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Abstract
Imbalanced data distribution is a common problem in classification situations, that is the 
number of samples in different categories varies greatly, thus increasing the classification 
difficulty. Although many methods have been used for the imbalanced data classification, 
there are still problems with low classification accuracy in minority class and adding addi-
tional parameter settings. In order to increase minority classification accuracy in imbal-
anced problem, this paper proposes a parameter-free weighting learning mechanism based 
on extreme learning machine and sample loss values to balance the number of samples in 
each training step. The proposed method mainly includes two aspects: the sample weight 
learning process based on the sample losses; the sample selection process and weight 
update process according to the constraint function and iterations. Experimental results on 
twelve datasets from the KEEL repository show that the proposed method could achieve 
more balanced and accurate results than other compared methods in this work.

Keywords  Parameter-free · Extreme learning machine · Class imbalance problem · 
G-mean

1  Introduction

Class imbalance learning (CIL) has attached a lot of attention in classification problems, 
which generally refers to the number of samples in some classes is significantly more 
than others [1]. In the CIL, the class that has more samples is called the majority class 
while the other is called minority class. This poses a difficulty for traditional classification 
methods for balanced data, as they will be biased towards the majority group and hence 
show very poor classification accuracy on the minority classes [2]. However, compared to 
the instances of the majority class, the instances of the minority classes are usually more 
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important and more valuable in real applications such as disease diagnosis, fraud detection 
in banking operations, network intrusion detection etc. [3, 4]. For example, in the iden-
tification of fraudulent transactions, there are a small number of fraudulent transactions, 
that is, the vast majority of transactions are normal, and only a few of them are fraudulent 
transactions, but it is this very few fraudulent transactions that require more attention and 
identification [5].

In the past few decades, many techniques have been proposed to alleviate the impact 
of skewed distribution in each category on the classification result [6]. They are mainly 
divided into two aspects: from the data point of view, the main method is to modify the 
collection of samples to balance distributions or remove difficult samples, the commonly 
used techniques are divided into undersampling and oversampling and corresponding 
improved methods, where refers to some majority class samples are removed (undersam-
pling) or some minority class samples are added (oversampling) [7]. “Undersampling” of 
the majority class samples refers to remove some samples in the majority classes so that 
the number of positive and negative examples is close. The most common one is the ran-
dom undersampling method, that is, some samples are randomly removed from the major-
ity class to form a sample set, but some important information about the majority class will 
be missing [8]. The oversampling method is to add some samples to minority classes so 
that the number of positive and negative examples is close, where the most common one 
is the random oversampling method, that is, randomly select some samples and then copy 
the selected samples to generate a new sample set. But the disadvantages of oversampling 
are obvious, for random oversampling, the complexity of model training is increased due to 
replicate a small number of samples to expand the data set. On the other hand, it is easy to 
cause overfitting of the model, which makes the classifier’s the generalization performance 
low [9]. In addition, there are many techniques for solving imbalanced data learning at the 
algorithm level, that are mainly to directly modify existing learning algorithms to alleviate 
the bias toward majority samples and adapt them to mining data with skewed distribu-
tions, where the most commonly used strategy is based on cost-sensitive learning [9–13]. 
By assigning a higher cost to the more important minority class, cost-sensitive learning can 
minimize the global cost associated with mistakes. But the disadvantage of cost-sensitivity 
is that it’s difficult to determine the actual values of cost matrix. In addition, the problem 
of unbalanced data sets can be considered as a one-class learning or an abnormality detec-
tion problem [14–17]. Although these methods can reduce the impact of the data skewed 
distribution on the classification results, they all have some problems to some extent, so the 
imbalanced data classification remains a challenging research topic.

In recent years, there is a popular feedforward neural network called Extreme Learn-
ing Machine (ELM), different from the traditional artificial neural networks, which based 
on gradient descent methods that all parameters of the network need to be updated and 
adjusted when iterating, the merit of ELM is the one-step training process and it can 
achieve much faster learning speed [18]. Otherwise, the input weights and the number of 
hidden nodes in ELM are randomly assigned, while the output weights can be analytically 
determined by solving a linear system [19, 20].

