the indentation level of a previous
construct, not a fixed column. These relative tabbing levels are
referred to as the 1indentation level. To cater for these languages,
INDENT and OUTDENT commands are provided. These increase and decrease

the current indentation level by a fixed number of columns.

To control the layout of the regenerated program, GED allows a list of
print formatting commands to be associated with any terminal symbel or
non-terminal in the syntax. The formatting information is optional and
if omicted, the program tree will be printed without any regard to the
number of characters that will fit on one screen line. Consequently,
print formatting cormands should as least define which productions

star:t on a new line.

Chapter 3 GED = Its Internal Architecture 137

3.21 GED Print Formatting Commands

The print formatting commands provided by GED are 1listed 1in table 1.
The actual commands are those starting with an "@" character. The
uppercase text is (> provide a English word to associate with each one.
The use of the English is of course possible, but as scveral commands
are usually necessary for each terminal symbol oc non-terminal, the

formatting definitions would become long and unwieldy.

@? PRINT-ME : Print the terminal symbol or non-terminal
associated with this node. This is necessary as a separate
command as there are occasions when the current node should
be displayed only after the exa2cution of other formatting
commands (e.g. skipping to a newvw 1line). Therefore the
obvious default action of always printing the current program

name first (or last) 1is not always satisfactory.

én NEWLINE : Skip to a new line. Whether or not the next

'3

character is printed in column one will depend on the current
indentation level. If it is not zero the appropriate number

of spaces will be skipped first.

@1 MARGIN : Set the indentation level to zero, to take effect

on the next newline.

Chapter 3 GED - Its Internal Architecture 138

e> INDENT : Increase the indencation level, to take effect on

the next line skip.

@< UNDENT : Decrease the indentation level, to take effect on
the next line skip. If the indentation level {8 already

zero, this command is ignored.

@t num TAB : Tab to column "num". This command takes effect

immediately, unlike "@1", "@<" and "@>". If the tab column

is not between 1 and 132 an error message given.

Table 1 = GED Print Formatting Commands

3.22 The Method of Associating Formatting Commands with the Syntax

In order to associate print formatting information with each production
it is necessary to augment the EBNF definition. One possibility was to
interleave print formatting commands with the EBNF. The augmented EBNF
definition‘necessary to lay out an IF statement is shown in fig 3.19.
In the following examples, layout is used only for presentation and is
ignored by GED. In human terms however, it clearly indicates the

intended layout and therefore tends to reduce errors when deriving the

formatting commands.

Chapter 3

<if stmt> ::

GED - Its Internal Architecture 139

= IF @? <expression> @? THEN @?@>@n

<statement> Q7 @< @a
[ELSE @? @> @n
<gtatement> @7@<@n

Fig 3.19 - Format Information for an IF Statement

This looks somewhat cryptic, but is read as follows:

For IF

Print {tself (i.e. "IF").

For <expression> - If the expression has been expanded then print 1its

For THEN

For <statement>

expansion, otherwise print thke nor-terminal name
(i.e. <expression>. The line so far would consist
of "IF <expression>" or (simply as an example)}

"IF velue>15 + x".

= Print itself, increase i.e indentation level (to

take eifect on the next line) and then skip to a new

line.

-~ If <statement> has been expanded then print its
expansion. If not, then print its name (i.e.

"<statement>"), decrease the indentation 1level and

rskip to a new line. This will leave the indentation

Chapter 3 GED - Its Internal Architecture 140

level the same as wvhen the IF was encountered.
Therefore as long as "[ELSE <statement>)" maintains
*he current indentation 1level, all following

coastructs will be correctly indented.

For ELSE - If the ELSE option had been requested, them "ELSE"
is printed at the current indentation level (i.e. 1in
alignment with the IF). Then the indentation level
is increased (to ind2nt the following statement) and

a new line started.

For <gtatement> = Print "<statement>" or its expansion, decrease the

indentation level and skip to a new line.

Nocice that any nested constructs, such as <statement>, must preserve
the current indentation level. 1In the above example, if the "THEN
<statement>" altered the indentation level, the ELSE and its following
<statement> would be out of alignment with the IF. The
print-formatting commards are executed in order to allow some actionms
to preceed others, such as skipping to a new line before (or after)

printing the derivation (or name) of the current node.

The method chosen to incorporate the formatting information is similar
to that wused in the ALOE syctem and consists of a print formatting
definiticon that follows, and has the same structure as, the EBNF

definition. This method (fig 3.20) is marginally more complex to use

Chapter 3 GED - Tts Internal Architecture 141

than interleaving the formatting information with the syntactic
definition (fig 3.19) as extra information must be included to indicate
wvhich formatting commands are to be associated with each syntactic
item. It does however have the advantage that 1t doesn‘t alter the
existing EBNF definition and doesn’t introdice extraneocus symbels that
aren’t part of the syntactic EBNF definition. If the formatting
commands follow the syntactic definition, they may then be added after
the grammar has been written without altering the existing definitioms.
Also the problem of distinguishing betweern symbols, syntactic

meta-symbols and formatting meta-symbols no longer arises.

The keyword PRINTFORMAT terminates the current EBNF syntax defirition
and signals the start of the format definition. In order to associate
the appropriate formatting commands with each terminal or non-terminal,
the flag character "&" is used. It indicates the start of formatting
inf~- . mation for the aext syntactic 1item (terminal or non-terminal).
The commands to display the IF statement wusing the trailing print
formatting definition are shown in f£fig 3.20. (The reason for the

digits after each ampersand will be explained shortly.)

Chapter 3 GED - Its Internal Architecture 142

<if statement> ::= IF <expression> THEN
<statement>
[ELSE
<statement>
]
printformat &1@7 &2@7 &3 @? @ én
&4 @7 @< @n
{&4 @? @ @n
&6 @7 @< @r

Fig 3.20 - The Use of a Trailing Print Format Definition

The formatting commands given in fig 3.20 are the same as those given
in the interleaved example with the addition of "& <number>" and square
brackets. The ampersand 1s necessary to associate the formatting
commands with the different syntax items, but the number and the square
brackets are redundant. Both are added to provide some consistency
checks while adding the print format information to the previously
constructed syntax tree. The number after the ampersand should always
be the same as an internal ccunter which starts 4t one and is
incremented whenever a new syntax item is started - on every "&", "[",
"{(" anmnd "("™. A discrepancy signals an error. The syntactic
meta-symbols of braces, parentheses, square brackets, and the
alternation bar must all be present in the format definition and in the
same relative position as in the syntax definition. An error here also

causes an appropriate message.

Chapter 3 GED - Its Internal Architecture 143

The Default Print Format

The default ac*ion is to print the name or derivation of each node, for
unexpanded and expanded nodes respectively. This is equivalent to "@?"
(i.e« PRINT-ME) being associated with every node. For a large
percentage of the symbols in a grammar, and as a result must definition
do not have any formatting commands. Those productions that require
specific formatting action must have a PRINTFORMAT definition, and must
define the layout of every part of the current production. It 1s mnot

possible to define half of a production and default the rest.

3.23 Generating the Screen Display

As mentioned previously, the current display of the user’s program 1is
found from a depth first scan of the program node tree. During this
scan, the "print format" field of the syntax node associated with each
program node 1is examined, to locate the formatting commands (if any)
that should be executed before and after displaying the program node.
The obscure phrase - displaying the program node - is necessary, as
th;re are seven different types of program node which require different

display formats (independent of the user defined formatting commands).

These are listed in cable 2.

Type of Program node Displays
Terminal program node prints as The actual terminal symbol.
Expanded placeholder prints as Trace of the expansion subtree

Unexpanded placeholder prints as The name of its non-terminal

Chapter 3 GED - Its Internal Architecture 144

Expanded optional node prints as Trace of the expansion subtree
Unexpanded optional node prints as [<name> or lst symbol]

e.gs [<filename>] or [ELSE]

Unexpanded loop node prints as { <name> or lst symbol)}

e.g. { <statement>)} or {(,)
Expanded loop node prints as Trace of expansion subtree
followed by

{ <name> or ist symbol)}

Table 2 - Print Formats of Different Program Nodes Types

The output from the display procedure could be displayed directly but
this would involve rewriting the complete screen after most user input.
Given that often the current and next screens are similar, some form of

optimisation is possible.

2.24 Optimising the Rewriting of the Screen Display

The output from the program tree display procedure 1is all directed
through a procedure that handles single character output. Any output
destined for the screen is buffered into a circular buffer of lines
until either: the region under the cursor occupies the entire screen;
the cursor region is centerad on the screen; or the program 1is
exhausted. The characters are buffered in order to record the current

image on the screen and so avoid rewriting any positions that have not

Chapter 3 CED - Its Internal Architecture 145

altered. The start and end of the highlighted cursor region are found
by recording the position of the buffer pointer before and after
unparsing the subtree of the current node. The display is normally in
half intensity with only the region (subtree) under the cursor
intensified. The current image on the screen (saved in an "old_image"
buffer) is then compared with that in the current buffer and only those
characters that differ, or differ in intensity are redrawn. This 1s
done in a straightforward manner using only the terminal commands of
cursor x/y addressing, erasing the remainder of a line and erasing the
screen. The abllizy of the terminal to display in two visually
different modes (e.g. full and half intemsity) is necessary to clearly
delimit the extent of the subtree under the cursor. For terminals that
support the operations of 1inserting and deleting both 1lines and
characters, the redisplay algorithm described by Gosling [1981] would
probably result in superior performance although the algorithm would
have to be adapted to handle the use of dual intensities. The dispiay
routines, while not set up for a variety of terminals, have all the
terminal control functions localised into a set of procedures (e.g-
"erase_screen", "position_cursor(x,y)", "bright", "subdued") which are
called when necessary. This clarifies the code and facilitates the
adaption of GED to terminals other than the Visual 200 by 1localising
the terminal dependencies. The ability to display half and full

intensity is desirable, although normal and inverted viden would

gsuffice.

Chapter 3 GEP - Its Internal Architecture 146

3.25 The Implementation cf User Commands

3.26 Primary Cursor Movement Commaads

The variants of the cursor movement commands are a&all handled by two
iree-walking procedures (to handle forward and backward searches), and
a boolean function to indicate when a valid stop node has been found.
The use of a single function tc test whether a program node satisfies
the search conditions enables the use of only two tree-walking
procedures (for forward and backward) to handle searches for many
difforent types of program nodes. The function, "is_stop_node", has
three boolean parameters: ™searching"”, "stop_on_optional_nodes" and
"stop_on_user_nodes" which are set up by whichever procedure calls the

function.

The parameter "searching"” indicates that the stop node must match the
current token and is the method of implementing the forward and reverse
symbol searches. The parameter "stop_on_optional_nodes” will cause the
procedure td flag all unexpanded optional, and ali loop nodes, whereas
"stop_on_user_nodes" will only stop on symbols entered by the user.
Unless a specific token is being searched for (i.e. searching = true),

any unexpanded placeholders are treated as stop nodes by default.

For example, the forward search for the next modification point, (The
"->" key) has both "stop_on_user_nodes" and "stop_on_optiomnal_nodes"
set %o true. Therefore the cursor will stop on any user entered nodes,

any optional nodes, and by.default, any unexpanded placeholders.

Chapter 3 GED - Its Internal Architecture 147

The Use of a Default Argument for the Symbol Search Functions

If either the "repetition" command 1is given, or an empty 1line 1is
entered as the reply to the prompt for the search symbol, the last
symbol searched for in either a forward or a reverse search 18 used.
In this case the actual symbol being searched for is displayed zfter
the query as a confirmaticn that the symbol is as the user remembered.
If the symbol cannot be found, the prompt message %s overlaid with "NOT

FOUND =--> ", leaving the symbol itself intact.

Therefore "Forward Search for : hello"

becomes “NOT FOUND hello"

>

Ll

This, like all status line messages, disappears when the next key 1is

pressed.

3.27 Reading and Writing the Program and Clipped Suistrees to Disk

To save the program on disk as a listing file is straightforward - the
routine that handles all single character output redirects it to a disk
file. The 1list file will be an exact duplicate of the non-optiomal
items in the user program as seen on the screern. All required
placeholders remain but any currently visible optional placzlheolders are

totally suppressed, as they are not reqguired in a complete program.

To save the current state of the prcgram node tree in a format suitable
for recreating the tree is more awkward. Ideally a memory image would
be saved. This would cnable the exact state of the aditor in its

current state to be preserved. However, as Pascal does not provide ary

Chapter 3 GED - Its Internal Archit:cture 148

way to save arbitrary data structures in a file, there can be no
standard way of saving the current state of a program in this fashion.
Therefore, the writing and subsequent reading of the data structure

must be handled explicitly.

It would be possible to write out a trace of the program node tree,
referring to each node by its id-number (which is unique) and to which
nodes each of its fielus pointed. This approach could b= made to work
but is very complex as it entails preserving the complete tree together
with all the program node tag fields and for terminal nodes, the
terminal symbol stored in the node. The user would have to ensure that
the syntax did not alter between one run and the next, as the program
nodes refer to the syntax tree. Either the names of the productions or
syntax node id-numbers would have to be preserved, depending on how the
program nodes referred to the syntax (by name or number). These

limitations are too severe to be acceptable.

The use of the regenerated program text is another method of saving the
program, or any Subtree. Unfortunately, the 1list format °s not
suitable as input for GED as it contains many redundant symbols - those
automatically included by the editor - and possible placeholders, which
may be in some contexts 1indistinguishable from the user program.
Consider a language that had a construct to starting with a left angle
bracket followed by an identifier - for example the array specification

in Snobol -~ would this represent a placeholder or two user-entered

symbols?

Chapter 3 GED - Its Internal A-chitacture 149

These problems are only a distraction - given that all placeholders
were originally 1inserted by the editor, why save them? Only those
symbols originally entered by the user need be saved, together with
sufficient information to ensure that they are used to expand the
correct subtrees. Any subtree (including the complete program) may be
saved by ‘'mriting a text file consisting of only those symbols entered
by the user, any necessary commands to skip over optional and loop
placeholders. This format 1s concise and easily read back into the
edigor ~ the input stream is take: from disk instead of from the
keyboard. An example the two files written by the "Save Program"

command for a small program are shown in figs 3.21 & 3.22. Fig 3.21 is

the program listing file and fig 3.22 is the corresponding symbol file.

Chapter 3 GED -~ Its Internal Architecture 150

PROGRAM disk_io_demo ;
CONST

line_length = 80 ;

backspace = “7° ;
TYPE

line_type = ARRAY [1 .. 80] OF char ;
VAR

line_buffer : line_type 3
PROCEDURE getline (VAR length : integer) ;
VAR

count : integar ;

ch : char ;

BEGIN
count = 0 ;
WRILE (NOT EOLN) AND (count < line_ length) DO
BEGIN
read (ch) :
IF ch = backspace THEN
BEGIN
IF count > 0 THEN
count := count - ! ;

END
ELSE
BEGIN
count := count + 1 3
line_buffer [count] := ch ;
END ;
END ;
END ;
BEGIN
END .

Fig.3.21 - A complete Pascal program as listed by GED

disk_io_demo -> -> CONST line_length 80 -> ; backspace ‘2% => => TYPE
linq_;ype ARRAY ! 80 => char -> => VAR line_buffer -> line_type -> =>
PROCEDURE gotline (VAR length => integer => => => <> VAR count =>
integer => ; ch => char => => => count => := 0 => WHILE (NOT EOLN ->
-> AND (count =-> < line_length => => -> BFGIN read -> ch => -> IF ch
-> = backspace => => BEGIN IF count -> > 0 => count -> := count => = 1
=> => => ELSE BEGIN count => := count => + 1 => line buffer [count <>
> => => = Ch =3 =3 =3 =3 => =3 =>

Fig 3.22 - The Ged code file Corresponding to Program of Fig 3.21

Chapter 3 GED - Its Internal Architecture 151

Note - Apart from replacing the nonprintable escape sequence for moving

the cursor with "=>" (for display purposes), these 1listings are as

output by GED.

The symbol file also has the advantage that it 1is readable for
diagnostic purposes. With this rmode of program I/0, the syntax checks
are implicit. The program or subtree, when read back into the editor
is subjected to all the usual checks on user input. If the file
contains any errors then the user is notified of the erroneous symbol
and the 1insertion of the file is abandoned. This 1~ consistent with
inserting only complete and correct syntactic constructs; however the
checking is impliciuly done while reading the program - there is no

header on the file indicating the type of production to follow.