Many improved ELMs have been put forward in the past few years aiming at the imbal-
anced classification problems. To deal with imbalanced data class distribution, many algo-
rithms based on weighted theory are proposed, where each class of samples is given a 
weight based on the number of samples in that category [21]. Such as, a weighted extreme 
learning machine scheme based on neutrosophic set theory was present, which can remove 
the effect of noise and outliers in the classification stage and yield better classification 
results [22]. A dissimilarity-based method paying more attention on the discriminative 



1929Parameter-Free Extreme Learning Machine for Imbalanced…

1 3

ability of features in the context of class is proposed to deal with the classification of 
imbalanced data, it can remove the useless and redundant features by feature selection from 
the given data set [23]. Lu et al. proposed an improved weighted extreme learning machine 
(IW-ELM), in which a voting based weighting scheme is introduced when assigning appro-
priate weights adaptively [24]. Li et  al. embedded weighted ELM into a modified Ada-
Boost framework to face the skewed distribution of data, where the distribution weights are 
updated separately for training samples from different classes to avoid destroying the distri-
bution weights asymmetry [25]. A technique aimed at handling imbalance data by assign-
ing more weight to minority class and less weight to majority class was proposed in paper, 
that is, the weight of the sample is closely related to the number of samples. The limitation 
of this technique lies in that it generates weight according to the class distribution of train-
ing data, which leads to the lack of finding optimal weight at which good generalization 
performance could be achieved [26].

In this paper, a unified framework is proposed to tackle binary and multiple classifi-
cation tasks, which is effective to both balanced and imbalanced data distribution. The 
proposed method is mainly divided into three steps: (1) initialize the model and sample 
weights, and select the samples in each class participating in the next training according to 
the number of samples in the smallest class; (2) assign a weight for each sample accord-
ing to the loss value of and select the top-ranked samples in each category to participate in 
the training; (3) update the weights of the samples participating in the training and select 
samples from majority class, then train the sample weights until the target value converges. 
Experimental results on twelve datasets from the KEEL repository show that the proposed 
method could achieve more balanced results than other compared methods under the 
G-mean metric. The main contributions of this paper are as follows:

1.	 The proposed method not only balances the number of samples in the training process, 
but also assigns different weights to each sample according to the loss value of the 
samples during the training process, and the weight will be updated according to the 
update of the classifier.

2.	 Different from the traditional robust classification algorithm [27, 28], this method does 
not introduce other parameters, but establishes a parameter-free weight determination 
mechanism, so there is no need to manually determine other parameters.

The remainder of this paper is organized as follows. Section 2 outlined the related work 
of ELM and its improvements. Section 3 presented the proposed method in this work. Sec-
tion 4 described the evaluation experiments of the proposed method and its analysis. Sec-
tion 5 presented our conclusion and put forward the promising directions related to this 
topic.

2 � Preliminaries

2.1 � Notations

In this paper, we use boldface uppercase letters, boldface lowercase letters, and normal 
italic letters, respectively, to denote matrices, vectors, and scalars. We donate � as the fea-
ture matrix of samples, its element in the ith row and jth column is denoted as xi,j . Besides, 
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we denote the Frobenius norm of a matrix � as ���F
�� =

�∑
i,j �

2
i,j

 . We further denote the 
diagonal transpose operator, the trace operator, and the inverse of a matrix X as ��, tr(X) 
and �−1, respectively. Besides, we donate the feature data as � =

{
�i
}N

i=1
∈ RN×n repre-

senting n-dimensional samples, and, we further denote the label matrix as 
� =

{
�i
}N

i=1
∈ RN×m that the label matrix has N m-class label.

2.2 � Original ELM

In the past decades, the issues of the imbalanced classification have been discussed and 
reviewed by ELM and its improvements.This section provides a brief review of ELM and 
its improvements related to imbalanced data classification. In addition, the evaluation met-
ric is important for the classification problems, the description of the evaluation metrics 
can be found in this section as well.