3.28 The Clip/Delete and Insert Commands

iven that the program nuvde tree is strictly hierarchical and that all
program constructs are represented as subtrees, any construct can be
removed in its entirety by deleting the pointer to it from the node
above '~ that 1is, deleting the expansion pointer of its parent node.
This is perfectly satisfactory as the action of a "delete" command, but
some method of "clipping” a sub:iree and moving it elsewhere 1is also
desirable. If the "deleted" subtree is saved in some form, it can form

the basis of a composite "move" command (i.e. delate, move cursor and

insert).

Chapter 3 GED - Its Internal Architecture 152

To insert this dcleted subtree elsewhere, the expansion field of
another program node 1s altered to point the delinked subtree and the
contraction pointer of the subtree adjusted to point to its new parent.
Note that 1f the only nodes whose subtrees may be deleted are
restricted to those whose syntactic definitions are complete
productions and the expansions of optional and loop nodes, this will
restrict deletions and insertions to complete syntactic comstructs. To
retair the syntactic 1integrity of the program, the attach point must
have the same syntactic derivation as the clipped subtree. Therefore,
a statement that had been clipped out at the level of
"<stuctured_statement>" would mot be an immediately acceptable
expansion for '"<statement>" <~ their non-terminal derivations are
different. A search of the definition for <stztement> would be needed
to establish this equivalence. Often a section of code is not to be
moved but copied. The direct manipulation of the tree in this manner
will work for moving a singie subtree, but not if the subtree is to be
replicated. 1In that case, in order to prevent unexpected side effects
if the subtree is altered, or even worse, moved, any replication of the

subtree must cause a new copy to be created.

The method of saving the program to disk, by writing a compressed
symbol file, can be considered a special case of saving an arbitrary
subtree. It can therefore be us ' to save deleted subtrees also. 1In
order to insert these subtrees elsewhere, the input stream can be taken
from the file, as it done when reading a complete program. No problems
exist with replicating the subtree -~ it is as if the user had

re-entered the same symbols as were used to create the original

Chapter 3 GED - Its Internal Architecture 153

subtree. Also no problems exist with the syntactic equivalence - the
acceptability of each symbcl 1is checked 1individually, rather than

checking the syntactic equivalence of the complete structure.

When deleting a loop node from a list, the previous and next nodes are
altered to skip the deleted loop node. This has the visible effect of

closing up the elements of list, to eliminate the deleted subtree.

{fig 3-23)

As the deleted symbol sequences are not wanted after the completion of

Suntas “stetveents> = { <statement> ,)

{<atatement>.) (Cstatementd:.)

LOOP -HEADER
Byntas o

C3tatement:.)

LOOP-HEADER
Syntas o

{<statement>.)

< LOOP-HEADER
Syntarx o

{“statement>.)

LOOP-HEADER
Syntaz o

the editing session, these could be saved in memory rather than on
disk. However, as the same procedure will write both program and
subtrees, the speed of disk I/0 1is satisfactory, and there are
effectively no size constraints or memory management problems with the

disk based system, the use of a memory based mechanism for preserving

Chapter 3 GED = Its Internal Architecture 154

subtrees has not been attempted.

Ascending the Program tree to Locate Deletion Subnodes

In order to clip/delete sections of program larger cthan individual
symbols, it is essential to be able to sscend the program tree until
the required section of the program 18 under the cursor. Omn the
screen, this subtree will be highlighted to clearly delimit the extent
of cursor. When ascending the program tree, the cursor must not stop
at every program node. Many apparently redundant nodes are created by
the editor to keep in alignment with the syntactic data structure.
These are normally transparent ¢t the user, and should remain so.
Therefore, when using the "ascend" command the cursor will only stop on
program nodes that correspond to complete syntactic productions (i.e.
the definition field points to a "header" syntax node), on optional and

on loop nodes.

3.29 Marking, and Moving to, Specific Nodes in the Program Node Tree

To enable rapid cursor movement to specific user-defined nodes in the
tree, a 1list of markers is provided. The markers are referred tec by a
letter and simply assoclate the current position of the cursor with a

letter. The case distincti~na are ignored. If a command is given to

move to au uninitialised marker, an error message is given.

The markers are moat useful for skipping over large sections of the
program, enabling actions such as returning to the type or variable
declarations in one command. The "move to marker’” command swaps the

value of the current node and that associates with the letter. If the

Chapter 3 GED - its Internal Architecture 155

end of the declarations have been marked, the first move command will
move the cursor to the current end of the declaration list. A
declaration may then be added and the move command given again,
returning the cursor to its original position and updating the marker
pusition to the new end of the list. This simplifiec adding elements

to a list from arbitrary points in the program.

3.30 The Implementation of the "Undo" Command

The undo command is implemented by keeping a stack of the position of
the cursor before each command was executed, and which node, if any,
was altered during its execution. The number of commands that can be
undone is limited by the size of undo stack which is currently set at
thirty. Some commands, such as "delete" when removing elements from a
liet, alter not one but two nodes. However, this is not a problem as
each pregram node is doubly linked to its contraction, its expansion,
and each of 1its neighbours. Therefore, knowing the 1links in one

direction is sufficient to enable the others to be re-established.

Chapter 4

Language Implementation Consicerations

4 The Implementation or Syntax-Editors for New Languages using GED

The implementation of a syntax-directing editing environment usirg; GED
1s a sizable project, even if the languag> grammar is available in an
extended BNF format. This chapter will discuss the problems which were
encountered in building editors for Pascal, Snobol and Lisp. These
grammars cover a wide variety of programming styles and types of
languages, and are suffic‘ently different to indicate the strengths and

weaknesses in the design of the editor.

There are two distinct stages in the implementation of an editor for a
new language. The first is the preparation of the language syntax in
EBNF and the second is adding the print formatting information to the
syntax. Although both of these are well defined, in practice the
syntactic definition is usually modified {teratively to provide the
most useful placeholder prompts and a pleasing layout. The
modifications made to the grammars of several languages =ni the

addition of formatcing information will be discussed in turn.

Chapter 4 Language Implementation Considerations 157

4.1 Preparing the Extended BNF Grammar

The syntax of the programming language must be definsble in extended
BNF and must conform to the requirements of an LL1 grammar (i.e. in
each priduction there may be no left recursion and no replicated start
symbols). A grammar that 1is free of laft recursion but does not
confor to the second condition will be accepted by GED, but some
praductions will never be parsed. For example, 1in the production
“"<Z> ::= A | A B", the input symbol "A" will always match the first
alternative and therefore "A B" will never be parsed. The reason for
this is evident from the manner in which GED searches the syntax tree =
the first production that matches the input symbol is the ome parsed.
The removal of mnultiple start symbols from a grammar can be

accomplished by factoring the productions (e.g <Z> ::= A [B]).

The actual definitions of programming languages are rarely LLl as 1is
illustrated by the excerpt from the Pascal grammar in fig 4.1 (taken
from the "Pascal User Manual and Report” [Jemsen 1974]), and later in

the grammar of Snobol.

<simple statement> ::= <assignment statement> |
<procedure statement> |
<go to statement> I

<empty>

<assignment statement> ::= <variable> := <expression> |

‘<function identifier> := <expression>

Chapter 4 Language Implementaticn Considerations 158

<procedure statemeat> ::= <procedure identifler> I
<procedure identifier>

(<actual parameter> {,<actual parameter>})

Fig 4.1 - Standard Grammar for Pascai is Not LL1

The problems with the grammaz in £ig 4.1 are these: at the level of
<simple statement>, both <assignaent statement> and <procedure
statement> produce <identifier>. Within <assignment statement> and
<procedure statement> both alternatives also produce <identifier>.
Therefore 1f a parser was at the <simple statement> node and the input
symbol was an 1identifier, it has no way of determining which
alternative to parse. The input symbol would obviovsly be correct, but
as part of which production? The grammar must be rewritten to remove
the ambiguity. If the 1informaticn obtained from the variable and
procedure declarations was available (from a symbol table), no
ambiguity would exist. The symbol table would indicate whether the
identifier was a variable, a function name, or a procedure that had, or
did not have, parameters. GED is designed to work solely from the
syntactic definition and therefore has no symbol table. One of the

aims of this thesis was to investigate the viability of this approach.

Chapter & Language Implementation Considerations 159

4.2 A Case Study - The Implementation of a Snobol Zditor

The starting point fcr the implementation of a syntax editor for a new
language i® its syntax definition. The grammar used here is from “The
SNOBOL4 Programming Language" {Griswold 1971). The notation used 1is
similar to EBNF, but differs in the way of defining optional
productions and lists of productions. The grammar shown is fig 2 is a
transliteration intc EBNF, but 1s otherwise unaiivered. This is only
the preliminary step as the grammar is stil)l not in a form that 1s

suitable for input to GED.

Chapte: 4

Language Implementation Considerations 160

Unmodified Definition of Snobol in Extended ENF

<digit>
<letter>
<alphanumeric>
<identifier>
<blanks>
<integer>
<real>

<operator>

<unary>
<string>
<sliteral>
<dliteral>
<literal>

<element>

<operation>
<expression
<arg.list>
<function.call>
<reference>

<label>

<subject.field>

<pattern.field>

<object.field>

[T}
o
]

e
(1)
L]

112]13141516171819
AlBICIo!E|FIGIBILIJ|KILIMIN|OIPIQIRISITIU|VIWIX]Y]Z
<letter> | <digit>

<letter> { <alphanumeric> | « | _ }

one or more blank characters

<digit> { <digit> }

<integer> . [<integer>]

~l 2181 . !
+ l - I @ [l'l'l] &
<operator>

one or more EBCDIC characters

4 L4

<string>
" <string> "
<sliteral> | <dliteral> | iateger | real
{<unary>} (<identifer> |

<literal> |

<function.call> |

<reference>- |

(<expression>)

)

<element> <binary> (<element> | <expression>)
[<blanks>] [<element> | <operation>] {<blanks>]
<expression> { , <:xpression>)}
<identifier> "(" <arg.list> ")"
<identifier> "<" <arg.list> ">"
<alphanumeric> <string>
<blanks> <element>

<blanks> <expression>

<blanks> <expression>

Chapter 4

<equal>
<goto>

<goto.field>

<eol>
<eus>

<assign.stmt>

<match.stmt>

<repl.stmt>

<degen.stmt>
<end .stmt>

<statement>

<comment.line>

Language Jmplementation Considerations

o

161

<blanks> =

"(" cexpression> ")" | "<" <expression> '">"

<blanks> : [<blanks>]
{ goto |
S <goto> <blanks> [F <goto>] |

F <goto> <blanks> [S <goto>]
)

END-OF-LINE
[<blanks>] (; | <eol>)

[<label>] <subject.field> <equal>
[<object.field>] [<goto.field>] <eos>

[<label>]) <subject.field> <pattern.field>
I<goto.field>] <eos>

{<label>) <subject.field> <pattern.field> <equal>
[<object .£ield>] [<zoto.field>] <eos>

[<label>] [<subject .field>] [<goto.field>] <eos>
END [<blanks> [<label> | END]] <eos>

<assign.stmt> | <match.stmt> | <repl.stmt> |
<d=gen.stmt> | <end.stmt>

* <:tring> END-OF-LINE

Fig 4.2 - Official Syntax of Snobol4 in EBNF

Chapter 4 Language Implementation Considerations 162

The grammar must be modified in the following ways:

a)

b)

c)

d)

e)

£)

g)

The delimiters "$" and "$$" must be appended to each production

and the last production respectively.

The definition for identifiers must be converted to start and
continue sets. because otherwise the editor would assume that the

individual characters were separate tokens and would separate them

with spaces.

Strings must be defined in terms of their delimiters.

GED requires that comments be defined in terms of either their
start character or their delimiters. Snobol uses an asterisk in
column one as a comment flag, and therefore both the comment start

character and the comment column must be defined.

The grammar contains a specific symbol for an End-of-line

condition, a symbol unknown to EBNF.

The grammar has a specific representation for blanks = a 1lexical

item unknown to the editor.

Several productions in the grammar contain alternatives that begin
with the same symbol. The grammar must be factored to remcve the

multiple start symbols. An obvious example 1is <statement> in

Chapter 4 Language Implementatir: Comsiderations 163

h)

which all the options start with ([<laobel>], but a more subfle
example is the production for <element>. It may start with either
an <identifier>, a <function.call> or a <reference>, however both

<function.call> and <reference> also produce <identifler>.

Print formatting information must be added to nine of the total of

24 productions.

Chapter 4 Language Implementation Considerations 164

F4

P4 SNOBUL SYNTAX as input to the GED Syntax Editor
F4

STRING_DELIMITER ™ *

START COMMENT ol

COMMENT_COLUMN 1

DELIMITERS:blank:end_of_1line

IDENTIFIER START_SET &abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVW
XYZ

IDENTIFIER _BODY abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXY20!12
3456789.

b4
<program> t:= { [<statement>] [<comment>])} $
<comment> ::= COMMENT ;
printformat &1@?2@n $
<identifier> t:= IDENTIFIER $
<integer> ::= NUMBER $
<operator> s Al T8l a]l ®*1F)%]~=]
el "l l1a&t |
<unary> ::= <operator> $
<binary> ::= [<operator> | **]
printformat { &§1@s@?@s | &2@=@?@s] $
<literal> t:= STRING | <integer> [. <integer>)
<element> :3= {<unary>)} (<identifier> [<parameter.list>] |
<literal>
“(<expression> °)

) $
<expression> ti= [<element> { <binary> <eiement>)}] $
<arg.list> ::= <expression> { , <expression>)} $
<varameter.list>::= "(<arg.list> ") | ‘< <arg.list> ‘> $
<label> ::= IDENTIFIER $
<subject.field> ::= <elemant>

printformat &1@s@? $
<pattern.field> ::= <expression>

printformat &1@s@? $
<object.field> ::= <expression>

printformat §1@s3? $

o
o
[}
]

<equal>

Chapicr 4 Language Implement=ti<n Considerations 165

printformat §1@s@? $
<gozo> :1= ‘(<expression> ‘) | “< <expression> ‘> $
<goto.fiesld> :3= : (<goto> |

S <goto> [F <goto>] |
F <goto> [S <goto>]
)
Z Tab to coluan 50 before printing the colon

printformat §13s@t5087 (&2@7 |
&3087 &4@70s [&5@7 &6@7) |
&7@7 &8@7@s [&90@? &10€7]
) $

X The enc.of.line inserted by the pretty.printer forms the end
% of statement if ";" missing. ie instead of <eos>::= ; | end_of_line

<eos> se= [3] S
<end .stmt> ::= END [[<label> | END]]
printformat &1@s@? [[&2@s@? | &3@s@?)) $
<statement> ::= [<label>] <stmt,goto,or.end> <eos>
printformat {&1@7] &£2@? &3@%@n $
<stmt,goto,or.end>::= <stmt_body> | <goto.field> | <end.stmt> $
<stmt_body> t:= <subject.field>
([= [<object.field>]) |
<pattern.field> [= [<object.field>]]
)
[<goto.field>] $
$$

Fig 4.3 = The Grammar of Snobol ready for input to GED

4.3 Areas of Alteration in the Snobol Grammar

With the exception of the productions delimiters ("$" & "$$"), the
addition of formatting information, and the removal of multiple start
symbols, all the modificaticns to the grammar result f£from Saobol’s
incorporation of complete lexical information into ~-he syntax.

Examples of these occur in the definition of <identifier>, <string> and

Chapter 4 Language Implementation Considerations 166

<blank>, and format-sensitive construccs. These constructs include the
use of the end-of-line character, and tle requirement that certain

constructs, such as comments and labels, must start 1in the first

column.

4.4 Are Identifiers, Numbers, Strings and Comments Productions?

Syntactically these items can te defined as any other production in the
EBNF syntax, and could therefore be handled in the same fashion. In
traditional compilers, for reasons of efficiency, this is not dome.
Instead, a lexical analyser (a scanner) is used to collect the input
stream into the basic symbols of the language before any parsing is
done. GED uses a scanner, not for efficiency, but for the pragmatic
reasons discussed below. In the following discussion, the identifier
ie used as an example, although the comments apply equally to numbers,

strings, and comments.