For a single-layer feedforward neural network (SLFN), for � =
[
�1, �2,… , �N

]T
∈ RN×n 

consists N arbitrary distinct samples ( �i, �i ), where �i =
[
xi1, xi2,… , xin

]T
∈ Rn , 

�i =
[
ti1, ti2,… , tim

]T
∈ Rm . The output model of a SLFN with L hidden layer nodes can be 

expressed as follows:

where � =

⎡
⎢⎢⎢⎢⎢⎣

�
�
�1
�

.

.

.

�
�
�N

�

⎤⎥⎥⎥⎥⎥⎦

 , �(�) =
[
h1(�), h2(�),… , hL(�)

]
 , � = [�1,… , �L]

T , � = [�1,… , �N]
T.

H is called the hidden layer output matrix of the neural network, the ith column of H 
represents the ith hidden node output with respect to inputs �1, �2,… , �N , while the ith row 
of H denotes the ith sample output for L hidden neurons. Considering that regularization 
term is often added to reduce the influence of ill-conditioned matrix and the problem of 
over-fitting in ELM, to improve the generalization performance, ELM is generally formu-
lated as the following optimization problem when dealing with classification problems:

where C is a user-specified parameter and provides a compromise between the minimiza-
tion of the training errors and the maximization of the marginal distance, �i is the error of 
fitting. The following formula is equivalent to the above formula:

By using the Lagrange multiplier and Karush–Kuhn–Tucker (KKT) theorem[], the dual 
optimization problem can be obtained. Thus, hidden layer’s output weight vector β can be 
derived from Eq. (2-3) regarding left pseudo-inverse or right pseudo-inverse.

(2-1)�� = �

(2-2)
min
�

1

2
‖�‖2 + 1

2
C

N�
i=1

‖�‖2
i

s.t., h
�
�i
�
� = tT

i
− �T

i
, i = 1, 2,… ,N

(2-3)min
�

1

2
‖�‖2 + 1

2
C‖�� − �‖2
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2.3 � Weighted ELM

Considering the effect of complex data distribution, weighted ELM gives the differ-
ent weight to samples from the majority and minority classes. Weighted ELM defined 
an N × N diagonal matrix W associated with every training sample �i , to minimize the 
weighted cumulative error of samples, the objective function mathematically written as:

According to the KKT theorem, the solution of � can be obtained as follows:

In the weighted ELM, the author adopted two different weighting schemes:

The weighted ELM provided a solution for imbalanced data classification by adding 
the weight matrix to emphasize the impact of minority class while weaken the impact of 
majority class. Samples from the minority class is assigned with larger weight while the 
majority class is assigned with smaller weight value. In fact, this method of assigning a 
weight to each sample is also a kind of cost sensitive learning, where the weight setting 
mechanism can usually be artificially chosen based on the data distribution information.

2.4 � CCR‑ELM

An class-specific cost regulation extreme learning machine (CCR-ELM) was presented 
by [29], it simultaneously considers the effect of the number of the class samples and 
the dispersion degree of the data, in order to keep the separation boundary to be located 

(2-4)� =
(
�

c
+�T�

)
�T�(L ≤ N)

(2-5)� = �T(
�

c
+�T�)−1�(L > N)

(2-6)
min
�

1

2
‖�‖2 + 1

2
C�

N�
i=1

‖�‖2
i

s.t. h
�
��
�
� = tT

i
− �T

i
, i = 1, 2,… ,N

(2-7)� =
(
�

C
+����

)−1

����(L ≤ N)

(2-8)� = ��
(
�

C
+����

)−1

��(L > N)

Wminority =
1

#(t+
i
)
and Wmajority =

1

#(t−
i
)

Wminority =
0.618

#(t+
i
)
and Wmajority =

1

#(t−
i
)
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in the ideal position to rebalance the proportion of the classes, CCR-ELM set different 
parameters to every class, the objective function can be formulated as:

where Cd represents the regulation cost for misclassification in the performance index spe-
cific for dth class and ld denotes the number of samples of dth class,

∑ld
i=1�ti=d �

2
i
 is the sum 

error of dth class. The hidden layer’s output weight vector β can be derived from Eq. (2-9) 
regarding left pseudo-inverse or right pseudo-inverse.