The editor should provide for convenient entry >f identifiers as single
entities in the usual fashion. That is, no prompting should be needed
while enter}ag an identifier. If however, the producticn <identifier>
was implemented using the same technique as the remainder of the
syntactic definition (i.e. as <letter> ({<alphanumeric>|.|_}), the
optional part “"{<alphanumeric>|.|_}" would reappear every time the
cursor moved past the identifier. This 1is unnatural in wuse as
identifiers, numbers and strings are usually treated as composite
(multi-character) items only at the time of their initial emntry. They
are not subject tc incremental modification (i.e. the addition of new

characters) at some later time. This can be contrasted with

Chapter 4 Language Implementation Considerations 167

"<statement> {<statement>)}", in which the later addition of extra
statements is possible. Notice that the boundary between the lexical
and syntactic constructs must be determined by the writer of the
grammar - it is not evident from the syntax itself.

4.5 Hiding Optional Placeholders

The above example highlights one point that must be considered by the
writer of a new input grammar for GED - it is esseatial to minimize the
number and appearance of optional placeholders. If this is not done,
many unexpected placeholders appear, which is disconcerting to the user
and makes movement around the program clumsy. OCptional placeholders
represent optional productions 1inm the syntax and so they cannot be

removed - this would alter the language. They can only be hidden.

There are two methods of hiding optional placehelders. The first is to
use the fact that GED displays only the first option in a 1list of
alternatives as a prompt. For example, every statement in Pascal may
be prefixed by a label. Therefore, the definition of <statement> could
be ‘written as " [<label>] <statement>". However, this would cause the
"[<label>]" prompt to appear before every <statement> prompt, when in
practice it is rarely used. By rewriting the grammar as "<statement> |
<label> <statement>", this 1s avoided. The first optiom, "<statement>"
is used as the prompt, but the syntax help display still shows the the

complete production (including the optionsl 1label), and the start

symbols include that for <label>.

Chapter 4 Language Implementation Consideraticune 168

Alternatively, productions related to program format (such as the
"<blanks>" preduction in Snobol) may be omitted and their function
taken over by the print formatter. The pretty-printer 1is used to

insert & space when one is required.

It may be argued that this is modifying the syntax, but EBNF cannot
represent blanks anyway =~ their description 1is 1in English. More
importantly, if the productions regarding optional blanks were not
removed from the syntax, the placeholder [<blanks>) would reappear
sufficiently often to become annoying. Also, the required placeholder
<blanks> would have to be represented as "<blank> {<blank>}". This
would be another source of irritation as the cursor stopred on

{<blank>} each time each time it was encountered.

It is not possible to state categorically that optional placeholders
should, or should not, be displayed. A subjective decision on the part
of the language implementor 1is necessary in order to determine their
relevance, and only those judged relevant should be displayed.

-

Definition of Snobol Identifiers

The syntax of 1identifiers 1is defined in GED by enumerating the
characters that may start and continue an identifier. For example, in
the definition of fig 4.2, an identifier must start with a letter and
may have any number of foliouing letters, digits, dots and underscores.
The definition of these sets in a form compatible with GED 1is

illustrated in fig 4.4.

Chapter 4 Language Implementation Considerstions 169

IDENTIFIER_START SET &abcdefg..ijklmnopqisiuvwxyz

ABCDEFGHIJKLMNOPQF.STUVWXYZ

IDENTIFIER_BODY abcdefghijklzmopqratuvwxyz

ABCDEFGHEIJKLMNOPQRSTUVWXYZ0123456789._

Fig 4.4 - The Lexical Specification of Snobol Identifiers

Note - An ampersand has been added to the identifier start set in order

to ellow it to be used at the start of reserved words.

Jefining the Strings iz Smobol

‘he original grammar defines strings as arhit:zary sequences of
characters surrounded by either single or double quotes, whereas GED

~2fines strings in terms of their delimiting characters. Therefore the

definition which was:

<literal> ::= <gliteral> | <dliteral>
<sliteral> ti= ° <string> *

<dliteral> te= " <string> "

<string> ::= Any sequence of characters
becomes :

STLING_DELIMITER " °

<literal> ::= STRING

Chapter 4 Language Implementation Considerations 170

4.5 Rewoving the Production for <BLANKS> from the Suobol Syntax

The Snobol syntax uses productions to specify strings of blanks. These
productions are used either as separators (one or more blanks) or for
formatting purposes (zero or more). GED uses a pretty-prinmter to
format regenerated programs and therefore the use of blanks for
formatting is redundant. Therefore, the production "[<blanks>]" can be
omitted. However, single blanks are still needed as separators. These
could be provided by retaining the production <blanks> which is defined
as "one or more blanks" but this would require the definition of a new
lexical item BLANK. This has not been done. The production "<blanks>"
is also omitted and the print-formatter is used to insert a space where

one is required. This is illustrated below.

<blanks> t:= one or more blank characters
<subject .field> ::= <blanks> <element>
BECOMES
<subject .field> :i= <element>
printformat &1 @s @7 Print space (@s) before

printing <element> (@?)

4.7 Rewriting the Productions to Remove Common Start Symbols

Productions must often be factored to remove common start symbols. The
production <statement> in Snobol is a example of this. Every type of
statement may start with a label and have a <goto> field. Also most
variants have a subject field. The syntax of <statement> (with

<blanks> removed) is reproduced below.

Chapter 4

Language Implemsutation Considerations 171

<assign.stmt> ti= [<label>] <subject.field> <equal>
[<object.field>) [<goto.field>] <eos>

<mpatch.stmt> «t= [<label>] <subject.field> <pattern.field>
[<goto.field>] <eos>

<repl.stmt> ti= [<label>] <subject.field> <pattern.field> <equal>
[<object.field>]) [<goto.field>] <eos>

<degen.stmt> ::= [<label>] [<subject.field>][<goto.field>]<eos>

<end .stmt> :2= END [<blanks> [<label> | END]] <eos>

<statement> ii= <assign.stmt> | <match.stmt> | <repl.stmt> |

<degen.stmt> | <end.stmt>

This format is too complex to se< cliearly the form of each variant, and

8o each non-terminal name is abbreviated here to enable each production

to fit on one line.

-~

names represent non-terminals

With the exception of the equal sign, all the

and so the angle brackets may also be

omitted.
assgn.smt s:= [1] s = [o] [gto] <eos>
match.stmt ::= [1] s p [gto] <eos>
replace.stmt ::= [1] s p = [o] [gto] <eos>
degen.stmt s:= [1] [s] [gto] <eos>
statement t:= assgn.smt | match.smt | replace.smt | degen.smt

Chapter 4 Language Implumentation Considerations 172

All the above productions start with an‘optlonal label, and most have a
subject. The <end.statement> is omitted here as 1its start symbols
differ from those in the above statements, and so it doesn’t enter into
the factorisation. It simplifies the factorisation if the degenerate
statement is replaced by two productions, one with a subject and one
without. By reordering the resultant 1list, the following list of

productions is obtained.

assgn.smt s:= [1] s = [o] [gto] <eos>
degenl.stmt se= 1] s [gto] <eos>
match.sctmt t:= [1] s p [gto] <eos>
replace.stmt ::= [1] s = [o] [gto] <eos>
degen2.stmt 1= [1]) [gto] <eos>
statement ::= assgn.smt | match.smt | replace.smt | degen.smt

These factor neatly into a production that starts with an optional
label, and is €followed by two alternatives, one with a subject part and

one without.

-~

<stmt> 3= (1] [s [p) [= [o]l]l] [gto] <eos>

Substituting the production names:

<gtmt> ::= [<label>] [<subject> [<pattern>] [=[<object>]]] [goto] <eos>

Chapter 4 Language Implementation Considerations 173

This will always show the possibility of a pattern replacement when in
practise, direct assignment is more common. The productions can be
altered to have the optional pattern as a alternative. The productions

below, ccpied from the syntax used for GED, show the alterations.
<end .stmt> ::= END [[<label> | END]]
<statement> :t= [clabel>]} <stmt,goto,or.end> <eos>
<stmt,goto,or.end>::= <stmt_body> | <goto.field> | <end.stmt>
<stmt_body> t:= <subject.field>
([= [<object.field>]] |
<pattern.field> [= [<object.field>]]
)

[<goto.field>]

Some productions have been relabelled as non-terminals 80 the

non-terminal names will be used as the placeholder prompts.

4.8 Defining the Print Formatting Commands

Minimal print formatting is needed to lay ocut a regenerated Snobol
program - each statement or comment is printed on a separate line. The
only other formatting commands are those needed to insert z blank where
a <blanks> production has been removed. As GED, by default, prints all
producticcs side-by-side, most productions do not need fornattiﬁg

commands .