By introducing class-specific regulation cost for misclassification of each class in the 
performance index, CCR-ELM considers not only the effect of the number of class sam-
ples, but also the effects of the dispersion degree of the data, thus, it can obtain more sat-
isfactory performance, especially when the kernel based CCR-ELM is used, but the dis-
advantages of CCR-ELM is obvious, that is, the parameters for CCR-ELM is difficult to 
determining.

2.5 � CS‑ELM

A method based on CCR-ELM was proposed to tackle the binary class imbalance problem 
called CS-ELM [30]. It is different from the CCR-ELM, the CS-ELM does not require 
assigning any weight to training samples and has the lower computational complexity. The 
principle of CS-ELM can be abbreviated as follows:

here h
(
�+
i

)
 and h

(
�−
i

)
 represents the hidden layer output of positive class and negative class 

training instances respectively, the t+
i
 and t−

i
 denotes the target of positive class and the 

negative class training samples respectively, while N+ and N− denotes the number of posi-
tive samples and negative samples. Similar to the above methods,� can also be obtained by 
KKT conditions and differentiation of Eq. (2-12).

(2-9)
min
�

1

2
‖�‖2 + 1

2

D�
d=1

Cd

ld�
i=1�ti=d

ξ2
i

s.t.h
�
�i
�
� = tT

i
− ξT

i
, i = 1, 2,… ,N

(2-10)� =

(
D∑
d=1

�

Cd
+���

)−1

���(L ≤ N)

(2-11)� = ��

(
D∑
d=1

�

Cd
+���

)−1

�(L > N)

(2-12)

min
β

1

2
‖�‖2 + 1

2

N− × C

N+ + N−

��ξ+��2 + 1

2

N+ × C

N+ + N−

��ξ−��2

s.t. h
�
�+
i

�
� = t+

i
− ξ+

i
, i = 1, 2,… ,N+

h
�
�−
i

�
� = t−

i
− ξ−

i
, i = 1, 2,… ,N−
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The class-specific regularization parameters used for classes can be determined using the 
class proportion and the value of regularization parameter. The computational complexity of 
the proposed algorithm is significantly lower than WELM and CCR-ELM, but it can only be 
used for binary classification.

3 � The Proposed Method

In this section, we will introduce a new variant of ELM, designed to handle the imbalanced 
data classification effectively. Nevertheless, we expect to enhance the outliers insensitiveness 
of our method, and even hope the weight of outliers to be 0, so a self-weighted imbalanced 
classification method is proposed. This work does not require to set the weight value of the 
sample in advance, but determines which samples can participate in training through the sam-
ple loss value. In short, the performance of a classifier is mainly affected by the imbalance 
degree of the sample distributions. Therefore, by adding the constraint of training samples 
numbers in each class, the impact of the sample number imbalance on the classification result 
can be weakened. In addition, by assigning weights to samples based on the loss of the sample 
to the classifier, the accuracy of the classifier can be improved. By continuously updating the 
sample weights, the purpose of selecting samples and updating the classifier can be achieved.

3.1 � Problem Formulation

Considering the different sample sizes of different classes, assuming that the same 
number of samples are selected in each class during each training, let the training set 
� =

(
�1,… , �N

)
∈ RN is partitioned into b sets according to their target labels, nj refers to 

the number of samples in the jth set, there is 
∑b

j=1
nj = N . We select the same number of sam-

ples in each category to balance the number of samples. Unlike other weight-based methods, 
we do not give samples a fixed weight during the training process. Instead, we want the classi-
fier to continuously update the weights of the samples participating in the training process, so 
we adopt a self-weighting mechanism based on samples loss value, and to avoid adding extra 
artificial parameters. The mathematical formulation of the proposed method can be written as:

where I(j) = {i:ti = j} is the index of the sample set with label j, which is V reduced to the 
indices of I(j) . Concretely, the following formula can be got:

(2-13)

� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
�T

+
�T

−

�⎛⎜⎜⎝
�

C+ +
�

C− +

⎡
⎢⎢⎣

�
1 +

C
+

C−

�
�+�

1 +
C
−

C+

�
�−

⎤
⎥⎥⎦
×
�
�T

+
�T

−

�⎞⎟⎟⎠

−1⎡
⎢⎢⎣

�
C
+

C− + 1

�
�+�

1 +
C
−

C+

�
�−

⎤
⎥⎥⎦
(L > N)

�
�

C+ +
�

C− +
�
1 +

C+

C−

�
�T

+�+ +
�
1 +

C−

C+

�
�T

−
�−

���
1 +

C+

C−

�
�T

+�+ +
�
1 +

C−

C+

�
�T

−
�−

�
(L ≤ N)

(3-1)
min

�, �=[�1,…,�N]

1

2
‖�‖2

F
+

C

2

N�
i=1

vi
���h

�
xi
�
� − ti

���F
s.t.,

���VI(j)
���0 = k, j = 1, 2,… , b
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where c is a penalty coefficient, a user-defined constant, vi ∈ [0, 1]N , 
V =

[
v1, v2,… , vN

]T
,� is an N × L matrix between the input layer and the hidden layer, 

where L represents the number of nodes in the hidden layer, T is the actual output of the 
sample, which is a matrix of N × m, and β is the output weight of the hidden layer, which 
is a matrix of L × m. The value of vi indicates whether the sample is selected for the next 
training, if the sample is selected, the value of vi is 1, otherwise it is 0, k is the number of 
samples in the smallest category. By introducing the sample weight matrix W, the above 
equation can be equivalent to the following form:

where W is the diagonal matrix, wii =  1

h(�i)�−�2i2
 , this means that the weight value of a sample 

depends entirely on its loss to the classifier. It can be known from the definition of W, sam-
ples with small values are assigned with larger weight while the samples with large values 
are assigned with smaller weight. Among them, samples with large loss values can be con-
sidered as low confidence samples or outliers [30–32]. In this way, the proposed method do 
not introduce additional artificial parameters while guaranteeing sensitivity of the classifier 
to outliers.

3.2 � Learning the Value of ˇ

According to the above introductions, the essence of the problem is still to determine the 
value of � . To facilitate the optimization, the formula above can be written as:

where G = 
√
�� , V, W are N × N diagonal matrix respectively, the W denotes the sample 

weight, while the V represents that whether to select a sample. To be more intuitive, let

we set the derivative of Eq. (3-5) with respect to � to 0, it can obtain the following formula:

after a simple mathematical derivation, the final solution can be got:

(3-2)
min

�, �=[�1,…,��]

1

2
‖�‖2

F
+

C

2
�‖�� − �‖F

s.t.,
����I(j)

���0 = k, j = 1, 2,… , b

(3-3)
min

�, �=[�1,…,�N]

1

2
‖�‖2

F
+

C

2
��‖�� − �‖2

�

s.t.,
����I(j)0

��� = k, j = 1, 2,… , b

(3-4)
min

�, �=[�1,…,�N]

1

2
‖�‖2

F
+

C

2
‖��� −��‖2

�

s.t.,
����I(j)

���0 = k, j = 1, 2,… , b

(3-5)J =
1

2
‖�‖2

F
+

C

2
‖��� −��‖2

�

(3-6)C(
(
��)�(��)� − (��)��

)
+ � = 0

(3-7)� =
(
�

�
+ (��)���

)−1

(��)��� (L ≤ N)
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3.3 � Learning the Value of �

To solve the minimization problem, without loss of generality, assume that the loss of the 
first k samples in each category is smaller than the loss value of other samples in the same 
category, So there is:

That is to say, we only choose the best k samples in each category in each training. 
The proposed method has the following two advantages: on the one hand, the number of 
samples in each category can be balanced by the constraint function; and on the other 
hand, the weight values can be used to minimize the impact of poorly performing sam-
ples, thereby reducing the influence of noise and outliers and improving the classifica-
tion accuracy of imbalanced classification.