Chapter 4 Language Implementa’ion Considerations 174

The print formatting commands associated with <statement> and <comment>
simply print either the prompt or the expansion of their placeholder.
and then skip to a new line. Syntactically, the <goto.field> could be
printed immediately after the earlier parts of the statement but it {is
much easier to read a Snobol program if the goto part is aligned on the
right-hand side of the page. This is dome by preceding the printing of
the <goto.field> with a "“tab to colummn 50" (€t50) ccmmand. This will
cause all the <goto.field> expansions to be aligned at column 50. If
however the cursor 1s already beyond columm 50, no gap would be
inserted before printing the ":" that starts the <goto> part. This
would violate the syntax which specifies that a leading blank is

necessary. Therefore the print formatting commands associated with the

colon are:

@s @50 @?

"meanir.g print a space", "tab to column 50", and print symbols (":")

Although the complete list of changes necessary to implement the Snobol
editor seems long, the total time taken was only dﬁout two man days. A

-

custom built system would, of course, take much longer to implement.

4.9 The Implementation of Pascal and Lisp Editors

The major problems associatad with implementing a Pascal editor were
the same as those that occurred during the implementation of Snobol.
The grammar had to be factored to remove replicated start symbols and
extra productions added to cause the non-terminal names (such as <list

of files>) to be used as a prompt. For example, the production

Chapter & Language Implementation Considerations 175

<heading> ::= PROGRAM <program name> ["(<name> {, <name>} ")] ;
would cause the left parenthesis to be used as the prompt for the
optional list of files. The prompt "[(]" is much lees informative than

the "[<list_of_ files>]"™ prompt given if the above construct is written

<heading> ::= PROGRAM <program name> [<list_of_files>] ;

<list_of_files> ::= "(<name> {, <name>} ")

These alteratioms become easier to predict with practice. Although
rewriting the grammer to remove left recursion and replicated start
aymbols could be mechanised, the complete process of the grammar
preparation cannot. This 1is because many of the decisions, such as
factoring out the part of productions (e.g- <list_of_files> above)
into a separate prodvction, are based on reasons of style and the
relative occurrence of certain constructs. Another example would be
the definition of the labelled statemen:t 1in Pascal as
"<statement>|<label><statement>" instead of the more obvious

"[<label>] <statement>", in order to hide the rarely used labei.

As GED will not exj;and a placeholder that leads to alternatives,
differing intermediate level productions can be provided to act as
prompts. This is most clearly illustrated by the syntax of a minimal
subrat of LISP, in which virtually everything produces an S—-expression.

This is illustrated in fig 4.5.

Chapter 4 Language Implementation Considerations 176
<Lisp Program> ::= <s-expression> { <s-expression>)
printformat &1@?@nen { &2@2@neén } $
<s-expression> ::= < atom > | <list> $
<list> = "((<lisp-function> |
<s-expression> { <s-expression> } ")
printformat &1@? (&2@? |
&3@? { §4@?) &5@?
) $
<lisp-function> ::= COND <pred_& result> ") I
CAR <s-expression> b |
CDR <s-expression>) |
DEFUN <function-name> <parameter list>
<function-body> ") I
CONS <new-head> <old-list> ")
printformat &1@?@>@n &2@7@< &3@n@? |
&4@7 &5@7 &6 @? |
&7@? &8@? &9 @ |
&10@? &11@7 &12@7@>@n
&13@2@< &14€n@? |
&15@? &16@? &17@? &18 @ $
<pred_& result> t:= "(<predicate> <result> ")
{"(<predicate> <result> ")}
printformat §1@? &2@? &§3@? &4G2@n
{&5@7 &6@? &7@? &8@7%@n) $
<predicate > ::= <g-expression> $
<result> ::= <g-expression> $
<function-name> ::= identifier $
<function-body> ::= <list> $
<parameter list> ::= "(<parameter> {<parameter>} ") $
<parameter> ::= identifier $
<new-head> ::= <s-expression> $
<old-1list> ::= <s-expression> $
<atcm> ::= jdentifier | number $ $S

Fig 4.5 - Syntax of LISP Subset

Chapter 4 Language Implementation Consideratinas 177

For example, the COND construct is displayed as
(COND
(<predicate> <result>)
)
which is much more informative than:

(CoOXD
(<s-exp> <s-exp>)
)

The same applies to the parameter lists and body of function
definitions. The distinction 1s important as it removes a source of
ambiguity. The editor has the knowledge of which part of the syntax is

currently being expanded snd this information should be constantly
available to the user.

The layout defined by the print formatting commands in the Lisp grammar
above is illustrated by the following function (wvhich 1is to 1look wup
atom X in a list Y) as output by GED.

(DEFUN lookup (x y)
{COND
((eq y nil)nil)
((eq x (CAR y))(CAR (CDR y)))
(t (lookup x (CDR (CDR y))))

When defining Lisp one must decide whether a 1list of s—-expressions
should be printed on the same line, or be separated and indented. For
example, a parameter list such as "(a b c)" should be printed on one
line but the COND construct, with its multiplicity of predicates and
results is much easier to read if the predicate and result are indented
from the COND and displayed one (pair) per line, as illustrated above.
Syntactically, there 1is no difference, as COND is an atom. However,
unless a distinction is made the resulting format is unacceptable. To
handle the two different cases the grammar {s factored and the leading

left parenthesis of made part of the production <list>. Until it 1is

Chapter 4 Language Implementation Considerations 178

known whether the contents of the 1list are going to be a COND or a
DEFUN it is impossible to determine if a line-feed is necessary before
printing the rvight parenthesis. Therefore the right parenthesis is

made part of each alternative.

4.10 Problems Encounte-ed in the Addition of Formatting commands

Constructs that require indentation for part of a production but dc¢ not
have a terminating symbol, such as the list of constant definitions in
a constant declaration, can present problems. For example, if the

<const_declaration> production was definei as

<const_declaration> ::= CONST <const_defn> ;
{ <const_defn> ;)}

printformat §1@2@>0@n &2@7 §3@7¢@n
{ &4@? &5@?@n)

then the output would be formatted as
CONST
cl = 1;
c2 = 2;:
VAR ... Ko Indentation level is incorrect
The CONST is printed, the indentation level increased and then a new
line is started. The constant definitions are printed on separate
lines, all indanted one level, which is correct. However there 1is no
place to put &an "undent™ omne level (8<) command to reset the
indentation level after ti. last definition in the list. This can be
handled in several ways. If the comstruct always starts in a specific

column (in this case, column one), then the tab rather than the indent

command may be used to align the comnstant definitions. For example:

Chapter 4 Language Implementaticn Considerations 179

<const_declaration> ::= CONST <const_defn> ;
{ <const_defn> ;)

printformat &1@? &28t7@? §3@?%@n
{&4Qc7@? £5@7@n}

will format the output as
CORST ¢l = 1;
c2 = 2:
VAR... <=== Indentation is Correct

This technique is only applicable 1if the construct is at a known

coluzn. More generally, the production can be rewritten asa:

<constant_definitions> ::= CONST <const_list>
printformat §1@?2@>@n &2@7@<@n

<const_list> ::= <constant_definitiomn> ; { <constant_definition>;)
printformat §1@? &2@7 { &3€n@? &4@7)
This will format the output in the same manner as the previocus example.
Fortunately, it is rarely necessary to rewrite the grammar simply to
preserve the indentation level, as this problem only occurs when the
indented construct 1is an explicit 1list. Another example of a
productioﬁ.with an 1indented production (without a balancing symbol on
which to place an "undent" command) is the "while" statement. However,
as the indented production (<statement>) is not a explicit 1list, no

problems occur. The production and its formatting commands are:

<while statement> ::= WHILE <expression> DO
<statement>
printformat &1@7 &2@? &3@2@>Cn
§4@7@<En

Chapter 4 Language Implementation Considerations 180

This will format a while statement correctly, with <statement> being

indented with respect to the WHILE and it will also reset the

indentation level.

Lisp is intermediate in formatting complexity between Pascal, whose
wvealth of indented constructs renders it by far the most complex, and
Snobol, which is the simplest. Apart from inserting blanks and tabbing
to the right-hand side of the page for the destination parts of a
statement, all Snobol productions use the default formatting

(side-by-side).