Based on the above discussion, our algorithm will be presented in Algorithm 2, while 
the original ELM can be presented in Algorithm 1. To explain the detailed process of 
the proposed method more intuitively, the flowchart of the proposed method is drawn in 
Fig. 1. The update of β is mutually interacted in successive iterations, while the current 
β and the previous W jointly influence the learning of the new classifier through select-
ing new samples.

(3-8)� = (��)�
(
�

�
+��(��)�

)−1

�� (L > N)

(3-9)∀i ∈ {1,… ,N}, vi =

{
1, if i ≤ kb

0, otherwise

Update W
by Eq.(3-4)

Update V
by Eq.(3-

10)

Select new 
samples

Train a 
classifier by 

Eq.(3-1)

Initialize

Fig. 1   The flowchart of algorithm
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3.4 � Computational Complexity Analysis

First,we consider the original ELM, once the hidden layer output matrix H is deter-
mined, there is computational complexity of O(nLN), the computational complexities of 
matrix multiplication ��� , ��� and ��� are equal to O(L2 N),O(L N2) and O(mLN) 
respectively, so the computational complexity of ELM is:

It also can be deduced that the computational complexities of matrix multiplica-
tion ���� , ���� and ���� are equal to O(L2 N + L N2), O(N3+ L N2) and O(L2 
N + mLN ) respectively. So the computational complexity of β in WELM and CCR-ELM 
can be computed as:

The CS-ELM algorithm divides the data set into two parts based on their labels, and 
its computational complexity is:

It can be known that the computational complexities of proposed method, due to the 
complexities of matrix multiplication ��,�� are O

(
LN2 + N3

)
,O

(
mLN2

)
 , the compu-

tational complexities of computing inverse of matrix size N* N and L*L are equal to 
O(N3) and O(L3) respectively. So the computational complexities of proposed method is:

O
(
L3 + L2N + mLN

)
(L ≤ N)

O
(
N3 + 2LN2 + mLN

)
(L ≤ N)

O(L3 + 2LN2 + L2N + mLN) (L ≤ N)

O(2N3 + 3LN2 + mLN) (L ≤ N)

O(L3 + L2N + mLN) (L ≤ N)

O(N3
−
+ N3

+
+ 2LN2

−
+ 2LN2

+
+ mLN) (L ≤ N)
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From the above analysis, it can be concluded that although the time complexity of the 
proposed method has increased compared to the original method, the time complexity of 
all methods is directly proportional to the number of samples or number of hidden neurons, 
they are O(L3) and O(N3), respectively. That is to say, the time complexity of the proposed 
method in this article will not change by orders of magnitude.

4 � Experiment Evaluations

In this section, we will evaluate the classification performance of the proposed method on 
twelve real-world datasets, the comparative methods include WELM, CS-ELM, CCR-
ELM, which are mentioned above. Besides, in the case of imbalanced learning, the overall 
accuracy is sensitive to the class distribution and may be misleading and not good enough 
to evaluate the performance of the classifier in imbalanced classification problem [29, 33]. 
Thus, an evaluation matrix called G-mean specially for measuring the performance of clas-
sifiers with imbalanced data was proposed, which can overcome the draw-backs of the 
above overall accuracy, it is defined as: 
G-mean = 

√
sensitivity ∗ specificity =

�
TP

TP+FN
×
�

TN

TN+FP
 , where TP, TN, FP, FN stands 

for true positive, true negative, false positive and false negative, respectively. Thus, the 
value of G-mean is adopted in this paper to demonstrate the performance of the proposed 
method. Considering the input weights of proposed method are randomly chosen, so we 
ran the algorithm 30 times, the final result is from the average of 30 results. The data set is 
separated into two nonoverlapped subsets: one for training and the other for validation. The 
optimal number of hidden units is selected as the one which results in the lowest validation 
error.

4.1 � Data Description

Twelve real datasets from KEEL data set repository (https​://sci2s​.ugr.es/keel/imbal​anced​
.php) are tested in our experiments. All of them are publicly available and fully labeled 
with each sample belonging to only one class. The datasets used for experimentation have 
different degrees of class imbalance. The commonly used value measuring the data imbal-
ance degree is IR (imbalance rate), which is defined as follows:

Here, #represent “number of”. The details of the datasets used are summarized in 
Table 1, where the second column lists the number of samples, the third column represents 
the number of features, the fourth and fifth columns are the number of samples in minority 
class and majority class, while the last column is imbalance rate of datasets (IR), the values 
of IR are in the range from 0 to 1. As shown in Table 1, the imbalance ratio of the dataset 
can be low as 0.0590, while the highest imbalance ratio happens to be 0.5495.

O(L3 + N3 + LN2 + L2N + mLN2) (L ≤ N)

O(2N3 + 3LN2 + mLN2) (L ≤ N)

IR =
#minoritysamples

#majoritysamples

https://sci2s.ugr.es/keel/imbalanced.php
https://sci2s.ugr.es/keel/imbalanced.php
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4.2 � Experimental Setting

In this paper, all the experiments are carried out in Python 3.6 environment running in i7 
processor 2.7 GHz CPU and 8 G RAM. In our experiments, attributes in each dataset are 
normalized in the range [− 1, 1]. And similar data processing methods can be also found 
in the works [34, 35]. The sigmoid function: G(a, b, �) = 1∕(1 + exp(−(a ⋅ �))) is selected 
as the active function of the hidden layer in all algorithms. The hidden nodes parameters a 
and b are randomly chosen from the range of [− 1, 1] based on the uniform sampling distri-
bution probability.

The proposed method consists of the initialization phase and the process of gradual 
selecting samples and assigning weights to samples gradually. In the initialization phase, 
all the samples are selected from the given training set to calculate the output weight, that 
is, the weights of all the samples are the same, then in the subsequent training process, 
the constraint function will determine the number of samples and uptade their weights, 
it can determine which samples are added to the following training process according to 
the loss value based on the last classifier. In the experiments, there are only two param-
eters to tune for the proposed method with sigmoid additive node: trade-off constant C and 
the number of hidden nodes L. A grid search of C on { 2−10, 2−8,… , 28, 210 } and L on 
{10,20,…,190,200} is conducted in seek of the optimal result.

4.3 � Experimental Results

The accuracy of the classifiers under G-mean value is shown in Table 2, The results of the 
comparison algorithms can be found from the article [36], similarly, the proposed method 
is conducted on the same training sets and verified on the same testing datasets. And, to 
verify the sensitivity of the proposed method to the above two parameters, Fig. 2 is plotted. 
In addition, the impact of parameters C on classification performance is shown in Fig. 3.

It can be observed from Table  2, in twelve data sets, the proposed method performs 
best on nine of them, especially on the Haberman,Vehicle1 and Abalone9vs18 data sets, 
the accuracy of them can reach 0.6975, 0.9280, 0.9219, respectively, while on other three 
data sets, the G-mean value is lower than the comparison algorithms. Although in Glass0, 

Table 1   Description of datasets Dataset Instances Features Mix-class Max-class IR

Glass1 214 9 76 138 0.5495
Pima 768 8 268 500 0.5356
Glass0 214 9 70 144 0.4861
Yeast1 1484 8 429 1055 0.4066
Haberman 306 3 81 225 0.3731
Vehicle1 846 18 217 629 0.3448
Ecoil1 336 7 77 259 0.2973
New-thyroid1 215 5 35 180 0.1945
Glass6 214 9 29 185 0.1567
Ecoil3 336 7 36 300 0.12
Pageblosks0 472 10 28 444 0.0646
Abalone9vs18 731 8 41 690 0.0590
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Ecoil1 and Glass6 data sets, the G-mean value of the proposed method is not the highest, it 
is not the worst. So the overall performance of the proposed method is better than compari-
son methods in terms of G-mean value.

In order to test the influence of parameter C and number of hidden nodes L, the Fig. 2 
is presented as follows. It can be easily known form Fig. 2 that when C is small, usually 
below 20 in the experiments, better generalization performance is expected. In most of 
cases G-mean value drops very quickly when big C is assigned with a network of very few 
hidden nodes. It can be also observed that the performance is decreasing when C is increas-
ing given quite a large L. For the Glass0, Yeast1, and Abalone9vs18, the G-mean value 
fluctuates greatly with the change of C and L, that is, the two data sets are more sensitive to 
parameters. However, for the data sets Glass1, Ecoil1 and New-thyroid1, the G-mean value 
is relatively stable and does not fluctuate greatly with the parameters changing.