4.11 Summary

The implementation of a syntax-directed editor for a new language
appears to be a major undertaking, but is much easier than is apparent
from the written description of the problems. The Tremoval of
replicated start symbols is the major area in which the syntax must be
structurally altered. Extracting segments of a grammar and turning
them inte new productions to provide descriptive prompts may be
performed iteratively once the grammar is LLl1. The largest part of the
syntax preparation is in defining the print formatting informationm
associated with each syntactic item. However, this is not because of
any deficiency in GED - it 1s a necessary prerequesite whenever a

pretty-printer is being defined for a new language.

While the amount of wcrk mnecessary to implement a syntax-directed
editer using GED is still significant, the time taken to bring up an

editor for a new language is much less than that required to implement

Chapter & Language Implemsntation Comeiderstioms 181

such a system from the begimaiag. For flexibility, iam both addiag new
language coastructs and alterisg the presentationm of the program, the
use of a data=directed rather tham & purpose written editor has mmeh to
recommend 1it.

Chapter 5

Conclusions

5.1 A Short Description of the System

Thie thesis has traced the development of GED, a full-screen
syntax-directed editor that is language-independent. The editor
initially reads in as data a language syntax augmented with lexical acd
pretty-printing information, and 18 subsequently capable of

syntax-oriented editing of programs in that language.

To aid the end-user, GED provides a skeletal program and prompts for
insertions and alterations. It continuously displays the current
production and all possible correct input symbols. As incorrect
symbols are not accepted, no incorrect comstructs can be incorporated

ir the program being built.

5.2 The Realisation of Design Goals

During the editor’s development, three main goals were pursued. These
were:

5

1. It should be genmeral. That is, it should be able to be set up to

edit any (or nearly any) programming language.

2. It should be easy to set the editor up for a new language. It was

considered that an editor which accepted a BNF language syntax as

Chapter 5 Conclusions 183

its only controlling input would be maximally easy to set up, and
that any information which needed to be specified in addition to

the BNF detracted from this.

3. It should be easy for even the naive user to edit programs with

GED. Colloquially, it should be user-friendly.

The following three sections of this chapter investigate the exteant to

which these goals have been achieved.

5.3 Generality of the Editorx

GED is capable of handling any language which can be defined in BNF
(1.e. it deals with context-free languages.) Many programming
languages are defined in BNF (or a variant thereof) but are, im fact,
context-sensitive, because they require identifiers to be declared.
GED handles this case by flagging the first case of each user-defined
symbol. This permits the use of the editor to alter declarations (or
spellings) as necessary to avoid "syntactic" error-messages from the
compiler. In this way, languages with declarations are included in the
set which can be handled, and a handy spelling-checker is available

when editing any type of language.

It is considered that the goal of generality has been achieved.

Chapter 5 Conclusions 184

5.4 Ease of Setting=-up

In initialising the editor, the major task is the input of the language
syntax. As this is represented in BNF, the most widely used syntax
specification language, it is straightforward in most cases. However,
there are two types of information which the editor needs, but which

are not present in BNF.

The first is the lexical grammar of the user-defined symbols in the
language. It 1is possible (cf. Snobol) to specify such a grammar in
BNF, but this is rarely done. It has therefore been necessary to
incorporate a facility for the analysis of lexical syntax into GED, and
to preface each EBNF grammar with such a syntax. Although simple, the

lexical analyser is general and will suffice for a wide variety of

languages.

The second typ2 of information missing from a BNF syntax specification
concerns program layout. It is widely acknowledged that layout can be
used as a powerful aid to program comprehensibility, but a syntax
specification contains no information about layout. A simple notation
for specifying indentation and other prettyprinting features, which
needs only to be applied to some productions (e.g. those whose

components can be expected to extend over several lines), and which can

be incorporated into the BNF input syntax, has been devised.

Although the amount of work necessary to set up CED for a particular
language is certainly non-trivial (amounting to an average of slightly
less than one man-week for the languages used as examples), it is

enormously less than would be required for the implementation of a

Chapter 5 Conclusions 185

custom-designed syntax-oriented editor. Changes in language syntax can
be incorporated with ease into GED, whereas a custom-designed editor

would, in most cases, need major rewriting.

5.5 Ease of Use

No major public trials of the editor have been attempted, because of
the difficulty of fitting 1in with the ;cademir year, as GED vas
completed towards the end of one academic year and this thesis was due
at about the beginning of the next. However, informal trials have
indicated that it is an easy system to use, more particularly for new

users who do not have preconceived ideas of how an editor "ought” to

act on their program.

An area of difficulty encountered by some users concerns ascending and
descending the program tree. Language definitions are not designed to
facilitate this process, and often the .umber of commands necessary to
reach a particular 1location in the tree 1is excessive. Howevar,
judicious massaging of the syntax by the implementor can alleviate this

problem to some extent.

A similar problem relates to the mnemonic value of the names used for
the various productions within the language. They are often obscure,

but, again, the implementor can easily substitute more meaningful

names.

The system is easy to edit with. It removes one of the bughears of new
users - the program with more error messages than statements. In an

environment with many languages, it guarantees consistency of operation

Chapter 5 Conclusions 186

of syntax-oriented editors.

5.6 PFuture Developments
This work has suggested two significant areas for future research. The
first is a different technique for implementing the editor, while the

second is a major increase in its functional capabilities.

As we have seen, the ordinary recursive descent parser’s method of
storing the state of a parse implicitly i1in 1its stack of return
addresses is impractical for a svatax-directed editor. However, it
should be possible to 1implement one as a mnulti-process recursive
descent parser which forks a new process fcr each production being
parsed. As each parse would have its own sta;k, no information would
be lost when a process was suspended. Only the parser corresponding to
the production currently under the cursor would receive input symbols,

and movement of the cursor would thus automatically suspend one parse

and resume another.

As the syntax-oriented editor incorporates a significant portion of a
compiler, it seems natural to speculate about eliminating the gap
between the two; 1i.e. developing a syntax-oriented editor which can
execute the programs which it 1is used to build. This would require
each syntactic production to be followed by a specification of 1its
associated semantics in some interpretable language (e.g. Lisp), and
would also require the 1inclusion of generalised symbol-table
manipulations. It is difficult to see how this could all be

accompli.hed without loss of generality, but it is an intriguing

Chapter 5 Conclusions 187

problem nevertheless.

Sa? riﬂg Thought
A syntax-directed editor is to programming what a word-processo: is to

English. Both are designed to simplify the task of document
preparation - the differences occur only in the entities being

manipulated.

Acknowledgements

I would like to acknowledge the assistance given by my supervisor, Mr
Paul Lyons, in the preparation of this thesis. His pertinent

questions and critical comments contributed much to this thesis and its

writeup.

My wife Anne contributed in a different way - through her support and

understanding during many afternoons and evenings spent alone.

[Achugbue 81)

[Ada 80]

[Allen 81]

[Archer 79]

[Archer 81]

[Atkinson 81]

[Barach 81]

[Brown 81]

[Chamberlin 81]

-~

[Cherry 81]

[Cohen 70]

[Demers 81ij]

Bibliograph

Achugbue J O. "On the Line Breaking Problem in Text
Formatting", Sigplan Notices, Vol 16, No 6, June
1981, pll7.

United States Departrent of Defence. "Reference
Manual for the Ada programming Language", 80 Proposed
Standard Document.

Allen T, Nix R, Perlis A. YPEN: A Hierachical
Document Editor", Sigplan Notices, Vol 16, No 6, June
1981, p74.

Archer J (Jnr), Shore A. "A Program Development
System Execution Supervisor", Repert # TR 79-397.
Department of Computer Science, Cornell Unive

Archer J (Jnr), Conway R. "COPE: A Cooperative
Programming Environment"”, Report # TR 81-459.
Department of Computer Science, Cornell University

Atkinson L V, North S D. '"COPAS - Conversational
Pascal System", Software Practice and Experience, Vol
11, 1981, pp 819-829.

Barach D R, Taenzer D H, Wells R E. "The Design of
the PEN Video Editor Display Module", Sigplan
Notices, Vol 16, No 6, June 1981, pl30.

Brown P J. ‘"Dynamic Program Building", Software
Practice and Experience, Vol 11, 1981, pp 831-843.

Chamberlin D D, King J C, Slutz I R, Tedd S J P, Wade
B W. "JANUS, An Interactive System for Document
Composition™, Sigplan Notices, Vol 16, No 6, Jume
1981. p82.

Cherry L. "Computer Aids for Writers", Sigplan
Notices, Vol 16, No 6, June 1981, pé6l.

Cohen D J, Gotlieb C C. "A List Structure Form of
Grammars for Syntactic Analysis", Computing Surveys,
Vol 2, No i, March 1970.

Demers A, Reps T, Teitelbaum T. "Incremental
evaluation for attribute grammars with application to
syntax-directed editors", 8th POPL Conference.‘_plos.

[Deutsch 81]

(Elliot 82]

(Englund 81]

[Feiler 81)

[Fischer 81]

[Fraser 81}

[Goldfarb 81]

{Good 81]

[Gosling 81]

[Gutz 81]

[Habermann 82]

[Hammer 81]

[Hansen 71]

Bibliography 190

Deutsch M S. "“Software Project Verification and
Validation (Tutorial)", IEEE Computer Magazine, April
1981, pS4.

Elliot B. "The Design of a Simple Screen Editor",
Software Practice and Experience, Vol 12, 1982, pp
375-384.

Englund R M. "The Coming Decade of Innovation - A
Workshop Report", IEEE Computer Magazine, April 1981,
p??.

Feiler P H, Medina-Mora R. "An Incremental
Programming Enviroment”, IEEE SW Engineering 1981,
p&[lc

Fischer C, Johnson G, Mauney J. "An Introduction to
Release 1 of Editor Allan Poe", CS Tech Report #451,
University of Wisconsin, Madison.

Fraser C W. "Syntax Directed Editing of General Data

Structures", Sigplan Notices, Vol 16, No 6, June
1981, pl7.

Goldfarb C F. "A Generalised Approach To Document
Markup", Sigplan Notices, Vol 16, No 6, June 1981,
p68.

Good M. "Etude and the Folklore of User Interface
Design", Sigplan Notices, Vol 16, No 6, June 1981,
p34.

Gosling J. "A Redisplay Algorithm", Sigplan Notices,
Vol 16, No 6, June 1981, pl23.

Gutz S, Wasserman A I, Spier M J. ‘'"Professional
Development Systems for the Professional Programmer”,
IEEE Computer Magazine, April 1981, p4S.

Habermann A N. "System Development Environments" in
"Tools & Notions for Program Construction" - An
Advanced Course, edited by D. Neel. Cambridge
University Press (1982). p247.

Hammer M, Ilson R, Anderson T, Gilbert E, Good M et
al. "An Implementation of ETUDE, An Integrated and
Interactive Docum:nt Production System". Sigplan
Notices, Vol 16, No6, June 1981. pl37.

Hansen W J. "Creation of Hierachic Text With a
Computer Display", PhD Thesis - Stanford, Report #
ANL-7818. , Argonne National Laboratory, Argonne,
Illinois.

[Ivie 77])

[Jensen 74)

[Kernighan 81)

[Kernighan 80]

[Lakos 82]

[Lesk 75]

[Lyons 83]

[Medina-Mora 81]

[Mikelsons 81]

-~

[Morris 81]

[Osterweil 811

[Pagan 81]

(Reid 81)

Bibliography 191

Tvie E L. "The Programmer’s Workbench - A Machine
for Software Development', Coummunications of ACM,
October 1977, Vol 20, No 10, p746.

Jensen, K and Wirth, N. "Pascal User Manual and
Report"”, Springer Verlag, 1974

Kernighan B W. "PIC -- A Language for Typesetting
Graphics", Sigplan Notices, Vol 16, No 6, June 1981,
p92 .

Kernighan, B.W. and Ritchie, D.M. Prentice Hall
Software Series: '"The C Programming Language"
Prentice-Hall !978.

Lakos C A, McDermott T S. "Interfacing with the User
of a Syntax Directed Editor", Report #R 82-3
Department of 1Information Science, University of
Tasmania, Hobart.

Lesk, M.E. "LEX - a 1lexicai analyser generator",
CSTR 39, Bell Laboratories, Murray Hill, New Jersey.

"TWIJI - A Written Version of the Tramline Syntax
Notation", Personal communication from P.J.Lyons,
Computer Science Department, Massey University,
Palmerston North, New Zealand.

Medina-Mora R, Notkin D S. "AILCE Users’ and
Implementors® Guide", Report #CMU-CS~-81-145.
Department of Computer Science, Carnegie-Mellon
University.

Mikelsons M. "Prettyprinting in an Interactive
Environment”, Sigplan Notices, Vol 16, No 6, June
1981, plo8.

Morris J M, Schwartz M D. "The Design of a
Language-Directed Editor for Block Structured
Languages", Sigplan Notices, Vol 16, No 6, June 1981,
p28.

Osterweil L. "Software Environment Research:
Directiocns for the Next Five Years", IEEE Computer
Magazine, April 1981, p35.

Pagan, F G. "Formal Specification of Progamming
Languages: A Panoramic Primer" Prentice-Hall Inc
(1981) Englewood Cliffs, New Jersey, pp 21-22

Reid B K, Hanson D. "An Annotated Bibliography of
Backgrouad Material on Text Manipulation", Sigplan
Notices, Vol 16, No 6, June 1981, pl57.

(Reps 81]

[Snook 78]

[Stallman 81]

[Stromfors 81)

[Tee 83]

[Teitelbaum 80]

[Teitelbaum 80]

[Teitelbaum 81]

[Teitelbaum 81i]

[Teitelbaum 81]

[Turba 81]

{Van Wyk 81]

[Vickers 80]

[Vickers 82]

Bibliography 192

Reps T. "Optimal-time Incremental semantic analysis
for syntax directed editors.”, Cornell University, TR
81-453.

Snook T, Bass C, Roberts J, Nahapetian A, Fay M.
"Report on the Programming Language PLZ/SYS",
Springer-Verlag, New York, 1978.

Stallman R M. "EMACS - The Extensible Customisable
Self-Documenting Display Editor"™, Sigplan Notices,
Vol 16, No 6, June 1981, pl47.

Stromfors O, Jonesjo L. "The Implementatiomn and
Experiences of a Structure Oriented Editor", Sigplan
Notices, Vol 16, No 6, June 1981, p22.

Personal communication from G.J.Tee, Computer Science
Dept, University of Auckland, New Zealaud.

Teitelbaum T. "The Cornell Program Synthesizer: A
Tutorial Introduction’, Report # TR 79-381 (revised
1980). Department of Computer Science, Co

Teitelbaum T, Reps T. "The Cornell Program
Synthesizer: A Syntax-Directed Programming
Envirooment"™, Report # TR 80-421. Department of
Computer Science. Cornell University.

Teitelbaum T, Reps T, Horwitz S. “"The Why and
Wherefore of the Cornell Program Synthesiser.”,
Sigplan Notices, Vol 16, No 6, June 1981, p8.

Teitelbaum W, Masinter L. "The Interlisp Programming
Environment™ IEEE Computer Magazine, April 1981, p25.

Teitelbaum T, Reps T. "The Cornell Program
Synthesiser: A Syntax Divected Programming
Environment", Communications of the ACM, September
1981, Vol 24. No 9. p563.

Turba T N. "Checking for Spelling and Typographical
Errors in Computer-Based Text", Sigplan Notices, Vol
16, No 6, June 1981, p5l.

Van Wyk C J. "A Typesetting Languase”, Sigplan
Notices, Vol 16, No 6, June 1981, p99.

Vickers, S. "zX81 Basic Programming", Sinclair
Research Limited, Cambridge England (1980).

Vickers, S-. "ZX Spectrum Basic Programming”,
Sinclair Research Limited, Cambridge England (1982).

[Walker 81]

[Wasserman)

[Waters 82])

[Wirth 77]

[Wood 81]

Bibliography 193

Walker J H. "The Document Editor: A Support
Environment for Preparing Technical Documents”,
Sigplan Notices, Vol 16, No 6, June 1981, p&4.

Wasserman A I. "Automated Development Environments"
University of California, Sam Francisco

Waters R C. "The Programmers Apprentice: Knowledge
Based Program Editing", IEEE Transactions on Software
Engineering, Vol SE- 8, No 1, January 1982.

Wirth N. "What Can we do about the Unnecessary
Diversity of Notation for Syntactic definitiomns?”,
CACM November 1977, Vol 20, no 11 pp 822-823.

Wood S R "Z == The 952 Program Editor", Sigplan
Notices, Vol 16, No 6, June 1981, pl.