Here in Fig. 3, to more clearly observe the change of G-mean value with the user-speci-
fied parameter C , a grid search of C on { 2−10, 2−8,… , 28, 210 } is conducted to evaluate the 
performance of proposed method. It can be seen more clearly that when the value of C is 
near 0, its G-mean value performs best and gradually stabilizes, that is, G-mean is not sen-
sitive to the C value. Combining the analysis of Fig. 2, it is also explained that the G-mean 
value is more susceptible to the number of hidden layer nodes L from the side, so it is 
important to choose the appropriate number of hidden layer nodes in the proposed method.

In order to reflect the convergence of the algorithm, let the number of iterations of the 
program be 50, the following Fig. 4 is plotted, which demonstrates the convergence of the 
proposed method to optimize the objective function values of Eq. (3-3).

From the Fig. 4, we can observe that the objective function values of the proposed algo-
rithm sharply decreased in the first several iterations and then began to stable quickly, and 
the objective function converges within 20 iterations for most datasets.

5 � Conclusions

By considering the information of the imbalanced distribution of sample classes, the 
proposed method is able to deal with imbalanced data classification problem. The 
method is simple and easy to implement and it can achieve comparable and better 

Table 2   The G-mean value of 
data sets (Bold fonts indicate the 
best result)

Dataset Proposed WELM CCR-ELM CS-ELM

Glass1 0.7998 0.7831 0.7607 0.7964
Pima 0.7681 0.7474 0.7099 0.7573
Glass0 0.8392 0.8117 0.8856 0.8070
Yeast1 0.7455 0.7257 0.7170 0.7298
Haberman 0.6975 0.6511 0.4981 0.6571
Vehicle1 0.9280 0.8530 0.7960 0.8612
Ecoil1 0.9163 0.9069 0.8906 0.9173
New-thyroid1 0.9950 0.9944 0.9924 0.9944
Glass6 0.9518 0.9572 0.9129 0.9578
Ecoil3 0.9176 0.9017 0.9145 0.8986
Pageblocks0 0.9594 0.9340 0.9089 0.9338
Abalone9vs18 0.9219 0.8872 0.7622 0.9199
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generalization performance compared to the conventional machine learning techniques. 
This work provided a solution for imbalanced data learning by adding a parameter-free 
weight matrix and adding the constraint of sample size based on the original ELM to 
balance the impact of sample weights. Compared with traditional improvement of ELM 
based on weighting schemes, the proposed method does not require to set weights before 
training, which eliminates the setting process of parameters, instead, it continuously 

Fig. 2   G-mean of proposed method with different L and C: a Glass1; b Pima; c Glass0; d Yeast1; e Haber-
man; f Vehicle1; g Ecoil1; h New-thyroid1; i Glass6; j Ecoil3; k Pageblocks0; l Abalone9vs18
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selects samples with high confidence based on the sample loss value and assigns the 
sample weights that can strengthen the impact of minority class while weaken the 
impact of majority class. In general, the proposed method in most cases can achieve the 
top performance among the compared state-of-the-art classification method. However, 

Fig. 3   G-mean of proposed method with different C: a Glass1; b Pima; c Glass0; d Yeast1; e Haberman; f 
Vehicle1; g Ecoil1; h New-thyroid1; i Glass6; j Ecoil3; k Pageblocks0; l Abalone9vs18
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we find that the proposed method achieves the unsatisfactory results in computing com-
plexities, which is due to the fact that it needs to find the optimal weights of samples 
through iterations. So there is still improvement room in the proposed method, to reduce 
time complexity based on this work is also one of our future goals.
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Fig. 4   The convergence of proposed method: a Glass1; b Pima; c Glass0; d Yeast1; e Haberman; f Vehi-
cle1; g Ecoil1; h New-thyroid1; i Glass6; j Ecoil3; k Pageblocks0; l Abalone9vs18
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